summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Transforms/Utils/ValueMapper.cpp
diff options
context:
space:
mode:
authordim <dim@FreeBSD.org>2016-12-26 20:36:37 +0000
committerdim <dim@FreeBSD.org>2016-12-26 20:36:37 +0000
commit06210ae42d418d50d8d9365d5c9419308ae9e7ee (patch)
treeab60b4cdd6e430dda1f292a46a77ddb744723f31 /contrib/llvm/lib/Transforms/Utils/ValueMapper.cpp
parent2dd166267f53df1c3748b4325d294b9b839de74b (diff)
downloadFreeBSD-src-06210ae42d418d50d8d9365d5c9419308ae9e7ee.zip
FreeBSD-src-06210ae42d418d50d8d9365d5c9419308ae9e7ee.tar.gz
MFC r309124:
Upgrade our copies of clang, llvm, lldb, compiler-rt and libc++ to 3.9.0 release, and add lld 3.9.0. Also completely revamp the build system for clang, llvm, lldb and their related tools. Please note that from 3.5.0 onwards, clang, llvm and lldb require C++11 support to build; see UPDATING for more information. Release notes for llvm, clang and lld are available here: <http://llvm.org/releases/3.9.0/docs/ReleaseNotes.html> <http://llvm.org/releases/3.9.0/tools/clang/docs/ReleaseNotes.html> <http://llvm.org/releases/3.9.0/tools/lld/docs/ReleaseNotes.html> Thanks to Ed Maste, Bryan Drewery, Andrew Turner, Antoine Brodin and Jan Beich for their help. Relnotes: yes MFC r309147: Pull in r282174 from upstream llvm trunk (by Krzysztof Parzyszek): [PPC] Set SP after loading data from stack frame, if no red zone is present Follow-up to r280705: Make sure that the SP is only restored after all data is loaded from the stack frame, if there is no red zone. This completes the fix for https://llvm.org/bugs/show_bug.cgi?id=26519. Differential Revision: https://reviews.llvm.org/D24466 Reported by: Mark Millard PR: 214433 MFC r309149: Pull in r283060 from upstream llvm trunk (by Hal Finkel): [PowerPC] Refactor soft-float support, and enable PPC64 soft float This change enables soft-float for PowerPC64, and also makes soft-float disable all vector instruction sets for both 32-bit and 64-bit modes. This latter part is necessary because the PPC backend canonicalizes many Altivec vector types to floating-point types, and so soft-float breaks scalarization support for many operations. Both for embedded targets and for operating-system kernels desiring soft-float support, it seems reasonable that disabling hardware floating-point also disables vector instructions (embedded targets without hardware floating point support are unlikely to have Altivec, etc. and operating system kernels desiring not to use floating-point registers to lower syscall cost are unlikely to want to use vector registers either). If someone needs this to work, we'll need to change the fact that we promote many Altivec operations to act on v4f32. To make it possible to disable Altivec when soft-float is enabled, hardware floating-point support needs to be expressed as a positive feature, like the others, and not a negative feature, because target features cannot have dependencies on the disabling of some other feature. So +soft-float has now become -hard-float. Fixes PR26970. Pull in r283061 from upstream clang trunk (by Hal Finkel): [PowerPC] Enable soft-float for PPC64, and +soft-float -> -hard-float Enable soft-float support on PPC64, as the backend now supports it. Also, the backend now uses -hard-float instead of +soft-float, so set the target features accordingly. Fixes PR26970. Reported by: Mark Millard PR: 214433 MFC r309212: Add a few missed clang 3.9.0 files to OptionalObsoleteFiles. MFC r309262: Fix packaging for clang, lldb and lld 3.9.0 During the upgrade of clang/llvm etc to 3.9.0 in r309124, the PACKAGE directive in the usr.bin/clang/*.mk files got dropped accidentally. Restore it, with a few minor changes and additions: * Correct license in clang.ucl to NCSA * Add PACKAGE=clang for clang and most of the "ll" tools * Put lldb in its own package * Put lld in its own package Reviewed by: gjb, jmallett Differential Revision: https://reviews.freebsd.org/D8666 MFC r309656: During the bootstrap phase, when building the minimal llvm library on PowerPC, add lib/Support/Atomic.cpp. This is needed because upstream llvm revision r271821 disabled the use of std::call_once, which causes some fallback functions from Atomic.cpp to be used instead. Reported by: Mark Millard PR: 214902 MFC r309835: Tentatively apply https://reviews.llvm.org/D18730 to work around gcc PR 70528 (bogus error: constructor required before non-static data member). This should fix buildworld with the external gcc package. Reported by: https://jenkins.freebsd.org/job/FreeBSD_HEAD_amd64_gcc/ MFC r310194: Upgrade our copies of clang, llvm, lld, lldb, compiler-rt and libc++ to 3.9.1 release. Please note that from 3.5.0 onwards, clang, llvm and lldb require C++11 support to build; see UPDATING for more information. Release notes for llvm, clang and lld will be available here: <http://releases.llvm.org/3.9.1/docs/ReleaseNotes.html> <http://releases.llvm.org/3.9.1/tools/clang/docs/ReleaseNotes.html> <http://releases.llvm.org/3.9.1/tools/lld/docs/ReleaseNotes.html> Relnotes: yes
Diffstat (limited to 'contrib/llvm/lib/Transforms/Utils/ValueMapper.cpp')
-rw-r--r--contrib/llvm/lib/Transforms/Utils/ValueMapper.cpp1223
1 files changed, 926 insertions, 297 deletions
diff --git a/contrib/llvm/lib/Transforms/Utils/ValueMapper.cpp b/contrib/llvm/lib/Transforms/Utils/ValueMapper.cpp
index f47ddb9..2eade8c 100644
--- a/contrib/llvm/lib/Transforms/Utils/ValueMapper.cpp
+++ b/contrib/llvm/lib/Transforms/Utils/ValueMapper.cpp
@@ -13,9 +13,13 @@
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/ValueMapper.h"
+#include "llvm/ADT/DenseSet.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/Constants.h"
+#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/Function.h"
+#include "llvm/IR/GlobalAlias.h"
+#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Metadata.h"
@@ -25,25 +29,326 @@ using namespace llvm;
// Out of line method to get vtable etc for class.
void ValueMapTypeRemapper::anchor() {}
void ValueMaterializer::anchor() {}
-void ValueMaterializer::materializeInitFor(GlobalValue *New, GlobalValue *Old) {
-}
-Value *llvm::MapValue(const Value *V, ValueToValueMapTy &VM, RemapFlags Flags,
- ValueMapTypeRemapper *TypeMapper,
- ValueMaterializer *Materializer) {
- ValueToValueMapTy::iterator I = VM.find(V);
-
+namespace {
+
+/// A basic block used in a BlockAddress whose function body is not yet
+/// materialized.
+struct DelayedBasicBlock {
+ BasicBlock *OldBB;
+ std::unique_ptr<BasicBlock> TempBB;
+
+ // Explicit move for MSVC.
+ DelayedBasicBlock(DelayedBasicBlock &&X)
+ : OldBB(std::move(X.OldBB)), TempBB(std::move(X.TempBB)) {}
+ DelayedBasicBlock &operator=(DelayedBasicBlock &&X) {
+ OldBB = std::move(X.OldBB);
+ TempBB = std::move(X.TempBB);
+ return *this;
+ }
+
+ DelayedBasicBlock(const BlockAddress &Old)
+ : OldBB(Old.getBasicBlock()),
+ TempBB(BasicBlock::Create(Old.getContext())) {}
+};
+
+struct WorklistEntry {
+ enum EntryKind {
+ MapGlobalInit,
+ MapAppendingVar,
+ MapGlobalAliasee,
+ RemapFunction
+ };
+ struct GVInitTy {
+ GlobalVariable *GV;
+ Constant *Init;
+ };
+ struct AppendingGVTy {
+ GlobalVariable *GV;
+ Constant *InitPrefix;
+ };
+ struct GlobalAliaseeTy {
+ GlobalAlias *GA;
+ Constant *Aliasee;
+ };
+
+ unsigned Kind : 2;
+ unsigned MCID : 29;
+ unsigned AppendingGVIsOldCtorDtor : 1;
+ unsigned AppendingGVNumNewMembers;
+ union {
+ GVInitTy GVInit;
+ AppendingGVTy AppendingGV;
+ GlobalAliaseeTy GlobalAliasee;
+ Function *RemapF;
+ } Data;
+};
+
+struct MappingContext {
+ ValueToValueMapTy *VM;
+ ValueMaterializer *Materializer = nullptr;
+
+ /// Construct a MappingContext with a value map and materializer.
