summaryrefslogtreecommitdiffstats
path: root/contrib/gcc/lcm.c
diff options
context:
space:
mode:
authorobrien <obrien@FreeBSD.org>2002-02-01 18:16:02 +0000
committerobrien <obrien@FreeBSD.org>2002-02-01 18:16:02 +0000
commitc9ab9ae440a8066b2c2b85b157b1fdadcf09916a (patch)
tree086d9d6c8fbd4fc8fe4495059332f66bc0f8d12b /contrib/gcc/lcm.c
parent2ecfd8bd04b63f335c1ec6295740a4bfd97a4fa6 (diff)
downloadFreeBSD-src-c9ab9ae440a8066b2c2b85b157b1fdadcf09916a.zip
FreeBSD-src-c9ab9ae440a8066b2c2b85b157b1fdadcf09916a.tar.gz
Enlist the FreeBSD-CURRENT users as testers of what is to become Gcc 3.1.0.
These bits are taken from the FSF anoncvs repo on 1-Feb-2002 08:20 PST.
Diffstat (limited to 'contrib/gcc/lcm.c')
-rw-r--r--contrib/gcc/lcm.c1843
1 files changed, 1229 insertions, 614 deletions
diff --git a/contrib/gcc/lcm.c b/contrib/gcc/lcm.c
index 01367e3..0a8a7ce 100644
--- a/contrib/gcc/lcm.c
+++ b/contrib/gcc/lcm.c
@@ -1,26 +1,25 @@
-/* Generic partial redundancy elimination with lazy code motion
- support.
- Copyright (C) 1998 Free Software Foundation, Inc.
+/* Generic partial redundancy elimination with lazy code motion support.
+ Copyright (C) 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
-This file is part of GNU CC.
+This file is part of GCC.
-GNU CC is free software; you can redistribute it and/or modify
-it under the terms of the GNU General Public License as published by
-the Free Software Foundation; either version 2, or (at your option)
-any later version.
+GCC is free software; you can redistribute it and/or modify it under
+the terms of the GNU General Public License as published by the Free
+Software Foundation; either version 2, or (at your option) any later
+version.
-GNU CC is distributed in the hope that it will be useful,
-but WITHOUT ANY WARRANTY; without even the implied warranty of
-MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-GNU General Public License for more details.
+GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+for more details.
You should have received a copy of the GNU General Public License
-along with GNU CC; see the file COPYING. If not, write to
-the Free Software Foundation, 59 Temple Place - Suite 330,
-Boston, MA 02111-1307, USA. */
+along with GCC; see the file COPYING. If not, write to the Free
+Software Foundation, 59 Temple Place - Suite 330, Boston, MA
+02111-1307, USA. */
/* These routines are meant to be used by various optimization
- passes which can be modeled as lazy code motion problems.
+ passes which can be modeled as lazy code motion problems.
Including, but not limited to:
* Traditional partial redundancy elimination.
@@ -52,7 +51,6 @@ Boston, MA 02111-1307, USA. */
#include "config.h"
#include "system.h"
-
#include "rtl.h"
#include "regs.h"
#include "hard-reg-set.h"
@@ -61,739 +59,1356 @@ Boston, MA 02111-1307, USA. */
#include "insn-config.h"
#include "recog.h"
#include "basic-block.h"
-
-static void compute_antinout PROTO ((int, int_list_ptr *, sbitmap *,
- sbitmap *, sbitmap *, sbitmap *));
-static void compute_earlyinout PROTO ((int, int, int_list_ptr *, sbitmap *,
- sbitmap *, sbitmap *, sbitmap *));
-static void compute_delayinout PROTO ((int, int, int_list_ptr *, sbitmap *,
- sbitmap *, sbitmap *,
- sbitmap *, sbitmap *));
-static void compute_latein PROTO ((int, int, int_list_ptr *, sbitmap *,
- sbitmap *, sbitmap *));
-static void compute_isoinout PROTO ((int, int_list_ptr *, sbitmap *,
- sbitmap *, sbitmap *, sbitmap *));
-static void compute_optimal PROTO ((int, sbitmap *,
- sbitmap *, sbitmap *));
-static void compute_redundant PROTO ((int, int, sbitmap *,
- sbitmap *, sbitmap *, sbitmap *));
-
-/* Similarly, but for the reversed flowgraph. */
-static void compute_avinout PROTO ((int, int_list_ptr *, sbitmap *,
- sbitmap *, sbitmap *, sbitmap *));
-static void compute_fartherinout PROTO ((int, int, int_list_ptr *,
- sbitmap *, sbitmap *,
- sbitmap *, sbitmap *));
-static void compute_earlierinout PROTO ((int, int, int_list_ptr *, sbitmap *,
- sbitmap *, sbitmap *,
- sbitmap *, sbitmap *));
-static void compute_firstout PROTO ((int, int, int_list_ptr *, sbitmap *,
- sbitmap *, sbitmap *));
-static void compute_rev_isoinout PROTO ((int, int_list_ptr *, sbitmap *,
- sbitmap *, sbitmap *, sbitmap *));
-
-/* Given local properties TRANSP, ANTLOC, return the redundant and optimal
- computation points for expressions.
-
- To reduce overall memory consumption, we allocate memory immediately
- before its needed and deallocate it as soon as possible. */
-void
-pre_lcm (n_blocks, n_exprs, s_preds, s_succs, transp,
- antloc, redundant, optimal)
- int n_blocks;
- int n_exprs;
- int_list_ptr *s_preds;
- int_list_ptr *s_succs;
- sbitmap *transp;
- sbitmap *antloc;
- sbitmap *redundant;
- sbitmap *optimal;
-{
- sbitmap *antin, *antout, *earlyin, *earlyout, *delayin, *delayout;
- sbitmap *latein, *isoin, *isoout;
-
- /* Compute global anticipatability. ANTOUT is not needed except to
- compute ANTIN, so free its memory as soon as we return from
- compute_antinout. */
- antin = sbitmap_vector_alloc (n_blocks, n_exprs);
- antout = sbitmap_vector_alloc (n_blocks, n_exprs);
- compute_antinout (n_blocks, s_succs, antloc,
- transp, antin, antout);
- free (antout);
- antout = NULL;
-
- /* Compute earliestness. EARLYOUT is not needed except to compute
- EARLYIN, so free its memory as soon as we return from
- compute_earlyinout. */
- earlyin = sbitmap_vector_alloc (n_blocks, n_exprs);
- earlyout = sbitmap_vector_alloc (n_blocks, n_exprs);
- compute_earlyinout (n_blocks, n_exprs, s_preds, transp, antin,
- earlyin, earlyout);
- free (earlyout);
- earlyout = NULL;
-
- /* Compute delayedness. DELAYOUT is not needed except to compute
- DELAYIN, so free its memory as soon as we return from
- compute_delayinout. We also no longer need ANTIN and EARLYIN. */
- delayin = sbitmap_vector_alloc (n_blocks, n_exprs);
- delayout = sbitmap_vector_alloc (n_blocks, n_exprs);
- compute_delayinout (n_blocks, n_exprs, s_preds, antloc,
- antin, earlyin, delayin, delayout);
- free (delayout);
- delayout = NULL;
- free (antin);
- antin = NULL;
- free (earlyin);
- earlyin = NULL;
-
- /* Compute latestness. We no longer need DELAYIN after we compute
- LATEIN. */
- latein = sbitmap_vector_alloc (n_blocks, n_exprs);
- compute_latein (n_blocks, n_exprs, s_succs, antloc, delayin, latein);
- free (delayin);
- delayin = NULL;
-
- /* Compute isolatedness. ISOIN is not needed except to compute
- ISOOUT, so free its memory as soon as we return from
- compute_isoinout. */
- isoin = sbitmap_vector_alloc (n_blocks, n_exprs);
- isoout = sbitmap_vector_alloc (n_blocks, n_exprs);
- compute_isoinout (n_blocks, s_succs, antloc, latein, isoin, isoout);
- free (isoin);
- isoin = NULL;
-
- /* Now compute optimal placement points and the redundant expressions. */
- compute_optimal (n_blocks, latein, isoout, optimal);
- compute_redundant (n_blocks, n_exprs, antloc, latein, isoout, redundant);
- free (latein);
- latein = NULL;
- free (isoout);
- isoout = NULL;
-}
-
-/* Given local properties TRANSP, AVLOC, return the redundant and optimal
- computation points for expressions on the reverse flowgraph.
