diff options
author | dim <dim@FreeBSD.org> | 2014-03-21 17:53:59 +0000 |
---|---|---|
committer | dim <dim@FreeBSD.org> | 2014-03-21 17:53:59 +0000 |
commit | 9cedb8bb69b89b0f0c529937247a6a80cabdbaec (patch) | |
tree | c978f0e9ec1ab92dc8123783f30b08a7fd1e2a39 /contrib/llvm/lib/MC/MCObjectDisassembler.cpp | |
parent | 03fdc2934eb61c44c049a02b02aa974cfdd8a0eb (diff) | |
download | FreeBSD-src-9cedb8bb69b89b0f0c529937247a6a80cabdbaec.zip FreeBSD-src-9cedb8bb69b89b0f0c529937247a6a80cabdbaec.tar.gz |
MFC 261991:
Upgrade our copy of llvm/clang to 3.4 release. This version supports
all of the features in the current working draft of the upcoming C++
standard, provisionally named C++1y.
The code generator's performance is greatly increased, and the loop
auto-vectorizer is now enabled at -Os and -O2 in addition to -O3. The
PowerPC backend has made several major improvements to code generation
quality and compile time, and the X86, SPARC, ARM32, Aarch64 and SystemZ
backends have all seen major feature work.
Release notes for llvm and clang can be found here:
<http://llvm.org/releases/3.4/docs/ReleaseNotes.html>
<http://llvm.org/releases/3.4/tools/clang/docs/ReleaseNotes.html>
MFC 262121 (by emaste):
Update lldb for clang/llvm 3.4 import
This commit largely restores the lldb source to the upstream r196259
snapshot with the addition of threaded inferior support and a few bug
fixes.
Specific upstream lldb revisions restored include:
SVN git
181387 779e6ac
181703 7bef4e2
182099 b31044e
182650 f2dcf35
182683 0d91b80
183862 15c1774
183929 99447a6
184177 0b2934b
184948 4dc3761
184954 007e7bc
186990 eebd175
Sponsored by: DARPA, AFRL
MFC 262186 (by emaste):
Fix mismerge in r262121
A break statement was lost in the merge. The error had no functional
impact, but restore it to reduce the diff against upstream.
MFC 262303:
Pull in r197521 from upstream clang trunk (by rdivacky):
Use the integrated assembler by default on FreeBSD/ppc and ppc64.
Requested by: jhibbits
MFC 262611:
Pull in r196874 from upstream llvm trunk:
Fix a crash that occurs when PWD is invalid.
MCJIT needs to be able to run in hostile environments, even when PWD
is invalid. There's no need to crash MCJIT in this case.
The obvious fix is to simply leave MCContext's CompilationDir empty
when PWD can't be determined. This way, MCJIT clients,
and other clients that link with LLVM don't need a valid working directory.
If we do want to guarantee valid CompilationDir, that should be done
only for clients of getCompilationDir(). This is as simple as checking
for an empty string.
The only current use of getCompilationDir is EmitGenDwarfInfo, which
won't conceivably run with an invalid working dir. However, in the
purely hypothetically and untestable case that this happens, the
AT_comp_dir will be omitted from the compilation_unit DIE.
This should help fix assertions occurring with ports-mgmt/tinderbox,
when it is using jails, and sometimes invalidates clang's current
working directory.
Reported by: decke
MFC 262809:
Pull in r203007 from upstream clang trunk:
Don't produce an alias between destructors with different calling conventions.
Fixes pr19007.
(Please note that is an LLVM PR identifier, not a FreeBSD one.)
This should fix Firefox and/or libxul crashes (due to problems with
regparm/stdcall calling conventions) on i386.
Reported by: multiple users on freebsd-current
PR: bin/187103
MFC 263048:
Repair recognition of "CC" as an alias for the C++ compiler, since it
was silently broken by upstream for a Windows-specific use-case.
Apparently some versions of CMake still rely on this archaic feature...
Reported by: rakuco
MFC 263049:
Garbage collect the old way of adding the libstdc++ include directories
in clang's InitHeaderSearch.cpp. This has been superseded by David
Chisnall's commit in r255321.
Moreover, if libc++ is used, the libstdc++ include directories should
not be in the search path at all. These directories are now only used
if you pass -stdlib=libstdc++.