+ explicit MappingContext(ValueToValueMapTy &VM,
+ ValueMaterializer *Materializer = nullptr)
+ : VM(&VM), Materializer(Materializer) {}
+};
+
+class MDNodeMapper;
+class Mapper {
+ friend class MDNodeMapper;
+
+#ifndef NDEBUG
+ DenseSet<GlobalValue *> AlreadyScheduled;
+#endif
+
+ RemapFlags Flags;
+ ValueMapTypeRemapper *TypeMapper;
+ unsigned CurrentMCID = 0;
+ SmallVector<MappingContext, 2> MCs;
+ SmallVector<WorklistEntry, 4> Worklist;
+ SmallVector<DelayedBasicBlock, 1> DelayedBBs;
+ SmallVector<Constant *, 16> AppendingInits;
+
+public:
+ Mapper(ValueToValueMapTy &VM, RemapFlags Flags,
+ ValueMapTypeRemapper *TypeMapper, ValueMaterializer *Materializer)
+ : Flags(Flags), TypeMapper(TypeMapper),
+ MCs(1, MappingContext(VM, Materializer)) {}
+
+ /// ValueMapper should explicitly call \a flush() before destruction.
+ ~Mapper() { assert(!hasWorkToDo() && "Expected to be flushed"); }
+
+ bool hasWorkToDo() const { return !Worklist.empty(); }
+
+ unsigned
+ registerAlternateMappingContext(ValueToValueMapTy &VM,
+ ValueMaterializer *Materializer = nullptr) {
+ MCs.push_back(MappingContext(VM, Materializer));
+ return MCs.size() - 1;
+ }
+
+ void addFlags(RemapFlags Flags);
+
+ Value *mapValue(const Value *V);
+ void remapInstruction(Instruction *I);
+ void remapFunction(Function &F);
+
+ Constant *mapConstant(const Constant *C) {
+ return cast_or_null<Constant>(mapValue(C));
+ }
+
+ /// Map metadata.
+ ///
+ /// Find the mapping for MD. Guarantees that the return will be resolved
+ /// (not an MDNode, or MDNode::isResolved() returns true).
+ Metadata *mapMetadata(const Metadata *MD);
+
+ void scheduleMapGlobalInitializer(GlobalVariable &GV, Constant &Init,
+ unsigned MCID);
+ void scheduleMapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix,
+ bool IsOldCtorDtor,
+ ArrayRef<Constant *> NewMembers,
+ unsigned MCID);
+ void scheduleMapGlobalAliasee(GlobalAlias &GA, Constant &Aliasee,
+ unsigned MCID);
+ void scheduleRemapFunction(Function &F, unsigned MCID);
+
+ void flush();
+
+private:
+ void mapGlobalInitializer(GlobalVariable &GV, Constant &Init);
+ void mapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix,
+ bool IsOldCtorDtor,
+ ArrayRef<Constant *> NewMembers);
+ void mapGlobalAliasee(GlobalAlias &GA, Constant &Aliasee);
+ void remapFunction(Function &F, ValueToValueMapTy &VM);
+
+ ValueToValueMapTy &getVM() { return *MCs[CurrentMCID].VM; }
+ ValueMaterializer *getMaterializer() { return MCs[CurrentMCID].Materializer; }
+
+ Value *mapBlockAddress(const BlockAddress &BA);
+
+ /// Map metadata that doesn't require visiting operands.
+ Optional<Metadata *> mapSimpleMetadata(const Metadata *MD);
+
+ Metadata *mapToMetadata(const Metadata *Key, Metadata *Val);
+ Metadata *mapToSelf(const Metadata *MD);
+};
+
+class MDNodeMapper {
+ Mapper &M;
+
+ /// Data about a node in \a UniquedGraph.
+ struct Data {
+ bool HasChanged = false;
+ unsigned ID = ~0u;
+ TempMDNode Placeholder;
+
+ Data() {}
+ Data(Data &&X)
+ : HasChanged(std::move(X.HasChanged)), ID(std::move(X.ID)),
+ Placeholder(std::move(X.Placeholder)) {}
+ Data &operator=(Data &&X) {
+ HasChanged = std::move(X.HasChanged);
+ ID = std::move(X.ID);
+ Placeholder = std::move(X.Placeholder);
+ return *this;
+ }
+ };
+
+ /// A graph of uniqued nodes.
+ struct UniquedGraph {
+ SmallDenseMap<const Metadata *, Data, 32> Info; // Node properties.
+ SmallVector<MDNode *, 16> POT; // Post-order traversal.
+
+ /// Propagate changed operands through the post-order traversal.
+ ///
+ /// Iteratively update \a Data::HasChanged for each node based on \a
+ /// Data::HasChanged of its operands, until fixed point.
+ void propagateChanges();
+
+ /// Get a forward reference to a node to use as an operand.
+ Metadata &getFwdReference(MDNode &Op);
+ };
+
+ /// Worklist of distinct nodes whose operands need to be remapped.
+ SmallVector<MDNode *, 16> DistinctWorklist;
+
+ // Storage for a UniquedGraph.
+ SmallDenseMap<const Metadata *, Data, 32> InfoStorage;
+ SmallVector<MDNode *, 16> POTStorage;
+
+public:
+ MDNodeMapper(Mapper &M) : M(M) {}
+
+ /// Map a metadata node (and its transitive operands).
+ ///
+ /// Map all the (unmapped) nodes in the subgraph under \c N. The iterative
+ /// algorithm handles distinct nodes and uniqued node subgraphs using
+ /// different strategies.
+ ///
+ /// Distinct nodes are immediately mapped and added to \a DistinctWorklist
+ /// using \a mapDistinctNode(). Their mapping can always be computed
+ /// immediately without visiting operands, even if their operands change.
+ ///
+ /// The mapping for uniqued nodes depends on whether their operands change.
+ /// \a mapTopLevelUniquedNode() traverses the transitive uniqued subgraph of
+ /// a node to calculate uniqued node mappings in bulk. Distinct leafs are
+ /// added to \a DistinctWorklist with \a mapDistinctNode().
+ ///
+ /// After mapping \c N itself, this function remaps the operands of the
+ /// distinct nodes in \a DistinctWorklist until the entire subgraph under \c
+ /// N has been mapped.
+ Metadata *map(const MDNode &N);
+
+private:
+ /// Map a top-level uniqued node and the uniqued subgraph underneath it.
+ ///
+ /// This builds up a post-order traversal of the (unmapped) uniqued subgraph
+ /// underneath \c FirstN and calculates the nodes' mapping. Each node uses
+ /// the identity mapping (\a Mapper::mapToSelf()) as long as all of its
+ /// operands uses the identity mapping.
+ ///
+ /// The algorithm works as follows:
+ ///
+ /// 1. \a createPOT(): traverse the uniqued subgraph under \c FirstN and
+ /// save the post-order traversal in the given \a UniquedGraph, tracking
+ /// nodes' operands change.
+ ///
+ /// 2. \a UniquedGraph::propagateChanges(): propagate changed operands
+ /// through the \a UniquedGraph until fixed point, following the rule
+ /// that if a node changes, any node that references must also change.
+ ///
+ /// 3. \a mapNodesInPOT(): map the uniqued nodes, creating new uniqued nodes
+ /// (referencing new operands) where necessary.
+ Metadata *mapTopLevelUniquedNode(const MDNode &FirstN);
+
+ /// Try to map the operand of an \a MDNode.
+ ///
+ /// If \c Op is already mapped, return the mapping. If it's not an \a
+ /// MDNode, compute and return the mapping. If it's a distinct \a MDNode,
+ /// return the result of \a mapDistinctNode().
