summaryrefslogtreecommitdiffstats
path: root/contrib/gcc/expmed.c
diff options
context:
space:
mode:
authorpeter <peter@FreeBSD.org>1996-09-18 05:35:50 +0000
committerpeter <peter@FreeBSD.org>1996-09-18 05:35:50 +0000
commitd4691e641ba47cb86eef80f5c879e13f9d961724 (patch)
tree5b7ea73fc49c8998d9dc87d3eeff5b96439e6856 /contrib/gcc/expmed.c
downloadFreeBSD-src-d4691e641ba47cb86eef80f5c879e13f9d961724.zip
FreeBSD-src-d4691e641ba47cb86eef80f5c879e13f9d961724.tar.gz
Import of unmodified (but trimmed) gcc-2.7.2. The bigger parts of the
non-i386, non-unix, and generatable files have been trimmed, but can easily be added in later if needed. gcc-2.7.2.1 will follow shortly, it's a very small delta to this and it's handy to have both available for reference for such little cost. The freebsd-specific changes will then be committed, and once the dust has settled, the bmakefiles will be committed to use this code.
Diffstat (limited to 'contrib/gcc/expmed.c')
-rw-r--r--contrib/gcc/expmed.c4223
1 files changed, 4223 insertions, 0 deletions
diff --git a/contrib/gcc/expmed.c b/contrib/gcc/expmed.c
new file mode 100644
index 0000000..8006e8b
--- /dev/null
+++ b/contrib/gcc/expmed.c
@@ -0,0 +1,4223 @@
+/* Medium-level subroutines: convert bit-field store and extract
+ and shifts, multiplies and divides to rtl instructions.
+ Copyright (C) 1987, 88, 89, 92, 93, 94, 1995 Free Software Foundation, Inc.
+
+This file is part of GNU CC.
+
+GNU CC is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2, or (at your option)
+any later version.
+
+GNU CC is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GNU CC; see the file COPYING. If not, write to
+the Free Software Foundation, 59 Temple Place - Suite 330,
+Boston, MA 02111-1307, USA. */
+
+
+#include "config.h"
+#include "rtl.h"
+#include "tree.h"
+#include "flags.h"
+#include "insn-flags.h"
+#include "insn-codes.h"
+#include "insn-config.h"
+#include "expr.h"
+#include "real.h"
+#include "recog.h"
+
+static void store_fixed_bit_field PROTO((rtx, int, int, int, rtx, int));
+static void store_split_bit_field PROTO((rtx, int, int, rtx, int));
+static rtx extract_fixed_bit_field PROTO((enum machine_mode, rtx, int,
+ int, int, rtx, int, int));
+static rtx mask_rtx PROTO((enum machine_mode, int,
+ int, int));
+static rtx lshift_value PROTO((enum machine_mode, rtx,
+ int, int));
+static rtx extract_split_bit_field PROTO((rtx, int, int, int, int));
+
+#define CEIL(x,y) (((x) + (y) - 1) / (y))
+
+/* Non-zero means divides or modulus operations are relatively cheap for
+ powers of two, so don't use branches; emit the operation instead.
+ Usually, this will mean that the MD file will emit non-branch
+ sequences. */
+
+static int sdiv_pow2_cheap, smod_pow2_cheap;
+
+#ifndef SLOW_UNALIGNED_ACCESS
+#define SLOW_UNALIGNED_ACCESS STRICT_ALIGNMENT
+#endif
+
+/* For compilers that support multiple targets with different word sizes,
+ MAX_BITS_PER_WORD contains the biggest value of BITS_PER_WORD. An example
+ is the H8/300(H) compiler. */
+
+#ifndef MAX_BITS_PER_WORD
+#define MAX_BITS_PER_WORD BITS_PER_WORD
+#endif
+
+/* Cost of various pieces of RTL. Note that some of these are indexed by shift count,
+ and some by mode. */
+static int add_cost, negate_cost, zero_cost;
+static int shift_cost[MAX_BITS_PER_WORD];
+static int shiftadd_cost[MAX_BITS_PER_WORD];
+static int shiftsub_cost[MAX_BITS_PER_WORD];
+static int mul_cost[NUM_MACHINE_MODES];
+static int div_cost[NUM_MACHINE_MODES];
+static int mul_widen_cost[NUM_MACHINE_MODES];
+static int mul_highpart_cost[NUM_MACHINE_MODES];
+
+void
+init_expmed ()
+{
+ char *free_point;
+ /* This is "some random pseudo register" for purposes of calling recog
+ to see what insns exist. */
+ rtx reg = gen_rtx (REG, word_mode, 10000);
+ rtx shift_insn, shiftadd_insn, shiftsub_insn;
+ int dummy;
+ int m;
+ enum machine_mode mode, wider_mode;
+
+ start_sequence ();
+
+ /* Since we are on the permanent obstack, we must be sure we save this
+ spot AFTER we call start_sequence, since it will reuse the rtl it
+ makes. */
+
+ free_point = (char *) oballoc (0);
+
+ zero_cost = rtx_cost (const0_rtx, 0);
+ add_cost = rtx_cost (gen_rtx (PLUS, word_mode, reg, reg), SET);
+
+ shift_insn = emit_insn (gen_rtx (SET, VOIDmode, reg,
+ gen_rtx (ASHIFT, word_mode, reg,
+ const0_rtx)));
+
+ shiftadd_insn = emit_insn (gen_rtx (SET, VOIDmode, reg,
+ gen_rtx (PLUS, word_mode,
+ gen_rtx (MULT, word_mode,
+ reg, const0_rtx),
+ reg)));
+
+ shiftsub_insn = emit_insn (gen_rtx (SET, VOIDmode, reg,
+ gen_rtx (MINUS, word_mode,
+ gen_rtx (MULT, word_mode,
+ reg, const0_rtx),
+ reg)));
+
+ init_recog ();
+
+ shift_cost[0] = 0;
+ shiftadd_cost[0] = shiftsub_cost[0] = add_cost;
+
+ for (m = 1; m < BITS_PER_WORD; m++)
+ {
+ shift_cost[m] = shiftadd_cost[m] = shiftsub_cost[m] = 32000;
+
+ XEXP (SET_SRC (PATTERN (shift_insn)), 1) = GEN_INT (m);
+ if (recog (PATTERN (shift_insn), shift_insn, &dummy) >= 0)
+ shift_cost[m] = rtx_cost (SET_SRC (PATTERN (shift_insn)), SET);
+
+ XEXP (XEXP (SET_SRC (PATTERN (shiftadd_insn)), 0), 1)
+ = GEN_INT ((HOST_WIDE_INT) 1 << m);
+ if (recog (PATTERN (shiftadd_insn), shiftadd_insn, &dummy) >= 0)
+ shiftadd_cost[m] = rtx_cost (SET_SRC (PATTERN (shiftadd_insn)), SET);
+
+ XEXP (XEXP (SET_SRC (PATTERN (shiftsub_insn)), 0), 1)
+ = GEN_INT ((HOST_WIDE_INT) 1 << m);
+ if (recog (PATTERN (shiftsub_insn), shiftsub_insn, &dummy) >= 0)
+ shiftsub_cost[m] = rtx_cost (SET_SRC (PATTERN (shiftsub_insn)), SET);
+ }
+
+ negate_cost = rtx_cost (gen_rtx (NEG, word_mode, reg), SET);
+
+ sdiv_pow2_cheap
+ = (rtx_cost (gen_rtx (DIV, word_mode, reg, GEN_INT (32)), SET)
+ <= 2 * add_cost);
+ smod_pow2_cheap
+ = (rtx_cost (gen_rtx (MOD, word_mode, reg, GEN_INT (32)), SET)
+ <= 2 * add_cost);
+
+ for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
+ mode != VOIDmode;
+ mode = GET_MODE_WIDER_MODE (mode))
+ {
+ reg = gen_rtx (REG, mode, 10000);
+ div_cost[(int) mode] = rtx_cost (gen_rtx (UDIV, mode, reg, reg), SET);
+ mul_cost[(int) mode] = rtx_cost (gen_rtx (MULT, mode, reg, reg), SET);
+ wider_mode = GET_MODE_WIDER_MODE (mode);
+ if (wider_mode != VOIDmode)
+ {
+ mul_widen_cost[(int) wider_mode]
+ = rtx_cost (gen_rtx (MULT, wider_mode,
+ gen_rtx (ZERO_EXTEND, wider_mode, reg),
+ gen_rtx (ZERO_EXTEND, wider_mode, reg)),
+ SET);
+ mul_highpart_cost[(int) mode]
+ = rtx_cost (gen_rtx (TRUNCATE, mode,
+ gen_rtx (LSHIFTRT, wider_mode,
+ gen_rtx (MULT, wider_mode,
+ gen_rtx (ZERO_EXTEND, wider_mode, reg),
+ gen_rtx (ZERO_EXTEND, wider_mode, reg)),
+ GEN_INT (GET_MODE_BITSIZE (mode)))),
+ SET);
+ }
+ }
+
+ /* Free the objects we just allocated. */
+ end_sequence ();
+ obfree (free_point);
+}
+
+/* Return an rtx representing minus the value of X.
+ MODE is the intended mode of the result,
+ useful if X is a CONST_INT. */
+
+rtx
+negate_rtx (mode, x)
+ enum machine_mode mode;
+ rtx x;
+{
+ if (GET_CODE (x) == CONST_INT)
+ {
+ HOST_WIDE_INT val = - INTVAL (x);
+ if (GET_MODE_BITSIZE (mode) < HOST_BITS_PER_WIDE_INT)
+ {
+ /* Sign extend the value from the bits that are significant. */
+ if (val & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1)))
+ val |= (HOST_WIDE_INT) (-1) << GET_MODE_BITSIZE (mode);
+ else
+ val &= ((HOST_WIDE_INT) 1 << GET_MODE_BITSIZE (mode)) - 1;
+ }
+ return GEN_INT (val);
+ }
+ else
+ return expand_unop (GET_MODE (x), neg_optab, x, NULL_RTX, 0);
+}
+
+/* Generate code to store value from rtx VALUE
+ into a bit-field within structure STR_RTX
+ containing BITSIZE bits starting at bit BITNUM.
+ FIELDMODE is the machine-mode of the FIELD_DECL node for this field.
+ ALIGN is the alignment that STR_RTX is known to have, measured in bytes.
+ TOTAL_SIZE is the size of the structure in bytes, or -1 if varying. */
+
+/* ??? Note that there are two different ideas here for how
+ to determine the size to count bits within, for a register.
+ One is BITS_PER_WORD, and the other is the size of operand 3
+ of the insv pattern. (The latter assumes that an n-bit machine
+ will be able to insert bit fields up to n bits wide.)
+ It isn't certain that either of these is right.
+ extract_bit_field has the same quandary. */
+
+rtx
+store_bit_field (str_rtx, bitsize, bitnum, fieldmode, value, align, total_size)
+ rtx str_rtx;
+ register int bitsize;
+ int bitnum;
+ enum machine_mode fieldmode;
+ rtx value;
+ int align;
+ int total_size;
+{
+ int unit = (GET_CODE (str_rtx) == MEM) ? BITS_PER_UNIT : BITS_PER_WORD;
+ register int offset = bitnum / unit;
+ register int bitpos = bitnum % unit;
+ register rtx op0 = str_rtx;
+
+ if (GET_CODE (str_rtx) == MEM && ! MEM_IN_STRUCT_P (str_rtx))
+ abort ();
+
+ /* Discount the part of the structure before the desired byte.
+ We need to know how many bytes are safe to reference after it. */
+ if (total_size >= 0)
+ total_size -= (bitpos / BIGGEST_ALIGNMENT
+ * (BIGGEST_ALIGNMENT / BITS_PER_UNIT));
+
+ while (GET_CODE (op0) == SUBREG)
+ {
+ /* The following line once was done only if WORDS_BIG_ENDIAN,
+ but I think that is a mistake. WORDS_BIG_ENDIAN is
+ meaningful at a much higher level; when structures are copied
+ between memory and regs, the higher-numbered regs
+ always get higher addresses. */
+ offset += SUBREG_WORD (op0);
+ /* We used to adjust BITPOS here, but now we do the whole adjustment
+ right after the loop. */
+ op0 = SUBREG_REG (op0);
+ }
+
+ /* If OP0 is a register, BITPOS must count within a word.
+ But as we have it, it counts within whatever size OP0 now has.
+ On a bigendian machine, these are not the same, so convert. */
+ if (BYTES_BIG_ENDIAN
+ && GET_CODE (op0) != MEM
+ && unit > GET_MODE_BITSIZE (GET_MODE (op0)))
+ bitpos += unit - GET_MODE_BITSIZE (GET_MODE (op0));
+
+ value = protect_from_queue (value, 0);
+
+ if (flag_force_mem)
+ value = force_not_mem (value);
+
+ /* Note that the adjustment of BITPOS above has no effect on whether
+ BITPOS is 0 in a REG bigger than a word. */
+ if (GET_MODE_SIZE (fieldmode) >= UNITS_PER_WORD
+ && (GET_CODE (op0) != MEM
+ || ! SLOW_UNALIGNED_ACCESS
+ || (offset * BITS_PER_UNIT % bitsize == 0
+ && align % GET_MODE_SIZE (fieldmode) == 0))
+ && bitpos == 0 && bitsize == GET_MODE_BITSIZE (fieldmode))
+ {
+ /* Storing in a full-word or multi-word field in a register
+ can be done with just SUBREG. */
+ if (GET_MODE (op0) != fieldmode)
+ {
+ if (GET_CODE (op0) == REG)
+ op0 = gen_rtx (SUBREG, fieldmode, op0, offset);
+ else
+ op0 = change_address (op0, fieldmode,
+ plus_constant (XEXP (op0, 0), offset));
+ }
+ emit_move_insn (op0, value);
+ return value;
+ }
+
+ /* Storing an lsb-aligned field in a register
+ can be done with a movestrict instruction. */
+
+ if (GET_CODE (op0) != MEM
+ && (BYTES_BIG_ENDIAN ? bitpos + bitsize == unit : bitpos == 0)
+ && bitsize == GET_MODE_BITSIZE (fieldmode)
+ && (GET_MODE (op0) == fieldmode
+ || (movstrict_optab->handlers[(int) fieldmode].insn_code
+ != CODE_FOR_nothing)))
+ {
+ /* Get appropriate low part of the value being stored. */
+ if (GET_CODE (value) == CONST_INT || GET_CODE (value) == REG)
+ value = gen_lowpart (fieldmode, value);
+ else if (!(GET_CODE (value) == SYMBOL_REF
+ || GET_CODE (value) == LABEL_REF
+ || GET_CODE (value) == CONST))
+ value = convert_to_mode (fieldmode, value, 0);
+
+ if (GET_MODE (op0) == fieldmode)
+ emit_move_insn (op0, value);
+ else
+ {
+ int icode = movstrict_optab->handlers[(int) fieldmode].insn_code;
+ if(! (*insn_operand_predicate[icode][1]) (value, fieldmode))
+ value = copy_to_mode_reg (fieldmode, value);
+ emit_insn (GEN_FCN (icode)
+ (gen_rtx (SUBREG, fieldmode, op0, offset), value));
+ }
+ return value;
+ }
+
+ /* Handle fields bigger than a word. */
+
+ if (bitsize > BITS_PER_WORD)
+ {
+ /* Here we transfer the words of the field
+ in the order least significant first.
+ This is because the most significant word is the one which may
+ be less than full.
