diff options
author | dim <dim@FreeBSD.org> | 2017-09-26 19:56:36 +0000 |
---|---|---|
committer | dim <dim@FreeBSD.org> | 2017-09-26 19:56:36 +0000 |
commit | 12cd91cf4c6b96a24427c0de5374916f2808d263 (patch) | |
tree | 6d243b0ccba6738dbbd30767188e2963f90ef18f /contrib/llvm/lib/Transforms/Utils/SimplifyLibCalls.cpp | |
parent | b60520398f206195e21774c315afb59a0f6d7146 (diff) | |
download | FreeBSD-src-12cd91cf4c6b96a24427c0de5374916f2808d263.zip FreeBSD-src-12cd91cf4c6b96a24427c0de5374916f2808d263.tar.gz |
Merge clang, llvm, lld, lldb, compiler-rt and libc++ 5.0.0 release.
MFC r309126 (by emaste):
Correct lld llvm-tblgen dependency file name
MFC r309169:
Get rid of separate Subversion mergeinfo properties for llvm-dwarfdump
and llvm-lto. The mergeinfo confuses Subversion enormously, and these
directories will just use the mergeinfo for llvm itself.
MFC r312765:
Pull in r276136 from upstream llvm trunk (by Wei Mi):
Use ValueOffsetPair to enhance value reuse during SCEV expansion.
In D12090, the ExprValueMap was added to reuse existing value during
SCEV expansion. However, const folding and sext/zext distribution can
make the reuse still difficult.
A simplified case is: suppose we know S1 expands to V1 in
ExprValueMap, and
S1 = S2 + C_a
S3 = S2 + C_b
where C_a and C_b are different SCEVConstants. Then we'd like to
expand S3 as V1 - C_a + C_b instead of expanding S2 literally. It is
helpful when S2 is a complex SCEV expr and S2 has no entry in
ExprValueMap, which is usually caused by the fact that S3 is
generated from S1 after const folding.
In order to do that, we represent ExprValueMap as a mapping from SCEV
to ValueOffsetPair. We will save both S1->{V1, 0} and S2->{V1, C_a}
into the ExprValueMap when we create SCEV for V1. When S3 is
expanded, it will first expand S2 to V1 - C_a because of S2->{V1,
C_a} in the map, then expand S3 to V1 - C_a + C_b.
Differential Revision: https://reviews.llvm.org/D21313
This should fix assertion failures when building OpenCV >= 3.1.
PR: 215649
MFC r312831:
Revert r312765 for now, since it causes assertions when building
lang/spidermonkey24.
Reported by: antoine
PR: 215649
MFC r316511 (by jhb):
Add an implementation of __ffssi2() derived from __ffsdi2().
Newer versions of GCC include an __ffssi2() symbol in libgcc and the
compiler can emit calls to it in generated code. This is true for at
least GCC 6.2 when compiling world for mips and mips64.
Reviewed by: jmallett, dim
Sponsored by: DARPA / AFRL
Differential Revision: https://reviews.freebsd.org/D10086
MFC r318601 (by adrian):
[libcompiler-rt] add bswapdi2/bswapsi2
This is required for mips gcc 6.3 userland to build/run.
Reviewed by: emaste, dim
Approved by: emaste
Differential Revision: https://reviews.freebsd.org/D10838
MFC r318884 (by emaste):
lldb: map TRAP_CAP to a trace trap
In the absense of a more specific handler for TRAP_CAP (generated by
ENOTCAPABLE or ECAPMODE while in capability mode) treat it as a trace
trap.
Example usage (testing the bug in PR219173):
% proccontrol -m trapcap lldb usr.bin/hexdump/obj/hexdump -- -Cv -s 1 /bin/ls
...
(lldb) run
Process 12980 launching
Process 12980 launched: '.../usr.bin/hexdump/obj/hexdump' (x86_64)
Process 12980 stopped
* thread #1, stop reason = trace
frame #0: 0x0000004b80c65f1a libc.so.7`__sys_lseek + 10
...
In the future we should have LLDB control the trapcap procctl itself
(as it does with ASLR), as well as report a specific stop reason.
This change eliminates an assertion failure from LLDB for now.
MFC r319796:
Remove a few unneeded files from libllvm, libclang and liblldb.
MFC r319885 (by emaste):
lld: ELF: Fix ICF crash on absolute symbol relocations.
If two sections contained relocations to absolute symbols with the same
value we would crash when trying to access their sections. Add a check that
both symbols point to sections before accessing their sections, and treat
absolute symbols as equal if their values are equal.
Obtained from: LLD commit r292578
MFC r319918:
Revert r319796 for now, it can cause undefined references when linking
in some circumstances.
Reported by: Shawn Webb <shawn.webb@hardenedbsd.org>
MFC r319957 (by emaste):
lld: Add armelf emulation mode
Obtained from: LLD r305375
MFC r321369:
Upgrade our copies of clang, llvm, lld, lldb, compiler-rt and libc++ to
5.0.0 (trunk r308421). Upstream has branched for the 5.0.0 release,
which should be in about a month. Please report bugs and regressions,
so we can get them into the release.
Please note that from 3.5.0 onwards, clang, llvm and lldb require C++11
support to build; see UPDATING for more information.
MFC r321420:
Add a few more object files to liblldb, which should solve errors when
linking the lldb executable in some cases. In particular, when the
-ffunction-sections -fdata-sections options are turned off, or
ineffective.
Reported by: Shawn Webb, Mark Millard
MFC r321433:
Cleanup stale Options.inc files from the previous libllvm build for
clang 4.0.0. Otherwise, these can get included before the two newly
generated ones (which are different) for clang 5.0.0.
Reported by: Mark Millard
MFC r321439 (by bdrewery):
Move llvm Options.inc hack from r321433 for NO_CLEAN to lib/clang/libllvm.
The files are only ever generated to .OBJDIR, not to WORLDTMP (as a
sysroot) and are only ever included from a compilation. So using
a beforebuild target here removes the file before the compilation
tries to include it.
MFC r321664:
Pull in r308891 from upstream llvm trunk (by Benjamin Kramer):
[CodeGenPrepare] Cut off FindAllMemoryUses if there are too many uses.
This avoids excessive compile time. The case I'm looking at is
Function.cpp from an old version of LLVM that still had the giant
memcmp string matcher in it. Before r308322 this compiled in about 2
minutes, after it, clang takes infinite* time to compile it. With
this patch we're at 5 min, which is still bad but this is a
pathological case.
The cut off at 20 uses was chosen by looking at other cut-offs in LLVM
for user scanning. It's probably too high, but does the job and is
very unlikely to regress anything.
