summaryrefslogtreecommitdiffstats
path: root/contrib/gcc/ggc-page.c
diff options
context:
space:
mode:
authorobrien <obrien@FreeBSD.org>2002-02-01 18:16:02 +0000
committerobrien <obrien@FreeBSD.org>2002-02-01 18:16:02 +0000
commitc9ab9ae440a8066b2c2b85b157b1fdadcf09916a (patch)
tree086d9d6c8fbd4fc8fe4495059332f66bc0f8d12b /contrib/gcc/ggc-page.c
parent2ecfd8bd04b63f335c1ec6295740a4bfd97a4fa6 (diff)
downloadFreeBSD-src-c9ab9ae440a8066b2c2b85b157b1fdadcf09916a.zip
FreeBSD-src-c9ab9ae440a8066b2c2b85b157b1fdadcf09916a.tar.gz
Enlist the FreeBSD-CURRENT users as testers of what is to become Gcc 3.1.0.
These bits are taken from the FSF anoncvs repo on 1-Feb-2002 08:20 PST.
Diffstat (limited to 'contrib/gcc/ggc-page.c')
-rw-r--r--contrib/gcc/ggc-page.c1514
1 files changed, 1514 insertions, 0 deletions
diff --git a/contrib/gcc/ggc-page.c b/contrib/gcc/ggc-page.c
new file mode 100644
index 0000000..ad3f815
--- /dev/null
+++ b/contrib/gcc/ggc-page.c
@@ -0,0 +1,1514 @@
+/* "Bag-of-pages" garbage collector for the GNU compiler.
+ Copyright (C) 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it under
+the terms of the GNU General Public License as published by the Free
+Software Foundation; either version 2, or (at your option) any later
+version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING. If not, write to the Free
+Software Foundation, 59 Temple Place - Suite 330, Boston, MA
+02111-1307, USA. */
+
+#include "config.h"
+#include "system.h"
+#include "tree.h"
+#include "rtl.h"
+#include "tm_p.h"
+#include "toplev.h"
+#include "varray.h"
+#include "flags.h"
+#include "ggc.h"
+#include "timevar.h"
+
+/* Prefer MAP_ANON(YMOUS) to /dev/zero, since we don't need to keep a
+ file open. Prefer either to valloc. */
+#ifdef HAVE_MMAP_ANON
+# undef HAVE_MMAP_DEV_ZERO
+
+# include <sys/mman.h>
+# ifndef MAP_FAILED
+# define MAP_FAILED -1
+# endif
+# if !defined (MAP_ANONYMOUS) && defined (MAP_ANON)
+# define MAP_ANONYMOUS MAP_ANON
+# endif
+# define USING_MMAP
+
+#endif
+
+#ifdef HAVE_MMAP_DEV_ZERO
+
+# include <sys/mman.h>
+# ifndef MAP_FAILED
+# define MAP_FAILED -1
+# endif
+# define USING_MMAP
+
+#endif
+
+#ifndef USING_MMAP
+#define USING_MALLOC_PAGE_GROUPS
+#endif
+
+/* Stategy:
+
+ This garbage-collecting allocator allocates objects on one of a set
+ of pages. Each page can allocate objects of a single size only;
+ available sizes are powers of two starting at four bytes. The size
+ of an allocation request is rounded up to the next power of two
+ (`order'), and satisfied from the appropriate page.
+
+ Each page is recorded in a page-entry, which also maintains an
+ in-use bitmap of object positions on the page. This allows the
+ allocation state of a particular object to be flipped without
+ touching the page itself.
+
+ Each page-entry also has a context depth, which is used to track
+ pushing and popping of allocation contexts. Only objects allocated
+ in the current (highest-numbered) context may be collected.
+
+ Page entries are arranged in an array of singly-linked lists. The
+ array is indexed by the allocation size, in bits, of the pages on
+ it; i.e. all pages on a list allocate objects of the same size.
+ Pages are ordered on the list such that all non-full pages precede
+ all full pages, with non-full pages arranged in order of decreasing
+ context depth.
+
+ Empty pages (of all orders) are kept on a single page cache list,
+ and are considered first when new pages are required; they are
+ deallocated at the start of the next collection if they haven't
+ been recycled by then. */
+
+
+/* Define GGC_POISON to poison memory marked unused by the collector. */
+#undef GGC_POISON
+
+/* Define GGC_ALWAYS_COLLECT to perform collection every time
+ ggc_collect is invoked. Otherwise, collection is performed only
+ when a significant amount of memory has been allocated since the
+ last collection. */
+#undef GGC_ALWAYS_COLLECT
+
+#ifdef ENABLE_GC_CHECKING
+#define GGC_POISON
+#endif
+#ifdef ENABLE_GC_ALWAYS_COLLECT
+#define GGC_ALWAYS_COLLECT
+#endif
+
+/* Define GGC_DEBUG_LEVEL to print debugging information.
+ 0: No debugging output.
+ 1: GC statistics only.
+ 2: Page-entry allocations/deallocations as well.
+ 3: Object allocations as well.
+ 4: Object marks as well. */
+#define GGC_DEBUG_LEVEL (0)
+
+#ifndef HOST_BITS_PER_PTR
+#define HOST_BITS_PER_PTR HOST_BITS_PER_LONG
+#endif
+
+
+/* A two-level tree is used to look up the page-entry for a given
+ pointer. Two chunks of the pointer's bits are extracted to index
+ the first and second levels of the tree, as follows:
+
+ HOST_PAGE_SIZE_BITS
+ 32 | |
+ msb +----------------+----+------+------+ lsb
+ | | |
+ PAGE_L1_BITS |
+ | |
+ PAGE_L2_BITS
+
+ The bottommost HOST_PAGE_SIZE_BITS are ignored, since page-entry
+ pages are aligned on system page boundaries. The next most
+ significant PAGE_L2_BITS and PAGE_L1_BITS are the second and first
+ index values in the lookup table, respectively.
