summaryrefslogtreecommitdiffstats
path: root/contrib/gcc/sched-rgn.c
diff options
context:
space:
mode:
authorobrien <obrien@FreeBSD.org>2002-02-01 18:16:02 +0000
committerobrien <obrien@FreeBSD.org>2002-02-01 18:16:02 +0000
commitc9ab9ae440a8066b2c2b85b157b1fdadcf09916a (patch)
tree086d9d6c8fbd4fc8fe4495059332f66bc0f8d12b /contrib/gcc/sched-rgn.c
parent2ecfd8bd04b63f335c1ec6295740a4bfd97a4fa6 (diff)
downloadFreeBSD-src-c9ab9ae440a8066b2c2b85b157b1fdadcf09916a.zip
FreeBSD-src-c9ab9ae440a8066b2c2b85b157b1fdadcf09916a.tar.gz
Enlist the FreeBSD-CURRENT users as testers of what is to become Gcc 3.1.0.
These bits are taken from the FSF anoncvs repo on 1-Feb-2002 08:20 PST.
Diffstat (limited to 'contrib/gcc/sched-rgn.c')
-rw-r--r--contrib/gcc/sched-rgn.c3034
1 files changed, 3034 insertions, 0 deletions
diff --git a/contrib/gcc/sched-rgn.c b/contrib/gcc/sched-rgn.c
new file mode 100644
index 0000000..e5a241b
--- /dev/null
+++ b/contrib/gcc/sched-rgn.c
@@ -0,0 +1,3034 @@
+/* Instruction scheduling pass.
+ Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998,
+ 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
+ Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
+ and currently maintained by, Jim Wilson (wilson@cygnus.com)
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it under
+the terms of the GNU General Public License as published by the Free
+Software Foundation; either version 2, or (at your option) any later
+version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING. If not, write to the Free
+Software Foundation, 59 Temple Place - Suite 330, Boston, MA
+02111-1307, USA. */
+
+/* This pass implements list scheduling within basic blocks. It is
+ run twice: (1) after flow analysis, but before register allocation,
+ and (2) after register allocation.
+
+ The first run performs interblock scheduling, moving insns between
+ different blocks in the same "region", and the second runs only
+ basic block scheduling.
+
+ Interblock motions performed are useful motions and speculative
+ motions, including speculative loads. Motions requiring code
+ duplication are not supported. The identification of motion type
+ and the check for validity of speculative motions requires
+ construction and analysis of the function's control flow graph.
+
+ The main entry point for this pass is schedule_insns(), called for
+ each function. The work of the scheduler is organized in three
+ levels: (1) function level: insns are subject to splitting,
+ control-flow-graph is constructed, regions are computed (after
+ reload, each region is of one block), (2) region level: control
+ flow graph attributes required for interblock scheduling are
+ computed (dominators, reachability, etc.), data dependences and
+ priorities are computed, and (3) block level: insns in the block
+ are actually scheduled. */
+
+#include "config.h"
+#include "system.h"
+#include "toplev.h"
+#include "rtl.h"
+#include "tm_p.h"
+#include "hard-reg-set.h"
+#include "basic-block.h"
+#include "regs.h"
+#include "function.h"
+#include "flags.h"
+#include "insn-config.h"
+#include "insn-attr.h"
+#include "except.h"
+#include "toplev.h"
+#include "recog.h"
+#include "cfglayout.h"
+#include "sched-int.h"
+
+/* Define when we want to do count REG_DEAD notes before and after scheduling
+ for sanity checking. We can't do that when conditional execution is used,
+ as REG_DEAD exist only for unconditional deaths. */
+
+#if !defined (HAVE_conditional_execution) && defined (ENABLE_CHECKING)
+#define CHECK_DEAD_NOTES 1
+#else
+#define CHECK_DEAD_NOTES 0
+#endif
+
+
+#ifdef INSN_SCHEDULING
+/* Some accessor macros for h_i_d members only used within this file. */
+#define INSN_REF_COUNT(INSN) (h_i_d[INSN_UID (INSN)].ref_count)
+#define FED_BY_SPEC_LOAD(insn) (h_i_d[INSN_UID (insn)].fed_by_spec_load)
+#define IS_LOAD_INSN(insn) (h_i_d[INSN_UID (insn)].is_load_insn)
+
+#define MAX_RGN_BLOCKS 10
+#define MAX_RGN_INSNS 100
+
+/* nr_inter/spec counts interblock/speculative motion for the function. */
+static int nr_inter, nr_spec;
+
+/* Control flow graph edges are kept in circular lists. */
+typedef struct
+{
+ int from_block;
+ int to_block;
+ int next_in;
+ int next_out;
+}
+haifa_edge;
+static haifa_edge *edge_table;
+
+#define NEXT_IN(edge) (edge_table[edge].next_in)
+#define NEXT_OUT(edge) (edge_table[edge].next_out)
+#define FROM_BLOCK(edge) (edge_table[edge].from_block)
+#define TO_BLOCK(edge) (edge_table[edge].to_block)
+
+/* Number of edges in the control flow graph. (In fact, larger than
+ that by 1, since edge 0 is unused.) */
+static int nr_edges;
+
+/* Circular list of incoming/outgoing edges of a block. */
+static int *in_edges;
+static int *out_edges;
+
+#define IN_EDGES(block) (in_edges[block])
+#define OUT_EDGES(block) (out_edges[block])
+
+static int is_cfg_nonregular PARAMS ((void));
+static int build_control_flow PARAMS ((struct edge_list *));
+static void new_edge PARAMS ((int, int));
+
+/* A region is the main entity for interblock scheduling: insns
+ are allowed to move between blocks in the same region, along
+ control flow graph edges, in the 'up' direction. */
+typedef struct
+{
+ int rgn_nr_blocks; /* Number of blocks in region. */
+ int rgn_blocks; /* cblocks in the region (actually index in rgn_bb_table). */
+}
+region;
+
+/* Number of regions in the procedure. */
+static int nr_regions;
+
+/* Table of region descriptions. */
+static region *rgn_table;
+
+/* Array of lists of regions' blocks. */
+static int *rgn_bb_table;
+
+/* Topological order of blocks in the region (if b2 is reachable from
+ b1, block_to_bb[b2] > block_to_bb[b1]). Note: A basic block is
+ always referred to by either block or b, while its topological
+ order name (in the region) is refered to by bb. */
+static int *block_to_bb;
+
+/* The number of the region containing a block. */
+static int *containing_rgn;
+
+#define RGN_NR_BLOCKS(rgn) (rgn_table[rgn].rgn_nr_blocks)
+#define RGN_BLOCKS(rgn) (rgn_table[rgn].rgn_blocks)
+#define BLOCK_TO_BB(block) (block_to_bb[block])
+#define CONTAINING_RGN(block) (containing_rgn[block])
+
+void debug_regions PARAMS ((void));
+static void find_single_block_region PARAMS ((void));
+static void find_rgns PARAMS ((struct edge_list *, sbitmap *));
+static int too_large PARAMS ((int, int *, int *));
+
+extern void debug_live PARAMS ((int, int));
+
+/* Blocks of the current region being scheduled. */
+static int current_nr_blocks;
+static int current_blocks;
+
+/* The mapping from bb to block. */
+#define BB_TO_BLOCK(bb) (rgn_bb_table[current_blocks + (bb)])
+
+typedef struct
+{
+ int *first_member; /* Pointer to the list start in bitlst_table. */
+ int nr_members; /* The number of members of the bit list. */
+}
+bitlst;
+
+static int bitlst_table_last;
+static int bitlst_table_size;
+static int *bitlst_table;
+
+static void extract_bitlst PARAMS ((sbitmap, bitlst *));
+
+/* Target info declarations.
+
+ The block currently being scheduled is referred to as the "target" block,
+ while other blocks in the region from which insns can be moved to the
+ target are called "source" blocks. The candidate structure holds info
+ about such sources: are they valid? Speculative? Etc. */
+typedef bitlst bblst;
+typedef struct
+{
+ char is_valid;
+ char is_speculative;
+ int src_prob;
+ bblst split_bbs;
+ bblst update_bbs;
+}
+candidate;
+
+static candidate *candidate_table;
+
+/* A speculative motion requires checking live information on the path
+ from 'source' to 'target'. The split blocks are those to be checked.
+ After a speculative motion, live information should be modified in
+ the 'update' blocks.
+
+ Lists of split and update blocks for each candidate of the current
+ target are in array bblst_table. */
+static int *bblst_table, bblst_size, bblst_last;
+
+#define IS_VALID(src) ( candidate_table[src].is_valid )
+#define IS_SPECULATIVE(src) ( candidate_table[src].is_speculative )
+#define SRC_PROB(src) ( candidate_table[src].src_prob )
+
+/* The bb being currently scheduled. */
+static int target_bb;
+
+/* List of edges. */
+typedef bitlst edgelst;
+
+/* Target info functions. */
+static void split_edges PARAMS ((int, int, edgelst *));
+static void compute_trg_info PARAMS ((int));
+void debug_candidate PARAMS ((int));
+void debug_candidates PARAMS ((int));
+
+/* Dominators array: dom[i] contains the sbitmap of dominators of
+ bb i in the region. */
+static sbitmap *dom;
+
+/* bb 0 is the only region entry. */
+#define IS_RGN_ENTRY(bb) (!bb)
+
+/* Is bb_src dominated by bb_trg. */
+#define IS_DOMINATED(bb_src, bb_trg) \
+( TEST_BIT (dom[bb_src], bb_trg) )
+
+/* Probability: Prob[i] is a float in [0, 1] which is the probability
+ of bb i relative to the region entry. */
+static float *prob;
+
+/* The probability of bb_src, relative to bb_trg. Note, that while the
+ 'prob[bb]' is a float in [0, 1], this macro returns an integer
+ in [0, 100]. */
+#define GET_SRC_PROB(bb_src, bb_trg) ((int) (100.0 * (prob[bb_src] / \
+ prob[bb_trg])))
+
+/* Bit-set of edges, where bit i stands for edge i. */
+typedef sbitmap edgeset;
+
+/* Number of edges in the region. */
+static int rgn_nr_edges;
+
+/* Array of size rgn_nr_edges. */
+static int *rgn_edges;
+
+
+/* Mapping from each edge in the graph to its number in the rgn. */
+static int *edge_to_bit;
+#define EDGE_TO_BIT(edge) (edge_to_bit[edge])
+
+/* The split edges of a source bb is different for each target
+ bb. In order to compute this efficiently, the 'potential-split edges'
+ are computed for each bb prior to scheduling a region. This is actually
+ the split edges of each bb relative to the region entry.
+
+ pot_split[bb] is the set of potential split edges of bb. */
+static edgeset *pot_split;
+
+/* For every bb, a set of its ancestor edges. */
+static edgeset *ancestor_edges;
+
+static void compute_dom_prob_ps PARAMS ((int));
+
+#define ABS_VALUE(x) (((x)<0)?(-(x)):(x))
+#define INSN_PROBABILITY(INSN) (SRC_PROB (BLOCK_TO_BB (BLOCK_NUM (INSN))))
+#define IS_SPECULATIVE_INSN(INSN) (IS_SPECULATIVE (BLOCK_TO_BB (BLOCK_NUM (INSN))))
+#define INSN_BB(INSN) (BLOCK_TO_BB (BLOCK_NUM (INSN)))
+
+/* Parameters affecting the decision of rank_for_schedule().
+ ??? Nope. But MIN_PROBABILITY is used in copmute_trg_info. */
+#define MIN_DIFF_PRIORITY 2
+#define MIN_PROBABILITY 40
+#define MIN_PROB_DIFF 10
+
+/* Speculative scheduling functions. */
+static int check_live_1 PARAMS ((int, rtx));
+static void update_live_1 PARAMS ((int, rtx));
+static int check_live PARAMS ((rtx, int));
+static void update_live PARAMS ((rtx, int));
+static void set_spec_fed PARAMS ((rtx));
+static int is_pfree PARAMS ((rtx, int, int));
+static int find_conditional_protection PARAMS ((rtx, int));
+static int is_conditionally_protected PARAMS ((rtx, int, int));
+static int may_trap_exp PARAMS ((rtx, int));
+static int haifa_classify_insn PARAMS ((rtx));
+static int is_prisky PARAMS ((rtx, int, int));
+static int is_exception_free PARAMS ((rtx, int, int));
+
+static void add_branch_dependences PARAMS ((rtx, rtx));
+static void compute_block_backward_dependences PARAMS ((int));
+void debug_dependencies PARAMS ((void));
+
+static void init_regions PARAMS ((void));
+static void schedule_region PARAMS ((int));
+static rtx concat_INSN_LIST PARAMS ((rtx, rtx));
+static void concat_insn_mem_list PARAMS ((rtx, rtx, rtx *, rtx *));
+static void propagate_deps PARAMS ((int, struct deps *));
+static void free_pending_lists PARAMS ((void));
+
+/* Functions for construction of the control flow graph. */
+
+/* Return 1 if control flow graph should not be constructed, 0 otherwise.
