summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Transforms/Scalar/Reassociate.cpp
diff options
context:
space:
mode:
authordim <dim@FreeBSD.org>2016-12-26 20:36:37 +0000
committerdim <dim@FreeBSD.org>2016-12-26 20:36:37 +0000
commit06210ae42d418d50d8d9365d5c9419308ae9e7ee (patch)
treeab60b4cdd6e430dda1f292a46a77ddb744723f31 /contrib/llvm/lib/Transforms/Scalar/Reassociate.cpp
parent2dd166267f53df1c3748b4325d294b9b839de74b (diff)
downloadFreeBSD-src-06210ae42d418d50d8d9365d5c9419308ae9e7ee.zip
FreeBSD-src-06210ae42d418d50d8d9365d5c9419308ae9e7ee.tar.gz
MFC r309124:
Upgrade our copies of clang, llvm, lldb, compiler-rt and libc++ to 3.9.0 release, and add lld 3.9.0. Also completely revamp the build system for clang, llvm, lldb and their related tools. Please note that from 3.5.0 onwards, clang, llvm and lldb require C++11 support to build; see UPDATING for more information. Release notes for llvm, clang and lld are available here: <http://llvm.org/releases/3.9.0/docs/ReleaseNotes.html> <http://llvm.org/releases/3.9.0/tools/clang/docs/ReleaseNotes.html> <http://llvm.org/releases/3.9.0/tools/lld/docs/ReleaseNotes.html> Thanks to Ed Maste, Bryan Drewery, Andrew Turner, Antoine Brodin and Jan Beich for their help. Relnotes: yes MFC r309147: Pull in r282174 from upstream llvm trunk (by Krzysztof Parzyszek): [PPC] Set SP after loading data from stack frame, if no red zone is present Follow-up to r280705: Make sure that the SP is only restored after all data is loaded from the stack frame, if there is no red zone. This completes the fix for https://llvm.org/bugs/show_bug.cgi?id=26519. Differential Revision: https://reviews.llvm.org/D24466 Reported by: Mark Millard PR: 214433 MFC r309149: Pull in r283060 from upstream llvm trunk (by Hal Finkel): [PowerPC] Refactor soft-float support, and enable PPC64 soft float This change enables soft-float for PowerPC64, and also makes soft-float disable all vector instruction sets for both 32-bit and 64-bit modes. This latter part is necessary because the PPC backend canonicalizes many Altivec vector types to floating-point types, and so soft-float breaks scalarization support for many operations. Both for embedded targets and for operating-system kernels desiring soft-float support, it seems reasonable that disabling hardware floating-point also disables vector instructions (embedded targets without hardware floating point support are unlikely to have Altivec, etc. and operating system kernels desiring not to use floating-point registers to lower syscall cost are unlikely to want to use vector registers either). If someone needs this to work, we'll need to change the fact that we promote many Altivec operations to act on v4f32. To make it possible to disable Altivec when soft-float is enabled, hardware floating-point support needs to be expressed as a positive feature, like the others, and not a negative feature, because target features cannot have dependencies on the disabling of some other feature. So +soft-float has now become -hard-float. Fixes PR26970. Pull in r283061 from upstream clang trunk (by Hal Finkel): [PowerPC] Enable soft-float for PPC64, and +soft-float -> -hard-float Enable soft-float support on PPC64, as the backend now supports it. Also, the backend now uses -hard-float instead of +soft-float, so set the target features accordingly. Fixes PR26970. Reported by: Mark Millard PR: 214433 MFC r309212: Add a few missed clang 3.9.0 files to OptionalObsoleteFiles. MFC r309262: Fix packaging for clang, lldb and lld 3.9.0 During the upgrade of clang/llvm etc to 3.9.0 in r309124, the PACKAGE directive in the usr.bin/clang/*.mk files got dropped accidentally. Restore it, with a few minor changes and additions: * Correct license in clang.ucl to NCSA * Add PACKAGE=clang