-
- To reduce overall memory consumption, we allocate memory immediately
- before its needed and deallocate it as soon as possible. */
-
-void
-pre_rev_lcm (n_blocks, n_exprs, s_preds, s_succs, transp,
- avloc, redundant, optimal)
- int n_blocks;
- int n_exprs;
- int_list_ptr *s_preds;
- int_list_ptr *s_succs;
- sbitmap *transp;
- sbitmap *avloc;
- sbitmap *redundant;
- sbitmap *optimal;
-{
- sbitmap *avin, *avout, *fartherin, *fartherout, *earlierin, *earlierout;
- sbitmap *firstout, *rev_isoin, *rev_isoout;
-
- /* Compute global availability. AVIN is not needed except to
- compute AVOUT, so free its memory as soon as we return from
- compute_avinout. */
- avin = sbitmap_vector_alloc (n_blocks, n_exprs);
- avout = sbitmap_vector_alloc (n_blocks, n_exprs);
- compute_avinout (n_blocks, s_preds, avloc, transp, avin, avout);
- free (avin);
- avin = NULL;
-
- /* Compute fartherness. FARTHERIN is not needed except to compute
- FARTHEROUT, so free its memory as soon as we return from
- compute_earlyinout. */
- fartherin = sbitmap_vector_alloc (n_blocks, n_exprs);
- fartherout = sbitmap_vector_alloc (n_blocks, n_exprs);
- compute_fartherinout (n_blocks, n_exprs, s_succs, transp,
- avout, fartherin, fartherout);
- free (fartherin);
- fartherin = NULL;
-
- /* Compute earlierness. EARLIERIN is not needed except to compute
- EARLIEROUT, so free its memory as soon as we return from
- compute_delayinout. We also no longer need AVOUT and FARTHEROUT. */
- earlierin = sbitmap_vector_alloc (n_blocks, n_exprs);
- earlierout = sbitmap_vector_alloc (n_blocks, n_exprs);
- compute_earlierinout (n_blocks, n_exprs, s_succs, avloc,
- avout, fartherout, earlierin, earlierout);
- free (earlierin);
- earlierin = NULL;
- free (avout);
- avout = NULL;
- free (fartherout);
- fartherout = NULL;
-
- /* Compute firstness. We no longer need EARLIEROUT after we compute
- FIRSTOUT. */
- firstout = sbitmap_vector_alloc (n_blocks, n_exprs);
- compute_firstout (n_blocks, n_exprs, s_preds, avloc, earlierout, firstout);
- free (earlierout);
- earlierout = NULL;
-
- /* Compute rev_isolatedness. ISOIN is not needed except to compute
- ISOOUT, so free its memory as soon as we return from
- compute_isoinout. */
- rev_isoin = sbitmap_vector_alloc (n_blocks, n_exprs);
- rev_isoout = sbitmap_vector_alloc (n_blocks, n_exprs);
- compute_rev_isoinout (n_blocks, s_preds, avloc, firstout,
- rev_isoin, rev_isoout);
- free (rev_isoout);
- rev_isoout = NULL;
-
- /* Now compute optimal placement points and the redundant expressions. */
- compute_optimal (n_blocks, firstout, rev_isoin, optimal);
- compute_redundant (n_blocks, n_exprs, avloc, firstout, rev_isoin, redundant);
- free (firstout);
- firstout = NULL;
- free (rev_isoin);
- rev_isoin = NULL;
-}
-
-/* Compute expression anticipatability at entrance and exit of each block. */
+#include "tm_p.h"
+
+/* We want target macros for the mode switching code to be able to refer
+ to instruction attribute values. */
+#include "insn-attr.h"
+
+/* Edge based LCM routines. */
+static void compute_antinout_edge PARAMS ((sbitmap *, sbitmap *,
+ sbitmap *, sbitmap *));
+static void compute_earliest PARAMS ((struct edge_list *, int,
+ sbitmap *, sbitmap *,
+ sbitmap *, sbitmap *,
+ sbitmap *));
+static void compute_laterin PARAMS ((struct edge_list *, sbitmap *,
+ sbitmap *, sbitmap *,
+ sbitmap *));
+static void compute_insert_delete PARAMS ((struct edge_list *edge_list,
+ sbitmap *, sbitmap *,
+ sbitmap *, sbitmap *,
+ sbitmap *));
+
+/* Edge based LCM routines on a reverse flowgraph. */
+static void compute_farthest PARAMS ((struct edge_list *, int,
+ sbitmap *, sbitmap *,
+ sbitmap*, sbitmap *,
+ sbitmap *));
+static void compute_nearerout PARAMS ((struct edge_list *, sbitmap *,
+ sbitmap *, sbitmap *,
+ sbitmap *));
+static void compute_rev_insert_delete PARAMS ((struct edge_list *edge_list,
+ sbitmap *, sbitmap *,
+ sbitmap *, sbitmap *,
+ sbitmap *));
+
+/* Edge based lcm routines. */
+
+/* Compute expression anticipatability at entrance and exit of each block.
+ This is done based on the flow graph, and not on the pred-succ lists.
+ Other than that, its pretty much identical to compute_antinout. */
static void
-compute_antinout (n_blocks, s_succs, antloc, transp, antin, antout)
- int n_blocks;
- int_list_ptr *s_succs;
+compute_antinout_edge (antloc, transp, antin, antout)
sbitmap *antloc;
sbitmap *transp;
sbitmap *antin;
sbitmap *antout;
{
- int bb, changed, passes;
- sbitmap old_changed, new_changed;
+ int bb;
+ edge e;
+ basic_block *worklist, *qin, *qout, *qend;
+ unsigned int qlen;
+
+ /* Allocate a worklist array/queue. Entries are only added to the
+ list if they were not already on the list. So the size is
+ bounded by the number of basic blocks. */
+ qin = qout = worklist
+ = (basic_block *) xmalloc (sizeof (basic_block) * n_basic_blocks);
+
+ /* We want a maximal solution, so make an optimistic initialization of
+ ANTIN. */
+ sbitmap_vector_ones (antin, n_basic_blocks);
+
+ /* Put every block on the worklist; this is necessary because of the
+ optimistic initialization of ANTIN above. */
+ for (bb = n_basic_blocks - 1; bb >= 0; bb--)
+ {
+ *qin++ = BASIC_BLOCK (bb);
+ BASIC_BLOCK (bb)->aux = BASIC_BLOCK (bb);
+ }
- sbitmap_zero (antout[n_blocks - 1]);
- sbitmap_vector_ones (antin, n_blocks);
+ qin = worklist;
+ qend = &worklist[n_basic_blocks];
+ qlen = n_basic_blocks;
- old_changed = sbitmap_alloc (n_blocks);
- new_changed = sbitmap_alloc (n_blocks);
- sbitmap_ones (old_changed);
+ /* Mark blocks which are predecessors of the exit block so that we
+ can easily identify them below. */
+ for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
+ e->src->aux = EXIT_BLOCK_PTR;
- passes = 0;
- changed = 1;
- while (changed)
+ /* Iterate until the worklist is empty. */
+ while (qlen)
{
- changed = 0;
- sbitmap_zero (new_changed);
- /* We scan the blocks in the reverse order to speed up
- the convergence. */
- for (bb = n_blocks - 1; bb >= 0; bb--)
+ /* Take the first entry off the worklist. */
+ basic_block b = *qout++;
+ bb = b->index;
+ qlen--;
+
+ if (qout >= qend)
+ qout = worklist;
+
+ if (b->aux == EXIT_BLOCK_PTR)
+ /* Do not clear the aux field for blocks which are predecessors of
+ the EXIT block. That way we never add then to the worklist
+ again. */
+ sbitmap_zero (antout[bb]);
+ else
{
- int_list_ptr ps;
+ /* Clear the aux field of this block so that it can be added to
+ the worklist again if necessary. */
+ b->aux = NULL;
+ sbitmap_intersection_of_succs (antout[bb], antin, bb);
+ }
- /* If none of the successors of this block have changed,
- then this block is not going to change. */
- for (ps = s_succs[bb] ; ps; ps = ps->next)
+ if (sbitmap_a_or_b_and_c (antin[bb], antloc[bb], transp[bb], antout[bb]))
+ /* If the in state of this block changed, then we need
+ to add the predecessors of this block to the worklist
+ if they are not already on the worklist. */
+ for (e = b->pred; e; e = e->pred_next)
+ if (!e->src->aux && e->src != ENTRY_BLOCK_PTR)
{
- if (INT_LIST_VAL (ps) == EXIT_BLOCK
- || INT_LIST_VAL (ps) == ENTRY_BLOCK)
- break;
-
- if (TEST_BIT (old_changed, INT_LIST_VAL (ps))
- || TEST_BIT (new_changed, INT_LIST_VAL (ps)))
- break;
+ *qin++ = e->src;
+ e->src->aux = e;
+ qlen++;
+ if (qin >= qend)
+ qin = worklist;
}
+ }
+
+ clear_aux_for_edges ();
+ clear_aux_for_blocks ();
+ free (worklist);
+}
+
+/* Compute the earliest vector for edge based lcm. */
- if (!ps)
- continue;
+static void
+compute_earliest (edge_list, n_exprs, antin, antout, avout, kill, earliest)
+ struct edge_list *edge_list;
+ int n_exprs;
+ sbitmap *antin, *antout, *avout, *kill, *earliest;
+{
+ sbitmap difference, temp_bitmap;
+ int x, num_edges;
+ basic_block pred, succ;
+
+ num_edges = NUM_EDGES (edge_list);
- if (bb != n_blocks - 1)
- sbitmap_intersect_of_successors (antout[bb], antin,
- bb, s_succs);
- if (sbitmap_a_or_b_and_c (antin[bb], antloc[bb],
- transp[bb], antout[bb]))
+ difference = sbitmap_alloc (n_exprs);
+ temp_bitmap = sbitmap_alloc (n_exprs);
+
+ for (x = 0; x < num_edges; x++)
+ {
+ pred = INDEX_EDGE_PRED_BB (edge_list, x);
+ succ = INDEX_EDGE_SUCC_BB (edge_list, x);
+ if (pred == ENTRY_BLOCK_PTR)
+ sbitmap_copy (earliest[x], antin[succ->index]);
+ else
+ {
+ /* We refer to the EXIT_BLOCK index, instead of testing for
+ EXIT_BLOCK_PTR, so that EXIT_BLOCK_PTR's index can be
+ changed so as to pretend it's a regular block, so that
+ its antin can be taken into account. */
+ if (succ->index == EXIT_BLOCK)
+ sbitmap_zero (earliest[x]);
+ else
{
- changed = 1;
- SET_BIT (new_changed, bb);
+ sbitmap_difference (difference, antin[succ->index],
+ avout[pred->index]);
+ sbitmap_not (temp_bitmap, antout[pred->index]);
+ sbitmap_a_and_b_or_c (earliest[x], difference,
+ kill[pred->index], temp_bitmap);
}
}
- sbitmap_copy (old_changed, new_changed);
- passes++;
}
- free (old_changed);
- free (new_changed);
+
+ sbitmap_free (temp_bitmap);
+ sbitmap_free (difference);
}
-/* Compute expression earliestness at entrance and exit of each block.