Diffstat (limited to 'contrib/llvm/lib/MC/MCObjectDisassembler.cpp')
-rw-r--r-- | contrib/llvm/lib/MC/MCObjectDisassembler.cpp | 584 |
1 files changed, 584 insertions, 0 deletions
diff --git a/contrib/llvm/lib/MC/MCObjectDisassembler.cpp b/contrib/llvm/lib/MC/MCObjectDisassembler.cpp new file mode 100644 index 0000000..16a110f0 --- /dev/null +++ b/contrib/llvm/lib/MC/MCObjectDisassembler.cpp @@ -0,0 +1,584 @@ +//===- lib/MC/MCObjectDisassembler.cpp ------------------------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// + +#include "llvm/MC/MCObjectDisassembler.h" +#include "llvm/ADT/SetVector.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/StringExtras.h" +#include "llvm/ADT/StringRef.h" +#include "llvm/ADT/Twine.h" +#include "llvm/MC/MCAtom.h" +#include "llvm/MC/MCDisassembler.h" +#include "llvm/MC/MCFunction.h" +#include "llvm/MC/MCInstrAnalysis.h" +#include "llvm/MC/MCModule.h" +#include "llvm/MC/MCObjectSymbolizer.h" +#include "llvm/Object/MachO.h" +#include "llvm/Object/ObjectFile.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/MachO.h" +#include "llvm/Support/MemoryObject.h" +#include "llvm/Support/StringRefMemoryObject.h" +#include "llvm/Support/raw_ostream.h" +#include <map> + +using namespace llvm; +using namespace object; + +MCObjectDisassembler::MCObjectDisassembler(const ObjectFile &Obj, + const MCDisassembler &Dis, + const MCInstrAnalysis &MIA) + : Obj(Obj), Dis(Dis), MIA(MIA), MOS(0) {} + +uint64_t MCObjectDisassembler::getEntrypoint() { + error_code ec; + for (symbol_iterator SI = Obj.begin_symbols(), SE = Obj.end_symbols(); + SI != SE; SI.increment(ec)) { + if (ec) + break; + StringRef Name; + SI->getName(Name); + if (Name == "main" || Name == "_main") { + uint64_t Entrypoint; + SI->getAddress(Entrypoint); + return getEffectiveLoadAddr(Entrypoint); + } + } + return 0; +} + +ArrayRef<uint64_t> MCObjectDisassembler::getStaticInitFunctions() { + return ArrayRef<uint64_t>(); +} + +ArrayRef<uint64_t> MCObjectDisassembler::getStaticExitFunctions() { + return ArrayRef<uint64_t>(); +} + +MemoryObject *MCObjectDisassembler::getRegionFor(uint64_t Addr) { + // FIXME: Keep track of object sections. + return FallbackRegion.get(); +} + +uint64_t MCObjectDisassembler::getEffectiveLoadAddr(uint64_t Addr) { + return Addr; +} + +uint64_t MCObjectDisassembler::getOriginalLoadAddr(uint64_t Addr) { + return Addr; +} + +MCModule *MCObjectDisassembler::buildEmptyModule() { + MCModule *Module = new MCModule; + Module->Entrypoint = getEntrypoint(); + return Module; +} + +MCModule *MCObjectDisassembler::buildModule(bool withCFG) { + MCModule *Module = buildEmptyModule(); + + buildSectionAtoms(Module); + if (withCFG) + buildCFG(Module); + return Module; +} + +void MCObjectDisassembler::buildSectionAtoms(MCModule *Module) { + error_code ec; + for (section_iterator SI = Obj.begin_sections(), + SE = Obj.end_sections(); + SI != SE; + SI.increment(ec)) { + if (ec) break; + + bool isText; SI->isText(isText); + bool isData; SI->isData(isData); + if (!isData && !isText) + continue; + + uint64_t StartAddr; SI->getAddress(StartAddr); + uint64_t SecSize; SI->getSize(SecSize); + if (StartAddr == UnknownAddressOrSize || SecSize == UnknownAddressOrSize) + continue; + StartAddr = getEffectiveLoadAddr(StartAddr); + + StringRef Contents; SI->getContents(Contents); + StringRefMemoryObject memoryObject(Contents, StartAddr); + + // We don't care about things like non-file-backed sections yet. + if (Contents.size() != SecSize || !SecSize) + continue; + uint64_t EndAddr = StartAddr + SecSize - 1; + + StringRef