+
+ We decide not to build the control flow graph if there is possibly more
+ than one entry to the function, if computed branches exist, of if we
+ have nonlocal gotos. */
+
+static int
+is_cfg_nonregular ()
+{
+ int b;
+ rtx insn;
+ RTX_CODE code;
+
+ /* If we have a label that could be the target of a nonlocal goto, then
+ the cfg is not well structured. */
+ if (nonlocal_goto_handler_labels)
+ return 1;
+
+ /* If we have any forced labels, then the cfg is not well structured. */
+ if (forced_labels)
+ return 1;
+
+ /* If this function has a computed jump, then we consider the cfg
+ not well structured. */
+ if (current_function_has_computed_jump)
+ return 1;
+
+ /* If we have exception handlers, then we consider the cfg not well
+ structured. ?!? We should be able to handle this now that flow.c
+ computes an accurate cfg for EH. */
+ if (exception_handler_labels)
+ return 1;
+
+ /* If we have non-jumping insns which refer to labels, then we consider
+ the cfg not well structured. */
+ /* Check for labels referred to other thn by jumps. */
+ for (b = 0; b < n_basic_blocks; b++)
+ for (insn = BLOCK_HEAD (b);; insn = NEXT_INSN (insn))
+ {
+ code = GET_CODE (insn);
+ if (GET_RTX_CLASS (code) == 'i' && code != JUMP_INSN)
+ {
+ rtx note = find_reg_note (insn, REG_LABEL, NULL_RTX);
+
+ if (note
+ && ! (GET_CODE (NEXT_INSN (insn)) == JUMP_INSN
+ && find_reg_note (NEXT_INSN (insn), REG_LABEL,
+ XEXP (note, 0))))
+ return 1;
+ }
+
+ if (insn == BLOCK_END (b))
+ break;
+ }
+
+ /* All the tests passed. Consider the cfg well structured. */
+ return 0;
+}
+
+/* Build the control flow graph and set nr_edges.
+
+ Instead of trying to build a cfg ourselves, we rely on flow to
+ do it for us. Stamp out useless code (and bug) duplication.
+
+ Return nonzero if an irregularity in the cfg is found which would
+ prevent cross block scheduling. */
+
+static int
+build_control_flow (edge_list)
+ struct edge_list *edge_list;
+{
+ int i, unreachable, num_edges;
+
+ /* This already accounts for entry/exit edges. */
+ num_edges = NUM_EDGES (edge_list);
+
+ /* Unreachable loops with more than one basic block are detected
+ during the DFS traversal in find_rgns.
+
+ Unreachable loops with a single block are detected here. This
+ test is redundant with the one in find_rgns, but it's much
+ cheaper to go ahead and catch the trivial case here. */
+ unreachable = 0;
+ for (i = 0; i < n_basic_blocks; i++)
+ {
+ basic_block b = BASIC_BLOCK (i);
+
+ if (b->pred == NULL
+ || (b->pred->src == b
+ && b->pred->pred_next == NULL))
+ unreachable = 1;
+ }
+
+ /* ??? We can kill these soon. */
+ in_edges = (int *) xcalloc (n_basic_blocks, sizeof (int));
+ out_edges = (int *) xcalloc (n_basic_blocks, sizeof (int));
+ edge_table = (haifa_edge *) xcalloc (num_edges, sizeof (haifa_edge));
+
+ nr_edges = 0;
+ for (i = 0; i < num_edges; i++)
+ {
+ edge e = INDEX_EDGE (edge_list, i);
+
+ if (e->dest != EXIT_BLOCK_PTR
+ && e->src != ENTRY_BLOCK_PTR)
+ new_edge (e->src->index, e->dest->index);
+ }
+
+ /* Increment by 1, since edge 0 is unused. */
+ nr_edges++;
+
+ return unreachable;
+}
+
+/* Record an edge in the control flow graph from SOURCE to TARGET.
+
+ In theory, this is redundant with the s_succs computed above, but
+ we have not converted all of haifa to use information from the
+ integer lists. */
+
+static void
+new_edge (source, target)
+ int source, target;
+{
+ int e, next_edge;
+ int curr_edge, fst_edge;
+
+ /* Check for duplicates. */
+ fst_edge = curr_edge = OUT_EDGES (source);
+ while (curr_edge)
+ {
+ if (FROM_BLOCK (curr_edge) == source
+ && TO_BLOCK (curr_edge) == target)
+ {
+ return;
+ }
+
+ curr_edge = NEXT_OUT (curr_edge);
+
+ if (fst_edge == curr_edge)
+ break;
+ }
+
+ e = ++nr_edges;
+
+ FROM_BLOCK (e) = source;
+ TO_BLOCK (e) = target;
+
+ if (OUT_EDGES (source))
+ {
+ next_edge = NEXT_OUT (OUT_EDGES (source));
+ NEXT_OUT (OUT_EDGES (source)) = e;
+ NEXT_OUT (e) = next_edge;
+ }
+ else
+ {
+ OUT_EDGES (source) = e;
+ NEXT_OUT (e) = e;
+ }
+
+ if (IN_EDGES (target))
+ {
+ next_edge = NEXT_IN (IN_EDGES (target));
+ NEXT_IN (IN_EDGES (target)) = e;
+ NEXT_IN (e) = next_edge;
+ }
+ else
+ {
+ IN_EDGES (target) = e;
+ NEXT_IN (e) = e;
+ }
+}
+
+/* Translate a bit-set SET to a list BL of the bit-set members. */
+
+static void
+extract_bitlst (set, bl)
+ sbitmap set;
+ bitlst *bl;
+{
+ int i;
+
+ /* bblst table space is reused in each call to extract_bitlst. */
+ bitlst_table_last = 0;
+
+ bl->first_member = &bitlst_table[bitlst_table_last];
+ bl->nr_members = 0;
+
+ /* Iterate over each word in the bitset. */
+ EXECUTE_IF_SET_IN_SBITMAP (set, 0, i,
+ {
+ bitlst_table[bitlst_table_last++] = i;
+ (bl->nr_members)++;
+ });
+
+}
+
+/* Functions for the construction of regions. */
+
+/* Print the regions, for debugging purposes. Callable from debugger. */
+
+void
+debug_regions ()
+{
+ int rgn, bb;
+
+ fprintf (sched_dump, "\n;; ------------ REGIONS ----------\n\n");
+ for (rgn = 0; rgn < nr_regions; rgn++)
+ {
+ fprintf (sched_dump, ";;\trgn %d nr_blocks %d:\n", rgn,
+ rgn_table[rgn].rgn_nr_blocks);
+ fprintf (sched_dump, ";;\tbb/block: ");
+
+ for (bb = 0; bb < rgn_table[rgn].rgn_nr_blocks; bb++)
+ {
+ current_blocks = RGN_BLOCKS (rgn);
+
+ if (bb != BLOCK_TO_BB (BB_TO_BLOCK (bb)))
+ abort ();
+
+ fprintf (sched_dump, " %d/%d ", bb, BB_TO_BLOCK (bb));
+ }
+
+ fprintf (sched_dump, "\n\n");
+ }
+}
+
+/* Build a single block region for each basic block in the function.
+ This allows for using the same code for interblock and basic block
+ scheduling. */
+
+static void
+find_single_block_region ()
+{
+ int i;
+
+ for (i = 0; i < n_basic_blocks; i++)
+ {
+ rgn_bb_table[i] = i;
+ RGN_NR_BLOCKS (i) = 1;
+ RGN_BLOCKS (i) = i;
+ CONTAINING_RGN (i) = i;
+ BLOCK_TO_BB (i) = 0;
+ }
+ nr_regions = n_basic_blocks;
+}
+
+/* Update number of blocks and the estimate for number of insns
+ in the region. Return 1 if the region is "too large" for interblock
+ scheduling (compile time considerations), otherwise return 0. */
+
+static int
+too_large (block, num_bbs, num_insns)
+ int block, *num_bbs, *num_insns;
+{
+ (*num_bbs)++;
+ (*num_insns) += (INSN_LUID (BLOCK_END (block)) -
+ INSN_LUID (BLOCK_HEAD (block)));
+ if ((*num_bbs > MAX_RGN_BLOCKS) || (*num_insns > MAX_RGN_INSNS))
+ return 1;
+ else
+ return 0;
+}
+
+/* Update_loop_relations(blk, hdr): Check if the loop headed by max_hdr[blk]
+ is still an inner loop. Put in max_hdr[blk] the header of the most inner
+ loop containing blk. */
+#define UPDATE_LOOP_RELATIONS(blk, hdr) \
+{ \
+ if (max_hdr[blk] == -1) \
+ max_hdr[blk] = hdr; \
+ else if (dfs_nr[max_hdr[blk]] > dfs_nr[hdr]) \
+ RESET_BIT (inner, hdr); \
+ else if (dfs_nr[max_hdr[blk]] < dfs_nr[hdr]) \
+ { \
+ RESET_BIT (inner,max_hdr[blk]); \
+ max_hdr[blk] = hdr; \
+ } \
+}
+
+/* Find regions for interblock scheduling.
+
+ A region for scheduling can be:
+
+ * A loop-free procedure, or
+
+ * A reducible inner loop, or
+
+ * A basic block not contained in any other region.
+
+ ?!? In theory we could build other regions based on extended basic
+ blocks or reverse extended basic blocks. Is it worth the trouble?
+
+ Loop blocks that form a region are put into the region's block list
+ in topological order.
+
+ This procedure stores its results into the following global (ick) variables
+
+ * rgn_nr
+ * rgn_table
+ * rgn_bb_table
+ * block_to_bb
+ * containing region
+
+ We use dominator relationships to avoid making regions out of non-reducible
+ loops.
+
+ This procedure needs to be converted to work on pred/succ lists instead
+ of edge tables. That would simplify it somewhat. */
+
+static void
+find_rgns (edge_list, dom)
+ struct edge_list *edge_list;
+ sbitmap *dom;
+{
+ int *max_hdr, *dfs_nr, *stack, *degree;
+ char no_loops = 1;
+ int node, child, loop_head, i, head, tail;
+ int count = 0, sp, idx = 0, current_edge = out_edges[0];
+ int num_bbs, num_insns, unreachable;
+ int too_large_failure;
+
+ /* Note if an edge has been passed. */
+ sbitmap passed;
+
+ /* Note if a block is a natural loop header. */
+ sbitmap header;
+
+ /* Note if a block is an natural inner loop header. */
+ sbitmap inner;
+
+ /* Note if a block is in the block queue. */
+ sbitmap in_queue;
+
+ /* Note if a block is in the block queue. */
+ sbitmap in_stack;
+
+ int num_edges = NUM_EDGES (edge_list);
+
+ /* Perform a DFS traversal of the cfg. Identify loop headers, inner loops
+ and a mapping from block to its loop header (if the block is contained
+ in a loop, else -1).
+
+ Store results in HEADER, INNER, and MAX_HDR respectively, these will
+ be used as inputs to the second traversal.
+
+ STACK, SP and DFS_NR are only used during the first traversal. */
+
+ /* Allocate and initialize variables for the first traversal. */
+ max_hdr = (int *) xmalloc (n_basic_blocks * sizeof (int));
+ dfs_nr = (int *) xcalloc (n_basic_blocks, sizeof (int));
+ stack = (int *) xmalloc (nr_edges * sizeof (int));
+
+ inner = sbitmap_alloc (n_basic_blocks);
+ sbitmap_ones (inner);
+
+ header = sbitmap_alloc (n_basic_blocks);
+ sbitmap_zero (header);
+
+ passed = sbitmap_alloc (nr_edges);
+ sbitmap_zero (passed);
+
+ in_queue = sbitmap_alloc (n_basic_blocks);
+ sbitmap_zero (in_queue);
+
+ in_stack = sbitmap_alloc (n_basic_blocks);
+ sbitmap_zero (in_stack);
+
+ for (i = 0; i < n_basic_blocks; i++)
+ max_hdr[i] = -1;
+
+ /* DFS traversal to find inner loops in the cfg. */
+
+ sp = -1;
+ while (1)
+ {
+ if (current_edge == 0 || TEST_BIT (passed, current_edge))
+ {
+ /* We have reached a leaf node or a node that was already
+ processed. Pop edges off the stack until we find
+ an edge that has not yet been processed. */
+ while (sp >= 0
+ && (current_edge == 0 || TEST_BIT (passed, current_edge)))
+ {
+ /* Pop entry off the stack. */
+ current_edge = stack[sp--];
+ node = FROM_BLOCK (current_edge);
+ child = TO_BLOCK (current_edge);
+ RESET_BIT (in_stack, child);
+ if (max_hdr[child] >= 0 && TEST_BIT (in_stack, max_hdr[child]))
+ UPDATE_LOOP_RELATIONS (node, max_hdr[child]);
+ current_edge = NEXT_OUT (current_edge);
+ }
+
+ /* See if have finished the DFS tree traversal. */
+ if (sp < 0 && TEST_BIT (passed, current_edge))
+ break;
+
+ /* Nope, continue the traversal with the popped node. */
+ continue;
+ }
+
+ /* Process a node. */
+ node = FROM_BLOCK (current_edge);
+ child = TO_BLOCK (current_edge);
+ SET_BIT (in_stack, node);
+ dfs_nr[node] = ++count;
+
+ /* If the successor is in the stack, then we've found a loop.