+ However, only do that if the value is not BLKmode. */
+
+ int backwards = WORDS_BIG_ENDIAN && fieldmode != BLKmode;
+
+ int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
+ int i;
+
+ /* This is the mode we must force value to, so that there will be enough
+ subwords to extract. Note that fieldmode will often (always?) be
+ VOIDmode, because that is what store_field uses to indicate that this
+ is a bit field, but passing VOIDmode to operand_subword_force will
+ result in an abort. */
+ fieldmode = mode_for_size (nwords * BITS_PER_WORD, MODE_INT, 0);
+
+ for (i = 0; i < nwords; i++)
+ {
+ /* If I is 0, use the low-order word in both field and target;
+ if I is 1, use the next to lowest word; and so on. */
+ int wordnum = (backwards ? nwords - i - 1 : i);
+ int bit_offset = (backwards
+ ? MAX (bitsize - (i + 1) * BITS_PER_WORD, 0)
+ : i * BITS_PER_WORD);
+ store_bit_field (op0, MIN (BITS_PER_WORD,
+ bitsize - i * BITS_PER_WORD),
+ bitnum + bit_offset, word_mode,
+ operand_subword_force (value, wordnum,
+ (GET_MODE (value) == VOIDmode
+ ? fieldmode
+ : GET_MODE (value))),
+ align, total_size);
+ }
+ return value;
+ }
+
+ /* From here on we can assume that the field to be stored in is
+ a full-word (whatever type that is), since it is shorter than a word. */
+
+ /* OFFSET is the number of words or bytes (UNIT says which)
+ from STR_RTX to the first word or byte containing part of the field. */
+
+ if (GET_CODE (op0) == REG)
+ {
+ if (offset != 0
+ || GET_MODE_SIZE (GET_MODE (op0)) > UNITS_PER_WORD)
+ op0 = gen_rtx (SUBREG, TYPE_MODE (type_for_size (BITS_PER_WORD, 0)),
+ op0, offset);
+ offset = 0;
+ }
+ else
+ {
+ op0 = protect_from_queue (op0, 1);
+ }
+
+ /* If VALUE is a floating-point mode, access it as an integer of the
+ corresponding size. This can occur on a machine with 64 bit registers
+ that uses SFmode for float. This can also occur for unaligned float
+ structure fields. */
+ if (GET_MODE_CLASS (GET_MODE (value)) == MODE_FLOAT)
+ {
+ if (GET_CODE (value) != REG)
+ value = copy_to_reg (value);
+ value = gen_rtx (SUBREG, word_mode, value, 0);
+ }
+
+ /* Now OFFSET is nonzero only if OP0 is memory
+ and is therefore always measured in bytes. */
+
+#ifdef HAVE_insv
+ if (HAVE_insv
+ && !(bitsize == 1 && GET_CODE (value) == CONST_INT)
+ /* Ensure insv's size is wide enough for this field. */
+ && (GET_MODE_BITSIZE (insn_operand_mode[(int) CODE_FOR_insv][3])
+ >= bitsize)
+ && ! ((GET_CODE (op0) == REG || GET_CODE (op0) == SUBREG)
+ && (bitsize + bitpos
+ > GET_MODE_BITSIZE (insn_operand_mode[(int) CODE_FOR_insv][3]))))
+ {
+ int xbitpos = bitpos;
+ rtx value1;
+ rtx xop0 = op0;
+ rtx last = get_last_insn ();
+ rtx pat;
+ enum machine_mode maxmode
+ = insn_operand_mode[(int) CODE_FOR_insv][3];
+
+ int save_volatile_ok = volatile_ok;
+ volatile_ok = 1;
+
+ /* If this machine's insv can only insert into a register, or if we
+ are to force MEMs into a register, copy OP0 into a register and
+ save it back later. */
+ if (GET_CODE (op0) == MEM
+ && (flag_force_mem
+ || ! ((*insn_operand_predicate[(int) CODE_FOR_insv][0])
+ (op0, VOIDmode))))
+ {
+ rtx tempreg;
+ enum machine_mode bestmode;
+
+ /* Get the mode to use for inserting into this field. If OP0 is
+ BLKmode, get the smallest mode consistent with the alignment. If
+ OP0 is a non-BLKmode object that is no wider than MAXMODE, use its
+ mode. Otherwise, use the smallest mode containing the field. */
+
+ if (GET_MODE (op0) == BLKmode
+ || GET_MODE_SIZE (GET_MODE (op0)) > GET_MODE_SIZE (maxmode))
+ bestmode
+ = get_best_mode (bitsize, bitnum, align * BITS_PER_UNIT, maxmode,
+ MEM_VOLATILE_P (op0));
+ else
+ bestmode = GET_MODE (op0);
+
+ if (bestmode == VOIDmode
+ || (SLOW_UNALIGNED_ACCESS && GET_MODE_SIZE (bestmode) > align))
+ goto insv_loses;
+
+ /* Adjust address to point to the containing unit of that mode. */
+ unit = GET_MODE_BITSIZE (bestmode);
+ /* Compute offset as multiple of this unit, counting in bytes. */
+ offset = (bitnum / unit) * GET_MODE_SIZE (bestmode);
+ bitpos = bitnum % unit;
+ op0 = change_address (op0, bestmode,
+ plus_constant (XEXP (op0, 0), offset));
+
+ /* Fetch that unit, store the bitfield in it, then store the unit. */
+ tempreg = copy_to_reg (op0);
+ store_bit_field (tempreg, bitsize, bitpos, fieldmode, value,
+ align, total_size);
+ emit_move_insn (op0, tempreg);
+ return value;
+ }
+ volatile_ok = save_volatile_ok;
+
+ /* Add OFFSET into OP0's address. */
+ if (GET_CODE (xop0) == MEM)
+ xop0 = change_address (xop0, byte_mode,
+ plus_constant (XEXP (xop0, 0), offset));
+
+ /* If xop0 is a register, we need it in MAXMODE
+ to make it acceptable to the format of insv. */
+ if (GET_CODE (xop0) == SUBREG)
+ /* We can't just change the mode, because this might clobber op0,
+ and we will need the original value of op0 if insv fails. */
+ xop0 = gen_rtx (SUBREG, maxmode, SUBREG_REG (xop0), SUBREG_WORD (xop0));
+ if (GET_CODE (xop0) == REG && GET_MODE (xop0) != maxmode)
+ xop0 = gen_rtx (SUBREG, maxmode, xop0, 0);
+
+ /* On big-endian machines, we count bits from the most significant.
+ If the bit field insn does not, we must invert. */
+
+ if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
+ xbitpos = unit - bitsize - xbitpos;
+
+ /* We have been counting XBITPOS within UNIT.
+ Count instead within the size of the register. */
+ if (BITS_BIG_ENDIAN && GET_CODE (xop0) != MEM)
+ xbitpos += GET_MODE_BITSIZE (maxmode) - unit;
+
+ unit = GET_MODE_BITSIZE (maxmode);
+
+ /* Convert VALUE to maxmode (which insv insn wants) in VALUE1. */
+ value1 = value;
+ if (GET_MODE (value) != maxmode)
+ {
+ if (GET_MODE_BITSIZE (GET_MODE (value)) >= bitsize)
+ {
+ /* Optimization: Don't bother really extending VALUE
+ if it has all the bits we will actually use. However,
+ if we must narrow it, be sure we do it correctly. */
+
+ if (GET_MODE_SIZE (GET_MODE (value)) < GET_MODE_SIZE (maxmode))
+ {
+ /* Avoid making subreg of a subreg, or of a mem. */
+ if (GET_CODE (value1) != REG)
+ value1 = copy_to_reg (value1);
+ value1 = gen_rtx (SUBREG, maxmode, value1, 0);
+ }
+ else
+ value1 = gen_lowpart (maxmode, value1);
+ }
+ else if (!CONSTANT_P (value))
+ /* Parse phase is supposed to make VALUE's data type
+ match that of the component reference, which is a type
+ at least as wide as the field; so VALUE should have
+ a mode that corresponds to that type. */
+ abort ();
+ }
+
+ /* If this machine's insv insists on a register,
+ get VALUE1 into a register. */
+ if (! ((*insn_operand_predicate[(int) CODE_FOR_insv][3])
+ (value1, maxmode)))
+ value1 = force_reg (maxmode, value1);
+
+ pat = gen_insv (xop0, GEN_INT (bitsize), GEN_INT (xbitpos), value1);
+ if (pat)
+ emit_insn (pat);
+ else
+ {
+ delete_insns_since (last);
+ store_fixed_bit_field (op0, offset, bitsize, bitpos, value, align);
+ }
+ }
+ else
+ insv_loses:
+#endif
+ /* Insv is not available; store using shifts and boolean ops. */
+ store_fixed_bit_field (op0, offset, bitsize, bitpos, value, align);
+ return value;
+}
+
+/* Use shifts and boolean operations to store VALUE
+ into a bit field of width BITSIZE
+ in a memory location specified by OP0 except offset by OFFSET bytes.
+ (OFFSET must be 0 if OP0 is a register.)
+ The field starts at position BITPOS within the byte.
+ (If OP0 is a register, it may be a full word or a narrower mode,
+ but BITPOS still counts within a full word,
+ which is significant on bigendian machines.)
+ STRUCT_ALIGN is the alignment the structure is known to have (in bytes).
+
+ Note that protect_from_queue has already been done on OP0 and VALUE. */
+
+static void
+store_fixed_bit_field (op0, offset, bitsize, bitpos, value, struct_align)
+ register rtx op0;
+ register int offset, bitsize, bitpos;
+ register rtx value;
+ int struct_align;
+{
+ register enum machine_mode mode;
+ int total_bits = BITS_PER_WORD;
+ rtx subtarget, temp;
+ int all_zero = 0;
+ int all_one = 0;
+
+ /* There is a case not handled here:
+ a structure with a known alignment of just a halfword
+ and a field split across two aligned halfwords within the structure.
+ Or likewise a structure with a known alignment of just a byte
+ and a field split across two bytes.
+ Such cases are not supposed to be able to occur. */
+
+ if (GET_CODE (op0) == REG || GET_CODE (op0) == SUBREG)
+ {
+ if (offset != 0)
+ abort ();
+ /* Special treatment for a bit field split across two registers. */
+ if (bitsize + bitpos > BITS_PER_WORD)
+ {
+ store_split_bit_field (op0, bitsize, bitpos,
+ value, BITS_PER_WORD);
+ return;
+ }
+ }
+ else
+ {
+ /* Get the proper mode to use for this field. We want a mode that
+ includes the entire field. If such a mode would be larger than
+ a word, we won't be doing the extraction the normal way. */
+
+ mode = get_best_mode (bitsize, bitpos + offset * BITS_PER_UNIT,
+ struct_align * BITS_PER_UNIT, word_mode,
+ GET_CODE (op0) == MEM && MEM_VOLATILE_P (op0));
+
+ if (mode == VOIDmode)
+ {
+ /* The only way this should occur is if the field spans word
+ boundaries. */
+ store_split_bit_field (op0,
+ bitsize, bitpos + offset * BITS_PER_UNIT,
+ value, struct_align);
+ return;
+ }
+
+ total_bits = GET_MODE_BITSIZE (mode);
+
+ /* Make sure bitpos is valid for the chosen mode. Adjust BITPOS to
+ be be in the range 0 to total_bits-1, and put any excess bytes in
+ OFFSET. */
+ if (bitpos >= total_bits)
+ {
+ offset += (bitpos / total_bits) * (total_bits / BITS_PER_UNIT);
+ bitpos -= ((bitpos / total_bits) * (total_bits / BITS_PER_UNIT)
+ * BITS_PER_UNIT);
+ }
+
+ /* Get ref to an aligned byte, halfword, or word containing the field.
+ Adjust BITPOS to be position within a word,
+ and OFFSET to be the offset of that word.
+ Then alter OP0 to refer to that word. */
+ bitpos += (offset % (total_bits / BITS_PER_UNIT)) * BITS_PER_UNIT;
+ offset -= (offset % (total_bits / BITS_PER_UNIT));
+ op0 = change_address (op0, mode,
+ plus_constant (XEXP (op0, 0), offset));
+ }
+
+ mode = GET_MODE (op0);
+
+ /* Now MODE is either some integral mode for a MEM as OP0,
+ or is a full-word for a REG as OP0. TOTAL_BITS corresponds.
+ The bit field is contained entirely within OP0.
+ BITPOS is the starting bit number within OP0.
+ (OP0's mode may actually be narrower than MODE.) */
+
+ if (BYTES_BIG_ENDIAN)
+ /* BITPOS is the distance between our msb
+ and that of the containing datum.
+ Convert it to the distance from the lsb. */
+ bitpos = total_bits - bitsize - bitpos;
+
+ /* Now BITPOS is always the distance between our lsb
+ and that of OP0. */
+
+ /* Shift VALUE left by BITPOS bits. If VALUE is not constant,
+ we must first convert its mode to MODE. */
+
+ if (GET_CODE (value) == CONST_INT)
+ {
+ register HOST_WIDE_INT v = INTVAL (value);
+
+ if (bitsize < HOST_BITS_PER_WIDE_INT)
+ v &= ((HOST_WIDE_INT) 1 << bitsize) - 1;
+
+ if (v == 0)
+ all_zero = 1;
+ else if ((bitsize < HOST_BITS_PER_WIDE_INT
+ && v == ((HOST_WIDE_INT) 1 << bitsize) - 1)
+ || (bitsize == HOST_BITS_PER_WIDE_INT && v == -1))
+ all_one = 1;
+
+ value = lshift_value (mode, value, bitpos, bitsize);
+ }
+ else
+ {
+ int must_and = (GET_MODE_BITSIZE (GET_MODE (value)) != bitsize
+ && bitpos + bitsize != GET_MODE_BITSIZE (mode));
+
+ if (GET_MODE (value) != mode)
+ {
+ if ((GET_CODE (value) == REG || GET_CODE (value) == SUBREG)
+ && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (value)))
+ value = gen_lowpart (mode, value);
+ else
+ value = convert_to_mode (mode, value, 1);
+ }
+
+ if (must_and)
+ value = expand_binop (mode, and_optab, value,
+ mask_rtx (mode, 0, bitsize, 0),
+ NULL_RTX, 1, OPTAB_LIB_WIDEN);
+ if (bitpos > 0)
+ value = expand_shift (LSHIFT_EXPR, mode, value,
+ build_int_2 (bitpos, 0), NULL_RTX, 1);
+ }
+
+ /* Now clear the chosen bits in OP0,
+ except that if VALUE is -1 we need not bother. */
+
+ subtarget = (GET_CODE (op0) == REG || ! flag_force_mem) ? op0 : 0;
+
+ if (! all_one)
+ {
+ temp = expand_binop (mode, and_optab, op0,
+ mask_rtx (mode, bitpos, bitsize, 1),
+ subtarget, 1, OPTAB_LIB_WIDEN);
+ subtarget = temp;
+ }
+ else
+ temp = op0;
+
+ /* Now logical-or VALUE into OP0, unless it is zero. */
+
+ if (! all_zero)
+ temp = expand_binop (mode, ior_optab, temp, value,
+ subtarget, 1, OPTAB_LIB_WIDEN);
+ if (op0 != temp)
+ emit_move_insn (op0, temp);
+}
+
+/* Store a bit field that is split across multiple accessible memory objects.
+
+ OP0 is the REG, SUBREG or MEM rtx for the first of the objects.
+ BITSIZE is the field width; BITPOS the position of its first bit
+ (within the word).
+ VALUE is the value to store.
+ ALIGN is the known alignment of OP0, measured in bytes.