+ ///
+ /// \return None if \c Op is an unmapped uniqued \a MDNode.
+ /// \post getMappedOp(Op) only returns None if this returns None.
+ Optional<Metadata *> tryToMapOperand(const Metadata *Op);
+
+ /// Map a distinct node.
+ ///
+ /// Return the mapping for the distinct node \c N, saving the result in \a
+ /// DistinctWorklist for later remapping.
+ ///
+ /// \pre \c N is not yet mapped.
+ /// \pre \c N.isDistinct().
+ MDNode *mapDistinctNode(const MDNode &N);
+
+ /// Get a previously mapped node.
+ Optional<Metadata *> getMappedOp(const Metadata *Op) const;
+
+ /// Create a post-order traversal of an unmapped uniqued node subgraph.
+ ///
+ /// This traverses the metadata graph deeply enough to map \c FirstN. It
+ /// uses \a tryToMapOperand() (via \a Mapper::mapSimplifiedNode()), so any
+ /// metadata that has already been mapped will not be part of the POT.
+ ///
+ /// Each node that has a changed operand from outside the graph (e.g., a
+ /// distinct node, an already-mapped uniqued node, or \a ConstantAsMetadata)
+ /// is marked with \a Data::HasChanged.
+ ///
+ /// \return \c true if any nodes in \c G have \a Data::HasChanged.
+ /// \post \c G.POT is a post-order traversal ending with \c FirstN.
+ /// \post \a Data::hasChanged in \c G.Info indicates whether any node needs
+ /// to change because of operands outside the graph.
+ bool createPOT(UniquedGraph &G, const MDNode &FirstN);
+
+ /// Visit the operands of a uniqued node in the POT.
+ ///
+ /// Visit the operands in the range from \c I to \c E, returning the first
+ /// uniqued node we find that isn't yet in \c G. \c I is always advanced to
+ /// where to continue the loop through the operands.
+ ///
+ /// This sets \c HasChanged if any of the visited operands change.
+ MDNode *visitOperands(UniquedGraph &G, MDNode::op_iterator &I,
+ MDNode::op_iterator E, bool &HasChanged);
+
+ /// Map all the nodes in the given uniqued graph.
+ ///
+ /// This visits all the nodes in \c G in post-order, using the identity
+ /// mapping or creating a new node depending on \a Data::HasChanged.
+ ///
+ /// \pre \a getMappedOp() returns None for nodes in \c G, but not for any of
+ /// their operands outside of \c G.
+ /// \pre \a Data::HasChanged is true for a node in \c G iff any of its
+ /// operands have changed.
+ /// \post \a getMappedOp() returns the mapped node for every node in \c G.
+ void mapNodesInPOT(UniquedGraph &G);
+
+ /// Remap a node's operands using the given functor.
+ ///
+ /// Iterate through the operands of \c N and update them in place using \c
+ /// mapOperand.
+ ///
+ /// \pre N.isDistinct() or N.isTemporary().
+ template <class OperandMapper>
+ void remapOperands(MDNode &N, OperandMapper mapOperand);
+};
+
+} // end namespace
+
+Value *Mapper::mapValue(const Value *V) {
+ ValueToValueMapTy::iterator I = getVM().find(V);
+
// If the value already exists in the map, use it.
- if (I != VM.end() && I->second) return I->second;
-
+ if (I != getVM().end()) {
+ assert(I->second && "Unexpected null mapping");
+ return I->second;
+ }
+
// If we have a materializer and it can materialize a value, use that.
- if (Materializer) {
- if (Value *NewV =
- Materializer->materializeDeclFor(const_cast<Value *>(V))) {
- VM[V] = NewV;
- if (auto *NewGV = dyn_cast<GlobalValue>(NewV))
- Materializer->materializeInitFor(
- NewGV, const_cast<GlobalValue *>(cast<GlobalValue>(V)));
+ if (auto *Materializer = getMaterializer()) {
+ if (Value *NewV = Materializer->materialize(const_cast<Value *>(V))) {
+ getVM()[V] = NewV;
return NewV;
}
}
@@ -51,13 +356,9 @@ Value *llvm::MapValue(const Value *V, ValueToValueMapTy &VM, RemapFlags Flags,
// Global values do not need to be seeded into the VM if they
// are using the identity mapping.
if (isa<GlobalValue>(V)) {
- if (Flags & RF_NullMapMissingGlobalValues) {
- assert(!(Flags & RF_IgnoreMissingEntries) &&
- "Illegal to specify both RF_NullMapMissingGlobalValues and "
- "RF_IgnoreMissingEntries");
+ if (Flags & RF_NullMapMissingGlobalValues)
return nullptr;
- }
- return VM[V] = const_cast<Value*>(V);
+ return getVM()[V] = const_cast<Value *>(V);
}
if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
@@ -70,28 +371,39 @@ Value *llvm::MapValue(const Value *V, ValueToValueMapTy &VM, RemapFlags Flags,
V = InlineAsm::get(NewTy, IA->getAsmString(), IA->getConstraintString(),
IA->hasSideEffects(), IA->isAlignStack());
}
-
- return VM[V] = const_cast<Value*>(V);
+
+ return getVM()[V] = const_cast<Value *>(V);
}
if (const auto *MDV = dyn_cast<MetadataAsValue>(V)) {
const Metadata *MD = MDV->getMetadata();
+
+ if (auto *LAM = dyn_cast<LocalAsMetadata>(MD)) {
+ // Look through to grab the local value.
+ if (Value *LV = mapValue(LAM->getValue())) {
+ if (V == LAM->getValue())
+ return const_cast<Value *>(V);
+ return MetadataAsValue::get(V->getContext(), ValueAsMetadata::get(LV));
+ }
+
+ // FIXME: always return nullptr once Verifier::verifyDominatesUse()
+ // ensures metadata operands only reference defined SSA values.
+ return (Flags & RF_IgnoreMissingLocals)
+ ? nullptr
+ : MetadataAsValue::get(V->getContext(),
+ MDTuple::get(V->getContext(), None));
+ }
+
// If this is a module-level metadata and we know that nothing at the module
// level is changing, then use an identity mapping.
- if (!isa<LocalAsMetadata>(MD) && (Flags & RF_NoModuleLevelChanges))
- return VM[V] = const_cast<Value *>(V);
-
- auto *MappedMD = MapMetadata(MD, VM, Flags, TypeMapper, Materializer);
- if (MD == MappedMD || (!MappedMD && (Flags & RF_IgnoreMissingEntries)))
- return VM[V] = const_cast<Value *>(V);
-
- // FIXME: This assert crashes during bootstrap, but I think it should be
- // correct. For now, just match behaviour from before the metadata/value
- // split.
- //
- // assert((MappedMD || (Flags & RF_NullMapMissingGlobalValues)) &&
- // "Referenced metadata value not in value map");
- return VM[V] = MetadataAsValue::get(V->getContext(), MappedMD);
+ if (Flags & RF_NoModuleLevelChanges)
+ return getVM()[V] = const_cast<Value *>(V);
+
+ // Map the metadata and turn it into a value.
