summaryrefslogtreecommitdiffstats
path: root/contrib/gcc/simplify-rtx.c
diff options
context:
space:
mode:
authorobrien <obrien@FreeBSD.org>2002-02-01 18:16:02 +0000
committerobrien <obrien@FreeBSD.org>2002-02-01 18:16:02 +0000
commitc9ab9ae440a8066b2c2b85b157b1fdadcf09916a (patch)
tree086d9d6c8fbd4fc8fe4495059332f66bc0f8d12b /contrib/gcc/simplify-rtx.c
parent2ecfd8bd04b63f335c1ec6295740a4bfd97a4fa6 (diff)
downloadFreeBSD-src-c9ab9ae440a8066b2c2b85b157b1fdadcf09916a.zip
FreeBSD-src-c9ab9ae440a8066b2c2b85b157b1fdadcf09916a.tar.gz
Enlist the FreeBSD-CURRENT users as testers of what is to become Gcc 3.1.0.
These bits are taken from the FSF anoncvs repo on 1-Feb-2002 08:20 PST.
Diffstat (limited to 'contrib/gcc/simplify-rtx.c')
-rw-r--r--contrib/gcc/simplify-rtx.c2799
1 files changed, 2799 insertions, 0 deletions
diff --git a/contrib/gcc/simplify-rtx.c b/contrib/gcc/simplify-rtx.c
new file mode 100644
index 0000000..2db3ec0
--- /dev/null
+++ b/contrib/gcc/simplify-rtx.c
@@ -0,0 +1,2799 @@
+/* RTL simplification functions for GNU compiler.
+ Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
+ 1999, 2000, 2001 Free Software Foundation, Inc.
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it under
+the terms of the GNU General Public License as published by the Free
+Software Foundation; either version 2, or (at your option) any later
+version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING. If not, write to the Free
+Software Foundation, 59 Temple Place - Suite 330, Boston, MA
+02111-1307, USA. */
+
+
+#include "config.h"
+#include "system.h"
+
+#include "rtl.h"
+#include "tm_p.h"
+#include "regs.h"
+#include "hard-reg-set.h"
+#include "flags.h"
+#include "real.h"
+#include "insn-config.h"
+#include "recog.h"
+#include "function.h"
+#include "expr.h"
+#include "toplev.h"
+#include "output.h"
+#include "ggc.h"
+
+/* Simplification and canonicalization of RTL. */
+
+/* Nonzero if X has the form (PLUS frame-pointer integer). We check for
+ virtual regs here because the simplify_*_operation routines are called
+ by integrate.c, which is called before virtual register instantiation.
+
+ ?!? FIXED_BASE_PLUS_P and NONZERO_BASE_PLUS_P need to move into
+ a header file so that their definitions can be shared with the
+ simplification routines in simplify-rtx.c. Until then, do not
+ change these macros without also changing the copy in simplify-rtx.c. */
+
+#define FIXED_BASE_PLUS_P(X) \
+ ((X) == frame_pointer_rtx || (X) == hard_frame_pointer_rtx \
+ || ((X) == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])\
+ || (X) == virtual_stack_vars_rtx \
+ || (X) == virtual_incoming_args_rtx \
+ || (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == CONST_INT \
+ && (XEXP (X, 0) == frame_pointer_rtx \
+ || XEXP (X, 0) == hard_frame_pointer_rtx \
+ || ((X) == arg_pointer_rtx \
+ && fixed_regs[ARG_POINTER_REGNUM]) \
+ || XEXP (X, 0) == virtual_stack_vars_rtx \
+ || XEXP (X, 0) == virtual_incoming_args_rtx)) \
+ || GET_CODE (X) == ADDRESSOF)
+
+/* Similar, but also allows reference to the stack pointer.
+
+ This used to include FIXED_BASE_PLUS_P, however, we can't assume that
+ arg_pointer_rtx by itself is nonzero, because on at least one machine,
+ the i960, the arg pointer is zero when it is unused. */
+
+#define NONZERO_BASE_PLUS_P(X) \
+ ((X) == frame_pointer_rtx || (X) == hard_frame_pointer_rtx \
+ || (X) == virtual_stack_vars_rtx \
+ || (X) == virtual_incoming_args_rtx \
+ || (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == CONST_INT \
+ && (XEXP (X, 0) == frame_pointer_rtx \
+ || XEXP (X, 0) == hard_frame_pointer_rtx \
+ || ((X) == arg_pointer_rtx \
+ && fixed_regs[ARG_POINTER_REGNUM]) \
+ || XEXP (X, 0) == virtual_stack_vars_rtx \
+ || XEXP (X, 0) == virtual_incoming_args_rtx)) \
+ || (X) == stack_pointer_rtx \
+ || (X) == virtual_stack_dynamic_rtx \
+ || (X) == virtual_outgoing_args_rtx \
+ || (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == CONST_INT \
+ && (XEXP (X, 0) == stack_pointer_rtx \
+ || XEXP (X, 0) == virtual_stack_dynamic_rtx \
+ || XEXP (X, 0) == virtual_outgoing_args_rtx)) \
+ || GET_CODE (X) == ADDRESSOF)
+
+/* Much code operates on (low, high) pairs; the low value is an
+ unsigned wide int, the high value a signed wide int. We
+ occasionally need to sign extend from low to high as if low were a
+ signed wide int. */
+#define HWI_SIGN_EXTEND(low) \
+ ((((HOST_WIDE_INT) low) < 0) ? ((HOST_WIDE_INT) -1) : ((HOST_WIDE_INT) 0))
+
+static rtx neg_const_int PARAMS ((enum machine_mode, rtx));
+static int simplify_plus_minus_op_data_cmp PARAMS ((const void *,
+ const void *));
+static rtx simplify_plus_minus PARAMS ((enum rtx_code,
+ enum machine_mode, rtx, rtx));
+static void check_fold_consts PARAMS ((PTR));
+#if ! defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
+static void simplify_unary_real PARAMS ((PTR));
+static void simplify_binary_real PARAMS ((PTR));
+#endif
+static void simplify_binary_is2orm1 PARAMS ((PTR));
+
+
+/* Negate a CONST_INT rtx, truncating (because a conversion from a
+ maximally negative number can overflow). */
+static rtx
+neg_const_int (mode, i)
+ enum machine_mode mode;
+ rtx i;
+{
+ return GEN_INT (trunc_int_for_mode (- INTVAL (i), mode));
+}
+
+
+/* Make a binary operation by properly ordering the operands and
+ seeing if the expression folds. */
+
+rtx
+simplify_gen_binary (code, mode, op0, op1)
+ enum rtx_code code;
+ enum machine_mode mode;
+ rtx op0, op1;
+{
+ rtx tem;
+
+ /* Put complex operands first and constants second if commutative. */
+ if (GET_RTX_CLASS (code) == 'c'
+ && swap_commutative_operands_p (op0, op1))
+ tem = op0, op0 = op1, op1 = tem;
+
+ /* If this simplifies, do it. */
+ tem = simplify_binary_operation (code, mode, op0, op1);
+
+ if (tem)
+ return tem;
+
+ /* Handle addition and subtraction of CONST_INT specially. Otherwise,
+ just form the operation. */
+
+ if (GET_CODE (op1) == CONST_INT
+ && GET_MODE (op0) != VOIDmode
+ && (code == PLUS || code == MINUS))
+ {
+ if (code == MINUS)
+ op1 = neg_const_int (mode, op1);
+ return plus_constant (op0, INTVAL (op1));
+ }
+ else
+ return gen_rtx_fmt_ee (code, mode, op0, op1);
+}
+
+/* If X is a MEM referencing the constant pool, return the real value.
+ Otherwise return X. */
+rtx
+avoid_constant_pool_reference (x)
+ rtx x;
+{
+ rtx c, addr;
+ enum machine_mode cmode;
+
+ if (GET_CODE (x) != MEM)
+ return x;
+ addr = XEXP (x, 0);
+
+ if (GET_CODE (addr) != SYMBOL_REF
+ || ! CONSTANT_POOL_ADDRESS_P (addr))
+ return x;
+
+ c = get_pool_constant (addr);
+ cmode = get_pool_mode (addr);
+
+ /* If we're accessing the constant in a different mode than it was
+ originally stored, attempt to fix that up via subreg simplifications.
+ If that fails we have no choice but to return the original memory. */
+ if (cmode != GET_MODE (x))
+ {
+ c = simplify_subreg (GET_MODE (x), c, cmode, 0);
+ return c ? c : x;
+ }
+
+ return c;
+}
+
+/* Make a unary operation by first seeing if it folds and otherwise making
+ the specified operation. */
+
+rtx
+simplify_gen_unary (code, mode, op, op_mode)
+ enum rtx_code code;
+ enum machine_mode mode;
+ rtx op;
+ enum machine_mode op_mode;
+{
+ rtx tem;
+
+ /* If this simplifies, use it. */
+ if ((tem = simplify_unary_operation (code, mode, op, op_mode)) != 0)
+ return tem;
+
+ return gen_rtx_fmt_e (code, mode, op);
+}
+
+/* Likewise for ternary operations. */
+
+rtx
+simplify_gen_ternary (code, mode, op0_mode, op0, op1, op2)
+ enum rtx_code code;
+ enum machine_mode mode, op0_mode;
+ rtx op0, op1, op2;
+{
+ rtx tem;
+
+ /* If this simplifies, use it. */
+ if (0 != (tem = simplify_ternary_operation (code, mode, op0_mode,
+ op0, op1, op2)))
+ return tem;
+
+ return gen_rtx_fmt_eee (code, mode, op0, op1, op2);
+}
+
+/* Likewise, for relational operations.
+ CMP_MODE specifies mode comparison is done in.
+ */
+
+rtx
+simplify_gen_relational (code, mode, cmp_mode, op0, op1)
+ enum rtx_code code;
+ enum machine_mode mode;
+ enum machine_mode cmp_mode;
+ rtx op0, op1;
+{
+ rtx tem;
+
+ if ((tem = simplify_relational_operation (code, cmp_mode, op0, op1)) != 0)
+ return tem;
+
+ /* Put complex operands first and constants second. */
+ if (swap_commutative_operands_p (op0, op1))
+ tem = op0, op0 = op1, op1 = tem, code = swap_condition (code);
+
+ return gen_rtx_fmt_ee (code, mode, op0, op1);
+}
+
+/* Replace all occurrences of OLD in X with NEW and try to simplify the
+ resulting RTX. Return a new RTX which is as simplified as possible. */
+
+rtx
+simplify_replace_rtx (x, old, new)
+ rtx x;
+ rtx old;
+ rtx new;
+{
+ enum rtx_code code = GET_CODE (x);
+ enum machine_mode mode = GET_MODE (x);
+
+ /* If X is OLD, return NEW. Otherwise, if this is an expression, try
+ to build a new expression substituting recursively. If we can't do
+ anything, return our input. */
+
+ if (x == old)
+ return new;
+
+ switch (GET_RTX_CLASS (code))
+ {
+ case '1':
+ {
+ enum machine_mode op_mode = GET_MODE (XEXP (x, 0));
+ rtx op = (XEXP (x, 0) == old
+ ? new : simplify_replace_rtx (XEXP (x, 0), old, new));
+
+ return simplify_gen_unary (code, mode, op, op_mode);
+ }
+
+ case '2':
+ case 'c':
+ return
+ simplify_gen_binary (code, mode,
+ simplify_replace_rtx (XEXP (x, 0), old, new),
+ simplify_replace_rtx (XEXP (x, 1), old, new));
+ case '<':
+ {
+ enum machine_mode op_mode = (GET_MODE (XEXP (x, 0)) != VOIDmode
+ ? GET_MODE (XEXP (x, 0))
+ : GET_MODE (XEXP (x, 1)));
+ rtx op0 = simplify_replace_rtx (XEXP (x, 0), old, new);
+ rtx op1 = simplify_replace_rtx (XEXP (x, 1), old, new);
+
+ return
+ simplify_gen_relational (code, mode,
+ (op_mode != VOIDmode
+ ? op_mode
+ : GET_MODE (op0) != VOIDmode
+ ? GET_MODE (op0)
+ : GET_MODE (op1)),
+ op0, op1);
+ }
+
+ case '3':
+ case 'b':
+ {
+ enum machine_mode op_mode = GET_MODE (XEXP (x, 0));
+ rtx op0 = simplify_replace_rtx (XEXP (x, 0), old, new);
+
+ return
+ simplify_gen_ternary (code, mode,
+ (op_mode != VOIDmode
+ ? op_mode
+ : GET_MODE (op0)),
+ op0,
+ simplify_replace_rtx (XEXP (x, 1), old, new),
+ simplify_replace_rtx (XEXP (x, 2), old, new));
+ }
+
+ case 'x':
+ /* The only case we try to handle is a SUBREG. */
+ if (code == SUBREG)
+ {
+ rtx exp;
+ exp = simplify_gen_subreg (GET_MODE (x),
+ simplify_replace_rtx (SUBREG_REG (x),
+ old, new),
+ GET_MODE (SUBREG_REG (x)),
+ SUBREG_BYTE (x));
+ if (exp)
+ x = exp;
+ }
+ return x;
+
+ default:
+ if (GET_CODE (x) == MEM)
+ return
+ replace_equiv_address_nv (x,
+ simplify_replace_rtx (XEXP (x, 0),
+ old, new));
+
+ return x;
+ }
+ return x;
+}
+
+#if ! defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
+/* Subroutine of simplify_unary_operation, called via do_float_handler.