+ Mark the loop, if it is not a natural loop, then it will
+ be rejected during the second traversal. */
+ if (TEST_BIT (in_stack, child))
+ {
+ no_loops = 0;
+ SET_BIT (header, child);
+ UPDATE_LOOP_RELATIONS (node, child);
+ SET_BIT (passed, current_edge);
+ current_edge = NEXT_OUT (current_edge);
+ continue;
+ }
+
+ /* If the child was already visited, then there is no need to visit
+ it again. Just update the loop relationships and restart
+ with a new edge. */
+ if (dfs_nr[child])
+ {
+ if (max_hdr[child] >= 0 && TEST_BIT (in_stack, max_hdr[child]))
+ UPDATE_LOOP_RELATIONS (node, max_hdr[child]);
+ SET_BIT (passed, current_edge);
+ current_edge = NEXT_OUT (current_edge);
+ continue;
+ }
+
+ /* Push an entry on the stack and continue DFS traversal. */
+ stack[++sp] = current_edge;
+ SET_BIT (passed, current_edge);
+ current_edge = OUT_EDGES (child);
+
+ /* This is temporary until haifa is converted to use rth's new
+ cfg routines which have true entry/exit blocks and the
+ appropriate edges from/to those blocks.
+
+ Generally we update dfs_nr for a node when we process its
+ out edge. However, if the node has no out edge then we will
+ not set dfs_nr for that node. This can confuse the scheduler
+ into thinking that we have unreachable blocks, which in turn
+ disables cross block scheduling.
+
+ So, if we have a node with no out edges, go ahead and mark it
+ as reachable now. */
+ if (current_edge == 0)
+ dfs_nr[child] = ++count;
+ }
+
+ /* Another check for unreachable blocks. The earlier test in
+ is_cfg_nonregular only finds unreachable blocks that do not
+ form a loop.
+
+ The DFS traversal will mark every block that is reachable from
+ the entry node by placing a nonzero value in dfs_nr. Thus if
+ dfs_nr is zero for any block, then it must be unreachable. */
+ unreachable = 0;
+ for (i = 0; i < n_basic_blocks; i++)
+ if (dfs_nr[i] == 0)
+ {
+ unreachable = 1;
+ break;
+ }
+
+ /* Gross. To avoid wasting memory, the second pass uses the dfs_nr array
+ to hold degree counts. */
+ degree = dfs_nr;
+
+ for (i = 0; i < n_basic_blocks; i++)
+ degree[i] = 0;
+ for (i = 0; i < num_edges; i++)
+ {
+ edge e = INDEX_EDGE (edge_list, i);
+
+ if (e->dest != EXIT_BLOCK_PTR)
+ degree[e->dest->index]++;
+ }
+
+ /* Do not perform region scheduling if there are any unreachable
+ blocks. */
+ if (!unreachable)
+ {
+ int *queue;
+
+ if (no_loops)
+ SET_BIT (header, 0);
+
+ /* Second travsersal:find reducible inner loops and topologically sort
+ block of each region. */
+
+ queue = (int *) xmalloc (n_basic_blocks * sizeof (int));
+
+ /* Find blocks which are inner loop headers. We still have non-reducible
+ loops to consider at this point. */
+ for (i = 0; i < n_basic_blocks; i++)
+ {
+ if (TEST_BIT (header, i) && TEST_BIT (inner, i))
+ {
+ edge e;
+ int j;
+
+ /* Now check that the loop is reducible. We do this separate
+ from finding inner loops so that we do not find a reducible
+ loop which contains an inner non-reducible loop.
+
+ A simple way to find reducible/natural loops is to verify
+ that each block in the loop is dominated by the loop
+ header.
+
+ If there exists a block that is not dominated by the loop
+ header, then the block is reachable from outside the loop
+ and thus the loop is not a natural loop. */
+ for (j = 0; j < n_basic_blocks; j++)
+ {
+ /* First identify blocks in the loop, except for the loop
+ entry block. */
+ if (i == max_hdr[j] && i != j)
+ {
+ /* Now verify that the block is dominated by the loop
+ header. */
+ if (!TEST_BIT (dom[j], i))
+ break;
+ }
+ }
+
+ /* If we exited the loop early, then I is the header of
+ a non-reducible loop and we should quit processing it
+ now. */
+ if (j != n_basic_blocks)
+ continue;
+
+ /* I is a header of an inner loop, or block 0 in a subroutine
+ with no loops at all. */
+ head = tail = -1;
+ too_large_failure = 0;
+ loop_head = max_hdr[i];
+
+ /* Decrease degree of all I's successors for topological
+ ordering. */
+ for (e = BASIC_BLOCK (i)->succ; e; e = e->succ_next)
+ if (e->dest != EXIT_BLOCK_PTR)
+ --degree[e->dest->index];
+
+ /* Estimate # insns, and count # blocks in the region. */
+ num_bbs = 1;
+ num_insns = (INSN_LUID (BLOCK_END (i))
+ - INSN_LUID (BLOCK_HEAD (i)));
+
+ /* Find all loop latches (blocks with back edges to the loop
+ header) or all the leaf blocks in the cfg has no loops.
+
+ Place those blocks into the queue. */
+ if (no_loops)
+ {
+ for (j = 0; j < n_basic_blocks; j++)
+ /* Leaf nodes have only a single successor which must
+ be EXIT_BLOCK. */
+ if (BASIC_BLOCK (j)->succ
+ && BASIC_BLOCK (j)->succ->dest == EXIT_BLOCK_PTR
+ && BASIC_BLOCK (j)->succ->succ_next == NULL)
+ {
+ queue[++tail] = j;
+ SET_BIT (in_queue, j);
+
+ if (too_large (j, &num_bbs, &num_insns))
+ {
+ too_large_failure = 1;
+ break;
+ }
+ }
+ }
+ else
+ {
+ edge e;
+
+ for (e = BASIC_BLOCK (i)->pred; e; e = e->pred_next)
+ {
+ if (e->src == ENTRY_BLOCK_PTR)
+ continue;
+
+ node = e->src->index;
+
+ if (max_hdr[node] == loop_head && node != i)
+ {
+ /* This is a loop latch. */
+ queue[++tail] = node;
+ SET_BIT (in_queue, node);
+
+ if (too_large (node, &num_bbs, &num_insns))
+ {
+ too_large_failure = 1;
+ break;
+ }
+ }
+ }
+ }
+
+ /* Now add all the blocks in the loop to the queue.
+
+ We know the loop is a natural loop; however the algorithm
+ above will not always mark certain blocks as being in the
+ loop. Consider:
+ node children
+ a b,c
+ b c
+ c a,d
+ d b
+
+ The algorithm in the DFS traversal may not mark B & D as part
+ of the loop (ie they will not have max_hdr set to A).
+
+ We know they can not be loop latches (else they would have
+ had max_hdr set since they'd have a backedge to a dominator
+ block). So we don't need them on the initial queue.
+
+ We know they are part of the loop because they are dominated
+ by the loop header and can be reached by a backwards walk of
+ the edges starting with nodes on the initial queue.
+
+ It is safe and desirable to include those nodes in the
+ loop/scheduling region. To do so we would need to decrease
+ the degree of a node if it is the target of a backedge
+ within the loop itself as the node is placed in the queue.
+
+ We do not do this because I'm not sure that the actual
+ scheduling code will properly handle this case. ?!? */
+
+ while (head < tail && !too_large_failure)
+ {
+ edge e;
+ child = queue[++head];
+
+ for (e = BASIC_BLOCK (child)->pred; e; e = e->pred_next)
+ {
+ node = e->src->index;
+
+ /* See discussion above about nodes not marked as in
+ this loop during the initial DFS traversal. */
+ if (e->src == ENTRY_BLOCK_PTR
+ || max_hdr[node] != loop_head)
+ {
+ tail = -1;
+ break;
+ }
+ else if (!TEST_BIT (in_queue, node) && node != i)
+ {
+ queue[++tail] = node;
+ SET_BIT (in_queue, node);
+
+ if (too_large (node, &num_bbs, &num_insns))
+ {
+ too_large_failure = 1;
+ break;
+ }
+ }
+ }
+ }
+
+ if (tail >= 0 && !too_large_failure)
+ {
+ /* Place the loop header into list of region blocks. */
+ degree[i] = -1;
+ rgn_bb_table[idx] = i;
+ RGN_NR_BLOCKS (nr_regions) = num_bbs;
+ RGN_BLOCKS (nr_regions) = idx++;
+ CONTAINING_RGN (i) = nr_regions;
+ BLOCK_TO_BB (i) = count = 0;
+
+ /* Remove blocks from queue[] when their in degree
+ becomes zero. Repeat until no blocks are left on the
+ list. This produces a topological list of blocks in
+ the region. */
+ while (tail >= 0)
+ {
+ if (head < 0)
+ head = tail;
+ child = queue[head];
+ if (degree[child] == 0)
+ {
+ edge e;
+
+ degree[child] = -1;
+ rgn_bb_table[idx++] = child;
+ BLOCK_TO_BB (child) = ++count;
+ CONTAINING_RGN (child) = nr_regions;
+ queue[head] = queue[tail--];
+
+ for (e = BASIC_BLOCK (child)->succ;
+ e;
+ e = e->succ_next)
+ if (e->dest != EXIT_BLOCK_PTR)
+ --degree[e->dest->index];
+ }
+ else
+ --head;
+ }
+ ++nr_regions;
+ }
+ }
+ }
+ free (queue);
+ }
+
+ /* Any block that did not end up in a region is placed into a region
+ by itself. */
+ for (i = 0; i < n_basic_blocks; i++)
+ if (degree[i] >= 0)
+ {
+ rgn_bb_table[idx] = i;
+ RGN_NR_BLOCKS (nr_regions) = 1;
+ RGN_BLOCKS (nr_regions) = idx++;
+ CONTAINING_RGN (i) = nr_regions++;
+ BLOCK_TO_BB (i) = 0;
+ }
+
+ free (max_hdr);
+ free (dfs_nr);
+ free (stack);
+ sbitmap_free (passed);
+ sbitmap_free (header);
+ sbitmap_free (inner);
+ sbitmap_free (in_queue);
+ sbitmap_free (in_stack);
+}
+
+/* Functions for regions scheduling information. */
+
+/* Compute dominators, probability, and potential-split-edges of bb.
+ Assume that these values were already computed for bb's predecessors. */
+
+static void
+compute_dom_prob_ps (bb)
+ int bb;
+{
+ int nxt_in_edge, fst_in_edge, pred;
+ int fst_out_edge, nxt_out_edge, nr_out_edges, nr_rgn_out_edges;
+
+ prob[bb] = 0.0;
+ if (IS_RGN_ENTRY (bb))
+ {
+ SET_BIT (dom[bb], 0);
+ prob[bb] = 1.0;
+ return;
+ }
+
+ fst_in_edge = nxt_in_edge = IN_EDGES (BB_TO_BLOCK (bb));
+
+ /* Initialize dom[bb] to '111..1'. */
+ sbitmap_ones (dom[bb]);
+
+ do
+ {
+ pred = FROM_BLOCK (nxt_in_edge);
+ sbitmap_a_and_b (dom[bb], dom[bb], dom[BLOCK_TO_BB (pred)]);
+ sbitmap_a_or_b (ancestor_edges[bb], ancestor_edges[bb], ancestor_edges[BLOCK_TO_BB (pred)]);
+
+ SET_BIT (ancestor_edges[bb], EDGE_TO_BIT (nxt_in_edge));
+
+ nr_out_edges = 1;
+ nr_rgn_out_edges = 0;
+ fst_out_edge = OUT_EDGES (pred);
+ nxt_out_edge = NEXT_OUT (fst_out_edge);
+
+ sbitmap_a_or_b (pot_split[bb], pot_split[bb], pot_split[BLOCK_TO_BB (pred)]);
+
+ SET_BIT (pot_split[bb], EDGE_TO_BIT (fst_out_edge));
+
+ /* The successor doesn't belong in the region? */
+ if (CONTAINING_RGN (TO_BLOCK (fst_out_edge)) !=
+ CONTAINING_RGN (BB_TO_BLOCK (bb)))
+ ++nr_rgn_out_edges;
+
+ while (fst_out_edge != nxt_out_edge)
+ {
+ ++nr_out_edges;
+ /* The successor doesn't belong in the region? */
+ if (CONTAINING_RGN (TO_BLOCK (nxt_out_edge)) !=
+ CONTAINING_RGN (BB_TO_BLOCK (bb)))
+ ++nr_rgn_out_edges;
+ SET_BIT (pot_split[bb], EDGE_TO_BIT (nxt_out_edge));
+ nxt_out_edge = NEXT_OUT (nxt_out_edge);
+
+ }
+
+ /* Now nr_rgn_out_edges is the number of region-exit edges from
+ pred, and nr_out_edges will be the number of pred out edges
+ not leaving the region. */
+ nr_out_edges -= nr_rgn_out_edges;
+ if (nr_rgn_out_edges > 0)
+ prob[bb] += 0.9 * prob[BLOCK_TO_BB (pred)] / nr_out_edges;
+ else
+ prob[bb] += prob[BLOCK_TO_BB (pred)] / nr_out_edges;
+ nxt_in_edge = NEXT_IN (nxt_in_edge);
+ }
+ while (fst_in_edge != nxt_in_edge);
+
+ SET_BIT (dom[bb], bb);
+ sbitmap_difference (pot_split[bb], pot_split[bb], ancestor_edges[bb]);
+
+ if (sched_verbose >= 2)
+ fprintf (sched_dump, ";; bb_prob(%d, %d) = %3d\n", bb, BB_TO_BLOCK (bb),
+ (int) (100.0 * prob[bb]));
+}
+
+/* Functions for target info. */
+
+/* Compute in BL the list of split-edges of bb_src relatively to bb_trg.