+ This is also the size of the memory objects to be used.
+
+ This does not yet handle fields wider than BITS_PER_WORD. */
+
+static void
+store_split_bit_field (op0, bitsize, bitpos, value, align)
+ rtx op0;
+ int bitsize, bitpos;
+ rtx value;
+ int align;
+{
+ int unit;
+ int bitsdone = 0;
+
+ /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
+ much at a time. */
+ if (GET_CODE (op0) == REG || GET_CODE (op0) == SUBREG)
+ unit = BITS_PER_WORD;
+ else
+ unit = MIN (align * BITS_PER_UNIT, BITS_PER_WORD);
+
+ /* If VALUE is a constant other than a CONST_INT, get it into a register in
+ WORD_MODE. If we can do this using gen_lowpart_common, do so. Note
+ that VALUE might be a floating-point constant. */
+ if (CONSTANT_P (value) && GET_CODE (value) != CONST_INT)
+ {
+ rtx word = gen_lowpart_common (word_mode, value);
+
+ if (word && (value != word))
+ value = word;
+ else
+ value = gen_lowpart_common (word_mode,
+ force_reg (GET_MODE (value) != VOIDmode
+ ? GET_MODE (value)
+ : word_mode, value));
+ }
+
+ while (bitsdone < bitsize)
+ {
+ int thissize;
+ rtx part, word;
+ int thispos;
+ int offset;
+
+ offset = (bitpos + bitsdone) / unit;
+ thispos = (bitpos + bitsdone) % unit;
+
+ /* THISSIZE must not overrun a word boundary. Otherwise,
+ store_fixed_bit_field will call us again, and we will mutually
+ recurse forever. */
+ thissize = MIN (bitsize - bitsdone, BITS_PER_WORD);
+ thissize = MIN (thissize, unit - thispos);
+
+ if (BYTES_BIG_ENDIAN)
+ {
+ int total_bits;
+
+ /* We must do an endian conversion exactly the same way as it is
+ done in extract_bit_field, so that the two calls to
+ extract_fixed_bit_field will have comparable arguments. */
+ if (GET_CODE (value) != MEM)
+ total_bits = BITS_PER_WORD;
+ else
+ total_bits = GET_MODE_BITSIZE (GET_MODE (value));
+
+ /* Fetch successively less significant portions. */
+ if (GET_CODE (value) == CONST_INT)
+ part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value))
+ >> (bitsize - bitsdone - thissize))
+ & (((HOST_WIDE_INT) 1 << thissize) - 1));
+ else
+ /* The args are chosen so that the last part includes the
+ lsb. Give extract_bit_field the value it needs (with
+ endianness compensation) to fetch the piece we want. */
+ part = extract_fixed_bit_field (word_mode, value, 0, thissize,
+ total_bits - bitsize + bitsdone,
+ NULL_RTX, 1, align);
+ }
+ else
+ {
+ /* Fetch successively more significant portions. */
+ if (GET_CODE (value) == CONST_INT)
+ part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value))
+ >> bitsdone)
+ & (((HOST_WIDE_INT) 1 << thissize) - 1));
+ else
+ part = extract_fixed_bit_field (word_mode, value, 0, thissize,
+ bitsdone, NULL_RTX, 1, align);
+ }
+
+ /* If OP0 is a register, then handle OFFSET here.
+
+ When handling multiword bitfields, extract_bit_field may pass
+ down a word_mode SUBREG of a larger REG for a bitfield that actually
+ crosses a word boundary. Thus, for a SUBREG, we must find
+ the current word starting from the base register. */
+ if (GET_CODE (op0) == SUBREG)
+ {
+ word = operand_subword_force (SUBREG_REG (op0),
+ SUBREG_WORD (op0) + offset,
+ GET_MODE (SUBREG_REG (op0)));
+ offset = 0;
+ }
+ else if (GET_CODE (op0) == REG)
+ {
+ word = operand_subword_force (op0, offset, GET_MODE (op0));
+ offset = 0;
+ }
+ else
+ word = op0;
+
+ /* OFFSET is in UNITs, and UNIT is in bits.
+ store_fixed_bit_field wants offset in bytes. */
+ store_fixed_bit_field (word, offset * unit / BITS_PER_UNIT,
+ thissize, thispos, part, align);
+ bitsdone += thissize;
+ }
+}
+
+/* Generate code to extract a byte-field from STR_RTX
+ containing BITSIZE bits, starting at BITNUM,
+ and put it in TARGET if possible (if TARGET is nonzero).
+ Regardless of TARGET, we return the rtx for where the value is placed.
+ It may be a QUEUED.
+
+ STR_RTX is the structure containing the byte (a REG or MEM).
+ UNSIGNEDP is nonzero if this is an unsigned bit field.
+ MODE is the natural mode of the field value once extracted.
+ TMODE is the mode the caller would like the value to have;
+ but the value may be returned with type MODE instead.
+
+ ALIGN is the alignment that STR_RTX is known to have, measured in bytes.
+ TOTAL_SIZE is the size in bytes of the containing structure,
+ or -1 if varying.
+
+ If a TARGET is specified and we can store in it at no extra cost,
+ we do so, and return TARGET.
+ Otherwise, we return a REG of mode TMODE or MODE, with TMODE preferred
+ if they are equally easy. */
+
+rtx
+extract_bit_field (str_rtx, bitsize, bitnum, unsignedp,
+ target, mode, tmode, align, total_size)
+ rtx str_rtx;
+ register int bitsize;
+ int bitnum;
+ int unsignedp;
+ rtx target;
+ enum machine_mode mode, tmode;
+ int align;
+ int total_size;
+{
+ int unit = (GET_CODE (str_rtx) == MEM) ? BITS_PER_UNIT : BITS_PER_WORD;
+ register int offset = bitnum / unit;
+ register int bitpos = bitnum % unit;
+ register rtx op0 = str_rtx;
+ rtx spec_target = target;
+ rtx spec_target_subreg = 0;
+
+ if (GET_CODE (str_rtx) == MEM && ! MEM_IN_STRUCT_P (str_rtx))
+ abort ();
+
+ /* Discount the part of the structure before the desired byte.
+ We need to know how many bytes are safe to reference after it. */
+ if (total_size >= 0)
+ total_size -= (bitpos / BIGGEST_ALIGNMENT
+ * (BIGGEST_ALIGNMENT / BITS_PER_UNIT));
+
+ if (tmode == VOIDmode)
+ tmode = mode;
+ while (GET_CODE (op0) == SUBREG)
+ {
+ int outer_size = GET_MODE_BITSIZE (GET_MODE (op0));
+ int inner_size = GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)));
+
+ offset += SUBREG_WORD (op0);
+
+ if (BYTES_BIG_ENDIAN && (outer_size < inner_size))
+ {
+ bitpos += inner_size - outer_size;
+ if (bitpos > unit)
+ {
+ offset += (bitpos / unit);
+ bitpos %= unit;
+ }
+ }
+
+ op0 = SUBREG_REG (op0);
+ }
+
+ /* ??? We currently assume TARGET is at least as big as BITSIZE.
+ If that's wrong, the solution is to test for it and set TARGET to 0
+ if needed. */
+
+ /* If OP0 is a register, BITPOS must count within a word.
+ But as we have it, it counts within whatever size OP0 now has.
+ On a bigendian machine, these are not the same, so convert. */
+ if (BYTES_BIG_ENDIAN &&
+ GET_CODE (op0) != MEM
+ && unit > GET_MODE_BITSIZE (GET_MODE (op0)))
+ bitpos += unit - GET_MODE_BITSIZE (GET_MODE (op0));
+
+ /* Extracting a full-word or multi-word value
+ from a structure in a register or aligned memory.
+ This can be done with just SUBREG.
+ So too extracting a subword value in
+ the least significant part of the register. */
+
+ if ((GET_CODE (op0) == REG
+ || (GET_CODE (op0) == MEM
+ && (! SLOW_UNALIGNED_ACCESS
+ || (offset * BITS_PER_UNIT % bitsize == 0
+ && align * BITS_PER_UNIT % bitsize == 0))))
+ && ((bitsize >= BITS_PER_WORD && bitsize == GET_MODE_BITSIZE (mode)
+ && bitpos % BITS_PER_WORD == 0)
+ || (mode_for_size (bitsize, GET_MODE_CLASS (tmode), 0) != BLKmode
+ && (BYTES_BIG_ENDIAN
+ ? bitpos + bitsize == BITS_PER_WORD
+ : bitpos == 0))))
+ {
+ enum machine_mode mode1
+ = mode_for_size (bitsize, GET_MODE_CLASS (tmode), 0);
+
+ if (mode1 != GET_MODE (op0))
+ {
+ if (GET_CODE (op0) == REG)
+ op0 = gen_rtx (SUBREG, mode1, op0, offset);
+ else
+ op0 = change_address (op0, mode1,
+ plus_constant (XEXP (op0, 0), offset));
+ }
+ if (mode1 != mode)
+ return convert_to_mode (tmode, op0, unsignedp);
+ return op0;
+ }
+
+ /* Handle fields bigger than a word. */
+
+ if (bitsize > BITS_PER_WORD)
+ {
+ /* Here we transfer the words of the field
+ in the order least significant first.
+ This is because the most significant word is the one which may
+ be less than full. */
+
+ int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
+ int i;
+
+ if (target == 0 || GET_CODE (target) != REG)
+ target = gen_reg_rtx (mode);
+
+ for (i = 0; i < nwords; i++)
+ {
+ /* If I is 0, use the low-order word in both field and target;
+ if I is 1, use the next to lowest word; and so on. */
+ /* Word number in TARGET to use. */
+ int wordnum = (WORDS_BIG_ENDIAN
+ ? GET_MODE_SIZE (GET_MODE (target)) / UNITS_PER_WORD - i - 1
+ : i);
+ /* Offset from start of field in OP0. */
+ int bit_offset = (WORDS_BIG_ENDIAN
+ ? MAX (0, bitsize - (i + 1) * BITS_PER_WORD)
+ : i * BITS_PER_WORD);
+ rtx target_part = operand_subword (target, wordnum, 1, VOIDmode);
+ rtx result_part
+ = extract_bit_field (op0, MIN (BITS_PER_WORD,
+ bitsize - i * BITS_PER_WORD),
+ bitnum + bit_offset,
+ 1, target_part, mode, word_mode,
+ align, total_size);
+
+ if (target_part == 0)
+ abort ();
+
+ if (result_part != target_part)
+ emit_move_insn (target_part, result_part);
+ }
+
+ if (unsignedp)
+ {
+ /* Unless we've filled TARGET, the upper regs in a multi-reg value
+ need to be zero'd out. */
+ if (GET_MODE_SIZE (GET_MODE (target)) > nwords * UNITS_PER_WORD)
+ {
+ int i,total_words;
+
+ total_words = GET_MODE_SIZE (GET_MODE (target)) / UNITS_PER_WORD;
+ for (i = nwords; i < total_words; i++)
+ {
+ int wordnum = WORDS_BIG_ENDIAN ? total_words - i - 1 : i;
+ rtx target_part = operand_subword (target, wordnum, 1, VOIDmode);
+ emit_move_insn (target_part, const0_rtx);
+ }
+ }
+ return target;
+ }
+
+ /* Signed bit field: sign-extend with two arithmetic shifts. */
+ target = expand_shift (LSHIFT_EXPR, mode, target,
+ build_int_2 (GET_MODE_BITSIZE (mode) - bitsize, 0),
+ NULL_RTX, 0);
+ return expand_shift (RSHIFT_EXPR, mode, target,
+ build_int_2 (GET_MODE_BITSIZE (mode) - bitsize, 0),
+ NULL_RTX, 0);
+ }
+
+ /* From here on we know the desired field is smaller than a word
+ so we can assume it is an integer. So we can safely extract it as one
+ size of integer, if necessary, and then truncate or extend
+ to the size that is wanted. */
+
+ /* OFFSET is the number of words or bytes (UNIT says which)
+ from STR_RTX to the first word or byte containing part of the field. */
+
+ if (GET_CODE (op0) == REG)
+ {
+ if (offset != 0
+ || GET_MODE_SIZE (GET_MODE (op0)) > UNITS_PER_WORD)
+ op0 = gen_rtx (SUBREG, TYPE_MODE (type_for_size (BITS_PER_WORD, 0)),
+ op0, offset);
+ offset = 0;
+ }
+ else
+ {
+ op0 = protect_from_queue (str_rtx, 1);
+ }
+
+ /* Now OFFSET is nonzero only for memory operands. */
+
+ if (unsignedp)
+ {
+#ifdef HAVE_extzv
+ if (HAVE_extzv
+ && (GET_MODE_BITSIZE (insn_operand_mode[(int) CODE_FOR_extzv][0])
+ >= bitsize)
+ && ! ((GET_CODE (op0) == REG || GET_CODE (op0) == SUBREG)
+ && (bitsize + bitpos
+ > GET_MODE_BITSIZE (insn_operand_mode[(int) CODE_FOR_extzv][0]))))
+ {
+ int xbitpos = bitpos, xoffset = offset;
+ rtx bitsize_rtx, bitpos_rtx;
+ rtx last = get_last_insn();
+ rtx xop0 = op0;
+ rtx xtarget = target;
+ rtx xspec_target = spec_target;
+ rtx xspec_target_subreg = spec_target_subreg;
+ rtx pat;
+ enum machine_mode maxmode
+ = insn_operand_mode[(int) CODE_FOR_extzv][0];
+
+ if (GET_CODE (xop0) == MEM)
+ {
+ int save_volatile_ok = volatile_ok;
+ volatile_ok = 1;
+
+ /* Is the memory operand acceptable? */
+ if (flag_force_mem
+ || ! ((*insn_operand_predicate[(int) CODE_FOR_extzv][1])
+ (xop0, GET_MODE (xop0))))
+ {
+ /* No, load into a reg and extract from there. */
+ enum machine_mode bestmode;
+
+ /* Get the mode to use for inserting into this field. If
+ OP0 is BLKmode, get the smallest mode consistent with the
+ alignment. If OP0 is a non-BLKmode object that is no
+ wider than MAXMODE, use its mode. Otherwise, use the
+ smallest mode containing the field. */
+
+ if (GET_MODE (xop0) == BLKmode
+ || (GET_MODE_SIZE (GET_MODE (op0))
+ > GET_MODE_SIZE (maxmode)))
+ bestmode = get_best_mode (bitsize, bitnum,
+ align * BITS_PER_UNIT, maxmode,
+ MEM_VOLATILE_P (xop0));
+ else
+ bestmode = GET_MODE (xop0);
+
+ if (bestmode == VOIDmode
+ || (SLOW_UNALIGNED_ACCESS && GET_MODE_SIZE (bestmode) > align))
+ goto extzv_loses;
+
+ /* Compute offset as multiple of this unit,
+ counting in bytes. */
+ unit = GET_MODE_BITSIZE (bestmode);
+ xoffset = (bitnum / unit) * GET_MODE_SIZE (bestmode);
+ xbitpos = bitnum % unit;
+ xop0 = change_address (xop0, bestmode,
+ plus_constant (XEXP (xop0, 0),
+ xoffset));
+ /* Fetch it to a register in that size. */
+ xop0 = force_reg (bestmode, xop0);
+
+ /* XBITPOS counts within UNIT, which is what is expected. */
+ }
+ else
+ /* Get ref to first byte containing part of the field. */
+ xop0 = change_address (xop0, byte_mode,
+ plus_constant (XEXP (xop0, 0), xoffset));
+
+ volatile_ok = save_volatile_ok;
+ }
+
+ /* If op0 is a register, we need it in MAXMODE (which is usually
+ SImode). to make it acceptable to the format of extzv. */
+ if (GET_CODE (xop0) == SUBREG && GET_MODE (xop0) != maxmode)
+ abort ();
+ if (GET_CODE (xop0) == REG && GET_MODE (xop0) != maxmode)
+ xop0 = gen_rtx (SUBREG, maxmode, xop0, 0);
+
+ /* On big-endian machines, we count bits from the most significant.