+ auto *MappedMD = mapMetadata(MD);
+ if (MD == MappedMD)
+ return getVM()[V] = const_cast<Value *>(V);
+ return getVM()[V] = MetadataAsValue::get(V->getContext(), MappedMD);
}
// Okay, this either must be a constant (which may or may not be mappable) or
@@ -99,25 +411,31 @@ Value *llvm::MapValue(const Value *V, ValueToValueMapTy &VM, RemapFlags Flags,
Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V));
if (!C)
return nullptr;
-
- if (BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
- Function *F =
- cast<Function>(MapValue(BA->getFunction(), VM, Flags, TypeMapper, Materializer));
- BasicBlock *BB = cast_or_null<BasicBlock>(MapValue(BA->getBasicBlock(), VM,
- Flags, TypeMapper, Materializer));
- return VM[V] = BlockAddress::get(F, BB ? BB : BA->getBasicBlock());
- }
-
+
+ if (BlockAddress *BA = dyn_cast<BlockAddress>(C))
+ return mapBlockAddress(*BA);
+
+ auto mapValueOrNull = [this](Value *V) {
+ auto Mapped = mapValue(V);
+ assert((Mapped || (Flags & RF_NullMapMissingGlobalValues)) &&
+ "Unexpected null mapping for constant operand without "
+ "NullMapMissingGlobalValues flag");
+ return Mapped;
+ };
+
// Otherwise, we have some other constant to remap. Start by checking to see
// if all operands have an identity remapping.
unsigned OpNo = 0, NumOperands = C->getNumOperands();
Value *Mapped = nullptr;
for (; OpNo != NumOperands; ++OpNo) {
Value *Op = C->getOperand(OpNo);
- Mapped = MapValue(Op, VM, Flags, TypeMapper, Materializer);
- if (Mapped != C) break;
+ Mapped = mapValueOrNull(Op);
+ if (!Mapped)
+ return nullptr;
+ if (Mapped != Op)
+ break;
}
-
+
// See if the type mapper wants to remap the type as well.
Type *NewTy = C->getType();
if (TypeMapper)
@@ -126,23 +444,26 @@ Value *llvm::MapValue(const Value *V, ValueToValueMapTy &VM, RemapFlags Flags,
// If the result type and all operands match up, then just insert an identity
// mapping.
if (OpNo == NumOperands && NewTy == C->getType())
- return VM[V] = C;
-
+ return getVM()[V] = C;
+
// Okay, we need to create a new constant. We've already processed some or
// all of the operands, set them all up now.
SmallVector<Constant*, 8> Ops;
Ops.reserve(NumOperands);
for (unsigned j = 0; j != OpNo; ++j)
Ops.push_back(cast<Constant>(C->getOperand(j)));
-
+
// If one of the operands mismatch, push it and the other mapped operands.
if (OpNo != NumOperands) {
Ops.push_back(cast<Constant>(Mapped));
-
+
// Map the rest of the operands that aren't processed yet.
- for (++OpNo; OpNo != NumOperands; ++OpNo)
- Ops.push_back(MapValue(cast<Constant>(C->getOperand(OpNo)), VM,
- Flags, TypeMapper, Materializer));
+ for (++OpNo; OpNo != NumOperands; ++OpNo) {
+ Mapped = mapValueOrNull(C->getOperand(OpNo));
+ if (!Mapped)
+ return nullptr;
+ Ops.push_back(cast<Constant>(Mapped));
+ }
}
Type *NewSrcTy = nullptr;
if (TypeMapper)
@@ -150,309 +471,407 @@ Value *llvm::MapValue(const Value *V, ValueToValueMapTy &VM, RemapFlags Flags,
NewSrcTy = TypeMapper->remapType(GEPO->getSourceElementType());
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
- return VM[V] = CE->getWithOperands(Ops, NewTy, false, NewSrcTy);
+ return getVM()[V] = CE->getWithOperands(Ops, NewTy, false, NewSrcTy);
if (isa<ConstantArray>(C))
- return VM[V] = ConstantArray::get(cast<ArrayType>(NewTy), Ops);
+ return getVM()[V] = ConstantArray::get(cast<ArrayType>(NewTy), Ops);
if (isa<ConstantStruct>(C))
- return VM[V] = ConstantStruct::get(cast<StructType>(NewTy), Ops);
+ return getVM()[V] = ConstantStruct::get(cast<StructType>(NewTy), Ops);
if (isa<ConstantVector>(C))
- return VM[V] = ConstantVector::get(Ops);
+ return getVM()[V] = ConstantVector::get(Ops);
// If this is a no-operand constant, it must be because the type was remapped.
if (isa<UndefValue>(C))
- return VM[V] = UndefValue::get(NewTy);
+ return getVM()[V] = UndefValue::get(NewTy);
if (isa<ConstantAggregateZero>(C))
- return VM[V] = ConstantAggregateZero::get(NewTy);
+ return getVM()[V] = ConstantAggregateZero::get(NewTy);
assert(isa<ConstantPointerNull>(C));
- return VM[V] = ConstantPointerNull::get(cast<PointerType>(NewTy));
-}
-
-static Metadata *mapToMetadata(ValueToValueMapTy &VM, const Metadata *Key,
- Metadata *Val, ValueMaterializer *Materializer,
- RemapFlags Flags) {
- VM.MD()[Key].reset(Val);
- if (Materializer && !(Flags & RF_HaveUnmaterializedMetadata)) {
- auto *N = dyn_cast_or_null<MDNode>(Val);
- // Need to invoke this once we have non-temporary MD.
- if (!N || !N->isTemporary())
- Materializer->replaceTemporaryMetadata(Key, Val);
+ return getVM()[V] = ConstantPointerNull::get(cast<PointerType>(NewTy));
+}
+
+Value *Mapper::mapBlockAddress(const BlockAddress &BA) {
+ Function *F = cast<Function>(mapValue(BA.getFunction()));
+
+ // F may not have materialized its initializer. In that case, create a
+ // dummy basic block for now, and replace it once we've materialized all
+ // the initializers.
+ BasicBlock *BB;
+ if (F->empty()) {
+ DelayedBBs.push_back(DelayedBasicBlock(BA));
+ BB = DelayedBBs.back().TempBB.get();
+ } else {
+ BB = cast_or_null<BasicBlock>(mapValue(BA.getBasicBlock()));
}
- return Val;
+
+ return getVM()[&BA] = BlockAddress::get(F, BB ? BB : BA.getBasicBlock());
}
-static Metadata *mapToSelf(ValueToValueMapTy &VM, const Metadata *MD,
- ValueMaterializer *Materializer, RemapFlags Flags) {
- return mapToMetadata(VM, MD, const_cast<Metadata *>(MD), Materializer, Flags);
+Metadata *Mapper::mapToMetadata(const Metadata *Key, Metadata *Val) {
+ getVM().MD()[Key].reset(Val);
+ return Val;
}
-static Metadata *MapMetadataImpl(const Metadata *MD,
- SmallVectorImpl<MDNode *> &DistinctWorklist,
- ValueToValueMapTy &VM, RemapFlags Flags,
- ValueMapTypeRemapper *TypeMapper,
- ValueMaterializer *Materializer);
+Metadata *Mapper::mapToSelf(const Metadata *MD) {
+ return mapToMetadata(MD, const_cast<Metadata *>(MD));
+}
-static Metadata *mapMetadataOp(Metadata *Op,
- SmallVectorImpl<MDNode *> &DistinctWorklist,
- ValueToValueMapTy &VM, RemapFlags Flags,
- ValueMapTypeRemapper *TypeMapper,
- ValueMaterializer *Materializer) {
+Optional<Metadata *> MDNodeMapper::tryToMapOperand(const Metadata *Op) {
if (!Op)
return nullptr;
- if (Materializer && !Materializer->isMetadataNeeded(Op))
+ if (Optional<Metadata *> MappedOp = M.mapSimpleMetadata(Op)) {
+#ifndef NDEBUG
+ if (auto *CMD = dyn_cast<ConstantAsMetadata>(Op))
+ assert((!*MappedOp || M.getVM().count(CMD->getValue()) ||
+ M.getVM().getMappedMD(Op)) &&
+ "Expected Value to be memoized");
+ else
+ assert((isa<MDString>(Op) || M.getVM().getMappedMD(Op)) &&
+ "Expected result to be memoized");
+#endif
+ return *MappedOp;
+ }
+
+ const MDNode &N = *cast<MDNode>(Op);
+ if (N.isDistinct())
+ return mapDistinctNode(N);
+ return None;
+}
+
+MDNode *MDNodeMapper::mapDistinctNode(const MDNode &N) {
+ assert(N.isDistinct() && "Expected a distinct node");
+ assert(!M.getVM().getMappedMD(&N) && "Expected an unmapped node");
+ DistinctWorklist.push_back(cast<MDNode>(
+ (M.Flags & RF_MoveDistinctMDs)
+ ? M.mapToSelf(&N)
+ : M.mapToMetadata(&N, MDNode::replaceWithDistinct(N.clone()))));
+ return DistinctWorklist.back();
+}
+
+static ConstantAsMetadata *wrapConstantAsMetadata(const ConstantAsMetadata &CMD,
+ Value *MappedV) {
+ if (CMD.getValue() == MappedV)
+ return const_cast<ConstantAsMetadata *>(&CMD);
+ return MappedV ? ConstantAsMetadata::getConstant(MappedV) : nullptr;
+}
+
+Optional<Metadata *> MDNodeMapper::getMappedOp(const Metadata *Op) const {
+ if (!Op)
return nullptr;
- if (Metadata *MappedOp = MapMetadataImpl(Op, DistinctWorklist, VM, Flags,
- TypeMapper, Materializer))
- return MappedOp;
- // Use identity map if MappedOp is null and we can ignore missing entries.
