summaryrefslogtreecommitdiffstats
path: root/contrib/gcc/gcse.c
diff options
context:
space:
mode:
authorobrien <obrien@FreeBSD.org>1999-08-26 09:30:50 +0000
committerobrien <obrien@FreeBSD.org>1999-08-26 09:30:50 +0000
commit0bedf4fb30066e5e1d4342a1d3914dae7d37cba7 (patch)
tree68d8110b41afd0ebbf39167b1a4918eea667a7c5 /contrib/gcc/gcse.c
parentd4db5fb866b7ad5216abd5047774a3973b9901a9 (diff)
downloadFreeBSD-src-0bedf4fb30066e5e1d4342a1d3914dae7d37cba7.zip
FreeBSD-src-0bedf4fb30066e5e1d4342a1d3914dae7d37cba7.tar.gz
Virgin import of gcc from EGCS 1.1.2
Diffstat (limited to 'contrib/gcc/gcse.c')
-rw-r--r--contrib/gcc/gcse.c4758
1 files changed, 4758 insertions, 0 deletions
diff --git a/contrib/gcc/gcse.c b/contrib/gcc/gcse.c
new file mode 100644
index 0000000..f0efdb7
--- /dev/null
+++ b/contrib/gcc/gcse.c
@@ -0,0 +1,4758 @@
+/* Global common subexpression elimination
+ and global constant/copy propagation for GNU compiler.
+ Copyright (C) 1997 Free Software Foundation, Inc.
+
+This file is part of GNU CC.
+
+GNU CC is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2, or (at your option)
+any later version.
+
+GNU CC is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GNU CC; see the file COPYING. If not, write to
+the Free Software Foundation, 59 Temple Place - Suite 330,
+Boston, MA 02111-1307, USA. */
+
+/* TODO
+ - reordering of memory allocation and freeing to be more space efficient
+ - do rough calc of how many regs are needed in each block, and a rough
+ calc of how many regs are available in each class and use that to
+ throttle back the code in cases where RTX_COST is minimal.
+ - memory aliasing support
+ - ability to realloc sbitmap vectors would allow one initial computation
+ of reg_set_in_block with only subsequent additions, rather than
+ recomputing it for each pass
+
+ NOTES
+ - the classic gcse implementation is kept in for now for comparison
+*/
+
+/* References searched while implementing this.
+ This list will eventually be deleted but I wanted to have a record of it
+ for now.
+
+ Compilers Principles, Techniques and Tools
+ Aho, Sethi, Ullman
+ Addison-Wesley, 1988
+
+ Global Optimization by Suppression of Partial Redundancies
+ E. Morel, C. Renvoise
+ communications of the acm, Vol. 22, Num. 2, Feb. 1979
+
+ A Portable Machine-Independent Global Optimizer - Design and Measurements
+ Frederick Chow
+ Stanford Ph.D. thesis, Dec. 1983
+
+xxx
+ Elimination Algorithms for Data Flow Analysis
+ B.G. Ryder, M.C. Paull
+ ACM Computing Surveys, Vol. 18, Num. 3, Sep. 1986
+
+reread
+ A Fast Algorithm for Code Movement Optimization
+ D.M. Dhamdhere
+ SIGPLAN Notices, Vol. 23, Num. 10, Oct. 1988
+
+ A Solution to a Problem with Morel and Renvoise's
+ Global Optimization by Suppression of Partial Redundancies
+ K-H Drechsler, M.P. Stadel
+ ACM TOPLAS, Vol. 10, Num. 4, Oct. 1988
+
+ Practical Adaptation of the Global Optimization
+ Algorithm of Morel and Renvoise
+ D.M. Dhamdhere
+ ACM TOPLAS, Vol. 13, Num. 2. Apr. 1991
+
+ Efficiently Computing Static Single Assignment Form and the Control
+ Dependence Graph
+ R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck
+ ACM TOPLAS, Vol. 13, Num. 4, Oct. 1991
+
+yyy
+ How to Analyze Large Programs Efficiently and Informatively
+ D.M. Dhamdhere, B.K. Rosen, F.K. Zadeck
+ ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
+
+ Lazy Code Motion
+ J. Knoop, O. Ruthing, B. Steffen
+ ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
+
+ What's In a Region? Or Computing Control Dependence Regions in Near-Linear
+ Time for Reducible Flow Control
+ Thomas Ball
+ ACM Letters on Programming Languages and Systems,
+ Vol. 2, Num. 1-4, Mar-Dec 1993
+
+ An Efficient Representation for Sparse Sets
+ Preston Briggs, Linda Torczon
+ ACM Letters on Programming Languages and Systems,
+ Vol. 2, Num. 1-4, Mar-Dec 1993
+
+ A Variation of Knoop, Ruthing, and Steffen's Lazy Code Motion
+ K-H Drechsler, M.P. Stadel
+ ACM SIGPLAN Notices, Vol. 28, Num. 5, May 1993
+
+ Partial Dead Code Elimination
+ J. Knoop, O. Ruthing, B. Steffen
+ ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
+
+ Effective Partial Redundancy Elimination
+ P. Briggs, K.D. Cooper
+ ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
+
+ The Program Structure Tree: Computing Control Regions in Linear Time
+ R. Johnson, D. Pearson, K. Pingali
+ ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
+
+ Optimal Code Motion: Theory and Practice
+ J. Knoop, O. Ruthing, B. Steffen
+ ACM TOPLAS, Vol. 16, Num. 4, Jul. 1994
+
+ The power of assignment motion
+ J. Knoop, O. Ruthing, B. Steffen
+ ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
+
+ Global code motion / global value numbering
+ C. Click
+ ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
+
+ Value Driven Redundancy Elimination
+ L.T. Simpson
+ Rice University Ph.D. thesis, Apr. 1996
+
+ Value Numbering
+ L.T. Simpson
+ Massively Scalar Compiler Project, Rice University, Sep. 1996
+
+ High Performance Compilers for Parallel Computing
+ Michael Wolfe
+ Addison-Wesley, 1996
+
+ People wishing to speed up the code here should read xxx, yyy.
+ People wishing to do something different can find various possibilities
+ in the above papers and elsewhere.
+*/
+
+#include "config.h"
+/* Must precede rtl.h for FFS. */
+#include "system.h"
+
+#include "rtl.h"
+#include "regs.h"
+#include "hard-reg-set.h"
+#include "flags.h"
+#include "real.h"
+#include "insn-config.h"
+#include "recog.h"
+#include "basic-block.h"
+#include "output.h"
+
+#include "obstack.h"
+#define obstack_chunk_alloc gmalloc
+#define obstack_chunk_free free
+
+/* Maximum number of passes to perform. */
+#define MAX_PASSES 1
+
+/* Propagate flow information through back edges and thus enable PRE's
+ moving loop invariant calculations out of loops.
+
+ Originally this tended to create worse overall code, but several
+ improvements during the development of PRE seem to have made following
+ back edges generally a win.
+
+ Note much of the loop invariant code motion done here would normally
+ be done by loop.c, which has more heuristics for when to move invariants
+ out of loops. At some point we might need to move some of those
+ heuristics into gcse.c. */
+#define FOLLOW_BACK_EDGES 1
+
+/* We support two GCSE implementations: Classic GCSE (i.e. Dragon Book)
+ and PRE (Partial Redundancy Elimination) GCSE (based on Fred Chow's thesis).
+ The default is PRE.
+
+ In either case we perform the following steps:
+
+ 1) Compute basic block information.
+
+ 2) Compute table of places where registers are set.
+
+ 3) Perform copy/constant propagation.
+
+ 4) Perform global cse.
+
+ 5) Perform another pass of copy/constant propagation [only if PRE].
+
+ Two passes of copy/constant propagation are done because the first one
+ enables more GCSE and the second one helps to clean up the copies that
+ GCSE creates. This is needed more for PRE than for Classic because Classic
+ GCSE will try to use an existing register containing the common
+ subexpression rather than create a new one. This is harder to do for PRE
+ because of the code motion (which Classic GCSE doesn't do).
+
+ Expressions we are interested in GCSE-ing are of the form
+ (set (pseudo-reg) (expression)).
+ Function want_to_gcse_p says what these are.
+
+ PRE handles moving invariant expressions out of loops (by treating them as
+ partially redundant). This feature of PRE is disabled here (by not
+ propagating dataflow information along back edges) because loop.c has more
+ involved (and thus typically better) heuristics for what to move out of
+ loops.
+
+ Eventually it would be nice to replace cse.c/gcse.c with SSA (static single
+ assignment) based GVN (global value numbering). L. T. Simpson's paper
+ (Rice University) on value numbering is a useful reference for this.
+
+ **********************
+
+ We used to support multiple passes but there are diminishing returns in
+ doing so. The first pass usually makes 90% of the changes that are doable.
+ A second pass can make a few more changes made possible by the first pass.
+ Experiments show any further passes don't make enough changes to justify
+ the expense.
+
+ A study of spec92 using an unlimited number of passes:
+ [1 pass] = 1208 substitutions, [2] = 577, [3] = 202, [4] = 192, [5] = 83,
+ [6] = 34, [7] = 17, [8] = 9, [9] = 4, [10] = 4, [11] = 2,
+ [12] = 2, [13] = 1, [15] = 1, [16] = 2, [41] = 1
+
+ It was found doing copy propagation between each pass enables further
+ substitutions.
+
+ PRE is quite expensive in complicated functions because the DFA can take
+ awhile to converge. Hence we only perform one pass. Macro MAX_PASSES can
+ be modified if one wants to experiment.
+
+ **********************
+
+ The steps for PRE are:
+
+ 1) Build the hash table of expressions we wish to GCSE (expr_hash_table).
+
+ 2) Perform the data flow analysis for PRE.
+
+ 3) Delete the redundant instructions
+
+ 4) Insert the required copies [if any] that make the partially
+ redundant instructions fully redundant.
+
+ 5) For other reaching expressions, insert an instruction to copy the value
+ to a newly created pseudo that will reach the redundant instruction.
+
+ The deletion is done first so that when we do insertions we
+ know which pseudo reg to use.
+
+ Various papers have argued that PRE DFA is expensive (O(n^2)) and others
+ argue it is not. The number of iterations for the algorithm to converge
+ is typically 2-4 so I don't view it as that expensive (relatively speaking).
+
+ PRE GCSE depends heavily on the seconds CSE pass to clean up the copies
+ we create. To make an expression reach the place where it's redundant,
+ the result of the expression is copied to a new register, and the redundant
+ expression is deleted by replacing it with this new register. Classic GCSE
+ doesn't have this problem as much as it computes the reaching defs of
+ each register in each block and thus can try to use an existing register.
+
+ **********************
+
+ When -fclassic-gcse, we perform a classic global CSE pass.
+ It is based on the algorithms in the Dragon book, and is based on code
+ written by Devor Tevi at Intel.
+
+ The steps for Classic GCSE are:
+
+ 1) Build the hash table of expressions we wish to GCSE (expr_hash_table).
+ Also recorded are reaching definition "gen" statements (rd_gen)
+
+ 2) Compute the reaching definitions (reaching_defs).
+ This is a bitmap for each basic block indexed by INSN_CUID that is 1
+ for each statement containing a definition that reaches the block.
+
+ 3) Compute the available expressions (ae_in).
+ This is a bitmap for each basic block indexed by expression number
+ that is 1 for each expression that is available at the beginning of
+ the block.
+
+ 4) Perform GCSE.
+ This is done by scanning each instruction looking for sets of the form
+ (set (pseudo-reg) (expression)) and checking if `expression' is in the
+ hash table. If it is, and if the expression is available, and if only
+ one computation of the expression reaches the instruction, we substitute
+ the expression for a register containing its value. If there is no
+ such register, but the expression is expensive enough we create an
+ instruction to copy the result of the expression into and use that.
+
+ **********************
+
+ A fair bit of simplicity is created by creating small functions for simple
+ tasks, even when the function is only called in one place. This may
+ measurably slow things down [or may not] by creating more function call
+ overhead than is necessary. The source is laid out so that it's trivial
+ to make the affected functions inline so that one can measure what speed
+ up, if any, can be achieved, and maybe later when things settle things can
+ be rearranged.
+
+ Help stamp out big monolithic functions! */
+
+/* GCSE global vars. */
+
+/* -dG dump file. */
+static FILE *gcse_file;
+
+/* Bitmaps are normally not included in debugging dumps.
+ However it's useful to be able to print them from GDB.
+ We could create special functions for this, but it's simpler to
+ just allow passing stderr to the dump_foo fns. Since stderr can
+ be a macro, we store a copy here. */
+static FILE *debug_stderr;
+
+/* An obstack for our working variables. */
+static struct obstack gcse_obstack;
+
+/* Non-zero for each mode that supports (set (reg) (reg)).
+ This is trivially true for integer and floating point values.
+ It may or may not be true for condition codes. */
+static char can_copy_p[(int) NUM_MACHINE_MODES];
+
+/* Non-zero if can_copy_p has been initialized. */
+static int can_copy_init_p;
+
+/* Element I is a list of I's predecessors/successors. */
+static int_list_ptr *s_preds;
+static int_list_ptr *s_succs;
+
+/* Element I is the number of predecessors/successors of basic block I. */
+static int *num_preds;
+static int *num_succs;
+
+/* Hash table of expressions. */
+
+struct expr
+{
+ /* The expression (SET_SRC for expressions, PATTERN for assignments). */
+ rtx expr;
+ /* Index in the available expression bitmaps. */
+ int bitmap_index;
+ /* Next entry with the same hash. */
+ struct expr *next_same_hash;
+ /* List of anticipatable occurrences in basic blocks in the function.
+ An "anticipatable occurrence" is one that is the first occurrence in the
+ basic block and the operands are not modified in the basic block prior
+ to the occurrence. */
+ struct occr *antic_occr;
+ /* List of available occurrence in basic blocks in the function.
+ An "available occurrence" is one that is the last occurrence in the
+ basic block and the operands are not modified by following statements in
+ the basic block [including this insn]. */
+ struct occr *avail_occr;
+ /* Non-null if the computation is PRE redundant.
+ The value is the newly created pseudo-reg to record a copy of the
+ expression in all the places that reach the redundant copy. */
+ rtx reaching_reg;
+};
+
+/* Occurrence of an expression.
+ There is one per basic block. If a pattern appears more than once the
+ last appearance is used [or first for anticipatable expressions]. */
+
+struct occr
+{
+ /* Next occurrence of this expression. */
+ struct occr *next;
+ /* The insn that computes the expression. */
+ rtx insn;
+ /* Non-zero if this [anticipatable] occurrence has been deleted. */
+ char deleted_p;
+ /* Non-zero if this [available] occurrence has been copied to
+ reaching_reg. */
+ /* ??? This is mutually exclusive with deleted_p, so they could share
+ the same byte. */
+ char copied_p;
+};
+
+/* Expression and copy propagation hash tables.
+ Each hash table is an array of buckets.
+ ??? It is known that if it were an array of entries, structure elements
+ `next_same_hash' and `bitmap_index' wouldn't be necessary. However, it is
+ not clear whether in the final analysis a sufficient amount of memory would
+ be saved as the size of the available expression bitmaps would be larger
+ [one could build a mapping table without holes afterwards though].
+ Someday I'll perform the computation and figure it out.
+*/
+
+/* Total size of the expression hash table, in elements. */
+static int expr_hash_table_size;
+/* The table itself.
+ This is an array of `expr_hash_table_size' elements. */
+static struct expr **expr_hash_table;
+
+/* Total size of the copy propagation hash table, in elements. */
+static int set_hash_table_size;
+/* The table itself.
+ This is an array of `set_hash_table_size' elements. */
+static struct expr **set_hash_table;
+
+/* Mapping of uids to cuids.
+ Only real insns get cuids. */
+static int *uid_cuid;
+
+/* Highest UID in UID_CUID. */
+static int max_uid;
+
+/* Get the cuid of an insn. */
+#define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
+
+/* Number of cuids. */
+static int max_cuid;
+
+/* Mapping of cuids to insns. */
+static rtx *cuid_insn;
+
+/* Get insn from cuid. */
+#define CUID_INSN(CUID) (cuid_insn[CUID])
+
+/* Maximum register number in function prior to doing gcse + 1.
+ Registers created during this pass have regno >= max_gcse_regno.
+ This is named with "gcse" to not collide with global of same name. */
+static int max_gcse_regno;
+
+/* Maximum number of cse-able expressions found. */
+static int n_exprs;
+/* Maximum number of assignments for copy propagation found. */
+static int n_sets;
+
+/* Table of registers that are modified.
+ For each register, each element is a list of places where the pseudo-reg
+ is set.
+
+ For simplicity, GCSE is done on sets of pseudo-regs only. PRE GCSE only
+ requires knowledge of which blocks kill which regs [and thus could use
+ a bitmap instead of the lists `reg_set_table' uses]. The classic GCSE
+ uses the information in lists.
+
+ If the classic GCSE pass is deleted `reg_set_table' and could be turned
+ into an array of bitmaps (num-bbs x num-regs)
+ [however perhaps it may be useful to keep the data as is].
+ One advantage of recording things this way is that `reg_set_table' is
+ fairly sparse with respect to pseudo regs but for hard regs could be
+ fairly dense [relatively speaking].
+ And recording sets of pseudo-regs in lists speeds
+ up functions like compute_transp since in the case of pseudo-regs we only
+ need to iterate over the number of times a pseudo-reg is set, not over the
+ number of basic blocks [clearly there is a bit of a slow down in the cases
+ where a pseudo is set more than once in a block, however it is believed
+ that the net effect is to speed things up]. This isn't done for hard-regs
+ because recording call-clobbered hard-regs in `reg_set_table' at each
+ function call can consume a fair bit of memory, and iterating over hard-regs
+ stored this way in compute_transp will be more expensive. */
+
+typedef struct reg_set {
+ /* The next setting of this register. */
+ struct reg_set *next;
+ /* The insn where it was set. */
+ rtx insn;
+} reg_set;
+static reg_set **reg_set_table;
+/* Size of `reg_set_table'.
+ The table starts out at max_gcse_regno + slop, and is enlarged as
+ necessary. */
+static int reg_set_table_size;
+/* Amount to grow `reg_set_table' by when it's full. */
+#define REG_SET_TABLE_SLOP 100
+
+/* Bitmap containing one bit for each register in the program.
+ Used when performing GCSE to track which registers have been set since
+ the start of the basic block. */
+static sbitmap reg_set_bitmap;
+
+/* For each block, a bitmap of registers set in the block.
+ This is used by expr_killed_p and compute_transp.
+ It is computed during hash table computation and not by compute_sets
+ as it includes registers added since the last pass (or between cprop and
+ gcse) and it's currently not easy to realloc sbitmap vectors. */
+static sbitmap *reg_set_in_block;
+
+/* For each block, non-zero if memory is set in that block.
+ This is computed during hash table computation and is used by
+ expr_killed_p and compute_transp.
+ ??? Handling of memory is very simple, we don't make any attempt
+ to optimize things (later).
+ ??? This can be computed by compute_sets since the information
+ doesn't change. */
+static char *mem_set_in_block;
+
+/* Various variables for statistics gathering. */
+
+/* Memory used in a pass.
