summaryrefslogtreecommitdiffstats
path: root/contrib/gcc/reload.c
diff options
context:
space:
mode:
authorpeter <peter@FreeBSD.org>1996-09-18 05:35:50 +0000
committerpeter <peter@FreeBSD.org>1996-09-18 05:35:50 +0000
commitd4691e641ba47cb86eef80f5c879e13f9d961724 (patch)
tree5b7ea73fc49c8998d9dc87d3eeff5b96439e6856 /contrib/gcc/reload.c
downloadFreeBSD-src-d4691e641ba47cb86eef80f5c879e13f9d961724.zip
FreeBSD-src-d4691e641ba47cb86eef80f5c879e13f9d961724.tar.gz
Import of unmodified (but trimmed) gcc-2.7.2. The bigger parts of the
non-i386, non-unix, and generatable files have been trimmed, but can easily be added in later if needed. gcc-2.7.2.1 will follow shortly, it's a very small delta to this and it's handy to have both available for reference for such little cost. The freebsd-specific changes will then be committed, and once the dust has settled, the bmakefiles will be committed to use this code.
Diffstat (limited to 'contrib/gcc/reload.c')
-rw-r--r--contrib/gcc/reload.c5955
1 files changed, 5955 insertions, 0 deletions
diff --git a/contrib/gcc/reload.c b/contrib/gcc/reload.c
new file mode 100644
index 0000000..d797e74
--- /dev/null
+++ b/contrib/gcc/reload.c
@@ -0,0 +1,5955 @@
+/* Search an insn for pseudo regs that must be in hard regs and are not.
+ Copyright (C) 1987, 88, 89, 92, 93, 94, 1995 Free Software Foundation, Inc.
+
+This file is part of GNU CC.
+
+GNU CC is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2, or (at your option)
+any later version.
+
+GNU CC is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GNU CC; see the file COPYING. If not, write to
+the Free Software Foundation, 59 Temple Place - Suite 330,
+Boston, MA 02111-1307, USA. */
+
+
+/* This file contains subroutines used only from the file reload1.c.
+ It knows how to scan one insn for operands and values
+ that need to be copied into registers to make valid code.
+ It also finds other operands and values which are valid
+ but for which equivalent values in registers exist and
+ ought to be used instead.
+
+ Before processing the first insn of the function, call `init_reload'.
+
+ To scan an insn, call `find_reloads'. This does two things:
+ 1. sets up tables describing which values must be reloaded
+ for this insn, and what kind of hard regs they must be reloaded into;
+ 2. optionally record the locations where those values appear in
+ the data, so they can be replaced properly later.
+ This is done only if the second arg to `find_reloads' is nonzero.
+
+ The third arg to `find_reloads' specifies the number of levels
+ of indirect addressing supported by the machine. If it is zero,
+ indirect addressing is not valid. If it is one, (MEM (REG n))
+ is valid even if (REG n) did not get a hard register; if it is two,
+ (MEM (MEM (REG n))) is also valid even if (REG n) did not get a
+ hard register, and similarly for higher values.
+
+ Then you must choose the hard regs to reload those pseudo regs into,
+ and generate appropriate load insns before this insn and perhaps
+ also store insns after this insn. Set up the array `reload_reg_rtx'
+ to contain the REG rtx's for the registers you used. In some
+ cases `find_reloads' will return a nonzero value in `reload_reg_rtx'
+ for certain reloads. Then that tells you which register to use,
+ so you do not need to allocate one. But you still do need to add extra
+ instructions to copy the value into and out of that register.
+
+ Finally you must call `subst_reloads' to substitute the reload reg rtx's
+ into the locations already recorded.
+
+NOTE SIDE EFFECTS:
+
+ find_reloads can alter the operands of the instruction it is called on.
+
+ 1. Two operands of any sort may be interchanged, if they are in a
+ commutative instruction.
+ This happens only if find_reloads thinks the instruction will compile
+ better that way.
+
+ 2. Pseudo-registers that are equivalent to constants are replaced
+ with those constants if they are not in hard registers.
+
+1 happens every time find_reloads is called.
+2 happens only when REPLACE is 1, which is only when
+actually doing the reloads, not when just counting them.
+
+
+Using a reload register for several reloads in one insn:
+
+When an insn has reloads, it is considered as having three parts:
+the input reloads, the insn itself after reloading, and the output reloads.
+Reloads of values used in memory addresses are often needed for only one part.
+
+When this is so, reload_when_needed records which part needs the reload.
+Two reloads for different parts of the insn can share the same reload
+register.
+
+When a reload is used for addresses in multiple parts, or when it is
+an ordinary operand, it is classified as RELOAD_OTHER, and cannot share
+a register with any other reload. */
+
+#define REG_OK_STRICT
+
+#include <stdio.h>
+#include "config.h"
+#include "rtl.h"
+#include "insn-config.h"
+#include "insn-codes.h"
+#include "recog.h"
+#include "reload.h"
+#include "regs.h"
+#include "hard-reg-set.h"
+#include "flags.h"
+#include "real.h"
+#include "output.h"
+
+#ifndef REGISTER_MOVE_COST
+#define REGISTER_MOVE_COST(x, y) 2
+#endif
+
+/* The variables set up by `find_reloads' are:
+
+ n_reloads number of distinct reloads needed; max reload # + 1
+ tables indexed by reload number
+ reload_in rtx for value to reload from
+ reload_out rtx for where to store reload-reg afterward if nec
+ (often the same as reload_in)
+ reload_reg_class enum reg_class, saying what regs to reload into
+ reload_inmode enum machine_mode; mode this operand should have
+ when reloaded, on input.
+ reload_outmode enum machine_mode; mode this operand should have
+ when reloaded, on output.
+ reload_optional char, nonzero for an optional reload.
+ Optional reloads are ignored unless the
+ value is already sitting in a register.
+ reload_inc int, positive amount to increment or decrement by if
+ reload_in is a PRE_DEC, PRE_INC, POST_DEC, POST_INC.
+ Ignored otherwise (don't assume it is zero).
+ reload_in_reg rtx. A reg for which reload_in is the equivalent.
+ If reload_in is a symbol_ref which came from
+ reg_equiv_constant, then this is the pseudo
+ which has that symbol_ref as equivalent.
+ reload_reg_rtx rtx. This is the register to reload into.
+ If it is zero when `find_reloads' returns,
+ you must find a suitable register in the class
+ specified by reload_reg_class, and store here
+ an rtx for that register with mode from
+ reload_inmode or reload_outmode.
+ reload_nocombine char, nonzero if this reload shouldn't be
+ combined with another reload.
+ reload_opnum int, operand number being reloaded. This is
+ used to group related reloads and need not always
+ be equal to the actual operand number in the insn,
+ though it current will be; for in-out operands, it
+ is one of the two operand numbers.
+ reload_when_needed enum, classifies reload as needed either for
+ addressing an input reload, addressing an output,
+ for addressing a non-reloaded mem ref,
+ or for unspecified purposes (i.e., more than one
+ of the above).
+ reload_secondary_p int, 1 if this is a secondary register for one
+ or more reloads.
+ reload_secondary_in_reload
+ reload_secondary_out_reload
+ int, gives the reload number of a secondary
+ reload, when needed; otherwise -1
+ reload_secondary_in_icode
+ reload_secondary_out_icode
+ enum insn_code, if a secondary reload is required,
+ gives the INSN_CODE that uses the secondary
+ reload as a scratch register, or CODE_FOR_nothing
+ if the secondary reload register is to be an
+ intermediate register. */
+int n_reloads;
+
+rtx reload_in[MAX_RELOADS];
+rtx reload_out[MAX_RELOADS];
+enum reg_class reload_reg_class[MAX_RELOADS];
+enum machine_mode reload_inmode[MAX_RELOADS];
+enum machine_mode reload_outmode[MAX_RELOADS];
+rtx reload_reg_rtx[MAX_RELOADS];
+char reload_optional[MAX_RELOADS];
+int reload_inc[MAX_RELOADS];
+rtx reload_in_reg[MAX_RELOADS];
+char reload_nocombine[MAX_RELOADS];
+int reload_opnum[MAX_RELOADS];
+enum reload_type reload_when_needed[MAX_RELOADS];
+int reload_secondary_p[MAX_RELOADS];
+int reload_secondary_in_reload[MAX_RELOADS];
+int reload_secondary_out_reload[MAX_RELOADS];
+enum insn_code reload_secondary_in_icode[MAX_RELOADS];
+enum insn_code reload_secondary_out_icode[MAX_RELOADS];
+
+/* All the "earlyclobber" operands of the current insn
+ are recorded here. */
+int n_earlyclobbers;
+rtx reload_earlyclobbers[MAX_RECOG_OPERANDS];
+
+int reload_n_operands;
+
+/* Replacing reloads.
+
+ If `replace_reloads' is nonzero, then as each reload is recorded
+ an entry is made for it in the table `replacements'.
+ Then later `subst_reloads' can look through that table and
+ perform all the replacements needed. */
+
+/* Nonzero means record the places to replace. */
+static int replace_reloads;
+
+/* Each replacement is recorded with a structure like this. */
+struct replacement
+{
+ rtx *where; /* Location to store in */
+ rtx *subreg_loc; /* Location of SUBREG if WHERE is inside
+ a SUBREG; 0 otherwise. */
+ int what; /* which reload this is for */
+ enum machine_mode mode; /* mode it must have */
+};
+
+static struct replacement replacements[MAX_RECOG_OPERANDS * ((MAX_REGS_PER_ADDRESS * 2) + 1)];
+
+/* Number of replacements currently recorded. */
+static int n_replacements;
+
+/* Used to track what is modified by an operand. */
+struct decomposition
+{
+ int reg_flag; /* Nonzero if referencing a register. */
+ int safe; /* Nonzero if this can't conflict with anything. */
+ rtx base; /* Base address for MEM. */
+ HOST_WIDE_INT start; /* Starting offset or register number. */
+ HOST_WIDE_INT end; /* Ending offset or register number. */
+};
+
+/* MEM-rtx's created for pseudo-regs in stack slots not directly addressable;
+ (see reg_equiv_address). */
+static rtx memlocs[MAX_RECOG_OPERANDS * ((MAX_REGS_PER_ADDRESS * 2) + 1)];
+static int n_memlocs;
+
+#ifdef SECONDARY_MEMORY_NEEDED
+
+/* Save MEMs needed to copy from one class of registers to another. One MEM
+ is used per mode, but normally only one or two modes are ever used.
+
+ We keep two versions, before and after register elimination. The one
+ after register elimination is record separately for each operand. This
+ is done in case the address is not valid to be sure that we separately
+ reload each. */
+
+static rtx secondary_memlocs[NUM_MACHINE_MODES];
+static rtx secondary_memlocs_elim[NUM_MACHINE_MODES][MAX_RECOG_OPERANDS];
+#endif
+
+/* The instruction we are doing reloads for;
+ so we can test whether a register dies in it. */
+static rtx this_insn;
+
+/* Nonzero if this instruction is a user-specified asm with operands. */
+static int this_insn_is_asm;
+
+/* If hard_regs_live_known is nonzero,
+ we can tell which hard regs are currently live,
+ at least enough to succeed in choosing dummy reloads. */
+static int hard_regs_live_known;
+
+/* Indexed by hard reg number,
+ element is nonegative if hard reg has been spilled.
+ This vector is passed to `find_reloads' as an argument
+ and is not changed here. */
+static short *static_reload_reg_p;
+
+/* Set to 1 in subst_reg_equivs if it changes anything. */
+static int subst_reg_equivs_changed;
+
+/* On return from push_reload, holds the reload-number for the OUT
+ operand, which can be different for that from the input operand. */
+static int output_reloadnum;
+
+ /* Compare two RTX's. */
+#define MATCHES(x, y) \
+ (x == y || (x != 0 && (GET_CODE (x) == REG \
+ ? GET_CODE (y) == REG && REGNO (x) == REGNO (y) \
+ : rtx_equal_p (x, y) && ! side_effects_p (x))))
+
+ /* Indicates if two reloads purposes are for similar enough things that we
+ can merge their reloads. */
+#define MERGABLE_RELOADS(when1, when2, op1, op2) \
+ ((when1) == RELOAD_OTHER || (when2) == RELOAD_OTHER \
+ || ((when1) == (when2) && (op1) == (op2)) \
+ || ((when1) == RELOAD_FOR_INPUT && (when2) == RELOAD_FOR_INPUT) \
+ || ((when1) == RELOAD_FOR_OPERAND_ADDRESS \
+ && (when2) == RELOAD_FOR_OPERAND_ADDRESS) \
+ || ((when1) == RELOAD_FOR_OTHER_ADDRESS \
+ && (when2) == RELOAD_FOR_OTHER_ADDRESS))
+
+ /* Nonzero if these two reload purposes produce RELOAD_OTHER when merged. */
+#define MERGE_TO_OTHER(when1, when2, op1, op2) \
+ ((when1) != (when2) \
+ || ! ((op1) == (op2) \
+ || (when1) == RELOAD_FOR_INPUT \
+ || (when1) == RELOAD_FOR_OPERAND_ADDRESS \
+ || (when1) == RELOAD_FOR_OTHER_ADDRESS))
+
+static int push_secondary_reload PROTO((int, rtx, int, int, enum reg_class,
+ enum machine_mode, enum reload_type,
+ enum insn_code *));
+static int push_reload PROTO((rtx, rtx, rtx *, rtx *, enum reg_class,
+ enum machine_mode, enum machine_mode,
+ int, int, int, enum reload_type));
+static void push_replacement PROTO((rtx *, int, enum machine_mode));
+static void combine_reloads PROTO((void));
+static rtx find_dummy_reload PROTO((rtx, rtx, rtx *, rtx *,
+ enum machine_mode, enum machine_mode,
+ enum reg_class, int));
+static int earlyclobber_operand_p PROTO((rtx));
+static int hard_reg_set_here_p PROTO((int, int, rtx));
+static struct decomposition decompose PROTO((rtx));
+static int immune_p PROTO((rtx, rtx, struct decomposition));
+static int alternative_allows_memconst PROTO((char *, int));
+static rtx find_reloads_toplev PROTO((rtx, int, enum reload_type, int, int));
+static rtx make_memloc PROTO((rtx, int));
+static int find_reloads_address PROTO((enum machine_mode, rtx *, rtx, rtx *,
+ int, enum reload_type, int));
+static rtx subst_reg_equivs PROTO((rtx));
+static rtx subst_indexed_address PROTO((rtx));
+static int find_reloads_address_1 PROTO((rtx, int, rtx *, int,
+ enum reload_type,int));
+static void find_reloads_address_part PROTO((rtx, rtx *, enum reg_class,
+ enum machine_mode, int,
+ enum reload_type, int));
+static int find_inc_amount PROTO((rtx, rtx));
+
+#ifdef HAVE_SECONDARY_RELOADS
+
+/* Determine if any secondary reloads are needed for loading (if IN_P is
+ non-zero) or storing (if IN_P is zero) X to or from a reload register of
+ register class RELOAD_CLASS in mode RELOAD_MODE. If secondary reloads
+ are needed, push them.
+
+ Return the reload number of the secondary reload we made, or -1 if
+ we didn't need one. *PICODE is set to the insn_code to use if we do
+ need a secondary reload. */
+
+static int
+push_secondary_reload (in_p, x, opnum, optional, reload_class, reload_mode,
+ type, picode)
+ int in_p;
+ rtx x;
+ int opnum;
+ int optional;
+ enum reg_class reload_class;
+ enum machine_mode reload_mode;
+ enum reload_type type;
+ enum insn_code *picode;
+{
+ enum reg_class class = NO_REGS;
+ enum machine_mode mode = reload_mode;
+ enum insn_code icode = CODE_FOR_nothing;
+ enum reg_class t_class = NO_REGS;
+ enum machine_mode t_mode = VOIDmode;
+ enum insn_code t_icode = CODE_FOR_nothing;
+ enum reload_type secondary_type;
+ int i;
+ int s_reload, t_reload = -1;
+
+ if (type == RELOAD_FOR_INPUT_ADDRESS || type == RELOAD_FOR_OUTPUT_ADDRESS)
+ secondary_type = type;
+ else
+ secondary_type = in_p ? RELOAD_FOR_INPUT_ADDRESS : RELOAD_FOR_OUTPUT_ADDRESS;
+
+ *picode = CODE_FOR_nothing;
+
+ /* If X is a paradoxical SUBREG, use the inner value to determine both the
+ mode and object being reloaded. */
+ if (GET_CODE (x) == SUBREG
+ && (GET_MODE_SIZE (GET_MODE (x))
+ > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
+ {
+ x = SUBREG_REG (x);
+ reload_mode = GET_MODE (x);
+ }
+
+ /* If X is a pseudo-register that has an equivalent MEM (actually, if it
+ is still a pseudo-register by now, it *must* have an equivalent MEM
+ but we don't want to assume that), use that equivalent when seeing if
+ a secondary reload is needed since whether or not a reload is needed
+ might be sensitive to the form of the MEM. */
+
+ if (GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER
+ && reg_equiv_mem[REGNO (x)] != 0)
+ x = reg_equiv_mem[REGNO (x)];
+
+#ifdef SECONDARY_INPUT_RELOAD_CLASS
+ if (in_p)
+ class = SECONDARY_INPUT_RELOAD_CLASS (reload_class, reload_mode, x);
+#endif
+
+#ifdef SECONDARY_OUTPUT_RELOAD_CLASS
+ if (! in_p)
+ class = SECONDARY_OUTPUT_RELOAD_CLASS (reload_class, reload_mode, x);
+#endif
+
+ /* If we don't need any secondary registers, done. */
+ if (class == NO_REGS)
+ return -1;
+
+ /* Get a possible insn to use. If the predicate doesn't accept X, don't
+ use the insn. */
+
+ icode = (in_p ? reload_in_optab[(int) reload_mode]
+ : reload_out_optab[(int) reload_mode]);
+
+ if (icode != CODE_FOR_nothing
+ && insn_operand_predicate[(int) icode][in_p]
+ && (! (insn_operand_predicate[(int) icode][in_p]) (x, reload_mode)))
+ icode = CODE_FOR_nothing;
+
+ /* If we will be using an insn, see if it can directly handle the reload
+ register we will be using. If it can, the secondary reload is for a
+ scratch register. If it can't, we will use the secondary reload for
+ an intermediate register and require a tertiary reload for the scratch
+ register. */
+
+ if (icode != CODE_FOR_nothing)
+ {
+ /* If IN_P is non-zero, the reload register will be the output in
+ operand 0. If IN_P is zero, the reload register will be the input
+ in operand 1. Outputs should have an initial "=", which we must
+ skip. */
+
+ char insn_letter = insn_operand_constraint[(int) icode][!in_p][in_p];
+ enum reg_class insn_class
+ = (insn_letter == 'r' ? GENERAL_REGS
+ : REG_CLASS_FROM_LETTER (insn_letter));
+
+ if (insn_class == NO_REGS
+ || (in_p && insn_operand_constraint[(int) icode][!in_p][0] != '=')
+ /* The scratch register's constraint must start with "=&". */
+ || insn_operand_constraint[(int) icode][2][0] != '='
+ || insn_operand_constraint[(int) icode][2][1] != '&')
+ abort ();
+
+ if (reg_class_subset_p (reload_class, insn_class))
+ mode = insn_operand_mode[(int) icode][2];
+ else
+ {
+ char t_letter = insn_operand_constraint[(int) icode][2][2];
+ class = insn_class;
+ t_mode = insn_operand_mode[(int) icode][2];
+ t_class = (t_letter == 'r' ? GENERAL_REGS
+ : REG_CLASS_FROM_LETTER (t_letter));
+ t_icode = icode;
+ icode = CODE_FOR_nothing;
+ }
+ }
+
+ /* This case isn't valid, so fail. Reload is allowed to use the same
+ register for RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT reloads, but
+ in the case of a secondary register, we actually need two different
+ registers for correct code. We fail here to prevent the possibility of
+ silently generating incorrect code later.
+
+ The convention is that secondary input reloads are valid only if the
+ secondary_class is different from class. If you have such a case, you
+ can not use secondary reloads, you must work around the problem some
+ other way.
+
+ Allow this when MODE is not reload_mode and assume that the generated
+ code handles this case (it does on the Alpha, which is the only place
+ this currently happens). */
+
+ if (in_p && class == reload_class && mode == reload_mode)
+ abort ();
+
+ /* If we need a tertiary reload, see if we have one we can reuse or else
+ make a new one. */
+
+ if (t_class != NO_REGS)
+ {
+ for (t_reload = 0; t_reload < n_reloads; t_reload++)
+ if (reload_secondary_p[t_reload]
+ && (reg_class_subset_p (t_class, reload_reg_class[t_reload])
+ || reg_class_subset_p (reload_reg_class[t_reload], t_class))
+ && ((in_p && reload_inmode[t_reload] == t_mode)
+ || (! in_p && reload_outmode[t_reload] == t_mode))
+ && ((in_p && (reload_secondary_in_icode[t_reload]
+ == CODE_FOR_nothing))
+ || (! in_p &&(reload_secondary_out_icode[t_reload]
+ == CODE_FOR_nothing)))
+ && (reg_class_size[(int) t_class] == 1
+#ifdef SMALL_REGISTER_CLASSES
+ || 1
+#endif
+ )
+ && MERGABLE_RELOADS (secondary_type,
+ reload_when_needed[t_reload],
+ opnum, reload_opnum[t_reload]))
+ {
+ if (in_p)
+ reload_inmode[t_reload] = t_mode;
+ if (! in_p)
+ reload_outmode[t_reload] = t_mode;
+
+ if (reg_class_subset_p (t_class, reload_reg_class[t_reload]))
+ reload_reg_class[t_reload] = t_class;
+
+ reload_opnum[t_reload] = MIN (reload_opnum[t_reload], opnum);
+ reload_optional[t_reload] &= optional;
+ reload_secondary_p[t_reload] = 1;
+ if (MERGE_TO_OTHER (secondary_type, reload_when_needed[t_reload],
+ opnum, reload_opnum[t_reload]))
+ reload_when_needed[t_reload] = RELOAD_OTHER;
+ }
+
+ if (t_reload == n_reloads)
+ {
+ /* We need to make a new tertiary reload for this register class. */
+ reload_in[t_reload] = reload_out[t_reload] = 0;
+ reload_reg_class[t_reload] = t_class;
+ reload_inmode[t_reload] = in_p ? t_mode : VOIDmode;
+ reload_outmode[t_reload] = ! in_p ? t_mode : VOIDmode;
+ reload_reg_rtx[t_reload] = 0;
+ reload_optional[t_reload] = optional;
+ reload_inc[t_reload] = 0;
+ /* Maybe we could combine these, but it seems too tricky. */
+ reload_nocombine[t_reload] = 1;
+ reload_in_reg[t_reload] = 0;
+ reload_opnum[t_reload] = opnum;
+ reload_when_needed[t_reload] = secondary_type;
+ reload_secondary_in_reload[t_reload] = -1;
+ reload_secondary_out_reload[t_reload] = -1;
+ reload_secondary_in_icode[t_reload] = CODE_FOR_nothing;
+ reload_secondary_out_icode[t_reload] = CODE_FOR_nothing;
+ reload_secondary_p[t_reload] = 1;
+
+ n_reloads++;
+ }
+ }
+
+ /* See if we can reuse an existing secondary reload. */
+ for (s_reload = 0; s_reload < n_reloads; s_reload++)
+ if (reload_secondary_p[s_reload]
+ && (reg_class_subset_p (class, reload_reg_class[s_reload])
+ || reg_class_subset_p (reload_reg_class[s_reload], class))
+ && ((in_p && reload_inmode[s_reload] == mode)
+ || (! in_p && reload_outmode[s_reload] == mode))
+ && ((in_p && reload_secondary_in_reload[s_reload] == t_reload)
+ || (! in_p && reload_secondary_out_reload[s_reload] == t_reload))
+ && ((in_p && reload_secondary_in_icode[s_reload] == t_icode)
+ || (! in_p && reload_secondary_out_icode[s_reload] == t_icode))
+ && (reg_class_size[(int) class] == 1
+#ifdef SMALL_REGISTER_CLASSES
+ || 1
+#endif
+ )
+ && MERGABLE_RELOADS (secondary_type, reload_when_needed[s_reload],
+ opnum, reload_opnum[s_reload]))
+ {
+ if (in_p)
+ reload_inmode[s_reload] = mode;
+ if (! in_p)
+ reload_outmode[s_reload] = mode;
+
+ if (reg_class_subset_p (class, reload_reg_class[s_reload]))
+ reload_reg_class[s_reload] = class;
+
+ reload_opnum[s_reload] = MIN (reload_opnum[s_reload], opnum);
+ reload_optional[s_reload] &= optional;
+ reload_secondary_p[s_reload] = 1;
+ if (MERGE_TO_OTHER (secondary_type, reload_when_needed[s_reload],
+ opnum, reload_opnum[s_reload]))
+ reload_when_needed[s_reload] = RELOAD_OTHER;
+ }
+
+ if (s_reload == n_reloads)
+ {
+ /* We need to make a new secondary reload for this register class. */
+ reload_in[s_reload] = reload_out[s_reload] = 0;
+ reload_reg_class[s_reload] = class;
+
+ reload_inmode[s_reload] = in_p ? mode : VOIDmode;
+ reload_outmode[s_reload] = ! in_p ? mode : VOIDmode;
+ reload_reg_rtx[s_reload] = 0;
+ reload_optional[s_reload] = optional;
+ reload_inc[s_reload] = 0;
+ /* Maybe we could combine these, but it seems too tricky. */
+ reload_nocombine[s_reload] = 1;
+ reload_in_reg[s_reload] = 0;
+ reload_opnum[s_reload] = opnum;
+ reload_when_needed[s_reload] = secondary_type;
+ reload_secondary_in_reload[s_reload] = in_p ? t_reload : -1;
+ reload_secondary_out_reload[s_reload] = ! in_p ? t_reload : -1;
+ reload_secondary_in_icode[s_reload] = in_p ? t_icode : CODE_FOR_nothing;
+ reload_secondary_out_icode[s_reload]
+ = ! in_p ? t_icode : CODE_FOR_nothing;
+ reload_secondary_p[s_reload] = 1;
+
+ n_reloads++;
+
+#ifdef SECONDARY_MEMORY_NEEDED
+ /* If we need a memory location to copy between the two reload regs,
+ set it up now. */
+
+ if (in_p && icode == CODE_FOR_nothing
+ && SECONDARY_MEMORY_NEEDED (class, reload_class, reload_mode))
+ get_secondary_mem (x, reload_mode, opnum, type);
+
+ if (! in_p && icode == CODE_FOR_nothing
+ && SECONDARY_MEMORY_NEEDED (reload_class, class, reload_mode))
+ get_secondary_mem (x, reload_mode, opnum, type);
+#endif
+ }
+
+ *picode = icode;
+ return s_reload;
+}
+#endif /* HAVE_SECONDARY_RELOADS */
+
+#ifdef SECONDARY_MEMORY_NEEDED
+
+/* Return a memory location that will be used to copy X in mode MODE.
+ If we haven't already made a location for this mode in this insn,
+ call find_reloads_address on the location being returned. */
+
+rtx
+get_secondary_mem (x, mode, opnum, type)
+ rtx x;
+ enum machine_mode mode;
+ int opnum;
+ enum reload_type type;
+{
+ rtx loc;
+ int mem_valid;
+
+ /* By default, if MODE is narrower than a word, widen it to a word.