- if (Flags & RF_IgnoreMissingEntries)
+ if (Optional<Metadata *> MappedOp = M.getVM().getMappedMD(Op))
+ return *MappedOp;
+
+ if (isa<MDString>(Op))
+ return const_cast<Metadata *>(Op);
+
+ if (auto *CMD = dyn_cast<ConstantAsMetadata>(Op))
+ return wrapConstantAsMetadata(*CMD, M.getVM().lookup(CMD->getValue()));
+
+ return None;
+}
+
+Metadata &MDNodeMapper::UniquedGraph::getFwdReference(MDNode &Op) {
+ auto Where = Info.find(&Op);
+ assert(Where != Info.end() && "Expected a valid reference");
+
+ auto &OpD = Where->second;
+ if (!OpD.HasChanged)
return Op;
- // FIXME: This assert crashes during bootstrap, but I think it should be
- // correct. For now, just match behaviour from before the metadata/value
- // split.
- //
- // assert((Flags & RF_NullMapMissingGlobalValues) &&
- // "Referenced metadata not in value map!");
- return nullptr;
+ // Lazily construct a temporary node.
+ if (!OpD.Placeholder)
+ OpD.Placeholder = Op.clone();
+
+ return *OpD.Placeholder;
}
-/// Resolve uniquing cycles involving the given metadata.
-static void resolveCycles(Metadata *MD, bool AllowTemps) {
- if (auto *N = dyn_cast_or_null<MDNode>(MD)) {
- if (AllowTemps && N->isTemporary())
- return;
- if (!N->isResolved()) {
- if (AllowTemps)
- // Note that this will drop RAUW support on any temporaries, which
- // blocks uniquing. If this ends up being an issue, in the future
- // we can experiment with delaying resolving these nodes until
- // after metadata is fully materialized (i.e. when linking metadata
- // as a postpass after function importing).
- N->resolveNonTemporaries();
- else
- N->resolveCycles();
- }
+template <class OperandMapper>
+void MDNodeMapper::remapOperands(MDNode &N, OperandMapper mapOperand) {
+ assert(!N.isUniqued() && "Expected distinct or temporary nodes");
+ for (unsigned I = 0, E = N.getNumOperands(); I != E; ++I) {
+ Metadata *Old = N.getOperand(I);
+ Metadata *New = mapOperand(Old);
+
+ if (Old != New)
+ N.replaceOperandWith(I, New);
}
}
-/// Remap the operands of an MDNode.
-///
-/// If \c Node is temporary, uniquing cycles are ignored. If \c Node is
-/// distinct, uniquing cycles are resolved as they're found.
-///
-/// \pre \c Node.isDistinct() or \c Node.isTemporary().
-static bool remapOperands(MDNode &Node,
- SmallVectorImpl<MDNode *> &DistinctWorklist,
- ValueToValueMapTy &VM, RemapFlags Flags,
- ValueMapTypeRemapper *TypeMapper,
- ValueMaterializer *Materializer) {
- assert(!Node.isUniqued() && "Expected temporary or distinct node");
- const bool IsDistinct = Node.isDistinct();
-
- bool AnyChanged = false;
- for (unsigned I = 0, E = Node.getNumOperands(); I != E; ++I) {
- Metadata *Old = Node.getOperand(I);
- Metadata *New = mapMetadataOp(Old, DistinctWorklist, VM, Flags, TypeMapper,
- Materializer);
- if (Old != New) {
- AnyChanged = true;
- Node.replaceOperandWith(I, New);
-
- // Resolve uniquing cycles underneath distinct nodes on the fly so they
- // don't infect later operands.
- if (IsDistinct)
- resolveCycles(New, Flags & RF_HaveUnmaterializedMetadata);
+namespace {
+/// An entry in the worklist for the post-order traversal.
+struct POTWorklistEntry {
+ MDNode *N; ///< Current node.
+ MDNode::op_iterator Op; ///< Current operand of \c N.
+
+ /// Keep a flag of whether operands have changed in the worklist to avoid
+ /// hitting the map in \a UniquedGraph.
+ bool HasChanged = false;
+
+ POTWorklistEntry(MDNode &N) : N(&N), Op(N.op_begin()) {}
+};
+} // end namespace
+
+bool MDNodeMapper::createPOT(UniquedGraph &G, const MDNode &FirstN) {
+ assert(G.Info.empty() && "Expected a fresh traversal");
+ assert(FirstN.isUniqued() && "Expected uniqued node in POT");
+
+ // Construct a post-order traversal of the uniqued subgraph under FirstN.
+ bool AnyChanges = false;
+ SmallVector<POTWorklistEntry, 16> Worklist;
+ Worklist.push_back(POTWorklistEntry(const_cast<MDNode &>(FirstN)));
+ (void)G.Info[&FirstN];
+ while (!Worklist.empty()) {
+ // Start or continue the traversal through the this node's operands.
+ auto &WE = Worklist.back();
+ if (MDNode *N = visitOperands(G, WE.Op, WE.N->op_end(), WE.HasChanged)) {
+ // Push a new node to traverse first.
+ Worklist.push_back(POTWorklistEntry(*N));
+ continue;
}
+
+ // Push the node onto the POT.
+ assert(WE.N->isUniqued() && "Expected only uniqued nodes");
+ assert(WE.Op == WE.N->op_end() && "Expected to visit all operands");
+ auto &D = G.Info[WE.N];
+ AnyChanges |= D.HasChanged = WE.HasChanged;
+ D.ID = G.POT.size();
+ G.POT.push_back(WE.N);
+
+ // Pop the node off the worklist.
+ Worklist.pop_back();
}
+ return AnyChanges;
+}
- return AnyChanged;
-}
-
-/// Map a distinct MDNode.
-///
-/// Whether distinct nodes change is independent of their operands. If \a
-/// RF_MoveDistinctMDs, then they are reused, and their operands remapped in
-/// place; effectively, they're moved from one graph to another. Otherwise,
-/// they're cloned/duplicated, and the new copy's operands are remapped.
-static Metadata *mapDistinctNode(const MDNode *Node,
- SmallVectorImpl<MDNode *> &DistinctWorklist,
- ValueToValueMapTy &VM, RemapFlags Flags,
- ValueMapTypeRemapper *TypeMapper,
- ValueMaterializer *Materializer) {
- assert(Node->isDistinct() && "Expected distinct node");
-
- MDNode *NewMD;
- if (Flags & RF_MoveDistinctMDs)
- NewMD = const_cast<MDNode *>(Node);
- else
- NewMD = MDNode::replaceWithDistinct(Node->clone());
-
- // Remap operands later.
- DistinctWorklist.push_back(NewMD);
- return mapToMetadata(VM, Node, NewMD, Materializer, Flags);
-}
-
-/// \brief Map a uniqued MDNode.
-///
-/// Uniqued nodes may not need to be recreated (they may map to themselves).
-static Metadata *mapUniquedNode(const MDNode *Node,
- SmallVectorImpl<MDNode *> &DistinctWorklist,
- ValueToValueMapTy &VM, RemapFlags Flags,
- ValueMapTypeRemapper *TypeMapper,
- ValueMaterializer *Materializer) {
- assert(((Flags & RF_HaveUnmaterializedMetadata) || Node->isUniqued()) &&
- "Expected uniqued node");
-
- // Create a temporary node and map it upfront in case we have a uniquing
- // cycle. If necessary, this mapping will get updated by RAUW logic before
- // returning.