+ If the bit field insn does not, we must invert. */
+ if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
+ xbitpos = unit - bitsize - xbitpos;
+
+ /* Now convert from counting within UNIT to counting in MAXMODE. */
+ if (BITS_BIG_ENDIAN && GET_CODE (xop0) != MEM)
+ xbitpos += GET_MODE_BITSIZE (maxmode) - unit;
+
+ unit = GET_MODE_BITSIZE (maxmode);
+
+ if (xtarget == 0
+ || (flag_force_mem && GET_CODE (xtarget) == MEM))
+ xtarget = xspec_target = gen_reg_rtx (tmode);
+
+ if (GET_MODE (xtarget) != maxmode)
+ {
+ if (GET_CODE (xtarget) == REG)
+ {
+ int wider = (GET_MODE_SIZE (maxmode)
+ > GET_MODE_SIZE (GET_MODE (xtarget)));
+ xtarget = gen_lowpart (maxmode, xtarget);
+ if (wider)
+ xspec_target_subreg = xtarget;
+ }
+ else
+ xtarget = gen_reg_rtx (maxmode);
+ }
+
+ /* If this machine's extzv insists on a register target,
+ make sure we have one. */
+ if (! ((*insn_operand_predicate[(int) CODE_FOR_extzv][0])
+ (xtarget, maxmode)))
+ xtarget = gen_reg_rtx (maxmode);
+
+ bitsize_rtx = GEN_INT (bitsize);
+ bitpos_rtx = GEN_INT (xbitpos);
+
+ pat = gen_extzv (protect_from_queue (xtarget, 1),
+ xop0, bitsize_rtx, bitpos_rtx);
+ if (pat)
+ {
+ emit_insn (pat);
+ target = xtarget;
+ spec_target = xspec_target;
+ spec_target_subreg = xspec_target_subreg;
+ }
+ else
+ {
+ delete_insns_since (last);
+ target = extract_fixed_bit_field (tmode, op0, offset, bitsize,
+ bitpos, target, 1, align);
+ }
+ }
+ else
+ extzv_loses:
+#endif
+ target = extract_fixed_bit_field (tmode, op0, offset, bitsize, bitpos,
+ target, 1, align);
+ }
+ else
+ {
+#ifdef HAVE_extv
+ if (HAVE_extv
+ && (GET_MODE_BITSIZE (insn_operand_mode[(int) CODE_FOR_extv][0])
+ >= bitsize)
+ && ! ((GET_CODE (op0) == REG || GET_CODE (op0) == SUBREG)
+ && (bitsize + bitpos
+ > GET_MODE_BITSIZE (insn_operand_mode[(int) CODE_FOR_extv][0]))))
+ {
+ int xbitpos = bitpos, xoffset = offset;
+ rtx bitsize_rtx, bitpos_rtx;
+ rtx last = get_last_insn();
+ rtx xop0 = op0, xtarget = target;
+ rtx xspec_target = spec_target;
+ rtx xspec_target_subreg = spec_target_subreg;
+ rtx pat;
+ enum machine_mode maxmode
+ = insn_operand_mode[(int) CODE_FOR_extv][0];
+
+ if (GET_CODE (xop0) == MEM)
+ {
+ /* Is the memory operand acceptable? */
+ if (! ((*insn_operand_predicate[(int) CODE_FOR_extv][1])
+ (xop0, GET_MODE (xop0))))
+ {
+ /* No, load into a reg and extract from there. */
+ enum machine_mode bestmode;
+
+ /* Get the mode to use for inserting into this field. If
+ OP0 is BLKmode, get the smallest mode consistent with the
+ alignment. If OP0 is a non-BLKmode object that is no
+ wider than MAXMODE, use its mode. Otherwise, use the
+ smallest mode containing the field. */
+
+ if (GET_MODE (xop0) == BLKmode
+ || (GET_MODE_SIZE (GET_MODE (op0))
+ > GET_MODE_SIZE (maxmode)))
+ bestmode = get_best_mode (bitsize, bitnum,
+ align * BITS_PER_UNIT, maxmode,
+ MEM_VOLATILE_P (xop0));
+ else
+ bestmode = GET_MODE (xop0);
+
+ if (bestmode == VOIDmode
+ || (SLOW_UNALIGNED_ACCESS && GET_MODE_SIZE (bestmode) > align))
+ goto extv_loses;
+
+ /* Compute offset as multiple of this unit,
+ counting in bytes. */
+ unit = GET_MODE_BITSIZE (bestmode);
+ xoffset = (bitnum / unit) * GET_MODE_SIZE (bestmode);
+ xbitpos = bitnum % unit;
+ xop0 = change_address (xop0, bestmode,
+ plus_constant (XEXP (xop0, 0),
+ xoffset));
+ /* Fetch it to a register in that size. */
+ xop0 = force_reg (bestmode, xop0);
+
+ /* XBITPOS counts within UNIT, which is what is expected. */
+ }
+ else
+ /* Get ref to first byte containing part of the field. */
+ xop0 = change_address (xop0, byte_mode,
+ plus_constant (XEXP (xop0, 0), xoffset));
+ }
+
+ /* If op0 is a register, we need it in MAXMODE (which is usually
+ SImode) to make it acceptable to the format of extv. */
+ if (GET_CODE (xop0) == SUBREG && GET_MODE (xop0) != maxmode)
+ abort ();
+ if (GET_CODE (xop0) == REG && GET_MODE (xop0) != maxmode)
+ xop0 = gen_rtx (SUBREG, maxmode, xop0, 0);
+
+ /* On big-endian machines, we count bits from the most significant.
+ If the bit field insn does not, we must invert. */
+ if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
+ xbitpos = unit - bitsize - xbitpos;
+
+ /* XBITPOS counts within a size of UNIT.
+ Adjust to count within a size of MAXMODE. */
+ if (BITS_BIG_ENDIAN && GET_CODE (xop0) != MEM)
+ xbitpos += (GET_MODE_BITSIZE (maxmode) - unit);
+
+ unit = GET_MODE_BITSIZE (maxmode);
+
+ if (xtarget == 0
+ || (flag_force_mem && GET_CODE (xtarget) == MEM))
+ xtarget = xspec_target = gen_reg_rtx (tmode);
+
+ if (GET_MODE (xtarget) != maxmode)
+ {
+ if (GET_CODE (xtarget) == REG)
+ {
+ int wider = (GET_MODE_SIZE (maxmode)
+ > GET_MODE_SIZE (GET_MODE (xtarget)));
+ xtarget = gen_lowpart (maxmode, xtarget);
+ if (wider)
+ xspec_target_subreg = xtarget;
+ }
+ else
+ xtarget = gen_reg_rtx (maxmode);
+ }
+
+ /* If this machine's extv insists on a register target,
+ make sure we have one. */
+ if (! ((*insn_operand_predicate[(int) CODE_FOR_extv][0])
+ (xtarget, maxmode)))
+ xtarget = gen_reg_rtx (maxmode);
+
+ bitsize_rtx = GEN_INT (bitsize);
+ bitpos_rtx = GEN_INT (xbitpos);
+
+ pat = gen_extv (protect_from_queue (xtarget, 1),
+ xop0, bitsize_rtx, bitpos_rtx);
+ if (pat)
+ {
+ emit_insn (pat);
+ target = xtarget;
+ spec_target = xspec_target;
+ spec_target_subreg = xspec_target_subreg;
+ }
+ else
+ {
+ delete_insns_since (last);
+ target = extract_fixed_bit_field (tmode, op0, offset, bitsize,
+ bitpos, target, 0, align);
+ }
+ }
+ else
+ extv_loses:
+#endif
+ target = extract_fixed_bit_field (tmode, op0, offset, bitsize, bitpos,
+ target, 0, align);
+ }
+ if (target == spec_target)
+ return target;
+ if (target == spec_target_subreg)
+ return spec_target;
+ if (GET_MODE (target) != tmode && GET_MODE (target) != mode)
+ {
+ /* If the target mode is floating-point, first convert to the
+ integer mode of that size and then access it as a floating-point
+ value via a SUBREG. */
+ if (GET_MODE_CLASS (tmode) == MODE_FLOAT)
+ {
+ target = convert_to_mode (mode_for_size (GET_MODE_BITSIZE (tmode),
+ MODE_INT, 0),
+ target, unsignedp);
+ if (GET_CODE (target) != REG)
+ target = copy_to_reg (target);
+ return gen_rtx (SUBREG, tmode, target, 0);
+ }
+ else
+ return convert_to_mode (tmode, target, unsignedp);
+ }
+ return target;
+}
+
+/* Extract a bit field using shifts and boolean operations
+ Returns an rtx to represent the value.
+ OP0 addresses a register (word) or memory (byte).
+ BITPOS says which bit within the word or byte the bit field starts in.
+ OFFSET says how many bytes farther the bit field starts;
+ it is 0 if OP0 is a register.
+ BITSIZE says how many bits long the bit field is.
+ (If OP0 is a register, it may be narrower than a full word,
+ but BITPOS still counts within a full word,
+ which is significant on bigendian machines.)
+
+ UNSIGNEDP is nonzero for an unsigned bit field (don't sign-extend value).
+ If TARGET is nonzero, attempts to store the value there
+ and return TARGET, but this is not guaranteed.
+ If TARGET is not used, create a pseudo-reg of mode TMODE for the value.
+
+ ALIGN is the alignment that STR_RTX is known to have, measured in bytes. */
+
+static rtx
+extract_fixed_bit_field (tmode, op0, offset, bitsize, bitpos,
+ target, unsignedp, align)
+ enum machine_mode tmode;
+ register rtx op0, target;
+ register int offset, bitsize, bitpos;
+ int unsignedp;
+ int align;
+{
+ int total_bits = BITS_PER_WORD;
+ enum machine_mode mode;
+
+ if (GET_CODE (op0) == SUBREG || GET_CODE (op0) == REG)
+ {
+ /* Special treatment for a bit field split across two registers. */
+ if (bitsize + bitpos > BITS_PER_WORD)
+ return extract_split_bit_field (op0, bitsize, bitpos,
+ unsignedp, align);
+ }
+ else
+ {
+ /* Get the proper mode to use for this field. We want a mode that
+ includes the entire field. If such a mode would be larger than
+ a word, we won't be doing the extraction the normal way. */
+
+ mode = get_best_mode (bitsize, bitpos + offset * BITS_PER_UNIT,
+ align * BITS_PER_UNIT, word_mode,
+ GET_CODE (op0) == MEM && MEM_VOLATILE_P (op0));
+
+ if (mode == VOIDmode)
+ /* The only way this should occur is if the field spans word
+ boundaries. */
+ return extract_split_bit_field (op0, bitsize,
+ bitpos + offset * BITS_PER_UNIT,
+ unsignedp, align);
+
+ total_bits = GET_MODE_BITSIZE (mode);
+
+ /* Make sure bitpos is valid for the chosen mode. Adjust BITPOS to
+ be be in the range 0 to total_bits-1, and put any excess bytes in
+ OFFSET. */
+ if (bitpos >= total_bits)
+ {
+ offset += (bitpos / total_bits) * (total_bits / BITS_PER_UNIT);
+ bitpos -= ((bitpos / total_bits) * (total_bits / BITS_PER_UNIT)
+ * BITS_PER_UNIT);
+ }
+
+ /* Get ref to an aligned byte, halfword, or word containing the field.
+ Adjust BITPOS to be position within a word,
+ and OFFSET to be the offset of that word.
+ Then alter OP0 to refer to that word. */
+ bitpos += (offset % (total_bits / BITS_PER_UNIT)) * BITS_PER_UNIT;
+ offset -= (offset % (total_bits / BITS_PER_UNIT));
+ op0 = change_address (op0, mode,
+ plus_constant (XEXP (op0, 0), offset));
+ }
+
+ mode = GET_MODE (op0);
+
+ if (BYTES_BIG_ENDIAN)
+ {
+ /* BITPOS is the distance between our msb and that of OP0.
+ Convert it to the distance from the lsb. */
+
+ bitpos = total_bits - bitsize - bitpos;
+ }
+
+ /* Now BITPOS is always the distance between the field's lsb and that of OP0.
+ We have reduced the big-endian case to the little-endian case. */
+
+ if (unsignedp)
+ {
+ if (bitpos)
+ {
+ /* If the field does not already start at the lsb,
+ shift it so it does. */
+ tree amount = build_int_2 (bitpos, 0);
+ /* Maybe propagate the target for the shift. */
+ /* But not if we will return it--could confuse integrate.c. */
+ rtx subtarget = (target != 0 && GET_CODE (target) == REG
+ && !REG_FUNCTION_VALUE_P (target)
+ ? target : 0);
+ if (tmode != mode) subtarget = 0;
+ op0 = expand_shift (RSHIFT_EXPR, mode, op0, amount, subtarget, 1);
+ }
+ /* Convert the value to the desired mode. */
+ if (mode != tmode)
+ op0 = convert_to_mode (tmode, op0, 1);
+
+ /* Unless the msb of the field used to be the msb when we shifted,
+ mask out the upper bits. */
+
+ if (GET_MODE_BITSIZE (mode) != bitpos + bitsize
+#if 0
+#ifdef SLOW_ZERO_EXTEND
+ /* Always generate an `and' if
+ we just zero-extended op0 and SLOW_ZERO_EXTEND, since it
+ will combine fruitfully with the zero-extend. */
+ || tmode != mode
+#endif
+#endif
+ )
+ return expand_binop (GET_MODE (op0), and_optab, op0,
+ mask_rtx (GET_MODE (op0), 0, bitsize, 0),
+ target, 1, OPTAB_LIB_WIDEN);
+ return op0;
+ }
+
+ /* To extract a signed bit-field, first shift its msb to the msb of the word,
+ then arithmetic-shift its lsb to the lsb of the word. */
+ op0 = force_reg (mode, op0);
+ if (mode != tmode)
+ target = 0;
+
+ /* Find the narrowest integer mode that contains the field. */
+
+ for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
+ mode = GET_MODE_WIDER_MODE (mode))
+ if (GET_MODE_BITSIZE (mode) >= bitsize + bitpos)
+ {
+ op0 = convert_to_mode (mode, op0, 0);
+ break;
+ }
+
+ if (GET_MODE_BITSIZE (mode) != (bitsize + bitpos))
+ {
+ tree amount = build_int_2 (GET_MODE_BITSIZE (mode) - (bitsize + bitpos), 0);
+ /* Maybe propagate the target for the shift. */
+ /* But not if we will return the result--could confuse integrate.c. */
+ rtx subtarget = (target != 0 && GET_CODE (target) == REG
+ && ! REG_FUNCTION_VALUE_P (target)
+ ? target : 0);
+ op0 = expand_shift (LSHIFT_EXPR, mode, op0, amount, subtarget, 1);
+ }
+
+ return expand_shift (RSHIFT_EXPR, mode, op0,
+ build_int_2 (GET_MODE_BITSIZE (mode) - bitsize, 0),
+ target, 0);
+}
+
+/* Return a constant integer (CONST_INT or CONST_DOUBLE) mask value
+ of mode MODE with BITSIZE ones followed by BITPOS zeros, or the
+ complement of that if COMPLEMENT. The mask is truncated if
+ necessary to the width of mode MODE. The mask is zero-extended if
+ BITSIZE+BITPOS is too small for MODE. */
+
+static rtx
+mask_rtx (mode, bitpos, bitsize, complement)
+ enum machine_mode mode;
+ int bitpos, bitsize, complement;
+{
+ HOST_WIDE_INT masklow, maskhigh;
+
+ if (bitpos < HOST_BITS_PER_WIDE_INT)
+ masklow = (HOST_WIDE_INT) -1 << bitpos;
+ else
+ masklow = 0;
+
+ if (bitpos + bitsize < HOST_BITS_PER_WIDE_INT)
+ masklow &= ((unsigned HOST_WIDE_INT) -1
+ >> (HOST_BITS_PER_WIDE_INT - bitpos - bitsize));
+
+ if (bitpos <= HOST_BITS_PER_WIDE_INT)
+ maskhigh = -1;
+ else
+ maskhigh = (HOST_WIDE_INT) -1 << (bitpos - HOST_BITS_PER_WIDE_INT);
+
+ if (bitpos + bitsize > HOST_BITS_PER_WIDE_INT)
+ maskhigh &= ((unsigned HOST_WIDE_INT) -1
+ >> (2 * HOST_BITS_PER_WIDE_INT - bitpos - bitsize));
+ else
+ maskhigh = 0;
+
+ if (complement)
+ {
+ maskhigh = ~maskhigh;
+ masklow = ~masklow;
+ }
+
+ return immed_double_const (masklow, maskhigh, mode);
+}
+
+/* Return a constant integer (CONST_INT or CONST_DOUBLE) rtx with the value
+ VALUE truncated to BITSIZE bits and then shifted left BITPOS bits. */
+
+static rtx
+lshift_value (mode, value, bitpos, bitsize)
+ enum machine_mode mode;
+ rtx value;
+ int bitpos, bitsize;
+{
+ unsigned HOST_WIDE_INT v = INTVAL (value);
+ HOST_WIDE_INT low, high;
+
+ if (bitsize < HOST_BITS_PER_WIDE_INT)
+ v &= ~((HOST_WIDE_INT) -1 << bitsize);
+
+ if (bitpos < HOST_BITS_PER_WIDE_INT)
+ {
+ low = v << bitpos;
+ high = (bitpos > 0 ? (v >> (HOST_BITS_PER_WIDE_INT - bitpos)) : 0);
+ }
+ else
+ {
+ low = 0;
+ high = v << (bitpos - HOST_BITS_PER_WIDE_INT);
+ }
+
+ return immed_double_const (low, high, mode);
+}
+
+/* Extract a bit field that is split across two words
+ and return an RTX for the result.