+ This is required because most machines that require these memory
+ locations do not support short load and stores from all registers
+ (e.g., FP registers). */
+
+#ifdef SECONDARY_MEMORY_NEEDED_MODE
+ mode = SECONDARY_MEMORY_NEEDED_MODE (mode);
+#else
+ if (GET_MODE_BITSIZE (mode) < BITS_PER_WORD)
+ mode = mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (mode), 0);
+#endif
+
+ /* If we already have made a MEM for this operand in MODE, return it. */
+ if (secondary_memlocs_elim[(int) mode][opnum] != 0)
+ return secondary_memlocs_elim[(int) mode][opnum];
+
+ /* If this is the first time we've tried to get a MEM for this mode,
+ allocate a new one. `something_changed' in reload will get set
+ by noticing that the frame size has changed. */
+
+ if (secondary_memlocs[(int) mode] == 0)
+ {
+#ifdef SECONDARY_MEMORY_NEEDED_RTX
+ secondary_memlocs[(int) mode] = SECONDARY_MEMORY_NEEDED_RTX (mode);
+#else
+ secondary_memlocs[(int) mode]
+ = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
+#endif
+ }
+
+ /* Get a version of the address doing any eliminations needed. If that
+ didn't give us a new MEM, make a new one if it isn't valid. */
+
+ loc = eliminate_regs (secondary_memlocs[(int) mode], VOIDmode, NULL_RTX);
+ mem_valid = strict_memory_address_p (mode, XEXP (loc, 0));
+
+ if (! mem_valid && loc == secondary_memlocs[(int) mode])
+ loc = copy_rtx (loc);
+
+ /* The only time the call below will do anything is if the stack
+ offset is too large. In that case IND_LEVELS doesn't matter, so we
+ can just pass a zero. Adjust the type to be the address of the
+ corresponding object. If the address was valid, save the eliminated
+ address. If it wasn't valid, we need to make a reload each time, so
+ don't save it. */
+
+ if (! mem_valid)
+ {
+ type = (type == RELOAD_FOR_INPUT ? RELOAD_FOR_INPUT_ADDRESS
+ : type == RELOAD_FOR_OUTPUT ? RELOAD_FOR_OUTPUT_ADDRESS
+ : RELOAD_OTHER);
+
+ find_reloads_address (mode, NULL_PTR, XEXP (loc, 0), &XEXP (loc, 0),
+ opnum, type, 0);
+ }
+
+ secondary_memlocs_elim[(int) mode][opnum] = loc;
+ return loc;
+}
+
+/* Clear any secondary memory locations we've made. */
+
+void
+clear_secondary_mem ()
+{
+ bzero ((char *) secondary_memlocs, sizeof secondary_memlocs);
+}
+#endif /* SECONDARY_MEMORY_NEEDED */
+
+/* Record one reload that needs to be performed.
+ IN is an rtx saying where the data are to be found before this instruction.
+ OUT says where they must be stored after the instruction.
+ (IN is zero for data not read, and OUT is zero for data not written.)
+ INLOC and OUTLOC point to the places in the instructions where
+ IN and OUT were found.
+ If IN and OUT are both non-zero, it means the same register must be used
+ to reload both IN and OUT.
+
+ CLASS is a register class required for the reloaded data.
+ INMODE is the machine mode that the instruction requires
+ for the reg that replaces IN and OUTMODE is likewise for OUT.
+
+ If IN is zero, then OUT's location and mode should be passed as
+ INLOC and INMODE.
+
+ STRICT_LOW is the 1 if there is a containing STRICT_LOW_PART rtx.
+
+ OPTIONAL nonzero means this reload does not need to be performed:
+ it can be discarded if that is more convenient.
+
+ OPNUM and TYPE say what the purpose of this reload is.
+
+ The return value is the reload-number for this reload.
+
+ If both IN and OUT are nonzero, in some rare cases we might
+ want to make two separate reloads. (Actually we never do this now.)
+ Therefore, the reload-number for OUT is stored in
+ output_reloadnum when we return; the return value applies to IN.
+ Usually (presently always), when IN and OUT are nonzero,
+ the two reload-numbers are equal, but the caller should be careful to
+ distinguish them. */
+
+static int
+push_reload (in, out, inloc, outloc, class,
+ inmode, outmode, strict_low, optional, opnum, type)
+ register rtx in, out;
+ rtx *inloc, *outloc;
+ enum reg_class class;
+ enum machine_mode inmode, outmode;
+ int strict_low;
+ int optional;
+ int opnum;
+ enum reload_type type;
+{
+ register int i;
+ int dont_share = 0;
+ int dont_remove_subreg = 0;
+ rtx *in_subreg_loc = 0, *out_subreg_loc = 0;
+ int secondary_in_reload = -1, secondary_out_reload = -1;
+ enum insn_code secondary_in_icode = CODE_FOR_nothing;
+ enum insn_code secondary_out_icode = CODE_FOR_nothing;
+
+ /* INMODE and/or OUTMODE could be VOIDmode if no mode
+ has been specified for the operand. In that case,
+ use the operand's mode as the mode to reload. */
+ if (inmode == VOIDmode && in != 0)
+ inmode = GET_MODE (in);
+ if (outmode == VOIDmode && out != 0)
+ outmode = GET_MODE (out);
+
+ /* If IN is a pseudo register everywhere-equivalent to a constant, and
+ it is not in a hard register, reload straight from the constant,
+ since we want to get rid of such pseudo registers.
+ Often this is done earlier, but not always in find_reloads_address. */
+ if (in != 0 && GET_CODE (in) == REG)
+ {
+ register int regno = REGNO (in);
+
+ if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
+ && reg_equiv_constant[regno] != 0)
+ in = reg_equiv_constant[regno];
+ }
+
+ /* Likewise for OUT. Of course, OUT will never be equivalent to
+ an actual constant, but it might be equivalent to a memory location
+ (in the case of a parameter). */
+ if (out != 0 && GET_CODE (out) == REG)
+ {
+ register int regno = REGNO (out);
+
+ if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
+ && reg_equiv_constant[regno] != 0)
+ out = reg_equiv_constant[regno];
+ }
+
+ /* If we have a read-write operand with an address side-effect,
+ change either IN or OUT so the side-effect happens only once. */
+ if (in != 0 && out != 0 && GET_CODE (in) == MEM && rtx_equal_p (in, out))
+ {
+ if (GET_CODE (XEXP (in, 0)) == POST_INC
+ || GET_CODE (XEXP (in, 0)) == POST_DEC)
+ in = gen_rtx (MEM, GET_MODE (in), XEXP (XEXP (in, 0), 0));
+ if (GET_CODE (XEXP (in, 0)) == PRE_INC
+ || GET_CODE (XEXP (in, 0)) == PRE_DEC)
+ out = gen_rtx (MEM, GET_MODE (out), XEXP (XEXP (out, 0), 0));
+ }
+
+ /* If we are reloading a (SUBREG constant ...), really reload just the
+ inside expression in its own mode. Similarly for (SUBREG (PLUS ...)).
+ If we have (SUBREG:M1 (MEM:M2 ...) ...) (or an inner REG that is still
+ a pseudo and hence will become a MEM) with M1 wider than M2 and the
+ register is a pseudo, also reload the inside expression.
+ For machines that extend byte loads, do this for any SUBREG of a pseudo
+ where both M1 and M2 are a word or smaller, M1 is wider than M2, and
+ M2 is an integral mode that gets extended when loaded.
+ Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
+ either M1 is not valid for R or M2 is wider than a word but we only
+ need one word to store an M2-sized quantity in R.
+ (However, if OUT is nonzero, we need to reload the reg *and*
+ the subreg, so do nothing here, and let following statement handle it.)
+
+ Note that the case of (SUBREG (CONST_INT...)...) is handled elsewhere;
+ we can't handle it here because CONST_INT does not indicate a mode.
+
+ Similarly, we must reload the inside expression if we have a
+ STRICT_LOW_PART (presumably, in == out in the cas).
+
+ Also reload the inner expression if it does not require a secondary
+ reload but the SUBREG does.
+
+ Finally, reload the inner expression if it is a register that is in
+ the class whose registers cannot be referenced in a different size
+ and M1 is not the same size as M2. If SUBREG_WORD is nonzero, we
+ cannot reload just the inside since we might end up with the wrong
+ register class. */
+
+ if (in != 0 && GET_CODE (in) == SUBREG && SUBREG_WORD (in) == 0
+#ifdef CLASS_CANNOT_CHANGE_SIZE
+ && class != CLASS_CANNOT_CHANGE_SIZE
+#endif
+ && (CONSTANT_P (SUBREG_REG (in))
+ || GET_CODE (SUBREG_REG (in)) == PLUS
+ || strict_low
+ || (((GET_CODE (SUBREG_REG (in)) == REG
+ && REGNO (SUBREG_REG (in)) >= FIRST_PSEUDO_REGISTER)
+ || GET_CODE (SUBREG_REG (in)) == MEM)
+ && ((GET_MODE_SIZE (inmode)
+ > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
+#ifdef LOAD_EXTEND_OP
+ || (GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
+ && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
+ <= UNITS_PER_WORD)
+ && (GET_MODE_SIZE (inmode)
+ > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
+ && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (in)))
+ && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (in))) != NIL)
+#endif
+ ))
+ || (GET_CODE (SUBREG_REG (in)) == REG
+ && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
+ /* The case where out is nonzero
+ is handled differently in the following statement. */
+ && (out == 0 || SUBREG_WORD (in) == 0)
+ && ((GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
+ && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
+ > UNITS_PER_WORD)
+ && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
+ / UNITS_PER_WORD)
+ != HARD_REGNO_NREGS (REGNO (SUBREG_REG (in)),
+ GET_MODE (SUBREG_REG (in)))))
+ || ! HARD_REGNO_MODE_OK ((REGNO (SUBREG_REG (in))
+ + SUBREG_WORD (in)),
+ inmode)))
+#ifdef SECONDARY_INPUT_RELOAD_CLASS
+ || (SECONDARY_INPUT_RELOAD_CLASS (class, inmode, in) != NO_REGS
+ && (SECONDARY_INPUT_RELOAD_CLASS (class,
+ GET_MODE (SUBREG_REG (in)),
+ SUBREG_REG (in))
+ == NO_REGS))
+#endif
+#ifdef CLASS_CANNOT_CHANGE_SIZE
+ || (GET_CODE (SUBREG_REG (in)) == REG
+ && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
+ && (TEST_HARD_REG_BIT
+ (reg_class_contents[(int) CLASS_CANNOT_CHANGE_SIZE],
+ REGNO (SUBREG_REG (in))))
+ && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
+ != GET_MODE_SIZE (inmode)))
+#endif
+ ))
+ {
+ in_subreg_loc = inloc;
+ inloc = &SUBREG_REG (in);
+ in = *inloc;
+#ifndef LOAD_EXTEND_OP
+ if (GET_CODE (in) == MEM)
+ /* This is supposed to happen only for paradoxical subregs made by
+ combine.c. (SUBREG (MEM)) isn't supposed to occur other ways. */
+ if (GET_MODE_SIZE (GET_MODE (in)) > GET_MODE_SIZE (inmode))
+ abort ();
+#endif
+ inmode = GET_MODE (in);
+ }
+
+ /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
+ either M1 is not valid for R or M2 is wider than a word but we only
+ need one word to store an M2-sized quantity in R.
+
+ However, we must reload the inner reg *as well as* the subreg in
+ that case. */
+
+ if (in != 0 && GET_CODE (in) == SUBREG
+ && GET_CODE (SUBREG_REG (in)) == REG
+ && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
+ && (! HARD_REGNO_MODE_OK (REGNO (SUBREG_REG (in)), inmode)
+ || (GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
+ && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
+ > UNITS_PER_WORD)
+ && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
+ / UNITS_PER_WORD)
+ != HARD_REGNO_NREGS (REGNO (SUBREG_REG (in)),
+ GET_MODE (SUBREG_REG (in)))))))
+ {
+ /* This relies on the fact that emit_reload_insns outputs the
+ instructions for input reloads of type RELOAD_OTHER in the same
+ order as the reloads. Thus if the outer reload is also of type
+ RELOAD_OTHER, we are guaranteed that this inner reload will be
+ output before the outer reload. */
+ push_reload (SUBREG_REG (in), NULL_RTX, &SUBREG_REG (in), NULL_PTR,
+ GENERAL_REGS, VOIDmode, VOIDmode, 0, 0, opnum, type);
+ dont_remove_subreg = 1;
+ }
+
+
+ /* Similarly for paradoxical and problematical SUBREGs on the output.
+ Note that there is no reason we need worry about the previous value
+ of SUBREG_REG (out); even if wider than out,
+ storing in a subreg is entitled to clobber it all
+ (except in the case of STRICT_LOW_PART,
+ and in that case the constraint should label it input-output.) */
+ if (out != 0 && GET_CODE (out) == SUBREG && SUBREG_WORD (out) == 0
+#ifdef CLASS_CANNOT_CHANGE_SIZE
+ && class != CLASS_CANNOT_CHANGE_SIZE
+#endif
+ && (CONSTANT_P (SUBREG_REG (out))
+ || strict_low
+ || (((GET_CODE (SUBREG_REG (out)) == REG
+ && REGNO (SUBREG_REG (out)) >= FIRST_PSEUDO_REGISTER)
+ || GET_CODE (SUBREG_REG (out)) == MEM)
+ && ((GET_MODE_SIZE (outmode)
+ > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))))
+ || (GET_CODE (SUBREG_REG (out)) == REG
+ && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
+ && ((GET_MODE_SIZE (outmode) <= UNITS_PER_WORD
+ && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
+ > UNITS_PER_WORD)
+ && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
+ / UNITS_PER_WORD)
+ != HARD_REGNO_NREGS (REGNO (SUBREG_REG (out)),
+ GET_MODE (SUBREG_REG (out)))))
+ || ! HARD_REGNO_MODE_OK ((REGNO (SUBREG_REG (out))
+ + SUBREG_WORD (out)),
+ outmode)))
+#ifdef SECONDARY_OUTPUT_RELOAD_CLASS
+ || (SECONDARY_OUTPUT_RELOAD_CLASS (class, outmode, out) != NO_REGS
+ && (SECONDARY_OUTPUT_RELOAD_CLASS (class,
+ GET_MODE (SUBREG_REG (out)),
+ SUBREG_REG (out))
+ == NO_REGS))
+#endif
+#ifdef CLASS_CANNOT_CHANGE_SIZE
+ || (GET_CODE (SUBREG_REG (out)) == REG
+ && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
+ && (TEST_HARD_REG_BIT
+ (reg_class_contents[(int) CLASS_CANNOT_CHANGE_SIZE],
+ REGNO (SUBREG_REG (out))))
+ && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
+ != GET_MODE_SIZE (outmode)))
+#endif
+ ))
+ {
+ out_subreg_loc = outloc;
+ outloc = &SUBREG_REG (out);
+ out = *outloc;
+#ifndef LOAD_EXTEND_OP
+ if (GET_CODE (out) == MEM
+ && GET_MODE_SIZE (GET_MODE (out)) > GET_MODE_SIZE (outmode))
+ abort ();
+#endif
+ outmode = GET_MODE (out);
+ }
+
+ /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
+ either M1 is not valid for R or M2 is wider than a word but we only
+ need one word to store an M2-sized quantity in R.
+
+ However, we must reload the inner reg *as well as* the subreg in
+ that case. In this case, the inner reg is an in-out reload. */
+
+ if (out != 0 && GET_CODE (out) == SUBREG
+ && GET_CODE (SUBREG_REG (out)) == REG
+ && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
+ && (! HARD_REGNO_MODE_OK (REGNO (SUBREG_REG (out)), outmode)
+ || (GET_MODE_SIZE (outmode) <= UNITS_PER_WORD
+ && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
+ > UNITS_PER_WORD)
+ && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
+ / UNITS_PER_WORD)
+ != HARD_REGNO_NREGS (REGNO (SUBREG_REG (out)),
+ GET_MODE (SUBREG_REG (out)))))))
+ {
+ /* This relies on the fact that emit_reload_insns outputs the
+ instructions for output reloads of type RELOAD_OTHER in reverse
+ order of the reloads. Thus if the outer reload is also of type
+ RELOAD_OTHER, we are guaranteed that this inner reload will be
+ output after the outer reload. */
+ dont_remove_subreg = 1;
+ push_reload (SUBREG_REG (out), SUBREG_REG (out), &SUBREG_REG (out),
+ &SUBREG_REG (out), ALL_REGS, VOIDmode, VOIDmode, 0, 0,
+ opnum, RELOAD_OTHER);
+ }
+
+ /* If IN appears in OUT, we can't share any input-only reload for IN. */
+ if (in != 0 && out != 0 && GET_CODE (out) == MEM
+ && (GET_CODE (in) == REG || GET_CODE (in) == MEM)
+ && reg_overlap_mentioned_for_reload_p (in, XEXP (out, 0)))
+ dont_share = 1;
+
+ /* If IN is a SUBREG of a hard register, make a new REG. This
+ simplifies some of the cases below. */
+
+ if (in != 0 && GET_CODE (in) == SUBREG && GET_CODE (SUBREG_REG (in)) == REG
+ && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
+ && ! dont_remove_subreg)
+ in = gen_rtx (REG, GET_MODE (in),
+ REGNO (SUBREG_REG (in)) + SUBREG_WORD (in));
+
+ /* Similarly for OUT. */
+ if (out != 0 && GET_CODE (out) == SUBREG
+ && GET_CODE (SUBREG_REG (out)) == REG
+ && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
+ && ! dont_remove_subreg)
+ out = gen_rtx (REG, GET_MODE (out),
+ REGNO (SUBREG_REG (out)) + SUBREG_WORD (out));
+
+ /* Narrow down the class of register wanted if that is
+ desirable on this machine for efficiency. */
+ if (in != 0)
+ class = PREFERRED_RELOAD_CLASS (in, class);
+
+ /* Output reloads may need analogous treatment, different in detail. */
+#ifdef PREFERRED_OUTPUT_RELOAD_CLASS
+ if (out != 0)
+ class = PREFERRED_OUTPUT_RELOAD_CLASS (out, class);
+#endif
+
+ /* Make sure we use a class that can handle the actual pseudo
+ inside any subreg. For example, on the 386, QImode regs
+ can appear within SImode subregs. Although GENERAL_REGS
+ can handle SImode, QImode needs a smaller class. */
+#ifdef LIMIT_RELOAD_CLASS
+ if (in_subreg_loc)
+ class = LIMIT_RELOAD_CLASS (inmode, class);
+ else if (in != 0 && GET_CODE (in) == SUBREG)
+ class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (in)), class);
+
+ if (out_subreg_loc)
+ class = LIMIT_RELOAD_CLASS (outmode, class);
+ if (out != 0 && GET_CODE (out) == SUBREG)
+ class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (out)), class);
+#endif
+
+ /* Verify that this class is at least possible for the mode that
+ is specified. */
+ if (this_insn_is_asm)
+ {
+ enum machine_mode mode;
+ if (GET_MODE_SIZE (inmode) > GET_MODE_SIZE (outmode))
+ mode = inmode;
+ else
+ mode = outmode;
+ if (mode == VOIDmode)
+ {
+ error_for_asm (this_insn, "cannot reload integer constant operand in `asm'");
+ mode = word_mode;
+ if (in != 0)
+ inmode = word_mode;
+ if (out != 0)
+ outmode = word_mode;
+ }
+ for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
+ if (HARD_REGNO_MODE_OK (i, mode)
+ && TEST_HARD_REG_BIT (reg_class_contents[(int) class], i))
+ {
+ int nregs = HARD_REGNO_NREGS (i, mode);
+
+ int j;
+ for (j = 1; j < nregs; j++)
+ if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class], i + j))
+ break;
+ if (j == nregs)
+ break;
+ }
+ if (i == FIRST_PSEUDO_REGISTER)
+ {
+ error_for_asm (this_insn, "impossible register constraint in `asm'");
+ class = ALL_REGS;
+ }
+ }
+
+ if (class == NO_REGS)
+ abort ();
+
+ /* We can use an existing reload if the class is right
+ and at least one of IN and OUT is a match
+ and the other is at worst neutral.
+ (A zero compared against anything is neutral.)
+
+ If SMALL_REGISTER_CLASSES, don't use existing reloads unless they are
+ for the same thing since that can cause us to need more reload registers
+ than we otherwise would. */
+
+ for (i = 0; i < n_reloads; i++)
+ if ((reg_class_subset_p (class, reload_reg_class[i])
+ || reg_class_subset_p (reload_reg_class[i], class))
+ /* If the existing reload has a register, it must fit our class. */
+ && (reload_reg_rtx[i] == 0
+ || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
+ true_regnum (reload_reg_rtx[i])))
+ && ((in != 0 && MATCHES (reload_in[i], in) && ! dont_share
+ && (out == 0 || reload_out[i] == 0 || MATCHES (reload_out[i], out)))
+ ||
+ (out != 0 && MATCHES (reload_out[i], out)
+ && (in == 0 || reload_in[i] == 0 || MATCHES (reload_in[i], in))))
+ && (reg_class_size[(int) class] == 1
+#ifdef SMALL_REGISTER_CLASSES
+ || 1
+#endif
+ )
+ && MERGABLE_RELOADS (type, reload_when_needed[i],
+ opnum, reload_opnum[i]))
+ break;
+
+ /* Reloading a plain reg for input can match a reload to postincrement
+ that reg, since the postincrement's value is the right value.
+ Likewise, it can match a preincrement reload, since we regard
+ the preincrementation as happening before any ref in this insn
+ to that register. */
+ if (i == n_reloads)
+ for (i = 0; i < n_reloads; i++)
+ if ((reg_class_subset_p (class, reload_reg_class[i])
+ || reg_class_subset_p (reload_reg_class[i], class))
+ /* If the existing reload has a register, it must fit our class. */
+ && (reload_reg_rtx[i] == 0
+ || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
+ true_regnum (reload_reg_rtx[i])))
+ && out == 0 && reload_out[i] == 0 && reload_in[i] != 0
+ && ((GET_CODE (in) == REG
+ && (GET_CODE (reload_in[i]) == POST_INC
+ || GET_CODE (reload_in[i]) == POST_DEC
+ || GET_CODE (reload_in[i]) == PRE_INC
+ || GET_CODE (reload_in[i]) == PRE_DEC)
+ && MATCHES (XEXP (reload_in[i], 0), in))
+ ||
+ (GET_CODE (reload_in[i]) == REG
+ && (GET_CODE (in) == POST_INC
+ || GET_CODE (in) == POST_DEC
+ || GET_CODE (in) == PRE_INC
+ || GET_CODE (in) == PRE_DEC)
+ && MATCHES (XEXP (in, 0), reload_in[i])))
+ && (reg_class_size[(int) class] == 1
+#ifdef SMALL_REGISTER_CLASSES
+ || 1
+#endif
+ )
+ && MERGABLE_RELOADS (type, reload_when_needed[i],
+ opnum, reload_opnum[i]))
+ {
+ /* Make sure reload_in ultimately has the increment,
+ not the plain register. */
+ if (GET_CODE (in) == REG)
+ in = reload_in[i];
+ break;
+ }
+
+ if (i == n_reloads)
+ {
+ /* See if we need a secondary reload register to move between CLASS
+ and IN or CLASS and OUT. Get the icode and push any required reloads
+ needed for each of them if so. */
+
+#ifdef SECONDARY_INPUT_RELOAD_CLASS
+ if (in != 0)
+ secondary_in_reload
+ = push_secondary_reload (1, in, opnum, optional, class, inmode, type,
+ &secondary_in_icode);
+#endif
+
+#ifdef SECONDARY_OUTPUT_RELOAD_CLASS
+ if (out != 0 && GET_CODE (out) != SCRATCH)
+ secondary_out_reload
+ = push_secondary_reload (0, out, opnum, optional, class, outmode,
+ type, &secondary_out_icode);
+#endif
+
+ /* We found no existing reload suitable for re-use.
+ So add an additional reload. */
+
+ i = n_reloads;
+ reload_in[i] = in;
+ reload_out[i] = out;
+ reload_reg_class[i] = class;
+ reload_inmode[i] = inmode;
+ reload_outmode[i] = outmode;
+ reload_reg_rtx[i] = 0;
+ reload_optional[i] = optional;
+ reload_inc[i] = 0;
+ reload_nocombine[i] = 0;
+ reload_in_reg[i] = inloc ? *inloc : 0;
+ reload_opnum[i] = opnum;
+ reload_when_needed[i] = type;
+ reload_secondary_in_reload[i] = secondary_in_reload;
+ reload_secondary_out_reload[i] = secondary_out_reload;
+ reload_secondary_in_icode[i] = secondary_in_icode;
+ reload_secondary_out_icode[i] = secondary_out_icode;
+ reload_secondary_p[i] = 0;
+
+ n_reloads++;
+
+#ifdef SECONDARY_MEMORY_NEEDED
+ /* If a memory location is needed for the copy, make one. */
+ if (in != 0 && GET_CODE (in) == REG
+ && REGNO (in) < FIRST_PSEUDO_REGISTER
+ && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (in)),
+ class, inmode))
+ get_secondary_mem (in, inmode, opnum, type);
+
+ if (out != 0 && GET_CODE (out) == REG
+ && REGNO (out) < FIRST_PSEUDO_REGISTER
+ && SECONDARY_MEMORY_NEEDED (class, REGNO_REG_CLASS (REGNO (out)),
+ outmode))
+ get_secondary_mem (out, outmode, opnum, type);
+#endif
+ }
+ else
+ {
+ /* We are reusing an existing reload,
+ but we may have additional information for it.
+ For example, we may now have both IN and OUT
+ while the old one may have just one of them. */
+
+ if (inmode != VOIDmode)
+ reload_inmode[i] = inmode;
+ if (outmode != VOIDmode)
+ reload_outmode[i] = outmode;
+ if (in != 0)
+ reload_in[i] = in;
+ if (out != 0)
+ reload_out[i] = out;
+ if (reg_class_subset_p (class, reload_reg_class[i]))
+ reload_reg_class[i] = class;
+ reload_optional[i] &= optional;
+ if (MERGE_TO_OTHER (type, reload_when_needed[i],
+ opnum, reload_opnum[i]))
+ reload_when_needed[i] = RELOAD_OTHER;
+ reload_opnum[i] = MIN (reload_opnum[i], opnum);
+ }
+
+ /* If the ostensible rtx being reload differs from the rtx found
+ in the location to substitute, this reload is not safe to combine
+ because we cannot reliably tell whether it appears in the insn. */
+
+ if (in != 0 && in != *inloc)
+ reload_nocombine[i] = 1;
+
+#if 0
+ /* This was replaced by changes in find_reloads_address_1 and the new
+ function inc_for_reload, which go with a new meaning of reload_inc. */
+
+ /* If this is an IN/OUT reload in an insn that sets the CC,
+ it must be for an autoincrement. It doesn't work to store
+ the incremented value after the insn because that would clobber the CC.
+ So we must do the increment of the value reloaded from,
+ increment it, store it back, then decrement again. */
+ if (out != 0 && sets_cc0_p (PATTERN (this_insn)))
+ {
+ out = 0;
+ reload_out[i] = 0;
+ reload_inc[i] = find_inc_amount (PATTERN (this_insn), in);
+ /* If we did not find a nonzero amount-to-increment-by,
+ that contradicts the belief that IN is being incremented
+ in an address in this insn. */
+ if (reload_inc[i] == 0)
+ abort ();
+ }
+#endif
+
+ /* If we will replace IN and OUT with the reload-reg,
+ record where they are located so that substitution need
+ not do a tree walk. */
+
+ if (replace_reloads)
+ {
+ if (inloc != 0)
+ {
+ register struct replacement *r = &replacements[n_replacements++];
+ r->what = i;
+ r->subreg_loc = in_subreg_loc;
+ r->where = inloc;
+ r->mode = inmode;
+ }
+ if (outloc != 0 && outloc != inloc)
+ {
+ register struct replacement *r = &replacements[n_replacements++];
+ r->what = i;
+ r->where = outloc;
+ r->subreg_loc = out_subreg_loc;
+ r->mode = outmode;
+ }
+ }
+
+ /* If this reload is just being introduced and it has both
+ an incoming quantity and an outgoing quantity that are
+ supposed to be made to match, see if either one of the two
+ can serve as the place to reload into.
+
+ If one of them is acceptable, set reload_reg_rtx[i]
+ to that one. */
+
+ if (in != 0 && out != 0 && in != out && reload_reg_rtx[i] == 0)
+ {
+ reload_reg_rtx[i] = find_dummy_reload (in, out, inloc, outloc,
+ inmode, outmode,
+ reload_reg_class[i], i);
+
+ /* If the outgoing register already contains the same value
+ as the incoming one, we can dispense with loading it.
+ The easiest way to tell the caller that is to give a phony
+ value for the incoming operand (same as outgoing one). */
+ if (reload_reg_rtx[i] == out
+ && (GET_CODE (in) == REG || CONSTANT_P (in))
+ && 0 != find_equiv_reg (in, this_insn, 0, REGNO (out),
+ static_reload_reg_p, i, inmode))
+ reload_in[i] = out;
+ }
+
+ /* If this is an input reload and the operand contains a register that
+ dies in this insn and is used nowhere else, see if it is the right class
+ to be used for this reload. Use it if so. (This occurs most commonly
+ in the case of paradoxical SUBREGs and in-out reloads). We cannot do
+ this if it is also an output reload that mentions the register unless
+ the output is a SUBREG that clobbers an entire register.