+ Handles simplification of unary ops on floating point values. */
+struct simplify_unary_real_args
+{
+ rtx operand;
+ rtx result;
+ enum machine_mode mode;
+ enum rtx_code code;
+ bool want_integer;
+};
+#define REAL_VALUE_ABS(d_) \
+ (REAL_VALUE_NEGATIVE (d_) ? REAL_VALUE_NEGATE (d_) : (d_))
+
+static void
+simplify_unary_real (p)
+ PTR p;
+{
+ REAL_VALUE_TYPE d;
+
+ struct simplify_unary_real_args *args =
+ (struct simplify_unary_real_args *) p;
+
+ REAL_VALUE_FROM_CONST_DOUBLE (d, args->operand);
+
+ if (args->want_integer)
+ {
+ HOST_WIDE_INT i;
+
+ switch (args->code)
+ {
+ case FIX: i = REAL_VALUE_FIX (d); break;
+ case UNSIGNED_FIX: i = REAL_VALUE_UNSIGNED_FIX (d); break;
+ default:
+ abort ();
+ }
+ args->result = GEN_INT (trunc_int_for_mode (i, args->mode));
+ }
+ else
+ {
+ switch (args->code)
+ {
+ case SQRT:
+ /* We don't attempt to optimize this. */
+ args->result = 0;
+ return;
+
+ case ABS: d = REAL_VALUE_ABS (d); break;
+ case NEG: d = REAL_VALUE_NEGATE (d); break;
+ case FLOAT_TRUNCATE: d = real_value_truncate (args->mode, d); break;
+ case FLOAT_EXTEND: /* All this does is change the mode. */ break;
+ case FIX: d = REAL_VALUE_RNDZINT (d); break;
+ case UNSIGNED_FIX: d = REAL_VALUE_UNSIGNED_RNDZINT (d); break;
+ default:
+ abort ();
+ }
+ args->result = CONST_DOUBLE_FROM_REAL_VALUE (d, args->mode);
+ }
+}
+#endif
+
+/* Try to simplify a unary operation CODE whose output mode is to be
+ MODE with input operand OP whose mode was originally OP_MODE.
+ Return zero if no simplification can be made. */
+rtx
+simplify_unary_operation (code, mode, op, op_mode)
+ enum rtx_code code;
+ enum machine_mode mode;
+ rtx op;
+ enum machine_mode op_mode;
+{
+ unsigned int width = GET_MODE_BITSIZE (mode);
+ rtx trueop = avoid_constant_pool_reference (op);
+
+ /* The order of these tests is critical so that, for example, we don't
+ check the wrong mode (input vs. output) for a conversion operation,
+ such as FIX. At some point, this should be simplified. */
+
+#if !defined(REAL_IS_NOT_DOUBLE) || defined(REAL_ARITHMETIC)
+
+ if (code == FLOAT && GET_MODE (trueop) == VOIDmode
+ && (GET_CODE (trueop) == CONST_DOUBLE || GET_CODE (trueop) == CONST_INT))
+ {
+ HOST_WIDE_INT hv, lv;
+ REAL_VALUE_TYPE d;
+
+ if (GET_CODE (trueop) == CONST_INT)
+ lv = INTVAL (trueop), hv = HWI_SIGN_EXTEND (lv);
+ else
+ lv = CONST_DOUBLE_LOW (trueop), hv = CONST_DOUBLE_HIGH (trueop);
+
+#ifdef REAL_ARITHMETIC
+ REAL_VALUE_FROM_INT (d, lv, hv, mode);
+#else
+ if (hv < 0)
+ {
+ d = (double) (~ hv);
+ d *= ((double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2))
+ * (double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)));
+ d += (double) (unsigned HOST_WIDE_INT) (~ lv);
+ d = (- d - 1.0);
+ }
+ else
+ {
+ d = (double) hv;
+ d *= ((double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2))
+ * (double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)));
+ d += (double) (unsigned HOST_WIDE_INT) lv;
+ }
+#endif /* REAL_ARITHMETIC */
+ d = real_value_truncate (mode, d);
+ return CONST_DOUBLE_FROM_REAL_VALUE (d, mode);
+ }
+ else if (code == UNSIGNED_FLOAT && GET_MODE (trueop) == VOIDmode
+ && (GET_CODE (trueop) == CONST_DOUBLE
+ || GET_CODE (trueop) == CONST_INT))
+ {
+ HOST_WIDE_INT hv, lv;
+ REAL_VALUE_TYPE d;
+
+ if (GET_CODE (trueop) == CONST_INT)
+ lv = INTVAL (trueop), hv = HWI_SIGN_EXTEND (lv);
+ else
+ lv = CONST_DOUBLE_LOW (trueop), hv = CONST_DOUBLE_HIGH (trueop);
+
+ if (op_mode == VOIDmode)
+ {
+ /* We don't know how to interpret negative-looking numbers in
+ this case, so don't try to fold those. */
+ if (hv < 0)
+ return 0;
+ }
+ else if (GET_MODE_BITSIZE (op_mode) >= HOST_BITS_PER_WIDE_INT * 2)
+ ;
+ else
+ hv = 0, lv &= GET_MODE_MASK (op_mode);
+
+#ifdef REAL_ARITHMETIC
+ REAL_VALUE_FROM_UNSIGNED_INT (d, lv, hv, mode);
+#else
+
+ d = (double) (unsigned HOST_WIDE_INT) hv;
+ d *= ((double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2))
+ * (double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)));
+ d += (double) (unsigned HOST_WIDE_INT) lv;
+#endif /* REAL_ARITHMETIC */
+ d = real_value_truncate (mode, d);
+ return CONST_DOUBLE_FROM_REAL_VALUE (d, mode);
+ }
+#endif
+
+ if (GET_CODE (trueop) == CONST_INT
+ && width <= HOST_BITS_PER_WIDE_INT && width > 0)
+ {
+ HOST_WIDE_INT arg0 = INTVAL (trueop);
+ HOST_WIDE_INT val;
+
+ switch (code)
+ {
+ case NOT:
+ val = ~ arg0;
+ break;
+
+ case NEG:
+ val = - arg0;
+ break;
+
+ case ABS:
+ val = (arg0 >= 0 ? arg0 : - arg0);
+ break;
+
+ case FFS:
+ /* Don't use ffs here. Instead, get low order bit and then its
+ number. If arg0 is zero, this will return 0, as desired. */
+ arg0 &= GET_MODE_MASK (mode);
+ val = exact_log2 (arg0 & (- arg0)) + 1;
+ break;
+
+ case TRUNCATE:
+ val = arg0;
+ break;
+
+ case ZERO_EXTEND:
+ if (op_mode == VOIDmode)
+ op_mode = mode;
+ if (GET_MODE_BITSIZE (op_mode) == HOST_BITS_PER_WIDE_INT)
+ {
+ /* If we were really extending the mode,
+ we would have to distinguish between zero-extension
+ and sign-extension. */
+ if (width != GET_MODE_BITSIZE (op_mode))
+ abort ();
+ val = arg0;
+ }
+ else if (GET_MODE_BITSIZE (op_mode) < HOST_BITS_PER_WIDE_INT)
+ val = arg0 & ~((HOST_WIDE_INT) (-1) << GET_MODE_BITSIZE (op_mode));
+ else
+ return 0;
+ break;
+
+ case SIGN_EXTEND:
+ if (op_mode == VOIDmode)
+ op_mode = mode;
+ if (GET_MODE_BITSIZE (op_mode) == HOST_BITS_PER_WIDE_INT)
+ {
+ /* If we were really extending the mode,
+ we would have to distinguish between zero-extension
+ and sign-extension. */
+ if (width != GET_MODE_BITSIZE (op_mode))
+ abort ();
+ val = arg0;
+ }
+ else if (GET_MODE_BITSIZE (op_mode) < HOST_BITS_PER_WIDE_INT)
+ {
+ val
+ = arg0 & ~((HOST_WIDE_INT) (-1) << GET_MODE_BITSIZE (op_mode));
+ if (val
+ & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (op_mode) - 1)))
+ val -= (HOST_WIDE_INT) 1 << GET_MODE_BITSIZE (op_mode);
+ }
+ else
+ return 0;
+ break;
+
+ case SQRT:
+ case FLOAT_EXTEND:
+ case FLOAT_TRUNCATE:
+ case SS_TRUNCATE:
+ case US_TRUNCATE:
+ return 0;
+
+ default:
+ abort ();
+ }
+
+ val = trunc_int_for_mode (val, mode);
+
+ return GEN_INT (val);
+ }
+
+ /* We can do some operations on integer CONST_DOUBLEs. Also allow
+ for a DImode operation on a CONST_INT. */
+ else if (GET_MODE (trueop) == VOIDmode && width <= HOST_BITS_PER_INT * 2
+ && (GET_CODE (trueop) == CONST_DOUBLE
+ || GET_CODE (trueop) == CONST_INT))
+ {
+ unsigned HOST_WIDE_INT l1, lv;
+ HOST_WIDE_INT h1, hv;
+
+ if (GET_CODE (trueop) == CONST_DOUBLE)
+ l1 = CONST_DOUBLE_LOW (trueop), h1 = CONST_DOUBLE_HIGH (trueop);
+ else
+ l1 = INTVAL (trueop), h1 = HWI_SIGN_EXTEND (l1);
+
+ switch (code)
+ {
+ case NOT:
+ lv = ~ l1;
+ hv = ~ h1;
+ break;
+
+ case NEG:
+ neg_double (l1, h1, &lv, &hv);
+ break;
+
+ case ABS:
+ if (h1 < 0)
+ neg_double (l1, h1, &lv, &hv);
+ else
+ lv = l1, hv = h1;
+ break;
+
+ case FFS:
+ hv = 0;
+ if (l1 == 0)
+ lv = HOST_BITS_PER_WIDE_INT + exact_log2 (h1 & (-h1)) + 1;
+ else
+ lv = exact_log2 (l1 & (-l1)) + 1;
+ break;
+
+ case TRUNCATE:
+ /* This is just a change-of-mode, so do nothing. */
+ lv = l1, hv = h1;
+ break;
+
+ case ZERO_EXTEND:
+ if (op_mode == VOIDmode
+ || GET_MODE_BITSIZE (op_mode) > HOST_BITS_PER_WIDE_INT)
+ return 0;
+
+ hv = 0;
+ lv = l1 & GET_MODE_MASK (op_mode);
+ break;
+
+ case SIGN_EXTEND:
+ if (op_mode == VOIDmode
+ || GET_MODE_BITSIZE (op_mode) > HOST_BITS_PER_WIDE_INT)
+ return 0;
+ else
+ {
+ lv = l1 & GET_MODE_MASK (op_mode);
+ if (GET_MODE_BITSIZE (op_mode) < HOST_BITS_PER_WIDE_INT
+ && (lv & ((HOST_WIDE_INT) 1
+ << (GET_MODE_BITSIZE (op_mode) - 1))) != 0)
+ lv -= (HOST_WIDE_INT) 1 << GET_MODE_BITSIZE (op_mode);
+
+ hv = HWI_SIGN_EXTEND (lv);
+ }
+ break;
+
+ case SQRT:
+ return 0;
+
+ default:
+ return 0;
+ }
+
+ return immed_double_const (lv, hv, mode);
+ }
+
+#if ! defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
+ else if (GET_CODE (trueop) == CONST_DOUBLE
+ && GET_MODE_CLASS (mode) == MODE_FLOAT)
+ {
+ struct simplify_unary_real_args args;
+ args.operand = trueop;
+ args.mode = mode;
+ args.code = code;
+ args.want_integer = false;
+
+ if (do_float_handler (simplify_unary_real, (PTR) &args))
+ return args.result;
+
+ return 0;
+ }
+
+ else if (GET_CODE (trueop) == CONST_DOUBLE
+ && GET_MODE_CLASS (GET_MODE (trueop)) == MODE_FLOAT
+ && GET_MODE_CLASS (mode) == MODE_INT
+ && width <= HOST_BITS_PER_WIDE_INT && width > 0)
+ {
+ struct simplify_unary_real_args args;
+ args.operand = trueop;
+ args.mode = mode;
+ args.code = code;
+ args.want_integer = true;
+
+ if (do_float_handler (simplify_unary_real, (PTR) &args))
+ return args.result;
+
+ return 0;
+ }
+#endif
+ /* This was formerly used only for non-IEEE float.