+ This isn't intended to be absolutely precise. Its intent is only
+ to keep an eye on memory usage. */
+static int bytes_used;
+/* GCSE substitutions made. */
+static int gcse_subst_count;
+/* Number of copy instructions created. */
+static int gcse_create_count;
+/* Number of constants propagated. */
+static int const_prop_count;
+/* Number of copys propagated. */
+static int copy_prop_count;
+
+extern char *current_function_name;
+extern int current_function_calls_setjmp;
+extern int current_function_calls_longjmp;
+
+/* These variables are used by classic GCSE.
+ Normally they'd be defined a bit later, but `rd_gen' needs to
+ be declared sooner. */
+
+/* A bitmap of all ones for implementing the algorithm for available
+ expressions and reaching definitions. */
+/* ??? Available expression bitmaps have a different size than reaching
+ definition bitmaps. This should be the larger of the two, however, it
+ is not currently used for reaching definitions. */
+static sbitmap u_bitmap;
+
+/* Each block has a bitmap of each type.
+ The length of each blocks bitmap is:
+
+ max_cuid - for reaching definitions
+ n_exprs - for available expressions
+
+ Thus we view the bitmaps as 2 dimensional arrays. i.e.
+ rd_kill[block_num][cuid_num]
+ ae_kill[block_num][expr_num]
+*/
+
+/* For reaching defs */
+static sbitmap *rd_kill, *rd_gen, *reaching_defs, *rd_out;
+
+/* for available exprs */
+static sbitmap *ae_kill, *ae_gen, *ae_in, *ae_out;
+
+static void compute_can_copy PROTO ((void));
+
+static char *gmalloc PROTO ((unsigned int));
+static char *grealloc PROTO ((char *, unsigned int));
+static char *gcse_alloc PROTO ((unsigned long));
+static void alloc_gcse_mem PROTO ((rtx));
+static void free_gcse_mem PROTO ((void));
+extern void dump_cuid_table PROTO ((FILE *));
+
+static void alloc_reg_set_mem PROTO ((int));
+static void free_reg_set_mem PROTO ((void));
+static void record_one_set PROTO ((int, rtx));
+static void record_set_info PROTO ((rtx, rtx));
+static void compute_sets PROTO ((rtx));
+
+static void hash_scan_insn PROTO ((rtx, int, int));
+static void hash_scan_set PROTO ((rtx, rtx, int));
+static void hash_scan_clobber PROTO ((rtx, rtx));
+static void hash_scan_call PROTO ((rtx, rtx));
+static void maybe_set_rd_gen PROTO ((int, rtx));
+static int want_to_gcse_p PROTO ((rtx));
+static int oprs_unchanged_p PROTO ((rtx, rtx, int));
+static int oprs_anticipatable_p PROTO ((rtx, rtx));
+static int oprs_available_p PROTO ((rtx, rtx));
+static void insert_expr_in_table PROTO ((rtx, enum machine_mode, rtx, int, int));
+static void insert_set_in_table PROTO ((rtx, rtx));
+static unsigned int hash_expr PROTO ((rtx, enum machine_mode, int *, int));
+static unsigned int hash_expr_1 PROTO ((rtx, enum machine_mode, int *));
+static unsigned int hash_set PROTO ((int, int));
+static int expr_equiv_p PROTO ((rtx, rtx));
+static void record_last_reg_set_info PROTO ((rtx, int));
+static void record_last_mem_set_info PROTO ((rtx));
+static void record_last_set_info PROTO ((rtx, rtx));
+static void compute_hash_table PROTO ((rtx, int));
+static void alloc_set_hash_table PROTO ((int));
+static void free_set_hash_table PROTO ((void));
+static void compute_set_hash_table PROTO ((rtx));
+static void alloc_expr_hash_table PROTO ((int));
+static void free_expr_hash_table PROTO ((void));
+static void compute_expr_hash_table PROTO ((rtx));
+static void dump_hash_table PROTO ((FILE *, char *, struct expr **, int, int));
+static struct expr *lookup_expr PROTO ((rtx));
+static struct expr *lookup_set PROTO ((int, rtx));
+static struct expr *next_set PROTO ((int, struct expr *));
+static void reset_opr_set_tables PROTO ((void));
+static int oprs_not_set_p PROTO ((rtx, rtx));
+static void mark_call PROTO ((rtx, rtx));
+static void mark_set PROTO ((rtx, rtx));
+static void mark_clobber PROTO ((rtx, rtx));
+static void mark_oprs_set PROTO ((rtx));
+
+static void alloc_rd_mem PROTO ((int, int));
+static void free_rd_mem PROTO ((void));
+static void compute_kill_rd PROTO ((void));
+static void handle_rd_kill_set PROTO ((rtx, int, int));
+static void compute_rd PROTO ((void));
+extern void dump_rd_table PROTO ((FILE *, char *, sbitmap *));
+
+static void alloc_avail_expr_mem PROTO ((int, int));
+static void free_avail_expr_mem PROTO ((void));
+static void compute_ae_gen PROTO ((void));
+static void compute_ae_kill PROTO ((void));
+static int expr_killed_p PROTO ((rtx, int));
+static void compute_available PROTO ((void));
+
+static int expr_reaches_here_p PROTO ((struct occr *, struct expr *,
+ int, int, char *));
+static rtx computing_insn PROTO ((struct expr *, rtx));
+static int def_reaches_here_p PROTO ((rtx, rtx));
+static int can_disregard_other_sets PROTO ((struct reg_set **, rtx, int));
+static int handle_avail_expr PROTO ((rtx, struct expr *));
+static int classic_gcse PROTO ((void));
+static int one_classic_gcse_pass PROTO ((rtx, int));
+
+static void alloc_cprop_mem PROTO ((int, int));
+static void free_cprop_mem PROTO ((void));
+extern void dump_cprop_data PROTO ((FILE *));
+static void compute_transp PROTO ((rtx, int, sbitmap *, int));
+static void compute_cprop_local_properties PROTO ((void));
+static void compute_cprop_avinout PROTO ((void));
+static void compute_cprop_data PROTO ((void));
+static void find_used_regs PROTO ((rtx));
+static int try_replace_reg PROTO ((rtx, rtx, rtx));
+static struct expr *find_avail_set PROTO ((int, rtx));
+static int cprop_insn PROTO ((rtx));
+static int cprop PROTO ((void));
+static int one_cprop_pass PROTO ((rtx, int));
+
+static void alloc_pre_mem PROTO ((int, int));
+static void free_pre_mem PROTO ((void));
+extern void dump_pre_data PROTO ((FILE *));
+static void compute_pre_local_properties PROTO ((void));
+static void compute_pre_avinout PROTO ((void));
+static void compute_pre_antinout PROTO ((void));
+static void compute_pre_pavinout PROTO ((void));
+static void compute_pre_ppinout PROTO ((void));
+static void compute_pre_data PROTO ((void));
+static int pre_expr_reaches_here_p PROTO ((struct occr *, struct expr *,
+ int, char *));
+static void pre_insert_insn PROTO ((struct expr *, int));
+static void pre_insert PROTO ((struct expr **));
+static void pre_insert_copy_insn PROTO ((struct expr *, rtx));
+static void pre_insert_copies PROTO ((void));
+static int pre_delete PROTO ((void));
+static int pre_gcse PROTO ((void));
+static int one_pre_gcse_pass PROTO ((rtx, int));
+
+static void add_label_notes PROTO ((rtx, rtx));
+
+/* Entry point for global common subexpression elimination.
+ F is the first instruction in the function. */
+
+void
+gcse_main (f, file)
+ rtx f;
+ FILE *file;
+{
+ int changed, pass;
+ /* Bytes used at start of pass. */
+ int initial_bytes_used;
+ /* Maximum number of bytes used by a pass. */
+ int max_pass_bytes;
+ /* Point to release obstack data from for each pass. */
+ char *gcse_obstack_bottom;
+
+ /* It's impossible to construct a correct control flow graph in the
+ presense of setjmp, so just punt to be safe. */
+ if (current_function_calls_setjmp)
+ return;
+
+ /* For calling dump_foo fns from gdb. */
+ debug_stderr = stderr;
+
+ max_gcse_regno = max_reg_num ();
+ find_basic_blocks (f, max_gcse_regno, file, 0);
+
+ /* Return if there's nothing to do. */
+ if (n_basic_blocks <= 1)
+ {
+ /* Free storage allocated by find_basic_blocks. */
+ free_basic_block_vars (0);
+ return;
+ }
+
+ /* See what modes support reg/reg copy operations. */
+ if (! can_copy_init_p)
+ {
+ compute_can_copy ();
+ can_copy_init_p = 1;
+ }
+
+ gcc_obstack_init (&gcse_obstack);
+
+ gcse_file = file;
+
+ /* Allocate and compute predecessors/successors. */
+
+ s_preds = (int_list_ptr *) alloca (n_basic_blocks * sizeof (int_list_ptr));
+ s_succs = (int_list_ptr *) alloca (n_basic_blocks * sizeof (int_list_ptr));
+ num_preds = (int *) alloca (n_basic_blocks * sizeof (int));
+ num_succs = (int *) alloca (n_basic_blocks * sizeof (int));
+ bytes_used = 4 * n_basic_blocks * sizeof (int_list_ptr);
+ compute_preds_succs (s_preds, s_succs, num_preds, num_succs);
+
+ if (file)
+ {
+ dump_bb_data (file, s_preds, s_succs);
+ }
+
+ /* Record where pseudo-registers are set.
+ This data is kept accurate during each pass.
+ ??? We could also record hard-reg and memory information here
+ [since it's unchanging], however it is currently done during
+ hash table computation. */
+
+ alloc_reg_set_mem (max_gcse_regno);
+ compute_sets (f);
+
+ pass = 0;
+ initial_bytes_used = bytes_used;
+ max_pass_bytes = 0;
+ gcse_obstack_bottom = gcse_alloc (1);
+ changed = 1;
+ while (changed && pass < MAX_PASSES)
+ {
+ changed = 0;
+ if (file)
+ fprintf (file, "GCSE pass %d\n\n", pass + 1);
+
+ /* Initialize bytes_used to the space for the pred/succ lists,
+ and the reg_set_table data. */
+ bytes_used = initial_bytes_used;
+
+ /* Each pass may create new registers, so recalculate each time. */
+ max_gcse_regno = max_reg_num ();
+
+ alloc_gcse_mem (f);
+
+ changed = one_cprop_pass (f, pass + 1);
+
+ if (optimize_size)
+ changed |= one_classic_gcse_pass (f, pass + 1);
+ else
+ changed |= one_pre_gcse_pass (f, pass + 1);
+
+ if (max_pass_bytes < bytes_used)
+ max_pass_bytes = bytes_used;
+
+ free_gcse_mem ();
+
+ if (file)
+ {
+ fprintf (file, "\n");
+ fflush (file);
+ }
+ obstack_free (&gcse_obstack, gcse_obstack_bottom);
+ pass++;
+ }
+
+ /* If we're doing PRE, do one last pass of copy propagation. */
+ if (! optimize_size)
+ {
+ max_gcse_regno = max_reg_num ();
+ alloc_gcse_mem (f);
+ one_cprop_pass (f, pass + 1);
+ free_gcse_mem ();
+ }
+
+ if (file)
+ {
+ fprintf (file, "GCSE of %s: %d basic blocks, ",
+ current_function_name, n_basic_blocks);
+ fprintf (file, "%d pass%s, %d bytes\n\n",
+ pass, pass > 1 ? "es" : "", max_pass_bytes);
+ }
+
+ /* Free our obstack. */
+ obstack_free (&gcse_obstack, NULL_PTR);
+ /* Free reg_set_table. */
+ free_reg_set_mem ();
+ /* Free storage used to record predecessor/successor data. */
+ free_bb_mem ();
+ /* Free storage allocated by find_basic_blocks. */
+ free_basic_block_vars (0);
+}
+
+/* Misc. utilities. */
+
+/* Compute which modes support reg/reg copy operations. */
+
+static void
+compute_can_copy ()
+{
+ int i;
+#ifndef AVOID_CCMODE_COPIES
+ rtx reg,insn;
+#endif
+ char *free_point = (char *) oballoc (1);
+
+ bzero (can_copy_p, NUM_MACHINE_MODES);
+
+ start_sequence ();
+ for (i = 0; i < NUM_MACHINE_MODES; i++)
+ {
+ switch (GET_MODE_CLASS (i))
+ {
+ case MODE_CC :
+#ifdef AVOID_CCMODE_COPIES
+ can_copy_p[i] = 0;
+#else
+ reg = gen_rtx_REG ((enum machine_mode) i, LAST_VIRTUAL_REGISTER + 1);
+ insn = emit_insn (gen_rtx_SET (VOIDmode, reg, reg));
+ if (recog (PATTERN (insn), insn, NULL_PTR) >= 0)
+ can_copy_p[i] = 1;
+#endif
+ break;
+ default :
+ can_copy_p[i] = 1;
+ break;
+ }
+ }
+ end_sequence ();
+
+ /* Free the objects we just allocated. */
+ obfree (free_point);
+}
+
+/* Cover function to xmalloc to record bytes allocated. */
+
+static char *
+gmalloc (size)
+ unsigned int size;
+{
+ bytes_used += size;
+ return xmalloc (size);
+}
+
+/* Cover function to xrealloc.
+ We don't record the additional size since we don't know it.
+ It won't affect memory usage stats much anyway. */
+
+static char *
+grealloc (ptr, size)
+ char *ptr;
+ unsigned int size;
+{
+ return xrealloc (ptr, size);
+}
+
+/* Cover function to obstack_alloc.
+ We don't need to record the bytes allocated here since
+ obstack_chunk_alloc is set to gmalloc. */
+
+static char *
+gcse_alloc (size)
+ unsigned long size;
+{
+ return (char *) obstack_alloc (&gcse_obstack, size);
+}
+
+/* Allocate memory for the cuid mapping array,
+ and reg/memory set tracking tables.
+
+ This is called at the start of each pass. */
+
+static void
+alloc_gcse_mem (f)
+ rtx f;
+{
+ int i,n;
+ rtx insn;
+
+ /* Find the largest UID and create a mapping from UIDs to CUIDs.
+ CUIDs are like UIDs except they increase monotonically, have no gaps,
+ and only apply to real insns. */
+
+ max_uid = get_max_uid ();
+ n = (max_uid + 1) * sizeof (int);
+ uid_cuid = (int *) gmalloc (n);
+ bzero ((char *) uid_cuid, n);
+ for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
+ {
+ if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
+ INSN_CUID (insn) = i++;
+ else
+ INSN_CUID (insn) = i;
+ }
+
+ /* Create a table mapping cuids to insns. */
+
+ max_cuid = i;
+ n = (max_cuid + 1) * sizeof (rtx);
+ cuid_insn = (rtx *) gmalloc (n);
+ bzero ((char *) cuid_insn, n);
+ for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
+ {
+ if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
+ {
+ CUID_INSN (i) = insn;
+ i++;
+ }
+ }
+
+ /* Allocate vars to track sets of regs. */
+
+ reg_set_bitmap = (sbitmap) sbitmap_alloc (max_gcse_regno);
+
+ /* Allocate vars to track sets of regs, memory per block. */
+
+ reg_set_in_block = (sbitmap *) sbitmap_vector_alloc (n_basic_blocks,
+ max_gcse_regno);
+ mem_set_in_block = (char *) gmalloc (n_basic_blocks);
+}
+
+/* Free memory allocated by alloc_gcse_mem. */
+
+static void
+free_gcse_mem ()
+{
+ free (uid_cuid);
+ free (cuid_insn);
+
+ free (reg_set_bitmap);
+
+ free (reg_set_in_block);
+ free (mem_set_in_block);
+}
+
+void
+dump_cuid_table (file)
+ FILE *file;
+{
+ int i,n;
+
+ fprintf (file, "CUID table\n");
+ for (i = n = 0; i < max_cuid; i++)
+ {
+ rtx insn = CUID_INSN (i);
+ if (n != 0 && n % 10 == 0)
+ fprintf (file, "\n");
+ if (insn != NULL)
+ fprintf (file, " %d", INSN_UID (insn));
+ }
+ fprintf (file, "\n\n");
+}
+
+/* Register set information.
+
+ `reg_set_table' records where each register is set or otherwise
+ modified. */
+
+static struct obstack reg_set_obstack;
+
+static void
+alloc_reg_set_mem (n_regs)
+ int n_regs;
+{
+ int n;
+
+ reg_set_table_size = n_regs + REG_SET_TABLE_SLOP;
+ n = reg_set_table_size * sizeof (struct reg_set *);
+ reg_set_table = (struct reg_set **) gmalloc (n);
+ bzero ((char *) reg_set_table, n);
+
+ gcc_obstack_init (&reg_set_obstack);
+}
+
+static void
+free_reg_set_mem ()
+{
+ free (reg_set_table);
+ obstack_free (&reg_set_obstack, NULL_PTR);
+}
+
+/* Record REGNO in the reg_set table. */
+
+static void
+record_one_set (regno, insn)
+ int regno;
+ rtx insn;
+{
+ /* allocate a new reg_set element and link it onto the list */
+ struct reg_set *new_reg_info, *reg_info_ptr1, *reg_info_ptr2;
+
+ /* If the table isn't big enough, enlarge it. */
+ if (regno >= reg_set_table_size)
+ {
+ int new_size = regno + REG_SET_TABLE_SLOP;
+ reg_set_table = (struct reg_set **)
+ grealloc ((char *) reg_set_table,
+ new_size * sizeof (struct reg_set *));
+ bzero ((char *) (reg_set_table + reg_set_table_size),
+ (new_size - reg_set_table_size) * sizeof (struct reg_set *));
+ reg_set_table_size = new_size;
+ }
+
+ new_reg_info = (struct reg_set *) obstack_alloc (&reg_set_obstack,
+ sizeof (struct reg_set));
+ bytes_used += sizeof (struct reg_set);
+ new_reg_info->insn = insn;
+ new_reg_info->next = NULL;
+ if (reg_set_table[regno] == NULL)
+ reg_set_table[regno] = new_reg_info;
+ else
+ {
+ reg_info_ptr1 = reg_info_ptr2 = reg_set_table[regno];
+ /* ??? One could keep a "last" pointer to speed this up. */
+ while (reg_info_ptr1 != NULL)
+ {
+ reg_info_ptr2 = reg_info_ptr1;
+ reg_info_ptr1 = reg_info_ptr1->next;
+ }
+ reg_info_ptr2->next = new_reg_info;
+ }
+}
+
+/* For communication between next two functions (via note_stores). */
+static rtx record_set_insn;
+
+/* Called from compute_sets via note_stores to handle one
+ SET or CLOBBER in an insn. */
+
+static void
+record_set_info (dest, setter)
+ rtx dest, setter ATTRIBUTE_UNUSED;
+{
+ if (GET_CODE (dest) == SUBREG)
+ dest = SUBREG_REG (dest);
+
+ if (GET_CODE (dest) == REG)
+ {
+ if (REGNO (dest) >= FIRST_PSEUDO_REGISTER)
+ record_one_set (REGNO (dest), record_set_insn);
+ }
+}
+
+/* Scan the function and record each set of each pseudo-register.
+
+ This is called once, at the start of the gcse pass.