+
+ Note that the operand might be one of the spill regs, if it is a
+ pseudo reg and we are in a block where spilling has not taken place.
+ But if there is no spilling in this block, that is OK.
+ An explicitly used hard reg cannot be a spill reg. */
+
+ if (reload_reg_rtx[i] == 0 && in != 0)
+ {
+ rtx note;
+ int regno;
+
+ for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
+ if (REG_NOTE_KIND (note) == REG_DEAD
+ && GET_CODE (XEXP (note, 0)) == REG
+ && (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
+ && reg_mentioned_p (XEXP (note, 0), in)
+ && ! refers_to_regno_for_reload_p (regno,
+ (regno
+ + HARD_REGNO_NREGS (regno,
+ inmode)),
+ PATTERN (this_insn), inloc)
+ /* If this is also an output reload, IN cannot be used as
+ the reload register if it is set in this insn unless IN
+ is also OUT. */
+ && (out == 0 || in == out
+ || ! hard_reg_set_here_p (regno,
+ (regno
+ + HARD_REGNO_NREGS (regno,
+ inmode)),
+ PATTERN (this_insn)))
+ /* ??? Why is this code so different from the previous?
+ Is there any simple coherent way to describe the two together?
+ What's going on here. */
+ && (in != out
+ || (GET_CODE (in) == SUBREG
+ && (((GET_MODE_SIZE (GET_MODE (in)) + (UNITS_PER_WORD - 1))
+ / UNITS_PER_WORD)
+ == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
+ + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
+ /* Make sure the operand fits in the reg that dies. */
+ && GET_MODE_SIZE (inmode) <= GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
+ && HARD_REGNO_MODE_OK (regno, inmode)
+ && GET_MODE_SIZE (outmode) <= GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
+ && HARD_REGNO_MODE_OK (regno, outmode)
+ && TEST_HARD_REG_BIT (reg_class_contents[(int) class], regno)
+ && !fixed_regs[regno])
+ {
+ reload_reg_rtx[i] = gen_rtx (REG, inmode, regno);
+ break;
+ }
+ }
+
+ if (out)
+ output_reloadnum = i;
+
+ return i;
+}
+
+/* Record an additional place we must replace a value
+ for which we have already recorded a reload.
+ RELOADNUM is the value returned by push_reload
+ when the reload was recorded.
+ This is used in insn patterns that use match_dup. */
+
+static void
+push_replacement (loc, reloadnum, mode)
+ rtx *loc;
+ int reloadnum;
+ enum machine_mode mode;
+{
+ if (replace_reloads)
+ {
+ register struct replacement *r = &replacements[n_replacements++];
+ r->what = reloadnum;
+ r->where = loc;
+ r->subreg_loc = 0;
+ r->mode = mode;
+ }
+}
+
+/* Transfer all replacements that used to be in reload FROM to be in
+ reload TO. */
+
+void
+transfer_replacements (to, from)
+ int to, from;
+{
+ int i;
+
+ for (i = 0; i < n_replacements; i++)
+ if (replacements[i].what == from)
+ replacements[i].what = to;
+}
+
+/* If there is only one output reload, and it is not for an earlyclobber
+ operand, try to combine it with a (logically unrelated) input reload
+ to reduce the number of reload registers needed.
+
+ This is safe if the input reload does not appear in
+ the value being output-reloaded, because this implies
+ it is not needed any more once the original insn completes.
+
+ If that doesn't work, see we can use any of the registers that
+ die in this insn as a reload register. We can if it is of the right
+ class and does not appear in the value being output-reloaded. */
+
+static void
+combine_reloads ()
+{
+ int i;
+ int output_reload = -1;
+ int secondary_out = -1;
+ rtx note;
+
+ /* Find the output reload; return unless there is exactly one
+ and that one is mandatory. */
+
+ for (i = 0; i < n_reloads; i++)
+ if (reload_out[i] != 0)
+ {
+ if (output_reload >= 0)
+ return;
+ output_reload = i;
+ }
+
+ if (output_reload < 0 || reload_optional[output_reload])
+ return;
+
+ /* An input-output reload isn't combinable. */
+
+ if (reload_in[output_reload] != 0)
+ return;
+
+ /* If this reload is for an earlyclobber operand, we can't do anything. */
+ if (earlyclobber_operand_p (reload_out[output_reload]))
+ return;
+
+ /* Check each input reload; can we combine it? */
+
+ for (i = 0; i < n_reloads; i++)
+ if (reload_in[i] && ! reload_optional[i] && ! reload_nocombine[i]
+ /* Life span of this reload must not extend past main insn. */
+ && reload_when_needed[i] != RELOAD_FOR_OUTPUT_ADDRESS
+ && reload_when_needed[i] != RELOAD_OTHER
+ && (CLASS_MAX_NREGS (reload_reg_class[i], reload_inmode[i])
+ == CLASS_MAX_NREGS (reload_reg_class[output_reload],
+ reload_outmode[output_reload]))
+ && reload_inc[i] == 0
+ && reload_reg_rtx[i] == 0
+#ifdef SECONDARY_MEMORY_NEEDED
+ /* Don't combine two reloads with different secondary
+ memory locations. */
+ && (secondary_memlocs_elim[(int) reload_outmode[output_reload]][reload_opnum[i]] == 0
+ || secondary_memlocs_elim[(int) reload_outmode[output_reload]][reload_opnum[output_reload]] == 0
+ || rtx_equal_p (secondary_memlocs_elim[(int) reload_outmode[output_reload]][reload_opnum[i]],
+ secondary_memlocs_elim[(int) reload_outmode[output_reload]][reload_opnum[output_reload]]))
+#endif
+#ifdef SMALL_REGISTER_CLASSES
+ && reload_reg_class[i] == reload_reg_class[output_reload]
+#else
+ && (reg_class_subset_p (reload_reg_class[i],
+ reload_reg_class[output_reload])
+ || reg_class_subset_p (reload_reg_class[output_reload],
+ reload_reg_class[i]))
+#endif
+ && (MATCHES (reload_in[i], reload_out[output_reload])
+ /* Args reversed because the first arg seems to be
+ the one that we imagine being modified
+ while the second is the one that might be affected. */
+ || (! reg_overlap_mentioned_for_reload_p (reload_out[output_reload],
+ reload_in[i])
+ /* However, if the input is a register that appears inside
+ the output, then we also can't share.
+ Imagine (set (mem (reg 69)) (plus (reg 69) ...)).
+ If the same reload reg is used for both reg 69 and the
+ result to be stored in memory, then that result
+ will clobber the address of the memory ref. */
+ && ! (GET_CODE (reload_in[i]) == REG
+ && reg_overlap_mentioned_for_reload_p (reload_in[i],
+ reload_out[output_reload]))))
+ && (reg_class_size[(int) reload_reg_class[i]]
+#ifdef SMALL_REGISTER_CLASSES
+ || 1
+#endif
+ )
+ /* We will allow making things slightly worse by combining an
+ input and an output, but no worse than that. */
+ && (reload_when_needed[i] == RELOAD_FOR_INPUT
+ || reload_when_needed[i] == RELOAD_FOR_OUTPUT))
+ {
+ int j;
+
+ /* We have found a reload to combine with! */
+ reload_out[i] = reload_out[output_reload];
+ reload_outmode[i] = reload_outmode[output_reload];
+ /* Mark the old output reload as inoperative. */
+ reload_out[output_reload] = 0;
+ /* The combined reload is needed for the entire insn. */
+ reload_when_needed[i] = RELOAD_OTHER;
+ /* If the output reload had a secondary reload, copy it. */
+ if (reload_secondary_out_reload[output_reload] != -1)
+ {
+ reload_secondary_out_reload[i]
+ = reload_secondary_out_reload[output_reload];
+ reload_secondary_out_icode[i]
+ = reload_secondary_out_icode[output_reload];
+ }
+
+#ifdef SECONDARY_MEMORY_NEEDED
+ /* Copy any secondary MEM. */
+ if (secondary_memlocs_elim[(int) reload_outmode[output_reload]][reload_opnum[output_reload]] != 0)
+ secondary_memlocs_elim[(int) reload_outmode[output_reload]][reload_opnum[i]]
+ = secondary_memlocs_elim[(int) reload_outmode[output_reload]][reload_opnum[output_reload]];
+#endif
+ /* If required, minimize the register class. */
+ if (reg_class_subset_p (reload_reg_class[output_reload],
+ reload_reg_class[i]))
+ reload_reg_class[i] = reload_reg_class[output_reload];
+
+ /* Transfer all replacements from the old reload to the combined. */
+ for (j = 0; j < n_replacements; j++)
+ if (replacements[j].what == output_reload)
+ replacements[j].what = i;
+
+ return;
+ }
+
+ /* If this insn has only one operand that is modified or written (assumed
+ to be the first), it must be the one corresponding to this reload. It
+ is safe to use anything that dies in this insn for that output provided
+ that it does not occur in the output (we already know it isn't an
+ earlyclobber. If this is an asm insn, give up. */
+
+ if (INSN_CODE (this_insn) == -1)
+ return;
+
+ for (i = 1; i < insn_n_operands[INSN_CODE (this_insn)]; i++)
+ if (insn_operand_constraint[INSN_CODE (this_insn)][i][0] == '='
+ || insn_operand_constraint[INSN_CODE (this_insn)][i][0] == '+')
+ return;
+
+ /* See if some hard register that dies in this insn and is not used in
+ the output is the right class. Only works if the register we pick
+ up can fully hold our output reload. */
+ for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
+ if (REG_NOTE_KIND (note) == REG_DEAD
+ && GET_CODE (XEXP (note, 0)) == REG
+ && ! reg_overlap_mentioned_for_reload_p (XEXP (note, 0),
+ reload_out[output_reload])
+ && REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
+ && HARD_REGNO_MODE_OK (REGNO (XEXP (note, 0)), reload_outmode[output_reload])
+ && TEST_HARD_REG_BIT (reg_class_contents[(int) reload_reg_class[output_reload]],
+ REGNO (XEXP (note, 0)))
+ && (HARD_REGNO_NREGS (REGNO (XEXP (note, 0)), reload_outmode[output_reload])
+ <= HARD_REGNO_NREGS (REGNO (XEXP (note, 0)), GET_MODE (XEXP (note, 0))))
+ /* Ensure that a secondary or tertiary reload for this output
+ won't want this register. */
+ && ((secondary_out = reload_secondary_out_reload[output_reload]) == -1
+ || (! (TEST_HARD_REG_BIT
+ (reg_class_contents[(int) reload_reg_class[secondary_out]],
+ REGNO (XEXP (note, 0))))
+ && ((secondary_out = reload_secondary_out_reload[secondary_out]) == -1
+ || ! (TEST_HARD_REG_BIT
+ (reg_class_contents[(int) reload_reg_class[secondary_out]],
+ REGNO (XEXP (note, 0)))))))
+ && ! fixed_regs[REGNO (XEXP (note, 0))])
+ {
+ reload_reg_rtx[output_reload] = gen_rtx (REG,
+ reload_outmode[output_reload],
+ REGNO (XEXP (note, 0)));
+ return;
+ }
+}
+
+/* Try to find a reload register for an in-out reload (expressions IN and OUT).
+ See if one of IN and OUT is a register that may be used;
+ this is desirable since a spill-register won't be needed.
+ If so, return the register rtx that proves acceptable.
+
+ INLOC and OUTLOC are locations where IN and OUT appear in the insn.
+ CLASS is the register class required for the reload.
+
+ If FOR_REAL is >= 0, it is the number of the reload,
+ and in some cases when it can be discovered that OUT doesn't need
+ to be computed, clear out reload_out[FOR_REAL].
+
+ If FOR_REAL is -1, this should not be done, because this call
+ is just to see if a register can be found, not to find and install it. */
+
+static rtx
+find_dummy_reload (real_in, real_out, inloc, outloc,
+ inmode, outmode, class, for_real)
+ rtx real_in, real_out;
+ rtx *inloc, *outloc;
+ enum machine_mode inmode, outmode;
+ enum reg_class class;
+ int for_real;
+{
+ rtx in = real_in;
+ rtx out = real_out;
+ int in_offset = 0;
+ int out_offset = 0;
+ rtx value = 0;
+
+ /* If operands exceed a word, we can't use either of them
+ unless they have the same size. */
+ if (GET_MODE_SIZE (outmode) != GET_MODE_SIZE (inmode)
+ && (GET_MODE_SIZE (outmode) > UNITS_PER_WORD
+ || GET_MODE_SIZE (inmode) > UNITS_PER_WORD))
+ return 0;
+
+ /* Find the inside of any subregs. */
+ while (GET_CODE (out) == SUBREG)
+ {
+ out_offset = SUBREG_WORD (out);
+ out = SUBREG_REG (out);
+ }
+ while (GET_CODE (in) == SUBREG)
+ {
+ in_offset = SUBREG_WORD (in);
+ in = SUBREG_REG (in);
+ }
+
+ /* Narrow down the reg class, the same way push_reload will;
+ otherwise we might find a dummy now, but push_reload won't. */
+ class = PREFERRED_RELOAD_CLASS (in, class);
+
+ /* See if OUT will do. */
+ if (GET_CODE (out) == REG
+ && REGNO (out) < FIRST_PSEUDO_REGISTER)
+ {
+ register int regno = REGNO (out) + out_offset;
+ int nwords = HARD_REGNO_NREGS (regno, outmode);
+ rtx saved_rtx;
+
+ /* When we consider whether the insn uses OUT,
+ ignore references within IN. They don't prevent us
+ from copying IN into OUT, because those refs would
+ move into the insn that reloads IN.
+
+ However, we only ignore IN in its role as this reload.
+ If the insn uses IN elsewhere and it contains OUT,
+ that counts. We can't be sure it's the "same" operand
+ so it might not go through this reload. */
+ saved_rtx = *inloc;
+ *inloc = const0_rtx;
+
+ if (regno < FIRST_PSEUDO_REGISTER
+ /* A fixed reg that can overlap other regs better not be used
+ for reloading in any way. */
+#ifdef OVERLAPPING_REGNO_P
+ && ! (fixed_regs[regno] && OVERLAPPING_REGNO_P (regno))
+#endif
+ && ! refers_to_regno_for_reload_p (regno, regno + nwords,
+ PATTERN (this_insn), outloc))
+ {
+ int i;
+ for (i = 0; i < nwords; i++)
+ if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
+ regno + i))
+ break;
+
+ if (i == nwords)
+ {
+ if (GET_CODE (real_out) == REG)
+ value = real_out;
+ else
+ value = gen_rtx (REG, outmode, regno);
+ }
+ }
+
+ *inloc = saved_rtx;
+ }
+
+ /* Consider using IN if OUT was not acceptable
+ or if OUT dies in this insn (like the quotient in a divmod insn).
+ We can't use IN unless it is dies in this insn,
+ which means we must know accurately which hard regs are live.
+ Also, the result can't go in IN if IN is used within OUT. */
+ if (hard_regs_live_known
+ && GET_CODE (in) == REG
+ && REGNO (in) < FIRST_PSEUDO_REGISTER
+ && (value == 0
+ || find_reg_note (this_insn, REG_UNUSED, real_out))
+ && find_reg_note (this_insn, REG_DEAD, real_in)
+ && !fixed_regs[REGNO (in)]
+ && HARD_REGNO_MODE_OK (REGNO (in),
+ /* The only case where out and real_out might
+ have different modes is where real_out
+ is a subreg, and in that case, out
+ has a real mode. */
+ (GET_MODE (out) != VOIDmode
+ ? GET_MODE (out) : outmode)))
+ {
+ register int regno = REGNO (in) + in_offset;
+ int nwords = HARD_REGNO_NREGS (regno, inmode);
+
+ if (! refers_to_regno_for_reload_p (regno, regno + nwords, out, NULL_PTR)
+ && ! hard_reg_set_here_p (regno, regno + nwords,
+ PATTERN (this_insn)))
+ {
+ int i;
+ for (i = 0; i < nwords; i++)
+ if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
+ regno + i))
+ break;
+
+ if (i == nwords)
+ {
+ /* If we were going to use OUT as the reload reg
+ and changed our mind, it means OUT is a dummy that
+ dies here. So don't bother copying value to it. */
+ if (for_real >= 0 && value == real_out)
+ reload_out[for_real] = 0;
+ if (GET_CODE (real_in) == REG)
+ value = real_in;
+ else
+ value = gen_rtx (REG, inmode, regno);
+ }
+ }
+ }
+
+ return value;
+}
+
+/* This page contains subroutines used mainly for determining
+ whether the IN or an OUT of a reload can serve as the
+ reload register. */
+
+/* Return 1 if X is an operand of an insn that is being earlyclobbered. */
+
+static int
+earlyclobber_operand_p (x)
+ rtx x;
+{
+ int i;
+
+ for (i = 0; i < n_earlyclobbers; i++)
+ if (reload_earlyclobbers[i] == x)
+ return 1;
+
+ return 0;
+}
+
+/* Return 1 if expression X alters a hard reg in the range
+ from BEG_REGNO (inclusive) to END_REGNO (exclusive),
+ either explicitly or in the guise of a pseudo-reg allocated to REGNO.
+ X should be the body of an instruction. */
+
+static int
+hard_reg_set_here_p (beg_regno, end_regno, x)
+ register int beg_regno, end_regno;
+ rtx x;
+{
+ if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
+ {
+ register rtx op0 = SET_DEST (x);
+ while (GET_CODE (op0) == SUBREG)
+ op0 = SUBREG_REG (op0);
+ if (GET_CODE (op0) == REG)
+ {
+ register int r = REGNO (op0);
+ /* See if this reg overlaps range under consideration. */
+ if (r < end_regno
+ && r + HARD_REGNO_NREGS (r, GET_MODE (op0)) > beg_regno)
+ return 1;
+ }
+ }
+ else if (GET_CODE (x) == PARALLEL)
+ {
+ register int i = XVECLEN (x, 0) - 1;
+ for (; i >= 0; i--)
+ if (hard_reg_set_here_p (beg_regno, end_regno, XVECEXP (x, 0, i)))
+ return 1;
+ }
+
+ return 0;
+}
+
+/* Return 1 if ADDR is a valid memory address for mode MODE,
+ and check that each pseudo reg has the proper kind of
+ hard reg. */
+
+int
+strict_memory_address_p (mode, addr)
+ enum machine_mode mode;
+ register rtx addr;
+{
+ GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
+ return 0;
+
+ win:
+ return 1;
+}
+
+/* Like rtx_equal_p except that it allows a REG and a SUBREG to match
+ if they are the same hard reg, and has special hacks for
+ autoincrement and autodecrement.
+ This is specifically intended for find_reloads to use
+ in determining whether two operands match.
+ X is the operand whose number is the lower of the two.
+
+ The value is 2 if Y contains a pre-increment that matches
+ a non-incrementing address in X. */
+
+/* ??? To be completely correct, we should arrange to pass
+ for X the output operand and for Y the input operand.
+ For now, we assume that the output operand has the lower number
+ because that is natural in (SET output (... input ...)). */
+
+int
+operands_match_p (x, y)
+ register rtx x, y;
+{
+ register int i;
+ register RTX_CODE code = GET_CODE (x);
+ register char *fmt;
+ int success_2;
+
+ if (x == y)
+ return 1;
+ if ((code == REG || (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG))
+ && (GET_CODE (y) == REG || (GET_CODE (y) == SUBREG
+ && GET_CODE (SUBREG_REG (y)) == REG)))
+ {
+ register int j;
+
+ if (code == SUBREG)
+ {
+ i = REGNO (SUBREG_REG (x));
+ if (i >= FIRST_PSEUDO_REGISTER)
+ goto slow;
+ i += SUBREG_WORD (x);
+ }
+ else
+ i = REGNO (x);
+
+ if (GET_CODE (y) == SUBREG)
+ {
+ j = REGNO (SUBREG_REG (y));
+ if (j >= FIRST_PSEUDO_REGISTER)
+ goto slow;
+ j += SUBREG_WORD (y);
+ }
+ else
+ j = REGNO (y);
+
+ /* On a WORDS_BIG_ENDIAN machine, point to the last register of a
+ multiple hard register group, so that for example (reg:DI 0) and
+ (reg:SI 1) will be considered the same register. */
+ if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
+ && i < FIRST_PSEUDO_REGISTER)
+ i += (GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD) - 1;
+ if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (y)) > UNITS_PER_WORD
+ && j < FIRST_PSEUDO_REGISTER)
+ j += (GET_MODE_SIZE (GET_MODE (y)) / UNITS_PER_WORD) - 1;
+
+ return i == j;
+ }
+ /* If two operands must match, because they are really a single
+ operand of an assembler insn, then two postincrements are invalid
+ because the assembler insn would increment only once.
+ On the other hand, an postincrement matches ordinary indexing
+ if the postincrement is the output operand. */
+ if (code == POST_DEC || code == POST_INC)
+ return operands_match_p (XEXP (x, 0), y);
+ /* Two preincrements are invalid
+ because the assembler insn would increment only once.
+ On the other hand, an preincrement matches ordinary indexing
+ if the preincrement is the input operand.
+ In this case, return 2, since some callers need to do special
+ things when this happens. */
+ if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC)
+ return operands_match_p (x, XEXP (y, 0)) ? 2 : 0;
+
+ slow:
+
+ /* Now we have disposed of all the cases
+ in which different rtx codes can match. */
+ if (code != GET_CODE (y))
+ return 0;
+ if (code == LABEL_REF)
+ return XEXP (x, 0) == XEXP (y, 0);
+ if (code == SYMBOL_REF)
+ return XSTR (x, 0) == XSTR (y, 0);
+
+ /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
+
+ if (GET_MODE (x) != GET_MODE (y))
+ return 0;
+
+ /* Compare the elements. If any pair of corresponding elements
+ fail to match, return 0 for the whole things. */
+
+ success_2 = 0;
+ fmt = GET_RTX_FORMAT (code);
+ for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
+ {
+ int val;
+ switch (fmt[i])
+ {
+ case 'w':
+ if (XWINT (x, i) != XWINT (y, i))
+ return 0;
+ break;
+
+ case 'i':
+ if (XINT (x, i) != XINT (y, i))
+ return 0;
+ break;
+
+ case 'e':
+ val = operands_match_p (XEXP (x, i), XEXP (y, i));
+ if (val == 0)
+ return 0;
+ /* If any subexpression returns 2,
+ we should return 2 if we are successful. */
+ if (val == 2)
+ success_2 = 1;
+ break;
+
+ case '0':
+ break;
+
+ /* It is believed that rtx's at this level will never
+ contain anything but integers and other rtx's,
+ except for within LABEL_REFs and SYMBOL_REFs. */
+ default:
+ abort ();
+ }
+ }
+ return 1 + success_2;
+}
+
+/* Return the number of times character C occurs in string S. */
+
+int
+n_occurrences (c, s)
+ int c;
+ char *s;
+{
+ int n = 0;
+ while (*s)
+ n += (*s++ == c);
+ return n;
+}
+
+/* Describe the range of registers or memory referenced by X.
+ If X is a register, set REG_FLAG and put the first register
+ number into START and the last plus one into END.
+ If X is a memory reference, put a base address into BASE
+ and a range of integer offsets into START and END.
+ If X is pushing on the stack, we can assume it causes no trouble,
+ so we set the SAFE field. */
+
+static struct decomposition
+decompose (x)
+ rtx x;
+{
+ struct decomposition val;
+ int all_const = 0;
+
+ val.reg_flag = 0;
+ val.safe = 0;
+ if (GET_CODE (x) == MEM)
+ {
+ rtx base, offset = 0;
+ rtx addr = XEXP (x, 0);
+
+ if (GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == PRE_INC
+ || GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC)
+ {
+ val.base = XEXP (addr, 0);
+ val.start = - GET_MODE_SIZE (GET_MODE (x));
+ val.end = GET_MODE_SIZE (GET_MODE (x));
+ val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
+ return val;
+ }
+
+ if (GET_CODE (addr) == CONST)
+ {
+ addr = XEXP (addr, 0);
+ all_const = 1;
+ }
+ if (GET_CODE (addr) == PLUS)
+ {
+ if (CONSTANT_P (XEXP (addr, 0)))
+ {
+ base = XEXP (addr, 1);
+ offset = XEXP (addr, 0);
+ }
+ else if (CONSTANT_P (XEXP (addr, 1)))
+ {
+ base = XEXP (addr, 0);
+ offset = XEXP (addr, 1);
+ }
+ }
+
+ if (offset == 0)
+ {
+ base = addr;
+ offset = const0_rtx;
+ }
+ if (GET_CODE (offset) == CONST)
+ offset = XEXP (offset, 0);
+ if (GET_CODE (offset) == PLUS)
+ {
+ if (GET_CODE (XEXP (offset, 0)) == CONST_INT)
+ {
+ base = gen_rtx (PLUS, GET_MODE (base), base, XEXP (offset, 1));
+ offset = XEXP (offset, 0);
+ }
+ else if (GET_CODE (XEXP (offset, 1)) == CONST_INT)
+ {
+ base = gen_rtx (PLUS, GET_MODE (base), base, XEXP (offset, 0));
+ offset = XEXP (offset, 1);
+ }
+ else
+ {
+ base = gen_rtx (PLUS, GET_MODE (base), base, offset);
+ offset = const0_rtx;
+ }
+ }
+ else if (GET_CODE (offset) != CONST_INT)
+ {
+ base = gen_rtx (PLUS, GET_MODE (base), base, offset);
+ offset = const0_rtx;
+ }
+
+ if (all_const && GET_CODE (base) == PLUS)
+ base = gen_rtx (CONST, GET_MODE (base), base);
+
+ if (GET_CODE (offset) != CONST_INT)
+ abort ();
+
+ val.start = INTVAL (offset);
+ val.end = val.start + GET_MODE_SIZE (GET_MODE (x));
+ val.base = base;
+ return val;
+ }
+ else if (GET_CODE (x) == REG)
+ {
+ val.reg_flag = 1;
+ val.start = true_regnum (x);
+ if (val.start < 0)
+ {
+ /* A pseudo with no hard reg. */
+ val.start = REGNO (x);
+ val.end = val.start + 1;
+ }
+ else
+ /* A hard reg. */
+ val.end = val.start + HARD_REGNO_NREGS (val.start, GET_MODE (x));
+ }
+ else if (GET_CODE (x) == SUBREG)
+ {
+ if (GET_CODE (SUBREG_REG (x)) != REG)
+ /* This could be more precise, but it's good enough. */
+ return decompose (SUBREG_REG (x));
+ val.reg_flag = 1;
+ val.start = true_regnum (x);
+ if (val.start < 0)
+ return decompose (SUBREG_REG (x));
+ else
+ /* A hard reg. */
+ val.end = val.start + HARD_REGNO_NREGS (val.start, GET_MODE (x));
+ }
+ else if (CONSTANT_P (x)
+ /* This hasn't been assigned yet, so it can't conflict yet. */
+ || GET_CODE (x) == SCRATCH)
+ val.safe = 1;
+ else
+ abort ();
+ return val;
+}
+
+/* Return 1 if altering Y will not modify the value of X.
+ Y is also described by YDATA, which should be decompose (Y). */
+
+static int
+immune_p (x, y, ydata)
+ rtx x, y;
+ struct decomposition ydata;
+{
+ struct decomposition xdata;
+
+ if (ydata.reg_flag)
+ return !refers_to_regno_for_reload_p (ydata.start, ydata.end, x, NULL_PTR);
+ if (ydata.safe)
+ return 1;
+
+ if (GET_CODE (y) != MEM)
+ abort ();
+ /* If Y is memory and X is not, Y can't affect X. */
+ if (GET_CODE (x) != MEM)
+ return 1;
+
+ xdata = decompose (x);
+
+ if (! rtx_equal_p (xdata.base, ydata.base))
+ {
+ /* If bases are distinct symbolic constants, there is no overlap. */
+ if (CONSTANT_P (xdata.base) && CONSTANT_P (ydata.base))
+ return 1;
+ /* Constants and stack slots never overlap. */
+ if (CONSTANT_P (xdata.base)
+ && (ydata.base == frame_pointer_rtx
+ || ydata.base == hard_frame_pointer_rtx
+ || ydata.base == stack_pointer_rtx))
+ return 1;
+ if (CONSTANT_P (ydata.base)
+ && (xdata.base == frame_pointer_rtx
+ || xdata.base == hard_frame_pointer_rtx
+ || xdata.base == stack_pointer_rtx))
+ return 1;
+ /* If either base is variable, we don't know anything. */
+ return 0;
+ }
+
+
+ return (xdata.start >= ydata.end || ydata.start >= xdata.end);
+}
+
+/* Similar, but calls decompose. */
+
+int
+safe_from_earlyclobber (op, clobber)
+ rtx op, clobber;
+{
+ struct decomposition early_data;
+
+ early_data = decompose (clobber);
+ return immune_p (op, clobber, early_data);
+}
+
+/* Main entry point of this file: search the body of INSN
+ for values that need reloading and record them with push_reload.