+ Note that bb_trg dominates bb_src. */
+
+static void
+split_edges (bb_src, bb_trg, bl)
+ int bb_src;
+ int bb_trg;
+ edgelst *bl;
+{
+ sbitmap src = (edgeset) sbitmap_alloc (pot_split[bb_src]->n_bits);
+ sbitmap_copy (src, pot_split[bb_src]);
+
+ sbitmap_difference (src, src, pot_split[bb_trg]);
+ extract_bitlst (src, bl);
+ sbitmap_free (src);
+}
+
+/* Find the valid candidate-source-blocks for the target block TRG, compute
+ their probability, and check if they are speculative or not.
+ For speculative sources, compute their update-blocks and split-blocks. */
+
+static void
+compute_trg_info (trg)
+ int trg;
+{
+ candidate *sp;
+ edgelst el;
+ int check_block, update_idx;
+ int i, j, k, fst_edge, nxt_edge;
+
+ /* Define some of the fields for the target bb as well. */
+ sp = candidate_table + trg;
+ sp->is_valid = 1;
+ sp->is_speculative = 0;
+ sp->src_prob = 100;
+
+ for (i = trg + 1; i < current_nr_blocks; i++)
+ {
+ sp = candidate_table + i;
+
+ sp->is_valid = IS_DOMINATED (i, trg);
+ if (sp->is_valid)
+ {
+ sp->src_prob = GET_SRC_PROB (i, trg);
+ sp->is_valid = (sp->src_prob >= MIN_PROBABILITY);
+ }
+
+ if (sp->is_valid)
+ {
+ split_edges (i, trg, &el);
+ sp->is_speculative = (el.nr_members) ? 1 : 0;
+ if (sp->is_speculative && !flag_schedule_speculative)
+ sp->is_valid = 0;
+ }
+
+ if (sp->is_valid)
+ {
+ char *update_blocks;
+
+ /* Compute split blocks and store them in bblst_table.
+ The TO block of every split edge is a split block. */
+ sp->split_bbs.first_member = &bblst_table[bblst_last];
+ sp->split_bbs.nr_members = el.nr_members;
+ for (j = 0; j < el.nr_members; bblst_last++, j++)
+ bblst_table[bblst_last] =
+ TO_BLOCK (rgn_edges[el.first_member[j]]);
+ sp->update_bbs.first_member = &bblst_table[bblst_last];
+
+ /* Compute update blocks and store them in bblst_table.
+ For every split edge, look at the FROM block, and check
+ all out edges. For each out edge that is not a split edge,
+ add the TO block to the update block list. This list can end
+ up with a lot of duplicates. We need to weed them out to avoid
+ overrunning the end of the bblst_table. */
+ update_blocks = (char *) alloca (n_basic_blocks);
+ memset (update_blocks, 0, n_basic_blocks);
+
+ update_idx = 0;
+ for (j = 0; j < el.nr_members; j++)
+ {
+ check_block = FROM_BLOCK (rgn_edges[el.first_member[j]]);
+ fst_edge = nxt_edge = OUT_EDGES (check_block);
+ do
+ {
+ if (! update_blocks[TO_BLOCK (nxt_edge)])
+ {
+ for (k = 0; k < el.nr_members; k++)
+ if (EDGE_TO_BIT (nxt_edge) == el.first_member[k])
+ break;
+
+ if (k >= el.nr_members)
+ {
+ bblst_table[bblst_last++] = TO_BLOCK (nxt_edge);
+ update_blocks[TO_BLOCK (nxt_edge)] = 1;
+ update_idx++;
+ }
+ }
+
+ nxt_edge = NEXT_OUT (nxt_edge);
+ }
+ while (fst_edge != nxt_edge);
+ }
+ sp->update_bbs.nr_members = update_idx;
+
+ /* Make sure we didn't overrun the end of bblst_table. */
+ if (bblst_last > bblst_size)
+ abort ();
+ }
+ else
+ {
+ sp->split_bbs.nr_members = sp->update_bbs.nr_members = 0;
+
+ sp->is_speculative = 0;
+ sp->src_prob = 0;
+ }
+ }
+}
+
+/* Print candidates info, for debugging purposes. Callable from debugger. */
+
+void
+debug_candidate (i)
+ int i;
+{
+ if (!candidate_table[i].is_valid)
+ return;
+
+ if (candidate_table[i].is_speculative)
+ {
+ int j;
+ fprintf (sched_dump, "src b %d bb %d speculative \n", BB_TO_BLOCK (i), i);
+
+ fprintf (sched_dump, "split path: ");
+ for (j = 0; j < candidate_table[i].split_bbs.nr_members; j++)
+ {
+ int b = candidate_table[i].split_bbs.first_member[j];
+
+ fprintf (sched_dump, " %d ", b);
+ }
+ fprintf (sched_dump, "\n");
+
+ fprintf (sched_dump, "update path: ");
+ for (j = 0; j < candidate_table[i].update_bbs.nr_members; j++)
+ {
+ int b = candidate_table[i].update_bbs.first_member[j];
+
+ fprintf (sched_dump, " %d ", b);
+ }
+ fprintf (sched_dump, "\n");
+ }
+ else
+ {
+ fprintf (sched_dump, " src %d equivalent\n", BB_TO_BLOCK (i));
+ }
+}
+
+/* Print candidates info, for debugging purposes. Callable from debugger. */
+
+void
+debug_candidates (trg)
+ int trg;
+{
+ int i;
+
+ fprintf (sched_dump, "----------- candidate table: target: b=%d bb=%d ---\n",
+ BB_TO_BLOCK (trg), trg);
+ for (i = trg + 1; i < current_nr_blocks; i++)
+ debug_candidate (i);
+}
+
+/* Functions for speculative scheduing. */
+
+/* Return 0 if x is a set of a register alive in the beginning of one
+ of the split-blocks of src, otherwise return 1. */
+
+static int
+check_live_1 (src, x)
+ int src;
+ rtx x;
+{
+ int i;
+ int regno;
+ rtx reg = SET_DEST (x);
+
+ if (reg == 0)
+ return 1;
+
+ while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
+ || GET_CODE (reg) == SIGN_EXTRACT
+ || GET_CODE (reg) == STRICT_LOW_PART)
+ reg = XEXP (reg, 0);
+
+ if (GET_CODE (reg) == PARALLEL)
+ {
+ int i;
+
+ for (i = XVECLEN (reg, 0) - 1; i >= 0; i--)
+ if (XEXP (XVECEXP (reg, 0, i), 0) != 0)
+ if (check_live_1 (src, XEXP (XVECEXP (reg, 0, i), 0)))
+ return 1;
+
+ return 0;
+ }
+
+ if (GET_CODE (reg) != REG)
+ return 1;
+
+ regno = REGNO (reg);
+
+ if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
+ {
+ /* Global registers are assumed live. */
+ return 0;
+ }
+ else
+ {
+ if (regno < FIRST_PSEUDO_REGISTER)
+ {
+ /* Check for hard registers. */
+ int j = HARD_REGNO_NREGS (regno, GET_MODE (reg));
+ while (--j >= 0)
+ {
+ for (i = 0; i < candidate_table[src].split_bbs.nr_members; i++)
+ {
+ int b = candidate_table[src].split_bbs.first_member[i];
+
+ if (REGNO_REG_SET_P (BASIC_BLOCK (b)->global_live_at_start,
+ regno + j))
+ {
+ return 0;
+ }
+ }
+ }
+ }
+ else
+ {
+ /* Check for psuedo registers. */
+ for (i = 0; i < candidate_table[src].split_bbs.nr_members; i++)
+ {
+ int b = candidate_table[src].split_bbs.first_member[i];
+
+ if (REGNO_REG_SET_P (BASIC_BLOCK (b)->global_live_at_start, regno))
+ {
+ return 0;
+ }
+ }
+ }
+ }
+
+ return 1;
+}
+
+/* If x is a set of a register R, mark that R is alive in the beginning
+ of every update-block of src. */
+
+static void
+update_live_1 (src, x)
+ int src;
+ rtx x;
+{
+ int i;
+ int regno;
+ rtx reg = SET_DEST (x);
+
+ if (reg == 0)
+ return;
+
+ while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
+ || GET_CODE (reg) == SIGN_EXTRACT
+ || GET_CODE (reg) == STRICT_LOW_PART)
+ reg = XEXP (reg, 0);
+
+ if (GET_CODE (reg) == PARALLEL)
+ {
+ int i;
+
+ for (i = XVECLEN (reg, 0) - 1; i >= 0; i--)
+ if (XEXP (XVECEXP (reg, 0, i), 0) != 0)
+ update_live_1 (src, XEXP (XVECEXP (reg, 0, i), 0));
+
+ return;
+ }
+
+ if (GET_CODE (reg) != REG)
+ return;
+
+ /* Global registers are always live, so the code below does not apply
+ to them. */
+
+ regno = REGNO (reg);
+
+ if (regno >= FIRST_PSEUDO_REGISTER || !global_regs[regno])
+ {
+ if (regno < FIRST_PSEUDO_REGISTER)
+ {
+ int j = HARD_REGNO_NREGS (regno, GET_MODE (reg));
+ while (--j >= 0)
+ {
+ for (i = 0; i < candidate_table[src].update_bbs.nr_members; i++)
+ {
+ int b = candidate_table[src].update_bbs.first_member[i];
+
+ SET_REGNO_REG_SET (BASIC_BLOCK (b)->global_live_at_start,
+ regno + j);
+ }
+ }
+ }
+ else
+ {
+ for (i = 0; i < candidate_table[src].update_bbs.nr_members; i++)
+ {
+ int b = candidate_table[src].update_bbs.first_member[i];
+
+ SET_REGNO_REG_SET (BASIC_BLOCK (b)->global_live_at_start, regno);
+ }
+ }
+ }
+}
+
+/* Return 1 if insn can be speculatively moved from block src to trg,
+ otherwise return 0. Called before first insertion of insn to
+ ready-list or before the scheduling. */
+
+static int
+check_live (insn, src)
+ rtx insn;
+ int src;
+{
+ /* Find the registers set by instruction. */
+ if (GET_CODE (PATTERN (insn)) == SET
+ || GET_CODE (PATTERN (insn)) == CLOBBER)
+ return check_live_1 (src, PATTERN (insn));
+ else if (GET_CODE (PATTERN (insn)) == PARALLEL)
+ {
+ int j;
+ for (j = XVECLEN (PATTERN (insn), 0) - 1; j >= 0; j--)
+ if ((GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET
+ || GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == CLOBBER)
+ && !check_live_1 (src, XVECEXP (PATTERN (insn), 0, j)))
+ return 0;
+
+ return 1;
+ }
+
+ return 1;
+}
+
+/* Update the live registers info after insn was moved speculatively from
+ block src to trg. */
+
+static void
+update_live (insn, src)
+ rtx insn;
+ int src;
+{
+ /* Find the registers set by instruction. */
+ if (GET_CODE (PATTERN (insn)) == SET
+ || GET_CODE (PATTERN (insn)) == CLOBBER)
+ update_live_1 (src, PATTERN (insn));
+ else if (GET_CODE (PATTERN (insn)) == PARALLEL)
+ {
+ int j;
+ for (j = XVECLEN (PATTERN (insn), 0) - 1; j >= 0; j--)
+ if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET
+ || GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == CLOBBER)
+ update_live_1 (src, XVECEXP (PATTERN (insn), 0, j));
+ }
+}
+
+/* Exception Free Loads:
+
+ We define five classes of speculative loads: IFREE, IRISKY,
+ PFREE, PRISKY, and MFREE.
+
+ IFREE loads are loads that are proved to be exception-free, just
+ by examining the load insn. Examples for such loads are loads
+ from TOC and loads of global data.
+
+ IRISKY loads are loads that are proved to be exception-risky,
+ just by examining the load insn. Examples for such loads are
+ volatile loads and loads from shared memory.
+
+ PFREE loads are loads for which we can prove, by examining other
+ insns, that they are exception-free. Currently, this class consists
+ of loads for which we are able to find a "similar load", either in
+ the target block, or, if only one split-block exists, in that split
+ block. Load2 is similar to load1 if both have same single base
+ register. We identify only part of the similar loads, by finding
+ an insn upon which both load1 and load2 have a DEF-USE dependence.
+
+ PRISKY loads are loads for which we can prove, by examining other
+ insns, that they are exception-risky. Currently we have two proofs for
+ such loads. The first proof detects loads that are probably guarded by a
+ test on the memory address. This proof is based on the
+ backward and forward data dependence information for the region.
+ Let load-insn be the examined load.
+ Load-insn is PRISKY iff ALL the following hold:
+
+ - insn1 is not in the same block as load-insn
+ - there is a DEF-USE dependence chain (insn1, ..., load-insn)
+ - test-insn is either a compare or a branch, not in the same block
+ as load-insn
+ - load-insn is reachable from test-insn
+ - there is a DEF-USE dependence chain (insn1, ..., test-insn)
+
+ This proof might fail when the compare and the load are fed
+ by an insn not in the region. To solve this, we will add to this
+ group all loads that have no input DEF-USE dependence.