+ See the comments for `reg_set_table' for further docs. */
+
+static void
+compute_sets (f)
+ rtx f;
+{
+ rtx insn = f;
+
+ while (insn)
+ {
+ if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
+ {
+ record_set_insn = insn;
+ note_stores (PATTERN (insn), record_set_info);
+ }
+ insn = NEXT_INSN (insn);
+ }
+}
+
+/* Hash table support. */
+
+#define NEVER_SET -1
+
+/* For each register, the cuid of the first/last insn in the block to set it,
+ or zero if not set. */
+static int *reg_first_set;
+static int *reg_last_set;
+
+/* While computing "first/last set" info, this is the CUID of first/last insn
+ to set memory or zero if not set. `mem_last_set' is also used when
+ performing GCSE to record whether memory has been set since the beginning
+ of the block.
+ Note that handling of memory is very simple, we don't make any attempt
+ to optimize things (later). */
+static int mem_first_set;
+static int mem_last_set;
+
+/* Set the appropriate bit in `rd_gen' [the gen for reaching defs] if the
+ register set in this insn is not set after this insn in this block. */
+
+static void
+maybe_set_rd_gen (regno, insn)
+ int regno;
+ rtx insn;
+{
+ if (reg_last_set[regno] <= INSN_CUID (insn))
+ SET_BIT (rd_gen[BLOCK_NUM (insn)], INSN_CUID (insn));
+}
+
+/* Perform a quick check whether X, the source of a set, is something
+ we want to consider for GCSE. */
+
+static int
+want_to_gcse_p (x)
+ rtx x;
+{
+ enum rtx_code code = GET_CODE (x);
+
+ switch (code)
+ {
+ case REG:
+ case SUBREG:
+ case CONST_INT:
+ case CONST_DOUBLE:
+ case CALL:
+ return 0;
+
+ default:
+ break;
+ }
+
+ return 1;
+}
+
+/* Return non-zero if the operands of expression X are unchanged from the
+ start of INSN's basic block up to but not including INSN (if AVAIL_P == 0),
+ or from INSN to the end of INSN's basic block (if AVAIL_P != 0). */
+
+static int
+oprs_unchanged_p (x, insn, avail_p)
+ rtx x, insn;
+ int avail_p;
+{
+ int i;
+ enum rtx_code code;
+ char *fmt;
+
+ /* repeat is used to turn tail-recursion into iteration. */
+ repeat:
+
+ if (x == 0)
+ return 1;
+
+ code = GET_CODE (x);
+ switch (code)
+ {
+ case REG:
+ if (avail_p)
+ return (reg_last_set[REGNO (x)] == NEVER_SET
+ || reg_last_set[REGNO (x)] < INSN_CUID (insn));
+ else
+ return (reg_first_set[REGNO (x)] == NEVER_SET
+ || reg_first_set[REGNO (x)] >= INSN_CUID (insn));
+
+ case MEM:
+ if (avail_p)
+ {
+ if (mem_last_set != NEVER_SET
+ && mem_last_set >= INSN_CUID (insn))
+ return 0;
+ }
+ else
+ {
+ if (mem_first_set != NEVER_SET
+ && mem_first_set < INSN_CUID (insn))
+ return 0;
+ }
+ x = XEXP (x, 0);
+ goto repeat;
+
+ case PRE_DEC:
+ case PRE_INC:
+ case POST_DEC:
+ case POST_INC:
+ return 0;
+
+ case PC:
+ case CC0: /*FIXME*/
+ case CONST:
+ case CONST_INT:
+ case CONST_DOUBLE:
+ case SYMBOL_REF:
+ case LABEL_REF:
+ case ADDR_VEC:
+ case ADDR_DIFF_VEC:
+ return 1;
+
+ default:
+ break;
+ }
+
+ i = GET_RTX_LENGTH (code) - 1;
+ fmt = GET_RTX_FORMAT (code);
+ for (; i >= 0; i--)
+ {
+ if (fmt[i] == 'e')
+ {
+ rtx tem = XEXP (x, i);
+
+ /* If we are about to do the last recursive call
+ needed at this level, change it into iteration.
+ This function is called enough to be worth it. */
+ if (i == 0)
+ {
+ x = tem;
+ goto repeat;
+ }
+ if (! oprs_unchanged_p (tem, insn, avail_p))
+ return 0;
+ }
+ else if (fmt[i] == 'E')
+ {
+ int j;
+ for (j = 0; j < XVECLEN (x, i); j++)
+ {
+ if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, avail_p))
+ return 0;
+ }
+ }
+ }
+
+ return 1;
+}
+
+/* Return non-zero if the operands of expression X are unchanged from
+ the start of INSN's basic block up to but not including INSN. */
+
+static int
+oprs_anticipatable_p (x, insn)
+ rtx x, insn;
+{
+ return oprs_unchanged_p (x, insn, 0);
+}
+
+/* Return non-zero if the operands of expression X are unchanged from
+ INSN to the end of INSN's basic block. */
+
+static int
+oprs_available_p (x, insn)
+ rtx x, insn;
+{
+ return oprs_unchanged_p (x, insn, 1);
+}
+
+/* Hash expression X.
+ MODE is only used if X is a CONST_INT.
+ A boolean indicating if a volatile operand is found or if the expression
+ contains something we don't want to insert in the table is stored in
+ DO_NOT_RECORD_P.
+
+ ??? One might want to merge this with canon_hash. Later. */
+
+static unsigned int
+hash_expr (x, mode, do_not_record_p, hash_table_size)
+ rtx x;
+ enum machine_mode mode;
+ int *do_not_record_p;
+ int hash_table_size;
+{
+ unsigned int hash;
+
+ *do_not_record_p = 0;
+
+ hash = hash_expr_1 (x, mode, do_not_record_p);
+ return hash % hash_table_size;
+}
+
+/* Subroutine of hash_expr to do the actual work. */
+
+static unsigned int
+hash_expr_1 (x, mode, do_not_record_p)
+ rtx x;
+ enum machine_mode mode;
+ int *do_not_record_p;
+{
+ int i, j;
+ unsigned hash = 0;
+ enum rtx_code code;
+ char *fmt;
+
+ /* repeat is used to turn tail-recursion into iteration. */
+ repeat:
+
+ if (x == 0)
+ return hash;
+
+ code = GET_CODE (x);
+ switch (code)
+ {
+ case REG:
+ {
+ register int regno = REGNO (x);
+ hash += ((unsigned) REG << 7) + regno;
+ return hash;
+ }
+
+ case CONST_INT:
+ {
+ unsigned HOST_WIDE_INT tem = INTVAL (x);
+ hash += ((unsigned) CONST_INT << 7) + (unsigned) mode + tem;
+ return hash;
+ }
+
+ case CONST_DOUBLE:
+ /* This is like the general case, except that it only counts
+ the integers representing the constant. */
+ hash += (unsigned) code + (unsigned) GET_MODE (x);
+ if (GET_MODE (x) != VOIDmode)
+ for (i = 2; i < GET_RTX_LENGTH (CONST_DOUBLE); i++)
+ {
+ unsigned tem = XINT (x, i);
+ hash += tem;
+ }
+ else
+ hash += ((unsigned) CONST_DOUBLE_LOW (x)
+ + (unsigned) CONST_DOUBLE_HIGH (x));
+ return hash;
+
+ /* Assume there is only one rtx object for any given label. */
+ case LABEL_REF:
+ /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
+ differences and differences between each stage's debugging dumps. */
+ hash += ((unsigned) LABEL_REF << 7) + CODE_LABEL_NUMBER (XEXP (x, 0));
+ return hash;
+
+ case SYMBOL_REF:
+ {
+ /* Don't hash on the symbol's address to avoid bootstrap differences.
+ Different hash values may cause expressions to be recorded in
+ different orders and thus different registers to be used in the
+ final assembler. This also avoids differences in the dump files
+ between various stages. */
+ unsigned int h = 0;
+ unsigned char *p = (unsigned char *) XSTR (x, 0);
+ while (*p)
+ h += (h << 7) + *p++; /* ??? revisit */
+ hash += ((unsigned) SYMBOL_REF << 7) + h;
+ return hash;
+ }
+
+ case MEM:
+ if (MEM_VOLATILE_P (x))
+ {
+ *do_not_record_p = 1;
+ return 0;
+ }
+ hash += (unsigned) MEM;
+ x = XEXP (x, 0);
+ goto repeat;
+
+ case PRE_DEC:
+ case PRE_INC:
+ case POST_DEC:
+ case POST_INC:
+ case PC:
+ case CC0:
+ case CALL:
+ case UNSPEC_VOLATILE:
+ *do_not_record_p = 1;
+ return 0;
+
+ case ASM_OPERANDS:
+ if (MEM_VOLATILE_P (x))
+ {
+ *do_not_record_p = 1;
+ return 0;
+ }
+
+ default:
+ break;
+ }
+
+ i = GET_RTX_LENGTH (code) - 1;
+ hash += (unsigned) code + (unsigned) GET_MODE (x);
+ fmt = GET_RTX_FORMAT (code);
+ for (; i >= 0; i--)
+ {
+ if (fmt[i] == 'e')
+ {
+ rtx tem = XEXP (x, i);
+
+ /* If we are about to do the last recursive call
+ needed at this level, change it into iteration.
+ This function is called enough to be worth it. */
+ if (i == 0)
+ {
+ x = tem;
+ goto repeat;
+ }
+ hash += hash_expr_1 (tem, 0, do_not_record_p);
+ if (*do_not_record_p)
+ return 0;
+ }
+ else if (fmt[i] == 'E')
+ for (j = 0; j < XVECLEN (x, i); j++)
+ {
+ hash += hash_expr_1 (XVECEXP (x, i, j), 0, do_not_record_p);
+ if (*do_not_record_p)
+ return 0;
+ }
+ else if (fmt[i] == 's')
+ {
+ register unsigned char *p = (unsigned char *) XSTR (x, i);
+ if (p)
+ while (*p)
+ hash += *p++;
+ }
+ else if (fmt[i] == 'i')
+ {
+ register unsigned tem = XINT (x, i);
+ hash += tem;
+ }
+ else
+ abort ();
+ }
+
+ return hash;
+}
+
+/* Hash a set of register REGNO.
+
+ Sets are hashed on the register that is set.
+ This simplifies the PRE copy propagation code.
+
+ ??? May need to make things more elaborate. Later, as necessary. */
+
+static unsigned int
+hash_set (regno, hash_table_size)
+ int regno;
+ int hash_table_size;
+{
+ unsigned int hash;
+
+ hash = regno;
+ return hash % hash_table_size;
+}
+
+/* Return non-zero if exp1 is equivalent to exp2.
+ ??? Borrowed from cse.c. Might want to remerge with cse.c. Later. */
+
+static int
+expr_equiv_p (x, y)
+ rtx x, y;
+{
+ register int i, j;
+ register enum rtx_code code;
+ register char *fmt;
+
+ if (x == y)
+ return 1;
+ if (x == 0 || y == 0)
+ return x == y;
+
+ code = GET_CODE (x);
+ if (code != GET_CODE (y))
+ return 0;
+
+ /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
+ if (GET_MODE (x) != GET_MODE (y))
+ return 0;
+
+ switch (code)
+ {
+ case PC:
+ case CC0:
+ return x == y;
+
+ case CONST_INT:
+ return INTVAL (x) == INTVAL (y);
+
+ case LABEL_REF:
+ return XEXP (x, 0) == XEXP (y, 0);
+
+ case SYMBOL_REF:
+ return XSTR (x, 0) == XSTR (y, 0);
+
+ case REG:
+ return REGNO (x) == REGNO (y);
+
+ /* For commutative operations, check both orders. */
+ case PLUS:
+ case MULT:
+ case AND:
+ case IOR:
+ case XOR:
+ case NE:
+ case EQ:
+ return ((expr_equiv_p (XEXP (x, 0), XEXP (y, 0))
+ && expr_equiv_p (XEXP (x, 1), XEXP (y, 1)))
+ || (expr_equiv_p (XEXP (x, 0), XEXP (y, 1))
+ && expr_equiv_p (XEXP (x, 1), XEXP (y, 0))));
+
+ default:
+ break;
+ }
+
+ /* Compare the elements. If any pair of corresponding elements
+ fail to match, return 0 for the whole thing. */
+
+ fmt = GET_RTX_FORMAT (code);
+ for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
+ {
+ switch (fmt[i])
+ {
+ case 'e':
+ if (! expr_equiv_p (XEXP (x, i), XEXP (y, i)))
+ return 0;
+ break;
+
+ case 'E':
+ if (XVECLEN (x, i) != XVECLEN (y, i))
+ return 0;
+ for (j = 0; j < XVECLEN (x, i); j++)
+ if (! expr_equiv_p (XVECEXP (x, i, j), XVECEXP (y, i, j)))
+ return 0;
+ break;
+
+ case 's':
+ if (strcmp (XSTR (x, i), XSTR (y, i)))
+ return 0;
+ break;
+
+ case 'i':
+ if (XINT (x, i) != XINT (y, i))
+ return 0;
+ break;
+
+ case 'w':
+ if (XWINT (x, i) != XWINT (y, i))
+ return 0;
+ break;
+
+ case '0':
+ break;
+
+ default:
+ abort ();
+ }
+ }
+
+ return 1;
+}
+
+/* Insert expression X in INSN in the hash table.
+ If it is already present, record it as the last occurrence in INSN's
+ basic block.
+
+ MODE is the mode of the value X is being stored into.
+ It is only used if X is a CONST_INT.
+
+ ANTIC_P is non-zero if X is an anticipatable expression.
+ AVAIL_P is non-zero if X is an available expression. */
+
+static void
+insert_expr_in_table (x, mode, insn, antic_p, avail_p)
+ rtx x;
+ enum machine_mode mode;
+ rtx insn;
+ int antic_p, avail_p;
+{
+ int found, do_not_record_p;
+ unsigned int hash;
+ struct expr *cur_expr, *last_expr = NULL;
+ struct occr *antic_occr, *avail_occr;
+ struct occr *last_occr = NULL;
+
+ hash = hash_expr (x, mode, &do_not_record_p, expr_hash_table_size);
+
+ /* Do not insert expression in table if it contains volatile operands,
+ or if hash_expr determines the expression is something we don't want
+ to or can't handle. */
+ if (do_not_record_p)
+ return;
+
+ cur_expr = expr_hash_table[hash];
+ found = 0;
+
+ while (cur_expr && ! (found = expr_equiv_p (cur_expr->expr, x)))
+ {
+ /* If the expression isn't found, save a pointer to the end of
+ the list. */
+ last_expr = cur_expr;
+ cur_expr = cur_expr->next_same_hash;
+ }
+
+ if (! found)
+ {
+ cur_expr = (struct expr *) gcse_alloc (sizeof (struct expr));
+ bytes_used += sizeof (struct expr);
+ if (expr_hash_table[hash] == NULL)
+ {
+ /* This is the first pattern that hashed to this index. */
+ expr_hash_table[hash] = cur_expr;
+ }
+ else
+ {
+ /* Add EXPR to end of this hash chain. */
+ last_expr->next_same_hash = cur_expr;
+ }
+ /* Set the fields of the expr element. */
+ cur_expr->expr = x;
+ cur_expr->bitmap_index = n_exprs++;
+ cur_expr->next_same_hash = NULL;
+ cur_expr->antic_occr = NULL;
+ cur_expr->avail_occr = NULL;
+ }
+
+ /* Now record the occurrence(s). */
+
+ if (antic_p)
+ {
+ antic_occr = cur_expr->antic_occr;
+
+ /* Search for another occurrence in the same basic block. */
+ while (antic_occr && BLOCK_NUM (antic_occr->insn) != BLOCK_NUM (insn))
+ {
+ /* If an occurrence isn't found, save a pointer to the end of
+ the list. */
+ last_occr = antic_occr;
+ antic_occr = antic_occr->next;
+ }
+
+ if (antic_occr)
+ {
+ /* Found another instance of the expression in the same basic block.
+ Prefer the currently recorded one. We want the first one in the
+ block and the block is scanned from start to end. */
+ ; /* nothing to do */
+ }
+ else
+ {
+ /* First occurrence of this expression in this basic block. */
+ antic_occr = (struct occr *) gcse_alloc (sizeof (struct occr));
+ bytes_used += sizeof (struct occr);
+ /* First occurrence of this expression in any block? */
+ if (cur_expr->antic_occr == NULL)
+ cur_expr->antic_occr = antic_occr;
+ else
+ last_occr->next = antic_occr;
+ antic_occr->insn = insn;
+ antic_occr->next = NULL;
+ }
+ }
+
+ if (avail_p)
+ {
+ avail_occr = cur_expr->avail_occr;
+
+ /* Search for another occurrence in the same basic block. */
+ while (avail_occr && BLOCK_NUM (avail_occr->insn) != BLOCK_NUM (insn))
+ {
+ /* If an occurrence isn't found, save a pointer to the end of
+ the list. */
+ last_occr = avail_occr;
+ avail_occr = avail_occr->next;
+ }
+
+ if (avail_occr)
+ {
+ /* Found another instance of the expression in the same basic block.
+ Prefer this occurrence to the currently recorded one. We want
+ the last one in the block and the block is scanned from start
+ to end. */
+ avail_occr->insn = insn;
+ }
+ else
+ {
+ /* First occurrence of this expression in this basic block. */
+ avail_occr = (struct occr *) gcse_alloc (sizeof (struct occr));
+ bytes_used += sizeof (struct occr);
+ /* First occurrence of this expression in any block? */
+ if (cur_expr->avail_occr == NULL)
+ cur_expr->avail_occr = avail_occr;
+ else
+ last_occr->next = avail_occr;
+ avail_occr->insn = insn;
+ avail_occr->next = NULL;
+ }
+ }
+}
+
+/* Insert pattern X in INSN in the hash table.
+ X is a SET of a reg to either another reg or a constant.
+ If it is already present, record it as the last occurrence in INSN's
+ basic block. */
+
+static void
+insert_set_in_table (x, insn)
+ rtx x;
+ rtx insn;
+{
+ int found;
+ unsigned int hash;
+ struct expr *cur_expr, *last_expr = NULL;
+ struct occr *cur_occr, *last_occr = NULL;
+
+ if (GET_CODE (x) != SET
+ || GET_CODE (SET_DEST (x)) != REG)
+ abort ();
+
+ hash = hash_set (REGNO (SET_DEST (x)), set_hash_table_size);
+
+ cur_expr = set_hash_table[hash];
+ found = 0;
+
+ while (cur_expr && ! (found = expr_equiv_p (cur_expr->expr, x)))
+ {
+ /* If the expression isn't found, save a pointer to the end of
+ the list. */
+ last_expr = cur_expr;
+ cur_expr = cur_expr->next_same_hash;
+ }
+
+ if (! found)
+ {
+ cur_expr = (struct expr *) gcse_alloc (sizeof (struct expr));
+ bytes_used += sizeof (struct expr);
+ if (set_hash_table[hash] == NULL)
+ {
+ /* This is the first pattern that hashed to this index. */
+ set_hash_table[hash] = cur_expr;
+ }
+ else
+ {
+ /* Add EXPR to end of this hash chain. */
+ last_expr->next_same_hash = cur_expr;
+ }
+ /* Set the fields of the expr element.
