diff options
author | dim <dim@FreeBSD.org> | 2014-03-21 17:53:59 +0000 |
---|---|---|
committer | dim <dim@FreeBSD.org> | 2014-03-21 17:53:59 +0000 |
commit | 9cedb8bb69b89b0f0c529937247a6a80cabdbaec (patch) | |
tree | c978f0e9ec1ab92dc8123783f30b08a7fd1e2a39 /contrib/llvm/lib/Transforms/Utils/BasicBlockUtils.cpp | |
parent | 03fdc2934eb61c44c049a02b02aa974cfdd8a0eb (diff) | |
download | FreeBSD-src-9cedb8bb69b89b0f0c529937247a6a80cabdbaec.zip FreeBSD-src-9cedb8bb69b89b0f0c529937247a6a80cabdbaec.tar.gz |
MFC 261991:
Upgrade our copy of llvm/clang to 3.4 release. This version supports
all of the features in the current working draft of the upcoming C++
standard, provisionally named C++1y.
The code generator's performance is greatly increased, and the loop
auto-vectorizer is now enabled at -Os and -O2 in addition to -O3. The
PowerPC backend has made several major improvements to code generation
quality and compile time, and the X86, SPARC, ARM32, Aarch64 and SystemZ
backends have all seen major feature work.
Release notes for llvm and clang can be found here:
<http://llvm.org/releases/3.4/docs/ReleaseNotes.html>
<http://llvm.org/releases/3.4/tools/clang/docs/ReleaseNotes.html>
MFC 262121 (by emaste):
Update lldb for clang/llvm 3.4 import
This commit largely restores the lldb source to the upstream r196259
snapshot with the addition of threaded inferior support and a few bug
fixes.
Specific upstream lldb revisions restored include:
SVN git
181387 779e6ac
181703 7bef4e2
182099 b31044e
182650 f2dcf35
182683 0d91b80
183862 15c1774
183929 99447a6
184177 0b2934b
184948 4dc3761
184954 007e7bc
186990 eebd175
Sponsored by: DARPA, AFRL
MFC 262186 (by emaste):
Fix mismerge in r262121
A break statement was lost in the merge. The error had no functional
impact, but restore it to reduce the diff against upstream.
MFC 262303:
Pull in r197521 from upstream clang trunk (by rdivacky):
Use the integrated assembler by default on FreeBSD/ppc and ppc64.
Requested by: jhibbits
MFC 262611:
Pull in r196874 from upstream llvm trunk:
Fix a crash that occurs when PWD is invalid.
MCJIT needs to be able to run in hostile environments, even when PWD
is invalid. There's no need to crash MCJIT in this case.
The obvious fix is to simply leave MCContext's CompilationDir empty
when PWD can't be determined. This way, MCJIT clients,
and other clients that link with LLVM don't need a valid working directory.
If we do want to guarantee valid CompilationDir, that should be done
only for clients of getCompilationDir(). This is as simple as checking
for an empty string.
The only current use of getCompilationDir is EmitGenDwarfInfo, which
won't conceivably run with an invalid working dir. However, in the
purely hypothetically and untestable case that this happens, the
AT_comp_dir will be omitted from the compilation_unit DIE.
This should help fix assertions occurring with ports-mgmt/tinderbox,
when it is using jails, and sometimes invalidates clang's current
working directory.
Reported by: decke
MFC 262809:
Pull in r203007 from upstream clang trunk:
Don't produce an alias between destructors with different calling conventions.
Fixes pr19007.
(Please note that is an LLVM PR identifier, not a FreeBSD one.)
This should fix Firefox and/or libxul crashes (due to problems with
regparm/stdcall calling conventions) on i386.
Reported by: multiple users on freebsd-current
PR: bin/187103
MFC 263048:
Repair recognition of "CC" as an alias for the C++ compiler, since it
was silently broken by upstream for a Windows-specific use-case.
Apparently some versions of CMake still rely on this archaic feature...
Reported by: rakuco
MFC 263049:
Garbage collect the old way of adding the libstdc++ include directories
in clang's InitHeaderSearch.cpp. This has been superseded by David
Chisnall's commit in r255321.
Moreover, if libc++ is used, the libstdc++ include directories should
not be in the search path at all. These directories are now only used
if you pass -stdlib=libstdc++.