+
+ For 32-bit architectures and the settings below, there are no
+ leftover bits. For architectures with wider pointers, the lookup
+ tree points to a list of pages, which must be scanned to find the
+ correct one. */
+
+#define PAGE_L1_BITS (8)
+#define PAGE_L2_BITS (32 - PAGE_L1_BITS - G.lg_pagesize)
+#define PAGE_L1_SIZE ((size_t) 1 << PAGE_L1_BITS)
+#define PAGE_L2_SIZE ((size_t) 1 << PAGE_L2_BITS)
+
+#define LOOKUP_L1(p) \
+ (((size_t) (p) >> (32 - PAGE_L1_BITS)) & ((1 << PAGE_L1_BITS) - 1))
+
+#define LOOKUP_L2(p) \
+ (((size_t) (p) >> G.lg_pagesize) & ((1 << PAGE_L2_BITS) - 1))
+
+/* The number of objects per allocation page, for objects on a page of
+ the indicated ORDER. */
+#define OBJECTS_PER_PAGE(ORDER) objects_per_page_table[ORDER]
+
+/* The size of an object on a page of the indicated ORDER. */
+#define OBJECT_SIZE(ORDER) object_size_table[ORDER]
+
+/* The number of extra orders, not corresponding to power-of-two sized
+ objects. */
+
+#define NUM_EXTRA_ORDERS \
+ (sizeof (extra_order_size_table) / sizeof (extra_order_size_table[0]))
+
+/* The Ith entry is the maximum size of an object to be stored in the
+ Ith extra order. Adding a new entry to this array is the *only*
+ thing you need to do to add a new special allocation size. */
+
+static const size_t extra_order_size_table[] = {
+ sizeof (struct tree_decl),
+ sizeof (struct tree_list)
+};
+
+/* The total number of orders. */
+
+#define NUM_ORDERS (HOST_BITS_PER_PTR + NUM_EXTRA_ORDERS)
+
+/* We use this structure to determine the alignment required for
+ allocations. For power-of-two sized allocations, that's not a
+ problem, but it does matter for odd-sized allocations. */
+
+struct max_alignment {
+ char c;
+ union {
+ HOST_WIDEST_INT i;
+#ifdef HAVE_LONG_DOUBLE
+ long double d;
+#else
+ double d;
+#endif
+ } u;
+};
+
+/* The biggest alignment required. */
+
+#define MAX_ALIGNMENT (offsetof (struct max_alignment, u))
+
+/* The Ith entry is the number of objects on a page or order I. */
+
+static unsigned objects_per_page_table[NUM_ORDERS];
+
+/* The Ith entry is the size of an object on a page of order I. */
+
+static size_t object_size_table[NUM_ORDERS];
+
+/* A page_entry records the status of an allocation page. This
+ structure is dynamically sized to fit the bitmap in_use_p. */
+typedef struct page_entry
+{
+ /* The next page-entry with objects of the same size, or NULL if
+ this is the last page-entry. */
+ struct page_entry *next;
+
+ /* The number of bytes allocated. (This will always be a multiple
+ of the host system page size.) */
+ size_t bytes;
+
+ /* The address at which the memory is allocated. */
+ char *page;
+
+#ifdef USING_MALLOC_PAGE_GROUPS
+ /* Back pointer to the page group this page came from. */
+ struct page_group *group;
+#endif
+
+ /* Saved in-use bit vector for pages that aren't in the topmost
+ context during collection. */
+ unsigned long *save_in_use_p;
+
+ /* Context depth of this page. */
+ unsigned short context_depth;
+
+ /* The number of free objects remaining on this page. */
+ unsigned short num_free_objects;
+
+ /* A likely candidate for the bit position of a free object for the
+ next allocation from this page. */
+ unsigned short next_bit_hint;
+
+ /* The lg of size of objects allocated from this page. */
+ unsigned char order;
+
+ /* A bit vector indicating whether or not objects are in use. The
+ Nth bit is one if the Nth object on this page is allocated. This
+ array is dynamically sized. */
+ unsigned long in_use_p[1];
+} page_entry;
+
+#ifdef USING_MALLOC_PAGE_GROUPS
+/* A page_group describes a large allocation from malloc, from which
+ we parcel out aligned pages. */
+typedef struct page_group
+{
+ /* A linked list of all extant page groups. */
+ struct page_group *next;
+
+ /* The address we received from malloc. */
+ char *allocation;
+
+ /* The size of the block. */
+ size_t alloc_size;
+
+ /* A bitmask of pages in use. */
+ unsigned int in_use;
+} page_group;
+#endif
+
+#if HOST_BITS_PER_PTR <= 32
+
+/* On 32-bit hosts, we use a two level page table, as pictured above. */
+typedef page_entry **page_table[PAGE_L1_SIZE];
+
+#else
+
+/* On 64-bit hosts, we use the same two level page tables plus a linked
+ list that disambiguates the top 32-bits. There will almost always be
+ exactly one entry in the list. */
+typedef struct page_table_chain
+{
+ struct page_table_chain *next;
+ size_t high_bits;
+ page_entry **table[PAGE_L1_SIZE];
+} *page_table;
+
+#endif
+
+/* The rest of the global variables. */
+static struct globals
+{
+ /* The Nth element in this array is a page with objects of size 2^N.
+ If there are any pages with free objects, they will be at the
+ head of the list. NULL if there are no page-entries for this
+ object size. */
+ page_entry *pages[NUM_ORDERS];
+
+ /* The Nth element in this array is the last page with objects of
+ size 2^N. NULL if there are no page-entries for this object
+ size. */
+ page_entry *page_tails[NUM_ORDERS];
+
+ /* Lookup table for associating allocation pages with object addresses. */
+ page_table lookup;
+
+ /* The system's page size. */
+ size_t pagesize;
+ size_t lg_pagesize;
+
+ /* Bytes currently allocated. */
+ size_t allocated;
+
+ /* Bytes currently allocated at the end of the last collection. */
+ size_t allocated_last_gc;
+
+ /* Total amount of memory mapped. */
+ size_t bytes_mapped;
+
+ /* The current depth in the context stack. */
+ unsigned short context_depth;
+
+ /* A file descriptor open to /dev/zero for reading. */
+#if defined (HAVE_MMAP_DEV_ZERO)
+ int dev_zero_fd;
+#endif
+
+ /* A cache of free system pages. */
+ page_entry *free_pages;
+
+#ifdef USING_MALLOC_PAGE_GROUPS
+ page_group *page_groups;
+#endif
+
+ /* The file descriptor for debugging output. */
+ FILE *debug_file;
+} G;
+
+/* The size in bytes required to maintain a bitmap for the objects
+ on a page-entry. */
+#define BITMAP_SIZE(Num_objects) \
+ (CEIL ((Num_objects), HOST_BITS_PER_LONG) * sizeof(long))
+
+/* Skip garbage collection if the current allocation is not at least
+ this factor times the allocation at the end of the last collection.