+ REPLACE nonzero means record also where the values occur
+ so that subst_reloads can be used.
+
+ IND_LEVELS says how many levels of indirection are supported by this
+ machine; a value of zero means that a memory reference is not a valid
+ memory address.
+
+ LIVE_KNOWN says we have valid information about which hard
+ regs are live at each point in the program; this is true when
+ we are called from global_alloc but false when stupid register
+ allocation has been done.
+
+ RELOAD_REG_P if nonzero is a vector indexed by hard reg number
+ which is nonnegative if the reg has been commandeered for reloading into.
+ It is copied into STATIC_RELOAD_REG_P and referenced from there
+ by various subroutines. */
+
+void
+find_reloads (insn, replace, ind_levels, live_known, reload_reg_p)
+ rtx insn;
+ int replace, ind_levels;
+ int live_known;
+ short *reload_reg_p;
+{
+#ifdef REGISTER_CONSTRAINTS
+
+ register int insn_code_number;
+ register int i, j;
+ int noperands;
+ /* These are the constraints for the insn. We don't change them. */
+ char *constraints1[MAX_RECOG_OPERANDS];
+ /* These start out as the constraints for the insn
+ and they are chewed up as we consider alternatives. */
+ char *constraints[MAX_RECOG_OPERANDS];
+ /* These are the preferred classes for an operand, or NO_REGS if it isn't
+ a register. */
+ enum reg_class preferred_class[MAX_RECOG_OPERANDS];
+ char pref_or_nothing[MAX_RECOG_OPERANDS];
+ /* Nonzero for a MEM operand whose entire address needs a reload. */
+ int address_reloaded[MAX_RECOG_OPERANDS];
+ /* Value of enum reload_type to use for operand. */
+ enum reload_type operand_type[MAX_RECOG_OPERANDS];
+ /* Value of enum reload_type to use within address of operand. */
+ enum reload_type address_type[MAX_RECOG_OPERANDS];
+ /* Save the usage of each operand. */
+ enum reload_usage { RELOAD_READ, RELOAD_READ_WRITE, RELOAD_WRITE } modified[MAX_RECOG_OPERANDS];
+ int no_input_reloads = 0, no_output_reloads = 0;
+ int n_alternatives;
+ int this_alternative[MAX_RECOG_OPERANDS];
+ char this_alternative_win[MAX_RECOG_OPERANDS];
+ char this_alternative_offmemok[MAX_RECOG_OPERANDS];
+ char this_alternative_earlyclobber[MAX_RECOG_OPERANDS];
+ int this_alternative_matches[MAX_RECOG_OPERANDS];
+ int swapped;
+ int goal_alternative[MAX_RECOG_OPERANDS];
+ int this_alternative_number;
+ int goal_alternative_number;
+ int operand_reloadnum[MAX_RECOG_OPERANDS];
+ int goal_alternative_matches[MAX_RECOG_OPERANDS];
+ int goal_alternative_matched[MAX_RECOG_OPERANDS];
+ char goal_alternative_win[MAX_RECOG_OPERANDS];
+ char goal_alternative_offmemok[MAX_RECOG_OPERANDS];
+ char goal_alternative_earlyclobber[MAX_RECOG_OPERANDS];
+ int goal_alternative_swapped;
+ int best;
+ int commutative;
+ char operands_match[MAX_RECOG_OPERANDS][MAX_RECOG_OPERANDS];
+ rtx substed_operand[MAX_RECOG_OPERANDS];
+ rtx body = PATTERN (insn);
+ rtx set = single_set (insn);
+ int goal_earlyclobber, this_earlyclobber;
+ enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
+
+ this_insn = insn;
+ this_insn_is_asm = 0; /* Tentative. */
+ n_reloads = 0;
+ n_replacements = 0;
+ n_memlocs = 0;
+ n_earlyclobbers = 0;
+ replace_reloads = replace;
+ hard_regs_live_known = live_known;
+ static_reload_reg_p = reload_reg_p;
+
+ /* JUMP_INSNs and CALL_INSNs are not allowed to have any output reloads;
+ neither are insns that SET cc0. Insns that use CC0 are not allowed
+ to have any input reloads. */
+ if (GET_CODE (insn) == JUMP_INSN || GET_CODE (insn) == CALL_INSN)
+ no_output_reloads = 1;
+
+#ifdef HAVE_cc0
+ if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
+ no_input_reloads = 1;
+ if (reg_set_p (cc0_rtx, PATTERN (insn)))
+ no_output_reloads = 1;
+#endif
+
+#ifdef SECONDARY_MEMORY_NEEDED
+ /* The eliminated forms of any secondary memory locations are per-insn, so
+ clear them out here. */
+
+ bzero ((char *) secondary_memlocs_elim, sizeof secondary_memlocs_elim);
+#endif
+
+ /* Find what kind of insn this is. NOPERANDS gets number of operands.
+ Make OPERANDS point to a vector of operand values.
+ Make OPERAND_LOCS point to a vector of pointers to
+ where the operands were found.
+ Fill CONSTRAINTS and CONSTRAINTS1 with pointers to the
+ constraint-strings for this insn.
+ Return if the insn needs no reload processing. */
+
+ switch (GET_CODE (body))
+ {
+ case USE:
+ case CLOBBER:
+ case ASM_INPUT:
+ case ADDR_VEC:
+ case ADDR_DIFF_VEC:
+ return;
+
+ case SET:
+ /* Dispose quickly of (set (reg..) (reg..)) if both have hard regs and it
+ is cheap to move between them. If it is not, there may not be an insn
+ to do the copy, so we may need a reload. */
+ if (GET_CODE (SET_DEST (body)) == REG
+ && REGNO (SET_DEST (body)) < FIRST_PSEUDO_REGISTER
+ && GET_CODE (SET_SRC (body)) == REG
+ && REGNO (SET_SRC (body)) < FIRST_PSEUDO_REGISTER
+ && REGISTER_MOVE_COST (REGNO_REG_CLASS (REGNO (SET_SRC (body))),
+ REGNO_REG_CLASS (REGNO (SET_DEST (body)))) == 2)
+ return;
+ case PARALLEL:
+ case ASM_OPERANDS:
+ reload_n_operands = noperands = asm_noperands (body);
+ if (noperands >= 0)
+ {
+ /* This insn is an `asm' with operands. */
+
+ insn_code_number = -1;
+ this_insn_is_asm = 1;
+
+ /* expand_asm_operands makes sure there aren't too many operands. */
+ if (noperands > MAX_RECOG_OPERANDS)
+ abort ();
+
+ /* Now get the operand values and constraints out of the insn. */
+
+ decode_asm_operands (body, recog_operand, recog_operand_loc,
+ constraints, operand_mode);
+ if (noperands > 0)
+ {
+ bcopy ((char *) constraints, (char *) constraints1,
+ noperands * sizeof (char *));
+ n_alternatives = n_occurrences (',', constraints[0]) + 1;
+ for (i = 1; i < noperands; i++)
+ if (n_alternatives != n_occurrences (',', constraints[i]) + 1)
+ {
+ error_for_asm (insn, "operand constraints differ in number of alternatives");
+ /* Avoid further trouble with this insn. */
+ PATTERN (insn) = gen_rtx (USE, VOIDmode, const0_rtx);
+ n_reloads = 0;
+ return;
+ }
+ }
+ break;
+ }
+
+ default:
+ /* Ordinary insn: recognize it, get the operands via insn_extract
+ and get the constraints. */
+
+ insn_code_number = recog_memoized (insn);
+ if (insn_code_number < 0)
+ fatal_insn_not_found (insn);
+
+ reload_n_operands = noperands = insn_n_operands[insn_code_number];
+ n_alternatives = insn_n_alternatives[insn_code_number];
+ /* Just return "no reloads" if insn has no operands with constraints. */
+ if (n_alternatives == 0)
+ return;
+ insn_extract (insn);
+ for (i = 0; i < noperands; i++)
+ {
+ constraints[i] = constraints1[i]
+ = insn_operand_constraint[insn_code_number][i];
+ operand_mode[i] = insn_operand_mode[insn_code_number][i];
+ }
+ }
+
+ if (noperands == 0)
+ return;
+
+ commutative = -1;
+
+ /* If we will need to know, later, whether some pair of operands
+ are the same, we must compare them now and save the result.
+ Reloading the base and index registers will clobber them
+ and afterward they will fail to match. */
+
+ for (i = 0; i < noperands; i++)
+ {
+ register char *p;
+ register int c;
+
+ substed_operand[i] = recog_operand[i];
+ p = constraints[i];
+
+ modified[i] = RELOAD_READ;
+
+ /* Scan this operand's constraint to see if it is an output operand,
+ an in-out operand, is commutative, or should match another. */
+
+ while (c = *p++)
+ {
+ if (c == '=')
+ modified[i] = RELOAD_WRITE;
+ else if (c == '+')
+ modified[i] = RELOAD_READ_WRITE;
+ else if (c == '%')
+ {
+ /* The last operand should not be marked commutative. */
+ if (i == noperands - 1)
+ {
+ if (this_insn_is_asm)
+ warning_for_asm (this_insn,
+ "`%%' constraint used with last operand");
+ else
+ abort ();
+ }
+ else
+ commutative = i;
+ }
+ else if (c >= '0' && c <= '9')
+ {
+ c -= '0';
+ operands_match[c][i]
+ = operands_match_p (recog_operand[c], recog_operand[i]);
+
+ /* An operand may not match itself. */
+ if (c == i)
+ {
+ if (this_insn_is_asm)
+ warning_for_asm (this_insn,
+ "operand %d has constraint %d", i, c);
+ else
+ abort ();
+ }
+
+ /* If C can be commuted with C+1, and C might need to match I,
+ then C+1 might also need to match I. */
+ if (commutative >= 0)
+ {
+ if (c == commutative || c == commutative + 1)
+ {
+ int other = c + (c == commutative ? 1 : -1);
+ operands_match[other][i]
+ = operands_match_p (recog_operand[other], recog_operand[i]);
+ }
+ if (i == commutative || i == commutative + 1)
+ {
+ int other = i + (i == commutative ? 1 : -1);
+ operands_match[c][other]
+ = operands_match_p (recog_operand[c], recog_operand[other]);
+ }
+ /* Note that C is supposed to be less than I.
+ No need to consider altering both C and I because in
+ that case we would alter one into the other. */
+ }
+ }
+ }
+ }
+
+ /* Examine each operand that is a memory reference or memory address
+ and reload parts of the addresses into index registers.
+ Also here any references to pseudo regs that didn't get hard regs
+ but are equivalent to constants get replaced in the insn itself
+ with those constants. Nobody will ever see them again.
+
+ Finally, set up the preferred classes of each operand. */
+
+ for (i = 0; i < noperands; i++)
+ {
+ register RTX_CODE code = GET_CODE (recog_operand[i]);
+
+ address_reloaded[i] = 0;
+ operand_type[i] = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT
+ : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT
+ : RELOAD_OTHER);
+ address_type[i]
+ = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT_ADDRESS
+ : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT_ADDRESS
+ : RELOAD_OTHER);
+
+ if (*constraints[i] == 0)
+ /* Ignore things like match_operator operands. */
+ ;
+ else if (constraints[i][0] == 'p')
+ {
+ find_reloads_address (VOIDmode, NULL_PTR,
+ recog_operand[i], recog_operand_loc[i],
+ i, operand_type[i], ind_levels);
+ substed_operand[i] = recog_operand[i] = *recog_operand_loc[i];
+ }
+ else if (code == MEM)
+ {
+ if (find_reloads_address (GET_MODE (recog_operand[i]),
+ recog_operand_loc[i],
+ XEXP (recog_operand[i], 0),
+ &XEXP (recog_operand[i], 0),
+ i, address_type[i], ind_levels))
+ address_reloaded[i] = 1;
+ substed_operand[i] = recog_operand[i] = *recog_operand_loc[i];
+ }
+ else if (code == SUBREG)
+ substed_operand[i] = recog_operand[i] = *recog_operand_loc[i]
+ = find_reloads_toplev (recog_operand[i], i, address_type[i],
+ ind_levels,
+ set != 0
+ && &SET_DEST (set) == recog_operand_loc[i]);
+ else if (code == PLUS)
+ /* We can get a PLUS as an "operand" as a result of
+ register elimination. See eliminate_regs and gen_reload. */
+ substed_operand[i] = recog_operand[i] = *recog_operand_loc[i]
+ = find_reloads_toplev (recog_operand[i], i, address_type[i],
+ ind_levels, 0);
+ else if (code == REG)
+ {
+ /* This is equivalent to calling find_reloads_toplev.
+ The code is duplicated for speed.
+ When we find a pseudo always equivalent to a constant,
+ we replace it by the constant. We must be sure, however,
+ that we don't try to replace it in the insn in which it
+ is being set. */
+ register int regno = REGNO (recog_operand[i]);
+ if (reg_equiv_constant[regno] != 0
+ && (set == 0 || &SET_DEST (set) != recog_operand_loc[i]))
+ substed_operand[i] = recog_operand[i]
+ = reg_equiv_constant[regno];
+#if 0 /* This might screw code in reload1.c to delete prior output-reload
+ that feeds this insn. */
+ if (reg_equiv_mem[regno] != 0)
+ substed_operand[i] = recog_operand[i]
+ = reg_equiv_mem[regno];
+#endif
+ if (reg_equiv_address[regno] != 0)
+ {
+ /* If reg_equiv_address is not a constant address, copy it,
+ since it may be shared. */
+ /* We must rerun eliminate_regs, in case the elimination
+ offsets have changed. */
+ rtx address = XEXP (eliminate_regs (reg_equiv_memory_loc[regno],
+ 0, NULL_RTX),
+ 0);
+
+ if (rtx_varies_p (address))
+ address = copy_rtx (address);
+
+ /* If this is an output operand, we must output a CLOBBER
+ after INSN so find_equiv_reg knows REGNO is being written.
+ Mark this insn specially, do we can put our output reloads
+ after it. */
+
+ if (modified[i] != RELOAD_READ)
+ PUT_MODE (emit_insn_after (gen_rtx (CLOBBER, VOIDmode,
+ recog_operand[i]),
+ insn),
+ DImode);
+
+ *recog_operand_loc[i] = recog_operand[i]
+ = gen_rtx (MEM, GET_MODE (recog_operand[i]), address);
+ RTX_UNCHANGING_P (recog_operand[i])
+ = RTX_UNCHANGING_P (regno_reg_rtx[regno]);
+ find_reloads_address (GET_MODE (recog_operand[i]),
+ recog_operand_loc[i],
+ XEXP (recog_operand[i], 0),
+ &XEXP (recog_operand[i], 0),
+ i, address_type[i], ind_levels);
+ substed_operand[i] = recog_operand[i] = *recog_operand_loc[i];
+ }
+ }
+ /* If the operand is still a register (we didn't replace it with an
+ equivalent), get the preferred class to reload it into. */
+ code = GET_CODE (recog_operand[i]);
+ preferred_class[i]
+ = ((code == REG && REGNO (recog_operand[i]) >= FIRST_PSEUDO_REGISTER)
+ ? reg_preferred_class (REGNO (recog_operand[i])) : NO_REGS);
+ pref_or_nothing[i]
+ = (code == REG && REGNO (recog_operand[i]) >= FIRST_PSEUDO_REGISTER
+ && reg_alternate_class (REGNO (recog_operand[i])) == NO_REGS);
+ }
+
+ /* If this is simply a copy from operand 1 to operand 0, merge the
+ preferred classes for the operands. */
+ if (set != 0 && noperands >= 2 && recog_operand[0] == SET_DEST (set)
+ && recog_operand[1] == SET_SRC (set))
+ {
+ preferred_class[0] = preferred_class[1]
+ = reg_class_subunion[(int) preferred_class[0]][(int) preferred_class[1]];
+ pref_or_nothing[0] |= pref_or_nothing[1];
+ pref_or_nothing[1] |= pref_or_nothing[0];
+ }
+
+ /* Now see what we need for pseudo-regs that didn't get hard regs
+ or got the wrong kind of hard reg. For this, we must consider
+ all the operands together against the register constraints. */
+
+ best = MAX_RECOG_OPERANDS + 300;
+
+ swapped = 0;
+ goal_alternative_swapped = 0;
+ try_swapped:
+
+ /* The constraints are made of several alternatives.
+ Each operand's constraint looks like foo,bar,... with commas
+ separating the alternatives. The first alternatives for all
+ operands go together, the second alternatives go together, etc.
+
+ First loop over alternatives. */
+
+ for (this_alternative_number = 0;
+ this_alternative_number < n_alternatives;
+ this_alternative_number++)
+ {
+ /* Loop over operands for one constraint alternative. */
+ /* LOSERS counts those that don't fit this alternative
+ and would require loading. */
+ int losers = 0;
+ /* BAD is set to 1 if it some operand can't fit this alternative
+ even after reloading. */
+ int bad = 0;
+ /* REJECT is a count of how undesirable this alternative says it is
+ if any reloading is required. If the alternative matches exactly
+ then REJECT is ignored, but otherwise it gets this much
+ counted against it in addition to the reloading needed. Each
+ ? counts three times here since we want the disparaging caused by
+ a bad register class to only count 1/3 as much. */
+ int reject = 0;
+
+ this_earlyclobber = 0;
+
+ for (i = 0; i < noperands; i++)
+ {
+ register char *p = constraints[i];
+ register int win = 0;
+ /* 0 => this operand can be reloaded somehow for this alternative */
+ int badop = 1;
+ /* 0 => this operand can be reloaded if the alternative allows regs. */
+ int winreg = 0;
+ int c;
+ register rtx operand = recog_operand[i];
+ int offset = 0;
+ /* Nonzero means this is a MEM that must be reloaded into a reg
+ regardless of what the constraint says. */
+ int force_reload = 0;
+ int offmemok = 0;
+ /* Nonzero if a constant forced into memory would be OK for this
+ operand. */
+ int constmemok = 0;
+ int earlyclobber = 0;
+
+ /* If the operand is a SUBREG, extract
+ the REG or MEM (or maybe even a constant) within.
+ (Constants can occur as a result of reg_equiv_constant.) */
+
+ while (GET_CODE (operand) == SUBREG)
+ {
+ offset += SUBREG_WORD (operand);
+ operand = SUBREG_REG (operand);
+ /* Force reload if this is a constant or PLUS or if there may may
+ be a problem accessing OPERAND in the outer mode. */
+ if (CONSTANT_P (operand)
+ || GET_CODE (operand) == PLUS
+ /* We must force a reload of paradoxical SUBREGs
+ of a MEM because the alignment of the inner value
+ may not be enough to do the outer reference. On
+ big-endian machines, it may also reference outside
+ the object.
+
+ On machines that extend byte operations and we have a
+ SUBREG where both the inner and outer modes are no wider
+ than a word and the inner mode is narrower, is integral,
+ and gets extended when loaded from memory, combine.c has
+ made assumptions about the behavior of the machine in such
+ register access. If the data is, in fact, in memory we
+ must always load using the size assumed to be in the
+ register and let the insn do the different-sized
+ accesses. */
+ || ((GET_CODE (operand) == MEM
+ || (GET_CODE (operand)== REG
+ && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
+ && (((GET_MODE_BITSIZE (GET_MODE (operand))
+ < BIGGEST_ALIGNMENT)
+ && (GET_MODE_SIZE (operand_mode[i])
+ > GET_MODE_SIZE (GET_MODE (operand))))
+ || (GET_CODE (operand) == MEM && BYTES_BIG_ENDIAN)
+#ifdef LOAD_EXTEND_OP
+ || (GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
+ && (GET_MODE_SIZE (GET_MODE (operand))
+ <= UNITS_PER_WORD)
+ && (GET_MODE_SIZE (operand_mode[i])
+ > GET_MODE_SIZE (GET_MODE (operand)))
+ && INTEGRAL_MODE_P (GET_MODE (operand))
+ && LOAD_EXTEND_OP (GET_MODE (operand)) != NIL)
+#endif
+ ))
+ /* Subreg of a hard reg which can't handle the subreg's mode
+ or which would handle that mode in the wrong number of
+ registers for subregging to work. */
+ || (GET_CODE (operand) == REG
+ && REGNO (operand) < FIRST_PSEUDO_REGISTER
+ && ((GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
+ && (GET_MODE_SIZE (GET_MODE (operand))
+ > UNITS_PER_WORD)
+ && ((GET_MODE_SIZE (GET_MODE (operand))
+ / UNITS_PER_WORD)
+ != HARD_REGNO_NREGS (REGNO (operand),
+ GET_MODE (operand))))
+ || ! HARD_REGNO_MODE_OK (REGNO (operand) + offset,
+ operand_mode[i]))))
+ force_reload = 1;
+ }
+
+ this_alternative[i] = (int) NO_REGS;
+ this_alternative_win[i] = 0;
+ this_alternative_offmemok[i] = 0;
+ this_alternative_earlyclobber[i] = 0;
+ this_alternative_matches[i] = -1;
+
+ /* An empty constraint or empty alternative
+ allows anything which matched the pattern. */
+ if (*p == 0 || *p == ',')
+ win = 1, badop = 0;
+
+ /* Scan this alternative's specs for this operand;
+ set WIN if the operand fits any letter in this alternative.
+ Otherwise, clear BADOP if this operand could
+ fit some letter after reloads,
+ or set WINREG if this operand could fit after reloads
+ provided the constraint allows some registers. */
+
+ while (*p && (c = *p++) != ',')
+ switch (c)
+ {
+ case '=':
+ case '+':
+ case '*':
+ break;
+
+ case '%':
+ /* The last operand should not be marked commutative. */
+ if (i != noperands - 1)
+ commutative = i;
+ break;
+
+ case '?':
+ reject += 3;
+ break;
+
+ case '!':
+ reject = 300;
+ break;
+
+ case '#':
+ /* Ignore rest of this alternative as far as
+ reloading is concerned. */
+ while (*p && *p != ',') p++;
+ break;
+
+ case '0':
+ case '1':
+ case '2':
+ case '3':
+ case '4':
+ c -= '0';
+ this_alternative_matches[i] = c;
+ /* We are supposed to match a previous operand.
+ If we do, we win if that one did.
+ If we do not, count both of the operands as losers.
+ (This is too conservative, since most of the time
+ only a single reload insn will be needed to make
+ the two operands win. As a result, this alternative
+ may be rejected when it is actually desirable.) */
+ if ((swapped && (c != commutative || i != commutative + 1))
+ /* If we are matching as if two operands were swapped,
+ also pretend that operands_match had been computed
+ with swapped.
