summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Target/X86/X86TargetTransformInfo.cpp
diff options
context:
space:
mode:
authordim <dim@FreeBSD.org>2014-03-21 17:53:59 +0000
committerdim <dim@FreeBSD.org>2014-03-21 17:53:59 +0000
commit9cedb8bb69b89b0f0c529937247a6a80cabdbaec (patch)
treec978f0e9ec1ab92dc8123783f30b08a7fd1e2a39 /contrib/llvm/lib/Target/X86/X86TargetTransformInfo.cpp
parent03fdc2934eb61c44c049a02b02aa974cfdd8a0eb (diff)
downloadFreeBSD-src-9cedb8bb69b89b0f0c529937247a6a80cabdbaec.zip
FreeBSD-src-9cedb8bb69b89b0f0c529937247a6a80cabdbaec.tar.gz
MFC 261991:
Upgrade our copy of llvm/clang to 3.4 release. This version supports all of the features in the current working draft of the upcoming C++ standard, provisionally named C++1y. The code generator's performance is greatly increased, and the loop auto-vectorizer is now enabled at -Os and -O2 in addition to -O3. The PowerPC backend has made several major improvements to code generation quality and compile time, and the X86, SPARC, ARM32, Aarch64 and SystemZ backends have all seen major feature work. Release notes for llvm and clang can be found here: <http://llvm.org/releases/3.4/docs/ReleaseNotes.html> <http://llvm.org/releases/3.4/tools/clang/docs/ReleaseNotes.html> MFC 262121 (by emaste): Update lldb for clang/llvm 3.4 import This commit largely restores the lldb source to the upstream r196259 snapshot with the addition of threaded inferior support and a few bug fixes. Specific upstream lldb revisions restored include: SVN git 181387 779e6ac 181703 7bef4e2 182099 b31044e 182650 f2dcf35 182683 0d91b80 183862 15c1774 183929 99447a6 184177 0b2934b 184948 4dc3761 184954 007e7bc 186990 eebd175 Sponsored by: DARPA, AFRL MFC 262186 (by emaste): Fix mismerge in r262121 A break statement was lost in the merge. The error had no functional impact, but restore it to reduce the diff against upstream. MFC 262303: Pull in r197521 from upstream clang trunk (by rdivacky): Use the integrated assembler by default on FreeBSD/ppc and ppc64. Requested by: jhibbits MFC 262611: Pull in r196874 from upstream llvm trunk: Fix a crash that occurs when PWD is invalid. MCJIT needs to be able to run in hostile environments, even when PWD is invalid. There's no need to crash MCJIT in this case. The obvious fix is to simply leave MCContext's CompilationDir empty when PWD can't be determined. This way, MCJIT clients, and other clients that link with LLVM don't need a valid working directory. If we do want to guarantee valid CompilationDir, that should be done only for clients of getCompilationDir(). This is as simple as checking for an empty string. The only current use of getCompilationDir is EmitGenDwarfInfo, which won't conceivably run with an invalid working dir. However, in the purely hypothetically and untestable case that this happens, the AT_comp_dir will be omitted from the compilation_unit DIE. This should help fix assertions occurring with ports-mgmt/tinderbox, when it is using jails, and sometimes invalidates clang's current working directory. Reported by: decke MFC 262809: Pull in r203007 from upstream clang trunk: Don't produce an alias between destructors with different calling conventions. Fixes pr19007. (Please note that is an LLVM PR identifier, not a FreeBSD one.) This should fix Firefox and/or libxul crashes (due to problems with regparm/stdcall calling conventions) on i386. Reported by: multiple users on freebsd-current PR: bin/187103 MFC 263048: Repair recognition of "CC" as an alias for the C++ compiler, since it was silently broken by upstream for a Windows-specific use-case. Apparently some versions of CMake still rely on this archaic feature... Reported by: rakuco MFC 263049: Garbage collect the old way of adding the libstdc++ include directories in clang's InitHeaderSearch.cpp. This has been superseded by David Chisnall's commit in r255321. Moreover, if libc++ is used, the libstdc++ include directories should not be in the search path at all. These directories are now only used if you pass -stdlib=libstdc++.