Diffstat (limited to 'contrib/llvm/lib/Transforms/Utils/BasicBlockUtils.cpp')
-rw-r--r-- | contrib/llvm/lib/Transforms/Utils/BasicBlockUtils.cpp | 175 |
1 files changed, 109 insertions, 66 deletions
diff --git a/contrib/llvm/lib/Transforms/Utils/BasicBlockUtils.cpp b/contrib/llvm/lib/Transforms/Utils/BasicBlockUtils.cpp index ba99d2e..12de9ee 100644 --- a/contrib/llvm/lib/Transforms/Utils/BasicBlockUtils.cpp +++ b/contrib/llvm/lib/Transforms/Utils/BasicBlockUtils.cpp @@ -14,6 +14,7 @@ #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Analysis/AliasAnalysis.h" +#include "llvm/Analysis/CFG.h" #include "llvm/Analysis/Dominators.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/MemoryDependenceAnalysis.h" @@ -170,7 +171,7 @@ bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, Pass *P) { if (DomTreeNode *DTN = DT->getNode(BB)) { DomTreeNode *PredDTN = DT->getNode(PredBB); SmallVector<DomTreeNode*, 8> Children(DTN->begin(), DTN->end()); - for (SmallVector<DomTreeNode*, 8>::iterator DI = Children.begin(), + for (SmallVectorImpl<DomTreeNode *>::iterator DI = Children.begin(), DE = Children.end(); DI != DE; ++DI) DT->changeImmediateDominator(*DI, PredDTN); @@ -235,22 +236,6 @@ void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) { ReplaceInstWithInst(From->getParent()->getInstList(), BI, To); } -/// GetSuccessorNumber - Search for the specified successor of basic block BB -/// and return its position in the terminator instruction's list of -/// successors. It is an error to call this with a block that is not a -/// successor. -unsigned llvm::GetSuccessorNumber(BasicBlock *BB, BasicBlock *Succ) { - TerminatorInst *Term = BB->getTerminator(); -#ifndef NDEBUG - unsigned e = Term->getNumSuccessors(); -#endif - for (unsigned i = 0; ; ++i) { - assert(i != e && "Didn't find edge?"); - if (Term->getSuccessor(i) == Succ) - return i; - } -} - /// SplitEdge - Split the edge connecting specified block. Pass P must /// not be NULL. BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, Pass *P) { @@ -263,7 +248,6 @@ BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, Pass *P) { // If the edge isn't critical, then BB has a single successor or Succ has a // single pred. Split the block. - BasicBlock::iterator SplitPoint; if (BasicBlock *SP = Succ->getSinglePredecessor()) { // If the successor only has a single pred, split the top of the successor // block. @@ -416,8 +400,12 @@ static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB, // If all incoming values for the new PHI would be the same, just don't // make a new PHI. Instead, just remove the incoming values from the old // PHI. - for (unsigned i = 0, e = Preds.size(); i != e; ++i) - PN->removeIncomingValue(Preds[i], false); + for (unsigned i = 0, e = Preds.size(); i != e; ++i) { + // Explicitly check the BB index here to handle duplicates in Preds. + int Idx = PN->getBasicBlockIndex(Preds[i]); + if (Idx >= 0) + PN->removeIncomingValue(Idx, false); + } } else { // If the values coming into the block are not the same, we need a PHI. // Create the new PHI node, insert it into NewBB at the end of the block @@ -598,52 +586,6 @@ void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB, } } -/// FindFunctionBackedges - Analyze the specified function to find all of the -/// loop backedges in the function and return them. This is a relatively cheap -/// (compared to computing dominators and loop info) analysis. -/// -/// The output is added to Result, as pairs of <from,to> edge info. -void llvm::FindFunctionBackedges(const Function &F, - SmallVectorImpl<std::pair<const BasicBlock*,const BasicBlock*> > &Result) { - const BasicBlock *BB = &F.getEntryBlock(); - if (succ_begin(BB) == succ_end(BB)) - return; - - SmallPtrSet<const BasicBlock*, 8> Visited; - SmallVector<std::pair<const BasicBlock*, succ_const_iterator>, 8> VisitStack; - SmallPtrSet<const BasicBlock*, 8> InStack; - - Visited.insert(BB); - VisitStack.push_back(std::make_pair(BB, succ_begin(BB))); - InStack.insert(BB); - do { - std::pair<const BasicBlock*, succ_const_iterator> &Top = VisitStack.back(); - const BasicBlock *ParentBB = Top.first; - succ_const_iterator &I = Top.second; - - bool FoundNew = false; - while (I != succ_end(ParentBB)) { - BB = *I++; - if (Visited.insert(BB)) { - FoundNew = true; - break; - } - // Successor is in