+/* later(p,s) is dependent on the calculation of laterin(p).
+ laterin(p) is dependent on the calculation of later(p2,p).
+
+ laterin(ENTRY) is defined as all 0's
+ later(ENTRY, succs(ENTRY)) are defined using laterin(ENTRY)
+ laterin(succs(ENTRY)) is defined by later(ENTRY, succs(ENTRY)).
+
+ If we progress in this manner, starting with all basic blocks
+ in the work list, anytime we change later(bb), we need to add
+ succs(bb) to the worklist if they are not already on the worklist.
+
+ Boundary conditions:
+
+ We prime the worklist all the normal basic blocks. The ENTRY block can
+ never be added to the worklist since it is never the successor of any
+ block. We explicitly prevent the EXIT block from being added to the
+ worklist.
+
+ We optimistically initialize LATER. That is the only time this routine
+ will compute LATER for an edge out of the entry block since the entry
+ block is never on the worklist. Thus, LATERIN is neither used nor
+ computed for the ENTRY block.
- From Advanced Compiler Design and Implementation pp411.
+ Since the EXIT block is never added to the worklist, we will neither
+ use nor compute LATERIN for the exit block. Edges which reach the
+ EXIT block are handled in the normal fashion inside the loop. However,
+ the insertion/deletion computation needs LATERIN(EXIT), so we have
+ to compute it. */
- An expression is earliest at the entrance to basic block BB if no
- block from entry to block BB both evaluates the expression and
- produces the same value as evaluating it at the entry to block BB
- does. Similarly for earlistness at basic block BB exit. */
+static void
+compute_laterin (edge_list, earliest, antloc, later, laterin)
+ struct edge_list *edge_list;
+ sbitmap *earliest, *antloc, *later, *laterin;
+{
+ int bb, num_edges, i;
+ edge e;
+ basic_block *worklist, *qin, *qout, *qend;
+ unsigned int qlen;
+
+ num_edges = NUM_EDGES (edge_list);
+
+ /* Allocate a worklist array/queue. Entries are only added to the
+ list if they were not already on the list. So the size is
+ bounded by the number of basic blocks. */
+ qin = qout = worklist
+ = (basic_block *) xmalloc (sizeof (basic_block) * (n_basic_blocks + 1));
+
+ /* Initialize a mapping from each edge to its index. */
+ for (i = 0; i < num_edges; i++)
+ INDEX_EDGE (edge_list, i)->aux = (void *) (size_t) i;
+
+ /* We want a maximal solution, so initially consider LATER true for
+ all edges. This allows propagation through a loop since the incoming
+ loop edge will have LATER set, so if all the other incoming edges
+ to the loop are set, then LATERIN will be set for the head of the
+ loop.
+
+ If the optimistic setting of LATER on that edge was incorrect (for
+ example the expression is ANTLOC in a block within the loop) then
+ this algorithm will detect it when we process the block at the head
+ of the optimistic edge. That will requeue the affected blocks. */
+ sbitmap_vector_ones (later, num_edges);
+
+ /* Note that even though we want an optimistic setting of LATER, we
+ do not want to be overly optimistic. Consider an outgoing edge from
+ the entry block. That edge should always have a LATER value the
+ same as EARLIEST for that edge. */
+ for (e = ENTRY_BLOCK_PTR->succ; e; e = e->succ_next)
+ sbitmap_copy (later[(size_t) e->aux], earliest[(size_t) e->aux]);
+
+ /* Add all the blocks to the worklist. This prevents an early exit from
+ the loop given our optimistic initialization of LATER above. */
+ for (bb = 0; bb < n_basic_blocks; bb++)
+ {
+ basic_block b = BASIC_BLOCK (bb);
+ *qin++ = b;
+ b->aux = b;
+ }
+ qin = worklist;
+ /* Note that we do not use the last allocated element for our queue,
+ as EXIT_BLOCK is never inserted into it. In fact the above allocation
+ of n_basic_blocks + 1 elements is not encessary. */
+ qend = &worklist[n_basic_blocks];
+ qlen = n_basic_blocks;
+
+ /* Iterate until the worklist is empty. */
+ while (qlen)
+ {
+ /* Take the first entry off the worklist. */
+ basic_block b = *qout++;
+ b->aux = NULL;
+ qlen--;
+ if (qout >= qend)
+ qout = worklist;
+
+ /* Compute the intersection of LATERIN for each incoming edge to B. */
+ bb = b->index;
+ sbitmap_ones (laterin[bb]);
+ for (e = b->pred; e != NULL; e = e->pred_next)
+ sbitmap_a_and_b (laterin[bb], laterin[bb], later[(size_t)e->aux]);
+
+ /* Calculate LATER for all outgoing edges. */
+ for (e = b->succ; e != NULL; e = e->succ_next)
+ if (sbitmap_union_of_diff (later[(size_t) e->aux],
+ earliest[(size_t) e->aux],
+ laterin[e->src->index],
+ antloc[e->src->index])
+ /* If LATER for an outgoing edge was changed, then we need
+ to add the target of the outgoing edge to the worklist. */
+ && e->dest != EXIT_BLOCK_PTR && e->dest->aux == 0)
+ {
+ *qin++ = e->dest;
+ e->dest->aux = e;
+ qlen++;
+ if (qin >= qend)
+ qin = worklist;
+ }
+ }
+
+ /* Computation of insertion and deletion points requires computing LATERIN
+ for the EXIT block. We allocated an extra entry in the LATERIN array
+ for just this purpose. */
+ sbitmap_ones (laterin[n_basic_blocks]);
+ for (e = EXIT_BLOCK_PTR->pred; e != NULL; e = e->pred_next)
+ sbitmap_a_and_b (laterin[n_basic_blocks],
+ laterin[n_basic_blocks],
+ later[(size_t) e->aux]);
+
+ clear_aux_for_edges ();
+ free (worklist);
+}
+
+/* Compute the insertion and deletion points for edge based LCM. */
static void
-compute_earlyinout (n_blocks, n_exprs, s_preds, transp, antin,
- earlyin, earlyout)
- int n_blocks;
+compute_insert_delete (edge_list, antloc, later, laterin,
+ insert, delete)
+ struct edge_list *edge_list;
+ sbitmap *antloc, *later, *laterin, *insert, *delete;
+{
+ int x;
+
+ for (x = 0; x < n_basic_blocks; x++)
+ sbitmap_difference (delete[x], antloc[x], laterin[x]);
+
+ for (x = 0; x < NUM_EDGES (edge_list); x++)
+ {
+ basic_block b = INDEX_EDGE_SUCC_BB (edge_list, x);
+
+ if (b == EXIT_BLOCK_PTR)
+ sbitmap_difference (insert[x], later[x], laterin[n_basic_blocks]);
+ else
+ sbitmap_difference (insert[x], later[x], laterin[b->index]);
+ }
+}
+
+/* Given local properties TRANSP, ANTLOC, AVOUT, KILL return the insert and
+ delete vectors for edge based LCM. Returns an edgelist which is used to
+ map the insert vector to what edge an expression should be inserted on. */
+
+struct edge_list *
+pre_edge_lcm (file, n_exprs, transp, avloc, antloc, kill, insert, delete)
+ FILE *file ATTRIBUTE_UNUSED;
int n_exprs;
- int_list_ptr *s_preds;
sbitmap *transp;
- sbitmap *antin;
- sbitmap *earlyin;
- sbitmap *earlyout;
+ sbitmap *avloc;
+ sbitmap *antloc;
+ sbitmap *kill;
+ sbitmap **insert;
+ sbitmap **delete;
{
- int bb, changed, passes;
- sbitmap temp_bitmap;
- sbitmap old_changed, new_changed;
+ sbitmap *antin, *antout, *earliest;
+ sbitmap *avin, *avout;
+ sbitmap *later, *laterin;
+ struct edge_list *edge_list;
+ int num_edges;
- temp_bitmap = sbitmap_alloc (n_exprs);
+ edge_list = create_edge_list ();
+ num_edges = NUM_EDGES (edge_list);
- sbitmap_vector_zero (earlyout, n_blocks);
- sbitmap_ones (earlyin[0]);
+#ifdef LCM_DEBUG_INFO
+ if (file)
+ {
+ fprintf (file, "Edge List:\n");
+ verify_edge_list (file, edge_list);
+ print_edge_list (file, edge_list);
+ dump_sbitmap_vector (file, "transp", "", transp, n_basic_blocks);
+ dump_sbitmap_vector (file, "antloc", "", antloc, n_basic_blocks);
+ dump_sbitmap_vector (file, "avloc", "", avloc, n_basic_blocks);
+ dump_sbitmap_vector (file, "kill", "", kill, n_basic_blocks);
+ }
+#endif
- old_changed = sbitmap_alloc (n_blocks);
- new_changed = sbitmap_alloc (n_blocks);
- sbitmap_ones (old_changed);
+ /* Compute global availability. */
+ avin = sbitmap_vector_alloc (n_basic_blocks, n_exprs);
+ avout = sbitmap_vector_alloc (n_basic_blocks, n_exprs);
+ compute_available (avloc, kill, avout, avin);
+ sbitmap_vector_free (avin);
- passes = 0;
- changed = 1;
- while (changed)
+ /* Compute global anticipatability. */
+ antin = sbitmap_vector_alloc (n_basic_blocks, n_exprs);
+ antout = sbitmap_vector_alloc (n_basic_blocks, n_exprs);
+ compute_antinout_edge (antloc, transp, antin, antout);
+
+#ifdef LCM_DEBUG_INFO
+ if (file)
{
- changed = 0;
- sbitmap_zero (new_changed);
- for (bb = 0; bb < n_blocks; bb++)
- {
- int_list_ptr ps;
+ dump_sbitmap_vector (file, "antin", "", antin, n_basic_blocks);
+ dump_sbitmap_vector (file, "antout", "", antout, n_basic_blocks);
+ }
+#endif
- /* If none of the predecessors of this block have changed,
- then this block is not going to change. */
- for (ps = s_preds[bb] ; ps; ps = ps->next)
- {
- if (INT_LIST_VAL (ps) == EXIT_BLOCK
- || INT_LIST_VAL (ps) == ENTRY_BLOCK)
- break;
+ /* Compute earliestness. */
+ earliest = sbitmap_vector_alloc (num_edges, n_exprs);
+ compute_earliest (edge_list, n_exprs, antin, antout, avout, kill, earliest);
- if (TEST_BIT (old_changed, INT_LIST_VAL (ps))
- || TEST_BIT (new_changed, INT_LIST_VAL (ps)))
- break;
- }
+#ifdef LCM_DEBUG_INFO
+ if (file)
+ dump_sbitmap_vector (file, "earliest", "", earliest, num_edges);
+#endif
- if (!ps)
- continue;
+ sbitmap_vector_free (antout);
+ sbitmap_vector_free (antin);
+ sbitmap_vector_free (avout);
- if (bb != 0)
- sbitmap_union_of_predecessors (earlyin[bb], earlyout,
- bb, s_preds);
- sbitmap_not (temp_bitmap, transp[bb]);
- if (sbitmap_union_of_diff (earlyout[bb], temp_bitmap,
- earlyin[bb], antin[bb]))
- {
- changed = 1;
- SET_BIT (new_changed, bb);
- }
- }
- sbitmap_copy (old_changed, new_changed);
- passes++;
+ later = sbitmap_vector_alloc (num_edges, n_exprs);
+
+ /* Allocate an extra element for the exit block in the laterin vector. */
+ laterin = sbitmap_vector_alloc (n_basic_blocks + 1, n_exprs);
+ compute_laterin (edge_list, earliest, antloc, later, laterin);
+
+#ifdef LCM_DEBUG_INFO
+ if (file)
+ {
+ dump_sbitmap_vector (file, "laterin", "", laterin, n_basic_blocks + 1);
+ dump_sbitmap_vector (file, "later", "", later, num_edges);
}
- free (old_changed);
- free (new_changed);
- free (temp_bitmap);
-}
+#endif
-/* Compute expression delayedness at entrance and exit of each block.