+ In other words, total allocation must expand by (this factor minus
+ one) before collection is performed. */
+#define GGC_MIN_EXPAND_FOR_GC (1.3)
+
+/* Bound `allocated_last_gc' to 4MB, to prevent the memory expansion
+ test from triggering too often when the heap is small. */
+#define GGC_MIN_LAST_ALLOCATED (4 * 1024 * 1024)
+
+/* Allocate pages in chunks of this size, to throttle calls to memory
+ allocation routines. The first page is used, the rest go onto the
+ free list. This cannot be larger than HOST_BITS_PER_INT for the
+ in_use bitmask for page_group. */
+#define GGC_QUIRE_SIZE 16
+
+static int ggc_allocated_p PARAMS ((const void *));
+static page_entry *lookup_page_table_entry PARAMS ((const void *));
+static void set_page_table_entry PARAMS ((void *, page_entry *));
+#ifdef USING_MMAP
+static char *alloc_anon PARAMS ((char *, size_t));
+#endif
+#ifdef USING_MALLOC_PAGE_GROUPS
+static size_t page_group_index PARAMS ((char *, char *));
+static void set_page_group_in_use PARAMS ((page_group *, char *));
+static void clear_page_group_in_use PARAMS ((page_group *, char *));
+#endif
+static struct page_entry * alloc_page PARAMS ((unsigned));
+static void free_page PARAMS ((struct page_entry *));
+static void release_pages PARAMS ((void));
+static void clear_marks PARAMS ((void));
+static void sweep_pages PARAMS ((void));
+static void ggc_recalculate_in_use_p PARAMS ((page_entry *));
+
+#ifdef GGC_POISON
+static void poison_pages PARAMS ((void));
+#endif
+
+void debug_print_page_list PARAMS ((int));
+
+/* Returns non-zero if P was allocated in GC'able memory. */
+
+static inline int
+ggc_allocated_p (p)
+ const void *p;
+{
+ page_entry ***base;
+ size_t L1, L2;
+
+#if HOST_BITS_PER_PTR <= 32
+ base = &G.lookup[0];
+#else
+ page_table table = G.lookup;
+ size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
+ while (1)
+ {
+ if (table == NULL)
+ return 0;
+ if (table->high_bits == high_bits)
+ break;
+ table = table->next;
+ }
+ base = &table->table[0];
+#endif
+
+ /* Extract the level 1 and 2 indices. */
+ L1 = LOOKUP_L1 (p);
+ L2 = LOOKUP_L2 (p);
+
+ return base[L1] && base[L1][L2];
+}
+
+/* Traverse the page table and find the entry for a page.
+ Die (probably) if the object wasn't allocated via GC. */
+
+static inline page_entry *
+lookup_page_table_entry(p)
+ const void *p;
+{
+ page_entry ***base;
+ size_t L1, L2;
+
+#if HOST_BITS_PER_PTR <= 32
+ base = &G.lookup[0];
+#else
+ page_table table = G.lookup;
+ size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
+ while (table->high_bits != high_bits)
+ table = table->next;
+ base = &table->table[0];
+#endif
+
+ /* Extract the level 1 and 2 indices. */
+ L1 = LOOKUP_L1 (p);
+ L2 = LOOKUP_L2 (p);
+
+ return base[L1][L2];
+}
+
+/* Set the page table entry for a page. */
+
+static void
+set_page_table_entry(p, entry)
+ void *p;
+ page_entry *entry;
+{
+ page_entry ***base;
+ size_t L1, L2;
+
+#if HOST_BITS_PER_PTR <= 32
+ base = &G.lookup[0];
+#else
+ page_table table;
+ size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
+ for (table = G.lookup; table; table = table->next)
+ if (table->high_bits == high_bits)
+ goto found;
+
+ /* Not found -- allocate a new table. */
+ table = (page_table) xcalloc (1, sizeof(*table));
+ table->next = G.lookup;
+ table->high_bits = high_bits;
+ G.lookup = table;
+found:
+ base = &table->table[0];
+#endif
+
+ /* Extract the level 1 and 2 indices. */
+ L1 = LOOKUP_L1 (p);
+ L2 = LOOKUP_L2 (p);
+
+ if (base[L1] == NULL)
+ base[L1] = (page_entry **) xcalloc (PAGE_L2_SIZE, sizeof (page_entry *));
+
+ base[L1][L2] = entry;
+}
+
+/* Prints the page-entry for object size ORDER, for debugging. */
+
+void
+debug_print_page_list (order)
+ int order;
+{
+ page_entry *p;
+ printf ("Head=%p, Tail=%p:\n", (PTR) G.pages[order],
+ (PTR) G.page_tails[order]);
+ p = G.pages[order];
+ while (p != NULL)
+ {
+ printf ("%p(%1d|%3d) -> ", (PTR) p, p->context_depth,
+ p->num_free_objects);
+ p = p->next;
+ }
+ printf ("NULL\n");
+ fflush (stdout);
+}
+
+#ifdef USING_MMAP
+/* Allocate SIZE bytes of anonymous memory, preferably near PREF,
+ (if non-null). The ifdef structure here is intended to cause a
+ compile error unless exactly one of the HAVE_* is defined. */
+
+static inline char *
+alloc_anon (pref, size)
+ char *pref ATTRIBUTE_UNUSED;
+ size_t size;
+{
+#ifdef HAVE_MMAP_ANON
+ char *page = (char *) mmap (pref, size, PROT_READ | PROT_WRITE,
+ MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
+#endif
+#ifdef HAVE_MMAP_DEV_ZERO
+ char *page = (char *) mmap (pref, size, PROT_READ | PROT_WRITE,
+ MAP_PRIVATE, G.dev_zero_fd, 0);
+#endif
+
+ if (page == (char *) MAP_FAILED)
+ {
+ perror ("virtual memory exhausted");
+ exit (FATAL_EXIT_CODE);
+ }
+
+ /* Remember that we allocated this memory. */
+ G.bytes_mapped += size;
+
+ return page;
+}
+#endif
+#ifdef USING_MALLOC_PAGE_GROUPS
+/* Compute the index for this page into the page group. */
+
+static inline size_t
+page_group_index (allocation, page)
+ char *allocation, *page;
+{
+ return (size_t) (page - allocation) >> G.lg_pagesize;
+}
+
+/* Set and clear the in_use bit for this page in the page group. */
+
+static inline void
+set_page_group_in_use (group, page)
+ page_group *group;
+ char *page;
+{
+ group->in_use |= 1 << page_group_index (group->allocation, page);
+}
+
+static inline void
+clear_page_group_in_use (group, page)
+ page_group *group;