Diffstat (limited to 'contrib/llvm/lib/Target/X86/X86TargetTransformInfo.cpp')
-rw-r--r--contrib/llvm/lib/Target/X86/X86TargetTransformInfo.cpp234
1 files changed, 199 insertions, 35 deletions
diff --git a/contrib/llvm/lib/Target/X86/X86TargetTransformInfo.cpp b/contrib/llvm/lib/Target/X86/X86TargetTransformInfo.cpp
index eba9d78..f88a666 100644
--- a/contrib/llvm/lib/Target/X86/X86TargetTransformInfo.cpp
+++ b/contrib/llvm/lib/Target/X86/X86TargetTransformInfo.cpp
@@ -33,7 +33,6 @@ void initializeX86TTIPass(PassRegistry &);
namespace {
class X86TTI : public ImmutablePass, public TargetTransformInfo {
- const X86TargetMachine *TM;
const X86Subtarget *ST;
const X86TargetLowering *TLI;
@@ -42,12 +41,12 @@ class X86TTI : public ImmutablePass, public TargetTransformInfo {
unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const;
public:
- X86TTI() : ImmutablePass(ID), TM(0), ST(0), TLI(0) {
+ X86TTI() : ImmutablePass(ID), ST(0), TLI(0) {
llvm_unreachable("This pass cannot be directly constructed");
}
X86TTI(const X86TargetMachine *TM)
- : ImmutablePass(ID), TM(TM), ST(TM->getSubtargetImpl()),
+ : ImmutablePass(ID), ST(TM->getSubtargetImpl()),
TLI(TM->getTargetLowering()) {
initializeX86TTIPass(*PassRegistry::getPassRegistry());
}
@@ -101,6 +100,11 @@ public:
unsigned Alignment,
unsigned AddressSpace) const;
+ virtual unsigned getAddressComputationCost(Type *PtrTy, bool IsComplex) const;
+
+ virtual unsigned getReductionCost(unsigned Opcode, Type *Ty,
+ bool IsPairwiseForm) const;
+
/// @}
};
@@ -126,8 +130,8 @@ X86TTI::PopcntSupportKind X86TTI::getPopcntSupport(unsigned TyWidth) const {
assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
// TODO: Currently the __builtin_popcount() implementation using SSE3
// instructions is inefficient. Once the problem is fixed, we should
- // call ST->hasSSE3() instead of ST->hasSSE4().
- return ST->hasSSE41() ? PSK_FastHardware : PSK_Software;
+ // call ST->hasSSE3() instead of ST->hasPOPCNT().
+ return ST->hasPOPCNT() ? PSK_FastHardware : PSK_Software;
}
unsigned X86TTI::getNumberOfRegisters(bool Vector) const {
@@ -173,7 +177,7 @@ unsigned X86TTI::getArithmeticInstrCost(unsigned Opcode, Type *Ty,
int ISD = TLI->InstructionOpcodeToISD(Opcode);
assert(ISD && "Invalid opcode");
- static const CostTblEntry<MVT> AVX2CostTable[] = {
+ static const CostTblEntry<MVT::SimpleValueType> AVX2CostTable[] = {
// Shifts on v4i64/v8i32 on AVX2 is legal even though we declare to
// customize them to detect the cases where shift amount is a scalar one.
{ ISD::SHL, MVT::v4i32, 1 },
@@ -196,17 +200,27 @@ unsigned X86TTI::getArithmeticInstrCost(unsigned Opcode, Type *Ty,
{ ISD::SRA, MVT::v32i8, 32*10 }, // Scalarized.
{ ISD::SRA, MVT::v16i16, 16*10 }, // Scalarized.
{ ISD::SRA, MVT::v4i64, 4*10 }, // Scalarized.
+
+ // Vectorizing division is a bad idea. See the SSE2 table for more comments.
