diff options
author | dim <dim@FreeBSD.org> | 2017-09-26 19:56:36 +0000 |
---|---|---|
committer | dim <dim@FreeBSD.org> | 2017-09-26 19:56:36 +0000 |
commit | 12cd91cf4c6b96a24427c0de5374916f2808d263 (patch) | |
tree | 6d243b0ccba6738dbbd30767188e2963f90ef18f /contrib/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp | |
parent | b60520398f206195e21774c315afb59a0f6d7146 (diff) | |
download | FreeBSD-src-12cd91cf4c6b96a24427c0de5374916f2808d263.zip FreeBSD-src-12cd91cf4c6b96a24427c0de5374916f2808d263.tar.gz |
Merge clang, llvm, lld, lldb, compiler-rt and libc++ 5.0.0 release.
MFC r309126 (by emaste):
Correct lld llvm-tblgen dependency file name
MFC r309169:
Get rid of separate Subversion mergeinfo properties for llvm-dwarfdump
and llvm-lto. The mergeinfo confuses Subversion enormously, and these
directories will just use the mergeinfo for llvm itself.
MFC r312765:
Pull in r276136 from upstream llvm trunk (by Wei Mi):
Use ValueOffsetPair to enhance value reuse during SCEV expansion.
In D12090, the ExprValueMap was added to reuse existing value during
SCEV expansion. However, const folding and sext/zext distribution can
make the reuse still difficult.
A simplified case is: suppose we know S1 expands to V1 in
ExprValueMap, and
S1 = S2 + C_a
S3 = S2 + C_b
where C_a and C_b are different SCEVConstants. Then we'd like to
expand S3 as V1 - C_a + C_b instead of expanding S2 literally. It is
helpful when S2 is a complex SCEV expr and S2 has no entry in
ExprValueMap, which is usually caused by the fact that S3 is
generated from S1 after const folding.
In order to do that, we represent ExprValueMap as a mapping from SCEV
to ValueOffsetPair. We will save both S1->{V1, 0} and S2->{V1, C_a}
into the ExprValueMap when we create SCEV for V1. When S3 is
expanded, it will first expand S2 to V1 - C_a because of S2->{V1,
C_a} in the map, then expand S3 to V1 - C_a + C_b.
Differential Revision: https://reviews.llvm.org/D21313
This should fix assertion failures when building OpenCV >= 3.1.
PR: 215649
MFC r312831:
Revert r312765 for now, since it causes assertions when building
lang/spidermonkey24.
Reported by: antoine
PR: 215649
MFC r316511 (by jhb):
Add an implementation of __ffssi2() derived from __ffsdi2().
Newer versions of GCC include an __ffssi2() symbol in libgcc and the
compiler can emit calls to it in generated code. This is true for at
least GCC 6.2 when compiling world for mips and mips64.
Reviewed by: jmallett, dim
Sponsored by: DARPA / AFRL
Differential Revision: https://reviews.freebsd.org/D10086
MFC r318601 (by adrian):
[libcompiler-rt] add bswapdi2/bswapsi2
This is required for mips gcc 6.3 userland to build/run.
Reviewed by: emaste, dim
Approved by: emaste
Differential Revision: https://reviews.freebsd.org/D10838
MFC r318884 (by emaste):
lldb: map TRAP_CAP to a trace trap
In the absense of a more specific handler for TRAP_CAP (generated by
ENOTCAPABLE or ECAPMODE while in capability mode) treat it as a trace
trap.
Example usage (testing the bug in PR219173):
% proccontrol -m trapcap lldb usr.bin/hexdump/obj/hexdump -- -Cv -s 1 /bin/ls
...
(lldb) run
Process 12980 launching
Process 12980 launched: '.../usr.bin/hexdump/obj/hexdump' (x86_64)
Process 12980 stopped
* thread #1, stop reason = trace
frame #0: 0x0000004b80c65f1a libc.so.7`__sys_lseek + 10
...
In the future we should have LLDB control the trapcap procctl itself
(as it does with ASLR), as well as report a specific stop reason.
This change eliminates an assertion failure from LLDB for now.
MFC r319796:
Remove a few unneeded files from libllvm, libclang and liblldb.
MFC r319885 (by emaste):
lld: ELF: Fix ICF crash on absolute symbol relocations.
If two sections contained relocations to absolute symbols with the same
value we would crash when trying to access their sections. Add a check that
both symbols point to sections before accessing their sections, and treat
absolute symbols as equal if their values are equal.
Obtained from: LLD commit r292578
MFC r319918:
Revert r319796 for now, it can cause undefined references when linking
in some circumstances.
Reported by: Shawn Webb <shawn.webb@hardenedbsd.org>
MFC r319957 (by emaste):
lld: Add armelf emulation mode
Obtained from: LLD r305375
MFC r321369:
Upgrade our copies of clang, llvm, lld, lldb, compiler-rt and libc++ to
5.0.0 (trunk r308421). Upstream has branched for the 5.0.0 release,
which should be in about a month. Please report bugs and regressions,
so we can get them into the release.
Please note that from 3.5.0 onwards, clang, llvm and lldb require C++11
support to build; see UPDATING for more information.
MFC r321420:
Add a few more object files to liblldb, which should solve errors when
linking the lldb executable in some cases. In particular, when the
-ffunction-sections -fdata-sections options are turned off, or
ineffective.
Reported by: Shawn Webb, Mark Millard
MFC r321433:
Cleanup stale Options.inc files from the previous libllvm build for
clang 4.0.0. Otherwise, these can get included before the two newly
generated ones (which are different) for clang 5.0.0.
Reported by: Mark Millard
MFC r321439 (by bdrewery):
Move llvm Options.inc hack from r321433 for NO_CLEAN to lib/clang/libllvm.
The files are only ever generated to .OBJDIR, not to WORLDTMP (as a
sysroot) and are only ever included from a compilation. So using
a beforebuild target here removes the file before the compilation
tries to include it.
MFC r321664:
Pull in r308891 from upstream llvm trunk (by Benjamin Kramer):
[CodeGenPrepare] Cut off FindAllMemoryUses if there are too many uses.
This avoids excessive compile time. The case I'm looking at is
Function.cpp from an old version of LLVM that still had the giant
memcmp string matcher in it. Before r308322 this compiled in about 2
minutes, after it, clang takes infinite* time to compile it. With
this patch we're at 5 min, which is still bad but this is a
pathological case.
The cut off at 20 uses was chosen by looking at other cut-offs in LLVM
for user scanning. It's probably too high, but does the job and is
very unlikely to regress anything.
Fixes PR33900.
* I'm impatient and aborted after 15 minutes, on the bug report it was
killed after 2h.
Pull in r308986 from upstream llvm trunk (by Simon Pilgrim):
[X86][CGP] Reduce memcmp() expansion to 2 load pairs (PR33914)
D35067/rL308322 attempted to support up to 4 load pairs for memcmp
inlining which resulted in regressions for some optimized libc memcmp
implementations (PR33914).
Until we can match these more optimal cases, this patch reduces the
memcmp expansion to a maximum of 2 load pairs (which matches what we
do for -Os).
This patch should be considered for the 5.0.0 release branch as well
Differential Revision: https://reviews.llvm.org/D35830
These fix a hang (or extremely long compile time) when building older
LLVM ports.
Reported by: antoine
PR: 219139
MFC r321719:
Pull in r309503 from upstream clang trunk (by Richard Smith):
PR33902: Invalidate line number cache when adding more text to
existing buffer.
This led to crashes as the line number cache would report a bogus
line number for a line of code, and we'd try to find a nonexistent
column within the line when printing diagnostics.
This fixes an assertion when building the graphics/champlain port.
Reported by: antoine, kwm
PR: 219139
MFC r321723:
Upgrade our copies of clang, llvm, lld and lldb to r309439 from the
upstream release_50 branch. This is just after upstream's 5.0.0-rc1.
MFC r322320:
Upgrade our copies of clang, llvm and libc++ to r310316 from the
upstream release_50 branch.
MFC r322326 (by emaste):
lldb: Make i386-*-freebsd expression work on JIT path
* Enable i386 ABI creation for freebsd
* Added an extra argument in ABISysV_i386::PrepareTrivialCall for mmap
syscall
* Unlike linux, the last argument of mmap is actually 64-bit(off_t).
