summaryrefslogtreecommitdiffstats
path: root/contrib/gdb/include
diff options
context:
space:
mode:
authormarcel <marcel@FreeBSD.org>2004-06-20 20:36:15 +0000
committermarcel <marcel@FreeBSD.org>2004-06-20 20:36:15 +0000
commitf334d9365628598bbfb5b8c3e5ff82d5c93f9ed7 (patch)
tree060db2c2fa89d5348d02d41ffcfb096ef6b326ab /contrib/gdb/include
parent6da2beab7f95422c9010755a8330c9551705260e (diff)
downloadFreeBSD-src-f334d9365628598bbfb5b8c3e5ff82d5c93f9ed7.zip
FreeBSD-src-f334d9365628598bbfb5b8c3e5ff82d5c93f9ed7.tar.gz
Revive files which were pulled from the vendor branch only to be
removed on HEAD, but which are part of the GDB 6.1.1 import. This makes HEAD identical to the vendor branch, for better or for worse.
Diffstat (limited to 'contrib/gdb/include')
-rw-r--r--contrib/gdb/include/COPYING340
-rw-r--r--contrib/gdb/include/ansidecl.h315
-rw-r--r--contrib/gdb/include/bfdlink.h686
-rw-r--r--contrib/gdb/include/bout.h191
-rw-r--r--contrib/gdb/include/demangle.h533
-rw-r--r--contrib/gdb/include/dis-asm.h317
-rw-r--r--contrib/gdb/include/floatformat.h133
-rw-r--r--contrib/gdb/include/fopen-bin.h27
-rw-r--r--contrib/gdb/include/fopen-same.h27
-rw-r--r--contrib/gdb/include/gdbm.h91
-rw-r--r--contrib/gdb/include/getopt.h144
-rw-r--r--contrib/gdb/include/hp-symtab.h1866
-rw-r--r--contrib/gdb/include/ieee.h165
-rw-r--r--contrib/gdb/include/libiberty.h335
-rw-r--r--contrib/gdb/include/oasys.h192
-rw-r--r--contrib/gdb/include/obstack.h611
-rw-r--r--contrib/gdb/include/os9k.h181
-rw-r--r--contrib/gdb/include/progress.h37
18 files changed, 6191 insertions, 0 deletions
diff --git a/contrib/gdb/include/COPYING b/contrib/gdb/include/COPYING
new file mode 100644
index 0000000..d60c31a
--- /dev/null
+++ b/contrib/gdb/include/COPYING
@@ -0,0 +1,340 @@
+ GNU GENERAL PUBLIC LICENSE
+ Version 2, June 1991
+
+ Copyright (C) 1989, 1991 Free Software Foundation, Inc.
+ 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+ Everyone is permitted to copy and distribute verbatim copies
+ of this license document, but changing it is not allowed.
+
+ Preamble
+
+ The licenses for most software are designed to take away your
+freedom to share and change it. By contrast, the GNU General Public
+License is intended to guarantee your freedom to share and change free
+software--to make sure the software is free for all its users. This
+General Public License applies to most of the Free Software
+Foundation's software and to any other program whose authors commit to
+using it. (Some other Free Software Foundation software is covered by
+the GNU Library General Public License instead.) You can apply it to
+your programs, too.
+
+ When we speak of free software, we are referring to freedom, not
+price. Our General Public Licenses are designed to make sure that you
+have the freedom to distribute copies of free software (and charge for
+this service if you wish), that you receive source code or can get it
+if you want it, that you can change the software or use pieces of it
+in new free programs; and that you know you can do these things.
+
+ To protect your rights, we need to make restrictions that forbid
+anyone to deny you these rights or to ask you to surrender the rights.
+These restrictions translate to certain responsibilities for you if you
+distribute copies of the software, or if you modify it.
+
+ For example, if you distribute copies of such a program, whether
+gratis or for a fee, you must give the recipients all the rights that
+you have. You must make sure that they, too, receive or can get the
+source code. And you must show them these terms so they know their
+rights.
+
+ We protect your rights with two steps: (1) copyright the software, and
+(2) offer you this license which gives you legal permission to copy,
+distribute and/or modify the software.
+
+ Also, for each author's protection and ours, we want to make certain
+that everyone understands that there is no warranty for this free
+software. If the software is modified by someone else and passed on, we
+want its recipients to know that what they have is not the original, so
+that any problems introduced by others will not reflect on the original
+authors' reputations.
+
+ Finally, any free program is threatened constantly by software
+patents. We wish to avoid the danger that redistributors of a free
+program will individually obtain patent licenses, in effect making the
+program proprietary. To prevent this, we have made it clear that any
+patent must be licensed for everyone's free use or not licensed at all.
+
+ The precise terms and conditions for copying, distribution and
+modification follow.
+
+ GNU GENERAL PUBLIC LICENSE
+ TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
+
+ 0. This License applies to any program or other work which contains
+a notice placed by the copyright holder saying it may be distributed
+under the terms of this General Public License. The "Program", below,
+refers to any such program or work, and a "work based on the Program"
+means either the Program or any derivative work under copyright law:
+that is to say, a work containing the Program or a portion of it,
+either verbatim or with modifications and/or translated into another
+language. (Hereinafter, translation is included without limitation in
+the term "modification".) Each licensee is addressed as "you".
+
+Activities other than copying, distribution and modification are not
+covered by this License; they are outside its scope. The act of
+running the Program is not restricted, and the output from the Program
+is covered only if its contents constitute a work based on the
+Program (independent of having been made by running the Program).
+Whether that is true depends on what the Program does.
+
+ 1. You may copy and distribute verbatim copies of the Program's
+source code as you receive it, in any medium, provided that you
+conspicuously and appropriately publish on each copy an appropriate
+copyright notice and disclaimer of warranty; keep intact all the
+notices that refer to this License and to the absence of any warranty;
+and give any other recipients of the Program a copy of this License
+along with the Program.
+
+You may charge a fee for the physical act of transferring a copy, and
+you may at your option offer warranty protection in exchange for a fee.
+
+ 2. You may modify your copy or copies of the Program or any portion
+of it, thus forming a work based on the Program, and copy and
+distribute such modifications or work under the terms of Section 1
+above, provided that you also meet all of these conditions:
+
+ a) You must cause the modified files to carry prominent notices
+ stating that you changed the files and the date of any change.
+
+ b) You must cause any work that you distribute or publish, that in
+ whole or in part contains or is derived from the Program or any
+ part thereof, to be licensed as a whole at no charge to all third
+ parties under the terms of this License.
+
+ c) If the modified program normally reads commands interactively
+ when run, you must cause it, when started running for such
+ interactive use in the most ordinary way, to print or display an
+ announcement including an appropriate copyright notice and a
+ notice that there is no warranty (or else, saying that you provide
+ a warranty) and that users may redistribute the program under
+ these conditions, and telling the user how to view a copy of this
+ License. (Exception: if the Program itself is interactive but
+ does not normally print such an announcement, your work based on
+ the Program is not required to print an announcement.)
+
+These requirements apply to the modified work as a whole. If
+identifiable sections of that work are not derived from the Program,
+and can be reasonably considered independent and separate works in
+themselves, then this License, and its terms, do not apply to those
+sections when you distribute them as separate works. But when you
+distribute the same sections as part of a whole which is a work based
+on the Program, the distribution of the whole must be on the terms of
+this License, whose permissions for other licensees extend to the
+entire whole, and thus to each and every part regardless of who wrote it.
+
+Thus, it is not the intent of this section to claim rights or contest
+your rights to work written entirely by you; rather, the intent is to
+exercise the right to control the distribution of derivative or
+collective works based on the Program.
+
+In addition, mere aggregation of another work not based on the Program
+with the Program (or with a work based on the Program) on a volume of
+a storage or distribution medium does not bring the other work under
+the scope of this License.
+
+ 3. You may copy and distribute the Program (or a work based on it,
+under Section 2) in object code or executable form under the terms of
+Sections 1 and 2 above provided that you also do one of the following:
+
+ a) Accompany it with the complete corresponding machine-readable
+ source code, which must be distributed under the terms of Sections
+ 1 and 2 above on a medium customarily used for software interchange; or,
+
+ b) Accompany it with a written offer, valid for at least three
+ years, to give any third party, for a charge no more than your
+ cost of physically performing source distribution, a complete
+ machine-readable copy of the corresponding source code, to be
+ distributed under the terms of Sections 1 and 2 above on a medium
+ customarily used for software interchange; or,
+
+ c) Accompany it with the information you received as to the offer
+ to distribute corresponding source code. (This alternative is
+ allowed only for noncommercial distribution and only if you
+ received the program in object code or executable form with such
+ an offer, in accord with Subsection b above.)
+
+The source code for a work means the preferred form of the work for
+making modifications to it. For an executable work, complete source
+code means all the source code for all modules it contains, plus any
+associated interface definition files, plus the scripts used to
+control compilation and installation of the executable. However, as a
+special exception, the source code distributed need not include
+anything that is normally distributed (in either source or binary
+form) with the major components (compiler, kernel, and so on) of the
+operating system on which the executable runs, unless that component
+itself accompanies the executable.
+
+If distribution of executable or object code is made by offering
+access to copy from a designated place, then offering equivalent
+access to copy the source code from the same place counts as
+distribution of the source code, even though third parties are not
+compelled to copy the source along with the object code.
+
+ 4. You may not copy, modify, sublicense, or distribute the Program
+except as expressly provided under this License. Any attempt
+otherwise to copy, modify, sublicense or distribute the Program is
+void, and will automatically terminate your rights under this License.
+However, parties who have received copies, or rights, from you under
+this License will not have their licenses terminated so long as such
+parties remain in full compliance.
+
+ 5. You are not required to accept this License, since you have not
+signed it. However, nothing else grants you permission to modify or
+distribute the Program or its derivative works. These actions are
+prohibited by law if you do not accept this License. Therefore, by
+modifying or distributing the Program (or any work based on the
+Program), you indicate your acceptance of this License to do so, and
+all its terms and conditions for copying, distributing or modifying
+the Program or works based on it.
+
+ 6. Each time you redistribute the Program (or any work based on the
+Program), the recipient automatically receives a license from the
+original licensor to copy, distribute or modify the Program subject to
+these terms and conditions. You may not impose any further
+restrictions on the recipients' exercise of the rights granted herein.
+You are not responsible for enforcing compliance by third parties to
+this License.
+
+ 7. If, as a consequence of a court judgment or allegation of patent
+infringement or for any other reason (not limited to patent issues),
+conditions are imposed on you (whether by court order, agreement or
+otherwise) that contradict the conditions of this License, they do not
+excuse you from the conditions of this License. If you cannot
+distribute so as to satisfy simultaneously your obligations under this
+License and any other pertinent obligations, then as a consequence you
+may not distribute the Program at all. For example, if a patent
+license would not permit royalty-free redistribution of the Program by
+all those who receive copies directly or indirectly through you, then
+the only way you could satisfy both it and this License would be to
+refrain entirely from distribution of the Program.
+
+If any portion of this section is held invalid or unenforceable under
+any particular circumstance, the balance of the section is intended to
+apply and the section as a whole is intended to apply in other
+circumstances.
+
+It is not the purpose of this section to induce you to infringe any
+patents or other property right claims or to contest validity of any
+such claims; this section has the sole purpose of protecting the
+integrity of the free software distribution system, which is
+implemented by public license practices. Many people have made
+generous contributions to the wide range of software distributed
+through that system in reliance on consistent application of that
+system; it is up to the author/donor to decide if he or she is willing
+to distribute software through any other system and a licensee cannot
+impose that choice.
+
+This section is intended to make thoroughly clear what is believed to
+be a consequence of the rest of this License.
+
+ 8. If the distribution and/or use of the Program is restricted in
+certain countries either by patents or by copyrighted interfaces, the
+original copyright holder who places the Program under this License
+may add an explicit geographical distribution limitation excluding
+those countries, so that distribution is permitted only in or among
+countries not thus excluded. In such case, this License incorporates
+the limitation as if written in the body of this License.
+
+ 9. The Free Software Foundation may publish revised and/or new versions
+of the General Public License from time to time. Such new versions will
+be similar in spirit to the present version, but may differ in detail to
+address new problems or concerns.
+
+Each version is given a distinguishing version number. If the Program
+specifies a version number of this License which applies to it and "any
+later version", you have the option of following the terms and conditions
+either of that version or of any later version published by the Free
+Software Foundation. If the Program does not specify a version number of
+this License, you may choose any version ever published by the Free Software
+Foundation.
+
+ 10. If you wish to incorporate parts of the Program into other free
+programs whose distribution conditions are different, write to the author
+to ask for permission. For software which is copyrighted by the Free
+Software Foundation, write to the Free Software Foundation; we sometimes
+make exceptions for this. Our decision will be guided by the two goals
+of preserving the free status of all derivatives of our free software and
+of promoting the sharing and reuse of software generally.
+
+ NO WARRANTY
+
+ 11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
+FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
+OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
+PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
+OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
+MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
+TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
+PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
+REPAIR OR CORRECTION.
+
+ 12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
+WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
+REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
+INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
+OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
+TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
+YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
+PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGES.
+
+ END OF TERMS AND CONDITIONS
+
+ How to Apply These Terms to Your New Programs
+
+ If you develop a new program, and you want it to be of the greatest
+possible use to the public, the best way to achieve this is to make it
+free software which everyone can redistribute and change under these terms.
+
+ To do so, attach the following notices to the program. It is safest
+to attach them to the start of each source file to most effectively
+convey the exclusion of warranty; and each file should have at least
+the "copyright" line and a pointer to where the full notice is found.
+
+ <one line to give the program's name and a brief idea of what it does.>
+ Copyright (C) <year> <name of author>
+
+ This program is free software; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation; either version 2 of the License, or
+ (at your option) any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program; if not, write to the Free Software
+ Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+
+
+Also add information on how to contact you by electronic and paper mail.
+
+If the program is interactive, make it output a short notice like this
+when it starts in an interactive mode:
+
+ Gnomovision version 69, Copyright (C) year name of author
+ Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
+ This is free software, and you are welcome to redistribute it
+ under certain conditions; type `show c' for details.
+
+The hypothetical commands `show w' and `show c' should show the appropriate
+parts of the General Public License. Of course, the commands you use may
+be called something other than `show w' and `show c'; they could even be
+mouse-clicks or menu items--whatever suits your program.
+
+You should also get your employer (if you work as a programmer) or your
+school, if any, to sign a "copyright disclaimer" for the program, if
+necessary. Here is a sample; alter the names:
+
+ Yoyodyne, Inc., hereby disclaims all copyright interest in the program
+ `Gnomovision' (which makes passes at compilers) written by James Hacker.
+
+ <signature of Ty Coon>, 1 April 1989
+ Ty Coon, President of Vice
+
+This General Public License does not permit incorporating your program into
+proprietary programs. If your program is a subroutine library, you may
+consider it more useful to permit linking proprietary applications with the
+library. If this is what you want to do, use the GNU Library General
+Public License instead of this License.
diff --git a/contrib/gdb/include/ansidecl.h b/contrib/gdb/include/ansidecl.h
new file mode 100644
index 0000000..d2c8776
--- /dev/null
+++ b/contrib/gdb/include/ansidecl.h
@@ -0,0 +1,315 @@
+/* ANSI and traditional C compatability macros
+ Copyright 1991, 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001
+ Free Software Foundation, Inc.
+ This file is part of the GNU C Library.
+
+This program is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2 of the License, or
+(at your option) any later version.
+
+This program is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with this program; if not, write to the Free Software
+Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
+
+/* ANSI and traditional C compatibility macros
+
+ ANSI C is assumed if __STDC__ is #defined.
+
+ Macro ANSI C definition Traditional C definition
+ ----- ---- - ---------- ----------- - ----------
+ ANSI_PROTOTYPES 1 not defined
+ PTR `void *' `char *'
+ PTRCONST `void *const' `char *'
+ LONG_DOUBLE `long double' `double'
+ const not defined `'
+ volatile not defined `'
+ signed not defined `'
+ VA_START(ap, var) va_start(ap, var) va_start(ap)
+
+ Note that it is safe to write "void foo();" indicating a function
+ with no return value, in all K+R compilers we have been able to test.
+
+ For declaring functions with prototypes, we also provide these:
+
+ PARAMS ((prototype))
+ -- for functions which take a fixed number of arguments. Use this
+ when declaring the function. When defining the function, write a
+ K+R style argument list. For example:
+
+ char *strcpy PARAMS ((char *dest, char *source));
+ ...
+ char *
+ strcpy (dest, source)
+ char *dest;
+ char *source;
+ { ... }
+
+
+ VPARAMS ((prototype, ...))
+ -- for functions which take a variable number of arguments. Use
+ PARAMS to declare the function, VPARAMS to define it. For example:
+
+ int printf PARAMS ((const char *format, ...));
+ ...
+ int
+ printf VPARAMS ((const char *format, ...))
+ {
+ ...
+ }
+
+ For writing functions which take variable numbers of arguments, we
+ also provide the VA_OPEN, VA_CLOSE, and VA_FIXEDARG macros. These
+ hide the differences between K+R <varargs.h> and C89 <stdarg.h> more
+ thoroughly than the simple VA_START() macro mentioned above.
+
+ VA_OPEN and VA_CLOSE are used *instead of* va_start and va_end.
+ Immediately after VA_OPEN, put a sequence of VA_FIXEDARG calls
+ corresponding to the list of fixed arguments. Then use va_arg
+ normally to get the variable arguments, or pass your va_list object
+ around. You do not declare the va_list yourself; VA_OPEN does it
+ for you.
+
+ Here is a complete example:
+
+ int
+ printf VPARAMS ((const char *format, ...))
+ {
+ int result;
+
+ VA_OPEN (ap, format);
+ VA_FIXEDARG (ap, const char *, format);
+
+ result = vfprintf (stdout, format, ap);
+ VA_CLOSE (ap);
+
+ return result;
+ }
+
+
+ You can declare variables either before or after the VA_OPEN,
+ VA_FIXEDARG sequence. Also, VA_OPEN and VA_CLOSE are the beginning
+ and end of a block. They must appear at the same nesting level,
+ and any variables declared after VA_OPEN go out of scope at
+ VA_CLOSE. Unfortunately, with a K+R compiler, that includes the
+ argument list. You can have multiple instances of VA_OPEN/VA_CLOSE
+ pairs in a single function in case you need to traverse the
+ argument list more than once.
+
+ For ease of writing code which uses GCC extensions but needs to be
+ portable to other compilers, we provide the GCC_VERSION macro that
+ simplifies testing __GNUC__ and __GNUC_MINOR__ together, and various
+ wrappers around __attribute__. Also, __extension__ will be #defined
+ to nothing if it doesn't work. See below.
+
+ This header also defines a lot of obsolete macros:
+ CONST, VOLATILE, SIGNED, PROTO, EXFUN, DEFUN, DEFUN_VOID,
+ AND, DOTS, NOARGS. Don't use them. */
+
+#ifndef _ANSIDECL_H
+#define _ANSIDECL_H 1
+
+/* Every source file includes this file,
+ so they will all get the switch for lint. */
+/* LINTLIBRARY */
+
+/* Using MACRO(x,y) in cpp #if conditionals does not work with some
+ older preprocessors. Thus we can't define something like this:
+
+#define HAVE_GCC_VERSION(MAJOR, MINOR) \
+ (__GNUC__ > (MAJOR) || (__GNUC__ == (MAJOR) && __GNUC_MINOR__ >= (MINOR)))
+
+and then test "#if HAVE_GCC_VERSION(2,7)".
+
+So instead we use the macro below and test it against specific values. */
+
+/* This macro simplifies testing whether we are using gcc, and if it
+ is of a particular minimum version. (Both major & minor numbers are
+ significant.) This macro will evaluate to 0 if we are not using
+ gcc at all. */
+#ifndef GCC_VERSION
+#define GCC_VERSION (__GNUC__ * 1000 + __GNUC_MINOR__)
+#endif /* GCC_VERSION */
+
+#if defined (__STDC__) || defined (_AIX) || (defined (__mips) && defined (_SYSTYPE_SVR4)) || defined(_WIN32) || (defined(__alpha) && defined(__cplusplus))
+/* All known AIX compilers implement these things (but don't always
+ define __STDC__). The RISC/OS MIPS compiler defines these things
+ in SVR4 mode, but does not define __STDC__. */
+/* eraxxon@alumni.rice.edu: The Compaq C++ compiler, unlike many other
+ C++ compilers, does not define __STDC__, though it acts as if this
+ was so. (Verified versions: 5.7, 6.2, 6.3, 6.5) */
+
+#define ANSI_PROTOTYPES 1
+#define PTR void *
+#define PTRCONST void *const
+#define LONG_DOUBLE long double
+
+#define PARAMS(ARGS) ARGS
+#define VPARAMS(ARGS) ARGS
+#define VA_START(VA_LIST, VAR) va_start(VA_LIST, VAR)
+
+/* variadic function helper macros */
+/* "struct Qdmy" swallows the semicolon after VA_OPEN/VA_FIXEDARG's
+ use without inhibiting further decls and without declaring an
+ actual variable. */
+#define VA_OPEN(AP, VAR) { va_list AP; va_start(AP, VAR); { struct Qdmy
+#define VA_CLOSE(AP) } va_end(AP); }
+#define VA_FIXEDARG(AP, T, N) struct Qdmy
+
+#undef const
+#undef volatile
+#undef signed
+
+/* inline requires special treatment; it's in C99, and GCC >=2.7 supports
+ it too, but it's not in C89. */
+#undef inline
+#if __STDC_VERSION__ > 199901L
+/* it's a keyword */
+#else
+# if GCC_VERSION >= 2007
+# define inline __inline__ /* __inline__ prevents -pedantic warnings */
+# else
+# define inline /* nothing */
+# endif
+#endif
+
+/* These are obsolete. Do not use. */
+#ifndef IN_GCC
+#define CONST const
+#define VOLATILE volatile
+#define SIGNED signed
+
+#define PROTO(type, name, arglist) type name arglist
+#define EXFUN(name, proto) name proto
+#define DEFUN(name, arglist, args) name(args)
+#define DEFUN_VOID(name) name(void)
+#define AND ,
+#define DOTS , ...
+#define NOARGS void
+#endif /* ! IN_GCC */
+
+#else /* Not ANSI C. */
+
+#undef ANSI_PROTOTYPES
+#define PTR char *
+#define PTRCONST PTR
+#define LONG_DOUBLE double
+
+#define PARAMS(args) ()
+#define VPARAMS(args) (va_alist) va_dcl
+#define VA_START(va_list, var) va_start(va_list)
+
+#define VA_OPEN(AP, VAR) { va_list AP; va_start(AP); { struct Qdmy
+#define VA_CLOSE(AP) } va_end(AP); }
+#define VA_FIXEDARG(AP, TYPE, NAME) TYPE NAME = va_arg(AP, TYPE)
+
+/* some systems define these in header files for non-ansi mode */
+#undef const
+#undef volatile
+#undef signed
+#undef inline
+#define const
+#define volatile
+#define signed
+#define inline
+
+#ifndef IN_GCC
+#define CONST
+#define VOLATILE
+#define SIGNED
+
+#define PROTO(type, name, arglist) type name ()
+#define EXFUN(name, proto) name()
+#define DEFUN(name, arglist, args) name arglist args;
+#define DEFUN_VOID(name) name()
+#define AND ;
+#define DOTS
+#define NOARGS
+#endif /* ! IN_GCC */
+
+#endif /* ANSI C. */
+
+/* Define macros for some gcc attributes. This permits us to use the
+ macros freely, and know that they will come into play for the
+ version of gcc in which they are supported. */
+
+#if (GCC_VERSION < 2007)
+# define __attribute__(x)
+#endif
+
+/* Attribute __malloc__ on functions was valid as of gcc 2.96. */
+#ifndef ATTRIBUTE_MALLOC
+# if (GCC_VERSION >= 2096)
+# define ATTRIBUTE_MALLOC __attribute__ ((__malloc__))
+# else
+# define ATTRIBUTE_MALLOC
+# endif /* GNUC >= 2.96 */
+#endif /* ATTRIBUTE_MALLOC */
+
+/* Attributes on labels were valid as of gcc 2.93. */
+#ifndef ATTRIBUTE_UNUSED_LABEL
+# if (GCC_VERSION >= 2093)
+# define ATTRIBUTE_UNUSED_LABEL ATTRIBUTE_UNUSED
+# else
+# define ATTRIBUTE_UNUSED_LABEL
+# endif /* GNUC >= 2.93 */
+#endif /* ATTRIBUTE_UNUSED_LABEL */
+
+#ifndef ATTRIBUTE_UNUSED
+#define ATTRIBUTE_UNUSED __attribute__ ((__unused__))
+#endif /* ATTRIBUTE_UNUSED */
+
+#ifndef ATTRIBUTE_NORETURN
+#define ATTRIBUTE_NORETURN __attribute__ ((__noreturn__))
+#endif /* ATTRIBUTE_NORETURN */
+
+/* Attribute `nonnull' was valid as of gcc 3.3. */
+#ifndef ATTRIBUTE_NONNULL
+# if (GCC_VERSION >= 3003)
+# define ATTRIBUTE_NONNULL(m) __attribute__ ((__nonnull__ (m)))
+# else
+# define ATTRIBUTE_NONNULL(m)
+# endif /* GNUC >= 3.3 */
+#endif /* ATTRIBUTE_NONNULL */
+
+/* Use ATTRIBUTE_PRINTF when the format specifier must not be NULL.
+ This was the case for the `printf' format attribute by itself
+ before GCC 3.3, but as of 3.3 we need to add the `nonnull'
+ attribute to retain this behavior. */
+#ifndef ATTRIBUTE_PRINTF
+#define ATTRIBUTE_PRINTF(m, n) __attribute__ ((__format__ (__printf__, m, n))) ATTRIBUTE_NONNULL(m)
+#define ATTRIBUTE_PRINTF_1 ATTRIBUTE_PRINTF(1, 2)
+#define ATTRIBUTE_PRINTF_2 ATTRIBUTE_PRINTF(2, 3)
+#define ATTRIBUTE_PRINTF_3 ATTRIBUTE_PRINTF(3, 4)
+#define ATTRIBUTE_PRINTF_4 ATTRIBUTE_PRINTF(4, 5)
+#define ATTRIBUTE_PRINTF_5 ATTRIBUTE_PRINTF(5, 6)
+#endif /* ATTRIBUTE_PRINTF */
+
+/* Use ATTRIBUTE_NULL_PRINTF when the format specifier may be NULL. A
+ NULL format specifier was allowed as of gcc 3.3. */
+#ifndef ATTRIBUTE_NULL_PRINTF
+# if (GCC_VERSION >= 3003)
+# define ATTRIBUTE_NULL_PRINTF(m, n) __attribute__ ((__format__ (__printf__, m, n)))
+# else
+# define ATTRIBUTE_NULL_PRINTF(m, n)
+# endif /* GNUC >= 3.3 */
+# define ATTRIBUTE_NULL_PRINTF_1 ATTRIBUTE_NULL_PRINTF(1, 2)
+# define ATTRIBUTE_NULL_PRINTF_2 ATTRIBUTE_NULL_PRINTF(2, 3)
+# define ATTRIBUTE_NULL_PRINTF_3 ATTRIBUTE_NULL_PRINTF(3, 4)
+# define ATTRIBUTE_NULL_PRINTF_4 ATTRIBUTE_NULL_PRINTF(4, 5)
+# define ATTRIBUTE_NULL_PRINTF_5 ATTRIBUTE_NULL_PRINTF(5, 6)
+#endif /* ATTRIBUTE_NULL_PRINTF */
+
+/* We use __extension__ in some places to suppress -pedantic warnings
+ about GCC extensions. This feature didn't work properly before
+ gcc 2.8. */
+#if GCC_VERSION < 2008
+#define __extension__
+#endif
+
+#endif /* ansidecl.h */
diff --git a/contrib/gdb/include/bfdlink.h b/contrib/gdb/include/bfdlink.h
new file mode 100644
index 0000000..a989f64
--- /dev/null
+++ b/contrib/gdb/include/bfdlink.h
@@ -0,0 +1,686 @@
+/* bfdlink.h -- header file for BFD link routines
+ Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2002, 2003
+ Free Software Foundation, Inc.
+ Written by Steve Chamberlain and Ian Lance Taylor, Cygnus Support.
+
+ This file is part of BFD, the Binary File Descriptor library.
+
+ This program is free software; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation; either version 2 of the License, or
+ (at your option) any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program; if not, write to the Free Software
+ Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
+
+#ifndef BFDLINK_H
+#define BFDLINK_H
+
+/* Which symbols to strip during a link. */
+enum bfd_link_strip
+{
+ strip_none, /* Don't strip any symbols. */
+ strip_debugger, /* Strip debugging symbols. */
+ strip_some, /* keep_hash is the list of symbols to keep. */
+ strip_all /* Strip all symbols. */
+};
+
+/* Which local symbols to discard during a link. This is irrelevant
+ if strip_all is used. */
+enum bfd_link_discard
+{
+ discard_sec_merge, /* Discard local temporary symbols in SEC_MERGE
+ sections. */
+ discard_none, /* Don't discard any locals. */
+ discard_l, /* Discard local temporary symbols. */
+ discard_all /* Discard all locals. */
+};
+
+/* Describes the type of hash table entry structure being used.
+ Different hash table structure have different fields and so
+ support different linking features. */
+enum bfd_link_hash_table_type
+ {
+ bfd_link_generic_hash_table,
+ bfd_link_elf_hash_table
+ };
+
+/* These are the possible types of an entry in the BFD link hash
+ table. */
+
+enum bfd_link_hash_type
+{
+ bfd_link_hash_new, /* Symbol is new. */
+ bfd_link_hash_undefined, /* Symbol seen before, but undefined. */
+ bfd_link_hash_undefweak, /* Symbol is weak and undefined. */
+ bfd_link_hash_defined, /* Symbol is defined. */
+ bfd_link_hash_defweak, /* Symbol is weak and defined. */
+ bfd_link_hash_common, /* Symbol is common. */
+ bfd_link_hash_indirect, /* Symbol is an indirect link. */
+ bfd_link_hash_warning /* Like indirect, but warn if referenced. */
+};
+
+enum bfd_link_common_skip_ar_aymbols
+{
+ bfd_link_common_skip_none,
+ bfd_link_common_skip_text,
+ bfd_link_common_skip_data,
+ bfd_link_common_skip_all
+};
+
+/* The linking routines use a hash table which uses this structure for
+ its elements. */
+
+struct bfd_link_hash_entry
+{
+ /* Base hash table entry structure. */
+ struct bfd_hash_entry root;
+
+ /* Type of this entry. */
+ enum bfd_link_hash_type type;
+
+ /* Undefined and common symbols are kept in a linked list through
+ this field. This field is not in the union because that would
+ force us to remove entries from the list when we changed their
+ type, which would force the list to be doubly linked, which would
+ waste more memory. When an undefined or common symbol is
+ created, it should be added to this list, the head of which is in
+ the link hash table itself. As symbols are defined, they need
+ not be removed from the list; anything which reads the list must
+ doublecheck the symbol type.