Fixes PR33900.
* I'm impatient and aborted after 15 minutes, on the bug report it was
killed after 2h.
Pull in r308986 from upstream llvm trunk (by Simon Pilgrim):
[X86][CGP] Reduce memcmp() expansion to 2 load pairs (PR33914)
D35067/rL308322 attempted to support up to 4 load pairs for memcmp
inlining which resulted in regressions for some optimized libc memcmp
implementations (PR33914).
Until we can match these more optimal cases, this patch reduces the
memcmp expansion to a maximum of 2 load pairs (which matches what we
do for -Os).
This patch should be considered for the 5.0.0 release branch as well
Differential Revision: https://reviews.llvm.org/D35830
These fix a hang (or extremely long compile time) when building older
LLVM ports.
Reported by: antoine
PR: 219139
MFC r321719:
Pull in r309503 from upstream clang trunk (by Richard Smith):
PR33902: Invalidate line number cache when adding more text to
existing buffer.
This led to crashes as the line number cache would report a bogus
line number for a line of code, and we'd try to find a nonexistent
column within the line when printing diagnostics.
This fixes an assertion when building the graphics/champlain port.
Reported by: antoine, kwm
PR: 219139
MFC r321723:
Upgrade our copies of clang, llvm, lld and lldb to r309439 from the
upstream release_50 branch. This is just after upstream's 5.0.0-rc1.
MFC r322320:
Upgrade our copies of clang, llvm and libc++ to r310316 from the
upstream release_50 branch.
MFC r322326 (by emaste):
lldb: Make i386-*-freebsd expression work on JIT path
* Enable i386 ABI creation for freebsd
* Added an extra argument in ABISysV_i386::PrepareTrivialCall for mmap
syscall
* Unlike linux, the last argument of mmap is actually 64-bit(off_t).
This requires us to push an additional word for the higher order bits.
* Prior to this change, ktrace dump will show mmap failures due to
invalid argument coming from the 6th mmap argument.
Submitted by: Karnajit Wangkhem
Differential Revision: https://reviews.llvm.org/D34776
MFC r322360 (by emaste):
lldb: Report inferior signals as signals, not exceptions, on FreeBSD
This is the FreeBSD equivalent of LLVM r238549.
This serves 2 purposes:
* LLDB should handle inferior process signals SIGSEGV/SIGILL/SIGBUS/
SIGFPE the way it is suppose to be handled. Prior to this fix these
signals will neither create a coredump, nor exit from the debugger
or work for signal handling scenario.
* eInvalidCrashReason need not report "unknown crash reason" if we have
a valid si_signo
llvm.org/pr23699
Patch by Karnajit Wangkhem
Differential Revision: https://reviews.llvm.org/D35223
Submitted by: Karnajit Wangkhem
Obtained from: LLVM r310591
MFC r322474 (by emaste):
lld: Add `-z muldefs` option.
Obtained from: LLVM r310757
MFC r322740:
Upgrade our copies of clang, llvm, lld and libc++ to r311219 from the
upstream release_50 branch.
MFC r322855:
Upgrade our copies of clang, llvm, lldb and compiler-rt to r311606 from
the upstream release_50 branch.
As of this version, lib/msun's trig test should also work correctly
again (see bug 220989 for more information).
PR: 220989
MFC r323112:
Upgrade our copies of clang, llvm, lldb and compiler-rt to r312293 from
the upstream release_50 branch. This corresponds to 5.0.0 rc4.
As of this version, the cad/stepcode port should now compile in a more
reasonable time on i386 (see bug 221836 for more information).
PR: 221836
MFC r323245:
Upgrade our copies of clang, llvm, lld, lldb, compiler-rt and libc++ to
5.0.0 release (upstream r312559).
Release notes for llvm, clang and lld will be available here soon:
<http://releases.llvm.org/5.0.0/docs/ReleaseNotes.html>
<http://releases.llvm.org/5.0.0/tools/clang/docs/ReleaseNotes.html>
<http://releases.llvm.org/5.0.0/tools/lld/docs/ReleaseNotes.html>
Relnotes: yes
Diffstat (limited to 'contrib/llvm/lib/Transforms/Utils/SimplifyLibCalls.cpp')
-rw-r--r-- | contrib/llvm/lib/Transforms/Utils/SimplifyLibCalls.cpp | 545 |
1 files changed, 289 insertions, 256 deletions
diff --git a/contrib/llvm/lib/Transforms/Utils/SimplifyLibCalls.cpp b/contrib/llvm/lib/Transforms/Utils/SimplifyLibCalls.cpp index 8eaeb10..77c0a41 100644 --- a/contrib/llvm/lib/Transforms/Utils/SimplifyLibCalls.cpp +++ b/contrib/llvm/lib/Transforms/Utils/SimplifyLibCalls.cpp @@ -30,6 +30,7 @@ #include "llvm/IR/Module.h" #include "llvm/IR/PatternMatch.h" #include "llvm/Support/CommandLine.h" +#include "llvm/Support/KnownBits.h" #include "llvm/Transforms/Utils/BuildLibCalls.h" #include "llvm/Transforms/Utils/Local.h" @@ -37,10 +38,6 @@ using namespace llvm; using namespace PatternMatch; static cl::opt<bool> - ColdErrorCalls("error-reporting-is-cold", cl::init(true), cl::Hidden, - cl::desc("Treat error-reporting calls as cold")); - -static cl::opt<bool> EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden, cl::init(false), cl::desc("Enable unsafe double to float " @@ -51,9 +48,9 @@ static cl::opt<bool> // Helper Functions //===----------------------------------------------------------------------===// -static bool ignoreCallingConv(LibFunc::Func Func) { - return Func == LibFunc::abs || Func == LibFunc::labs || - Func == LibFunc::llabs || Func == LibFunc::strlen; +static bool ignoreCallingConv(LibFunc Func) { + return Func == LibFunc_abs || Func == LibFunc_labs || + Func == LibFunc_llabs || Func == LibFunc_strlen; } static bool isCallingConvCCompatible(CallInst *CI) { @@ -88,20 +85,6 @@ static bool isCallingConvCCompatible(CallInst *CI) { return false; } -/// Return true if it only matters that the value is equal or not-equal to zero. -static bool isOnlyUsedInZeroEqualityComparison(Value *V) { - for (User *U : V->users()) { - if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) - if (IC->isEquality()) - if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) - if (C->isNullValue()) - continue; - // Unknown instruction. - return false; - } - return true; -} - /// Return true if it is only used in equality comparisons with With. static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) { for (User *U : V->users()) { @@ -123,8 +106,8 @@ static bool callHasFloatingPointArgument(const CallInst *CI) { /// \brief Check whether the overloaded unary floating point function /// corresponding to \a Ty is available. static bool hasUnaryFloatFn(const TargetLibraryInfo *TLI, Type *Ty, - LibFunc::Func DoubleFn, LibFunc::Func FloatFn, - LibFunc::Func LongDoubleFn) { + LibFunc DoubleFn, LibFunc FloatFn, + LibFunc LongDoubleFn) { switch (Ty->getTypeID()) { case Type::FloatTyID: return TLI->has(FloatFn); @@ -429,59 +412,68 @@ Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilder<> &B) { return Dst; } -Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilder<> &B) { +Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilder<> &B, + unsigned CharSize) { Value *Src = CI->getArgOperand(0); // Constant folding: strlen("xyz") -> 3 - if (uint64_t Len = GetStringLength(Src)) + if (uint64_t Len = GetStringLength(Src, CharSize)) return ConstantInt::get(CI->getType(), Len - 1); // If s is a constant pointer pointing to a string literal, we can fold - // strlen(s + x) to strlen(s) - x, when x is known to be in the range + // strlen(s + x) to strlen(s) - x, when x is known to be in the range // [0, strlen(s)] or the string has a single null terminator '\0' at the end. - // We only try to simplify strlen when the pointer s points to an array + // We only try to simplify strlen when the pointer s points to an array // of i8. Otherwise, we would need to scale the offset x before doing the - // subtraction. This will make the optimization more complex, and it's not - // very useful because calling strlen for a pointer of other types is + // subtraction. This will make the optimization more complex, and it's not + // very useful because calling strlen for a pointer of other types is // very uncommon. if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) { - if (!isGEPBasedOnPointerToString(GEP)) + if (!isGEPBasedOnPointerToString(GEP, CharSize)) return nullptr; - StringRef Str; - if (getConstantStringInfo(GEP->getOperand(0), Str, 0, false)) { - size_t NullTermIdx = Str.find('\0'); - - // If the string does not have '\0', leave it to strlen to compute - // its length. - if (NullTermIdx == StringRef::npos) - return nullptr; - + ConstantDataArraySlice Slice; + if (getConstantDataArrayInfo(GEP->getOperand(0), Slice, CharSize)) { + uint64_t NullTermIdx; + if (Slice.Array == nullptr) { + NullTermIdx = 0; + } else { + NullTermIdx = ~((uint64_t)0); + for (uint64_t I = 0, E = Slice.Length; I < E; ++I) { + if (Slice.Array->getElementAsInteger(I + Slice.Offset) == 0) { + NullTermIdx = I; + break; + } + } + // If the string does not have '\0', leave it to strlen to compute + // its length. + if (NullTermIdx == ~((uint64_t)0)) + return nullptr; + } + Value *Offset = GEP->getOperand(2); - unsigned BitWidth = Offset->getType()->getIntegerBitWidth(); - APInt KnownZero(BitWidth, 0); - APInt KnownOne(BitWidth, 0); - computeKnownBits(Offset, KnownZero, KnownOne, DL, 0, nullptr, CI, - nullptr); - KnownZero.flipAllBits(); - size_t ArrSize = + KnownBits Known = computeKnownBits(Offset, DL, 0, nullptr, CI, nullptr); + Known.Zero.flipAllBits(); + uint64_t ArrSize = cast<ArrayType>(GEP->getSourceElementType())->getNumElements(); - // KnownZero's bits are flipped, so zeros in KnownZero now represent - // bits known to be zeros in Offset, and ones in KnowZero represent + // KnownZero's bits are flipped, so zeros in KnownZero now represent + // bits known to be zeros in Offset, and ones in KnowZero represent // bits unknown in Offset. Therefore, Offset is known to be in range - // [0, NullTermIdx] when the flipped KnownZero is non-negative and + // [0, NullTermIdx] when the flipped KnownZero is non-negative and // unsigned-less-than NullTermIdx. // - // If Offset is not provably in the range [0, NullTermIdx], we can still - // optimize if we can prove that the program has undefined behavior when - // Offset is outside that range. That is the case when GEP->getOperand(0) + // If Offset is not provably in the range [0, NullTermIdx], we can still + // optimize if we can prove that the program has undefined behavior when + // Offset is outside that range. That is the case when GEP->getOperand(0) // is a pointer to an object whose memory extent is NullTermIdx+1. - if ((KnownZero.isNonNegative() && KnownZero.ule(NullTermIdx)) || + if ((Known.Zero.isNonNegative() && Known.Zero.ule(NullTermIdx)) || (GEP->isInBounds() && isa<GlobalVariable>(GEP->getOperand(0)) && - NullTermIdx == ArrSize - 1)) - return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx), + NullTermIdx == ArrSize - 1)) { + Offset = B.CreateSExtOrTrunc(Offset, CI->getType()); + return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx), Offset); + } } return nullptr; @@ -489,8 +481,8 @@ Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilder<> &B) { // strlen(x?"foo":"bars") --> x ? 