+
+ The second proof detects loads that are directly or indirectly
+ fed by a speculative load. This proof is affected by the
+ scheduling process. We will use the flag fed_by_spec_load.
+ Initially, all insns have this flag reset. After a speculative
+ motion of an insn, if insn is either a load, or marked as
+ fed_by_spec_load, we will also mark as fed_by_spec_load every
+ insn1 for which a DEF-USE dependence (insn, insn1) exists. A
+ load which is fed_by_spec_load is also PRISKY.
+
+ MFREE (maybe-free) loads are all the remaining loads. They may be
+ exception-free, but we cannot prove it.
+
+ Now, all loads in IFREE and PFREE classes are considered
+ exception-free, while all loads in IRISKY and PRISKY classes are
+ considered exception-risky. As for loads in the MFREE class,
+ these are considered either exception-free or exception-risky,
+ depending on whether we are pessimistic or optimistic. We have
+ to take the pessimistic approach to assure the safety of
+ speculative scheduling, but we can take the optimistic approach
+ by invoking the -fsched_spec_load_dangerous option. */
+
+enum INSN_TRAP_CLASS
+{
+ TRAP_FREE = 0, IFREE = 1, PFREE_CANDIDATE = 2,
+ PRISKY_CANDIDATE = 3, IRISKY = 4, TRAP_RISKY = 5
+};
+
+#define WORST_CLASS(class1, class2) \
+((class1 > class2) ? class1 : class2)
+
+/* Non-zero if block bb_to is equal to, or reachable from block bb_from. */
+#define IS_REACHABLE(bb_from, bb_to) \
+(bb_from == bb_to \
+ || IS_RGN_ENTRY (bb_from) \
+ || (TEST_BIT (ancestor_edges[bb_to], \
+ EDGE_TO_BIT (IN_EDGES (BB_TO_BLOCK (bb_from))))))
+
+/* Non-zero iff the address is comprised from at most 1 register. */
+#define CONST_BASED_ADDRESS_P(x) \
+ (GET_CODE (x) == REG \
+ || ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS \
+ || (GET_CODE (x) == LO_SUM)) \
+ && (CONSTANT_P (XEXP (x, 0)) \
+ || CONSTANT_P (XEXP (x, 1)))))
+
+/* Turns on the fed_by_spec_load flag for insns fed by load_insn. */
+
+static void
+set_spec_fed (load_insn)
+ rtx load_insn;
+{
+ rtx link;
+
+ for (link = INSN_DEPEND (load_insn); link; link = XEXP (link, 1))
+ if (GET_MODE (link) == VOIDmode)
+ FED_BY_SPEC_LOAD (XEXP (link, 0)) = 1;
+} /* set_spec_fed */
+
+/* On the path from the insn to load_insn_bb, find a conditional
+branch depending on insn, that guards the speculative load. */
+
+static int
+find_conditional_protection (insn, load_insn_bb)
+ rtx insn;
+ int load_insn_bb;
+{
+ rtx link;
+
+ /* Iterate through DEF-USE forward dependences. */
+ for (link = INSN_DEPEND (insn); link; link = XEXP (link, 1))
+ {
+ rtx next = XEXP (link, 0);
+ if ((CONTAINING_RGN (BLOCK_NUM (next)) ==
+ CONTAINING_RGN (BB_TO_BLOCK (load_insn_bb)))
+ && IS_REACHABLE (INSN_BB (next), load_insn_bb)
+ && load_insn_bb != INSN_BB (next)
+ && GET_MODE (link) == VOIDmode
+ && (GET_CODE (next) == JUMP_INSN
+ || find_conditional_protection (next, load_insn_bb)))
+ return 1;
+ }
+ return 0;
+} /* find_conditional_protection */
+
+/* Returns 1 if the same insn1 that participates in the computation
+ of load_insn's address is feeding a conditional branch that is
+ guarding on load_insn. This is true if we find a the two DEF-USE
+ chains:
+ insn1 -> ... -> conditional-branch
+ insn1 -> ... -> load_insn,
+ and if a flow path exist:
+ insn1 -> ... -> conditional-branch -> ... -> load_insn,
+ and if insn1 is on the path
+ region-entry -> ... -> bb_trg -> ... load_insn.
+
+ Locate insn1 by climbing on LOG_LINKS from load_insn.
+ Locate the branch by following INSN_DEPEND from insn1. */
+
+static int
+is_conditionally_protected (load_insn, bb_src, bb_trg)
+ rtx load_insn;
+ int bb_src, bb_trg;
+{
+ rtx link;
+
+ for (link = LOG_LINKS (load_insn); link; link = XEXP (link, 1))
+ {
+ rtx insn1 = XEXP (link, 0);
+
+ /* Must be a DEF-USE dependence upon non-branch. */
+ if (GET_MODE (link) != VOIDmode
+ || GET_CODE (insn1) == JUMP_INSN)
+ continue;
+
+ /* Must exist a path: region-entry -> ... -> bb_trg -> ... load_insn. */
+ if (INSN_BB (insn1) == bb_src
+ || (CONTAINING_RGN (BLOCK_NUM (insn1))
+ != CONTAINING_RGN (BB_TO_BLOCK (bb_src)))
+ || (!IS_REACHABLE (bb_trg, INSN_BB (insn1))
+ && !IS_REACHABLE (INSN_BB (insn1), bb_trg)))
+ continue;
+
+ /* Now search for the conditional-branch. */
+ if (find_conditional_protection (insn1, bb_src))
+ return 1;
+
+ /* Recursive step: search another insn1, "above" current insn1. */
+ return is_conditionally_protected (insn1, bb_src, bb_trg);
+ }
+
+ /* The chain does not exist. */
+ return 0;
+} /* is_conditionally_protected */
+
+/* Returns 1 if a clue for "similar load" 'insn2' is found, and hence
+ load_insn can move speculatively from bb_src to bb_trg. All the
+ following must hold:
+
+ (1) both loads have 1 base register (PFREE_CANDIDATEs).
+ (2) load_insn and load1 have a def-use dependence upon
+ the same insn 'insn1'.
+ (3) either load2 is in bb_trg, or:
+ - there's only one split-block, and
+ - load1 is on the escape path, and
+
+ From all these we can conclude that the two loads access memory
+ addresses that differ at most by a constant, and hence if moving
+ load_insn would cause an exception, it would have been caused by
+ load2 anyhow. */
+
+static int
+is_pfree (load_insn, bb_src, bb_trg)
+ rtx load_insn;
+ int bb_src, bb_trg;
+{
+ rtx back_link;
+ candidate *candp = candidate_table + bb_src;
+
+ if (candp->split_bbs.nr_members != 1)
+ /* Must have exactly one escape block. */
+ return 0;
+
+ for (back_link = LOG_LINKS (load_insn);
+ back_link; back_link = XEXP (back_link, 1))
+ {
+ rtx insn1 = XEXP (back_link, 0);
+
+ if (GET_MODE (back_link) == VOIDmode)
+ {
+ /* Found a DEF-USE dependence (insn1, load_insn). */
+ rtx fore_link;
+
+ for (fore_link = INSN_DEPEND (insn1);
+ fore_link; fore_link = XEXP (fore_link, 1))
+ {
+ rtx insn2 = XEXP (fore_link, 0);
+ if (GET_MODE (fore_link) == VOIDmode)
+ {
+ /* Found a DEF-USE dependence (insn1, insn2). */
+ if (haifa_classify_insn (insn2) != PFREE_CANDIDATE)
+ /* insn2 not guaranteed to be a 1 base reg load. */
+ continue;
+
+ if (INSN_BB (insn2) == bb_trg)
+ /* insn2 is the similar load, in the target block. */
+ return 1;
+
+ if (*(candp->split_bbs.first_member) == BLOCK_NUM (insn2))
+ /* insn2 is a similar load, in a split-block. */
+ return 1;
+ }
+ }
+ }
+ }
+
+ /* Couldn't find a similar load. */
+ return 0;
+} /* is_pfree */
+
+/* Returns a class that insn with GET_DEST(insn)=x may belong to,
+ as found by analyzing insn's expression. */
+
+static int
+may_trap_exp (x, is_store)
+ rtx x;
+ int is_store;
+{
+ enum rtx_code code;
+
+ if (x == 0)
+ return TRAP_FREE;
+ code = GET_CODE (x);
+ if (is_store)
+ {
+ if (code == MEM && may_trap_p (x))
+ return TRAP_RISKY;
+ else
+ return TRAP_FREE;
+ }
+ if (code == MEM)
+ {
+ /* The insn uses memory: a volatile load. */
+ if (MEM_VOLATILE_P (x))
+ return IRISKY;
+ /* An exception-free load. */
+ if (!may_trap_p (x))
+ return IFREE;
+ /* A load with 1 base register, to be further checked. */
+ if (CONST_BASED_ADDRESS_P (XEXP (x, 0)))
+ return PFREE_CANDIDATE;
+ /* No info on the load, to be further checked. */
+ return PRISKY_CANDIDATE;
+ }
+ else
+ {
+ const char *fmt;
+ int i, insn_class = TRAP_FREE;
+
+ /* Neither store nor load, check if it may cause a trap. */
+ if (may_trap_p (x))
+ return TRAP_RISKY;
+ /* Recursive step: walk the insn... */
+ fmt = GET_RTX_FORMAT (code);
+ for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
+ {
+ if (fmt[i] == 'e')
+ {
+ int tmp_class = may_trap_exp (XEXP (x, i), is_store);
+ insn_class = WORST_CLASS (insn_class, tmp_class);
+ }
+ else if (fmt[i] == 'E')
+ {
+ int j;
+ for (j = 0; j < XVECLEN (x, i); j++)
+ {
+ int tmp_class = may_trap_exp (XVECEXP (x, i, j), is_store);
+ insn_class = WORST_CLASS (insn_class, tmp_class);
+ if (insn_class == TRAP_RISKY || insn_class == IRISKY)
+ break;
+ }
+ }
+ if (insn_class == TRAP_RISKY || insn_class == IRISKY)
+ break;
+ }
+ return insn_class;
+ }
+}
+
+/* Classifies insn for the purpose of verifying that it can be
+ moved speculatively, by examining it's patterns, returning:
+ TRAP_RISKY: store, or risky non-load insn (e.g. division by variable).
+ TRAP_FREE: non-load insn.
+ IFREE: load from a globaly safe location.
+ IRISKY: volatile load.
+ PFREE_CANDIDATE, PRISKY_CANDIDATE: load that need to be checked for
+ being either PFREE or PRISKY. */
+
+static int
+haifa_classify_insn (insn)
+ rtx insn;
+{
+ rtx pat = PATTERN (insn);
+ int tmp_class = TRAP_FREE;
+ int insn_class = TRAP_FREE;
+ enum rtx_code code;
+
+ if (GET_CODE (pat) == PARALLEL)
+ {
+ int i, len = XVECLEN (pat, 0);
+
+ for (i = len - 1; i >= 0; i--)
+ {
+ code = GET_CODE (XVECEXP (pat, 0, i));
+ switch (code)
+ {
+ case CLOBBER:
+ /* Test if it is a 'store'. */
+ tmp_class = may_trap_exp (XEXP (XVECEXP (pat, 0, i), 0), 1);
+ break;
+ case SET:
+ /* Test if it is a store. */
+ tmp_class = may_trap_exp (SET_DEST (XVECEXP (pat, 0, i)), 1);
+ if (tmp_class == TRAP_RISKY)
+ break;
+ /* Test if it is a load. */
+ tmp_class
+ = WORST_CLASS (tmp_class,
+ may_trap_exp (SET_SRC (XVECEXP (pat, 0, i)),
+ 0));
+ break;
+ case COND_EXEC:
+ case TRAP_IF:
+ tmp_class = TRAP_RISKY;
+ break;
+ default:
+ ;
+ }
+ insn_class = WORST_CLASS (insn_class, tmp_class);
+ if (insn_class == TRAP_RISKY || insn_class == IRISKY)
+ break;
+ }
+ }
+ else
+ {
+ code = GET_CODE (pat);
+ switch (code)
+ {
+ case CLOBBER:
+ /* Test if it is a 'store'. */
+ tmp_class = may_trap_exp (XEXP (pat, 0), 1);
+ break;
+ case SET:
+ /* Test if it is a store. */
+ tmp_class = may_trap_exp (SET_DEST (pat), 1);
+ if (tmp_class == TRAP_RISKY)
+ break;
+ /* Test if it is a load. */
+ tmp_class =
+ WORST_CLASS (tmp_class,
+ may_trap_exp (SET_SRC (pat), 0));
+ break;
+ case COND_EXEC:
+ case TRAP_IF:
+ tmp_class = TRAP_RISKY;
+ break;
+ default:;
+ }
+ insn_class = tmp_class;
+ }
+
+ return insn_class;
+}
+
+/* Return 1 if load_insn is prisky (i.e. if load_insn is fed by
+ a load moved speculatively, or if load_insn is protected by
+ a compare on load_insn's address). */
+
+static int
+is_prisky (load_insn, bb_src, bb_trg)
+ rtx load_insn;
+ int bb_src, bb_trg;
+{
+ if (FED_BY_SPEC_LOAD (load_insn))
+ return 1;
+
+ if (LOG_LINKS (load_insn) == NULL)
+ /* Dependence may 'hide' out of the region. */
+ return 1;
+
+ if (is_conditionally_protected (load_insn, bb_src, bb_trg))
+ return 1;
+
+ return 0;
+}
+
+/* Insn is a candidate to be moved speculatively from bb_src to bb_trg.