+
+ Weak symbols are not kept on this list.
+
+ Defined and defweak symbols use this field as a reference marker.
+ If the field is not NULL, or this structure is the tail of the
+ undefined symbol list, the symbol has been referenced. If the
+ symbol is undefined and becomes defined, this field will
+ automatically be non-NULL since the symbol will have been on the
+ undefined symbol list. */
+ struct bfd_link_hash_entry *und_next;
+
+ /* A union of information depending upon the type. */
+ union
+ {
+ /* Nothing is kept for bfd_hash_new. */
+ /* bfd_link_hash_undefined, bfd_link_hash_undefweak. */
+ struct
+ {
+ bfd *abfd; /* BFD symbol was found in. */
+ } undef;
+ /* bfd_link_hash_defined, bfd_link_hash_defweak. */
+ struct
+ {
+ bfd_vma value; /* Symbol value. */
+ asection *section; /* Symbol section. */
+ } def;
+ /* bfd_link_hash_indirect, bfd_link_hash_warning. */
+ struct
+ {
+ struct bfd_link_hash_entry *link; /* Real symbol. */
+ const char *warning; /* Warning (bfd_link_hash_warning only). */
+ } i;
+ /* bfd_link_hash_common. */
+ struct
+ {
+ /* The linker needs to know three things about common
+ symbols: the size, the alignment, and the section in
+ which the symbol should be placed. We store the size
+ here, and we allocate a small structure to hold the
+ section and the alignment. The alignment is stored as a
+ power of two. We don't store all the information
+ directly because we don't want to increase the size of
+ the union; this structure is a major space user in the
+ linker. */
+ bfd_size_type size; /* Common symbol size. */
+ struct bfd_link_hash_common_entry
+ {
+ unsigned int alignment_power; /* Alignment. */
+ asection *section; /* Symbol section. */
+ } *p;
+ } c;
+ } u;
+};
+
+/* This is the link hash table. It is a derived class of
+ bfd_hash_table. */
+
+struct bfd_link_hash_table
+{
+ /* The hash table itself. */
+ struct bfd_hash_table table;
+ /* The back end which created this hash table. This indicates the
+ type of the entries in the hash table, which is sometimes
+ important information when linking object files of different
+ types together. */
+ const bfd_target *creator;
+ /* A linked list of undefined and common symbols, linked through the
+ next field in the bfd_link_hash_entry structure. */
+ struct bfd_link_hash_entry *undefs;
+ /* Entries are added to the tail of the undefs list. */
+ struct bfd_link_hash_entry *undefs_tail;
+ /* The type of the link hash table. */
+ enum bfd_link_hash_table_type type;
+};
+
+/* Look up an entry in a link hash table. If FOLLOW is TRUE, this
+ follows bfd_link_hash_indirect and bfd_link_hash_warning links to
+ the real symbol. */
+extern struct bfd_link_hash_entry *bfd_link_hash_lookup
+ (struct bfd_link_hash_table *, const char *, bfd_boolean create,
+ bfd_boolean copy, bfd_boolean follow);
+
+/* Look up an entry in the main linker hash table if the symbol might
+ be wrapped. This should only be used for references to an
+ undefined symbol, not for definitions of a symbol. */
+
+extern struct bfd_link_hash_entry *bfd_wrapped_link_hash_lookup
+ (bfd *, struct bfd_link_info *, const char *, bfd_boolean,
+ bfd_boolean, bfd_boolean);
+
+/* Traverse a link hash table. */
+extern void bfd_link_hash_traverse
+ (struct bfd_link_hash_table *,
+ bfd_boolean (*) (struct bfd_link_hash_entry *, void *),
+ void *);
+
+/* Add an entry to the undefs list. */
+extern void bfd_link_add_undef
+ (struct bfd_link_hash_table *, struct bfd_link_hash_entry *);
+
+struct bfd_sym_chain
+{
+ struct bfd_sym_chain *next;
+ const char *name;
+};
+
+/* How to handle unresolved symbols.
+ There are four possibilities which are enumerated below: */
+enum report_method
+{
+ /* This is the initial value when then link_info structure is created.
+ It allows the various stages of the linker to determine whether they
+ allowed to set the value. */
+ RM_NOT_YET_SET = 0,
+ RM_IGNORE,
+ RM_GENERATE_WARNING,
+ RM_GENERATE_ERROR
+};
+
+/* This structure holds all the information needed to communicate
+ between BFD and the linker when doing a link. */
+
+struct bfd_link_info
+{
+ /* TRUE if BFD should generate a relocatable object file. */
+ unsigned int relocatable: 1;
+
+ /* TRUE if BFD should generate relocation information in the final
+ executable. */
+ unsigned int emitrelocations: 1;
+
+ /* TRUE if BFD should generate a "task linked" object file,
+ similar to relocatable but also with globals converted to
+ statics. */
+ unsigned int task_link: 1;
+
+ /* TRUE if BFD should generate a shared object. */
+ unsigned int shared: 1;
+
+ /* TRUE if BFD should pre-bind symbols in a shared object. */
+ unsigned int symbolic: 1;
+
+ /* TRUE if BFD should export all symbols in the dynamic symbol table
+ of an executable, rather than only those used. */
+ unsigned int export_dynamic: 1;
+
+ /* TRUE if shared objects should be linked directly, not shared. */
+ unsigned int static_link: 1;
+
+ /* TRUE if the output file should be in a traditional format. This
+ is equivalent to the setting of the BFD_TRADITIONAL_FORMAT flag
+ on the output file, but may be checked when reading the input
+ files. */
+ unsigned int traditional_format: 1;
+
+ /* TRUE if we want to produced optimized output files. This might
+ need much more time and therefore must be explicitly selected. */
+ unsigned int optimize: 1;
+
+ /* TRUE if ok to have multiple definition. */
+ unsigned int allow_multiple_definition: 1;
+
+ /* TRUE if ok to have version with no definition. */
+ unsigned int allow_undefined_version: 1;
+
+ /* TRUE if symbols should be retained in memory, FALSE if they
+ should be freed and reread. */
+ unsigned int keep_memory: 1;
+
+ /* TRUE if every symbol should be reported back via the notice
+ callback. */
+ unsigned int notice_all: 1;
+
+ /* TRUE if executable should not contain copy relocs.
+ Setting this true may result in a non-sharable text segment. */
+ unsigned int nocopyreloc: 1;
+
+ /* TRUE if the new ELF dynamic tags are enabled. */
+ unsigned int new_dtags: 1;
+
+ /* TRUE if non-PLT relocs should be merged into one reloc section
+ and sorted so that relocs against the same symbol come together. */
+ unsigned int combreloc: 1;
+
+ /* TRUE if .eh_frame_hdr section and PT_GNU_EH_FRAME ELF segment
+ should be created. */
+ unsigned int eh_frame_hdr: 1;
+
+ /* TRUE if global symbols in discarded sections should be stripped. */
+ unsigned int strip_discarded: 1;
+
+ /* TRUE if the final relax pass is needed. */
+ unsigned int need_relax_finalize: 1;
+
+ /* TRUE if generating a position independent executable. */
+ unsigned int pie: 1;
+
+ /* TRUE if generating an executable, position independent or not. */
+ unsigned int executable : 1;
+
+ /* TRUE if PT_GNU_STACK segment should be created with PF_R|PF_W|PF_X
+ flags. */
+ unsigned int execstack: 1;
+
+ /* TRUE if PT_GNU_STACK segment should be created with PF_R|PF_W
+ flags. */
+ unsigned int noexecstack: 1;
+
+ /* What to do with unresolved symbols in an object file.
+ When producing static binaries the default is GENERATE_ERROR.
+ When producing dynamic binaries the default is IGNORE. The
+ assumption with dynamic binaries is that the reference will be
+ resolved at load/execution time. */
+ enum report_method unresolved_syms_in_objects;
+
+ /* What to do with unresolved symbols in a shared library.
+ The same defaults apply. */
+ enum report_method unresolved_syms_in_shared_libs;
+
+ /* Which symbols to strip. */
+ enum bfd_link_strip strip;
+
+ /* Which local symbols to discard. */
+ enum bfd_link_discard discard;
+
+ /* Criteria for skipping symbols when detemining
+ whether to include an object from an archive. */
+ enum bfd_link_common_skip_ar_aymbols common_skip_ar_aymbols;
+
+ /* Function callbacks. */
+ const struct bfd_link_callbacks *callbacks;
+
+ /* Hash table handled by BFD. */
+ struct bfd_link_hash_table *hash;
+
+ /* Hash table of symbols to keep. This is NULL unless strip is
+ strip_some. */
+ struct bfd_hash_table *keep_hash;
+
+ /* Hash table of symbols to report back via the notice callback. If
+ this is NULL, and notice_all is FALSE, then no symbols are
+ reported back. */
+ struct bfd_hash_table *notice_hash;
+
+ /* Hash table of symbols which are being wrapped (the --wrap linker
+ option). If this is NULL, no symbols are being wrapped. */
+ struct bfd_hash_table *wrap_hash;
+
+ /* The list of input BFD's involved in the link. These are chained
+ together via the link_next field. */
+ bfd *input_bfds;
+
+ /* If a symbol should be created for each input BFD, this is section
+ where those symbols should be placed. It must be a section in
+ the output BFD. It may be NULL, in which case no such symbols
+ will be created. This is to support CREATE_OBJECT_SYMBOLS in the
+ linker command language. */
+ asection *create_object_symbols_section;
+
+ /* List of global symbol names that are starting points for marking
+ sections against garbage collection. */
+ struct bfd_sym_chain *gc_sym_list;
+
+ /* If a base output file is wanted, then this points to it */
+ void *base_file;
+
+ /* The function to call when the executable or shared object is
+ loaded. */
+ const char *init_function;
+
+ /* The function to call when the executable or shared object is
+ unloaded. */
+ const char *fini_function;
+
+ /* Non-zero if auto-import thunks for DATA items in pei386 DLLs
+ should be generated/linked against. Set to 1 if this feature
+ is explicitly requested by the user, -1 if enabled by default. */
+ int pei386_auto_import;
+
+ /* Non-zero if runtime relocs for DATA items with non-zero addends
+ in pei386 DLLs should be generated. Set to 1 if this feature
+ is explicitly requested by the user, -1 if enabled by default. */
+ int pei386_runtime_pseudo_reloc;
+
+ /* How many spare .dynamic DT_NULL entries should be added? */
+ unsigned int spare_dynamic_tags;
+
+ /* May be used to set DT_FLAGS for ELF. */
+ bfd_vma flags;
+
+ /* May be used to set DT_FLAGS_1 for ELF. */
+ bfd_vma flags_1;
+};
+
+/* This structures holds a set of callback functions. These are
+ called by the BFD linker routines. The first argument to each
+ callback function is the bfd_link_info structure being used. Each
+ function returns a boolean value. If the function returns FALSE,
+ then the BFD function which called it will return with a failure
+ indication. */
+
+struct bfd_link_callbacks
+{
+ /* A function which is called when an object is added from an
+ archive. ABFD is the archive element being added. NAME is the
+ name of the symbol which caused the archive element to be pulled
+ in. */
+ bfd_boolean (*add_archive_element)
+ (struct bfd_link_info *, bfd *abfd, const char *name);
+ /* A function which is called when a symbol is found with multiple
+ definitions. NAME is the symbol which is defined multiple times.
+ OBFD is the old BFD, OSEC is the old section, OVAL is the old
+ value, NBFD is the new BFD, NSEC is the new section, and NVAL is
+ the new value. OBFD may be NULL. OSEC and NSEC may be
+ bfd_com_section or bfd_ind_section. */
+ bfd_boolean (*multiple_definition)
+ (struct bfd_link_info *, const char *name,
+ bfd *obfd, asection *osec, bfd_vma oval,
+ bfd *nbfd, asection *nsec, bfd_vma nval);
+ /* A function which is called when a common symbol is defined
+ multiple times. NAME is the symbol appearing multiple times.
+ OBFD is the BFD of the existing symbol; it may be NULL if this is
+ not known. OTYPE is the type of the existing symbol, which may
+ be bfd_link_hash_defined, bfd_link_hash_defweak,
+ bfd_link_hash_common, or bfd_link_hash_indirect. If OTYPE is
+ bfd_link_hash_common, OSIZE is the size of the existing symbol.
+ NBFD is the BFD of the new symbol. NTYPE is the type of the new
+ symbol, one of bfd_link_hash_defined, bfd_link_hash_common, or
+ bfd_link_hash_indirect. If NTYPE is bfd_link_hash_common, NSIZE
+ is the size of the new symbol. */
+ bfd_boolean (*multiple_common)
+ (struct bfd_link_info *, const char *name,
+ bfd *obfd, enum bfd_link_hash_type otype, bfd_vma osize,
+ bfd *nbfd, enum bfd_link_hash_type ntype, bfd_vma nsize);
+ /* A function which is called to add a symbol to a set. ENTRY is
+ the link hash table entry for the set itself (e.g.,
+ __CTOR_LIST__). RELOC is the relocation to use for an entry in
+ the set when generating a relocatable file, and is also used to
+ get the size of the entry when generating an executable file.
+ ABFD, SEC and VALUE identify the value to add to the set. */
+ bfd_boolean (*add_to_set)
+ (struct bfd_link_info *, struct bfd_link_hash_entry *entry,
+ bfd_reloc_code_real_type reloc, bfd *abfd, asection *sec, bfd_vma value);
+ /* A function which is called when the name of a g++ constructor or
+ destructor is found. This is only called by some object file
+ formats. CONSTRUCTOR is TRUE for a constructor, FALSE for a
+ destructor. This will use BFD_RELOC_CTOR when generating a
+ relocatable file. NAME is the name of the symbol found. ABFD,
+ SECTION and VALUE are the value of the symbol. */
+ bfd_boolean (*constructor)
+ (struct bfd_link_info *, bfd_boolean constructor, const char *name,
+ bfd *abfd, asection *sec, bfd_vma value);
+ /* A function which is called to issue a linker warning. For
+ example, this is called when there is a reference to a warning
+ symbol. WARNING is the warning to be issued. SYMBOL is the name
+ of the symbol which triggered the warning; it may be NULL if
+ there is none. ABFD, SECTION and ADDRESS identify the location
+ which trigerred the warning; either ABFD or SECTION or both may
+ be NULL if the location is not known. */
+ bfd_boolean (*warning)
+ (struct bfd_link_info *, const char *warning, const char *symbol,
+ bfd *abfd, asection *section, bfd_vma address);
+ /* A function which is called when a relocation is attempted against
+ an undefined symbol. NAME is the symbol which is undefined.
+ ABFD, SECTION and ADDRESS identify the location from which the
+ reference is made. FATAL indicates whether an undefined symbol is
+ a fatal error or not. In some cases SECTION may be NULL. */
+ bfd_boolean (*undefined_symbol)
+ (struct bfd_link_info *, const char *name, bfd *abfd,
+ asection *section, bfd_vma address, bfd_boolean fatal);
+ /* A function which is called when a reloc overflow occurs. NAME is
+ the name of the symbol or section the reloc is against,
+ RELOC_NAME is the name of the relocation, and ADDEND is any
+ addend that is used. ABFD, SECTION and ADDRESS identify the
+ location at which the overflow occurs; if this is the result of a
+ bfd_section_reloc_link_order or bfd_symbol_reloc_link_order, then
+ ABFD will be NULL. */
+ bfd_boolean (*reloc_overflow)
+ (struct bfd_link_info *, const char *name, const char *reloc_name,
+ bfd_vma addend, bfd *abfd, asection *section, bfd_vma address);
+ /* A function which is called when a dangerous reloc is performed.
+ The canonical example is an a29k IHCONST reloc which does not
+ follow an IHIHALF reloc. MESSAGE is an appropriate message.
+ ABFD, SECTION and ADDRESS identify the location at which the
+ problem occurred; if this is the result of a
+ bfd_section_reloc_link_order or bfd_symbol_reloc_link_order, then
+ ABFD will be NULL. */
+ bfd_boolean (*reloc_dangerous)
+ (struct bfd_link_info *, const char *message,
+ bfd *abfd, asection *section, bfd_vma address);
+ /* A function which is called when a reloc is found to be attached
+ to a symbol which is not being written out. NAME is the name of
+ the symbol. ABFD, SECTION and ADDRESS identify the location of
+ the reloc; if this is the result of a
+ bfd_section_reloc_link_order or bfd_symbol_reloc_link_order, then
+ ABFD will be NULL. */
+ bfd_boolean (*unattached_reloc)
+ (struct bfd_link_info *, const char *name,
+ bfd *abfd, asection *section, bfd_vma address);
+ /* A function which is called when a symbol in notice_hash is
+ defined or referenced. NAME is the symbol. ABFD, SECTION and
+ ADDRESS are the value of the symbol. If SECTION is
+ bfd_und_section, this is a reference. */
+ bfd_boolean (*notice)
+ (struct bfd_link_info *, const char *name,
+ bfd *abfd, asection *section, bfd_vma address);
+ /* A function which is called for reporting a linker error. ID is the
+ error identifier. The remaining input is the same as einfo () in
+ ld. */
+ bfd_boolean (*error_handler)
+ (int id, const char *fmt, ...);
+
+/* Identifiers of linker error messages used by error_handler. */
+#define LD_DEFINITION_IN_DISCARDED_SECTION 1
+};
+
+/* The linker builds link_order structures which tell the code how to
+ include input data in the output file. */
+
+/* These are the types of link_order structures. */
+
+enum bfd_link_order_type
+{
+ bfd_undefined_link_order, /* Undefined. */
+ bfd_indirect_link_order, /* Built from a section. */
+ bfd_data_link_order, /* Set to explicit data. */
+ bfd_section_reloc_link_order, /* Relocate against a section. */
+ bfd_symbol_reloc_link_order /* Relocate against a symbol. */
+};
+
+/* This is the link_order structure itself. These form a chain
+ attached to the section whose contents they are describing. */
+
+struct bfd_link_order
+{
+ /* Next link_order in chain. */
+ struct bfd_link_order *next;
+ /* Type of link_order. */
+ enum bfd_link_order_type type;
+ /* Offset within output section. */
+ bfd_vma offset;
+ /* Size within output section. */
+ bfd_size_type size;
+ /* Type specific information. */
+ union
+ {
+ struct
+ {
+ /* Section to include. If this is used, then
+ section->output_section must be the section the
+ link_order is attached to, section->output_offset must
+ equal the link_order offset field, and section->_raw_size
+ must equal the link_order size field. Maybe these
+ restrictions should be relaxed someday. */
+ asection *section;
+ } indirect;
+ struct
+ {
+ /* Size of contents, or zero when contents size == size
+ within output section.
+ A non-zero value allows filling of the output section
+ with an arbitrary repeated pattern. */
+ unsigned int size;
+ /* Data to put into file. */
+ bfd_byte *contents;
+ } data;
+ struct
+ {
+ /* Description of reloc to generate. Used for
+ bfd_section_reloc_link_order and
+ bfd_symbol_reloc_link_order. */
+ struct bfd_link_order_reloc *p;
+ } reloc;
+ } u;
+};
+
+/* A linker order of type bfd_section_reloc_link_order or
+ bfd_symbol_reloc_link_order means to create a reloc against a
+ section or symbol, respectively. This is used to implement -Ur to
+ generate relocs for the constructor tables. The
+ bfd_link_order_reloc structure describes the reloc that BFD should
+ create. It is similar to a arelent, but I didn't use arelent
+ because the linker does not know anything about most symbols, and
+ any asymbol structure it creates will be partially meaningless.
+ This information could logically be in the bfd_link_order struct,
+ but I didn't want to waste the space since these types of relocs
+ are relatively rare. */
+
+struct bfd_link_order_reloc
+{
+ /* Reloc type. */
+ bfd_reloc_code_real_type reloc;
+
+ union
+ {
+ /* For type bfd_section_reloc_link_order, this is the section
+ the reloc should be against. This must be a section in the
+ output BFD, not any of the input BFDs. */
+ asection *section;
+ /* For type bfd_symbol_reloc_link_order, this is the name of the
+ symbol the reloc should be against. */
+ const char *name;
+ } u;
+
+ /* Addend to use. The object file should contain zero. The BFD
+ backend is responsible for filling in the contents of the object
+ file correctly. For some object file formats (e.g., COFF) the
+ addend must be stored into in the object file, and for some
+ (e.g., SPARC a.out) it is kept in the reloc. */
+ bfd_vma addend;
+};
+
+/* Allocate a new link_order for a section. */
+extern struct bfd_link_order *bfd_new_link_order (bfd *, asection *);
+
+/* These structures are used to describe version information for the
+ ELF linker. These structures could be manipulated entirely inside
+ BFD, but it would be a pain. Instead, the regular linker sets up
+ these structures, and then passes them into BFD. */
+
+/* Glob pattern for a version. */
+
+struct bfd_elf_version_expr
+{
+ /* Next glob pattern for this version. */
+ struct bfd_elf_version_expr *next;
+ /* Glob pattern. */
+ const char *pattern;
+ /* NULL for a glob pattern, otherwise a straight symbol. */
+ const char *symbol;
+ /* Defined by ".symver". */
+ unsigned int symver : 1;
+ /* Defined by version script. */
+ unsigned int script : 1;
+ /* Pattern type. */
+#define BFD_ELF_VERSION_C_TYPE 1
+#define BFD_ELF_VERSION_CXX_TYPE 2
+#define BFD_ELF_VERSION_JAVA_TYPE 4
+ unsigned int mask : 3;
+};
+
+struct bfd_elf_version_expr_head
+{
+ /* List of all patterns, both wildcards and non-wildcards. */
+ struct bfd_elf_version_expr *list;
+ /* Hash table for non-wildcards. */
+ void *htab;
+ /* Remaining patterns. */
+ struct bfd_elf_version_expr *remaining;
+ /* What kind of pattern types are present in list (bitmask). */
+ unsigned int mask;
+};
+
+/* Version dependencies. */
+
+struct bfd_elf_version_deps
+{
+ /* Next dependency for this version. */
+ struct bfd_elf_version_deps *next;
+ /* The version which this version depends upon. */
+ struct bfd_elf_version_tree *version_needed;
+};
+
+/* A node in the version tree. */
+
+struct bfd_elf_version_tree
+{
+ /* Next version. */
+ struct bfd_elf_version_tree *next;
+ /* Name of this version. */
+ const char *name;
+ /* Version number. */
+ unsigned int vernum;
+ /* Regular expressions for global symbols in this version. */
+ struct bfd_elf_version_expr_head globals;
+ /* Regular expressions for local symbols in this version. */
+ struct bfd_elf_version_expr_head locals;
+ /* List of versions which this version depends upon. */
+ struct bfd_elf_version_deps *deps;
+ /* Index of the version name. This is used within BFD. */
+ unsigned int name_indx;
+ /* Whether this version tree was used. This is used within BFD. */
+ int used;
+ /* Matching hook. */
+ struct bfd_elf_version_expr *(*match)
+ (struct bfd_elf_version_expr_head *head,
+ struct bfd_elf_version_expr *prev, const char *sym);
+};
+
+#endif
diff --git a/contrib/gdb/include/bout.h b/contrib/gdb/include/bout.h
new file mode 100644
index 0000000..a69e280
--- /dev/null
+++ b/contrib/gdb/include/bout.h
@@ -0,0 +1,191 @@
+/* This file is a modified version of 'a.out.h'. It is to be used in all
+ GNU tools modified to support the i80960 (or tools that operate on
+ object files created by such tools).
+
+ Copyright 2001 Free Software Foundation, Inc.
+
+ This program is free software; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation; either version 2 of the License, or
+ (at your option) any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program; if not, write to the Free Software
+ Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
+
+/* All i80960 development is done in a CROSS-DEVELOPMENT environment. I.e.,
+ object code is generated on, and executed under the direction of a symbolic
+ debugger running on, a host system. We do not want to be subject to the
+ vagaries of which host it is or whether it supports COFF or a.out format,
+ or anything else. We DO want to:
+
+ o always generate the same format object files, regardless of host.
+
+ o have an 'a.out' header that we can modify for our own purposes
+ (the 80960 is typically an embedded processor and may require
+ enhanced linker support that the normal a.out.h header can't
+ accommodate).
+
+ As for byte-ordering, the following rules apply:
+
+ o Text and data that is actually downloaded to the target is always
+ in i80960 (little-endian) order.
+
+ o All other numbers (in the header, symbols, relocation directives)
+ are in host byte-order: object files CANNOT be lifted from a
+ little-end host and used on a big-endian (or vice versa) without
+ modification.
+ ==> THIS IS NO LONGER TRUE USING BFD. WE CAN GENERATE ANY BYTE ORDER
+ FOR THE HEADER, AND READ ANY BYTE ORDER. PREFERENCE WOULD BE TO
+ USE LITTLE-ENDIAN BYTE ORDER THROUGHOUT, REGARDLESS OF HOST. <==
+
+ o The downloader ('comm960') takes care to generate a pseudo-header
+ with correct (i80960) byte-ordering before shipping text and data
+ off to the NINDY monitor in the target systems. Symbols and
+ relocation info are never sent to the target. */
+
+#define BMAGIC 0415
+/* We don't accept the following (see N_BADMAG macro).
+ They're just here so GNU code will compile. */
+#define OMAGIC 0407 /* old impure format */
+#define NMAGIC 0410 /* read-only text */
+#define ZMAGIC 0413 /* demand load format */
+
+/* FILE HEADER
+ All 'lengths' are given as a number of bytes.
+ All 'alignments' are for relinkable files only; an alignment of
+ 'n' indicates the corresponding segment must begin at an
+ address that is a multiple of (2**n). */
+struct external_exec
+ {
+ /* Standard stuff */
+ unsigned char e_info[4]; /* Identifies this as a b.out file */
+ unsigned char e_text[4]; /* Length of text */
+ unsigned char e_data[4]; /* Length of data */
+ unsigned char e_bss[4]; /* Length of uninitialized data area */
+ unsigned char e_syms[4]; /* Length of symbol table */
+ unsigned char e_entry[4]; /* Runtime start address */
+ unsigned char e_trsize[4]; /* Length of text relocation info */
+ unsigned char e_drsize[4]; /* Length of data relocation info */
+
+ /* Added for i960 */
+ unsigned char e_tload[4]; /* Text runtime load address */
+ unsigned char e_dload[4]; /* Data runtime load address */
+ unsigned char e_talign[1]; /* Alignment of text segment */
+ unsigned char e_dalign[1]; /* Alignment of data segment */
+ unsigned char e_balign[1]; /* Alignment of bss segment */
+ unsigned char e_relaxable[1];/* Assembled with enough info to allow linker to relax */
+ };
+
+#define EXEC_BYTES_SIZE (sizeof (struct external_exec))
+
+/* These macros use the a_xxx field names, since they operate on the exec
+ structure after it's been byte-swapped and realigned on the host machine. */
+#define N_BADMAG(x) (((x).a_info)!=BMAGIC)
+#define N_TXTOFF(x) EXEC_BYTES_SIZE
+#define N_DATOFF(x) ( N_TXTOFF(x) + (x).a_text )
+#define N_TROFF(x) ( N_DATOFF(x) + (x).a_data )
+#define N_TRELOFF N_TROFF
+#define N_DROFF(x) ( N_TROFF(x) + (x).a_trsize )
+#define N_DRELOFF N_DROFF
+#define N_SYMOFF(x) ( N_DROFF(x) + (x).a_drsize )
+#define N_STROFF(x) ( N_SYMOFF(x) + (x).a_syms )
+#define N_DATADDR(x) ( (x).a_dload )
+
+/* Address of text segment in memory after it is loaded. */
+#if !defined (N_TXTADDR)
+#define N_TXTADDR(x) 0
+#endif
+
+/* A single entry in the symbol table. */
+struct nlist
+ {
+ union
+ {
+ char* n_name;
+ struct nlist * n_next;
+ long n_strx; /* Index into string table */
+ } n_un;
+
+ unsigned char n_type; /* See below */
+ char n_other; /* Used in i80960 support -- see below */
+ short n_desc;
+ unsigned long n_value;
+ };
+
+
+/* Legal values of n_type. */
+#define N_UNDF 0 /* Undefined symbol */
+#define N_ABS 2 /* Absolute symbol */
+#define N_TEXT 4 /* Text symbol */
+#define N_DATA 6 /* Data symbol */
+#define N_BSS 8 /* BSS symbol */
+#define N_FN 31 /* Filename symbol */
+
+#define N_EXT 1 /* External symbol (OR'd in with one of above) */
+#define N_TYPE 036 /* Mask for all the type bits */
+#define N_STAB 0340 /* Mask for all bits used for SDB entries */
+
+/* MEANING OF 'n_other'
+
+ If non-zero, the 'n_other' fields indicates either a leaf procedure or
+ a system procedure, as follows:
+
+ 1 <= n_other <= 32 :
+ The symbol is the entry point to a system procedure.
+ 'n_value' is the address of the entry, as for any other
+ procedure. The system procedure number (which can be used in
+ a 'calls' instruction) is (n_other-1). These entries come from
+ '.sysproc' directives.
+
+ n_other == N_CALLNAME
+ the symbol is the 'call' entry point to a leaf procedure.
+ The *next* symbol in the symbol table must be the corresponding
+ 'bal' entry point to the procedure (see following). These
+ entries come from '.leafproc' directives in which two different
+ symbols are specified (the first one is represented here).
+
+
+ n_other == N_BALNAME
+ the symbol is the 'bal' entry point to a leaf procedure.
+ These entries result from '.leafproc' directives in which only
+ one symbol is specified, or in which the same symbol is
+ specified twice.