+ char *page;
+{
+ group->in_use &= ~(1 << page_group_index (group->allocation, page));
+}
+#endif
+
+/* Allocate a new page for allocating objects of size 2^ORDER,
+ and return an entry for it. The entry is not added to the
+ appropriate page_table list. */
+
+static inline struct page_entry *
+alloc_page (order)
+ unsigned order;
+{
+ struct page_entry *entry, *p, **pp;
+ char *page;
+ size_t num_objects;
+ size_t bitmap_size;
+ size_t page_entry_size;
+ size_t entry_size;
+#ifdef USING_MALLOC_PAGE_GROUPS
+ page_group *group;
+#endif
+
+ num_objects = OBJECTS_PER_PAGE (order);
+ bitmap_size = BITMAP_SIZE (num_objects + 1);
+ page_entry_size = sizeof (page_entry) - sizeof (long) + bitmap_size;
+ entry_size = num_objects * OBJECT_SIZE (order);
+ if (entry_size < G.pagesize)
+ entry_size = G.pagesize;
+
+ entry = NULL;
+ page = NULL;
+
+ /* Check the list of free pages for one we can use. */
+ for (pp = &G.free_pages, p = *pp; p; pp = &p->next, p = *pp)
+ if (p->bytes == entry_size)
+ break;
+
+ if (p != NULL)
+ {
+ /* Recycle the allocated memory from this page ... */
+ *pp = p->next;
+ page = p->page;
+
+#ifdef USING_MALLOC_PAGE_GROUPS
+ group = p->group;
+#endif
+
+ /* ... and, if possible, the page entry itself. */
+ if (p->order == order)
+ {
+ entry = p;
+ memset (entry, 0, page_entry_size);
+ }
+ else
+ free (p);
+ }
+#ifdef USING_MMAP
+ else if (entry_size == G.pagesize)
+ {
+ /* We want just one page. Allocate a bunch of them and put the
+ extras on the freelist. (Can only do this optimization with
+ mmap for backing store.) */
+ struct page_entry *e, *f = G.free_pages;
+ int i;
+
+ page = alloc_anon (NULL, G.pagesize * GGC_QUIRE_SIZE);
+
+ /* This loop counts down so that the chain will be in ascending
+ memory order. */
+ for (i = GGC_QUIRE_SIZE - 1; i >= 1; i--)
+ {
+ e = (struct page_entry *) xcalloc (1, page_entry_size);
+ e->order = order;
+ e->bytes = G.pagesize;
+ e->page = page + (i << G.lg_pagesize);
+ e->next = f;
+ f = e;
+ }
+
+ G.free_pages = f;
+ }
+ else
+ page = alloc_anon (NULL, entry_size);
+#endif
+#ifdef USING_MALLOC_PAGE_GROUPS
+ else
+ {
+ /* Allocate a large block of memory and serve out the aligned
+ pages therein. This results in much less memory wastage
+ than the traditional implementation of valloc. */
+
+ char *allocation, *a, *enda;
+ size_t alloc_size, head_slop, tail_slop;
+ int multiple_pages = (entry_size == G.pagesize);
+
+ if (multiple_pages)
+ alloc_size = GGC_QUIRE_SIZE * G.pagesize;
+ else
+ alloc_size = entry_size + G.pagesize - 1;
+ allocation = xmalloc (alloc_size);
+
+ page = (char *) (((size_t) allocation + G.pagesize - 1) & -G.pagesize);
+ head_slop = page - allocation;
+ if (multiple_pages)
+ tail_slop = ((size_t) allocation + alloc_size) & (G.pagesize - 1);
+ else
+ tail_slop = alloc_size - entry_size - head_slop;
+ enda = allocation + alloc_size - tail_slop;
+
+ /* We allocated N pages, which are likely not aligned, leaving
+ us with N-1 usable pages. We plan to place the page_group
+ structure somewhere in the slop. */
+ if (head_slop >= sizeof (page_group))
+ group = (page_group *)page - 1;
+ else
+ {
+ /* We magically got an aligned allocation. Too bad, we have
+ to waste a page anyway. */
+ if (tail_slop == 0)
+ {
+ enda -= G.pagesize;
+ tail_slop += G.pagesize;
+ }
+ if (tail_slop < sizeof (page_group))
+ abort ();
+ group = (page_group *)enda;
+ tail_slop -= sizeof (page_group);
+ }
+
+ /* Remember that we allocated this memory. */
+ group->next = G.page_groups;
+ group->allocation = allocation;
+ group->alloc_size = alloc_size;
+ group->in_use = 0;
+ G.page_groups = group;
+ G.bytes_mapped += alloc_size;
+
+ /* If we allocated multiple pages, put the rest on the free list. */
+ if (multiple_pages)
+ {
+ struct page_entry *e, *f = G.free_pages;
+ for (a = enda - G.pagesize; a != page; a -= G.pagesize)
+ {
+ e = (struct page_entry *) xcalloc (1, page_entry_size);
+ e->order = order;
+ e->bytes = G.pagesize;
+ e->page = a;
+ e->group = group;
+ e->next = f;
+ f = e;
+ }
+ G.free_pages = f;
+ }
+ }
+#endif
+
+ if (entry == NULL)
+ entry = (struct page_entry *) xcalloc (1, page_entry_size);
+
+ entry->bytes = entry_size;
+ entry->page = page;
+ entry->context_depth = G.context_depth;
+ entry->order = order;
+ entry->num_free_objects = num_objects;
+ entry->next_bit_hint = 1;
+
+#ifdef USING_MALLOC_PAGE_GROUPS
+ entry->group = group;
+ set_page_group_in_use (group, page);
+#endif
+
+ /* Set the one-past-the-end in-use bit. This acts as a sentry as we
+ increment the hint. */
+ entry->in_use_p[num_objects / HOST_BITS_PER_LONG]
+ = (unsigned long) 1 << (num_objects % HOST_BITS_PER_LONG);
+
+ set_page_table_entry (page, entry);
+
+ if (GGC_DEBUG_LEVEL >= 2)
+ fprintf (G.debug_file,
+ "Allocating page at %p, object size=%ld, data %p-%p\n",
+ (PTR) entry, (long) OBJECT_SIZE (order), page,
+ page + entry_size - 1);
+
+ return entry;
+}
+
+/* For a page that is no longer needed, put it on the free page list. */
+
+static inline void
+free_page (entry)
+ page_entry *entry;
+{
+ if (GGC_DEBUG_LEVEL >= 2)
+ fprintf (G.debug_file,
+ "Deallocating page at %p, data %p-%p\n", (PTR) entry,
+ entry->page, entry->page + entry->bytes - 1);
+
+ set_page_table_entry (entry->page, NULL);
+
+#ifdef USING_MALLOC_PAGE_GROUPS
+ clear_page_group_in_use (entry->group, entry->page);
+#endif
+
+ entry->next = G.free_pages;
+ G.free_pages = entry;
+}
+
