summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/ExecutionEngine/Interpreter
diff options
context:
space:
mode:
authordim <dim@FreeBSD.org>2014-03-21 17:53:59 +0000
committerdim <dim@FreeBSD.org>2014-03-21 17:53:59 +0000
commit9cedb8bb69b89b0f0c529937247a6a80cabdbaec (patch)
treec978f0e9ec1ab92dc8123783f30b08a7fd1e2a39 /contrib/llvm/lib/ExecutionEngine/Interpreter
parent03fdc2934eb61c44c049a02b02aa974cfdd8a0eb (diff)
downloadFreeBSD-src-9cedb8bb69b89b0f0c529937247a6a80cabdbaec.zip
FreeBSD-src-9cedb8bb69b89b0f0c529937247a6a80cabdbaec.tar.gz
MFC 261991:
Upgrade our copy of llvm/clang to 3.4 release. This version supports all of the features in the current working draft of the upcoming C++ standard, provisionally named C++1y. The code generator's performance is greatly increased, and the loop auto-vectorizer is now enabled at -Os and -O2 in addition to -O3. The PowerPC backend has made several major improvements to code generation quality and compile time, and the X86, SPARC, ARM32, Aarch64 and SystemZ backends have all seen major feature work. Release notes for llvm and clang can be found here: <http://llvm.org/releases/3.4/docs/ReleaseNotes.html> <http://llvm.org/releases/3.4/tools/clang/docs/ReleaseNotes.html> MFC 262121 (by emaste): Update lldb for clang/llvm 3.4 import This commit largely restores the lldb source to the upstream r196259 snapshot with the addition of threaded inferior support and a few bug fixes. Specific upstream lldb revisions restored include: SVN git 181387 779e6ac 181703 7bef4e2 182099 b31044e 182650 f2dcf35 182683 0d91b80 183862 15c1774 183929 99447a6 184177 0b2934b 184948 4dc3761 184954 007e7bc 186990 eebd175 Sponsored by: DARPA, AFRL MFC 262186 (by emaste): Fix mismerge in r262121 A break statement was lost in the merge. The error had no functional impact, but restore it to reduce the diff against upstream. MFC 262303: Pull in r197521 from upstream clang trunk (by rdivacky): Use the integrated assembler by default on FreeBSD/ppc and ppc64. Requested by: jhibbits MFC 262611: Pull in r196874 from upstream llvm trunk: Fix a crash that occurs when PWD is invalid. MCJIT needs to be able to run in hostile environments, even when PWD is invalid. There's no need to crash MCJIT in this case. The obvious fix is to simply leave MCContext's CompilationDir empty when PWD can't be determined. This way, MCJIT clients, and other clients that link with LLVM don't need a valid working directory. If we do want to guarantee valid CompilationDir, that should be done only for clients of getCompilationDir(). This is as simple as checking for an empty string. The only current use of getCompilationDir is EmitGenDwarfInfo, which won't conceivably run with an invalid working dir. However, in the purely hypothetically and untestable case that this happens, the AT_comp_dir will be omitted from the compilation_unit DIE. This should help fix assertions occurring with ports-mgmt/tinderbox, when it is using jails, and sometimes invalidates clang's current working directory. Reported by: decke MFC 262809: Pull in r203007 from upstream clang trunk: Don't produce an alias between destructors with different calling conventions. Fixes pr19007. (Please note that is an LLVM PR identifier, not a FreeBSD one.) This should fix Firefox and/or libxul crashes (due to problems with regparm/stdcall calling conventions) on i386. Reported by: multiple users on freebsd-current PR: bin/187103 MFC 263048: Repair recognition of "CC" as an alias for the C++ compiler, since it was silently broken by upstream for a Windows-specific use-case. Apparently some versions of CMake still rely on this archaic feature... Reported by: rakuco MFC 263049: Garbage collect the old way of adding the libstdc++ include directories in clang's InitHeaderSearch.cpp. This has been superseded by David Chisnall's commit in r255321. Moreover, if libc++ is used, the libstdc++ include directories should not be in the search path at all. These directories are now only used if you pass -stdlib=libstdc++.
Diffstat (limited to 'contrib/llvm/lib/ExecutionEngine/Interpreter')
-rw-r--r--contrib/llvm/lib/ExecutionEngine/Interpreter/Execution.cpp746
-rw-r--r--contrib/llvm/lib/ExecutionEngine/Interpreter/ExternalFunctions.cpp31
-rw-r--r--contrib/llvm/lib/ExecutionEngine/Interpreter/Interpreter.h6
3 files changed, 665 insertions, 118 deletions
diff --git a/contrib/llvm/lib/ExecutionEngine/Interpreter/Execution.cpp b/contrib/llvm/lib/ExecutionEngine/Interpreter/Execution.cpp
index b95a9e8..5de0659 100644
--- a/contrib/llvm/lib/ExecutionEngine/Interpreter/Execution.cpp
+++ b/contrib/llvm/lib/ExecutionEngine/Interpreter/Execution.cpp
@@ -786,20 +786,31 @@ void Interpreter::visitBinaryOperator(BinaryOperator &I) {
}
static GenericValue executeSelectInst(GenericValue Src1, GenericValue Src2,
- GenericValue Src3) {
- return Src1.IntVal == 0 ? Src3 : Src2;
+ GenericValue Src3, const Type *Ty) {
+ GenericValue Dest;
+ if(Ty->isVectorTy()) {
+ assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());
+ assert(Src2.AggregateVal.size() == Src3.AggregateVal.size());
+ Dest.AggregateVal.resize( Src1.AggregateVal.size() );
+ for (size_t i = 0; i < Src1.AggregateVal.size(); ++i)
+ Dest.AggregateVal[i] = (Src1.AggregateVal[i].IntVal == 0) ?
+ Src3.AggregateVal[i] : Src2.AggregateVal[i];
+ } else {
+ Dest = (Src1.IntVal == 0) ? Src3 : Src2;
+ }
+ return Dest;
}
void Interpreter::visitSelectInst(SelectInst &I) {
ExecutionContext &SF = ECStack.back();
+ const Type * Ty = I.getOperand(0)->getType();
GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
GenericValue Src3 = getOperandValue(I.getOperand(2), SF);
- GenericValue R = executeSelectInst(Src1, Src2, Src3);
+ GenericValue R = executeSelectInst(Src1, Src2, Src3, Ty);
SetValue(&I, R, SF);
}
-
//===----------------------------------------------------------------------===//
// Terminator Instruction Implementations
//===----------------------------------------------------------------------===//
@@ -887,40 +898,11 @@ void Interpreter::visitSwitchInst(SwitchInst &I) {
// Check to see if any of the cases match...