+ We must copy X because it can be modified when copy propagation is
+ performed on its operands. */
+ /* ??? Should this go in a different obstack? */
+ cur_expr->expr = copy_rtx (x);
+ cur_expr->bitmap_index = n_sets++;
+ cur_expr->next_same_hash = NULL;
+ cur_expr->antic_occr = NULL;
+ cur_expr->avail_occr = NULL;
+ }
+
+ /* Now record the occurrence. */
+
+ cur_occr = cur_expr->avail_occr;
+
+ /* Search for another occurrence in the same basic block. */
+ while (cur_occr && BLOCK_NUM (cur_occr->insn) != BLOCK_NUM (insn))
+ {
+ /* If an occurrence isn't found, save a pointer to the end of
+ the list. */
+ last_occr = cur_occr;
+ cur_occr = cur_occr->next;
+ }
+
+ if (cur_occr)
+ {
+ /* Found another instance of the expression in the same basic block.
+ Prefer this occurrence to the currently recorded one. We want
+ the last one in the block and the block is scanned from start
+ to end. */
+ cur_occr->insn = insn;
+ }
+ else
+ {
+ /* First occurrence of this expression in this basic block. */
+ cur_occr = (struct occr *) gcse_alloc (sizeof (struct occr));
+ bytes_used += sizeof (struct occr);
+ /* First occurrence of this expression in any block? */
+ if (cur_expr->avail_occr == NULL)
+ cur_expr->avail_occr = cur_occr;
+ else
+ last_occr->next = cur_occr;
+ cur_occr->insn = insn;
+ cur_occr->next = NULL;
+ }
+}
+
+/* Scan pattern PAT of INSN and add an entry to the hash table.
+ If SET_P is non-zero, this is for the assignment hash table,
+ otherwise it is for the expression hash table. */
+
+static void
+hash_scan_set (pat, insn, set_p)
+ rtx pat, insn;
+ int set_p;
+{
+ rtx src = SET_SRC (pat);
+ rtx dest = SET_DEST (pat);
+
+ if (GET_CODE (src) == CALL)
+ hash_scan_call (src, insn);
+
+ if (GET_CODE (dest) == REG)
+ {
+ int regno = REGNO (dest);
+ rtx tmp;
+
+ /* Only record sets of pseudo-regs in the hash table. */
+ if (! set_p
+ && regno >= FIRST_PSEUDO_REGISTER
+ /* Don't GCSE something if we can't do a reg/reg copy. */
+ && can_copy_p [GET_MODE (dest)]
+ /* Is SET_SRC something we want to gcse? */
+ && want_to_gcse_p (src))
+ {
+ /* An expression is not anticipatable if its operands are
+ modified before this insn. */
+ int antic_p = ! optimize_size && oprs_anticipatable_p (src, insn);
+ /* An expression is not available if its operands are
+ subsequently modified, including this insn. */
+ int avail_p = oprs_available_p (src, insn);
+ insert_expr_in_table (src, GET_MODE (dest), insn, antic_p, avail_p);
+ }
+ /* Record sets for constant/copy propagation. */
+ else if (set_p
+ && regno >= FIRST_PSEUDO_REGISTER
+ && ((GET_CODE (src) == REG
+ && REGNO (src) >= FIRST_PSEUDO_REGISTER
+ && can_copy_p [GET_MODE (dest)])
+ /* ??? CONST_INT:wip */
+ || GET_CODE (src) == CONST_INT)
+ /* A copy is not available if its src or dest is subsequently
+ modified. Here we want to search from INSN+1 on, but
+ oprs_available_p searches from INSN on. */
+ && (insn == BLOCK_END (BLOCK_NUM (insn))
+ || ((tmp = next_nonnote_insn (insn)) != NULL_RTX
+ && oprs_available_p (pat, tmp))))
+ insert_set_in_table (pat, insn);
+ }
+
+ /* Check if first/last set in this block for classic gcse,
+ but not for copy/constant propagation. */
+ if (optimize_size && !set_p)
+
+ {
+ rtx dest = SET_DEST (pat);
+
+ while (GET_CODE (dest) == SUBREG
+ || GET_CODE (dest) == ZERO_EXTRACT
+ || GET_CODE (dest) == SIGN_EXTRACT
+ || GET_CODE (dest) == STRICT_LOW_PART)
+ dest = XEXP (dest, 0);
+ if (GET_CODE (dest) == REG)
+ maybe_set_rd_gen (REGNO (dest), insn);
+ }
+}
+
+static void
+hash_scan_clobber (x, insn)
+ rtx x ATTRIBUTE_UNUSED, insn ATTRIBUTE_UNUSED;
+{
+ /* Currently nothing to do. */
+}
+
+static void
+hash_scan_call (x, insn)
+ rtx x ATTRIBUTE_UNUSED, insn ATTRIBUTE_UNUSED;
+{
+ /* Currently nothing to do. */
+}
+
+/* Process INSN and add hash table entries as appropriate.
+
+ Only available expressions that set a single pseudo-reg are recorded.
+
+ Single sets in a PARALLEL could be handled, but it's an extra complication
+ that isn't dealt with right now. The trick is handling the CLOBBERs that
+ are also in the PARALLEL. Later.
+
+ If SET_P is non-zero, this is for the assignment hash table,
+ otherwise it is for the expression hash table.
+ If IN_LIBCALL_BLOCK nonzero, we are in a libcall block, and should
+ not record any expressions. */
+
+static void
+hash_scan_insn (insn, set_p, in_libcall_block)
+ rtx insn;
+ int set_p;
+ int in_libcall_block;
+{
+ rtx pat = PATTERN (insn);
+
+ /* Pick out the sets of INSN and for other forms of instructions record
+ what's been modified. */
+
+ if (GET_CODE (pat) == SET && ! in_libcall_block)
+ hash_scan_set (pat, insn, set_p);
+ else if (GET_CODE (pat) == PARALLEL)
+ {
+ int i;
+
+ for (i = 0; i < XVECLEN (pat, 0); i++)
+ {
+ rtx x = XVECEXP (pat, 0, i);
+
+ if (GET_CODE (x) == SET)
+ {
+ if (GET_CODE (SET_SRC (x)) == CALL)
+ hash_scan_call (SET_SRC (x), insn);
+
+ /* Check if first/last set in this block for classic
+ gcse, but not for constant/copy propagation. */
+ if (optimize_size && !set_p)
+ {
+ rtx dest = SET_DEST (x);
+
+ while (GET_CODE (dest) == SUBREG
+ || GET_CODE (dest) == ZERO_EXTRACT
+ || GET_CODE (dest) == SIGN_EXTRACT
+ || GET_CODE (dest) == STRICT_LOW_PART)
+ dest = XEXP (dest, 0);
+ if (GET_CODE (dest) == REG)
+ maybe_set_rd_gen (REGNO (dest), insn);
+ }
+ }
+ else if (GET_CODE (x) == CLOBBER)
+ hash_scan_clobber (x, insn);
+ else if (GET_CODE (x) == CALL)
+ hash_scan_call (x, insn);
+ }
+ }
+ else if (GET_CODE (pat) == CLOBBER)
+ hash_scan_clobber (pat, insn);
+ else if (GET_CODE (pat) == CALL)
+ hash_scan_call (pat, insn);
+}
+
+static void
+dump_hash_table (file, name, table, table_size, total_size)
+ FILE *file;
+ char *name;
+ struct expr **table;
+ int table_size, total_size;
+{
+ int i;
+ /* Flattened out table, so it's printed in proper order. */
+ struct expr **flat_table = (struct expr **) alloca (total_size * sizeof (struct expr *));
+ unsigned int *hash_val = (unsigned int *) alloca (total_size * sizeof (unsigned int));
+
+ bzero ((char *) flat_table, total_size * sizeof (struct expr *));
+ for (i = 0; i < table_size; i++)
+ {
+ struct expr *expr;
+
+ for (expr = table[i]; expr != NULL; expr = expr->next_same_hash)
+ {
+ flat_table[expr->bitmap_index] = expr;
+ hash_val[expr->bitmap_index] = i;
+ }
+ }
+
+ fprintf (file, "%s hash table (%d buckets, %d entries)\n",
+ name, table_size, total_size);
+
+ for (i = 0; i < total_size; i++)
+ {
+ struct expr *expr = flat_table[i];
+
+ fprintf (file, "Index %d (hash value %d)\n ",
+ expr->bitmap_index, hash_val[i]);
+ print_rtl (file, expr->expr);
+ fprintf (file, "\n");
+ }
+
+ fprintf (file, "\n");
+}
+
+/* Record register first/last/block set information for REGNO in INSN.
+ reg_first_set records the first place in the block where the register
+ is set and is used to compute "anticipatability".
+ reg_last_set records the last place in the block where the register
+ is set and is used to compute "availability".
+ reg_set_in_block records whether the register is set in the block
+ and is used to compute "transparency". */
+
+static void
+record_last_reg_set_info (insn, regno)
+ rtx insn;
+ int regno;
+{
+ if (reg_first_set[regno] == NEVER_SET)
+ reg_first_set[regno] = INSN_CUID (insn);
+ reg_last_set[regno] = INSN_CUID (insn);
+ SET_BIT (reg_set_in_block[BLOCK_NUM (insn)], regno);
+}
+
+/* Record memory first/last/block set information for INSN. */
+
+static void
+record_last_mem_set_info (insn)
+ rtx insn;
+{
+ if (mem_first_set == NEVER_SET)
+ mem_first_set = INSN_CUID (insn);
+ mem_last_set = INSN_CUID (insn);
+ mem_set_in_block[BLOCK_NUM (insn)] = 1;
+}
+
+/* Used for communicating between next two routines. */
+static rtx last_set_insn;
+
+/* Called from compute_hash_table via note_stores to handle one
+ SET or CLOBBER in an insn. */
+
+static void
+record_last_set_info (dest, setter)
+ rtx dest, setter ATTRIBUTE_UNUSED;
+{
+ if (GET_CODE (dest) == SUBREG)
+ dest = SUBREG_REG (dest);
+
+ if (GET_CODE (dest) == REG)
+ record_last_reg_set_info (last_set_insn, REGNO (dest));
+ else if (GET_CODE (dest) == MEM
+ /* Ignore pushes, they clobber nothing. */
+ && ! push_operand (dest, GET_MODE (dest)))
+ record_last_mem_set_info (last_set_insn);
+}
+
+/* Top level function to create an expression or assignment hash table.
+
+ Expression entries are placed in the hash table if
+ - they are of the form (set (pseudo-reg) src),
+ - src is something we want to perform GCSE on,
+ - none of the operands are subsequently modified in the block
+
+ Assignment entries are placed in the hash table if
+ - they are of the form (set (pseudo-reg) src),
+ - src is something we want to perform const/copy propagation on,
+ - none of the operands or target are subsequently modified in the block
+ Currently src must be a pseudo-reg or a const_int.
+
+ F is the first insn.
+ SET_P is non-zero for computing the assignment hash table. */
+
+static void
+compute_hash_table (f, set_p)
+ rtx f ATTRIBUTE_UNUSED;
+ int set_p;
+{
+ int bb;
+
+ /* While we compute the hash table we also compute a bit array of which
+ registers are set in which blocks.
+ We also compute which blocks set memory, in the absence of aliasing
+ support [which is TODO].
+ ??? This isn't needed during const/copy propagation, but it's cheap to
+ compute. Later. */
+ sbitmap_vector_zero (reg_set_in_block, n_basic_blocks);
+ bzero ((char *) mem_set_in_block, n_basic_blocks);
+
+ /* Some working arrays used to track first and last set in each block. */
+ /* ??? One could use alloca here, but at some size a threshold is crossed
+ beyond which one should use malloc. Are we at that threshold here? */
+ reg_first_set = (int *) gmalloc (max_gcse_regno * sizeof (int));
+ reg_last_set = (int *) gmalloc (max_gcse_regno * sizeof (int));
+
+ for (bb = 0; bb < n_basic_blocks; bb++)
+ {
+ rtx insn;
+ int regno;
+ int in_libcall_block;
+ int i;
+
+ /* First pass over the instructions records information used to
+ determine when registers and memory are first and last set.
+ ??? The mem_set_in_block and hard-reg reg_set_in_block computation
+ could be moved to compute_sets since they currently don't change. */
+
+ for (i = 0; i < max_gcse_regno; i++)
+ reg_first_set[i] = reg_last_set[i] = NEVER_SET;
+ mem_first_set = NEVER_SET;
+ mem_last_set = NEVER_SET;
+
+ for (insn = basic_block_head[bb];
+ insn && insn != NEXT_INSN (basic_block_end[bb]);
+ insn = NEXT_INSN (insn))
+ {
+#ifdef NON_SAVING_SETJMP
+ if (NON_SAVING_SETJMP && GET_CODE (insn) == NOTE
+ && NOTE_LINE_NUMBER (insn) == NOTE_INSN_SETJMP)
+ {
+ for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
+ record_last_reg_set_info (insn, regno);
+ continue;
+ }
+#endif
+
+ if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
+ continue;
+
+ if (GET_CODE (insn) == CALL_INSN)
+ {
+ for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
+ if (call_used_regs[regno])
+ record_last_reg_set_info (insn, regno);
+ if (! CONST_CALL_P (insn))
+ record_last_mem_set_info (insn);
+ }
+
+ last_set_insn = insn;
+ note_stores (PATTERN (insn), record_last_set_info);
+ }
+
+ /* The next pass builds the hash table. */
+
+ for (insn = basic_block_head[bb], in_libcall_block = 0;
+ insn && insn != NEXT_INSN (basic_block_end[bb]);
+ insn = NEXT_INSN (insn))
+ {
+ if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
+ {
+ if (find_reg_note (insn, REG_LIBCALL, NULL_RTX))
+ in_libcall_block = 1;
+ else if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
+ in_libcall_block = 0;
+ hash_scan_insn (insn, set_p, in_libcall_block);
+ }
+ }
+ }
+
+ free (reg_first_set);
+ free (reg_last_set);
+ /* Catch bugs early. */
+ reg_first_set = reg_last_set = 0;
+}
+
+/* Allocate space for the set hash table.
+ N_INSNS is the number of instructions in the function.
+ It is used to determine the number of buckets to use. */
+
+static void
+alloc_set_hash_table (n_insns)
+ int n_insns;
+{
+ int n;
+
+ set_hash_table_size = n_insns / 4;
+ if (set_hash_table_size < 11)
+ set_hash_table_size = 11;
+ /* Attempt to maintain efficient use of hash table.
+ Making it an odd number is simplest for now.
+ ??? Later take some measurements. */
+ set_hash_table_size |= 1;
+ n = set_hash_table_size * sizeof (struct expr *);
+ set_hash_table = (struct expr **) gmalloc (n);
+}
+
+/* Free things allocated by alloc_set_hash_table. */
+
+static void
+free_set_hash_table ()
+{
+ free (set_hash_table);
+}
+
+/* Compute the hash table for doing copy/const propagation. */
+
+static void
+compute_set_hash_table (f)
+ rtx f;
+{
+ /* Initialize count of number of entries in hash table. */
+ n_sets = 0;
+ bzero ((char *) set_hash_table, set_hash_table_size * sizeof (struct expr *));
+
+ compute_hash_table (f, 1);
+}
+
+/* Allocate space for the expression hash table.
+ N_INSNS is the number of instructions in the function.
+ It is used to determine the number of buckets to use. */
+
+static void
+alloc_expr_hash_table (n_insns)
+ int n_insns;
+{
+ int n;
+
+ expr_hash_table_size = n_insns / 2;
+ /* Make sure the amount is usable. */
+ if (expr_hash_table_size < 11)
+ expr_hash_table_size = 11;
+ /* Attempt to maintain efficient use of hash table.
+ Making it an odd number is simplest for now.
+ ??? Later take some measurements. */
+ expr_hash_table_size |= 1;
+ n = expr_hash_table_size * sizeof (struct expr *);
+ expr_hash_table = (struct expr **) gmalloc (n);
+}
+
+/* Free things allocated by alloc_expr_hash_table. */
+
+static void
+free_expr_hash_table ()
+{
+ free (expr_hash_table);
+}
+
+/* Compute the hash table for doing GCSE. */
+
+static void
+compute_expr_hash_table (f)
+ rtx f;
+{
+ /* Initialize count of number of entries in hash table. */
+ n_exprs = 0;
+ bzero ((char *) expr_hash_table, expr_hash_table_size * sizeof (struct expr *));
+
+ compute_hash_table (f, 0);
+}
+
+/* Expression tracking support. */
+
+/* Lookup pattern PAT in the expression table.
+ The result is a pointer to the table entry, or NULL if not found. */
+
+static struct expr *
+lookup_expr (pat)
+ rtx pat;
+{
+ int do_not_record_p;
+ unsigned int hash = hash_expr (pat, GET_MODE (pat), &do_not_record_p,
+ expr_hash_table_size);
+ struct expr *expr;
+
+ if (do_not_record_p)
+ return NULL;
+
+ expr = expr_hash_table[hash];
+
+ while (expr && ! expr_equiv_p (expr->expr, pat))
+ expr = expr->next_same_hash;
+
+ return expr;
+}
+
+/* Lookup REGNO in the set table.
+ If PAT is non-NULL look for the entry that matches it, otherwise return
+ the first entry for REGNO.
+ The result is a pointer to the table entry, or NULL if not found. */
+
+static struct expr *
+lookup_set (regno, pat)
+ int regno;
+ rtx pat;
+{
+ unsigned int hash = hash_set (regno, set_hash_table_size);
+ struct expr *expr;
+
+ expr = set_hash_table[hash];
+
+ if (pat)
+ {
+ while (expr && ! expr_equiv_p (expr->expr, pat))
+ expr = expr->next_same_hash;
+ }
+ else
+ {
+ while (expr && REGNO (SET_DEST (expr->expr)) != regno)
+ expr = expr->next_same_hash;
+ }
+
+ return expr;
+}
+
+/* Return the next entry for REGNO in list EXPR. */
+
+static struct expr *
+next_set (regno, expr)
+ int regno;
+ struct expr *expr;
+{
+ do
+ expr = expr->next_same_hash;
+ while (expr && REGNO (SET_DEST (expr->expr)) != regno);
+ return expr;
+}
+
+/* Reset tables used to keep track of what's still available [since the
+ start of the block]. */
+
+static void
+reset_opr_set_tables ()
+{
+ /* Maintain a bitmap of which regs have been set since beginning of
+ the block. */
+ sbitmap_zero (reg_set_bitmap);
+ /* Also keep a record of the last instruction to modify memory.
+ For now this is very trivial, we only record whether any memory
+ location has been modified. */
+ mem_last_set = 0;
+}
+
+/* Return non-zero if the operands of X are not set before INSN in
+ INSN's basic block. */
+
+static int
+oprs_not_set_p (x, insn)
+ rtx x, insn;
+{
+ int i;
+ enum rtx_code code;
+ char *fmt;
+
+ /* repeat is used to turn tail-recursion into iteration. */
+repeat:
+
+ if (x == 0)
+ return 1;
+
+ code = GET_CODE (x);
+ switch (code)
+ {
+ case PC:
+ case CC0:
+ case CONST:
+ case CONST_INT:
+ case CONST_DOUBLE:
+ case SYMBOL_REF:
+ case LABEL_REF:
+ case ADDR_VEC:
+ case ADDR_DIFF_VEC:
+ return 1;
+
+ case MEM:
+ if (mem_last_set != 0)
+ return 0;
+ x = XEXP (x, 0);
+ goto repeat;
+
+ case REG:
+ return ! TEST_BIT (reg_set_bitmap, REGNO (x));
+
+ default:
+ break;
+ }
+
+ fmt = GET_RTX_FORMAT (code);
+ for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
+ {
+ if (fmt[i] == 'e')
+ {
+ int not_set_p;
+ /* If we are about to do the last recursive call
+ needed at this level, change it into iteration.