+ Return 1 if insn is exception-free (and the motion is valid)
+ and 0 otherwise. */
+
+static int
+is_exception_free (insn, bb_src, bb_trg)
+ rtx insn;
+ int bb_src, bb_trg;
+{
+ int insn_class = haifa_classify_insn (insn);
+
+ /* Handle non-load insns. */
+ switch (insn_class)
+ {
+ case TRAP_FREE:
+ return 1;
+ case TRAP_RISKY:
+ return 0;
+ default:;
+ }
+
+ /* Handle loads. */
+ if (!flag_schedule_speculative_load)
+ return 0;
+ IS_LOAD_INSN (insn) = 1;
+ switch (insn_class)
+ {
+ case IFREE:
+ return (1);
+ case IRISKY:
+ return 0;
+ case PFREE_CANDIDATE:
+ if (is_pfree (insn, bb_src, bb_trg))
+ return 1;
+ /* Don't 'break' here: PFREE-candidate is also PRISKY-candidate. */
+ case PRISKY_CANDIDATE:
+ if (!flag_schedule_speculative_load_dangerous
+ || is_prisky (insn, bb_src, bb_trg))
+ return 0;
+ break;
+ default:;
+ }
+
+ return flag_schedule_speculative_load_dangerous;
+}
+
+/* The number of insns from the current block scheduled so far. */
+static int sched_target_n_insns;
+/* The number of insns from the current block to be scheduled in total. */
+static int target_n_insns;
+/* The number of insns from the entire region scheduled so far. */
+static int sched_n_insns;
+/* Nonzero if the last scheduled insn was a jump. */
+static int last_was_jump;
+
+/* Implementations of the sched_info functions for region scheduling. */
+static void init_ready_list PARAMS ((struct ready_list *));
+static int can_schedule_ready_p PARAMS ((rtx));
+static int new_ready PARAMS ((rtx));
+static int schedule_more_p PARAMS ((void));
+static const char *rgn_print_insn PARAMS ((rtx, int));
+static int rgn_rank PARAMS ((rtx, rtx));
+static int contributes_to_priority PARAMS ((rtx, rtx));
+static void compute_jump_reg_dependencies PARAMS ((rtx, regset));
+
+/* Return nonzero if there are more insns that should be scheduled. */
+
+static int
+schedule_more_p ()
+{
+ return ! last_was_jump && sched_target_n_insns < target_n_insns;
+}
+
+/* Add all insns that are initially ready to the ready list READY. Called
+ once before scheduling a set of insns. */
+
+static void
+init_ready_list (ready)
+ struct ready_list *ready;
+{
+ rtx prev_head = current_sched_info->prev_head;
+ rtx next_tail = current_sched_info->next_tail;
+ int bb_src;
+ rtx insn;
+
+ target_n_insns = 0;
+ sched_target_n_insns = 0;
+ sched_n_insns = 0;
+ last_was_jump = 0;
+
+ /* Print debugging information. */
+ if (sched_verbose >= 5)
+ debug_dependencies ();
+
+ /* Prepare current target block info. */
+ if (current_nr_blocks > 1)
+ {
+ candidate_table = (candidate *) xmalloc (current_nr_blocks
+ * sizeof (candidate));
+
+ bblst_last = 0;
+ /* bblst_table holds split blocks and update blocks for each block after
+ the current one in the region. split blocks and update blocks are
+ the TO blocks of region edges, so there can be at most rgn_nr_edges
+ of them. */
+ bblst_size = (current_nr_blocks - target_bb) * rgn_nr_edges;
+ bblst_table = (int *) xmalloc (bblst_size * sizeof (int));
+
+ bitlst_table_last = 0;
+ bitlst_table_size = rgn_nr_edges;
+ bitlst_table = (int *) xmalloc (rgn_nr_edges * sizeof (int));
+
+ compute_trg_info (target_bb);
+ }
+
+ /* Initialize ready list with all 'ready' insns in target block.
+ Count number of insns in the target block being scheduled. */
+ for (insn = NEXT_INSN (prev_head); insn != next_tail; insn = NEXT_INSN (insn))
+ {
+ rtx next;
+
+ if (! INSN_P (insn))
+ continue;
+ next = NEXT_INSN (insn);
+
+ if (INSN_DEP_COUNT (insn) == 0
+ && (SCHED_GROUP_P (next) == 0 || ! INSN_P (next)))
+ ready_add (ready, insn);
+ if (!(SCHED_GROUP_P (insn)))
+ target_n_insns++;
+ }
+
+ /* Add to ready list all 'ready' insns in valid source blocks.
+ For speculative insns, check-live, exception-free, and
+ issue-delay. */
+ for (bb_src = target_bb + 1; bb_src < current_nr_blocks; bb_src++)
+ if (IS_VALID (bb_src))
+ {
+ rtx src_head;
+ rtx src_next_tail;
+ rtx tail, head;
+
+ get_block_head_tail (BB_TO_BLOCK (bb_src), &head, &tail);
+ src_next_tail = NEXT_INSN (tail);
+ src_head = head;
+
+ for (insn = src_head; insn != src_next_tail; insn = NEXT_INSN (insn))
+ {
+ if (! INSN_P (insn))
+ continue;
+
+ if (!CANT_MOVE (insn)
+ && (!IS_SPECULATIVE_INSN (insn)
+ || (insn_issue_delay (insn) <= 3
+ && check_live (insn, bb_src)
+ && is_exception_free (insn, bb_src, target_bb))))
+ {
+ rtx next;
+
+ /* Note that we haven't squirreled away the notes for
+ blocks other than the current. So if this is a
+ speculative insn, NEXT might otherwise be a note. */
+ next = next_nonnote_insn (insn);
+ if (INSN_DEP_COUNT (insn) == 0
+ && (! next
+ || SCHED_GROUP_P (next) == 0
+ || ! INSN_P (next)))
+ ready_add (ready, insn);
+ }
+ }
+ }
+}
+
+/* Called after taking INSN from the ready list. Returns nonzero if this
+ insn can be scheduled, nonzero if we should silently discard it. */
+
+static int
+can_schedule_ready_p (insn)
+ rtx insn;
+{
+ if (GET_CODE (insn) == JUMP_INSN)
+ last_was_jump = 1;
+
+ /* An interblock motion? */
+ if (INSN_BB (insn) != target_bb)
+ {
+ rtx temp;
+ basic_block b1;
+
+ if (IS_SPECULATIVE_INSN (insn))
+ {
+ if (!check_live (insn, INSN_BB (insn)))
+ return 0;
+ update_live (insn, INSN_BB (insn));
+
+ /* For speculative load, mark insns fed by it. */
+ if (IS_LOAD_INSN (insn) || FED_BY_SPEC_LOAD (insn))
+ set_spec_fed (insn);
+
+ nr_spec++;
+ }
+ nr_inter++;
+
+ /* Find the beginning of the scheduling group. */
+ /* ??? Ought to update basic block here, but later bits of
+ schedule_block assumes the original insn block is
+ still intact. */
+
+ temp = insn;
+ while (SCHED_GROUP_P (temp))
+ temp = PREV_INSN (temp);
+
+ /* Update source block boundaries. */
+ b1 = BLOCK_FOR_INSN (temp);
+ if (temp == b1->head && insn == b1->end)
+ {
+ /* We moved all the insns in the basic block.
+ Emit a note after the last insn and update the
+ begin/end boundaries to point to the note. */
+ rtx note = emit_note_after (NOTE_INSN_DELETED, insn);
+ b1->head = note;
+ b1->end = note;
+ }
+ else if (insn == b1->end)
+ {
+ /* We took insns from the end of the basic block,
+ so update the end of block boundary so that it
+ points to the first insn we did not move. */
+ b1->end = PREV_INSN (temp);
+ }
+ else if (temp == b1->head)
+ {
+ /* We took insns from the start of the basic block,
+ so update the start of block boundary so that
+ it points to the first insn we did not move. */
+ b1->head = NEXT_INSN (insn);
+ }
+ }
+ else
+ {
+ /* In block motion. */
+ sched_target_n_insns++;
+ }
+ sched_n_insns++;
+
+ return 1;
+}
+
+/* Called after INSN has all its dependencies resolved. Return nonzero
+ if it should be moved to the ready list or the queue, or zero if we
+ should silently discard it. */
+static int
+new_ready (next)
+ rtx next;
+{
+ /* For speculative insns, before inserting to ready/queue,
+ check live, exception-free, and issue-delay. */
+ if (INSN_BB (next) != target_bb
+ && (!IS_VALID (INSN_BB (next))
+ || CANT_MOVE (next)
+ || (IS_SPECULATIVE_INSN (next)
+ && (insn_issue_delay (next) > 3
+ || !check_live (next, INSN_BB (next))
+ || !is_exception_free (next, INSN_BB (next), target_bb)))))
+ return 0;
+ return 1;
+}
+
+/* Return a string that contains the insn uid and optionally anything else
+ necessary to identify this insn in an output. It's valid to use a
+ static buffer for this. The ALIGNED parameter should cause the string
+ to be formatted so that multiple output lines will line up nicely. */
+
+static const char *
+rgn_print_insn (insn, aligned)
+ rtx insn;
+ int aligned;
+{
+ static char tmp[80];
+
+ if (aligned)
+ sprintf (tmp, "b%3d: i%4d", INSN_BB (insn), INSN_UID (insn));
+ else
+ {
+ if (current_nr_blocks > 1 && INSN_BB (insn) != target_bb)
+ sprintf (tmp, "%d/b%d", INSN_UID (insn), INSN_BB (insn));
+ else
+ sprintf (tmp, "%d", INSN_UID (insn));
+ }
+ return tmp;
+}
+
+/* Compare priority of two insns. Return a positive number if the second
+ insn is to be preferred for scheduling, and a negative one if the first
+ is to be preferred. Zero if they are equally good. */
+
+static int
+rgn_rank (insn1, insn2)
+ rtx insn1, insn2;
+{
+ /* Some comparison make sense in interblock scheduling only. */
+ if (INSN_BB (insn1) != INSN_BB (insn2))
+ {
+ int spec_val, prob_val;
+
+ /* Prefer an inblock motion on an interblock motion. */
+ if ((INSN_BB (insn2) == target_bb) && (INSN_BB (insn1) != target_bb))
+ return 1;
+ if ((INSN_BB (insn1) == target_bb) && (INSN_BB (insn2) != target_bb))
+ return -1;
+
+ /* Prefer a useful motion on a speculative one. */
+ spec_val = IS_SPECULATIVE_INSN (insn1) - IS_SPECULATIVE_INSN (insn2);
+ if (spec_val)
+ return spec_val;
+
+ /* Prefer a more probable (speculative) insn. */
+ prob_val = INSN_PROBABILITY (insn2) - INSN_PROBABILITY (insn1);
+ if (prob_val)
+ return prob_val;
+ }
+ return 0;
+}
+
+/* NEXT is an instruction that depends on INSN (a backward dependence);
+ return nonzero if we should include this dependence in priority
+ calculations. */
+
+static int
+contributes_to_priority (next, insn)
+ rtx next, insn;
+{
+ return BLOCK_NUM (next) == BLOCK_NUM (insn);
+}
+
+/* INSN is a JUMP_INSN. Store the set of registers that must be considered
+ to be set by this jump in SET. */
+
+static void
+compute_jump_reg_dependencies (insn, set)
+ rtx insn ATTRIBUTE_UNUSED;
+ regset set ATTRIBUTE_UNUSED;
+{
+ /* Nothing to do here, since we postprocess jumps in
+ add_branch_dependences. */
+}
+
+/* Used in schedule_insns to initialize current_sched_info for scheduling
+ regions (or single basic blocks). */
+
+static struct sched_info region_sched_info =
+{
+ init_ready_list,
+ can_schedule_ready_p,
+ schedule_more_p,
+ new_ready,
+ rgn_rank,
+ rgn_print_insn,
+ contributes_to_priority,
+ compute_jump_reg_dependencies,
+
+ NULL, NULL,
+ NULL, NULL,
+ 0, 0
+};
+
+/* Add dependences so that branches are scheduled to run last in their
+ block. */
+
+static void
+add_branch_dependences (head, tail)
+ rtx head, tail;
+{
+ rtx insn, last;
+
+ /* For all branches, calls, uses, clobbers, and cc0 setters, force them
+ to remain in order at the end of the block by adding dependencies and
+ giving the last a high priority. There may be notes present, and
+ prev_head may also be a note.