BasicBlock *Dest = 0;
for (SwitchInst::CaseIt i = I.case_begin(), e = I.case_end(); i != e; ++i) {
- IntegersSubset& Case = i.getCaseValueEx();
- if (Case.isSingleNumber()) {
- // FIXME: Currently work with ConstantInt based numbers.
- const ConstantInt *CI = Case.getSingleNumber(0).toConstantInt();
- GenericValue Val = getOperandValue(const_cast<ConstantInt*>(CI), SF);
- if (executeICMP_EQ(Val, CondVal, ElTy).IntVal != 0) {
- Dest = cast<BasicBlock>(i.getCaseSuccessor());
- break;
- }
+ GenericValue CaseVal = getOperandValue(i.getCaseValue(), SF);
+ if (executeICMP_EQ(CondVal, CaseVal, ElTy).IntVal != 0) {
+ Dest = cast<BasicBlock>(i.getCaseSuccessor());
+ break;
}
- if (Case.isSingleNumbersOnly()) {
- for (unsigned n = 0, en = Case.getNumItems(); n != en; ++n) {
- // FIXME: Currently work with ConstantInt based numbers.
- const ConstantInt *CI = Case.getSingleNumber(n).toConstantInt();
- GenericValue Val = getOperandValue(const_cast<ConstantInt*>(CI), SF);
- if (executeICMP_EQ(Val, CondVal, ElTy).IntVal != 0) {
- Dest = cast<BasicBlock>(i.getCaseSuccessor());
- break;
- }
- }
- } else
- for (unsigned n = 0, en = Case.getNumItems(); n != en; ++n) {
- IntegersSubset::Range r = Case.getItem(n);
- // FIXME: Currently work with ConstantInt based numbers.
- const ConstantInt *LowCI = r.getLow().toConstantInt();
- const ConstantInt *HighCI = r.getHigh().toConstantInt();
- GenericValue Low = getOperandValue(const_cast<ConstantInt*>(LowCI), SF);
- GenericValue High = getOperandValue(const_cast<ConstantInt*>(HighCI), SF);
- if (executeICMP_ULE(Low, CondVal, ElTy).IntVal != 0 &&
- executeICMP_ULE(CondVal, High, ElTy).IntVal != 0) {
- Dest = cast<BasicBlock>(i.getCaseSuccessor());
- break;
- }
- }
}
if (!Dest) Dest = I.getDefaultDest(); // No cases matched: use default
SwitchToNewBasicBlock(Dest, SF);
@@ -1138,16 +1120,42 @@ void Interpreter::visitCallSite(CallSite CS) {
callFunction((Function*)GVTOP(SRC), ArgVals);
}
+// auxilary function for shift operations
+static unsigned getShiftAmount(uint64_t orgShiftAmount,
+ llvm::APInt valueToShift) {
+ unsigned valueWidth = valueToShift.getBitWidth();
+ if (orgShiftAmount < (uint64_t)valueWidth)
+ return orgShiftAmount;
+ // according to the llvm documentation, if orgShiftAmount > valueWidth,
+ // the result is undfeined. but we do shift by this rule:
+ return (NextPowerOf2(valueWidth-1) - 1) & orgShiftAmount;
+}
+
+
void Interpreter::visitShl(BinaryOperator &I) {
ExecutionContext &SF = ECStack.back();
GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
GenericValue Dest;
- if (Src2.IntVal.getZExtValue() < Src1.IntVal.getBitWidth())
- Dest.IntVal = Src1.IntVal.shl(Src2.IntVal.getZExtValue());
- else
- Dest.IntVal = Src1.IntVal;
-
+ const Type *Ty = I.getType();
+
+ if (Ty->isVectorTy()) {
+ uint32_t src1Size = uint32_t(Src1.AggregateVal.size());
+ assert(src1Size == Src2.AggregateVal.size());
+ for (unsigned i = 0; i < src1Size; i++) {
+ GenericValue Result;
+ uint64_t shiftAmount = Src2.AggregateVal[i].IntVal.getZExtValue();
+ llvm::APInt valueToShift = Src1.AggregateVal[i].IntVal;
+ Result.IntVal = valueToShift.shl(getShiftAmount(shiftAmount, valueToShift));
+ Dest.AggregateVal.push_back(Result);
+ }
+ } else {
+ // scalar
+ uint64_t shiftAmount = Src2.IntVal.getZExtValue();
+ llvm::APInt valueToShift = Src1.IntVal;
+ Dest.IntVal = valueToShift.shl(getShiftAmount(shiftAmount, valueToShift));
+ }
+
SetValue(&I, Dest, SF);
}
@@ -1156,11 +1164,25 @@ void Interpreter::visitLShr(BinaryOperator &I) {
GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
GenericValue Dest;
- if (Src2.IntVal.getZExtValue() < Src1.IntVal.getBitWidth())
- Dest.IntVal = Src1.IntVal.lshr(Src2.IntVal.getZExtValue());
- else
- Dest.IntVal = Src1.IntVal;
-
+ const Type *Ty = I.getType();
+
+ if (Ty->isVectorTy()) {
+ uint32_t src1Size = uint32_t(Src1.AggregateVal.size());
+ assert(src1Size == Src2.AggregateVal.size());
+ for (unsigned i = 0; i < src1Size; i++) {
+ GenericValue Result;
+ uint64_t shiftAmount = Src2.AggregateVal[i].IntVal.getZExtValue();
+ llvm::APInt valueToShift = Src1.AggregateVal[i].IntVal;
+ Result.IntVal = valueToShift.lshr(getShiftAmount(shiftAmount, valueToShift));
+ Dest.AggregateVal.push_back(Result);
+ }
+ } else {
+ // scalar
+ uint64_t shiftAmount = Src2.IntVal.getZExtValue();
+ llvm::APInt valueToShift = Src1.IntVal;
+ Dest.IntVal = valueToShift.lshr(getShiftAmount(shiftAmount, valueToShift));
+ }
+
SetValue(&I, Dest, SF);
}
@@ -1169,110 +1191,273 @@ void Interpreter::visitAShr(BinaryOperator &I) {
GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
GenericValue Dest;
- if (Src2.IntVal.getZExtValue() < Src1.IntVal.getBitWidth())
- Dest.IntVal = Src1.IntVal.ashr(Src2.IntVal.getZExtValue());
- else
- Dest.IntVal = Src1.IntVal;
-
+ const Type *Ty = I.getType();
+
+ if (Ty->isVectorTy()) {