This requires us to push an additional word for the higher order bits.
* Prior to this change, ktrace dump will show mmap failures due to
invalid argument coming from the 6th mmap argument.
Submitted by: Karnajit Wangkhem
Differential Revision: https://reviews.llvm.org/D34776
MFC r322360 (by emaste):
lldb: Report inferior signals as signals, not exceptions, on FreeBSD
This is the FreeBSD equivalent of LLVM r238549.
This serves 2 purposes:
* LLDB should handle inferior process signals SIGSEGV/SIGILL/SIGBUS/
SIGFPE the way it is suppose to be handled. Prior to this fix these
signals will neither create a coredump, nor exit from the debugger
or work for signal handling scenario.
* eInvalidCrashReason need not report "unknown crash reason" if we have
a valid si_signo
llvm.org/pr23699
Patch by Karnajit Wangkhem
Differential Revision: https://reviews.llvm.org/D35223
Submitted by: Karnajit Wangkhem
Obtained from: LLVM r310591
MFC r322474 (by emaste):
lld: Add `-z muldefs` option.
Obtained from: LLVM r310757
MFC r322740:
Upgrade our copies of clang, llvm, lld and libc++ to r311219 from the
upstream release_50 branch.
MFC r322855:
Upgrade our copies of clang, llvm, lldb and compiler-rt to r311606 from
the upstream release_50 branch.
As of this version, lib/msun's trig test should also work correctly
again (see bug 220989 for more information).
PR: 220989
MFC r323112:
Upgrade our copies of clang, llvm, lldb and compiler-rt to r312293 from
the upstream release_50 branch. This corresponds to 5.0.0 rc4.
As of this version, the cad/stepcode port should now compile in a more
reasonable time on i386 (see bug 221836 for more information).
PR: 221836
MFC r323245:
Upgrade our copies of clang, llvm, lld, lldb, compiler-rt and libc++ to
5.0.0 release (upstream r312559).
Release notes for llvm, clang and lld will be available here soon:
<http://releases.llvm.org/5.0.0/docs/ReleaseNotes.html>
<http://releases.llvm.org/5.0.0/tools/clang/docs/ReleaseNotes.html>
<http://releases.llvm.org/5.0.0/tools/lld/docs/ReleaseNotes.html>
Relnotes: yes
Diffstat (limited to 'contrib/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp')
-rw-r--r-- | contrib/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp | 738 |
1 files changed, 386 insertions, 352 deletions
diff --git a/contrib/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp b/contrib/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp index 690f0d2..8652df7 100644 --- a/contrib/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp +++ b/contrib/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp @@ -27,6 +27,7 @@ #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCExpr.h" #include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/KnownBits.h" #include "llvm/Support/MathExtras.h" #include "llvm/Target/TargetLoweringObjectFile.h" #include "llvm/Target/TargetMachine.h" @@ -55,14 +56,15 @@ bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, // Conservatively require the attributes of the call to match those of // the return. Ignore noalias because it doesn't affect the call sequence. - AttributeSet CallerAttrs = F->getAttributes(); - if (AttrBuilder(CallerAttrs, AttributeSet::ReturnIndex) - .removeAttribute(Attribute::NoAlias).hasAttributes()) + AttributeList CallerAttrs = F->getAttributes(); + if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) + .removeAttribute(Attribute::NoAlias) + .hasAttributes()) return false; // It's not safe to eliminate the sign / zero extension of the return value. - if (CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt) || - CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt)) + if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || + CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) return false; // Check if the only use is a function return node. @@ -96,19 +98,19 @@ bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, /// \brief Set CallLoweringInfo attribute flags based on a call instruction /// and called function attributes. -void TargetLowering::ArgListEntry::setAttributes(ImmutableCallSite *CS, - unsigned AttrIdx) { - isSExt = CS->paramHasAttr(AttrIdx, Attribute::SExt); - isZExt = CS->paramHasAttr(AttrIdx, Attribute::ZExt); - isInReg = CS->paramHasAttr(AttrIdx, Attribute::InReg); - isSRet = CS->paramHasAttr(AttrIdx, Attribute::StructRet); - isNest = CS->paramHasAttr(AttrIdx, Attribute::Nest); - isByVal = CS->paramHasAttr(AttrIdx, Attribute::ByVal); - isInAlloca = CS->paramHasAttr(AttrIdx, Attribute::InAlloca); - isReturned = CS->paramHasAttr(AttrIdx, Attribute::Returned); - isSwiftSelf = CS->paramHasAttr(AttrIdx, Attribute::SwiftSelf); - isSwiftError = CS->paramHasAttr(AttrIdx, Attribute::SwiftError); - Alignment = CS->getParamAlignment(AttrIdx); +void TargetLoweringBase::ArgListEntry::setAttributes(ImmutableCallSite *CS, + unsigned ArgIdx) { + IsSExt = CS->paramHasAttr(ArgIdx, Attribute::SExt); + IsZExt = CS->paramHasAttr(ArgIdx, Attribute::ZExt); + IsInReg = CS->paramHasAttr(ArgIdx, Attribute::InReg); + IsSRet = CS->paramHasAttr(ArgIdx, Attribute::StructRet); + IsNest = CS->paramHasAttr(ArgIdx, Attribute::Nest); + IsByVal = CS->paramHasAttr(ArgIdx, Attribute::ByVal); + IsInAlloca = CS->paramHasAttr(ArgIdx, Attribute::InAlloca); + IsReturned = CS->paramHasAttr(ArgIdx, Attribute::Returned); + IsSwiftSelf = CS->paramHasAttr(ArgIdx, Attribute::SwiftSelf); + IsSwiftError = CS->paramHasAttr(ArgIdx, Attribute::SwiftError); + Alignment = CS->getParamAlignment(ArgIdx); } /// Generate a libcall taking the given operands as arguments and returning a @@ -125,8 +127,8 @@ TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, for (SDValue Op : Ops) { Entry.Node = Op; Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); - Entry.isSExt = shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned); - Entry.isZExt = !shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned); + Entry.IsSExt = shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned); + Entry.IsZExt = !shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned); Args.push_back(Entry); } @@ -138,10 +140,13 @@ TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); TargetLowering::CallLoweringInfo CLI(DAG); bool signExtend = shouldSignExtendTypeInLibCall(RetVT, isSigned); - CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()) - .setCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) - .setNoReturn(doesNotReturn).setDiscardResult(!isReturnValueUsed) - .setSExtResult(signExtend).setZExtResult(!signExtend); + CLI.setDebugLoc(dl) + .setChain(DAG.getEntryNode()) + .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) + .setNoReturn(doesNotReturn) + .setDiscardResult(!isReturnValueUsed) + .setSExtResult(signExtend) + .setZExtResult(!signExtend); return LowerCallTo(CLI); } @@ -334,34 +339,40 @@ TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { // Optimization Methods //===----------------------------------------------------------------------===// -/// Check to see if the specified operand of the specified instruction is a -/// constant integer. If so, check to see if there are any bits set in the -/// constant that are not demanded. If so, shrink the constant and return true. -bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op, - const APInt &Demanded) { - SDLoc dl(Op); +/// If the specified instruction has a constant integer operand and there are +/// bits set in that constant that are not demanded, then clear those bits and +/// return true. +bool TargetLowering::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded, + TargetLoweringOpt &TLO) const { + SelectionDAG &DAG = TLO.DAG; + SDLoc DL(Op); + unsigned Opcode = Op.getOpcode(); + + // Do target-specific constant optimization. + if (targetShrinkDemandedConstant(Op, Demanded, TLO)) + return TLO.New.getNode(); // FIXME: ISD::SELECT, ISD::SELECT_CC - switch (Op.getOpcode()) { - default: break; + switch (Opcode) { + default: + break; case ISD::XOR: case ISD::AND: case ISD::OR: { - ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); - if (!C) return false; + auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); + if (!Op1C) + return false; - if (Op.getOpcode() == ISD::XOR && - (C->getAPIntValue() | (~Demanded)).isAllOnesValue()) + // If this is a 'not' op, don't touch it because that's a canonical form. + const APInt &C = Op1C->getAPIntValue(); + if (Opcode == ISD::XOR && Demanded.isSubsetOf(C)) return false; - // if we can expand it to have all bits set, do it - if (C->getAPIntValue().intersects(~Demanded)) { + if (!C.isSubsetOf(Demanded)) { EVT VT = Op.getValueType(); - SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0), - DAG.getConstant(Demanded & - C->getAPIntValue(), - dl, VT)); - return CombineTo(Op, New); + SDValue NewC = DAG.getConstant(Demanded & C, DL, VT); + SDValue NewOp = DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC); + return TLO.CombineTo(Op, NewOp); } break; @@ -374,15 +385,17 @@ bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op, /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be /// generalized for targets with other types of implicit widening casts. -bool TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op, - unsigned BitWidth, - const APInt &Demanded, - const SDLoc &dl) { +bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth, + const APInt &Demanded, + TargetLoweringOpt &TLO) const { assert(Op.getNumOperands() == 2 && "ShrinkDemandedOp only supports binary operators!"); assert(Op.getNode()->getNumValues() == 1 && "ShrinkDemandedOp only supports nodes with one result!"); + SelectionDAG &DAG = TLO.DAG; + SDLoc dl(Op); + // Early return, as this function cannot handle vector types. if (Op.getValueType().isVector()) return false; @@ -404,31 +417,28 @@ bool TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op, if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && TLI.isZExtFree(SmallVT, Op.getValueType())) { // We found a type with free casts. - SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT, - DAG.getNode(ISD::TRUNCATE, dl, SmallVT, - Op.getNode()->getOperand(0)), - DAG.getNode(ISD::TRUNCATE, dl, SmallVT, - Op.getNode()->getOperand(1))); + SDValue X = DAG.getNode( + Op.getOpcode(), dl, SmallVT, + DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)), + DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1))); bool NeedZext = DemandedSize > SmallVTBits; SDValue Z = DAG.getNode(NeedZext ? ISD::ZERO_EXTEND : ISD::ANY_EXTEND, dl, Op.getValueType(), X); - return CombineTo(Op, Z); + return TLO.CombineTo(Op, Z); } } return false; } bool -TargetLowering::TargetLoweringOpt::SimplifyDemandedBits(SDNode *User, - unsigned OpIdx, - const APInt &Demanded, - DAGCombinerInfo &DCI) { - const TargetLowering &TLI = DAG.getTargetLoweringInfo(); +TargetLowering::SimplifyDemandedBits(SDNode *User, unsigned OpIdx, + const APInt &Demanded, + DAGCombinerInfo &DCI, + TargetLoweringOpt &TLO) const { SDValue Op = User->getOperand(OpIdx); - APInt KnownZero, KnownOne; + KnownBits Known; - if (!TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, - *this, 0, true)) + if (!SimplifyDemandedBits(Op, Demanded, Known, TLO, 0, true)) return false; @@ -440,9 +450,9 @@ TargetLowering::TargetLoweringOpt::SimplifyDemandedBits(SDNode *User, // with the value 'x', which will give us: // Old = i32 and x, 0xffffff // New = x - if (Old.hasOneUse()) { + if (TLO.Old.hasOneUse()) { // For the one use case, we just commit the change. - DCI.CommitTargetLoweringOpt(*this); + DCI.CommitTargetLoweringOpt(TLO); return true; } @@ -450,17 +460,17 @@ TargetLowering::TargetLoweringOpt::SimplifyDemandedBits(SDNode *User, // AssumeSingleUse flag is not propogated to recursive calls of // SimplifyDemanded bits, so the only node with multiple use that // it will attempt to combine will be opt. - assert(Old == Op); + assert(TLO.Old == Op); SmallVector <SDValue, 4> NewOps; for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { if (i == OpIdx) { - NewOps.push_back(New); + NewOps.push_back(TLO.New); continue; } NewOps.push_back(User->getOperand(i)); } - DAG.UpdateNodeOperands(User, NewOps); + TLO.DAG.UpdateNodeOperands(User, NewOps); // Op has less users now, so we may be able to perform additional combines // with it. DCI.AddToWorklist(Op.getNode()); @@ -470,17 +480,30 @@ TargetLowering::TargetLoweringOpt::SimplifyDemandedBits(SDNode *User, return true; } +bool TargetLowering::SimplifyDemandedBits(SDValue Op, APInt &DemandedMask, + DAGCombinerInfo &DCI) const { + + SelectionDAG &DAG = DCI.DAG; + TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), + !DCI.isBeforeLegalizeOps()); + KnownBits Known; + + bool Simplified = SimplifyDemandedBits(Op, DemandedMask, Known, TLO); + if (Simplified) + DCI.CommitTargetLoweringOpt(TLO); + return Simplified; +} + /// Look at Op. At this point, we know that only the DemandedMask bits of the /// result of Op are ever used downstream. If we can use this information to /// simplify Op, create a new simplified DAG node and return true, returning the /// original and new nodes in Old and New. Otherwise, analyze the expression and -/// return a mask of KnownOne and KnownZero bits for the expression (used to -/// simplify the caller). The KnownZero/One bits may only be accurate for those -/// bits in the DemandedMask. +/// return a mask of Known bits for the expression (used to simplify the +/// caller). The Known bits may only be accurate for those bits in the +/// DemandedMask. bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedMask, - APInt &KnownZero, - APInt &KnownOne, + KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth, bool AssumeSingleUse) const { @@ -492,14 +515,14 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op, auto &DL = TLO.DAG.getDataLayout(); // Don't know anything. - KnownZero = KnownOne = APInt(BitWidth, 0); + Known = KnownBits(BitWidth); // Other users may use these bits. if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) { if (Depth != 0) { - // If not at the root, Just compute the KnownZero/KnownOne bits to + // If not at the root, Just compute the Known bits to // simplify things downstream. - TLO.DAG.computeKnownBits(Op, KnownZero, KnownOne, Depth); + TLO.DAG.computeKnownBits(Op, Known, Depth); return false; } // If this is the root being simplified, allow it to have multiple uses, @@ -514,38 +537,36 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op, return false; } - APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut; + KnownBits Known2, KnownOut; switch (Op.getOpcode()) { case ISD::Constant: // We know all of the bits for a constant! - KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue(); - KnownZero = ~KnownOne; + Known.One = cast<ConstantSDNode>(Op)->getAPIntValue(); + Known.Zero = ~Known.One; return false; // Don't fall through, will infinitely loop. case ISD::BUILD_VECTOR: // Collect the known bits that are shared by every constant vector element. - KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth); + Known.Zero.setAllBits(); Known.One.setAllBits(); for (SDValue SrcOp : Op->ops()) { if (!isa<ConstantSDNode>(SrcOp)) { // We can only handle all constant values - bail out with no known bits. - KnownZero = KnownOne = APInt(BitWidth, 0); + Known = KnownBits(BitWidth); return false; } - KnownOne2 = cast<ConstantSDNode>(SrcOp)->getAPIntValue(); - KnownZero2 = ~KnownOne2; + Known2.One = cast<ConstantSDNode>(SrcOp)->getAPIntValue(); + Known2.Zero = ~Known2.One; // BUILD_VECTOR can implicitly truncate sources, we must handle this. - if (KnownOne2.getBitWidth() != BitWidth) { - assert(KnownOne2.getBitWidth() > BitWidth && - KnownZero2.getBitWidth() > BitWidth && + if (Known2.One.getBitWidth() != BitWidth) { + assert(Known2.getBitWidth() > BitWidth && "Expected BUILD_VECTOR implicit truncation"); - KnownOne2 = KnownOne2.trunc(BitWidth); - KnownZero2 = KnownZero2.trunc(BitWidth); + Known2 = Known2.trunc(BitWidth); } // Known bits are the values that are shared by every element. // TODO: support per-element known bits. - KnownOne &= KnownOne2; - KnownZero &= KnownZero2; + Known.One &= Known2.One; + Known.Zero &= Known2.Zero; } return false; // Don't fall through, will infinitely loop. case ISD::AND: @@ -553,18 +574,18 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op, // using the bits from the RHS. Below, we use knowledge about the RHS to // simplify the LHS, here we're using information from the LHS to simplify // the RHS. - if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { + if (ConstantSDNode *RHSC = isConstOrConstSplat(Op.getOperand(1))) { SDValue Op0 = Op.getOperand(0); - APInt LHSZero, LHSOne; + KnownBits LHSKnown; // Do not increment Depth here; that can cause an infinite loop. - TLO.DAG.computeKnownBits(Op0, LHSZero, LHSOne, Depth); + TLO.DAG.computeKnownBits(Op0, LHSKnown, Depth); // If the LHS already has zeros where RHSC does, this and is dead. - if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask)) + if ((LHSKnown.Zero & NewMask) == (~RHSC->getAPIntValue() & NewMask)) return TLO.CombineTo(Op, Op0); // If any of the set bits in the RHS are known zero