- auto ClonedMD = Node->clone();
- mapToMetadata(VM, Node, ClonedMD.get(), Materializer, Flags);
- if (!remapOperands(*ClonedMD, DistinctWorklist, VM, Flags, TypeMapper,
- Materializer)) {
- // No operands changed, so use the original.
- ClonedMD->replaceAllUsesWith(const_cast<MDNode *>(Node));
- // Even though replaceAllUsesWith would have replaced the value map
- // entry, we need to explictly map with the final non-temporary node
- // to replace any temporary metadata via the callback.
- return mapToSelf(VM, Node, Materializer, Flags);
+MDNode *MDNodeMapper::visitOperands(UniquedGraph &G, MDNode::op_iterator &I,
+ MDNode::op_iterator E, bool &HasChanged) {
+ while (I != E) {
+ Metadata *Op = *I++; // Increment even on early return.
+ if (Optional<Metadata *> MappedOp = tryToMapOperand(Op)) {
+ // Check if the operand changes.
+ HasChanged |= Op != *MappedOp;
+ continue;
+ }
+
+ // A uniqued metadata node.
+ MDNode &OpN = *cast<MDNode>(Op);
+ assert(OpN.isUniqued() &&
+ "Only uniqued operands cannot be mapped immediately");
+ if (G.Info.insert(std::make_pair(&OpN, Data())).second)
+ return &OpN; // This is a new one. Return it.
}
+ return nullptr;
+}
- // Uniquify the cloned node. Explicitly map it with the final non-temporary
- // node so that replacement of temporary metadata via the callback occurs.
- return mapToMetadata(VM, Node,
- MDNode::replaceWithUniqued(std::move(ClonedMD)),
- Materializer, Flags);
+void MDNodeMapper::UniquedGraph::propagateChanges() {
+ bool AnyChanges;
+ do {
+ AnyChanges = false;
+ for (MDNode *N : POT) {
+ auto &D = Info[N];
+ if (D.HasChanged)
+ continue;
+
+ if (!llvm::any_of(N->operands(), [&](const Metadata *Op) {
+ auto Where = Info.find(Op);
+ return Where != Info.end() && Where->second.HasChanged;
+ }))
+ continue;
+
+ AnyChanges = D.HasChanged = true;
+ }
+ } while (AnyChanges);
}
-static Metadata *MapMetadataImpl(const Metadata *MD,
- SmallVectorImpl<MDNode *> &DistinctWorklist,
- ValueToValueMapTy &VM, RemapFlags Flags,
- ValueMapTypeRemapper *TypeMapper,
- ValueMaterializer *Materializer) {
- // If the value already exists in the map, use it.
- if (Metadata *NewMD = VM.MD().lookup(MD).get())
- return NewMD;
+void MDNodeMapper::mapNodesInPOT(UniquedGraph &G) {
+ // Construct uniqued nodes, building forward references as necessary.
+ SmallVector<MDNode *, 16> CyclicNodes;
+ for (auto *N : G.POT) {
+ auto &D = G.Info[N];
+ if (!D.HasChanged) {
+ // The node hasn't changed.
+ M.mapToSelf(N);
+ continue;
+ }
- if (isa<MDString>(MD))
- return mapToSelf(VM, MD, Materializer, Flags);
-
- if (isa<ConstantAsMetadata>(MD))
- if ((Flags & RF_NoModuleLevelChanges))
- return mapToSelf(VM, MD, Materializer, Flags);
-
- if (const auto *VMD = dyn_cast<ValueAsMetadata>(MD)) {
- Value *MappedV =
- MapValue(VMD->getValue(), VM, Flags, TypeMapper, Materializer);
- if (VMD->getValue() == MappedV ||
- (!MappedV && (Flags & RF_IgnoreMissingEntries)))
- return mapToSelf(VM, MD, Materializer, Flags);
-
- // FIXME: This assert crashes during bootstrap, but I think it should be
- // correct. For now, just match behaviour from before the metadata/value
- // split.
- //
- // assert((MappedV || (Flags & RF_NullMapMissingGlobalValues)) &&
- // "Referenced metadata not in value map!");
- if (MappedV)
- return mapToMetadata(VM, MD, ValueAsMetadata::get(MappedV), Materializer,
- Flags);
- return nullptr;
+ // Remember whether this node had a placeholder.
+ bool HadPlaceholder(D.Placeholder);
+
+ // Clone the uniqued node and remap the operands.
+ TempMDNode ClonedN = D.Placeholder ? std::move(D.Placeholder) : N->clone();
+ remapOperands(*ClonedN, [this, &D, &G](Metadata *Old) {
+ if (Optional<Metadata *> MappedOp = getMappedOp(Old))
+ return *MappedOp;
+ assert(G.Info[Old].ID > D.ID && "Expected a forward reference");
+ return &G.getFwdReference(*cast<MDNode>(Old));
+ });
+
+ auto *NewN = MDNode::replaceWithUniqued(std::move(ClonedN));
+ M.mapToMetadata(N, NewN);
+
+ // Nodes that were referenced out of order in the POT are involved in a
+ // uniquing cycle.
+ if (HadPlaceholder)
+ CyclicNodes.push_back(NewN);
}
- // Note: this cast precedes the Flags check so we always get its associated
- // assertion.
- const MDNode *Node = cast<MDNode>(MD);
+ // Resolve cycles.
+ for (auto *N : CyclicNodes)
+ if (!N->isResolved())
+ N->resolveCycles();
+}
- // If this is a module-level metadata and we know that nothing at the
- // module level is changing, then use an identity mapping.
- if (Flags & RF_NoModuleLevelChanges)
- return mapToSelf(VM, MD, Materializer, Flags);
+Metadata *MDNodeMapper::map(const MDNode &N) {
+ assert(DistinctWorklist.empty() && "MDNodeMapper::map is not recursive");
+ assert(!(M.Flags & RF_NoModuleLevelChanges) &&
+ "MDNodeMapper::map assumes module-level changes");
// Require resolved nodes whenever metadata might be remapped.
- assert(((Flags & RF_HaveUnmaterializedMetadata) || Node->isResolved()) &&
- "Unexpected unresolved node");
-
- if (Materializer && Node->isTemporary()) {
- assert(Flags & RF_HaveUnmaterializedMetadata);
- Metadata *TempMD =
- Materializer->mapTemporaryMetadata(const_cast<Metadata *>(MD));
- // If the above callback returned an existing temporary node, use it
- // instead of the current temporary node. This happens when earlier
- // function importing passes already created and saved a temporary
- // metadata node for the same value id.
- if (TempMD) {
- mapToMetadata(VM, MD, TempMD, Materializer, Flags);
- return TempMD;
- }
+ assert(N.isResolved() && "Unexpected unresolved node");
+
+ Metadata *MappedN =
+ N.isUniqued() ? mapTopLevelUniquedNode(N) : mapDistinctNode(N);
+ while (!DistinctWorklist.empty())
+ remapOperands(*DistinctWorklist.pop_back_val(), [this](Metadata *Old) {
+ if (Optional<Metadata *> MappedOp = tryToMapOperand(Old))
+ return *MappedOp;
+ return mapTopLevelUniquedNode(*cast<MDNode>(Old));
+ });
+ return MappedN;
+}
+
+Metadata *MDNodeMapper::mapTopLevelUniquedNode(const MDNode &FirstN) {
+ assert(FirstN.isUniqued() && "Expected uniqued node");
+
+ // Create a post-order traversal of uniqued nodes under FirstN.
+ UniquedGraph G;
+ if (!createPOT(G, FirstN)) {
+ // Return early if no nodes have changed.
+ for (const MDNode *N : G.POT)
+ M.mapToSelf(N);
+ return &const_cast<MDNode &>(FirstN);
}
- if (Node->isDistinct())
- return mapDistinctNode(Node, DistinctWorklist, VM, Flags, TypeMapper,
- Materializer);
+ // Update graph with all nodes that have changed.