+ But if I is the second of those and C is the first,
+ don't exchange them, because operands_match is valid
+ only on one side of its diagonal. */
+ ? (operands_match
+ [(c == commutative || c == commutative + 1)
+ ? 2*commutative + 1 - c : c]
+ [(i == commutative || i == commutative + 1)
+ ? 2*commutative + 1 - i : i])
+ : operands_match[c][i])
+ win = this_alternative_win[c];
+ else
+ {
+ /* Operands don't match. */
+ rtx value;
+ /* Retroactively mark the operand we had to match
+ as a loser, if it wasn't already. */
+ if (this_alternative_win[c])
+ losers++;
+ this_alternative_win[c] = 0;
+ if (this_alternative[c] == (int) NO_REGS)
+ bad = 1;
+ /* But count the pair only once in the total badness of
+ this alternative, if the pair can be a dummy reload. */
+ value
+ = find_dummy_reload (recog_operand[i], recog_operand[c],
+ recog_operand_loc[i], recog_operand_loc[c],
+ operand_mode[i], operand_mode[c],
+ this_alternative[c], -1);
+
+ if (value != 0)
+ losers--;
+ }
+ /* This can be fixed with reloads if the operand
+ we are supposed to match can be fixed with reloads. */
+ badop = 0;
+ this_alternative[i] = this_alternative[c];
+
+ /* If we have to reload this operand and some previous
+ operand also had to match the same thing as this
+ operand, we don't know how to do that. So reject this
+ alternative. */
+ if (! win || force_reload)
+ for (j = 0; j < i; j++)
+ if (this_alternative_matches[j]
+ == this_alternative_matches[i])
+ badop = 1;
+
+ break;
+
+ case 'p':
+ /* All necessary reloads for an address_operand
+ were handled in find_reloads_address. */
+ this_alternative[i] = (int) BASE_REG_CLASS;
+ win = 1;
+ break;
+
+ case 'm':
+ if (force_reload)
+ break;
+ if (GET_CODE (operand) == MEM
+ || (GET_CODE (operand) == REG
+ && REGNO (operand) >= FIRST_PSEUDO_REGISTER
+ && reg_renumber[REGNO (operand)] < 0))
+ win = 1;
+ if (CONSTANT_P (operand))
+ badop = 0;
+ constmemok = 1;
+ break;
+
+ case '<':
+ if (GET_CODE (operand) == MEM
+ && ! address_reloaded[i]
+ && (GET_CODE (XEXP (operand, 0)) == PRE_DEC
+ || GET_CODE (XEXP (operand, 0)) == POST_DEC))
+ win = 1;
+ break;
+
+ case '>':
+ if (GET_CODE (operand) == MEM
+ && ! address_reloaded[i]
+ && (GET_CODE (XEXP (operand, 0)) == PRE_INC
+ || GET_CODE (XEXP (operand, 0)) == POST_INC))
+ win = 1;
+ break;
+
+ /* Memory operand whose address is not offsettable. */
+ case 'V':
+ if (force_reload)
+ break;
+ if (GET_CODE (operand) == MEM
+ && ! (ind_levels ? offsettable_memref_p (operand)
+ : offsettable_nonstrict_memref_p (operand))
+ /* Certain mem addresses will become offsettable
+ after they themselves are reloaded. This is important;
+ we don't want our own handling of unoffsettables
+ to override the handling of reg_equiv_address. */
+ && !(GET_CODE (XEXP (operand, 0)) == REG
+ && (ind_levels == 0
+ || reg_equiv_address[REGNO (XEXP (operand, 0))] != 0)))
+ win = 1;
+ break;
+
+ /* Memory operand whose address is offsettable. */
+ case 'o':
+ if (force_reload)
+ break;
+ if ((GET_CODE (operand) == MEM
+ /* If IND_LEVELS, find_reloads_address won't reload a
+ pseudo that didn't get a hard reg, so we have to
+ reject that case. */
+ && (ind_levels ? offsettable_memref_p (operand)
+ : offsettable_nonstrict_memref_p (operand)))
+ /* A reloaded auto-increment address is offsettable,
+ because it is now just a simple register indirect. */
+ || (GET_CODE (operand) == MEM
+ && address_reloaded[i]
+ && (GET_CODE (XEXP (operand, 0)) == PRE_INC
+ || GET_CODE (XEXP (operand, 0)) == PRE_DEC
+ || GET_CODE (XEXP (operand, 0)) == POST_INC
+ || GET_CODE (XEXP (operand, 0)) == POST_DEC))
+ /* Certain mem addresses will become offsettable
+ after they themselves are reloaded. This is important;
+ we don't want our own handling of unoffsettables
+ to override the handling of reg_equiv_address. */
+ || (GET_CODE (operand) == MEM
+ && GET_CODE (XEXP (operand, 0)) == REG
+ && (ind_levels == 0
+ || reg_equiv_address[REGNO (XEXP (operand, 0))] != 0))
+ || (GET_CODE (operand) == REG
+ && REGNO (operand) >= FIRST_PSEUDO_REGISTER
+ && reg_renumber[REGNO (operand)] < 0
+ /* If reg_equiv_address is nonzero, we will be
+ loading it into a register; hence it will be
+ offsettable, but we cannot say that reg_equiv_mem
+ is offsettable without checking. */
+ && ((reg_equiv_mem[REGNO (operand)] != 0
+ && offsettable_memref_p (reg_equiv_mem[REGNO (operand)]))
+ || (reg_equiv_address[REGNO (operand)] != 0))))
+ win = 1;
+ if (CONSTANT_P (operand) || GET_CODE (operand) == MEM)
+ badop = 0;
+ constmemok = 1;
+ offmemok = 1;
+ break;
+
+ case '&':
+ /* Output operand that is stored before the need for the
+ input operands (and their index registers) is over. */
+ earlyclobber = 1, this_earlyclobber = 1;
+ break;
+
+ case 'E':
+#ifndef REAL_ARITHMETIC
+ /* Match any floating double constant, but only if
+ we can examine the bits of it reliably. */
+ if ((HOST_FLOAT_FORMAT != TARGET_FLOAT_FORMAT
+ || HOST_BITS_PER_WIDE_INT != BITS_PER_WORD)
+ && GET_MODE (operand) != VOIDmode && ! flag_pretend_float)
+ break;
+#endif
+ if (GET_CODE (operand) == CONST_DOUBLE)
+ win = 1;
+ break;
+
+ case 'F':
+ if (GET_CODE (operand) == CONST_DOUBLE)
+ win = 1;
+ break;
+
+ case 'G':
+ case 'H':
+ if (GET_CODE (operand) == CONST_DOUBLE
+ && CONST_DOUBLE_OK_FOR_LETTER_P (operand, c))
+ win = 1;
+ break;
+
+ case 's':
+ if (GET_CODE (operand) == CONST_INT
+ || (GET_CODE (operand) == CONST_DOUBLE
+ && GET_MODE (operand) == VOIDmode))
+ break;
+ case 'i':
+ if (CONSTANT_P (operand)
+#ifdef LEGITIMATE_PIC_OPERAND_P
+ && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (operand))
+#endif
+ )
+ win = 1;
+ break;
+
+ case 'n':
+ if (GET_CODE (operand) == CONST_INT
+ || (GET_CODE (operand) == CONST_DOUBLE
+ && GET_MODE (operand) == VOIDmode))
+ win = 1;
+ break;
+
+ case 'I':
+ case 'J':
+ case 'K':
+ case 'L':
+ case 'M':
+ case 'N':
+ case 'O':
+ case 'P':
+ if (GET_CODE (operand) == CONST_INT
+ && CONST_OK_FOR_LETTER_P (INTVAL (operand), c))
+ win = 1;
+ break;
+
+ case 'X':
+ win = 1;
+ break;
+
+ case 'g':
+ if (! force_reload
+ /* A PLUS is never a valid operand, but reload can make
+ it from a register when eliminating registers. */
+ && GET_CODE (operand) != PLUS
+ /* A SCRATCH is not a valid operand. */
+ && GET_CODE (operand) != SCRATCH
+#ifdef LEGITIMATE_PIC_OPERAND_P
+ && (! CONSTANT_P (operand)
+ || ! flag_pic
+ || LEGITIMATE_PIC_OPERAND_P (operand))
+#endif
+ && (GENERAL_REGS == ALL_REGS
+ || GET_CODE (operand) != REG
+ || (REGNO (operand) >= FIRST_PSEUDO_REGISTER
+ && reg_renumber[REGNO (operand)] < 0)))
+ win = 1;
+ /* Drop through into 'r' case */
+
+ case 'r':
+ this_alternative[i]
+ = (int) reg_class_subunion[this_alternative[i]][(int) GENERAL_REGS];
+ goto reg;
+
+#ifdef EXTRA_CONSTRAINT
+ case 'Q':
+ case 'R':
+ case 'S':
+ case 'T':
+ case 'U':
+ if (EXTRA_CONSTRAINT (operand, c))
+ win = 1;
+ break;
+#endif
+
+ default:
+ this_alternative[i]
+ = (int) reg_class_subunion[this_alternative[i]][(int) REG_CLASS_FROM_LETTER (c)];
+
+ reg:
+ if (GET_MODE (operand) == BLKmode)
+ break;
+ winreg = 1;
+ if (GET_CODE (operand) == REG
+ && reg_fits_class_p (operand, this_alternative[i],
+ offset, GET_MODE (recog_operand[i])))
+ win = 1;
+ break;
+ }
+
+ constraints[i] = p;
+
+ /* If this operand could be handled with a reg,
+ and some reg is allowed, then this operand can be handled. */
+ if (winreg && this_alternative[i] != (int) NO_REGS)
+ badop = 0;
+
+ /* Record which operands fit this alternative. */
+ this_alternative_earlyclobber[i] = earlyclobber;
+ if (win && ! force_reload)
+ this_alternative_win[i] = 1;
+ else
+ {
+ int const_to_mem = 0;
+
+ this_alternative_offmemok[i] = offmemok;
+ losers++;
+ if (badop)
+ bad = 1;
+ /* Alternative loses if it has no regs for a reg operand. */
+ if (GET_CODE (operand) == REG
+ && this_alternative[i] == (int) NO_REGS
+ && this_alternative_matches[i] < 0)
+ bad = 1;
+
+ /* Alternative loses if it requires a type of reload not
+ permitted for this insn. We can always reload SCRATCH
+ and objects with a REG_UNUSED note. */
+ if (GET_CODE (operand) != SCRATCH
+ && modified[i] != RELOAD_READ && no_output_reloads
+ && ! find_reg_note (insn, REG_UNUSED, operand))
+ bad = 1;
+ else if (modified[i] != RELOAD_WRITE && no_input_reloads)
+ bad = 1;
+
+ /* If this is a constant that is reloaded into the desired
+ class by copying it to memory first, count that as another
+ reload. This is consistent with other code and is
+ required to avoid choosing another alternative when
+ the constant is moved into memory by this function on
+ an early reload pass. Note that the test here is
+ precisely the same as in the code below that calls
+ force_const_mem. */
+ if (CONSTANT_P (operand)
+ /* force_const_mem does not accept HIGH. */
+ && GET_CODE (operand) != HIGH
+ && (PREFERRED_RELOAD_CLASS (operand,
+ (enum reg_class) this_alternative[i])
+ == NO_REGS)
+ && operand_mode[i] != VOIDmode)
+ {
+ const_to_mem = 1;
+ if (this_alternative[i] != (int) NO_REGS)
+ losers++;
+ }
+
+ /* If we can't reload this value at all, reject this
+ alternative. Note that we could also lose due to
+ LIMIT_RELOAD_RELOAD_CLASS, but we don't check that
+ here. */
+
+ if (! CONSTANT_P (operand)
+ && (enum reg_class) this_alternative[i] != NO_REGS
+ && (PREFERRED_RELOAD_CLASS (operand,
+ (enum reg_class) this_alternative[i])
+ == NO_REGS))
+ bad = 1;
+
+ /* We prefer to reload pseudos over reloading other things,
+ since such reloads may be able to be eliminated later.
+ If we are reloading a SCRATCH, we won't be generating any
+ insns, just using a register, so it is also preferred.
+ So bump REJECT in other cases. Don't do this in the
+ case where we are forcing a constant into memory and
+ it will then win since we don't want to have a different
+ alternative match then. */
+ if (! (GET_CODE (operand) == REG
+ && REGNO (operand) >= FIRST_PSEUDO_REGISTER)
+ && GET_CODE (operand) != SCRATCH
+ && ! (const_to_mem && constmemok))
+ reject++;
+ }
+
+ /* If this operand is a pseudo register that didn't get a hard
+ reg and this alternative accepts some register, see if the
+ class that we want is a subset of the preferred class for this
+ register. If not, but it intersects that class, use the
+ preferred class instead. If it does not intersect the preferred
+ class, show that usage of this alternative should be discouraged;
+ it will be discouraged more still if the register is `preferred
+ or nothing'. We do this because it increases the chance of
+ reusing our spill register in a later insn and avoiding a pair
+ of memory stores and loads.
+
+ Don't bother with this if this alternative will accept this
+ operand.
+
+ Don't do this for a multiword operand, since it is only a
+ small win and has the risk of requiring more spill registers,
+ which could cause a large loss.
+
+ Don't do this if the preferred class has only one register
+ because we might otherwise exhaust the class. */
+
+
+ if (! win && this_alternative[i] != (int) NO_REGS
+ && GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
+ && reg_class_size[(int) preferred_class[i]] > 1)
+ {
+ if (! reg_class_subset_p (this_alternative[i],
+ preferred_class[i]))
+ {
+ /* Since we don't have a way of forming the intersection,
+ we just do something special if the preferred class
+ is a subset of the class we have; that's the most
+ common case anyway. */
+ if (reg_class_subset_p (preferred_class[i],
+ this_alternative[i]))
+ this_alternative[i] = (int) preferred_class[i];
+ else
+ reject += (1 + pref_or_nothing[i]);
+ }
+ }
+ }
+
+ /* Now see if any output operands that are marked "earlyclobber"
+ in this alternative conflict with any input operands
+ or any memory addresses. */
+
+ for (i = 0; i < noperands; i++)
+ if (this_alternative_earlyclobber[i]
+ && this_alternative_win[i])
+ {
+ struct decomposition early_data;
+
+ early_data = decompose (recog_operand[i]);
+
+ if (modified[i] == RELOAD_READ)
+ {
+ if (this_insn_is_asm)
+ warning_for_asm (this_insn,
+ "`&' constraint used with input operand");
+ else
+ abort ();
+ continue;
+ }
+
+ if (this_alternative[i] == NO_REGS)
+ {
+ this_alternative_earlyclobber[i] = 0;
+ if (this_insn_is_asm)
+ error_for_asm (this_insn,
+ "`&' constraint used with no register class");
+ else
+ abort ();
+ }
+
+ for (j = 0; j < noperands; j++)
+ /* Is this an input operand or a memory ref? */
+ if ((GET_CODE (recog_operand[j]) == MEM
+ || modified[j] != RELOAD_WRITE)
+ && j != i
+ /* Ignore things like match_operator operands. */
+ && *constraints1[j] != 0
+ /* Don't count an input operand that is constrained to match
+ the early clobber operand. */
+ && ! (this_alternative_matches[j] == i
+ && rtx_equal_p (recog_operand[i], recog_operand[j]))
+ /* Is it altered by storing the earlyclobber operand? */
+ && !immune_p (recog_operand[j], recog_operand[i], early_data))
+ {
+ /* If the output is in a single-reg class,
+ it's costly to reload it, so reload the input instead. */
+ if (reg_class_size[this_alternative[i]] == 1
+ && (GET_CODE (recog_operand[j]) == REG
+ || GET_CODE (recog_operand[j]) == SUBREG))
+ {
+ losers++;
+ this_alternative_win[j] = 0;
+ }
+ else
+ break;
+ }
+ /* If an earlyclobber operand conflicts with something,
+ it must be reloaded, so request this and count the cost. */
+ if (j != noperands)
+ {
+ losers++;
+ this_alternative_win[i] = 0;
+ for (j = 0; j < noperands; j++)
+ if (this_alternative_matches[j] == i
+ && this_alternative_win[j])
+ {
+ this_alternative_win[j] = 0;
+ losers++;
+ }
+ }
+ }
+
+ /* If one alternative accepts all the operands, no reload required,
+ choose that alternative; don't consider the remaining ones. */
+ if (losers == 0)
+ {
+ /* Unswap these so that they are never swapped at `finish'. */
+ if (commutative >= 0)
+ {
+ recog_operand[commutative] = substed_operand[commutative];
+ recog_operand[commutative + 1]
+ = substed_operand[commutative + 1];
+ }
+ for (i = 0; i < noperands; i++)
+ {
+ goal_alternative_win[i] = 1;
+ goal_alternative[i] = this_alternative[i];
+ goal_alternative_offmemok[i] = this_alternative_offmemok[i];
+ goal_alternative_matches[i] = this_alternative_matches[i];
+ goal_alternative_earlyclobber[i]
+ = this_alternative_earlyclobber[i];
+ }
+ goal_alternative_number = this_alternative_number;
+ goal_alternative_swapped = swapped;
+ goal_earlyclobber = this_earlyclobber;
+ goto finish;
+ }
+
+ /* REJECT, set by the ! and ? constraint characters and when a register
+ would be reloaded into a non-preferred class, discourages the use of
+ this alternative for a reload goal. REJECT is incremented by three
+ for each ? and one for each non-preferred class. */
+ losers = losers * 3 + reject;
+
+ /* If this alternative can be made to work by reloading,
+ and it needs less reloading than the others checked so far,
+ record it as the chosen goal for reloading. */
+ if (! bad && best > losers)
+ {
+ for (i = 0; i < noperands; i++)
+ {
+ goal_alternative[i] = this_alternative[i];
+ goal_alternative_win[i] = this_alternative_win[i];
+ goal_alternative_offmemok[i] = this_alternative_offmemok[i];
+ goal_alternative_matches[i] = this_alternative_matches[i];
+ goal_alternative_earlyclobber[i]
+ = this_alternative_earlyclobber[i];
+ }
+ goal_alternative_swapped = swapped;
+ best = losers;
+ goal_alternative_number = this_alternative_number;
+ goal_earlyclobber = this_earlyclobber;
+ }
+ }
+
+ /* If insn is commutative (it's safe to exchange a certain pair of operands)
+ then we need to try each alternative twice,
+ the second time matching those two operands
+ as if we had exchanged them.
+ To do this, really exchange them in operands.
+
+ If we have just tried the alternatives the second time,
+ return operands to normal and drop through. */
+
+ if (commutative >= 0)
+ {
+ swapped = !swapped;
+ if (swapped)
+ {
+ register enum reg_class tclass;
+ register int t;
+
+ recog_operand[commutative] = substed_operand[commutative + 1];
+ recog_operand[commutative + 1] = substed_operand[commutative];
+
+ tclass = preferred_class[commutative];
+ preferred_class[commutative] = preferred_class[commutative + 1];
+ preferred_class[commutative + 1] = tclass;
+
+ t = pref_or_nothing[commutative];
+ pref_or_nothing[commutative] = pref_or_nothing[commutative + 1];
+ pref_or_nothing[commutative + 1] = t;
+
+ bcopy ((char *) constraints1, (char *) constraints,
+ noperands * sizeof (char *));
+ goto try_swapped;
+ }
+ else
+ {
+ recog_operand[commutative] = substed_operand[commutative];
+ recog_operand[commutative + 1] = substed_operand[commutative + 1];
+ }
+ }
+
+ /* The operands don't meet the constraints.
+ goal_alternative describes the alternative
+ that we could reach by reloading the fewest operands.
+ Reload so as to fit it. */
+
+ if (best == MAX_RECOG_OPERANDS + 300)
+ {
+ /* No alternative works with reloads?? */
+ if (insn_code_number >= 0)
+ abort ();
+ error_for_asm (insn, "inconsistent operand constraints in an `asm'");
+ /* Avoid further trouble with this insn. */
+ PATTERN (insn) = gen_rtx (USE, VOIDmode, const0_rtx);
+ n_reloads = 0;
+ return;
+ }
+
+ /* Jump to `finish' from above if all operands are valid already.
+ In that case, goal_alternative_win is all 1. */
+ finish:
+
+ /* Right now, for any pair of operands I and J that are required to match,
+ with I < J,
+ goal_alternative_matches[J] is I.
+ Set up goal_alternative_matched as the inverse function:
+ goal_alternative_matched[I] = J. */
+
+ for (i = 0; i < noperands; i++)
+ goal_alternative_matched[i] = -1;
+
+ for (i = 0; i < noperands; i++)
+ if (! goal_alternative_win[i]
+ && goal_alternative_matches[i] >= 0)
+ goal_alternative_matched[goal_alternative_matches[i]] = i;
+
+ /* If the best alternative is with operands 1 and 2 swapped,
+ consider them swapped before reporting the reloads. Update the
+ operand numbers of any reloads already pushed. */
+
+ if (goal_alternative_swapped)
+ {
+ register rtx tem;
+
+ tem = substed_operand[commutative];
+ substed_operand[commutative] = substed_operand[commutative + 1];
+ substed_operand[commutative + 1] = tem;
+ tem = recog_operand[commutative];
+ recog_operand[commutative] = recog_operand[commutative + 1];
+ recog_operand[commutative + 1] = tem;
+
+ for (i = 0; i < n_reloads; i++)
+ {
+ if (reload_opnum[i] == commutative)
+ reload_opnum[i] = commutative + 1;
+ else if (reload_opnum[i] == commutative + 1)
+ reload_opnum[i] = commutative;
+ }
+ }
+
+ /* Perform whatever substitutions on the operands we are supposed
+ to make due to commutativity or replacement of registers
+ with equivalent constants or memory slots. */
+
+ for (i = 0; i < noperands; i++)
+ {
+ *recog_operand_loc[i] = substed_operand[i];
+ /* While we are looping on operands, initialize this. */
+ operand_reloadnum[i] = -1;
+
+ /* If this is an earlyclobber operand, we need to widen the scope.
+ The reload must remain valid from the start of the insn being
+ reloaded until after the operand is stored into its destination.
+ We approximate this with RELOAD_OTHER even though we know that we
+ do not conflict with RELOAD_FOR_INPUT_ADDRESS reloads.
+
+ One special case that is worth checking is when we have an
+ output that is earlyclobber but isn't used past the insn (typically
+ a SCRATCH). In this case, we only need have the reload live
+ through the insn itself, but not for any of our input or output
+ reloads.
+
+ In any case, anything needed to address this operand can remain
+ however they were previously categorized. */
+
+ if (goal_alternative_earlyclobber[i])
+ operand_type[i]
+ = (find_reg_note (insn, REG_UNUSED, recog_operand[i])
+ ? RELOAD_FOR_INSN : RELOAD_OTHER);
+ }
+
+ /* Any constants that aren't allowed and can't be reloaded
+ into registers are here changed into memory references. */
+ for (i = 0; i < noperands; i++)
+ if (! goal_alternative_win[i]
+ && CONSTANT_P (recog_operand[i])
+ /* force_const_mem does not accept HIGH. */
+ && GET_CODE (recog_operand[i]) != HIGH
+ && (PREFERRED_RELOAD_CLASS (recog_operand[i],
+ (enum reg_class) goal_alternative[i])
+ == NO_REGS)
+ && operand_mode[i] != VOIDmode)
+ {
+ *recog_operand_loc[i] = recog_operand[i]
+ = find_reloads_toplev (force_const_mem (operand_mode[i],
+ recog_operand[i]),
+ i, address_type[i], ind_levels, 0);
+ if (alternative_allows_memconst (constraints1[i],
+ goal_alternative_number))
+ goal_alternative_win[i] = 1;
+ }
+
+ /* Record the values of the earlyclobber operands for the caller. */
+ if (goal_earlyclobber)
+ for (i = 0; i < noperands; i++)
+ if (goal_alternative_earlyclobber[i])
+ reload_earlyclobbers[n_earlyclobbers++] = recog_operand[i];
+
+ /* Now record reloads for all the operands that need them. */
+ for (i = 0; i < noperands; i++)
+ if (! goal_alternative_win[i])
+ {
+ /* Operands that match previous ones have already been handled. */
+ if (goal_alternative_matches[i] >= 0)
+ ;
+ /* Handle an operand with a nonoffsettable address
+ appearing where an offsettable address will do
+ by reloading the address into a base register.
+
+ ??? We can also do this when the operand is a register and
+ reg_equiv_mem is not offsettable, but this is a bit tricky,
+ so we don't bother with it. It may not be worth doing. */
+ else if (goal_alternative_matched[i] == -1
+ && goal_alternative_offmemok[i]
+ && GET_CODE (recog_operand[i]) == MEM)
+ {
+ operand_reloadnum[i]
+ = push_reload (XEXP (recog_operand[i], 0), NULL_RTX,
+ &XEXP (recog_operand[i], 0), NULL_PTR,
+ BASE_REG_CLASS, GET_MODE (XEXP (recog_operand[i], 0)),
+ VOIDmode, 0, 0, i, RELOAD_FOR_INPUT);
+ reload_inc[operand_reloadnum[i]]
+ = GET_MODE_SIZE (GET_MODE (recog_operand[i]));
+
+ /* If this operand is an output, we will have made any
+ reloads for its address as RELOAD_FOR_OUTPUT_ADDRESS, but
+ now we are treating part of the operand as an input, so
+ we must change these to RELOAD_FOR_INPUT_ADDRESS. */
+
+ if (modified[i] == RELOAD_WRITE)
+ for (j = 0; j < n_reloads; j++)
+ if (reload_opnum[j] == i
+ && reload_when_needed[j] == RELOAD_FOR_OUTPUT_ADDRESS)
+ reload_when_needed[j] = RELOAD_FOR_INPUT_ADDRESS;
+ }
+ else if (goal_alternative_matched[i] == -1)
+ operand_reloadnum[i] =
+ push_reload (modified[i] != RELOAD_WRITE ? recog_operand[i] : 0,
+ modified[i] != RELOAD_READ ? recog_operand[i] : 0,
+ (modified[i] != RELOAD_WRITE ?
+ recog_operand_loc[i] : 0),
+ modified[i] != RELOAD_READ ? recog_operand_loc[i] : 0,
+ (enum reg_class) goal_alternative[i],
+ (modified[i] == RELOAD_WRITE
+ ? VOIDmode : operand_mode[i]),
+ (modified[i] == RELOAD_READ
+ ? VOIDmode : operand_mode[i]),
+ (insn_code_number < 0 ? 0
+ : insn_operand_strict_low[insn_code_number][i]),
+ 0, i, operand_type[i]);
+ /* In a matching pair of operands, one must be input only
+ and the other must be output only.
+ Pass the input operand as IN and the other as OUT. */
+ else if (modified[i] == RELOAD_READ
+ && modified[goal_alternative_matched[i]] == RELOAD_WRITE)
+ {
+ operand_reloadnum[i]
+ = push_reload (recog_operand[i],
+ recog_operand[goal_alternative_matched[i]],
+ recog_operand_loc[i],
+ recog_operand_loc[goal_alternative_matched[i]],
+ (enum reg_class) goal_alternative[i],
+ operand_mode[i],
+ operand_mode[goal_alternative_matched[i]],
+ 0, 0, i, RELOAD_OTHER);
+ operand_reloadnum[goal_alternative_matched[i]] = output_reloadnum;
+ }
+ else if (modified[i] == RELOAD_WRITE
+ && modified[goal_alternative_matched[i]] == RELOAD_READ)
+ {
+ operand_reloadnum[goal_alternative_matched[i]]
+ = push_reload (recog_operand[goal_alternative_matched[i]],
+ recog_operand[i],
+ recog_operand_loc[goal_alternative_matched[i]],
+ recog_operand_loc[i],
+ (enum reg_class) goal_alternative[i],
+ operand_mode[goal_alternative_matched[i]],
+ operand_mode[i],
+ 0, 0, i, RELOAD_OTHER);
+ operand_reloadnum[i] = output_reloadnum;
+ }
+ else if (insn_code_number >= 0)
+ abort ();
+ else
+ {
+ error_for_asm (insn, "inconsistent operand constraints in an `asm'");
+ /* Avoid further trouble with this insn. */
+ PATTERN (insn) = gen_rtx (USE, VOIDmode, const0_rtx);
+ n_reloads = 0;
+ return;
+ }
+ }
+ else if (goal_alternative_matched[i] < 0
+ && goal_alternative_matches[i] < 0
+ && optimize)
+ {
+ /* For each non-matching operand that's a MEM or a pseudo-register
+ that didn't get a hard register, make an optional reload.
+ This may get done even if the insn needs no reloads otherwise. */
+
+ rtx operand = recog_operand[i];
+
+ while (GET_CODE (operand) == SUBREG)
+ operand = XEXP (operand, 0);
+ if ((GET_CODE (operand) == MEM
+ || (GET_CODE (operand) == REG
+ && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
+ && (enum reg_class) goal_alternative[i] != NO_REGS
+ && ! no_input_reloads
+ /* Optional output reloads don't do anything and we mustn't
+ make in-out reloads on insns that are not permitted output
+ reloads. */
+ && (modified[i] == RELOAD_READ
+ || (modified[i] == RELOAD_READ_WRITE && ! no_output_reloads)))
+ operand_reloadnum[i]
+ = push_reload (modified[i] != RELOAD_WRITE ? recog_operand[i] : 0,
+ modified[i] != RELOAD_READ ? recog_operand[i] : 0,
+ (modified[i] != RELOAD_WRITE
+ ? recog_operand_loc[i] : 0),
+ (modified[i] != RELOAD_READ
+ ? recog_operand_loc[i] : 0),
+ (enum reg_class) goal_alternative[i],
+ (modified[i] == RELOAD_WRITE
+ ? VOIDmode : operand_mode[i]),
+ (modified[i] == RELOAD_READ
+ ? VOIDmode : operand_mode[i]),
+ (insn_code_number < 0 ? 0
+ : insn_operand_strict_low[insn_code_number][i]),
+ 1, i, operand_type[i]);
+ }
+ else if (goal_alternative_matches[i] >= 0
+ && goal_alternative_win[goal_alternative_matches[i]]
+ && modified[i] == RELOAD_READ
+ && modified[goal_alternative_matches[i]] == RELOAD_WRITE
+ && ! no_input_reloads && ! no_output_reloads
+ && optimize)
+ {
+ /* Similarly, make an optional reload for a pair of matching
+ objects that are in MEM or a pseudo that didn't get a hard reg. */
+
+ rtx operand = recog_operand[i];
+
+ while (GET_CODE (operand) == SUBREG)
+ operand = XEXP (operand, 0);
+ if ((GET_CODE (operand) == MEM
+ || (GET_CODE (operand) == REG
+ && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
+ && ((enum reg_class) goal_alternative[goal_alternative_matches[i]]
+ != NO_REGS))
+ operand_reloadnum[i] = operand_reloadnum[goal_alternative_matches[i]]
+ = push_reload (recog_operand[goal_alternative_matches[i]],
+ recog_operand[i],
+ recog_operand_loc[goal_alternative_matches[i]],
+ recog_operand_loc[i],
+ (enum reg_class) goal_alternative[goal_alternative_matches[i]],
+ operand_mode[goal_alternative_matches[i]],
+ operand_mode[i],
+ 0, 1, goal_alternative_matches[i], RELOAD_OTHER);
+ }
+
+ /* If this insn pattern contains any MATCH_DUP's, make sure that
+ they will be substituted if the operands they match are substituted.
+ Also do now any substitutions we already did on the operands.
+
+ Don't do this if we aren't making replacements because we might be
+ propagating things allocated by frame pointer elimination into places
+ it doesn't expect. */
+
+ if (insn_code_number >= 0 && replace)
+ for (i = insn_n_dups[insn_code_number] - 1; i >= 0; i--)
+ {
+ int opno = recog_dup_num[i];
+ *recog_dup_loc[i] = *recog_operand_loc[opno];
+ if (operand_reloadnum[opno] >= 0)
+ push_replacement (recog_dup_loc[i], operand_reloadnum[opno],
+ insn_operand_mode[insn_code_number][opno]);
+ }
+
+#if 0
+ /* This loses because reloading of prior insns can invalidate the equivalence
+ (or at least find_equiv_reg isn't smart enough to find it any more),
+ causing this insn to need more reload regs than it needed before.
+ It may be too late to make the reload regs available.
+ Now this optimization is done safely in choose_reload_regs. */
+
+ /* For each reload of a reg into some other class of reg,
+ search for an existing equivalent reg (same value now) in the right class.