+ eggert@twinsun.com says it is safe for IEEE also. */
+ else
+ {
+ enum rtx_code reversed;
+ /* There are some simplifications we can do even if the operands
+ aren't constant. */
+ switch (code)
+ {
+ case NOT:
+ /* (not (not X)) == X. */
+ if (GET_CODE (op) == NOT)
+ return XEXP (op, 0);
+
+ /* (not (eq X Y)) == (ne X Y), etc. */
+ if (mode == BImode && GET_RTX_CLASS (GET_CODE (op)) == '<'
+ && ((reversed = reversed_comparison_code (op, NULL_RTX))
+ != UNKNOWN))
+ return gen_rtx_fmt_ee (reversed,
+ op_mode, XEXP (op, 0), XEXP (op, 1));
+ break;
+
+ case NEG:
+ /* (neg (neg X)) == X. */
+ if (GET_CODE (op) == NEG)
+ return XEXP (op, 0);
+ break;
+
+ case SIGN_EXTEND:
+ /* (sign_extend (truncate (minus (label_ref L1) (label_ref L2))))
+ becomes just the MINUS if its mode is MODE. This allows
+ folding switch statements on machines using casesi (such as
+ the VAX). */
+ if (GET_CODE (op) == TRUNCATE
+ && GET_MODE (XEXP (op, 0)) == mode
+ && GET_CODE (XEXP (op, 0)) == MINUS
+ && GET_CODE (XEXP (XEXP (op, 0), 0)) == LABEL_REF
+ && GET_CODE (XEXP (XEXP (op, 0), 1)) == LABEL_REF)
+ return XEXP (op, 0);
+
+#if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
+ if (! POINTERS_EXTEND_UNSIGNED
+ && mode == Pmode && GET_MODE (op) == ptr_mode
+ && (CONSTANT_P (op)
+ || (GET_CODE (op) == SUBREG
+ && GET_CODE (SUBREG_REG (op)) == REG
+ && REG_POINTER (SUBREG_REG (op))
+ && GET_MODE (SUBREG_REG (op)) == Pmode)))
+ return convert_memory_address (Pmode, op);
+#endif
+ break;
+
+#if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
+ case ZERO_EXTEND:
+ if (POINTERS_EXTEND_UNSIGNED > 0
+ && mode == Pmode && GET_MODE (op) == ptr_mode
+ && (CONSTANT_P (op)
+ || (GET_CODE (op) == SUBREG
+ && GET_CODE (SUBREG_REG (op)) == REG
+ && REG_POINTER (SUBREG_REG (op))
+ && GET_MODE (SUBREG_REG (op)) == Pmode)))
+ return convert_memory_address (Pmode, op);
+ break;
+#endif
+
+ default:
+ break;
+ }
+
+ return 0;
+ }
+}
+
+#if ! defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
+/* Subroutine of simplify_binary_operation, called via do_float_handler.
+ Handles simplification of binary ops on floating point values. */
+struct simplify_binary_real_args
+{
+ rtx trueop0, trueop1;
+ rtx result;
+ enum rtx_code code;
+ enum machine_mode mode;
+};
+
+static void
+simplify_binary_real (p)
+ PTR p;
+{
+ REAL_VALUE_TYPE f0, f1, value;
+ struct simplify_binary_real_args *args =
+ (struct simplify_binary_real_args *) p;
+
+ REAL_VALUE_FROM_CONST_DOUBLE (f0, args->trueop0);
+ REAL_VALUE_FROM_CONST_DOUBLE (f1, args->trueop1);
+ f0 = real_value_truncate (args->mode, f0);
+ f1 = real_value_truncate (args->mode, f1);
+
+#ifdef REAL_ARITHMETIC
+#ifndef REAL_INFINITY
+ if (args->code == DIV && REAL_VALUES_EQUAL (f1, dconst0))
+ {
+ args->result = 0;
+ return;
+ }
+#endif
+ REAL_ARITHMETIC (value, rtx_to_tree_code (args->code), f0, f1);
+#else
+ switch (args->code)
+ {
+ case PLUS:
+ value = f0 + f1;
+ break;
+ case MINUS:
+ value = f0 - f1;
+ break;
+ case MULT:
+ value = f0 * f1;
+ break;
+ case DIV:
+#ifndef REAL_INFINITY
+ if (f1 == 0)
+ return 0;
+#endif
+ value = f0 / f1;
+ break;
+ case SMIN:
+ value = MIN (f0, f1);
+ break;
+ case SMAX:
+ value = MAX (f0, f1);
+ break;
+ default:
+ abort ();
+ }
+#endif
+
+ value = real_value_truncate (args->mode, value);
+ args->result = CONST_DOUBLE_FROM_REAL_VALUE (value, args->mode);
+}
+#endif
+
+/* Another subroutine called via do_float_handler. This one tests
+ the floating point value given against 2. and -1. */
+struct simplify_binary_is2orm1_args
+{
+ rtx value;
+ bool is_2;
+ bool is_m1;
+};
+
+static void
+simplify_binary_is2orm1 (p)
+ PTR p;
+{
+ REAL_VALUE_TYPE d;
+ struct simplify_binary_is2orm1_args *args =
+ (struct simplify_binary_is2orm1_args *) p;
+
+ REAL_VALUE_FROM_CONST_DOUBLE (d, args->value);
+ args->is_2 = REAL_VALUES_EQUAL (d, dconst2);
+ args->is_m1 = REAL_VALUES_EQUAL (d, dconstm1);
+}
+
+/* Simplify a binary operation CODE with result mode MODE, operating on OP0
+ and OP1. Return 0 if no simplification is possible.
+
+ Don't use this for relational operations such as EQ or LT.
+ Use simplify_relational_operation instead. */
+rtx
+simplify_binary_operation (code, mode, op0, op1)
+ enum rtx_code code;
+ enum machine_mode mode;
+ rtx op0, op1;
+{
+ HOST_WIDE_INT arg0, arg1, arg0s, arg1s;
+ HOST_WIDE_INT val;
+ unsigned int width = GET_MODE_BITSIZE (mode);
+ rtx tem;
+ rtx trueop0 = avoid_constant_pool_reference (op0);
+ rtx trueop1 = avoid_constant_pool_reference (op1);
+
+ /* Relational operations don't work here. We must know the mode
+ of the operands in order to do the comparison correctly.
+ Assuming a full word can give incorrect results.
+ Consider comparing 128 with -128 in QImode. */
+
+ if (GET_RTX_CLASS (code) == '<')
+ abort ();
+
+ /* Make sure the constant is second. */
+ if (GET_RTX_CLASS (code) == 'c'
+ && swap_commutative_operands_p (trueop0, trueop1))
+ {
+ tem = op0, op0 = op1, op1 = tem;
+ tem = trueop0, trueop0 = trueop1, trueop1 = tem;
+ }
+
+#if ! defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
+ if (GET_MODE_CLASS (mode) == MODE_FLOAT
+ && GET_CODE (trueop0) == CONST_DOUBLE
+ && GET_CODE (trueop1) == CONST_DOUBLE
+ && mode == GET_MODE (op0) && mode == GET_MODE (op1))
+ {
+ struct simplify_binary_real_args args;
+ args.trueop0 = trueop0;
+ args.trueop1 = trueop1;
+ args.mode = mode;
+ args.code = code;
+
+ if (do_float_handler (simplify_binary_real, (PTR) &args))
+ return args.result;
+ return 0;
+ }
+#endif /* not REAL_IS_NOT_DOUBLE, or REAL_ARITHMETIC */
+
+ /* We can fold some multi-word operations. */
+ if (GET_MODE_CLASS (mode) == MODE_INT
+ && width == HOST_BITS_PER_WIDE_INT * 2
+ && (GET_CODE (trueop0) == CONST_DOUBLE
+ || GET_CODE (trueop0) == CONST_INT)
+ && (GET_CODE (trueop1) == CONST_DOUBLE
+ || GET_CODE (trueop1) == CONST_INT))
+ {
+ unsigned HOST_WIDE_INT l1, l2, lv;
+ HOST_WIDE_INT h1, h2, hv;
+
+ if (GET_CODE (trueop0) == CONST_DOUBLE)
+ l1 = CONST_DOUBLE_LOW (trueop0), h1 = CONST_DOUBLE_HIGH (trueop0);
+ else
+ l1 = INTVAL (trueop0), h1 = HWI_SIGN_EXTEND (l1);
+
+ if (GET_CODE (trueop1) == CONST_DOUBLE)
+ l2 = CONST_DOUBLE_LOW (trueop1), h2 = CONST_DOUBLE_HIGH (trueop1);
+ else
+ l2 = INTVAL (trueop1), h2 = HWI_SIGN_EXTEND (l2);
+
+ switch (code)
+ {
+ case MINUS:
+ /* A - B == A + (-B). */
+ neg_double (l2, h2, &lv, &hv);
+ l2 = lv, h2 = hv;
+
+ /* .. fall through ... */
+
+ case PLUS:
+ add_double (l1, h1, l2, h2, &lv, &hv);
+ break;
+
+ case MULT:
+ mul_double (l1, h1, l2, h2, &lv, &hv);
+ break;
+
+ case DIV: case MOD: case UDIV: case UMOD:
+ /* We'd need to include tree.h to do this and it doesn't seem worth
+ it. */
+ return 0;
+
+ case AND:
+ lv = l1 & l2, hv = h1 & h2;
+ break;
+
+ case IOR:
+ lv = l1 | l2, hv = h1 | h2;
+ break;
+
+ case XOR:
+ lv = l1 ^ l2, hv = h1 ^ h2;
+ break;
+
+ case SMIN:
+ if (h1 < h2
+ || (h1 == h2
+ && ((unsigned HOST_WIDE_INT) l1
+ < (unsigned HOST_WIDE_INT) l2)))
+ lv = l1, hv = h1;
+ else
+ lv = l2, hv = h2;
+ break;
+
+ case SMAX:
+ if (h1 > h2
+ || (h1 == h2
+ && ((unsigned HOST_WIDE_INT) l1
+ > (unsigned HOST_WIDE_INT) l2)))
+ lv = l1, hv = h1;
+ else
+ lv = l2, hv = h2;
+ break;
+
+ case UMIN:
+ if ((unsigned HOST_WIDE_INT) h1 < (unsigned HOST_WIDE_INT) h2
+ || (h1 == h2
+ && ((unsigned HOST_WIDE_INT) l1
+ < (unsigned HOST_WIDE_INT) l2)))
+ lv = l1, hv = h1;
+ else
+ lv = l2, hv = h2;
+ break;
+
+ case UMAX:
+ if ((unsigned HOST_WIDE_INT) h1 > (unsigned HOST_WIDE_INT) h2
+ || (h1 == h2
+ && ((unsigned HOST_WIDE_INT) l1
+ > (unsigned HOST_WIDE_INT) l2)))
+ lv = l1, hv = h1;
+ else
+ lv = l2, hv = h2;
+ break;
+
+ case LSHIFTRT: case ASHIFTRT:
+ case ASHIFT:
+ case ROTATE: case ROTATERT:
+#ifdef SHIFT_COUNT_TRUNCATED
+ if (SHIFT_COUNT_TRUNCATED)
+ l2 &= (GET_MODE_BITSIZE (mode) - 1), h2 = 0;
+#endif
+
+ if (h2 != 0 || l2 >= GET_MODE_BITSIZE (mode))
+ return 0;
+
+ if (code == LSHIFTRT || code == ASHIFTRT)
+ rshift_double (l1, h1, l2, GET_MODE_BITSIZE (mode), &lv, &hv,
+ code == ASHIFTRT);
+ else if (code == ASHIFT)
+ lshift_double (l1, h1, l2, GET_MODE_BITSIZE (mode), &lv, &hv, 1);
+ else if (code == ROTATE)
+ lrotate_double (l1, h1, l2, GET_MODE_BITSIZE (mode), &lv, &hv);
+ else /* code == ROTATERT */
+ rrotate_double (l1, h1, l2, GET_MODE_BITSIZE (mode), &lv, &hv);
+ break;
+
+ default:
+ return 0;
+ }
+
+ return immed_double_const (lv, hv, mode);
+ }
+
+ if (GET_CODE (op0) != CONST_INT || GET_CODE (op1) != CONST_INT
+ || width > HOST_BITS_PER_WIDE_INT || width == 0)
+ {
+ /* Even if we can't compute a constant result,
+ there are some cases worth simplifying. */
+
+ switch (code)
+ {
+ case PLUS:
+ /* In IEEE floating point, x+0 is not the same as x. Similarly
+ for the other optimizations below. */
+ if (TARGET_FLOAT_FORMAT == IEEE_FLOAT_FORMAT
+ && FLOAT_MODE_P (mode) && ! flag_unsafe_math_optimizations)
+ break;
+
+ if (trueop1 == CONST0_RTX (mode))
+ return op0;
+
+ /* ((-a) + b) -> (b - a) and similarly for (a + (-b)) */
+ if (GET_CODE (op0) == NEG)
+ return simplify_gen_binary (MINUS, mode, op1, XEXP (op0, 0));
+ else if (GET_CODE (op1) == NEG)
+ return simplify_gen_binary (MINUS, mode, op0, XEXP (op1, 0));
+
+ /* (~a) + 1 -> -a */
+ if (INTEGRAL_MODE_P (mode)
+ && GET_CODE (op0) == NOT
+ && trueop1 == const1_rtx)
+ return gen_rtx_NEG (mode, XEXP (op0, 0));
+
+ /* Handle both-operands-constant cases. We can only add
+ CONST_INTs to constants since the sum of relocatable symbols
+ can't be handled by most assemblers. Don't add CONST_INT
+ to CONST_INT since overflow won't be computed properly if wider
+ than HOST_BITS_PER_WIDE_INT. */
+
+ if (CONSTANT_P (op0) && GET_MODE (op0) != VOIDmode
+ && GET_CODE (op1) == CONST_INT)
+ return plus_constant (op0, INTVAL (op1));
+ else if (CONSTANT_P (op1) && GET_MODE (op1) != VOIDmode
+ && GET_CODE (op0) == CONST_INT)
+ return plus_constant (op1, INTVAL (op0));
+
+ /* See if this is something like X * C - X or vice versa or
+ if the multiplication is written as a shift. If so, we can
+ distribute and make a new multiply, shift, or maybe just
+ have X (if C is 2 in the example above). But don't make
+ real multiply if we didn't have one before. */
+
+ if (! FLOAT_MODE_P (mode))
+ {
+ HOST_WIDE_INT coeff0 = 1, coeff1 = 1;
+ rtx lhs = op0, rhs = op1;
+ int had_mult = 0;
+
+ if (GET_CODE (lhs) == NEG)
+ coeff0 = -1, lhs = XEXP (lhs, 0);
+ else if (GET_CODE (lhs) == MULT
+ && GET_CODE (XEXP (lhs, 1)) == CONST_INT)
+ {
+ coeff0 = INTVAL (XEXP (lhs, 1)), lhs = XEXP (lhs, 0);
+ had_mult = 1;
+ }
+ else if (GET_CODE (lhs) == ASHIFT
+ && GET_CODE (XEXP (lhs, 1)) == CONST_INT
+ && INTVAL (XEXP (lhs, 1)) >= 0
+ && INTVAL (XEXP (lhs, 1)) < HOST_BITS_PER_WIDE_INT)
+ {
+ coeff0 = ((HOST_WIDE_INT) 1) << INTVAL (XEXP (lhs, 1));
+ lhs = XEXP (lhs, 0);
+ }
+
+ if (GET_CODE (rhs) == NEG)
+ coeff1 = -1, rhs = XEXP (rhs, 0);
+ else if (GET_CODE (rhs) == MULT
+ && GET_CODE (XEXP (rhs, 1)) == CONST_INT)
+ {
+ coeff1 = INTVAL (XEXP (rhs, 1)), rhs = XEXP (rhs, 0);
+ had_mult = 1;
+ }
+ else if (GET_CODE (rhs) == ASHIFT
+ && GET_CODE (XEXP (rhs, 1)) == CONST_INT
+ && INTVAL (XEXP (rhs, 1)) >= 0
+ && INTVAL (XEXP (rhs, 1)) < HOST_BITS_PER_WIDE_INT)
+ {
+ coeff1 = ((HOST_WIDE_INT) 1) << INTVAL (XEXP (rhs, 1));
+ rhs = XEXP (rhs, 0);
+ }
+
+ if (rtx_equal_p (lhs, rhs))
+ {
+ tem = simplify_gen_binary (MULT, mode, lhs,
+ GEN_INT (coeff0 + coeff1));
+ return (GET_CODE (tem) == MULT && ! had_mult) ? 0 : tem;
+ }
+ }
+
+ /* If one of the operands is a PLUS or a MINUS, see if we can
+ simplify this by the associative law.