+ { ISD::SDIV, MVT::v32i8, 32*20 },
+ { ISD::SDIV, MVT::v16i16, 16*20 },
+ { ISD::SDIV, MVT::v8i32, 8*20 },
+ { ISD::SDIV, MVT::v4i64, 4*20 },
+ { ISD::UDIV, MVT::v32i8, 32*20 },
+ { ISD::UDIV, MVT::v16i16, 16*20 },
+ { ISD::UDIV, MVT::v8i32, 8*20 },
+ { ISD::UDIV, MVT::v4i64, 4*20 },
};
// Look for AVX2 lowering tricks.
if (ST->hasAVX2()) {
- int Idx = CostTableLookup<MVT>(AVX2CostTable, array_lengthof(AVX2CostTable),
- ISD, LT.second);
+ int Idx = CostTableLookup(AVX2CostTable, ISD, LT.second);
if (Idx != -1)
return LT.first * AVX2CostTable[Idx].Cost;
}
- static const CostTblEntry<MVT> SSE2UniformConstCostTable[] = {
+ static const CostTblEntry<MVT::SimpleValueType>
+ SSE2UniformConstCostTable[] = {
// We don't correctly identify costs of casts because they are marked as
// custom.
// Constant splats are cheaper for the following instructions.
@@ -227,15 +241,13 @@ unsigned X86TTI::getArithmeticInstrCost(unsigned Opcode, Type *Ty,
if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
ST->hasSSE2()) {
- int Idx = CostTableLookup<MVT>(SSE2UniformConstCostTable,
- array_lengthof(SSE2UniformConstCostTable),
- ISD, LT.second);
+ int Idx = CostTableLookup(SSE2UniformConstCostTable, ISD, LT.second);
if (Idx != -1)
return LT.first * SSE2UniformConstCostTable[Idx].Cost;
}
- static const CostTblEntry<MVT> SSE2CostTable[] = {
+ static const CostTblEntry<MVT::SimpleValueType> SSE2CostTable[] = {
// We don't correctly identify costs of casts because they are marked as
// custom.
// For some cases, where the shift amount is a scalar we would be able
@@ -258,16 +270,30 @@ unsigned X86TTI::getArithmeticInstrCost(unsigned Opcode, Type *Ty,
{ ISD::SRA, MVT::v8i16, 8*10 }, // Scalarized.
{ ISD::SRA, MVT::v4i32, 4*10 }, // Scalarized.
{ ISD::SRA, MVT::v2i64, 2*10 }, // Scalarized.
+
+ // It is not a good idea to vectorize division. We have to scalarize it and
+ // in the process we will often end up having to spilling regular
+ // registers. The overhead of division is going to dominate most kernels
+ // anyways so try hard to prevent vectorization of division - it is
+ // generally a bad idea. Assume somewhat arbitrarily that we have to be able
+ // to hide "20 cycles" for each lane.
+ { ISD::SDIV, MVT::v16i8, 16*20 },
+ { ISD::SDIV, MVT::v8i16, 8*20 },
+ { ISD::SDIV, MVT::v4i32, 4*20 },
+ { ISD::SDIV, MVT::v2i64, 2*20 },
+ { ISD::UDIV, MVT::v16i8, 16*20 },
+ { ISD::UDIV, MVT::v8i16, 8*20 },
+ { ISD::UDIV, MVT::v4i32, 4*20 },
+ { ISD::UDIV, MVT::v2i64, 2*20 },
};
if (ST->hasSSE2()) {
- int Idx = CostTableLookup<MVT>(SSE2CostTable, array_lengthof(SSE2CostTable),
- ISD, LT.second);
+ int Idx = CostTableLookup(SSE2CostTable, ISD, LT.second);
if (Idx != -1)
return LT.first * SSE2CostTable[Idx].Cost;
}
- static const CostTblEntry<MVT> AVX1CostTable[] = {
+ static const CostTblEntry<MVT::SimpleValueType> AVX1CostTable[] = {
// We don't have to scalarize unsupported ops. We can issue two half-sized
// operations and we only need to extract the upper YMM half.
// Two ops + 1 extract + 1 insert = 4.
@@ -286,21 +312,19 @@ unsigned X86TTI::getArithmeticInstrCost(unsigned Opcode, Type *Ty,
// Look for AVX1 lowering tricks.
if (ST->hasAVX() && !ST->hasAVX2()) {
- int Idx = CostTableLookup<MVT>(AVX1CostTable, array_lengthof(AVX1CostTable),
- ISD, LT.second);
+ int Idx = CostTableLookup(AVX1CostTable, ISD, LT.second);
if (Idx != -1)
return LT.first * AVX1CostTable[Idx].Cost;
}
// Custom lowering of vectors.