VisitStack, it's a back edge. - if (InStack.count(BB)) - Result.push_back(std::make_pair(ParentBB, BB)); - } - - if (FoundNew) { - // Go down one level if there is a unvisited successor. - InStack.insert(BB); - VisitStack.push_back(std::make_pair(BB, succ_begin(BB))); - } else { - // Go up one level. - InStack.erase(VisitStack.pop_back_val().first); - } - } while (!VisitStack.empty()); -} - /// FoldReturnIntoUncondBranch - This method duplicates the specified return /// instruction into a predecessor which ends in an unconditional branch. If /// the return instruction returns a value defined by a PHI, propagate the @@ -726,3 +668,104 @@ TerminatorInst *llvm::SplitBlockAndInsertIfThen(Instruction *Cmp, ReplaceInstWithInst(HeadOldTerm, HeadNewTerm); return CheckTerm; } + +/// GetIfCondition - Given a basic block (BB) with two predecessors, +/// check to see if the merge at this block is due +/// to an "if condition". If so, return the boolean condition that determines +/// which entry into BB will be taken. Also, return by references the block +/// that will be entered from if the condition is true, and the block that will +/// be entered if the condition is false. +/// +/// This does no checking to see if the true/false blocks have large or unsavory +/// instructions in them. +Value *llvm::GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue, + BasicBlock *&IfFalse) { + PHINode *SomePHI = dyn_cast<PHINode>(BB->begin()); + BasicBlock *Pred1 = NULL; + BasicBlock *Pred2 = NULL; + + if (SomePHI) { + if (SomePHI->getNumIncomingValues() != 2) + return NULL; + Pred1 = SomePHI->getIncomingBlock(0); + Pred2 = SomePHI->getIncomingBlock(1); + } else { + pred_iterator PI = pred_begin(BB), PE = pred_end(BB); + if (PI == PE) // No predecessor + return NULL; + Pred1 = *PI++; + if (PI == PE) // Only one predecessor + return NULL; + Pred2 = *PI++; + if (PI != PE) // More than two predecessors + return NULL; + } + + // We can only handle branches. Other control flow will be lowered to + // branches if possible anyway. + BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator()); + BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator()); + if (Pred1Br == 0 || Pred2Br == 0) + return 0; + + // Eliminate code duplication by ensuring that Pred1Br is conditional if + // either are. + if (Pred2Br->isConditional()) { + // If both branches are conditional, we don't have an "if statement". In + // reality, we could transform this case, but since the condition will be + // required anyway, we stand no chance of eliminating it, so the xform is + // probably not profitable. + if (Pred1Br->isConditional()) + return 0; + + std::swap(Pred1, Pred2); + std::swap(Pred1Br, Pred2Br); + } + + if (Pred1Br->isConditional()) { + // The only thing we have to watch out for here is to make sure that Pred2 + // doesn't have incoming edges from other blocks. If it does, the condition + // doesn't dominate BB. + if (Pred2->getSinglePredecessor() == 0) + return 0; + + // If we found a conditional branch predecessor, make sure that it branches + // to BB and Pred2Br. If it doesn't, this isn't an "if statement". + if (Pred1Br->getSuccessor(0) == BB && + Pred1Br->getSuccessor(1) == Pred2) { + IfTrue = Pred1; + IfFalse = Pred2; + } else if (Pred1Br->getSuccessor(0) == Pred2 && + Pred1Br->getSuccessor(1) == BB) { + IfTrue = Pred2; + IfFalse = Pred1; + } else { + // We know that one arm of the conditional goes to BB, so the other must + // go somewhere unrelated, and this must not be an "if statement". + return 0; + } + + return Pred1Br->getCondition(); + } + + // Ok, if we got here, both predecessors end with an unconditional branch to + // BB. Don't panic! If both blocks only have a single (identical) + // predecessor, and THAT is a conditional branch, then we're all ok! + BasicBlock *CommonPred = Pred1->getSinglePredecessor(); + if (CommonPred == 0 || CommonPred != Pred2->getSinglePredecessor()) + return 0; + + // Otherwise, if this is a conditional branch, then we can use it! + BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator()); + if (BI == 0) return 0; + + assert(BI->isConditional() && "Two successors but not conditional?"); + if (BI->getSuccessor(0) == Pred1) { + IfTrue = Pred1; + IfFalse = Pred2; + } else { + IfTrue = Pred2; + IfFalse = Pred1; + } + return BI->getCondition(); +} |