+ This function is called enough to be worth it. */
+ if (i == 0)
+ {
+ x = XEXP (x, 0);
+ goto repeat;
+ }
+ not_set_p = oprs_not_set_p (XEXP (x, i), insn);
+ if (! not_set_p)
+ return 0;
+ }
+ else if (fmt[i] == 'E')
+ {
+ int j;
+ for (j = 0; j < XVECLEN (x, i); j++)
+ {
+ int not_set_p = oprs_not_set_p (XVECEXP (x, i, j), insn);
+ if (! not_set_p)
+ return 0;
+ }
+ }
+ }
+
+ return 1;
+}
+
+/* Mark things set by a CALL. */
+
+static void
+mark_call (pat, insn)
+ rtx pat ATTRIBUTE_UNUSED, insn;
+{
+ mem_last_set = INSN_CUID (insn);
+}
+
+/* Mark things set by a SET. */
+
+static void
+mark_set (pat, insn)
+ rtx pat, insn;
+{
+ rtx dest = SET_DEST (pat);
+
+ while (GET_CODE (dest) == SUBREG
+ || GET_CODE (dest) == ZERO_EXTRACT
+ || GET_CODE (dest) == SIGN_EXTRACT
+ || GET_CODE (dest) == STRICT_LOW_PART)
+ dest = XEXP (dest, 0);
+
+ if (GET_CODE (dest) == REG)
+ SET_BIT (reg_set_bitmap, REGNO (dest));
+ else if (GET_CODE (dest) == MEM)
+ mem_last_set = INSN_CUID (insn);
+
+ if (GET_CODE (SET_SRC (pat)) == CALL)
+ mark_call (SET_SRC (pat), insn);
+}
+
+/* Record things set by a CLOBBER. */
+
+static void
+mark_clobber (pat, insn)
+ rtx pat, insn;
+{
+ rtx clob = XEXP (pat, 0);
+
+ while (GET_CODE (clob) == SUBREG || GET_CODE (clob) == STRICT_LOW_PART)
+ clob = XEXP (clob, 0);
+
+ if (GET_CODE (clob) == REG)
+ SET_BIT (reg_set_bitmap, REGNO (clob));
+ else
+ mem_last_set = INSN_CUID (insn);
+}
+
+/* Record things set by INSN.
+ This data is used by oprs_not_set_p. */
+
+static void
+mark_oprs_set (insn)
+ rtx insn;
+{
+ rtx pat = PATTERN (insn);
+
+ if (GET_CODE (pat) == SET)
+ mark_set (pat, insn);
+ else if (GET_CODE (pat) == PARALLEL)
+ {
+ int i;
+
+ for (i = 0; i < XVECLEN (pat, 0); i++)
+ {
+ rtx x = XVECEXP (pat, 0, i);
+
+ if (GET_CODE (x) == SET)
+ mark_set (x, insn);
+ else if (GET_CODE (x) == CLOBBER)
+ mark_clobber (x, insn);
+ else if (GET_CODE (x) == CALL)
+ mark_call (x, insn);
+ }
+ }
+ else if (GET_CODE (pat) == CLOBBER)
+ mark_clobber (pat, insn);
+ else if (GET_CODE (pat) == CALL)
+ mark_call (pat, insn);
+}
+
+/* Classic GCSE reaching definition support. */
+
+/* Allocate reaching def variables. */
+
+static void
+alloc_rd_mem (n_blocks, n_insns)
+ int n_blocks, n_insns;
+{
+ rd_kill = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_insns);
+ sbitmap_vector_zero (rd_kill, n_basic_blocks);
+
+ rd_gen = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_insns);
+ sbitmap_vector_zero (rd_gen, n_basic_blocks);
+
+ reaching_defs = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_insns);
+ sbitmap_vector_zero (reaching_defs, n_basic_blocks);
+
+ rd_out = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_insns);
+ sbitmap_vector_zero (rd_out, n_basic_blocks);
+}
+
+/* Free reaching def variables. */
+
+static void
+free_rd_mem ()
+{
+ free (rd_kill);
+ free (rd_gen);
+ free (reaching_defs);
+ free (rd_out);
+}
+
+/* Add INSN to the kills of BB.
+ REGNO, set in BB, is killed by INSN. */
+
+static void
+handle_rd_kill_set (insn, regno, bb)
+ rtx insn;
+ int regno, bb;
+{
+ struct reg_set *this_reg = reg_set_table[regno];
+
+ while (this_reg)
+ {
+ if (BLOCK_NUM (this_reg->insn) != BLOCK_NUM (insn))
+ SET_BIT (rd_kill[bb], INSN_CUID (this_reg->insn));
+ this_reg = this_reg->next;
+ }
+}
+
+void
+dump_rd_table (file, title, bmap)
+ FILE *file;
+ char *title;
+ sbitmap *bmap;
+{
+ int bb,cuid,i,j,n;
+
+ fprintf (file, "%s\n", title);
+ for (bb = 0; bb < n_basic_blocks; bb++)
+ {
+ fprintf (file, "BB %d\n", bb);
+ dump_sbitmap (file, bmap[bb]);
+ for (i = n = cuid = 0; i < bmap[bb]->size; i++)
+ {
+ for (j = 0; j < SBITMAP_ELT_BITS; j++, cuid++)
+ {
+ if ((bmap[bb]->elms[i] & (1 << j)) != 0)
+ {
+ if (n % 10 == 0)
+ fprintf (file, " ");
+ fprintf (file, " %d", INSN_UID (CUID_INSN (cuid)));
+ n++;
+ }
+ }
+ }
+ if (n != 0)
+ fprintf (file, "\n");
+ }
+ fprintf (file, "\n");
+}
+
+/* Compute the set of kill's for reaching definitions. */
+
+static void
+compute_kill_rd ()
+{
+ int bb,cuid;
+
+ /* For each block
+ For each set bit in `gen' of the block (i.e each insn which
+ generates a definition in the block)
+ Call the reg set by the insn corresponding to that bit regx
+ Look at the linked list starting at reg_set_table[regx]
+ For each setting of regx in the linked list, which is not in
+ this block
+ Set the bit in `kill' corresponding to that insn
+ */
+
+ for (bb = 0; bb < n_basic_blocks; bb++)
+ {
+ for (cuid = 0; cuid < max_cuid; cuid++)
+ {
+ if (TEST_BIT (rd_gen[bb], cuid))
+ {
+ rtx insn = CUID_INSN (cuid);
+ rtx pat = PATTERN (insn);
+
+ if (GET_CODE (insn) == CALL_INSN)
+ {
+ int regno;
+
+ for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
+ {
+ if (call_used_regs[regno])
+ handle_rd_kill_set (insn, regno, bb);
+ }
+ }
+
+ if (GET_CODE (pat) == PARALLEL)
+ {
+ int i;
+
+ /* We work backwards because ... */
+ for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
+ {
+ enum rtx_code code = GET_CODE (XVECEXP (pat, 0, i));
+ if ((code == SET || code == CLOBBER)
+ && GET_CODE (XEXP (XVECEXP (pat, 0, i), 0)) == REG)
+ handle_rd_kill_set (insn,
+ REGNO (XEXP (XVECEXP (pat, 0, i), 0)),
+ bb);
+ }
+ }
+ else if (GET_CODE (pat) == SET)
+ {
+ if (GET_CODE (SET_DEST (pat)) == REG)
+ {
+ /* Each setting of this register outside of this block
+ must be marked in the set of kills in this block. */
+ handle_rd_kill_set (insn, REGNO (SET_DEST (pat)), bb);
+ }
+ }
+ /* FIXME: CLOBBER? */
+ }
+ }
+ }
+}
+
+/* Compute the reaching definitions as in
+ Compilers Principles, Techniques, and Tools. Aho, Sethi, Ullman,
+ Chapter 10. It is the same algorithm as used for computing available
+ expressions but applied to the gens and kills of reaching definitions. */
+
+static void
+compute_rd ()
+{
+ int bb, changed, passes;
+
+ for (bb = 0; bb < n_basic_blocks; bb++)
+ sbitmap_copy (rd_out[bb] /*dst*/, rd_gen[bb] /*src*/);
+
+ passes = 0;
+ changed = 1;
+ while (changed)
+ {
+ changed = 0;
+ for (bb = 0; bb < n_basic_blocks; bb++)
+ {
+ sbitmap_union_of_predecessors (reaching_defs[bb], rd_out,
+ bb, s_preds);
+ changed |= sbitmap_union_of_diff (rd_out[bb], rd_gen[bb],
+ reaching_defs[bb], rd_kill[bb]);
+ }
+ passes++;
+ }
+
+ if (gcse_file)
+ fprintf (gcse_file, "reaching def computation: %d passes\n", passes);
+}
+
+/* Classic GCSE available expression support. */
+
+/* Allocate memory for available expression computation. */
+
+static void
+alloc_avail_expr_mem (n_blocks, n_exprs)
+ int n_blocks, n_exprs;
+{
+ ae_kill = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_exprs);
+ sbitmap_vector_zero (ae_kill, n_basic_blocks);
+
+ ae_gen = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_exprs);
+ sbitmap_vector_zero (ae_gen, n_basic_blocks);
+
+ ae_in = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_exprs);
+ sbitmap_vector_zero (ae_in, n_basic_blocks);
+
+ ae_out = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_exprs);
+ sbitmap_vector_zero (ae_out, n_basic_blocks);
+
+ u_bitmap = (sbitmap) sbitmap_alloc (n_exprs);
+ sbitmap_ones (u_bitmap);
+}
+
+static void
+free_avail_expr_mem ()
+{
+ free (ae_kill);
+ free (ae_gen);
+ free (ae_in);
+ free (ae_out);
+ free (u_bitmap);
+}
+
+/* Compute the set of available expressions generated in each basic block. */
+
+static void
+compute_ae_gen ()
+{
+ int i;
+
+ /* For each recorded occurrence of each expression, set ae_gen[bb][expr].
+ This is all we have to do because an expression is not recorded if it
+ is not available, and the only expressions we want to work with are the
+ ones that are recorded. */
+
+ for (i = 0; i < expr_hash_table_size; i++)
+ {
+ struct expr *expr = expr_hash_table[i];
+ while (expr != NULL)
+ {
+ struct occr *occr = expr->avail_occr;
+ while (occr != NULL)
+ {
+ SET_BIT (ae_gen[BLOCK_NUM (occr->insn)], expr->bitmap_index);
+ occr = occr->next;
+ }
+ expr = expr->next_same_hash;
+ }
+ }
+}
+
+/* Return non-zero if expression X is killed in BB. */
+
+static int
+expr_killed_p (x, bb)
+ rtx x;
+ int bb;
+{
+ int i;
+ enum rtx_code code;
+ char *fmt;
+
+ /* repeat is used to turn tail-recursion into iteration. */
+ repeat:
+
+ if (x == 0)
+ return 1;
+
+ code = GET_CODE (x);
+ switch (code)
+ {
+ case REG:
+ return TEST_BIT (reg_set_in_block[bb], REGNO (x));
+
+ case MEM:
+ if (mem_set_in_block[bb])
+ return 1;
+ x = XEXP (x, 0);
+ goto repeat;
+
+ case PC:
+ case CC0: /*FIXME*/
+ case CONST:
+ case CONST_INT:
+ case CONST_DOUBLE:
+ case SYMBOL_REF:
+ case LABEL_REF:
+ case ADDR_VEC:
+ case ADDR_DIFF_VEC:
+ return 0;
+
+ default:
+ break;
+ }
+
+ i = GET_RTX_LENGTH (code) - 1;
+ fmt = GET_RTX_FORMAT (code);
+ for (; i >= 0; i--)
+ {
+ if (fmt[i] == 'e')
+ {
+ rtx tem = XEXP (x, i);
+
+ /* If we are about to do the last recursive call
+ needed at this level, change it into iteration.
+ This function is called enough to be worth it. */
+ if (i == 0)
+ {
+ x = tem;
+ goto repeat;
+ }
+ if (expr_killed_p (tem, bb))
+ return 1;
+ }
+ else if (fmt[i] == 'E')
+ {
+ int j;
+ for (j = 0; j < XVECLEN (x, i); j++)
+ {
+ if (expr_killed_p (XVECEXP (x, i, j), bb))
+ return 1;
+ }
+ }
+ }
+
+ return 0;
+}
+
+/* Compute the set of available expressions killed in each basic block. */
+
+static void
+compute_ae_kill ()
+{
+ int bb,i;
+
+ for (bb = 0; bb < n_basic_blocks; bb++)
+ {
+ for (i = 0; i < expr_hash_table_size; i++)
+ {
+ struct expr *expr = expr_hash_table[i];
+
+ for ( ; expr != NULL; expr = expr->next_same_hash)
+ {
+ /* Skip EXPR if generated in this block. */
+ if (TEST_BIT (ae_gen[bb], expr->bitmap_index))
+ continue;
+
+ if (expr_killed_p (expr->expr, bb))
+ SET_BIT (ae_kill[bb], expr->bitmap_index);
+ }
+ }
+ }
+}
+
+/* Compute available expressions.
+
+ Implement the algorithm to find available expressions
+ as given in the Aho Sethi Ullman book, pages 627-631. */
+
+static void
+compute_available ()
+{
+ int bb, changed, passes;
+
+ sbitmap_zero (ae_in[0]);
+
+ sbitmap_copy (ae_out[0] /*dst*/, ae_gen[0] /*src*/);
+
+ for (bb = 1; bb < n_basic_blocks; bb++)
+ sbitmap_difference (ae_out[bb], u_bitmap, ae_kill[bb]);
+
+ passes = 0;
+ changed = 1;
+ while (changed)
+ {
+ changed = 0;
+ for (bb = 1; bb < n_basic_blocks; bb++)
+ {
+ sbitmap_intersect_of_predecessors (ae_in[bb], ae_out,
+ bb, s_preds);
+ changed |= sbitmap_union_of_diff (ae_out[bb], ae_gen[bb],
+ ae_in[bb], ae_kill[bb]);
+ }
+ passes++;
+ }
+
+ if (gcse_file)
+ fprintf (gcse_file, "avail expr computation: %d passes\n", passes);
+}
+
+/* Actually perform the Classic GCSE optimizations. */
+
+/* Return non-zero if occurrence OCCR of expression EXPR reaches block BB.
+
+ CHECK_SELF_LOOP is non-zero if we should consider a block reaching itself
+ as a positive reach. We want to do this when there are two computations
+ of the expression in the block.
+
+ VISITED is a pointer to a working buffer for tracking which BB's have
+ been visited. It is NULL for the top-level call.
+
+ We treat reaching expressions that go through blocks containing the same
+ reaching expression as "not reaching". E.g. if EXPR is generated in blocks
+ 2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
+ 2 as not reaching. The intent is to improve the probability of finding
+ only one reaching expression and to reduce register lifetimes by picking
+ the closest such expression. */
+
+static int
+expr_reaches_here_p (occr, expr, bb, check_self_loop, visited)
+ struct occr *occr;
+ struct expr *expr;
+ int bb;
+ int check_self_loop;
+ char *visited;
+{
+ int_list_ptr pred;
+
+ if (visited == NULL)
+ {
+ visited = (char *) alloca (n_basic_blocks);
+ bzero (visited, n_basic_blocks);
+ }
+
+ for (pred = s_preds[bb]; pred != NULL; pred = pred->next)
+ {
+ int pred_bb = INT_LIST_VAL (pred);
+
+ if (visited[pred_bb])
+ {
+ /* This predecessor has already been visited.
+ Nothing to do. */
+ ;
+ }
+ else if (pred_bb == bb)
+ {
+ /* BB loops on itself. */
+ if (check_self_loop
+ && TEST_BIT (ae_gen[pred_bb], expr->bitmap_index)
+ && BLOCK_NUM (occr->insn) == pred_bb)
+ return 1;
+ visited[pred_bb] = 1;
+ }
+ /* Ignore this predecessor if it kills the expression. */
+ else if (TEST_BIT (ae_kill[pred_bb], expr->bitmap_index))
+ visited[pred_bb] = 1;
+ /* Does this predecessor generate this expression? */
+ else if (TEST_BIT (ae_gen[pred_bb], expr->bitmap_index))
+ {
+ /* Is this the occurrence we're looking for?
+ Note that there's only one generating occurrence per block
+ so we just need to check the block number. */
+ if (BLOCK_NUM (occr->insn) == pred_bb)
+ return 1;
+ visited[pred_bb] = 1;
+ }
+ /* Neither gen nor kill. */
+ else
+ {
+ visited[pred_bb] = 1;
+ if (expr_reaches_here_p (occr, expr, pred_bb, check_self_loop, visited))
+ return 1;
+ }
+ }
+
+ /* All paths have been checked. */
+ return 0;
+}
+
+/* Return the instruction that computes EXPR that reaches INSN's basic block.
+ If there is more than one such instruction, return NULL.
+
+ Called only by handle_avail_expr. */
+
+static rtx
+computing_insn (expr, insn)
+ struct expr *expr;
+ rtx insn;
+{
+ int bb = BLOCK_NUM (insn);
+
+ if (expr->avail_occr->next == NULL)
+ {
+ if (BLOCK_NUM (expr->avail_occr->insn) == bb)
+ {
+ /* The available expression is actually itself
+ (i.e. a loop in the flow graph) so do nothing. */
+ return NULL;
+ }
+ /* (FIXME) Case that we found a pattern that was created by
+ a substitution that took place. */
+ return expr->avail_occr->insn;
+ }
+ else
+ {
+ /* Pattern is computed more than once.
+ Search backwards from this insn to see how many of these
+ computations actually reach this insn. */
+ struct occr *occr;
+ rtx insn_computes_expr = NULL;
+ int can_reach = 0;
+
+ for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
+ {
+ if (BLOCK_NUM (occr->insn) == bb)
+ {
+ /* The expression is generated in this block.
+ The only time we care about this is when the expression
+ is generated later in the block [and thus there's a loop].
+ We let the normal cse pass handle the other cases. */
+ if (INSN_CUID (insn) < INSN_CUID (occr->insn))
+ {
+ if (expr_reaches_here_p (occr, expr, bb, 1, NULL))
+ {
+ can_reach++;
+ if (can_reach > 1)
+ return NULL;
+ insn_computes_expr = occr->insn;
+ }
+ }
+ }
+ else /* Computation of the pattern outside this block. */
+ {
+ if (expr_reaches_here_p (occr, expr, bb, 0, NULL))
+ {
+ can_reach++;
+ if (can_reach > 1)
+ return NULL;
+ insn_computes_expr = occr->insn;
+ }
+ }
+ }
+
+ if (insn_computes_expr == NULL)
+ abort ();
+ return insn_computes_expr;
+ }
+}
+
+/* Return non-zero if the definition in DEF_INSN can reach INSN.