for clang and most of the "ll" tools * Put lldb in its own package * Put lld in its own package Reviewed by: gjb, jmallett Differential Revision: https://reviews.freebsd.org/D8666 MFC r309656: During the bootstrap phase, when building the minimal llvm library on PowerPC, add lib/Support/Atomic.cpp. This is needed because upstream llvm revision r271821 disabled the use of std::call_once, which causes some fallback functions from Atomic.cpp to be used instead. Reported by: Mark Millard PR: 214902 MFC r309835: Tentatively apply https://reviews.llvm.org/D18730 to work around gcc PR 70528 (bogus error: constructor required before non-static data member). This should fix buildworld with the external gcc package. Reported by: https://jenkins.freebsd.org/job/FreeBSD_HEAD_amd64_gcc/ MFC r310194: Upgrade our copies of clang, llvm, lld, lldb, compiler-rt and libc++ to 3.9.1 release. Please note that from 3.5.0 onwards, clang, llvm and lldb require C++11 support to build; see UPDATING for more information. Release notes for llvm, clang and lld will be available here: <http://releases.llvm.org/3.9.1/docs/ReleaseNotes.html> <http://releases.llvm.org/3.9.1/tools/clang/docs/ReleaseNotes.html> <http://releases.llvm.org/3.9.1/tools/lld/docs/ReleaseNotes.html> Relnotes: yes
Diffstat (limited to 'contrib/llvm/lib/Transforms/Scalar/Reassociate.cpp')
-rw-r--r--contrib/llvm/lib/Transforms/Scalar/Reassociate.cpp314
1 files changed, 134 insertions, 180 deletions
diff --git a/contrib/llvm/lib/Transforms/Scalar/Reassociate.cpp b/contrib/llvm/lib/Transforms/Scalar/Reassociate.cpp
index bcadd4e..e42e2c6 100644
--- a/contrib/llvm/lib/Transforms/Scalar/Reassociate.cpp
+++ b/contrib/llvm/lib/Transforms/Scalar/Reassociate.cpp
@@ -20,7 +20,7 @@
//
//===----------------------------------------------------------------------===//
-#include "llvm/Transforms/Scalar.h"
+#include "llvm/Transforms/Scalar/Reassociate.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/STLExtras.h"
@@ -39,9 +39,11 @@
#include "llvm/Pass.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
+#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/Local.h"
#include <algorithm>
using namespace llvm;
+using namespace reassociate;
#define DEBUG_TYPE "reassociate"
@@ -49,17 +51,6 @@ STATISTIC(NumChanged, "Number of insts reassociated");
STATISTIC(NumAnnihil, "Number of expr tree annihilated");
STATISTIC(NumFactor , "Number of multiplies factored");
-namespace {
- struct ValueEntry {
- unsigned Rank;
- Value *Op;
- ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
- };
- inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
- return LHS.Rank > RHS.Rank; // Sort so that highest rank goes to start.
- }
-}
-
#ifndef NDEBUG
/// Print out the expression identified in the Ops list.
///
@@ -75,120 +66,35 @@ static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
}
#endif
-namespace {
- /// \brief Utility class representing a base and exponent pair which form one
- /// factor of some product.
- struct Factor {
- Value *Base;
- unsigned Power;
-
- Factor(Value *Base, unsigned Power) : Base(Base), Power(Power) {}
-
- /// \brief Sort factors in descending order by their power.
- struct PowerDescendingSorter {
- bool operator()(const Factor &LHS, const Factor &RHS) {
- return LHS.Power > RHS.Power;
- }
- };
-
- /// \brief Compare factors for equal powers.
- struct PowerEqual {
- bool operator()(const Factor &LHS, const Factor &RHS) {
- return LHS.Power == RHS.Power;
- }
- };
- };
-
- /// Utility class representing a non-constant Xor-operand. We classify
- /// non-constant Xor-Operands into two categories:
- /// C1) The operand is in the form "X & C", where C is a constant and C != ~0
- /// C2)
- /// C2.1) The operand is in the form of "X | C", where C is a non-zero
- /// constant.