+
+ Branches must obviously remain at the end. Calls should remain at the
+ end since moving them results in worse register allocation. Uses remain
+ at the end to ensure proper register allocation. cc0 setters remaim
+ at the end because they can't be moved away from their cc0 user. */
+ insn = tail;
+ last = 0;
+ while (GET_CODE (insn) == CALL_INSN
+ || GET_CODE (insn) == JUMP_INSN
+ || (GET_CODE (insn) == INSN
+ && (GET_CODE (PATTERN (insn)) == USE
+ || GET_CODE (PATTERN (insn)) == CLOBBER
+#ifdef HAVE_cc0
+ || sets_cc0_p (PATTERN (insn))
+#endif
+ ))
+ || GET_CODE (insn) == NOTE)
+ {
+ if (GET_CODE (insn) != NOTE)
+ {
+ if (last != 0 && !find_insn_list (insn, LOG_LINKS (last)))
+ {
+ add_dependence (last, insn, REG_DEP_ANTI);
+ INSN_REF_COUNT (insn)++;
+ }
+
+ CANT_MOVE (insn) = 1;
+
+ last = insn;
+ /* Skip over insns that are part of a group.
+ Make each insn explicitly depend on the previous insn.
+ This ensures that only the group header will ever enter
+ the ready queue (and, when scheduled, will automatically
+ schedule the SCHED_GROUP_P block). */
+ while (SCHED_GROUP_P (insn))
+ {
+ rtx temp = prev_nonnote_insn (insn);
+ add_dependence (insn, temp, REG_DEP_ANTI);
+ insn = temp;
+ }
+ }
+
+ /* Don't overrun the bounds of the basic block. */
+ if (insn == head)
+ break;
+
+ insn = PREV_INSN (insn);
+ }
+
+ /* Make sure these insns are scheduled last in their block. */
+ insn = last;
+ if (insn != 0)
+ while (insn != head)
+ {
+ insn = prev_nonnote_insn (insn);
+
+ if (INSN_REF_COUNT (insn) != 0)
+ continue;
+
+ add_dependence (last, insn, REG_DEP_ANTI);
+ INSN_REF_COUNT (insn) = 1;
+
+ /* Skip over insns that are part of a group. */
+ while (SCHED_GROUP_P (insn))
+ insn = prev_nonnote_insn (insn);
+ }
+}
+
+/* Data structures for the computation of data dependences in a regions. We
+ keep one `deps' structure for every basic block. Before analyzing the
+ data dependences for a bb, its variables are initialized as a function of
+ the variables of its predecessors. When the analysis for a bb completes,
+ we save the contents to the corresponding bb_deps[bb] variable. */
+
+static struct deps *bb_deps;
+
+/* Duplicate the INSN_LIST elements of COPY and prepend them to OLD. */
+
+static rtx
+concat_INSN_LIST (copy, old)
+ rtx copy, old;
+{
+ rtx new = old;
+ for (; copy ; copy = XEXP (copy, 1))
+ new = alloc_INSN_LIST (XEXP (copy, 0), new);
+ return new;
+}
+
+static void
+concat_insn_mem_list (copy_insns, copy_mems, old_insns_p, old_mems_p)
+ rtx copy_insns, copy_mems;
+ rtx *old_insns_p, *old_mems_p;
+{
+ rtx new_insns = *old_insns_p;
+ rtx new_mems = *old_mems_p;
+
+ while (copy_insns)
+ {
+ new_insns = alloc_INSN_LIST (XEXP (copy_insns, 0), new_insns);
+ new_mems = alloc_EXPR_LIST (VOIDmode, XEXP (copy_mems, 0), new_mems);
+ copy_insns = XEXP (copy_insns, 1);
+ copy_mems = XEXP (copy_mems, 1);
+ }
+
+ *old_insns_p = new_insns;
+ *old_mems_p = new_mems;
+}
+
+/* After computing the dependencies for block BB, propagate the dependencies
+ found in TMP_DEPS to the successors of the block. */
+static void
+propagate_deps (bb, pred_deps)
+ int bb;
+ struct deps *pred_deps;
+{
+ int b = BB_TO_BLOCK (bb);
+ int e, first_edge;
+
+ /* bb's structures are inherited by its successors. */
+ first_edge = e = OUT_EDGES (b);
+ if (e > 0)
+ do
+ {
+ int b_succ = TO_BLOCK (e);
+ int bb_succ = BLOCK_TO_BB (b_succ);
+ struct deps *succ_deps = bb_deps + bb_succ;
+ int reg;
+
+ /* Only bbs "below" bb, in the same region, are interesting. */
+ if (CONTAINING_RGN (b) != CONTAINING_RGN (b_succ)
+ || bb_succ <= bb)
+ {
+ e = NEXT_OUT (e);
+ continue;
+ }
+
+ /* The reg_last lists are inherited by bb_succ. */
+ EXECUTE_IF_SET_IN_REG_SET (&pred_deps->reg_last_in_use, 0, reg,
+ {
+ struct deps_reg *pred_rl = &pred_deps->reg_last[reg];
+ struct deps_reg *succ_rl = &succ_deps->reg_last[reg];
+
+ succ_rl->uses = concat_INSN_LIST (pred_rl->uses, succ_rl->uses);
+ succ_rl->sets = concat_INSN_LIST (pred_rl->sets, succ_rl->sets);
+ succ_rl->clobbers = concat_INSN_LIST (pred_rl->clobbers,
+ succ_rl->clobbers);
+ succ_rl->uses_length += pred_rl->uses_length;
+ succ_rl->clobbers_length += pred_rl->clobbers_length;
+ });
+ IOR_REG_SET (&succ_deps->reg_last_in_use, &pred_deps->reg_last_in_use);
+
+ /* Mem read/write lists are inherited by bb_succ. */
+ concat_insn_mem_list (pred_deps->pending_read_insns,
+ pred_deps->pending_read_mems,
+ &succ_deps->pending_read_insns,
+ &succ_deps->pending_read_mems);
+ concat_insn_mem_list (pred_deps->pending_write_insns,
+ pred_deps->pending_write_mems,
+ &succ_deps->pending_write_insns,
+ &succ_deps->pending_write_mems);
+
+ succ_deps->last_pending_memory_flush
+ = concat_INSN_LIST (pred_deps->last_pending_memory_flush,
+ succ_deps->last_pending_memory_flush);
+
+ succ_deps->pending_lists_length += pred_deps->pending_lists_length;
+ succ_deps->pending_flush_length += pred_deps->pending_flush_length;
+
+ /* last_function_call is inherited by bb_succ. */
+ succ_deps->last_function_call
+ = concat_INSN_LIST (pred_deps->last_function_call,
+ succ_deps->last_function_call);
+
+ /* sched_before_next_call is inherited by bb_succ. */
+ succ_deps->sched_before_next_call
+ = concat_INSN_LIST (pred_deps->sched_before_next_call,
+ succ_deps->sched_before_next_call);
+
+ e = NEXT_OUT (e);
+ }
+ while (e != first_edge);
+
+ /* These lists should point to the right place, for correct
+ freeing later. */
+ bb_deps[bb].pending_read_insns = pred_deps->pending_read_insns;
+ bb_deps[bb].pending_read_mems = pred_deps->pending_read_mems;
+ bb_deps[bb].pending_write_insns = pred_deps->pending_write_insns;
+ bb_deps[bb].pending_write_mems = pred_deps->pending_write_mems;
+
+ /* Can't allow these to be freed twice. */
+ pred_deps->pending_read_insns = 0;
+ pred_deps->pending_read_mems = 0;
+ pred_deps->pending_write_insns = 0;
+ pred_deps->pending_write_mems = 0;
+}
+
+/* Compute backward dependences inside bb. In a multiple blocks region:
+ (1) a bb is analyzed after its predecessors, and (2) the lists in
+ effect at the end of bb (after analyzing for bb) are inherited by
+ bb's successrs.
+
+ Specifically for reg-reg data dependences, the block insns are
+ scanned by sched_analyze () top-to-bottom. Two lists are
+ maintained by sched_analyze (): reg_last[].sets for register DEFs,
+ and reg_last[].uses for register USEs.
+
+ When analysis is completed for bb, we update for its successors:
+ ; - DEFS[succ] = Union (DEFS [succ], DEFS [bb])
+ ; - USES[succ] = Union (USES [succ], DEFS [bb])
+
+ The mechanism for computing mem-mem data dependence is very
+ similar, and the result is interblock dependences in the region. */
+
+static void
+compute_block_backward_dependences (bb)
+ int bb;
+{
+ rtx head, tail;
+ struct deps tmp_deps;
+
+ tmp_deps = bb_deps[bb];
+
+ /* Do the analysis for this block. */
+ get_block_head_tail (BB_TO_BLOCK (bb), &head, &tail);
+ sched_analyze (&tmp_deps, head, tail);
+ add_branch_dependences (head, tail);
+
+ if (current_nr_blocks > 1)
+ propagate_deps (bb, &tmp_deps);
+
+ /* Free up the INSN_LISTs. */
+ free_deps (&tmp_deps);
+}
+
+/* Remove all INSN_LISTs and EXPR_LISTs from the pending lists and add
+ them to the unused_*_list variables, so that they can be reused. */
+
+static void
+free_pending_lists ()
+{
+ int bb;
+
+ for (bb = 0; bb < current_nr_blocks; bb++)
+ {
+ free_INSN_LIST_list (&bb_deps[bb].pending_read_insns);
+ free_INSN_LIST_list (&bb_deps[bb].pending_write_insns);
+ free_EXPR_LIST_list (&bb_deps[bb].pending_read_mems);
+ free_EXPR_LIST_list (&bb_deps[bb].pending_write_mems);
+ }
+}
+
+/* Print dependences for debugging, callable from debugger. */
+
+void
+debug_dependencies ()
+{
+ int bb;
+
+ fprintf (sched_dump, ";; --------------- forward dependences: ------------ \n");
+ for (bb = 0; bb < current_nr_blocks; bb++)
+ {
+ if (1)
+ {
+ rtx head, tail;
+ rtx next_tail;
+ rtx insn;
+
+ get_block_head_tail (BB_TO_BLOCK (bb), &head, &tail);
+ next_tail = NEXT_INSN (tail);
+ fprintf (sched_dump, "\n;; --- Region Dependences --- b %d bb %d \n",
+ BB_TO_BLOCK (bb), bb);
+
+ fprintf (sched_dump, ";; %7s%6s%6s%6s%6s%6s%11s%6s\n",
+ "insn", "code", "bb", "dep", "prio", "cost", "blockage", "units");
+ fprintf (sched_dump, ";; %7s%6s%6s%6s%6s%6s%11s%6s\n",
+ "----", "----", "--", "---", "----", "----", "--------", "-----");
+ for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
+ {
+ rtx link;
+ int unit, range;
+
+ if (! INSN_P (insn))
+ {
+ int n;
+ fprintf (sched_dump, ";; %6d ", INSN_UID (insn));
+ if (GET_CODE (insn) == NOTE)
+ {
+ n = NOTE_LINE_NUMBER (insn);
+ if (n < 0)
+ fprintf (sched_dump, "%s\n", GET_NOTE_INSN_NAME (n));
+ else
+ fprintf (sched_dump, "line %d, file %s\n", n,
+ NOTE_SOURCE_FILE (insn));
+ }
+ else
+ fprintf (sched_dump, " {%s}\n", GET_RTX_NAME (GET_CODE (insn)));
+ continue;
+ }
+
+ unit = insn_unit (insn);
+ range = (unit < 0
+ || function_units[unit].blockage_range_function == 0) ? 0 :
+ function_units[unit].blockage_range_function (insn);
+ fprintf (sched_dump,
+ ";; %s%5d%6d%6d%6d%6d%6d %3d -%3d ",
+ (SCHED_GROUP_P (insn) ? "+" : " "),
+ INSN_UID (insn),
+ INSN_CODE (insn),
+ INSN_BB (insn),
+ INSN_DEP_COUNT (insn),
+ INSN_PRIORITY (insn),
+ insn_cost (insn, 0, 0),
+ (int) MIN_BLOCKAGE_COST (range),
+ (int) MAX_BLOCKAGE_COST (range));
+ insn_print_units (insn);
+ fprintf (sched_dump, "\t: ");
+ for (link = INSN_DEPEND (insn); link; link = XEXP (link, 1))
+ fprintf (sched_dump, "%d ", INSN_UID (XEXP (link, 0)));
+ fprintf (sched_dump, "\n");
+ }
+ }
+ }
+ fprintf (sched_dump, "\n");
+}
+
+/* Schedule a region. A region is either an inner loop, a loop-free
+ subroutine, or a single basic block. Each bb in the region is
+ scheduled after its flow predecessors. */
+
+static void
+schedule_region (rgn)
+ int rgn;
+{
+ int bb;
+ int rgn_n_insns = 0;
+ int sched_rgn_n_insns = 0;
+
+ /* Set variables for the current region. */
+ current_nr_blocks = RGN_NR_BLOCKS (rgn);
+ current_blocks = RGN_BLOCKS (rgn);
+
+ init_deps_global ();
+
+ /* Initializations for region data dependence analyisis. */
+ bb_deps = (struct deps *) xmalloc (sizeof (struct deps) * current_nr_blocks);
+ for (bb = 0; bb < current_nr_blocks; bb++)
+ init_deps (bb_deps + bb);
+
+ /* Compute LOG_LINKS. */
+ for (bb = 0; bb < current_nr_blocks; bb++)
+ compute_block_backward_dependences (bb);
+
+ /* Compute INSN_DEPEND. */
+ for (bb = current_nr_blocks - 1; bb >= 0; bb--)
+ {
+ rtx head, tail;