+ size_t src1Size = Src1.AggregateVal.size();
+ assert(src1Size == Src2.AggregateVal.size());
+ for (unsigned i = 0; i < src1Size; i++) {
+ GenericValue Result;
+ uint64_t shiftAmount = Src2.AggregateVal[i].IntVal.getZExtValue();
+ llvm::APInt valueToShift = Src1.AggregateVal[i].IntVal;
+ Result.IntVal = valueToShift.ashr(getShiftAmount(shiftAmount, valueToShift));
+ Dest.AggregateVal.push_back(Result);
+ }
+ } else {
+ // scalar
+ uint64_t shiftAmount = Src2.IntVal.getZExtValue();
+ llvm::APInt valueToShift = Src1.IntVal;
+ Dest.IntVal = valueToShift.ashr(getShiftAmount(shiftAmount, valueToShift));
+ }
+
SetValue(&I, Dest, SF);
}
GenericValue Interpreter::executeTruncInst(Value *SrcVal, Type *DstTy,
ExecutionContext &SF) {
GenericValue Dest, Src = getOperandValue(SrcVal, SF);
- IntegerType *DITy = cast<IntegerType>(DstTy);
- unsigned DBitWidth = DITy->getBitWidth();
- Dest.IntVal = Src.IntVal.trunc(DBitWidth);
+ Type *SrcTy = SrcVal->getType();
+ if (SrcTy->isVectorTy()) {
+ Type *DstVecTy = DstTy->getScalarType();
+ unsigned DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth();
+ unsigned NumElts = Src.AggregateVal.size();
+ // the sizes of src and dst vectors must be equal
+ Dest.AggregateVal.resize(NumElts);
+ for (unsigned i = 0; i < NumElts; i++)
+ Dest.AggregateVal[i].IntVal = Src.AggregateVal[i].IntVal.trunc(DBitWidth);
+ } else {
+ IntegerType *DITy = cast<IntegerType>(DstTy);
+ unsigned DBitWidth = DITy->getBitWidth();
+ Dest.IntVal = Src.IntVal.trunc(DBitWidth);
+ }
return Dest;
}
GenericValue Interpreter::executeSExtInst(Value *SrcVal, Type *DstTy,
ExecutionContext &SF) {
+ const Type *SrcTy = SrcVal->getType();
GenericValue Dest, Src = getOperandValue(SrcVal, SF);
- IntegerType *DITy = cast<IntegerType>(DstTy);
- unsigned DBitWidth = DITy->getBitWidth();
- Dest.IntVal = Src.IntVal.sext(DBitWidth);
+ if (SrcTy->isVectorTy()) {
+ const Type *DstVecTy = DstTy->getScalarType();
+ unsigned DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth();
+ unsigned size = Src.AggregateVal.size();
+ // the sizes of src and dst vectors must be equal.
+ Dest.AggregateVal.resize(size);
+ for (unsigned i = 0; i < size; i++)
+ Dest.AggregateVal[i].IntVal = Src.AggregateVal[i].IntVal.sext(DBitWidth);
+ } else {
+ const IntegerType *DITy = cast<IntegerType>(DstTy);
+ unsigned DBitWidth = DITy->getBitWidth();
+ Dest.IntVal = Src.IntVal.sext(DBitWidth);
+ }
return Dest;
}
GenericValue Interpreter::executeZExtInst(Value *SrcVal, Type *DstTy,
ExecutionContext &SF) {
+ const Type *SrcTy = SrcVal->getType();
GenericValue Dest, Src = getOperandValue(SrcVal, SF);
- IntegerType *DITy = cast<IntegerType>(DstTy);
- unsigned DBitWidth = DITy->getBitWidth();
- Dest.IntVal = Src.IntVal.zext(DBitWidth);
+ if (SrcTy->isVectorTy()) {
+ const Type *DstVecTy = DstTy->getScalarType();
+ unsigned DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth();
+
+ unsigned size = Src.AggregateVal.size();
+ // the sizes of src and dst vectors must be equal.
+ Dest.AggregateVal.resize(size);
+ for (unsigned i = 0; i < size; i++)
+ Dest.AggregateVal[i].IntVal = Src.AggregateVal[i].IntVal.zext(DBitWidth);
+ } else {
+ const IntegerType *DITy = cast<IntegerType>(DstTy);
+ unsigned DBitWidth = DITy->getBitWidth();
+ Dest.IntVal = Src.IntVal.zext(DBitWidth);
+ }
return Dest;
}
GenericValue Interpreter::executeFPTruncInst(Value *SrcVal, Type *DstTy,
ExecutionContext &SF) {
GenericValue Dest, Src = getOperandValue(SrcVal, SF);
- assert(SrcVal->getType()->isDoubleTy() && DstTy->isFloatTy() &&
- "Invalid FPTrunc instruction");
- Dest.FloatVal = (float) Src.DoubleVal;
+
+ if (SrcVal->getType()->getTypeID() == Type::VectorTyID) {
+ assert(SrcVal->getType()->getScalarType()->isDoubleTy() &&
+ DstTy->getScalarType()->isFloatTy() &&
+ "Invalid FPTrunc instruction");
+
+ unsigned size = Src.AggregateVal.size();
+ // the sizes of src and dst vectors must be equal.
+ Dest.AggregateVal.resize(size);
+ for (unsigned i = 0; i < size; i++)
+ Dest.AggregateVal[i].FloatVal = (float)Src.AggregateVal[i].DoubleVal;
+ } else {
+ assert(SrcVal->getType()->isDoubleTy() && DstTy->isFloatTy() &&
+ "Invalid FPTrunc instruction");
+ Dest.FloatVal = (float)Src.DoubleVal;
+ }
+
return Dest;
}
GenericValue Interpreter::executeFPExtInst(Value *SrcVal, Type *DstTy,
ExecutionContext &SF) {
GenericValue Dest, Src = getOperandValue(SrcVal, SF);
- assert(SrcVal->getType()->isFloatTy() && DstTy->isDoubleTy() &&
- "Invalid FPTrunc instruction");
- Dest.DoubleVal = (double) Src.FloatVal;
+
+ if (SrcVal->getType()->getTypeID() == Type::VectorTyID) {
+ assert(SrcVal->getType()->getScalarType()->isFloatTy() &&
+ DstTy->getScalarType()->isDoubleTy() && "Invalid FPExt instruction");
+
+ unsigned size = Src.AggregateVal.size();
+ // the sizes of src and dst vectors must be equal.