- static const CostTblEntry<MVT> CustomLowered[] = {
+ static const CostTblEntry<MVT::SimpleValueType> CustomLowered[] = {
// A v2i64/v4i64 and multiply is custom lowered as a series of long
// multiplies(3), shifts(4) and adds(2).
{ ISD::MUL, MVT::v2i64, 9 },
{ ISD::MUL, MVT::v4i64, 9 },
};
- int Idx = CostTableLookup<MVT>(CustomLowered, array_lengthof(CustomLowered),
- ISD, LT.second);
+ int Idx = CostTableLookup(CustomLowered, ISD, LT.second);
if (Idx != -1)
return LT.first * CustomLowered[Idx].Cost;
@@ -337,7 +361,8 @@ unsigned X86TTI::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) const {
std::pair<unsigned, MVT> LTSrc = TLI->getTypeLegalizationCost(Src);
std::pair<unsigned, MVT> LTDest = TLI->getTypeLegalizationCost(Dst);
- static const TypeConversionCostTblEntry<MVT> SSE2ConvTbl[] = {
+ static const TypeConversionCostTblEntry<MVT::SimpleValueType>
+ SSE2ConvTbl[] = {
// These are somewhat magic numbers justified by looking at the output of
// Intel's IACA, running some kernels and making sure when we take
// legalization into account the throughput will be overestimated.
@@ -361,9 +386,8 @@ unsigned X86TTI::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) const {
};
if (ST->hasSSE2() && !ST->hasAVX()) {
- int Idx = ConvertCostTableLookup<MVT>(SSE2ConvTbl,
- array_lengthof(SSE2ConvTbl),
- ISD, LTDest.second, LTSrc.second);
+ int Idx =
+ ConvertCostTableLookup(SSE2ConvTbl, ISD, LTDest.second, LTSrc.second);
if (Idx != -1)
return LTSrc.first * SSE2ConvTbl[Idx].Cost;
}
@@ -375,13 +399,17 @@ unsigned X86TTI::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) const {
if (!SrcTy.isSimple() || !DstTy.isSimple())
return TargetTransformInfo::getCastInstrCost(Opcode, Dst, Src);
- static const TypeConversionCostTblEntry<MVT> AVXConversionTbl[] = {
+ static const TypeConversionCostTblEntry<MVT::SimpleValueType>
+ AVXConversionTbl[] = {
+ { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 1 },
+ { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 1 },
{ ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 1 },
{ ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 1 },
{ ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 1 },
{ ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 1 },
{ ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 1 },
{ ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 1 },
+ { ISD::TRUNCATE, MVT::v16i8, MVT::v16i16, 2 },
{ ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i1, 8 },
{ ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i8, 8 },
@@ -420,9 +448,8 @@ unsigned X86TTI::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) const {
};
if (ST->hasAVX()) {
- int Idx = ConvertCostTableLookup<MVT>(AVXConversionTbl,
- array_lengthof(AVXConversionTbl),
- ISD, DstTy.getSimpleVT(), SrcTy.getSimpleVT());
+ int Idx = ConvertCostTableLookup(AVXConversionTbl, ISD, DstTy.getSimpleVT(),
+ SrcTy.getSimpleVT());
if (Idx != -1)
return AVXConversionTbl[Idx].Cost;
}
@@ -440,7 +467,7 @@ unsigned X86TTI::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
int ISD = TLI->InstructionOpcodeToISD(Opcode);
assert(ISD && "Invalid opcode");
- static const CostTblEntry<MVT> SSE42CostTbl[] = {
+ static const CostTblEntry<MVT::SimpleValueType> SSE42CostTbl[] = {
{ ISD::SETCC, MVT::v2f64, 1 },
{ ISD::SETCC, MVT::v4f32, 1 },
{ ISD::SETCC, MVT::v2i64, 1 },
@@ -449,7 +476,7 @@ unsigned X86TTI::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
{ ISD::SETCC, MVT::v16i8, 1 },
};
- static const CostTblEntry<MVT> AVX1CostTbl[] = {
+ static const CostTblEntry<MVT::SimpleValueType> AVX1CostTbl[] = {
{ ISD::SETCC, MVT::v4f64, 1 },
{ ISD::SETCC, MVT::v8f32, 1 },
// AVX1 does not support 8-wide integer compare.