SecName; SI->getName(SecName); + + if (isText) { + MCTextAtom *Text = 0; + MCDataAtom *InvalidData = 0; + + uint64_t InstSize; + for (uint64_t Index = 0; Index < SecSize; Index += InstSize) { + const uint64_t CurAddr = StartAddr + Index; + MCInst Inst; + if (Dis.getInstruction(Inst, InstSize, memoryObject, CurAddr, nulls(), + nulls())) { + if (!Text) { + Text = Module->createTextAtom(CurAddr, CurAddr); + Text->setName(SecName); + } + Text->addInst(Inst, InstSize); + InvalidData = 0; + } else { + assert(InstSize && "getInstruction() consumed no bytes"); + if (!InvalidData) { + Text = 0; + InvalidData = Module->createDataAtom(CurAddr, CurAddr+InstSize - 1); + } + for (uint64_t I = 0; I < InstSize; ++I) + InvalidData->addData(Contents[Index+I]); + } + } + } else { + MCDataAtom *Data = Module->createDataAtom(StartAddr, EndAddr); + Data->setName(SecName); + for (uint64_t Index = 0; Index < SecSize; ++Index) + Data->addData(Contents[Index]); + } + } +} + +namespace { + struct BBInfo; + typedef SmallPtrSet<BBInfo*, 2> BBInfoSetTy; + + struct BBInfo { + MCTextAtom *Atom; + MCBasicBlock *BB; + BBInfoSetTy Succs; + BBInfoSetTy Preds; + MCObjectDisassembler::AddressSetTy SuccAddrs; + + BBInfo() : Atom(0), BB(0) {} + + void addSucc(BBInfo &Succ) { + Succs.insert(&Succ); + Succ.Preds.insert(this); + } + }; +} + +static void RemoveDupsFromAddressVector(MCObjectDisassembler::AddressSetTy &V) { + std::sort(V.begin(), V.end()); + V.erase(std::unique(V.begin(), V.end()), V.end()); +} + +void MCObjectDisassembler::buildCFG(MCModule *Module) { + typedef std::map<uint64_t, BBInfo> BBInfoByAddrTy; + BBInfoByAddrTy BBInfos; + AddressSetTy Splits; + AddressSetTy Calls; + + error_code ec; + for (symbol_iterator SI = Obj.begin_symbols(), SE = Obj.end_symbols(); + SI != SE; SI.increment(ec)) { + if (ec) + break; + SymbolRef::Type SymType; + SI->getType(SymType); + if (SymType == SymbolRef::ST_Function) { + uint64_t SymAddr; + SI->getAddress(SymAddr); + SymAddr = getEffectiveLoadAddr(SymAddr); + Calls.push_back(SymAddr); + Splits.push_back(SymAddr); + } + } + + assert(Module->func_begin() == Module->func_end() + && "Module already has a CFG!"); + + // First, determine the basic block boundaries and call targets. + for (MCModule::atom_iterator AI = Module->atom_begin(), + AE = Module->atom_end(); + AI != AE; ++AI) { + MCTextAtom *TA = dyn_cast<MCTextAtom>(*AI); + if (!TA) continue; + Calls.push_back(TA->getBeginAddr()); + BBInfos[TA->getBeginAddr()].Atom = TA; + for (MCTextAtom::const_iterator II = TA->begin(), IE = TA->end(); + II != IE; ++II) { + if (MIA.isTerminator(II->Inst)) + Splits.push_back(II->Address + II->Size); + uint64_t Target; + if (MIA.evaluateBranch(II->Inst, II->Address, II->Size, Target)) { + if (MIA.isCall(II->Inst)) + Calls.push_back(Target); + Splits.push_back(Target); + } + } + } + + RemoveDupsFromAddressVector(Splits); + RemoveDupsFromAddressVector(Calls); + + // Split text atoms into basic block atoms. + for (AddressSetTy::const_iterator SI = Splits.begin(), SE = Splits.end(); + SI != SE; ++SI) { + MCAtom *A = Module->findAtomContaining(*SI); + if (!A) continue; + MCTextAtom *TA = cast<MCTextAtom>(A); + if (TA->getBeginAddr() == *SI) + continue; + MCTextAtom *NewAtom = TA->split(*SI); + BBInfos[NewAtom->getBeginAddr()].Atom = NewAtom; + StringRef BBName = TA->getName(); + BBName = BBName.substr(0, BBName.find_last_of(':')); + NewAtom->setName((BBName + ":" + utohexstr(*SI)).str()); + } + + // Compute succs/preds. + for (MCModule::atom_iterator AI = Module->atom_begin(), + AE = Module->atom_end(); + AI != AE; ++AI) { + MCTextAtom *TA = dyn_cast<MCTextAtom>(*AI); + if (!TA) continue; + BBInfo &CurBB = BBInfos[TA->getBeginAddr()]; + const MCDecodedInst &LI = TA->back(); + if (MIA.isBranch(LI.Inst)) { + uint64_t Target; + if (MIA.evaluateBranch(LI.Inst, LI.Address, LI.Size, Target)) + CurBB.addSucc(BBInfos[Target]); + if (MIA.isConditionalBranch(LI.Inst)) + CurBB.addSucc(BBInfos[LI.Address + LI.Size]); + } else if (!MIA.isTerminator(LI.Inst)) + CurBB.addSucc(BBInfos[LI.Address + LI.Size]); + } + + + // Create functions and basic blocks. + for (AddressSetTy::const_iterator CI = Calls.begin(), CE = Calls.end(); + CI != CE; ++CI) { + BBInfo &BBI = BBInfos[*CI]; + if (!BBI.Atom) continue; + + MCFunction &MCFN = *Module->createFunction(BBI.Atom->getName()); + + // Create MCBBs. + SmallSetVector<BBInfo*, 16> Worklist; + Worklist.insert(&BBI); + for (size_t wi = 0; wi < Worklist.size(); ++wi) { + BBInfo *BBI = Worklist[wi]; + if (!BBI->Atom) + continue; + BBI->BB = &MCFN.createBlock(*BBI->Atom); + // Add all predecessors and successors to the worklist. + for (BBInfoSetTy::iterator SI = BBI->Succs.begin(), SE = BBI->Succs.end(); + SI != SE; ++SI) + Worklist.insert(*SI); + for (BBInfoSetTy::iterator PI = BBI->Preds.begin(), PE = BBI->Preds.end(); + PI != PE; ++PI) + Worklist.insert(*PI); + } + + // Set preds/succs. + for (size_t wi = 0; wi < Worklist.size(); ++wi) { + BBInfo *BBI = Worklist[wi]; + MCBasicBlock *MCBB = BBI->BB; + if (!MCBB) + continue; + for (BBInfoSetTy::iterator SI = BBI->Succs.begin(), SE = BBI->Succs.end(); + SI != SE; ++SI) + if ((*SI)->BB) + MCBB->addSuccessor((*SI)->BB); + for (BBInfoSetTy::iterator PI = BBI->Preds.begin(), PE = BBI->Preds.end(); + PI != PE; ++PI) + if ((*PI)->BB) + MCBB->addPredecessor((*PI)->BB); + } + } +} + +// Basic idea of the disassembly + discovery: +// +// start with the wanted address, insert it in the worklist +// while worklist not empty, take next address in the worklist: +// - check if atom exists there +// - if middle of atom: +// - split basic blocks referencing the atom +// - look for an already encountered BBInfo (using a map<atom, bbinfo>) +// - if there is, split it (new one, fallthrough, move succs, etc..) +// - if start of atom: nothing else to do +// - if no atom: create new atom and new bbinfo +// - look at the last instruction in the atom, add succs to worklist +// for all elements in the worklist: +// - create basic block, update preds/succs, etc.. +// +MCBasicBlock *MCObjectDisassembler::getBBAt(MCModule *Module, MCFunction *MCFN, + uint64_t BBBeginAddr, + AddressSetTy &CallTargets, + AddressSetTy &TailCallTargets) { + typedef std::map<uint64_t, BBInfo> BBInfoByAddrTy; + typedef SmallSetVector<uint64_t, 16> AddrWorklistTy; + BBInfoByAddrTy BBInfos; + AddrWorklistTy Worklist; + + Worklist.insert(BBBeginAddr); + for (size_t wi = 0; wi < Worklist.size(); ++wi) { + const uint64_t BeginAddr = Worklist[wi]; + BBInfo *BBI = &BBInfos[BeginAddr]; + + MCTextAtom *&TA = BBI->Atom; + assert(!TA && "Discovered basic block already has an associated atom!"); + + // Look for an atom at BeginAddr. + if (MCAtom *A = Module->findAtomContaining(BeginAddr)) { + // FIXME: We don't care about mixed atoms, see above. + TA = cast<MCTextAtom>(A); + + // The found atom doesn't begin at BeginAddr, we have to split it. + if (TA->getBeginAddr() != BeginAddr) { + // FIXME: Handle overlapping atoms: middle-starting instructions, etc.. + MCTextAtom *NewTA = TA->split(BeginAddr); + + // Look for an already encountered basic block that needs splitting + BBInfoByAddrTy::iterator It = BBInfos.find(TA->getBeginAddr()); + if (It != BBInfos.end() && It->second.Atom) { + BBI->SuccAddrs = It->second.SuccAddrs; + It->second.SuccAddrs.clear(); + It->second.SuccAddrs.push_back(BeginAddr); + } + TA = NewTA; + } + BBI->Atom = TA; + } else { + // If we didn't find an atom, then we have to disassemble to create one! + + MemoryObject *Region = getRegionFor(BeginAddr); + if (!Region) + llvm_unreachable(("Couldn't find suitable region for disassembly at " + + utostr(BeginAddr)).c_str()); + + uint64_t InstSize; + uint64_t EndAddr = Region->getBase() + Region->getExtent(); + + // We want to stop before the next atom and have a fallthrough to it. + if (MCTextAtom *NextAtom = + cast_or_null<MCTextAtom>(Module->findFirstAtomAfter(BeginAddr))) + EndAddr = std::min(EndAddr, NextAtom->getBeginAddr()); + + for (uint64_t Addr = BeginAddr; Addr < EndAddr; Addr += InstSize) { + MCInst Inst; + if (Dis.getInstruction(Inst, InstSize, *Region, Addr, nulls(), + nulls())) { + if (!TA) + TA = Module->createTextAtom(Addr, Addr); + TA->addInst(Inst, InstSize); + } else { + // We don't care about splitting mixed atoms either. + llvm_unreachable("Couldn't disassemble instruction in atom."); + } + + uint64_t BranchTarget; + if (MIA.evaluateBranch(Inst, Addr, InstSize, BranchTarget)) { + if (MIA.isCall(Inst)) + CallTargets.push_back(BranchTarget); + } + + if (MIA.isTerminator(Inst)) + break; + } + BBI->Atom = TA; + } + + assert(TA && "Couldn't disassemble atom, none was created!"); + assert(TA->begin() != TA->end() && "Empty atom!"); + + MemoryObject *Region = getRegionFor(TA->getBeginAddr()); + assert(Region && "Couldn't find region for already disassembled code!"); + uint64_t EndRegion = Region->getBase() + Region->getExtent(); + + // Now we have a basic block atom, add successors. + // Add the fallthrough block. + if ((MIA.isConditionalBranch(TA->back().Inst) || + !MIA.isTerminator(TA->back().Inst)) && + (TA->getEndAddr() + 1 < EndRegion)) { + BBI->SuccAddrs.push_back(TA->getEndAddr() + 1); + Worklist.insert(TA->getEndAddr() + 1); + } + + // If the terminator is a branch, add the target block. + if (MIA.isBranch(TA->back().Inst)) { + uint64_t BranchTarget; + if (MIA.evaluateBranch(TA->back().Inst, TA->back().Address, + TA->back().Size, BranchTarget)) { + StringRef ExtFnName; + if (MOS) + ExtFnName = + MOS->findExternalFunctionAt(getOriginalLoadAddr(BranchTarget)); + if (!ExtFnName.empty()) { + TailCallTargets.push_back(BranchTarget); + CallTargets.push_back(BranchTarget); + } else { + BBI->SuccAddrs.push_back(BranchTarget); + Worklist.insert(BranchTarget); + } + } + } + } + + for (size_t wi = 0, we = Worklist.size(); wi != we; ++wi) { + const uint64_t BeginAddr = Worklist[wi]; + BBInfo *BBI = &BBInfos[BeginAddr]; + + assert(BBI->Atom && "Found a basic block without an associated atom!"); + + // Look for a basic block at BeginAddr. + BBI->BB = MCFN->find(BeginAddr); + if (BBI->BB) { + // FIXME: check that the succs/preds are the same + continue; + } + // If there was none, we have to create one from the atom. + BBI->BB = &MCFN->createBlock(*BBI->Atom); + } + + for (size_t wi = 0, we = Worklist.size(); wi != we; ++wi) { + const uint64_t BeginAddr = Worklist[wi]; + BBInfo *BBI = &BBInfos[BeginAddr]; + MCBasicBlock *BB = BBI->BB; + + RemoveDupsFromAddressVector(BBI->SuccAddrs); + for (AddressSetTy::const_iterator SI = BBI->SuccAddrs.begin(), + SE = BBI->SuccAddrs.end(); + SE != SE; ++SI) { + MCBasicBlock *Succ = BBInfos[*SI].BB; + BB->addSuccessor(Succ); + Succ->addPredecessor(BB); + } + } + + assert(BBInfos[Worklist[0]].BB && + "No basic block created at requested address?"); + + return