+/* Release the free page cache to the system. */
+
+static void
+release_pages ()
+{
+#ifdef USING_MMAP
+ page_entry *p, *next;
+ char *start;
+ size_t len;
+
+ /* Gather up adjacent pages so they are unmapped together. */
+ p = G.free_pages;
+
+ while (p)
+ {
+ start = p->page;
+ next = p->next;
+ len = p->bytes;
+ free (p);
+ p = next;
+
+ while (p && p->page == start + len)
+ {
+ next = p->next;
+ len += p->bytes;
+ free (p);
+ p = next;
+ }
+
+ munmap (start, len);
+ G.bytes_mapped -= len;
+ }
+
+ G.free_pages = NULL;
+#endif
+#ifdef USING_MALLOC_PAGE_GROUPS
+ page_entry **pp, *p;
+ page_group **gp, *g;
+
+ /* Remove all pages from free page groups from the list. */
+ pp = &G.free_pages;
+ while ((p = *pp) != NULL)
+ if (p->group->in_use == 0)
+ {
+ *pp = p->next;
+ free (p);
+ }
+ else
+ pp = &p->next;
+
+ /* Remove all free page groups, and release the storage. */
+ gp = &G.page_groups;
+ while ((g = *gp) != NULL)
+ if (g->in_use == 0)
+ {
+ *gp = g->next;
+ G.bytes_mapped -= g->alloc_size;
+ free (g->allocation);
+ }
+ else
+ gp = &g->next;
+#endif
+}
+
+/* This table provides a fast way to determine ceil(log_2(size)) for
+ allocation requests. The minimum allocation size is eight bytes. */
+
+static unsigned char size_lookup[257] =
+{
+ 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4,
+ 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
+ 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
+ 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
+ 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
+ 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
+ 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
+ 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
+ 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
+ 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
+ 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
+ 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
+ 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
+ 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
+ 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
+ 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
+ 8
+};
+
+/* Allocate a chunk of memory of SIZE bytes. If ZERO is non-zero, the
+ memory is zeroed; otherwise, its contents are undefined. */
+
+void *
+ggc_alloc (size)
+ size_t size;
+{
+ unsigned order, word, bit, object_offset;
+ struct page_entry *entry;
+ void *result;
+
+ if (size <= 256)
+ order = size_lookup[size];
+ else
+ {
+ order = 9;
+ while (size > OBJECT_SIZE (order))
+ order++;
+ }
+
+ /* If there are non-full pages for this size allocation, they are at
+ the head of the list. */
+ entry = G.pages[order];
+
+ /* If there is no page for this object size, or all pages in this
+ context are full, allocate a new page. */
+ if (entry == NULL || entry->num_free_objects == 0)
+ {
+ struct page_entry *new_entry;
+ new_entry = alloc_page (order);
+
+ /* If this is the only entry, it's also the tail. */
+ if (entry == NULL)
+ G.page_tails[order] = new_entry;
+
+ /* Put new pages at the head of the page list. */
+ new_entry->next = entry;
+ entry = new_entry;
+ G.pages[order] = new_entry;
+
+ /* For a new page, we know the word and bit positions (in the
+ in_use bitmap) of the first available object -- they're zero. */
+ new_entry->next_bit_hint = 1;
+ word = 0;
+ bit = 0;
+ object_offset = 0;
+ }
+ else
+ {
+ /* First try to use the hint left from the previous allocation
+ to locate a clear bit in the in-use bitmap. We've made sure
+ that the one-past-the-end bit is always set, so if the hint
+ has run over, this test will fail. */
+ unsigned hint = entry->next_bit_hint;
+ word = hint / HOST_BITS_PER_LONG;
+ bit = hint % HOST_BITS_PER_LONG;
+
+ /* If the hint didn't work, scan the bitmap from the beginning. */
+ if ((entry->in_use_p[word] >> bit) & 1)
+ {
+ word = bit = 0;
+ while (~entry->in_use_p[word] == 0)
+ ++word;
+ while ((entry->in_use_p[word] >> bit) & 1)
+ ++bit;
+ hint = word * HOST_BITS_PER_LONG + bit;
+ }
+
+ /* Next time, try the next bit. */
+ entry->next_bit_hint = hint + 1;
+
+ object_offset = hint * OBJECT_SIZE (order);
+ }
+
+ /* Set the in-use bit. */
+ entry->in_use_p[word] |= ((unsigned long) 1 << bit);
+
+ /* Keep a running total of the number of free objects. If this page
+ fills up, we may have to move it to the end of the list if the
+ next page isn't full. If the next page is full, all subsequent
+ pages are full, so there's no need to move it. */
+ if (--entry->num_free_objects == 0
+ && entry->next != NULL
+ && entry->next->num_free_objects > 0)
+ {
+ G.pages[order] = entry->next;
+ entry->next = NULL;
+ G.page_tails[order]->next = entry;
+ G.page_tails[order] = entry;
+ }
+
+ /* Calculate the object's address. */
+ result = entry->page + object_offset;
+
+#ifdef GGC_POISON
+ /* `Poison' the entire allocated object, including any padding at
+ the end. */
+ memset (result, 0xaf, OBJECT_SIZE (order));
+#endif
+
+ /* Keep track of how many bytes are being allocated. This
+ information is used in deciding when to collect. */
+ G.allocated += OBJECT_SIZE (order);
+
+ if (GGC_DEBUG_LEVEL >= 3)
+ fprintf (G.debug_file,
+ "Allocating object, requested size=%ld, actual=%ld at %p on %p\n",
+ (long) size, (long) OBJECT_SIZE (order), result, (PTR) entry);
+
+ return result;
+}
+
+/* If P is not marked, marks it and return false. Otherwise return true.