+ G.propagateChanges();
- return mapUniquedNode(Node, DistinctWorklist, VM, Flags, TypeMapper,
- Materializer);
+ // Map all the nodes in the graph.
+ mapNodesInPOT(G);
+
+ // Return the original node, remapped.
+ return *getMappedOp(&FirstN);
}
-Metadata *llvm::MapMetadata(const Metadata *MD, ValueToValueMapTy &VM,
- RemapFlags Flags, ValueMapTypeRemapper *TypeMapper,
- ValueMaterializer *Materializer) {
- SmallVector<MDNode *, 8> DistinctWorklist;
- Metadata *NewMD = MapMetadataImpl(MD, DistinctWorklist, VM, Flags, TypeMapper,
- Materializer);
+namespace {
- // When there are no module-level changes, it's possible that the metadata
- // graph has temporaries. Skip the logic to resolve cycles, since it's
- // unnecessary (and invalid) in that case.
- if (Flags & RF_NoModuleLevelChanges)
- return NewMD;
+struct MapMetadataDisabler {
+ ValueToValueMapTy &VM;
- // Resolve cycles involving the entry metadata.
- resolveCycles(NewMD, Flags & RF_HaveUnmaterializedMetadata);
+ MapMetadataDisabler(ValueToValueMapTy &VM) : VM(VM) {
+ VM.disableMapMetadata();
+ }
+ ~MapMetadataDisabler() { VM.enableMapMetadata(); }
+};
- // Remap the operands of distinct MDNodes.
- while (!DistinctWorklist.empty())
- remapOperands(*DistinctWorklist.pop_back_val(), DistinctWorklist, VM, Flags,
- TypeMapper, Materializer);
+} // end namespace
- return NewMD;
+Optional<Metadata *> Mapper::mapSimpleMetadata(const Metadata *MD) {
+ // If the value already exists in the map, use it.
+ if (Optional<Metadata *> NewMD = getVM().getMappedMD(MD))
+ return *NewMD;
+
+ if (isa<MDString>(MD))
+ return const_cast<Metadata *>(MD);
+
+ // This is a module-level metadata. If nothing at the module level is
+ // changing, use an identity mapping.
+ if ((Flags & RF_NoModuleLevelChanges))
+ return const_cast<Metadata *>(MD);
+
+ if (auto *CMD = dyn_cast<ConstantAsMetadata>(MD)) {
+ // Disallow recursion into metadata mapping through mapValue.
+ MapMetadataDisabler MMD(getVM());
+
+ // Don't memoize ConstantAsMetadata. Instead of lasting until the
+ // LLVMContext is destroyed, they can be deleted when the GlobalValue they
+ // reference is destructed. These aren't super common, so the extra
+ // indirection isn't that expensive.
+ return wrapConstantAsMetadata(*CMD, mapValue(CMD->getValue()));
+ }
+
+ assert(isa<MDNode>(MD) && "Expected a metadata node");
+
+ return None;
}
-MDNode *llvm::MapMetadata(const MDNode *MD, ValueToValueMapTy &VM,
- RemapFlags Flags, ValueMapTypeRemapper *TypeMapper,
- ValueMaterializer *Materializer) {
- return cast<MDNode>(MapMetadata(static_cast<const Metadata *>(MD), VM, Flags,
- TypeMapper, Materializer));
+Metadata *Mapper::mapMetadata(const Metadata *MD) {
+ assert(MD && "Expected valid metadata");
+ assert(!isa<LocalAsMetadata>(MD) && "Unexpected local metadata");
+
+ if (Optional<Metadata *> NewMD = mapSimpleMetadata(MD))
+ return *NewMD;
+
+ return MDNodeMapper(*this).map(*cast<MDNode>(MD));
+}
+
+void Mapper::flush() {
+ // Flush out the worklist of global values.
+ while (!Worklist.empty()) {
+ WorklistEntry E = Worklist.pop_back_val();
+ CurrentMCID = E.MCID;
+ switch (E.Kind) {
+ case WorklistEntry::MapGlobalInit:
+ E.Data.GVInit.GV->setInitializer(mapConstant(E.Data.GVInit.Init));
+ break;
+ case WorklistEntry::MapAppendingVar: {
+ unsigned PrefixSize = AppendingInits.size() - E.AppendingGVNumNewMembers;
+ mapAppendingVariable(*E.Data.AppendingGV.GV,
+ E.Data.AppendingGV.InitPrefix,
+ E.AppendingGVIsOldCtorDtor,
+ makeArrayRef(AppendingInits).slice(PrefixSize));
+ AppendingInits.resize(PrefixSize);
+ break;
+ }
+ case WorklistEntry::MapGlobalAliasee:
+ E.Data.GlobalAliasee.GA->setAliasee(
+ mapConstant(E.Data.GlobalAliasee.Aliasee));
+ break;
+ case WorklistEntry::RemapFunction:
+ remapFunction(*E.Data.RemapF);
+ break;
+ }
+ }
+ CurrentMCID = 0;
+
+ // Finish logic for block addresses now that all global values have been
+ // handled.
+ while (!DelayedBBs.empty()) {
+ DelayedBasicBlock DBB = DelayedBBs.pop_back_val();
+ BasicBlock *BB = cast_or_null<BasicBlock>(mapValue(DBB.OldBB));
+ DBB.TempBB->replaceAllUsesWith(BB ? BB : DBB.OldBB);
+ }
}
-/// RemapInstruction - Convert the instruction operands from referencing the
-/// current values into those specified by VMap.
-///
-void llvm::RemapInstruction(Instruction *I, ValueToValueMapTy &VMap,
- RemapFlags Flags, ValueMapTypeRemapper *TypeMapper,
- ValueMaterializer *Materializer){
+void Mapper::remapInstruction(Instruction *I) {
// Remap operands.
- for (User::op_iterator op = I->op_begin(), E = I->op_end(); op != E; ++op) {
- Value *V = MapValue(*op, VMap, Flags, TypeMapper, Materializer);
+ for (Use &Op : I->operands()) {
+ Value *V = mapValue(Op);
// If we aren't ignoring missing entries, assert that something happened.
if (V)
- *op = V;
+ Op = V;
else
- assert((Flags & RF_IgnoreMissingEntries) &&
+ assert((Flags & RF_IgnoreMissingLocals) &&
"Referenced value not in value map!");
}
// Remap phi nodes' incoming blocks.
if (PHINode *PN = dyn_cast<PHINode>(I)) {
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
- Value *V = MapValue(PN->getIncomingBlock(i), VMap, Flags);
+ Value *V = mapValue(PN->getIncomingBlock(i));
// If we aren't ignoring missing entries, assert that something happened.
if (V)
PN->setIncomingBlock(i, cast<BasicBlock>(V));
else
- assert((Flags & RF_IgnoreMissingEntries) &&
+ assert((Flags & RF_IgnoreMissingLocals) &&
"Referenced block not in value map!");
}
}
@@ -462,11 +881,11 @@ void llvm::RemapInstruction(Instruction *I, ValueToValueMapTy &VMap,
I->getAllMetadata(MDs);
for (const auto &MI : MDs) {
MDNode *Old = MI.second;
- MDNode *New = MapMetadata(Old, VMap, Flags, TypeMapper, Materializer);
+ MDNode *New = cast_or_null<MDNode>(mapMetadata(Old));
if (New != Old)
I->setMetadata(MI.first, New);
}
-
+
if (!TypeMapper)
return;
@@ -491,3 +910,213 @@ void llvm::RemapInstruction(Instruction *I, ValueToValueMapTy &VMap,
}
I->mutateType(TypeMapper->remapType(I->getType()));
}
+
+void Mapper::remapFunction(Function &F) {
+ // Remap the operands.
+ for (Use &Op : F.operands())
+ if (Op)
+ Op = mapValue(Op);
+
+ // Remap the metadata attachments.
+ SmallVector<std::pair<unsigned, MDNode *>, 8> MDs;
+ F.getAllMetadata(MDs);
+ F.clearMetadata();
+ for (const auto &I : MDs)
+ F.addMetadata(I.first, *cast<MDNode>(mapMetadata(I.second)));
+
+ // Remap the argument types.