+ get_block_head_tail (BB_TO_BLOCK (bb), &head, &tail);
+
+ compute_forward_dependences (head, tail);
+ }
+
+ /* Set priorities. */
+ for (bb = 0; bb < current_nr_blocks; bb++)
+ {
+ rtx head, tail;
+ get_block_head_tail (BB_TO_BLOCK (bb), &head, &tail);
+
+ rgn_n_insns += set_priorities (head, tail);
+ }
+
+ /* Compute interblock info: probabilities, split-edges, dominators, etc. */
+ if (current_nr_blocks > 1)
+ {
+ int i;
+
+ prob = (float *) xmalloc ((current_nr_blocks) * sizeof (float));
+
+ dom = sbitmap_vector_alloc (current_nr_blocks, current_nr_blocks);
+ sbitmap_vector_zero (dom, current_nr_blocks);
+ /* Edge to bit. */
+ rgn_nr_edges = 0;
+ edge_to_bit = (int *) xmalloc (nr_edges * sizeof (int));
+ for (i = 1; i < nr_edges; i++)
+ if (CONTAINING_RGN (FROM_BLOCK (i)) == rgn)
+ EDGE_TO_BIT (i) = rgn_nr_edges++;
+ rgn_edges = (int *) xmalloc (rgn_nr_edges * sizeof (int));
+
+ rgn_nr_edges = 0;
+ for (i = 1; i < nr_edges; i++)
+ if (CONTAINING_RGN (FROM_BLOCK (i)) == (rgn))
+ rgn_edges[rgn_nr_edges++] = i;
+
+ /* Split edges. */
+ pot_split = sbitmap_vector_alloc (current_nr_blocks, rgn_nr_edges);
+ sbitmap_vector_zero (pot_split, current_nr_blocks);
+ ancestor_edges = sbitmap_vector_alloc (current_nr_blocks, rgn_nr_edges);
+ sbitmap_vector_zero (ancestor_edges, current_nr_blocks);
+
+ /* Compute probabilities, dominators, split_edges. */
+ for (bb = 0; bb < current_nr_blocks; bb++)
+ compute_dom_prob_ps (bb);
+ }
+
+ /* Now we can schedule all blocks. */
+ for (bb = 0; bb < current_nr_blocks; bb++)
+ {
+ rtx head, tail;
+ int b = BB_TO_BLOCK (bb);
+
+ get_block_head_tail (b, &head, &tail);
+
+ if (no_real_insns_p (head, tail))
+ continue;
+
+ current_sched_info->prev_head = PREV_INSN (head);
+ current_sched_info->next_tail = NEXT_INSN (tail);
+
+ if (write_symbols != NO_DEBUG)
+ {
+ save_line_notes (b, head, tail);
+ rm_line_notes (head, tail);
+ }
+
+ /* rm_other_notes only removes notes which are _inside_ the
+ block---that is, it won't remove notes before the first real insn
+ or after the last real insn of the block. So if the first insn
+ has a REG_SAVE_NOTE which would otherwise be emitted before the
+ insn, it is redundant with the note before the start of the
+ block, and so we have to take it out. */
+ if (INSN_P (head))
+ {
+ rtx note;
+
+ for (note = REG_NOTES (head); note; note = XEXP (note, 1))
+ if (REG_NOTE_KIND (note) == REG_SAVE_NOTE)
+ {
+ remove_note (head, note);
+ note = XEXP (note, 1);
+ remove_note (head, note);
+ }
+ }
+
+ /* Remove remaining note insns from the block, save them in
+ note_list. These notes are restored at the end of
+ schedule_block (). */
+ rm_other_notes (head, tail);
+
+ target_bb = bb;
+
+ current_sched_info->queue_must_finish_empty
+ = current_nr_blocks > 1 && !flag_schedule_interblock;
+
+ schedule_block (b, rgn_n_insns);
+ sched_rgn_n_insns += sched_n_insns;
+
+ /* Update target block boundaries. */
+ if (head == BLOCK_HEAD (b))
+ BLOCK_HEAD (b) = current_sched_info->head;
+ if (tail == BLOCK_END (b))
+ BLOCK_END (b) = current_sched_info->tail;
+
+ /* Clean up. */
+ if (current_nr_blocks > 1)
+ {
+ free (candidate_table);
+ free (bblst_table);
+ free (bitlst_table);
+ }
+ }
+
+ /* Sanity check: verify that all region insns were scheduled. */
+ if (sched_rgn_n_insns != rgn_n_insns)
+ abort ();
+
+ /* Restore line notes. */
+ if (write_symbols != NO_DEBUG)
+ {
+ for (bb = 0; bb < current_nr_blocks; bb++)
+ {
+ rtx head, tail;
+ get_block_head_tail (BB_TO_BLOCK (bb), &head, &tail);
+ restore_line_notes (head, tail);
+ }
+ }
+
+ /* Done with this region. */
+ free_pending_lists ();
+
+ finish_deps_global ();
+
+ free (bb_deps);
+
+ if (current_nr_blocks > 1)
+ {
+ free (prob);
+ sbitmap_vector_free (dom);
+ sbitmap_vector_free (pot_split);
+ sbitmap_vector_free (ancestor_edges);
+ free (edge_to_bit);
+ free (rgn_edges);
+ }
+}
+
+/* Indexed by region, holds the number of death notes found in that region.
+ Used for consistency checks. */
+static int *deaths_in_region;
+
+/* Initialize data structures for region scheduling. */
+
+static void
+init_regions ()
+{
+ sbitmap blocks;
+ int rgn;
+
+ nr_regions = 0;
+ rgn_table = (region *) xmalloc ((n_basic_blocks) * sizeof (region));
+ rgn_bb_table = (int *) xmalloc ((n_basic_blocks) * sizeof (int));
+ block_to_bb = (int *) xmalloc ((n_basic_blocks) * sizeof (int));
+ containing_rgn = (int *) xmalloc ((n_basic_blocks) * sizeof (int));
+
+ /* Compute regions for scheduling. */
+ if (reload_completed
+ || n_basic_blocks == 1
+ || !flag_schedule_interblock)
+ {
+ find_single_block_region ();
+ }
+ else
+ {
+ /* Verify that a 'good' control flow graph can be built. */
+ if (is_cfg_nonregular ())
+ {
+ find_single_block_region ();
+ }
+ else
+ {
+ sbitmap *dom;
+ struct edge_list *edge_list;
+
+ dom = sbitmap_vector_alloc (n_basic_blocks, n_basic_blocks);
+
+ /* The scheduler runs after flow; therefore, we can't blindly call
+ back into find_basic_blocks since doing so could invalidate the
+ info in global_live_at_start.
+
+ Consider a block consisting entirely of dead stores; after life
+ analysis it would be a block of NOTE_INSN_DELETED notes. If
+ we call find_basic_blocks again, then the block would be removed
+ entirely and invalidate our the register live information.
+
+ We could (should?) recompute register live information. Doing
+ so may even be beneficial. */
+ edge_list = create_edge_list ();
+
+ /* Compute the dominators and post dominators. */
+ calculate_dominance_info (NULL, dom, CDI_DOMINATORS);
+
+ /* build_control_flow will return nonzero if it detects unreachable
+ blocks or any other irregularity with the cfg which prevents
+ cross block scheduling. */
+ if (build_control_flow (edge_list) != 0)
+ find_single_block_region ();
+ else
+ find_rgns (edge_list, dom);
+
+ if (sched_verbose >= 3)
+ debug_regions ();
+
+ /* We are done with flow's edge list. */
+ free_edge_list (edge_list);
+
+ /* For now. This will move as more and more of haifa is converted
+ to using the cfg code in flow.c. */
+ free (dom);
+ }
+ }
+
+
+ if (CHECK_DEAD_NOTES)
+ {
+ blocks = sbitmap_alloc (n_basic_blocks);
+ deaths_in_region = (int *) xmalloc (sizeof (int) * nr_regions);
+ /* Remove all death notes from the subroutine. */
+ for (rgn = 0; rgn < nr_regions; rgn++)
+ {
+ int b;
+
+ sbitmap_zero (blocks);
+ for (b = RGN_NR_BLOCKS (rgn) - 1; b >= 0; --b)
+ SET_BIT (blocks, rgn_bb_table[RGN_BLOCKS (rgn) + b]);
+
+ deaths_in_region[rgn] = count_or_remove_death_notes (blocks, 1);
+ }
+ sbitmap_free (blocks);
+ }
+ else
+ count_or_remove_death_notes (NULL, 1);
+}
+
+/* The one entry point in this file. DUMP_FILE is the dump file for
+ this pass. */
+
+void
+schedule_insns (dump_file)
+ FILE *dump_file;
+{
+ sbitmap large_region_blocks, blocks;
+ int rgn;
+ int any_large_regions;
+
+ /* Taking care of this degenerate case makes the rest of
+ this code simpler. */
+ if (n_basic_blocks == 0)
+ return;
+
+ scope_to_insns_initialize ();
+
+ nr_inter = 0;
+ nr_spec = 0;
+
+ sched_init (dump_file);
+
+ init_regions ();
+
+ current_sched_info = &region_sched_info;
+
+ /* Schedule every region in the subroutine. */
+ for (rgn = 0; rgn < nr_regions; rgn++)
+ schedule_region (rgn);
+
+ /* Update life analysis for the subroutine. Do single block regions
+ first so that we can verify that live_at_start didn't change. Then
+ do all other blocks. */
+ /* ??? There is an outside possibility that update_life_info, or more
+ to the point propagate_block, could get called with non-zero flags
+ more than once for one basic block. This would be kinda bad if it
+ were to happen, since REG_INFO would be accumulated twice for the
+ block, and we'd have twice the REG_DEAD notes.
+
+ I'm fairly certain that this _shouldn't_ happen, since I don't think
+ that live_at_start should change at region heads. Not sure what the
+ best way to test for this kind of thing... */
+
+ allocate_reg_life_data ();
+ compute_bb_for_insn (get_max_uid ());
+
+ any_large_regions = 0;
+ large_region_blocks = sbitmap_alloc (n_basic_blocks);
+ sbitmap_ones (large_region_blocks);
+
+ blocks = sbitmap_alloc (n_basic_blocks);
+ sbitmap_zero (blocks);
+
+ /* Update life information. For regions consisting of multiple blocks
+ we've possibly done interblock scheduling that affects global liveness.
+ For regions consisting of single blocks we need to do only local
+ liveness. */
+ for (rgn = 0; rgn < nr_regions; rgn++)
+ if (RGN_NR_BLOCKS (rgn) > 1)
+ any_large_regions = 1;
+ else
+ {
+ SET_BIT (blocks, rgn_bb_table[RGN_BLOCKS (rgn)]);
+ RESET_BIT (large_region_blocks, rgn_bb_table[RGN_BLOCKS (rgn)]);
+ }
+
+ /* Don't update reg info after reload, since that affects
+ regs_ever_live, which should not change after reload. */
+ update_life_info (blocks, UPDATE_LIFE_LOCAL,
+ (reload_completed ? PROP_DEATH_NOTES
+ : PROP_DEATH_NOTES | PROP_REG_INFO));
+ if (any_large_regions)
+ {
+ update_life_info (large_region_blocks, UPDATE_LIFE_GLOBAL,
+ PROP_DEATH_NOTES | PROP_REG_INFO);
+ }
+
+ if (CHECK_DEAD_NOTES)
+ {
+ /* Verify the counts of basic block notes in single the basic block
+ regions. */
+ for (rgn = 0; rgn < nr_regions; rgn++)
+ if (RGN_NR_BLOCKS (rgn) == 1)
+ {
+ sbitmap_zero (blocks);
+ SET_BIT (blocks, rgn_bb_table[RGN_BLOCKS (rgn)]);
+
+ if (deaths_in_region[rgn]
+ != count_or_remove_death_notes (blocks, 0))
+ abort ();
+ }
+ free (deaths_in_region);
+ }
+
+ /* Reposition the prologue and epilogue notes in case we moved the
+ prologue/epilogue insns. */
+ if (reload_completed)
+ reposition_prologue_and_epilogue_notes (get_insns ());
+
+ /* Delete redundant line notes. */
+ if (write_symbols != NO_DEBUG)
+ rm_redundant_line_notes ();
+
+ scope_to_insns_finalize ();
+
+ if (sched_verbose)
+ {
+ if (reload_completed == 0 && flag_schedule_interblock)
+ {
+ fprintf (sched_dump,
+ "\n;; Procedure interblock/speculative motions == %d/%d \n",
+ nr_inter, nr_spec);
+ }
+ else
+ {
+ if (nr_inter > 0)
+ abort ();
+ }
+ fprintf (sched_dump, "\n\n");
+ }
+
+ /* Clean up. */
+ free (rgn_table);
+ free (rgn_bb_table);
+ free (block_to_bb);
+ free (containing_rgn);
+
+ sched_finish ();
+
+ if (edge_table)
+ {
+ free (edge_table);
+ edge_table = NULL;
+ }
+
+ if (in_edges)
+ {
+ free (in_edges);
+ in_edges = NULL;
+ }
+ if (out_edges)
+ {
+ free (out_edges);
+ out_edges = NULL;
+ }
+
+ sbitmap_free (blocks);
+ sbitmap_free (large_region_blocks);
+}
+#endif
OpenPOWER on IntegriCloud