3 : 4 if (SelectInst *SI = dyn_cast<SelectInst>(Src)) { - uint64_t LenTrue = GetStringLength(SI->getTrueValue()); - uint64_t LenFalse = GetStringLength(SI->getFalseValue()); + uint64_t LenTrue = GetStringLength(SI->getTrueValue(), CharSize); + uint64_t LenFalse = GetStringLength(SI->getFalseValue(), CharSize); if (LenTrue && LenFalse) { Function *Caller = CI->getParent()->getParent(); emitOptimizationRemark(CI->getContext(), "simplify-libcalls", *Caller, @@ -510,6 +502,17 @@ Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilder<> &B) { return nullptr; } +Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilder<> &B) { + return optimizeStringLength(CI, B, 8); +} + +Value *LibCallSimplifier::optimizeWcslen(CallInst *CI, IRBuilder<> &B) { + Module &M = *CI->getParent()->getParent()->getParent(); + unsigned WCharSize = TLI->getWCharSize(M) * 8; + + return optimizeStringLength(CI, B, WCharSize); +} + Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilder<> &B) { StringRef S1, S2; bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); @@ -542,7 +545,7 @@ Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilder<> &B) { if (isa<ConstantPointerNull>(EndPtr)) { // With a null EndPtr, this function won't capture the main argument. // It would be readonly too, except that it still may write to errno. - CI->addAttribute(1, Attribute::NoCapture); + CI->addParamAttr(0, Attribute::NoCapture); } return nullptr; @@ -653,7 +656,7 @@ Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilder<> &B) { ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); // memchr(x, y, 0) -> null - if (LenC && LenC->isNullValue()) + if (LenC && LenC->isZero()) return Constant::getNullValue(CI->getType()); // From now on we need at least constant length and string. @@ -735,8 +738,8 @@ Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilder<> &B) { ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); if (!LenC) return nullptr; - uint64_t Len = LenC->getZExtValue(); + uint64_t Len = LenC->getZExtValue(); if (Len == 0) // memcmp(s1,s2,0) -> 0 return Constant::getNullValue(CI->getType()); @@ -809,9 +812,9 @@ Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilder<> &B) { // TODO: Does this belong in BuildLibCalls or should all of those similar // functions be moved here? -static Value *emitCalloc(Value *Num, Value *Size, const AttributeSet &Attrs, +static Value *emitCalloc(Value *Num, Value *Size, const AttributeList &Attrs, IRBuilder<> &B, const TargetLibraryInfo &TLI) { - LibFunc::Func Func; + LibFunc Func; if (!TLI.getLibFunc("calloc", Func) || !TLI.has(Func)) return nullptr; @@ -819,7 +822,7 @@ static Value *emitCalloc(Value *Num, Value *Size, const AttributeSet &Attrs, const DataLayout &DL = M->getDataLayout(); IntegerType *PtrType = DL.getIntPtrType((B.GetInsertBlock()->getContext())); Value *Calloc = M->getOrInsertFunction("calloc", Attrs, B.getInt8PtrTy(), - PtrType, PtrType, nullptr); + PtrType, PtrType); CallInst *CI = B.CreateCall(Calloc, { Num, Size }, "calloc"); if (const auto *F = dyn_cast<Function>(Calloc->stripPointerCasts())) @@ -846,9 +849,12 @@ static Value *foldMallocMemset(CallInst *Memset, IRBuilder<> &B, // Is the inner call really malloc()? Function *InnerCallee = Malloc->getCalledFunction(); - LibFunc::Func Func; + if (!InnerCallee) + return nullptr; + + LibFunc Func; if (!TLI.getLibFunc(*InnerCallee, Func) || !TLI.has(Func) || - Func != LibFunc::malloc) + Func != LibFunc_malloc) return nullptr; // The memset must cover the same number of bytes that are malloc'd. @@ -930,6 +936,24 @@ static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilder<> &B, if (V == nullptr) return nullptr; + // If call isn't an intrinsic, check that it isn't within a function with the + // same name as the float version of this call. + // + // e.g. inline float expf(float val) { return (float) exp((double) val); } + // + // A similar such definition exists in the MinGW-w64 math.h header file which + // when compiled with -O2 -ffast-math causes the generation of infinite loops + // where expf is called. + if (!Callee->isIntrinsic()) { + const Function *F = CI->getFunction(); + StringRef FName = F->getName(); + StringRef CalleeName = Callee->getName(); + if ((FName.size() == (CalleeName.size() + 1)) && + (FName.back() == 'f') && + FName.startswith(CalleeName)) + return nullptr; + } + // Propagate fast-math flags from the existing call to the new call. IRBuilder<>::FastMathFlagGuard Guard(B); B.setFastMathFlags(CI->getFastMathFlags()); @@ -948,6 +972,20 @@ static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilder<> &B, return B.CreateFPExt(V, B.getDoubleTy()); } +// Replace a libcall \p CI with a call to intrinsic \p IID +static Value *replaceUnaryCall(CallInst *CI, IRBuilder<> &B, Intrinsic::ID IID) { + // Propagate fast-math flags from the existing call to the new call. + IRBuilder<>::FastMathFlagGuard Guard(B); + B.setFastMathFlags(CI->getFastMathFlags()); + + Module *M = CI->getModule(); + Value *V = CI->getArgOperand(0); + Function *F = Intrinsic::getDeclaration(M, IID, CI->getType()); + CallInst *NewCall = B.CreateCall(F, V); + NewCall->takeName(CI); + return NewCall; +} + /// Shrink double -> float for binary functions like 'fmin/fmax'. static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilder<> &B) { Function *Callee = CI->getCalledFunction(); @@ -1041,9 +1079,9 @@ Value *LibCallSimplifier::optimizePow(CallInst *CI, IRBuilder<> &B) { if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) { // pow(10.0, x) -> exp10(x) if (Op1C->isExactlyValue(10.0) && - hasUnaryFloatFn(TLI, Op1->getType(), LibFunc::exp10, LibFunc::exp10f, - LibFunc::exp10l)) - return emitUnaryFloatFnCall(Op2, TLI->getName(LibFunc::exp10), B, + hasUnaryFloatFn(TLI, Op1->getType(), LibFunc_exp10, LibFunc_exp10f, + LibFunc_exp10l)) + return emitUnaryFloatFnCall(Op2, TLI->getName(LibFunc_exp10), B, Callee->getAttributes()); } @@ -1055,10 +1093,10 @@ Value *LibCallSimplifier::optimizePow(CallInst *CI, IRBuilder<> &B) { // pow(exp(x), y) = pow(inf, 0.001) = inf, whereas exp(x*y) = exp(1). auto *OpC = dyn_cast<CallInst>(Op1); if (OpC && OpC->hasUnsafeAlgebra() && CI->hasUnsafeAlgebra()) { - LibFunc::Func Func; + LibFunc Func; Function *OpCCallee = OpC->getCalledFunction(); if (OpCCallee && TLI->getLibFunc(OpCCallee->getName(), Func) && - TLI->has(Func) && (Func == LibFunc::exp || Func == LibFunc::exp2)) { + TLI->has(Func) && (Func == LibFunc_exp || Func == LibFunc_exp2)) { IRBuilder<>::FastMathFlagGuard Guard(B); B.setFastMathFlags(CI->getFastMathFlags()); Value *FMul = B.CreateFMul(OpC->getArgOperand(0), Op2, "mul"); @@ -1075,17 +1113,20 @@ Value *LibCallSimplifier::optimizePow(CallInst *CI, IRBuilder<> &B) { return ConstantFP::get(CI->getType(), 1.0); if (Op2C->isExactlyValue(-0.5) && - hasUnaryFloatFn(TLI, Op2->getType(), LibFunc::sqrt, LibFunc::sqrtf, - LibFunc::sqrtl)) { + hasUnaryFloatFn(TLI, Op2->getType(), LibFunc_sqrt, LibFunc_sqrtf, + LibFunc_sqrtl)) { // If -ffast-math: // pow(x, -0.5) -> 1.0 / sqrt(x) if (CI->hasUnsafeAlgebra()) { IRBuilder<>::FastMathFlagGuard Guard(B); B.setFastMathFlags(CI->getFastMathFlags()); - // Here we cannot lower to an intrinsic because C99 sqrt() and llvm.sqrt - // are not guaranteed to have the same semantics. - Value *Sqrt = emitUnaryFloatFnCall(Op1, TLI->getName(LibFunc::sqrt), B, + // TODO: If the pow call is an intrinsic, we should lower to the sqrt + // intrinsic, so we match errno semantics. We also should check that the + // target can in fact lower the sqrt intrinsic -- we currently have no way + // to ask this question other than asking whether the target has a sqrt + // libcall, which is a sufficient but not necessary condition. + Value *Sqrt = emitUnaryFloatFnCall(Op1, TLI->getName(LibFunc_sqrt), B, Callee->getAttributes()); return B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), Sqrt, "sqrtrecip"); @@ -1093,19 +1134,17 @@ Value *LibCallSimplifier::optimizePow(CallInst *CI, IRBuilder<> &B) { } if (Op2C->isExactlyValue(0.5) && - hasUnaryFloatFn(TLI, Op2->getType(), LibFunc::sqrt, LibFunc::sqrtf, - LibFunc::sqrtl) && - hasUnaryFloatFn(TLI, Op2->getType(), LibFunc::fabs, LibFunc::fabsf, - LibFunc::fabsl)) { + hasUnaryFloatFn(TLI, Op2->getType(), LibFunc_sqrt, LibFunc_sqrtf, + LibFunc_sqrtl)) { // In -ffast-math, pow(x, 0.5) -> sqrt(x). if (CI->hasUnsafeAlgebra()) { IRBuilder<>::FastMathFlagGuard Guard(B); B.setFastMathFlags(CI->getFastMathFlags()); - // Unlike other math intrinsics, sqrt has differerent semantics - // from the libc function. See LangRef for details. - return emitUnaryFloatFnCall(Op1, TLI->getName(LibFunc::sqrt), B, + // TODO: As above, we should lower to the sqrt intrinsic if the pow is an + // intrinsic, to match errno semantics. + return emitUnaryFloatFnCall(Op1, TLI->getName(LibFunc_sqrt), B, Callee->getAttributes()); } @@ -1115,9 +1154,16 @@ Value *LibCallSimplifier::optimizePow(CallInst *CI, IRBuilder<> &B) { // TODO: In finite-only mode, this could be just fabs(sqrt(x)). Value *Inf = ConstantFP::getInfinity(CI->getType()); Value *NegInf = ConstantFP::getInfinity(CI->getType(), true); + + // TODO: As above, we should lower to the sqrt intrinsic if the pow is an + // intrinsic, to match errno semantics. Value *Sqrt = emitUnaryFloatFnCall(Op1, "sqrt", B, Callee->getAttributes()); - Value *FAbs = - emitUnaryFloatFnCall(Sqrt, "fabs", B, Callee->getAttributes()); + + Module *M = Callee->getParent(); + Function *FabsF = Intrinsic::getDeclaration(M, Intrinsic::fabs, + CI->getType()); + Value *FAbs = B.CreateCall(FabsF, Sqrt); + Value *FCmp = B.CreateFCmpOEQ(Op1, NegInf); Value *Sel = B.CreateSelect(FCmp, Inf, FAbs); return Sel; @@ -1173,11 +1219,11 @@ Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilder<> &B) { Value *Op = CI->getArgOperand(0); // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= 32 // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < 32 - LibFunc::Func LdExp = LibFunc::ldexpl; + LibFunc LdExp = LibFunc_ldexpl; if (Op->getType()->isFloatTy()) - LdExp = LibFunc::ldexpf; + LdExp = LibFunc_ldexpf; else if (Op->getType()->isDoubleTy()) - LdExp = LibFunc::ldexp; + LdExp = LibFunc_ldexp; if (TLI->has(LdExp)) { Value *LdExpArg = nullptr; @@ -1197,7 +1243,7 @@ Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilder<> &B) { Module *M = CI->getModule(); Value *NewCallee = M->getOrInsertFunction(TLI->getName(LdExp), Op->getType(), - Op->getType(), B.getInt32Ty(), nullptr); + Op->getType(), B.getInt32Ty()); CallInst *CI = B.CreateCall(NewCallee, {One, LdExpArg}); if (const Function *F = dyn_cast<Function>(Callee->stripPointerCasts())) CI->setCallingConv(F->getCallingConv()); @@ -1208,15 +1254,6 @@ Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilder<> &B) { return Ret; } -Value *LibCallSimplifier::optimizeFabs(CallInst *CI, IRBuilder<> &B) { - Function *Callee = CI->getCalledFunction(); - StringRef Name = Callee->getName(); - if (Name == "fabs" && hasFloatVersion(Name)) - return optimizeUnaryDoubleFP(CI, B, false); - - return nullptr; -} - Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilder<> &B) { Function *Callee = CI->getCalledFunction(); // If we can shrink the call to a float function rather than a double @@ -1280,17 +1317,17 @@ Value *LibCallSimplifier::optimizeLog(CallInst *CI, IRBuilder<> &B) { FMF.setUnsafeAlgebra(); B.setFastMathFlags(FMF); - LibFunc::Func Func; + LibFunc Func; Function *F = OpC->getCalledFunction(); if (F && ((TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) && - Func == LibFunc::pow) || F->getIntrinsicID() == Intrinsic::pow)) + Func == LibFunc_pow) || F->getIntrinsicID() == Intrinsic::pow)) return B.CreateFMul(OpC->getArgOperand(1), emitUnaryFloatFnCall(OpC->getOperand(0), Callee->getName(), B, Callee->getAttributes()), "mul"); // log(exp2(y)) -> y*log(2) if (F && Name == "log" && TLI->getLibFunc(F->getName(), Func) && - TLI->has(Func) && Func == LibFunc::exp2) + TLI->has(Func) && Func == LibFunc_exp2) return B.CreateFMul( OpC->getArgOperand(0), emitUnaryFloatFnCall(ConstantFP::get(CI->getType(), 2.0), @@ -1302,8 +1339,11 @@ Value *LibCallSimplifier::optimizeLog(CallInst *CI, IRBuilder<> &B) { Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilder<> &B) { Function *Callee = CI->getCalledFunction(); Value *Ret = nullptr; - if (TLI->has(LibFunc::sqrtf) && (Callee->getName() == "sqrt" || - Callee->getIntrinsicID() == Intrinsic::sqrt)) + // TODO: Once we have a way (other than checking for the existince of the + // libcall) to tell whether our target can lower @llvm.sqrt, relax the + // condition below. + if (TLI->has(LibFunc_sqrtf) && (Callee->getName() == "sqrt" || + Callee->getIntrinsicID() == Intrinsic::sqrt)) Ret = optimizeUnaryDoubleFP(CI, B, true); if (!CI->hasUnsafeAlgebra()) @@ -1385,12 +1425,12 @@ Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilder<> &B) { // tan(atan(x)) -> x // tanf(atanf(x)) -> x // tanl(atanl(x)) -> x - LibFunc::Func Func; + LibFunc Func; Function *F = OpC->getCalledFunction(); if (F && TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) && - ((Func == LibFunc::atan && Callee->getName() == "tan") || - (Func == LibFunc::atanf && Callee->getName() == "tanf") || - (Func == LibFunc::atanl && Callee->getName() == "tanl"))) + ((Func == LibFunc_atan && Callee->getName() == "tan") || + (Func == LibFunc_atanf && Callee->getName() == "tanf") || + (Func == LibFunc_atanl && Callee->getName() == "tanl"))) Ret = OpC->getArgOperand(0); return Ret; } @@ -1418,16 +1458,16 @@ static void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg, // x86_64 can't use {float, float} since that would be returned in both // xmm0 and xmm1, which isn't what a real struct would do. ResTy = T.getArch() == Triple::x86_64 - ? static_cast<Type *>(VectorType::get(ArgTy, 2)) - : static_cast<Type *>(StructType::get(ArgTy, ArgTy, nullptr)); + ? static_cast<Type *>(VectorType::get(ArgTy, 2)) + : static_cast<Type *>(StructType::get(ArgTy, ArgTy)); } else { Name = "__sincospi_stret"; - ResTy = StructType::get(ArgTy, ArgTy, nullptr); + ResTy = StructType::get(ArgTy, ArgTy); } Module *M = OrigCallee->getParent(); Value *Callee = M->getOrInsertFunction(Name, OrigCallee->getAttributes(), - ResTy, ArgTy, nullptr); + ResTy, ArgTy); if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) { // If the argument is an instruction, it must dominate all uses so put our @@ -1508,24 +1548,24 @@ void LibCallSimplifier::classifyArgUse( return; Function *Callee = CI->getCalledFunction(); - LibFunc::Func Func; + LibFunc Func; if (!Callee || !TLI->getLibFunc(*Callee, Func) || !TLI->has(Func) || !isTrigLibCall(CI)) return; if (IsFloat) { - if (Func == LibFunc::sinpif) + if (Func == LibFunc_sinpif) SinCalls.push_back(CI); - else if (Func == LibFunc::cospif) + else if (Func == LibFunc_cospif) CosCalls.push_back(CI); - else if (Func == LibFunc::sincospif_stret) + else if (Func == LibFunc_sincospif_stret) SinCosCalls.push_back(CI); } else { - if (Func == LibFunc::sinpi) + if (Func == LibFunc_sinpi) SinCalls.push_back(CI); - else if (Func == LibFunc::cospi) + else if (Func == LibFunc_cospi) CosCalls.push_back(CI); - else if (Func == LibFunc::sincospi_stret) + else if (Func == LibFunc_sincospi_stret) SinCosCalls.push_back(CI); } } @@ -1609,14 +1649,14 @@ Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilder<> &B, // Proceedings of PACT'98, Oct. 1998, IEEE if (!CI->hasFnAttr(Attribute::Cold) && isReportingError(Callee, CI, StreamArg)) { - CI->addAttribute(AttributeSet::FunctionIndex, Attribute::Cold); + CI->addAttribute(AttributeList::FunctionIndex, Attribute::Cold); } return nullptr; } static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) { - if (!ColdErrorCalls || !Callee || !Callee->isDeclaration()) + if (!Callee || !Callee->isDeclaration()) return false; if (StreamArg < 0) @@ -1699,7 +1739,7 @@ Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilder<> &B) { // printf(format, ...) -> iprintf(format, ...) if no floating point // arguments. - if (TLI->has(LibFunc::iprintf) && !callHasFloatingPointArgument(CI)) { + if (TLI->has(LibFunc_iprintf) && !callHasFloatingPointArgument(CI)) { Module *M = B.GetInsertBlock()->getParent()->getParent(); Constant *IPrintFFn = M->getOrInsertFunction("iprintf", FT, Callee->getAttributes()); @@ -1780,7 +1820,7 @@ Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilder<> &B) { // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating // point arguments. - if (TLI->has(LibFunc::siprintf) && !callHasFloatingPointArgument(CI)) { + if (TLI->has(LibFunc_siprintf) && !callHasFloatingPointArgument(CI)) { Module *M = B.GetInsertBlock()->getParent()->getParent(); Constant *SIPrintFFn = M->getOrInsertFunction("siprintf", FT, Callee->getAttributes()); @@ -1850,7 +1890,7 @@ Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilder<> &B) { // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no // floating point arguments. - if (TLI->has(LibFunc::fiprintf) && !callHasFloatingPointArgument(CI)) { + if (TLI->has(LibFunc_fiprintf) && !callHasFloatingPointArgument(CI)) { Module *M = B.GetInsertBlock()->getParent()->getParent(); Constant *FIPrintFFn = M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes()); @@ -1929,7 +1969,7 @@ Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilder<> &B) { } bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) { - LibFunc::Func Func; + LibFunc Func; SmallString<20> FloatFuncName = FuncName; FloatFuncName += 'f'; if (TLI->getLibFunc(FloatFuncName, Func)) @@ -1939,7 +1979,7 @@ bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) { Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI, IRBuilder<> &Builder) { - LibFunc::Func Func; + LibFunc Func; Function *Callee = CI->getCalledFunction(); // Check for string/memory library functions. if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) { @@ -1948,52 +1988,54 @@ Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI, isCallingConvCCompatible(CI)) && "Optimizing string/memory libcall would change the calling convention"); switch (Func) { - case LibFunc::strcat: + case LibFunc_strcat: return optimizeStrCat(CI, Builder); - case LibFunc::strncat: + case LibFunc_strncat: return optimizeStrNCat(CI, Builder); - case LibFunc::strchr: + case LibFunc_strchr: return optimizeStrChr(CI, Builder); - case LibFunc::strrchr: + case LibFunc_strrchr: return optimizeStrRChr(CI, Builder); - case LibFunc::strcmp: + case LibFunc_strcmp: return optimizeStrCmp(CI, Builder); - case LibFunc::strncmp: + case LibFunc_strncmp: return optimizeStrNCmp(CI, Builder); - case LibFunc::strcpy: + case LibFunc_strcpy: return optimizeStrCpy(CI, Builder); - case LibFunc::stpcpy: + case LibFunc_stpcpy: return optimizeStpCpy(CI, Builder); - case LibFunc::strncpy: + case LibFunc_strncpy: return optimizeStrNCpy(CI, Builder); - case LibFunc::strlen: + case LibFunc_strlen: return optimizeStrLen(CI, Builder); - case LibFunc::strpbrk: + case LibFunc_strpbrk: return optimizeStrPBrk(CI, Builder); - case LibFunc::strtol: - case LibFunc::strtod: - case LibFunc::strtof: - case LibFunc::strtoul: - case LibFunc::strtoll: - case LibFunc::strtold: - case LibFunc::strtoull: + case LibFunc_strtol: + case LibFunc_strtod: + case LibFunc_strtof: + case LibFunc_strtoul: + case LibFunc_strtoll: + case LibFunc_strtold: + case LibFunc_strtoull: return optimizeStrTo(CI, Builder); - case LibFunc::strspn: + case LibFunc_strspn: return optimizeStrSpn(CI, Builder); - case LibFunc::strcspn: + case LibFunc_strcspn: return optimizeStrCSpn(CI, Builder); - case LibFunc::strstr: + case LibFunc_strstr: return optimizeStrStr(CI, Builder); - case LibFunc::memchr: + case LibFunc_memchr: return optimizeMemChr(CI, Builder); - case LibFunc::memcmp: + case LibFunc_memcmp: return optimizeMemCmp(CI, Builder); - case LibFunc::memcpy: + case LibFunc_memcpy: return optimizeMemCpy(CI, Builder); - case LibFunc::memmove: + case LibFunc_memmove: return optimizeMemMove(CI, Builder); - case LibFunc::memset: + case LibFunc_memset: return optimizeMemSet(CI, Builder); + case LibFunc_wcslen: + return optimizeWcslen(CI, Builder); default: break; } @@ -2005,7 +2047,7 @@ Value *LibCallSimplifier::optimizeCall(CallInst *CI) { if (CI->isNoBuiltin()) return nullptr; - LibFunc::Func Func; + LibFunc Func; Function *Callee = CI->getCalledFunction(); StringRef FuncName = Callee->getName(); @@ -2029,8 +2071,6 @@ Value *LibCallSimplifier::optimizeCall(CallInst *CI) { return optimizePow(CI, Builder); case Intrinsic::exp2: return optimizeExp2(CI, Builder); - case Intrinsic::fabs: - return optimizeFabs(CI, Builder); case Intrinsic::log: return optimizeLog(CI, Builder); case Intrinsic::sqrt: @@ -2067,114 +2107,117 @@ Value *LibCallSimplifier::optimizeCall(CallInst *CI) { if (Value *V = optimizeStringMemoryLibCall(CI, Builder)) return V; switch (Func) { - case LibFunc::cosf: - case LibFunc::cos: - case LibFunc::cosl: + case LibFunc_cosf: + case LibFunc_cos: + case LibFunc_cosl: return optimizeCos(CI, Builder); - case LibFunc::sinpif: - case LibFunc::sinpi: - case LibFunc::cospif: - case LibFunc::cospi: + case LibFunc_sinpif: + case LibFunc_sinpi: + case LibFunc_cospif: + case LibFunc_cospi: return optimizeSinCosPi(CI, Builder); - case LibFunc::powf: - case LibFunc::pow: - case LibFunc::powl: + case LibFunc_powf: + case LibFunc_pow: + case LibFunc_powl: return optimizePow(CI, Builder); - case LibFunc::exp2l: - case LibFunc::exp2: - case LibFunc::exp2f: + case LibFunc_exp2l: + case LibFunc_exp2: + case LibFunc_exp2f: return optimizeExp2(CI, Builder); - case LibFunc::fabsf: - case LibFunc::fabs: - case LibFunc::fabsl: - return optimizeFabs(CI, Builder); - case LibFunc::sqrtf: - case LibFunc::sqrt: - case LibFunc::sqrtl: + case LibFunc_fabsf: + case LibFunc_fabs: + case LibFunc_fabsl: + return replaceUnaryCall(CI, Builder, Intrinsic::fabs); + case LibFunc_sqrtf: + case LibFunc_sqrt: + case LibFunc_sqrtl: return optimizeSqrt(CI, Builder); - case LibFunc::ffs: - case LibFunc::ffsl: - case LibFunc::ffsll: + case LibFunc_ffs: + case LibFunc_ffsl: + case LibFunc_ffsll: return optimizeFFS(CI, Builder); - case LibFunc::fls: - case LibFunc::flsl: - case LibFunc::flsll: + case LibFunc_fls: + case LibFunc_flsl: + case LibFunc_flsll: return optimizeFls(CI, Builder); - case LibFunc::abs: - case LibFunc::labs: - case LibFunc::llabs: + case LibFunc_abs: + case LibFunc_labs: + case LibFunc_llabs: return optimizeAbs(CI, Builder); - case LibFunc::isdigit: + case LibFunc_isdigit: return optimizeIsDigit(CI, Builder); - case LibFunc::isascii: + case LibFunc_isascii: return optimizeIsAscii(CI, Builder); - case LibFunc::toascii: + case LibFunc_toascii: return optimizeToAscii(CI, Builder); - case LibFunc::printf: + case LibFunc_printf: return optimizePrintF(CI, Builder); - case LibFunc::sprintf: + case LibFunc_sprintf: return optimizeSPrintF(CI, Builder); - case LibFunc::fprintf: + case LibFunc_fprintf: return optimizeFPrintF(CI, Builder); - case LibFunc::fwrite: + case LibFunc_fwrite: return optimizeFWrite(CI, Builder); - case LibFunc::fputs: + case LibFunc_fputs: return optimizeFPuts(CI, Builder); - case LibFunc::log: - case LibFunc::log10: - case LibFunc::log1p: - case LibFunc::log2: - case LibFunc::logb: + case LibFunc_log: + case LibFunc_log10: + case LibFunc_log1p: + case LibFunc_log2: + case LibFunc_logb: return optimizeLog(CI, Builder); - case LibFunc::puts: + case LibFunc_puts: return optimizePuts(CI, Builder); - case LibFunc::tan: - case LibFunc::tanf: - case LibFunc::tanl: + case LibFunc_tan: + case LibFunc_tanf: + case LibFunc_tanl: return optimizeTan(CI, Builder); - case LibFunc::perror: + case LibFunc_perror: return optimizeErrorReporting(CI, Builder); - case LibFunc::vfprintf: - case LibFunc::fiprintf: + case LibFunc_vfprintf: + case LibFunc_fiprintf: return optimizeErrorReporting(CI, Builder, 0); - case LibFunc::fputc: + case LibFunc_fputc: return optimizeErrorReporting(CI, Builder, 1); - case LibFunc::ceil: - case LibFunc::floor: - case LibFunc::rint: - case LibFunc::round: - case LibFunc::nearbyint: - case LibFunc::trunc: - if (hasFloatVersion(FuncName)) - return optimizeUnaryDoubleFP(CI, Builder, false); - return nullptr; - case LibFunc::acos: - case LibFunc::acosh: - case LibFunc::asin: - case LibFunc::asinh: - case LibFunc::atan: - case LibFunc::atanh: - case LibFunc::cbrt: - case LibFunc::cosh: - case LibFunc::exp: - case LibFunc::exp10: - case LibFunc::expm1: - case LibFunc::sin: - case LibFunc::sinh: - case LibFunc::tanh: + case LibFunc_ceil: + return replaceUnaryCall(CI, Builder, Intrinsic::ceil); + case LibFunc_floor: + return replaceUnaryCall(CI, Builder, Intrinsic::floor); + case LibFunc_round: + return replaceUnaryCall(CI, Builder, Intrinsic::round); + case LibFunc_nearbyint: + return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint); + case LibFunc_rint: + return replaceUnaryCall(CI, Builder, Intrinsic::rint); + case LibFunc_trunc: + return replaceUnaryCall(CI, Builder, Intrinsic::trunc); + case LibFunc_acos: + case LibFunc_acosh: + case LibFunc_asin: + case LibFunc_asinh: + case LibFunc_atan: + case LibFunc_atanh: + case LibFunc_cbrt: + case LibFunc_cosh: + case LibFunc_exp: + case LibFunc_exp10: + case LibFunc_expm1: + case LibFunc_sin: + case LibFunc_sinh: + case LibFunc_tanh: if (UnsafeFPShrink && hasFloatVersion(FuncName)) return optimizeUnaryDoubleFP(CI, Builder, true); return nullptr; - case LibFunc::copysign: + case LibFunc_copysign: if (hasFloatVersion(FuncName)) return optimizeBinaryDoubleFP(CI, Builder); return nullptr; - case LibFunc::fminf: - case LibFunc::fmin: - case LibFunc::fminl: - case LibFunc::fmaxf: - case LibFunc::fmax: - case LibFunc::fmaxl: + case LibFunc_fminf: + case LibFunc_fmin: + case LibFunc_fminl: + case LibFunc_fmaxf: + case LibFunc_fmax: + case LibFunc_fmaxl: return optimizeFMinFMax(CI, Builder); default: return nullptr; @@ -2211,16 +2254,10 @@ void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) { // * log(exp10(y)) -> y*log(10) // * log(sqrt(x)) -> 0.5*log(x) // -// lround, lroundf, lroundl: -// * lround(cnst) -> cnst' -// // pow, powf, powl: // * pow(sqrt(x),y) -> pow(x,y*0.5) // * pow(pow(x,y),z)-> pow(x,y*z) // -// round, roundf, roundl: -// * round(cnst) -> cnst' -// // signbit: // * signbit(cnst) -> cnst' // * signbit(nncst) -> 0 (if pstv is a non-negative constant) @@ -2230,10 +2267,6 @@ void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) { // * sqrt(Nroot(x)) -> pow(x,1/(2*N)) // * sqrt(pow(x,y)) -> pow(|x|,y*0.5) // -// trunc, truncf, truncl: -// * trunc(cnst) -> cnst' -// -// //===----------------------------------------------------------------------===// // Fortified Library Call Optimizations @@ -2247,7 +2280,7 @@ bool FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI, return true; if (ConstantInt *ObjSizeCI = dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) { - if (ObjSizeCI->isAllOnesValue()) + if (ObjSizeCI->isMinusOne()) return true; // If the object size wasn't -1 (unknown), bail out if we were asked to. if (OnlyLowerUnknownSize) @@ -2300,7 +2333,7 @@ Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI, Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI, IRBuilder<> &B, - LibFunc::Func Func) { + LibFunc Func) { Function *Callee = CI->getCalledFunction(); StringRef Name = Callee->getName(); const DataLayout &DL = CI->getModule()->getDataLayout(); @@ -2308,7 +2341,7 @@ Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI, *ObjSize = CI->getArgOperand(2); // __stpcpy_chk(x,x,...) -> x+strlen(x) - if (Func == LibFunc::stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) { + if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) { Value *StrLen = emitStrLen(Src, B, DL, TLI); return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; } @@ -2334,14 +2367,14 @@ Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI, Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI); // If the function was an __stpcpy_chk, and we were able to fold it into // a __memcpy_chk, we still need to return the correct end pointer. - if (Ret && Func == LibFunc::stpcpy_chk) + if (Ret && Func == LibFunc_stpcpy_chk) return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1)); return Ret; } Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI, IRBuilder<> &B, - LibFunc::Func Func) { + LibFunc Func) { Function *Callee = CI->getCalledFunction(); StringRef Name = Callee->getName(); if (isFortifiedCallFoldable(CI, 3, 2, false)) { @@ -2366,7 +2399,7 @@ Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI) { // // PR23093. - LibFunc::Func Func; + LibFunc Func; Function *Callee = CI->getCalledFunction(); SmallVector<OperandBundleDef, 2> OpBundles; @@ -2384,17 +2417,17 @@ Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI) { return nullptr; switch (Func) { - case LibFunc::memcpy_chk: + case LibFunc_memcpy_chk: return optimizeMemCpyChk(CI, Builder); - case LibFunc::memmove_chk: + case LibFunc_memmove_chk: return optimizeMemMoveChk(CI, Builder); - case LibFunc::memset_chk: + case LibFunc_memset_chk: return optimizeMemSetChk(CI, Builder); - case LibFunc::stpcpy_chk: - case LibFunc::strcpy_chk: + case LibFunc_stpcpy_chk: + case LibFunc_strcpy_chk: return optimizeStrpCpyChk(CI, Builder, Func); - case LibFunc::stpncpy_chk: - case LibFunc::strncpy_chk: + case LibFunc_stpncpy_chk: + case LibFunc_strncpy_chk: return optimizeStrpNCpyChk(CI, Builder, Func); default: break; |