+ We can use it as long as we don't need to change its contents. */
+ for (i = 0; i < n_reloads; i++)
+ if (reload_reg_rtx[i] == 0
+ && reload_in[i] != 0
+ && GET_CODE (reload_in[i]) == REG
+ && reload_out[i] == 0)
+ {
+ reload_reg_rtx[i]
+ = find_equiv_reg (reload_in[i], insn, reload_reg_class[i], -1,
+ static_reload_reg_p, 0, reload_inmode[i]);
+ /* Prevent generation of insn to load the value
+ because the one we found already has the value. */
+ if (reload_reg_rtx[i])
+ reload_in[i] = reload_reg_rtx[i];
+ }
+#endif
+
+ /* Perhaps an output reload can be combined with another
+ to reduce needs by one. */
+ if (!goal_earlyclobber)
+ combine_reloads ();
+
+ /* If we have a pair of reloads for parts of an address, they are reloading
+ the same object, the operands themselves were not reloaded, and they
+ are for two operands that are supposed to match, merge the reloads and
+ change the type of the surviving reload to RELOAD_FOR_OPERAND_ADDRESS. */
+
+ for (i = 0; i < n_reloads; i++)
+ {
+ int k;
+
+ for (j = i + 1; j < n_reloads; j++)
+ if ((reload_when_needed[i] == RELOAD_FOR_INPUT_ADDRESS
+ || reload_when_needed[i] == RELOAD_FOR_OUTPUT_ADDRESS)
+ && (reload_when_needed[j] == RELOAD_FOR_INPUT_ADDRESS
+ || reload_when_needed[j] == RELOAD_FOR_OUTPUT_ADDRESS)
+ && rtx_equal_p (reload_in[i], reload_in[j])
+ && (operand_reloadnum[reload_opnum[i]] < 0
+ || reload_optional[operand_reloadnum[reload_opnum[i]]])
+ && (operand_reloadnum[reload_opnum[j]] < 0
+ || reload_optional[operand_reloadnum[reload_opnum[j]]])
+ && (goal_alternative_matches[reload_opnum[i]] == reload_opnum[j]
+ || (goal_alternative_matches[reload_opnum[j]]
+ == reload_opnum[i])))
+ {
+ for (k = 0; k < n_replacements; k++)
+ if (replacements[k].what == j)
+ replacements[k].what = i;
+
+ reload_when_needed[i] = RELOAD_FOR_OPERAND_ADDRESS;
+ reload_in[j] = 0;
+ }
+ }
+
+ /* Scan all the reloads and update their type.
+ If a reload is for the address of an operand and we didn't reload
+ that operand, change the type. Similarly, change the operand number
+ of a reload when two operands match. If a reload is optional, treat it
+ as though the operand isn't reloaded.
+
+ ??? This latter case is somewhat odd because if we do the optional
+ reload, it means the object is hanging around. Thus we need only
+ do the address reload if the optional reload was NOT done.
+
+ Change secondary reloads to be the address type of their operand, not
+ the normal type.
+
+ If an operand's reload is now RELOAD_OTHER, change any
+ RELOAD_FOR_INPUT_ADDRESS reloads of that operand to
+ RELOAD_FOR_OTHER_ADDRESS. */
+
+ for (i = 0; i < n_reloads; i++)
+ {
+ if (reload_secondary_p[i]
+ && reload_when_needed[i] == operand_type[reload_opnum[i]])
+ reload_when_needed[i] = address_type[reload_opnum[i]];
+
+ if ((reload_when_needed[i] == RELOAD_FOR_INPUT_ADDRESS
+ || reload_when_needed[i] == RELOAD_FOR_OUTPUT_ADDRESS)
+ && (operand_reloadnum[reload_opnum[i]] < 0
+ || reload_optional[operand_reloadnum[reload_opnum[i]]]))
+ {
+ /* If we have a secondary reload to go along with this reload,
+ change its type to RELOAD_FOR_OPADDR_ADDR. */
+
+ if (reload_when_needed[i] == RELOAD_FOR_INPUT_ADDRESS
+ && reload_secondary_in_reload[i] != -1)
+ {
+ int secondary_in_reload = reload_secondary_in_reload[i];
+
+ reload_when_needed[secondary_in_reload] =
+ RELOAD_FOR_OPADDR_ADDR;
+
+ /* If there's a tertiary reload we have to change it also. */
+ if (secondary_in_reload > 0
+ && reload_secondary_in_reload[secondary_in_reload] != -1)
+ reload_when_needed[reload_secondary_in_reload[secondary_in_reload]]
+ = RELOAD_FOR_OPADDR_ADDR;
+ }
+
+ if (reload_when_needed[i] == RELOAD_FOR_OUTPUT_ADDRESS
+ && reload_secondary_out_reload[i] != -1)
+ {
+ int secondary_out_reload = reload_secondary_out_reload[i];
+
+ reload_when_needed[secondary_out_reload] =
+ RELOAD_FOR_OPADDR_ADDR;
+
+ /* If there's a tertiary reload we have to change it also. */
+ if (secondary_out_reload
+ && reload_secondary_out_reload[secondary_out_reload] != -1)
+ reload_when_needed[reload_secondary_out_reload[secondary_out_reload]]
+ = RELOAD_FOR_OPADDR_ADDR;
+ }
+ reload_when_needed[i] = RELOAD_FOR_OPERAND_ADDRESS;
+ }
+
+ if (reload_when_needed[i] == RELOAD_FOR_INPUT_ADDRESS
+ && operand_reloadnum[reload_opnum[i]] >= 0
+ && (reload_when_needed[operand_reloadnum[reload_opnum[i]]]
+ == RELOAD_OTHER))
+ reload_when_needed[i] = RELOAD_FOR_OTHER_ADDRESS;
+
+ if (goal_alternative_matches[reload_opnum[i]] >= 0)
+ reload_opnum[i] = goal_alternative_matches[reload_opnum[i]];
+ }
+
+ /* See if we have any reloads that are now allowed to be merged
+ because we've changed when the reload is needed to
+ RELOAD_FOR_OPERAND_ADDRESS or RELOAD_FOR_OTHER_ADDRESS. Only
+ check for the most common cases. */
+
+ for (i = 0; i < n_reloads; i++)
+ if (reload_in[i] != 0 && reload_out[i] == 0
+ && (reload_when_needed[i] == RELOAD_FOR_OPERAND_ADDRESS
+ || reload_when_needed[i] == RELOAD_FOR_OTHER_ADDRESS))
+ for (j = 0; j < n_reloads; j++)
+ if (i != j && reload_in[j] != 0 && reload_out[j] == 0
+ && reload_when_needed[j] == reload_when_needed[i]
+ && MATCHES (reload_in[i], reload_in[j])
+ && reload_reg_class[i] == reload_reg_class[j]
+ && !reload_nocombine[i] && !reload_nocombine[j]
+ && reload_reg_rtx[i] == reload_reg_rtx[j])
+ {
+ reload_opnum[i] = MIN (reload_opnum[i], reload_opnum[j]);
+ transfer_replacements (i, j);
+ reload_in[j] = 0;
+ }
+
+#else /* no REGISTER_CONSTRAINTS */
+ int noperands;
+ int insn_code_number;
+ int goal_earlyclobber = 0; /* Always 0, to make combine_reloads happen. */
+ register int i;
+ rtx body = PATTERN (insn);
+
+ n_reloads = 0;
+ n_replacements = 0;
+ n_earlyclobbers = 0;
+ replace_reloads = replace;
+ this_insn = insn;
+
+ /* Find what kind of insn this is. NOPERANDS gets number of operands.
+ Store the operand values in RECOG_OPERAND and the locations
+ of the words in the insn that point to them in RECOG_OPERAND_LOC.
+ Return if the insn needs no reload processing. */
+
+ switch (GET_CODE (body))
+ {
+ case USE:
+ case CLOBBER:
+ case ASM_INPUT:
+ case ADDR_VEC:
+ case ADDR_DIFF_VEC:
+ return;
+
+ case PARALLEL:
+ case SET:
+ noperands = asm_noperands (body);
+ if (noperands >= 0)
+ {
+ /* This insn is an `asm' with operands.
+ First, find out how many operands, and allocate space. */
+
+ insn_code_number = -1;
+ /* ??? This is a bug! ???
+ Give up and delete this insn if it has too many operands. */
+ if (noperands > MAX_RECOG_OPERANDS)
+ abort ();
+
+ /* Now get the operand values out of the insn. */
+
+ decode_asm_operands (body, recog_operand, recog_operand_loc,
+ NULL_PTR, NULL_PTR);
+ break;
+ }
+
+ default:
+ /* Ordinary insn: recognize it, allocate space for operands and
+ constraints, and get them out via insn_extract. */
+
+ insn_code_number = recog_memoized (insn);
+ noperands = insn_n_operands[insn_code_number];
+ insn_extract (insn);
+ }
+
+ if (noperands == 0)
+ return;
+
+ for (i = 0; i < noperands; i++)
+ {
+ register RTX_CODE code = GET_CODE (recog_operand[i]);
+ int is_set_dest = GET_CODE (body) == SET && (i == 0);
+
+ if (insn_code_number >= 0)
+ if (insn_operand_address_p[insn_code_number][i])
+ find_reloads_address (VOIDmode, NULL_PTR,
+ recog_operand[i], recog_operand_loc[i],
+ i, RELOAD_FOR_INPUT, ind_levels);
+
+ /* In these cases, we can't tell if the operand is an input
+ or an output, so be conservative. In practice it won't be
+ problem. */
+
+ if (code == MEM)
+ find_reloads_address (GET_MODE (recog_operand[i]),
+ recog_operand_loc[i],
+ XEXP (recog_operand[i], 0),
+ &XEXP (recog_operand[i], 0),
+ i, RELOAD_OTHER, ind_levels);
+ if (code == SUBREG)
+ recog_operand[i] = *recog_operand_loc[i]
+ = find_reloads_toplev (recog_operand[i], i, RELOAD_OTHER,
+ ind_levels, is_set_dest);
+ if (code == REG)
+ {
+ register int regno = REGNO (recog_operand[i]);
+ if (reg_equiv_constant[regno] != 0 && !is_set_dest)
+ recog_operand[i] = *recog_operand_loc[i]
+ = reg_equiv_constant[regno];
+#if 0 /* This might screw code in reload1.c to delete prior output-reload
+ that feeds this insn. */
+ if (reg_equiv_mem[regno] != 0)
+ recog_operand[i] = *recog_operand_loc[i]
+ = reg_equiv_mem[regno];
+#endif
+ }
+ }
+
+ /* Perhaps an output reload can be combined with another
+ to reduce needs by one. */
+ if (!goal_earlyclobber)
+ combine_reloads ();
+#endif /* no REGISTER_CONSTRAINTS */
+}
+
+/* Return 1 if alternative number ALTNUM in constraint-string CONSTRAINT
+ accepts a memory operand with constant address. */
+
+static int
+alternative_allows_memconst (constraint, altnum)
+ char *constraint;
+ int altnum;
+{
+ register int c;
+ /* Skip alternatives before the one requested. */
+ while (altnum > 0)
+ {
+ while (*constraint++ != ',');
+ altnum--;
+ }
+ /* Scan the requested alternative for 'm' or 'o'.
+ If one of them is present, this alternative accepts memory constants. */
+ while ((c = *constraint++) && c != ',' && c != '#')
+ if (c == 'm' || c == 'o')
+ return 1;
+ return 0;
+}
+
+/* Scan X for memory references and scan the addresses for reloading.
+ Also checks for references to "constant" regs that we want to eliminate
+ and replaces them with the values they stand for.
+ We may alter X destructively if it contains a reference to such.
+ If X is just a constant reg, we return the equivalent value
+ instead of X.
+
+ IND_LEVELS says how many levels of indirect addressing this machine
+ supports.
+
+ OPNUM and TYPE identify the purpose of the reload.
+
+ IS_SET_DEST is true if X is the destination of a SET, which is not
+ appropriate to be replaced by a constant. */
+
+static rtx
+find_reloads_toplev (x, opnum, type, ind_levels, is_set_dest)
+ rtx x;
+ int opnum;
+ enum reload_type type;
+ int ind_levels;
+ int is_set_dest;
+{
+ register RTX_CODE code = GET_CODE (x);
+
+ register char *fmt = GET_RTX_FORMAT (code);
+ register int i;
+
+ if (code == REG)
+ {
+ /* This code is duplicated for speed in find_reloads. */
+ register int regno = REGNO (x);
+ if (reg_equiv_constant[regno] != 0 && !is_set_dest)
+ x = reg_equiv_constant[regno];
+#if 0
+/* This creates (subreg (mem...)) which would cause an unnecessary
+ reload of the mem. */
+ else if (reg_equiv_mem[regno] != 0)
+ x = reg_equiv_mem[regno];
+#endif
+ else if (reg_equiv_address[regno] != 0)
+ {
+ /* If reg_equiv_address varies, it may be shared, so copy it. */
+ /* We must rerun eliminate_regs, in case the elimination
+ offsets have changed. */
+ rtx addr = XEXP (eliminate_regs (reg_equiv_memory_loc[regno], 0,
+ NULL_RTX),
+ 0);
+
+ if (rtx_varies_p (addr))
+ addr = copy_rtx (addr);
+
+ x = gen_rtx (MEM, GET_MODE (x), addr);
+ RTX_UNCHANGING_P (x) = RTX_UNCHANGING_P (regno_reg_rtx[regno]);
+ find_reloads_address (GET_MODE (x), NULL_PTR,
+ XEXP (x, 0),
+ &XEXP (x, 0), opnum, type, ind_levels);
+ }
+ return x;
+ }
+ if (code == MEM)
+ {
+ rtx tem = x;
+ find_reloads_address (GET_MODE (x), &tem, XEXP (x, 0), &XEXP (x, 0),
+ opnum, type, ind_levels);
+ return tem;
+ }
+
+ if (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG)
+ {
+ /* Check for SUBREG containing a REG that's equivalent to a constant.
+ If the constant has a known value, truncate it right now.
+ Similarly if we are extracting a single-word of a multi-word
+ constant. If the constant is symbolic, allow it to be substituted
+ normally. push_reload will strip the subreg later. If the
+ constant is VOIDmode, abort because we will lose the mode of
+ the register (this should never happen because one of the cases
+ above should handle it). */
+
+ register int regno = REGNO (SUBREG_REG (x));
+ rtx tem;
+
+ if (subreg_lowpart_p (x)
+ && regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
+ && reg_equiv_constant[regno] != 0
+ && (tem = gen_lowpart_common (GET_MODE (x),
+ reg_equiv_constant[regno])) != 0)
+ return tem;
+
+ if (GET_MODE_BITSIZE (GET_MODE (x)) == BITS_PER_WORD
+ && regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
+ && reg_equiv_constant[regno] != 0
+ && (tem = operand_subword (reg_equiv_constant[regno],
+ SUBREG_WORD (x), 0,
+ GET_MODE (SUBREG_REG (x)))) != 0)
+ return tem;
+
+ if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
+ && reg_equiv_constant[regno] != 0
+ && GET_MODE (reg_equiv_constant[regno]) == VOIDmode)
+ abort ();
+
+ /* If the subreg contains a reg that will be converted to a mem,
+ convert the subreg to a narrower memref now.
+ Otherwise, we would get (subreg (mem ...) ...),
+ which would force reload of the mem.
+
+ We also need to do this if there is an equivalent MEM that is
+ not offsettable. In that case, alter_subreg would produce an
+ invalid address on big-endian machines.
+
+ For machines that extend byte loads, we must not reload using
+ a wider mode if we have a paradoxical SUBREG. find_reloads will
+ force a reload in that case. So we should not do anything here. */
+
+ else if (regno >= FIRST_PSEUDO_REGISTER
+#ifdef LOAD_EXTEND_OP
+ && (GET_MODE_SIZE (GET_MODE (x))
+ <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
+#endif
+ && (reg_equiv_address[regno] != 0
+ || (reg_equiv_mem[regno] != 0
+ && (! strict_memory_address_p (GET_MODE (x),
+ XEXP (reg_equiv_mem[regno], 0))
+ || ! offsettable_memref_p (reg_equiv_mem[regno])))))
+ {
+ int offset = SUBREG_WORD (x) * UNITS_PER_WORD;
+ /* We must rerun eliminate_regs, in case the elimination
+ offsets have changed. */
+ rtx addr = XEXP (eliminate_regs (reg_equiv_memory_loc[regno], 0,
+ NULL_RTX),
+ 0);
+ if (BYTES_BIG_ENDIAN)
+ {
+ int size;
+ size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
+ offset += MIN (size, UNITS_PER_WORD);
+ size = GET_MODE_SIZE (GET_MODE (x));
+ offset -= MIN (size, UNITS_PER_WORD);
+ }
+ addr = plus_constant (addr, offset);
+ x = gen_rtx (MEM, GET_MODE (x), addr);
+ RTX_UNCHANGING_P (x) = RTX_UNCHANGING_P (regno_reg_rtx[regno]);
+ find_reloads_address (GET_MODE (x), NULL_PTR,
+ XEXP (x, 0),
+ &XEXP (x, 0), opnum, type, ind_levels);
+ }
+
+ }
+
+ for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
+ {
+ if (fmt[i] == 'e')
+ XEXP (x, i) = find_reloads_toplev (XEXP (x, i), opnum, type,
+ ind_levels, is_set_dest);
+ }
+ return x;
+}
+
+/* Return a mem ref for the memory equivalent of reg REGNO.
+ This mem ref is not shared with anything. */
+
+static rtx
+make_memloc (ad, regno)
+ rtx ad;
+ int regno;
+{
+ register int i;
+ /* We must rerun eliminate_regs, in case the elimination
+ offsets have changed. */
+ rtx tem = XEXP (eliminate_regs (reg_equiv_memory_loc[regno], 0, NULL_RTX),
+ 0);
+
+#if 0 /* We cannot safely reuse a memloc made here;
+ if the pseudo appears twice, and its mem needs a reload,
+ it gets two separate reloads assigned, but it only
+ gets substituted with the second of them;
+ then it can get used before that reload reg gets loaded up. */
+ for (i = 0; i < n_memlocs; i++)
+ if (rtx_equal_p (tem, XEXP (memlocs[i], 0)))
+ return memlocs[i];
+#endif
+
+ /* If TEM might contain a pseudo, we must copy it to avoid
+ modifying it when we do the substitution for the reload. */
+ if (rtx_varies_p (tem))
+ tem = copy_rtx (tem);
+
+ tem = gen_rtx (MEM, GET_MODE (ad), tem);
+ RTX_UNCHANGING_P (tem) = RTX_UNCHANGING_P (regno_reg_rtx[regno]);
+ memlocs[n_memlocs++] = tem;
+ return tem;
+}
+
+/* Record all reloads needed for handling memory address AD
+ which appears in *LOC in a memory reference to mode MODE
+ which itself is found in location *MEMREFLOC.
+ Note that we take shortcuts assuming that no multi-reg machine mode
+ occurs as part of an address.
+
+ OPNUM and TYPE specify the purpose of this reload.
+
+ IND_LEVELS says how many levels of indirect addressing this machine
+ supports.
+
+ Value is nonzero if this address is reloaded or replaced as a whole.
+ This is interesting to the caller if the address is an autoincrement.
+
+ Note that there is no verification that the address will be valid after
+ this routine does its work. Instead, we rely on the fact that the address
+ was valid when reload started. So we need only undo things that reload
+ could have broken. These are wrong register types, pseudos not allocated
+ to a hard register, and frame pointer elimination. */
+
+static int
+find_reloads_address (mode, memrefloc, ad, loc, opnum, type, ind_levels)
+ enum machine_mode mode;
+ rtx *memrefloc;
+ rtx ad;
+ rtx *loc;
+ int opnum;
+ enum reload_type type;
+ int ind_levels;
+{
+ register int regno;
+ rtx tem;
+
+ /* If the address is a register, see if it is a legitimate address and
+ reload if not. We first handle the cases where we need not reload
+ or where we must reload in a non-standard way. */
+
+ if (GET_CODE (ad) == REG)
+ {
+ regno = REGNO (ad);
+
+ if (reg_equiv_constant[regno] != 0
+ && strict_memory_address_p (mode, reg_equiv_constant[regno]))
+ {
+ *loc = ad = reg_equiv_constant[regno];
+ return 1;
+ }
+
+ else if (reg_equiv_address[regno] != 0)
+ {
+ tem = make_memloc (ad, regno);
+ find_reloads_address (GET_MODE (tem), NULL_PTR, XEXP (tem, 0),
+ &XEXP (tem, 0), opnum, type, ind_levels);
+ push_reload (tem, NULL_RTX, loc, NULL_PTR, BASE_REG_CLASS,
+ GET_MODE (ad), VOIDmode, 0, 0,
+ opnum, type);
+ return 1;
+ }
+
+ /* We can avoid a reload if the register's equivalent memory expression
+ is valid as an indirect memory address.
+ But not all addresses are valid in a mem used as an indirect address:
+ only reg or reg+constant. */
+
+ else if (reg_equiv_mem[regno] != 0 && ind_levels > 0
+ && strict_memory_address_p (mode, reg_equiv_mem[regno])
+ && (GET_CODE (XEXP (reg_equiv_mem[regno], 0)) == REG
+ || (GET_CODE (XEXP (reg_equiv_mem[regno], 0)) == PLUS
+ && GET_CODE (XEXP (XEXP (reg_equiv_mem[regno], 0), 0)) == REG
+ && CONSTANT_P (XEXP (XEXP (reg_equiv_mem[regno], 0), 1)))))
+ return 0;
+
+ /* The only remaining case where we can avoid a reload is if this is a
+ hard register that is valid as a base register and which is not the
+ subject of a CLOBBER in this insn. */
+
+ else if (regno < FIRST_PSEUDO_REGISTER && REGNO_OK_FOR_BASE_P (regno)
+ && ! regno_clobbered_p (regno, this_insn))
+ return 0;
+
+ /* If we do not have one of the cases above, we must do the reload. */
+ push_reload (ad, NULL_RTX, loc, NULL_PTR, BASE_REG_CLASS,
+ GET_MODE (ad), VOIDmode, 0, 0, opnum, type);
+ return 1;
+ }
+
+ if (strict_memory_address_p (mode, ad))
+ {
+ /* The address appears valid, so reloads are not needed.
+ But the address may contain an eliminable register.
+ This can happen because a machine with indirect addressing
+ may consider a pseudo register by itself a valid address even when
+ it has failed to get a hard reg.
+ So do a tree-walk to find and eliminate all such regs. */
+
+ /* But first quickly dispose of a common case. */
+ if (GET_CODE (ad) == PLUS
+ && GET_CODE (XEXP (ad, 1)) == CONST_INT
+ && GET_CODE (XEXP (ad, 0)) == REG
+ && reg_equiv_constant[REGNO (XEXP (ad, 0))] == 0)
+ return 0;
+
+ subst_reg_equivs_changed = 0;
+ *loc = subst_reg_equivs (ad);
+
+ if (! subst_reg_equivs_changed)
+ return 0;
+
+ /* Check result for validity after substitution. */
+ if (strict_memory_address_p (mode, ad))
+ return 0;
+ }
+
+ /* The address is not valid. We have to figure out why. One possibility
+ is that it is itself a MEM. This can happen when the frame pointer is
+ being eliminated, a pseudo is not allocated to a hard register, and the
+ offset between the frame and stack pointers is not its initial value.
+ In that case the pseudo will have been replaced by a MEM referring to
+ the stack pointer. */
+ if (GET_CODE (ad) == MEM)
+ {
+ /* First ensure that the address in this MEM is valid. Then, unless
+ indirect addresses are valid, reload the MEM into a register. */
+ tem = ad;
+ find_reloads_address (GET_MODE (ad), &tem, XEXP (ad, 0), &XEXP (ad, 0),
+ opnum, type, ind_levels == 0 ? 0 : ind_levels - 1);
+
+ /* If tem was changed, then we must create a new memory reference to
+ hold it and store it back into memrefloc. */
+ if (tem != ad && memrefloc)
+ {
+ *memrefloc = copy_rtx (*memrefloc);
+ copy_replacements (tem, XEXP (*memrefloc, 0));
+ loc = &XEXP (*memrefloc, 0);
+ }
+
+ /* Check similar cases as for indirect addresses as above except
+ that we can allow pseudos and a MEM since they should have been
+ taken care of above. */
+
+ if (ind_levels == 0
+ || (GET_CODE (XEXP (tem, 0)) == SYMBOL_REF && ! indirect_symref_ok)
+ || GET_CODE (XEXP (tem, 0)) == MEM
+ || ! (GET_CODE (XEXP (tem, 0)) == REG
+ || (GET_CODE (XEXP (tem, 0)) == PLUS
+ && GET_CODE (XEXP (XEXP (tem, 0), 0)) == REG
+ && GET_CODE (XEXP (XEXP (tem, 0), 1)) == CONST_INT)))
+ {
+ /* Must use TEM here, not AD, since it is the one that will
+ have any subexpressions reloaded, if needed. */
+ push_reload (tem, NULL_RTX, loc, NULL_PTR,
+ BASE_REG_CLASS, GET_MODE (tem), VOIDmode, 0,
+ 0, opnum, type);
+ return 1;
+ }
+ else
+ return 0;
+ }
+
+ /* If we have address of a stack slot but it's not valid because the
+ displacement is too large, compute the sum in a register.
+ Handle all base registers here, not just fp/ap/sp, because on some
+ targets (namely SH) we can also get too large displacements from
+ big-endian corrections. */
+ else if (GET_CODE (ad) == PLUS
+ && GET_CODE (XEXP (ad, 0)) == REG
+ && REGNO (XEXP (ad, 0)) < FIRST_PSEUDO_REGISTER
+ && REG_OK_FOR_BASE_P (XEXP (ad, 0))
+ && GET_CODE (XEXP (ad, 1)) == CONST_INT)
+ {
+ /* Unshare the MEM rtx so we can safely alter it. */
+ if (memrefloc)
+ {
+ *memrefloc = copy_rtx (*memrefloc);
+ loc = &XEXP (*memrefloc, 0);
+ }
+ if (double_reg_address_ok)
+ {
+ /* Unshare the sum as well. */
+ *loc = ad = copy_rtx (ad);
+ /* Reload the displacement into an index reg.
+ We assume the frame pointer or arg pointer is a base reg. */
+ find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
+ INDEX_REG_CLASS, GET_MODE (ad), opnum,
+ type, ind_levels);
+ }
+ else
+ {
+ /* If the sum of two regs is not necessarily valid,
+ reload the sum into a base reg.
+ That will at least work. */
+ find_reloads_address_part (ad, loc, BASE_REG_CLASS, Pmode,
+ opnum, type, ind_levels);
+ }
+ return 1;
+ }
+
+ /* If we have an indexed stack slot, there are three possible reasons why
+ it might be invalid: The index might need to be reloaded, the address
+ might have been made by frame pointer elimination and hence have a
+ constant out of range, or both reasons might apply.
+
+ We can easily check for an index needing reload, but even if that is the
+ case, we might also have an invalid constant. To avoid making the
+ conservative assumption and requiring two reloads, we see if this address
+ is valid when not interpreted strictly. If it is, the only problem is
+ that the index needs a reload and find_reloads_address_1 will take care
+ of it.
+
+ There is still a case when we might generate an extra reload,
+ however. In certain cases eliminate_regs will return a MEM for a REG
+ (see the code there for details). In those cases, memory_address_p
+ applied to our address will return 0 so we will think that our offset
+ must be too large. But it might indeed be valid and the only problem
+ is that a MEM is present where a REG should be. This case should be
+ very rare and there doesn't seem to be any way to avoid it.
+
+ If we decide to do something here, it must be that
+ `double_reg_address_ok' is true and that this address rtl was made by
+ eliminate_regs. We generate a reload of the fp/sp/ap + constant and
+ rework the sum so that the reload register will be added to the index.
+ This is safe because we know the address isn't shared.