+ Don't use the associative law for floating point.
+ The inaccuracy makes it nonassociative,
+ and subtle programs can break if operations are associated. */
+
+ if (INTEGRAL_MODE_P (mode)
+ && (GET_CODE (op0) == PLUS || GET_CODE (op0) == MINUS
+ || GET_CODE (op1) == PLUS || GET_CODE (op1) == MINUS
+ || (GET_CODE (op0) == CONST
+ && GET_CODE (XEXP (op0, 0)) == PLUS)
+ || (GET_CODE (op1) == CONST
+ && GET_CODE (XEXP (op1, 0)) == PLUS))
+ && (tem = simplify_plus_minus (code, mode, op0, op1)) != 0)
+ return tem;
+ break;
+
+ case COMPARE:
+#ifdef HAVE_cc0
+ /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
+ using cc0, in which case we want to leave it as a COMPARE
+ so we can distinguish it from a register-register-copy.
+
+ In IEEE floating point, x-0 is not the same as x. */
+
+ if ((TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
+ || ! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
+ && trueop1 == CONST0_RTX (mode))
+ return op0;
+#endif
+
+ /* Convert (compare (gt (flags) 0) (lt (flags) 0)) to (flags). */
+ if (((GET_CODE (op0) == GT && GET_CODE (op1) == LT)
+ || (GET_CODE (op0) == GTU && GET_CODE (op1) == LTU))
+ && XEXP (op0, 1) == const0_rtx && XEXP (op1, 1) == const0_rtx)
+ {
+ rtx xop00 = XEXP (op0, 0);
+ rtx xop10 = XEXP (op1, 0);
+
+#ifdef HAVE_cc0
+ if (GET_CODE (xop00) == CC0 && GET_CODE (xop10) == CC0)
+#else
+ if (GET_CODE (xop00) == REG && GET_CODE (xop10) == REG
+ && GET_MODE (xop00) == GET_MODE (xop10)
+ && REGNO (xop00) == REGNO (xop10)
+ && GET_MODE_CLASS (GET_MODE (xop00)) == MODE_CC
+ && GET_MODE_CLASS (GET_MODE (xop10)) == MODE_CC)
+#endif
+ return xop00;
+ }
+ break;
+
+ case MINUS:
+ /* None of these optimizations can be done for IEEE
+ floating point. */
+ if (TARGET_FLOAT_FORMAT == IEEE_FLOAT_FORMAT
+ && FLOAT_MODE_P (mode) && ! flag_unsafe_math_optimizations)
+ break;
+
+ /* We can't assume x-x is 0 even with non-IEEE floating point,
+ but since it is zero except in very strange circumstances, we
+ will treat it as zero with -funsafe-math-optimizations. */
+ if (rtx_equal_p (trueop0, trueop1)
+ && ! side_effects_p (op0)
+ && (! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations))
+ return CONST0_RTX (mode);
+
+ /* Change subtraction from zero into negation. */
+ if (trueop0 == CONST0_RTX (mode))
+ return gen_rtx_NEG (mode, op1);
+
+ /* (-1 - a) is ~a. */
+ if (trueop0 == constm1_rtx)
+ return gen_rtx_NOT (mode, op1);
+
+ /* Subtracting 0 has no effect. */
+ if (trueop1 == CONST0_RTX (mode))
+ return op0;
+
+ /* See if this is something like X * C - X or vice versa or
+ if the multiplication is written as a shift. If so, we can
+ distribute and make a new multiply, shift, or maybe just
+ have X (if C is 2 in the example above). But don't make
+ real multiply if we didn't have one before. */
+
+ if (! FLOAT_MODE_P (mode))
+ {
+ HOST_WIDE_INT coeff0 = 1, coeff1 = 1;
+ rtx lhs = op0, rhs = op1;
+ int had_mult = 0;
+
+ if (GET_CODE (lhs) == NEG)
+ coeff0 = -1, lhs = XEXP (lhs, 0);
+ else if (GET_CODE (lhs) == MULT
+ && GET_CODE (XEXP (lhs, 1)) == CONST_INT)
+ {
+ coeff0 = INTVAL (XEXP (lhs, 1)), lhs = XEXP (lhs, 0);
+ had_mult = 1;
+ }
+ else if (GET_CODE (lhs) == ASHIFT
+ && GET_CODE (XEXP (lhs, 1)) == CONST_INT
+ && INTVAL (XEXP (lhs, 1)) >= 0
+ && INTVAL (XEXP (lhs, 1)) < HOST_BITS_PER_WIDE_INT)
+ {
+ coeff0 = ((HOST_WIDE_INT) 1) << INTVAL (XEXP (lhs, 1));
+ lhs = XEXP (lhs, 0);
+ }
+
+ if (GET_CODE (rhs) == NEG)
+ coeff1 = - 1, rhs = XEXP (rhs, 0);
+ else if (GET_CODE (rhs) == MULT
+ && GET_CODE (XEXP (rhs, 1)) == CONST_INT)
+ {
+ coeff1 = INTVAL (XEXP (rhs, 1)), rhs = XEXP (rhs, 0);
+ had_mult = 1;
+ }
+ else if (GET_CODE (rhs) == ASHIFT
+ && GET_CODE (XEXP (rhs, 1)) == CONST_INT
+ && INTVAL (XEXP (rhs, 1)) >= 0
+ && INTVAL (XEXP (rhs, 1)) < HOST_BITS_PER_WIDE_INT)
+ {
+ coeff1 = ((HOST_WIDE_INT) 1) << INTVAL (XEXP (rhs, 1));
+ rhs = XEXP (rhs, 0);
+ }
+
+ if (rtx_equal_p (lhs, rhs))
+ {
+ tem = simplify_gen_binary (MULT, mode, lhs,
+ GEN_INT (coeff0 - coeff1));
+ return (GET_CODE (tem) == MULT && ! had_mult) ? 0 : tem;
+ }
+ }
+
+ /* (a - (-b)) -> (a + b). */
+ if (GET_CODE (op1) == NEG)
+ return simplify_gen_binary (PLUS, mode, op0, XEXP (op1, 0));
+
+ /* If one of the operands is a PLUS or a MINUS, see if we can
+ simplify this by the associative law.
+ Don't use the associative law for floating point.
+ The inaccuracy makes it nonassociative,
+ and subtle programs can break if operations are associated. */
+
+ if (INTEGRAL_MODE_P (mode)
+ && (GET_CODE (op0) == PLUS || GET_CODE (op0) == MINUS
+ || GET_CODE (op1) == PLUS || GET_CODE (op1) == MINUS
+ || (GET_CODE (op0) == CONST
+ && GET_CODE (XEXP (op0, 0)) == PLUS)
+ || (GET_CODE (op1) == CONST
+ && GET_CODE (XEXP (op1, 0)) == PLUS))
+ && (tem = simplify_plus_minus (code, mode, op0, op1)) != 0)
+ return tem;
+
+ /* Don't let a relocatable value get a negative coeff. */
+ if (GET_CODE (op1) == CONST_INT && GET_MODE (op0) != VOIDmode)
+ return simplify_gen_binary (PLUS, mode,
+ op0,
+ neg_const_int (mode, op1));
+
+ /* (x - (x & y)) -> (x & ~y) */
+ if (GET_CODE (op1) == AND)
+ {
+ if (rtx_equal_p (op0, XEXP (op1, 0)))
+ return simplify_gen_binary (AND, mode, op0,
+ gen_rtx_NOT (mode, XEXP (op1, 1)));
+ if (rtx_equal_p (op0, XEXP (op1, 1)))
+ return simplify_gen_binary (AND, mode, op0,
+ gen_rtx_NOT (mode, XEXP (op1, 0)));
+ }
+ break;
+
+ case MULT:
+ if (trueop1 == constm1_rtx)
+ {
+ tem = simplify_unary_operation (NEG, mode, op0, mode);
+
+ return tem ? tem : gen_rtx_NEG (mode, op0);
+ }
+
+ /* In IEEE floating point, x*0 is not always 0. */
+ if ((TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
+ || ! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
+ && trueop1 == CONST0_RTX (mode)
+ && ! side_effects_p (op0))
+ return op1;
+
+ /* In IEEE floating point, x*1 is not equivalent to x for nans.