- /// C2.2) Any operand E which doesn't fall into C1 and C2.1, we view this
- /// operand as "E | 0"
- class XorOpnd {
- public:
- XorOpnd(Value *V);
-
- bool isInvalid() const { return SymbolicPart == nullptr; }
- bool isOrExpr() const { return isOr; }
- Value *getValue() const { return OrigVal; }
- Value *getSymbolicPart() const { return SymbolicPart; }
- unsigned getSymbolicRank() const { return SymbolicRank; }
- const APInt &getConstPart() const { return ConstPart; }
-
- void Invalidate() { SymbolicPart = OrigVal = nullptr; }
- void setSymbolicRank(unsigned R) { SymbolicRank = R; }
-
- // Sort the XorOpnd-Pointer in ascending order of symbolic-value-rank.
- // The purpose is twofold:
- // 1) Cluster together the operands sharing the same symbolic-value.
- // 2) Operand having smaller symbolic-value-rank is permuted earlier, which
- // could potentially shorten crital path, and expose more loop-invariants.
- // Note that values' rank are basically defined in RPO order (FIXME).
- // So, if Rank(X) < Rank(Y) < Rank(Z), it means X is defined earlier
- // than Y which is defined earlier than Z. Permute "x | 1", "Y & 2",
- // "z" in the order of X-Y-Z is better than any other orders.
- struct PtrSortFunctor {
- bool operator()(XorOpnd * const &LHS, XorOpnd * const &RHS) {
- return LHS->getSymbolicRank() < RHS->getSymbolicRank();
- }
- };
- private:
- Value *OrigVal;
- Value *SymbolicPart;
- APInt ConstPart;
- unsigned SymbolicRank;
- bool isOr;
- };
-}
-
-namespace {
- class Reassociate : public FunctionPass {
- DenseMap<BasicBlock*, unsigned> RankMap;
- DenseMap<AssertingVH<Value>, unsigned> ValueRankMap;
- SetVector<AssertingVH<Instruction> > RedoInsts;
- bool MadeChange;
- public:
- static char ID; // Pass identification, replacement for typeid
- Reassociate() : FunctionPass(ID) {
- initializeReassociatePass(*PassRegistry::getPassRegistry());
- }
-
- bool runOnFunction(Function &F) override;
-
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.setPreservesCFG();
- AU.addPreserved<GlobalsAAWrapperPass>();
- }
- private:
- void BuildRankMap(Function &F);
- unsigned getRank(Value *V);
- void canonicalizeOperands(Instruction *I);
- void ReassociateExpression(BinaryOperator *I);
- void RewriteExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
- Value *OptimizeExpression(BinaryOperator *I,
- SmallVectorImpl<ValueEntry> &Ops);
- Value *OptimizeAdd(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
- Value *OptimizeXor(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
- bool CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, APInt &ConstOpnd,
- Value *&Res);
- bool CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, XorOpnd *Opnd2,
- APInt &ConstOpnd, Value *&Res);
- bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
- SmallVectorImpl<Factor> &Factors);
- Value *buildMinimalMultiplyDAG(IRBuilder<> &Builder,
- SmallVectorImpl<Factor> &Factors);
- Value *OptimizeMul(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
- Value *RemoveFactorFromExpression(Value *V, Value *Factor);
- void EraseInst(Instruction *I);
- void RecursivelyEraseDeadInsts(Instruction *I,
- SetVector<AssertingVH<Instruction>> &Insts);
- void OptimizeInst(Instruction *I);
- Instruction *canonicalizeNegConstExpr(Instruction *I);
- };
-}
+/// Utility class representing a non-constant Xor-operand. We classify
+/// non-constant Xor-Operands into two categories:
+/// C1) The operand is in the form "X & C", where C is a constant and C != ~0
+/// C2)
+/// C2.1) The operand is in the form of "X | C", where C is a non-zero
+/// constant.