+
+ Note that an N_CALLNAME entry *must* have a corresponding N_BALNAME entry,
+ but not every N_BALNAME entry must have an N_CALLNAME entry. */
+#define N_CALLNAME ((char)-1)
+#define N_BALNAME ((char)-2)
+#define IS_CALLNAME(x) (N_CALLNAME == (x))
+#define IS_BALNAME(x) (N_BALNAME == (x))
+#define IS_OTHER(x) ((x)>0 && (x) <=32)
+
+#define b_out_relocation_info relocation_info
+struct relocation_info
+ {
+ int r_address; /* File address of item to be relocated. */
+ unsigned
+#define r_index r_symbolnum
+ r_symbolnum:24, /* Index of symbol on which relocation is based,
+ if r_extern is set. Otherwise set to
+ either N_TEXT, N_DATA, or N_BSS to
+ indicate section on which relocation is
+ based. */
+ r_pcrel:1, /* 1 => relocate PC-relative; else absolute
+ On i960, pc-relative implies 24-bit
+ address, absolute implies 32-bit. */
+ r_length:2, /* Number of bytes to relocate:
+ 0 => 1 byte
+ 1 => 2 bytes -- used for 13 bit pcrel
+ 2 => 4 bytes. */
+ r_extern:1,
+ r_bsr:1, /* Something for the GNU NS32K assembler. */
+ r_disp:1, /* Something for the GNU NS32K assembler. */
+ r_callj:1, /* 1 if relocation target is an i960 'callj'. */
+ r_relaxable:1; /* 1 if enough info is left to relax the data. */
+};
diff --git a/contrib/gdb/include/demangle.h b/contrib/gdb/include/demangle.h
new file mode 100644
index 0000000..6e995e4
--- /dev/null
+++ b/contrib/gdb/include/demangle.h
@@ -0,0 +1,533 @@
+/* Defs for interface to demanglers.
+ Copyright 1992, 1993, 1994, 1995, 1996, 1997, 1998, 2000, 2001, 2002,
+ 2003, 2004 Free Software Foundation, Inc.
+
+ This program is free software; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation; either version 2, or (at your option)
+ any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program; if not, write to the Free Software
+ Foundation, Inc., 59 Temple Place - Suite 330,
+ Boston, MA 02111-1307, USA. */
+
+
+#if !defined (DEMANGLE_H)
+#define DEMANGLE_H
+
+#include "libiberty.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif /* __cplusplus */
+
+/* Options passed to cplus_demangle (in 2nd parameter). */
+
+#define DMGL_NO_OPTS 0 /* For readability... */
+#define DMGL_PARAMS (1 << 0) /* Include function args */
+#define DMGL_ANSI (1 << 1) /* Include const, volatile, etc */
+#define DMGL_JAVA (1 << 2) /* Demangle as Java rather than C++. */
+#define DMGL_VERBOSE (1 << 3) /* Include implementation details. */
+#define DMGL_TYPES (1 << 4) /* Also try to demangle type encodings. */
+
+#define DMGL_AUTO (1 << 8)
+#define DMGL_GNU (1 << 9)
+#define DMGL_LUCID (1 << 10)
+#define DMGL_ARM (1 << 11)
+#define DMGL_HP (1 << 12) /* For the HP aCC compiler;
+ same as ARM except for
+ template arguments, etc. */
+#define DMGL_EDG (1 << 13)
+#define DMGL_GNU_V3 (1 << 14)
+#define DMGL_GNAT (1 << 15)
+
+/* If none of these are set, use 'current_demangling_style' as the default. */
+#define DMGL_STYLE_MASK (DMGL_AUTO|DMGL_GNU|DMGL_LUCID|DMGL_ARM|DMGL_HP|DMGL_EDG|DMGL_GNU_V3|DMGL_JAVA|DMGL_GNAT)
+
+/* Enumeration of possible demangling styles.
+
+ Lucid and ARM styles are still kept logically distinct, even though
+ they now both behave identically. The resulting style is actual the
+ union of both. I.E. either style recognizes both "__pt__" and "__rf__"
+ for operator "->", even though the first is lucid style and the second
+ is ARM style. (FIXME?) */
+
+extern enum demangling_styles
+{
+ no_demangling = -1,
+ unknown_demangling = 0,
+ auto_demangling = DMGL_AUTO,
+ gnu_demangling = DMGL_GNU,
+ lucid_demangling = DMGL_LUCID,
+ arm_demangling = DMGL_ARM,
+ hp_demangling = DMGL_HP,
+ edg_demangling = DMGL_EDG,
+ gnu_v3_demangling = DMGL_GNU_V3,
+ java_demangling = DMGL_JAVA,
+ gnat_demangling = DMGL_GNAT
+} current_demangling_style;
+
+/* Define string names for the various demangling styles. */
+
+#define NO_DEMANGLING_STYLE_STRING "none"
+#define AUTO_DEMANGLING_STYLE_STRING "auto"
+#define GNU_DEMANGLING_STYLE_STRING "gnu"
+#define LUCID_DEMANGLING_STYLE_STRING "lucid"
+#define ARM_DEMANGLING_STYLE_STRING "arm"
+#define HP_DEMANGLING_STYLE_STRING "hp"
+#define EDG_DEMANGLING_STYLE_STRING "edg"
+#define GNU_V3_DEMANGLING_STYLE_STRING "gnu-v3"
+#define JAVA_DEMANGLING_STYLE_STRING "java"
+#define GNAT_DEMANGLING_STYLE_STRING "gnat"
+
+/* Some macros to test what demangling style is active. */
+
+#define CURRENT_DEMANGLING_STYLE current_demangling_style
+#define AUTO_DEMANGLING (((int) CURRENT_DEMANGLING_STYLE) & DMGL_AUTO)
+#define GNU_DEMANGLING (((int) CURRENT_DEMANGLING_STYLE) & DMGL_GNU)
+#define LUCID_DEMANGLING (((int) CURRENT_DEMANGLING_STYLE) & DMGL_LUCID)
+#define ARM_DEMANGLING (((int) CURRENT_DEMANGLING_STYLE) & DMGL_ARM)
+#define HP_DEMANGLING (((int) CURRENT_DEMANGLING_STYLE) & DMGL_HP)
+#define EDG_DEMANGLING (((int) CURRENT_DEMANGLING_STYLE) & DMGL_EDG)
+#define GNU_V3_DEMANGLING (((int) CURRENT_DEMANGLING_STYLE) & DMGL_GNU_V3)
+#define JAVA_DEMANGLING (((int) CURRENT_DEMANGLING_STYLE) & DMGL_JAVA)
+#define GNAT_DEMANGLING (((int) CURRENT_DEMANGLING_STYLE) & DMGL_GNAT)
+
+/* Provide information about the available demangle styles. This code is
+ pulled from gdb into libiberty because it is useful to binutils also. */
+
+extern const struct demangler_engine
+{
+ const char *const demangling_style_name;
+ const enum demangling_styles demangling_style;
+ const char *const demangling_style_doc;
+} libiberty_demanglers[];
+
+extern char *
+cplus_demangle PARAMS ((const char *mangled, int options));
+
+extern int
+cplus_demangle_opname PARAMS ((const char *opname, char *result, int options));
+
+extern const char *
+cplus_mangle_opname PARAMS ((const char *opname, int options));
+
+/* Note: This sets global state. FIXME if you care about multi-threading. */
+
+extern void
+set_cplus_marker_for_demangling PARAMS ((int ch));
+
+extern enum demangling_styles
+cplus_demangle_set_style PARAMS ((enum demangling_styles style));
+
+extern enum demangling_styles
+cplus_demangle_name_to_style PARAMS ((const char *name));
+
+/* V3 ABI demangling entry points, defined in cp-demangle.c. */
+extern char*
+cplus_demangle_v3 PARAMS ((const char* mangled, int options));
+
+extern char*
+java_demangle_v3 PARAMS ((const char* mangled));
+
+
+enum gnu_v3_ctor_kinds {
+ gnu_v3_complete_object_ctor = 1,
+ gnu_v3_base_object_ctor,
+ gnu_v3_complete_object_allocating_ctor
+};
+
+/* Return non-zero iff NAME is the mangled form of a constructor name
+ in the G++ V3 ABI demangling style. Specifically, return an `enum
+ gnu_v3_ctor_kinds' value indicating what kind of constructor
+ it is. */
+extern enum gnu_v3_ctor_kinds
+ is_gnu_v3_mangled_ctor PARAMS ((const char *name));
+
+
+enum gnu_v3_dtor_kinds {
+ gnu_v3_deleting_dtor = 1,
+ gnu_v3_complete_object_dtor,
+ gnu_v3_base_object_dtor
+};
+
+/* Return non-zero iff NAME is the mangled form of a destructor name
+ in the G++ V3 ABI demangling style. Specifically, return an `enum
+ gnu_v3_dtor_kinds' value, indicating what kind of destructor
+ it is. */
+extern enum gnu_v3_dtor_kinds
+ is_gnu_v3_mangled_dtor PARAMS ((const char *name));
+
+/* The V3 demangler works in two passes. The first pass builds a tree
+ representation of the mangled name, and the second pass turns the
+ tree representation into a demangled string. Here we define an
+ interface to permit a caller to build their own tree
+ representation, which they can pass to the demangler to get a
+ demangled string. This can be used to canonicalize user input into
+ something which the demangler might output. It could also be used
+ by other demanglers in the future. */
+
+/* These are the component types which may be found in the tree. Many
+ component types have one or two subtrees, referred to as left and
+ right (a component type with only one subtree puts it in the left
+ subtree). */
+
+enum demangle_component_type
+{
+ /* A name, with a length and a pointer to a string. */
+ DEMANGLE_COMPONENT_NAME,
+ /* A qualified name. The left subtree is a class or namespace or
+ some such thing, and the right subtree is a name qualified by
+ that class. */
+ DEMANGLE_COMPONENT_QUAL_NAME,
+ /* A local name. The left subtree describes a function, and the
+ right subtree is a name which is local to that function. */
+ DEMANGLE_COMPONENT_LOCAL_NAME,
+ /* A typed name. The left subtree is a name, and the right subtree
+ describes that name as a function. */
+ DEMANGLE_COMPONENT_TYPED_NAME,
+ /* A template. The left subtree is a template name, and the right
+ subtree is a template argument list. */
+ DEMANGLE_COMPONENT_TEMPLATE,
+ /* A template parameter. This holds a number, which is the template
+ parameter index. */
+ DEMANGLE_COMPONENT_TEMPLATE_PARAM,
+ /* A constructor. This holds a name and the kind of
+ constructor. */
+ DEMANGLE_COMPONENT_CTOR,
+ /* A destructor. This holds a name and the kind of destructor. */
+ DEMANGLE_COMPONENT_DTOR,
+ /* A vtable. This has one subtree, the type for which this is a
+ vtable. */
+ DEMANGLE_COMPONENT_VTABLE,
+ /* A VTT structure. This has one subtree, the type for which this
+ is a VTT. */
+ DEMANGLE_COMPONENT_VTT,
+ /* A construction vtable. The left subtree is the type for which
+ this is a vtable, and the right subtree is the derived type for
+ which this vtable is built. */
+ DEMANGLE_COMPONENT_CONSTRUCTION_VTABLE,
+ /* A typeinfo structure. This has one subtree, the type for which
+ this is the tpeinfo structure. */
+ DEMANGLE_COMPONENT_TYPEINFO,
+ /* A typeinfo name. This has one subtree, the type for which this
+ is the typeinfo name. */
+ DEMANGLE_COMPONENT_TYPEINFO_NAME,
+ /* A typeinfo function. This has one subtree, the type for which
+ this is the tpyeinfo function. */
+ DEMANGLE_COMPONENT_TYPEINFO_FN,
+ /* A thunk. This has one subtree, the name for which this is a
+ thunk. */
+ DEMANGLE_COMPONENT_THUNK,
+ /* A virtual thunk. This has one subtree, the name for which this
+ is a virtual thunk. */
+ DEMANGLE_COMPONENT_VIRTUAL_THUNK,
+ /* A covariant thunk. This has one subtree, the name for which this
+ is a covariant thunk. */
+ DEMANGLE_COMPONENT_COVARIANT_THUNK,
+ /* A Java class. This has one subtree, the type. */
+ DEMANGLE_COMPONENT_JAVA_CLASS,
+ /* A guard variable. This has one subtree, the name for which this
+ is a guard variable. */
+ DEMANGLE_COMPONENT_GUARD,
+ /* A reference temporary. This has one subtree, the name for which
+ this is a temporary. */
+ DEMANGLE_COMPONENT_REFTEMP,
+ /* A standard substitution. This holds the name of the
+ substitution. */
+ DEMANGLE_COMPONENT_SUB_STD,
+ /* The restrict qualifier. The one subtree is the type which is
+ being qualified. */
+ DEMANGLE_COMPONENT_RESTRICT,
+ /* The volatile qualifier. The one subtree is the type which is
+ being qualified. */
+ DEMANGLE_COMPONENT_VOLATILE,
+ /* The const qualifier. The one subtree is the type which is being
+ qualified. */
+ DEMANGLE_COMPONENT_CONST,
+ /* The restrict qualifier modifying a member function. The one
+ subtree is the type which is being qualified. */
+ DEMANGLE_COMPONENT_RESTRICT_THIS,
+ /* The volatile qualifier modifying a member function. The one
+ subtree is the type which is being qualified. */
+ DEMANGLE_COMPONENT_VOLATILE_THIS,
+ /* The const qualifier modifying a member function. The one subtree
+ is the type which is being qualified. */
+ DEMANGLE_COMPONENT_CONST_THIS,
+ /* A vendor qualifier. The left subtree is the type which is being
+ qualified, and the right subtree is the name of the
+ qualifier. */
+ DEMANGLE_COMPONENT_VENDOR_TYPE_QUAL,
+ /* A pointer. The one subtree is the type which is being pointed
+ to. */
+ DEMANGLE_COMPONENT_POINTER,
+ /* A reference. The one subtree is the type which is being
+ referenced. */
+ DEMANGLE_COMPONENT_REFERENCE,
+ /* A complex type. The one subtree is the base type. */
+ DEMANGLE_COMPONENT_COMPLEX,
+ /* An imaginary type. The one subtree is the base type. */
+ DEMANGLE_COMPONENT_IMAGINARY,
+ /* A builtin type. This holds the builtin type information. */
+ DEMANGLE_COMPONENT_BUILTIN_TYPE,
+ /* A vendor's builtin type. This holds the name of the type. */
+ DEMANGLE_COMPONENT_VENDOR_TYPE,
+ /* A function type. The left subtree is the return type. The right
+ subtree is a list of ARGLIST nodes. Either or both may be
+ NULL. */
+ DEMANGLE_COMPONENT_FUNCTION_TYPE,
+ /* An array type. The left subtree is the dimension, which may be
+ NULL, or a string (represented as DEMANGLE_COMPONENT_NAME), or an
+ expression. The right subtree is the element type. */
+ DEMANGLE_COMPONENT_ARRAY_TYPE,
+ /* A pointer to member type. The left subtree is the class type,
+ and the right subtree is the member type. CV-qualifiers appear
+ on the latter. */
+ DEMANGLE_COMPONENT_PTRMEM_TYPE,
+ /* An argument list. The left subtree is the current argument, and
+ the right subtree is either NULL or another ARGLIST node. */
+ DEMANGLE_COMPONENT_ARGLIST,
+ /* A template argument list. The left subtree is the current
+ template argument, and the right subtree is either NULL or
+ another TEMPLATE_ARGLIST node. */
+ DEMANGLE_COMPONENT_TEMPLATE_ARGLIST,
+ /* An operator. This holds information about a standard
+ operator. */
+ DEMANGLE_COMPONENT_OPERATOR,
+ /* An extended operator. This holds the number of arguments, and
+ the name of the extended operator. */
+ DEMANGLE_COMPONENT_EXTENDED_OPERATOR,
+ /* A typecast, represented as a unary operator. The one subtree is
+ the type to which the argument should be cast. */
+ DEMANGLE_COMPONENT_CAST,
+ /* A unary expression. The left subtree is the operator, and the
+ right subtree is the single argument. */
+ DEMANGLE_COMPONENT_UNARY,
+ /* A binary expression. The left subtree is the operator, and the
+ right subtree is a BINARY_ARGS. */
+ DEMANGLE_COMPONENT_BINARY,
+ /* Arguments to a binary expression. The left subtree is the first
+ argument, and the right subtree is the second argument. */
+ DEMANGLE_COMPONENT_BINARY_ARGS,
+ /* A trinary expression. The left subtree is the operator, and the
+ right subtree is a TRINARY_ARG1. */
+ DEMANGLE_COMPONENT_TRINARY,
+ /* Arguments to a trinary expression. The left subtree is the first
+ argument, and the right subtree is a TRINARY_ARG2. */
+ DEMANGLE_COMPONENT_TRINARY_ARG1,
+ /* More arguments to a trinary expression. The left subtree is the
+ second argument, and the right subtree is the third argument. */
+ DEMANGLE_COMPONENT_TRINARY_ARG2,
+ /* A literal. The left subtree is the type, and the right subtree
+ is the value, represented as a DEMANGLE_COMPONENT_NAME. */
+ DEMANGLE_COMPONENT_LITERAL,
+ /* A negative literal. Like LITERAL, but the value is negated.
+ This is a minor hack: the NAME used for LITERAL points directly
+ to the mangled string, but since negative numbers are mangled
+ using 'n' instead of '-', we want a way to indicate a negative
+ number which involves neither modifying the mangled string nor
+ allocating a new copy of the literal in memory. */
+ DEMANGLE_COMPONENT_LITERAL_NEG
+};
+
+/* Types which are only used internally. */
+
+struct demangle_operator_info;
+struct demangle_builtin_type_info;
+
+/* A node in the tree representation is an instance of a struct
+ demangle_component. Note that the field names of the struct are
+ not well protected against macros defined by the file including
+ this one. We can fix this if it ever becomes a problem. */
+
+struct demangle_component
+{
+ /* The type of this component. */
+ enum demangle_component_type type;
+
+ union
+ {
+ /* For DEMANGLE_COMPONENT_NAME. */
+ struct
+ {
+ /* A pointer to the name (which need not NULL terminated) and
+ its length. */
+ const char *s;
+ int len;
+ } s_name;
+
+ /* For DEMANGLE_COMPONENT_OPERATOR. */
+ struct
+ {
+ /* Operator. */
+ const struct demangle_operator_info *op;
+ } s_operator;
+
+ /* For DEMANGLE_COMPONENT_EXTENDED_OPERATOR. */
+ struct
+ {
+ /* Number of arguments. */
+ int args;
+ /* Name. */
+ struct demangle_component *name;
+ } s_extended_operator;
+
+ /* For DEMANGLE_COMPONENT_CTOR. */
+ struct
+ {
+ /* Kind of constructor. */
+ enum gnu_v3_ctor_kinds kind;
+ /* Name. */
+ struct demangle_component *name;
+ } s_ctor;
+
+ /* For DEMANGLE_COMPONENT_DTOR. */
+ struct
+ {
+ /* Kind of destructor. */
+ enum gnu_v3_dtor_kinds kind;
+ /* Name. */
+ struct demangle_component *name;
+ } s_dtor;
+
+ /* For DEMANGLE_COMPONENT_BUILTIN_TYPE. */
+ struct
+ {
+ /* Builtin type. */
+ const struct demangle_builtin_type_info *type;
+ } s_builtin;
+
+ /* For DEMANGLE_COMPONENT_SUB_STD. */
+ struct
+ {
+ /* Standard substitution string. */
+ const char* string;
+ /* Length of string. */
+ int len;
+ } s_string;
+
+ /* For DEMANGLE_COMPONENT_TEMPLATE_PARAM. */
+ struct
+ {
+ /* Template parameter index. */
+ long number;
+ } s_number;
+
+ /* For other types. */
+ struct
+ {
+ /* Left (or only) subtree. */
+ struct demangle_component *left;
+ /* Right subtree. */
+ struct demangle_component *right;
+ } s_binary;
+
+ } u;
+};
+
+/* People building mangled trees are expected to allocate instances of
+ struct demangle_component themselves. They can then call one of
+ the following functions to fill them in. */
+
+/* Fill in most component types with a left subtree and a right
+ subtree. Returns non-zero on success, zero on failure, such as an
+ unrecognized or inappropriate component type. */
+
+extern int
+cplus_demangle_fill_component PARAMS ((struct demangle_component *fill,
+ enum demangle_component_type,
+ struct demangle_component *left,
+ struct demangle_component *right));
+
+/* Fill in a DEMANGLE_COMPONENT_NAME. Returns non-zero on success,
+ zero for bad arguments. */
+
+extern int
+cplus_demangle_fill_name PARAMS ((struct demangle_component *fill,
+ const char *, int));
+
+/* Fill in a DEMANGLE_COMPONENT_BUILTIN_TYPE, using the name of the
+ builtin type (e.g., "int", etc.). Returns non-zero on success,
+ zero if the type is not recognized. */
+
+extern int
+cplus_demangle_fill_builtin_type PARAMS ((struct demangle_component *fill,
+ const char *typename));
+
+/* Fill in a DEMANGLE_COMPONENT_OPERATOR, using the name of the
+ operator and the number of arguments which it takes (the latter is
+ used to disambiguate operators which can be both binary and unary,
+ such as '-'). Returns non-zero on success, zero if the operator is
+ not recognized. */
+
+extern int
+cplus_demangle_fill_operator PARAMS ((struct demangle_component *fill,
+ const char *opname, int args));
+
+/* Fill in a DEMANGLE_COMPONENT_EXTENDED_OPERATOR, providing the
+ number of arguments and the name. Returns non-zero on success,
+ zero for bad arguments. */
+
+extern int
+cplus_demangle_fill_extended_operator PARAMS ((struct demangle_component *fill,
+ int numargs,
+ struct demangle_component *nm));
+
+/* Fill in a DEMANGLE_COMPONENT_CTOR. Returns non-zero on success,
+ zero for bad arguments. */
+
+extern int
+cplus_demangle_fill_ctor PARAMS ((struct demangle_component *fill,
+ enum gnu_v3_ctor_kinds kind,
+ struct demangle_component *name));
+
+/* Fill in a DEMANGLE_COMPONENT_DTOR. Returns non-zero on success,
+ zero for bad arguments. */
+
+extern int
+cplus_demangle_fill_dtor PARAMS ((struct demangle_component *fill,
+ enum gnu_v3_dtor_kinds kind,
+ struct demangle_component *name));
+
+/* This function translates a mangled name into a struct
+ demangle_component tree. The first argument is the mangled name.
+ The second argument is DMGL_* options. This returns a pointer to a
+ tree on success, or NULL on failure. On success, the third
+ argument is set to a block of memory allocated by malloc. This
+ block should be passed to free when the tree is no longer
+ needed. */
+
+extern struct demangle_component *
+cplus_demangle_v3_components PARAMS ((const char *mangled,
+ int options,
+ void **mem));
+
+/* This function takes a struct demangle_component tree and returns
+ the corresponding demangled string. The first argument is DMGL_*
+ options. The second is the tree to demangle. The third is a guess
+ at the length of the demangled string, used to initially allocate
+ the return buffer. The fourth is a pointer to a size_t. On
+ success, this function returns a buffer allocated by malloc(), and
+ sets the size_t pointed to by the fourth argument to the size of
+ the allocated buffer (not the length of the returned string). On
+ failure, this function returns NULL, and sets the size_t pointed to
+ by the fourth argument to 0 for an invalid tree, or to 1 for a
+ memory allocation error. */
+
+extern char *
+cplus_demangle_print PARAMS ((int options,
+ const struct demangle_component *tree,
+ int estimated_length,
+ size_t *p_allocated_size));
+
+#ifdef __cplusplus
+}
+#endif /* __cplusplus */
+
+#endif /* DEMANGLE_H */
diff --git a/contrib/gdb/include/dis-asm.h b/contrib/gdb/include/dis-asm.h
new file mode 100644
index 0000000..3670c51
--- /dev/null
+++ b/contrib/gdb/include/dis-asm.h
@@ -0,0 +1,317 @@
+/* Interface between the opcode library and its callers.
+
+ Copyright 2001, 2002, 2003 Free Software Foundation, Inc.
+
+ This program is free software; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation; either version 2, or (at your option)
+ any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program; if not, write to the Free Software
+ Foundation, Inc., 59 Temple Place - Suite 330,
+ Boston, MA 02111-1307, USA.
+
+ Written by Cygnus Support, 1993.
+
+ The opcode library (libopcodes.a) provides instruction decoders for
+ a large variety of instruction sets, callable with an identical
+ interface, for making instruction-processing programs more independent
+ of the instruction set being processed. */
+
+#ifndef DIS_ASM_H
+#define DIS_ASM_H
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+#include <stdio.h>
+#include "bfd.h"
+
+typedef int (*fprintf_ftype) (void *, const char*, ...);
+
+enum dis_insn_type {
+ dis_noninsn, /* Not a valid instruction */
+ dis_nonbranch, /* Not a branch instruction */
+ dis_branch, /* Unconditional branch */
+ dis_condbranch, /* Conditional branch */
+ dis_jsr, /* Jump to subroutine */
+ dis_condjsr, /* Conditional jump to subroutine */
+ dis_dref, /* Data reference instruction */
+ dis_dref2 /* Two data references in instruction */
+};
+
+/* This struct is passed into the instruction decoding routine,
+ and is passed back out into each callback. The various fields are used
+ for conveying information from your main routine into your callbacks,
+ for passing information into the instruction decoders (such as the
+ addresses of the callback functions), or for passing information
+ back from the instruction decoders to their callers.
+
+ It must be initialized before it is first passed; this can be done
+ by hand, or using one of the initialization macros below. */
+
+typedef struct disassemble_info {
+ fprintf_ftype fprintf_func;
+ void *stream;
+ void *application_data;
+
+ /* Target description. We could replace this with a pointer to the bfd,
+ but that would require one. There currently isn't any such requirement
+ so to avoid introducing one we record these explicitly. */
+ /* The bfd_flavour. This can be bfd_target_unknown_flavour. */
+ enum bfd_flavour flavour;
+ /* The bfd_arch value. */
+ enum bfd_architecture arch;
+ /* The bfd_mach value. */
+ unsigned long mach;
+ /* Endianness (for bi-endian cpus). Mono-endian cpus can ignore this. */
+ enum bfd_endian endian;
+ /* An arch/mach-specific bitmask of selected instruction subsets, mainly
+ for processors with run-time-switchable instruction sets. The default,
+ zero, means that there is no constraint. CGEN-based opcodes ports
+ may use ISA_foo masks. */
+ unsigned long insn_sets;
+
+ /* Some targets need information about the current section to accurately
+ display insns. If this is NULL, the target disassembler function
+ will have to make its best guess. */
+ asection *section;
+
+ /* An array of pointers to symbols either at the location being disassembled
+ or at the start of the function being disassembled. The array is sorted
+ so that the first symbol is intended to be the one used. The others are
+ present for any misc. purposes. This is not set reliably, but if it is
+ not NULL, it is correct. */
+ asymbol **symbols;
+ /* Number of symbols in array. */
+ int num_symbols;
+
+ /* For use by the disassembler.
+ The top 16 bits are reserved for public use (and are documented here).
+ The bottom 16 bits are for the internal use of the disassembler. */
+ unsigned long flags;
+#define INSN_HAS_RELOC 0x80000000
+ void *private_data;
+
+ /* Function used to get bytes to disassemble. MEMADDR is the
+ address of the stuff to be disassembled, MYADDR is the address to
+ put the bytes in, and LENGTH is the number of bytes to read.
+ INFO is a pointer to this struct.
+ Returns an errno value or 0 for success. */
+ int (*read_memory_func)
+ (bfd_vma memaddr, bfd_byte *myaddr, unsigned int length,
+ struct disassemble_info *info);
+
+ /* Function which should be called if we get an error that we can't
+ recover from. STATUS is the errno value from read_memory_func and
+ MEMADDR is the address that we were trying to read. INFO is a
+ pointer to this struct. */
+ void (*memory_error_func)
+ (int status, bfd_vma memaddr, struct disassemble_info *info);
+
+ /* Function called to print ADDR. */
+ void (*print_address_func)
+ (bfd_vma addr, struct disassemble_info *info);
+
+ /* Function called to determine if there is a symbol at the given ADDR.
+ If there is, the function returns 1, otherwise it returns 0.
+ This is used by ports which support an overlay manager where
+ the overlay number is held in the top part of an address. In
+ some circumstances we want to include the overlay number in the
+ address, (normally because there is a symbol associated with
+ that address), but sometimes we want to mask out the overlay bits. */
+ int (* symbol_at_address_func)
+ (bfd_vma addr, struct disassemble_info * info);
+
+ /* Function called to check if a SYMBOL is can be displayed to the user.
+ This is used by some ports that want to hide special symbols when
+ displaying debugging outout. */
+ bfd_boolean (* symbol_is_valid)
+ (asymbol *, struct disassemble_info * info);
+
+ /* These are for buffer_read_memory. */
+ bfd_byte *buffer;
+ bfd_vma buffer_vma;
+ unsigned int buffer_length;
+
+ /* This variable may be set by the instruction decoder. It suggests
+ the number of bytes objdump should display on a single line. If
+ the instruction decoder sets this, it should always set it to
+ the same value in order to get reasonable looking output. */
+ int bytes_per_line;
+
+ /* The next two variables control the way objdump displays the raw data. */
+ /* For example, if bytes_per_line is 8 and bytes_per_chunk is 4, the */
+ /* output will look like this:
+ 00: 00000000 00000000
+ with the chunks displayed according to "display_endian". */
+ int bytes_per_chunk;
+ enum bfd_endian display_endian;
+
+ /* Number of octets per incremented target address
+ Normally one, but some DSPs have byte sizes of 16 or 32 bits. */
+ unsigned int octets_per_byte;
+
+ /* Results from instruction decoders. Not all decoders yet support
+ this information. This info is set each time an instruction is
+ decoded, and is only valid for the last such instruction.