+ sbitmap_vector_free (earliest);
- From Advanced Compiler Design and Implementation pp411.
+ *insert = sbitmap_vector_alloc (num_edges, n_exprs);
+ *delete = sbitmap_vector_alloc (n_basic_blocks, n_exprs);
+ compute_insert_delete (edge_list, antloc, later, laterin, *insert, *delete);
- An expression is delayed at the entrance to BB if it is anticipatable
- and earliest at that point and if all subsequent computations of
- the expression are in block BB. */
+ sbitmap_vector_free (laterin);
+ sbitmap_vector_free (later);
-static void
-compute_delayinout (n_blocks, n_exprs, s_preds, antloc,
- antin, earlyin, delayin, delayout)
- int n_blocks;
- int n_exprs;
- int_list_ptr *s_preds;
- sbitmap *antloc;
- sbitmap *antin;
- sbitmap *earlyin;
- sbitmap *delayin;
- sbitmap *delayout;
+#ifdef LCM_DEBUG_INFO
+ if (file)
+ {
+ dump_sbitmap_vector (file, "pre_insert_map", "", *insert, num_edges);
+ dump_sbitmap_vector (file, "pre_delete_map", "", *delete,
+ n_basic_blocks);
+ }
+#endif
+
+ return edge_list;
+}
+
+/* Compute the AVIN and AVOUT vectors from the AVLOC and KILL vectors.
+ Return the number of passes we performed to iterate to a solution. */
+
+void
+compute_available (avloc, kill, avout, avin)
+ sbitmap *avloc, *kill, *avout, *avin;
{
- int bb, changed, passes;
- sbitmap *anti_and_early;
- sbitmap temp_bitmap;
+ int bb;
+ edge e;
+ basic_block *worklist, *qin, *qout, *qend;
+ unsigned int qlen;
+
+ /* Allocate a worklist array/queue. Entries are only added to the
+ list if they were not already on the list. So the size is
+ bounded by the number of basic blocks. */
+ qin = qout = worklist
+ = (basic_block *) xmalloc (sizeof (basic_block) * n_basic_blocks);
+
+ /* We want a maximal solution. */
+ sbitmap_vector_ones (avout, n_basic_blocks);
+
+ /* Put every block on the worklist; this is necessary because of the
+ optimistic initialization of AVOUT above. */
+ for (bb = 0; bb < n_basic_blocks; bb++)
+ {
+ *qin++ = BASIC_BLOCK (bb);
+ BASIC_BLOCK (bb)->aux = BASIC_BLOCK (bb);
+ }
- temp_bitmap = sbitmap_alloc (n_exprs);
+ qin = worklist;
+ qend = &worklist[n_basic_blocks];
+ qlen = n_basic_blocks;
+
+ /* Mark blocks which are successors of the entry block so that we
+ can easily identify them below. */
+ for (e = ENTRY_BLOCK_PTR->succ; e; e = e->succ_next)
+ e->dest->aux = ENTRY_BLOCK_PTR;
- /* This is constant throughout the flow equations below, so compute
- it once to save time. */
- anti_and_early = sbitmap_vector_alloc (n_blocks, n_exprs);
- for (bb = 0; bb < n_blocks; bb++)
- sbitmap_a_and_b (anti_and_early[bb], antin[bb], earlyin[bb]);
-
- sbitmap_vector_zero (delayout, n_blocks);
- sbitmap_copy (delayin[0], anti_and_early[0]);
-
- passes = 0;
- changed = 1;
- while (changed)
+ /* Iterate until the worklist is empty. */
+ while (qlen)
{
- changed = 0;
- for (bb = 0; bb < n_blocks; bb++)
+ /* Take the first entry off the worklist. */
+ basic_block b = *qout++;
+ bb = b->index;
+ qlen--;
+
+ if (qout >= qend)
+ qout = worklist;
+
+ /* If one of the predecessor blocks is the ENTRY block, then the
+ intersection of avouts is the null set. We can identify such blocks
+ by the special value in the AUX field in the block structure. */
+ if (b->aux == ENTRY_BLOCK_PTR)
+ /* Do not clear the aux field for blocks which are successors of the
+ ENTRY block. That way we never add then to the worklist again. */
+ sbitmap_zero (avin[bb]);
+ else
{
- if (bb != 0)
+ /* Clear the aux field of this block so that it can be added to
+ the worklist again if necessary. */
+ b->aux = NULL;
+ sbitmap_intersection_of_preds (avin[bb], avout, bb);
+ }
+
+ if (sbitmap_union_of_diff (avout[bb], avloc[bb], avin[bb], kill[bb]))
+ /* If the out state of this block changed, then we need
+ to add the successors of this block to the worklist
+ if they are not already on the worklist. */
+ for (e = b->succ; e; e = e->succ_next)
+ if (!e->dest->aux && e->dest != EXIT_BLOCK_PTR)
{
- sbitmap_intersect_of_predecessors (temp_bitmap, delayout,
- bb, s_preds);
- changed |= sbitmap_a_or_b (delayin[bb],
- anti_and_early[bb],
- temp_bitmap);
+ *qin++ = e->dest;
+ e->dest->aux = e;
+ qlen++;
+
+ if (qin >= qend)
+ qin = worklist;
}
- sbitmap_not (temp_bitmap, antloc[bb]);
- changed |= sbitmap_a_and_b (delayout[bb],
- temp_bitmap,
- delayin[bb]);
- }
- passes++;
}
- /* We're done with this, so go ahead and free it's memory now instead
- of waiting until the end of pre. */
- free (anti_and_early);
- free (temp_bitmap);
+ clear_aux_for_edges ();
+ clear_aux_for_blocks ();
+ free (worklist);
}
-/* Compute latestness.
-
- From Advanced Compiler Design and Implementation pp412.
-
- An expression is latest at the entrance to block BB if that is an optimal
- point for computing the expression and if on every path from block BB's
- entrance to the exit block, any optimal computation point for the
- expression occurs after one of the points at which the expression was
- computed in the original flowgraph. */
+/* Compute the farthest vector for edge based lcm. */
static void
-compute_latein (n_blocks, n_exprs, s_succs, antloc, delayin, latein)
- int n_blocks;
+compute_farthest (edge_list, n_exprs, st_avout, st_avin, st_antin,
+ kill, farthest)
+ struct edge_list *edge_list;
int n_exprs;
- int_list_ptr *s_succs;
- sbitmap *antloc;
- sbitmap *delayin;
- sbitmap *latein;
+ sbitmap *st_avout, *st_avin, *st_antin, *kill, *farthest;
{
- int bb;
- sbitmap temp_bitmap;
+ sbitmap difference, temp_bitmap;
+ int x, num_edges;
+ basic_block pred, succ;
+
+ num_edges = NUM_EDGES (edge_list);
+ difference = sbitmap_alloc (n_exprs);
temp_bitmap = sbitmap_alloc (n_exprs);
- for (bb = 0; bb < n_blocks; bb++)
+ for (x = 0; x < num_edges; x++)
{
- /* The last block is succeeded only by the exit block; therefore,
- temp_bitmap will not be set by the following call! */
- if (bb == n_blocks - 1)
+ pred = INDEX_EDGE_PRED_BB (edge_list, x);
+ succ = INDEX_EDGE_SUCC_BB (edge_list, x);
+ if (succ == EXIT_BLOCK_PTR)
+ sbitmap_copy (farthest[x], st_avout[pred->index]);
+ else
{
- sbitmap_intersect_of_successors (temp_bitmap, delayin,
- bb, s_succs);
- sbitmap_not (temp_bitmap, temp_bitmap);
+ if (pred == ENTRY_BLOCK_PTR)
+ sbitmap_zero (farthest[x]);
+ else
+ {
+ sbitmap_difference (difference, st_avout[pred->index],
+ st_antin[succ->index]);
+ sbitmap_not (temp_bitmap, st_avin[succ->index]);
+ sbitmap_a_and_b_or_c (farthest[x], difference,
+ kill[succ->index], temp_bitmap);
+ }
}
- else
- sbitmap_ones (temp_bitmap);
- sbitmap_a_and_b_or_c (latein[bb], delayin[bb],
- antloc[bb], temp_bitmap);
}
- free (temp_bitmap);
-}
-/* Compute isolated.