+ P must have been allocated by the GC allocator; it mustn't point to
+ static objects, stack variables, or memory allocated with malloc. */
+
+int
+ggc_set_mark (p)
+ const void *p;
+{
+ page_entry *entry;
+ unsigned bit, word;
+ unsigned long mask;
+
+ /* Look up the page on which the object is alloced. If the object
+ wasn't allocated by the collector, we'll probably die. */
+ entry = lookup_page_table_entry (p);
+#ifdef ENABLE_CHECKING
+ if (entry == NULL)
+ abort ();
+#endif
+
+ /* Calculate the index of the object on the page; this is its bit
+ position in the in_use_p bitmap. */
+ bit = (((const char *) p) - entry->page) / OBJECT_SIZE (entry->order);
+ word = bit / HOST_BITS_PER_LONG;
+ mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
+
+ /* If the bit was previously set, skip it. */
+ if (entry->in_use_p[word] & mask)
+ return 1;
+
+ /* Otherwise set it, and decrement the free object count. */
+ entry->in_use_p[word] |= mask;
+ entry->num_free_objects -= 1;
+
+ if (GGC_DEBUG_LEVEL >= 4)
+ fprintf (G.debug_file, "Marking %p\n", p);
+
+ return 0;
+}
+
+/* Return 1 if P has been marked, zero otherwise.
+ P must have been allocated by the GC allocator; it mustn't point to
+ static objects, stack variables, or memory allocated with malloc. */
+
+int
+ggc_marked_p (p)
+ const void *p;
+{
+ page_entry *entry;
+ unsigned bit, word;
+ unsigned long mask;
+
+ /* Look up the page on which the object is alloced. If the object
+ wasn't allocated by the collector, we'll probably die. */
+ entry = lookup_page_table_entry (p);
+#ifdef ENABLE_CHECKING
+ if (entry == NULL)
+ abort ();
+#endif
+
+ /* Calculate the index of the object on the page; this is its bit
+ position in the in_use_p bitmap. */
+ bit = (((const char *) p) - entry->page) / OBJECT_SIZE (entry->order);
+ word = bit / HOST_BITS_PER_LONG;
+ mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
+
+ return (entry->in_use_p[word] & mask) != 0;
+}
+
+/* Return the size of the gc-able object P. */
+
+size_t
+ggc_get_size (p)
+ const void *p;
+{
+ page_entry *pe = lookup_page_table_entry (p);
+ return OBJECT_SIZE (pe->order);
+}
+
+/* Initialize the ggc-mmap allocator. */
+
+void
+init_ggc ()
+{
+ unsigned order;
+
+ G.pagesize = getpagesize();
+ G.lg_pagesize = exact_log2 (G.pagesize);
+
+#ifdef HAVE_MMAP_DEV_ZERO
+ G.dev_zero_fd = open ("/dev/zero", O_RDONLY);
+ if (G.dev_zero_fd == -1)
+ abort ();
+#endif
+
+#if 0
+ G.debug_file = fopen ("ggc-mmap.debug", "w");
+#else
+ G.debug_file = stdout;
+#endif
+
+ G.allocated_last_gc = GGC_MIN_LAST_ALLOCATED;
+
+#ifdef USING_MMAP
+ /* StunOS has an amazing off-by-one error for the first mmap allocation
+ after fiddling with RLIMIT_STACK. The result, as hard as it is to
+ believe, is an unaligned page allocation, which would cause us to
+ hork badly if we tried to use it. */
+ {
+ char *p = alloc_anon (NULL, G.pagesize);
+ struct page_entry *e;
+ if ((size_t)p & (G.pagesize - 1))
+ {
+ /* How losing. Discard this one and try another. If we still
+ can't get something useful, give up. */
+
+ p = alloc_anon (NULL, G.pagesize);
+ if ((size_t)p & (G.pagesize - 1))
+ abort ();
+ }
+
+ /* We have a good page, might as well hold onto it... */
+ e = (struct page_entry *) xcalloc (1, sizeof (struct page_entry));
+ e->bytes = G.pagesize;
+ e->page = p;
+ e->next = G.free_pages;
+ G.free_pages = e;
+ }
+#endif
+
+ /* Initialize the object size table. */
+ for (order = 0; order < HOST_BITS_PER_PTR; ++order)
+ object_size_table[order] = (size_t) 1 << order;
+ for (order = HOST_BITS_PER_PTR; order < NUM_ORDERS; ++order)
+ {
+ size_t s = extra_order_size_table[order - HOST_BITS_PER_PTR];
+
+ /* If S is not a multiple of the MAX_ALIGNMENT, then round it up
+ so that we're sure of getting aligned memory. */
+ s = CEIL (s, MAX_ALIGNMENT) * MAX_ALIGNMENT;
+ object_size_table[order] = s;
+ }
+
+ /* Initialize the objects-per-page table. */
+ for (order = 0; order < NUM_ORDERS; ++order)
+ {
+ objects_per_page_table[order] = G.pagesize / OBJECT_SIZE (order);
+ if (objects_per_page_table[order] == 0)
+ objects_per_page_table[order] = 1;
+ }
+
+ /* Reset the size_lookup array to put appropriately sized objects in
+ the special orders. All objects bigger than the previous power
+ of two, but no greater than the special size, should go in the
+ new order. */
+ for (order = HOST_BITS_PER_PTR; order < NUM_ORDERS; ++order)
+ {
+ int o;
+ int i;
+
+ o = size_lookup[OBJECT_SIZE (order)];
+ for (i = OBJECT_SIZE (order); size_lookup [i] == o; --i)
+ size_lookup[i] = order;
+ }
+}
+
+/* Increment the `GC context'. Objects allocated in an outer context
+ are never freed, eliminating the need to register their roots. */
+
+void
+ggc_push_context ()
+{
+ ++G.context_depth;
+