+ if (TypeMapper)
+ for (Argument &A : F.args())
+ A.mutateType(TypeMapper->remapType(A.getType()));
+
+ // Remap the instructions.
+ for (BasicBlock &BB : F)
+ for (Instruction &I : BB)
+ remapInstruction(&I);
+}
+
+void Mapper::mapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix,
+ bool IsOldCtorDtor,
+ ArrayRef<Constant *> NewMembers) {
+ SmallVector<Constant *, 16> Elements;
+ if (InitPrefix) {
+ unsigned NumElements =
+ cast<ArrayType>(InitPrefix->getType())->getNumElements();
+ for (unsigned I = 0; I != NumElements; ++I)
+ Elements.push_back(InitPrefix->getAggregateElement(I));
+ }
+
+ PointerType *VoidPtrTy;
+ Type *EltTy;
+ if (IsOldCtorDtor) {
+ // FIXME: This upgrade is done during linking to support the C API. See
+ // also IRLinker::linkAppendingVarProto() in IRMover.cpp.
+ VoidPtrTy = Type::getInt8Ty(GV.getContext())->getPointerTo();
+ auto &ST = *cast<StructType>(NewMembers.front()->getType());
+ Type *Tys[3] = {ST.getElementType(0), ST.getElementType(1), VoidPtrTy};
+ EltTy = StructType::get(GV.getContext(), Tys, false);
+ }
+
+ for (auto *V : NewMembers) {
+ Constant *NewV;
+ if (IsOldCtorDtor) {
+ auto *S = cast<ConstantStruct>(V);
+ auto *E1 = mapValue(S->getOperand(0));
+ auto *E2 = mapValue(S->getOperand(1));
+ Value *Null = Constant::getNullValue(VoidPtrTy);
+ NewV =
+ ConstantStruct::get(cast<StructType>(EltTy), E1, E2, Null, nullptr);
+ } else {
+ NewV = cast_or_null<Constant>(mapValue(V));
+ }
+ Elements.push_back(NewV);
+ }
+
+ GV.setInitializer(ConstantArray::get(
+ cast<ArrayType>(GV.getType()->getElementType()), Elements));
+}
+
+void Mapper::scheduleMapGlobalInitializer(GlobalVariable &GV, Constant &Init,
+ unsigned MCID) {
+ assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule");
+ assert(MCID < MCs.size() && "Invalid mapping context");
+
+ WorklistEntry WE;
+ WE.Kind = WorklistEntry::MapGlobalInit;
+ WE.MCID = MCID;
+ WE.Data.GVInit.GV = &GV;
+ WE.Data.GVInit.Init = &Init;
+ Worklist.push_back(WE);
+}
+
+void Mapper::scheduleMapAppendingVariable(GlobalVariable &GV,
+ Constant *InitPrefix,
+ bool IsOldCtorDtor,
+ ArrayRef<Constant *> NewMembers,
+ unsigned MCID) {
+ assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule");
+ assert(MCID < MCs.size() && "Invalid mapping context");
+
+ WorklistEntry WE;
+ WE.Kind = WorklistEntry::MapAppendingVar;
+ WE.MCID = MCID;
+ WE.Data.AppendingGV.GV = &GV;
+ WE.Data.AppendingGV.InitPrefix = InitPrefix;
+ WE.AppendingGVIsOldCtorDtor = IsOldCtorDtor;
+ WE.AppendingGVNumNewMembers = NewMembers.size();
+ Worklist.push_back(WE);
+ AppendingInits.append(NewMembers.begin(), NewMembers.end());
+}
+
+void Mapper::scheduleMapGlobalAliasee(GlobalAlias &GA, Constant &Aliasee,
+ unsigned MCID) {
+ assert(AlreadyScheduled.insert(&GA).second && "Should not reschedule");
+ assert(MCID < MCs.size() && "Invalid mapping context");
+
+ WorklistEntry WE;
+ WE.Kind = WorklistEntry::MapGlobalAliasee;
+ WE.MCID = MCID;
+ WE.Data.GlobalAliasee.GA = &GA;
+ WE.Data.GlobalAliasee.Aliasee = &Aliasee;
+ Worklist.push_back(WE);
+}
+
+void Mapper::scheduleRemapFunction(Function &F, unsigned MCID) {
+ assert(AlreadyScheduled.insert(&F).second && "Should not reschedule");
+ assert(MCID < MCs.size() && "Invalid mapping context");
+
+ WorklistEntry WE;
+ WE.Kind = WorklistEntry::RemapFunction;
+ WE.MCID = MCID;
+ WE.Data.RemapF = &F;
+ Worklist.push_back(WE);
+}
+
+void Mapper::addFlags(RemapFlags Flags) {
+ assert(!hasWorkToDo() && "Expected to have flushed the worklist");
+ this->Flags = this->Flags | Flags;
+}
+
+static Mapper *getAsMapper(void *pImpl) {
+ return reinterpret_cast<Mapper *>(pImpl);
+}
+
+namespace {
+
+class FlushingMapper {
+ Mapper &M;
+
+public:
+ explicit FlushingMapper(void *pImpl) : M(*getAsMapper(pImpl)) {
+ assert(!M.hasWorkToDo() && "Expected to be flushed");
+ }
+ ~FlushingMapper() { M.flush(); }
+ Mapper *operator->() const { return &M; }
+};
+
+} // end namespace
+
+ValueMapper::ValueMapper(ValueToValueMapTy &VM, RemapFlags Flags,
+ ValueMapTypeRemapper *TypeMapper,
+ ValueMaterializer *Materializer)
+ : pImpl(new Mapper(VM, Flags, TypeMapper, Materializer)) {}
+
+ValueMapper::~ValueMapper() { delete getAsMapper(pImpl); }
+
+unsigned
+ValueMapper::registerAlternateMappingContext(ValueToValueMapTy &VM,
+ ValueMaterializer *Materializer) {
+ return getAsMapper(pImpl)->registerAlternateMappingContext(VM, Materializer);
+}
+
+void ValueMapper::addFlags(RemapFlags Flags) {
+ FlushingMapper(pImpl)->addFlags(Flags);
+}
+
+Value *ValueMapper::mapValue(const Value &V) {
+ return FlushingMapper(pImpl)->mapValue(&V);
+}
+
+Constant *ValueMapper::mapConstant(const Constant &C) {
+ return cast_or_null<Constant>(mapValue(C));
+}
+
+Metadata *ValueMapper::mapMetadata(const Metadata &MD) {
+ return FlushingMapper(pImpl)->mapMetadata(&MD);
+}
+
+MDNode *ValueMapper::mapMDNode(const MDNode &N) {
+ return cast_or_null<MDNode>(mapMetadata(N));
+}
+
+void ValueMapper::remapInstruction(Instruction &I) {
+ FlushingMapper(pImpl)->remapInstruction(&I);
+}
+
+void ValueMapper::remapFunction(Function &F) {
+ FlushingMapper(pImpl)->remapFunction(F);
+}
+
+void ValueMapper::scheduleMapGlobalInitializer(GlobalVariable &GV,
+ Constant &Init,
+ unsigned MCID) {
+ getAsMapper(pImpl)->scheduleMapGlobalInitializer(GV, Init, MCID);
+}
+
+void ValueMapper::scheduleMapAppendingVariable(GlobalVariable &GV,
+ Constant *InitPrefix,
+ bool IsOldCtorDtor,
+ ArrayRef<Constant *> NewMembers,
+ unsigned MCID) {
+ getAsMapper(pImpl)->scheduleMapAppendingVariable(
+ GV, InitPrefix, IsOldCtorDtor, NewMembers, MCID);
+}
+
+void ValueMapper::scheduleMapGlobalAliasee(GlobalAlias &GA, Constant &Aliasee,
+ unsigned MCID) {
+ getAsMapper(pImpl)->scheduleMapGlobalAliasee(GA, Aliasee, MCID);
+}
+
+void ValueMapper::scheduleRemapFunction(Function &F, unsigned MCID) {
+ getAsMapper(pImpl)->scheduleRemapFunction(F, MCID);
+}
OpenPOWER on IntegriCloud