+ Dest.AggregateVal.resize(size);
+ for (unsigned i = 0; i < size; i++)
+ Dest.AggregateVal[i].DoubleVal = (double)Src.AggregateVal[i].FloatVal;
+ } else {
+ assert(SrcVal->getType()->isFloatTy() && DstTy->isDoubleTy() &&
+ "Invalid FPExt instruction");
+ Dest.DoubleVal = (double)Src.FloatVal;
+ }
+
return Dest;
}
GenericValue Interpreter::executeFPToUIInst(Value *SrcVal, Type *DstTy,
ExecutionContext &SF) {
Type *SrcTy = SrcVal->getType();
- uint32_t DBitWidth = cast<IntegerType>(DstTy)->getBitWidth();
GenericValue Dest, Src = getOperandValue(SrcVal, SF);
- assert(SrcTy->isFloatingPointTy() && "Invalid FPToUI instruction");
- if (SrcTy->getTypeID() == Type::FloatTyID)
- Dest.IntVal = APIntOps::RoundFloatToAPInt(Src.FloatVal, DBitWidth);
- else
- Dest.IntVal = APIntOps::RoundDoubleToAPInt(Src.DoubleVal, DBitWidth);
+ if (SrcTy->getTypeID() == Type::VectorTyID) {
+ const Type *DstVecTy = DstTy->getScalarType();
+ const Type *SrcVecTy = SrcTy->getScalarType();
+ uint32_t DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth();
+ unsigned size = Src.AggregateVal.size();
+ // the sizes of src and dst vectors must be equal.
+ Dest.AggregateVal.resize(size);
+
+ if (SrcVecTy->getTypeID() == Type::FloatTyID) {
+ assert(SrcVecTy->isFloatingPointTy() && "Invalid FPToUI instruction");
+ for (unsigned i = 0; i < size; i++)
+ Dest.AggregateVal[i].IntVal = APIntOps::RoundFloatToAPInt(
+ Src.AggregateVal[i].FloatVal, DBitWidth);
+ } else {
+ for (unsigned i = 0; i < size; i++)
+ Dest.AggregateVal[i].IntVal = APIntOps::RoundDoubleToAPInt(
+ Src.AggregateVal[i].DoubleVal, DBitWidth);
+ }
+ } else {
+ // scalar
+ uint32_t DBitWidth = cast<IntegerType>(DstTy)->getBitWidth();
+ assert(SrcTy->isFloatingPointTy() && "Invalid FPToUI instruction");
+
+ if (SrcTy->getTypeID() == Type::FloatTyID)
+ Dest.IntVal = APIntOps::RoundFloatToAPInt(Src.FloatVal, DBitWidth);
+ else {
+ Dest.IntVal = APIntOps::RoundDoubleToAPInt(Src.DoubleVal, DBitWidth);
+ }
+ }
+
return Dest;
}
GenericValue Interpreter::executeFPToSIInst(Value *SrcVal, Type *DstTy,
ExecutionContext &SF) {
Type *SrcTy = SrcVal->getType();
- uint32_t DBitWidth = cast<IntegerType>(DstTy)->getBitWidth();
GenericValue Dest, Src = getOperandValue(SrcVal, SF);
- assert(SrcTy->isFloatingPointTy() && "Invalid FPToSI instruction");
- if (SrcTy->getTypeID() == Type::FloatTyID)
- Dest.IntVal = APIntOps::RoundFloatToAPInt(Src.FloatVal, DBitWidth);
- else
- Dest.IntVal = APIntOps::RoundDoubleToAPInt(Src.DoubleVal, DBitWidth);
+ if (SrcTy->getTypeID() == Type::VectorTyID) {
+ const Type *DstVecTy = DstTy->getScalarType();
+ const Type *SrcVecTy = SrcTy->getScalarType();
+ uint32_t DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth();
+ unsigned size = Src.AggregateVal.size();
+ // the sizes of src and dst vectors must be equal
+ Dest.AggregateVal.resize(size);
+
+ if (SrcVecTy->getTypeID() == Type::FloatTyID) {
+ assert(SrcVecTy->isFloatingPointTy() && "Invalid FPToSI instruction");
+ for (unsigned i = 0; i < size; i++)
+ Dest.AggregateVal[i].IntVal = APIntOps::RoundFloatToAPInt(
+ Src.AggregateVal[i].FloatVal, DBitWidth);
+ } else {
+ for (unsigned i = 0; i < size; i++)
+ Dest.AggregateVal[i].IntVal = APIntOps::RoundDoubleToAPInt(
+ Src.AggregateVal[i].DoubleVal, DBitWidth);
+ }
+ } else {
+ // scalar
+ unsigned DBitWidth = cast<IntegerType>(DstTy)->getBitWidth();
+ assert(SrcTy->isFloatingPointTy() && "Invalid FPToSI instruction");
+
+ if (SrcTy->getTypeID() == Type::FloatTyID)
+ Dest.IntVal = APIntOps::RoundFloatToAPInt(Src.FloatVal, DBitWidth);
+ else {
+ Dest.IntVal = APIntOps::RoundDoubleToAPInt(Src.DoubleVal, DBitWidth);
+ }
+ }
return Dest;
}
GenericValue Interpreter::executeUIToFPInst(Value *SrcVal, Type *DstTy,
ExecutionContext &SF) {
GenericValue Dest, Src = getOperandValue(SrcVal, SF);
- assert(DstTy->isFloatingPointTy() && "Invalid UIToFP instruction");
- if (DstTy->getTypeID() == Type::FloatTyID)
- Dest.FloatVal = APIntOps::RoundAPIntToFloat(Src.IntVal);
- else
- Dest.DoubleVal = APIntOps::RoundAPIntToDouble(Src.IntVal);
+ if (SrcVal->getType()->getTypeID() == Type::VectorTyID) {
+ const Type *DstVecTy = DstTy->getScalarType();
+ unsigned size = Src.AggregateVal.size();
+ // the sizes of src and dst vectors must be equal
+ Dest.AggregateVal.resize(size);
+
+ if (DstVecTy->getTypeID() == Type::FloatTyID) {
+ assert(DstVecTy->isFloatingPointTy() && "Invalid UIToFP instruction");