+
+ We check for fp/ap/sp as both the first and second operand of the
+ innermost PLUS. */
+
+ else if (GET_CODE (ad) == PLUS && GET_CODE (XEXP (ad, 1)) == CONST_INT
+ && GET_CODE (XEXP (ad, 0)) == PLUS
+ && (XEXP (XEXP (ad, 0), 0) == frame_pointer_rtx
+#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
+ || XEXP (XEXP (ad, 0), 0) == hard_frame_pointer_rtx
+#endif
+#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
+ || XEXP (XEXP (ad, 0), 0) == arg_pointer_rtx
+#endif
+ || XEXP (XEXP (ad, 0), 0) == stack_pointer_rtx)
+ && ! memory_address_p (mode, ad))
+ {
+ *loc = ad = gen_rtx (PLUS, GET_MODE (ad),
+ plus_constant (XEXP (XEXP (ad, 0), 0),
+ INTVAL (XEXP (ad, 1))),
+ XEXP (XEXP (ad, 0), 1));
+ find_reloads_address_part (XEXP (ad, 0), &XEXP (ad, 0), BASE_REG_CLASS,
+ GET_MODE (ad), opnum, type, ind_levels);
+ find_reloads_address_1 (XEXP (ad, 1), 1, &XEXP (ad, 1), opnum, type, 0);
+
+ return 1;
+ }
+
+ else if (GET_CODE (ad) == PLUS && GET_CODE (XEXP (ad, 1)) == CONST_INT
+ && GET_CODE (XEXP (ad, 0)) == PLUS
+ && (XEXP (XEXP (ad, 0), 1) == frame_pointer_rtx
+#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
+ || XEXP (XEXP (ad, 0), 1) == hard_frame_pointer_rtx
+#endif
+#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
+ || XEXP (XEXP (ad, 0), 1) == arg_pointer_rtx
+#endif
+ || XEXP (XEXP (ad, 0), 1) == stack_pointer_rtx)
+ && ! memory_address_p (mode, ad))
+ {
+ *loc = ad = gen_rtx (PLUS, GET_MODE (ad),
+ XEXP (XEXP (ad, 0), 0),
+ plus_constant (XEXP (XEXP (ad, 0), 1),
+ INTVAL (XEXP (ad, 1))));
+ find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1), BASE_REG_CLASS,
+ GET_MODE (ad), opnum, type, ind_levels);
+ find_reloads_address_1 (XEXP (ad, 0), 1, &XEXP (ad, 0), opnum, type, 0);
+
+ return 1;
+ }
+
+ /* See if address becomes valid when an eliminable register
+ in a sum is replaced. */
+
+ tem = ad;
+ if (GET_CODE (ad) == PLUS)
+ tem = subst_indexed_address (ad);
+ if (tem != ad && strict_memory_address_p (mode, tem))
+ {
+ /* Ok, we win that way. Replace any additional eliminable
+ registers. */
+
+ subst_reg_equivs_changed = 0;
+ tem = subst_reg_equivs (tem);
+
+ /* Make sure that didn't make the address invalid again. */
+
+ if (! subst_reg_equivs_changed || strict_memory_address_p (mode, tem))
+ {
+ *loc = tem;
+ return 0;
+ }
+ }
+
+ /* If constants aren't valid addresses, reload the constant address
+ into a register. */
+ if (CONSTANT_P (ad) && ! strict_memory_address_p (mode, ad))
+ {
+ /* If AD is in address in the constant pool, the MEM rtx may be shared.
+ Unshare it so we can safely alter it. */
+ if (memrefloc && GET_CODE (ad) == SYMBOL_REF
+ && CONSTANT_POOL_ADDRESS_P (ad))
+ {
+ *memrefloc = copy_rtx (*memrefloc);
+ loc = &XEXP (*memrefloc, 0);
+ }
+
+ find_reloads_address_part (ad, loc, BASE_REG_CLASS, Pmode, opnum, type,
+ ind_levels);
+ return 1;
+ }
+
+ return find_reloads_address_1 (ad, 0, loc, opnum, type, ind_levels);
+}
+
+/* Find all pseudo regs appearing in AD
+ that are eliminable in favor of equivalent values
+ and do not have hard regs; replace them by their equivalents. */
+
+static rtx
+subst_reg_equivs (ad)
+ rtx ad;
+{
+ register RTX_CODE code = GET_CODE (ad);
+ register int i;
+ register char *fmt;
+
+ switch (code)
+ {
+ case HIGH:
+ case CONST_INT:
+ case CONST:
+ case CONST_DOUBLE:
+ case SYMBOL_REF:
+ case LABEL_REF:
+ case PC:
+ case CC0:
+ return ad;
+
+ case REG:
+ {
+ register int regno = REGNO (ad);
+
+ if (reg_equiv_constant[regno] != 0)
+ {
+ subst_reg_equivs_changed = 1;
+ return reg_equiv_constant[regno];
+ }
+ }
+ return ad;
+
+ case PLUS:
+ /* Quickly dispose of a common case. */
+ if (XEXP (ad, 0) == frame_pointer_rtx
+ && GET_CODE (XEXP (ad, 1)) == CONST_INT)
+ return ad;
+ }
+
+ fmt = GET_RTX_FORMAT (code);
+ for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
+ if (fmt[i] == 'e')
+ XEXP (ad, i) = subst_reg_equivs (XEXP (ad, i));
+ return ad;
+}
+
+/* Compute the sum of X and Y, making canonicalizations assumed in an
+ address, namely: sum constant integers, surround the sum of two
+ constants with a CONST, put the constant as the second operand, and
+ group the constant on the outermost sum.
+
+ This routine assumes both inputs are already in canonical form. */
+
+rtx
+form_sum (x, y)
+ rtx x, y;
+{
+ rtx tem;
+ enum machine_mode mode = GET_MODE (x);
+
+ if (mode == VOIDmode)
+ mode = GET_MODE (y);
+
+ if (mode == VOIDmode)
+ mode = Pmode;
+
+ if (GET_CODE (x) == CONST_INT)
+ return plus_constant (y, INTVAL (x));
+ else if (GET_CODE (y) == CONST_INT)
+ return plus_constant (x, INTVAL (y));
+ else if (CONSTANT_P (x))
+ tem = x, x = y, y = tem;
+
+ if (GET_CODE (x) == PLUS && CONSTANT_P (XEXP (x, 1)))
+ return form_sum (XEXP (x, 0), form_sum (XEXP (x, 1), y));
+
+ /* Note that if the operands of Y are specified in the opposite
+ order in the recursive calls below, infinite recursion will occur. */
+ if (GET_CODE (y) == PLUS && CONSTANT_P (XEXP (y, 1)))
+ return form_sum (form_sum (x, XEXP (y, 0)), XEXP (y, 1));
+
+ /* If both constant, encapsulate sum. Otherwise, just form sum. A
+ constant will have been placed second. */
+ if (CONSTANT_P (x) && CONSTANT_P (y))
+ {
+ if (GET_CODE (x) == CONST)
+ x = XEXP (x, 0);
+ if (GET_CODE (y) == CONST)
+ y = XEXP (y, 0);
+
+ return gen_rtx (CONST, VOIDmode, gen_rtx (PLUS, mode, x, y));
+ }
+
+ return gen_rtx (PLUS, mode, x, y);
+}
+
+/* If ADDR is a sum containing a pseudo register that should be
+ replaced with a constant (from reg_equiv_constant),
+ return the result of doing so, and also apply the associative
+ law so that the result is more likely to be a valid address.
+ (But it is not guaranteed to be one.)
+
+ Note that at most one register is replaced, even if more are
+ replaceable. Also, we try to put the result into a canonical form
+ so it is more likely to be a valid address.
+
+ In all other cases, return ADDR. */
+
+static rtx
+subst_indexed_address (addr)
+ rtx addr;
+{
+ rtx op0 = 0, op1 = 0, op2 = 0;
+ rtx tem;
+ int regno;
+
+ if (GET_CODE (addr) == PLUS)
+ {
+ /* Try to find a register to replace. */
+ op0 = XEXP (addr, 0), op1 = XEXP (addr, 1), op2 = 0;
+ if (GET_CODE (op0) == REG
+ && (regno = REGNO (op0)) >= FIRST_PSEUDO_REGISTER
+ && reg_renumber[regno] < 0
+ && reg_equiv_constant[regno] != 0)
+ op0 = reg_equiv_constant[regno];
+ else if (GET_CODE (op1) == REG
+ && (regno = REGNO (op1)) >= FIRST_PSEUDO_REGISTER
+ && reg_renumber[regno] < 0
+ && reg_equiv_constant[regno] != 0)
+ op1 = reg_equiv_constant[regno];
+ else if (GET_CODE (op0) == PLUS
+ && (tem = subst_indexed_address (op0)) != op0)
+ op0 = tem;
+ else if (GET_CODE (op1) == PLUS
+ && (tem = subst_indexed_address (op1)) != op1)
+ op1 = tem;
+ else
+ return addr;
+
+ /* Pick out up to three things to add. */
+ if (GET_CODE (op1) == PLUS)
+ op2 = XEXP (op1, 1), op1 = XEXP (op1, 0);
+ else if (GET_CODE (op0) == PLUS)
+ op2 = op1, op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
+
+ /* Compute the sum. */
+ if (op2 != 0)
+ op1 = form_sum (op1, op2);
+ if (op1 != 0)
+ op0 = form_sum (op0, op1);
+
+ return op0;
+ }
+ return addr;
+}
+
+/* Record the pseudo registers we must reload into hard registers
+ in a subexpression of a would-be memory address, X.
+ (This function is not called if the address we find is strictly valid.)
+ CONTEXT = 1 means we are considering regs as index regs,
+ = 0 means we are considering them as base regs.
+
+ OPNUM and TYPE specify the purpose of any reloads made.
+
+ IND_LEVELS says how many levels of indirect addressing are
+ supported at this point in the address.
+
+ We return nonzero if X, as a whole, is reloaded or replaced. */
+
+/* Note that we take shortcuts assuming that no multi-reg machine mode
+ occurs as part of an address.
+ Also, this is not fully machine-customizable; it works for machines
+ such as vaxes and 68000's and 32000's, but other possible machines
+ could have addressing modes that this does not handle right. */
+
+static int
+find_reloads_address_1 (x, context, loc, opnum, type, ind_levels)
+ rtx x;
+ int context;
+ rtx *loc;
+ int opnum;
+ enum reload_type type;
+ int ind_levels;
+{
+ register RTX_CODE code = GET_CODE (x);
+
+ switch (code)
+ {
+ case PLUS:
+ {
+ register rtx orig_op0 = XEXP (x, 0);
+ register rtx orig_op1 = XEXP (x, 1);
+ register RTX_CODE code0 = GET_CODE (orig_op0);
+ register RTX_CODE code1 = GET_CODE (orig_op1);
+ register rtx op0 = orig_op0;
+ register rtx op1 = orig_op1;
+
+ if (GET_CODE (op0) == SUBREG)
+ {
+ op0 = SUBREG_REG (op0);
+ code0 = GET_CODE (op0);
+ if (code0 == REG && REGNO (op0) < FIRST_PSEUDO_REGISTER)
+ op0 = gen_rtx (REG, word_mode,
+ REGNO (op0) + SUBREG_WORD (orig_op0));
+ }
+
+ if (GET_CODE (op1) == SUBREG)
+ {
+ op1 = SUBREG_REG (op1);
+ code1 = GET_CODE (op1);
+ if (code1 == REG && REGNO (op1) < FIRST_PSEUDO_REGISTER)
+ op1 = gen_rtx (REG, GET_MODE (op1),
+ REGNO (op1) + SUBREG_WORD (orig_op1));
+ }
+
+ if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
+ || code0 == ZERO_EXTEND || code1 == MEM)
+ {
+ find_reloads_address_1 (orig_op0, 1, &XEXP (x, 0), opnum, type,
+ ind_levels);
+ find_reloads_address_1 (orig_op1, 0, &XEXP (x, 1), opnum, type,
+ ind_levels);
+ }
+
+ else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
+ || code1 == ZERO_EXTEND || code0 == MEM)
+ {
+ find_reloads_address_1 (orig_op0, 0, &XEXP (x, 0), opnum, type,
+ ind_levels);
+ find_reloads_address_1 (orig_op1, 1, &XEXP (x, 1), opnum, type,
+ ind_levels);
+ }
+
+ else if (code0 == CONST_INT || code0 == CONST
+ || code0 == SYMBOL_REF || code0 == LABEL_REF)
+ find_reloads_address_1 (orig_op1, 0, &XEXP (x, 1), opnum, type,
+ ind_levels);
+
+ else if (code1 == CONST_INT || code1 == CONST
+ || code1 == SYMBOL_REF || code1 == LABEL_REF)
+ find_reloads_address_1 (orig_op0, 0, &XEXP (x, 0), opnum, type,
+ ind_levels);
+
+ else if (code0 == REG && code1 == REG)
+ {
+ if (REG_OK_FOR_INDEX_P (op0)
+ && REG_OK_FOR_BASE_P (op1))
+ return 0;
+ else if (REG_OK_FOR_INDEX_P (op1)
+ && REG_OK_FOR_BASE_P (op0))
+ return 0;
+ else if (REG_OK_FOR_BASE_P (op1))
+ find_reloads_address_1 (orig_op0, 1, &XEXP (x, 0), opnum, type,
+ ind_levels);
+ else if (REG_OK_FOR_BASE_P (op0))
+ find_reloads_address_1 (orig_op1, 1, &XEXP (x, 1), opnum, type,
+ ind_levels);
+ else if (REG_OK_FOR_INDEX_P (op1))
+ find_reloads_address_1 (orig_op0, 0, &XEXP (x, 0), opnum, type,
+ ind_levels);
+ else if (REG_OK_FOR_INDEX_P (op0))
+ find_reloads_address_1 (orig_op1, 0, &XEXP (x, 1), opnum, type,
+ ind_levels);
+ else
+ {
+ find_reloads_address_1 (orig_op0, 1, &XEXP (x, 0), opnum, type,
+ ind_levels);
+ find_reloads_address_1 (orig_op1, 0, &XEXP (x, 1), opnum, type,
+ ind_levels);
+ }
+ }
+
+ else if (code0 == REG)
+ {
+ find_reloads_address_1 (orig_op0, 1, &XEXP (x, 0), opnum, type,
+ ind_levels);
+ find_reloads_address_1 (orig_op1, 0, &XEXP (x, 1), opnum, type,
+ ind_levels);
+ }
+
+ else if (code1 == REG)
+ {
+ find_reloads_address_1 (orig_op1, 1, &XEXP (x, 1), opnum, type,
+ ind_levels);
+ find_reloads_address_1 (orig_op0, 0, &XEXP (x, 0), opnum, type,
+ ind_levels);
+ }
+ }
+
+ return 0;
+
+ case POST_INC:
+ case POST_DEC:
+ case PRE_INC:
+ case PRE_DEC:
+ if (GET_CODE (XEXP (x, 0)) == REG)
+ {
+ register int regno = REGNO (XEXP (x, 0));
+ int value = 0;
+ rtx x_orig = x;
+
+ /* A register that is incremented cannot be constant! */
+ if (regno >= FIRST_PSEUDO_REGISTER
+ && reg_equiv_constant[regno] != 0)
+ abort ();
+
+ /* Handle a register that is equivalent to a memory location
+ which cannot be addressed directly. */
+ if (reg_equiv_address[regno] != 0)
+ {
+ rtx tem = make_memloc (XEXP (x, 0), regno);
+ /* First reload the memory location's address. */
+ find_reloads_address (GET_MODE (tem), 0, XEXP (tem, 0),
+ &XEXP (tem, 0), opnum, type, ind_levels);
+ /* Put this inside a new increment-expression. */
+ x = gen_rtx (GET_CODE (x), GET_MODE (x), tem);
+ /* Proceed to reload that, as if it contained a register. */
+ }
+
+ /* If we have a hard register that is ok as an index,
+ don't make a reload. If an autoincrement of a nice register
+ isn't "valid", it must be that no autoincrement is "valid".
+ If that is true and something made an autoincrement anyway,
+ this must be a special context where one is allowed.
+ (For example, a "push" instruction.)
+ We can't improve this address, so leave it alone. */
+
+ /* Otherwise, reload the autoincrement into a suitable hard reg
+ and record how much to increment by. */
+
+ if (reg_renumber[regno] >= 0)
+ regno = reg_renumber[regno];
+ if ((regno >= FIRST_PSEUDO_REGISTER
+ || !(context ? REGNO_OK_FOR_INDEX_P (regno)
+ : REGNO_OK_FOR_BASE_P (regno))))
+ {
+ register rtx link;
+
+ int reloadnum
+ = push_reload (x, NULL_RTX, loc, NULL_PTR,
+ context ? INDEX_REG_CLASS : BASE_REG_CLASS,
+ GET_MODE (x), GET_MODE (x), VOIDmode, 0,
+ opnum, type);
+ reload_inc[reloadnum]
+ = find_inc_amount (PATTERN (this_insn), XEXP (x_orig, 0));
+
+ value = 1;
+
+#ifdef AUTO_INC_DEC
+ /* Update the REG_INC notes. */
+
+ for (link = REG_NOTES (this_insn);
+ link; link = XEXP (link, 1))
+ if (REG_NOTE_KIND (link) == REG_INC
+ && REGNO (XEXP (link, 0)) == REGNO (XEXP (x_orig, 0)))
+ push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
+#endif
+ }
+ return value;
+ }
+
+ else if (GET_CODE (XEXP (x, 0)) == MEM)
+ {
+ /* This is probably the result of a substitution, by eliminate_regs,
+ of an equivalent address for a pseudo that was not allocated to a
+ hard register. Verify that the specified address is valid and
+ reload it into a register. */
+ rtx tem = XEXP (x, 0);
+ register rtx link;
+ int reloadnum;
+
+ /* Since we know we are going to reload this item, don't decrement
+ for the indirection level.
+
+ Note that this is actually conservative: it would be slightly
+ more efficient to use the value of SPILL_INDIRECT_LEVELS from
+ reload1.c here. */
+ find_reloads_address (GET_MODE (x), &XEXP (x, 0),
+ XEXP (XEXP (x, 0), 0), &XEXP (XEXP (x, 0), 0),
+ opnum, type, ind_levels);
+
+ reloadnum = push_reload (x, NULL_RTX, loc, NULL_PTR,
+ context ? INDEX_REG_CLASS : BASE_REG_CLASS,
+ GET_MODE (x), VOIDmode, 0, 0, opnum, type);
+ reload_inc[reloadnum]
+ = find_inc_amount (PATTERN (this_insn), XEXP (x, 0));
+
+ link = FIND_REG_INC_NOTE (this_insn, tem);
+ if (link != 0)
+ push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
+
+ return 1;
+ }
+ return 0;
+
+ case MEM:
+ /* This is probably the result of a substitution, by eliminate_regs, of
+ an equivalent address for a pseudo that was not allocated to a hard
+ register. Verify that the specified address is valid and reload it
+ into a register.
+
+ Since we know we are going to reload this item, don't decrement for
+ the indirection level.
+
+ Note that this is actually conservative: it would be slightly more
+ efficient to use the value of SPILL_INDIRECT_LEVELS from
+ reload1.c here. */
+
+ find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
+ opnum, type, ind_levels);
+ push_reload (*loc, NULL_RTX, loc, NULL_PTR,
+ context ? INDEX_REG_CLASS : BASE_REG_CLASS,
+ GET_MODE (x), VOIDmode, 0, 0, opnum, type);
+ return 1;
+
+ case REG:
+ {
+ register int regno = REGNO (x);
+
+ if (reg_equiv_constant[regno] != 0)
+ {
+ find_reloads_address_part (reg_equiv_constant[regno], loc,
+ (context ? INDEX_REG_CLASS
+ : BASE_REG_CLASS),
+ GET_MODE (x), opnum, type, ind_levels);
+ return 1;
+ }
+
+#if 0 /* This might screw code in reload1.c to delete prior output-reload
+ that feeds this insn. */
+ if (reg_equiv_mem[regno] != 0)
+ {
+ push_reload (reg_equiv_mem[regno], NULL_RTX, loc, NULL_PTR,
+ context ? INDEX_REG_CLASS : BASE_REG_CLASS,
+ GET_MODE (x), VOIDmode, 0, 0, opnum, type);
+ return 1;
+ }
+#endif
+
+ if (reg_equiv_address[regno] != 0)
+ {
+ x = make_memloc (x, regno);
+ find_reloads_address (GET_MODE (x), 0, XEXP (x, 0), &XEXP (x, 0),
+ opnum, type, ind_levels);
+ }
+
+ if (reg_renumber[regno] >= 0)
+ regno = reg_renumber[regno];
+
+ if ((regno >= FIRST_PSEUDO_REGISTER
+ || !(context ? REGNO_OK_FOR_INDEX_P (regno)
+ : REGNO_OK_FOR_BASE_P (regno))))
+ {
+ push_reload (x, NULL_RTX, loc, NULL_PTR,
+ context ? INDEX_REG_CLASS : BASE_REG_CLASS,
+ GET_MODE (x), VOIDmode, 0, 0, opnum, type);
+ return 1;
+ }
+
+ /* If a register appearing in an address is the subject of a CLOBBER
+ in this insn, reload it into some other register to be safe.
+ The CLOBBER is supposed to make the register unavailable
+ from before this insn to after it. */
+ if (regno_clobbered_p (regno, this_insn))
+ {
+ push_reload (x, NULL_RTX, loc, NULL_PTR,
+ context ? INDEX_REG_CLASS : BASE_REG_CLASS,
+ GET_MODE (x), VOIDmode, 0, 0, opnum, type);
+ return 1;
+ }
+ }
+ return 0;
+
+ case SUBREG:
+ if (GET_CODE (SUBREG_REG (x)) == REG)
+ {
+ /* If this is a SUBREG of a hard register and the resulting register
+ is of the wrong class, reload the whole SUBREG. This avoids
+ needless copies if SUBREG_REG is multi-word. */
+ if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
+ {
+ int regno = REGNO (SUBREG_REG (x)) + SUBREG_WORD (x);
+
+ if (! (context ? REGNO_OK_FOR_INDEX_P (regno)
+ : REGNO_OK_FOR_BASE_P (regno)))
+ {
+ push_reload (x, NULL_RTX, loc, NULL_PTR,
+ context ? INDEX_REG_CLASS : BASE_REG_CLASS,
+ GET_MODE (x), VOIDmode, 0, 0, opnum, type);
+ return 1;
+ }
+ }
+ /* If this is a SUBREG of a pseudo-register, and the pseudo-register
+ is larger than the class size, then reload the whole SUBREG. */
+ else
+ {
+ enum reg_class class = (context
+ ? INDEX_REG_CLASS : BASE_REG_CLASS);
+ if (CLASS_MAX_NREGS (class, GET_MODE (SUBREG_REG (x)))
+ > reg_class_size[class])
+ {
+ push_reload (x, NULL_RTX, loc, NULL_PTR, class,
+ GET_MODE (x), VOIDmode, 0, 0, opnum, type);
+ return 1;
+ }
+ }
+ }
+ break;
+ }
+
+ {
+ register char *fmt = GET_RTX_FORMAT (code);
+ register int i;
+
+ for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
+ {
+ if (fmt[i] == 'e')
+ find_reloads_address_1 (XEXP (x, i), context, &XEXP (x, i),
+ opnum, type, ind_levels);
+ }
+ }
+
+ return 0;
+}
+
+/* X, which is found at *LOC, is a part of an address that needs to be
+ reloaded into a register of class CLASS. If X is a constant, or if
+ X is a PLUS that contains a constant, check that the constant is a
+ legitimate operand and that we are supposed to be able to load
+ it into the register.
+
+ If not, force the constant into memory and reload the MEM instead.
+
+ MODE is the mode to use, in case X is an integer constant.
+
+ OPNUM and TYPE describe the purpose of any reloads made.
+
+ IND_LEVELS says how many levels of indirect addressing this machine
+ supports. */
+
+static void
+find_reloads_address_part (x, loc, class, mode, opnum, type, ind_levels)
+ rtx x;
+ rtx *loc;
+ enum reg_class class;
+ enum machine_mode mode;
+ int opnum;
+ enum reload_type type;
+ int ind_levels;
+{
+ if (CONSTANT_P (x)
+ && (! LEGITIMATE_CONSTANT_P (x)
+ || PREFERRED_RELOAD_CLASS (x, class) == NO_REGS))
+ {
+ rtx tem = x = force_const_mem (mode, x);
+ find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
+ opnum, type, ind_levels);
+ }
+
+ else if (GET_CODE (x) == PLUS
+ && CONSTANT_P (XEXP (x, 1))
+ && (! LEGITIMATE_CONSTANT_P (XEXP (x, 1))
+ || PREFERRED_RELOAD_CLASS (XEXP (x, 1), class) == NO_REGS))
+ {
+ rtx tem = force_const_mem (GET_MODE (x), XEXP (x, 1));
+
+ x = gen_rtx (PLUS, GET_MODE (x), XEXP (x, 0), tem);
+ find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
+ opnum, type, ind_levels);
+ }
+
+ push_reload (x, NULL_RTX, loc, NULL_PTR, class,
+ mode, VOIDmode, 0, 0, opnum, type);
+}
+
+/* Substitute into the current INSN the registers into which we have reloaded
+ the things that need reloading. The array `replacements'
+ says contains the locations of all pointers that must be changed
+ and says what to replace them with.
+
+ Return the rtx that X translates into; usually X, but modified. */
+
+void
+subst_reloads ()
+{
+ register int i;
+
+ for (i = 0; i < n_replacements; i++)
+ {
+ register struct replacement *r = &replacements[i];
+ register rtx reloadreg = reload_reg_rtx[r->what];
+ if (reloadreg)
+ {
+ /* Encapsulate RELOADREG so its machine mode matches what
+ used to be there. Note that gen_lowpart_common will
+ do the wrong thing if RELOADREG is multi-word. RELOADREG
+ will always be a REG here. */
+ if (GET_MODE (reloadreg) != r->mode && r->mode != VOIDmode)
+ reloadreg = gen_rtx (REG, r->mode, REGNO (reloadreg));
+
+ /* If we are putting this into a SUBREG and RELOADREG is a
+ SUBREG, we would be making nested SUBREGs, so we have to fix
+ this up. Note that r->where == &SUBREG_REG (*r->subreg_loc). */
+
+ if (r->subreg_loc != 0 && GET_CODE (reloadreg) == SUBREG)
+ {
+ if (GET_MODE (*r->subreg_loc)
+ == GET_MODE (SUBREG_REG (reloadreg)))
+ *r->subreg_loc = SUBREG_REG (reloadreg);
+ else
+ {
+ *r->where = SUBREG_REG (reloadreg);
+ SUBREG_WORD (*r->subreg_loc) += SUBREG_WORD (reloadreg);
+ }
+ }
+ else
+ *r->where = reloadreg;
+ }
+ /* If reload got no reg and isn't optional, something's wrong. */
+ else if (! reload_optional[r->what])
+ abort ();
+ }
+}
+
+/* Make a copy of any replacements being done into X and move those copies
+ to locations in Y, a copy of X. We only look at the highest level of
+ the RTL. */
+
+void
+copy_replacements (x, y)
+ rtx x;
+ rtx y;
+{
+ int i, j;
+ enum rtx_code code = GET_CODE (x);
+ char *fmt = GET_RTX_FORMAT (code);
+ struct replacement *r;
+
+ /* We can't support X being a SUBREG because we might then need to know its
+ location if something inside it was replaced. */
+ if (code == SUBREG)
+ abort ();
+
+ for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
+ if (fmt[i] == 'e')
+ for (j = 0; j < n_replacements; j++)
+ {
+ if (replacements[j].subreg_loc == &XEXP (x, i))
+ {
+ r = &replacements[n_replacements++];
+ r->where = replacements[j].where;
+ r->subreg_loc = &XEXP (y, i);
+ r->what = replacements[j].what;
+ r->mode = replacements[j].mode;
+ }
+ else if (replacements[j].where == &XEXP (x, i))
+ {
+ r = &replacements[n_replacements++];
+ r->where = &XEXP (y, i);
+ r->subreg_loc = 0;
+ r->what = replacements[j].what;
+ r->mode = replacements[j].mode;
+ }
+ }
+}
+
+/* If LOC was scheduled to be replaced by something, return the replacement.
+ Otherwise, return *LOC. */
+
+rtx
+find_replacement (loc)
+ rtx *loc;
+{
+ struct replacement *r;
+
+ for (r = &replacements[0]; r < &replacements[n_replacements]; r++)
+ {
+ rtx reloadreg = reload_reg_rtx[r->what];
+
+ if (reloadreg && r->where == loc)
+ {
+ if (r->mode != VOIDmode && GET_MODE (reloadreg) != r->mode)
+ reloadreg = gen_rtx (REG, r->mode, REGNO (reloadreg));
+
+ return reloadreg;
+ }
+ else if (reloadreg && r->subreg_loc == loc)
+ {
+ /* RELOADREG must be either a REG or a SUBREG.
+
+ ??? Is it actually still ever a SUBREG? If so, why? */
+
+ if (GET_CODE (reloadreg) == REG)
+ return gen_rtx (REG, GET_MODE (*loc),
+ REGNO (reloadreg) + SUBREG_WORD (*loc));
+ else if (GET_MODE (reloadreg) == GET_MODE (*loc))
+ return reloadreg;
+ else
+ return gen_rtx (SUBREG, GET_MODE (*loc), SUBREG_REG (reloadreg),
+ SUBREG_WORD (reloadreg) + SUBREG_WORD (*loc));
+ }
+ }
+
+ return *loc;
+}
+
+/* Return nonzero if register in range [REGNO, ENDREGNO)
+ appears either explicitly or implicitly in X
+ other than being stored into (except for earlyclobber operands).
+
+ References contained within the substructure at LOC do not count.
+ LOC may be zero, meaning don't ignore anything.