+ sbitmap_free (temp_bitmap);
+ sbitmap_free (difference);
+}
- From Advanced Compiler Design and Implementation pp413.
+/* Compute nearer and nearerout vectors for edge based lcm.
- A computationally optimal placement for the evaluation of an expression
- is defined to be isolated if and only if on every path from a successor
- of the block in which it is computed to the exit block, every original
- computation of the expression is preceded by the optimal placement point. */
+ This is the mirror of compute_laterin, additional comments on the
+ implementation can be found before compute_laterin. */
static void
-compute_isoinout (n_blocks, s_succs, antloc, latein, isoin, isoout)
- int n_blocks;
- int_list_ptr *s_succs;
- sbitmap *antloc;
- sbitmap *latein;
- sbitmap *isoin;
- sbitmap *isoout;
+compute_nearerout (edge_list, farthest, st_avloc, nearer, nearerout)
+ struct edge_list *edge_list;
+ sbitmap *farthest, *st_avloc, *nearer, *nearerout;
{
- int bb, changed, passes;
-
- sbitmap_vector_zero (isoin, n_blocks);
- sbitmap_zero (isoout[n_blocks - 1]);
+ int bb, num_edges, i;
+ edge e;
+ basic_block *worklist, *tos;
+
+ num_edges = NUM_EDGES (edge_list);
+
+ /* Allocate a worklist array/queue. Entries are only added to the
+ list if they were not already on the list. So the size is
+ bounded by the number of basic blocks. */
+ tos = worklist
+ = (basic_block *) xmalloc (sizeof (basic_block) * (n_basic_blocks + 1));
+
+ /* Initialize NEARER for each edge and build a mapping from an edge to
+ its index. */
+ for (i = 0; i < num_edges; i++)
+ INDEX_EDGE (edge_list, i)->aux = (void *) (size_t) i;
+
+ /* We want a maximal solution. */
+ sbitmap_vector_ones (nearer, num_edges);
+
+ /* Note that even though we want an optimistic setting of NEARER, we
+ do not want to be overly optimistic. Consider an incoming edge to
+ the exit block. That edge should always have a NEARER value the
+ same as FARTHEST for that edge. */
+ for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
+ sbitmap_copy (nearer[(size_t)e->aux], farthest[(size_t)e->aux]);
+
+ /* Add all the blocks to the worklist. This prevents an early exit
+ from the loop given our optimistic initialization of NEARER. */
+ for (bb = 0; bb < n_basic_blocks; bb++)
+ {
+ basic_block b = BASIC_BLOCK (bb);
+ *tos++ = b;
+ b->aux = b;
+ }
- passes = 0;
- changed = 1;
- while (changed)
+ /* Iterate until the worklist is empty. */
+ while (tos != worklist)
{
- changed = 0;
- for (bb = n_blocks - 1; bb >= 0; bb--)
- {
- if (bb != n_blocks - 1)
- sbitmap_intersect_of_successors (isoout[bb], isoin,
- bb, s_succs);
- changed |= sbitmap_union_of_diff (isoin[bb], latein[bb],
- isoout[bb], antloc[bb]);
- }
- passes++;
+ /* Take the first entry off the worklist. */
+ basic_block b = *--tos;
+ b->aux = NULL;
+
+ /* Compute the intersection of NEARER for each outgoing edge from B. */
+ bb = b->index;
+ sbitmap_ones (nearerout[bb]);
+ for (e = b->succ; e != NULL; e = e->succ_next)
+ sbitmap_a_and_b (nearerout[bb], nearerout[bb],
+ nearer[(size_t) e->aux]);
+
+ /* Calculate NEARER for all incoming edges. */
+ for (e = b->pred; e != NULL; e = e->pred_next)
+ if (sbitmap_union_of_diff (nearer[(size_t) e->aux],
+ farthest[(size_t) e->aux],
+ nearerout[e->dest->index],
+ st_avloc[e->dest->index])
+ /* If NEARER for an incoming edge was changed, then we need
+ to add the source of the incoming edge to the worklist. */
+ && e->src != ENTRY_BLOCK_PTR && e->src->aux == 0)
+ {
+ *tos++ = e->src;
+ e->src->aux = e;
+ }
}
+
+ /* Computation of insertion and deletion points requires computing NEAREROUT
+ for the ENTRY block. We allocated an extra entry in the NEAREROUT array
+ for just this purpose. */
+ sbitmap_ones (nearerout[n_basic_blocks]);
+ for (e = ENTRY_BLOCK_PTR->succ; e != NULL; e = e->succ_next)
+ sbitmap_a_and_b (nearerout[n_basic_blocks],
+ nearerout[n_basic_blocks],
+ nearer[(size_t) e->aux]);
+
+ clear_aux_for_edges ();
+ free (tos);
}
-/* Compute the set of expressions which have optimal computational points
- in each basic block. This is the set of expressions that are latest, but
- that are not isolated in the block. */
+/* Compute the insertion and deletion points for edge based LCM. */
static void
-compute_optimal (n_blocks, latein, isoout, optimal)
- int n_blocks;
- sbitmap *latein;
- sbitmap *isoout;
- sbitmap *optimal;
+compute_rev_insert_delete (edge_list, st_avloc, nearer, nearerout,
+ insert, delete)
+ struct edge_list *edge_list;
+ sbitmap *st_avloc, *nearer, *nearerout, *insert, *delete;
{
- int bb;
+ int x;
+
+ for (x = 0; x < n_basic_blocks; x++)
+ sbitmap_difference (delete[x], st_avloc[x], nearerout[x]);
- for (bb = 0; bb < n_blocks; bb++)
- sbitmap_difference (optimal[bb], latein[bb], isoout[bb]);
+ for (x = 0; x < NUM_EDGES (edge_list); x++)
+ {
+ basic_block b = INDEX_EDGE_PRED_BB (edge_list, x);
+ if (b == ENTRY_BLOCK_PTR)
+ sbitmap_difference (insert[x], nearer[x], nearerout[n_basic_blocks]);
+ else
+ sbitmap_difference (insert[x], nearer[x], nearerout[b->index]);
+ }
}
-/* Compute the set of expressions that are redundant in a block. They are
- the expressions that are used in the block and that are neither isolated
- or latest. */
+/* Given local properties TRANSP, ST_AVLOC, ST_ANTLOC, KILL return the
+ insert and delete vectors for edge based reverse LCM. Returns an
+ edgelist which is used to map the insert vector to what edge
+ an expression should be inserted on. */
-static void
-compute_redundant (n_blocks, n_exprs, antloc, latein, isoout, redundant)
- int n_blocks;
+struct edge_list *
+pre_edge_rev_lcm (file, n_exprs, transp, st_avloc, st_antloc, kill,
+ insert, delete)
+ FILE *file ATTRIBUTE_UNUSED;
int n_exprs;
- sbitmap *antloc;
- sbitmap *latein;
- sbitmap *isoout;
- sbitmap *redundant;
+ sbitmap *transp;
+ sbitmap *st_avloc;
+ sbitmap *st_antloc;
+ sbitmap *kill;
+ sbitmap **insert;
+ sbitmap **delete;
{
- int bb;
- sbitmap temp_bitmap;
+ sbitmap *st_antin, *st_antout;
+ sbitmap *st_avout, *st_avin, *farthest;
+ sbitmap *nearer, *nearerout;
+ struct edge_list *edge_list;
+ int num_edges;
+
+ edge_list = create_edge_list ();
+ num_edges = NUM_EDGES (edge_list);
+
+ st_antin = (sbitmap *) sbitmap_vector_alloc (n_basic_blocks, n_exprs);
+ st_antout = (sbitmap *) sbitmap_vector_alloc (n_basic_blocks, n_exprs);
+ sbitmap_vector_zero (st_antin, n_basic_blocks);
+ sbitmap_vector_zero (st_antout, n_basic_blocks);
+ compute_antinout_edge (st_antloc, transp, st_antin, st_antout);
+
+ /* Compute global anticipatability. */
+ st_avout = sbitmap_vector_alloc (n_basic_blocks, n_exprs);
+ st_avin = sbitmap_vector_alloc (n_basic_blocks, n_exprs);
+ compute_available (st_avloc, kill, st_avout, st_avin);
+
+#ifdef LCM_DEBUG_INFO
+ if (file)
+ {
+ fprintf (file, "Edge List:\n");
+ verify_edge_list (file, edge_list);
+ print_edge_list (file, edge_list);
+ dump_sbitmap_vector (file, "transp", "", transp, n_basic_blocks);
+ dump_sbitmap_vector (file, "st_avloc", "", st_avloc, n_basic_blocks);
+ dump_sbitmap_vector (file, "st_antloc", "", st_antloc, n_basic_blocks);
+ dump_sbitmap_vector (file, "st_antin", "", st_antin, n_basic_blocks);
+ dump_sbitmap_vector (file, "st_antout", "", st_antout, n_basic_blocks);
+ dump_sbitmap_vector (file, "st_kill", "", kill, n_basic_blocks);