+
+ OP0 is the REG, SUBREG or MEM rtx for the first of the two words.
+ BITSIZE is the field width; BITPOS, position of its first bit, in the word.
+ UNSIGNEDP is 1 if should zero-extend the contents; else sign-extend.
+
+ ALIGN is the known alignment of OP0, measured in bytes.
+ This is also the size of the memory objects to be used. */
+
+static rtx
+extract_split_bit_field (op0, bitsize, bitpos, unsignedp, align)
+ rtx op0;
+ int bitsize, bitpos, unsignedp, align;
+{
+ int unit;
+ int bitsdone = 0;
+ rtx result;
+ int first = 1;
+
+ /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
+ much at a time. */
+ if (GET_CODE (op0) == REG || GET_CODE (op0) == SUBREG)
+ unit = BITS_PER_WORD;
+ else
+ unit = MIN (align * BITS_PER_UNIT, BITS_PER_WORD);
+
+ while (bitsdone < bitsize)
+ {
+ int thissize;
+ rtx part, word;
+ int thispos;
+ int offset;
+
+ offset = (bitpos + bitsdone) / unit;
+ thispos = (bitpos + bitsdone) % unit;
+
+ /* THISSIZE must not overrun a word boundary. Otherwise,
+ extract_fixed_bit_field will call us again, and we will mutually
+ recurse forever. */
+ thissize = MIN (bitsize - bitsdone, BITS_PER_WORD);
+ thissize = MIN (thissize, unit - thispos);
+
+ /* If OP0 is a register, then handle OFFSET here.
+
+ When handling multiword bitfields, extract_bit_field may pass
+ down a word_mode SUBREG of a larger REG for a bitfield that actually
+ crosses a word boundary. Thus, for a SUBREG, we must find
+ the current word starting from the base register. */
+ if (GET_CODE (op0) == SUBREG)
+ {
+ word = operand_subword_force (SUBREG_REG (op0),
+ SUBREG_WORD (op0) + offset,
+ GET_MODE (SUBREG_REG (op0)));
+ offset = 0;
+ }
+ else if (GET_CODE (op0) == REG)
+ {
+ word = operand_subword_force (op0, offset, GET_MODE (op0));
+ offset = 0;
+ }
+ else
+ word = op0;
+
+ /* Extract the parts in bit-counting order,
+ whose meaning is determined by BYTES_PER_UNIT.
+ OFFSET is in UNITs, and UNIT is in bits.
+ extract_fixed_bit_field wants offset in bytes. */
+ part = extract_fixed_bit_field (word_mode, word,
+ offset * unit / BITS_PER_UNIT,
+ thissize, thispos, 0, 1, align);
+ bitsdone += thissize;
+
+ /* Shift this part into place for the result. */
+ if (BYTES_BIG_ENDIAN)
+ {
+ if (bitsize != bitsdone)
+ part = expand_shift (LSHIFT_EXPR, word_mode, part,
+ build_int_2 (bitsize - bitsdone, 0), 0, 1);
+ }
+ else
+ {
+ if (bitsdone != thissize)
+ part = expand_shift (LSHIFT_EXPR, word_mode, part,
+ build_int_2 (bitsdone - thissize, 0), 0, 1);
+ }
+
+ if (first)
+ result = part;
+ else
+ /* Combine the parts with bitwise or. This works
+ because we extracted each part as an unsigned bit field. */
+ result = expand_binop (word_mode, ior_optab, part, result, NULL_RTX, 1,
+ OPTAB_LIB_WIDEN);
+
+ first = 0;
+ }
+
+ /* Unsigned bit field: we are done. */
+ if (unsignedp)
+ return result;
+ /* Signed bit field: sign-extend with two arithmetic shifts. */
+ result = expand_shift (LSHIFT_EXPR, word_mode, result,
+ build_int_2 (BITS_PER_WORD - bitsize, 0),
+ NULL_RTX, 0);
+ return expand_shift (RSHIFT_EXPR, word_mode, result,
+ build_int_2 (BITS_PER_WORD - bitsize, 0), NULL_RTX, 0);
+}
+
+/* Add INC into TARGET. */
+
+void
+expand_inc (target, inc)
+ rtx target, inc;
+{
+ rtx value = expand_binop (GET_MODE (target), add_optab,
+ target, inc,
+ target, 0, OPTAB_LIB_WIDEN);
+ if (value != target)
+ emit_move_insn (target, value);
+}
+
+/* Subtract DEC from TARGET. */
+
+void
+expand_dec (target, dec)
+ rtx target, dec;
+{
+ rtx value = expand_binop (GET_MODE (target), sub_optab,
+ target, dec,
+ target, 0, OPTAB_LIB_WIDEN);
+ if (value != target)
+ emit_move_insn (target, value);
+}
+
+/* Output a shift instruction for expression code CODE,
+ with SHIFTED being the rtx for the value to shift,
+ and AMOUNT the tree for the amount to shift by.
+ Store the result in the rtx TARGET, if that is convenient.
+ If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
+ Return the rtx for where the value is. */
+
+rtx
+expand_shift (code, mode, shifted, amount, target, unsignedp)
+ enum tree_code code;
+ register enum machine_mode mode;
+ rtx shifted;
+ tree amount;
+ register rtx target;
+ int unsignedp;
+{
+ register rtx op1, temp = 0;
+ register int left = (code == LSHIFT_EXPR || code == LROTATE_EXPR);
+ register int rotate = (code == LROTATE_EXPR || code == RROTATE_EXPR);
+ int try;
+
+ /* Previously detected shift-counts computed by NEGATE_EXPR
+ and shifted in the other direction; but that does not work
+ on all machines. */
+
+ op1 = expand_expr (amount, NULL_RTX, VOIDmode, 0);
+
+#ifdef SHIFT_COUNT_TRUNCATED
+ if (SHIFT_COUNT_TRUNCATED
+ && GET_CODE (op1) == CONST_INT
+ && (unsigned HOST_WIDE_INT) INTVAL (op1) >= GET_MODE_BITSIZE (mode))
+ op1 = GEN_INT ((unsigned HOST_WIDE_INT) INTVAL (op1)
+ % GET_MODE_BITSIZE (mode));
+#endif
+
+ if (op1 == const0_rtx)
+ return shifted;
+
+ for (try = 0; temp == 0 && try < 3; try++)
+ {
+ enum optab_methods methods;
+
+ if (try == 0)
+ methods = OPTAB_DIRECT;
+ else if (try == 1)
+ methods = OPTAB_WIDEN;
+ else
+ methods = OPTAB_LIB_WIDEN;
+
+ if (rotate)
+ {
+ /* Widening does not work for rotation. */
+ if (methods == OPTAB_WIDEN)
+ continue;
+ else if (methods == OPTAB_LIB_WIDEN)
+ {
+ /* If we have been unable to open-code this by a rotation,
+ do it as the IOR of two shifts. I.e., to rotate A
+ by N bits, compute (A << N) | ((unsigned) A >> (C - N))
+ where C is the bitsize of A.
+
+ It is theoretically possible that the target machine might
+ not be able to perform either shift and hence we would
+ be making two libcalls rather than just the one for the
+ shift (similarly if IOR could not be done). We will allow
+ this extremely unlikely lossage to avoid complicating the
+ code below. */
+
+ rtx subtarget = target == shifted ? 0 : target;
+ rtx temp1;
+ tree type = TREE_TYPE (amount);
+ tree new_amount = make_tree (type, op1);
+ tree other_amount
+ = fold (build (MINUS_EXPR, type,
+ convert (type,
+ build_int_2 (GET_MODE_BITSIZE (mode),
+ 0)),
+ amount));
+
+ shifted = force_reg (mode, shifted);
+
+ temp = expand_shift (left ? LSHIFT_EXPR : RSHIFT_EXPR,
+ mode, shifted, new_amount, subtarget, 1);
+ temp1 = expand_shift (left ? RSHIFT_EXPR : LSHIFT_EXPR,
+ mode, shifted, other_amount, 0, 1);
+ return expand_binop (mode, ior_optab, temp, temp1, target,
+ unsignedp, methods);
+ }
+
+ temp = expand_binop (mode,
+ left ? rotl_optab : rotr_optab,
+ shifted, op1, target, unsignedp, methods);
+
+ /* If we don't have the rotate, but we are rotating by a constant
+ that is in range, try a rotate in the opposite direction. */
+
+ if (temp == 0 && GET_CODE (op1) == CONST_INT
+ && INTVAL (op1) > 0 && INTVAL (op1) < GET_MODE_BITSIZE (mode))
+ temp = expand_binop (mode,
+ left ? rotr_optab : rotl_optab,
+ shifted,
+ GEN_INT (GET_MODE_BITSIZE (mode)
+ - INTVAL (op1)),
+ target, unsignedp, methods);
+ }
+ else if (unsignedp)
+ temp = expand_binop (mode,
+ left ? ashl_optab : lshr_optab,
+ shifted, op1, target, unsignedp, methods);
+
+ /* Do arithmetic shifts.
+ Also, if we are going to widen the operand, we can just as well
+ use an arithmetic right-shift instead of a logical one. */
+ if (temp == 0 && ! rotate
+ && (! unsignedp || (! left && methods == OPTAB_WIDEN)))
+ {
+ enum optab_methods methods1 = methods;
+
+ /* If trying to widen a log shift to an arithmetic shift,
+ don't accept an arithmetic shift of the same size. */
+ if (unsignedp)
+ methods1 = OPTAB_MUST_WIDEN;
+
+ /* Arithmetic shift */
+
+ temp = expand_binop (mode,
+ left ? ashl_optab : ashr_optab,
+ shifted, op1, target, unsignedp, methods1);
+ }
+
+ /* We used to try extzv here for logical right shifts, but that was
+ only useful for one machine, the VAX, and caused poor code
+ generation there for lshrdi3, so the code was deleted and a
+ define_expand for lshrsi3 was added to vax.md. */
+ }
+
+ if (temp == 0)
+ abort ();
+ return temp;
+}
+
+enum alg_code { alg_zero, alg_m, alg_shift,
+ alg_add_t_m2, alg_sub_t_m2,
+ alg_add_factor, alg_sub_factor,
+ alg_add_t2_m, alg_sub_t2_m,
+ alg_add, alg_subtract, alg_factor, alg_shiftop };
+
+/* This structure records a sequence of operations.
+ `ops' is the number of operations recorded.
+ `cost' is their total cost.
+ The operations are stored in `op' and the corresponding
+ logarithms of the integer coefficients in `log'.
+
+ These are the operations:
+ alg_zero total := 0;
+ alg_m total := multiplicand;
+ alg_shift total := total * coeff
+ alg_add_t_m2 total := total + multiplicand * coeff;
+ alg_sub_t_m2 total := total - multiplicand * coeff;
+ alg_add_factor total := total * coeff + total;
+ alg_sub_factor total := total * coeff - total;
+ alg_add_t2_m total := total * coeff + multiplicand;
+ alg_sub_t2_m total := total * coeff - multiplicand;
+
+ The first operand must be either alg_zero or alg_m. */
+
+struct algorithm
+{
+ short cost;
+ short ops;
+ /* The size of the OP and LOG fields are not directly related to the
+ word size, but the worst-case algorithms will be if we have few
+ consecutive ones or zeros, i.e., a multiplicand like 10101010101...
+ In that case we will generate shift-by-2, add, shift-by-2, add,...,
+ in total wordsize operations. */
+ enum alg_code op[MAX_BITS_PER_WORD];
+ char log[MAX_BITS_PER_WORD];
+};
+
+/* Compute and return the best algorithm for multiplying by T.
+ The algorithm must cost less than cost_limit
+ If retval.cost >= COST_LIMIT, no algorithm was found and all
+ other field of the returned struct are undefined. */
+
+static void
+synth_mult (alg_out, t, cost_limit)
+ struct algorithm *alg_out;
+ unsigned HOST_WIDE_INT t;
+ int cost_limit;
+{
+ int m;
+ struct algorithm *alg_in, *best_alg;
+ unsigned int cost;
+ unsigned HOST_WIDE_INT q;
+
+ /* Indicate that no algorithm is yet found. If no algorithm
+ is found, this value will be returned and indicate failure. */
+ alg_out->cost = cost_limit;
+
+ if (cost_limit <= 0)
+ return;
+
+ /* t == 1 can be done in zero cost. */
+ if (t == 1)
+ {
+ alg_out->ops = 1;
+ alg_out->cost = 0;
+ alg_out->op[0] = alg_m;
+ return;
+ }
+
+ /* t == 0 sometimes has a cost. If it does and it exceeds our limit,
+ fail now. */
+ if (t == 0)
+ {
+ if (zero_cost >= cost_limit)
+ return;
+ else
+ {
+ alg_out->ops = 1;
+ alg_out->cost = zero_cost;
+ alg_out->op[0] = alg_zero;
+ return;
+ }
+ }
+
+ /* We'll be needing a couple extra algorithm structures now. */
+
+ alg_in = (struct algorithm *)alloca (sizeof (struct algorithm));
+ best_alg = (struct algorithm *)alloca (sizeof (struct algorithm));
+
+ /* If we have a group of zero bits at the low-order part of T, try
+ multiplying by the remaining bits and then doing a shift. */
+
+ if ((t & 1) == 0)
+ {
+ m = floor_log2 (t & -t); /* m = number of low zero bits */
+ q = t >> m;
+ cost = shift_cost[m];
+ synth_mult (alg_in, q, cost_limit - cost);
+
+ cost += alg_in->cost;
+ if (cost < cost_limit)
+ {
+ struct algorithm *x;
+ x = alg_in, alg_in = best_alg, best_alg = x;
+ best_alg->log[best_alg->ops] = m;
+ best_alg->op[best_alg->ops] = alg_shift;
+ cost_limit = cost;
+ }
+ }
+
+ /* If we have an odd number, add or subtract one. */
+ if ((t & 1) != 0)
+ {
+ unsigned HOST_WIDE_INT w;
+
+ for (w = 1; (w & t) != 0; w <<= 1)
+ ;
+ if (w > 2
+ /* Reject the case where t is 3.