+ /* Die on wrap. */
+ if (G.context_depth == 0)
+ abort ();
+}
+
+/* Merge the SAVE_IN_USE_P and IN_USE_P arrays in P so that IN_USE_P
+ reflects reality. Recalculate NUM_FREE_OBJECTS as well. */
+
+static void
+ggc_recalculate_in_use_p (p)
+ page_entry *p;
+{
+ unsigned int i;
+ size_t num_objects;
+
+ /* Because the past-the-end bit in in_use_p is always set, we
+ pretend there is one additional object. */
+ num_objects = OBJECTS_PER_PAGE (p->order) + 1;
+
+ /* Reset the free object count. */
+ p->num_free_objects = num_objects;
+
+ /* Combine the IN_USE_P and SAVE_IN_USE_P arrays. */
+ for (i = 0;
+ i < CEIL (BITMAP_SIZE (num_objects),
+ sizeof (*p->in_use_p));
+ ++i)
+ {
+ unsigned long j;
+
+ /* Something is in use if it is marked, or if it was in use in a
+ context further down the context stack. */
+ p->in_use_p[i] |= p->save_in_use_p[i];
+
+ /* Decrement the free object count for every object allocated. */
+ for (j = p->in_use_p[i]; j; j >>= 1)
+ p->num_free_objects -= (j & 1);
+ }
+
+ if (p->num_free_objects >= num_objects)
+ abort ();
+}
+
+/* Decrement the `GC context'. All objects allocated since the
+ previous ggc_push_context are migrated to the outer context. */
+
+void
+ggc_pop_context ()
+{
+ unsigned order, depth;
+
+ depth = --G.context_depth;
+
+ /* Any remaining pages in the popped context are lowered to the new
+ current context; i.e. objects allocated in the popped context and
+ left over are imported into the previous context. */
+ for (order = 2; order < NUM_ORDERS; order++)
+ {
+ page_entry *p;
+
+ for (p = G.pages[order]; p != NULL; p = p->next)
+ {
+ if (p->context_depth > depth)
+ p->context_depth = depth;
+
+ /* If this page is now in the topmost context, and we'd
+ saved its allocation state, restore it. */
+ else if (p->context_depth == depth && p->save_in_use_p)
+ {
+ ggc_recalculate_in_use_p (p);
+ free (p->save_in_use_p);
+ p->save_in_use_p = 0;
+ }
+ }
+ }
+}
+
+/* Unmark all objects. */
+
+static inline void
+clear_marks ()
+{
+ unsigned order;
+
+ for (order = 2; order < NUM_ORDERS; order++)
+ {
+ size_t num_objects = OBJECTS_PER_PAGE (order);
+ size_t bitmap_size = BITMAP_SIZE (num_objects + 1);
+ page_entry *p;
+
+ for (p = G.pages[order]; p != NULL; p = p->next)
+ {
+#ifdef ENABLE_CHECKING
+ /* The data should be page-aligned. */
+ if ((size_t) p->page & (G.pagesize - 1))
+ abort ();
+#endif
+
+ /* Pages that aren't in the topmost context are not collected;
+ nevertheless, we need their in-use bit vectors to store GC
+ marks. So, back them up first. */
+ if (p->context_depth < G.context_depth)
+ {
+ if (! p->save_in_use_p)
+ p->save_in_use_p = xmalloc (bitmap_size);
+ memcpy (p->save_in_use_p, p->in_use_p, bitmap_size);
+ }
+
+ /* Reset reset the number of free objects and clear the
+ in-use bits. These will be adjusted by mark_obj. */
+ p->num_free_objects = num_objects;
+ memset (p->in_use_p, 0, bitmap_size);
+
+ /* Make sure the one-past-the-end bit is always set. */
+ p->in_use_p[num_objects / HOST_BITS_PER_LONG]
+ = ((unsigned long) 1 << (num_objects % HOST_BITS_PER_LONG));
+ }
+ }
+}
+
+/* Free all empty pages. Partially empty pages need no attention
+ because the `mark' bit doubles as an `unused' bit. */
+
+static inline void
+sweep_pages ()
+{
+ unsigned order;
+
+ for (order = 2; order < NUM_ORDERS; order++)
+ {
+ /* The last page-entry to consider, regardless of entries
+ placed at the end of the list. */
+ page_entry * const last = G.page_tails[order];
+
+ size_t num_objects = OBJECTS_PER_PAGE (order);
+ size_t live_objects;
+ page_entry *p, *previous;
+ int done;
+
+ p = G.pages[order];
+ if (p == NULL)
+ continue;
+
+ previous = NULL;
+ do
+ {
+ page_entry *next = p->next;
+
+ /* Loop until all entries have been examined. */
+ done = (p == last);
+
+ /* Add all live objects on this page to the count of
+ allocated memory. */
+ live_objects = num_objects - p->num_free_objects;
+
+ G.allocated += OBJECT_SIZE (order) * live_objects;
+
+ /* Only objects on pages in the topmost context should get
+ collected. */
+ if (p->context_depth < G.context_depth)
+ ;
+
+ /* Remove the page if it's empty. */
+ else if (live_objects == 0)
+ {
+ if (! previous)
+ G.pages[order] = next;
+ else
+ previous->next = next;
+
+ /* Are we removing the last element? */
+ if (p == G.page_tails[order])
+ G.page_tails[order] = previous;
+ free_page (p);
+ p = previous;
+ }
+
+ /* If the page is full, move it to the end. */
+ else if (p->num_free_objects == 0)
+ {
+ /* Don't move it if it's already at the end. */
+ if (p != G.page_tails[order])
+ {
+ /* Move p to the end of the list. */
+ p->next = NULL;
+ G.page_tails[order]->next = p;
+
+ /* Update the tail pointer... */
+ G.page_tails[order] = p;
+