+ }
+#endif
- temp_bitmap = sbitmap_alloc (n_exprs);
+#ifdef LCM_DEBUG_INFO
+ if (file)
+ {
+ dump_sbitmap_vector (file, "st_avout", "", st_avout, n_basic_blocks);
+ dump_sbitmap_vector (file, "st_avin", "", st_avin, n_basic_blocks);
+ }
+#endif
- for (bb = 0; bb < n_blocks; bb++)
+ /* Compute farthestness. */
+ farthest = sbitmap_vector_alloc (num_edges, n_exprs);
+ compute_farthest (edge_list, n_exprs, st_avout, st_avin, st_antin,
+ kill, farthest);
+
+#ifdef LCM_DEBUG_INFO
+ if (file)
+ dump_sbitmap_vector (file, "farthest", "", farthest, num_edges);
+#endif
+
+ sbitmap_vector_free (st_antin);
+ sbitmap_vector_free (st_antout);
+
+ sbitmap_vector_free (st_avin);
+ sbitmap_vector_free (st_avout);
+
+ nearer = sbitmap_vector_alloc (num_edges, n_exprs);
+
+ /* Allocate an extra element for the entry block. */
+ nearerout = sbitmap_vector_alloc (n_basic_blocks + 1, n_exprs);
+ compute_nearerout (edge_list, farthest, st_avloc, nearer, nearerout);
+
+#ifdef LCM_DEBUG_INFO
+ if (file)
{
- sbitmap_a_or_b (temp_bitmap, latein[bb], isoout[bb]);
- sbitmap_difference (redundant[bb], antloc[bb], temp_bitmap);
+ dump_sbitmap_vector (file, "nearerout", "", nearerout,
+ n_basic_blocks + 1);
+ dump_sbitmap_vector (file, "nearer", "", nearer, num_edges);
}
- free (temp_bitmap);
-}
+#endif
-/* Compute expression availability at entrance and exit of each block. */
+ sbitmap_vector_free (farthest);
-static void
-compute_avinout (n_blocks, s_preds, avloc, transp, avin, avout)
- int n_blocks;
- int_list_ptr *s_preds;
- sbitmap *avloc;
- sbitmap *transp;
- sbitmap *avin;
- sbitmap *avout;
-{
- int bb, changed, passes;
+ *insert = sbitmap_vector_alloc (num_edges, n_exprs);
+ *delete = sbitmap_vector_alloc (n_basic_blocks, n_exprs);
+ compute_rev_insert_delete (edge_list, st_avloc, nearer, nearerout,
+ *insert, *delete);
- sbitmap_zero (avin[0]);
- sbitmap_vector_ones (avout, n_blocks);
+ sbitmap_vector_free (nearerout);
+ sbitmap_vector_free (nearer);
- passes = 0;
- changed = 1;
- while (changed)
+#ifdef LCM_DEBUG_INFO
+ if (file)
{
- changed = 0;
- for (bb = 0; bb < n_blocks; bb++)
- {
- if (bb != 0)
- sbitmap_intersect_of_predecessors (avin[bb], avout,
- bb, s_preds);
- changed |= sbitmap_a_or_b_and_c (avout[bb], avloc[bb],
- transp[bb], avin[bb]);
- }
- passes++;
+ dump_sbitmap_vector (file, "pre_insert_map", "", *insert, num_edges);
+ dump_sbitmap_vector (file, "pre_delete_map", "", *delete,
+ n_basic_blocks);
}
+#endif
+ return edge_list;
}
-/* Compute expression latestness.
+/* Mode switching:
+
+ The algorithm for setting the modes consists of scanning the insn list
+ and finding all the insns which require a specific mode. Each insn gets
+ a unique struct seginfo element. These structures are inserted into a list
+ for each basic block. For each entity, there is an array of bb_info over
+ the flow graph basic blocks (local var 'bb_info'), and contains a list
+ of all insns within that basic block, in the order they are encountered.
+
+ For each entity, any basic block WITHOUT any insns requiring a specific
+ mode are given a single entry, without a mode. (Each basic block
+ in the flow graph must have at least one entry in the segment table.)
+
+ The LCM algorithm is then run over the flow graph to determine where to
+ place the sets to the highest-priority value in respect of first the first
+ insn in any one block. Any adjustments required to the transparancy
+ vectors are made, then the next iteration starts for the next-lower
+ priority mode, till for each entity all modes are exhasted.
+
+ More details are located in the code for optimize_mode_switching(). */
+
+/* This structure contains the information for each insn which requires
+ either single or double mode to be set.
+ MODE is the mode this insn must be executed in.
+ INSN_PTR is the insn to be executed (may be the note that marks the
+ beginning of a basic block).
+ BBNUM is the flow graph basic block this insn occurs in.
+ NEXT is the next insn in the same basic block. */
+struct seginfo
+{
+ int mode;
+ rtx insn_ptr;
+ int bbnum;
+ struct seginfo *next;
+ HARD_REG_SET regs_live;
+};
+
+struct bb_info
+{
+ struct seginfo *seginfo;
+ int computing;
+};
+
+/* These bitmaps are used for the LCM algorithm. */
+
+#ifdef OPTIMIZE_MODE_SWITCHING
+static sbitmap *antic;
+static sbitmap *transp;
+static sbitmap *comp;
+static sbitmap *delete;
+static sbitmap *insert;
+
+static struct seginfo * new_seginfo PARAMS ((int, rtx, int, HARD_REG_SET));
+static void add_seginfo PARAMS ((struct bb_info *, struct seginfo *));
+static void reg_dies PARAMS ((rtx, HARD_REG_SET));
+static void reg_becomes_live PARAMS ((rtx, rtx, void *));
+static void make_preds_opaque PARAMS ((basic_block, int));
+#endif
+
+#ifdef OPTIMIZE_MODE_SWITCHING
+
+/* This function will allocate a new BBINFO structure, initialized
+ with the MODE, INSN, and basic block BB parameters. */
+
+static struct seginfo *
+new_seginfo (mode, insn, bb, regs_live)
+ int mode;
+ rtx insn;
+ int bb;
+ HARD_REG_SET regs_live;
+{
+ struct seginfo *ptr;
+ ptr = xmalloc (sizeof (struct seginfo));
+ ptr->mode = mode;
+ ptr->insn_ptr = insn;
+ ptr->bbnum = bb;
+ ptr->next = NULL;
+ COPY_HARD_REG_SET (ptr->regs_live, regs_live);
+ return ptr;
+}
- This is effectively the same as earliestness computed on the reverse
- flow graph. */
+/* Add a seginfo element to the end of a list.
+ HEAD is a pointer to the list beginning.
+ INFO is the structure to be linked in. */
static void
-compute_fartherinout (n_blocks, n_exprs, s_succs,
- transp, avout, fartherin, fartherout)
- int n_blocks;
- int n_exprs;
- int_list_ptr *s_succs;
- sbitmap *transp;
- sbitmap *avout;
- sbitmap *fartherin;
- sbitmap *fartherout;
+add_seginfo (head, info)
+ struct bb_info *head;
+ struct seginfo *info;
{
- int bb, changed, passes;
- sbitmap temp_bitmap;
+ struct seginfo *ptr;
- temp_bitmap = sbitmap_alloc (n_exprs);
+ if (head->seginfo == NULL)
+ head->seginfo = info;
+ else
+ {
+ ptr = head->seginfo;
+ while (ptr->next != NULL)
+ ptr = ptr->next;
+ ptr->next = info;
+ }
+}
- sbitmap_vector_zero (fartherin, n_blocks);
- sbitmap_ones (fartherout[n_blocks - 1]);
+/* Make all predecessors of basic block B opaque, recursively, till we hit
+ some that are already non-transparent, or an edge where aux is set; that
+ denotes that a mode set is to be done on that edge.
+ J is the bit number in the bitmaps that corresponds to the entity that
+ we are currently handling mode-switching for. */
- passes = 0;
- changed = 1;
- while (changed)
+static void
+make_preds_opaque (b, j)
+ basic_block b;
+ int j;
+{
+ edge e;
+
+ for (e = b->pred; e; e = e->pred_next)
{
- changed = 0;
- for (bb = n_blocks - 1; bb >= 0; bb--)
- {
- if (bb != n_blocks - 1)
- sbitmap_union_of_successors (fartherout[bb], fartherin,
- bb, s_succs);
- sbitmap_not (temp_bitmap, transp[bb]);
- changed |= sbitmap_union_of_diff (fartherin[bb], temp_bitmap,
- fartherout[bb], avout[bb]);
- }
- passes++;
- }
+ basic_block pb = e->src;
+
+ if (e->aux || ! TEST_BIT (transp[pb->index], j))
+ continue;
- free (temp_bitmap);
+ RESET_BIT (transp[pb->index], j);
+ make_preds_opaque (pb, j);
+ }
}
-/* Compute expression earlierness at entrance and exit of each block.