+ Thus we prefer addition in that case. */
+ && t != 3)
+ {
+ /* T ends with ...111. Multiply by (T + 1) and subtract 1. */
+
+ cost = add_cost;
+ synth_mult (alg_in, t + 1, cost_limit - cost);
+
+ cost += alg_in->cost;
+ if (cost < cost_limit)
+ {
+ struct algorithm *x;
+ x = alg_in, alg_in = best_alg, best_alg = x;
+ best_alg->log[best_alg->ops] = 0;
+ best_alg->op[best_alg->ops] = alg_sub_t_m2;
+ cost_limit = cost;
+ }
+ }
+ else
+ {
+ /* T ends with ...01 or ...011. Multiply by (T - 1) and add 1. */
+
+ cost = add_cost;
+ synth_mult (alg_in, t - 1, cost_limit - cost);
+
+ cost += alg_in->cost;
+ if (cost < cost_limit)
+ {
+ struct algorithm *x;
+ x = alg_in, alg_in = best_alg, best_alg = x;
+ best_alg->log[best_alg->ops] = 0;
+ best_alg->op[best_alg->ops] = alg_add_t_m2;
+ cost_limit = cost;
+ }
+ }
+ }
+
+ /* Look for factors of t of the form
+ t = q(2**m +- 1), 2 <= m <= floor(log2(t - 1)).
+ If we find such a factor, we can multiply by t using an algorithm that
+ multiplies by q, shift the result by m and add/subtract it to itself.
+
+ We search for large factors first and loop down, even if large factors
+ are less probable than small; if we find a large factor we will find a
+ good sequence quickly, and therefore be able to prune (by decreasing
+ COST_LIMIT) the search. */
+
+ for (m = floor_log2 (t - 1); m >= 2; m--)
+ {
+ unsigned HOST_WIDE_INT d;
+
+ d = ((unsigned HOST_WIDE_INT) 1 << m) + 1;
+ if (t % d == 0 && t > d)
+ {
+ cost = MIN (shiftadd_cost[m], add_cost + shift_cost[m]);
+ synth_mult (alg_in, t / d, cost_limit - cost);
+
+ cost += alg_in->cost;
+ if (cost < cost_limit)
+ {
+ struct algorithm *x;
+ x = alg_in, alg_in = best_alg, best_alg = x;
+ best_alg->log[best_alg->ops] = m;
+ best_alg->op[best_alg->ops] = alg_add_factor;
+ cost_limit = cost;
+ }
+ /* Other factors will have been taken care of in the recursion. */
+ break;
+ }
+
+ d = ((unsigned HOST_WIDE_INT) 1 << m) - 1;
+ if (t % d == 0 && t > d)
+ {
+ cost = MIN (shiftsub_cost[m], add_cost + shift_cost[m]);
+ synth_mult (alg_in, t / d, cost_limit - cost);
+
+ cost += alg_in->cost;
+ if (cost < cost_limit)
+ {
+ struct algorithm *x;
+ x = alg_in, alg_in = best_alg, best_alg = x;
+ best_alg->log[best_alg->ops] = m;
+ best_alg->op[best_alg->ops] = alg_sub_factor;
+ cost_limit = cost;
+ }
+ break;
+ }
+ }
+
+ /* Try shift-and-add (load effective address) instructions,
+ i.e. do a*3, a*5, a*9. */
+ if ((t & 1) != 0)
+ {
+ q = t - 1;
+ q = q & -q;
+ m = exact_log2 (q);
+ if (m >= 0)
+ {
+ cost = shiftadd_cost[m];
+ synth_mult (alg_in, (t - 1) >> m, cost_limit - cost);
+
+ cost += alg_in->cost;
+ if (cost < cost_limit)
+ {
+ struct algorithm *x;
+ x = alg_in, alg_in = best_alg, best_alg = x;
+ best_alg->log[best_alg->ops] = m;
+ best_alg->op[best_alg->ops] = alg_add_t2_m;
+ cost_limit = cost;
+ }
+ }
+
+ q = t + 1;
+ q = q & -q;
+ m = exact_log2 (q);
+ if (m >= 0)
+ {
+ cost = shiftsub_cost[m];
+ synth_mult (alg_in, (t + 1) >> m, cost_limit - cost);
+
+ cost += alg_in->cost;
+ if (cost < cost_limit)
+ {
+ struct algorithm *x;
+ x = alg_in, alg_in = best_alg, best_alg = x;
+ best_alg->log[best_alg->ops] = m;
+ best_alg->op[best_alg->ops] = alg_sub_t2_m;
+ cost_limit = cost;
+ }
+ }
+ }
+
+ /* If cost_limit has not decreased since we stored it in alg_out->cost,
+ we have not found any algorithm. */
+ if (cost_limit == alg_out->cost)
+ return;
+
+ /* If we are getting a too long sequence for `struct algorithm'
+ to record, make this search fail. */
+ if (best_alg->ops == MAX_BITS_PER_WORD)
+ return;
+
+ /* Copy the algorithm from temporary space to the space at alg_out.
+ We avoid using structure assignment because the majority of
+ best_alg is normally undefined, and this is a critical function. */
+ alg_out->ops = best_alg->ops + 1;
+ alg_out->cost = cost_limit;
+ bcopy ((char *) best_alg->op, (char *) alg_out->op,
+ alg_out->ops * sizeof *alg_out->op);
+ bcopy ((char *) best_alg->log, (char *) alg_out->log,
+ alg_out->ops * sizeof *alg_out->log);
+}
+
+/* Perform a multiplication and return an rtx for the result.
+ MODE is mode of value; OP0 and OP1 are what to multiply (rtx's);
+ TARGET is a suggestion for where to store the result (an rtx).
+
+ We check specially for a constant integer as OP1.
+ If you want this check for OP0 as well, then before calling
+ you should swap the two operands if OP0 would be constant. */
+
+rtx
+expand_mult (mode, op0, op1, target, unsignedp)
+ enum machine_mode mode;
+ register rtx op0, op1, target;
+ int unsignedp;
+{
+ rtx const_op1 = op1;
+
+ /* synth_mult does an `unsigned int' multiply. As long as the mode is
+ less than or equal in size to `unsigned int' this doesn't matter.
+ If the mode is larger than `unsigned int', then synth_mult works only
+ if the constant value exactly fits in an `unsigned int' without any
+ truncation. This means that multiplying by negative values does
+ not work; results are off by 2^32 on a 32 bit machine. */
+
+ /* If we are multiplying in DImode, it may still be a win
+ to try to work with shifts and adds. */
+ if (GET_CODE (op1) == CONST_DOUBLE
+ && GET_MODE_CLASS (GET_MODE (op1)) == MODE_INT
+ && HOST_BITS_PER_INT >= BITS_PER_WORD
+ && CONST_DOUBLE_HIGH (op1) == 0)
+ const_op1 = GEN_INT (CONST_DOUBLE_LOW (op1));
+ else if (HOST_BITS_PER_INT < GET_MODE_BITSIZE (mode)
+ && GET_CODE (op1) == CONST_INT
+ && INTVAL (op1) < 0)
+ const_op1 = 0;
+
+ /* We used to test optimize here, on the grounds that it's better to
+ produce a smaller program when -O is not used.
+ But this causes such a terrible slowdown sometimes
+ that it seems better to use synth_mult always. */
+
+ if (const_op1 && GET_CODE (const_op1) == CONST_INT)
+ {
+ struct algorithm alg;
+ struct algorithm alg2;
+ HOST_WIDE_INT val = INTVAL (op1);
+ HOST_WIDE_INT val_so_far;
+ rtx insn;
+ int mult_cost;
+ enum {basic_variant, negate_variant, add_variant} variant = basic_variant;
+
+ /* Try to do the computation three ways: multiply by the negative of OP1
+ and then negate, do the multiplication directly, or do multiplication
+ by OP1 - 1. */
+
+ mult_cost = rtx_cost (gen_rtx (MULT, mode, op0, op1), SET);
+ mult_cost = MIN (12 * add_cost, mult_cost);
+
+ synth_mult (&alg, val, mult_cost);
+
+ /* This works only if the inverted value actually fits in an
+ `unsigned int' */
+ if (HOST_BITS_PER_INT >= GET_MODE_BITSIZE (mode))
+ {
+ synth_mult (&alg2, - val,
+ (alg.cost < mult_cost ? alg.cost : mult_cost) - negate_cost);
+ if (alg2.cost + negate_cost < alg.cost)
+ alg = alg2, variant = negate_variant;
+ }
+
+ /* This proves very useful for division-by-constant. */
+ synth_mult (&alg2, val - 1,
+ (alg.cost < mult_cost ? alg.cost : mult_cost) - add_cost);
+ if (alg2.cost + add_cost < alg.cost)
+ alg = alg2, variant = add_variant;
+
+ if (alg.cost < mult_cost)
+ {
+ /* We found something cheaper than a multiply insn. */
+ int opno;
+ rtx accum, tem;
+
+ op0 = protect_from_queue (op0, 0);
+
+ /* Avoid referencing memory over and over.
+ For speed, but also for correctness when mem is volatile. */
+ if (GET_CODE (op0) == MEM)
+ op0 = force_reg (mode, op0);
+
+ /* ACCUM starts out either as OP0 or as a zero, depending on
+ the first operation. */
+
+ if (alg.op[0] == alg_zero)
+ {
+ accum = copy_to_mode_reg (mode, const0_rtx);
+ val_so_far = 0;
+ }
+ else if (alg.op[0] == alg_m)
+ {
+ accum = copy_to_mode_reg (mode, op0);
+ val_so_far = 1;
+ }
+ else
+ abort ();
+
+ for (opno = 1; opno < alg.ops; opno++)
+ {
+ int log = alg.log[opno];
+ int preserve = preserve_subexpressions_p ();
+ rtx shift_subtarget = preserve ? 0 : accum;
+ rtx add_target
+ = (opno == alg.ops - 1 && target != 0 && variant != add_variant
+ ? target : 0);
+ rtx accum_target = preserve ? 0 : accum;
+
+ switch (alg.op[opno])
+ {
+ case alg_shift:
+ accum = expand_shift (LSHIFT_EXPR, mode, accum,
+ build_int_2 (log, 0), NULL_RTX, 0);
+ val_so_far <<= log;
+ break;
+
+ case alg_add_t_m2:
+ tem = expand_shift (LSHIFT_EXPR, mode, op0,
+ build_int_2 (log, 0), NULL_RTX, 0);
+ accum = force_operand (gen_rtx (PLUS, mode, accum, tem),
+ add_target ? add_target : accum_target);
+ val_so_far += (HOST_WIDE_INT) 1 << log;
+ break;
+
+ case alg_sub_t_m2:
+ tem = expand_shift (LSHIFT_EXPR, mode, op0,
+ build_int_2 (log, 0), NULL_RTX, 0);
+ accum = force_operand (gen_rtx (MINUS, mode, accum, tem),
+ add_target ? add_target : accum_target);
+ val_so_far -= (HOST_WIDE_INT) 1 << log;
+ break;
+
+ case alg_add_t2_m:
+ accum = expand_shift (LSHIFT_EXPR, mode, accum,
+ build_int_2 (log, 0), shift_subtarget,
+ 0);
+ accum = force_operand (gen_rtx (PLUS, mode, accum, op0),
+ add_target ? add_target : accum_target);
+ val_so_far = (val_so_far << log) + 1;
+ break;
+
+ case alg_sub_t2_m:
+ accum = expand_shift (LSHIFT_EXPR, mode, accum,
+ build_int_2 (log, 0), shift_subtarget,
+ 0);
+ accum = force_operand (gen_rtx (MINUS, mode, accum, op0),
+ add_target ? add_target : accum_target);
+ val_so_far = (val_so_far << log) - 1;
+ break;
+
+ case alg_add_factor:
+ tem = expand_shift (LSHIFT_EXPR, mode, accum,
+ build_int_2 (log, 0), NULL_RTX, 0);
+ accum = force_operand (gen_rtx (PLUS, mode, accum, tem),
+ add_target ? add_target : accum_target);
+ val_so_far += val_so_far << log;
+ break;
+
+ case alg_sub_factor:
+ tem = expand_shift (LSHIFT_EXPR, mode, accum,
+ build_int_2 (log, 0), NULL_RTX, 0);
+ accum = force_operand (gen_rtx (MINUS, mode, tem, accum),
+ (add_target ? add_target
+ : preserve ? 0 : tem));
+ val_so_far = (val_so_far << log) - val_so_far;
+ break;
+
+ default:
+ abort ();;
+ }
+
+ /* Write a REG_EQUAL note on the last insn so that we can cse
+ multiplication sequences. */
+
+ insn = get_last_insn ();
+ REG_NOTES (insn)
+ = gen_rtx (EXPR_LIST, REG_EQUAL,
+ gen_rtx (MULT, mode, op0, GEN_INT (val_so_far)),
+ REG_NOTES (insn));
+ }
+
+ if (variant == negate_variant)
+ {
+ val_so_far = - val_so_far;
+ accum = expand_unop (mode, neg_optab, accum, target, 0);
+ }
+ else if (variant == add_variant)
+ {
+ val_so_far = val_so_far + 1;
+ accum = force_operand (gen_rtx (PLUS, mode, accum, op0), target);
+ }
+
+ if (val != val_so_far)
+ abort ();
+
+ return accum;
+ }
+ }
+
+ /* This used to use umul_optab if unsigned, but for non-widening multiply
+ there is no difference between signed and unsigned. */
+ op0 = expand_binop (mode, smul_optab,
+ op0, op1, target, unsignedp, OPTAB_LIB_WIDEN);
+ if (op0 == 0)
+ abort ();
+ return op0;
+}
+
+/* Return the smallest n such that 2**n >= X. */
+
+int
+ceil_log2 (x)
+ unsigned HOST_WIDE_INT x;
+{
+ return floor_log2 (x - 1) + 1;
+}
+
+/* Choose a minimal N + 1 bit approximation to 1/D that can be used to
+ replace division by D, and put the least significant N bits of the result
+ in *MULTIPLIER_PTR and return the most significant bit.
+
+ The width of operations is N (should be <= HOST_BITS_PER_WIDE_INT), the
+ needed precision is in PRECISION (should be <= N).
+
+ PRECISION should be as small as possible so this function can choose
+ multiplier more freely.