+ However, ANSI says we can drop signals,
+ so we can do this anyway. */
+ if (trueop1 == CONST1_RTX (mode))
+ return op0;
+
+ /* Convert multiply by constant power of two into shift unless
+ we are still generating RTL. This test is a kludge. */
+ if (GET_CODE (trueop1) == CONST_INT
+ && (val = exact_log2 (INTVAL (trueop1))) >= 0
+ /* If the mode is larger than the host word size, and the
+ uppermost bit is set, then this isn't a power of two due
+ to implicit sign extension. */
+ && (width <= HOST_BITS_PER_WIDE_INT
+ || val != HOST_BITS_PER_WIDE_INT - 1)
+ && ! rtx_equal_function_value_matters)
+ return gen_rtx_ASHIFT (mode, op0, GEN_INT (val));
+
+ if (GET_CODE (trueop1) == CONST_DOUBLE
+ && GET_MODE_CLASS (GET_MODE (trueop1)) == MODE_FLOAT)
+ {
+ struct simplify_binary_is2orm1_args args;
+
+ args.value = trueop1;
+ if (! do_float_handler (simplify_binary_is2orm1, (PTR) &args))
+ return 0;
+
+ /* x*2 is x+x and x*(-1) is -x */
+ if (args.is_2 && GET_MODE (op0) == mode)
+ return gen_rtx_PLUS (mode, op0, copy_rtx (op0));
+
+ else if (args.is_m1 && GET_MODE (op0) == mode)
+ return gen_rtx_NEG (mode, op0);
+ }
+ break;
+
+ case IOR:
+ if (trueop1 == const0_rtx)
+ return op0;
+ if (GET_CODE (trueop1) == CONST_INT
+ && ((INTVAL (trueop1) & GET_MODE_MASK (mode))
+ == GET_MODE_MASK (mode)))
+ return op1;
+ if (rtx_equal_p (trueop0, trueop1) && ! side_effects_p (op0))
+ return op0;
+ /* A | (~A) -> -1 */
+ if (((GET_CODE (op0) == NOT && rtx_equal_p (XEXP (op0, 0), op1))
+ || (GET_CODE (op1) == NOT && rtx_equal_p (XEXP (op1, 0), op0)))
+ && ! side_effects_p (op0)
+ && GET_MODE_CLASS (mode) != MODE_CC)
+ return constm1_rtx;
+ break;
+
+ case XOR:
+ if (trueop1 == const0_rtx)
+ return op0;
+ if (GET_CODE (trueop1) == CONST_INT
+ && ((INTVAL (trueop1) & GET_MODE_MASK (mode))
+ == GET_MODE_MASK (mode)))
+ return gen_rtx_NOT (mode, op0);
+ if (trueop0 == trueop1 && ! side_effects_p (op0)
+ && GET_MODE_CLASS (mode) != MODE_CC)
+ return const0_rtx;
+ break;
+
+ case AND:
+ if (trueop1 == const0_rtx && ! side_effects_p (op0))
+ return const0_rtx;
+ if (GET_CODE (trueop1) == CONST_INT
+ && ((INTVAL (trueop1) & GET_MODE_MASK (mode))
+ == GET_MODE_MASK (mode)))
+ return op0;
+ if (trueop0 == trueop1 && ! side_effects_p (op0)
+ && GET_MODE_CLASS (mode) != MODE_CC)
+ return op0;
+ /* A & (~A) -> 0 */
+ if (((GET_CODE (op0) == NOT && rtx_equal_p (XEXP (op0, 0), op1))
+ || (GET_CODE (op1) == NOT && rtx_equal_p (XEXP (op1, 0), op0)))
+ && ! side_effects_p (op0)
+ && GET_MODE_CLASS (mode) != MODE_CC)
+ return const0_rtx;
+ break;
+
+ case UDIV:
+ /* Convert divide by power of two into shift (divide by 1 handled
+ below). */
+ if (GET_CODE (trueop1) == CONST_INT
+ && (arg1 = exact_log2 (INTVAL (trueop1))) > 0)
+ return gen_rtx_LSHIFTRT (mode, op0, GEN_INT (arg1));
+
+ /* ... fall through ... */
+
+ case DIV:
+ if (trueop1 == CONST1_RTX (mode))
+ {
+ /* On some platforms DIV uses narrower mode than its
+ operands. */
+ rtx x = gen_lowpart_common (mode, op0);
+ if (x)
+ return x;
+ else if (mode != GET_MODE (op0) && GET_MODE (op0) != VOIDmode)
+ return gen_lowpart_SUBREG (mode, op0);
+ else
+ return op0;
+ }
+
+ /* In IEEE floating point, 0/x is not always 0. */
+ if ((TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
+ || ! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
+ && trueop0 == CONST0_RTX (mode)
+ && ! side_effects_p (op1))
+ return op0;
+
+#if ! defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
+ /* Change division by a constant into multiplication. Only do
+ this with -funsafe-math-optimizations. */
+ else if (GET_CODE (trueop1) == CONST_DOUBLE
+ && GET_MODE_CLASS (GET_MODE (trueop1)) == MODE_FLOAT
+ && trueop1 != CONST0_RTX (mode)
+ && flag_unsafe_math_optimizations)
+ {
+ REAL_VALUE_TYPE d;
+ REAL_VALUE_FROM_CONST_DOUBLE (d, trueop1);
+
+ if (! REAL_VALUES_EQUAL (d, dconst0))
+ {
+#if defined (REAL_ARITHMETIC)
+ REAL_ARITHMETIC (d, rtx_to_tree_code (DIV), dconst1, d);
+ return gen_rtx_MULT (mode, op0,
+ CONST_DOUBLE_FROM_REAL_VALUE (d, mode));
+#else
+ return
+ gen_rtx_MULT (mode, op0,
+ CONST_DOUBLE_FROM_REAL_VALUE (1./d, mode));
+#endif
+ }
+ }
+#endif
+ break;
+
+ case UMOD:
+ /* Handle modulus by power of two (mod with 1 handled below). */
+ if (GET_CODE (trueop1) == CONST_INT
+ && exact_log2 (INTVAL (trueop1)) > 0)
+ return gen_rtx_AND (mode, op0, GEN_INT (INTVAL (op1) - 1));
+
+ /* ... fall through ... */
+
+ case MOD:
+ if ((trueop0 == const0_rtx || trueop1 == const1_rtx)
+ && ! side_effects_p (op0) && ! side_effects_p (op1))
+ return const0_rtx;
+ break;
+
+ case ROTATERT:
+ case ROTATE:
+ /* Rotating ~0 always results in ~0. */
+ if (GET_CODE (trueop0) == CONST_INT && width <= HOST_BITS_PER_WIDE_INT
+ && (unsigned HOST_WIDE_INT) INTVAL (trueop0) == GET_MODE_MASK (mode)
+ && ! side_effects_p (op1))
+ return op0;
+
+ /* ... fall through ... */
+
+ case ASHIFT:
+ case ASHIFTRT:
+ case LSHIFTRT:
+ if (trueop1 == const0_rtx)
+ return op0;
+ if (trueop0 == const0_rtx && ! side_effects_p (op1))
+ return op0;
+ break;
+
+ case SMIN:
+ if (width <= HOST_BITS_PER_WIDE_INT && GET_CODE (trueop1) == CONST_INT
+ && INTVAL (trueop1) == (HOST_WIDE_INT) 1 << (width -1)
+ && ! side_effects_p (op0))
+ return op1;
+ else if (rtx_equal_p (trueop0, trueop1) && ! side_effects_p (op0))
+ return op0;
+ break;
+
+ case SMAX:
+ if (width <= HOST_BITS_PER_WIDE_INT && GET_CODE (trueop1) == CONST_INT
+ && ((unsigned HOST_WIDE_INT) INTVAL (trueop1)
+ == (unsigned HOST_WIDE_INT) GET_MODE_MASK (mode) >> 1)
+ && ! side_effects_p (op0))
+ return op1;
+ else if (rtx_equal_p (trueop0, trueop1) && ! side_effects_p (op0))
+ return op0;
+ break;
+
+ case UMIN:
+ if (trueop1 == const0_rtx && ! side_effects_p (op0))
+ return op1;
+ else if (rtx_equal_p (trueop0, trueop1) && ! side_effects_p (op0))
+ return op0;
+ break;
+
+ case UMAX:
+ if (trueop1 == constm1_rtx && ! side_effects_p (op0))
+ return op1;
+ else if (rtx_equal_p (trueop0, trueop1) && ! side_effects_p (op0))
+ return op0;
+ break;
+
+ case SS_PLUS:
+ case US_PLUS:
+ case SS_MINUS:
+ case US_MINUS:
+ /* ??? There are simplifications that can be done. */
+ return 0;
+
+ default:
+ abort ();
+ }
+
+ return 0;
+ }
+
+ /* Get the integer argument values in two forms:
+ zero-extended in ARG0, ARG1 and sign-extended in ARG0S, ARG1S. */
+
+ arg0 = INTVAL (trueop0);
+ arg1 = INTVAL (trueop1);
+
+ if (width < HOST_BITS_PER_WIDE_INT)
+ {
+ arg0 &= ((HOST_WIDE_INT) 1 << width) - 1;
+ arg1 &= ((HOST_WIDE_INT) 1 << width) - 1;
+
+ arg0s = arg0;
+ if (arg0s & ((HOST_WIDE_INT) 1 << (width - 1)))
+ arg0s |= ((HOST_WIDE_INT) (-1) << width);
+
+ arg1s = arg1;
+ if (arg1s & ((HOST_WIDE_INT) 1 << (width - 1)))
+ arg1s |= ((HOST_WIDE_INT) (-1) << width);
+ }
+ else
+ {
+ arg0s = arg0;
+ arg1s = arg1;
+ }
+
+ /* Compute the value of the arithmetic. */
+
+ switch (code)
+ {
+ case PLUS:
+ val = arg0s + arg1s;
+ break;
+
+ case MINUS:
+ val = arg0s - arg1s;
+ break;
+
+ case MULT:
+ val = arg0s * arg1s;
+ break;
+
+ case DIV:
+ if (arg1s == 0
+ || (arg0s == (HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)
+ && arg1s == -1))
+ return 0;
+ val = arg0s / arg1s;
+ break;
+
+ case MOD:
+ if (arg1s == 0
+ || (arg0s == (HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)
+ && arg1s == -1))
+ return 0;
+ val = arg0s % arg1s;
+ break;
+
+ case UDIV:
+ if (arg1 == 0
+ || (arg0s == (HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)
+ && arg1s == -1))
+ return 0;
+ val = (unsigned HOST_WIDE_INT) arg0 / arg1;
+ break;
+
+ case UMOD:
+ if (arg1 == 0
+ || (arg0s == (HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)
+ && arg1s == -1))
+ return 0;
+ val = (unsigned HOST_WIDE_INT) arg0 % arg1;
+ break;
+
+ case AND:
+ val = arg0 & arg1;
+ break;
+
+ case IOR:
+ val = arg0 | arg1;
+ break;
+
+ case XOR:
+ val = arg0 ^ arg1;
+ break;
+
+ case LSHIFTRT:
+ /* If shift count is undefined, don't fold it; let the machine do
+ what it wants. But truncate it if the machine will do that. */
+ if (arg1 < 0)
+ return 0;
+
+#ifdef SHIFT_COUNT_TRUNCATED
+ if (SHIFT_COUNT_TRUNCATED)
+ arg1 %= width;
+#endif
+
+ val = ((unsigned HOST_WIDE_INT) arg0) >> arg1;
+ break;
+
+ case ASHIFT:
+ if (arg1 < 0)
+ return 0;
+
+#ifdef SHIFT_COUNT_TRUNCATED
+ if (SHIFT_COUNT_TRUNCATED)
+ arg1 %= width;
+#endif
+
+ val = ((unsigned HOST_WIDE_INT) arg0) << arg1;
+ break;
+
+ case ASHIFTRT:
+ if (arg1 < 0)
+ return 0;
+
+#ifdef SHIFT_COUNT_TRUNCATED
+ if (SHIFT_COUNT_TRUNCATED)
+ arg1 %= width;
+#endif
+
+ val = arg0s >> arg1;
+
+ /* Bootstrap compiler may not have sign extended the right shift.
+ Manually extend the sign to insure bootstrap cc matches gcc. */
+ if (arg0s < 0 && arg1 > 0)
+ val |= ((HOST_WIDE_INT) -1) << (HOST_BITS_PER_WIDE_INT - arg1);
+
+ break;
+
+ case ROTATERT:
+ if (arg1 < 0)
+ return 0;
+
+ arg1 %= width;
+ val = ((((unsigned HOST_WIDE_INT) arg0) << (width - arg1))
+ | (((unsigned HOST_WIDE_INT) arg0) >> arg1));
+ break;
+
+ case ROTATE:
+ if (arg1 < 0)
+ return 0;
+
+ arg1 %= width;
+ val = ((((unsigned HOST_WIDE_INT) arg0) << arg1)
+ | (((unsigned HOST_WIDE_INT) arg0) >> (width - arg1)));
+ break;
+
+ case COMPARE:
+ /* Do nothing here. */
+ return 0;
+
+ case SMIN:
+ val = arg0s <= arg1s ? arg0s : arg1s;
+ break;
+
+ case UMIN:
+ val = ((unsigned HOST_WIDE_INT) arg0
+ <= (unsigned HOST_WIDE_INT) arg1 ? arg0 : arg1);
+ break;
+
+ case SMAX:
+ val = arg0s > arg1s ? arg0s : arg1s;
+ break;
+
+ case UMAX:
+ val = ((unsigned HOST_WIDE_INT) arg0
+ > (unsigned HOST_WIDE_INT) arg1 ? arg0 : arg1);
+ break;
+
+ default:
+ abort ();
+ }
+
+ val = trunc_int_for_mode (val, mode);
+
+ return GEN_INT (val);
+}
+
+/* Simplify a PLUS or MINUS, at least one of whose operands may be another
+ PLUS or MINUS.