+/* Record in LIVE that register REG died. */
- This is effectively the same as delayedness computed on the reverse
- flow graph. */
+static void
+reg_dies (reg, live)
+ rtx reg;
+ HARD_REG_SET live;
+{
+ int regno, nregs;
+
+ if (GET_CODE (reg) != REG)
+ return;
+
+ regno = REGNO (reg);
+ if (regno < FIRST_PSEUDO_REGISTER)
+ for (nregs = HARD_REGNO_NREGS (regno, GET_MODE (reg)) - 1; nregs >= 0;
+ nregs--)
+ CLEAR_HARD_REG_BIT (live, regno + nregs);
+}
+
+/* Record in LIVE that register REG became live.
+ This is called via note_stores. */
static void
-compute_earlierinout (n_blocks, n_exprs, s_succs, avloc,
- avout, fartherout, earlierin, earlierout)
- int n_blocks;
- int n_exprs;
- int_list_ptr *s_succs;
- sbitmap *avloc;
- sbitmap *avout;
- sbitmap *fartherout;
- sbitmap *earlierin;
- sbitmap *earlierout;
+reg_becomes_live (reg, setter, live)
+ rtx reg;
+ rtx setter ATTRIBUTE_UNUSED;
+ void *live;
{
- int bb, changed, passes;
- sbitmap *av_and_farther;
- sbitmap temp_bitmap;
+ int regno, nregs;
- temp_bitmap = sbitmap_alloc (n_exprs);
+ if (GET_CODE (reg) == SUBREG)
+ reg = SUBREG_REG (reg);
+
+ if (GET_CODE (reg) != REG)
+ return;
+
+ regno = REGNO (reg);
+ if (regno < FIRST_PSEUDO_REGISTER)
+ for (nregs = HARD_REGNO_NREGS (regno, GET_MODE (reg)) - 1; nregs >= 0;
+ nregs--)
+ SET_HARD_REG_BIT (* (HARD_REG_SET *) live, regno + nregs);
+}
+
+/* Find all insns that need a particular mode setting, and insert the
+ necessary mode switches. Return true if we did work. */
- /* This is constant throughout the flow equations below, so compute
- it once to save time. */
- av_and_farther = sbitmap_vector_alloc (n_blocks, n_exprs);
- for (bb = 0; bb < n_blocks; bb++)
- sbitmap_a_and_b (av_and_farther[bb], avout[bb], fartherout[bb]);
-
- sbitmap_vector_zero (earlierin, n_blocks);
- sbitmap_copy (earlierout[n_blocks - 1], av_and_farther[n_blocks - 1]);
-
- passes = 0;
- changed = 1;
- while (changed)
+int
+optimize_mode_switching (file)
+ FILE *file;
+{
+ rtx insn;
+ int bb, e;
+ int need_commit = 0;
+ sbitmap *kill;
+ struct edge_list *edge_list;
+ static const int num_modes[] = NUM_MODES_FOR_MODE_SWITCHING;
+#define N_ENTITIES (sizeof num_modes / sizeof (int))
+ int entity_map[N_ENTITIES];
+ struct bb_info *bb_info[N_ENTITIES];
+ int i, j;
+ int n_entities;
+ int max_num_modes = 0;
+ bool emited = false;
+
+#ifdef NORMAL_MODE
+ /* Increment n_basic_blocks before allocating bb_info. */
+ n_basic_blocks++;
+#endif
+
+ for (e = N_ENTITIES - 1, n_entities = 0; e >= 0; e--)
+ if (OPTIMIZE_MODE_SWITCHING (e))
+ {
+ /* Create the list of segments within each basic block. */
+ bb_info[n_entities]
+ = (struct bb_info *) xcalloc (n_basic_blocks, sizeof **bb_info);
+ entity_map[n_entities++] = e;
+ if (num_modes[e] > max_num_modes)
+ max_num_modes = num_modes[e];
+ }
+
+#ifdef NORMAL_MODE
+ /* Decrement it back in case we return below. */
+ n_basic_blocks--;
+#endif
+
+ if (! n_entities)
+ return 0;
+
+#ifdef NORMAL_MODE
+ /* We're going to pretend the EXIT_BLOCK is a regular basic block,
+ so that switching back to normal mode when entering the
+ EXIT_BLOCK isn't optimized away. We do this by incrementing the
+ basic block count, growing the VARRAY of basic_block_info and
+ appending the EXIT_BLOCK_PTR to it. */
+ n_basic_blocks++;
+ if (VARRAY_SIZE (basic_block_info) < n_basic_blocks)
+ VARRAY_GROW (basic_block_info, n_basic_blocks);
+ BASIC_BLOCK (n_basic_blocks - 1) = EXIT_BLOCK_PTR;
+ EXIT_BLOCK_PTR->index = n_basic_blocks - 1;
+#endif
+
+ /* Create the bitmap vectors. */
+
+ antic = sbitmap_vector_alloc (n_basic_blocks, n_entities);
+ transp = sbitmap_vector_alloc (n_basic_blocks, n_entities);
+ comp = sbitmap_vector_alloc (n_basic_blocks, n_entities);
+
+ sbitmap_vector_ones (transp, n_basic_blocks);
+
+ for (j = n_entities - 1; j >= 0; j--)
{
- changed = 0;
- for (bb = n_blocks - 1; bb >= 0; bb--)
+ int e = entity_map[j];
+ int no_mode = num_modes[e];
+ struct bb_info *info = bb_info[j];
+
+ /* Determine what the first use (if any) need for a mode of entity E is.
+ This will be the mode that is anticipatable for this block.
+ Also compute the initial transparency settings. */
+ for (bb = 0 ; bb < n_basic_blocks; bb++)
{
- if (bb != n_blocks - 1)
+ struct seginfo *ptr;
+ int last_mode = no_mode;
+ HARD_REG_SET live_now;
+
+ REG_SET_TO_HARD_REG_SET (live_now,
+ BASIC_BLOCK (bb)->global_live_at_start);
+ for (insn = BLOCK_HEAD (bb);
+ insn != NULL && insn != NEXT_INSN (BLOCK_END (bb));
+ insn = NEXT_INSN (insn))
{
- sbitmap_intersect_of_successors (temp_bitmap, earlierin,
- bb, s_succs);
- changed |= sbitmap_a_or_b (earlierout[bb],
- av_and_farther[bb],
- temp_bitmap);
+ if (INSN_P (insn))
+ {
+ int mode = MODE_NEEDED (e, insn);
+ rtx link;
+
+ if (mode != no_mode && mode != last_mode)
+ {
+ last_mode = mode;
+ ptr = new_seginfo (mode, insn, bb, live_now);
+ add_seginfo (info + bb, ptr);
+ RESET_BIT (transp[bb], j);
+ }
+
+ /* Update LIVE_NOW. */
+ for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
+ if (REG_NOTE_KIND (link) == REG_DEAD)
+ reg_dies (XEXP (link, 0), live_now);
+
+ note_stores (PATTERN (insn), reg_becomes_live, &live_now);
+ for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
+ if (REG_NOTE_KIND (link) == REG_UNUSED)
+ reg_dies (XEXP (link, 0), live_now);
+ }
+ }
+
+ info[bb].computing = last_mode;
+ /* Check for blocks without ANY mode requirements. */
+ if (last_mode == no_mode)
+ {
+ ptr = new_seginfo (no_mode, insn, bb, live_now);
+ add_seginfo (info + bb, ptr);
}
- sbitmap_not (temp_bitmap, avloc[bb]);
- changed |= sbitmap_a_and_b (earlierin[bb],
- temp_bitmap,
- earlierout[bb]);
}
- passes++;
+#ifdef NORMAL_MODE
+ {
+ int mode = NORMAL_MODE (e);
+
+ if (mode != no_mode)
+ {
+ edge eg;
+
+ for (eg = ENTRY_BLOCK_PTR->succ; eg; eg = eg->succ_next)
+ {
+ bb = eg->dest->index;
+
+ /* By always making this nontransparent, we save
+ an extra check in make_preds_opaque. We also
+ need this to avoid confusing pre_edge_lcm when
+ antic is cleared but transp and comp are set. */
+ RESET_BIT (transp[bb], j);
+
+ /* If the block already has MODE, pretend it
+ has none (because we don't need to set it),
+ but retain whatever mode it computes. */
+ if (info[bb].seginfo->mode == mode)
+ info[bb].seginfo->mode = no_mode;
+
+ /* Insert a fake computing definition of MODE into entry
+ blocks which compute no mode. This represents the mode on
+ entry. */
+ else if (info[bb].computing == no_mode)
+ {
+ info[bb].computing = mode;
+ info[bb].seginfo->mode = no_mode;
+ }
+ }
+
+ bb = n_basic_blocks - 1;
+ info[bb].seginfo->mode = mode;
+ }
+ }
+#endif /* NORMAL_MODE */
}
- /* We're done with this, so go ahead and free it's memory now instead
- of waiting until the end of pre. */
- free (av_and_farther);
- free (temp_bitmap);
-}
+ kill = sbitmap_vector_alloc (n_basic_blocks, n_entities);
+ for (i = 0; i < max_num_modes; i++)
+ {
+ int current_mode[N_ENTITIES];
-/* Compute firstness.