+ Only called by can_disregard_other_sets. */
+
+static int
+def_reaches_here_p (insn, def_insn)
+ rtx insn, def_insn;
+{
+ rtx reg;
+
+ if (TEST_BIT (reaching_defs[BLOCK_NUM (insn)], INSN_CUID (def_insn)))
+ return 1;
+
+ if (BLOCK_NUM (insn) == BLOCK_NUM (def_insn))
+ {
+ if (INSN_CUID (def_insn) < INSN_CUID (insn))
+ {
+ if (GET_CODE (PATTERN (def_insn)) == PARALLEL)
+ return 1;
+ if (GET_CODE (PATTERN (def_insn)) == CLOBBER)
+ reg = XEXP (PATTERN (def_insn), 0);
+ else if (GET_CODE (PATTERN (def_insn)) == SET)
+ reg = SET_DEST (PATTERN (def_insn));
+ else
+ abort ();
+ return ! reg_set_between_p (reg, NEXT_INSN (def_insn), insn);
+ }
+ else
+ return 0;
+ }
+
+ return 0;
+}
+
+/* Return non-zero if *ADDR_THIS_REG can only have one value at INSN.
+ The value returned is the number of definitions that reach INSN.
+ Returning a value of zero means that [maybe] more than one definition
+ reaches INSN and the caller can't perform whatever optimization it is
+ trying. i.e. it is always safe to return zero. */
+
+static int
+can_disregard_other_sets (addr_this_reg, insn, for_combine)
+ struct reg_set **addr_this_reg;
+ rtx insn;
+ int for_combine;
+{
+ int number_of_reaching_defs = 0;
+ struct reg_set *this_reg = *addr_this_reg;
+
+ while (this_reg)
+ {
+ if (def_reaches_here_p (insn, this_reg->insn))
+ {
+ number_of_reaching_defs++;
+ /* Ignore parallels for now. */
+ if (GET_CODE (PATTERN (this_reg->insn)) == PARALLEL)
+ return 0;
+ if (!for_combine
+ && (GET_CODE (PATTERN (this_reg->insn)) == CLOBBER
+ || ! rtx_equal_p (SET_SRC (PATTERN (this_reg->insn)),
+ SET_SRC (PATTERN (insn)))))
+ {
+ /* A setting of the reg to a different value reaches INSN. */
+ return 0;
+ }
+ if (number_of_reaching_defs > 1)
+ {
+ /* If in this setting the value the register is being
+ set to is equal to the previous value the register
+ was set to and this setting reaches the insn we are
+ trying to do the substitution on then we are ok. */
+
+ if (GET_CODE (PATTERN (this_reg->insn)) == CLOBBER)
+ return 0;
+ if (! rtx_equal_p (SET_SRC (PATTERN (this_reg->insn)),
+ SET_SRC (PATTERN (insn))))
+ return 0;
+ }
+ *addr_this_reg = this_reg;
+ }
+
+ /* prev_this_reg = this_reg; */
+ this_reg = this_reg->next;
+ }
+
+ return number_of_reaching_defs;
+}
+
+/* Expression computed by insn is available and the substitution is legal,
+ so try to perform the substitution.
+
+ The result is non-zero if any changes were made. */
+
+static int
+handle_avail_expr (insn, expr)
+ rtx insn;
+ struct expr *expr;
+{
+ rtx pat, insn_computes_expr;
+ rtx to;
+ struct reg_set *this_reg;
+ int found_setting, use_src;
+ int changed = 0;
+
+ /* We only handle the case where one computation of the expression
+ reaches this instruction. */
+ insn_computes_expr = computing_insn (expr, insn);
+ if (insn_computes_expr == NULL)
+ return 0;
+
+ found_setting = 0;
+ use_src = 0;
+
+ /* At this point we know only one computation of EXPR outside of this
+ block reaches this insn. Now try to find a register that the
+ expression is computed into. */
+
+ if (GET_CODE (SET_SRC (PATTERN (insn_computes_expr))) == REG)
+ {
+ /* This is the case when the available expression that reaches
+ here has already been handled as an available expression. */
+ int regnum_for_replacing = REGNO (SET_SRC (PATTERN (insn_computes_expr)));
+ /* If the register was created by GCSE we can't use `reg_set_table',
+ however we know it's set only once. */
+ if (regnum_for_replacing >= max_gcse_regno
+ /* If the register the expression is computed into is set only once,
+ or only one set reaches this insn, we can use it. */
+ || (((this_reg = reg_set_table[regnum_for_replacing]),
+ this_reg->next == NULL)
+ || can_disregard_other_sets (&this_reg, insn, 0)))
+ {
+ use_src = 1;
+ found_setting = 1;
+ }
+ }
+
+ if (!found_setting)
+ {
+ int regnum_for_replacing = REGNO (SET_DEST (PATTERN (insn_computes_expr)));
+ /* This shouldn't happen. */
+ if (regnum_for_replacing >= max_gcse_regno)
+ abort ();
+ this_reg = reg_set_table[regnum_for_replacing];
+ /* If the register the expression is computed into is set only once,
+ or only one set reaches this insn, use it. */
+ if (this_reg->next == NULL
+ || can_disregard_other_sets (&this_reg, insn, 0))
+ found_setting = 1;
+ }
+
+ if (found_setting)
+ {
+ pat = PATTERN (insn);
+ if (use_src)
+ to = SET_SRC (PATTERN (insn_computes_expr));
+ else
+ to = SET_DEST (PATTERN (insn_computes_expr));
+ changed = validate_change (insn, &SET_SRC (pat), to, 0);
+
+ /* We should be able to ignore the return code from validate_change but
+ to play it safe we check. */
+ if (changed)
+ {
+ gcse_subst_count++;
+ if (gcse_file != NULL)
+ {
+ fprintf (gcse_file, "GCSE: Replacing the source in insn %d with reg %d %s insn %d\n",
+ INSN_UID (insn), REGNO (to),
+ use_src ? "from" : "set in",
+ INSN_UID (insn_computes_expr));
+ }
+
+ }
+ }
+ /* The register that the expr is computed into is set more than once. */
+ else if (1 /*expensive_op(this_pattrn->op) && do_expensive_gcse)*/)
+ {
+ /* Insert an insn after insnx that copies the reg set in insnx
+ into a new pseudo register call this new register REGN.
+ From insnb until end of basic block or until REGB is set
+ replace all uses of REGB with REGN. */
+ rtx new_insn;
+
+ to = gen_reg_rtx (GET_MODE (SET_DEST (PATTERN (insn_computes_expr))));
+
+ /* Generate the new insn. */
+ /* ??? If the change fails, we return 0, even though we created
+ an insn. I think this is ok. */
+ new_insn
+ = emit_insn_after (gen_rtx_SET (VOIDmode, to,
+ SET_DEST (PATTERN (insn_computes_expr))),
+ insn_computes_expr);
+ /* Keep block number table up to date. */
+ set_block_num (new_insn, BLOCK_NUM (insn_computes_expr));
+ /* Keep register set table up to date. */
+ record_one_set (REGNO (to), new_insn);
+
+ gcse_create_count++;
+ if (gcse_file != NULL)
+ {
+ fprintf (gcse_file, "GCSE: Creating insn %d to copy value of reg %d, computed in insn %d,\n",
+ INSN_UID (NEXT_INSN (insn_computes_expr)),
+ REGNO (SET_SRC (PATTERN (NEXT_INSN (insn_computes_expr)))),
+ INSN_UID (insn_computes_expr));
+ fprintf (gcse_file, " into newly allocated reg %d\n", REGNO (to));
+ }
+
+ pat = PATTERN (insn);
+
+ /* Do register replacement for INSN. */
+ changed = validate_change (insn, &SET_SRC (pat),
+ SET_DEST (PATTERN (NEXT_INSN (insn_computes_expr))),
+ 0);
+
+ /* We should be able to ignore the return code from validate_change but
+ to play it safe we check. */
+ if (changed)
+ {
+ gcse_subst_count++;
+ if (gcse_file != NULL)
+ {
+ fprintf (gcse_file, "GCSE: Replacing the source in insn %d with reg %d set in insn %d\n",
+ INSN_UID (insn),
+ REGNO (SET_DEST (PATTERN (NEXT_INSN (insn_computes_expr)))),
+ INSN_UID (insn_computes_expr));
+ }
+
+ }
+ }
+
+ return changed;
+}
+
+/* Perform classic GCSE.
+ This is called by one_classic_gcse_pass after all the dataflow analysis
+ has been done.
+
+ The result is non-zero if a change was made. */
+
+static int
+classic_gcse ()
+{
+ int bb, changed;
+ rtx insn;
+
+ /* Note we start at block 1. */
+
+ changed = 0;
+ for (bb = 1; bb < n_basic_blocks; bb++)
+ {
+ /* Reset tables used to keep track of what's still valid [since the
+ start of the block]. */
+ reset_opr_set_tables ();
+
+ for (insn = basic_block_head[bb];
+ insn != NULL && insn != NEXT_INSN (basic_block_end[bb]);
+ insn = NEXT_INSN (insn))
+ {
+ /* Is insn of form (set (pseudo-reg) ...)? */
+
+ if (GET_CODE (insn) == INSN
+ && GET_CODE (PATTERN (insn)) == SET
+ && GET_CODE (SET_DEST (PATTERN (insn))) == REG
+ && REGNO (SET_DEST (PATTERN (insn))) >= FIRST_PSEUDO_REGISTER)
+ {
+ rtx pat = PATTERN (insn);
+ rtx src = SET_SRC (pat);
+ struct expr *expr;
+
+ if (want_to_gcse_p (src)
+ /* Is the expression recorded? */
+ && ((expr = lookup_expr (src)) != NULL)
+ /* Is the expression available [at the start of the
+ block]? */
+ && TEST_BIT (ae_in[bb], expr->bitmap_index)
+ /* Are the operands unchanged since the start of the
+ block? */
+ && oprs_not_set_p (src, insn))
+ changed |= handle_avail_expr (insn, expr);
+ }
+
+ /* Keep track of everything modified by this insn. */
+ /* ??? Need to be careful w.r.t. mods done to INSN. */
+ if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
+ mark_oprs_set (insn);
+ }
+ }
+
+ return changed;
+}
+
+/* Top level routine to perform one classic GCSE pass.
+
+ Return non-zero if a change was made. */
+
+static int
+one_classic_gcse_pass (f, pass)
+ rtx f;
+ int pass;
+{
+ int changed = 0;
+
+ gcse_subst_count = 0;
+ gcse_create_count = 0;
+
+ alloc_expr_hash_table (max_cuid);
+ alloc_rd_mem (n_basic_blocks, max_cuid);
+ compute_expr_hash_table (f);
+ if (gcse_file)
+ dump_hash_table (gcse_file, "Expression", expr_hash_table,
+ expr_hash_table_size, n_exprs);
+ if (n_exprs > 0)
+ {
+ compute_kill_rd ();
+ compute_rd ();
+ alloc_avail_expr_mem (n_basic_blocks, n_exprs);
+ compute_ae_gen ();
+ compute_ae_kill ();
+ compute_available ();
+ changed = classic_gcse ();
+ free_avail_expr_mem ();
+ }
+ free_rd_mem ();
+ free_expr_hash_table ();
+
+ if (gcse_file)
+ {
+ fprintf (gcse_file, "\n");
+ fprintf (gcse_file, "GCSE of %s, pass %d: %d bytes needed, %d substs, %d insns created\n",
+ current_function_name, pass,
+ bytes_used, gcse_subst_count, gcse_create_count);
+ }
+
+ return changed;
+}
+
+/* Compute copy/constant propagation working variables. */
+
+/* Local properties of assignments. */
+
+static sbitmap *cprop_pavloc;
+static sbitmap *cprop_absaltered;
+
+/* Global properties of assignments (computed from the local properties). */
+
+static sbitmap *cprop_avin;
+static sbitmap *cprop_avout;
+
+/* Allocate vars used for copy/const propagation.
+ N_BLOCKS is the number of basic blocks.
+ N_SETS is the number of sets. */
+
+static void
+alloc_cprop_mem (n_blocks, n_sets)
+ int n_blocks, n_sets;
+{
+ cprop_pavloc = sbitmap_vector_alloc (n_blocks, n_sets);
+ cprop_absaltered = sbitmap_vector_alloc (n_blocks, n_sets);
+
+ cprop_avin = sbitmap_vector_alloc (n_blocks, n_sets);
+ cprop_avout = sbitmap_vector_alloc (n_blocks, n_sets);
+}
+
+/* Free vars used by copy/const propagation. */
+
+static void
+free_cprop_mem ()
+{
+ free (cprop_pavloc);
+ free (cprop_absaltered);
+ free (cprop_avin);
+ free (cprop_avout);
+}
+
+/* Dump copy/const propagation data. */
+
+void
+dump_cprop_data (file)
+ FILE *file;
+{
+ dump_sbitmap_vector (file, "CPROP partially locally available sets", "BB",
+ cprop_pavloc, n_basic_blocks);
+ dump_sbitmap_vector (file, "CPROP absolutely altered sets", "BB",
+ cprop_absaltered, n_basic_blocks);
+
+ dump_sbitmap_vector (file, "CPROP available incoming sets", "BB",
+ cprop_avin, n_basic_blocks);
+ dump_sbitmap_vector (file, "CPROP available outgoing sets", "BB",
+ cprop_avout, n_basic_blocks);
+}
+
+/* For each block, compute whether X is transparent.
+ X is either an expression or an assignment [though we don't care which,
+ for this context an assignment is treated as an expression].
+ For each block where an element of X is modified, set (SET_P == 1) or reset
+ (SET_P == 0) the INDX bit in BMAP. */
+
+static void
+compute_transp (x, indx, bmap, set_p)
+ rtx x;
+ int indx;
+ sbitmap *bmap;
+ int set_p;
+{
+ int bb,i;
+ enum rtx_code code;
+ char *fmt;
+
+ /* repeat is used to turn tail-recursion into iteration. */
+ repeat:
+
+ if (x == 0)
+ return;
+
+ code = GET_CODE (x);
+ switch (code)
+ {
+ case REG:
+ {
+ reg_set *r;
+ int regno = REGNO (x);
+
+ if (set_p)
+ {
+ if (regno < FIRST_PSEUDO_REGISTER)
+ {
+ for (bb = 0; bb < n_basic_blocks; bb++)
+ if (TEST_BIT (reg_set_in_block[bb], regno))
+ SET_BIT (bmap[bb], indx);
+ }
+ else
+ {
+ for (r = reg_set_table[regno]; r != NULL; r = r->next)
+ {
+ bb = BLOCK_NUM (r->insn);
+ SET_BIT (bmap[bb], indx);
+ }
+ }
+ }
+ else
+ {
+ if (regno < FIRST_PSEUDO_REGISTER)
+ {
+ for (bb = 0; bb < n_basic_blocks; bb++)
+ if (TEST_BIT (reg_set_in_block[bb], regno))
+ RESET_BIT (bmap[bb], indx);
+ }
+ else
+ {
+ for (r = reg_set_table[regno]; r != NULL; r = r->next)
+ {
+ bb = BLOCK_NUM (r->insn);
+ RESET_BIT (bmap[bb], indx);
+ }
+ }
+ }
+ return;
+ }
+
+ case MEM:
+ if (set_p)
+ {
+ for (bb = 0; bb < n_basic_blocks; bb++)
+ if (mem_set_in_block[bb])
+ SET_BIT (bmap[bb], indx);
+ }
+ else
+ {
+ for (bb = 0; bb < n_basic_blocks; bb++)
+ if (mem_set_in_block[bb])
+ RESET_BIT (bmap[bb], indx);
+ }
+ x = XEXP (x, 0);
+ goto repeat;
+
+ case PC:
+ case CC0: /*FIXME*/
+ case CONST:
+ case CONST_INT:
+ case CONST_DOUBLE:
+ case SYMBOL_REF:
+ case LABEL_REF:
+ case ADDR_VEC:
+ case ADDR_DIFF_VEC:
+ return;
+
+ default:
+ break;
+ }
+
+ i = GET_RTX_LENGTH (code) - 1;
+ fmt = GET_RTX_FORMAT (code);
+ for (; i >= 0; i--)
+ {
+ if (fmt[i] == 'e')
+ {
+ rtx tem = XEXP (x, i);
+
+ /* If we are about to do the last recursive call
+ needed at this level, change it into iteration.
+ This function is called enough to be worth it. */
+ if (i == 0)
+ {
+ x = tem;
+ goto repeat;
+ }
+ compute_transp (tem, indx, bmap, set_p);
+ }
+ else if (fmt[i] == 'E')
+ {
+ int j;
+ for (j = 0; j < XVECLEN (x, i); j++)
+ compute_transp (XVECEXP (x, i, j), indx, bmap, set_p);
+ }
+ }
+}
+
+static void
+compute_cprop_local_properties ()
+{
+ int i;
+
+ sbitmap_vector_zero (cprop_absaltered, n_basic_blocks);
+ sbitmap_vector_zero (cprop_pavloc, n_basic_blocks);
+
+ for (i = 0; i < set_hash_table_size; i++)
+ {
+ struct expr *expr;
+
+ for (expr = set_hash_table[i]; expr != NULL; expr = expr->next_same_hash)
+ {
+ struct occr *occr;
+ int indx = expr->bitmap_index;
+
+ /* The assignment is absolutely altered if any operand is modified
+ by this block [excluding the assignment itself].
+ We start by assuming all are transparent [none are killed], and
+ then setting the bits for those that are. */
+
+ compute_transp (expr->expr, indx, cprop_absaltered, 1);
+
+ /* The occurrences recorded in avail_occr are exactly those that
+ we want to set to non-zero in PAVLOC. */
+
+ for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
+ {
+ int bb = BLOCK_NUM (occr->insn);
+ SET_BIT (cprop_pavloc[bb], indx);
+ }
+ }
+ }
+}
+
+static void
+compute_cprop_avinout ()
+{
+ int bb, changed, passes;
+
+ sbitmap_zero (cprop_avin[0]);
+ sbitmap_vector_ones (cprop_avout, n_basic_blocks);
+
+ passes = 0;
+ changed = 1;
+ while (changed)
+ {
+ changed = 0;
+ for (bb = 0; bb < n_basic_blocks; bb++)
+ {
+ if (bb != 0)
+ sbitmap_intersect_of_predecessors (cprop_avin[bb], cprop_avout,
+ bb, s_preds);
+ changed |= sbitmap_union_of_diff (cprop_avout[bb],
+ cprop_pavloc[bb],
+ cprop_avin[bb],
+ cprop_absaltered[bb]);
+ }
+ passes++;
+ }
+
+ if (gcse_file)
+ fprintf (gcse_file, "cprop avail expr computation: %d passes\n", passes);
+}
+
+/* Top level routine to do the dataflow analysis needed by copy/const
+ propagation. */
+
+static void
+compute_cprop_data ()
+{
+ compute_cprop_local_properties ();
+ compute_cprop_avinout ();
+}
+
+/* Copy/constant propagation. */
+
+struct reg_use {
+ rtx reg_rtx;
+};
+
+/* Maximum number of register uses in an insn that we handle. */
+#define MAX_USES 8
+
+/* Table of uses found in an insn.