+/// C2.2) Any operand E which doesn't fall into C1 and C2.1, we view this
+/// operand as "E | 0"
+class llvm::reassociate::XorOpnd {
+public:
+ XorOpnd(Value *V);
+
+ bool isInvalid() const { return SymbolicPart == nullptr; }
+ bool isOrExpr() const { return isOr; }
+ Value *getValue() const { return OrigVal; }
+ Value *getSymbolicPart() const { return SymbolicPart; }
+ unsigned getSymbolicRank() const { return SymbolicRank; }
+ const APInt &getConstPart() const { return ConstPart; }
+
+ void Invalidate() { SymbolicPart = OrigVal = nullptr; }
+ void setSymbolicRank(unsigned R) { SymbolicRank = R; }
+
+private:
+ Value *OrigVal;
+ Value *SymbolicPart;
+ APInt ConstPart;
+ unsigned SymbolicRank;
+ bool isOr;
+};
XorOpnd::XorOpnd(Value *V) {
assert(!isa<ConstantInt>(V) && "No ConstantInt");
@@ -217,13 +123,6 @@ XorOpnd::XorOpnd(Value *V) {
isOr = true;
}
-char Reassociate::ID = 0;
-INITIALIZE_PASS(Reassociate, "reassociate",
- "Reassociate expressions", false, false)
-
-// Public interface to the Reassociate pass
-FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
-
/// Return true if V is an instruction of the specified opcode and if it
/// only has one use.
static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
@@ -246,7 +145,7 @@ static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode1,
return nullptr;
}
-void Reassociate::BuildRankMap(Function &F) {
+void ReassociatePass::BuildRankMap(Function &F) {
unsigned i = 2;
// Assign distinct ranks to function arguments.
@@ -255,22 +154,20 @@ void Reassociate::BuildRankMap(Function &F) {
DEBUG(dbgs() << "Calculated Rank[" << I->getName() << "] = " << i << "\n");
}
- ReversePostOrderTraversal<Function*> RPOT(&F);
- for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
- E = RPOT.end(); I != E; ++I) {
- BasicBlock *BB = *I;
+ ReversePostOrderTraversal<Function *> RPOT(&F);
+ for (BasicBlock *BB : RPOT) {
unsigned BBRank = RankMap[BB] = ++i << 16;
// Walk the basic block, adding precomputed ranks for any instructions that
// we cannot move. This ensures that the ranks for these instructions are
// all different in the block.
- for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
- if (mayBeMemoryDependent(*I))
- ValueRankMap[&*I] = ++BBRank;
+ for (Instruction &I : *BB)
+ if (mayBeMemoryDependent(I))
+ ValueRankMap[&I] = ++BBRank;
}
}
-unsigned Reassociate::getRank(Value *V) {
+unsigned ReassociatePass::getRank(Value *V) {
Instruction *I = dyn_cast<Instruction>(V);
if (!I) {
if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument.
@@ -301,7 +198,7 @@ unsigned Reassociate::getRank(Value *V) {
}
// Canonicalize constants to RHS. Otherwise, sort the operands by rank.
-void Reassociate::canonicalizeOperands(Instruction *I) {
+void ReassociatePass::canonicalizeOperands(Instruction *I) {
assert(isa<BinaryOperator>(I) && "Expected binary operator.");
assert(I->isCommutative() && "Expected commutative operator.");
@@ -711,8 +608,8 @@ static bool LinearizeExprTree(BinaryOperator *I,
/// Now that the operands for this expression tree are
/// linearized and optimized, emit them in-order.
-void Reassociate::RewriteExprTree(BinaryOperator *I,
- SmallVectorImpl<ValueEntry> &Ops) {
+void ReassociatePass::RewriteExprTree(BinaryOperator *I,
+ SmallVectorImpl<ValueEntry> &Ops) {
assert(Ops.size() > 1 && "Single values should be used directly!");
// Since our optimizations should never increase the number of operations, the
@@ -1095,7 +992,7 @@ static Value *EmitAddTreeOfValues(Instruction *I,
/// If V is an expression tree that is a multiplication sequence,
/// and if this sequence contains a multiply by Factor,
/// remove Factor from the tree and return the new tree.
-Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
+Value *ReassociatePass::RemoveFactorFromExpression(Value *V, Value *Factor) {
BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
if (!BO)
return nullptr;
@@ -1129,7 +1026,7 @@ Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
}
} else if (ConstantFP *FC1 = dyn_cast<ConstantFP>(Factor)) {
if (ConstantFP *FC2 = dyn_cast<ConstantFP>(Factors[i].Op)) {
- APFloat F1(FC1->getValueAPF());
+ const APFloat &F1 = FC1->getValueAPF();
APFloat F2(FC2->getValueAPF());
F2.changeSign();
if (F1.compare(F2) == APFloat::cmpEqual) {
@@ -1258,9 +1155,9 @@ static Value *createAndInstr(Instruction *InsertBefore, Value *Opnd,
// If it was successful, true is returned, and the "R" and "C" is returned
// via "Res" and "ConstOpnd", respectively; otherwise, false is returned,
// and both "Res" and "ConstOpnd" remain unchanged.
-//
-bool Reassociate::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
- APInt &ConstOpnd, Value *&Res) {
+//
+bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
+ APInt &ConstOpnd, Value *&Res) {
// Xor-Rule 1: (x | c1) ^ c2 = (x | c1) ^ (c1 ^ c1) ^ c2
// = ((x | c1) ^ c1) ^ (c1 ^ c2)
// = (x & ~c1) ^ (c1 ^ c2)
@@ -1294,8 +1191,9 @@ bool Reassociate::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
// via "Res" and "ConstOpnd", respectively (If the entire expression is
// evaluated to a constant, the Res is set to NULL); otherwise, false is
// returned, and both "Res" and "ConstOpnd" remain unchanged.
-bool Reassociate::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, XorOpnd *Opnd2,
- APInt &ConstOpnd, Value *&Res) {
+bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
+ XorOpnd *Opnd2, APInt &ConstOpnd,
+ Value *&Res) {
Value *X = Opnd1->getSymbolicPart();
if (X != Opnd2->getSymbolicPart())
return false;
@@ -1369,8 +1267,8 @@ bool Reassociate::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, XorOpnd *Opnd2,
/// Optimize a series of operands to an 'xor' instruction. If it can be reduced
/// to a single Value, it is returned, otherwise the Ops list is mutated as
/// necessary.
-Value *Reassociate::OptimizeXor(Instruction *I,
- SmallVectorImpl<ValueEntry> &Ops) {
+Value *ReassociatePass::OptimizeXor(Instruction *I,
+ SmallVectorImpl<ValueEntry> &Ops) {
if (Value *V = OptimizeAndOrXor(Instruction::Xor, Ops))
return V;
@@ -1405,7 +1303,19 @@ Value *Reassociate::OptimizeXor(Instruction *I,
// the same symbolic value cluster together. For instance, the input operand
// sequence ("x | 123", "y & 456", "x & 789") will be sorted into:
// ("x | 123", "x & 789", "y & 456").
- std::stable_sort(OpndPtrs.begin(), OpndPtrs.end(), XorOpnd::PtrSortFunctor());
+ //
+ // The purpose is twofold:
+ // 1) Cluster together the operands sharing the same symbolic-value.
+ // 2) Operand having smaller symbolic-value-rank is permuted earlier, which
+ // could potentially shorten crital path, and expose more loop-invariants.
+ // Note that values' rank are basically defined in RPO order (FIXME).
+ // So, if Rank(X) < Rank(Y) < Rank(Z), it means X is defined earlier
+ // than Y which is defined earlier than Z. Permute "x | 1", "Y & 2",
+ // "z" in the order of X-Y-Z is better than any other orders.
+ std::stable_sort(OpndPtrs.begin(), OpndPtrs.end(),
+ [](XorOpnd *LHS, XorOpnd *RHS) {
+ return LHS->getSymbolicRank() < RHS->getSymbolicRank();
+ });
// Step 3: Combine adjacent operands
XorOpnd *PrevOpnd = nullptr;
@@ -1478,8 +1388,8 @@ Value *Reassociate::OptimizeXor(Instruction *I,
/// Optimize a series of operands to an 'add' instruction. This
/// optimizes based on identities. If it can be reduced to a single Value, it
/// is returned, otherwise the Ops list is mutated as necessary.