+
+ To determine whether this decoder supports this information, set
+ insn_info_valid to 0, decode an instruction, then check it. */
+
+ char insn_info_valid; /* Branch info has been set. */
+ char branch_delay_insns; /* How many sequential insn's will run before
+ a branch takes effect. (0 = normal) */
+ char data_size; /* Size of data reference in insn, in bytes */
+ enum dis_insn_type insn_type; /* Type of instruction */
+ bfd_vma target; /* Target address of branch or dref, if known;
+ zero if unknown. */
+ bfd_vma target2; /* Second target address for dref2 */
+
+ /* Command line options specific to the target disassembler. */
+ char * disassembler_options;
+
+} disassemble_info;
+
+
+/* Standard disassemblers. Disassemble one instruction at the given
+ target address. Return number of octets processed. */
+typedef int (*disassembler_ftype) (bfd_vma, disassemble_info *);
+
+extern int print_insn_big_mips (bfd_vma, disassemble_info *);
+extern int print_insn_little_mips (bfd_vma, disassemble_info *);
+extern int print_insn_i386 (bfd_vma, disassemble_info *);
+extern int print_insn_i386_att (bfd_vma, disassemble_info *);
+extern int print_insn_i386_intel (bfd_vma, disassemble_info *);
+extern int print_insn_ia64 (bfd_vma, disassemble_info *);
+extern int print_insn_i370 (bfd_vma, disassemble_info *);
+extern int print_insn_m68hc11 (bfd_vma, disassemble_info *);
+extern int print_insn_m68hc12 (bfd_vma, disassemble_info *);
+extern int print_insn_m68k (bfd_vma, disassemble_info *);
+extern int print_insn_z8001 (bfd_vma, disassemble_info *);
+extern int print_insn_z8002 (bfd_vma, disassemble_info *);
+extern int print_insn_h8300 (bfd_vma, disassemble_info *);
+extern int print_insn_h8300h (bfd_vma, disassemble_info *);
+extern int print_insn_h8300s (bfd_vma, disassemble_info *);
+extern int print_insn_h8500 (bfd_vma, disassemble_info *);
+extern int print_insn_alpha (bfd_vma, disassemble_info *);
+extern int print_insn_big_arm (bfd_vma, disassemble_info *);
+extern int print_insn_little_arm (bfd_vma, disassemble_info *);
+extern int print_insn_sparc (bfd_vma, disassemble_info *);
+extern int print_insn_big_a29k (bfd_vma, disassemble_info *);
+extern int print_insn_little_a29k (bfd_vma, disassemble_info *);
+extern int print_insn_avr (bfd_vma, disassemble_info *);
+extern int print_insn_d10v (bfd_vma, disassemble_info *);
+extern int print_insn_d30v (bfd_vma, disassemble_info *);
+extern int print_insn_dlx (bfd_vma, disassemble_info *);
+extern int print_insn_fr30 (bfd_vma, disassemble_info *);
+extern int print_insn_hppa (bfd_vma, disassemble_info *);
+extern int print_insn_i860 (bfd_vma, disassemble_info *);
+extern int print_insn_i960 (bfd_vma, disassemble_info *);
+extern int print_insn_ip2k (bfd_vma, disassemble_info *);
+extern int print_insn_m32r (bfd_vma, disassemble_info *);
+extern int print_insn_m88k (bfd_vma, disassemble_info *);
+extern int print_insn_mcore (bfd_vma, disassemble_info *);
+extern int print_insn_mmix (bfd_vma, disassemble_info *);
+extern int print_insn_mn10200 (bfd_vma, disassemble_info *);
+extern int print_insn_mn10300 (bfd_vma, disassemble_info *);
+extern int print_insn_msp430 (bfd_vma, disassemble_info *);
+extern int print_insn_ns32k (bfd_vma, disassemble_info *);
+extern int print_insn_openrisc (bfd_vma, disassemble_info *);
+extern int print_insn_big_or32 (bfd_vma, disassemble_info *);
+extern int print_insn_little_or32 (bfd_vma, disassemble_info *);
+extern int print_insn_pdp11 (bfd_vma, disassemble_info *);
+extern int print_insn_pj (bfd_vma, disassemble_info *);
+extern int print_insn_big_powerpc (bfd_vma, disassemble_info *);
+extern int print_insn_little_powerpc (bfd_vma, disassemble_info *);
+extern int print_insn_rs6000 (bfd_vma, disassemble_info *);
+extern int print_insn_s390 (bfd_vma, disassemble_info *);
+extern int print_insn_sh (bfd_vma, disassemble_info *);
+extern int print_insn_tic30 (bfd_vma, disassemble_info *);
+extern int print_insn_tic4x (bfd_vma, disassemble_info *);
+extern int print_insn_tic54x (bfd_vma, disassemble_info *);
+extern int print_insn_tic80 (bfd_vma, disassemble_info *);
+extern int print_insn_v850 (bfd_vma, disassemble_info *);
+extern int print_insn_vax (bfd_vma, disassemble_info *);
+extern int print_insn_w65 (bfd_vma, disassemble_info *);
+extern int print_insn_xstormy16 (bfd_vma, disassemble_info *);
+extern int print_insn_xtensa (bfd_vma, disassemble_info *);
+extern int print_insn_sh64 (bfd_vma, disassemble_info *);
+extern int print_insn_sh64x_media (bfd_vma, disassemble_info *);
+extern int print_insn_frv (bfd_vma, disassemble_info *);
+extern int print_insn_iq2000 (bfd_vma, disassemble_info *);
+
+extern disassembler_ftype arc_get_disassembler (void *);
+extern disassembler_ftype cris_get_disassembler (bfd *);
+
+extern void print_mips_disassembler_options (FILE *);
+extern void print_ppc_disassembler_options (FILE *);
+extern void print_arm_disassembler_options (FILE *);
+extern void parse_arm_disassembler_option (char *);
+extern int get_arm_regname_num_options (void);
+extern int set_arm_regname_option (int);
+extern int get_arm_regnames (int, const char **, const char **, const char ***);
+extern bfd_boolean arm_symbol_is_valid (asymbol *, struct disassemble_info *);
+
+/* Fetch the disassembler for a given BFD, if that support is available. */
+extern disassembler_ftype disassembler (bfd *);
+
+/* Amend the disassemble_info structure as necessary for the target architecture.
+ Should only be called after initialising the info->arch field. */
+extern void disassemble_init_for_target (struct disassemble_info * info);
+
+/* Document any target specific options available from the disassembler. */
+extern void disassembler_usage (FILE *);
+
+
+/* This block of definitions is for particular callers who read instructions
+ into a buffer before calling the instruction decoder. */
+
+/* Here is a function which callers may wish to use for read_memory_func.
+ It gets bytes from a buffer. */
+extern int buffer_read_memory
+ (bfd_vma, bfd_byte *, unsigned int, struct disassemble_info *);
+
+/* This function goes with buffer_read_memory.
+ It prints a message using info->fprintf_func and info->stream. */
+extern void perror_memory (int, bfd_vma, struct disassemble_info *);
+
+
+/* Just print the address in hex. This is included for completeness even
+ though both GDB and objdump provide their own (to print symbolic
+ addresses). */
+extern void generic_print_address
+ (bfd_vma, struct disassemble_info *);
+
+/* Always true. */
+extern int generic_symbol_at_address
+ (bfd_vma, struct disassemble_info *);
+
+/* Also always true. */
+extern bfd_boolean generic_symbol_is_valid
+ (asymbol *, struct disassemble_info *);
+
+/* Method to initialize a disassemble_info struct. This should be
+ called by all applications creating such a struct. */
+extern void init_disassemble_info (struct disassemble_info *info, void *stream,
+ fprintf_ftype fprintf_func);
+
+/* For compatibility with existing code. */
+#define INIT_DISASSEMBLE_INFO(INFO, STREAM, FPRINTF_FUNC) \
+ init_disassemble_info (&(INFO), (STREAM), (fprintf_ftype) (FPRINTF_FUNC))
+#define INIT_DISASSEMBLE_INFO_NO_ARCH(INFO, STREAM, FPRINTF_FUNC) \
+ init_disassemble_info (&(INFO), (STREAM), (fprintf_ftype) (FPRINTF_FUNC))
+
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* ! defined (DIS_ASM_H) */
diff --git a/contrib/gdb/include/floatformat.h b/contrib/gdb/include/floatformat.h
new file mode 100644
index 0000000..a8244ad
--- /dev/null
+++ b/contrib/gdb/include/floatformat.h
@@ -0,0 +1,133 @@
+/* IEEE floating point support declarations, for GDB, the GNU Debugger.
+ Copyright 1991, 1994, 1995, 1997, 2000, 2003 Free Software Foundation, Inc.
+
+This file is part of GDB.
+
+This program is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2 of the License, or
+(at your option) any later version.
+
+This program is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with this program; if not, write to the Free Software
+Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
+
+#if !defined (FLOATFORMAT_H)
+#define FLOATFORMAT_H 1
+
+#include "ansidecl.h"
+
+/* A floatformat consists of a sign bit, an exponent and a mantissa. Once the
+ bytes are concatenated according to the byteorder flag, then each of those
+ fields is contiguous. We number the bits with 0 being the most significant
+ (i.e. BITS_BIG_ENDIAN type numbering), and specify which bits each field
+ contains with the *_start and *_len fields. */
+
+/* What is the order of the bytes. */
+
+enum floatformat_byteorders {
+
+ /* Standard little endian byte order.
+ EX: 1.2345678e10 => 00 00 80 c5 e0 fe 06 42 */
+
+ floatformat_little,
+
+ /* Standard big endian byte order.
+ EX: 1.2345678e10 => 42 06 fe e0 c5 80 00 00 */
+
+ floatformat_big,
+
+ /* Little endian byte order but big endian word order.
+ EX: 1.2345678e10 => e0 fe 06 42 00 00 80 c5 */
+
+ floatformat_littlebyte_bigword
+
+};
+
+enum floatformat_intbit { floatformat_intbit_yes, floatformat_intbit_no };
+
+struct floatformat
+{
+ enum floatformat_byteorders byteorder;
+ unsigned int totalsize; /* Total size of number in bits */
+
+ /* Sign bit is always one bit long. 1 means negative, 0 means positive. */
+ unsigned int sign_start;
+
+ unsigned int exp_start;
+ unsigned int exp_len;
+ /* Bias added to a "true" exponent to form the biased exponent. It
+ is intentionally signed as, otherwize, -exp_bias can turn into a
+ very large number (e.g., given the exp_bias of 0x3fff and a 64
+ bit long, the equation (long)(1 - exp_bias) evaluates to
+ 4294950914) instead of -16382). */
+ int exp_bias;
+ /* Exponent value which indicates NaN. This is the actual value stored in
+ the float, not adjusted by the exp_bias. This usually consists of all
+ one bits. */
+ unsigned int exp_nan;
+
+ unsigned int man_start;
+ unsigned int man_len;
+
+ /* Is the integer bit explicit or implicit? */
+ enum floatformat_intbit intbit;
+
+ /* Internal name for debugging. */
+ const char *name;
+
+ /* Validator method. */
+ int (*is_valid) PARAMS ((const struct floatformat *fmt, const char *from));
+};
+
+/* floatformats for IEEE single and double, big and little endian. */
+
+extern const struct floatformat floatformat_ieee_single_big;
+extern const struct floatformat floatformat_ieee_single_little;
+extern const struct floatformat floatformat_ieee_double_big;
+extern const struct floatformat floatformat_ieee_double_little;
+
+/* floatformat for ARM IEEE double, little endian bytes and big endian words */
+
+extern const struct floatformat floatformat_ieee_double_littlebyte_bigword;
+
+/* floatformats for various extendeds. */
+
+extern const struct floatformat floatformat_i387_ext;
+extern const struct floatformat floatformat_m68881_ext;
+extern const struct floatformat floatformat_i960_ext;
+extern const struct floatformat floatformat_m88110_ext;
+extern const struct floatformat floatformat_m88110_harris_ext;
+extern const struct floatformat floatformat_arm_ext_big;
+extern const struct floatformat floatformat_arm_ext_littlebyte_bigword;
+/* IA-64 Floating Point register spilt into memory. */
+extern const struct floatformat floatformat_ia64_spill_big;
+extern const struct floatformat floatformat_ia64_spill_little;
+extern const struct floatformat floatformat_ia64_quad_big;
+extern const struct floatformat floatformat_ia64_quad_little;
+
+/* Convert from FMT to a double.
+ FROM is the address of the extended float.
+ Store the double in *TO. */
+
+extern void
+floatformat_to_double PARAMS ((const struct floatformat *, const char *, double *));
+
+/* The converse: convert the double *FROM to FMT
+ and store where TO points. */
+
+extern void
+floatformat_from_double PARAMS ((const struct floatformat *,
+ const double *, char *));
+
+/* Return non-zero iff the data at FROM is a valid number in format FMT. */
+
+extern int
+floatformat_is_valid PARAMS ((const struct floatformat *fmt, const char *from));
+
+#endif /* defined (FLOATFORMAT_H) */
diff --git a/contrib/gdb/include/fopen-bin.h b/contrib/gdb/include/fopen-bin.h
new file mode 100644
index 0000000..b868f63
--- /dev/null
+++ b/contrib/gdb/include/fopen-bin.h
@@ -0,0 +1,27 @@
+/* Macros for the 'type' part of an fopen, freopen or fdopen.
+
+ <Read|Write>[Update]<Binary file|text file>
+
+ This version is for "binary" systems, where text and binary files are
+ different. An example is Mess-Dose. Many Unix systems could also
+ cope with a "b" in the string, indicating binary files, but some reject this
+ (and thereby don't conform to ANSI C, but what else is new?).
+
+ This file is designed for inclusion by host-dependent .h files. No
+ user application should include it directly, since that would make
+ the application unable to be configured for both "same" and "binary"
+ variant systems. */
+
+#define FOPEN_RB "rb"
+#define FOPEN_WB "wb"
+#define FOPEN_AB "ab"
+#define FOPEN_RUB "r+b"
+#define FOPEN_WUB "w+b"
+#define FOPEN_AUB "a+b"
+
+#define FOPEN_RT "r"
+#define FOPEN_WT "w"
+#define FOPEN_AT "a"
+#define FOPEN_RUT "r+"
+#define FOPEN_WUT "w+"
+#define FOPEN_AUT "a+"
diff --git a/contrib/gdb/include/fopen-same.h b/contrib/gdb/include/fopen-same.h
new file mode 100644
index 0000000..0f37529
--- /dev/null
+++ b/contrib/gdb/include/fopen-same.h
@@ -0,0 +1,27 @@
+/* Macros for the 'type' part of an fopen, freopen or fdopen.
+
+ <Read|Write>[Update]<Binary file|text file>
+
+ This version is for "same" systems, where text and binary files are
+ the same. An example is Unix. Many Unix systems could also add a
+ "b" to the string, indicating binary files, but some reject this
+ (and thereby don't conform to ANSI C, but what else is new?).
+
+ This file is designed for inclusion by host-dependent .h files. No
+ user application should include it directly, since that would make
+ the application unable to be configured for both "same" and "binary"
+ variant systems. */
+
+#define FOPEN_RB "r"
+#define FOPEN_WB "w"
+#define FOPEN_AB "a"
+#define FOPEN_RUB "r+"
+#define FOPEN_WUB "w+"
+#define FOPEN_AUB "a+"
+
+#define FOPEN_RT "r"
+#define FOPEN_WT "w"
+#define FOPEN_AT "a"
+#define FOPEN_RUT "r+"
+#define FOPEN_WUT "w+"
+#define FOPEN_AUT "a+"
diff --git a/contrib/gdb/include/gdbm.h b/contrib/gdb/include/gdbm.h
new file mode 100644
index 0000000..3ebc26d
--- /dev/null
+++ b/contrib/gdb/include/gdbm.h
@@ -0,0 +1,91 @@
+/* GNU DBM - DataBase Manager include file
+ Copyright 1989, 1991 Free Software Foundation, Inc.
+ Written by Philip A. Nelson.
+
+This program is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2 of the License, or
+(at your option) any later version.
+
+This program is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with this program; if not, write to the Free Software
+Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
+
+/* You may contact the author by:
+ e-mail: phil@wwu.edu
+ us-mail: Philip A. Nelson
+ Computer Science Department
+ Western Washington University
+ Bellingham, WA 98226
+ phone: (206) 676-3035
+
+*************************************************************************/
+
+/* Parameters to gdbm_open for READERS, WRITERS, and WRITERS who
+ can create the database. */
+#define GDBM_READER 0
+#define GDBM_WRITER 1
+#define GDBM_WRCREAT 2
+#define GDBM_NEWDB 3
+
+/* Parameters to gdbm_store for simple insertion or replacement. */
+#define GDBM_INSERT 0
+#define GDBM_REPLACE 1
+
+
+/* The data and key structure. This structure is defined for compatibility. */
+typedef struct {
+ char *dptr;
+ int dsize;
+ } datum;
+
+
+/* The file information header. This is good enough for most applications. */
+typedef struct {int dummy[10];} *GDBM_FILE;
+
+
+/* These are the routines! */
+
+extern GDBM_FILE gdbm_open ();
+
+extern void gdbm_close ();
+
+extern datum gdbm_fetch ();
+
+extern int gdbm_store ();
+
+extern int gdbm_delete ();
+
+extern datum gdbm_firstkey ();
+
+extern datum gdbm_nextkey ();
+
+extern int gdbm_reorganize ();
+
+
+/* gdbm sends back the following error codes in the variable gdbm_errno. */
+typedef enum { NO_ERROR,
+ MALLOC_ERROR,
+ BLOCK_SIZE_ERROR,
+ FILE_OPEN_ERROR,
+ FILE_WRITE_ERROR,
+ FILE_SEEK_ERROR,
+ FILE_READ_ERROR,
+ BAD_MAGIC_NUMBER,
+ EMPTY_DATABASE,
+ CANT_BE_READER,
+ CANT_BE_WRITER,
+ READER_CANT_RECOVER,
+ READER_CANT_DELETE,
+ READER_CANT_STORE,
+ READER_CANT_REORGANIZE,
+ UNKNOWN_UPDATE,
+ ITEM_NOT_FOUND,
+ REORGANIZE_FAILED,
+ CANNOT_REPLACE}
+ gdbm_error;
diff --git a/contrib/gdb/include/getopt.h b/contrib/gdb/include/getopt.h
new file mode 100644
index 0000000..a99a229
--- /dev/null
+++ b/contrib/gdb/include/getopt.h
@@ -0,0 +1,144 @@
+/* Declarations for getopt.
+ Copyright 1989, 1990, 1991, 1992, 1993, 1994, 1996, 1997, 1998, 2000,
+ 2002 Free Software Foundation, Inc.
+
+ NOTE: The canonical source of this file is maintained with the GNU C Library.
+ Bugs can be reported to bug-glibc@gnu.org.
+
+ This program is free software; you can redistribute it and/or modify it
+ under the terms of the GNU General Public License as published by the
+ Free Software Foundation; either version 2, or (at your option) any
+ later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program; if not, write to the Free Software
+ Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307,
+ USA. */
+
+#ifndef _GETOPT_H
+#define _GETOPT_H 1
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/* For communication from `getopt' to the caller.
+ When `getopt' finds an option that takes an argument,
+ the argument value is returned here.
+ Also, when `ordering' is RETURN_IN_ORDER,
+ each non-option ARGV-element is returned here. */
+
+extern char *optarg;
+
+/* Index in ARGV of the next element to be scanned.
+ This is used for communication to and from the caller
+ and for communication between successive calls to `getopt'.
+
+ On entry to `getopt', zero means this is the first call; initialize.
+
+ When `getopt' returns -1, this is the index of the first of the
+ non-option elements that the caller should itself scan.
+
+ Otherwise, `optind' communicates from one call to the next
+ how much of ARGV has been scanned so far. */
+
+extern int optind;
+
+/* Callers store zero here to inhibit the error message `getopt' prints
+ for unrecognized options. */
+
+extern int opterr;
+
+/* Set to an option character which was unrecognized. */
+
+extern int optopt;
+
+/* Describe the long-named options requested by the application.
+ The LONG_OPTIONS argument to getopt_long or getopt_long_only is a vector
+ of `struct option' terminated by an element containing a name which is
+ zero.
+
+ The field `has_arg' is:
+ no_argument (or 0) if the option does not take an argument,
+ required_argument (or 1) if the option requires an argument,
+ optional_argument (or 2) if the option takes an optional argument.
+
+ If the field `flag' is not NULL, it points to a variable that is set
+ to the value given in the field `val' when the option is found, but
+ left unchanged if the option is not found.
+
+ To have a long-named option do something other than set an `int' to
+ a compiled-in constant, such as set a value from `optarg', set the
+ option's `flag' field to zero and its `val' field to a nonzero
+ value (the equivalent single-letter option character, if there is
+ one). For long options that have a zero `flag' field, `getopt'
+ returns the contents of the `val' field. */
+
+struct option
+{
+#if defined (__STDC__) && __STDC__
+ const char *name;
+#else
+ char *name;
+#endif
+ /* has_arg can't be an enum because some compilers complain about
+ type mismatches in all the code that assumes it is an int. */
+ int has_arg;
+ int *flag;
+ int val;
+};
+
+/* Names for the values of the `has_arg' field of `struct option'. */
+
+#define no_argument 0
+#define required_argument 1
+#define optional_argument 2
+
+#if defined (__STDC__) && __STDC__
+/* HAVE_DECL_* is a three-state macro: undefined, 0 or 1. If it is
+ undefined, we haven't run the autoconf check so provide the
+ declaration without arguments. If it is 0, we checked and failed
+ to find the declaration so provide a fully prototyped one. If it
+ is 1, we found it so don't provide any declaration at all. */
+#if !HAVE_DECL_GETOPT
+#if defined (__GNU_LIBRARY__) || defined (HAVE_DECL_GETOPT)
+/* Many other libraries have conflicting prototypes for getopt, with
+ differences in the consts, in unistd.h. To avoid compilation
+ errors, only prototype getopt for the GNU C library. */
+extern int getopt (int argc, char *const *argv, const char *shortopts);
+#else
+#ifndef __cplusplus
+extern int getopt ();
+#endif /* __cplusplus */
+#endif
+#endif /* !HAVE_DECL_GETOPT */
+
+extern int getopt_long (int argc, char *const *argv, const char *shortopts,
+ const struct option *longopts, int *longind);
+extern int getopt_long_only (int argc, char *const *argv,
+ const char *shortopts,
+ const struct option *longopts, int *longind);
+
+/* Internal only. Users should not call this directly. */
+extern int _getopt_internal (int argc, char *const *argv,
+ const char *shortopts,
+ const struct option *longopts, int *longind,
+ int long_only);
+#else /* not __STDC__ */
+extern int getopt ();
+extern int getopt_long ();
+extern int getopt_long_only ();
+
+extern int _getopt_internal ();
+#endif /* __STDC__ */
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* getopt.h */
diff --git a/contrib/gdb/include/hp-symtab.h b/contrib/gdb/include/hp-symtab.h
new file mode 100644
index 0000000..6267d55
--- /dev/null
+++ b/contrib/gdb/include/hp-symtab.h
@@ -0,0 +1,1866 @@
+/* Definitions and structures for reading debug symbols from the
+ native HP C compiler.
+
+ Written by the Center for Software Science at the University of Utah
+ and by Cygnus Support.
+
+ Copyright 1994, 1995, 1998, 1999, 2003 Free Software Foundation, Inc.
+
+ This program is free software; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation; either version 2 of the License, or
+ (at your option) any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program; if not, write to the Free Software
+ Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
+
+#ifndef HP_SYMTAB_INCLUDED
+#define HP_SYMTAB_INCLUDED
+
+/* General information:
+
+ This header file defines and describes only the data structures
+ necessary to read debug symbols produced by the HP C compiler,
+ HP ANSI C++ compiler, and HP FORTRAN 90 compiler using the
+ SOM object file format.
+ (For a full description of the debug format, ftp hpux-symtab.h from
+ jaguar.cs.utah.edu:/dist).
+
+ Additional notes (Rich Title)
+ This file is a reverse-engineered version of a file called
+ "symtab.h" which exists internal to HP's Computer Languages Organization
+ in /CLO/Components/DDE/obj/som/symtab.h. Because HP's version of
+ the file is copyrighted and not distributed, it is necessary for
+ GDB to use the reverse-engineered version that follows.
+ Work was done by Cygnus to reverse-engineer the C subset of symtab.h.
+ The WDB project has extended this to also contain the C++
+ symbol definitions, the F90 symbol definitions,
+ and the DOC (debugging-optimized-code) symbol definitions.
+ In some cases (the C++ symbol definitions)
+ I have added internal documentation here that
+ goes beyond what is supplied in HP's symtab.h. If we someday
+ unify these files again, the extra comments should be merged back
+ into HP's symtab.h.
+
+ -------------------------------------------------------------------
+
+ Debug symbols are contained entirely within an unloadable space called
+ $DEBUG$. $DEBUG$ contains several subspaces which group related
+ debug symbols.
+
+ $GNTT$ contains information for global variables, types and contants.
+
+ $LNTT$ contains information for procedures (including nesting), scoping
+ information, local variables, types, and constants.
+
+ $SLT$ contains source line information so that code addresses may be
+ mapped to source lines.
+
+ $VT$ contains various strings and constants for named objects (variables,
+ typedefs, functions, etc). Strings are stored as null-terminated character
+ lists. Constants always begin on word boundaries. The first byte of
+ the VT must be zero (a null string).
+
+ $XT$ is not currently used by GDB.
+
+ Many structures within the subspaces point to other structures within
+ the same subspace, or to structures within a different subspace. These
+ pointers are represented as a structure index from the beginning of
+ the appropriate subspace. */
+
+/* Used to describe where a constant is stored. */
+enum location_type
+{
+ LOCATION_IMMEDIATE,
+ LOCATION_PTR,
+ LOCATION_VT,
+};
+
+/* Languages supported by this debug format. Within the data structures
+ this type is limited to 4 bits for a maximum of 16 languages. */
+enum hp_language
+{
+ HP_LANGUAGE_UNKNOWN,
+ HP_LANGUAGE_C,
+ HP_LANGUAGE_FORTRAN,
+ HP_LANGUAGE_F77 = HP_LANGUAGE_FORTRAN,
+ HP_LANGUAGE_PASCAL,
+ HP_LANGUAGE_MODCAL,
+ HP_LANGUAGE_COBOL,
+ HP_LANGUAGE_BASIC,
+ HP_LANGUAGE_ADA,
+ HP_LANGUAGE_CPLUSPLUS,
+ HP_LANGUAGE_DMPASCAL
+};
+
+
+/* Basic data types available in this debug format. Within the data
+ structures this type is limited to 5 bits for a maximum of 32 basic
+ data types. */
+enum hp_type
+{
+ HP_TYPE_UNDEFINED, /* 0 */
+ HP_TYPE_BOOLEAN, /* 1 */
+ HP_TYPE_CHAR, /* 2 */
+ HP_TYPE_INT, /* 3 */
+ HP_TYPE_UNSIGNED_INT, /* 4 */
+ HP_TYPE_REAL, /* 5 */
+ HP_TYPE_COMPLEX, /* 6 */
+ HP_TYPE_STRING200, /* 7 */
+ HP_TYPE_LONGSTRING200, /* 8 */
+ HP_TYPE_TEXT, /* 9 */
+ HP_TYPE_FLABEL, /* 10 */
+ HP_TYPE_FTN_STRING_SPEC, /* 11 */
+ HP_TYPE_MOD_STRING_SPEC, /* 12 */
+ HP_TYPE_PACKED_DECIMAL, /* 13 */
+ HP_TYPE_REAL_3000, /* 14 */
+ HP_TYPE_MOD_STRING_3000, /* 15 */
+ HP_TYPE_ANYPOINTER, /* 16 */
+ HP_TYPE_GLOBAL_ANYPOINTER, /* 17 */
+ HP_TYPE_LOCAL_ANYPOINTER, /* 18 */
+ HP_TYPE_COMPLEXS3000, /* 19 */
+ HP_TYPE_FTN_STRING_S300_COMPAT, /* 20 */
+ HP_TYPE_FTN_STRING_VAX_COMPAT, /* 21 */
+ HP_TYPE_BOOLEAN_S300_COMPAT, /* 22 */
+ HP_TYPE_BOOLEAN_VAX_COMPAT, /* 23 */
+ HP_TYPE_WIDE_CHAR, /* 24 */
+ HP_TYPE_LONG, /* 25 */
+ HP_TYPE_UNSIGNED_LONG, /* 26 */
+ HP_TYPE_DOUBLE, /* 27 */
+ HP_TYPE_TEMPLATE_ARG, /* 28 */
+ HP_TYPE_VOID /* 29 */
+};
+
+/* An immediate name and type table entry.
+
+ extension and immediate will always be one.
+ global will always be zero.
+ hp_type is the basic type this entry describes.
+ bitlength is the length in bits for the basic type. */
+struct dnttp_immediate
+{
+ unsigned int extension: 1;
+ unsigned int immediate: 1;
+ unsigned int global: 1;
+ unsigned int type: 5;
+ unsigned int bitlength: 24;
+};
+
+/* A nonimmediate name and type table entry.
+
+ extension will always be one.
+ immediate will always be zero.
+ if global is zero, this entry points into the LNTT
+ if global is one, this entry points into the GNTT
+ index is the index within the GNTT or LNTT for this entry. */
+struct dnttp_nonimmediate
+{
+ unsigned int extension: 1;
+ unsigned int immediate: 1;
+ unsigned int global: 1;
+ unsigned int index: 29;
+};
+
+/* A pointer to an entry in the GNTT and LNTT tables. It has two
+ forms depending on the type being described.
+
+ The immediate form is used for simple entries and is one
+ word.
+
+ The nonimmediate form is used for complex entries and contains
+ an index into the LNTT or GNTT which describes the entire type.
+
+ If a dnttpointer is -1, then it is a NIL entry. */
+
+#define DNTTNIL (-1)
+typedef union dnttpointer
+{
+ struct dnttp_immediate dntti;
+ struct dnttp_nonimmediate dnttp;
+ int word;
+} dnttpointer;
+
+/* An index into the source line table. As with dnttpointers, a sltpointer
+ of -1 indicates a NIL entry. */
+#define SLTNIL (-1)
+typedef int sltpointer;
+
+/* Index into DOC (= "Debugging Optimized Code") line table. */
+#define LTNIL (-1)
+typedef int ltpointer;
+
+/* Index into context table. */
+#define CTXTNIL (-1)
+typedef int ctxtpointer;
+
+/* Unsigned byte offset into the VT. */
+typedef unsigned int vtpointer;
+
+/* A DNTT entry (used within the GNTT and LNTT).
+
+ DNTT entries are variable sized objects, but are always a multiple
+ of 3 words (we call each group of 3 words a "block").
+
+ The first bit in each block is an extension bit. This bit is zero
+ for the first block of a DNTT entry. If the entry requires more
+ than one block, then this bit is set to one in all blocks after
+ the first one. */
+
+/* Each DNTT entry describes a particular debug symbol (beginning of
+ a source file, a function, variables, structures, etc.