+
+ The rounded-up logarithm of D is placed in *lgup_ptr. A shift count that
+ is to be used for a final right shift is placed in *POST_SHIFT_PTR.
+
+ Using this function, x/D will be equal to (x * m) >> (*POST_SHIFT_PTR),
+ where m is the full HOST_BITS_PER_WIDE_INT + 1 bit multiplier. */
+
+static
+unsigned HOST_WIDE_INT
+choose_multiplier (d, n, precision, multiplier_ptr, post_shift_ptr, lgup_ptr)
+ unsigned HOST_WIDE_INT d;
+ int n;
+ int precision;
+ unsigned HOST_WIDE_INT *multiplier_ptr;
+ int *post_shift_ptr;
+ int *lgup_ptr;
+{
+ unsigned HOST_WIDE_INT mhigh_hi, mhigh_lo;
+ unsigned HOST_WIDE_INT mlow_hi, mlow_lo;
+ int lgup, post_shift;
+ int pow, pow2;
+ unsigned HOST_WIDE_INT nh, nl, dummy1, dummy2;
+
+ /* lgup = ceil(log2(divisor)); */
+ lgup = ceil_log2 (d);
+
+ if (lgup > n)
+ abort ();
+
+ pow = n + lgup;
+ pow2 = n + lgup - precision;
+
+ if (pow == 2 * HOST_BITS_PER_WIDE_INT)
+ {
+ /* We could handle this with some effort, but this case is much better
+ handled directly with a scc insn, so rely on caller using that. */
+ abort ();
+ }
+
+ /* mlow = 2^(N + lgup)/d */
+ if (pow >= HOST_BITS_PER_WIDE_INT)
+ {
+ nh = (unsigned HOST_WIDE_INT) 1 << (pow - HOST_BITS_PER_WIDE_INT);
+ nl = 0;
+ }
+ else
+ {
+ nh = 0;
+ nl = (unsigned HOST_WIDE_INT) 1 << pow;
+ }
+ div_and_round_double (TRUNC_DIV_EXPR, 1, nl, nh, d, (HOST_WIDE_INT) 0,
+ &mlow_lo, &mlow_hi, &dummy1, &dummy2);
+
+ /* mhigh = (2^(N + lgup) + 2^N + lgup - precision)/d */
+ if (pow2 >= HOST_BITS_PER_WIDE_INT)
+ nh |= (unsigned HOST_WIDE_INT) 1 << (pow2 - HOST_BITS_PER_WIDE_INT);
+ else
+ nl |= (unsigned HOST_WIDE_INT) 1 << pow2;
+ div_and_round_double (TRUNC_DIV_EXPR, 1, nl, nh, d, (HOST_WIDE_INT) 0,
+ &mhigh_lo, &mhigh_hi, &dummy1, &dummy2);
+
+ if (mhigh_hi && nh - d >= d)
+ abort ();
+ if (mhigh_hi > 1 || mlow_hi > 1)
+ abort ();
+ /* assert that mlow < mhigh. */
+ if (! (mlow_hi < mhigh_hi || (mlow_hi == mhigh_hi && mlow_lo < mhigh_lo)))
+ abort();
+
+ /* If precision == N, then mlow, mhigh exceed 2^N
+ (but they do not exceed 2^(N+1)). */
+
+ /* Reduce to lowest terms */
+ for (post_shift = lgup; post_shift > 0; post_shift--)
+ {
+ unsigned HOST_WIDE_INT ml_lo = (mlow_hi << (HOST_BITS_PER_WIDE_INT - 1)) | (mlow_lo >> 1);
+ unsigned HOST_WIDE_INT mh_lo = (mhigh_hi << (HOST_BITS_PER_WIDE_INT - 1)) | (mhigh_lo >> 1);
+ if (ml_lo >= mh_lo)
+ break;
+
+ mlow_hi = 0;
+ mlow_lo = ml_lo;
+ mhigh_hi = 0;
+ mhigh_lo = mh_lo;
+ }
+
+ *post_shift_ptr = post_shift;
+ *lgup_ptr = lgup;
+ if (n < HOST_BITS_PER_WIDE_INT)
+ {
+ unsigned HOST_WIDE_INT mask = ((unsigned HOST_WIDE_INT) 1 << n) - 1;
+ *multiplier_ptr = mhigh_lo & mask;
+ return mhigh_lo >= mask;
+ }
+ else
+ {
+ *multiplier_ptr = mhigh_lo;
+ return mhigh_hi;
+ }
+}
+
+/* Compute the inverse of X mod 2**n, i.e., find Y such that X * Y is
+ congruent to 1 (mod 2**N). */
+
+static unsigned HOST_WIDE_INT
+invert_mod2n (x, n)
+ unsigned HOST_WIDE_INT x;
+ int n;
+{
+ /* Solve x*y == 1 (mod 2^n), where x is odd. Return y. */
+
+ /* The algorithm notes that the choice y = x satisfies
+ x*y == 1 mod 2^3, since x is assumed odd.
+ Each iteration doubles the number of bits of significance in y. */
+
+ unsigned HOST_WIDE_INT mask;
+ unsigned HOST_WIDE_INT y = x;
+ int nbit = 3;
+
+ mask = (n == HOST_BITS_PER_WIDE_INT
+ ? ~(unsigned HOST_WIDE_INT) 0
+ : ((unsigned HOST_WIDE_INT) 1 << n) - 1);
+
+ while (nbit < n)
+ {
+ y = y * (2 - x*y) & mask; /* Modulo 2^N */
+ nbit *= 2;
+ }
+ return y;
+}
+
+/* Emit code to adjust ADJ_OPERAND after multiplication of wrong signedness
+ flavor of OP0 and OP1. ADJ_OPERAND is already the high half of the
+ product OP0 x OP1. If UNSIGNEDP is nonzero, adjust the signed product
+ to become unsigned, if UNSIGNEDP is zero, adjust the unsigned product to
+ become signed.
+
+ The result is put in TARGET if that is convenient.
+
+ MODE is the mode of operation. */
+
+rtx
+expand_mult_highpart_adjust (mode, adj_operand, op0, op1, target, unsignedp)
+ enum machine_mode mode;
+ register rtx adj_operand, op0, op1, target;
+ int unsignedp;
+{
+ rtx tem;
+ enum rtx_code adj_code = unsignedp ? PLUS : MINUS;
+
+ tem = expand_shift (RSHIFT_EXPR, mode, op0,
+ build_int_2 (GET_MODE_BITSIZE (mode) - 1, 0),
+ NULL_RTX, 0);
+ tem = expand_and (tem, op1, NULL_RTX);
+ adj_operand = force_operand (gen_rtx (adj_code, mode, adj_operand, tem),
+ adj_operand);
+
+ tem = expand_shift (RSHIFT_EXPR, mode, op1,
+ build_int_2 (GET_MODE_BITSIZE (mode) - 1, 0),
+ NULL_RTX, 0);
+ tem = expand_and (tem, op0, NULL_RTX);
+ target = force_operand (gen_rtx (adj_code, mode, adj_operand, tem), target);
+
+ return target;
+}
+
+/* Emit code to multiply OP0 and CNST1, putting the high half of the result
+ in TARGET if that is convenient, and return where the result is. If the
+ operation can not be performed, 0 is returned.
+
+ MODE is the mode of operation and result.
+
+ UNSIGNEDP nonzero means unsigned multiply.
+
+ MAX_COST is the total allowed cost for the expanded RTL. */
+
+rtx
+expand_mult_highpart (mode, op0, cnst1, target, unsignedp, max_cost)
+ enum machine_mode mode;
+ register rtx op0, target;
+ unsigned HOST_WIDE_INT cnst1;
+ int unsignedp;
+ int max_cost;
+{
+ enum machine_mode wider_mode = GET_MODE_WIDER_MODE (mode);
+ optab mul_highpart_optab;
+ optab moptab;
+ rtx tem;
+ int size = GET_MODE_BITSIZE (mode);
+ rtx op1, wide_op1;
+
+ /* We can't support modes wider than HOST_BITS_PER_INT. */
+ if (size > HOST_BITS_PER_WIDE_INT)
+ abort ();
+
+ op1 = GEN_INT (cnst1);
+
+ if (GET_MODE_BITSIZE (wider_mode) <= HOST_BITS_PER_INT)
+ wide_op1 = op1;
+ else
+ wide_op1
+ = immed_double_const (cnst1,
+ (unsignedp
+ ? (HOST_WIDE_INT) 0
+ : -(cnst1 >> (HOST_BITS_PER_WIDE_INT - 1))),
+ wider_mode);
+
+ /* expand_mult handles constant multiplication of word_mode
+ or narrower. It does a poor job for large modes. */
+ if (size < BITS_PER_WORD
+ && mul_cost[(int) wider_mode] + shift_cost[size-1] < max_cost)
+ {
+ /* We have to do this, since expand_binop doesn't do conversion for
+ multiply. Maybe change expand_binop to handle widening multiply? */
+ op0 = convert_to_mode (wider_mode, op0, unsignedp);
+
+ tem = expand_mult (wider_mode, op0, wide_op1, NULL_RTX, unsignedp);
+ tem = expand_shift (RSHIFT_EXPR, wider_mode, tem,
+ build_int_2 (size, 0), NULL_RTX, 1);
+ return convert_modes (mode, wider_mode, tem, unsignedp);
+ }
+
+ if (target == 0)
+ target = gen_reg_rtx (mode);
+
+ /* Firstly, try using a multiplication insn that only generates the needed
+ high part of the product, and in the sign flavor of unsignedp. */
+ if (mul_highpart_cost[(int) mode] < max_cost)
+ {
+ mul_highpart_optab = unsignedp ? umul_highpart_optab : smul_highpart_optab;
+ target = expand_binop (mode, mul_highpart_optab,
+ op0, wide_op1, target, unsignedp, OPTAB_DIRECT);
+ if (target)
+ return target;
+ }
+
+ /* Secondly, same as above, but use sign flavor opposite of unsignedp.
+ Need to adjust the result after the multiplication. */
+ if (mul_highpart_cost[(int) mode] + 2 * shift_cost[size-1] + 4 * add_cost < max_cost)
+ {
+ mul_highpart_optab = unsignedp ? smul_highpart_optab : umul_highpart_optab;
+ target = expand_binop (mode, mul_highpart_optab,
+ op0, wide_op1, target, unsignedp, OPTAB_DIRECT);
+ if (target)
+ /* We used the wrong signedness. Adjust the result. */
+ return expand_mult_highpart_adjust (mode, target, op0,
+ op1, target, unsignedp);
+ }
+
+ /* Try widening multiplication. */
+ moptab = unsignedp ? umul_widen_optab : smul_widen_optab;
+ if (moptab->handlers[(int) wider_mode].insn_code != CODE_FOR_nothing
+ && mul_widen_cost[(int) wider_mode] < max_cost)
+ goto try;
+
+ /* Try widening the mode and perform a non-widening multiplication. */
+ moptab = smul_optab;
+ if (smul_optab->handlers[(int) wider_mode].insn_code != CODE_FOR_nothing
+ && mul_cost[(int) wider_mode] + shift_cost[size-1] < max_cost)
+ goto try;
+
+ /* Try widening multiplication of opposite signedness, and adjust. */
+ moptab = unsignedp ? smul_widen_optab : umul_widen_optab;
+ if (moptab->handlers[(int) wider_mode].insn_code != CODE_FOR_nothing
+ && (mul_widen_cost[(int) wider_mode]
+ + 2 * shift_cost[size-1] + 4 * add_cost < max_cost))
+ {
+ tem = expand_binop (wider_mode, moptab, op0, wide_op1,
+ NULL_RTX, ! unsignedp, OPTAB_WIDEN);
+ if (tem != 0)
+ {
+ /* Extract the high half of the just generated product. */
+ tem = expand_shift (RSHIFT_EXPR, wider_mode, tem,
+ build_int_2 (size, 0), NULL_RTX, 1);
+ tem = convert_modes (mode, wider_mode, tem, unsignedp);
+ /* We used the wrong signedness. Adjust the result. */
+ return expand_mult_highpart_adjust (mode, tem, op0, op1,
+ target, unsignedp);
+ }
+ }
+
+ return 0;
+
+ try:
+ /* Pass NULL_RTX as target since TARGET has wrong mode. */
+ tem = expand_binop (wider_mode, moptab, op0, wide_op1,
+ NULL_RTX, unsignedp, OPTAB_WIDEN);
+ if (tem == 0)
+ return 0;
+
+ /* Extract the high half of the just generated product. */
+ tem = expand_shift (RSHIFT_EXPR, wider_mode, tem,
+ build_int_2 (size, 0), NULL_RTX, 1);
+ return convert_modes (mode, wider_mode, tem, unsignedp);
+}
+
+/* Emit the code to divide OP0 by OP1, putting the result in TARGET
+ if that is convenient, and returning where the result is.
+ You may request either the quotient or the remainder as the result;
+ specify REM_FLAG nonzero to get the remainder.
+
+ CODE is the expression code for which kind of division this is;
+ it controls how rounding is done. MODE is the machine mode to use.
+ UNSIGNEDP nonzero means do unsigned division. */
+
+/* ??? For CEIL_MOD_EXPR, can compute incorrect remainder with ANDI
+ and then correct it by or'ing in missing high bits
+ if result of ANDI is nonzero.
+ For ROUND_MOD_EXPR, can use ANDI and then sign-extend the result.
+ This could optimize to a bfexts instruction.
+ But C doesn't use these operations, so their optimizations are
+ left for later. */
+
+#define EXACT_POWER_OF_2_OR_ZERO_P(x) (((x) & ((x) - 1)) == 0)
+
+rtx
+expand_divmod (rem_flag, code, mode, op0, op1, target, unsignedp)
+ int rem_flag;
+ enum tree_code code;
+ enum machine_mode mode;
+ register rtx op0, op1, target;
+ int unsignedp;
+{
+ enum machine_mode compute_mode;
+ register rtx tquotient;
+ rtx quotient = 0, remainder = 0;
+ rtx last;
+ int size;
+ rtx insn, set;
+ optab optab1, optab2;
+ int op1_is_constant, op1_is_pow2;
+ int max_cost, extra_cost;
+
+ op1_is_constant = GET_CODE (op1) == CONST_INT;
+ op1_is_pow2 = (op1_is_constant
+ && ((EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1))
+ || EXACT_POWER_OF_2_OR_ZERO_P (-INTVAL (op1)))));
+
+ /*
+ This is the structure of expand_divmod:
+
+ First comes code to fix up the operands so we can perform the operations
+ correctly and efficiently.
+
+ Second comes a switch statement with code specific for each rounding mode.
+ For some special operands this code emits all RTL for the desired
+ operation, for other cases, it generates only a quotient and stores it in
+ QUOTIENT. The case for trunc division/remainder might leave quotient = 0,
+ to indicate that it has not done anything.
+
+ Last comes code that finishes the operation. If QUOTIENT is set and
+ REM_FLAG is set, the remainder is computed as OP0 - QUOTIENT * OP1. If
+ QUOTIENT is not set, it is computed using trunc rounding.
+
+ We try to generate special code for division and remainder when OP1 is a
+ constant. If |OP1| = 2**n we can use shifts and some other fast
+ operations. For other values of OP1, we compute a carefully selected
+ fixed-point approximation m = 1/OP1, and generate code that multiplies OP0
+ by m.
+
+ In all cases but EXACT_DIV_EXPR, this multiplication requires the upper
+ half of the product. Different strategies for generating the product are
+ implemented in expand_mult_highpart.