+
+ This is similar to refers_to_regno_p in rtlanal.c except that we
+ look at equivalences for pseudos that didn't get hard registers. */
+
+int
+refers_to_regno_for_reload_p (regno, endregno, x, loc)
+ int regno, endregno;
+ rtx x;
+ rtx *loc;
+{
+ register int i;
+ register RTX_CODE code;
+ register char *fmt;
+
+ if (x == 0)
+ return 0;
+
+ repeat:
+ code = GET_CODE (x);
+
+ switch (code)
+ {
+ case REG:
+ i = REGNO (x);
+
+ /* If this is a pseudo, a hard register must not have been allocated.
+ X must therefore either be a constant or be in memory. */
+ if (i >= FIRST_PSEUDO_REGISTER)
+ {
+ if (reg_equiv_memory_loc[i])
+ return refers_to_regno_for_reload_p (regno, endregno,
+ reg_equiv_memory_loc[i],
+ NULL_PTR);
+
+ if (reg_equiv_constant[i])
+ return 0;
+
+ abort ();
+ }
+
+ return (endregno > i
+ && regno < i + (i < FIRST_PSEUDO_REGISTER
+ ? HARD_REGNO_NREGS (i, GET_MODE (x))
+ : 1));
+
+ case SUBREG:
+ /* If this is a SUBREG of a hard reg, we can see exactly which
+ registers are being modified. Otherwise, handle normally. */
+ if (GET_CODE (SUBREG_REG (x)) == REG
+ && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
+ {
+ int inner_regno = REGNO (SUBREG_REG (x)) + SUBREG_WORD (x);
+ int inner_endregno
+ = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
+ ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
+
+ return endregno > inner_regno && regno < inner_endregno;
+ }
+ break;
+
+ case CLOBBER:
+ case SET:
+ if (&SET_DEST (x) != loc
+ /* Note setting a SUBREG counts as referring to the REG it is in for
+ a pseudo but not for hard registers since we can
+ treat each word individually. */
+ && ((GET_CODE (SET_DEST (x)) == SUBREG
+ && loc != &SUBREG_REG (SET_DEST (x))
+ && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG
+ && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
+ && refers_to_regno_for_reload_p (regno, endregno,
+ SUBREG_REG (SET_DEST (x)),
+ loc))
+ /* If the output is an earlyclobber operand, this is
+ a conflict. */
+ || ((GET_CODE (SET_DEST (x)) != REG
+ || earlyclobber_operand_p (SET_DEST (x)))
+ && refers_to_regno_for_reload_p (regno, endregno,
+ SET_DEST (x), loc))))
+ return 1;
+
+ if (code == CLOBBER || loc == &SET_SRC (x))
+ return 0;
+ x = SET_SRC (x);
+ goto repeat;
+ }
+
+ /* X does not match, so try its subexpressions. */
+
+ fmt = GET_RTX_FORMAT (code);
+ for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
+ {
+ if (fmt[i] == 'e' && loc != &XEXP (x, i))
+ {
+ if (i == 0)
+ {
+ x = XEXP (x, 0);
+ goto repeat;
+ }
+ else
+ if (refers_to_regno_for_reload_p (regno, endregno,
+ XEXP (x, i), loc))
+ return 1;
+ }
+ else if (fmt[i] == 'E')
+ {
+ register int j;
+ for (j = XVECLEN (x, i) - 1; j >=0; j--)
+ if (loc != &XVECEXP (x, i, j)
+ && refers_to_regno_for_reload_p (regno, endregno,
+ XVECEXP (x, i, j), loc))
+ return 1;
+ }
+ }
+ return 0;
+}
+
+/* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
+ we check if any register number in X conflicts with the relevant register
+ numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
+ contains a MEM (we don't bother checking for memory addresses that can't
+ conflict because we expect this to be a rare case.
+
+ This function is similar to reg_overlap_mention_p in rtlanal.c except
+ that we look at equivalences for pseudos that didn't get hard registers. */
+
+int
+reg_overlap_mentioned_for_reload_p (x, in)
+ rtx x, in;
+{
+ int regno, endregno;
+
+ if (GET_CODE (x) == SUBREG)
+ {
+ regno = REGNO (SUBREG_REG (x));
+ if (regno < FIRST_PSEUDO_REGISTER)
+ regno += SUBREG_WORD (x);
+ }
+ else if (GET_CODE (x) == REG)
+ {
+ regno = REGNO (x);
+
+ /* If this is a pseudo, it must not have been assigned a hard register.
+ Therefore, it must either be in memory or be a constant. */
+
+ if (regno >= FIRST_PSEUDO_REGISTER)
+ {
+ if (reg_equiv_memory_loc[regno])
+ return refers_to_mem_for_reload_p (in);
+ else if (reg_equiv_constant[regno])
+ return 0;
+ abort ();
+ }
+ }
+ else if (CONSTANT_P (x))
+ return 0;
+ else if (GET_CODE (x) == MEM)
+ return refers_to_mem_for_reload_p (in);
+ else if (GET_CODE (x) == SCRATCH || GET_CODE (x) == PC
+ || GET_CODE (x) == CC0)
+ return reg_mentioned_p (x, in);
+ else
+ abort ();
+
+ endregno = regno + (regno < FIRST_PSEUDO_REGISTER
+ ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
+
+ return refers_to_regno_for_reload_p (regno, endregno, in, NULL_PTR);
+}
+
+/* Return nonzero if anything in X contains a MEM. Look also for pseudo
+ registers. */
+
+int
+refers_to_mem_for_reload_p (x)
+ rtx x;
+{
+ char *fmt;
+ int i;
+
+ if (GET_CODE (x) == MEM)
+ return 1;
+
+ if (GET_CODE (x) == REG)
+ return (REGNO (x) >= FIRST_PSEUDO_REGISTER
+ && reg_equiv_memory_loc[REGNO (x)]);
+
+ fmt = GET_RTX_FORMAT (GET_CODE (x));
+ for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
+ if (fmt[i] == 'e'
+ && (GET_CODE (XEXP (x, i)) == MEM
+ || refers_to_mem_for_reload_p (XEXP (x, i))))
+ return 1;
+
+ return 0;
+}
+
+/* Check the insns before INSN to see if there is a suitable register
+ containing the same value as GOAL.
+ If OTHER is -1, look for a register in class CLASS.
+ Otherwise, just see if register number OTHER shares GOAL's value.
+
+ Return an rtx for the register found, or zero if none is found.
+
+ If RELOAD_REG_P is (short *)1,
+ we reject any hard reg that appears in reload_reg_rtx
+ because such a hard reg is also needed coming into this insn.
+
+ If RELOAD_REG_P is any other nonzero value,
+ it is a vector indexed by hard reg number
+ and we reject any hard reg whose element in the vector is nonnegative
+ as well as any that appears in reload_reg_rtx.
+
+ If GOAL is zero, then GOALREG is a register number; we look
+ for an equivalent for that register.
+
+ MODE is the machine mode of the value we want an equivalence for.
+ If GOAL is nonzero and not VOIDmode, then it must have mode MODE.
+
+ This function is used by jump.c as well as in the reload pass.
+
+ If GOAL is the sum of the stack pointer and a constant, we treat it
+ as if it were a constant except that sp is required to be unchanging. */
+
+rtx
+find_equiv_reg (goal, insn, class, other, reload_reg_p, goalreg, mode)
+ register rtx goal;
+ rtx insn;
+ enum reg_class class;
+ register int other;
+ short *reload_reg_p;
+ int goalreg;
+ enum machine_mode mode;
+{
+ register rtx p = insn;
+ rtx goaltry, valtry, value, where;
+ register rtx pat;
+ register int regno = -1;
+ int valueno;
+ int goal_mem = 0;
+ int goal_const = 0;
+ int goal_mem_addr_varies = 0;
+ int need_stable_sp = 0;
+ int nregs;
+ int valuenregs;
+
+ if (goal == 0)
+ regno = goalreg;
+ else if (GET_CODE (goal) == REG)
+ regno = REGNO (goal);
+ else if (GET_CODE (goal) == MEM)
+ {
+ enum rtx_code code = GET_CODE (XEXP (goal, 0));
+ if (MEM_VOLATILE_P (goal))
+ return 0;
+ if (flag_float_store && GET_MODE_CLASS (GET_MODE (goal)) == MODE_FLOAT)
+ return 0;
+ /* An address with side effects must be reexecuted. */
+ switch (code)
+ {
+ case POST_INC:
+ case PRE_INC:
+ case POST_DEC:
+ case PRE_DEC:
+ return 0;
+ }
+ goal_mem = 1;
+ }
+ else if (CONSTANT_P (goal))
+ goal_const = 1;
+ else if (GET_CODE (goal) == PLUS
+ && XEXP (goal, 0) == stack_pointer_rtx
+ && CONSTANT_P (XEXP (goal, 1)))
+ goal_const = need_stable_sp = 1;
+ else
+ return 0;
+
+ /* On some machines, certain regs must always be rejected
+ because they don't behave the way ordinary registers do. */
+
+#ifdef OVERLAPPING_REGNO_P
+ if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER
+ && OVERLAPPING_REGNO_P (regno))
+ return 0;
+#endif
+
+ /* Scan insns back from INSN, looking for one that copies
+ a value into or out of GOAL.
+ Stop and give up if we reach a label. */
+
+ while (1)
+ {
+ p = PREV_INSN (p);
+ if (p == 0 || GET_CODE (p) == CODE_LABEL)
+ return 0;
+ if (GET_CODE (p) == INSN
+ /* If we don't want spill regs ... */
+ && (! (reload_reg_p != 0
+ && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
+ /* ... then ignore insns introduced by reload; they aren't useful
+ and can cause results in reload_as_needed to be different
+ from what they were when calculating the need for spills.
+ If we notice an input-reload insn here, we will reject it below,
+ but it might hide a usable equivalent. That makes bad code.
+ It may even abort: perhaps no reg was spilled for this insn
+ because it was assumed we would find that equivalent. */
+ || INSN_UID (p) < reload_first_uid))
+ {
+ rtx tem;
+ pat = single_set (p);
+ /* First check for something that sets some reg equal to GOAL. */
+ if (pat != 0
+ && ((regno >= 0
+ && true_regnum (SET_SRC (pat)) == regno
+ && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
+ ||
+ (regno >= 0
+ && true_regnum (SET_DEST (pat)) == regno
+ && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0)
+ ||
+ (goal_const && rtx_equal_p (SET_SRC (pat), goal)
+ && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
+ || (goal_mem
+ && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0
+ && rtx_renumbered_equal_p (goal, SET_SRC (pat)))
+ || (goal_mem
+ && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0
+ && rtx_renumbered_equal_p (goal, SET_DEST (pat)))
+ /* If we are looking for a constant,
+ and something equivalent to that constant was copied
+ into a reg, we can use that reg. */
+ || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
+ NULL_RTX))
+ && rtx_equal_p (XEXP (tem, 0), goal)
+ && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
+ || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
+ NULL_RTX))
+ && GET_CODE (SET_DEST (pat)) == REG
+ && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
+ && GET_MODE_CLASS (GET_MODE (XEXP (tem, 0))) == MODE_FLOAT
+ && GET_CODE (goal) == CONST_INT
+ && 0 != (goaltry = operand_subword (XEXP (tem, 0), 0, 0,
+ VOIDmode))
+ && rtx_equal_p (goal, goaltry)
+ && (valtry = operand_subword (SET_DEST (pat), 0, 0,
+ VOIDmode))
+ && (valueno = true_regnum (valtry)) >= 0)
+ || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
+ NULL_RTX))
+ && GET_CODE (SET_DEST (pat)) == REG
+ && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
+ && GET_MODE_CLASS (GET_MODE (XEXP (tem, 0))) == MODE_FLOAT
+ && GET_CODE (goal) == CONST_INT
+ && 0 != (goaltry = operand_subword (XEXP (tem, 0), 1, 0,
+ VOIDmode))
+ && rtx_equal_p (goal, goaltry)
+ && (valtry
+ = operand_subword (SET_DEST (pat), 1, 0, VOIDmode))
+ && (valueno = true_regnum (valtry)) >= 0)))
+ if (other >= 0
+ ? valueno == other
+ : ((unsigned) valueno < FIRST_PSEUDO_REGISTER
+ && TEST_HARD_REG_BIT (reg_class_contents[(int) class],
+ valueno)))
+ {
+ value = valtry;
+ where = p;
+ break;
+ }
+ }
+ }
+
+ /* We found a previous insn copying GOAL into a suitable other reg VALUE
+ (or copying VALUE into GOAL, if GOAL is also a register).
+ Now verify that VALUE is really valid. */
+
+ /* VALUENO is the register number of VALUE; a hard register. */
+
+ /* Don't try to re-use something that is killed in this insn. We want
+ to be able to trust REG_UNUSED notes. */
+ if (find_reg_note (where, REG_UNUSED, value))
+ return 0;
+
+ /* If we propose to get the value from the stack pointer or if GOAL is
+ a MEM based on the stack pointer, we need a stable SP. */
+ if (valueno == STACK_POINTER_REGNUM
+ || (goal_mem && reg_overlap_mentioned_for_reload_p (stack_pointer_rtx,
+ goal)))
+ need_stable_sp = 1;
+
+ /* Reject VALUE if the copy-insn moved the wrong sort of datum. */
+ if (GET_MODE (value) != mode)
+ return 0;
+
+ /* Reject VALUE if it was loaded from GOAL
+ and is also a register that appears in the address of GOAL. */
+
+ if (goal_mem && value == SET_DEST (PATTERN (where))
+ && refers_to_regno_for_reload_p (valueno,
+ (valueno
+ + HARD_REGNO_NREGS (valueno, mode)),
+ goal, NULL_PTR))
+ return 0;
+
+ /* Reject registers that overlap GOAL. */
+
+ if (!goal_mem && !goal_const
+ && regno + HARD_REGNO_NREGS (regno, mode) > valueno
+ && regno < valueno + HARD_REGNO_NREGS (valueno, mode))
+ return 0;
+
+ /* Reject VALUE if it is one of the regs reserved for reloads.
+ Reload1 knows how to reuse them anyway, and it would get
+ confused if we allocated one without its knowledge.
+ (Now that insns introduced by reload are ignored above,
+ this case shouldn't happen, but I'm not positive.) */
+
+ if (reload_reg_p != 0 && reload_reg_p != (short *) (HOST_WIDE_INT) 1
+ && reload_reg_p[valueno] >= 0)
+ return 0;
+
+ /* On some machines, certain regs must always be rejected
+ because they don't behave the way ordinary registers do. */
+
+#ifdef OVERLAPPING_REGNO_P
+ if (OVERLAPPING_REGNO_P (valueno))
+ return 0;
+#endif
+
+ nregs = HARD_REGNO_NREGS (regno, mode);
+ valuenregs = HARD_REGNO_NREGS (valueno, mode);
+
+ /* Reject VALUE if it is a register being used for an input reload
+ even if it is not one of those reserved. */
+
+ if (reload_reg_p != 0)
+ {
+ int i;
+ for (i = 0; i < n_reloads; i++)
+ if (reload_reg_rtx[i] != 0 && reload_in[i])
+ {
+ int regno1 = REGNO (reload_reg_rtx[i]);
+ int nregs1 = HARD_REGNO_NREGS (regno1,
+ GET_MODE (reload_reg_rtx[i]));
+ if (regno1 < valueno + valuenregs
+ && regno1 + nregs1 > valueno)
+ return 0;
+ }
+ }
+
+ if (goal_mem)
+ /* We must treat frame pointer as varying here,
+ since it can vary--in a nonlocal goto as generated by expand_goto. */
+ goal_mem_addr_varies = !CONSTANT_ADDRESS_P (XEXP (goal, 0));
+
+ /* Now verify that the values of GOAL and VALUE remain unaltered
+ until INSN is reached. */
+
+ p = insn;
+ while (1)
+ {
+ p = PREV_INSN (p);
+ if (p == where)
+ return value;
+
+ /* Don't trust the conversion past a function call
+ if either of the two is in a call-clobbered register, or memory. */
+ if (GET_CODE (p) == CALL_INSN
+ && ((regno >= 0 && regno < FIRST_PSEUDO_REGISTER
+ && call_used_regs[regno])
+ ||
+ (valueno >= 0 && valueno < FIRST_PSEUDO_REGISTER
+ && call_used_regs[valueno])
+ ||
+ goal_mem
+ || need_stable_sp))
+ return 0;
+
+#ifdef NON_SAVING_SETJMP
+ if (NON_SAVING_SETJMP && GET_CODE (p) == NOTE
+ && NOTE_LINE_NUMBER (p) == NOTE_INSN_SETJMP)
+ return 0;
+#endif
+
+#ifdef INSN_CLOBBERS_REGNO_P
+ if ((valueno >= 0 && valueno < FIRST_PSEUDO_REGISTER
+ && INSN_CLOBBERS_REGNO_P (p, valueno))
+ || (regno >= 0 && regno < FIRST_PSEUDO_REGISTER
+ && INSN_CLOBBERS_REGNO_P (p, regno)))
+ return 0;
+#endif
+
+ if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
+ {
+ /* If this insn P stores in either GOAL or VALUE, return 0.
+ If GOAL is a memory ref and this insn writes memory, return 0.
+ If GOAL is a memory ref and its address is not constant,
+ and this insn P changes a register used in GOAL, return 0. */
+
+ pat = PATTERN (p);
+ if (GET_CODE (pat) == SET || GET_CODE (pat) == CLOBBER)
+ {
+ register rtx dest = SET_DEST (pat);
+ while (GET_CODE (dest) == SUBREG
+ || GET_CODE (dest) == ZERO_EXTRACT
+ || GET_CODE (dest) == SIGN_EXTRACT
+ || GET_CODE (dest) == STRICT_LOW_PART)
+ dest = XEXP (dest, 0);
+ if (GET_CODE (dest) == REG)
+ {
+ register int xregno = REGNO (dest);
+ int xnregs;
+ if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
+ xnregs = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
+ else
+ xnregs = 1;
+ if (xregno < regno + nregs && xregno + xnregs > regno)
+ return 0;
+ if (xregno < valueno + valuenregs
+ && xregno + xnregs > valueno)
+ return 0;
+ if (goal_mem_addr_varies
+ && reg_overlap_mentioned_for_reload_p (dest, goal))
+ return 0;
+ }
+ else if (goal_mem && GET_CODE (dest) == MEM
+ && ! push_operand (dest, GET_MODE (dest)))
+ return 0;
+ else if (GET_CODE (dest) == MEM && regno >= FIRST_PSEUDO_REGISTER
+ && reg_equiv_memory_loc[regno] != 0)
+ return 0;
+ else if (need_stable_sp && push_operand (dest, GET_MODE (dest)))
+ return 0;
+ }
+ else if (GET_CODE (pat) == PARALLEL)
+ {
+ register int i;
+ for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
+ {
+ register rtx v1 = XVECEXP (pat, 0, i);
+ if (GET_CODE (v1) == SET || GET_CODE (v1) == CLOBBER)
+ {
+ register rtx dest = SET_DEST (v1);
+ while (GET_CODE (dest) == SUBREG
+ || GET_CODE (dest) == ZERO_EXTRACT
+ || GET_CODE (dest) == SIGN_EXTRACT
+ || GET_CODE (dest) == STRICT_LOW_PART)
+ dest = XEXP (dest, 0);
+ if (GET_CODE (dest) == REG)
+ {
+ register int xregno = REGNO (dest);
+ int xnregs;
+ if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
+ xnregs = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
+ else
+ xnregs = 1;
+ if (xregno < regno + nregs
+ && xregno + xnregs > regno)
+ return 0;
+ if (xregno < valueno + valuenregs
+ && xregno + xnregs > valueno)
+ return 0;
+ if (goal_mem_addr_varies
+ && reg_overlap_mentioned_for_reload_p (dest,
+ goal))
+ return 0;
+ }
+ else if (goal_mem && GET_CODE (dest) == MEM
+ && ! push_operand (dest, GET_MODE (dest)))
+ return 0;
+ else if (need_stable_sp
+ && push_operand (dest, GET_MODE (dest)))
+ return 0;
+ }
+ }
+ }
+
+ if (GET_CODE (p) == CALL_INSN && CALL_INSN_FUNCTION_USAGE (p))
+ {
+ rtx link;
+
+ for (link = CALL_INSN_FUNCTION_USAGE (p); XEXP (link, 1) != 0;
+ link = XEXP (link, 1))
+ {
+ pat = XEXP (link, 0);
+ if (GET_CODE (pat) == CLOBBER)
+ {
+ register rtx dest = SET_DEST (pat);
+ while (GET_CODE (dest) == SUBREG
+ || GET_CODE (dest) == ZERO_EXTRACT
+ || GET_CODE (dest) == SIGN_EXTRACT
+ || GET_CODE (dest) == STRICT_LOW_PART)
+ dest = XEXP (dest, 0);
+ if (GET_CODE (dest) == REG)
+ {
+ register int xregno = REGNO (dest);
+ int xnregs;
+ if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
+ xnregs = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
+ else
+ xnregs = 1;
+ if (xregno < regno + nregs
+ && xregno + xnregs > regno)
+ return 0;
+ if (xregno < valueno + valuenregs
+ && xregno + xnregs > valueno)
+ return 0;
+ if (goal_mem_addr_varies
+ && reg_overlap_mentioned_for_reload_p (dest,
+ goal))
+ return 0;
+ }
+ else if (goal_mem && GET_CODE (dest) == MEM
+ && ! push_operand (dest, GET_MODE (dest)))
+ return 0;
+ else if (need_stable_sp
+ && push_operand (dest, GET_MODE (dest)))
+ return 0;
+ }
+ }
+ }
+
+#ifdef AUTO_INC_DEC
+ /* If this insn auto-increments or auto-decrements
+ either regno or valueno, return 0 now.
+ If GOAL is a memory ref and its address is not constant,
+ and this insn P increments a register used in GOAL, return 0. */
+ {
+ register rtx link;
+
+ for (link = REG_NOTES (p); link; link = XEXP (link, 1))
+ if (REG_NOTE_KIND (link) == REG_INC
+ && GET_CODE (XEXP (link, 0)) == REG)
+ {
+ register int incno = REGNO (XEXP (link, 0));
+ if (incno < regno + nregs && incno >= regno)
+ return 0;
+ if (incno < valueno + valuenregs && incno >= valueno)
+ return 0;
+ if (goal_mem_addr_varies
+ && reg_overlap_mentioned_for_reload_p (XEXP (link, 0),
+ goal))
+ return 0;
+ }
+ }
+#endif
+ }
+ }
+}
+
+/* Find a place where INCED appears in an increment or decrement operator
+ within X, and return the amount INCED is incremented or decremented by.
+ The value is always positive. */
+
+static int
+find_inc_amount (x, inced)
+ rtx x, inced;
+{
+ register enum rtx_code code = GET_CODE (x);
+ register char *fmt;
+ register int i;
+
+ if (code == MEM)
+ {
+ register rtx addr = XEXP (x, 0);
+ if ((GET_CODE (addr) == PRE_DEC
+ || GET_CODE (addr) == POST_DEC
+ || GET_CODE (addr) == PRE_INC
+ || GET_CODE (addr) == POST_INC)
+ && XEXP (addr, 0) == inced)
+ return GET_MODE_SIZE (GET_MODE (x));
+ }
+
+ fmt = GET_RTX_FORMAT (code);
+ for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
+ {
+ if (fmt[i] == 'e')
+ {
+ register int tem = find_inc_amount (XEXP (x, i), inced);
+ if (tem != 0)
+ return tem;
+ }
+ if (fmt[i] == 'E')
+ {
+ register int j;
+ for (j = XVECLEN (x, i) - 1; j >= 0; j--)
+ {
+ register int tem = find_inc_amount (XVECEXP (x, i, j), inced);
+ if (tem != 0)
+ return tem;
+ }
+ }
+ }
+
+ return 0;
+}
+
+/* Return 1 if register REGNO is the subject of a clobber in insn INSN. */
+
+int
+regno_clobbered_p (regno, insn)
+ int regno;
+ rtx insn;
+{
+ if (GET_CODE (PATTERN (insn)) == CLOBBER
+ && GET_CODE (XEXP (PATTERN (insn), 0)) == REG)
+ return REGNO (XEXP (PATTERN (insn), 0)) == regno;
+
+ if (GET_CODE (PATTERN (insn)) == PARALLEL)
+ {
+ int i = XVECLEN (PATTERN (insn), 0) - 1;
+
+ for (; i >= 0; i--)
+ {
+ rtx elt = XVECEXP (PATTERN (insn), 0, i);
+ if (GET_CODE (elt) == CLOBBER && GET_CODE (XEXP (elt, 0)) == REG
+ && REGNO (XEXP (elt, 0)) == regno)
+ return 1;
+ }
+ }
+
+ return 0;
+}
+
+static char *reload_when_needed_name[] =
+{
+ "RELOAD_FOR_INPUT",
+ "RELOAD_FOR_OUTPUT",
+ "RELOAD_FOR_INSN",
+ "RELOAD_FOR_INPUT_ADDRESS",
+ "RELOAD_FOR_OUTPUT_ADDRESS",
+ "RELOAD_FOR_OPERAND_ADDRESS",
+ "RELOAD_FOR_OPADDR_ADDR",
+ "RELOAD_OTHER",
+ "RELOAD_FOR_OTHER_ADDRESS"
+};
+
+static char *reg_class_names[] = REG_CLASS_NAMES;
+
+/* This function is used to print the variables set by 'find_reloads' */
+
+void
+debug_reload()
+{
+ int r;
+
+ fprintf (stderr, "\nn_reloads = %d\n", n_reloads);
+
+ for (r = 0; r < n_reloads; r++)
+ {
+ fprintf (stderr, "\nRELOAD %d\n", r);
+
+ if (reload_in[r])
+ {
+ fprintf (stderr, "\nreload_in (%s) = ",
+ GET_MODE_NAME (reload_inmode[r]));
+ debug_rtx (reload_in[r]);
+ }
+
+ if (reload_out[r])
+ {
+ fprintf (stderr, "\nreload_out (%s) = ",
+ GET_MODE_NAME (reload_outmode[r]));
+ debug_rtx (reload_out[r]);
+ }
+
+ fprintf (stderr, "%s, ", reg_class_names[(int) reload_reg_class[r]]);
+
+ fprintf (stderr, "%s (opnum = %d)",
+ reload_when_needed_name[(int)reload_when_needed[r]],
+ reload_opnum[r]);
+
+ if (reload_optional[r])
+ fprintf (stderr, ", optional");
+
+ if (reload_in[r])
+ fprintf (stderr, ", inc by %d\n", reload_inc[r]);
+
+ if (reload_nocombine[r])
+ fprintf (stderr, ", can combine", reload_nocombine[r]);
+
+ if (reload_secondary_p[r])
+ fprintf (stderr, ", secondary_reload_p");
+
+ if (reload_in_reg[r])
+ {
+ fprintf (stderr, "\nreload_in_reg:\t\t\t");
+ debug_rtx (reload_in_reg[r]);
+ }
+
+ if (reload_reg_rtx[r])
+ {
+ fprintf (stderr, "\nreload_reg_rtx:\t\t\t");
+ debug_rtx (reload_reg_rtx[r]);
+ }
+
+ if (reload_secondary_in_reload[r] != -1)
+ {
+ fprintf (stderr, "\nsecondary_in_reload = ");
+ fprintf (stderr, "%d ", reload_secondary_in_reload[r]);
+ }
+
+ if (reload_secondary_out_reload[r] != -1)
+ {
+ if (reload_secondary_in_reload[r] != -1)
+ fprintf (stderr, ", secondary_out_reload = ");
+ else
+ fprintf (stderr, "\nsecondary_out_reload = ");
+
+ fprintf (stderr, "%d", reload_secondary_out_reload[r]);
+ }
+
+
+ if (reload_secondary_in_icode[r] != CODE_FOR_nothing)
+ {
+ fprintf (stderr, "\nsecondary_in_icode = ");
+ fprintf (stderr, "%s", insn_name[r]);
+ }
+
+ if (reload_secondary_out_icode[r] != CODE_FOR_nothing)
+ {
+ if (reload_secondary_in_icode[r] != CODE_FOR_nothing)
+ fprintf (stderr, ", secondary_out_icode = ");
+ else
+ fprintf (stderr, "\nsecondary_out_icode = ");
+
+ fprintf (stderr, "%s ", insn_name[r]);
+ }
+ fprintf (stderr, "\n");
+ }
+
+ fprintf (stderr, "\n");
+}
OpenPOWER on IntegriCloud