+
+ The type of the DNTT entry is stored in the "kind" field within the
+ DNTT entry itself. */
+
+enum dntt_entry_type
+{
+ DNTT_TYPE_NIL = -1,
+ DNTT_TYPE_SRCFILE,
+ DNTT_TYPE_MODULE,
+ DNTT_TYPE_FUNCTION,
+ DNTT_TYPE_ENTRY,
+ DNTT_TYPE_BEGIN,
+ DNTT_TYPE_END,
+ DNTT_TYPE_IMPORT,
+ DNTT_TYPE_LABEL,
+ DNTT_TYPE_FPARAM,
+ DNTT_TYPE_SVAR,
+ DNTT_TYPE_DVAR,
+ DNTT_TYPE_HOLE1,
+ DNTT_TYPE_CONST,
+ DNTT_TYPE_TYPEDEF,
+ DNTT_TYPE_TAGDEF,
+ DNTT_TYPE_POINTER,
+ DNTT_TYPE_ENUM,
+ DNTT_TYPE_MEMENUM,
+ DNTT_TYPE_SET,
+ DNTT_TYPE_SUBRANGE,
+ DNTT_TYPE_ARRAY,
+ DNTT_TYPE_STRUCT,
+ DNTT_TYPE_UNION,
+ DNTT_TYPE_FIELD,
+ DNTT_TYPE_VARIANT,
+ DNTT_TYPE_FILE,
+ DNTT_TYPE_FUNCTYPE,
+ DNTT_TYPE_WITH,
+ DNTT_TYPE_COMMON,
+ DNTT_TYPE_COBSTRUCT,
+ DNTT_TYPE_XREF,
+ DNTT_TYPE_SA,
+ DNTT_TYPE_MACRO,
+ DNTT_TYPE_BLOCKDATA,
+ DNTT_TYPE_CLASS_SCOPE,
+ DNTT_TYPE_REFERENCE,
+ DNTT_TYPE_PTRMEM,
+ DNTT_TYPE_PTRMEMFUNC,
+ DNTT_TYPE_CLASS,
+ DNTT_TYPE_GENFIELD,
+ DNTT_TYPE_VFUNC,
+ DNTT_TYPE_MEMACCESS,
+ DNTT_TYPE_INHERITANCE,
+ DNTT_TYPE_FRIEND_CLASS,
+ DNTT_TYPE_FRIEND_FUNC,
+ DNTT_TYPE_MODIFIER,
+ DNTT_TYPE_OBJECT_ID,
+ DNTT_TYPE_MEMFUNC,
+ DNTT_TYPE_TEMPLATE,
+ DNTT_TYPE_TEMPLATE_ARG,
+ DNTT_TYPE_FUNC_TEMPLATE,
+ DNTT_TYPE_LINK,
+ DNTT_TYPE_DYN_ARRAY_DESC,
+ DNTT_TYPE_DESC_SUBRANGE,
+ DNTT_TYPE_BEGIN_EXT,
+ DNTT_TYPE_INLN,
+ DNTT_TYPE_INLN_LIST,
+ DNTT_TYPE_ALIAS,
+ DNTT_TYPE_DOC_FUNCTION,
+ DNTT_TYPE_DOC_MEMFUNC,
+ DNTT_TYPE_MAX
+};
+
+/* DNTT_TYPE_SRCFILE:
+
+ One DNTT_TYPE_SRCFILE symbol is output for the start of each source
+ file and at the begin and end of an included file. A DNTT_TYPE_SRCFILE
+ entry is also output before each DNTT_TYPE_FUNC symbol so that debuggers
+ can determine what file a function was defined in.
+
+ LANGUAGE describes the source file's language.
+
+ NAME points to an VT entry providing the source file's name.
+
+ Note the name used for DNTT_TYPE_SRCFILE entries are exactly as seen
+ by the compiler (ie they may be relative or absolute). C include files
+ via <> inclusion must use absolute paths.
+
+ ADDRESS points to an SLT entry from which line number and code locations
+ may be determined. */
+
+struct dntt_type_srcfile
+{
+ unsigned int extension: 1;
+ unsigned int kind: 10; /* DNTT_TYPE_SRCFILE */
+ unsigned int language: 4;
+ unsigned int unused: 17;
+ vtpointer name;
+ sltpointer address;
+};
+
+/* DNTT_TYPE_MODULE:
+
+ A DNTT_TYPE_MODULE symbol is emitted for the start of a pascal
+ module or C source file. A module indicates a compilation unit
+ for name-scoping purposes; in that regard there should be
+ a 1-1 correspondence between GDB "symtab"'s and MODULE symbol records.
+
+ Each DNTT_TYPE_MODULE must have an associated DNTT_TYPE_END symbol.
+
+ NAME points to a VT entry providing the module's name. Note C
+ source files are considered nameless modules.
+
+ ALIAS point to a VT entry providing a secondary name.
+
+ ADDRESS points to an SLT entry from which line number and code locations
+ may be determined. */
+
+struct dntt_type_module
+{
+ unsigned int extension: 1;
+ unsigned int kind: 10; /* DNTT_TYPE_MODULE */
+ unsigned int unused: 21;
+ vtpointer name;
+ vtpointer alias;
+ dnttpointer unused2;
+ sltpointer address;
+};
+
+/* DNTT_TYPE_FUNCTION,
+ DNTT_TYPE_ENTRY,
+ DNTT_TYPE_BLOCKDATA,
+ DNTT_TYPE_MEMFUNC:
+
+ A DNTT_TYPE_FUNCTION symbol is emitted for each function definition;
+ a DNTT_TYPE_ENTRY symbols is used for secondary entry points. Both
+ symbols used the dntt_type_function structure.
+ A DNTT_TYPE_BLOCKDATA symbol is emitted ...?
+ A DNTT_TYPE_MEMFUNC symbol is emitted for inlined member functions (C++).
+
+ Each of DNTT_TYPE_FUNCTION must have a matching DNTT_TYPE_END.
+
+ GLOBAL is nonzero if the function has global scope.
+
+ LANGUAGE describes the function's source language.
+
+ OPT_LEVEL describes the optimization level the function was compiled
+ with.
+
+ VARARGS is nonzero if the function uses varargs.
+
+ NAME points to a VT entry providing the function's name.
+
+ ALIAS points to a VT entry providing a secondary name for the function.
+
+ FIRSTPARAM points to a LNTT entry which describes the parameter list.
+
+ ADDRESS points to an SLT entry from which line number and code locations
+ may be determined.
+
+ ENTRYADDR is the memory address corresponding the function's entry point
+
+ RETVAL points to a LNTT entry describing the function's return value.
+
+ LOWADDR is the lowest memory address associated with this function.
+
+ HIADDR is the highest memory address associated with this function. */
+
+struct dntt_type_function
+{
+ unsigned int extension: 1;
+ unsigned int kind: 10; /* DNTT_TYPE_FUNCTION,
+ DNTT_TYPE_ENTRY,
+ DNTT_TYPE_BLOCKDATA
+ or DNTT_TYPE_MEMFUNC */
+ unsigned int global: 1;
+ unsigned int language: 4;
+ unsigned int nest_level: 5;
+ unsigned int opt_level: 2;
+ unsigned int varargs: 1;
+ unsigned int lang_info: 4;
+ unsigned int inlined: 1;
+ unsigned int localalloc: 1;
+ unsigned int expansion: 1;
+ unsigned int unused: 1;
+ vtpointer name;
+ vtpointer alias;
+ dnttpointer firstparam;
+ sltpointer address;
+ CORE_ADDR entryaddr;
+ dnttpointer retval;
+ CORE_ADDR lowaddr;
+ CORE_ADDR hiaddr;
+};
+
+/* DNTT_TYPE_BEGIN:
+
+ A DNTT_TYPE_BEGIN symbol is emitted to begin a new nested scope.
+ Every DNTT_TYPE_BEGIN symbol must have a matching DNTT_TYPE_END symbol.
+
+ CLASSFLAG is nonzero if this is the beginning of a c++ class definition.
+
+ ADDRESS points to an SLT entry from which line number and code locations
+ may be determined. */
+
+struct dntt_type_begin
+{
+ unsigned int extension: 1;
+ unsigned int kind: 10;
+ unsigned int classflag: 1;
+ unsigned int unused: 20;
+ sltpointer address;
+};
+
+/* DNTT_TYPE_END:
+
+ A DNTT_TYPE_END symbol is emitted when closing a scope started by
+ a DNTT_TYPE_MODULE, DNTT_TYPE_FUNCTION, DNTT_TYPE_WITH,
+ DNTT_TYPE_COMMON, DNTT_TYPE_BEGIN, and DNTT_TYPE_CLASS_SCOPE symbols.
+
+ ENDKIND describes what type of scope the DNTT_TYPE_END is closing
+ (one of the above 6 kinds).
+
+ CLASSFLAG is nonzero if this is the end of a c++ class definition.
+
+ ADDRESS points to an SLT entry from which line number and code locations
+ may be determined.
+
+ BEGINSCOPE points to the LNTT entry which opened the scope. */
+
+struct dntt_type_end
+{
+ unsigned int extension: 1;
+ unsigned int kind: 10;
+ unsigned int endkind: 10;
+ unsigned int classflag: 1;
+ unsigned int unused: 10;
+ sltpointer address;
+ dnttpointer beginscope;
+};
+
+/* DNTT_TYPE_IMPORT is unused by GDB. */
+/* DNTT_TYPE_LABEL is unused by GDB. */
+
+/* DNTT_TYPE_FPARAM:
+
+ A DNTT_TYPE_FPARAM symbol is emitted for a function argument. When
+ chained together the symbols represent an argument list for a function.
+
+ REGPARAM is nonzero if this parameter was passed in a register.
+
+ INDIRECT is nonzero if this parameter is a pointer to the parameter
+ (pass by reference or pass by value for large items).
+
+ LONGADDR is nonzero if the parameter is a 64bit pointer.
+
+ NAME is a pointer into the VT for the parameter's name.
+
+ LOCATION describes where the parameter is stored. Depending on the
+ parameter type LOCATION could be a register number, or an offset
+ from the stack pointer.
+
+ TYPE points to a NTT entry describing the type of this parameter.
+
+ NEXTPARAM points to the LNTT entry describing the next parameter. */
+
+struct dntt_type_fparam
+{
+ unsigned int extension: 1;
+ unsigned int kind: 10;
+ unsigned int regparam: 1;
+ unsigned int indirect: 1;
+ unsigned int longaddr: 1;
+ unsigned int copyparam: 1;
+ unsigned int dflt: 1;
+ unsigned int doc_ranges: 1;
+ unsigned int misc_kind: 1;
+ unsigned int unused: 14;
+ vtpointer name;
+ CORE_ADDR location;
+ dnttpointer type;
+ dnttpointer nextparam;
+ int misc;
+};
+
+/* DNTT_TYPE_SVAR:
+
+ A DNTT_TYPE_SVAR is emitted to describe a variable in static storage.
+
+ GLOBAL is nonzero if the variable has global scope.
+
+ INDIRECT is nonzero if the variable is a pointer to an object.
+
+ LONGADDR is nonzero if the variable is in long pointer space.
+
+ STATICMEM is nonzero if the variable is a member of a class.
+
+ A_UNION is nonzero if the variable is an anonymous union member.
+
+ NAME is a pointer into the VT for the variable's name.
+
+ LOCATION provides the memory address for the variable.
+
+ TYPE is a pointer into either the GNTT or LNTT which describes
+ the type of this variable. */
+
+struct dntt_type_svar
+{
+ unsigned int extension: 1;
+ unsigned int kind: 10;
+ unsigned int global: 1;
+ unsigned int indirect: 1;
+ unsigned int longaddr: 1;
+ unsigned int staticmem: 1;
+ unsigned int a_union: 1;
+ unsigned int unused1: 1;
+ unsigned int thread_specific: 1;
+ unsigned int unused2: 14;
+ vtpointer name;
+ CORE_ADDR location;
+ dnttpointer type;
+ unsigned int offset;
+ unsigned int displacement;
+};
+
+/* DNTT_TYPE_DVAR:
+
+ A DNTT_TYPE_DVAR is emitted to describe automatic variables and variables
+ held in registers.
+
+ GLOBAL is nonzero if the variable has global scope.
+
+ INDIRECT is nonzero if the variable is a pointer to an object.
+
+ REGVAR is nonzero if the variable is in a register.
+
+ A_UNION is nonzero if the variable is an anonymous union member.
+
+ NAME is a pointer into the VT for the variable's name.
+
+ LOCATION provides the memory address or register number for the variable.
+
+ TYPE is a pointer into either the GNTT or LNTT which describes
+ the type of this variable. */
+
+struct dntt_type_dvar
+{
+ unsigned int extension: 1;
+ unsigned int kind: 10;
+ unsigned int global: 1;
+ unsigned int indirect: 1;
+ unsigned int regvar: 1;
+ unsigned int a_union: 1;
+ unsigned int unused: 17;
+ vtpointer name;
+ int location;
+ dnttpointer type;
+ unsigned int offset;
+};
+
+/* DNTT_TYPE_CONST:
+
+ A DNTT_TYPE_CONST symbol is emitted for program constants.
+
+ GLOBAL is nonzero if the constant has global scope.
+
+ INDIRECT is nonzero if the constant is a pointer to an object.
+
+ LOCATION_TYPE describes where to find the constant's value
+ (in the VT, memory, or embedded in an instruction).
+
+ CLASSMEM is nonzero if the constant is a member of a class.
+
+ NAME is a pointer into the VT for the constant's name.
+
+ LOCATION provides the memory address, register number or pointer
+ into the VT for the constant's value.
+
+ TYPE is a pointer into either the GNTT or LNTT which describes
+ the type of this variable. */
+
+struct dntt_type_const
+{
+ unsigned int extension: 1;
+ unsigned int kind: 10;
+ unsigned int global: 1;
+ unsigned int indirect: 1;
+ unsigned int location_type: 3;
+ unsigned int classmem: 1;
+ unsigned int unused: 15;
+ vtpointer name;
+ CORE_ADDR location;
+ dnttpointer type;
+ unsigned int offset;
+ unsigned int displacement;
+};
+
+/* DNTT_TYPE_TYPEDEF and DNTT_TYPE_TAGDEF:
+
+ The same structure is used to describe typedefs and tagdefs.
+
+ DNTT_TYPE_TYPEDEFS are associated with C "typedefs".
+
+ DNTT_TYPE_TAGDEFs are associated with C "struct", "union", and "enum"
+ tags, which may have the same name as a typedef in the same scope.
+ Also they are associated with C++ "class" tags, which implicitly have
+ the same name as the class type.
+
+ GLOBAL is nonzero if the typedef/tagdef has global scope.
+
+ TYPEINFO is used to determine if full type information is available
+ for a tag. (usually 1, but can be zero for opaque types in C).
+
+ NAME is a pointer into the VT for the constant's name.
+
+ TYPE points to the underlying type for the typedef/tagdef in the
+ GNTT or LNTT. */
+
+struct dntt_type_type
+{
+ unsigned int extension: 1;
+ unsigned int kind: 10; /* DNTT_TYPE_TYPEDEF or
+ DNTT_TYPE_TAGDEF. */
+ unsigned int global: 1;
+ unsigned int typeinfo: 1;
+ unsigned int unused: 19;
+ vtpointer name;
+ dnttpointer type; /* Underlying type, which for TAGDEF's may be
+ DNTT_TYPE_STRUCT, DNTT_TYPE_UNION,
+ DNTT_TYPE_ENUM, or DNTT_TYPE_CLASS.
+ For TYPEDEF's other underlying types
+ are also possible. */
+};
+
+/* DNTT_TYPE_POINTER:
+
+ Used to describe a pointer to an underlying type.
+
+ POINTSTO is a pointer into the GNTT or LNTT for the type which this
+ pointer points to.
+
+ BITLENGTH is the length of the pointer (not the underlying type). */
+
+struct dntt_type_pointer
+{
+ unsigned int extension: 1;
+ unsigned int kind: 10;
+ unsigned int unused: 21;
+ dnttpointer pointsto;
+ unsigned int bitlength;
+};
+
+
+/* DNTT_TYPE_ENUM:
+
+ Used to describe enumerated types.
+
+ FIRSTMEM is a pointer to a DNTT_TYPE_MEMENUM in the GNTT/LNTT which
+ describes the first member (and contains a pointer to the chain of
+ members).
+
+ BITLENGTH is the number of bits used to hold the values of the enum's
+ members. */
+
+struct dntt_type_enum
+{
+ unsigned int extension: 1;
+ unsigned int kind: 10;
+ unsigned int unused: 21;
+ dnttpointer firstmem;
+ unsigned int bitlength;
+};
+
+/* DNTT_TYPE_MEMENUM
+
+ Used to describe members of an enumerated type.
+
+ CLASSMEM is nonzero if this member is part of a class.
+
+ NAME points into the VT for the name of this member.
+
+ VALUE is the value of this enumeration member.
+
+ NEXTMEM points to the next DNTT_TYPE_MEMENUM in the chain. */
+
+struct dntt_type_memenum
+{
+ unsigned int extension: 1;
+ unsigned int kind: 10;
+ unsigned int classmem: 1;
+ unsigned int unused: 20;
+ vtpointer name;
+ unsigned int value;
+ dnttpointer nextmem;
+};
+
+/* DNTT_TYPE_SET
+
+ Used to describe PASCAL "set" type.
+
+ DECLARATION describes the bitpacking of the set.
+
+ SUBTYPE points to a DNTT entry describing the type of the members.
+
+ BITLENGTH is the size of the set. */
+
+struct dntt_type_set
+{
+ unsigned int extension: 1;
+ unsigned int kind: 10;
+ unsigned int declaration: 2;
+ unsigned int unused: 19;
+ dnttpointer subtype;
+ unsigned int bitlength;
+};
+
+/* DNTT_TYPE_SUBRANGE
+
+ Used to describe subrange type.
+
+ DYN_LOW describes the lower bound of the subrange:
+
+ 00 for a constant lower bound (found in LOWBOUND).
+
+ 01 for a dynamic lower bound with the lower bound found in the
+ memory address pointed to by LOWBOUND.
+
+ 10 for a dynamic lower bound described by an variable found in the
+ DNTT/LNTT (LOWBOUND would be a pointer into the DNTT/LNTT).
+
+ DYN_HIGH is similar to DYN_LOW, except it describes the upper bound.
+
+ SUBTYPE points to the type of the subrange.
+
+ BITLENGTH is the length in bits needed to describe the subrange's
+ values. */
+
+struct dntt_type_subrange
+{
+ unsigned int extension: 1;
+ unsigned int kind: 10;
+ unsigned int dyn_low: 2;
+ unsigned int dyn_high: 2;
+ unsigned int unused: 17;
+ int lowbound;
+ int highbound;
+ dnttpointer subtype;
+ unsigned int bitlength;
+};
+
+/* DNTT_TYPE_ARRAY
+
+ Used to describe an array type.
+
+ DECLARATION describes the bit packing used in the array.
+
+ ARRAYISBYTES is nonzero if the field in arraylength describes the
+ length in bytes rather than in bits. A value of zero is used to
+ describe an array with size 2**32.
+
+ ELEMISBYTES is nonzero if the length if each element in the array
+ is describes in bytes rather than bits. A value of zero is used
+ to an element with size 2**32.
+
+ ELEMORDER is nonzero if the elements are indexed in increasing order.
+
+ JUSTIFIED if the elements are left justified to index zero.
+
+ ARRAYLENGTH is the length of the array.
+
+ INDEXTYPE is a DNTT pointer to the type used to index the array.
+
+ ELEMTYPE is a DNTT pointer to the type for the array elements.
+
+ ELEMLENGTH is the length of each element in the array (including
+ any padding).
+
+ Multi-dimensional arrays are represented by ELEMTYPE pointing to
+ another DNTT_TYPE_ARRAY. */
+
+struct dntt_type_array
+{
+ unsigned int extension: 1;
+ unsigned int kind: 10;
+ unsigned int declaration: 2;
+ unsigned int dyn_low: 2;
+ unsigned int dyn_high: 2;
+ unsigned int arrayisbytes: 1;
+ unsigned int elemisbytes: 1;
+ unsigned int elemorder: 1;
+ unsigned int justified: 1;
+ unsigned int unused: 11;
+ unsigned int arraylength;
+ dnttpointer indextype;
+ dnttpointer elemtype;
+ unsigned int elemlength;
+};
+
+/* DNTT_TYPE_STRUCT
+
+ DNTT_TYPE_STRUCT is used to describe a C structure.
+
+ DECLARATION describes the bitpacking used.
+
+ FIRSTFIELD is a DNTT pointer to the first field of the structure
+ (each field contains a pointer to the next field, walk the list
+ to access all fields of the structure).
+
+ VARTAGFIELD and VARLIST are used for Pascal variant records.
+
+ BITLENGTH is the size of the structure in bits. */
+
+struct dntt_type_struct
+{
+ unsigned int extension: 1;
+ unsigned int kind: 10;
+ unsigned int declaration: 2;
+ unsigned int unused: 19;
+ dnttpointer firstfield;
+ dnttpointer vartagfield;
+ dnttpointer varlist;
+ unsigned int bitlength;
+};
+
+/* DNTT_TYPE_UNION
+
+ DNTT_TYPE_UNION is used to describe a C union.
+
+ FIRSTFIELD is a DNTT pointer to the beginning of the field chain.
+
+ BITLENGTH is the size of the union in bits. */
+
+struct dntt_type_union
+{
+ unsigned int extension: 1;
+ unsigned int kind: 10;
+ unsigned int unused: 21;
+ dnttpointer firstfield;
+ unsigned int bitlength;
+};
+
+/* DNTT_TYPE_FIELD
+
+ DNTT_TYPE_FIELD describes one field in a structure or union
+ or C++ class.
+
+ VISIBILITY is used to describe the visibility of the field
+ (for c++. public = 0, protected = 1, private = 2).
+
+ A_UNION is nonzero if this field is a member of an anonymous union.
+
+ STATICMEM is nonzero if this field is a static member of a template.
+
+ NAME is a pointer into the VT for the name of the field.
+
+ BITOFFSET gives the offset of this field in bits from the beginning
+ of the structure or union this field is a member of.
+
+ TYPE is a DNTT pointer to the type describing this field.
+
+ BITLENGTH is the size of the entry in bits.
+
+ NEXTFIELD is a DNTT pointer to the next field in the chain. */
+
+struct dntt_type_field
+{
+ unsigned int extension: 1;
+ unsigned int kind: 10;
+ unsigned int visibility: 2;
+ unsigned int a_union: 1;
+ unsigned int staticmem: 1;
+ unsigned int unused: 17;
+ vtpointer name;
+ unsigned int bitoffset;
+ dnttpointer type;
+ unsigned int bitlength;
+ dnttpointer nextfield;
+};
+
+/* DNTT_TYPE_VARIANT is unused by GDB. */
+/* DNTT_TYPE_FILE is unused by GDB. */
+
+/* DNTT_TYPE_FUNCTYPE
+
+ I think this is used to describe a function type (e.g., would
+ be emitted as part of a function-pointer description).
+
+ VARARGS is nonzero if this function uses varargs.
+
+ FIRSTPARAM is a DNTT pointer to the first entry in the parameter
+ chain.
+
+ RETVAL is a DNTT pointer to the type of the return value. */
+
+struct dntt_type_functype
+{
+ unsigned int extension: 1;
+ unsigned int kind: 10;
+ unsigned int varargs: 1;
+ unsigned int info: 4;
+ unsigned int unused: 16;
+ unsigned int bitlength;
+ dnttpointer firstparam;
+ dnttpointer retval;
+};
+
+/* DNTT_TYPE_WITH is emitted by C++ to indicate "with" scoping semantics.
+ (Probably also emitted by PASCAL to support "with"...).
+
+ C++ example: Say "memfunc" is a method of class "c", and say
+ "m" is a data member of class "c". Then from within "memfunc",
+ it is legal to reference "m" directly (e.g. you don't have to
+ say "this->m". The symbol table indicates
+ this by emitting a DNTT_TYPE_WITH symbol within the function "memfunc",
+ pointing to the type symbol for class "c".
+
+ In GDB, this symbol record is unnecessary,
+ because GDB's symbol lookup algorithm
+ infers the "with" semantics when it sees a "this" argument to the member
+ function. So GDB can safely ignore the DNTT_TYPE_WITH record.
+
+ A DNTT_TYPE_WITH has a matching DNTT_TYPE_END symbol. */
+
+struct dntt_type_with
+{
+ unsigned int extension: 1; /* always zero */
+ unsigned int kind: 10; /* always DNTT_TYPE_WITH */
+ unsigned int addrtype: 2; /* 0 => STATTYPE */
+ /* 1 => DYNTYPE */
+ /* 2 => REGTYPE */
+ unsigned int indirect: 1; /* 1 => pointer to object */
+ unsigned int longaddr: 1; /* 1 => in long pointer space */
+ unsigned int nestlevel: 6; /* # of nesting levels back */
+ unsigned int doc_ranges: 1; /* 1 => location is range list */
+ unsigned int unused: 10;
+ long location; /* where stored (allocated) */
+ sltpointer address;
+ dnttpointer type; /* type of with expression */
+ vtpointer name; /* name of with expression */
+ unsigned long offset; /* byte offset from location */
+};
+
+/* DNTT_TYPE_COMMON is unsupported by GDB. */
+/* A DNTT_TYPE_COMMON symbol must have a matching DNTT_TYPE_END symbol */
+
+/* DNTT_TYPE_COBSTRUCT is unsupported by GDB. */
+/* DNTT_TYPE_XREF is unsupported by GDB. */
+/* DNTT_TYPE_SA is unsupported by GDB. */
+/* DNTT_TYPE_MACRO is unsupported by GDB */
+
+/* DNTT_TYPE_BLOCKDATA has the same structure as DNTT_TYPE_FUNCTION */
+
+/* The following are the C++ specific SOM records */
+
+/* The purpose of the DNTT_TYPE_CLASS_SCOPE is to bracket C++ methods
+ and indicate the method name belongs in the "class scope" rather
+ than in the module they are being defined in. For example:
+
+ class c {
+ ...
+ void memfunc(); // member function
+ };
+
+ void c::memfunc() // definition of class c's "memfunc"
+ {
+ ...
+ }
+
+ main()
+ {
+ ...
+ }
+
+ In the above, the name "memfunc" is not directly visible from "main".
+ I.e., you have to say "break c::memfunc".
+ If it were a normal function (not a method), it would be visible
+ via the simple "break memfunc". Since "memfunc" otherwise looks
+ like a normal FUNCTION in the symbol table, the bracketing
+ CLASS_SCOPE is what is used to indicate it is really a method.
+
+
+ A DNTT_TYPE_CLASS_SCOPE symbol must have a matching DNTT_TYPE_END symbol. */
+
+struct dntt_type_class_scope
+{
+ unsigned int extension: 1; /* Always zero. */
+ unsigned int kind: 10; /* Always DNTT_TYPE_CLASS_SCOPE. */
+ unsigned int unused: 21;
+ sltpointer address ; /* Pointer to SLT entry. */
+ dnttpointer type ; /* Pointer to class type DNTT. */
+};
+
+/* C++ reference parameter.
+ The structure of this record is the same as DNTT_TYPE_POINTER -
+ refer to struct dntt_type_pointer. */
+
+/* The next two describe C++ pointer-to-data-member type, and
+ pointer-to-member-function type, respectively.
+ DNTT_TYPE_PTRMEM and DNTT_TYPE_PTRMEMFUNC have the same structure. */
+
+struct dntt_type_ptrmem
+{
+ unsigned int extension: 1; /* Always zero. */
+ unsigned int kind: 10; /* Always DNTT_TYPE_PTRMEM. */
+ unsigned int unused: 21;
+ dnttpointer pointsto ; /* Pointer to class DNTT. */
+ dnttpointer memtype ; /* Type of member. */
+};
+
+struct dntt_type_ptrmemfunc
+{
+ unsigned int extension: 1; /* Always zero. */
+ unsigned int kind: 10; /* Always DNTT_TYPE_PTRMEMFUNC. */
+ unsigned int unused: 21;
+ dnttpointer pointsto ; /* Pointer to class DNTT. */
+ dnttpointer memtype ; /* Type of member. */
+};
+
+/* The DNTT_TYPE_CLASS symbol is emitted to describe a class type.
+ "memberlist" points to a chained list of FIELD or GENFIELD records
+ indicating the class members. "parentlist" points to a chained list
+ of INHERITANCE records indicating classes from which we inherit
+ fields. */
+
+struct dntt_type_class
+{
+ unsigned int extension: 1; /* Always zero. */
+ unsigned int kind: 10; /* Always DNTT_TYPE_CLASS. */
+ unsigned int abstract: 1; /* Is this an abstract class? */
+ unsigned int class_decl: 2; /* 0=class,1=union,2=struct. */
+ unsigned int expansion: 1; /* 1=template expansion. */
+ unsigned int unused: 17;
+ dnttpointer memberlist ; /* Ptr to chain of [GEN]FIELDs. */
+ unsigned long vtbl_loc ; /* Offset in obj of ptr to vtbl. */
+ dnttpointer parentlist ; /* Ptr to K_INHERITANCE list. */
+ unsigned long bitlength ; /* Total at this level. */
+ dnttpointer identlist ; /* Ptr to chain of class ident's. */
+ dnttpointer friendlist ; /* Ptr to K_FRIEND list. */
+ dnttpointer templateptr ; /* Ptr to template. */
+ dnttpointer nextexp ; /* Ptr to next expansion. */
+};
+
+/* Class members are indicated via either the FIELD record (for
+ data members, same as for C struct fields), or by the GENFIELD record
+ (for member functions). */
+
+struct dntt_type_genfield
+{
+ unsigned int extension: 1; /* Always zero. */
+ unsigned int kind: 10; /* Always DNTT_TYPE_GENFIELD. */
+ unsigned int visibility: 2; /* Pub = 0, prot = 1, priv = 2. */
+ unsigned int a_union: 1; /* 1 => anonymous union member. */
+ unsigned int unused: 18;
+ dnttpointer field ; /* Pointer to field or qualifier. */
+ dnttpointer nextfield ; /* Pointer to next field. */
+};
+
+/* C++ virtual functions. */
+
+struct dntt_type_vfunc
+{
+ unsigned int extension: 1; /* always zero */
+ unsigned int kind: 10; /* always DNTT_TYPE_VFUNC */
+ unsigned int pure: 1; /* pure virtual function ? */
+ unsigned int unused: 20;
+ dnttpointer funcptr ; /* points to FUNCTION symbol */
+ unsigned long vtbl_offset ; /* offset into vtbl for virtual */
+};
+
+/* Not precisely sure what this is intended for - DDE ignores it. */
+
+struct dntt_type_memaccess
+{
+ unsigned int extension: 1; /* always zero */
+ unsigned int kind: 10; /* always DNTT_TYPE_MEMACCESS */
+ unsigned int unused: 21;
+ dnttpointer classptr ; /* pointer to base class */
+ dnttpointer field ; /* pointer field */
+};
+
+/* The DNTT_TYPE_INHERITANCE record describes derived classes.