+ Allocated statically to avoid alloc/free complexity and overhead. */
+static struct reg_use reg_use_table[MAX_USES];
+
+/* Index into `reg_use_table' while building it. */
+static int reg_use_count;
+
+/* Set up a list of register numbers used in INSN.
+ The found uses are stored in `reg_use_table'.
+ `reg_use_count' is initialized to zero before entry, and
+ contains the number of uses in the table upon exit.
+
+ ??? If a register appears multiple times we will record it multiple
+ times. This doesn't hurt anything but it will slow things down. */
+
+static void
+find_used_regs (x)
+ rtx x;
+{
+ int i;
+ enum rtx_code code;
+ char *fmt;
+
+ /* repeat is used to turn tail-recursion into iteration. */
+ repeat:
+
+ if (x == 0)
+ return;
+
+ code = GET_CODE (x);
+ switch (code)
+ {
+ case REG:
+ if (reg_use_count == MAX_USES)
+ return;
+ reg_use_table[reg_use_count].reg_rtx = x;
+ reg_use_count++;
+ return;
+
+ case MEM:
+ x = XEXP (x, 0);
+ goto repeat;
+
+ case PC:
+ case CC0:
+ case CONST:
+ case CONST_INT:
+ case CONST_DOUBLE:
+ case SYMBOL_REF:
+ case LABEL_REF:
+ case CLOBBER:
+ case ADDR_VEC:
+ case ADDR_DIFF_VEC:
+ case ASM_INPUT: /*FIXME*/
+ return;
+
+ case SET:
+ if (GET_CODE (SET_DEST (x)) == MEM)
+ find_used_regs (SET_DEST (x));
+ x = SET_SRC (x);
+ goto repeat;
+
+ default:
+ break;
+ }
+
+ /* Recursively scan the operands of this expression. */
+
+ fmt = GET_RTX_FORMAT (code);
+ for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
+ {
+ if (fmt[i] == 'e')
+ {
+ /* If we are about to do the last recursive call
+ needed at this level, change it into iteration.
+ This function is called enough to be worth it. */
+ if (i == 0)
+ {
+ x = XEXP (x, 0);
+ goto repeat;
+ }
+ find_used_regs (XEXP (x, i));
+ }
+ else if (fmt[i] == 'E')
+ {
+ int j;
+ for (j = 0; j < XVECLEN (x, i); j++)
+ find_used_regs (XVECEXP (x, i, j));
+ }
+ }
+}
+
+/* Try to replace all non-SET_DEST occurrences of FROM in INSN with TO.
+ Returns non-zero is successful. */
+
+static int
+try_replace_reg (from, to, insn)
+ rtx from, to, insn;
+{
+ return validate_replace_src (from, to, insn);
+}
+
+/* Find a set of REGNO that is available on entry to INSN's block.
+ Returns NULL if not found. */
+
+static struct expr *
+find_avail_set (regno, insn)
+ int regno;
+ rtx insn;
+{
+ struct expr *set = lookup_set (regno, NULL_RTX);
+
+ while (set)
+ {
+ if (TEST_BIT (cprop_avin[BLOCK_NUM (insn)], set->bitmap_index))
+ break;
+ set = next_set (regno, set);
+ }
+
+ return set;
+}
+
+/* Perform constant and copy propagation on INSN.
+ The result is non-zero if a change was made. */
+
+static int
+cprop_insn (insn)
+ rtx insn;
+{
+ struct reg_use *reg_used;
+ int changed = 0;
+
+ /* ??? For now only propagate into SETs. */
+ if (GET_CODE (insn) != INSN
+ || GET_CODE (PATTERN (insn)) != SET)
+ return 0;
+
+ reg_use_count = 0;
+ find_used_regs (PATTERN (insn));
+
+ reg_used = &reg_use_table[0];
+ for ( ; reg_use_count > 0; reg_used++, reg_use_count--)
+ {
+ rtx pat, src;
+ struct expr *set;
+ int regno = REGNO (reg_used->reg_rtx);
+
+ /* Ignore registers created by GCSE.
+ We do this because ... */
+ if (regno >= max_gcse_regno)
+ continue;
+
+ /* If the register has already been set in this block, there's
+ nothing we can do. */
+ if (! oprs_not_set_p (reg_used->reg_rtx, insn))
+ continue;
+
+ /* Find an assignment that sets reg_used and is available
+ at the start of the block. */
+ set = find_avail_set (regno, insn);
+ if (! set)
+ continue;
+
+ pat = set->expr;
+ /* ??? We might be able to handle PARALLELs. Later. */
+ if (GET_CODE (pat) != SET)
+ abort ();
+ src = SET_SRC (pat);
+
+ if (GET_CODE (src) == CONST_INT)
+ {
+ if (try_replace_reg (reg_used->reg_rtx, src, insn))
+ {
+ changed = 1;
+ const_prop_count++;
+ if (gcse_file != NULL)
+ {
+ fprintf (gcse_file, "CONST-PROP: Replacing reg %d in insn %d with constant ",
+ regno, INSN_UID (insn));
+ fprintf (gcse_file, HOST_WIDE_INT_PRINT_DEC, INTVAL (src));
+ fprintf (gcse_file, "\n");
+ }
+
+ /* The original insn setting reg_used may or may not now be
+ deletable. We leave the deletion to flow. */
+ }
+ }
+ else if (GET_CODE (src) == REG
+ && REGNO (src) >= FIRST_PSEUDO_REGISTER
+ && REGNO (src) != regno)
+ {
+ /* We know the set is available.
+ Now check that SET_SRC is ANTLOC (i.e. none of the source operands
+ have changed since the start of the block). */
+ if (oprs_not_set_p (src, insn))
+ {
+ if (try_replace_reg (reg_used->reg_rtx, src, insn))
+ {
+ changed = 1;
+ copy_prop_count++;
+ if (gcse_file != NULL)
+ {
+ fprintf (gcse_file, "COPY-PROP: Replacing reg %d in insn %d with reg %d\n",
+ regno, INSN_UID (insn), REGNO (src));
+ }
+
+ /* The original insn setting reg_used may or may not now be
+ deletable. We leave the deletion to flow. */
+ /* FIXME: If it turns out that the insn isn't deletable,
+ then we may have unnecessarily extended register lifetimes
+ and made things worse. */
+ }
+ }
+ }
+ }
+
+ return changed;
+}
+
+/* Forward propagate copies.
+ This includes copies and constants.
+ Return non-zero if a change was made. */
+
+static int
+cprop ()
+{
+ int bb, changed;
+ rtx insn;
+
+ /* Note we start at block 1. */
+
+ changed = 0;
+ for (bb = 1; bb < n_basic_blocks; bb++)
+ {
+ /* Reset tables used to keep track of what's still valid [since the
+ start of the block]. */
+ reset_opr_set_tables ();
+
+ for (insn = basic_block_head[bb];
+ insn != NULL && insn != NEXT_INSN (basic_block_end[bb]);
+ insn = NEXT_INSN (insn))
+ {
+ if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
+ {
+ changed |= cprop_insn (insn);
+
+ /* Keep track of everything modified by this insn. */
+ /* ??? Need to be careful w.r.t. mods done to INSN. */
+ mark_oprs_set (insn);
+ }
+ }
+ }
+
+ if (gcse_file != NULL)
+ fprintf (gcse_file, "\n");
+
+ return changed;
+}
+
+/* Perform one copy/constant propagation pass.
+ F is the first insn in the function.
+ PASS is the pass count. */
+
+static int
+one_cprop_pass (f, pass)
+ rtx f;
+ int pass;
+{
+ int changed = 0;
+
+ const_prop_count = 0;
+ copy_prop_count = 0;
+
+ alloc_set_hash_table (max_cuid);
+ compute_set_hash_table (f);
+ if (gcse_file)
+ dump_hash_table (gcse_file, "SET", set_hash_table, set_hash_table_size,
+ n_sets);
+ if (n_sets > 0)
+ {
+ alloc_cprop_mem (n_basic_blocks, n_sets);
+ compute_cprop_data ();
+ changed = cprop ();
+ free_cprop_mem ();
+ }
+ free_set_hash_table ();
+
+ if (gcse_file)
+ {
+ fprintf (gcse_file, "CPROP of %s, pass %d: %d bytes needed, %d const props, %d copy props\n",
+ current_function_name, pass,
+ bytes_used, const_prop_count, copy_prop_count);
+ fprintf (gcse_file, "\n");
+ }
+
+ return changed;
+}
+
+/* Compute PRE working variables. */
+
+/* Local properties of expressions. */
+/* Nonzero for expressions that are transparent in the block. */
+static sbitmap *pre_transp;
+/* Nonzero for expressions that are computed (available) in the block. */
+static sbitmap *pre_comp;
+/* Nonzero for expressions that are locally anticipatable in the block. */
+static sbitmap *pre_antloc;
+
+/* Global properties (computed from the expression local properties). */
+/* Nonzero for expressions that are available on block entry/exit. */
+static sbitmap *pre_avin;
+static sbitmap *pre_avout;
+/* Nonzero for expressions that are anticipatable on block entry/exit. */
+static sbitmap *pre_antin;
+static sbitmap *pre_antout;
+/* Nonzero for expressions that are partially available on block entry/exit. */
+static sbitmap *pre_pavin;
+static sbitmap *pre_pavout;
+/* Nonzero for expressions that are "placement possible" on block entry/exit. */
+static sbitmap *pre_ppin;
+static sbitmap *pre_ppout;
+
+/* Used while performing PRE to denote which insns are redundant. */
+static sbitmap pre_redundant;
+
+/* Allocate vars used for PRE analysis. */
+
+static void
+alloc_pre_mem (n_blocks, n_exprs)
+ int n_blocks, n_exprs;
+{
+ pre_transp = sbitmap_vector_alloc (n_blocks, n_exprs);
+ pre_comp = sbitmap_vector_alloc (n_blocks, n_exprs);
+ pre_antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
+
+ pre_avin = sbitmap_vector_alloc (n_blocks, n_exprs);
+ pre_avout = sbitmap_vector_alloc (n_blocks, n_exprs);
+ pre_antin = sbitmap_vector_alloc (n_blocks, n_exprs);
+ pre_antout = sbitmap_vector_alloc (n_blocks, n_exprs);
+
+ pre_pavin = sbitmap_vector_alloc (n_blocks, n_exprs);
+ pre_pavout = sbitmap_vector_alloc (n_blocks, n_exprs);
+ pre_ppin = sbitmap_vector_alloc (n_blocks, n_exprs);
+ pre_ppout = sbitmap_vector_alloc (n_blocks, n_exprs);
+}
+
+/* Free vars used for PRE analysis. */
+
+static void
+free_pre_mem ()
+{
+ free (pre_transp);
+ free (pre_comp);
+ free (pre_antloc);
+
+ free (pre_avin);
+ free (pre_avout);
+ free (pre_antin);
+ free (pre_antout);
+
+ free (pre_pavin);
+ free (pre_pavout);
+ free (pre_ppin);
+ free (pre_ppout);
+}
+
+/* Dump PRE data. */
+
+void
+dump_pre_data (file)
+ FILE *file;
+{
+ dump_sbitmap_vector (file, "PRE locally transparent expressions", "BB",
+ pre_transp, n_basic_blocks);
+ dump_sbitmap_vector (file, "PRE locally available expressions", "BB",
+ pre_comp, n_basic_blocks);
+ dump_sbitmap_vector (file, "PRE locally anticipatable expressions", "BB",
+ pre_antloc, n_basic_blocks);
+
+ dump_sbitmap_vector (file, "PRE available incoming expressions", "BB",
+ pre_avin, n_basic_blocks);
+ dump_sbitmap_vector (file, "PRE available outgoing expressions", "BB",
+ pre_avout, n_basic_blocks);
+ dump_sbitmap_vector (file, "PRE anticipatable incoming expressions", "BB",
+ pre_antin, n_basic_blocks);
+ dump_sbitmap_vector (file, "PRE anticipatable outgoing expressions", "BB",
+ pre_antout, n_basic_blocks);
+
+ dump_sbitmap_vector (file, "PRE partially available incoming expressions", "BB",
+ pre_pavin, n_basic_blocks);
+ dump_sbitmap_vector (file, "PRE partially available outgoing expressions", "BB",
+ pre_pavout, n_basic_blocks);
+ dump_sbitmap_vector (file, "PRE placement possible on incoming", "BB",
+ pre_ppin, n_basic_blocks);
+ dump_sbitmap_vector (file, "PRE placement possible on outgoing", "BB",
+ pre_ppout, n_basic_blocks);
+}
+
+/* Compute the local properties of each recorded expression.
+ Local properties are those that are defined by the block, irrespective
+ of other blocks.
+
+ An expression is transparent in a block if its operands are not modified
+ in the block.
+
+ An expression is computed (locally available) in a block if it is computed
+ at least once and expression would contain the same value if the
+ computation was moved to the end of the block.
+
+ An expression is locally anticipatable in a block if it is computed at
+ least once and expression would contain the same value if the computation
+ was moved to the beginning of the block. */
+
+static void
+compute_pre_local_properties ()
+{
+ int i;
+
+ sbitmap_vector_ones (pre_transp, n_basic_blocks);
+ sbitmap_vector_zero (pre_comp, n_basic_blocks);
+ sbitmap_vector_zero (pre_antloc, n_basic_blocks);
+
+ for (i = 0; i < expr_hash_table_size; i++)
+ {
+ struct expr *expr;
+
+ for (expr = expr_hash_table[i]; expr != NULL; expr = expr->next_same_hash)
+ {
+ struct occr *occr;
+ int indx = expr->bitmap_index;
+
+ /* The expression is transparent in this block if it is not killed.
+ We start by assuming all are transparent [none are killed], and then
+ reset the bits for those that are. */
+
+ compute_transp (expr->expr, indx, pre_transp, 0);
+
+ /* The occurrences recorded in antic_occr are exactly those that
+ we want to set to non-zero in ANTLOC. */
+
+ for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
+ {
+ int bb = BLOCK_NUM (occr->insn);
+ SET_BIT (pre_antloc[bb], indx);
+
+ /* While we're scanning the table, this is a good place to
+ initialize this. */
+ occr->deleted_p = 0;
+ }
+
+ /* The occurrences recorded in avail_occr are exactly those that
+ we want to set to non-zero in COMP. */
+
+ for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
+ {
+ int bb = BLOCK_NUM (occr->insn);
+ SET_BIT (pre_comp[bb], indx);
+
+ /* While we're scanning the table, this is a good place to
+ initialize this. */
+ occr->copied_p = 0;
+ }
+
+ /* While we're scanning the table, this is a good place to
+ initialize this. */
+ expr->reaching_reg = 0;
+ }
+ }
+}
+
+/* Compute expression availability at entrance and exit of each block. */
+
+static void
+compute_pre_avinout ()
+{
+ int bb, changed, passes;
+
+ sbitmap_zero (pre_avin[0]);
+ sbitmap_vector_ones (pre_avout, n_basic_blocks);
+
+ passes = 0;
+ changed = 1;
+ while (changed)
+ {
+ changed = 0;
+ for (bb = 0; bb < n_basic_blocks; bb++)
+ {
+ if (bb != 0)
+ sbitmap_intersect_of_predecessors (pre_avin[bb], pre_avout,
+ bb, s_preds);
+ changed |= sbitmap_a_or_b_and_c (pre_avout[bb], pre_comp[bb],
+ pre_transp[bb], pre_avin[bb]);
+ }
+ passes++;
+ }
+
+ if (gcse_file)
+ fprintf (gcse_file, "avail expr computation: %d passes\n", passes);
+}
+
+/* Compute expression anticipatability at entrance and exit of each block. */
+
+static void
+compute_pre_antinout ()
+{
+ int bb, changed, passes;
+
+ sbitmap_zero (pre_antout[n_basic_blocks - 1]);
+ sbitmap_vector_ones (pre_antin, n_basic_blocks);
+
+ passes = 0;
+ changed = 1;
+ while (changed)
+ {
+ changed = 0;
+ /* We scan the blocks in the reverse order to speed up
+ the convergence. */
+ for (bb = n_basic_blocks - 1; bb >= 0; bb--)
+ {
+ if (bb != n_basic_blocks - 1)
+ sbitmap_intersect_of_successors (pre_antout[bb], pre_antin,
+ bb, s_succs);
+ changed |= sbitmap_a_or_b_and_c (pre_antin[bb], pre_antloc[bb],
+ pre_transp[bb], pre_antout[bb]);
+ }
+ passes++;
+ }
+
+ if (gcse_file)
+ fprintf (gcse_file, "antic expr computation: %d passes\n", passes);
+}
+
+/* Compute expression partial availability at entrance and exit of
+ each block. */
+
+static void
+compute_pre_pavinout ()
+{
+ int bb, changed, passes;
+
+ sbitmap_zero (pre_pavin[0]);
+ sbitmap_vector_zero (pre_pavout, n_basic_blocks);
+
+ passes = 0;
+ changed = 1;
+ while (changed)
+ {
+ changed = 0;
+ for (bb = 0; bb < n_basic_blocks; bb++)
+ {
+ if (bb != 0)
+ sbitmap_union_of_predecessors (pre_pavin[bb], pre_pavout,
+ bb, s_preds);
+ changed |= sbitmap_a_or_b_and_c (pre_pavout[bb], pre_comp[bb],
+ pre_transp[bb], pre_pavin[bb]);
+ }
+ passes++;
+ }
+
+ if (gcse_file)
+ fprintf (gcse_file, "partially avail expr computation: %d passes\n", passes);
+}
+
+/* Compute "placement possible" information on entrance and exit of
+ each block.
+
+ From Fred Chow's Thesis:
+ A computation `e' is PP at a point `p' if it is anticipated at `p' and
+ all the anticipated e's can be rendered redundant by zero or more
+ insertions at that point and some other points in the procedure, and
+ these insertions satisfy the conditions that the insertions are always
+ at points that `e' is anticipated and the first anticipated e's after the
+ insertions are rendered redundant. */
+
+static void
+compute_pre_ppinout ()
+{
+ int bb, i, changed, size, passes;
+
+ sbitmap_vector_ones (pre_ppin, n_basic_blocks);
+ /* ??? Inefficient as we set pre_ppin[0] twice, but simple. */
+ sbitmap_zero (pre_ppin[0]);
+
+ sbitmap_vector_ones (pre_ppout, n_basic_blocks);
+ /* ??? Inefficient as we set pre_ppout[n_basic_blocks-1] twice, but simple. */
+ sbitmap_zero (pre_ppout[n_basic_blocks - 1]);
+
+ size = pre_ppin[0]->size;
+ passes = 0;
+ changed = 1;
+ while (changed)
+ {
+ changed = 0;
+ for (bb = 1; bb < n_basic_blocks; bb++)
+ {
+ sbitmap_ptr antin = pre_antin[bb]->elms;
+ sbitmap_ptr pavin = pre_pavin[bb]->elms;
+ sbitmap_ptr antloc = pre_antloc[bb]->elms;
+ sbitmap_ptr transp = pre_transp[bb]->elms;
+ sbitmap_ptr ppout = pre_ppout[bb]->elms;
+ sbitmap_ptr ppin = pre_ppin[bb]->elms;
+
+ for (i = 0; i < size; i++)
+ {
+ int_list_ptr pred;
+ SBITMAP_ELT_TYPE tmp = *antin & *pavin & (*antloc | (*transp & *ppout));
+ SBITMAP_ELT_TYPE pred_val = -1L;
+
+ for (pred = s_preds[bb]; pred != NULL; pred = pred->next)
+ {
+ int pred_bb = INT_LIST_VAL (pred);
+ sbitmap_ptr ppout_j,avout_j;
+
+ if (pred_bb == ENTRY_BLOCK)
+ continue;
+
+ /* If this is a back edge, propagate info along the back
+ edge to allow for loop invariant code motion.