+ for (unsigned i = 0; i < size; i++)
+ Dest.AggregateVal[i].FloatVal =
+ APIntOps::RoundAPIntToFloat(Src.AggregateVal[i].IntVal);
+ } else {
+ for (unsigned i = 0; i < size; i++)
+ Dest.AggregateVal[i].DoubleVal =
+ APIntOps::RoundAPIntToDouble(Src.AggregateVal[i].IntVal);
+ }
+ } else {
+ // scalar
+ assert(DstTy->isFloatingPointTy() && "Invalid UIToFP instruction");
+ if (DstTy->getTypeID() == Type::FloatTyID)
+ Dest.FloatVal = APIntOps::RoundAPIntToFloat(Src.IntVal);
+ else {
+ Dest.DoubleVal = APIntOps::RoundAPIntToDouble(Src.IntVal);
+ }
+ }
return Dest;
}
GenericValue Interpreter::executeSIToFPInst(Value *SrcVal, Type *DstTy,
ExecutionContext &SF) {
GenericValue Dest, Src = getOperandValue(SrcVal, SF);
- assert(DstTy->isFloatingPointTy() && "Invalid SIToFP instruction");
- if (DstTy->getTypeID() == Type::FloatTyID)
- Dest.FloatVal = APIntOps::RoundSignedAPIntToFloat(Src.IntVal);
- else
- Dest.DoubleVal = APIntOps::RoundSignedAPIntToDouble(Src.IntVal);
- return Dest;
+ if (SrcVal->getType()->getTypeID() == Type::VectorTyID) {
+ const Type *DstVecTy = DstTy->getScalarType();
+ unsigned size = Src.AggregateVal.size();
+ // the sizes of src and dst vectors must be equal
+ Dest.AggregateVal.resize(size);
+
+ if (DstVecTy->getTypeID() == Type::FloatTyID) {
+ assert(DstVecTy->isFloatingPointTy() && "Invalid SIToFP instruction");
+ for (unsigned i = 0; i < size; i++)
+ Dest.AggregateVal[i].FloatVal =
+ APIntOps::RoundSignedAPIntToFloat(Src.AggregateVal[i].IntVal);
+ } else {
+ for (unsigned i = 0; i < size; i++)
+ Dest.AggregateVal[i].DoubleVal =
+ APIntOps::RoundSignedAPIntToDouble(Src.AggregateVal[i].IntVal);
+ }
+ } else {
+ // scalar
+ assert(DstTy->isFloatingPointTy() && "Invalid SIToFP instruction");
+
+ if (DstTy->getTypeID() == Type::FloatTyID)
+ Dest.FloatVal = APIntOps::RoundSignedAPIntToFloat(Src.IntVal);
+ else {
+ Dest.DoubleVal = APIntOps::RoundSignedAPIntToDouble(Src.IntVal);
+ }
+ }
+ return Dest;
}
GenericValue Interpreter::executePtrToIntInst(Value *SrcVal, Type *DstTy,
@@ -1300,33 +1485,167 @@ GenericValue Interpreter::executeIntToPtrInst(Value *SrcVal, Type *DstTy,
GenericValue Interpreter::executeBitCastInst(Value *SrcVal, Type *DstTy,
ExecutionContext &SF) {
-
+
+ // This instruction supports bitwise conversion of vectors to integers and
+ // to vectors of other types (as long as they have the same size)
Type *SrcTy = SrcVal->getType();
GenericValue Dest, Src = getOperandValue(SrcVal, SF);
- if (DstTy->isPointerTy()) {
- assert(SrcTy->isPointerTy() && "Invalid BitCast");
- Dest.PointerVal = Src.PointerVal;
- } else if (DstTy->isIntegerTy()) {
- if (SrcTy->isFloatTy()) {
- Dest.IntVal = APInt::floatToBits(Src.FloatVal);
- } else if (SrcTy->isDoubleTy()) {
- Dest.IntVal = APInt::doubleToBits(Src.DoubleVal);
- } else if (SrcTy->isIntegerTy()) {
- Dest.IntVal = Src.IntVal;
- } else
+
+ if ((SrcTy->getTypeID() == Type::VectorTyID) ||
+ (DstTy->getTypeID() == Type::VectorTyID)) {
+ // vector src bitcast to vector dst or vector src bitcast to scalar dst or
+ // scalar src bitcast to vector dst
+ bool isLittleEndian = TD.isLittleEndian();
+ GenericValue TempDst, TempSrc, SrcVec;
+ const Type *SrcElemTy;
+ const Type *DstElemTy;
+ unsigned SrcBitSize;
+ unsigned DstBitSize;
+ unsigned SrcNum;
+ unsigned DstNum;
+
+ if (SrcTy->getTypeID() == Type::VectorTyID) {
+ SrcElemTy = SrcTy->getScalarType();
+ SrcBitSize = SrcTy->getScalarSizeInBits();
+ SrcNum = Src.AggregateVal.size();
+ SrcVec = Src;
+ } else {
+ // if src is scalar value, make it vector <1 x type>
+ SrcElemTy = SrcTy;
+ SrcBitSize = SrcTy->getPrimitiveSizeInBits();
+ SrcNum = 1;
+ SrcVec.AggregateVal.push_back(Src);
+ }
+
+ if (DstTy->getTypeID() == Type::VectorTyID) {
+ DstElemTy = DstTy->getScalarType();
+ DstBitSize = DstTy->getScalarSizeInBits();
+ DstNum = (SrcNum * SrcBitSize) / DstBitSize;
+ } else {
+ DstElemTy = DstTy;
+ DstBitSize = DstTy->getPrimitiveSizeInBits();
+ DstNum = 1;
+ }
+
+ if (SrcNum * SrcBitSize != DstNum * DstBitSize)
llvm_unreachable("Invalid BitCast");
- } else if (DstTy->isFloatTy()) {
- if (SrcTy->isIntegerTy())
- Dest.FloatVal = Src.IntVal.bitsToFloat();
- else
- Dest.FloatVal = Src.FloatVal;
- } else if (DstTy->isDoubleTy()) {
- if (SrcTy->isIntegerTy())
- Dest.DoubleVal = Src.IntVal.bitsToDouble();
- else
- Dest.DoubleVal = Src.DoubleVal;
- } else
- llvm_unreachable("Invalid Bitcast");
+
+ // If src is floating point, cast to integer first.