+
+ Rather than test for specific case, we do this by a brute-force method
+ and do all possible simplifications until no more changes occur. Then
+ we rebuild the operation. */
+
+struct simplify_plus_minus_op_data
+{
+ rtx op;
+ int neg;
+};
+
+static int
+simplify_plus_minus_op_data_cmp (p1, p2)
+ const void *p1;
+ const void *p2;
+{
+ const struct simplify_plus_minus_op_data *d1 = p1;
+ const struct simplify_plus_minus_op_data *d2 = p2;
+
+ return (commutative_operand_precedence (d2->op)
+ - commutative_operand_precedence (d1->op));
+}
+
+static rtx
+simplify_plus_minus (code, mode, op0, op1)
+ enum rtx_code code;
+ enum machine_mode mode;
+ rtx op0, op1;
+{
+ struct simplify_plus_minus_op_data ops[8];
+ rtx result, tem;
+ int n_ops = 2, input_ops = 2, input_consts = 0, n_consts;
+ int first, negate, changed;
+ int i, j;
+
+ memset ((char *) ops, 0, sizeof ops);
+
+ /* Set up the two operands and then expand them until nothing has been
+ changed. If we run out of room in our array, give up; this should
+ almost never happen. */
+
+ ops[0].op = op0;
+ ops[0].neg = 0;
+ ops[1].op = op1;
+ ops[1].neg = (code == MINUS);
+
+ do
+ {
+ changed = 0;
+
+ for (i = 0; i < n_ops; i++)
+ {
+ rtx this_op = ops[i].op;
+ int this_neg = ops[i].neg;
+ enum rtx_code this_code = GET_CODE (this_op);
+
+ switch (this_code)
+ {
+ case PLUS:
+ case MINUS:
+ if (n_ops == 7)
+ return 0;
+
+ ops[n_ops].op = XEXP (this_op, 1);
+ ops[n_ops].neg = (this_code == MINUS) ^ this_neg;
+ n_ops++;
+
+ ops[i].op = XEXP (this_op, 0);
+ input_ops++;
+ changed = 1;
+ break;
+
+ case NEG:
+ ops[i].op = XEXP (this_op, 0);
+ ops[i].neg = ! this_neg;
+ changed = 1;
+ break;
+
+ case CONST:
+ ops[i].op = XEXP (this_op, 0);
+ input_consts++;
+ changed = 1;
+ break;
+
+ case NOT:
+ /* ~a -> (-a - 1) */
+ if (n_ops != 7)
+ {
+ ops[n_ops].op = constm1_rtx;
+ ops[n_ops++].neg = this_neg;
+ ops[i].op = XEXP (this_op, 0);
+ ops[i].neg = !this_neg;
+ changed = 1;
+ }
+ break;
+
+ case CONST_INT:
+ if (this_neg)
+ {
+ ops[i].op = neg_const_int (mode, this_op);
+ ops[i].neg = 0;
+ changed = 1;
+ }
+ break;
+
+ default:
+ break;
+ }
+ }
+ }
+ while (changed);
+
+ /* If we only have two operands, we can't do anything. */
+ if (n_ops <= 2)
+ return NULL_RTX;
+
+ /* Now simplify each pair of operands until nothing changes. The first
+ time through just simplify constants against each other. */
+
+ first = 1;
+ do
+ {
+ changed = first;
+
+ for (i = 0; i < n_ops - 1; i++)
+ for (j = i + 1; j < n_ops; j++)
+ {
+ rtx lhs = ops[i].op, rhs = ops[j].op;
+ int lneg = ops[i].neg, rneg = ops[j].neg;
+
+ if (lhs != 0 && rhs != 0
+ && (! first || (CONSTANT_P (lhs) && CONSTANT_P (rhs))))
+ {
+ enum rtx_code ncode = PLUS;
+
+ if (lneg != rneg)
+ {
+ ncode = MINUS;
+ if (lneg)
+ tem = lhs, lhs = rhs, rhs = tem;
+ }
+ else if (swap_commutative_operands_p (lhs, rhs))
+ tem = lhs, lhs = rhs, rhs = tem;
+
+ tem = simplify_binary_operation (ncode, mode, lhs, rhs);
+
+ /* Reject "simplifications" that just wrap the two
+ arguments in a CONST. Failure to do so can result
+ in infinite recursion with simplify_binary_operation
+ when it calls us to simplify CONST operations. */
+ if (tem
+ && ! (GET_CODE (tem) == CONST
+ && GET_CODE (XEXP (tem, 0)) == ncode
+ && XEXP (XEXP (tem, 0), 0) == lhs
+ && XEXP (XEXP (tem, 0), 1) == rhs)
+ /* Don't allow -x + -1 -> ~x simplifications in the
+ first pass. This allows us the chance to combine
+ the -1 with other constants. */
+ && ! (first
+ && GET_CODE (tem) == NOT
+ && XEXP (tem, 0) == rhs))
+ {
+ lneg &= rneg;
+ if (GET_CODE (tem) == NEG)
+ tem = XEXP (tem, 0), lneg = !lneg;
+ if (GET_CODE (tem) == CONST_INT && lneg)
+ tem = neg_const_int (mode, tem), lneg = 0;
+
+ ops[i].op = tem;
+ ops[i].neg = lneg;
+ ops[j].op = NULL_RTX;
+ changed = 1;
+ }
+ }
+ }
+
+ first = 0;
+ }
+ while (changed);
+
+ /* Pack all the operands to the lower-numbered entries. */
+ for (i = 0, j = 0; j < n_ops; j++)
+ if (ops[j].op)
+ ops[i++] = ops[j];
+ n_ops = i;
+
+ /* Sort the operations based on swap_commutative_operands_p. */
+ qsort (ops, n_ops, sizeof (*ops), simplify_plus_minus_op_data_cmp);
+
+ /* We suppressed creation of trivial CONST expressions in the
+ combination loop to avoid recursion. Create one manually now.
+ The combination loop should have ensured that there is exactly
+ one CONST_INT, and the sort will have ensured that it is last
+ in the array and that any other constant will be next-to-last. */
+
+ if (n_ops > 1
+ && GET_CODE (ops[n_ops - 1].op) == CONST_INT
+ && CONSTANT_P (ops[n_ops - 2].op))
+ {
+ rtx value = ops[n_ops - 1].op;
+ if (ops[n_ops - 1].neg ^ ops[n_ops - 2].neg)
+ value = neg_const_int (mode, value);
+ ops[n_ops - 2].op = plus_constant (ops[n_ops - 2].op, INTVAL (value));
+ n_ops--;
+ }
+
+ /* Count the number of CONSTs that we generated. */
+ n_consts = 0;
+ for (i = 0; i < n_ops; i++)
+ if (GET_CODE (ops[i].op) == CONST)
+ n_consts++;
+
+ /* Give up if we didn't reduce the number of operands we had. Make
+ sure we count a CONST as two operands. If we have the same
+ number of operands, but have made more CONSTs than before, this
+ is also an improvement, so accept it. */
+ if (n_ops + n_consts > input_ops
+ || (n_ops + n_consts == input_ops && n_consts <= input_consts))
+ return NULL_RTX;
+
+ /* Put a non-negated operand first. If there aren't any, make all
+ operands positive and negate the whole thing later. */
+
+ negate = 0;
+ for (i = 0; i < n_ops && ops[i].neg; i++)
+ continue;
+ if (i == n_ops)
+ {
+ for (i = 0; i < n_ops; i++)
+ ops[i].neg = 0;
+ negate = 1;
+ }
+ else if (i != 0)
+ {
+ tem = ops[0].op;
+ ops[0] = ops[i];
+ ops[i].op = tem;
+ ops[i].neg = 1;
+ }
+
+ /* Now make the result by performing the requested operations. */
+ result = ops[0].op;
+ for (i = 1; i < n_ops; i++)
+ result = gen_rtx_fmt_ee (ops[i].neg ? MINUS : PLUS,
+ mode, result, ops[i].op);
+
+ return negate ? gen_rtx_NEG (mode, result) : result;
+}
+
+struct cfc_args
+{
+ rtx op0, op1; /* Input */
+ int equal, op0lt, op1lt; /* Output */
+ int unordered;
+};
+
+static void
+check_fold_consts (data)
+ PTR data;
+{
+ struct cfc_args *args = (struct cfc_args *) data;
+ REAL_VALUE_TYPE d0, d1;
+
+ /* We may possibly raise an exception while reading the value. */
+ args->unordered = 1;
+ REAL_VALUE_FROM_CONST_DOUBLE (d0, args->op0);
+ REAL_VALUE_FROM_CONST_DOUBLE (d1, args->op1);
+
+ /* Comparisons of Inf versus Inf are ordered. */
+ if (REAL_VALUE_ISNAN (d0)
+ || REAL_VALUE_ISNAN (d1))
+ return;
+ args->equal = REAL_VALUES_EQUAL (d0, d1);
+ args->op0lt = REAL_VALUES_LESS (d0, d1);
+ args->op1lt = REAL_VALUES_LESS (d1, d0);
+ args->unordered = 0;
+}
+
+/* Like simplify_binary_operation except used for relational operators.
+ MODE is the mode of the operands, not that of the result. If MODE
+ is VOIDmode, both operands must also be VOIDmode and we compare the
+ operands in "infinite precision".
+
+ If no simplification is possible, this function returns zero. Otherwise,
+ it returns either const_true_rtx or const0_rtx. */
+
+rtx
+simplify_relational_operation (code, mode, op0, op1)
+ enum rtx_code code;
+ enum machine_mode mode;
+ rtx op0, op1;
+{
+ int equal, op0lt, op0ltu, op1lt, op1ltu;
+ rtx tem;
+ rtx trueop0;
+ rtx trueop1;
+
+ if (mode == VOIDmode
+ && (GET_MODE (op0) != VOIDmode
+ || GET_MODE (op1) != VOIDmode))
+ abort ();
+
+ /* If op0 is a compare, extract the comparison arguments from it. */
+ if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
+ op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
+
+ trueop0 = avoid_constant_pool_reference (op0);
+ trueop1 = avoid_constant_pool_reference (op1);
+
+ /* We can't simplify MODE_CC values since we don't know what the
+ actual comparison is. */
+ if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC
+#ifdef HAVE_cc0
+ || op0 == cc0_rtx
+#endif
+ )
+ return 0;
+
+ /* Make sure the constant is second. */
+ if (swap_commutative_operands_p (trueop0, trueop1))
+ {
+ tem = op0, op0 = op1, op1 = tem;
+ tem = trueop0, trueop0 = trueop1, trueop1 = tem;
+ code = swap_condition (code);
+ }
+
+ /* For integer comparisons of A and B maybe we can simplify A - B and can
+ then simplify a comparison of that with zero. If A and B are both either
+ a register or a CONST_INT, this can't help; testing for these cases will
+ prevent infinite recursion here and speed things up.
+
+ If CODE is an unsigned comparison, then we can never do this optimization,
+ because it gives an incorrect result if the subtraction wraps around zero.