on the LHS, shrink // the constant. - if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask)) + if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & NewMask, TLO)) return true; // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its @@ -573,183 +594,191 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op, // the xor. For example, for a 32-bit X: // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1 if (isBitwiseNot(Op0) && Op0.hasOneUse() && - LHSOne == ~RHSC->getAPIntValue()) { + LHSKnown.One == ~RHSC->getAPIntValue()) { SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, Op.getValueType(), Op0.getOperand(0), Op.getOperand(1)); return TLO.CombineTo(Op, Xor); } } - if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero, - KnownOne, TLO, Depth+1)) + if (SimplifyDemandedBits(Op.getOperand(1), NewMask, Known, TLO, Depth+1)) return true; - assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); - if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask, - KnownZero2, KnownOne2, TLO, Depth+1)) + assert(!Known.hasConflict() && "Bits known to be one AND zero?"); + if (SimplifyDemandedBits(Op.getOperand(0), ~Known.Zero & NewMask, + Known2, TLO, Depth+1)) return true; - assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); + assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); // If all of the demanded bits are known one on one side, return the other. // These bits cannot contribute to the result of the 'and'. - if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask)) + if (NewMask.isSubsetOf(Known2.Zero | Known.One)) return TLO.CombineTo(Op, Op.getOperand(0)); - if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask)) + if (NewMask.isSubsetOf(Known.Zero | Known2.One)) return TLO.CombineTo(Op, Op.getOperand(1)); // If all of the demanded bits in the inputs are known zeros, return zero. - if ((NewMask & (KnownZero|KnownZero2)) == NewMask) + if (NewMask.isSubsetOf(Known.Zero | Known2.Zero)) return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, Op.getValueType())); // If the RHS is a constant, see if we can simplify it. - if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask)) + if (ShrinkDemandedConstant(Op, ~Known2.Zero & NewMask, TLO)) return true; // If the operation can be done in a smaller type, do so. - if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) + if (ShrinkDemandedOp(Op, BitWidth, NewMask, TLO)) return true; // Output known-1 bits are only known if set in both the LHS & RHS. - KnownOne &= KnownOne2; + Known.One &= Known2.One; // Output known-0 are known to be clear if zero in either the LHS | RHS. - KnownZero |= KnownZero2; + Known.Zero |= Known2.Zero; break; case ISD::OR: - if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero, - KnownOne, TLO, Depth+1)) + if (SimplifyDemandedBits(Op.getOperand(1), NewMask, Known, TLO, Depth+1)) return true; - assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); - if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask, - KnownZero2, KnownOne2, TLO, Depth+1)) + assert(!Known.hasConflict() && "Bits known to be one AND zero?"); + if (SimplifyDemandedBits(Op.getOperand(0), ~Known.One & NewMask, + Known2, TLO, Depth+1)) return true; - assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); + assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); // If all of the demanded bits are known zero on one side, return the other. // These bits cannot contribute to the result of the 'or'. - if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask)) + if (NewMask.isSubsetOf(Known2.One | Known.Zero)) return TLO.CombineTo(Op, Op.getOperand(0)); - if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask)) - return TLO.CombineTo(Op, Op.getOperand(1)); - // If all of the potentially set bits on one side are known to be set on - // the other side, just use the 'other' side. - if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask)) - return TLO.CombineTo(Op, Op.getOperand(0)); - if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask)) + if (NewMask.isSubsetOf(Known.One | Known2.Zero)) return TLO.CombineTo(Op, Op.getOperand(1)); // If the RHS is a constant, see if we can simplify it. - if (TLO.ShrinkDemandedConstant(Op, NewMask)) + if (ShrinkDemandedConstant(Op, NewMask, TLO)) return true; // If the operation can be done in a smaller type, do so. - if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) + if (ShrinkDemandedOp(Op, BitWidth, NewMask, TLO)) return true; // Output known-0 bits are only known if clear in both the LHS & RHS. - KnownZero &= KnownZero2; + Known.Zero &= Known2.Zero; // Output known-1 are known to be set if set in either the LHS | RHS. - KnownOne |= KnownOne2; + Known.One |= Known2.One; break; - case ISD::XOR: - if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero, - KnownOne, TLO, Depth+1)) + case ISD::XOR: { + if (SimplifyDemandedBits(Op.getOperand(1), NewMask, Known, TLO, Depth+1)) return true; - assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); - if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2, - KnownOne2, TLO, Depth+1)) + assert(!Known.hasConflict() && "Bits known to be one AND zero?"); + if (SimplifyDemandedBits(Op.getOperand(0), NewMask, Known2, TLO, Depth+1)) return true; - assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); + assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); // If all of the demanded bits are known zero on one side, return the other. // These bits cannot contribute to the result of the 'xor'. - if ((KnownZero & NewMask) == NewMask) + if (NewMask.isSubsetOf(Known.Zero)) return TLO.CombineTo(Op, Op.getOperand(0)); - if ((KnownZero2 & NewMask) == NewMask) + if (NewMask.isSubsetOf(Known2.Zero)) return TLO.CombineTo(Op, Op.getOperand(1)); // If the operation can be done in a smaller type, do so. - if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) + if (ShrinkDemandedOp(Op, BitWidth, NewMask, TLO)) return true; // If all of the unknown bits are known to be zero on one side or the other // (but not both) turn this into an *inclusive* or. // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 - if ((NewMask & ~KnownZero & ~KnownZero2) == 0) + if ((NewMask & ~Known.Zero & ~Known2.Zero) == 0) return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(), Op.getOperand(0), Op.getOperand(1))); // Output known-0 bits are known if clear or set in both the LHS & RHS. - KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); + KnownOut.Zero = (Known.Zero & Known2.Zero) | (Known.One & Known2.One); // Output known-1 are known to be set if set in only one of the LHS, RHS. - KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); + KnownOut.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero); // If all of the demanded bits on one side are known, and all of the set // bits on that side are also known to be set on the other side, turn this // into an AND, as we know the bits will be cleared. // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 // NB: it is okay if more bits are known than are requested - if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known on one side - if (KnownOne == KnownOne2) { // set bits are the same on both sides + if (NewMask.isSubsetOf(Known.Zero|Known.One)) { // all known on one side + if (Known.One == Known2.One) { // set bits are the same on both sides EVT VT = Op.getValueType(); - SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, dl, VT); + SDValue ANDC = TLO.DAG.getConstant(~Known.One & NewMask, dl, VT); return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op.getOperand(0), ANDC)); } } - // If the RHS is a constant, see if we can simplify it. - // for XOR, we prefer to force bits to 1 if they will make a -1. - // If we can't force bits, try to shrink the constant. - if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { - APInt Expanded = C->getAPIntValue() | (~NewMask); - // If we can expand it to have all bits set, do it. - if (Expanded.isAllOnesValue()) { - if (Expanded != C->getAPIntValue()) { - EVT VT = Op.getValueType(); - SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0), - TLO.DAG.getConstant(Expanded, dl, VT)); - return TLO.CombineTo(Op, New); - } - // If it already has all the bits set, nothing to change - // but don't shrink either! - } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) { - return true; + // If the RHS is a constant, see if we can change it. Don't alter a -1 + // constant because that's a 'not' op, and that is better for combining and + // codegen. + ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(1)); + if (C && !C->isAllOnesValue()) { + if (NewMask.isSubsetOf(C->getAPIntValue())) { + // We're flipping all demanded bits. Flip the undemanded bits too. + SDValue New = TLO.DAG.getNOT(dl, Op.getOperand(0), Op.getValueType()); + return TLO.CombineTo(Op, New); } + // If we can't turn this into a 'not', try to shrink the constant. + if (ShrinkDemandedConstant(Op, NewMask, TLO)) + return true; } - KnownZero = KnownZeroOut; - KnownOne = KnownOneOut; + Known = std::move(KnownOut); break; + } case ISD::SELECT: - if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero, - KnownOne, TLO, Depth+1)) + if (SimplifyDemandedBits(Op.getOperand(2), NewMask, Known, TLO, Depth+1)) return true; - if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2, - KnownOne2, TLO, Depth+1)) + if (SimplifyDemandedBits(Op.getOperand(1), NewMask, Known2, TLO, Depth+1)) return true; - assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); - assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); + assert(!Known.hasConflict() && "Bits known to be one AND zero?"); + assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); // If the operands are constants, see if we can simplify them. - if (TLO.ShrinkDemandedConstant(Op, NewMask)) + if (ShrinkDemandedConstant(Op, NewMask, TLO)) return true; // Only known if known in both the LHS and RHS. - KnownOne &= KnownOne2; - KnownZero &= KnownZero2; + Known.One &= Known2.One; + Known.Zero &= Known2.Zero; break; case ISD::SELECT_CC: - if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero, - KnownOne, TLO, Depth+1)) + if (SimplifyDemandedBits(Op.getOperand(3), NewMask, Known, TLO, Depth+1)) return true; - if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2, - KnownOne2, TLO, Depth+1)) + if (SimplifyDemandedBits(Op.getOperand(2), NewMask, Known2, TLO, Depth+1)) return true; - assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); - assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); + assert(!Known.hasConflict() && "Bits known to be one AND zero?"); + assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); // If the operands are constants, see if we can simplify them. - if (TLO.ShrinkDemandedConstant(Op, NewMask)) + if (ShrinkDemandedConstant(Op, NewMask, TLO)) return true; // Only known if known in both the LHS and RHS. - KnownOne &= KnownOne2; - KnownZero &= KnownZero2; + Known.One &= Known2.One; + Known.Zero &= Known2.Zero; break; + case ISD::SETCC: { + SDValue Op0 = Op.getOperand(0); + SDValue Op1 = Op.getOperand(1); + ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); + // If (1) we only need the sign-bit, (2) the setcc operands are the same + // width as the setcc result, and (3) the result of a setcc conforms to 0 or + // -1, we may be able to bypass the setcc. + if (NewMask.isSignMask() && Op0.getScalarValueSizeInBits() == BitWidth && + getBooleanContents(Op.getValueType()) == + BooleanContent::ZeroOrNegativeOneBooleanContent) { + // If we're testing X < 0, then this compare isn't needed - just use X! + // FIXME: We're limiting to integer types here, but this should also work + // if we don't care about FP signed-zero. The use of SETLT with FP means + // that we don't care about NaNs. + if (CC == ISD::SETLT && Op1.getValueType().isInteger() && + (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) + return TLO.CombineTo(Op, Op0); + + // TODO: Should we check for other forms of sign-bit comparisons? + // Examples: X <= -1, X >= 0 + } + if (getBooleanContents(Op0.getValueType()) == + TargetLowering::ZeroOrOneBooleanContent && + BitWidth > 1) + Known.Zero.setBitsFrom(1); + break; + } case ISD::SHL: if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { unsigned ShAmt = SA->getZExtValue(); @@ -781,17 +810,16 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op, } } - if (SimplifyDemandedBits(InOp, NewMask.lshr(ShAmt), - KnownZero, KnownOne, TLO, Depth+1)) + if (SimplifyDemandedBits(InOp, NewMask.lshr(ShAmt), Known, TLO, Depth+1)) return true; // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits // are not demanded. This will likely allow the anyext to be folded away. if (InOp.getNode()->getOpcode() == ISD::ANY_EXTEND) { - SDValue InnerOp = InOp.getNode()->getOperand(0); + SDValue InnerOp = InOp.getOperand(0); EVT InnerVT = InnerOp.getValueType(); unsigned InnerBits = InnerVT.getSizeInBits(); - if (ShAmt < InnerBits && NewMask.lshr(InnerBits) == 0 && + if (ShAmt < InnerBits && NewMask.getActiveBits() <= InnerBits && isTypeDesirableForOp(ISD::SHL, InnerVT)) { EVT ShTy = getShiftAmountTy(InnerVT, DL); if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) @@ -813,12 +841,12 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op, InnerOp.getOpcode() == ISD::SRL && InnerOp.hasOneUse() && isa<ConstantSDNode>(InnerOp.getOperand(1))) { - uint64_t InnerShAmt = cast<ConstantSDNode>(InnerOp.getOperand(1)) + unsigned InnerShAmt = cast<ConstantSDNode>(InnerOp.getOperand(1)) ->getZExtValue(); if (InnerShAmt < ShAmt && InnerShAmt < InnerBits && - NewMask.lshr(InnerBits - InnerShAmt + ShAmt) == 0 && - NewMask.trunc(ShAmt) == 0) { + NewMask.getActiveBits() <= (InnerBits - InnerShAmt + ShAmt) && + NewMask.countTrailingZeros() >= ShAmt) { SDValue NewSA = TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, Op.getOperand(1).getValueType()); @@ -831,10 +859,10 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op, } } - KnownZero <<= SA->getZExtValue(); - KnownOne <<= SA->getZExtValue(); + Known.Zero <<= SA->getZExtValue(); + Known.One <<= SA->getZExtValue(); // low bits known zero. - KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue()); + Known.Zero.setLowBits(SA->getZExtValue()); } break; case ISD::SRL: @@ -852,8 +880,8 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op, // If the shift is exact, then it does demand the low bits (and knows that // they are zero). - if (cast<BinaryWithFlagsSDNode>(Op)->Flags.hasExact()) - InDemandedMask |= APInt::getLowBitsSet(BitWidth, ShAmt); + if (Op->getFlags().hasExact()) + InDemandedMask.setLowBits(ShAmt); // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a // single shift. We can do this if the top bits (which are shifted out) @@ -877,15 +905,13 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op, } // Compute the new bits that are at the top now. - if (SimplifyDemandedBits(InOp, InDemandedMask, - KnownZero, KnownOne, TLO, Depth+1)) + if (SimplifyDemandedBits(InOp, InDemandedMask, Known, TLO, Depth+1)) return true; - assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); - KnownZero = KnownZero.lshr(ShAmt); - KnownOne = KnownOne.lshr(ShAmt); + assert(!Known.hasConflict() && "Bits known to be one AND zero?"); + Known.Zero.lshrInPlace(ShAmt); + Known.One.lshrInPlace(ShAmt); - APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt); - KnownZero |= HighBits; // High bits known zero. + Known.Zero.setHighBits(ShAmt); // High bits known zero. } break; case ISD::SRA: @@ -893,7 +919,7 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op, // always convert this into a logical shr, even if the shift amount is // variable. The low bit of the shift cannot be an input sign bit unless // the shift amount is >= the size of the datatype, which is undefined. - if (NewMask == 1) + if (NewMask.isOneValue()) return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(), Op.getOperand(0), Op.getOperand(1))); @@ -910,33 +936,30 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op, // If the shift is exact, then it does demand the low bits (and knows that // they are zero). - if (cast<BinaryWithFlagsSDNode>(Op)->Flags.hasExact()) - InDemandedMask |= APInt::getLowBitsSet(BitWidth, ShAmt); + if (Op->getFlags().hasExact()) + InDemandedMask.setLowBits(ShAmt); // If any of the demanded bits are produced by the sign extension, we also // demand the input sign bit. - APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt); - if (HighBits.intersects(NewMask)) - InDemandedMask |= APInt::getSignBit(VT.getScalarSizeInBits()); + if (NewMask.countLeadingZeros() < ShAmt) + InDemandedMask.setSignBit(); - if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask, - KnownZero, KnownOne, TLO, Depth+1)) + if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask, Known, TLO, + Depth+1)) return true; - assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); - KnownZero = KnownZero.lshr(ShAmt); - KnownOne = KnownOne.lshr(ShAmt); - - // Handle the sign bit, adjusted to where it is now in the mask. - APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt); + assert(!Known.hasConflict() && "Bits