+ TempSrc.AggregateVal.resize(SrcNum);
+ if (SrcElemTy->isFloatTy()) {
+ for (unsigned i = 0; i < SrcNum; i++)
+ TempSrc.AggregateVal[i].IntVal =
+ APInt::floatToBits(SrcVec.AggregateVal[i].FloatVal);
+
+ } else if (SrcElemTy->isDoubleTy()) {
+ for (unsigned i = 0; i < SrcNum; i++)
+ TempSrc.AggregateVal[i].IntVal =
+ APInt::doubleToBits(SrcVec.AggregateVal[i].DoubleVal);
+ } else if (SrcElemTy->isIntegerTy()) {
+ for (unsigned i = 0; i < SrcNum; i++)
+ TempSrc.AggregateVal[i].IntVal = SrcVec.AggregateVal[i].IntVal;
+ } else {
+ // Pointers are not allowed as the element type of vector.
+ llvm_unreachable("Invalid Bitcast");
+ }
+
+ // now TempSrc is integer type vector
+ if (DstNum < SrcNum) {
+ // Example: bitcast <4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>
+ unsigned Ratio = SrcNum / DstNum;
+ unsigned SrcElt = 0;
+ for (unsigned i = 0; i < DstNum; i++) {
+ GenericValue Elt;
+ Elt.IntVal = 0;
+ Elt.IntVal = Elt.IntVal.zext(DstBitSize);
+ unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize * (Ratio - 1);
+ for (unsigned j = 0; j < Ratio; j++) {
+ APInt Tmp;
+ Tmp = Tmp.zext(SrcBitSize);
+ Tmp = TempSrc.AggregateVal[SrcElt++].IntVal;
+ Tmp = Tmp.zext(DstBitSize);
+ Tmp = Tmp.shl(ShiftAmt);
+ ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
+ Elt.IntVal |= Tmp;
+ }
+ TempDst.AggregateVal.push_back(Elt);
+ }
+ } else {
+ // Example: bitcast <2 x i64> <i64 0, i64 1> to <4 x i32>
+ unsigned Ratio = DstNum / SrcNum;
+ for (unsigned i = 0; i < SrcNum; i++) {
+ unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize * (Ratio - 1);
+ for (unsigned j = 0; j < Ratio; j++) {
+ GenericValue Elt;
+ Elt.IntVal = Elt.IntVal.zext(SrcBitSize);
+ Elt.IntVal = TempSrc.AggregateVal[i].IntVal;
+ Elt.IntVal = Elt.IntVal.lshr(ShiftAmt);
+ // it could be DstBitSize == SrcBitSize, so check it
+ if (DstBitSize < SrcBitSize)
+ Elt.IntVal = Elt.IntVal.trunc(DstBitSize);
+ ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
+ TempDst.AggregateVal.push_back(Elt);
+ }
+ }
+ }
+
+ // convert result from integer to specified type
+ if (DstTy->getTypeID() == Type::VectorTyID) {
+ if (DstElemTy->isDoubleTy()) {
+ Dest.AggregateVal.resize(DstNum);
+ for (unsigned i = 0; i < DstNum; i++)
+ Dest.AggregateVal[i].DoubleVal =
+ TempDst.AggregateVal[i].IntVal.bitsToDouble();
+ } else if (DstElemTy->isFloatTy()) {
+ Dest.AggregateVal.resize(DstNum);
+ for (unsigned i = 0; i < DstNum; i++)
+ Dest.AggregateVal[i].FloatVal =
+ TempDst.AggregateVal[i].IntVal.bitsToFloat();
+ } else {
+ Dest = TempDst;
+ }
+ } else {
+ if (DstElemTy->isDoubleTy())
+ Dest.DoubleVal = TempDst.AggregateVal[0].IntVal.bitsToDouble();
+ else if (DstElemTy->isFloatTy()) {
+ Dest.FloatVal = TempDst.AggregateVal[0].IntVal.bitsToFloat();
+ } else {
+ Dest.IntVal = TempDst.AggregateVal[0].IntVal;
+ }
+ }
+ } else { // if ((SrcTy->getTypeID() == Type::VectorTyID) ||
+ // (DstTy->getTypeID() == Type::VectorTyID))
+
+ // scalar src bitcast to scalar dst
+ if (DstTy->isPointerTy()) {
+ assert(SrcTy->isPointerTy() && "Invalid BitCast");
+ Dest.PointerVal = Src.PointerVal;
+ } else if (DstTy->isIntegerTy()) {
+ if (SrcTy->isFloatTy())
+ Dest.IntVal = APInt::floatToBits(Src.FloatVal);
+ else if (SrcTy->isDoubleTy()) {
+ Dest.IntVal = APInt::doubleToBits(Src.DoubleVal);
+ } else if (SrcTy->isIntegerTy()) {
+ Dest.IntVal = Src.IntVal;
+ } else {
+ llvm_unreachable("Invalid BitCast");
+ }
+ } else if (DstTy->isFloatTy()) {
+ if (SrcTy->isIntegerTy())
+ Dest.FloatVal = Src.IntVal.bitsToFloat();
+ else {
+ Dest.FloatVal = Src.FloatVal;
+ }
+ } else if (DstTy->isDoubleTy()) {
+ if (SrcTy->isIntegerTy())
+ Dest.DoubleVal = Src.IntVal.bitsToDouble();
+ else {
+ Dest.DoubleVal = Src.DoubleVal;
+ }
+ } else {
+ llvm_unreachable("Invalid Bitcast");
+ }
+ }
return Dest;
}
@@ -1456,10 +1775,204 @@ void Interpreter::visitExtractElementInst(ExtractElementInst &I) {
SetValue(&I, Dest, SF);
}
+void Interpreter::visitInsertElementInst(InsertElementInst &I) {
+ ExecutionContext &SF = ECStack.back();
+ Type *Ty = I.getType();
+
+ if(!(Ty->isVectorTy()) )
+ llvm_unreachable("Unhandled dest type for insertelement instruction");
+
+ GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
+ GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
+ GenericValue Src3 = getOperandValue(I.getOperand(2), SF);
+ GenericValue Dest;
+
+ Type *TyContained = Ty->getContainedType(0);
+
+ const unsigned indx = unsigned(Src3.IntVal.getZExtValue());
+ Dest.AggregateVal = Src1.AggregateVal;
+
+ if(Src1.AggregateVal.size() <= indx)
+ llvm_unreachable("Invalid index in insertelement instruction");
+ switch (TyContained->getTypeID()) {
+ default:
+ llvm_unreachable("Unhandled dest type for insertelement instruction");
+ case Type::IntegerTyID:
+ Dest.AggregateVal[indx].IntVal = Src2.IntVal;
+ break;
+ case Type::FloatTyID:
+ Dest.AggregateVal[indx].FloatVal = Src2.FloatVal;
+ break;
+ case Type::DoubleTyID:
+ Dest.AggregateVal[indx].DoubleVal = Src2.DoubleVal;
+ break;
+ }
+ SetValue(&I, Dest, SF);
+}
+
+void Interpreter::visitShuffleVectorInst(ShuffleVectorInst &I){
+ ExecutionContext &SF = ECStack.back();
+
+ Type *Ty = I.getType();
+ if(!(Ty->isVectorTy()))
+ llvm_unreachable("Unhandled dest type for shufflevector instruction");
+
+ GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
+ GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
+ GenericValue Src3 = getOperandValue(I.getOperand(2), SF);
+ GenericValue Dest;
+
+ // There is no need to check types of src1 and src2, because the compiled
+ // bytecode can't contain different types for src1 and src2 for a
+ // shufflevector instruction.