+
+ See FOLLOW_BACK_EDGES at the top of this file for a longer
+ discussion about loop invariant code motion in pre. */
+ if (! FOLLOW_BACK_EDGES
+ && (INSN_CUID (BLOCK_HEAD (bb))
+ < INSN_CUID (BLOCK_END (pred_bb))))
+ {
+ pred_val = 0;
+ }
+ else
+ {
+ ppout_j = pre_ppout[pred_bb]->elms + i;
+ avout_j = pre_avout[pred_bb]->elms + i;
+ pred_val &= *ppout_j | *avout_j;
+ }
+ }
+ tmp &= pred_val;
+ *ppin = tmp;
+ antin++; pavin++; antloc++; transp++; ppout++; ppin++;
+ }
+ }
+
+ for (bb = 0; bb < n_basic_blocks - 1; bb++)
+ {
+ sbitmap_ptr ppout = pre_ppout[bb]->elms;
+
+ for (i = 0; i < size; i++)
+ {
+ int_list_ptr succ;
+ SBITMAP_ELT_TYPE tmp = -1L;
+
+ for (succ = s_succs[bb]; succ != NULL; succ = succ->next)
+ {
+ int succ_bb = INT_LIST_VAL (succ);
+ sbitmap_ptr ppin;
+
+ if (succ_bb == EXIT_BLOCK)
+ continue;
+
+ ppin = pre_ppin[succ_bb]->elms + i;
+ tmp &= *ppin;
+ }
+ if (*ppout != tmp)
+ {
+ changed = 1;
+ *ppout++ = tmp;
+ }
+ else
+ ppout++;
+ }
+ }
+
+ passes++;
+ }
+
+ if (gcse_file)
+ fprintf (gcse_file, "placement possible computation: %d passes\n", passes);
+}
+
+/* Top level routine to do the dataflow analysis needed by PRE. */
+
+static void
+compute_pre_data ()
+{
+ compute_pre_local_properties ();
+ compute_pre_avinout ();
+ compute_pre_antinout ();
+ compute_pre_pavinout ();
+ compute_pre_ppinout ();
+ if (gcse_file)
+ fprintf (gcse_file, "\n");
+}
+
+/* PRE utilities */
+
+/* Return non-zero if occurrence OCCR of expression EXPR reaches block BB.
+
+ VISITED is a pointer to a working buffer for tracking which BB's have
+ been visited. It is NULL for the top-level call.
+
+ We treat reaching expressions that go through blocks containing the same
+ reaching expression as "not reaching". E.g. if EXPR is generated in blocks
+ 2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
+ 2 as not reaching. The intent is to improve the probability of finding
+ only one reaching expression and to reduce register lifetimes by picking
+ the closest such expression. */
+
+static int
+pre_expr_reaches_here_p (occr, expr, bb, visited)
+ struct occr *occr;
+ struct expr *expr;
+ int bb;
+ char *visited;
+{
+ int_list_ptr pred;
+
+ if (visited == NULL)
+ {
+ visited = (char *) alloca (n_basic_blocks);
+ bzero (visited, n_basic_blocks);
+ }
+
+ for (pred = s_preds[bb]; pred != NULL; pred = pred->next)
+ {
+ int pred_bb = INT_LIST_VAL (pred);
+
+ if (pred_bb == ENTRY_BLOCK
+ /* Has predecessor has already been visited? */
+ || visited[pred_bb])
+ {
+ /* Nothing to do. */
+ }
+ /* Does this predecessor generate this expression? */
+ else if (TEST_BIT (pre_comp[pred_bb], expr->bitmap_index))
+ {
+ /* Is this the occurrence we're looking for?
+ Note that there's only one generating occurrence per block
+ so we just need to check the block number. */
+ if (BLOCK_NUM (occr->insn) == pred_bb)
+ return 1;
+ visited[pred_bb] = 1;
+ }
+ /* Ignore this predecessor if it kills the expression. */
+ else if (! TEST_BIT (pre_transp[pred_bb], expr->bitmap_index))
+ visited[pred_bb] = 1;
+ /* Neither gen nor kill. */
+ else
+ {
+ visited[pred_bb] = 1;
+ if (pre_expr_reaches_here_p (occr, expr, pred_bb, visited))
+ return 1;
+ }
+ }
+
+ /* All paths have been checked. */
+ return 0;
+}
+
+/* Add EXPR to the end of basic block BB. */
+
+static void
+pre_insert_insn (expr, bb)
+ struct expr *expr;
+ int bb;
+{
+ rtx insn = BLOCK_END (bb);
+ rtx new_insn;
+ rtx reg = expr->reaching_reg;
+ int regno = REGNO (reg);
+ rtx pat;
+
+ pat = gen_rtx_SET (VOIDmode, reg, copy_rtx (expr->expr));
+
+ /* If the last insn is a jump, insert EXPR in front [taking care to
+ handle cc0, etc. properly]. */
+
+ if (GET_CODE (insn) == JUMP_INSN)
+ {
+#ifdef HAVE_cc0
+ rtx note;
+#endif
+
+ /* If this is a jump table, then we can't insert stuff here. Since
+ we know the previous real insn must be the tablejump, we insert
+ the new instruction just before the tablejump. */
+ if (GET_CODE (PATTERN (insn)) == ADDR_VEC
+ || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
+ insn = prev_real_insn (insn);
+
+#ifdef HAVE_cc0
+ /* FIXME: 'twould be nice to call prev_cc0_setter here but it aborts
+ if cc0 isn't set. */
+ note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
+ if (note)
+ insn = XEXP (note, 0);
+ else
+ {
+ rtx maybe_cc0_setter = prev_nonnote_insn (insn);
+ if (maybe_cc0_setter
+ && GET_RTX_CLASS (GET_CODE (maybe_cc0_setter)) == 'i'
+ && sets_cc0_p (PATTERN (maybe_cc0_setter)))
+ insn = maybe_cc0_setter;
+ }
+#endif
+ /* FIXME: What if something in cc0/jump uses value set in new insn? */
+ new_insn = emit_insn_before (pat, insn);
+ add_label_notes (SET_SRC (pat), new_insn);
+ if (BLOCK_HEAD (bb) == insn)
+ BLOCK_HEAD (bb) = new_insn;
+ /* Keep block number table up to date. */
+ set_block_num (new_insn, bb);
+ /* Keep register set table up to date. */
+ record_one_set (regno, new_insn);
+ }
+ else
+ {
+ new_insn = emit_insn_after (pat, insn);
+ add_label_notes (SET_SRC (pat), new_insn);
+ BLOCK_END (bb) = new_insn;
+ /* Keep block number table up to date. */
+ set_block_num (new_insn, bb);
+ /* Keep register set table up to date. */
+ record_one_set (regno, new_insn);
+ }
+
+ gcse_create_count++;
+
+ if (gcse_file)
+ {
+ fprintf (gcse_file, "PRE: end of bb %d, insn %d, copying expression %d to reg %d\n",
+ bb, INSN_UID (new_insn), expr->bitmap_index, regno);
+ }
+}
+
+/* Insert partially redundant expressions at the ends of appropriate basic
+ blocks making them now redundant. */
+
+static void
+pre_insert (index_map)
+ struct expr **index_map;
+{
+ int bb, i, size;
+
+ /* Compute INSERT = PPOUT & (~AVOUT) & (~PPIN | ~TRANSP) for each
+ expression. Where INSERT == TRUE, add the expression at the end of
+ the basic block. */
+
+ size = pre_ppout[0]->size;
+ for (bb = 0; bb < n_basic_blocks; bb++)
+ {
+ int indx;
+ sbitmap_ptr ppout = pre_ppout[bb]->elms;
+ sbitmap_ptr avout = pre_avout[bb]->elms;
+ sbitmap_ptr ppin = pre_ppin[bb]->elms;
+ sbitmap_ptr transp = pre_transp[bb]->elms;
+
+ for (i = indx = 0;
+ i < size;
+ i++, indx += SBITMAP_ELT_BITS, ppout++, avout++, ppin++, transp++)
+ {
+ int j;
+ SBITMAP_ELT_TYPE insert = *ppout & (~*avout) & (~*ppin | ~*transp);
+
+ for (j = indx; insert != 0 && j < n_exprs; j++, insert >>= 1)
+ {
+ if ((insert & 1) != 0
+ /* If the basic block isn't reachable, PPOUT will be TRUE.
+ However, we don't want to insert a copy here because the
+ expression may not really be redundant. So only insert
+ an insn if the expression was deleted. */
+ && index_map[j]->reaching_reg != NULL)
+ pre_insert_insn (index_map[j], bb);
+ }
+ }
+ }
+}
+
+/* Copy the result of INSN to REG.
+ INDX is the expression number. */
+
+static void
+pre_insert_copy_insn (expr, insn)
+ struct expr *expr;
+ rtx insn;
+{
+ rtx reg = expr->reaching_reg;
+ int regno = REGNO (reg);
+ int indx = expr->bitmap_index;
+ rtx set = single_set (insn);
+ rtx new_insn;
+
+ if (!set)
+ abort ();
+ new_insn = emit_insn_after (gen_rtx_SET (VOIDmode, reg, SET_DEST (set)),
+ insn);
+ /* Keep block number table up to date. */
+ set_block_num (new_insn, BLOCK_NUM (insn));
+ /* Keep register set table up to date. */
+ record_one_set (regno, new_insn);
+
+ gcse_create_count++;
+
+ if (gcse_file)
+ {
+ fprintf (gcse_file, "PRE: bb %d, insn %d, copying expression %d in insn %d to reg %d\n",
+ BLOCK_NUM (insn), INSN_UID (new_insn), indx, INSN_UID (insn), regno);
+ }
+}
+
+/* Copy available expressions that reach the redundant expression
+ to `reaching_reg'. */
+
+static void
+pre_insert_copies ()
+{
+ int i;
+
+ /* For each available expression in the table, copy the result to
+ `reaching_reg' if the expression reaches a deleted one.
+
+ ??? The current algorithm is rather brute force.
+ Need to do some profiling. */
+
+ for (i = 0; i < expr_hash_table_size; i++)
+ {
+ struct expr *expr;
+
+ for (expr = expr_hash_table[i]; expr != NULL; expr = expr->next_same_hash)
+ {
+ struct occr *occr;
+
+ /* If the basic block isn't reachable, PPOUT will be TRUE.
+ However, we don't want to insert a copy here because the
+ expression may not really be redundant. So only insert
+ an insn if the expression was deleted.
+ This test also avoids further processing if the expression
+ wasn't deleted anywhere. */
+ if (expr->reaching_reg == NULL)
+ continue;
+
+ for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
+ {
+ struct occr *avail;
+
+ if (! occr->deleted_p)
+ continue;
+
+ for (avail = expr->avail_occr; avail != NULL; avail = avail->next)
+ {
+ rtx insn = avail->insn;
+
+ /* No need to handle this one if handled already. */
+ if (avail->copied_p)
+ continue;
+ /* Don't handle this one if it's a redundant one. */
+ if (TEST_BIT (pre_redundant, INSN_CUID (insn)))
+ continue;
+ /* Or if the expression doesn't reach the deleted one. */
+ if (! pre_expr_reaches_here_p (avail, expr,
+ BLOCK_NUM (occr->insn),
+ NULL))
+ continue;
+
+ /* Copy the result of avail to reaching_reg. */
+ pre_insert_copy_insn (expr, insn);
+ avail->copied_p = 1;
+ }
+ }
+ }
+ }
+}
+
+/* Delete redundant computations.
+ These are ones that satisy ANTLOC & PPIN.
+ Deletion is done by changing the insn to copy the `reaching_reg' of
+ the expression into the result of the SET. It is left to later passes
+ (cprop, cse2, flow, combine, regmove) to propagate the copy or eliminate it.
+
+ Returns non-zero if a change is made. */
+
+static int
+pre_delete ()
+{
+ int i, changed;
+
+ changed = 0;
+ for (i = 0; i < expr_hash_table_size; i++)
+ {
+ struct expr *expr;
+
+ for (expr = expr_hash_table[i]; expr != NULL; expr = expr->next_same_hash)
+ {
+ struct occr *occr;
+ int indx = expr->bitmap_index;
+
+ /* We only need to search antic_occr since we require
+ ANTLOC != 0. */
+
+ for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
+ {
+ rtx insn = occr->insn;
+ rtx set;
+ int bb = BLOCK_NUM (insn);
+ sbitmap ppin = pre_ppin[bb];
+
+ if (TEST_BIT (ppin, indx))
+ {
+ set = single_set (insn);
+ if (! set)
+ abort ();
+
+ /* Create a pseudo-reg to store the result of reaching
+ expressions into. Get the mode for the new pseudo
+ from the mode of the original destination pseudo. */
+ if (expr->reaching_reg == NULL)
+ expr->reaching_reg
+ = gen_reg_rtx (GET_MODE (SET_DEST (set)));
+
+ /* In theory this should never fail since we're creating
+ a reg->reg copy.
+
+ However, on the x86 some of the movXX patterns actually
+ contain clobbers of scratch regs. This may cause the
+ insn created by validate_change to not patch any pattern
+ and thus cause validate_change to fail. */
+ if (validate_change (insn, &SET_SRC (set),
+ expr->reaching_reg, 0))
+ {
+ occr->deleted_p = 1;
+ SET_BIT (pre_redundant, INSN_CUID (insn));
+ changed = 1;
+ gcse_subst_count++;
+ }
+
+ if (gcse_file)
+ {
+ fprintf (gcse_file, "PRE: redundant insn %d (expression %d) in bb %d, reaching reg is %d\n",
+ INSN_UID (insn), indx, bb, REGNO (expr->reaching_reg));
+ }
+ }
+ }
+ }
+ }
+
+ return changed;
+}
+
+/* Perform GCSE optimizations using PRE.
+ This is called by one_pre_gcse_pass after all the dataflow analysis
+ has been done.
+
+ This is based on the original Morel-Renvoise paper and Fred Chow's thesis.
+
+ The M-R paper uses "TRANSP" to describe an expression as being transparent
+ in a block where as Chow's thesis uses "ALTERED". We use TRANSP.
+
+ ??? A new pseudo reg is created to hold the reaching expression.
+ The nice thing about the classical approach is that it would try to
+ use an existing reg. If the register can't be adequately optimized
+ [i.e. we introduce reload problems], one could add a pass here to
+ propagate the new register through the block.
+
+ ??? We don't handle single sets in PARALLELs because we're [currently]
+ not able to copy the rest of the parallel when we insert copies to create
+ full redundancies from partial redundancies. However, there's no reason
+ why we can't handle PARALLELs in the cases where there are no partial
+ redundancies. */
+
+static int
+pre_gcse ()
+{
+ int i;
+ int changed;
+ struct expr **index_map;
+
+ /* Compute a mapping from expression number (`bitmap_index') to
+ hash table entry. */
+
+ index_map = (struct expr **) alloca (n_exprs * sizeof (struct expr *));
+ bzero ((char *) index_map, n_exprs * sizeof (struct expr *));
+ for (i = 0; i < expr_hash_table_size; i++)
+ {
+ struct expr *expr;
+
+ for (expr = expr_hash_table[i]; expr != NULL; expr = expr->next_same_hash)
+ index_map[expr->bitmap_index] = expr;
+ }
+
+ /* Reset bitmap used to track which insns are redundant. */
+ pre_redundant = sbitmap_alloc (max_cuid);
+ sbitmap_zero (pre_redundant);
+
+ /* Delete the redundant insns first so that
+ - we know what register to use for the new insns and for the other
+ ones with reaching expressions
+ - we know which insns are redundant when we go to create copies */
+ changed = pre_delete ();
+
+ /* Insert insns in places that make partially redundant expressions
+ fully redundant. */
+ pre_insert (index_map);
+
+ /* In other places with reaching expressions, copy the expression to the
+ specially allocated pseudo-reg that reaches the redundant expression. */
+ pre_insert_copies ();
+
+ free (pre_redundant);
+
+ return changed;
+}
+
+/* Top level routine to perform one PRE GCSE pass.
+
+ Return non-zero if a change was made. */
+
+static int
+one_pre_gcse_pass (f, pass)
+ rtx f;
+ int pass;
+{
+ int changed = 0;
+
+ gcse_subst_count = 0;
+ gcse_create_count = 0;
+
+ alloc_expr_hash_table (max_cuid);
+ compute_expr_hash_table (f);
+ if (gcse_file)
+ dump_hash_table (gcse_file, "Expression", expr_hash_table,
+ expr_hash_table_size, n_exprs);
+ if (n_exprs > 0)
+ {
+ alloc_pre_mem (n_basic_blocks, n_exprs);
+ compute_pre_data ();
+ changed |= pre_gcse ();
+ free_pre_mem ();
+ }
+ free_expr_hash_table ();
+
+ if (gcse_file)
+ {
+ fprintf (gcse_file, "\n");
+ fprintf (gcse_file, "PRE GCSE of %s, pass %d: %d bytes needed, %d substs, %d insns created\n",
+ current_function_name, pass,
+ bytes_used, gcse_subst_count, gcse_create_count);
+ }
+
+ return changed;
+}
+
+/* If X contains any LABEL_REF's, add REG_LABEL notes for them to INSN.
+ We have to add REG_LABEL notes, because the following loop optimization
+ pass requires them. */
+
+/* ??? This is very similar to the loop.c add_label_notes function. We
+ could probably share code here. */
+
+/* ??? If there was a jump optimization pass after gcse and before loop,
+ then we would not need to do this here, because jump would add the
+ necessary REG_LABEL notes. */
+
+static void
+add_label_notes (x, insn)
+ rtx x;
+ rtx insn;
+{
+ enum rtx_code code = GET_CODE (x);
+ int i, j;
+ char *fmt;
+
+ if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
+ {
+ /* This code used to ignore labels that referred to dispatch tables to
+ avoid flow generating (slighly) worse code.
+
+ We no longer ignore such label references (see LABEL_REF handling in
+ mark_jump_label for additional information). */
+ REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_LABEL, XEXP (x, 0),
+ REG_NOTES (insn));
+ return;
+ }
+
+ fmt = GET_RTX_FORMAT (code);
+ for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
+ {
+ if (fmt[i] == 'e')
+ add_label_notes (XEXP (x, i), insn);
+ else if (fmt[i] == 'E')
+ for (j = XVECLEN (x, i) - 1; j >= 0; j--)
+ add_label_notes (XVECEXP (x, i, j), insn);
+ }
+}
OpenPOWER on IntegriCloud