@@ -459,7 +486,7 @@ unsigned X86TTI::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
{ ISD::SETCC, MVT::v32i8, 4 },
};
- static const CostTblEntry<MVT> AVX2CostTbl[] = {
+ static const CostTblEntry<MVT::SimpleValueType> AVX2CostTbl[] = {
{ ISD::SETCC, MVT::v4i64, 1 },
{ ISD::SETCC, MVT::v8i32, 1 },
{ ISD::SETCC, MVT::v16i16, 1 },
@@ -467,19 +494,19 @@ unsigned X86TTI::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
};
if (ST->hasAVX2()) {
- int Idx = CostTableLookup<MVT>(AVX2CostTbl, array_lengthof(AVX2CostTbl), ISD, MTy);
+ int Idx = CostTableLookup(AVX2CostTbl, ISD, MTy);
if (Idx != -1)
return LT.first * AVX2CostTbl[Idx].Cost;
}
if (ST->hasAVX()) {
- int Idx = CostTableLookup<MVT>(AVX1CostTbl, array_lengthof(AVX1CostTbl), ISD, MTy);
+ int Idx = CostTableLookup(AVX1CostTbl, ISD, MTy);
if (Idx != -1)
return LT.first * AVX1CostTbl[Idx].Cost;
}
if (ST->hasSSE42()) {
- int Idx = CostTableLookup<MVT>(SSE42CostTbl, array_lengthof(SSE42CostTbl), ISD, MTy);
+ int Idx = CostTableLookup(SSE42CostTbl, ISD, MTy);
if (Idx != -1)
return LT.first * SSE42CostTbl[Idx].Cost;
}
@@ -511,8 +538,51 @@ unsigned X86TTI::getVectorInstrCost(unsigned Opcode, Type *Val,
return TargetTransformInfo::getVectorInstrCost(Opcode, Val, Index);
}
+unsigned X86TTI::getScalarizationOverhead(Type *Ty, bool Insert,
+ bool Extract) const {
+ assert (Ty->isVectorTy() && "Can only scalarize vectors");
+ unsigned Cost = 0;
+
+ for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) {
+ if (Insert)
+ Cost += TopTTI->getVectorInstrCost(Instruction::InsertElement, Ty, i);
+ if (Extract)
+ Cost += TopTTI->getVectorInstrCost(Instruction::ExtractElement, Ty, i);
+ }
+
+ return Cost;
+}
+
unsigned X86TTI::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
unsigned AddressSpace) const {
+ // Handle non power of two vectors such as <3 x float>
+ if (VectorType *VTy = dyn_cast<VectorType>(Src)) {
+ unsigned NumElem = VTy->getVectorNumElements();
+
+ // Handle a few common cases:
+ // <3 x float>
+ if (NumElem == 3 && VTy->getScalarSizeInBits() == 32)
+ // Cost = 64 bit store + extract + 32 bit store.
+ return 3;
+
+ // <3 x double>
+ if (NumElem == 3 && VTy->getScalarSizeInBits() == 64)
+ // Cost = 128 bit store + unpack + 64 bit store.
+ return 3;
+
+ // Assume that all other non power-of-two numbers are scalarized.
+ if (!isPowerOf2_32(NumElem)) {
+ unsigned Cost = TargetTransformInfo::getMemoryOpCost(Opcode,
+ VTy->getScalarType(),
+ Alignment,
+ AddressSpace);
+ unsigned SplitCost = getScalarizationOverhead(Src,
+ Opcode == Instruction::Load,
+ Opcode==Instruction::Store);
+ return NumElem * Cost + SplitCost;
+ }
+ }
+
// Legalize the type.
std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Src);
assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
@@ -528,3 +598,97 @@ unsigned X86TTI::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
return Cost;
}
+
+unsigned X86TTI::getAddressComputationCost(Type *Ty, bool IsComplex) const {
+ // Address computations in vectorized code with non-consecutive addresses will
+ // likely result in more instructions compared to scalar code where the
+ // computation can more often be merged into the index mode. The resulting
+ // extra micro-ops can significantly decrease throughput.