known to be one AND zero?"); + Known.Zero.lshrInPlace(ShAmt); + Known.One.lshrInPlace(ShAmt); // If the input sign bit is known to be zero, or if none of the top bits // are demanded, turn this into an unsigned shift right. - if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) { + if (Known.Zero[BitWidth - ShAmt - 1] || + NewMask.countLeadingZeros() >= ShAmt) { SDNodeFlags Flags; - Flags.setExact(cast<BinaryWithFlagsSDNode>(Op)->Flags.hasExact()); + Flags.setExact(Op->getFlags().hasExact()); return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op.getOperand(0), - Op.getOperand(1), &Flags)); + Op.getOperand(1), Flags)); } int Log2 = NewMask.exactLogBase2(); @@ -949,9 +972,9 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op, Op.getOperand(0), NewSA)); } - if (KnownOne.intersects(SignBit)) + if (Known.One[BitWidth - ShAmt - 1]) // New bits are known one. - KnownOne |= HighBits; + Known.One.setHighBits(ShAmt); } break; case ISD::SIGN_EXTEND_INREG: { @@ -993,7 +1016,7 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op, return TLO.CombineTo(Op, Op.getOperand(0)); APInt InSignBit = - APInt::getSignBit(ExVT.getScalarSizeInBits()).zext(BitWidth); + APInt::getSignMask(ExVT.getScalarSizeInBits()).zext(BitWidth); APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, ExVT.getScalarSizeInBits()) & @@ -1004,24 +1027,24 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op, InputDemandedBits |= InSignBit; if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits, - KnownZero, KnownOne, TLO, Depth+1)) + Known, TLO, Depth+1)) return true; - assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); + assert(!Known.hasConflict() && "Bits known to be one AND zero?"); // If the sign bit of the input is known set or clear, then we know the // top bits of the result. // If the input sign bit is known zero, convert this into a zero extension. - if (KnownZero.intersects(InSignBit)) + if (Known.Zero.intersects(InSignBit)) return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg( Op.getOperand(0), dl, ExVT.getScalarType())); - if (KnownOne.intersects(InSignBit)) { // Input sign bit known set - KnownOne |= NewBits; - KnownZero &= ~NewBits; + if (Known.One.intersects(InSignBit)) { // Input sign bit known set + Known.One |= NewBits; + Known.Zero &= ~NewBits; } else { // Input sign bit unknown - KnownZero &= ~NewBits; - KnownOne &= ~NewBits; + Known.Zero &= ~NewBits; + Known.One &= ~NewBits; } break; } @@ -1032,22 +1055,19 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op, APInt MaskLo = NewMask.getLoBits(HalfBitWidth).trunc(HalfBitWidth); APInt MaskHi = NewMask.getHiBits(HalfBitWidth).trunc(HalfBitWidth); - APInt KnownZeroLo, KnownOneLo; - APInt KnownZeroHi, KnownOneHi; + KnownBits KnownLo, KnownHi; - if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownZeroLo, - KnownOneLo, TLO, Depth + 1)) + if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1)) return true; - if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownZeroHi, - KnownOneHi, TLO, Depth + 1)) + if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1)) return true; - KnownZero = KnownZeroLo.zext(BitWidth) | - KnownZeroHi.zext(BitWidth).shl(HalfBitWidth); + Known.Zero = KnownLo.Zero.zext(BitWidth) | + KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth); - KnownOne = KnownOneLo.zext(BitWidth) | - KnownOneHi.zext(BitWidth).shl(HalfBitWidth); + Known.One = KnownLo.One.zext(BitWidth) | + KnownHi.One.zext(BitWidth).shl(HalfBitWidth); break; } case ISD::ZERO_EXTEND: { @@ -1062,20 +1082,18 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op, Op.getValueType(), Op.getOperand(0))); - if (SimplifyDemandedBits(Op.getOperand(0), InMask, - KnownZero, KnownOne, TLO, Depth+1)) + if (SimplifyDemandedBits(Op.getOperand(0), InMask, Known, TLO, Depth+1)) return true; - assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); - KnownZero = KnownZero.zext(BitWidth); - KnownOne = KnownOne.zext(BitWidth); - KnownZero |= NewBits; + assert(!Known.hasConflict() && "Bits known to be one AND zero?"); + Known = Known.zext(BitWidth); + Known.Zero |= NewBits; break; } case ISD::SIGN_EXTEND: { EVT InVT = Op.getOperand(0).getValueType(); unsigned InBits = InVT.getScalarSizeInBits(); APInt InMask = APInt::getLowBitsSet(BitWidth, InBits); - APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits); + APInt InSignBit = APInt::getOneBitSet(BitWidth, InBits - 1); APInt NewBits = ~InMask & NewMask; // If none of the top bits are demanded, convert this into an any_extend. @@ -1090,37 +1108,34 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op, InDemandedBits |= InSignBit; InDemandedBits = InDemandedBits.trunc(InBits); - if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero, - KnownOne, TLO, Depth+1)) + if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, Known, TLO, + Depth+1)) return true; - KnownZero = KnownZero.zext(BitWidth); - KnownOne = KnownOne.zext(BitWidth); + Known = Known.zext(BitWidth); // If the sign bit is known zero, convert this to a zero extend. - if (KnownZero.intersects(InSignBit)) + if (Known.Zero.intersects(InSignBit)) return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), Op.getOperand(0))); // If the sign bit is known one, the top bits match. - if (KnownOne.intersects(InSignBit)) { - KnownOne |= NewBits; - assert((KnownZero & NewBits) == 0); + if (Known.One.intersects(InSignBit)) { + Known.One |= NewBits; + assert((Known.Zero & NewBits) == 0); } else { // Otherwise, top bits aren't known. - assert((KnownOne & NewBits) == 0); - assert((KnownZero & NewBits) == 0); + assert((Known.One & NewBits) == 0); + assert((Known.Zero & NewBits) == 0); } break; } case ISD::ANY_EXTEND: { unsigned OperandBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); APInt InMask = NewMask.trunc(OperandBitWidth); - if (SimplifyDemandedBits(Op.getOperand(0), InMask, - KnownZero, KnownOne, TLO, Depth+1)) + if (SimplifyDemandedBits(Op.getOperand(0), InMask, Known, TLO, Depth+1)) return true; - assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); - KnownZero = KnownZero.zext(BitWidth); - KnownOne = KnownOne.zext(BitWidth); + assert(!Known.hasConflict() && "Bits known to be one AND zero?"); + Known = Known.zext(BitWidth); break; } case ISD::TRUNCATE: { @@ -1128,11 +1143,9 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op, // zero/one bits live out. unsigned OperandBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); APInt TruncMask = NewMask.zext(OperandBitWidth); - if (SimplifyDemandedBits(Op.getOperand(0), TruncMask, - KnownZero, KnownOne, TLO, Depth+1)) + if (SimplifyDemandedBits(Op.getOperand(0), TruncMask, Known, TLO, Depth+1)) return true; - KnownZero = KnownZero.trunc(BitWidth); - KnownOne = KnownOne.trunc(BitWidth); + Known = Known.trunc(BitWidth); // If the input is only used by this truncate, see if we can shrink it based // on the known demanded bits. @@ -1158,26 +1171,29 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op, getShiftAmountTy(Op.getValueType(), DL)); } - APInt HighBits = APInt::getHighBitsSet(OperandBitWidth, - OperandBitWidth - BitWidth); - HighBits = HighBits.lshr(ShAmt->getZExtValue()).trunc(BitWidth); - - if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) { - // None of the shifted in bits are needed. Add a truncate of the - // shift input, then shift it. - SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl, - Op.getValueType(), - In.getOperand(0)); - return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, - Op.getValueType(), - NewTrunc, - Shift)); + if (ShAmt->getZExtValue() < BitWidth) { + APInt HighBits = APInt::getHighBitsSet(OperandBitWidth, + OperandBitWidth - BitWidth); + HighBits.lshrInPlace(ShAmt->getZExtValue()); + HighBits = HighBits.trunc(BitWidth); + + if (!