+ In particular, the "parentlist" field of the CLASS record points
+ to a list of INHERITANCE records for classes from which we
+ inherit members. */
+
+struct dntt_type_inheritance
+{
+ unsigned int extension: 1; /* always zero */
+ unsigned int kind: 10; /* always DNTT_TYPE_INHERITANCE */
+ unsigned int Virtual: 1; /* virtual base class ? */
+ unsigned int visibility: 2; /* pub = 0, prot = 1, priv = 2 */
+ unsigned int unused: 18;
+ dnttpointer classname ; /* first parent class, if any */
+ unsigned long offset ; /* offset to start of base class */
+ dnttpointer next ; /* pointer to next K_INHERITANCE */
+ unsigned long future[2] ; /* padding to 3-word block end */
+};
+
+/* C++ "friend" classes ... */
+
+struct dntt_type_friend_class
+{
+ unsigned int extension: 1; /* always zero */
+ unsigned int kind: 10; /* always DNTT_TYPE_FRIEND_CLASS */
+ unsigned int unused: 21;
+ dnttpointer classptr ; /* pointer to class DNTT */
+ dnttpointer next ; /* next DNTT_FRIEND */
+};
+
+struct dntt_type_friend_func
+{
+ unsigned int extension: 1; /* always zero */
+ unsigned int kind: 10; /* always DNTT_TYPE_FRIEND_FUNC */
+ unsigned int unused: 21;
+ dnttpointer funcptr ; /* pointer to function */
+ dnttpointer classptr ; /* pointer to class DNTT */
+ dnttpointer next ; /* next DNTT_FRIEND */
+ unsigned long future[2] ; /* padding to 3-word block end */
+};
+
+/* DDE appears to ignore the DNTT_TYPE_MODIFIER record.
+ It could perhaps be used to give better "ptype" output in GDB;
+ otherwise it is probably safe for GDB to ignore it also. */
+
+struct dntt_type_modifier
+{
+ unsigned int extension: 1; /* always zero */
+ unsigned int kind: 10; /* always DNTT_TYPE_MODIFIER */
+ unsigned int m_const: 1; /* const */
+ unsigned int m_static: 1; /* static */
+ unsigned int m_void: 1; /* void */
+ unsigned int m_volatile: 1; /* volatile */
+ unsigned int m_duplicate: 1; /* duplicate */
+ unsigned int unused: 16;
+ dnttpointer type ; /* subtype */
+ unsigned long future ; /* padding to 3-word block end */
+};
+
+/* I'm not sure what this was intended for - DDE ignores it. */
+
+struct dntt_type_object_id
+{
+ unsigned int extension: 1; /* always zero */
+ unsigned int kind: 10; /* always DNTT_TYPE_OBJECT_ID */
+ unsigned int indirect: 1; /* Is object_ident addr of addr? */
+ unsigned int unused: 20;
+ unsigned long object_ident ; /* object identifier */
+ unsigned long offset ; /* offset to start of base class */
+ dnttpointer next ; /* pointer to next K_OBJECT_ID */
+ unsigned long segoffset ; /* for linker fixup */
+ unsigned long future ; /* padding to 3-word block end */
+};
+
+/* No separate dntt_type_memfunc; same as dntt_type_func */
+
+/* Symbol records to support templates. These only get used
+ in DDE's "describe" output (like GDB's "ptype"). */
+
+/* The TEMPLATE record is the header for a template-class.
+ Like the CLASS record, a TEMPLATE record has a memberlist that
+ points to a list of template members. It also has an arglist
+ pointing to a list of TEMPLATE_ARG records. */
+
+struct dntt_type_template
+{
+ unsigned int extension: 1; /* always zero */
+ unsigned int kind: 10; /* always DNTT_TYPE_TEMPLATE */
+ unsigned int abstract: 1; /* is this an abstract class? */
+ unsigned int class_decl: 2; /* 0=class,1=union,2=struct */
+ unsigned int unused: 18;
+ dnttpointer memberlist ; /* ptr to chain of K_[GEN]FIELDs */
+ long unused2 ; /* offset in obj of ptr to vtbl */
+ dnttpointer parentlist ; /* ptr to K_INHERITANCE list */
+ unsigned long bitlength ; /* total at this level */
+ dnttpointer identlist ; /* ptr to chain of class ident's */
+ dnttpointer friendlist ; /* ptr to K_FRIEND list */
+ dnttpointer arglist ; /* ptr to argument list */
+ dnttpointer expansions ; /* ptr to expansion list */
+};
+
+/* Template-class arguments are a list of TEMPL_ARG records
+ chained together. The "name" field is the name of the formal.
+ E.g.:
+
+ template <class T> class q { ... };
+
+ Then "T" is the name of the formal argument. */
+
+struct dntt_type_templ_arg
+{
+ unsigned int extension: 1; /* always zero */
+ unsigned int kind: 10; /* always DNTT_TYPE_TEMPL_ARG */
+ unsigned int usagetype: 1; /* 0 type-name 1 expression */
+ unsigned int unused: 20;
+ vtpointer name ; /* name of argument */
+ dnttpointer type ; /* for non type arguments */
+ dnttpointer nextarg ; /* Next argument if any */
+ long future[2] ; /* padding to 3-word block end */
+};
+
+/* FUNC_TEMPLATE records are sort of like FUNCTION, but are emitted
+ for template member functions. E.g.,
+
+ template <class T> class q
+ {
+ ...
+ void f();
+ ...
+ };
+
+ Within the list of FIELDs/GENFIELDs defining the member list
+ of the template "q", "f" would appear as a FUNC_TEMPLATE.
+ We'll also see instances of FUNCTION "f" records for each
+ instantiation of the template. */
+
+struct dntt_type_func_template
+{
+ unsigned int extension: 1; /* always zero */
+ unsigned int kind: 10; /* always DNTT_TYPE_FUNC_TEMPLATE */
+ unsigned int public: 1; /* 1 => globally visible */
+ unsigned int language: 4; /* type of language */
+ unsigned int level: 5; /* nesting level (top level = 0)*/
+ unsigned int optimize: 2; /* level of optimization */
+ unsigned int varargs: 1; /* ellipses. Pascal/800 later */
+ unsigned int info: 4; /* lang-specific stuff; F_xxxx */
+ unsigned int inlined: 1;
+ unsigned int localloc: 1; /* 0 at top, 1 at end of block */
+ unsigned int unused: 2;
+ vtpointer name ; /* name of function */
+ vtpointer alias ; /* alternate name, if any */
+ dnttpointer firstparam ; /* first FPARAM, if any */
+ dnttpointer retval ; /* return type, if any */
+ dnttpointer arglist ; /* ptr to argument list */
+};
+
+/* LINK is apparently intended to link together function template
+ definitions with their instantiations. However, it is not clear
+ why this would be needed, except to provide the information on
+ a "ptype" command. And as far as I can tell, aCC does not
+ generate this record. */
+
+struct dntt_type_link
+{
+ unsigned int extension: 1; /* always zero */
+ unsigned int kind: 10; /* always DNTT_TYPE_LINK */
+ unsigned int linkKind: 4; /* always LINK_UNKNOWN */
+ unsigned int unused: 17;
+ long future1 ; /* expansion */
+ dnttpointer ptr1 ; /* link from template */
+ dnttpointer ptr2 ; /* to expansion */
+ long future[2] ; /* padding to 3-word block end */
+};
+
+/* end of C++ specific SOM's. */
+
+/* DNTT_TYPE_DYN_ARRAY_DESC is unused by GDB */
+/* DNTT_TYPE_DESC_SUBRANGE is unused by GDB */
+/* DNTT_TYPE_BEGIN_EXT is unused by GDB */
+/* DNTT_TYPE_INLN is unused by GDB */
+/* DNTT_TYPE_INLN_LIST is unused by GDB */
+/* DNTT_TYPE_ALIAS is unused by GDB */
+
+struct dntt_type_doc_function
+{
+ unsigned int extension: 1; /* always zero */
+ unsigned int kind: 10; /* K_DOC_FUNCTION or */
+ /* K_DOC_MEMFUNC */
+ unsigned int global: 1; /* 1 => globally visible */
+ unsigned int language: 4; /* type of language */
+ unsigned int level: 5; /* nesting level (top level = 0)*/
+ unsigned int optimize: 2; /* level of optimization */
+ unsigned int varargs: 1; /* ellipses. Pascal/800 later */
+ unsigned int info: 4; /* lang-specific stuff; F_xxxx */
+ unsigned int inlined: 1;
+ unsigned int localloc: 1; /* 0 at top, 1 at end of block */
+ unsigned int expansion: 1; /* 1 = function expansion */
+ unsigned int doc_clone: 1;
+ vtpointer name; /* name of function */
+ vtpointer alias; /* alternate name, if any */
+ dnttpointer firstparam; /* first FPARAM, if any */
+ sltpointer address; /* code and text locations */
+ CORE_ADDR entryaddr; /* address of entry point */
+ dnttpointer retval; /* return type, if any */
+ CORE_ADDR lowaddr; /* lowest address of function */
+ CORE_ADDR hiaddr; /* highest address of function */
+ dnttpointer inline_list; /* pointer to first inline */
+ ltpointer lt_offset; /* start of frag/cp line table */
+ ctxtpointer ctxt_offset; /* start of context table for this routine */
+};
+
+/* DNTT_TYPE_DOC_MEMFUNC is unused by GDB */
+
+/* DNTT_TYPE_GENERIC and DNTT_TYPE_BLOCK are convience structures
+ so we can examine a DNTT entry in a generic fashion. */
+struct dntt_type_generic
+{
+ unsigned int word[9];
+};
+
+struct dntt_type_block
+{
+ unsigned int extension: 1;
+ unsigned int kind: 10;
+ unsigned int unused: 21;
+ unsigned int word[2];
+};
+
+/* One entry in a DNTT (either the LNTT or GNTT).
+ This is a union of the above 60 or so structure definitions. */
+
+union dnttentry
+{
+ struct dntt_type_srcfile dsfile;
+ struct dntt_type_module dmodule;
+ struct dntt_type_function dfunc;
+ struct dntt_type_function dentry;
+ struct dntt_type_begin dbegin;
+ struct dntt_type_end dend;
+ struct dntt_type_fparam dfparam;
+ struct dntt_type_svar dsvar;
+ struct dntt_type_dvar ddvar;
+ struct dntt_type_const dconst;
+ struct dntt_type_type dtype;
+ struct dntt_type_type dtag;
+ struct dntt_type_pointer dptr;
+ struct dntt_type_enum denum;
+ struct dntt_type_memenum dmember;
+ struct dntt_type_set dset;
+ struct dntt_type_subrange dsubr;
+ struct dntt_type_array darray;
+ struct dntt_type_struct dstruct;
+ struct dntt_type_union dunion;
+ struct dntt_type_field dfield;
+ struct dntt_type_functype dfunctype;
+ struct dntt_type_with dwith;
+ struct dntt_type_function dblockdata;
+ struct dntt_type_class_scope dclass_scope;
+ struct dntt_type_pointer dreference;
+ struct dntt_type_ptrmem dptrmem;
+ struct dntt_type_ptrmemfunc dptrmemfunc;
+ struct dntt_type_class dclass;
+ struct dntt_type_genfield dgenfield;
+ struct dntt_type_vfunc dvfunc;
+ struct dntt_type_memaccess dmemaccess;
+ struct dntt_type_inheritance dinheritance;
+ struct dntt_type_friend_class dfriend_class;
+ struct dntt_type_friend_func dfriend_func;
+ struct dntt_type_modifier dmodifier;
+ struct dntt_type_object_id dobject_id;
+ struct dntt_type_template dtemplate;
+ struct dntt_type_templ_arg dtempl_arg;
+ struct dntt_type_func_template dfunc_template;
+ struct dntt_type_link dlink;
+ struct dntt_type_doc_function ddocfunc;
+ struct dntt_type_generic dgeneric;
+ struct dntt_type_block dblock;
+};
+
+/* Source line entry types. */
+enum slttype
+{
+ SLT_NORMAL,
+ SLT_SRCFILE,
+ SLT_MODULE,
+ SLT_FUNCTION,
+ SLT_ENTRY,
+ SLT_BEGIN,
+ SLT_END,
+ SLT_WITH,
+ SLT_EXIT,
+ SLT_ASSIST,
+ SLT_MARKER,
+ SLT_CLASS_SCOPE,
+ SLT_INLN,
+ SLT_NORMAL_OFFSET,
+};
+
+/* A normal source line entry. Simply provides a mapping of a source
+ line number to a code address.
+
+ SLTDESC will always be SLT_NORMAL or SLT_EXIT. */
+
+struct slt_normal
+{
+ unsigned int sltdesc: 4;
+ unsigned int line: 28;
+ CORE_ADDR address;
+};
+
+struct slt_normal_off
+{
+ unsigned int sltdesc: 4;
+ unsigned int offset: 6;
+ unsigned int line: 22;
+ CORE_ADDR address;
+};
+
+/* A special source line entry. Provides a mapping of a declaration
+ to a line number. These entries point back into the DNTT which
+ references them. */
+
+struct slt_special
+{
+ unsigned int sltdesc: 4;
+ unsigned int line: 28;
+ dnttpointer backptr;
+};
+
+/* Used to describe nesting.
+
+ For nested languages, an slt_assist entry must follow each SLT_FUNC
+ entry in the SLT. The address field will point forward to the
+ first slt_normal entry within the function's scope. */
+
+struct slt_assist
+{
+ unsigned int sltdesc: 4;
+ unsigned int unused: 28;
+ sltpointer address;
+};
+
+struct slt_generic
+{
+ unsigned int word[2];
+};
+
+union sltentry
+{
+ struct slt_normal snorm;
+ struct slt_normal_off snormoff;
+ struct slt_special sspec;
+ struct slt_assist sasst;
+ struct slt_generic sgeneric;
+};
+
+/* $LINES$ declarations
+ This is the line table used for optimized code, which is only present
+ in the new $PROGRAM_INFO$ debug space. */
+
+#define DST_LN_ESCAPE_FLAG1 15
+#define DST_LN_ESCAPE_FLAG2 14
+#define DST_LN_CTX_SPEC1 13
+#define DST_LN_CTX_SPEC2 12
+
+/* Escape function codes: */
+
+typedef enum
+{
+ dst_ln_pad, /* pad byte */
+ dst_ln_escape_1, /* reserved */
+ dst_ln_dpc1_dln1, /* 1 byte line delta, 1 byte pc delta */
+ dst_ln_dpc2_dln2, /* 2 bytes line delta, 2 bytes pc delta */
+ dst_ln_pc4_ln4, /* 4 bytes ABSOLUTE line number, 4 bytes ABSOLUTE pc */
+ dst_ln_dpc0_dln1, /* 1 byte line delta, pc delta = 0 */
+ dst_ln_ln_off_1, /* statement escape, stmt # = 1 (2nd stmt on line) */
+ dst_ln_ln_off, /* statement escape, stmt # = next byte */
+ dst_ln_entry, /* entry escape, next byte is entry number */
+ dst_ln_exit, /* exit escape */
+ dst_ln_stmt_end, /* gap escape, 4 bytes pc delta */
+ dst_ln_stmt_cp, /* current stmt is a critical point */
+ dst_ln_escape_12, /* reserved */
+ dst_ln_escape_13, /* this is an exception site record */
+ dst_ln_nxt_byte, /* next byte contains the real escape code */
+ dst_ln_end, /* end escape, final entry follows */
+ dst_ln_escape1_END_OF_ENUM
+}
+dst_ln_escape1_t;
+
+typedef enum
+{
+ dst_ln_ctx_1, /* next byte describes context switch with 5-bit */
+ /* index into the image table and 3-bit run length. */
+ /* If run length is 0, end with another cxt specifier or ctx_end */
+ dst_ln_ctx_2, /* next 2 bytes switch context: 13 bit index, 3 bit run length */
+ dst_ln_ctx_4, /* next 4 bytes switch context: 29 bit index, 3 bit run length */
+ dst_ln_ctx_end, /* end current context */
+ dst_ln_col_run_1, /* next byte is column position of start of next statement, */
+ /* following byte is length of statement */
+ dst_ln_col_run_2, /* next 2 bytes is column position of start of next statement, */
+ /* following 2 bytes is length of statement */
+ dst_ln_init_base1, /* next 4 bytes are absolute PC, followed by 1 byte of line number */
+ dst_ln_init_base2, /* next 4 bytes are absolute PC, followed by 2 bytes of line number */
+ dst_ln_init_base3, /* next 4 bytes are absolute PC, followed by 3 bytes of line number */
+ dst_ln_escape2_END_OF_ENUM
+}
+dst_ln_escape2_t;
+
+typedef union
+{
+ struct
+ {
+ unsigned int pc_delta : 4; /* 4 bit pc delta */
+ int ln_delta : 4; /* 4 bit line number delta */
+ }
+ delta;
+
+ struct
+ {
+ unsigned int esc_flag : 4; /* alias for pc_delta */
+ unsigned int esc_code : 4; /* escape function code (dst_ln_escape1_t, or ...2_t */
+ }
+ esc;
+
+ struct
+ {
+ unsigned int esc_flag : 4; /* dst_ln_ctx_spec1, or dst_ln_ctx_spec2 */
+ unsigned int run_length : 2;
+ unsigned int ctx_index : 2; /* ...spec2 contains index; ...spec1, index - 4 */
+ }
+ ctx_spec;
+
+ char sdata; /* signed data byte */
+ unsigned char udata; /* unsigned data byte */
+}
+dst_ln_entry_t,
+ * dst_ln_entry_ptr_t;
+
+/* Warning: although the above union occupies only 1 byte the compiler treats
+ it as having size 2 (the minimum size of a struct). Therefore a sequence of
+ dst_ln_entry_t's cannot be described as an array, and walking through such a
+ sequence requires convoluted code such as
+ ln_ptr = (dst_ln_entry_ptr_t) (char*) ln_ptr + 1
+ We regret the inconvenience. */
+
+/* Structure for interpreting the byte following a dst_ln_ctx1 entry. */
+typedef struct
+{
+ unsigned int ctx1_index : 5; /* 5 bit index into context table */
+ unsigned int ctx1_run_length : 3; /* 3 bit run length */
+} dst_ln_ctx1_t,
+ *dst_ln_ctx1_ptr_t;
+
+/* Structure for interpreting the bytes following a dst_ln_ctx2 entry. */
+typedef struct
+{
+ unsigned int ctx2_index : 13; /* 13 bit index into context table */
+ unsigned int ctx2_run_length : 3; /* 3 bit run length */
+} dst_ln_ctx2_t,
+ *dst_ln_ctx2_ptr_t;
+
+/* Structure for interpreting the bytes following a dst_ln_ctx4 entry. */
+typedef struct
+{
+ unsigned int ctx4_index : 29; /* 29 bit index into context table */
+ unsigned int ctx4_run_length : 3; /* 3 bit run length */
+} dst_ln_ctx4_t,
+ *dst_ln_ctx4_ptr_t;
+
+
+/* PXDB definitions.
+
+ PXDB is a post-processor which takes the executable file
+ and massages the debug information so that the debugger may
+ start up and run more efficiently. Some of the tasks
+ performed by PXDB are:
+
+ o Remove duplicate global type and variable information
+ from the GNTT,
+
+ o Append the GNTT onto the end of the LNTT and place both
+ back in the LNTT section,
+
+ o Build quick look-up tables (description follows) for
+ files, procedures, modules, and paragraphs (for Cobol),
+ placing these in the GNTT section,
+
+ o Reconstruct the header appearing in the header section
+ to access this information.
+
+ The "quick look-up" tables are in the $GNTT$ sub-space, in
+ the following order:
+
+ Procedures -sorted by address
+ Source files -sorted by address (of the
+ generated code from routines)
+ Modules -sorted by address
+ Classes -<unsorted?>
+ Address Alias -sorted by index <?>
+ Object IDs -sorted by object identifier
+
+ Most quick entries have (0-based) indices into the LNTT tables to
+ the full entries for the item it describes.
+
+ The post-PXDB header is in the $HEADER$ sub-space. Alas, it
+ occurs in different forms, depending on the optimization level
+ in the compilation step and whether PXDB was run or not. The
+ worst part is the forms aren't self-describing, so we'll have
+ to grovel in the bits to figure out what kind we're looking at
+ (see hp_get_header in hp-psymtab-read.c). */
+
+/* PXDB versions. */
+
+#define PXDB_VERSION_CPLUSPLUS 1
+#define PXDB_VERSION_7_4 2
+#define PXDB_VERSION_CPP_30 3
+#define PXDB_VERSION_DDE_3_2A 4
+#define PXDB_VERSION_DDE_3_2 5
+#define PXDB_VERSION_DDE_4_0 6
+
+#define PXDB_VERSION_2_1 1
+
+/* Header version for the case that there is no DOC info
+ but the executable has been processed by pxdb (the easy
+ case, from "cc -g"). */
+
+typedef struct PXDB_struct
+{
+ int pd_entries; /* # of entries in function look-up table */
+ int fd_entries; /* # of entries in file look-up table */
+ int md_entries; /* # of entries in module look-up table */
+ unsigned int pxdbed : 1; /* 1 => file has been preprocessed */
+ unsigned int bighdr : 1; /* 1 => this header contains 'time' word */
+ unsigned int sa_header : 1;/* 1 => created by SA version of pxdb */
+ /* used for version check in xdb */
+ unsigned int inlined: 1; /* one or more functions have been inlined */
+ unsigned int spare:12;
+ short version; /* pxdb header version */
+ int globals; /* index into the DNTT where GNTT begins */
+ unsigned int time; /* modify time of file before being pxdbed */
+ int pg_entries; /* # of entries in label look-up table */
+ int functions; /* actual number of functions */
+ int files; /* actual number of files */
+ int cd_entries; /* # of entries in class look-up table */
+ int aa_entries; /* # of entries in addr alias look-up table */
+ int oi_entries; /* # of entries in object id look-up table */
+} PXDB_header, *PXDB_header_ptr;
+
+/* Header version for the case that there is no DOC info and the
+ executable has NOT been processed by pxdb. */
+
+typedef struct XDB_header_struct
+{
+ long gntt_length;
+ long lntt_length;
+ long slt_length;
+ long vt_length;
+ long xt_length;
+} XDB_header;
+
+/* Header version for the case that there is DOC info and the
+ executable has been processed by pxdb. */
+
+typedef struct DOC_info_PXDB_header_struct
+{
+ unsigned int xdb_header: 1; /* bit set if this is post-3.1 xdb */
+ unsigned int doc_header: 1; /* bit set if this is doc-style header */
+ unsigned int version: 8; /* version of pxdb see defines
+ PXDB_VERSION_* in this file. */
+ unsigned int reserved_for_flags: 16;/* for future use; -- must be
+ set to zero. */
+ unsigned int has_aux_pd_table: 1; /* $GNTT$ has aux PD table */
+ unsigned int has_expr_table: 1; /* space has $EXPR$ */
+ unsigned int has_range_table: 1; /* space has $RANGE$ */
+ unsigned int has_context_table: 1; /* space has $SRC_CTXT$ */
+ unsigned int has_lines_table: 1; /* space contains a $LINES$
+ subspace for line tables. */
+ unsigned int has_lt_offset_map: 1; /* space contains an lt_offset
+ subspace for line table mapping. */
+ /* The following fields are the same as those in the PXDB_header in $DEBUG$ */
+ int pd_entries; /* # of entries in function look-up table */
+ int fd_entries; /* # of entries in file look-up table */
+ int md_entries; /* # of entries in module look-up table */
+ unsigned int pxdbed : 1; /* 1 => file has been preprocessed */
+ unsigned int bighdr : 1; /* 1 => this header contains 'time' word */
+ unsigned int sa_header : 1;/* 1 => created by SA version of pxdb */
+ /* used for version check in xdb */
+ unsigned int inlined: 1; /* one or more functions have been inlined */
+ unsigned int spare : 28;
+ int globals; /* index into the DNTT where GNTT begins */
+ unsigned int time; /* modify time of file before being pxdbed */
+ int pg_entries; /* # of entries in label look-up table */
+ int functions; /* actual number of functions */
+ int files; /* actual number of files */
+ int cd_entries; /* # of entries in class look-up table */
+ int aa_entries; /* # of entries in addr alias look-up table */
+ int oi_entries; /* # of entries in object id look-up table */
+} DOC_info_PXDB_header;
+
+/* Header version for the case that there is DOC info and the
+ executable has NOT been processed by pxdb. */
+
+typedef struct DOC_info_header_struct
+{
+ unsigned int xdb_header: 1; /* bit set if this is post-3.1 xdb */
+ unsigned int doc_header: 1; /* bit set if this is doc-style header*/
+ unsigned int version: 8; /* version of debug/header
+ format. For 10.0 the value
+ will be 1. For "Davis" the value is 2. */
+ unsigned int reserved_for_flags: 18; /* for future use; -- must be set to zero. */
+ unsigned int has_range_table: 1; /* space contains a $RANGE$ subspace for variable ranges. */
+ unsigned int has_context_table: 1; /* space contains a $CTXT$ subspace for context/inline table. */
+ unsigned int has_lines_table: 1; /* space contains a $LINES$ subspace for line tables. */
+ unsigned int has_lt_offset_map: 1; /* space contains an lt_offset subspace for line table mapping. */
+
+ long gntt_length; /* same as old header */
+ long lntt_length; /* same as old header */
+ long slt_length; /* same as old header */
+ long vt_length; /* same as old header */
+ long xt_length; /* same as old header */
+ long ctxt_length; /* present only if version >= 2 */
+ long range_length; /* present only if version >= 2 */
+ long expr_length; /* present only if version >= 2 */
+
+} DOC_info_header;
+
+typedef union GenericDebugHeader_union
+{
+ PXDB_header no_doc;
+ DOC_info_PXDB_header doc;
+ XDB_header no_pxdb_no_doc;
+ DOC_info_header no_pxdb_doc;
+} GenericDebugHeader;
+
+
+/* Procedure Descriptor:
+ An element of the procedure quick look-up table. */
+
+typedef struct quick_procedure
+{
+ long isym; /* 0-based index of first symbol
+ for procedure in $LNTT$,
+ i.e. the procedure itself. */
+ CORE_ADDR adrStart; /* memory adr of start of proc */
+ CORE_ADDR adrEnd; /* memory adr of end of proc */
+ char *sbAlias; /* alias name of procedure */
+ char *sbProc; /* real name of procedure */
+ CORE_ADDR adrBp; /* address of entry breakpoint */
+ CORE_ADDR adrExitBp; /* address of exit breakpoint */
+ int icd; /* member of this class (index) */
+ unsigned int ipd; /* index of template for this */
+ /* function (index) */
+ unsigned int unused: 5;
+ unsigned int no_lt_offset: 1;/* no entry in lt_offset table */
+ unsigned int fTemplate: 1; /* function template */
+ unsigned int fExpansion: 1; /* function expansion */
+ unsigned int linked : 1; /* linked with other expansions */
+ unsigned int duplicate: 1; /* clone of another procedure */
+ unsigned int overloaded:1; /* overloaded function */
+ unsigned int member: 1; /* class member function */
+ unsigned int constructor:1; /* constructor function */
+ unsigned int destructor:1; /* destructor function */
+ unsigned int Static: 1; /* static function */
+ unsigned int Virtual: 1; /* virtual function */
+ unsigned int constant: 1; /* constant function */
+ unsigned int pure: 1; /* pure (virtual) function */
+ unsigned int language: 4; /* procedure's language */
+ unsigned int inlined: 1; /* function has been inlined */
+ unsigned int Operator: 1; /* operator function */
+ unsigned int stub: 1; /* bodyless function */
+ unsigned int optimize: 2; /* optimization level */
+ unsigned int level: 5; /* nesting level (top=0) */
+} quick_procedure_entry, *quick_procedure_entry_ptr;
+
+/* Source File Descriptor:
+ An element of the source file quick look-up table. */
+
+typedef struct quick_source
+{
+ long isym; /* 0-based index in $LNTT$ of
+ first symbol for this file. */
+ CORE_ADDR adrStart; /* mem adr of start of file's code */
+ CORE_ADDR adrEnd; /* mem adr of end of file's code */
+ char *sbFile; /* name of source file */
+ unsigned int fHasDecl: 1; /* do we have a .d file? */
+ unsigned int fWarned: 1; /* have warned about age problems? */
+ unsigned int fSrcfile: 1; /* 0 => include 1=> source */
+ unsigned short ilnMac; /* lines in file (0 if don't know) */
+ int ipd; /* 0-based index of first procedure
+ in this file, in the quick
+ look-up table of procedures. */
+ unsigned int *rgLn; /* line pointer array, if any */
+} quick_file_entry, *quick_file_entry_ptr;
+
+/* Module Descriptor:
+ An element of the module quick reference table. */
+
+typedef struct quick_module
+{
+ long isym; /* 0-based index of first
+ symbol for module. */
+ CORE_ADDR adrStart; /* adr of start of mod. */
+ CORE_ADDR adrEnd; /* adr of end of mod. */
+ char *sbAlias; /* alias name of module */
+ char *sbMod; /* real name of module */
+ unsigned int imports: 1; /* module have any imports? */
+ unsigned int vars_in_front: 1; /* module globals in front? */
+ unsigned int vars_in_gaps: 1; /* module globals in gaps? */
+ unsigned int language: 4; /* type of language */
+ unsigned int unused : 25;
+ unsigned int unused2; /* space for future stuff */
+} quick_module_entry, *quick_module_entry_ptr;
+
+/* Auxiliary Procedure Descriptor:
+ An element of the auxiliary procedure quick look-up table. */
+
+typedef struct quick_aux_procedure
+{
+ long isym_inln; /* start on inline list for proc */
+ long spare;
+} quick_aux_procedure_entry, *quick_aux_procedure_entry_ptr;
+
+/* Paragraph Descriptor:
+ An element of the paragraph quick look-up table. */
+
+typedef struct quick_paragraph
+{
+ long isym; /* first symbol for label (index) */
+ CORE_ADDR adrStart; /* memory adr of start of label */
+ CORE_ADDR adrEnd; /* memory adr of end of label */
+ char *sbLab; /* name of label */
+ unsigned int inst; /* Used in xdb to store inst @ bp */
+ unsigned int sect: 1; /* true = section, false = parag. */
+ unsigned int unused: 31; /* future use */
+} quick_paragraph_entry, *quick_paragraph_entry_ptr;
+
+/* Class Descriptor:
+ An element of the class quick look-up table. */
+
+typedef struct quick_class
+{
+ char *sbClass; /* name of class */
+ long isym; /* class symbol (tag) */
+ unsigned int type : 2; /* 0=class, 1=union, 2=struct */
+ unsigned int fTemplate : 1;/* class template */
+ unsigned int expansion : 1;/* template expansion */
+ unsigned int unused :28;
+ sltpointer lowscope; /* beginning of defined scope */
+ sltpointer hiscope; /* end of defined scope */
+} quick_class_entry, *quick_class_entry_ptr;
+
+/* Address Alias Entry
+ An element of the address alias quick look-up table. */
+
+typedef struct quick_alias
+{
+ CORE_ADDR low;
+ CORE_ADDR high;
+ int index;
+ unsigned int unused : 31;
+ unsigned int alternate : 1; /* alternate unnamed aliases? */
+} quick_alias_entry, *quick_alias_entry_ptr;
+
+/* Object Identification Entry
+ An element of the object identification quick look-up table. */
+
+typedef struct quick_obj_ID
+{
+ CORE_ADDR obj_ident; /* class identifier */
+ long isym; /* class symbol */
+ long offset; /* offset to object start */
+} quick_obj_ID_entry, *quick_obj_ID_entry_ptr;
+
+#endif /* HP_SYMTAB_INCLUDED */
diff --git a/contrib/gdb/include/ieee.h b/contrib/gdb/include/ieee.h
new file mode 100644
index 0000000..5abc32b
--- /dev/null
+++ b/contrib/gdb/include/ieee.h
@@ -0,0 +1,165 @@
+/* IEEE Standard 695-1980 "Universal Format for Object Modules" header file
+
+ Copyright 2001 Free Software Foundation, Inc.