+ unsigned NumVectorInstToHideOverhead = 10;
+
+ if (Ty->isVectorTy() && IsComplex)
+ return NumVectorInstToHideOverhead;
+
+ return TargetTransformInfo::getAddressComputationCost(Ty, IsComplex);
+}
+
+unsigned X86TTI::getReductionCost(unsigned Opcode, Type *ValTy,
+ bool IsPairwise) const {
+
+ std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(ValTy);
+
+ MVT MTy = LT.second;
+
+ int ISD = TLI->InstructionOpcodeToISD(Opcode);
+ assert(ISD && "Invalid opcode");
+
+ // We use the Intel Architecture Code Analyzer(IACA) to measure the throughput
+ // and make it as the cost.
+
+ static const CostTblEntry<MVT::SimpleValueType> SSE42CostTblPairWise[] = {
+ { ISD::FADD, MVT::v2f64, 2 },
+ { ISD::FADD, MVT::v4f32, 4 },
+ { ISD::ADD, MVT::v2i64, 2 }, // The data reported by the IACA tool is "1.6".
+ { ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "3.5".
+ { ISD::ADD, MVT::v8i16, 5 },
+ };
+
+ static const CostTblEntry<MVT::SimpleValueType> AVX1CostTblPairWise[] = {
+ { ISD::FADD, MVT::v4f32, 4 },
+ { ISD::FADD, MVT::v4f64, 5 },
+ { ISD::FADD, MVT::v8f32, 7 },
+ { ISD::ADD, MVT::v2i64, 1 }, // The data reported by the IACA tool is "1.5".
+ { ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "3.5".
+ { ISD::ADD, MVT::v4i64, 5 }, // The data reported by the IACA tool is "4.8".
+ { ISD::ADD, MVT::v8i16, 5 },
+ { ISD::ADD, MVT::v8i32, 5 },
+ };
+
+ static const CostTblEntry<MVT::SimpleValueType> SSE42CostTblNoPairWise[] = {
+ { ISD::FADD, MVT::v2f64, 2 },
+ { ISD::FADD, MVT::v4f32, 4 },
+ { ISD::ADD, MVT::v2i64, 2 }, // The data reported by the IACA tool is "1.6".
+ { ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "3.3".
+ { ISD::ADD, MVT::v8i16, 4 }, // The data reported by the IACA tool is "4.3".
+ };
+
+ static const CostTblEntry<MVT::SimpleValueType> AVX1CostTblNoPairWise[] = {
+ { ISD::FADD, MVT::v4f32, 3 },
+ { ISD::FADD, MVT::v4f64, 3 },
+ { ISD::FADD, MVT::v8f32, 4 },
+ { ISD::ADD, MVT::v2i64, 1 }, // The data reported by the IACA tool is "1.5".
+ { ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "2.8".
+ { ISD::ADD, MVT::v4i64, 3 },
+ { ISD::ADD, MVT::v8i16, 4 },
+ { ISD::ADD, MVT::v8i32, 5 },
+ };
+
+ if (IsPairwise) {
+ if (ST->hasAVX()) {
+ int Idx = CostTableLookup(AVX1CostTblPairWise, ISD, MTy);
+ if (Idx != -1)
+ return LT.first * AVX1CostTblPairWise[Idx].Cost;
+ }
+
+ if (ST->hasSSE42()) {
+ int Idx = CostTableLookup(SSE42CostTblPairWise, ISD, MTy);
+ if (Idx != -1)
+ return LT.first * SSE42CostTblPairWise[Idx].Cost;
+ }
+ } else {
+ if (ST->hasAVX()) {
+ int Idx = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy);
+ if (Idx != -1)
+ return LT.first * AVX1CostTblNoPairWise[Idx].Cost;
+ }
+
+ if (ST->hasSSE42()) {
+ int Idx = CostTableLookup(SSE42CostTblNoPairWise, ISD, MTy);
+ if (Idx != -1)
+ return LT.first * SSE42CostTblNoPairWise[Idx].Cost;
+ }
+ }
+
+ return TargetTransformInfo::getReductionCost(Opcode, ValTy, IsPairwise);
+}
+
OpenPOWER on IntegriCloud