diff options
author | dim <dim@FreeBSD.org> | 2016-12-26 20:36:37 +0000 |
---|---|---|
committer | dim <dim@FreeBSD.org> | 2016-12-26 20:36:37 +0000 |
commit | 06210ae42d418d50d8d9365d5c9419308ae9e7ee (patch) | |
tree | ab60b4cdd6e430dda1f292a46a77ddb744723f31 /contrib/llvm/lib/Analysis/ConstantFolding.cpp | |
parent | 2dd166267f53df1c3748b4325d294b9b839de74b (diff) | |
download | FreeBSD-src-06210ae42d418d50d8d9365d5c9419308ae9e7ee.zip FreeBSD-src-06210ae42d418d50d8d9365d5c9419308ae9e7ee.tar.gz |
MFC r309124:
Upgrade our copies of clang, llvm, lldb, compiler-rt and libc++ to 3.9.0
release, and add lld 3.9.0. Also completely revamp the build system for
clang, llvm, lldb and their related tools.
Please note that from 3.5.0 onwards, clang, llvm and lldb require C++11
support to build; see UPDATING for more information.
Release notes for llvm, clang and lld are available here:
<http://llvm.org/releases/3.9.0/docs/ReleaseNotes.html>
<http://llvm.org/releases/3.9.0/tools/clang/docs/ReleaseNotes.html>
<http://llvm.org/releases/3.9.0/tools/lld/docs/ReleaseNotes.html>
Thanks to Ed Maste, Bryan Drewery, Andrew Turner, Antoine Brodin and Jan
Beich for their help.
Relnotes: yes
MFC r309147:
Pull in r282174 from upstream llvm trunk (by Krzysztof Parzyszek):
[PPC] Set SP after loading data from stack frame, if no red zone is
present
Follow-up to r280705: Make sure that the SP is only restored after
all data is loaded from the stack frame, if there is no red zone.
This completes the fix for
https://llvm.org/bugs/show_bug.cgi?id=26519.
Differential Revision: https://reviews.llvm.org/D24466
Reported by: Mark Millard
PR: 214433
MFC r309149:
Pull in r283060 from upstream llvm trunk (by Hal Finkel):
[PowerPC] Refactor soft-float support, and enable PPC64 soft float
This change enables soft-float for PowerPC64, and also makes
soft-float disable all vector instruction sets for both 32-bit and
64-bit modes. This latter part is necessary because the PPC backend
canonicalizes many Altivec vector types to floating-point types, and
so soft-float breaks scalarization support for many operations. Both
for embedded targets and for operating-system kernels desiring
soft-float support, it seems reasonable that disabling hardware
floating-point also disables vector instructions (embedded targets
without hardware floating point support are unlikely to have Altivec,
etc. and operating system kernels desiring not to use floating-point
registers to lower syscall cost are unlikely to want to use vector
registers either). If someone needs this to work, we'll need to
change the fact that we promote many Altivec operations to act on
v4f32. To make it possible to disable Altivec when soft-float is
enabled, hardware floating-point support needs to be expressed as a
positive feature, like the others, and not a negative feature,
because target features cannot have dependencies on the disabling of
some other feature. So +soft-float has now become -hard-float.
Fixes PR26970.
Pull in r283061 from upstream clang trunk (by Hal Finkel):
[PowerPC] Enable soft-float for PPC64, and +soft-float -> -hard-float
Enable soft-float support on PPC64, as the backend now supports it.
Also, the backend now uses -hard-float instead of +soft-float, so set
the target features accordingly.
Fixes PR26970.
Reported by: Mark Millard
PR: 214433
MFC r309212:
Add a few missed clang 3.9.0 files to OptionalObsoleteFiles.
MFC r309262:
Fix packaging for clang, lldb and lld 3.9.0
During the upgrade of clang/llvm etc to 3.9.0 in r309124, the PACKAGE
directive in the usr.bin/clang/*.mk files got dropped accidentally.
Restore it, with a few minor changes and additions:
* Correct license in clang.ucl to NCSA
* Add PACKAGE=clang for clang and most of the "ll" tools
* Put lldb in its own package
* Put lld in its own package
Reviewed by: gjb, jmallett
Differential Revision: https://reviews.freebsd.org/D8666
MFC r309656:
During the bootstrap phase, when building the minimal llvm library on
PowerPC, add lib/Support/Atomic.cpp. This is needed because upstream
llvm revision r271821 disabled the use of std::call_once, which causes
some fallback functions from Atomic.cpp to be used instead.
Reported by: Mark Millard
PR: 214902
MFC r309835:
Tentatively apply https://reviews.llvm.org/D18730 to work around gcc PR
70528 (bogus error: constructor required before non-static data member).
This should fix buildworld with the external gcc package.
Reported by: https://jenkins.freebsd.org/job/FreeBSD_HEAD_amd64_gcc/
MFC r310194:
Upgrade our copies of clang, llvm, lld, lldb, compiler-rt and libc++ to
3.9.1 release.
Please note that from 3.5.0 onwards, clang, llvm and lldb require C++11
support to build; see UPDATING for more information.
Release notes for llvm, clang and lld will be available here:
<http://releases.llvm.org/3.9.1/docs/ReleaseNotes.html>
<http://releases.llvm.org/3.9.1/tools/clang/docs/ReleaseNotes.html>
<http://releases.llvm.org/3.9.1/tools/lld/docs/ReleaseNotes.html>
Relnotes: yes
Diffstat (limited to 'contrib/llvm/lib/Analysis/ConstantFolding.cpp')
-rw-r--r-- | contrib/llvm/lib/Analysis/ConstantFolding.cpp | 751 |
1 files changed, 423 insertions, 328 deletions
diff --git a/contrib/llvm/lib/Analysis/ConstantFolding.cpp b/contrib/llvm/lib/Analysis/ConstantFolding.cpp index ccb5663..c9adaa7 100644 --- a/contrib/llvm/lib/Analysis/ConstantFolding.cpp +++ b/contrib/llvm/lib/Analysis/ConstantFolding.cpp @@ -17,6 +17,7 @@ //===----------------------------------------------------------------------===// #include "llvm/Analysis/ConstantFolding.h" +#include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringMap.h" @@ -34,15 +35,16 @@ #include "llvm/IR/Operator.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MathExtras.h" +#include <cassert> #include <cerrno> +#include <cfenv> #include <cmath> - -#ifdef HAVE_FENV_H -#include <fenv.h> -#endif +#include <limits> using namespace llvm; +namespace { + //===----------------------------------------------------------------------===// // Constant Folding internal helper functions //===----------------------------------------------------------------------===// @@ -50,7 +52,7 @@ using namespace llvm; /// Constant fold bitcast, symbolically evaluating it with DataLayout. /// This always returns a non-null constant, but it may be a /// ConstantExpr if unfoldable. -static Constant *FoldBitCast(Constant *C, Type *DestTy, const DataLayout &DL) { +Constant *FoldBitCast(Constant *C, Type *DestTy, const DataLayout &DL) { // Catch the obvious splat cases. if (C->isNullValue() && !DestTy->isX86_MMXTy()) return Constant::getNullValue(DestTy); @@ -59,8 +61,8 @@ static Constant *FoldBitCast(Constant *C, Type *DestTy, const DataLayout &DL) { return Constant::getAllOnesValue(DestTy); // Handle a vector->integer cast. - if (IntegerType *IT = dyn_cast<IntegerType>(DestTy)) { - VectorType *VTy = dyn_cast<VectorType>(C->getType()); + if (auto *IT = dyn_cast<IntegerType>(DestTy)) { + auto *VTy = dyn_cast<VectorType>(C->getType()); if (!VTy) return ConstantExpr::getBitCast(C, DestTy); @@ -77,27 +79,30 @@ static Constant *FoldBitCast(Constant *C, Type *DestTy, const DataLayout &DL) { C = ConstantExpr::getBitCast(C, SrcIVTy); } - ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(C); - if (!CDV) - return ConstantExpr::getBitCast(C, DestTy); - // Now that we know that the input value is a vector of integers, just shift // and insert them into our result. - unsigned BitShift = DL.getTypeAllocSizeInBits(SrcEltTy); + unsigned BitShift = DL.getTypeSizeInBits(SrcEltTy); APInt Result(IT->getBitWidth(), 0); for (unsigned i = 0; i != NumSrcElts; ++i) { - Result <<= BitShift; + Constant *Element; if (DL.isLittleEndian()) - Result |= CDV->getElementAsInteger(NumSrcElts-i-1); + Element = C->getAggregateElement(NumSrcElts-i-1); else - Result |= CDV->getElementAsInteger(i); + Element = C->getAggregateElement(i); + + auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); + if (!ElementCI) + return ConstantExpr::getBitCast(C, DestTy); + + Result <<= BitShift; + Result |= ElementCI->getValue().zextOrSelf(IT->getBitWidth()); } return ConstantInt::get(IT, Result); } // The code below only handles casts to vectors currently. - VectorType *DestVTy = dyn_cast<VectorType>(DestTy); + auto *DestVTy = dyn_cast<VectorType>(DestTy); if (!DestVTy) return ConstantExpr::getBitCast(C, DestTy); @@ -175,7 +180,7 @@ static Constant *FoldBitCast(Constant *C, Type *DestTy, const DataLayout &DL) { Constant *Elt = Zero; unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1); for (unsigned j = 0; j != Ratio; ++j) { - Constant *Src =dyn_cast<ConstantInt>(C->getAggregateElement(SrcElt++)); + Constant *Src = dyn_cast<ConstantInt>(C->getAggregateElement(SrcElt++)); if (!Src) // Reject constantexpr elements. return ConstantExpr::getBitCast(C, DestTy); @@ -201,7 +206,7 @@ static Constant *FoldBitCast(Constant *C, Type *DestTy, const DataLayout &DL) { // Loop over each source value, expanding into multiple results. for (unsigned i = 0; i != NumSrcElt; ++i) { - Constant *Src = dyn_cast<ConstantInt>(C->getAggregateElement(i)); + auto *Src = dyn_cast<ConstantInt>(C->getAggregateElement(i)); if (!Src) // Reject constantexpr elements. return ConstantExpr::getBitCast(C, DestTy); @@ -230,11 +235,12 @@ static Constant *FoldBitCast(Constant *C, Type *DestTy, const DataLayout &DL) { return ConstantVector::get(Result); } +} // end anonymous namespace /// If this constant is a constant offset from a global, return the global and /// the constant. Because of constantexprs, this function is recursive. -static bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV, - APInt &Offset, const DataLayout &DL) { +bool llvm::IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV, + APInt &Offset, const DataLayout &DL) { // Trivial case, constant is the global. if ((GV = dyn_cast<GlobalValue>(C))) { unsigned BitWidth = DL.getPointerTypeSizeInBits(GV->getType()); @@ -243,7 +249,7 @@ static bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV, } // Otherwise, if this isn't a constant expr, bail out. - ConstantExpr *CE = dyn_cast<ConstantExpr>(C); + auto *CE = dyn_cast<ConstantExpr>(C); if (!CE) return false; // Look through ptr->int and ptr->ptr casts. @@ -252,7 +258,7 @@ static bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV, return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, DL); // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5) - GEPOperator *GEP = dyn_cast<GEPOperator>(CE); + auto *GEP = dyn_cast<GEPOperator>(CE); if (!GEP) return false; @@ -271,13 +277,14 @@ static bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV, return true; } +namespace { + /// Recursive helper to read bits out of global. C is the constant being copied /// out of. ByteOffset is an offset into C. CurPtr is the pointer to copy /// results into and BytesLeft is the number of bytes left in /// the CurPtr buffer. DL is the DataLayout. -static bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset, - unsigned char *CurPtr, unsigned BytesLeft, - const DataLayout &DL) { +bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset, unsigned char *CurPtr, + unsigned BytesLeft, const DataLayout &DL) { assert(ByteOffset <= DL.getTypeAllocSize(C->getType()) && "Out of range access"); @@ -286,7 +293,7 @@ static bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset, if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) return true; - if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { + if (auto *CI = dyn_cast<ConstantInt>(C)) { if (CI->getBitWidth() > 64 || (CI->getBitWidth() & 7) != 0) return false; @@ -304,7 +311,7 @@ static bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset, return true; } - if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { + if (auto *CFP = dyn_cast<ConstantFP>(C)) { if (CFP->getType()->isDoubleTy()) { C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), DL); return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL); @@ -320,7 +327,7 @@ static bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset, return false; } - if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C)) { + if (auto *CS = dyn_cast<ConstantStruct>(C)) { const StructLayout *SL = DL.getStructLayout(CS->getType()); unsigned Index = SL->getElementContainingOffset(ByteOffset); uint64_t CurEltOffset = SL->getElementOffset(Index); @@ -364,7 +371,7 @@ static bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset, uint64_t Index = ByteOffset / EltSize; uint64_t Offset = ByteOffset - Index * EltSize; uint64_t NumElts; - if (ArrayType *AT = dyn_cast<ArrayType>(C->getType())) + if (auto *AT = dyn_cast<ArrayType>(C->getType())) NumElts = AT->getNumElements(); else NumElts = C->getType()->getVectorNumElements(); @@ -386,7 +393,7 @@ static bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset, return true; } - if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { + if (auto *CE = dyn_cast<ConstantExpr>(C)) { if (CE->getOpcode() == Instruction::IntToPtr && CE->getOperand(0)->getType() == DL.getIntPtrType(CE->getType())) { return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr, @@ -398,11 +405,10 @@ static bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset, return false; } -static Constant *FoldReinterpretLoadFromConstPtr(Constant *C, - const DataLayout &DL) { - PointerType *PTy = cast<PointerType>(C->getType()); - Type *LoadTy = PTy->getElementType(); - IntegerType *IntType = dyn_cast<IntegerType>(LoadTy); +Constant *FoldReinterpretLoadFromConstPtr(Constant *C, Type *LoadTy, + const DataLayout &DL) { + auto *PTy = cast<PointerType>(C->getType()); + auto *IntType = dyn_cast<IntegerType>(LoadTy); // If this isn't an integer load we can't fold it directly. if (!IntType) { @@ -414,19 +420,19 @@ static Constant *FoldReinterpretLoadFromConstPtr(Constant *C, // an actual new load. Type *MapTy; if (LoadTy->isHalfTy()) - MapTy = Type::getInt16PtrTy(C->getContext(), AS); + MapTy = Type::getInt16Ty(C->getContext()); else if (LoadTy->isFloatTy()) - MapTy = Type::getInt32PtrTy(C->getContext(), AS); + MapTy = Type::getInt32Ty(C->getContext()); else if (LoadTy->isDoubleTy()) - MapTy = Type::getInt64PtrTy(C->getContext(), AS); + MapTy = Type::getInt64Ty(C->getContext()); else if (LoadTy->isVectorTy()) { - MapTy = PointerType::getIntNPtrTy(C->getContext(), - DL.getTypeAllocSizeInBits(LoadTy), AS); + MapTy = PointerType::getIntNTy(C->getContext(), + DL.getTypeAllocSizeInBits(LoadTy)); } else return nullptr; - C = FoldBitCast(C, MapTy, DL); - if (Constant *Res = FoldReinterpretLoadFromConstPtr(C, DL)) + C = FoldBitCast(C, MapTy->getPointerTo(AS), DL); + if (Constant *Res = FoldReinterpretLoadFromConstPtr(C, MapTy, DL)) return FoldBitCast(Res, LoadTy, DL); return nullptr; } @@ -436,28 +442,38 @@ static Constant *FoldReinterpretLoadFromConstPtr(Constant *C, return nullptr; GlobalValue *GVal; - APInt Offset; - if (!IsConstantOffsetFromGlobal(C, GVal, Offset, DL)) + APInt OffsetAI; + if (!IsConstantOffsetFromGlobal(C, GVal, OffsetAI, DL)) return nullptr; - GlobalVariable *GV = dyn_cast<GlobalVariable>(GVal); + auto *GV = dyn_cast<GlobalVariable>(GVal); if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || !GV->getInitializer()->getType()->isSized()) return nullptr; - // If we're loading off the beginning of the global, some bytes may be valid, - // but we don't try to handle this. - if (Offset.isNegative()) - return nullptr; + int64_t Offset = OffsetAI.getSExtValue(); + int64_t InitializerSize = DL.getTypeAllocSize(GV->getInitializer()->getType()); + + // If we're not accessing anything in this constant, the result is undefined. + if (Offset + BytesLoaded <= 0) + return UndefValue::get(IntType); // If we're not accessing anything in this constant, the result is undefined. - if (Offset.getZExtValue() >= - DL.getTypeAllocSize(GV->getInitializer()->getType())) + if (Offset >= InitializerSize) return UndefValue::get(IntType); unsigned char RawBytes[32] = {0}; - if (!ReadDataFromGlobal(GV->getInitializer(), Offset.getZExtValue(), RawBytes, - BytesLoaded, DL)) + unsigned char *CurPtr = RawBytes; + unsigned BytesLeft = BytesLoaded; + + // If we're loading off the beginning of the global, some bytes may be valid. + if (Offset < 0) { + CurPtr += -Offset; + BytesLeft += Offset; + Offset = 0; + } + + if (!ReadDataFromGlobal(GV->getInitializer(), Offset, CurPtr, BytesLeft, DL)) return nullptr; APInt ResultVal = APInt(IntType->getBitWidth(), 0); @@ -478,14 +494,15 @@ static Constant *FoldReinterpretLoadFromConstPtr(Constant *C, return ConstantInt::get(IntType->getContext(), ResultVal); } -static Constant *ConstantFoldLoadThroughBitcast(ConstantExpr *CE, - const DataLayout &DL) { - auto *DestPtrTy = dyn_cast<PointerType>(CE->getType()); - if (!DestPtrTy) +Constant *ConstantFoldLoadThroughBitcast(ConstantExpr *CE, Type *DestTy, + const DataLayout &DL) { + auto *SrcPtr = CE->getOperand(0); + auto *SrcPtrTy = dyn_cast<PointerType>(SrcPtr->getType()); + if (!SrcPtrTy) return nullptr; - Type *DestTy = DestPtrTy->getElementType(); + Type *SrcTy = SrcPtrTy->getPointerElementType(); - Constant *C = ConstantFoldLoadFromConstPtr(CE->getOperand(0), DL); + Constant *C = ConstantFoldLoadFromConstPtr(SrcPtr, SrcTy, DL); if (!C) return nullptr; @@ -522,26 +539,26 @@ static Constant *ConstantFoldLoadThroughBitcast(ConstantExpr *CE, return nullptr; } -/// Return the value that a load from C would produce if it is constant and -/// determinable. If this is not determinable, return null. -Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C, +} // end anonymous namespace + +Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty, const DataLayout &DL) { // First, try the easy cases: - if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) + if (auto *GV = dyn_cast<GlobalVariable>(C)) if (GV->isConstant() && GV->hasDefinitiveInitializer()) return GV->getInitializer(); if (auto *GA = dyn_cast<GlobalAlias>(C)) - if (GA->getAliasee() && !GA->mayBeOverridden()) - return ConstantFoldLoadFromConstPtr(GA->getAliasee(), DL); + if (GA->getAliasee() && !GA->isInterposable()) + return ConstantFoldLoadFromConstPtr(GA->getAliasee(), Ty, DL); // If the loaded value isn't a constant expr, we can't handle it. - ConstantExpr *CE = dyn_cast<ConstantExpr>(C); + auto *CE = dyn_cast<ConstantExpr>(C); if (!CE) return nullptr; if (CE->getOpcode() == Instruction::GetElementPtr) { - if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0))) { + if (auto *GV = dyn_cast<GlobalVariable>(CE->getOperand(0))) { if (GV->isConstant() && GV->hasDefinitiveInitializer()) { if (Constant *V = ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE)) @@ -551,15 +568,14 @@ Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C, } if (CE->getOpcode() == Instruction::BitCast) - if (Constant *LoadedC = ConstantFoldLoadThroughBitcast(CE, DL)) + if (Constant *LoadedC = ConstantFoldLoadThroughBitcast(CE, Ty, DL)) return LoadedC; // Instead of loading constant c string, use corresponding integer value // directly if string length is small enough. StringRef Str; if (getConstantStringInfo(CE, Str) && !Str.empty()) { - unsigned StrLen = Str.size(); - Type *Ty = cast<PointerType>(CE->getType())->getElementType(); + size_t StrLen = Str.size(); unsigned NumBits = Ty->getPrimitiveSizeInBits(); // Replace load with immediate integer if the result is an integer or fp // value. @@ -568,13 +584,13 @@ Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C, APInt StrVal(NumBits, 0); APInt SingleChar(NumBits, 0); if (DL.isLittleEndian()) { - for (signed i = StrLen-1; i >= 0; i--) { - SingleChar = (uint64_t) Str[i] & UCHAR_MAX; + for (unsigned char C : reverse(Str.bytes())) { + SingleChar = static_cast<uint64_t>(C); StrVal = (StrVal << 8) | SingleChar; } } else { - for (unsigned i = 0; i < StrLen; i++) { - SingleChar = (uint64_t) Str[i] & UCHAR_MAX; + for (unsigned char C : Str.bytes()) { + SingleChar = static_cast<uint64_t>(C); StrVal = (StrVal << 8) | SingleChar; } // Append NULL at the end. @@ -591,27 +607,26 @@ Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C, // If this load comes from anywhere in a constant global, and if the global // is all undef or zero, we know what it loads. - if (GlobalVariable *GV = - dyn_cast<GlobalVariable>(GetUnderlyingObject(CE, DL))) { + if (auto *GV = dyn_cast<GlobalVariable>(GetUnderlyingObject(CE, DL))) { if (GV->isConstant() && GV->hasDefinitiveInitializer()) { - Type *ResTy = cast<PointerType>(C->getType())->getElementType(); if (GV->getInitializer()->isNullValue()) - return Constant::getNullValue(ResTy); + return Constant::getNullValue(Ty); if (isa<UndefValue>(GV->getInitializer())) - return UndefValue::get(ResTy); + return UndefValue::get(Ty); } } // Try hard to fold loads from bitcasted strange and non-type-safe things. - return FoldReinterpretLoadFromConstPtr(CE, DL); + return FoldReinterpretLoadFromConstPtr(CE, Ty, DL); } -static Constant *ConstantFoldLoadInst(const LoadInst *LI, - const DataLayout &DL) { +namespace { + +Constant *ConstantFoldLoadInst(const LoadInst *LI, const DataLayout &DL) { if (LI->isVolatile()) return nullptr; - if (Constant *C = dyn_cast<Constant>(LI->getOperand(0))) - return ConstantFoldLoadFromConstPtr(C, DL); + if (auto *C = dyn_cast<Constant>(LI->getOperand(0))) + return ConstantFoldLoadFromConstPtr(C, LI->getType(), DL); return nullptr; } @@ -620,9 +635,8 @@ static Constant *ConstantFoldLoadInst(const LoadInst *LI, /// Attempt to symbolically evaluate the result of a binary operator merging /// these together. If target data info is available, it is provided as DL, /// otherwise DL is null. -static Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0, - Constant *Op1, - const DataLayout &DL) { +Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0, Constant *Op1, + const DataLayout &DL) { // SROA // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl. @@ -674,18 +688,16 @@ static Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0, /// If array indices are not pointer-sized integers, explicitly cast them so /// that they aren't implicitly casted by the getelementptr. -static Constant *CastGEPIndices(Type *SrcTy, ArrayRef<Constant *> Ops, - Type *ResultTy, const DataLayout &DL, - const TargetLibraryInfo *TLI) { +Constant *CastGEPIndices(Type *SrcElemTy, ArrayRef<Constant *> Ops, + Type *ResultTy, const DataLayout &DL, + const TargetLibraryInfo *TLI) { Type *IntPtrTy = DL.getIntPtrType(ResultTy); bool Any = false; SmallVector<Constant*, 32> NewIdxs; for (unsigned i = 1, e = Ops.size(); i != e; ++i) { if ((i == 1 || - !isa<StructType>(GetElementPtrInst::getIndexedType( - cast<PointerType>(Ops[0]->getType()->getScalarType()) - ->getElementType(), + !isa<StructType>(GetElementPtrInst::getIndexedType(SrcElemTy, Ops.slice(1, i - 1)))) && Ops[i]->getType() != IntPtrTy) { Any = true; @@ -701,8 +713,8 @@ static Constant *CastGEPIndices(Type *SrcTy, ArrayRef<Constant *> Ops, if (!Any) return nullptr; - Constant *C = ConstantExpr::getGetElementPtr(SrcTy, Ops[0], NewIdxs); - if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { + Constant *C = ConstantExpr::getGetElementPtr(SrcElemTy, Ops[0], NewIdxs); + if (auto *CE = dyn_cast<ConstantExpr>(C)) { if (Constant *Folded = ConstantFoldConstantExpression(CE, DL, TLI)) C = Folded; } @@ -711,32 +723,41 @@ static Constant *CastGEPIndices(Type *SrcTy, ArrayRef<Constant *> Ops, } /// Strip the pointer casts, but preserve the address space information. -static Constant* StripPtrCastKeepAS(Constant* Ptr) { +Constant* StripPtrCastKeepAS(Constant* Ptr, Type *&ElemTy) { assert(Ptr->getType()->isPointerTy() && "Not a pointer type"); - PointerType *OldPtrTy = cast<PointerType>(Ptr->getType()); + auto *OldPtrTy = cast<PointerType>(Ptr->getType()); Ptr = Ptr->stripPointerCasts(); - PointerType *NewPtrTy = cast<PointerType>(Ptr->getType()); + auto *NewPtrTy = cast<PointerType>(Ptr->getType()); + + ElemTy = NewPtrTy->getPointerElementType(); // Preserve the address space number of the pointer. if (NewPtrTy->getAddressSpace() != OldPtrTy->getAddressSpace()) { - NewPtrTy = NewPtrTy->getElementType()->getPointerTo( - OldPtrTy->getAddressSpace()); + NewPtrTy = ElemTy->getPointerTo(OldPtrTy->getAddressSpace()); Ptr = ConstantExpr::getPointerCast(Ptr, NewPtrTy); } return Ptr; } /// If we can symbolically evaluate the GEP constant expression, do so. -static Constant *SymbolicallyEvaluateGEP(Type *SrcTy, ArrayRef<Constant *> Ops, - Type *ResultTy, const DataLayout &DL, - const TargetLibraryInfo *TLI) { +Constant *SymbolicallyEvaluateGEP(const GEPOperator *GEP, + ArrayRef<Constant *> Ops, + const DataLayout &DL, + const TargetLibraryInfo *TLI) { + Type *SrcElemTy = GEP->getSourceElementType(); + Type *ResElemTy = GEP->getResultElementType(); + Type *ResTy = GEP->getType(); + if (!SrcElemTy->isSized()) + return nullptr; + + if (Constant *C = CastGEPIndices(SrcElemTy, Ops, ResTy, DL, TLI)) + return C; + Constant *Ptr = Ops[0]; - if (!Ptr->getType()->getPointerElementType()->isSized() || - !Ptr->getType()->isPointerTy()) + if (!Ptr->getType()->isPointerTy()) return nullptr; Type *IntPtrTy = DL.getIntPtrType(Ptr->getType()); - Type *ResultElementTy = ResultTy->getPointerElementType(); // If this is a constant expr gep that is effectively computing an // "offsetof", fold it into 'cast int Size to T*' instead of 'gep 0, 0, 12' @@ -745,16 +766,16 @@ static Constant *SymbolicallyEvaluateGEP(Type *SrcTy, ArrayRef<Constant *> Ops, // If this is "gep i8* Ptr, (sub 0, V)", fold this as: // "inttoptr (sub (ptrtoint Ptr), V)" - if (Ops.size() == 2 && ResultElementTy->isIntegerTy(8)) { - ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[1]); + if (Ops.size() == 2 && ResElemTy->isIntegerTy(8)) { + auto *CE = dyn_cast<ConstantExpr>(Ops[1]); assert((!CE || CE->getType() == IntPtrTy) && "CastGEPIndices didn't canonicalize index types!"); if (CE && CE->getOpcode() == Instruction::Sub && CE->getOperand(0)->isNullValue()) { Constant *Res = ConstantExpr::getPtrToInt(Ptr, CE->getType()); Res = ConstantExpr::getSub(Res, CE->getOperand(1)); - Res = ConstantExpr::getIntToPtr(Res, ResultTy); - if (ConstantExpr *ResCE = dyn_cast<ConstantExpr>(Res)) + Res = ConstantExpr::getIntToPtr(Res, ResTy); + if (auto *ResCE = dyn_cast<ConstantExpr>(Res)) Res = ConstantFoldConstantExpression(ResCE, DL, TLI); return Res; } @@ -765,19 +786,19 @@ static Constant *SymbolicallyEvaluateGEP(Type *SrcTy, ArrayRef<Constant *> Ops, unsigned BitWidth = DL.getTypeSizeInBits(IntPtrTy); APInt Offset = APInt(BitWidth, - DL.getIndexedOffset( - Ptr->getType(), + DL.getIndexedOffsetInType( + SrcElemTy, makeArrayRef((Value * const *)Ops.data() + 1, Ops.size() - 1))); - Ptr = StripPtrCastKeepAS(Ptr); + Ptr = StripPtrCastKeepAS(Ptr, SrcElemTy); // If this is a GEP of a GEP, fold it all into a single GEP. - while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) { + while (auto *GEP = dyn_cast<GEPOperator>(Ptr)) { SmallVector<Value *, 4> NestedOps(GEP->op_begin() + 1, GEP->op_end()); // Do not try the incorporate the sub-GEP if some index is not a number. bool AllConstantInt = true; - for (unsigned i = 0, e = NestedOps.size(); i != e; ++i) - if (!isa<ConstantInt>(NestedOps[i])) { + for (Value *NestedOp : NestedOps) + if (!isa<ConstantInt>(NestedOp)) { AllConstantInt = false; break; } @@ -785,23 +806,24 @@ static Constant *SymbolicallyEvaluateGEP(Type *SrcTy, ArrayRef<Constant *> Ops, break; Ptr = cast<Constant>(GEP->getOperand(0)); - Offset += APInt(BitWidth, DL.getIndexedOffset(Ptr->getType(), NestedOps)); - Ptr = StripPtrCastKeepAS(Ptr); + SrcElemTy = GEP->getSourceElementType(); + Offset += APInt(BitWidth, DL.getIndexedOffsetInType(SrcElemTy, NestedOps)); + Ptr = StripPtrCastKeepAS(Ptr, SrcElemTy); } // If the base value for this address is a literal integer value, fold the // getelementptr to the resulting integer value casted to the pointer type. APInt BasePtr(BitWidth, 0); - if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) { + if (auto *CE = dyn_cast<ConstantExpr>(Ptr)) { if (CE->getOpcode() == Instruction::IntToPtr) { - if (ConstantInt *Base = dyn_cast<ConstantInt>(CE->getOperand(0))) + if (auto *Base = dyn_cast<ConstantInt>(CE->getOperand(0))) BasePtr = Base->getValue().zextOrTrunc(BitWidth); } } if (Ptr->isNullValue() || BasePtr != 0) { Constant *C = ConstantInt::get(Ptr->getContext(), Offset + BasePtr); - return ConstantExpr::getIntToPtr(C, ResultTy); + return ConstantExpr::getIntToPtr(C, ResTy); } // Otherwise form a regular getelementptr. Recompute the indices so that @@ -813,39 +835,49 @@ static Constant *SymbolicallyEvaluateGEP(Type *SrcTy, ArrayRef<Constant *> Ops, SmallVector<Constant *, 32> NewIdxs; do { - if (SequentialType *ATy = dyn_cast<SequentialType>(Ty)) { - if (ATy->isPointerTy()) { + if (!Ty->isStructTy()) { + if (Ty->isPointerTy()) { // The only pointer indexing we'll do is on the first index of the GEP. if (!NewIdxs.empty()) break; + Ty = SrcElemTy; + // Only handle pointers to sized types, not pointers to functions. - if (!ATy->getElementType()->isSized()) + if (!Ty->isSized()) return nullptr; + } else if (auto *ATy = dyn_cast<SequentialType>(Ty)) { + Ty = ATy->getElementType(); + } else { + // We've reached some non-indexable type. + break; } // Determine which element of the array the offset points into. - APInt ElemSize(BitWidth, DL.getTypeAllocSize(ATy->getElementType())); - if (ElemSize == 0) + APInt ElemSize(BitWidth, DL.getTypeAllocSize(Ty)); + if (ElemSize == 0) { // The element size is 0. This may be [0 x Ty]*, so just use a zero // index for this level and proceed to the next level to see if it can // accommodate the offset. NewIdxs.push_back(ConstantInt::get(IntPtrTy, 0)); - else { + } else { // The element size is non-zero divide the offset by the element // size (rounding down), to compute the index at this level. - APInt NewIdx = Offset.udiv(ElemSize); + bool Overflow; + APInt NewIdx = Offset.sdiv_ov(ElemSize, Overflow); + if (Overflow) + break; Offset -= NewIdx * ElemSize; NewIdxs.push_back(ConstantInt::get(IntPtrTy, NewIdx)); } - Ty = ATy->getElementType(); - } else if (StructType *STy = dyn_cast<StructType>(Ty)) { + } else { + auto *STy = cast<StructType>(Ty); // If we end up with an offset that isn't valid for this struct type, we // can't re-form this GEP in a regular form, so bail out. The pointer // operand likely went through casts that are necessary to make the GEP // sensible. const StructLayout &SL = *DL.getStructLayout(STy); - if (Offset.uge(SL.getSizeInBytes())) + if (Offset.isNegative() || Offset.uge(SL.getSizeInBytes())) break; // Determine which field of the struct the offset points into. The @@ -856,11 +888,8 @@ static Constant *SymbolicallyEvaluateGEP(Type *SrcTy, ArrayRef<Constant *> Ops, ElIdx)); Offset -= APInt(BitWidth, SL.getElementOffset(ElIdx)); Ty = STy->getTypeAtIndex(ElIdx); - } else { - // We've reached some non-indexable type. - break; } - } while (Ty != ResultElementTy); + } while (Ty != ResElemTy); // If we haven't used up the entire offset by descending the static // type, then the offset is pointing into the middle of an indivisible @@ -869,33 +898,78 @@ static Constant *SymbolicallyEvaluateGEP(Type *SrcTy, ArrayRef<Constant *> Ops, return nullptr; // Create a GEP. - Constant *C = ConstantExpr::getGetElementPtr(SrcTy, Ptr, NewIdxs); + Constant *C = ConstantExpr::getGetElementPtr(SrcElemTy, Ptr, NewIdxs); assert(C->getType()->getPointerElementType() == Ty && "Computed GetElementPtr has unexpected type!"); // If we ended up indexing a member with a type that doesn't match // the type of what the original indices indexed, add a cast. - if (Ty != ResultElementTy) - C = FoldBitCast(C, ResultTy, DL); + if (Ty != ResElemTy) + C = FoldBitCast(C, ResTy, DL); return C; } +/// Attempt to constant fold an instruction with the +/// specified opcode and operands. If successful, the constant result is +/// returned, if not, null is returned. Note that this function can fail when +/// attempting to fold instructions like loads and stores, which have no +/// constant expression form. +/// +/// TODO: This function neither utilizes nor preserves nsw/nuw/inbounds/etc +/// information, due to only being passed an opcode and operands. Constant +/// folding using this function strips this information. +/// +Constant *ConstantFoldInstOperandsImpl(const Value *InstOrCE, Type *DestTy, + unsigned Opcode, + ArrayRef<Constant *> Ops, + const DataLayout &DL, + const TargetLibraryInfo *TLI) { + // Handle easy binops first. + if (Instruction::isBinaryOp(Opcode)) + return ConstantFoldBinaryOpOperands(Opcode, Ops[0], Ops[1], DL); + + if (Instruction::isCast(Opcode)) + return ConstantFoldCastOperand(Opcode, Ops[0], DestTy, DL); + + if (auto *GEP = dyn_cast<GEPOperator>(InstOrCE)) { + if (Constant *C = SymbolicallyEvaluateGEP(GEP, Ops, DL, TLI)) + return C; + + return ConstantExpr::getGetElementPtr(GEP->getSourceElementType(), + Ops[0], Ops.slice(1)); + } + + switch (Opcode) { + default: return nullptr; + case Instruction::ICmp: + case Instruction::FCmp: llvm_unreachable("Invalid for compares"); + case Instruction::Call: + if (auto *F = dyn_cast<Function>(Ops.back())) + if (canConstantFoldCallTo(F)) + return ConstantFoldCall(F, Ops.slice(0, Ops.size() - 1), TLI); + return nullptr; + case Instruction::Select: + return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]); + case Instruction::ExtractElement: + return ConstantExpr::getExtractElement(Ops[0], Ops[1]); + case Instruction::InsertElement: + return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]); + case Instruction::ShuffleVector: + return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]); + } +} +} // end anonymous namespace //===----------------------------------------------------------------------===// // Constant Folding public APIs //===----------------------------------------------------------------------===// -/// Try to constant fold the specified instruction. -/// If successful, the constant result is returned, if not, null is returned. -/// Note that this fails if not all of the operands are constant. Otherwise, -/// this function can only fail when attempting to fold instructions like loads -/// and stores, which have no constant expression form. Constant *llvm::ConstantFoldInstruction(Instruction *I, const DataLayout &DL, const TargetLibraryInfo *TLI) { // Handle PHI nodes quickly here... - if (PHINode *PN = dyn_cast<PHINode>(I)) { + if (auto *PN = dyn_cast<PHINode>(I)) { Constant *CommonValue = nullptr; for (Value *Incoming : PN->incoming_values()) { @@ -906,11 +980,11 @@ Constant *llvm::ConstantFoldInstruction(Instruction *I, const DataLayout &DL, if (isa<UndefValue>(Incoming)) continue; // If the incoming value is not a constant, then give up. - Constant *C = dyn_cast<Constant>(Incoming); + auto *C = dyn_cast<Constant>(Incoming); if (!C) return nullptr; // Fold the PHI's operands. - if (ConstantExpr *NewC = dyn_cast<ConstantExpr>(C)) + if (auto *NewC = dyn_cast<ConstantExpr>(C)) C = ConstantFoldConstantExpression(NewC, DL, TLI); // If the incoming value is a different constant to // the one we saw previously, then give up. @@ -925,54 +999,55 @@ Constant *llvm::ConstantFoldInstruction(Instruction *I, const DataLayout &DL, } // Scan the operand list, checking to see if they are all constants, if so, - // hand off to ConstantFoldInstOperands. - SmallVector<Constant*, 8> Ops; - for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) { - Constant *Op = dyn_cast<Constant>(*i); - if (!Op) - return nullptr; // All operands not constant! + // hand off to ConstantFoldInstOperandsImpl. + if (!all_of(I->operands(), [](Use &U) { return isa<Constant>(U); })) + return nullptr; + SmallVector<Constant *, 8> Ops; + for (const Use &OpU : I->operands()) { + auto *Op = cast<Constant>(&OpU); // Fold the Instruction's operands. - if (ConstantExpr *NewCE = dyn_cast<ConstantExpr>(Op)) + if (auto *NewCE = dyn_cast<ConstantExpr>(Op)) Op = ConstantFoldConstantExpression(NewCE, DL, TLI); Ops.push_back(Op); } - if (const CmpInst *CI = dyn_cast<CmpInst>(I)) + if (const auto *CI = dyn_cast<CmpInst>(I)) return ConstantFoldCompareInstOperands(CI->getPredicate(), Ops[0], Ops[1], DL, TLI); - if (const LoadInst *LI = dyn_cast<LoadInst>(I)) + if (const auto *LI = dyn_cast<LoadInst>(I)) return ConstantFoldLoadInst(LI, DL); - if (InsertValueInst *IVI = dyn_cast<InsertValueInst>(I)) { + if (auto *IVI = dyn_cast<InsertValueInst>(I)) { return ConstantExpr::getInsertValue( cast<Constant>(IVI->getAggregateOperand()), cast<Constant>(IVI->getInsertedValueOperand()), IVI->getIndices()); } - if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(I)) { + if (auto *EVI = dyn_cast<ExtractValueInst>(I)) { return ConstantExpr::getExtractValue( cast<Constant>(EVI->getAggregateOperand()), EVI->getIndices()); } - return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Ops, DL, TLI); + return ConstantFoldInstOperands(I, Ops, DL, TLI); } -static Constant * +namespace { + +Constant * ConstantFoldConstantExpressionImpl(const ConstantExpr *CE, const DataLayout &DL, const TargetLibraryInfo *TLI, SmallPtrSetImpl<ConstantExpr *> &FoldedOps) { SmallVector<Constant *, 8> Ops; - for (User::const_op_iterator i = CE->op_begin(), e = CE->op_end(); i != e; - ++i) { - Constant *NewC = cast<Constant>(*i); + for (const Use &NewU : CE->operands()) { + auto *NewC = cast<Constant>(&NewU); // Recursively fold the ConstantExpr's operands. If we have already folded // a ConstantExpr, we don't have to process it again. - if (ConstantExpr *NewCE = dyn_cast<ConstantExpr>(NewC)) { + if (auto *NewCE = dyn_cast<ConstantExpr>(NewC)) { if (FoldedOps.insert(NewCE).second) NewC = ConstantFoldConstantExpressionImpl(NewCE, DL, TLI, FoldedOps); } @@ -982,12 +1057,13 @@ ConstantFoldConstantExpressionImpl(const ConstantExpr *CE, const DataLayout &DL, if (CE->isCompare()) return ConstantFoldCompareInstOperands(CE->getPredicate(), Ops[0], Ops[1], DL, TLI); - return ConstantFoldInstOperands(CE->getOpcode(), CE->getType(), Ops, DL, TLI); + + return ConstantFoldInstOperandsImpl(CE, CE->getType(), CE->getOpcode(), Ops, + DL, TLI); } -/// Attempt to fold the constant expression -/// using the specified DataLayout. If successful, the constant result is -/// result is returned, if not, null is returned. +} // end anonymous namespace + Constant *llvm::ConstantFoldConstantExpression(const ConstantExpr *CE, const DataLayout &DL, const TargetLibraryInfo *TLI) { @@ -995,114 +1071,22 @@ Constant *llvm::ConstantFoldConstantExpression(const ConstantExpr *CE, return ConstantFoldConstantExpressionImpl(CE, DL, TLI, FoldedOps); } -/// Attempt to constant fold an instruction with the -/// specified opcode and operands. If successful, the constant result is -/// returned, if not, null is returned. Note that this function can fail when -/// attempting to fold instructions like loads and stores, which have no -/// constant expression form. -/// -/// TODO: This function neither utilizes nor preserves nsw/nuw/inbounds/etc -/// information, due to only being passed an opcode and operands. Constant -/// folding using this function strips this information. -/// -Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, Type *DestTy, +Constant *llvm::ConstantFoldInstOperands(Instruction *I, ArrayRef<Constant *> Ops, const DataLayout &DL, const TargetLibraryInfo *TLI) { - // Handle easy binops first. - if (Instruction::isBinaryOp(Opcode)) { - if (isa<ConstantExpr>(Ops[0]) || isa<ConstantExpr>(Ops[1])) { - if (Constant *C = SymbolicallyEvaluateBinop(Opcode, Ops[0], Ops[1], DL)) - return C; - } - - return ConstantExpr::get(Opcode, Ops[0], Ops[1]); - } - - switch (Opcode) { - default: return nullptr; - case Instruction::ICmp: - case Instruction::FCmp: llvm_unreachable("Invalid for compares"); - case Instruction::Call: - if (Function *F = dyn_cast<Function>(Ops.back())) - if (canConstantFoldCallTo(F)) - return ConstantFoldCall(F, Ops.slice(0, Ops.size() - 1), TLI); - return nullptr; - case Instruction::PtrToInt: - // If the input is a inttoptr, eliminate the pair. This requires knowing - // the width of a pointer, so it can't be done in ConstantExpr::getCast. - if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0])) { - if (CE->getOpcode() == Instruction::IntToPtr) { - Constant *Input = CE->getOperand(0); - unsigned InWidth = Input->getType()->getScalarSizeInBits(); - unsigned PtrWidth = DL.getPointerTypeSizeInBits(CE->getType()); - if (PtrWidth < InWidth) { - Constant *Mask = - ConstantInt::get(CE->getContext(), - APInt::getLowBitsSet(InWidth, PtrWidth)); - Input = ConstantExpr::getAnd(Input, Mask); - } - // Do a zext or trunc to get to the dest size. - return ConstantExpr::getIntegerCast(Input, DestTy, false); - } - } - return ConstantExpr::getCast(Opcode, Ops[0], DestTy); - case Instruction::IntToPtr: - // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if - // the int size is >= the ptr size and the address spaces are the same. - // This requires knowing the width of a pointer, so it can't be done in - // ConstantExpr::getCast. - if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0])) { - if (CE->getOpcode() == Instruction::PtrToInt) { - Constant *SrcPtr = CE->getOperand(0); - unsigned SrcPtrSize = DL.getPointerTypeSizeInBits(SrcPtr->getType()); - unsigned MidIntSize = CE->getType()->getScalarSizeInBits(); - - if (MidIntSize >= SrcPtrSize) { - unsigned SrcAS = SrcPtr->getType()->getPointerAddressSpace(); - if (SrcAS == DestTy->getPointerAddressSpace()) - return FoldBitCast(CE->getOperand(0), DestTy, DL); - } - } - } - - return ConstantExpr::getCast(Opcode, Ops[0], DestTy); - case Instruction::Trunc: - case Instruction::ZExt: - case Instruction::SExt: - case Instruction::FPTrunc: - case Instruction::FPExt: - case Instruction::UIToFP: - case Instruction::SIToFP: - case Instruction::FPToUI: - case Instruction::FPToSI: - case Instruction::AddrSpaceCast: - return ConstantExpr::getCast(Opcode, Ops[0], DestTy); - case Instruction::BitCast: - return FoldBitCast(Ops[0], DestTy, DL); - case Instruction::Select: - return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]); - case Instruction::ExtractElement: - return ConstantExpr::getExtractElement(Ops[0], Ops[1]); - case Instruction::InsertElement: - return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]); - case Instruction::ShuffleVector: - return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]); - case Instruction::GetElementPtr: { - Type *SrcTy = nullptr; - if (Constant *C = CastGEPIndices(SrcTy, Ops, DestTy, DL, TLI)) - return C; - if (Constant *C = SymbolicallyEvaluateGEP(SrcTy, Ops, DestTy, DL, TLI)) - return C; + return ConstantFoldInstOperandsImpl(I, I->getType(), I->getOpcode(), Ops, DL, + TLI); +} - return ConstantExpr::getGetElementPtr(SrcTy, Ops[0], Ops.slice(1)); - } - } +Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, Type *DestTy, + ArrayRef<Constant *> Ops, + const DataLayout &DL, + const TargetLibraryInfo *TLI) { + assert(Opcode != Instruction::GetElementPtr && "Invalid for GEPs"); + return ConstantFoldInstOperandsImpl(nullptr, DestTy, Opcode, Ops, DL, TLI); } -/// Attempt to constant fold a compare -/// instruction (icmp/fcmp) with the specified operands. If it fails, it -/// returns a constant expression of the specified operands. Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate, Constant *Ops0, Constant *Ops1, const DataLayout &DL, @@ -1115,7 +1099,7 @@ Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate, // FIXME: The following comment is out of data and the DataLayout is here now. // ConstantExpr::getCompare cannot do this, because it doesn't have DL // around to know if bit truncation is happening. - if (ConstantExpr *CE0 = dyn_cast<ConstantExpr>(Ops0)) { + if (auto *CE0 = dyn_cast<ConstantExpr>(Ops0)) { if (Ops1->isNullValue()) { if (CE0->getOpcode() == Instruction::IntToPtr) { Type *IntPtrTy = DL.getIntPtrType(CE0->getType()); @@ -1139,7 +1123,7 @@ Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate, } } - if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(Ops1)) { + if (auto *CE1 = dyn_cast<ConstantExpr>(Ops1)) { if (CE0->getOpcode() == CE1->getOpcode()) { if (CE0->getOpcode() == Instruction::IntToPtr) { Type *IntPtrTy = DL.getIntPtrType(CE0->getType()); @@ -1176,18 +1160,85 @@ Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate, Predicate, CE0->getOperand(1), Ops1, DL, TLI); unsigned OpC = Predicate == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; - Constant *Ops[] = { LHS, RHS }; - return ConstantFoldInstOperands(OpC, LHS->getType(), Ops, DL, TLI); + return ConstantFoldBinaryOpOperands(OpC, LHS, RHS, DL); } } return ConstantExpr::getCompare(Predicate, Ops0, Ops1); } +Constant *llvm::ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS, + Constant *RHS, + const DataLayout &DL) { + assert(Instruction::isBinaryOp(Opcode)); + if (isa<ConstantExpr>(LHS) || isa<ConstantExpr>(RHS)) + if (Constant *C = SymbolicallyEvaluateBinop(Opcode, LHS, RHS, DL)) + return C; + + return ConstantExpr::get(Opcode, LHS, RHS); +} + +Constant *llvm::ConstantFoldCastOperand(unsigned Opcode, Constant *C, + Type *DestTy, const DataLayout &DL) { + assert(Instruction::isCast(Opcode)); + switch (Opcode) { + default: + llvm_unreachable("Missing case"); + case Instruction::PtrToInt: + // If the input is a inttoptr, eliminate the pair. This requires knowing + // the width of a pointer, so it can't be done in ConstantExpr::getCast. + if (auto *CE = dyn_cast<ConstantExpr>(C)) { + if (CE->getOpcode() == Instruction::IntToPtr) { + Constant *Input = CE->getOperand(0); + unsigned InWidth = Input->getType()->getScalarSizeInBits(); + unsigned PtrWidth = DL.getPointerTypeSizeInBits(CE->getType()); + if (PtrWidth < InWidth) { + Constant *Mask = + ConstantInt::get(CE->getContext(), + APInt::getLowBitsSet(InWidth, PtrWidth)); + Input = ConstantExpr::getAnd(Input, Mask); + } + // Do a zext or trunc to get to the dest size. + return ConstantExpr::getIntegerCast(Input, DestTy, false); + } + } + return ConstantExpr::getCast(Opcode, C, DestTy); + case Instruction::IntToPtr: + // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if + // the int size is >= the ptr size and the address spaces are the same. + // This requires knowing the width of a pointer, so it can't be done in + // ConstantExpr::getCast. + if (auto *CE = dyn_cast<ConstantExpr>(C)) { + if (CE->getOpcode() == Instruction::PtrToInt) { + Constant *SrcPtr = CE->getOperand(0); + unsigned SrcPtrSize = DL.getPointerTypeSizeInBits(SrcPtr->getType()); + unsigned MidIntSize = CE->getType()->getScalarSizeInBits(); + + if (MidIntSize >= SrcPtrSize) { + unsigned SrcAS = SrcPtr->getType()->getPointerAddressSpace(); + if (SrcAS == DestTy->getPointerAddressSpace()) + return FoldBitCast(CE->getOperand(0), DestTy, DL); + } + } + } + + return ConstantExpr::getCast(Opcode, C, DestTy); + case Instruction::Trunc: + case Instruction::ZExt: + case Instruction::SExt: + case Instruction::FPTrunc: + case Instruction::FPExt: + case Instruction::UIToFP: + case Instruction::SIToFP: + case Instruction::FPToUI: + case Instruction::FPToSI: + case Instruction::AddrSpaceCast: + return ConstantExpr::getCast(Opcode, C, DestTy); + case Instruction::BitCast: + return FoldBitCast(C, DestTy, DL); + } +} -/// Given a constant and a getelementptr constantexpr, return the constant value -/// being addressed by the constant expression, or null if something is funny -/// and we can't decide. Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C, ConstantExpr *CE) { if (!CE->getOperand(1)->isNullValue()) @@ -1203,27 +1254,23 @@ Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C, return C; } -/// Given a constant and getelementptr indices (with an *implied* zero pointer -/// index that is not in the list), return the constant value being addressed by -/// a virtual load, or null if something is funny and we can't decide. -Constant *llvm::ConstantFoldLoadThroughGEPIndices(Constant *C, - ArrayRef<Constant*> Indices) { +Constant * +llvm::ConstantFoldLoadThroughGEPIndices(Constant *C, + ArrayRef<Constant *> Indices) { // Loop over all of the operands, tracking down which value we are // addressing. - for (unsigned i = 0, e = Indices.size(); i != e; ++i) { - C = C->getAggregateElement(Indices[i]); + for (Constant *Index : Indices) { + C = C->getAggregateElement(Index); if (!C) return nullptr; } return C; } - //===----------------------------------------------------------------------===// // Constant Folding for Calls // -/// Return true if it's even possible to fold a call to the specified function. bool llvm::canConstantFoldCallTo(const Function *F) { switch (F->getIntrinsicID()) { case Intrinsic::fabs: @@ -1252,6 +1299,7 @@ bool llvm::canConstantFoldCallTo(const Function *F) { case Intrinsic::fmuladd: case Intrinsic::copysign: case Intrinsic::round: + case Intrinsic::masked_load: case Intrinsic::sadd_with_overflow: case Intrinsic::uadd_with_overflow: case Intrinsic::ssub_with_overflow: @@ -1260,6 +1308,7 @@ bool llvm::canConstantFoldCallTo(const Function *F) { case Intrinsic::umul_with_overflow: case Intrinsic::convert_from_fp16: case Intrinsic::convert_to_fp16: + case Intrinsic::bitreverse: case Intrinsic::x86_sse_cvtss2si: case Intrinsic::x86_sse_cvtss2si64: case Intrinsic::x86_sse_cvttss2si: @@ -1309,7 +1358,9 @@ bool llvm::canConstantFoldCallTo(const Function *F) { } } -static Constant *GetConstantFoldFPValue(double V, Type *Ty) { +namespace { + +Constant *GetConstantFoldFPValue(double V, Type *Ty) { if (Ty->isHalfTy()) { APFloat APF(V); bool unused; @@ -1321,12 +1372,10 @@ static Constant *GetConstantFoldFPValue(double V, Type *Ty) { if (Ty->isDoubleTy()) return ConstantFP::get(Ty->getContext(), APFloat(V)); llvm_unreachable("Can only constant fold half/float/double"); - } -namespace { /// Clear the floating-point exception state. -static inline void llvm_fenv_clearexcept() { +inline void llvm_fenv_clearexcept() { #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT feclearexcept(FE_ALL_EXCEPT); #endif @@ -1334,7 +1383,7 @@ static inline void llvm_fenv_clearexcept() { } /// Test if a floating-point exception was raised. -static inline bool llvm_fenv_testexcept() { +inline bool llvm_fenv_testexcept() { int errno_val = errno; if (errno_val == ERANGE || errno_val == EDOM) return true; @@ -1344,10 +1393,8 @@ static inline bool llvm_fenv_testexcept() { #endif return false; } -} // End namespace -static Constant *ConstantFoldFP(double (*NativeFP)(double), double V, - Type *Ty) { +Constant *ConstantFoldFP(double (*NativeFP)(double), double V, Type *Ty) { llvm_fenv_clearexcept(); V = NativeFP(V); if (llvm_fenv_testexcept()) { @@ -1358,8 +1405,8 @@ static Constant *ConstantFoldFP(double (*NativeFP)(double), double V, return GetConstantFoldFPValue(V, Ty); } -static Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double), - double V, double W, Type *Ty) { +Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double), double V, + double W, Type *Ty) { llvm_fenv_clearexcept(); V = NativeFP(V, W); if (llvm_fenv_testexcept()) { @@ -1377,8 +1424,8 @@ static Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double), /// integer type Ty is used to select how many bits are available for the /// result. Returns null if the conversion cannot be performed, otherwise /// returns the Constant value resulting from the conversion. -static Constant *ConstantFoldConvertToInt(const APFloat &Val, - bool roundTowardZero, Type *Ty) { +Constant *ConstantFoldSSEConvertToInt(const APFloat &Val, bool roundTowardZero, + Type *Ty) { // All of these conversion intrinsics form an integer of at most 64bits. unsigned ResultWidth = Ty->getIntegerBitWidth(); assert(ResultWidth <= 64 && @@ -1391,12 +1438,13 @@ static Constant *ConstantFoldConvertToInt(const APFloat &Val, APFloat::opStatus status = Val.convertToInteger(&UIntVal, ResultWidth, /*isSigned=*/true, mode, &isExact); - if (status != APFloat::opOK && status != APFloat::opInexact) + if (status != APFloat::opOK && + (!roundTowardZero || status != APFloat::opInexact)) return nullptr; return ConstantInt::get(Ty, UIntVal, /*isSigned=*/true); } -static double getValueAsDouble(ConstantFP *Op) { +double getValueAsDouble(ConstantFP *Op) { Type *Ty = Op->getType(); if (Ty->isFloatTy()) @@ -1411,11 +1459,16 @@ static double getValueAsDouble(ConstantFP *Op) { return APF.convertToDouble(); } -static Constant *ConstantFoldScalarCall(StringRef Name, unsigned IntrinsicID, - Type *Ty, ArrayRef<Constant *> Operands, - const TargetLibraryInfo *TLI) { +Constant *ConstantFoldScalarCall(StringRef Name, unsigned IntrinsicID, Type *Ty, + ArrayRef<Constant *> Operands, + const TargetLibraryInfo *TLI) { if (Operands.size() == 1) { - if (ConstantFP *Op = dyn_cast<ConstantFP>(Operands[0])) { + if (isa<UndefValue>(Operands[0])) { + // cosine(arg) is between -1 and 1. cosine(invalid arg) is NaN + if (IntrinsicID == Intrinsic::cos) + return Constant::getNullValue(Ty); + } + if (auto *Op = dyn_cast<ConstantFP>(Operands[0])) { if (IntrinsicID == Intrinsic::convert_to_fp16) { APFloat Val(Op->getValueAPF()); @@ -1586,12 +1639,14 @@ static Constant *ConstantFoldScalarCall(StringRef Name, unsigned IntrinsicID, return nullptr; } - if (ConstantInt *Op = dyn_cast<ConstantInt>(Operands[0])) { + if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) { switch (IntrinsicID) { case Intrinsic::bswap: return ConstantInt::get(Ty->getContext(), Op->getValue().byteSwap()); case Intrinsic::ctpop: return ConstantInt::get(Ty, Op->getValue().countPopulation()); + case Intrinsic::bitreverse: + return ConstantInt::get(Ty->getContext(), Op->getValue().reverseBits()); case Intrinsic::convert_from_fp16: { APFloat Val(APFloat::IEEEhalf, Op->getValue()); @@ -1614,7 +1669,7 @@ static Constant *ConstantFoldScalarCall(StringRef Name, unsigned IntrinsicID, // Support ConstantVector in case we have an Undef in the top. if (isa<ConstantVector>(Operands[0]) || isa<ConstantDataVector>(Operands[0])) { - Constant *Op = cast<Constant>(Operands[0]); + auto *Op = cast<Constant>(Operands[0]); switch (IntrinsicID) { default: break; case Intrinsic::x86_sse_cvtss2si: @@ -1622,17 +1677,17 @@ static Constant *ConstantFoldScalarCall(StringRef Name, unsigned IntrinsicID, case Intrinsic::x86_sse2_cvtsd2si: case Intrinsic::x86_sse2_cvtsd2si64: if (ConstantFP *FPOp = - dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) - return ConstantFoldConvertToInt(FPOp->getValueAPF(), - /*roundTowardZero=*/false, Ty); + dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) + return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), + /*roundTowardZero=*/false, Ty); case Intrinsic::x86_sse_cvttss2si: case Intrinsic::x86_sse_cvttss2si64: case Intrinsic::x86_sse2_cvttsd2si: case Intrinsic::x86_sse2_cvttsd2si64: if (ConstantFP *FPOp = - dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) - return ConstantFoldConvertToInt(FPOp->getValueAPF(), - /*roundTowardZero=*/true, Ty); + dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) + return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), + /*roundTowardZero=*/true, Ty); } } @@ -1646,12 +1701,12 @@ static Constant *ConstantFoldScalarCall(StringRef Name, unsigned IntrinsicID, } if (Operands.size() == 2) { - if (ConstantFP *Op1 = dyn_cast<ConstantFP>(Operands[0])) { + if (auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) { if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy()) return nullptr; double Op1V = getValueAsDouble(Op1); - if (ConstantFP *Op2 = dyn_cast<ConstantFP>(Operands[1])) { + if (auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) { if (Op2->getType() != Op1->getType()) return nullptr; @@ -1661,7 +1716,7 @@ static Constant *ConstantFoldScalarCall(StringRef Name, unsigned IntrinsicID, } if (IntrinsicID == Intrinsic::copysign) { APFloat V1 = Op1->getValueAPF(); - APFloat V2 = Op2->getValueAPF(); + const APFloat &V2 = Op2->getValueAPF(); V1.copySign(V2); return ConstantFP::get(Ty->getContext(), V1); } @@ -1689,7 +1744,7 @@ static Constant *ConstantFoldScalarCall(StringRef Name, unsigned IntrinsicID, if ((Name == "atan2" && TLI->has(LibFunc::atan2)) || (Name == "atan2f" && TLI->has(LibFunc::atan2f))) return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty); - } else if (ConstantInt *Op2C = dyn_cast<ConstantInt>(Operands[1])) { + } else if (auto *Op2C = dyn_cast<ConstantInt>(Operands[1])) { if (IntrinsicID == Intrinsic::powi && Ty->isHalfTy()) return ConstantFP::get(Ty->getContext(), APFloat((float)std::pow((float)Op1V, @@ -1706,8 +1761,8 @@ static Constant *ConstantFoldScalarCall(StringRef Name, unsigned IntrinsicID, return nullptr; } - if (ConstantInt *Op1 = dyn_cast<ConstantInt>(Operands[0])) { - if (ConstantInt *Op2 = dyn_cast<ConstantInt>(Operands[1])) { + if (auto *Op1 = dyn_cast<ConstantInt>(Operands[0])) { + if (auto *Op2 = dyn_cast<ConstantInt>(Operands[1])) { switch (IntrinsicID) { default: break; case Intrinsic::sadd_with_overflow: @@ -1764,9 +1819,9 @@ static Constant *ConstantFoldScalarCall(StringRef Name, unsigned IntrinsicID, if (Operands.size() != 3) return nullptr; - if (const ConstantFP *Op1 = dyn_cast<ConstantFP>(Operands[0])) { - if (const ConstantFP *Op2 = dyn_cast<ConstantFP>(Operands[1])) { - if (const ConstantFP *Op3 = dyn_cast<ConstantFP>(Operands[2])) { + if (const auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) { + if (const auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) { + if (const auto *Op3 = dyn_cast<ConstantFP>(Operands[2])) { switch (IntrinsicID) { default: break; case Intrinsic::fma: @@ -1788,14 +1843,53 @@ static Constant *ConstantFoldScalarCall(StringRef Name, unsigned IntrinsicID, return nullptr; } -static Constant *ConstantFoldVectorCall(StringRef Name, unsigned IntrinsicID, - VectorType *VTy, - ArrayRef<Constant *> Operands, - const TargetLibraryInfo *TLI) { +Constant *ConstantFoldVectorCall(StringRef Name, unsigned IntrinsicID, + VectorType *VTy, ArrayRef<Constant *> Operands, + const DataLayout &DL, + const TargetLibraryInfo *TLI) { SmallVector<Constant *, 4> Result(VTy->getNumElements()); SmallVector<Constant *, 4> Lane(Operands.size()); Type *Ty = VTy->getElementType(); + if (IntrinsicID == Intrinsic::masked_load) { + auto *SrcPtr = Operands[0]; + auto *Mask = Operands[2]; + auto *Passthru = Operands[3]; + + Constant *VecData = ConstantFoldLoadFromConstPtr(SrcPtr, VTy, DL); + + SmallVector<Constant *, 32> NewElements; + for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) { + auto *MaskElt = Mask->getAggregateElement(I); + if (!MaskElt) + break; + auto *PassthruElt = Passthru->getAggregateElement(I); + auto *VecElt = VecData ? VecData->getAggregateElement(I) : nullptr; + if (isa<UndefValue>(MaskElt)) { + if (PassthruElt) + NewElements.push_back(PassthruElt); + else if (VecElt) + NewElements.push_back(VecElt); + else + return nullptr; + } + if (MaskElt->isNullValue()) { + if (!PassthruElt) + return nullptr; + NewElements.push_back(PassthruElt); + } else if (MaskElt->isOneValue()) { + if (!VecElt) + return nullptr; + NewElements.push_back(VecElt); + } else { + return nullptr; + } + } + if (NewElements.size() != VTy->getNumElements()) + return nullptr; + return ConstantVector::get(NewElements); + } + for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) { // Gather a column of constants. for (unsigned J = 0, JE = Operands.size(); J != JE; ++J) { @@ -1816,8 +1910,8 @@ static Constant *ConstantFoldVectorCall(StringRef Name, unsigned IntrinsicID, return ConstantVector::get(Result); } -/// Attempt to constant fold a call to the specified function -/// with the specified arguments, returning null if unsuccessful. +} // end anonymous namespace + Constant * llvm::ConstantFoldCall(Function *F, ArrayRef<Constant *> Operands, const TargetLibraryInfo *TLI) { @@ -1827,8 +1921,9 @@ llvm::ConstantFoldCall(Function *F, ArrayRef<Constant *> Operands, Type *Ty = F->getReturnType(); - if (VectorType *VTy = dyn_cast<VectorType>(Ty)) - return ConstantFoldVectorCall(Name, F->getIntrinsicID(), VTy, Operands, TLI); + if (auto *VTy = dyn_cast<VectorType>(Ty)) + return ConstantFoldVectorCall(Name, F->getIntrinsicID(), VTy, Operands, + F->getParent()->getDataLayout(), TLI); return ConstantFoldScalarCall(Name, F->getIntrinsicID(), Ty, Operands, TLI); } |