+
+ This program is free software; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation; either version 2, or (at your option)
+ any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program; if not, write to the Free Software
+ Foundation, Inc., 59 Temple Place - Suite 330,
+ Boston, MA 02111-1307, USA.
+
+ Contributed by Cygnus Support. */
+
+#define N_W_VARIABLES 8
+#define Module_Beginning 0xe0
+
+typedef struct ieee_module
+ {
+ char *processor;
+ char *module_name;
+ }
+ieee_module_begin_type;
+
+#define Address_Descriptor 0xec
+typedef struct ieee_address
+ {
+ bfd_vma number_of_bits_mau;
+ bfd_vma number_of_maus_in_address;
+
+ unsigned char byte_order;
+#define IEEE_LITTLE 0xcc
+#define IEEE_BIG 0xcd
+ }
+ieee_address_descriptor_type;
+
+typedef union ieee_w_variable
+ {
+ file_ptr offset[N_W_VARIABLES];
+
+ struct
+ {
+ file_ptr extension_record;
+ file_ptr environmental_record;
+ file_ptr section_part;
+ file_ptr external_part;
+ file_ptr debug_information_part;
+ file_ptr data_part;
+ file_ptr trailer_part;
+ file_ptr me_record;
+ }
+ r;
+ }
+ieee_w_variable_type;
+
+typedef enum ieee_record
+ {
+ ieee_number_start_enum = 0x00,
+ ieee_number_end_enum=0x7f,
+ ieee_number_repeat_start_enum = 0x80,
+ ieee_number_repeat_end_enum = 0x88,
+ ieee_number_repeat_4_enum = 0x84,
+ ieee_number_repeat_3_enum = 0x83,
+ ieee_number_repeat_2_enum = 0x82,
+ ieee_number_repeat_1_enum = 0x81,
+ ieee_module_beginning_enum = 0xe0,
+ ieee_module_end_enum = 0xe1,
+ ieee_extension_length_1_enum = 0xde,
+ ieee_extension_length_2_enum = 0xdf,
+ ieee_section_type_enum = 0xe6,
+ ieee_section_alignment_enum = 0xe7,
+ ieee_external_symbol_enum = 0xe8,
+ ieee_comma = 0x90,
+ ieee_external_reference_enum = 0xe9,
+ ieee_set_current_section_enum = 0xe5,
+ ieee_address_descriptor_enum = 0xec,
+ ieee_load_constant_bytes_enum = 0xed,
+ ieee_load_with_relocation_enum = 0xe4,
+
+ ieee_variable_A_enum = 0xc1,
+ ieee_variable_B_enum = 0xc2,
+ ieee_variable_C_enum = 0xc3,
+ ieee_variable_D_enum = 0xc4,
+ ieee_variable_E_enum = 0xc5,
+ ieee_variable_F_enum = 0xc6,
+ ieee_variable_G_enum = 0xc7,
+ ieee_variable_H_enum = 0xc8,
+ ieee_variable_I_enum = 0xc9,
+ ieee_variable_J_enum = 0xca,
+ ieee_variable_K_enum = 0xcb,
+ ieee_variable_L_enum = 0xcc,
+ ieee_variable_M_enum = 0xcd,
+ ieee_variable_N_enum = 0xce,
+ ieee_variable_O_enum = 0xcf,
+ ieee_variable_P_enum = 0xd0,
+ ieee_variable_Q_enum = 0xd1,
+ ieee_variable_R_enum = 0xd2,
+ ieee_variable_S_enum = 0xd3,
+ ieee_variable_T_enum = 0xd4,
+ ieee_variable_U_enum = 0xd5,
+ ieee_variable_V_enum = 0xd6,
+ ieee_variable_W_enum = 0xd7,
+ ieee_variable_X_enum = 0xd8,
+ ieee_variable_Y_enum = 0xd9,
+ ieee_variable_Z_enum = 0xda,
+ ieee_function_plus_enum = 0xa5,
+ ieee_function_minus_enum = 0xa6,
+ ieee_function_signed_open_b_enum = 0xba,
+ ieee_function_signed_close_b_enum = 0xbb,
+
+ ieee_function_unsigned_open_b_enum = 0xbc,
+ ieee_function_unsigned_close_b_enum = 0xbd,
+
+ ieee_function_either_open_b_enum = 0xbe,
+ ieee_function_either_close_b_enum = 0xbf,
+ ieee_record_seperator_enum = 0xdb,
+
+ ieee_e2_first_byte_enum = 0xe2,
+ ieee_section_size_enum = 0xe2d3,
+ ieee_physical_region_size_enum = 0xe2c1,
+ ieee_region_base_address_enum = 0xe2c2,
+ ieee_mau_size_enum = 0xe2c6,
+ ieee_m_value_enum = 0xe2cd,
+ ieee_section_base_address_enum = 0xe2cc,
+ ieee_asn_record_enum = 0xe2ce,
+ ieee_section_offset_enum = 0xe2d2,
+ ieee_value_starting_address_enum = 0xe2c7,
+ ieee_assign_value_to_variable_enum = 0xe2d7,
+ ieee_set_current_pc_enum = 0xe2d0,
+ ieee_value_record_enum = 0xe2c9,
+ ieee_nn_record = 0xf0,
+ ieee_at_record_enum = 0xf1,
+ ieee_ty_record_enum = 0xf2,
+ ieee_attribute_record_enum = 0xf1c9,
+ ieee_atn_record_enum = 0xf1ce,
+ ieee_external_reference_info_record_enum = 0xf1d8,
+ ieee_weak_external_reference_enum= 0xf4,
+ ieee_repeat_data_enum = 0xf7,
+ ieee_bb_record_enum = 0xf8,
+ ieee_be_record_enum = 0xf9
+ }
+ieee_record_enum_type;
+
+typedef struct ieee_section
+ {
+ unsigned int section_index;
+ unsigned int section_type;
+ char * section_name;
+ unsigned int parent_section_index;
+ unsigned int sibling_section_index;
+ unsigned int context_index;
+ }
+ieee_section_type;
+
+#define IEEE_REFERENCE_BASE 11
+#define IEEE_PUBLIC_BASE 32
+#define IEEE_SECTION_NUMBER_BASE 1
+
diff --git a/contrib/gdb/include/libiberty.h b/contrib/gdb/include/libiberty.h
new file mode 100644
index 0000000..761b2cf
--- /dev/null
+++ b/contrib/gdb/include/libiberty.h
@@ -0,0 +1,335 @@
+/* Function declarations for libiberty.
+
+ Copyright 2001, 2002 Free Software Foundation, Inc.
+
+ Note - certain prototypes declared in this header file are for
+ functions whoes implementation copyright does not belong to the
+ FSF. Those prototypes are present in this file for reference
+ purposes only and their presence in this file should not construed
+ as an indication of ownership by the FSF of the implementation of
+ those functions in any way or form whatsoever.
+
+ This program is free software; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation; either version 2, or (at your option)
+ any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program; if not, write to the Free Software
+ Foundation, Inc., 59 Temple Place - Suite 330,
+ Boston, MA 02111-1307, USA.
+
+ Written by Cygnus Support, 1994.
+
+ The libiberty library provides a number of functions which are
+ missing on some operating systems. We do not declare those here,
+ to avoid conflicts with the system header files on operating
+ systems that do support those functions. In this file we only
+ declare those functions which are specific to libiberty. */
+
+#ifndef LIBIBERTY_H
+#define LIBIBERTY_H
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+#include "ansidecl.h"
+
+#ifdef ANSI_PROTOTYPES
+/* Get a definition for size_t. */
+#include <stddef.h>
+/* Get a definition for va_list. */
+#include <stdarg.h>
+#endif
+
+/* Build an argument vector from a string. Allocates memory using
+ malloc. Use freeargv to free the vector. */
+
+extern char **buildargv PARAMS ((const char *)) ATTRIBUTE_MALLOC;
+
+/* Free a vector returned by buildargv. */
+
+extern void freeargv PARAMS ((char **));
+
+/* Duplicate an argument vector. Allocates memory using malloc. Use
+ freeargv to free the vector. */
+
+extern char **dupargv PARAMS ((char **)) ATTRIBUTE_MALLOC;
+
+
+/* Return the last component of a path name. Note that we can't use a
+ prototype here because the parameter is declared inconsistently
+ across different systems, sometimes as "char *" and sometimes as
+ "const char *" */
+
+/* HAVE_DECL_* is a three-state macro: undefined, 0 or 1. If it is
+ undefined, we haven't run the autoconf check so provide the
+ declaration without arguments. If it is 0, we checked and failed
+ to find the declaration so provide a fully prototyped one. If it
+ is 1, we found it so don't provide any declaration at all. */
+#if !HAVE_DECL_BASENAME
+#if defined (__GNU_LIBRARY__ ) || defined (__linux__) || defined (__FreeBSD__) || defined (__OpenBSD__) || defined(__NetBSD__) || defined (__CYGWIN__) || defined (__CYGWIN32__) || defined (HAVE_DECL_BASENAME)
+extern char *basename PARAMS ((const char *));
+#else
+extern char *basename ();
+#endif
+#endif
+
+/* A well-defined basename () that is always compiled in. */
+
+extern const char *lbasename PARAMS ((const char *));
+
+/* A well-defined realpath () that is always compiled in. */
+
+extern char *lrealpath PARAMS ((const char *));
+
+/* Concatenate an arbitrary number of strings. You must pass NULL as
+ the last argument of this function, to terminate the list of
+ strings. Allocates memory using xmalloc. */
+
+extern char *concat PARAMS ((const char *, ...)) ATTRIBUTE_MALLOC;
+
+/* Concatenate an arbitrary number of strings. You must pass NULL as
+ the last argument of this function, to terminate the list of
+ strings. Allocates memory using xmalloc. The first argument is
+ not one of the strings to be concatenated, but if not NULL is a
+ pointer to be freed after the new string is created, similar to the
+ way xrealloc works. */
+
+extern char *reconcat PARAMS ((char *, const char *, ...)) ATTRIBUTE_MALLOC;
+
+/* Determine the length of concatenating an arbitrary number of
+ strings. You must pass NULL as the last argument of this function,
+ to terminate the list of strings. */
+
+extern unsigned long concat_length PARAMS ((const char *, ...));
+
+/* Concatenate an arbitrary number of strings into a SUPPLIED area of
+ memory. You must pass NULL as the last argument of this function,
+ to terminate the list of strings. The supplied memory is assumed
+ to be large enough. */
+
+extern char *concat_copy PARAMS ((char *, const char *, ...));
+
+/* Concatenate an arbitrary number of strings into a GLOBAL area of
+ memory. You must pass NULL as the last argument of this function,
+ to terminate the list of strings. The supplied memory is assumed
+ to be large enough. */
+
+extern char *concat_copy2 PARAMS ((const char *, ...));
+
+/* This is the global area used by concat_copy2. */
+
+extern char *libiberty_concat_ptr;
+
+/* Concatenate an arbitrary number of strings. You must pass NULL as
+ the last argument of this function, to terminate the list of
+ strings. Allocates memory using alloca. The arguments are
+ evaluated twice! */
+#define ACONCAT(ACONCAT_PARAMS) \
+ (libiberty_concat_ptr = alloca (concat_length ACONCAT_PARAMS + 1), \
+ concat_copy2 ACONCAT_PARAMS)
+
+/* Check whether two file descriptors refer to the same file. */
+
+extern int fdmatch PARAMS ((int fd1, int fd2));
+
+/* Get the working directory. The result is cached, so don't call
+ chdir() between calls to getpwd(). */
+
+extern char * getpwd PARAMS ((void));
+
+/* Get the amount of time the process has run, in microseconds. */
+
+extern long get_run_time PARAMS ((void));
+
+/* Generate a relocated path to some installation directory. Allocates
+ return value using malloc. */
+
+extern char *make_relative_prefix PARAMS ((const char *, const char *,
+ const char *));
+
+/* Choose a temporary directory to use for scratch files. */
+
+extern char *choose_temp_base PARAMS ((void)) ATTRIBUTE_MALLOC;
+
+/* Return a temporary file name or NULL if unable to create one. */
+
+extern char *make_temp_file PARAMS ((const char *)) ATTRIBUTE_MALLOC;
+
+/* Allocate memory filled with spaces. Allocates using malloc. */
+
+extern const char *spaces PARAMS ((int count));
+
+/* Return the maximum error number for which strerror will return a
+ string. */
+
+extern int errno_max PARAMS ((void));
+
+/* Return the name of an errno value (e.g., strerrno (EINVAL) returns
+ "EINVAL"). */
+
+extern const char *strerrno PARAMS ((int));
+
+/* Given the name of an errno value, return the value. */
+
+extern int strtoerrno PARAMS ((const char *));
+
+/* ANSI's strerror(), but more robust. */
+
+extern char *xstrerror PARAMS ((int));
+
+/* Return the maximum signal number for which strsignal will return a
+ string. */
+
+extern int signo_max PARAMS ((void));
+
+/* Return a signal message string for a signal number
+ (e.g., strsignal (SIGHUP) returns something like "Hangup"). */
+/* This is commented out as it can conflict with one in system headers.
+ We still document its existence though. */
+
+/*extern const char *strsignal PARAMS ((int));*/
+
+/* Return the name of a signal number (e.g., strsigno (SIGHUP) returns
+ "SIGHUP"). */
+
+extern const char *strsigno PARAMS ((int));
+
+/* Given the name of a signal, return its number. */
+
+extern int strtosigno PARAMS ((const char *));
+
+/* Register a function to be run by xexit. Returns 0 on success. */
+
+extern int xatexit PARAMS ((void (*fn) (void)));
+
+/* Exit, calling all the functions registered with xatexit. */
+
+extern void xexit PARAMS ((int status)) ATTRIBUTE_NORETURN;
+
+/* Set the program name used by xmalloc. */
+
+extern void xmalloc_set_program_name PARAMS ((const char *));
+
+/* Report an allocation failure. */
+extern void xmalloc_failed PARAMS ((size_t)) ATTRIBUTE_NORETURN;
+
+/* Allocate memory without fail. If malloc fails, this will print a
+ message to stderr (using the name set by xmalloc_set_program_name,
+ if any) and then call xexit. */
+
+extern PTR xmalloc PARAMS ((size_t)) ATTRIBUTE_MALLOC;
+
+/* Reallocate memory without fail. This works like xmalloc. Note,
+ realloc type functions are not suitable for attribute malloc since
+ they may return the same address across multiple calls. */
+
+extern PTR xrealloc PARAMS ((PTR, size_t));
+
+/* Allocate memory without fail and set it to zero. This works like
+ xmalloc. */
+
+extern PTR xcalloc PARAMS ((size_t, size_t)) ATTRIBUTE_MALLOC;
+
+/* Copy a string into a memory buffer without fail. */
+
+extern char *xstrdup PARAMS ((const char *)) ATTRIBUTE_MALLOC;
+
+/* Copy an existing memory buffer to a new memory buffer without fail. */
+
+extern PTR xmemdup PARAMS ((const PTR, size_t, size_t)) ATTRIBUTE_MALLOC;
+
+/* Physical memory routines. Return values are in BYTES. */
+extern double physmem_total PARAMS ((void));
+extern double physmem_available PARAMS ((void));
+
+/* hex character manipulation routines */
+
+#define _hex_array_size 256
+#define _hex_bad 99
+extern const unsigned char _hex_value[_hex_array_size];
+extern void hex_init PARAMS ((void));
+#define hex_p(c) (hex_value (c) != _hex_bad)
+/* If you change this, note well: Some code relies on side effects in
+ the argument being performed exactly once. */
+#define hex_value(c) ((unsigned int) _hex_value[(unsigned char) (c)])
+
+/* Definitions used by the pexecute routine. */
+
+#define PEXECUTE_FIRST 1
+#define PEXECUTE_LAST 2
+#define PEXECUTE_ONE (PEXECUTE_FIRST + PEXECUTE_LAST)
+#define PEXECUTE_SEARCH 4
+#define PEXECUTE_VERBOSE 8
+
+/* Execute a program. */
+
+extern int pexecute PARAMS ((const char *, char * const *, const char *,
+ const char *, char **, char **, int));
+
+/* Wait for pexecute to finish. */
+
+extern int pwait PARAMS ((int, int *, int));
+
+#if !HAVE_DECL_ASPRINTF
+/* Like sprintf but provides a pointer to malloc'd storage, which must
+ be freed by the caller. */
+
+extern int asprintf PARAMS ((char **, const char *, ...)) ATTRIBUTE_PRINTF_2;
+#endif
+
+#if !HAVE_DECL_VASPRINTF
+/* Like vsprintf but provides a pointer to malloc'd storage, which
+ must be freed by the caller. */
+
+extern int vasprintf PARAMS ((char **, const char *, va_list))
+ ATTRIBUTE_PRINTF(2,0);
+#endif
+
+#define ARRAY_SIZE(a) (sizeof (a) / sizeof ((a)[0]))
+
+/* Drastically simplified alloca configurator. If we're using GCC,
+ we use __builtin_alloca; otherwise we use the C alloca. The C
+ alloca is always available. You can override GCC by defining
+ USE_C_ALLOCA yourself. The canonical autoconf macro C_ALLOCA is
+ also set/unset as it is often used to indicate whether code needs
+ to call alloca(0). */
+extern PTR C_alloca PARAMS ((size_t)) ATTRIBUTE_MALLOC;
+#undef alloca
+#if GCC_VERSION >= 2000 && !defined USE_C_ALLOCA
+# define alloca(x) __builtin_alloca(x)
+# undef C_ALLOCA
+# define ASTRDUP(X) \
+ (__extension__ ({ const char *const libiberty_optr = (X); \
+ const unsigned long libiberty_len = strlen (libiberty_optr) + 1; \
+ char *const libiberty_nptr = alloca (libiberty_len); \
+ (char *) memcpy (libiberty_nptr, libiberty_optr, libiberty_len); }))
+#else
+# define alloca(x) C_alloca(x)
+# undef USE_C_ALLOCA
+# define USE_C_ALLOCA 1
+# undef C_ALLOCA
+# define C_ALLOCA 1
+extern const char *libiberty_optr;
+extern char *libiberty_nptr;
+extern unsigned long libiberty_len;
+# define ASTRDUP(X) \
+ (libiberty_optr = (X), \
+ libiberty_len = strlen (libiberty_optr) + 1, \
+ libiberty_nptr = alloca (libiberty_len), \
+ (char *) memcpy (libiberty_nptr, libiberty_optr, libiberty_len))
+#endif
+
+#ifdef __cplusplus
+}
+#endif
+
+
+#endif /* ! defined (LIBIBERTY_H) */
diff --git a/contrib/gdb/include/oasys.h b/contrib/gdb/include/oasys.h
new file mode 100644
index 0000000..c8f737a
--- /dev/null
+++ b/contrib/gdb/include/oasys.h
@@ -0,0 +1,192 @@
+/* Oasys object format header file for BFD.
+
+ Copyright 2001 Free Software Foundation, Inc.
+
+ This program is free software; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation; either version 2, or (at your option)
+ any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program; if not, write to the Free Software
+ Foundation, Inc., 59 Temple Place - Suite 330,
+ Boston, MA 02111-1307, USA.
+
+ Contributed by Cygnus Support. */
+
+#define OASYS_MAX_SEC_COUNT 16
+/* **** */
+
+typedef struct oasys_archive_header
+ {
+ unsigned int version;
+ char create_date[12];
+ char revision_date[12];
+ unsigned int mod_count;
+ file_ptr mod_tbl_offset;
+ unsigned int sym_tbl_size;
+ unsigned int sym_count;
+ file_ptr sym_tbl_offset;
+ unsigned int xref_count;
+ file_ptr xref_lst_offset;
+ }
+oasys_archive_header_type;
+
+typedef struct oasys_extarchive_header
+ {
+ bfd_byte version[4];
+ bfd_byte create_date[12];
+ bfd_byte revision_date[12];
+ bfd_byte mod_count[4];
+ bfd_byte mod_tbl_offset[4];
+ bfd_byte sym_tbl_size[4];
+ bfd_byte sym_count[4];
+ bfd_byte sym_tbl_offset[4];
+ bfd_byte xref_count[4];
+ bfd_byte xref_lst_offset[4];
+ }
+oasys_extarchive_header_type;
+
+typedef struct oasys_module_table
+ {
+ int mod_number;
+ char mod_date[12];
+ unsigned int mod_size;
+ unsigned int dep_count;
+ unsigned int depee_count;
+ file_ptr file_offset;
+ unsigned int sect_count;
+ char *module_name;
+ unsigned int module_name_size;
+ }
+oasys_module_table_type;
+
+typedef struct oasys_extmodule_table_a
+ {
+ bfd_byte mod_number[4];
+ bfd_byte mod_date[12];
+ bfd_byte mod_size[4];
+ bfd_byte dep_count[4];
+ bfd_byte depee_count[4];
+ bfd_byte sect_count[4];
+ bfd_byte file_offset[4];
+ bfd_byte mod_name[32];
+ }
+oasys_extmodule_table_type_a_type;
+
+typedef struct oasys_extmodule_table_b
+ {
+ bfd_byte mod_number[4];
+ bfd_byte mod_date[12];
+ bfd_byte mod_size[4];
+ bfd_byte dep_count[4];
+ bfd_byte depee_count[4];
+ bfd_byte sect_count[4];
+ bfd_byte file_offset[4];
+ bfd_byte mod_name_length[4];
+ }
+oasys_extmodule_table_type_b_type;
+
+typedef enum oasys_record
+ {
+ oasys_record_is_end_enum = 0,
+ oasys_record_is_data_enum = 1,
+ oasys_record_is_symbol_enum = 2,
+ oasys_record_is_header_enum = 3,
+ oasys_record_is_named_section_enum = 4,
+ oasys_record_is_com_enum = 5,
+ oasys_record_is_debug_enum = 6,
+ oasys_record_is_section_enum = 7,
+ oasys_record_is_debug_file_enum = 8,
+ oasys_record_is_module_enum = 9,
+ oasys_record_is_local_enum = 10
+ }
+oasys_record_enum_type;
+
+typedef struct oasys_record_header
+ {
+ unsigned char length;
+ unsigned char check_sum;
+ unsigned char type;
+ unsigned char fill;
+ }
+oasys_record_header_type;
+
+typedef struct oasys_data_record
+ {
+ oasys_record_header_type header;
+ unsigned char relb;
+ bfd_byte addr[4];
+ /* maximum total size of data record is 255 bytes */
+ bfd_byte data[246];
+ }
+oasys_data_record_type;
+
+typedef struct oasys_header_record
+ {
+ oasys_record_header_type header;
+ unsigned char version_number;
+ unsigned char rev_number;
+ char module_name[26-6];
+ char description[64-26];
+ }
+oasys_header_record_type;
+
+#define OASYS_VERSION_NUMBER 0
+#define OASYS_REV_NUMBER 0
+
+typedef struct oasys_symbol_record
+ {
+ oasys_record_header_type header;
+ unsigned char relb;
+ bfd_byte value[4];
+ bfd_byte refno[2];
+ char name[64];
+ }
+oasys_symbol_record_type;
+
+#define RELOCATION_PCREL_BIT 0x80
+#define RELOCATION_32BIT_BIT 0x40
+#define RELOCATION_TYPE_BITS 0x30
+#define RELOCATION_TYPE_ABS 0x00
+#define RELOCATION_TYPE_REL 0x10
+#define RELOCATION_TYPE_UND 0x20
+#define RELOCATION_TYPE_COM 0x30
+#define RELOCATION_SECT_BITS 0x0f
+
+typedef struct oasys_section_record
+ {
+ oasys_record_header_type header;
+ unsigned char relb;
+ bfd_byte value[4];
+ bfd_byte vma[4];
+ bfd_byte fill[3];
+ }
+oasys_section_record_type;
+
+typedef struct oasys_end_record
+ {
+ oasys_record_header_type header;
+ unsigned char relb;
+ bfd_byte entry[4];
+ bfd_byte fill[2];
+ bfd_byte zero;
+ }
+oasys_end_record_type;
+
+typedef union oasys_record_union
+ {
+ oasys_record_header_type header;
+ oasys_data_record_type data;
+ oasys_section_record_type section;
+ oasys_symbol_record_type symbol;
+ oasys_header_record_type first;
+ oasys_end_record_type end;
+ bfd_byte pad[256];
+ }
+oasys_record_union_type;
diff --git a/contrib/gdb/include/obstack.h b/contrib/gdb/include/obstack.h
new file mode 100644
index 0000000..5496ff2
--- /dev/null
+++ b/contrib/gdb/include/obstack.h
@@ -0,0 +1,611 @@
+/* obstack.h - object stack macros
+ Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1996, 1997, 1998,
+ 1999, 2000
+ Free Software Foundation, Inc.
+
+
+ NOTE: The canonical source of this file is maintained with the GNU C Library.
+ Bugs can be reported to bug-glibc@gnu.org.
+
+ This program is free software; you can redistribute it and/or modify it
+ under the terms of the GNU General Public License as published by the
+ Free Software Foundation; either version 2, or (at your option) any
+ later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program; if not, write to the Free Software
+ Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307,
+ USA. */
+
+/* Summary:
+
+All the apparent functions defined here are macros. The idea
+is that you would use these pre-tested macros to solve a
+very specific set of problems, and they would run fast.
+Caution: no side-effects in arguments please!! They may be
+evaluated MANY times!!
+
+These macros operate a stack of objects. Each object starts life
+small, and may grow to maturity. (Consider building a word syllable
+by syllable.) An object can move while it is growing. Once it has
+been "finished" it never changes address again. So the "top of the
+stack" is typically an immature growing object, while the rest of the
+stack is of mature, fixed size and fixed address objects.
+
+These routines grab large chunks of memory, using a function you
+supply, called `obstack_chunk_alloc'. On occasion, they free chunks,
+by calling `obstack_chunk_free'. You must define them and declare
+them before using any obstack macros.
+
+Each independent stack is represented by a `struct obstack'.
+Each of the obstack macros expects a pointer to such a structure
+as the first argument.
+
+One motivation for this package is the problem of growing char strings
+in symbol tables. Unless you are "fascist pig with a read-only mind"
+--Gosper's immortal quote from HAKMEM item 154, out of context--you
+would not like to put any arbitrary upper limit on the length of your
+symbols.
+
+In practice this often means you will build many short symbols and a
+few long symbols. At the time you are reading a symbol you don't know
+how long it is. One traditional method is to read a symbol into a
+buffer, realloc()ating the buffer every time you try to read a symbol
+that is longer than the buffer. This is beaut, but you still will
+want to copy the symbol from the buffer to a more permanent
+symbol-table entry say about half the time.
+
+With obstacks, you can work differently. Use one obstack for all symbol
+names. As you read a symbol, grow the name in the obstack gradually.
+When the name is complete, finalize it. Then, if the symbol exists already,
+free the newly read name.
+
+The way we do this is to take a large chunk, allocating memory from
+low addresses. When you want to build a symbol in the chunk you just
+add chars above the current "high water mark" in the chunk. When you
+have finished adding chars, because you got to the end of the symbol,
+you know how long the chars are, and you can create a new object.
+Mostly the chars will not burst over the highest address of the chunk,
+because you would typically expect a chunk to be (say) 100 times as
+long as an average object.
+
+In case that isn't clear, when we have enough chars to make up
+the object, THEY ARE ALREADY CONTIGUOUS IN THE CHUNK (guaranteed)
+so we just point to it where it lies. No moving of chars is
+needed and this is the second win: potentially long strings need
+never be explicitly shuffled. Once an object is formed, it does not
+change its address during its lifetime.
+
+When the chars burst over a chunk boundary, we allocate a larger
+chunk, and then copy the partly formed object from the end of the old
+chunk to the beginning of the new larger chunk. We then carry on
+accreting characters to the end of the object as we normally would.
+
+A special macro is provided to add a single char at a time to a
+growing object. This allows the use of register variables, which
+break the ordinary 'growth' macro.
+
+Summary:
+ We allocate large chunks.