+ /* Set the anticipatable and computing arrays. */
+ sbitmap_vector_zero (antic, n_basic_blocks);
+ sbitmap_vector_zero (comp, n_basic_blocks);
+ for (j = n_entities - 1; j >= 0; j--)
+ {
+ int m = current_mode[j] = MODE_PRIORITY_TO_MODE (entity_map[j], i);
+ struct bb_info *info = bb_info[j];
- This is effectively the same as latestness computed on the reverse
- flow graph. */
+ for (bb = 0 ; bb < n_basic_blocks; bb++)
+ {
+ if (info[bb].seginfo->mode == m)
+ SET_BIT (antic[bb], j);
-static void
-compute_firstout (n_blocks, n_exprs, s_preds, avloc, earlierout, firstout)
- int n_blocks;
- int n_exprs;
- int_list_ptr *s_preds;
- sbitmap *avloc;
- sbitmap *earlierout;
- sbitmap *firstout;
-{
- int bb;
- sbitmap temp_bitmap;
+ if (info[bb].computing == m)
+ SET_BIT (comp[bb], j);
+ }
+ }
- temp_bitmap = sbitmap_alloc (n_exprs);
+ /* Calculate the optimal locations for the
+ placement mode switches to modes with priority I. */
- for (bb = 0; bb < n_blocks; bb++)
- {
- /* The first block is preceded only by the entry block; therefore,
- temp_bitmap will not be set by the following call! */
- if (bb != 0)
- {
- sbitmap_intersect_of_predecessors (temp_bitmap, earlierout,
- bb, s_preds);
- sbitmap_not (temp_bitmap, temp_bitmap);
- }
- else
+ for (bb = n_basic_blocks - 1; bb >= 0; bb--)
+ sbitmap_not (kill[bb], transp[bb]);
+ edge_list = pre_edge_lcm (file, 1, transp, comp, antic,
+ kill, &insert, &delete);
+
+ for (j = n_entities - 1; j >= 0; j--)
{
- sbitmap_ones (temp_bitmap);
+ /* Insert all mode sets that have been inserted by lcm. */
+ int no_mode = num_modes[entity_map[j]];
+
+ /* Wherever we have moved a mode setting upwards in the flow graph,
+ the blocks between the new setting site and the now redundant
+ computation ceases to be transparent for any lower-priority
+ mode of the same entity. First set the aux field of each
+ insertion site edge non-transparent, then propagate the new
+ non-transparency from the redundant computation upwards till
+ we hit an insertion site or an already non-transparent block. */
+ for (e = NUM_EDGES (edge_list) - 1; e >= 0; e--)
+ {
+ edge eg = INDEX_EDGE (edge_list, e);
+ int mode;
+ basic_block src_bb;
+ HARD_REG_SET live_at_edge;
+ rtx mode_set;
+
+ eg->aux = 0;
+
+ if (! TEST_BIT (insert[e], j))
+ continue;
+
+ eg->aux = (void *)1;
+
+ mode = current_mode[j];
+ src_bb = eg->src;
+
+ REG_SET_TO_HARD_REG_SET (live_at_edge,
+ src_bb->global_live_at_end);
+
+ start_sequence ();
+ EMIT_MODE_SET (entity_map[j], mode, live_at_edge);
+ mode_set = gen_sequence ();
+ end_sequence ();
+
+ /* Do not bother to insert empty sequence. */
+ if (GET_CODE (mode_set) == SEQUENCE
+ && !XVECLEN (mode_set, 0))
+ continue;
+
+ /* If this is an abnormal edge, we'll insert at the end
+ of the previous block. */
+ if (eg->flags & EDGE_ABNORMAL)
+ {
+ emited = true;
+ if (GET_CODE (src_bb->end) == JUMP_INSN)
+ emit_insn_before (mode_set, src_bb->end);
+ /* It doesn't make sense to switch to normal mode
+ after a CALL_INSN, so we're going to abort if we
+ find one. The cases in which a CALL_INSN may
+ have an abnormal edge are sibcalls and EH edges.
+ In the case of sibcalls, the dest basic-block is
+ the EXIT_BLOCK, that runs in normal mode; it is
+ assumed that a sibcall insn requires normal mode
+ itself, so no mode switch would be required after
+ the call (it wouldn't make sense, anyway). In
+ the case of EH edges, EH entry points also start
+ in normal mode, so a similar reasoning applies. */
+ else if (GET_CODE (src_bb->end) == INSN)
+ emit_insn_after (mode_set, src_bb->end);
+ else
+ abort ();
+ bb_info[j][src_bb->index].computing = mode;
+ RESET_BIT (transp[src_bb->index], j);
+ }
+ else
+ {
+ need_commit = 1;
+ insert_insn_on_edge (mode_set, eg);
+ }
+ }
+
+ for (bb = n_basic_blocks - 1; bb >= 0; bb--)
+ if (TEST_BIT (delete[bb], j))
+ {
+ make_preds_opaque (BASIC_BLOCK (bb), j);
+ /* Cancel the 'deleted' mode set. */
+ bb_info[j][bb].seginfo->mode = no_mode;
+ }
}
- sbitmap_a_and_b_or_c (firstout[bb], earlierout[bb],
- avloc[bb], temp_bitmap);
+
+ clear_aux_for_edges ();
+ free_edge_list (edge_list);
}
- free (temp_bitmap);
-}
-/* Compute reverse isolated.
+#ifdef NORMAL_MODE
+ /* Restore the special status of EXIT_BLOCK. */
+ n_basic_blocks--;
+ VARRAY_POP (basic_block_info);
+ EXIT_BLOCK_PTR->index = EXIT_BLOCK;
+#endif
- This is effectively the same as isolatedness computed on the reverse
- flow graph. */
+ /* Now output the remaining mode sets in all the segments. */
+ for (j = n_entities - 1; j >= 0; j--)
+ {
+ int no_mode = num_modes[entity_map[j]];
-static void
-compute_rev_isoinout (n_blocks, s_preds, avloc, firstout,
- rev_isoin, rev_isoout)
- int n_blocks;
- int_list_ptr *s_preds;
- sbitmap *avloc;
- sbitmap *firstout;
- sbitmap *rev_isoin;
- sbitmap *rev_isoout;
-{
- int bb, changed, passes;
+#ifdef NORMAL_MODE
+ if (bb_info[j][n_basic_blocks].seginfo->mode != no_mode)
+ {
+ edge eg;
+ struct seginfo *ptr = bb_info[j][n_basic_blocks].seginfo;
- sbitmap_vector_zero (rev_isoout, n_blocks);
- sbitmap_zero (rev_isoin[0]);
+ for (eg = EXIT_BLOCK_PTR->pred; eg; eg = eg->pred_next)
+ {
+ rtx mode_set;
+
+ if (bb_info[j][eg->src->index].computing == ptr->mode)
+ continue;
+
+ start_sequence ();
+ EMIT_MODE_SET (entity_map[j], ptr->mode, ptr->regs_live);
+ mode_set = gen_sequence ();
+ end_sequence ();
+
+ /* Do not bother to insert empty sequence. */
+ if (GET_CODE (mode_set) == SEQUENCE
+ && !XVECLEN (mode_set, 0))
+ continue;
+
+ /* If this is an abnormal edge, we'll insert at the end of the
+ previous block. */
+ if (eg->flags & EDGE_ABNORMAL)
+ {
+ emited = true;
+ if (GET_CODE (eg->src->end) == JUMP_INSN)
+ emit_insn_before (mode_set, eg->src->end);
+ else if (GET_CODE (eg->src->end) == INSN)
+ emit_insn_after (mode_set, eg->src->end);
+ else
+ abort ();
+ }
+ else
+ {
+ need_commit = 1;
+ insert_insn_on_edge (mode_set, eg);
+ }
+ }
- passes = 0;
- changed = 1;
- while (changed)
- {
- changed = 0;
- for (bb = 0; bb < n_blocks; bb++)
+ }
+#endif
+
+ for (bb = n_basic_blocks - 1; bb >= 0; bb--)
{
- if (bb != 0)
- sbitmap_intersect_of_predecessors (rev_isoin[bb], rev_isoout,
- bb, s_preds);
- changed |= sbitmap_union_of_diff (rev_isoout[bb], firstout[bb],
- rev_isoin[bb], avloc[bb]);
+ struct seginfo *ptr, *next;
+ for (ptr = bb_info[j][bb].seginfo; ptr; ptr = next)
+ {
+ next = ptr->next;
+ if (ptr->mode != no_mode)
+ {
+ rtx mode_set;
+
+ start_sequence ();
+ EMIT_MODE_SET (entity_map[j], ptr->mode, ptr->regs_live);
+ mode_set = gen_sequence ();
+ end_sequence ();
+
+ /* Do not bother to insert empty sequence. */
+ if (GET_CODE (mode_set) == SEQUENCE
+ && !XVECLEN (mode_set, 0))
+ continue;
+
+ emited = true;
+ if (GET_CODE (ptr->insn_ptr) == NOTE
+ && (NOTE_LINE_NUMBER (ptr->insn_ptr)
+ == NOTE_INSN_BASIC_BLOCK))
+ emit_insn_after (mode_set, ptr->insn_ptr);
+ else
+ emit_insn_before (mode_set, ptr->insn_ptr);
+ }
+
+ free (ptr);
+ }
}
- passes++;
+
+ free (bb_info[j]);
}
+
+ /* Finished. Free up all the things we've allocated. */
+
+ sbitmap_vector_free (kill);
+ sbitmap_vector_free (antic);
+ sbitmap_vector_free (transp);
+ sbitmap_vector_free (comp);
+ sbitmap_vector_free (delete);
+ sbitmap_vector_free (insert);
+
+ if (need_commit)
+ commit_edge_insertions ();
+
+ if (!need_commit && !emited)
+ return 0;
+
+ /* Ideally we'd figure out what blocks were affected and start from
+ there, but this is enormously complicated by commit_edge_insertions,
+ which would screw up any indices we'd collected, and also need to
+ be involved in the update. Bail and recompute global life info for
+ everything. */
+
+ allocate_reg_life_data ();
+ update_life_info (NULL, UPDATE_LIFE_GLOBAL_RM_NOTES,
+ (PROP_DEATH_NOTES | PROP_KILL_DEAD_CODE
+ | PROP_SCAN_DEAD_CODE | PROP_REG_INFO));
+
+ return 1;
}
+#endif /* OPTIMIZE_MODE_SWITCHING */
OpenPOWER on IntegriCloud