+ ANSI C defines unsigned operations such that they never overflow, and
+ thus such cases can not be ignored. */
+
+ if (INTEGRAL_MODE_P (mode) && trueop1 != const0_rtx
+ && ! ((GET_CODE (op0) == REG || GET_CODE (trueop0) == CONST_INT)
+ && (GET_CODE (op1) == REG || GET_CODE (trueop1) == CONST_INT))
+ && 0 != (tem = simplify_binary_operation (MINUS, mode, op0, op1))
+ && code != GTU && code != GEU && code != LTU && code != LEU)
+ return simplify_relational_operation (signed_condition (code),
+ mode, tem, const0_rtx);
+
+ if (flag_unsafe_math_optimizations && code == ORDERED)
+ return const_true_rtx;
+
+ if (flag_unsafe_math_optimizations && code == UNORDERED)
+ return const0_rtx;
+
+ /* For non-IEEE floating-point, if the two operands are equal, we know the
+ result. */
+ if (rtx_equal_p (trueop0, trueop1)
+ && (TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
+ || ! FLOAT_MODE_P (GET_MODE (trueop0))
+ || flag_unsafe_math_optimizations))
+ equal = 1, op0lt = 0, op0ltu = 0, op1lt = 0, op1ltu = 0;
+
+ /* If the operands are floating-point constants, see if we can fold
+ the result. */
+#if ! defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
+ else if (GET_CODE (trueop0) == CONST_DOUBLE
+ && GET_CODE (trueop1) == CONST_DOUBLE
+ && GET_MODE_CLASS (GET_MODE (trueop0)) == MODE_FLOAT)
+ {
+ struct cfc_args args;
+
+ /* Setup input for check_fold_consts() */
+ args.op0 = trueop0;
+ args.op1 = trueop1;
+
+
+ if (!do_float_handler (check_fold_consts, (PTR) &args))
+ args.unordered = 1;
+
+ if (args.unordered)
+ switch (code)
+ {
+ case UNEQ:
+ case UNLT:
+ case UNGT:
+ case UNLE:
+ case UNGE:
+ case NE:
+ case UNORDERED:
+ return const_true_rtx;
+ case EQ:
+ case LT:
+ case GT:
+ case LE:
+ case GE:
+ case LTGT:
+ case ORDERED:
+ return const0_rtx;
+ default:
+ return 0;
+ }
+
+ /* Receive output from check_fold_consts() */
+ equal = args.equal;
+ op0lt = op0ltu = args.op0lt;
+ op1lt = op1ltu = args.op1lt;
+ }
+#endif /* not REAL_IS_NOT_DOUBLE, or REAL_ARITHMETIC */
+
+ /* Otherwise, see if the operands are both integers. */
+ else if ((GET_MODE_CLASS (mode) == MODE_INT || mode == VOIDmode)
+ && (GET_CODE (trueop0) == CONST_DOUBLE
+ || GET_CODE (trueop0) == CONST_INT)
+ && (GET_CODE (trueop1) == CONST_DOUBLE
+ || GET_CODE (trueop1) == CONST_INT))
+ {
+ int width = GET_MODE_BITSIZE (mode);
+ HOST_WIDE_INT l0s, h0s, l1s, h1s;
+ unsigned HOST_WIDE_INT l0u, h0u, l1u, h1u;
+
+ /* Get the two words comprising each integer constant. */
+ if (GET_CODE (trueop0) == CONST_DOUBLE)
+ {
+ l0u = l0s = CONST_DOUBLE_LOW (trueop0);
+ h0u = h0s = CONST_DOUBLE_HIGH (trueop0);
+ }
+ else
+ {
+ l0u = l0s = INTVAL (trueop0);
+ h0u = h0s = HWI_SIGN_EXTEND (l0s);
+ }
+
+ if (GET_CODE (trueop1) == CONST_DOUBLE)
+ {
+ l1u = l1s = CONST_DOUBLE_LOW (trueop1);
+ h1u = h1s = CONST_DOUBLE_HIGH (trueop1);
+ }
+ else
+ {
+ l1u = l1s = INTVAL (trueop1);
+ h1u = h1s = HWI_SIGN_EXTEND (l1s);
+ }
+
+ /* If WIDTH is nonzero and smaller than HOST_BITS_PER_WIDE_INT,
+ we have to sign or zero-extend the values. */
+ if (width != 0 && width < HOST_BITS_PER_WIDE_INT)
+ {
+ l0u &= ((HOST_WIDE_INT) 1 << width) - 1;
+ l1u &= ((HOST_WIDE_INT) 1 << width) - 1;
+
+ if (l0s & ((HOST_WIDE_INT) 1 << (width - 1)))
+ l0s |= ((HOST_WIDE_INT) (-1) << width);
+
+ if (l1s & ((HOST_WIDE_INT) 1 << (width - 1)))
+ l1s |= ((HOST_WIDE_INT) (-1) << width);
+ }
+ if (width != 0 && width <= HOST_BITS_PER_WIDE_INT)
+ h0u = h1u = 0, h0s = HWI_SIGN_EXTEND (l0s), h1s = HWI_SIGN_EXTEND (l1s);
+
+ equal = (h0u == h1u && l0u == l1u);
+ op0lt = (h0s < h1s || (h0s == h1s && l0u < l1u));
+ op1lt = (h1s < h0s || (h1s == h0s && l1u < l0u));
+ op0ltu = (h0u < h1u || (h0u == h1u && l0u < l1u));
+ op1ltu = (h1u < h0u || (h1u == h0u && l1u < l0u));
+ }
+
+ /* Otherwise, there are some code-specific tests we can make. */
+ else
+ {
+ switch (code)
+ {
+ case EQ:
+ /* References to the frame plus a constant or labels cannot
+ be zero, but a SYMBOL_REF can due to #pragma weak. */
+ if (((NONZERO_BASE_PLUS_P (op0) && trueop1 == const0_rtx)
+ || GET_CODE (trueop0) == LABEL_REF)
+#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
+ /* On some machines, the ap reg can be 0 sometimes. */
+ && op0 != arg_pointer_rtx
+#endif
+ )
+ return const0_rtx;
+ break;
+
+ case NE:
+ if (((NONZERO_BASE_PLUS_P (op0) && trueop1 == const0_rtx)
+ || GET_CODE (trueop0) == LABEL_REF)
+#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
+ && op0 != arg_pointer_rtx
+#endif
+ )
+ return const_true_rtx;
+ break;
+
+ case GEU:
+ /* Unsigned values are never negative. */
+ if (trueop1 == const0_rtx)
+ return const_true_rtx;
+ break;
+
+ case LTU:
+ if (trueop1 == const0_rtx)
+ return const0_rtx;
+ break;
+
+ case LEU:
+ /* Unsigned values are never greater than the largest
+ unsigned value. */
+ if (GET_CODE (trueop1) == CONST_INT
+ && (unsigned HOST_WIDE_INT) INTVAL (trueop1) == GET_MODE_MASK (mode)
+ && INTEGRAL_MODE_P (mode))
+ return const_true_rtx;
+ break;
+
+ case GTU:
+ if (GET_CODE (trueop1) == CONST_INT
+ && (unsigned HOST_WIDE_INT) INTVAL (trueop1) == GET_MODE_MASK (mode)
+ && INTEGRAL_MODE_P (mode))
+ return const0_rtx;
+ break;
+
+ default:
+ break;
+ }
+
+ return 0;
+ }
+
+ /* If we reach here, EQUAL, OP0LT, OP0LTU, OP1LT, and OP1LTU are set
+ as appropriate. */
+ switch (code)
+ {
+ case EQ:
+ case UNEQ:
+ return equal ? const_true_rtx : const0_rtx;
+ case NE:
+ case LTGT:
+ return ! equal ? const_true_rtx : const0_rtx;
+ case LT:
+ case UNLT:
+ return op0lt ? const_true_rtx : const0_rtx;
+ case GT:
+ case UNGT:
+ return op1lt ? const_true_rtx : const0_rtx;
+ case LTU:
+ return op0ltu ? const_true_rtx : const0_rtx;
+ case GTU:
+ return op1ltu ? const_true_rtx : const0_rtx;
+ case LE:
+ case UNLE:
+ return equal || op0lt ? const_true_rtx : const0_rtx;
+ case GE:
+ case UNGE:
+ return equal || op1lt ? const_true_rtx : const0_rtx;
+ case LEU:
+ return equal || op0ltu ? const_true_rtx : const0_rtx;
+ case GEU:
+ return equal || op1ltu ? const_true_rtx : const0_rtx;
+ case ORDERED:
+ return const_true_rtx;
+ case UNORDERED:
+ return const0_rtx;
+ default:
+ abort ();
+ }
+}
+
+/* Simplify CODE, an operation with result mode MODE and three operands,
+ OP0, OP1, and OP2. OP0_MODE was the mode of OP0 before it became
+ a constant. Return 0 if no simplifications is possible. */
+
+rtx
+simplify_ternary_operation (code, mode, op0_mode, op0, op1, op2)
+ enum rtx_code code;
+ enum machine_mode mode, op0_mode;
+ rtx op0, op1, op2;
+{
+ unsigned int width = GET_MODE_BITSIZE (mode);
+
+ /* VOIDmode means "infinite" precision. */
+ if (width == 0)
+ width = HOST_BITS_PER_WIDE_INT;
+
+ switch (code)
+ {
+ case SIGN_EXTRACT:
+ case ZERO_EXTRACT:
+ if (GET_CODE (op0) == CONST_INT
+ && GET_CODE (op1) == CONST_INT
+ && GET_CODE (op2) == CONST_INT
+ && ((unsigned) INTVAL (op1) + (unsigned) INTVAL (op2) <= width)
+ && width <= (unsigned) HOST_BITS_PER_WIDE_INT)
+ {
+ /* Extracting a bit-field from a constant */
+ HOST_WIDE_INT val = INTVAL (op0);
+
+ if (BITS_BIG_ENDIAN)
+ val >>= (GET_MODE_BITSIZE (op0_mode)
+ - INTVAL (op2) - INTVAL (op1));
+ else
+ val >>= INTVAL (op2);
+
+ if (HOST_BITS_PER_WIDE_INT != INTVAL (op1))
+ {
+ /* First zero-extend. */
+ val &= ((HOST_WIDE_INT) 1 << INTVAL (op1)) - 1;
+ /* If desired, propagate sign bit. */
+ if (code == SIGN_EXTRACT
+ && (val & ((HOST_WIDE_INT) 1 << (INTVAL (op1) - 1))))
+ val |= ~ (((HOST_WIDE_INT) 1 << INTVAL (op1)) - 1);
+ }
+
+ /* Clear the bits that don't belong in our mode,
+ unless they and our sign bit are all one.
+ So we get either a reasonable negative value or a reasonable
+ unsigned value for this mode. */
+ if (width < HOST_BITS_PER_WIDE_INT
+ && ((val & ((HOST_WIDE_INT) (-1) << (width - 1)))
+ != ((HOST_WIDE_INT) (-1) << (width - 1))))
+ val &= ((HOST_WIDE_INT) 1 << width) - 1;
+
+ return GEN_INT (val);
+ }
+ break;
+
+ case IF_THEN_ELSE:
+ if (GET_CODE (op0) == CONST_INT)
+ return op0 != const0_rtx ? op1 : op2;
+
+ /* Convert a == b ? b : a to "a". */
+ if (GET_CODE (op0) == NE && ! side_effects_p (op0)
+ && (! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
+ && rtx_equal_p (XEXP (op0, 0), op1)
+ && rtx_equal_p (XEXP (op0, 1), op2))
+ return op1;
+ else if (GET_CODE (op0) == EQ && ! side_effects_p (op0)
+ && (! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
+ && rtx_equal_p (XEXP (op0, 1), op1)
+ && rtx_equal_p (XEXP (op0, 0), op2))
+ return op2;
+ else if (GET_RTX_CLASS (GET_CODE (op0)) == '<' && ! side_effects_p (op0))
+ {
+ enum machine_mode cmp_mode = (GET_MODE (XEXP (op0, 0)) == VOIDmode
+ ? GET_MODE (XEXP (op0, 1))
+ : GET_MODE (XEXP (op0, 0)));
+ rtx temp;
+ if (cmp_mode == VOIDmode)
+ cmp_mode = op0_mode;
+ temp = simplify_relational_operation (GET_CODE (op0), cmp_mode,
+ XEXP (op0, 0), XEXP (op0, 1));
+
+ /* See if any simplifications were possible. */
+ if (temp == const0_rtx)
+ return op2;
+ else if (temp == const1_rtx)
+ return op1;
+ else if (temp)
+ op0 = temp;
+
+ /* Look for happy constants in op1 and op2. */
+ if (GET_CODE (op1) == CONST_INT && GET_CODE (op2) == CONST_INT)
+ {
+ HOST_WIDE_INT t = INTVAL (op1);
+ HOST_WIDE_INT f = INTVAL (op2);
+
+ if (t == STORE_FLAG_VALUE && f == 0)
+ code = GET_CODE (op0);
+ else if (t == 0 && f == STORE_FLAG_VALUE)
+ {
+ enum rtx_code tmp;
+ tmp = reversed_comparison_code (op0, NULL_RTX);
+ if (tmp == UNKNOWN)
+ break;
+ code = tmp;
+ }
+ else
+ break;
+
+ return gen_rtx_fmt_ee (code, mode, XEXP (op0, 0), XEXP (op0, 1));
+ }
+ }
+ break;
+
+ default:
+ abort ();
+ }
+
+ return 0;
+}
+
+/* Simplify SUBREG:OUTERMODE(OP:INNERMODE, BYTE)
+ Return 0 if no simplifications is possible. */
+rtx
+simplify_subreg (outermode, op, innermode, byte)
+ rtx op;
+ unsigned int byte;
+ enum machine_mode outermode, innermode;
+{
+ /* Little bit of sanity checking. */
+ if (innermode == VOIDmode || outermode == VOIDmode
+ || innermode == BLKmode || outermode == BLKmode)
+ abort ();
+
+ if (GET_MODE (op) != innermode
+ && GET_MODE (op) != VOIDmode)
+ abort ();
+
+ if (byte % GET_MODE_SIZE (outermode)
+ || byte >= GET_MODE_SIZE (innermode))
+ abort ();
+
+ if (outermode == innermode && !byte)
+ return op;
+
+ /* Attempt to simplify constant to non-SUBREG expression. */
+ if (CONSTANT_P (op))
+ {
+ int offset, part;
+ unsigned HOST_WIDE_INT val = 0;
+
+ /* ??? This code is partly redundant with code below, but can handle
+ the subregs of floats and similar corner cases.