-Value *Reassociate::OptimizeAdd(Instruction *I,
- SmallVectorImpl<ValueEntry> &Ops) {
+Value *ReassociatePass::OptimizeAdd(Instruction *I,
+ SmallVectorImpl<ValueEntry> &Ops) {
// Scan the operand lists looking for X and -X pairs. If we find any, we
// can simplify expressions like X+-X == 0 and X+~X ==-1. While we're at it,
// scan for any
@@ -1716,8 +1626,8 @@ Value *Reassociate::OptimizeAdd(Instruction *I,
/// ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)]
///
/// \returns Whether any factors have a power greater than one.
-bool Reassociate::collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
- SmallVectorImpl<Factor> &Factors) {
+bool ReassociatePass::collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
+ SmallVectorImpl<Factor> &Factors) {
// FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this.
// Compute the sum of powers of simplifiable factors.
unsigned FactorPowerSum = 0;
@@ -1763,7 +1673,10 @@ bool Reassociate::collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
// below our mininum of '4'.
assert(FactorPowerSum >= 4);
- std::stable_sort(Factors.begin(), Factors.end(), Factor::PowerDescendingSorter());
+ std::stable_sort(Factors.begin(), Factors.end(),
+ [](const Factor &LHS, const Factor &RHS) {
+ return LHS.Power > RHS.Power;
+ });
return true;
}
@@ -1790,8 +1703,9 @@ static Value *buildMultiplyTree(IRBuilder<> &Builder,
/// equal and the powers are sorted in decreasing order, compute the minimal
/// DAG of multiplies to compute the final product, and return that product
/// value.
-Value *Reassociate::buildMinimalMultiplyDAG(IRBuilder<> &Builder,
- SmallVectorImpl<Factor> &Factors) {
+Value *
+ReassociatePass::buildMinimalMultiplyDAG(IRBuilder<> &Builder,
+ SmallVectorImpl<Factor> &Factors) {
assert(Factors[0].Power);
SmallVector<Value *, 4> OuterProduct;
for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size();
@@ -1822,7 +1736,9 @@ Value *Reassociate::buildMinimalMultiplyDAG(IRBuilder<> &Builder,
// Unique factors with equal powers -- we've folded them into the first one's
// base.
Factors.erase(std::unique(Factors.begin(), Factors.end(),
- Factor::PowerEqual()),
+ [](const Factor &LHS, const Factor &RHS) {
+ return LHS.Power == RHS.Power;
+ }),
Factors.end());
// Iteratively collect the base of each factor with an add power into the
@@ -1845,8 +1761,8 @@ Value *Reassociate::buildMinimalMultiplyDAG(IRBuilder<> &Builder,
return V;
}
-Value *Reassociate::OptimizeMul(BinaryOperator *I,
- SmallVectorImpl<ValueEntry> &Ops) {
+Value *ReassociatePass::OptimizeMul(BinaryOperator *I,
+ SmallVectorImpl<ValueEntry> &Ops) {
// We can only optimize the multiplies when there is a chain of more than
// three, such that a balanced tree might require fewer total multiplies.
if (Ops.size() < 4)
@@ -1869,8 +1785,8 @@ Value *Reassociate::OptimizeMul(BinaryOperator *I,
return nullptr;
}
-Value *Reassociate::OptimizeExpression(BinaryOperator *I,
- SmallVectorImpl<ValueEntry> &Ops) {
+Value *ReassociatePass::OptimizeExpression(BinaryOperator *I,
+ SmallVectorImpl<ValueEntry> &Ops) {
// Now that we have the linearized expression tree, try to optimize it.
// Start by folding any constants that we found.
Constant *Cst = nullptr;
@@ -1930,7 +1846,7 @@ Value *Reassociate::OptimizeExpression(BinaryOperator *I,
// Remove dead instructions and if any operands are trivially dead add them to
// Insts so they will be removed as well.
-void Reassociate::RecursivelyEraseDeadInsts(
+void ReassociatePass::RecursivelyEraseDeadInsts(
Instruction *I, SetVector<AssertingVH<Instruction>> &Insts) {
assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
SmallVector<Value *, 4> Ops(I->op_begin(), I->op_end());
@@ -1945,7 +1861,7 @@ void Reassociate::RecursivelyEraseDeadInsts(
}
/// Zap the given instruction, adding interesting operands to the work list.