(HighBits & NewMask)) { + // None of the shifted in bits are needed. Add a truncate of the + // shift input, then shift it. + SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl, + Op.getValueType(), + In.getOperand(0)); + return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, + Op.getValueType(), + NewTrunc, + Shift)); + } } break; } } - assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); + assert(!Known.hasConflict() && "Bits known to be one AND zero?"); break; } case ISD::AssertZext: { @@ -1187,11 +1203,11 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op, APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits()); if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | NewMask, - KnownZero, KnownOne, TLO, Depth+1)) + Known, TLO, Depth+1)) return true; - assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); + assert(!Known.hasConflict() && "Bits known to be one AND zero?"); - KnownZero |= ~InMask & NewMask; + Known.Zero |= ~InMask; break; } case ISD::BITCAST: @@ -1200,7 +1216,7 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op, if (!TLO.LegalOperations() && !Op.getValueType().isVector() && !Op.getOperand(0).getValueType().isVector() && - NewMask == APInt::getSignBit(Op.getValueSizeInBits()) && + NewMask == APInt::getSignMask(Op.getValueSizeInBits()) && Op.getOperand(0).getValueType().isFloatingPoint()) { bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, Op.getValueType()); bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); @@ -1229,22 +1245,19 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op, // of the highest bit demanded of them. APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - NewMask.countLeadingZeros()); - if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2, - KnownOne2, TLO, Depth+1) || - SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2, - KnownOne2, TLO, Depth+1) || + if (SimplifyDemandedBits(Op.getOperand(0), LoMask, Known2, TLO, Depth+1) || + SimplifyDemandedBits(Op.getOperand(1), LoMask, Known2, TLO, Depth+1) || // See if the operation should be performed at a smaller bit width. - TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) { - const SDNodeFlags *Flags = Op.getNode()->getFlags(); - if (Flags->hasNoSignedWrap() || Flags->hasNoUnsignedWrap()) { + ShrinkDemandedOp(Op, BitWidth, NewMask, TLO)) { + SDNodeFlags Flags = Op.getNode()->getFlags(); + if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { // Disable the nsw and nuw flags. We can no longer guarantee that we // won't wrap after simplification. - SDNodeFlags NewFlags = *Flags; - NewFlags.setNoSignedWrap(false); - NewFlags.setNoUnsignedWrap(false); + Flags.setNoSignedWrap(false); + Flags.setNoUnsignedWrap(false); SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, Op.getValueType(), Op.getOperand(0), Op.getOperand(1), - &NewFlags); + Flags); return TLO.CombineTo(Op, NewOp); } return true; @@ -1253,13 +1266,13 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op, } default: // Just use computeKnownBits to compute output bits. - TLO.DAG.computeKnownBits(Op, KnownZero, KnownOne, Depth); + TLO.DAG.computeKnownBits(Op, Known, Depth); break; } // If we know the value of all of the demanded bits, return this as a // constant. - if ((NewMask & (KnownZero|KnownOne)) == NewMask) { + if (NewMask.isSubsetOf(Known.Zero|Known.One)) { // Avoid folding to a constant if any OpaqueConstant is involved. const SDNode *N = Op.getNode(); for (SDNodeIterator I = SDNodeIterator::begin(N), @@ -1270,17 +1283,17 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op, return false; } return TLO.CombineTo(Op, - TLO.DAG.getConstant(KnownOne, dl, Op.getValueType())); + TLO.DAG.getConstant(Known.One, dl, Op.getValueType())); } return false; } /// Determine which of the bits specified in Mask are known to be either zero or -/// one and return them in the KnownZero/KnownOne bitsets. +/// one and return them in the Known. void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, - APInt &KnownZero, - APInt &KnownOne, + KnownBits &Known, + const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const { assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || @@ -1289,12 +1302,13 @@ void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, Op.getOpcode() == ISD::INTRINSIC_VOID) && "Should use MaskedValueIsZero if you don't know whether Op" " is a target node!"); - KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0); + Known.resetAll(); } /// This method can be implemented by targets that want to expose additional /// information about sign bits to the DAG Combiner. unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, + const APInt &, const SelectionDAG &, unsigned Depth) const { assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || @@ -1306,31 +1320,38 @@ unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, return 1; } +// FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must +// work with truncating build vectors and vectors with elements of less than +// 8 bits. bool TargetLowering::isConstTrueVal(const SDNode *N) const { if (!N) return false; - const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); - if (!CN) { - const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); - if (!BV) - return false; - - // Only interested in constant splats, we don't care about undef - // elements in identifying boolean constants and getConstantSplatNode - // returns NULL if all ops are undef; - CN = BV->getConstantSplatNode(); + APInt CVal; + if (auto *CN = dyn_cast<ConstantSDNode>(N)) { + CVal = CN->getAPIntValue(); + } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) { + auto *CN = BV->getConstantSplatNode(); if (!CN) return false; + + // If this is a truncating build vector, truncate the splat value. + // Otherwise, we may fail to match the expected values below. + unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits(); + CVal = CN->getAPIntValue(); + if (BVEltWidth < CVal.getBitWidth()) + CVal = CVal.trunc(BVEltWidth); + } else { + return false; } switch (getBooleanContents(N->getValueType(0))) { case UndefinedBooleanContent: - return CN->getAPIntValue()[0]; + return CVal[0]; case ZeroOrOneBooleanContent: - return CN->isOne(); + return CVal.isOneValue(); case ZeroOrNegativeOneBooleanContent: - return CN->isAllOnesValue(); + return CVal.isAllOnesValue(); } llvm_unreachable("Invalid boolean contents"); @@ -1472,8 +1493,7 @@ SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, } } - // Ensure that the constant occurs on the RHS, and fold constant - // comparisons. + // Ensure that the constant occurs on the RHS and fold constant comparisons. ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); if (isa<ConstantSDNode>(N0.getNode()) && (DCI.isBeforeLegalizeOps() || @@ -1486,7 +1506,7 @@ SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an // equality comparison, then we're just comparing whether X itself is // zero. - if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) && + if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) && N0.getOperand(0).getOpcode() == ISD::CTLZ && N0.getOperand(1).getOpcode() == ISD::Constant) { const APInt &ShAmt @@ -1617,14 +1637,13 @@ SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), TopSetCC.getOperand(1), InvCond); - } } } - // If the LHS is '(and load, const)', the RHS is 0, - // the test is for equality or unsigned, and all 1 bits of the const are - // in the same partial word, see if we can shorten the load. + // If the LHS is '(and load, const)', the RHS is 0, the test is for + // equality or unsigned, and all 1 bits of the const are in the same + // partial word, see if we can shorten the load. if (DCI.isBeforeLegalize() && !ISD::isSignedIntSetCC(Cond) && N0.getOpcode() == ISD::AND && C1 == 0 && @@ -1647,16 +1666,16 @@ SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, for (unsigned width = origWidth / 2; width>=8; width /= 2) { APInt newMask = APInt::getLowBitsSet(maskWidth, width); for (unsigned offset=0; offset<origWidth/width; offset++) { - if ((newMask & Mask) == Mask) { - if (!DAG.getDataLayout().isLittleEndian()) - bestOffset = (origWidth/width - offset - 1) * (width/8); - else + if (Mask.isSubsetOf(newMask)) { + if (DAG.getDataLayout().isLittleEndian()) bestOffset = (uint64_t)offset * (width/8); + else + bestOffset = (origWidth/width - offset - 1) * (width/8); bestMask = Mask.lshr(offset * (width/8) * 8); bestWidth = width; break; } - newMask = newMask << width; + newMask <<= width; } } } @@ -1692,10 +1711,12 @@ SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, switch (Cond) { case ISD::SETUGT: case ISD::SETUGE: - case ISD::SETEQ: return DAG.getConstant(0, dl, VT); + case ISD::SETEQ: + return DAG.getConstant(0, dl, VT); case ISD::SETULT: case ISD::SETULE: - case ISD::SETNE: return DAG.getConstant(1, dl, VT); + case ISD::SETNE: + return DAG.getConstant(1, dl, VT); case ISD::SETGT: case ISD::SETGE: // True if the sign bit of C1 is set. @@ -1764,12 +1785,12 @@ SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ExtSrcTyBits), dl, ExtDstTy), Cond); - } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) && + } else if ((N1C->isNullValue() || N1C->isOne()) && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC if (N0.getOpcode() == ISD::SETCC && isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) { - bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getAPIntValue() != 1); + bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne()); if (TrueWhenTrue) return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); // Invert the condition. @@ -1786,7 +1807,7 @@ SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, N0.getOperand(0).getOpcode() == ISD::XOR && N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && isa<ConstantSDNode>(N0.getOperand(1)) && - cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) { + cast<ConstantSDNode>(N0.getOperand(1))->isOne()) { // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We // can only do this if the top bits are known zero. unsigned BitWidth = N0.getValueSizeInBits(); @@ -1795,9 +1816,9 @@ SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, BitWidth-1))) { // Okay, get the un-inverted input value. SDValue Val; - if (N0.getOpcode() == ISD::XOR) + if (N0.getOpcode() == ISD::XOR) { Val = N0.getOperand(0); - else { + } else { assert(N0.getOpcode() == ISD::AND && N0.getOperand(0).getOpcode() == ISD::XOR); // ((X^1)&1)^1 -> X & 1 @@ -1809,7 +1830,7 @@ SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, return DAG.getSetCC(dl, VT, Val, N1, Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); } - } else if (N1C->getAPIntValue() == 1 && + } else if (N1C->isOne() && (VT == MVT::i1 || getBooleanContents(N0->getValueType(0)) == ZeroOrOneBooleanContent)) { @@ -1827,7 +1848,7 @@ SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, } if (Op0.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op0.getOperand(1)) && - cast<ConstantSDNode>(Op0.getOperand(1))->getAPIntValue() == 1) { + cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) { // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. if (Op0.getValueType().bitsGT(VT)) Op0 = DAG.getNode(ISD::AND, dl, VT, @@ -1862,7 +1883,10 @@ SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, // Canonicalize GE/LE comparisons to use GT/LT comparisons. if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { - if (C1 == MinVal) return DAG.getConstant(1, dl, VT); // X >= MIN --> true + // X >= MIN --> true + if (C1 == MinVal) + return DAG.getConstant(1, dl, VT); + // X >= C0 --> X > (C0 - 1) APInt C = C1 - 1; ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; @@ -1877,7 +1901,10 @@ SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, } if (Cond == ISD::SETLE || Cond == ISD::SETULE) { - if (C1 == MaxVal) return DAG.getConstant(1, dl, VT); // X <= MAX --> true + // X <= MAX --> true + if (C1 == MaxVal) + return DAG.getConstant(1, dl, VT); + // X <= C0 --> X < (C0 + 1) APInt C = C1 + 1; ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; @@ -2006,7 +2033,7 @@ SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, } else { ShiftBits = C1.countTrailingZeros(); } - NewC = NewC.lshr(ShiftBits); + NewC.lshrInPlace(ShiftBits); if (ShiftBits && NewC.getMinSignedBits() <= 64 && isLegalICmpImmediate(NewC.getSExtValue())) { auto &DL = DAG.getDataLayout(); @@ -2050,6 +2077,16 @@ SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, if (Cond == ISD::SETO || Cond == ISD::SETUO) return DAG.getSetCC(dl, VT, N0, N0, Cond); + // setcc (fneg x), C -> setcc swap(pred) x, -C + if (N0.getOpcode() == ISD::FNEG) { + ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond); + if (DCI.isBeforeLegalizeOps() || + isCondCodeLegal(SwapCond, N0.getSimpleValueType())) { + SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1); + return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond); + } + } + // If the condition is not legal, see if we can find an equivalent one // which is legal. if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { @@ -2129,7 +2166,7 @@ SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); if (N0.getOperand(1) == N1.getOperand(1)) return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); - if (DAG.isCommutativeBinOp(N0.getOpcode())) { + if (isCommutativeBinOp(N0.getOpcode())) { // If X op Y == Y op X, try other combinations. if (N0.getOperand(0) == N1.getOperand(1)) return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), @@ -2193,7 +2230,7 @@ SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, return DAG.getSetCC(dl, VT, N0.getOperand(1), DAG.getConstant(0, dl, N0.getValueType()), Cond); if (N0.getOperand(1) == N1) { - if (DAG.isCommutativeBinOp(N0.getOpcode())) + if (isCommutativeBinOp(N0.getOpcode())) return DAG.getSetCC(dl, VT, N0.getOperand(0), DAG.getConstant(0, dl, N0.getValueType()), Cond); @@ -2220,7 +2257,7 @@ SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, return DAG.getSetCC(dl, VT, N1.getOperand(1), DAG.getConstant(0, dl, N1.getValueType()), Cond); if (N1.getOperand(1) == N0) { - if (DAG.isCommutativeBinOp(N1.getOpcode())) + if (isCommutativeBinOp(N1.getOpcode())) return DAG.getSetCC(dl, VT, N1.getOperand(0), DAG.getConstant(0, dl, N1.getValueType()), Cond); if (N1.getNode()->hasOneUse()) { @@ -2445,7 +2482,7 @@ void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, // gcc prints these as sign extended. Sign extend value to 64 bits // now; without this it would get ZExt'd later in // ScheduleDAGSDNodes::EmitNode, which is very generic. - Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(), + Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(C), MVT::i64)); } return; @@ -2470,13 +2507,10 @@ TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, std::make_pair(0u, static_cast<const TargetRegisterClass*>(nullptr)); // Figure out which register class contains this reg. - for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(), - E = RI->regclass_end(); RCI != E; ++RCI) { - const TargetRegisterClass *RC = *RCI; - + for (const TargetRegisterClass *RC : RI->regclasses()) { // If none of the value types for this register class are valid, we // can't use it. For example, 64-bit reg classes on 32-bit targets. - if (!isLegalRC(RC)) + if (!isLegalRC(*RI, *RC)) continue; for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); @@ -2488,9 +2522,9 @@ TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, // If this register class has the requested value type, return it, // otherwise keep searching and return the first class found // if no other is found which explicitly has the requested type. - if (RC->hasType(VT)) + if (RI->isTypeLegalForClass(*RC, VT)) return S; - else if (!R.second) + if (!R.second) R = S; } } @@ -2914,9 +2948,9 @@ static SDValue BuildExactSDIV(const TargetLowering &TLI, SDValue Op1, APInt d, DAG.getDataLayout())); SDNodeFlags Flags; Flags.setExact(true); - Op1 = DAG.getNode(ISD::SRA, dl, Op1.getValueType(), Op1, Amt, &Flags); + Op1 = DAG.getNode(ISD::SRA, dl, Op1.getValueType(), Op1, Amt, Flags); Created.push_back(Op1.getNode()); - d = d.ashr(ShAmt); + d.ashrInPlace(ShAmt); } // Calculate the multiplicative inverse, using Newton's method. @@ -2933,7 +2967,7 @@ static SDValue BuildExactSDIV(const TargetLowering &TLI, SDValue Op1, APInt d, SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, SelectionDAG &DAG, std::vector<SDNode *> *Created) const { - AttributeSet Attr = DAG.getMachineFunction().getFunction()->getAttributes(); + AttributeList Attr = DAG.getMachineFunction().getFunction()->getAttributes(); const TargetLowering &TLI = DAG.getTargetLoweringInfo(); if (TLI.isIntDivCheap(N->getValueType(0), Attr)) return SDValue(N,0); // Lower SDIV as SDIV @@ -2958,7 +2992,7 @@ SDValue TargetLowering::BuildSDIV(SDNode *N, const APInt &Divisor, return SDValue(); // If the sdiv has an 'exact' bit we can use a simpler lowering. - if (cast<BinaryWithFlagsSDNode>(N)->Flags.hasExact()) + if (N->getFlags().hasExact()) return BuildExactSDIV(*this, N->getOperand(0), Divisor, dl, DAG, *Created); APInt::ms magics = Divisor.magic(); @@ -3297,7 +3331,7 @@ bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); SDValue Bias = DAG.getConstant(127, dl, IntVT); - SDValue SignMask = DAG.getConstant(APInt::getSignBit(VT.getSizeInBits()), dl, + SDValue SignMask = DAG.getConstant(APInt::getSignMask(VT.getSizeInBits()), dl, IntVT); SDValue SignLowBit = DAG.getConstant(VT.getSizeInBits() - 1, dl, IntVT); SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); @@ -3808,7 +3842,7 @@ SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, TargetLowering::CallLoweringInfo CLI(DAG); CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); - CLI.setCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); + CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. |