+ /* ... and the head pointer, if necessary. */
+ if (! previous)
+ G.pages[order] = next;
+ else
+ previous->next = next;
+ p = previous;
+ }
+ }
+
+ /* If we've fallen through to here, it's a page in the
+ topmost context that is neither full nor empty. Such a
+ page must precede pages at lesser context depth in the
+ list, so move it to the head. */
+ else if (p != G.pages[order])
+ {
+ previous->next = p->next;
+ p->next = G.pages[order];
+ G.pages[order] = p;
+ /* Are we moving the last element? */
+ if (G.page_tails[order] == p)
+ G.page_tails[order] = previous;
+ p = previous;
+ }
+
+ previous = p;
+ p = next;
+ }
+ while (! done);
+
+ /* Now, restore the in_use_p vectors for any pages from contexts
+ other than the current one. */
+ for (p = G.pages[order]; p; p = p->next)
+ if (p->context_depth != G.context_depth)
+ ggc_recalculate_in_use_p (p);
+ }
+}
+
+#ifdef GGC_POISON
+/* Clobber all free objects. */
+
+static inline void
+poison_pages ()
+{
+ unsigned order;
+
+ for (order = 2; order < NUM_ORDERS; order++)
+ {
+ size_t num_objects = OBJECTS_PER_PAGE (order);
+ size_t size = OBJECT_SIZE (order);
+ page_entry *p;
+
+ for (p = G.pages[order]; p != NULL; p = p->next)
+ {
+ size_t i;
+
+ if (p->context_depth != G.context_depth)
+ /* Since we don't do any collection for pages in pushed
+ contexts, there's no need to do any poisoning. And
+ besides, the IN_USE_P array isn't valid until we pop
+ contexts. */
+ continue;
+
+ for (i = 0; i < num_objects; i++)
+ {
+ size_t word, bit;
+ word = i / HOST_BITS_PER_LONG;
+ bit = i % HOST_BITS_PER_LONG;
+ if (((p->in_use_p[word] >> bit) & 1) == 0)
+ memset (p->page + i * size, 0xa5, size);
+ }
+ }
+ }
+}
+#endif
+
+/* Top level mark-and-sweep routine. */
+
+void
+ggc_collect ()
+{
+ /* Avoid frequent unnecessary work by skipping collection if the
+ total allocations haven't expanded much since the last
+ collection. */
+#ifndef GGC_ALWAYS_COLLECT
+ if (G.allocated < GGC_MIN_EXPAND_FOR_GC * G.allocated_last_gc)
+ return;
+#endif
+
+ timevar_push (TV_GC);
+ if (!quiet_flag)
+ fprintf (stderr, " {GC %luk -> ", (unsigned long) G.allocated / 1024);
+
+ /* Zero the total allocated bytes. This will be recalculated in the
+ sweep phase. */
+ G.allocated = 0;
+
+ /* Release the pages we freed the last time we collected, but didn't
+ reuse in the interim. */
+ release_pages ();
+
+ clear_marks ();
+ ggc_mark_roots ();
+
+#ifdef GGC_POISON
+ poison_pages ();
+#endif
+
+ sweep_pages ();
+
+ G.allocated_last_gc = G.allocated;
+ if (G.allocated_last_gc < GGC_MIN_LAST_ALLOCATED)
+ G.allocated_last_gc = GGC_MIN_LAST_ALLOCATED;
+
+ timevar_pop (TV_GC);
+
+ if (!quiet_flag)
+ fprintf (stderr, "%luk}", (unsigned long) G.allocated / 1024);
+}
+
+/* Print allocation statistics. */
+#define SCALE(x) ((unsigned long) ((x) < 1024*10 \
+ ? (x) \
+ : ((x) < 1024*1024*10 \
+ ? (x) / 1024 \
+ : (x) / (1024*1024))))
+#define LABEL(x) ((x) < 1024*10 ? ' ' : ((x) < 1024*1024*10 ? 'k' : 'M'))
+
+void
+ggc_print_statistics ()
+{
+ struct ggc_statistics stats;
+ unsigned int i;
+ size_t total_overhead = 0;
+
+ /* Clear the statistics. */
+ memset (&stats, 0, sizeof (stats));
+
+ /* Make sure collection will really occur. */
+ G.allocated_last_gc = 0;
+
+ /* Collect and print the statistics common across collectors. */
+ ggc_print_common_statistics (stderr, &stats);
+
+ /* Release free pages so that we will not count the bytes allocated
+ there as part of the total allocated memory. */
+ release_pages ();
+
+ /* Collect some information about the various sizes of
+ allocation. */
+ fprintf (stderr, "\n%-5s %10s %10s %10s\n",
+ "Size", "Allocated", "Used", "Overhead");
+ for (i = 0; i < NUM_ORDERS; ++i)
+ {
+ page_entry *p;
+ size_t allocated;
+ size_t in_use;
+ size_t overhead;
+
+ /* Skip empty entries. */
+ if (!G.pages[i])
+ continue;
+
+ overhead = allocated = in_use = 0;
+
+ /* Figure out the total number of bytes allocated for objects of
+ this size, and how many of them are actually in use. Also figure
+ out how much memory the page table is using. */
+ for (p = G.pages[i]; p; p = p->next)
+ {
+ allocated += p->bytes;
+ in_use +=
+ (OBJECTS_PER_PAGE (i) - p->num_free_objects) * OBJECT_SIZE (i);
+
+ overhead += (sizeof (page_entry) - sizeof (long)
+ + BITMAP_SIZE (OBJECTS_PER_PAGE (i) + 1));
+ }
+ fprintf (stderr, "%-5d %10ld%c %10ld%c %10ld%c\n", OBJECT_SIZE (i),
+ SCALE (allocated), LABEL (allocated),
+ SCALE (in_use), LABEL (in_use),
+ SCALE (overhead), LABEL (overhead));
+ total_overhead += overhead;
+ }
+ fprintf (stderr, "%-5s %10ld%c %10ld%c %10ld%c\n", "Total",
+ SCALE (G.bytes_mapped), LABEL (G.bytes_mapped),
+ SCALE (G.allocated), LABEL(G.allocated),
+ SCALE (total_overhead), LABEL (total_overhead));
+}
OpenPOWER on IntegriCloud