+ Later it we should move all simplification code here and rewrite
+ GEN_LOWPART_IF_POSSIBLE, GEN_HIGHPART, OPERAND_SUBWORD and friends
+ using SIMPLIFY_SUBREG. */
+ if (subreg_lowpart_offset (outermode, innermode) == byte)
+ {
+ rtx new = gen_lowpart_if_possible (outermode, op);
+ if (new)
+ return new;
+ }
+
+ /* Similar comment as above apply here. */
+ if (GET_MODE_SIZE (outermode) == UNITS_PER_WORD
+ && GET_MODE_SIZE (innermode) > UNITS_PER_WORD
+ && GET_MODE_CLASS (outermode) == MODE_INT)
+ {
+ rtx new = constant_subword (op,
+ (byte / UNITS_PER_WORD),
+ innermode);
+ if (new)
+ return new;
+ }
+
+ offset = byte * BITS_PER_UNIT;
+ switch (GET_CODE (op))
+ {
+ case CONST_DOUBLE:
+ if (GET_MODE (op) != VOIDmode)
+ break;
+
+ /* We can't handle this case yet. */
+ if (GET_MODE_BITSIZE (outermode) >= HOST_BITS_PER_WIDE_INT)
+ return NULL_RTX;
+
+ part = offset >= HOST_BITS_PER_WIDE_INT;
+ if ((BITS_PER_WORD > HOST_BITS_PER_WIDE_INT
+ && BYTES_BIG_ENDIAN)
+ || (BITS_PER_WORD <= HOST_BITS_PER_WIDE_INT
+ && WORDS_BIG_ENDIAN))
+ part = !part;
+ val = part ? CONST_DOUBLE_HIGH (op) : CONST_DOUBLE_LOW (op);
+ offset %= HOST_BITS_PER_WIDE_INT;
+
+ /* We've already picked the word we want from a double, so
+ pretend this is actually an integer. */
+ innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
+
+ /* FALLTHROUGH */
+ case CONST_INT:
+ if (GET_CODE (op) == CONST_INT)
+ val = INTVAL (op);
+
+ /* We don't handle synthetizing of non-integral constants yet. */
+ if (GET_MODE_CLASS (outermode) != MODE_INT)
+ return NULL_RTX;
+
+ if (BYTES_BIG_ENDIAN || WORDS_BIG_ENDIAN)
+ {
+ if (WORDS_BIG_ENDIAN)
+ offset = (GET_MODE_BITSIZE (innermode)
+ - GET_MODE_BITSIZE (outermode) - offset);
+ if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN
+ && GET_MODE_SIZE (outermode) < UNITS_PER_WORD)
+ offset = (offset + BITS_PER_WORD - GET_MODE_BITSIZE (outermode)
+ - 2 * (offset % BITS_PER_WORD));
+ }
+
+ if (offset >= HOST_BITS_PER_WIDE_INT)
+ return ((HOST_WIDE_INT) val < 0) ? constm1_rtx : const0_rtx;
+ else
+ {
+ val >>= offset;
+ if (GET_MODE_BITSIZE (outermode) < HOST_BITS_PER_WIDE_INT)
+ val = trunc_int_for_mode (val, outermode);
+ return GEN_INT (val);
+ }
+ default:
+ break;
+ }
+ }
+
+ /* Changing mode twice with SUBREG => just change it once,
+ or not at all if changing back op starting mode. */
+ if (GET_CODE (op) == SUBREG)
+ {
+ enum machine_mode innermostmode = GET_MODE (SUBREG_REG (op));
+ int final_offset = byte + SUBREG_BYTE (op);
+ rtx new;
+
+ if (outermode == innermostmode
+ && byte == 0 && SUBREG_BYTE (op) == 0)
+ return SUBREG_REG (op);
+
+ /* The SUBREG_BYTE represents offset, as if the value were stored
+ in memory. Irritating exception is paradoxical subreg, where
+ we define SUBREG_BYTE to be 0. On big endian machines, this
+ value should be negative. For a moment, undo this exception. */
+ if (byte == 0 && GET_MODE_SIZE (innermode) < GET_MODE_SIZE (outermode))
+ {
+ int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
+ if (WORDS_BIG_ENDIAN)
+ final_offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
+ if (BYTES_BIG_ENDIAN)
+ final_offset += difference % UNITS_PER_WORD;
+ }
+ if (SUBREG_BYTE (op) == 0
+ && GET_MODE_SIZE (innermostmode) < GET_MODE_SIZE (innermode))
+ {
+ int difference = (GET_MODE_SIZE (innermostmode) - GET_MODE_SIZE (innermode));
+ if (WORDS_BIG_ENDIAN)
+ final_offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
+ if (BYTES_BIG_ENDIAN)
+ final_offset += difference % UNITS_PER_WORD;
+ }
+
+ /* See whether resulting subreg will be paradoxical. */
+ if (GET_MODE_SIZE (innermostmode) > GET_MODE_SIZE (outermode))
+ {
+ /* In nonparadoxical subregs we can't handle negative offsets. */
+ if (final_offset < 0)
+ return NULL_RTX;
+ /* Bail out in case resulting subreg would be incorrect. */
+ if (final_offset % GET_MODE_SIZE (outermode)
+ || (unsigned) final_offset >= GET_MODE_SIZE (innermostmode))
+ return NULL_RTX;
+ }
+ else
+ {
+ int offset = 0;
+ int difference = (GET_MODE_SIZE (innermostmode) - GET_MODE_SIZE (outermode));
+
+ /* In paradoxical subreg, see if we are still looking on lower part.
+ If so, our SUBREG_BYTE will be 0. */
+ if (WORDS_BIG_ENDIAN)
+ offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
+ if (BYTES_BIG_ENDIAN)
+ offset += difference % UNITS_PER_WORD;
+ if (offset == final_offset)
+ final_offset = 0;
+ else
+ return NULL_RTX;
+ }
+
+ /* Recurse for futher possible simplifications. */
+ new = simplify_subreg (outermode, SUBREG_REG (op),
+ GET_MODE (SUBREG_REG (op)),
+ final_offset);
+ if (new)
+ return new;
+ return gen_rtx_SUBREG (outermode, SUBREG_REG (op), final_offset);
+ }
+
+ /* SUBREG of a hard register => just change the register number
+ and/or mode. If the hard register is not valid in that mode,
+ suppress this simplification. If the hard register is the stack,
+ frame, or argument pointer, leave this as a SUBREG. */
+
+ if (REG_P (op)
+ && (! REG_FUNCTION_VALUE_P (op)
+ || ! rtx_equal_function_value_matters)
+#ifdef CLASS_CANNOT_CHANGE_MODE
+ && ! (CLASS_CANNOT_CHANGE_MODE_P (outermode, innermode)
+ && GET_MODE_CLASS (innermode) != MODE_COMPLEX_INT
+ && GET_MODE_CLASS (innermode) != MODE_COMPLEX_FLOAT
+ && (TEST_HARD_REG_BIT
+ (reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE],
+ REGNO (op))))
+#endif
+ && REGNO (op) < FIRST_PSEUDO_REGISTER
+ && ((reload_completed && !frame_pointer_needed)
+ || (REGNO (op) != FRAME_POINTER_REGNUM
+#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
+ && REGNO (op) != HARD_FRAME_POINTER_REGNUM
+#endif
+ ))
+#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
+ && REGNO (op) != ARG_POINTER_REGNUM
+#endif
+ && REGNO (op) != STACK_POINTER_REGNUM)
+ {
+ int final_regno = subreg_hard_regno (gen_rtx_SUBREG (outermode, op, byte),
+ 0);
+
+ /* ??? We do allow it if the current REG is not valid for
+ its mode. This is a kludge to work around how float/complex
+ arguments are passed on 32-bit Sparc and should be fixed. */
+ if (HARD_REGNO_MODE_OK (final_regno, outermode)
+ || ! HARD_REGNO_MODE_OK (REGNO (op), innermode))
+ {
+ rtx x = gen_rtx_REG (outermode, final_regno);
+
+ /* Propagate original regno. We don't have any way to specify
+ the offset inside orignal regno, so do so only for lowpart.
+ The information is used only by alias analysis that can not
+ grog partial register anyway. */
+
+ if (subreg_lowpart_offset (outermode, innermode) == byte)
+ ORIGINAL_REGNO (x) = ORIGINAL_REGNO (op);
+ return x;
+ }
+ }
+
+ /* If we have a SUBREG of a register that we are replacing and we are
+ replacing it with a MEM, make a new MEM and try replacing the
+ SUBREG with it. Don't do this if the MEM has a mode-dependent address
+ or if we would be widening it. */
+
+ if (GET_CODE (op) == MEM
+ && ! mode_dependent_address_p (XEXP (op, 0))
+ /* Allow splitting of volatile memory references in case we don't
+ have instruction to move the whole thing. */
+ && (! MEM_VOLATILE_P (op)
+ || ! have_insn_for (SET, innermode))
+ && GET_MODE_SIZE (outermode) <= GET_MODE_SIZE (GET_MODE (op)))
+ return adjust_address_nv (op, outermode, byte);
+
+ /* Handle complex values represented as CONCAT
+ of real and imaginary part. */
+ if (GET_CODE (op) == CONCAT)
+ {
+ int is_realpart = byte < GET_MODE_UNIT_SIZE (innermode);
+ rtx part = is_realpart ? XEXP (op, 0) : XEXP (op, 1);
+ unsigned int final_offset;
+ rtx res;
+
+ final_offset = byte % (GET_MODE_UNIT_SIZE (innermode));
+ res = simplify_subreg (outermode, part, GET_MODE (part), final_offset);
+ if (res)
+ return res;
+ /* We can at least simplify it by referring directly to the relevant part. */
+ return gen_rtx_SUBREG (outermode, part, final_offset);
+ }
+
+ return NULL_RTX;
+}
+/* Make a SUBREG operation or equivalent if it folds. */
+
+rtx
+simplify_gen_subreg (outermode, op, innermode, byte)
+ rtx op;
+ unsigned int byte;
+ enum machine_mode outermode, innermode;
+{
+ rtx new;
+ /* Little bit of sanity checking. */
+ if (innermode == VOIDmode || outermode == VOIDmode
+ || innermode == BLKmode || outermode == BLKmode)
+ abort ();
+
+ if (GET_MODE (op) != innermode
+ && GET_MODE (op) != VOIDmode)
+ abort ();
+
+ if (byte % GET_MODE_SIZE (outermode)
+ || byte >= GET_MODE_SIZE (innermode))
+ abort ();
+
+ if (GET_CODE (op) == QUEUED)
+ return NULL_RTX;
+
+ new = simplify_subreg (outermode, op, innermode, byte);
+ if (new)
+ return new;
+
+ if (GET_CODE (op) == SUBREG || GET_MODE (op) == VOIDmode)
+ return NULL_RTX;
+
+ return gen_rtx_SUBREG (outermode, op, byte);
+}
+/* Simplify X, an rtx expression.
+
+ Return the simplified expression or NULL if no simplifications
+ were possible.
+
+ This is the preferred entry point into the simplification routines;
+ however, we still allow passes to call the more specific routines.
+
+ Right now GCC has three (yes, three) major bodies of RTL simplficiation
+ code that need to be unified.
+
+ 1. fold_rtx in cse.c. This code uses various CSE specific
+ information to aid in RTL simplification.
+
+ 2. simplify_rtx in combine.c. Similar to fold_rtx, except that
+ it uses combine specific information to aid in RTL
+ simplification.
+
+ 3. The routines in this file.
+
+
+ Long term we want to only have one body of simplification code; to
+ get to that state I recommend the following steps:
+
+ 1. Pour over fold_rtx & simplify_rtx and move any simplifications
+ which are not pass dependent state into these routines.
+
+ 2. As code is moved by #1, change fold_rtx & simplify_rtx to
+ use this routine whenever possible.
+
+ 3. Allow for pass dependent state to be provided to these
+ routines and add simplifications based on the pass dependent
+ state. Remove code from cse.c & combine.c that becomes
+ redundant/dead.
+
+ It will take time, but ultimately the compiler will be easier to
+ maintain and improve. It's totally silly that when we add a
+ simplification that it needs to be added to 4 places (3 for RTL
+ simplification and 1 for tree simplification. */
+
+rtx
+simplify_rtx (x)
+ rtx x;
+{
+ enum rtx_code code = GET_CODE (x);
+ enum machine_mode mode = GET_MODE (x);
+
+ switch (GET_RTX_CLASS (code))
+ {
+ case '1':
+ return simplify_unary_operation (code, mode,
+ XEXP (x, 0), GET_MODE (XEXP (x, 0)));
+ case 'c':
+ if (swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
+ {
+ rtx tem;
+
+ tem = XEXP (x, 0);
+ XEXP (x, 0) = XEXP (x, 1);
+ XEXP (x, 1) = tem;
+ return simplify_binary_operation (code, mode,
+ XEXP (x, 0), XEXP (x, 1));
+ }
+
+ case '2':
+ return simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
+
+ case '3':
+ case 'b':
+ return simplify_ternary_operation (code, mode, GET_MODE (XEXP (x, 0)),
+ XEXP (x, 0), XEXP (x, 1),
+ XEXP (x, 2));
+
+ case '<':
+ return simplify_relational_operation (code,
+ ((GET_MODE (XEXP (x, 0))
+ != VOIDmode)
+ ? GET_MODE (XEXP (x, 0))
+ : GET_MODE (XEXP (x, 1))),
+ XEXP (x, 0), XEXP (x, 1));
+ case 'x':
+ /* The only case we try to handle is a SUBREG. */
+ if (code == SUBREG)
+ return simplify_gen_subreg (mode, SUBREG_REG (x),
+ GET_MODE (SUBREG_REG (x)),
+ SUBREG_BYTE (x));
+ return NULL;
+ default:
+ return NULL;
+ }
+}
OpenPOWER on IntegriCloud