-void Reassociate::EraseInst(Instruction *I) {
+void ReassociatePass::EraseInst(Instruction *I) {
assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
// Erase the dead instruction.
@@ -1969,7 +1885,7 @@ void Reassociate::EraseInst(Instruction *I) {
// Canonicalize expressions of the following form:
// x + (-Constant * y) -> x - (Constant * y)
// x - (-Constant * y) -> x + (Constant * y)
-Instruction *Reassociate::canonicalizeNegConstExpr(Instruction *I) {
+Instruction *ReassociatePass::canonicalizeNegConstExpr(Instruction *I) {
if (!I->hasOneUse() || I->getType()->isVectorTy())
return nullptr;
@@ -2046,7 +1962,7 @@ Instruction *Reassociate::canonicalizeNegConstExpr(Instruction *I) {
/// Inspect and optimize the given instruction. Note that erasing
/// instructions is not allowed.
-void Reassociate::OptimizeInst(Instruction *I) {
+void ReassociatePass::OptimizeInst(Instruction *I) {
// Only consider operations that we understand.
if (!isa<BinaryOperator>(I))
return;
@@ -2173,7 +2089,7 @@ void Reassociate::OptimizeInst(Instruction *I) {
ReassociateExpression(BO);
}
-void Reassociate::ReassociateExpression(BinaryOperator *I) {
+void ReassociatePass::ReassociateExpression(BinaryOperator *I) {
// First, walk the expression tree, linearizing the tree, collecting the
// operand information.
SmallVector<RepeatedValue, 8> Tree;
@@ -2255,22 +2171,19 @@ void Reassociate::ReassociateExpression(BinaryOperator *I) {
RewriteExprTree(I, Ops);
}
-bool Reassociate::runOnFunction(Function &F) {
- if (skipOptnoneFunction(F))
- return false;
-
- // Calculate the rank map for F
+PreservedAnalyses ReassociatePass::run(Function &F, FunctionAnalysisManager &) {
+ // Calculate the rank map for F.
BuildRankMap(F);
MadeChange = false;
for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) {
// Optimize every instruction in the basic block.
- for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE; )
+ for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE;)
if (isInstructionTriviallyDead(&*II)) {
EraseInst(&*II++);
} else {
OptimizeInst(&*II);
- assert(II->getParent() == BI && "Moved to a different block!");
+ assert(II->getParent() == &*BI && "Moved to a different block!");
++II;
}
@@ -2302,5 +2215,46 @@ bool Reassociate::runOnFunction(Function &F) {
RankMap.clear();
ValueRankMap.clear();
- return MadeChange;
+ if (MadeChange) {
+ // FIXME: This should also 'preserve the CFG'.
+ auto PA = PreservedAnalyses();
+ PA.preserve<GlobalsAA>();
+ return PA;
+ }
+
+ return PreservedAnalyses::all();
+}
+
+namespace {
+ class ReassociateLegacyPass : public FunctionPass {
+ ReassociatePass Impl;
+ public:
+ static char ID; // Pass identification, replacement for typeid
+ ReassociateLegacyPass() : FunctionPass(ID) {
+ initializeReassociateLegacyPassPass(*PassRegistry::getPassRegistry());
+ }
+
+ bool runOnFunction(Function &F) override {
+ if (skipFunction(F))
+ return false;
+
+ FunctionAnalysisManager DummyFAM;
+ auto PA = Impl.run(F, DummyFAM);
+ return !PA.areAllPreserved();
+ }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.setPreservesCFG();
+ AU.addPreserved<GlobalsAAWrapperPass>();
+ }
+ };
+}
+
+char ReassociateLegacyPass::ID = 0;
+INITIALIZE_PASS(ReassociateLegacyPass, "reassociate",
+ "Reassociate expressions", false, false)
+
+// Public interface to the Reassociate pass
+FunctionPass *llvm::createReassociatePass() {
+ return new ReassociateLegacyPass();
}
OpenPOWER on IntegriCloud