+ We carve out one object at a time from the current chunk.
+ Once carved, an object never moves.
+ We are free to append data of any size to the currently
+ growing object.
+ Exactly one object is growing in an obstack at any one time.
+ You can run one obstack per control block.
+ You may have as many control blocks as you dare.
+ Because of the way we do it, you can `unwind' an obstack
+ back to a previous state. (You may remove objects much
+ as you would with a stack.)
+*/
+
+
+/* Don't do the contents of this file more than once. */
+
+#ifndef _OBSTACK_H
+#define _OBSTACK_H 1
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/* We use subtraction of (char *) 0 instead of casting to int
+ because on word-addressable machines a simple cast to int
+ may ignore the byte-within-word field of the pointer. */
+
+#ifndef __PTR_TO_INT
+# define __PTR_TO_INT(P) ((P) - (char *) 0)
+#endif
+
+#ifndef __INT_TO_PTR
+# define __INT_TO_PTR(P) ((P) + (char *) 0)
+#endif
+
+/* We need the type of the resulting object. If __PTRDIFF_TYPE__ is
+ defined, as with GNU C, use that; that way we don't pollute the
+ namespace with <stddef.h>'s symbols. Otherwise, if <stddef.h> is
+ available, include it and use ptrdiff_t. In traditional C, long is
+ the best that we can do. */
+
+#ifdef __PTRDIFF_TYPE__
+# define PTR_INT_TYPE __PTRDIFF_TYPE__
+#else
+# ifdef HAVE_STDDEF_H
+# include <stddef.h>
+# define PTR_INT_TYPE ptrdiff_t
+# else
+# define PTR_INT_TYPE long
+# endif
+#endif
+
+#if defined _LIBC || defined HAVE_STRING_H
+# include <string.h>
+# if defined __STDC__ && __STDC__
+# define _obstack_memcpy(To, From, N) memcpy ((To), (From), (N))
+# else
+# define _obstack_memcpy(To, From, N) memcpy ((To), (char *)(From), (N))
+# endif
+#else
+# ifdef memcpy
+# define _obstack_memcpy(To, From, N) memcpy ((To), (char *)(From), (N))
+# else
+# define _obstack_memcpy(To, From, N) bcopy ((char *)(From), (To), (N))
+# endif
+#endif
+
+struct _obstack_chunk /* Lives at front of each chunk. */
+{
+ char *limit; /* 1 past end of this chunk */
+ struct _obstack_chunk *prev; /* address of prior chunk or NULL */
+ char contents[4]; /* objects begin here */
+};
+
+struct obstack /* control current object in current chunk */
+{
+ long chunk_size; /* preferred size to allocate chunks in */
+ struct _obstack_chunk *chunk; /* address of current struct obstack_chunk */
+ char *object_base; /* address of object we are building */
+ char *next_free; /* where to add next char to current object */
+ char *chunk_limit; /* address of char after current chunk */
+ PTR_INT_TYPE temp; /* Temporary for some macros. */
+ int alignment_mask; /* Mask of alignment for each object. */
+#if defined __STDC__ && __STDC__
+ /* These prototypes vary based on `use_extra_arg', and we use
+ casts to the prototypeless function type in all assignments,
+ but having prototypes here quiets -Wstrict-prototypes. */
+ struct _obstack_chunk *(*chunkfun) (void *, long);
+ void (*freefun) (void *, struct _obstack_chunk *);
+ void *extra_arg; /* first arg for chunk alloc/dealloc funcs */
+#else
+ struct _obstack_chunk *(*chunkfun) (); /* User's fcn to allocate a chunk. */
+ void (*freefun) (); /* User's function to free a chunk. */
+ char *extra_arg; /* first arg for chunk alloc/dealloc funcs */
+#endif
+ unsigned use_extra_arg:1; /* chunk alloc/dealloc funcs take extra arg */
+ unsigned maybe_empty_object:1;/* There is a possibility that the current
+ chunk contains a zero-length object. This
+ prevents freeing the chunk if we allocate
+ a bigger chunk to replace it. */
+ unsigned alloc_failed:1; /* No longer used, as we now call the failed
+ handler on error, but retained for binary
+ compatibility. */
+};
+
+/* Declare the external functions we use; they are in obstack.c. */
+
+#if defined __STDC__ && __STDC__
+extern void _obstack_newchunk (struct obstack *, int);
+extern void _obstack_free (struct obstack *, void *);
+extern int _obstack_begin (struct obstack *, int, int,
+ void *(*) (long), void (*) (void *));
+extern int _obstack_begin_1 (struct obstack *, int, int,
+ void *(*) (void *, long),
+ void (*) (void *, void *), void *);
+extern int _obstack_memory_used (struct obstack *);
+#else
+extern void _obstack_newchunk ();
+extern void _obstack_free ();
+extern int _obstack_begin ();
+extern int _obstack_begin_1 ();
+extern int _obstack_memory_used ();
+#endif
+
+#if defined __STDC__ && __STDC__
+
+/* Do the function-declarations after the structs
+ but before defining the macros. */
+
+void obstack_init (struct obstack *obstack);
+
+void * obstack_alloc (struct obstack *obstack, int size);
+
+void * obstack_copy (struct obstack *obstack, void *address, int size);
+void * obstack_copy0 (struct obstack *obstack, void *address, int size);
+
+void obstack_free (struct obstack *obstack, void *block);
+
+void obstack_blank (struct obstack *obstack, int size);
+
+void obstack_grow (struct obstack *obstack, void *data, int size);
+void obstack_grow0 (struct obstack *obstack, void *data, int size);
+
+void obstack_1grow (struct obstack *obstack, int data_char);
+void obstack_ptr_grow (struct obstack *obstack, void *data);
+void obstack_int_grow (struct obstack *obstack, int data);
+
+void * obstack_finish (struct obstack *obstack);
+
+int obstack_object_size (struct obstack *obstack);
+
+int obstack_room (struct obstack *obstack);
+void obstack_make_room (struct obstack *obstack, int size);
+void obstack_1grow_fast (struct obstack *obstack, int data_char);
+void obstack_ptr_grow_fast (struct obstack *obstack, void *data);
+void obstack_int_grow_fast (struct obstack *obstack, int data);
+void obstack_blank_fast (struct obstack *obstack, int size);
+
+void * obstack_base (struct obstack *obstack);
+void * obstack_next_free (struct obstack *obstack);
+int obstack_alignment_mask (struct obstack *obstack);
+int obstack_chunk_size (struct obstack *obstack);
+int obstack_memory_used (struct obstack *obstack);
+
+#endif /* __STDC__ */
+
+/* Non-ANSI C cannot really support alternative functions for these macros,
+ so we do not declare them. */
+
+/* Error handler called when `obstack_chunk_alloc' failed to allocate
+ more memory. This can be set to a user defined function. The
+ default action is to print a message and abort. */
+#if defined __STDC__ && __STDC__
+extern void (*obstack_alloc_failed_handler) (void);
+#else
+extern void (*obstack_alloc_failed_handler) ();
+#endif
+
+/* Exit value used when `print_and_abort' is used. */
+extern int obstack_exit_failure;
+
+/* Pointer to beginning of object being allocated or to be allocated next.
+ Note that this might not be the final address of the object
+ because a new chunk might be needed to hold the final size. */
+
+#define obstack_base(h) ((h)->object_base)
+
+/* Size for allocating ordinary chunks. */
+
+#define obstack_chunk_size(h) ((h)->chunk_size)
+
+/* Pointer to next byte not yet allocated in current chunk. */
+
+#define obstack_next_free(h) ((h)->next_free)
+
+/* Mask specifying low bits that should be clear in address of an object. */
+
+#define obstack_alignment_mask(h) ((h)->alignment_mask)
+
+/* To prevent prototype warnings provide complete argument list in
+ standard C version. */
+#if defined __STDC__ && __STDC__
+
+# define obstack_init(h) \
+ _obstack_begin ((h), 0, 0, \
+ (void *(*) (long)) obstack_chunk_alloc, (void (*) (void *)) obstack_chunk_free)
+
+# define obstack_begin(h, size) \
+ _obstack_begin ((h), (size), 0, \
+ (void *(*) (long)) obstack_chunk_alloc, (void (*) (void *)) obstack_chunk_free)
+
+# define obstack_specify_allocation(h, size, alignment, chunkfun, freefun) \
+ _obstack_begin ((h), (size), (alignment), \
+ (void *(*) (long)) (chunkfun), (void (*) (void *)) (freefun))
+
+# define obstack_specify_allocation_with_arg(h, size, alignment, chunkfun, freefun, arg) \
+ _obstack_begin_1 ((h), (size), (alignment), \
+ (void *(*) (void *, long)) (chunkfun), \
+ (void (*) (void *, void *)) (freefun), (arg))
+
+# define obstack_chunkfun(h, newchunkfun) \
+ ((h) -> chunkfun = (struct _obstack_chunk *(*)(void *, long)) (newchunkfun))
+
+# define obstack_freefun(h, newfreefun) \
+ ((h) -> freefun = (void (*)(void *, struct _obstack_chunk *)) (newfreefun))
+
+#else
+
+# define obstack_init(h) \
+ _obstack_begin ((h), 0, 0, \
+ (void *(*) ()) obstack_chunk_alloc, (void (*) ()) obstack_chunk_free)
+
+# define obstack_begin(h, size) \
+ _obstack_begin ((h), (size), 0, \
+ (void *(*) ()) obstack_chunk_alloc, (void (*) ()) obstack_chunk_free)
+
+# define obstack_specify_allocation(h, size, alignment, chunkfun, freefun) \
+ _obstack_begin ((h), (size), (alignment), \
+ (void *(*) ()) (chunkfun), (void (*) ()) (freefun))
+
+# define obstack_specify_allocation_with_arg(h, size, alignment, chunkfun, freefun, arg) \
+ _obstack_begin_1 ((h), (size), (alignment), \
+ (void *(*) ()) (chunkfun), (void (*) ()) (freefun), (arg))
+
+# define obstack_chunkfun(h, newchunkfun) \
+ ((h) -> chunkfun = (struct _obstack_chunk *(*)()) (newchunkfun))
+
+# define obstack_freefun(h, newfreefun) \
+ ((h) -> freefun = (void (*)()) (newfreefun))
+
+#endif
+
+#define obstack_1grow_fast(h,achar) (*((h)->next_free)++ = (achar))
+
+#define obstack_blank_fast(h,n) ((h)->next_free += (n))
+
+#define obstack_memory_used(h) _obstack_memory_used (h)
+
+#if defined __GNUC__ && defined __STDC__ && __STDC__
+/* NextStep 2.0 cc is really gcc 1.93 but it defines __GNUC__ = 2 and
+ does not implement __extension__. But that compiler doesn't define
+ __GNUC_MINOR__. */
+# if __GNUC__ < 2 || (__NeXT__ && !__GNUC_MINOR__)
+# define __extension__
+# endif
+
+/* For GNU C, if not -traditional,
+ we can define these macros to compute all args only once
+ without using a global variable.
+ Also, we can avoid using the `temp' slot, to make faster code. */
+
+# define obstack_object_size(OBSTACK) \
+ __extension__ \
+ ({ struct obstack *__o = (OBSTACK); \
+ (unsigned) (__o->next_free - __o->object_base); })
+
+# define obstack_room(OBSTACK) \
+ __extension__ \
+ ({ struct obstack *__o = (OBSTACK); \
+ (unsigned) (__o->chunk_limit - __o->next_free); })
+
+# define obstack_make_room(OBSTACK,length) \
+__extension__ \
+({ struct obstack *__o = (OBSTACK); \
+ int __len = (length); \
+ if (__o->chunk_limit - __o->next_free < __len) \
+ _obstack_newchunk (__o, __len); \
+ (void) 0; })
+
+# define obstack_empty_p(OBSTACK) \
+ __extension__ \
+ ({ struct obstack *__o = (OBSTACK); \
+ (__o->chunk->prev == 0 && __o->next_free - __o->chunk->contents == 0); })
+
+# define obstack_grow(OBSTACK,where,length) \
+__extension__ \
+({ struct obstack *__o = (OBSTACK); \
+ int __len = (length); \
+ if (__o->next_free + __len > __o->chunk_limit) \
+ _obstack_newchunk (__o, __len); \
+ _obstack_memcpy (__o->next_free, (where), __len); \
+ __o->next_free += __len; \
+ (void) 0; })
+
+# define obstack_grow0(OBSTACK,where,length) \
+__extension__ \
+({ struct obstack *__o = (OBSTACK); \
+ int __len = (length); \
+ if (__o->next_free + __len + 1 > __o->chunk_limit) \
+ _obstack_newchunk (__o, __len + 1); \
+ _obstack_memcpy (__o->next_free, (where), __len); \
+ __o->next_free += __len; \
+ *(__o->next_free)++ = 0; \
+ (void) 0; })
+
+# define obstack_1grow(OBSTACK,datum) \
+__extension__ \
+({ struct obstack *__o = (OBSTACK); \
+ if (__o->next_free + 1 > __o->chunk_limit) \
+ _obstack_newchunk (__o, 1); \
+ obstack_1grow_fast (__o, datum); \
+ (void) 0; })
+
+/* These assume that the obstack alignment is good enough for pointers or ints,
+ and that the data added so far to the current object
+ shares that much alignment. */
+
+# define obstack_ptr_grow(OBSTACK,datum) \
+__extension__ \
+({ struct obstack *__o = (OBSTACK); \
+ if (__o->next_free + sizeof (void *) > __o->chunk_limit) \
+ _obstack_newchunk (__o, sizeof (void *)); \
+ obstack_ptr_grow_fast (__o, datum); })
+
+# define obstack_int_grow(OBSTACK,datum) \
+__extension__ \
+({ struct obstack *__o = (OBSTACK); \
+ if (__o->next_free + sizeof (int) > __o->chunk_limit) \
+ _obstack_newchunk (__o, sizeof (int)); \
+ obstack_int_grow_fast (__o, datum); })
+
+# define obstack_ptr_grow_fast(OBSTACK,aptr) \
+__extension__ \
+({ struct obstack *__o1 = (OBSTACK); \
+ *(const void **) __o1->next_free = (aptr); \
+ __o1->next_free += sizeof (const void *); \
+ (void) 0; })
+
+# define obstack_int_grow_fast(OBSTACK,aint) \
+__extension__ \
+({ struct obstack *__o1 = (OBSTACK); \
+ *(int *) __o1->next_free = (aint); \
+ __o1->next_free += sizeof (int); \
+ (void) 0; })
+
+# define obstack_blank(OBSTACK,length) \
+__extension__ \
+({ struct obstack *__o = (OBSTACK); \
+ int __len = (length); \
+ if (__o->chunk_limit - __o->next_free < __len) \
+ _obstack_newchunk (__o, __len); \
+ obstack_blank_fast (__o, __len); \
+ (void) 0; })
+
+# define obstack_alloc(OBSTACK,length) \
+__extension__ \
+({ struct obstack *__h = (OBSTACK); \
+ obstack_blank (__h, (length)); \
+ obstack_finish (__h); })
+
+# define obstack_copy(OBSTACK,where,length) \
+__extension__ \
+({ struct obstack *__h = (OBSTACK); \
+ obstack_grow (__h, (where), (length)); \
+ obstack_finish (__h); })
+
+# define obstack_copy0(OBSTACK,where,length) \
+__extension__ \
+({ struct obstack *__h = (OBSTACK); \
+ obstack_grow0 (__h, (where), (length)); \
+ obstack_finish (__h); })
+
+/* The local variable is named __o1 to avoid a name conflict
+ when obstack_blank is called. */
+# define obstack_finish(OBSTACK) \
+__extension__ \
+({ struct obstack *__o1 = (OBSTACK); \
+ void *value; \
+ value = (void *) __o1->object_base; \
+ if (__o1->next_free == value) \
+ __o1->maybe_empty_object = 1; \
+ __o1->next_free \
+ = __INT_TO_PTR ((__PTR_TO_INT (__o1->next_free)+__o1->alignment_mask)\
+ & ~ (__o1->alignment_mask)); \
+ if (__o1->next_free - (char *)__o1->chunk \
+ > __o1->chunk_limit - (char *)__o1->chunk) \
+ __o1->next_free = __o1->chunk_limit; \
+ __o1->object_base = __o1->next_free; \
+ value; })
+
+# define obstack_free(OBSTACK, OBJ) \
+__extension__ \
+({ struct obstack *__o = (OBSTACK); \
+ void *__obj = (OBJ); \
+ if (__obj > (void *)__o->chunk && __obj < (void *)__o->chunk_limit) \
+ __o->next_free = __o->object_base = __obj; \
+ else (obstack_free) (__o, __obj); })
+
+#else /* not __GNUC__ or not __STDC__ */
+
+# define obstack_object_size(h) \
+ (unsigned) ((h)->next_free - (h)->object_base)
+
+# define obstack_room(h) \
+ (unsigned) ((h)->chunk_limit - (h)->next_free)
+
+# define obstack_empty_p(h) \
+ ((h)->chunk->prev == 0 && (h)->next_free - (h)->chunk->contents == 0)
+
+/* Note that the call to _obstack_newchunk is enclosed in (..., 0)
+ so that we can avoid having void expressions
+ in the arms of the conditional expression.
+ Casting the third operand to void was tried before,
+ but some compilers won't accept it. */
+
+# define obstack_make_room(h,length) \
+( (h)->temp = (length), \
+ (((h)->next_free + (h)->temp > (h)->chunk_limit) \
+ ? (_obstack_newchunk ((h), (h)->temp), 0) : 0))
+
+# define obstack_grow(h,where,length) \
+( (h)->temp = (length), \
+ (((h)->next_free + (h)->temp > (h)->chunk_limit) \
+ ? (_obstack_newchunk ((h), (h)->temp), 0) : 0), \
+ _obstack_memcpy ((h)->next_free, (where), (h)->temp), \
+ (h)->next_free += (h)->temp)
+
+# define obstack_grow0(h,where,length) \
+( (h)->temp = (length), \
+ (((h)->next_free + (h)->temp + 1 > (h)->chunk_limit) \
+ ? (_obstack_newchunk ((h), (h)->temp + 1), 0) : 0), \
+ _obstack_memcpy ((h)->next_free, (where), (h)->temp), \
+ (h)->next_free += (h)->temp, \
+ *((h)->next_free)++ = 0)
+
+# define obstack_1grow(h,datum) \
+( (((h)->next_free + 1 > (h)->chunk_limit) \
+ ? (_obstack_newchunk ((h), 1), 0) : 0), \
+ obstack_1grow_fast (h, datum))
+
+# define obstack_ptr_grow(h,datum) \
+( (((h)->next_free + sizeof (char *) > (h)->chunk_limit) \
+ ? (_obstack_newchunk ((h), sizeof (char *)), 0) : 0), \
+ obstack_ptr_grow_fast (h, datum))
+
+# define obstack_int_grow(h,datum) \
+( (((h)->next_free + sizeof (int) > (h)->chunk_limit) \
+ ? (_obstack_newchunk ((h), sizeof (int)), 0) : 0), \
+ obstack_int_grow_fast (h, datum))
+
+# define obstack_ptr_grow_fast(h,aptr) \
+ (((const void **) ((h)->next_free += sizeof (void *)))[-1] = (aptr))
+
+# define obstack_int_grow_fast(h,aint) \
+ (((int *) ((h)->next_free += sizeof (int)))[-1] = (aptr))
+
+# define obstack_blank(h,length) \
+( (h)->temp = (length), \
+ (((h)->chunk_limit - (h)->next_free < (h)->temp) \
+ ? (_obstack_newchunk ((h), (h)->temp), 0) : 0), \
+ obstack_blank_fast (h, (h)->temp))
+
+# define obstack_alloc(h,length) \
+ (obstack_blank ((h), (length)), obstack_finish ((h)))
+
+# define obstack_copy(h,where,length) \
+ (obstack_grow ((h), (where), (length)), obstack_finish ((h)))
+
+# define obstack_copy0(h,where,length) \
+ (obstack_grow0 ((h), (where), (length)), obstack_finish ((h)))
+
+# define obstack_finish(h) \
+( ((h)->next_free == (h)->object_base \
+ ? (((h)->maybe_empty_object = 1), 0) \
+ : 0), \
+ (h)->temp = __PTR_TO_INT ((h)->object_base), \
+ (h)->next_free \
+ = __INT_TO_PTR ((__PTR_TO_INT ((h)->next_free)+(h)->alignment_mask) \
+ & ~ ((h)->alignment_mask)), \
+ (((h)->next_free - (char *) (h)->chunk \
+ > (h)->chunk_limit - (char *) (h)->chunk) \
+ ? ((h)->next_free = (h)->chunk_limit) : 0), \
+ (h)->object_base = (h)->next_free, \
+ __INT_TO_PTR ((h)->temp))
+
+# if defined __STDC__ && __STDC__
+# define obstack_free(h,obj) \
+( (h)->temp = (char *) (obj) - (char *) (h)->chunk, \
+ (((h)->temp > 0 && (h)->temp < (h)->chunk_limit - (char *) (h)->chunk)\
+ ? (int) ((h)->next_free = (h)->object_base \
+ = (h)->temp + (char *) (h)->chunk) \
+ : (((obstack_free) ((h), (h)->temp + (char *) (h)->chunk), 0), 0)))
+# else
+# define obstack_free(h,obj) \
+( (h)->temp = (char *) (obj) - (char *) (h)->chunk, \
+ (((h)->temp > 0 && (h)->temp < (h)->chunk_limit - (char *) (h)->chunk)\
+ ? (int) ((h)->next_free = (h)->object_base \
+ = (h)->temp + (char *) (h)->chunk) \
+ : (_obstack_free ((h), (h)->temp + (char *) (h)->chunk), 0)))
+# endif
+
+#endif /* not __GNUC__ or not __STDC__ */
+
+#ifdef __cplusplus
+} /* C++ */
+#endif
+
+#endif /* obstack.h */
diff --git a/contrib/gdb/include/os9k.h b/contrib/gdb/include/os9k.h
new file mode 100644
index 0000000..596f56d
--- /dev/null
+++ b/contrib/gdb/include/os9k.h
@@ -0,0 +1,181 @@
+/* os9k.h - OS-9000 i386 module header definitions
+ Copyright 2000 Free Software Foundation, Inc.
+
+This file is part of GNU CC.
+
+GNU CC is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2, or (at your option)
+any later version.
+
+GNU CC is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GNU CC; see the file COPYING. If not, write to
+the Free Software Foundation, 59 Temple Place - Suite 330,
+Boston, MA 02111-1307, USA. */
+
+#if !defined(_MODULE_H)
+#define _MODULE_H
+
+#define _MPF386
+
+/* Size of common header less parity field. */
+#define N_M_PARITY (sizeof(mh_com)-sizeof(unisgned short))
+#define OLD_M_PARITY 46
+#define M_PARITY N_M_PARITY
+
+#ifdef _MPF68K
+#define MODSYNC 0x4afc /* Module header sync code for 680x0 processors. */
+#endif
+
+#ifdef _MPF386
+#define MODSYNC 0x4afc /* Module header sync code for 80386 processors. */
+#endif
+
+#define MODREV 1 /* Module format revision 1. */
+#define CRCCON 0x800063 /* CRC polynomial constant. */
+
+/* Module access permission values. */
+#define MP_OWNER_READ 0x0001
+#define MP_OWNER_WRITE 0x0002
+#define MP_OWNER_EXEC 0x0004
+#define MP_GROUP_READ 0x0010
+#define MP_GROUP_WRITE 0x0020
+#define MP_GROUP_EXEC 0x0040
+#define MP_WORLD_READ 0x0100
+#define MP_WORLD_WRITE 0x0200
+#define MP_WORLD_EXEC 0x0400
+#define MP_WORLD_ACCESS 0x0777
+#define MP_OWNER_MASK 0x000f
+#define MP_GROUP_MASK 0x00f0
+#define MP_WORLD_MASK 0x0f00
+#define MP_SYSTM_MASK 0xf000
+
+/* Module Type/Language values. */
+#define MT_ANY 0
+#define MT_PROGRAM 0x0001
+#define MT_SUBROUT 0x0002
+#define MT_MULTI 0x0003
+#define MT_DATA 0x0004
+#define MT_TRAPLIB 0x000b
+#define MT_SYSTEM 0x000c
+#define MT_FILEMAN 0x000d
+#define MT_DEVDRVR 0x000e
+#define MT_DEVDESC 0x000f
+#define MT_MASK 0xff00
+
+#define ML_ANY 0
+#define ML_OBJECT 1
+#define ML_ICODE 2
+#define ML_PCODE 3
+#define ML_CCODE 4
+#define ML_CBLCODE 5
+#define ML_FRTNCODE 6
+#define ML_MASK 0x00ff
+
+#define mktypelang(type, lang) (((type) << 8) | (lang))
+
+/* Module Attribute values. */
+#define MA_REENT 0x80
+#define MA_GHOST 0x40
+#define MA_SUPER 0x20
+#define MA_MASK 0xff00
+#define MR_MASK 0x00ff
+
+#define mkattrevs(attr, revs) (((attr) << 8) | (revs))
+
+#define m_user m_owner.grp_usr.usr
+#define m_group m_owner.grp_usr.grp
+#define m_group_user m_owner.group_user
+
+/* Macro definitions for accessing module header fields. */
+#define MODNAME(mod) ((u_char*)((u_char*)mod + ((Mh_com)mod)->m_name))
+#if 0
+/* Appears not to be used, and the u_int32 typedef is gone (because it
+ conflicted with a Mach header. */
+#define MODSIZE(mod) ((u_int32)((Mh_com)mod)->m_size)
+#endif /* 0 */
+#define MHCOM_BYTES_SIZE 80
+#define N_BADMAG(a) (((a).a_info) != MODSYNC)
+
+typedef struct mh_com
+{
+ /* Sync bytes ($4afc). */
+ unsigned char m_sync[2];
+ unsigned char m_sysrev[2]; /* System revision check value. */
+ unsigned char m_size[4]; /* Module size. */
+ unsigned char m_owner[4]; /* Group/user id. */
+ unsigned char m_name[4]; /* Offset to module name. */
+ unsigned char m_access[2]; /* Access permissions. */
+ unsigned char m_tylan[2]; /* Type/lang. */
+ unsigned char m_attrev[2]; /* Rev/attr. */
+ unsigned char m_edit[2]; /* Edition. */
+ unsigned char m_needs[4]; /* Module hardware requirements flags. (reserved). */
+ unsigned char m_usage[4]; /* Comment string offset. */
+ unsigned char m_symbol[4]; /* Symbol table offset. */
+ unsigned char m_exec[4]; /* Offset to execution entry point. */
+ unsigned char m_excpt[4]; /* Offset to exception entry point. */
+ unsigned char m_data[4]; /* Data storage requirement. */
+ unsigned char m_stack[4]; /* Stack size. */
+ unsigned char m_idata[4]; /* Offset to initialized data. */
+ unsigned char m_idref[4]; /* Offset to data reference lists. */
+ unsigned char m_init[4]; /* Initialization routine offset. */
+ unsigned char m_term[4]; /* Termination routine offset. */
+ unsigned char m_ident[2]; /* Ident code for ident program. */
+ char m_spare[8]; /* Reserved bytes. */
+ unsigned char m_parity[2]; /* Header parity. */
+} mh_com,*Mh_com;
+
+/* Executable memory module. */
+typedef mh_com *Mh_exec,mh_exec;
+
+/* Data memory module. */
+typedef mh_com *Mh_data,mh_data;
+
+/* File manager memory module. */
+typedef mh_com *Mh_fman,mh_fman;
+
+/* Device driver module. */
+typedef mh_com *Mh_drvr,mh_drvr;
+
+/* Trap handler module. */
+typedef mh_com mh_trap, *Mh_trap;
+
+/* Device descriptor module. */
+typedef mh_com *Mh_dev,mh_dev;
+
+/* Configuration module. */
+typedef mh_com *Mh_config, mh_config;
+
+#if 0
+
+#if !defined(_MODDIR_H)
+/* Go get _os_fmod (and others). */
+#include <moddir.h>
+#endif
+
+error_code _os_crc (void *, u_int32, int *);
+error_code _os_datmod (char *, u_int32, u_int16 *, u_int16 *, u_int32, void **, mh_data **);
+error_code _os_get_moddir (void *, u_int32 *);
+error_code _os_initdata (mh_com *, void *);
+error_code _os_link (char **, mh_com **, void **, u_int16 *, u_int16 *);
+error_code _os_linkm (mh_com *, void **, u_int16 *, u_int16 *);
+error_code _os_load (char *, mh_com **, void **, u_int32, u_int16 *, u_int16 *, u_int32);
+error_code _os_mkmodule (char *, u_int32, u_int16 *, u_int16 *, u_int32, void **, mh_com **, u_int32);
+error_code _os_modaddr (void *, mh_com **);
+error_code _os_setcrc (mh_com *);
+error_code _os_slink (u_int32, char *, void **, void **, mh_com **);
+error_code _os_slinkm (u_int32, mh_com *, void **, void **);
+error_code _os_unlink (mh_com *);
+error_code _os_unload (char *, u_int32);
+error_code _os_tlink (u_int32, char *, void **, mh_trap **, void *, u_int32);
+error_code _os_tlinkm (u_int32, mh_com *, void **, void *, u_int32);
+error_code _os_iodel (mh_com *);
+error_code _os_vmodul (mh_com *, mh_com *, u_int32);
+#endif /* 0 */
+
+#endif
diff --git a/contrib/gdb/include/progress.h b/contrib/gdb/include/progress.h
new file mode 100644
index 0000000..23b0960
--- /dev/null
+++ b/contrib/gdb/include/progress.h
@@ -0,0 +1,37 @@
+/* Default definitions for progress macros.
+ Copyright 1994 Free Software Foundation, Inc.
+
+This program is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2 of the License, or
+(at your option) any later version.
+
+This program is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with this program; if not, write to the Free Software
+Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
+
+/* The default definitions below are intended to be replaced by real
+ definitions, if building the tools for an interactive programming
+ environment. */
+
+#ifndef _PROGRESS_H
+#define _PROGRESS_H
+
+#ifndef START_PROGRESS
+#define START_PROGRESS(STR,N)
+#endif
+
+#ifndef PROGRESS
+#define PROGRESS(X)
+#endif
+
+#ifndef END_PROGRESS
+#define END_PROGRESS(STR)
+#endif
+
+#endif /* _PROGRESS_H */
OpenPOWER on IntegriCloud