BBInfos[Worklist[0]].BB; +} + +MCFunction * +MCObjectDisassembler::createFunction(MCModule *Module, uint64_t BeginAddr, + AddressSetTy &CallTargets, + AddressSetTy &TailCallTargets) { + // First, check if this is an external function. + StringRef ExtFnName; + if (MOS) + ExtFnName = MOS->findExternalFunctionAt(getOriginalLoadAddr(BeginAddr)); + if (!ExtFnName.empty()) + return Module->createFunction(ExtFnName); + + // If it's not, look for an existing function. + for (MCModule::func_iterator FI = Module->func_begin(), + FE = Module->func_end(); + FI != FE; ++FI) { + if ((*FI)->empty()) + continue; + // FIXME: MCModule should provide a findFunctionByAddr() + if ((*FI)->getEntryBlock()->getInsts()->getBeginAddr() == BeginAddr) + return *FI; + } + + // Finally, just create a new one. + MCFunction *MCFN = Module->createFunction(""); + getBBAt(Module, MCFN, BeginAddr, CallTargets, TailCallTargets); + return MCFN; +} + +// MachO MCObjectDisassembler implementation. + +MCMachOObjectDisassembler::MCMachOObjectDisassembler( + const MachOObjectFile &MOOF, const MCDisassembler &Dis, + const MCInstrAnalysis &MIA, uint64_t VMAddrSlide, + uint64_t HeaderLoadAddress) + : MCObjectDisassembler(MOOF, Dis, MIA), MOOF(MOOF), + VMAddrSlide(VMAddrSlide), HeaderLoadAddress(HeaderLoadAddress) { + + error_code ec; + for (section_iterator SI = MOOF.begin_sections(), SE = MOOF.end_sections(); + SI != SE; SI.increment(ec)) { + if (ec) + break; + StringRef Name; + SI->getName(Name); + // FIXME: We should use the S_ section type instead of the name. + if (Name == "__mod_init_func") { + DEBUG(dbgs() << "Found __mod_init_func section!\n"); + SI->getContents(ModInitContents); + } else if (Name == "__mod_exit_func") { + DEBUG(dbgs() << "Found __mod_exit_func section!\n"); + SI->getContents(ModExitContents); + } + } +} + +// FIXME: Only do the translations for addresses actually inside the object. +uint64_t MCMachOObjectDisassembler::getEffectiveLoadAddr(uint64_t Addr) { + return Addr + VMAddrSlide; +} + +uint64_t +MCMachOObjectDisassembler::getOriginalLoadAddr(uint64_t EffectiveAddr) { + return EffectiveAddr - VMAddrSlide; +} + +uint64_t MCMachOObjectDisassembler::getEntrypoint() { + uint64_t EntryFileOffset = 0; + + // Look for LC_MAIN. + { + uint32_t LoadCommandCount = MOOF.getHeader().ncmds; + MachOObjectFile::LoadCommandInfo Load = MOOF.getFirstLoadCommandInfo(); + for (unsigned I = 0;; ++I) { + if (Load.C.cmd == MachO::LC_MAIN) { + EntryFileOffset = + ((const MachO::entry_point_command *)Load.Ptr)->entryoff; + break; + } + + if (I == LoadCommandCount - 1) + break; + else + Load = MOOF.getNextLoadCommandInfo(Load); + } + } + + // If we didn't find anything, default to the common implementation. + // FIXME: Maybe we could also look at LC_UNIXTHREAD and friends? + if (EntryFileOffset) + return MCObjectDisassembler::getEntrypoint(); + + return EntryFileOffset + HeaderLoadAddress; +} + +ArrayRef<uint64_t> MCMachOObjectDisassembler::getStaticInitFunctions() { + // FIXME: We only handle 64bit mach-o + assert(MOOF.is64Bit()); + + size_t EntrySize = 8; + size_t EntryCount = ModInitContents.size() / EntrySize; + return ArrayRef<uint64_t>( + reinterpret_cast<const uint64_t *>(ModInitContents.data()), EntryCount); +} + +ArrayRef<uint64_t> MCMachOObjectDisassembler::getStaticExitFunctions() { + // FIXME: We only handle 64bit mach-o + assert(MOOF.is64Bit()); + + size_t EntrySize = 8; + size_t EntryCount = ModExitContents.size() / EntrySize; + return ArrayRef<uint64_t>( + reinterpret_cast<const uint64_t *>(ModExitContents.data()), EntryCount); +} |