+
+ Type *TyContained = Ty->getContainedType(0);
+ unsigned src1Size = (unsigned)Src1.AggregateVal.size();
+ unsigned src2Size = (unsigned)Src2.AggregateVal.size();
+ unsigned src3Size = (unsigned)Src3.AggregateVal.size();
+
+ Dest.AggregateVal.resize(src3Size);
+
+ switch (TyContained->getTypeID()) {
+ default:
+ llvm_unreachable("Unhandled dest type for insertelement instruction");
+ break;
+ case Type::IntegerTyID:
+ for( unsigned i=0; i<src3Size; i++) {
+ unsigned j = Src3.AggregateVal[i].IntVal.getZExtValue();
+ if(j < src1Size)
+ Dest.AggregateVal[i].IntVal = Src1.AggregateVal[j].IntVal;
+ else if(j < src1Size + src2Size)
+ Dest.AggregateVal[i].IntVal = Src2.AggregateVal[j-src1Size].IntVal;
+ else
+ // The selector may not be greater than sum of lengths of first and
+ // second operands and llasm should not allow situation like
+ // %tmp = shufflevector <2 x i32> <i32 3, i32 4>, <2 x i32> undef,
+ // <2 x i32> < i32 0, i32 5 >,
+ // where i32 5 is invalid, but let it be additional check here:
+ llvm_unreachable("Invalid mask in shufflevector instruction");
+ }
+ break;
+ case Type::FloatTyID:
+ for( unsigned i=0; i<src3Size; i++) {
+ unsigned j = Src3.AggregateVal[i].IntVal.getZExtValue();
+ if(j < src1Size)
+ Dest.AggregateVal[i].FloatVal = Src1.AggregateVal[j].FloatVal;
+ else if(j < src1Size + src2Size)
+ Dest.AggregateVal[i].FloatVal = Src2.AggregateVal[j-src1Size].FloatVal;
+ else
+ llvm_unreachable("Invalid mask in shufflevector instruction");
+ }
+ break;
+ case Type::DoubleTyID:
+ for( unsigned i=0; i<src3Size; i++) {
+ unsigned j = Src3.AggregateVal[i].IntVal.getZExtValue();
+ if(j < src1Size)
+ Dest.AggregateVal[i].DoubleVal = Src1.AggregateVal[j].DoubleVal;
+ else if(j < src1Size + src2Size)
+ Dest.AggregateVal[i].DoubleVal =
+ Src2.AggregateVal[j-src1Size].DoubleVal;
+ else
+ llvm_unreachable("Invalid mask in shufflevector instruction");
+ }
+ break;
+ }
+ SetValue(&I, Dest, SF);
+}
+
+void Interpreter::visitExtractValueInst(ExtractValueInst &I) {
+ ExecutionContext &SF = ECStack.back();
+ Value *Agg = I.getAggregateOperand();
+ GenericValue Dest;
+ GenericValue Src = getOperandValue(Agg, SF);
+
+ ExtractValueInst::idx_iterator IdxBegin = I.idx_begin();
+ unsigned Num = I.getNumIndices();
+ GenericValue *pSrc = &Src;
+
+ for (unsigned i = 0 ; i < Num; ++i) {
+ pSrc = &pSrc->AggregateVal[*IdxBegin];
+ ++IdxBegin;
+ }
+
+ Type *IndexedType = ExtractValueInst::getIndexedType(Agg->getType(), I.getIndices());
+ switch (IndexedType->getTypeID()) {
+ default:
+ llvm_unreachable("Unhandled dest type for extractelement instruction");
+ break;
+ case Type::IntegerTyID:
+ Dest.IntVal = pSrc->IntVal;
+ break;
+ case Type::FloatTyID:
+ Dest.FloatVal = pSrc->FloatVal;
+ break;
+ case Type::DoubleTyID:
+ Dest.DoubleVal = pSrc->DoubleVal;
+ break;
+ case Type::ArrayTyID:
+ case Type::StructTyID:
+ case Type::VectorTyID:
+ Dest.AggregateVal = pSrc->AggregateVal;
+ break;
+ case Type::PointerTyID:
+ Dest.PointerVal = pSrc->PointerVal;
+ break;
+ }
+
+ SetValue(&I, Dest, SF);
+}
+
+void Interpreter::visitInsertValueInst(InsertValueInst &I) {
+
+ ExecutionContext &SF = ECStack.back();
+ Value *Agg = I.getAggregateOperand();
+
+ GenericValue Src1 = getOperandValue(Agg, SF);
+ GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
+ GenericValue Dest = Src1; // Dest is a slightly changed Src1
+
+ ExtractValueInst::idx_iterator IdxBegin = I.idx_begin();
+ unsigned Num = I.getNumIndices();
+
+ GenericValue *pDest = &Dest;
+ for (unsigned i = 0 ; i < Num; ++i) {
+ pDest = &pDest->AggregateVal[*IdxBegin];
+ ++IdxBegin;
+ }
+ // pDest points to the target value in the Dest now
+
+ Type *IndexedType = ExtractValueInst::getIndexedType(Agg->getType(), I.getIndices());
+
+ switch (IndexedType->getTypeID()) {
+ default:
+ llvm_unreachable("Unhandled dest type for insertelement instruction");
+ break;
+ case Type::IntegerTyID:
+ pDest->IntVal = Src2.IntVal;
+ break;
+ case Type::FloatTyID:
+ pDest->FloatVal = Src2.FloatVal;
+ break;
+ case Type::DoubleTyID:
+ pDest->DoubleVal = Src2.DoubleVal;
+ break;
+ case Type::ArrayTyID:
+ case Type::StructTyID:
+ case Type::VectorTyID:
+ pDest->AggregateVal = Src2.AggregateVal;
+ break;
+ case Type::PointerTyID:
+ pDest->PointerVal = Src2.PointerVal;
+ break;
+ }
+
+ SetValue(&I, Dest, SF);
+}
+
GenericValue Interpreter::getConstantExprValue (ConstantExpr *CE,
ExecutionContext &SF) {
switch (CE->getOpcode()) {
- case Instruction::Trunc:
+ case Instruction::Trunc:
return executeTruncInst(CE->getOperand(0), CE->getType(), SF);
case Instruction::ZExt:
return executeZExtInst(CE->getOperand(0), CE->getType(), SF);
@@ -1495,7 +2008,8 @@ GenericValue Interpreter::getConstantExprValue (ConstantExpr *CE,
case Instruction::Select:
return executeSelectInst(getOperandValue(CE->getOperand(0), SF),
getOperandValue(CE->getOperand(1), SF),
- getOperandValue(CE->getOperand(2), SF));
+ getOperandValue(CE->getOperand(2), SF),
+ CE->getOperand(0)->getType());
default :
break;
}
diff --git a/contrib/llvm/lib/ExecutionEngine/Interpreter/ExternalFunctions.cpp b/contrib/llvm/lib/ExecutionEngine/Interpreter/ExternalFunctions.cpp
index bef4bbf..a03c7f5 100644
--- a/contrib/llvm/lib/ExecutionEngine/Interpreter/ExternalFunctions.cpp
+++ b/contrib/llvm/lib/ExecutionEngine/Interpreter/ExternalFunctions.cpp
@@ -406,6 +406,7 @@ GenericValue lle_X_sprintf(FunctionType *FT,
break;
}
}
+ return GV;
}
// int printf(const char *, ...) - a very rough implementation to make output
@@ -434,7 +435,7 @@ GenericValue lle_X_sscanf(FunctionType *FT,
GenericValue GV;
GV.IntVal = APInt(32, sscanf(Args[0], Args[1], Args[2], Args[3], Args[4],
- Args[5], Args[6], Args[7], Args[8], Args[9]));
+ Args[5], Args[6], Args[7], Args[8], Args[9]));
return GV;
}
@@ -450,7 +451,7 @@ GenericValue lle_X_scanf(FunctionType *FT,
GenericValue GV;
GV.IntVal = APInt(32, scanf( Args[0], Args[1], Args[2], Args[3], Args[4],
- Args[5], Args[6], Args[7], Args[8], Args[9]));
+ Args[5], Args[6], Args[7], Args[8], Args[9]));
return GV;
}
@@ -470,6 +471,30 @@ GenericValue lle_X_fprintf(FunctionType *FT,
return GV;
}
+static GenericValue lle_X_memset(FunctionType *FT,
+ const std::vector<GenericValue> &Args) {
+ int val = (int)Args[1].IntVal.getSExtValue();
+ size_t len = (size_t)Args[2].IntVal.getZExtValue();
+ memset((void *)GVTOP(Args[0]), val, len);
+ // llvm.memset.* returns void, lle_X_* returns GenericValue,
+ // so here we return GenericValue with IntVal set to zero
+ GenericValue GV;
+ GV.IntVal = 0;
+ return GV;
+}
+
+static GenericValue lle_X_memcpy(FunctionType *FT,
+ const std::vector<GenericValue> &Args) {
+ memcpy(GVTOP(Args[0]), GVTOP(Args[1]),
+ (size_t)(Args[2].IntVal.getLimitedValue()));
+
+ // llvm.memcpy* returns void, lle_X_* returns GenericValue,
+ // so here we return GenericValue with IntVal set to zero
+ GenericValue GV;
+ GV.IntVal = 0;
+ return GV;
+}
+
void Interpreter::initializeExternalFunctions() {
sys::ScopedLock Writer(*FunctionsLock);
FuncNames["lle_X_atexit"] = lle_X_atexit;
@@ -481,4 +506,6 @@ void Interpreter::initializeExternalFunctions() {
FuncNames["lle_X_sscanf"] = lle_X_sscanf;
FuncNames["lle_X_scanf"] = lle_X_scanf;
FuncNames["lle_X_fprintf"] = lle_X_fprintf;
+ FuncNames["lle_X_memset"] = lle_X_memset;
+ FuncNames["lle_X_memcpy"] = lle_X_memcpy;
}
diff --git a/contrib/llvm/lib/ExecutionEngine/Interpreter/Interpreter.h b/contrib/llvm/lib/ExecutionEngine/Interpreter/Interpreter.h
index 2952d7e..98269ef 100644
--- a/contrib/llvm/lib/ExecutionEngine/Interpreter/Interpreter.h
+++ b/contrib/llvm/lib/ExecutionEngine/Interpreter/Interpreter.h
@@ -179,6 +179,12 @@ public:
void visitVAArgInst(VAArgInst &I);
void visitExtractElementInst(ExtractElementInst &I);
+ void visitInsertElementInst(InsertElementInst &I);
+ void visitShuffleVectorInst(ShuffleVectorInst &I);
+
+ void visitExtractValueInst(ExtractValueInst &I);
+ void visitInsertValueInst(InsertValueInst &I);
+
void visitInstruction(Instruction &I) {
errs() << I << "\n";
llvm_unreachable("Instruction not interpretable yet!");
OpenPOWER on IntegriCloud