+
+ If what we actually want is the remainder, we generate that by another
+ by-constant multiplication and a subtraction. */
+
+ /* We shouldn't be called with OP1 == const1_rtx, but some of the
+ code below will malfunction if we are, so check here and handle
+ the special case if so. */
+ if (op1 == const1_rtx)
+ return rem_flag ? const0_rtx : op0;
+
+ if (target
+ /* Don't use the function value register as a target
+ since we have to read it as well as write it,
+ and function-inlining gets confused by this. */
+ && ((REG_P (target) && REG_FUNCTION_VALUE_P (target))
+ /* Don't clobber an operand while doing a multi-step calculation. */
+ || ((rem_flag || op1_is_constant)
+ && (reg_mentioned_p (target, op0)
+ || (GET_CODE (op0) == MEM && GET_CODE (target) == MEM)))
+ || reg_mentioned_p (target, op1)
+ || (GET_CODE (op1) == MEM && GET_CODE (target) == MEM)))
+ target = 0;
+
+ /* Get the mode in which to perform this computation. Normally it will
+ be MODE, but sometimes we can't do the desired operation in MODE.
+ If so, pick a wider mode in which we can do the operation. Convert
+ to that mode at the start to avoid repeated conversions.
+
+ First see what operations we need. These depend on the expression
+ we are evaluating. (We assume that divxx3 insns exist under the
+ same conditions that modxx3 insns and that these insns don't normally
+ fail. If these assumptions are not correct, we may generate less
+ efficient code in some cases.)
+
+ Then see if we find a mode in which we can open-code that operation
+ (either a division, modulus, or shift). Finally, check for the smallest
+ mode for which we can do the operation with a library call. */
+
+ /* We might want to refine this now that we have division-by-constant
+ optimization. Since expand_mult_highpart tries so many variants, it is
+ not straightforward to generalize this. Maybe we should make an array
+ of possible modes in init_expmed? Save this for GCC 2.7. */
+
+ optab1 = (op1_is_pow2 ? (unsignedp ? lshr_optab : ashr_optab)
+ : (unsignedp ? udiv_optab : sdiv_optab));
+ optab2 = (op1_is_pow2 ? optab1 : (unsignedp ? udivmod_optab : sdivmod_optab));
+
+ for (compute_mode = mode; compute_mode != VOIDmode;
+ compute_mode = GET_MODE_WIDER_MODE (compute_mode))
+ if (optab1->handlers[(int) compute_mode].insn_code != CODE_FOR_nothing
+ || optab2->handlers[(int) compute_mode].insn_code != CODE_FOR_nothing)
+ break;
+
+ if (compute_mode == VOIDmode)
+ for (compute_mode = mode; compute_mode != VOIDmode;
+ compute_mode = GET_MODE_WIDER_MODE (compute_mode))
+ if (optab1->handlers[(int) compute_mode].libfunc
+ || optab2->handlers[(int) compute_mode].libfunc)
+ break;
+
+ /* If we still couldn't find a mode, use MODE, but we'll probably abort
+ in expand_binop. */
+ if (compute_mode == VOIDmode)
+ compute_mode = mode;
+
+ if (target && GET_MODE (target) == compute_mode)
+ tquotient = target;
+ else
+ tquotient = gen_reg_rtx (compute_mode);
+
+ size = GET_MODE_BITSIZE (compute_mode);
+#if 0
+ /* It should be possible to restrict the precision to GET_MODE_BITSIZE
+ (mode), and thereby get better code when OP1 is a constant. Do that
+ later. It will require going over all usages of SIZE below. */
+ size = GET_MODE_BITSIZE (mode);
+#endif
+
+ max_cost = div_cost[(int) compute_mode]
+ - (rem_flag ? mul_cost[(int) compute_mode] + add_cost : 0);
+
+ /* Now convert to the best mode to use. */
+ if (compute_mode != mode)
+ {
+ op0 = convert_modes (compute_mode, mode, op0, unsignedp);
+ op1 = convert_modes (compute_mode, mode, op1, unsignedp);
+ }
+
+ /* If one of the operands is a volatile MEM, copy it into a register. */
+
+ if (GET_CODE (op0) == MEM && MEM_VOLATILE_P (op0))
+ op0 = force_reg (compute_mode, op0);
+ if (GET_CODE (op1) == MEM && MEM_VOLATILE_P (op1))
+ op1 = force_reg (compute_mode, op1);
+
+ /* If we need the remainder or if OP1 is constant, we need to
+ put OP0 in a register in case it has any queued subexpressions. */
+ if (rem_flag || op1_is_constant)
+ op0 = force_reg (compute_mode, op0);
+
+ last = get_last_insn ();
+
+ /* Promote floor rounding to trunc rounding for unsigned operations. */
+ if (unsignedp)
+ {
+ if (code == FLOOR_DIV_EXPR)
+ code = TRUNC_DIV_EXPR;
+ if (code == FLOOR_MOD_EXPR)
+ code = TRUNC_MOD_EXPR;
+ }
+
+ if (op1 != const0_rtx)
+ switch (code)
+ {
+ case TRUNC_MOD_EXPR:
+ case TRUNC_DIV_EXPR:
+ if (op1_is_constant && HOST_BITS_PER_WIDE_INT >= size)
+ {
+ if (unsignedp)
+ {
+ unsigned HOST_WIDE_INT mh, ml;
+ int pre_shift, post_shift;
+ int dummy;
+ unsigned HOST_WIDE_INT d = INTVAL (op1);
+
+ if (EXACT_POWER_OF_2_OR_ZERO_P (d))
+ {
+ pre_shift = floor_log2 (d);
+ if (rem_flag)
+ {
+ remainder = expand_binop (compute_mode, and_optab, op0,
+ GEN_INT (((HOST_WIDE_INT) 1 << pre_shift) - 1),
+ remainder, 1,
+ OPTAB_LIB_WIDEN);
+ if (remainder)
+ return gen_lowpart (mode, remainder);
+ }
+ quotient = expand_shift (RSHIFT_EXPR, compute_mode, op0,
+ build_int_2 (pre_shift, 0),
+ tquotient, 1);
+ }
+ else if (d >= ((unsigned HOST_WIDE_INT) 1 << (size - 1)))
+ {
+ /* Most significant bit of divisor is set, emit a scc insn.
+ emit_store_flag needs to be passed a place for the
+ result. */
+ quotient = emit_store_flag (tquotient, GEU, op0, op1,
+ compute_mode, 1, 1);
+ if (quotient == 0)
+ goto fail1;
+ }
+ else
+ {
+ /* Find a suitable multiplier and right shift count instead
+ of multiplying with D. */
+
+ mh = choose_multiplier (d, size, size,
+ &ml, &post_shift, &dummy);
+
+ /* If the suggested multiplier is more than SIZE bits, we
+ can do better for even divisors, using an initial right
+ shift. */
+ if (mh != 0 && (d & 1) == 0)
+ {
+ pre_shift = floor_log2 (d & -d);
+ mh = choose_multiplier (d >> pre_shift, size,
+ size - pre_shift,
+ &ml, &post_shift, &dummy);
+ if (mh)
+ abort ();
+ }
+ else
+ pre_shift = 0;
+
+ if (mh != 0)
+ {
+ rtx t1, t2, t3, t4;
+
+ extra_cost = (shift_cost[post_shift - 1]
+ + shift_cost[1] + 2 * add_cost);
+ t1 = expand_mult_highpart (compute_mode, op0, ml,
+ NULL_RTX, 1,
+ max_cost - extra_cost);
+ if (t1 == 0)
+ goto fail1;
+ t2 = force_operand (gen_rtx (MINUS, compute_mode,
+ op0, t1),
+ NULL_RTX);
+ t3 = expand_shift (RSHIFT_EXPR, compute_mode, t2,
+ build_int_2 (1, 0), NULL_RTX, 1);
+ t4 = force_operand (gen_rtx (PLUS, compute_mode,
+ t1, t3),
+ NULL_RTX);
+ quotient = expand_shift (RSHIFT_EXPR, compute_mode, t4,
+ build_int_2 (post_shift - 1,
+ 0),
+ tquotient, 1);
+ }
+ else
+ {
+ rtx t1, t2;
+
+ t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
+ build_int_2 (pre_shift, 0),
+ NULL_RTX, 1);
+ extra_cost = (shift_cost[pre_shift]
+ + shift_cost[post_shift]);
+ t2 = expand_mult_highpart (compute_mode, t1, ml,
+ NULL_RTX, 1,
+ max_cost - extra_cost);
+ if (t2 == 0)
+ goto fail1;
+ quotient = expand_shift (RSHIFT_EXPR, compute_mode, t2,
+ build_int_2 (post_shift, 0),
+ tquotient, 1);
+ }
+ }
+
+ insn = get_last_insn ();
+ if (insn != last
+ && (set = single_set (insn)) != 0
+ && SET_DEST (set) == quotient)
+ REG_NOTES (insn)
+ = gen_rtx (EXPR_LIST, REG_EQUAL,
+ gen_rtx (UDIV, compute_mode, op0, op1),
+ REG_NOTES (insn));
+ }
+ else /* TRUNC_DIV, signed */
+ {
+ unsigned HOST_WIDE_INT ml;
+ int lgup, post_shift;
+ HOST_WIDE_INT d = INTVAL (op1);
+ unsigned HOST_WIDE_INT abs_d = d >= 0 ? d : -d;
+
+ /* n rem d = n rem -d */
+ if (rem_flag && d < 0)
+ {
+ d = abs_d;
+ op1 = GEN_INT (abs_d);
+ }
+
+ if (d == 1)
+ quotient = op0;
+ else if (d == -1)
+ quotient = expand_unop (compute_mode, neg_optab, op0,
+ tquotient, 0);
+ else if (abs_d == (unsigned HOST_WIDE_INT) 1 << (size - 1))
+ {
+ /* This case is not handled correctly below. */
+ quotient = emit_store_flag (tquotient, EQ, op0, op1,
+ compute_mode, 1, 1);
+ if (quotient == 0)
+ goto fail1;
+ }
+ else if (EXACT_POWER_OF_2_OR_ZERO_P (d)
+ && (rem_flag ? smod_pow2_cheap : sdiv_pow2_cheap))
+ ;
+ else if (EXACT_POWER_OF_2_OR_ZERO_P (abs_d))
+ {
+ lgup = floor_log2 (abs_d);
+ if (abs_d != 2 && BRANCH_COST < 3)
+ {
+ rtx label = gen_label_rtx ();
+ rtx t1;
+
+ t1 = copy_to_mode_reg (compute_mode, op0);
+ emit_cmp_insn (t1, const0_rtx, GE,
+ NULL_RTX, compute_mode, 0, 0);
+ emit_jump_insn (gen_bge (label));
+ expand_inc (t1, GEN_INT (abs_d - 1));
+ emit_label (label);
+ quotient = expand_shift (RSHIFT_EXPR, compute_mode, t1,
+ build_int_2 (lgup, 0),
+ tquotient, 0);
+ }
+ else
+ {
+ rtx t1, t2, t3;
+ t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
+ build_int_2 (size - 1, 0),
+ NULL_RTX, 0);
+ t2 = expand_shift (RSHIFT_EXPR, compute_mode, t1,
+ build_int_2 (size - lgup, 0),
+ NULL_RTX, 1);
+ t3 = force_operand (gen_rtx (PLUS, compute_mode,
+ op0, t2),
+ NULL_RTX);
+ quotient = expand_shift (RSHIFT_EXPR, compute_mode, t3,
+ build_int_2 (lgup, 0),
+ tquotient, 0);
+ }
+
+ /* We have computed OP0 / abs(OP1). If OP1 is negative, negate
+ the quotient. */
+ if (d < 0)
+ {
+ insn = get_last_insn ();
+ if (insn != last
+ && (set = single_set (insn)) != 0
+ && SET_DEST (set) == quotient)
+ REG_NOTES (insn)
+ = gen_rtx (EXPR_LIST, REG_EQUAL,
+ gen_rtx (DIV, compute_mode, op0,
+ GEN_INT (abs_d)),
+ REG_NOTES (insn));
+
+ quotient = expand_unop (compute_mode, neg_optab,
+ quotient, quotient, 0);
+ }
+ }
+ else
+ {
+ choose_multiplier (abs_d, size, size - 1,
+ &ml, &post_shift, &lgup);
+ if (ml < (unsigned HOST_WIDE_INT) 1 << (size - 1))
+ {
+ rtx t1, t2, t3;
+
+ extra_cost = (shift_cost[post_shift]
+ + shift_cost[size - 1] + add_cost);
+ t1 = expand_mult_highpart (compute_mode, op0, ml,
+ NULL_RTX, 0,
+ max_cost - extra_cost);
+ if (t1 == 0)
+ goto fail1;
+ t2 = expand_shift (RSHIFT_EXPR, compute_mode, t1,
+ build_int_2 (post_shift, 0), NULL_RTX, 0);
+ t3 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
+ build_int_2 (size - 1, 0), NULL_RTX, 0);
+ if (d < 0)
+ quotient = force_operand (gen_rtx (MINUS, compute_mode, t3, t2),
+ tquotient);
+ else
+ quotient = force_operand (gen_rtx (MINUS, compute_mode, t2, t3),
+ tquotient);
+ }
+ else
+ {
+ rtx t1, t2, t3, t4;
+
+ ml |= (~(unsigned HOST_WIDE_INT) 0) << (size - 1);
+ extra_cost = (shift_cost[post_shift]
+ + shift_cost[size - 1] + 2 * add_cost);
+ t1 = expand_mult_highpart (compute_mode, op0, ml,
+ NULL_RTX, 0,
+ max_cost - extra_cost);
+ if (t1 == 0)
+ goto fail1;
+ t2 = force_operand (gen_rtx (PLUS, compute_mode, t1, op0),
+ NULL_RTX);
+ t3 = expand_shift (RSHIFT_EXPR, compute_mode, t2,
+ build_int_2 (post_shift, 0), NULL_RTX, 0);
+ t4 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
+ build_int_2 (size - 1, 0), NULL_RTX, 0);
+ if (d < 0)
+ quotient = force_operand (gen_rtx (MINUS, compute_mode, t4, t3),
+ tquotient);
+ else
+ quotient = force_operand (gen_rtx (MINUS, compute_mode, t3, t4),
+ tquotient);
+ }
+ }
+
+ insn = get_last_insn ();
+ if (insn != last
+ && (set = single_set (insn)) != 0
+ && SET_DEST (set) == quotient)
+ REG_NOTES (insn)
+ = gen_rtx (EXPR_LIST, REG_EQUAL,
+ gen_rtx (DIV, compute_mode, op0, op1),
+ REG_NOTES (insn));
+ }
+ break;
+ }
+ fail1:
+ delete_insns_since (last);
+ break;
+
+ case FLOOR_DIV_EXPR:
+ case FLOOR_MOD_EXPR:
+ /* We will come here only for signed operations. */
+ if (op1_is_constant && HOST_BITS_PER_WIDE_INT >= size)
+ {
+ unsigned HOST_WIDE_INT mh, ml;
+ int pre_shift, lgup, post_shift;
+ HOST_WIDE_INT d = INTVAL (op1);
+
+ if (d > 0)
+ {
+ /* We could just as easily deal with negative constants here,
+ but it does not seem worth the trouble for GCC 2.6. */
+ if (EXACT_POWER_OF_2_OR_ZERO_P (d))
+ {
+ pre_shift = floor_log2 (d);
+ if (rem_flag)
+ {
+ remainder = expand_binop (compute_mode, and_optab, op0,
+ GEN_INT (((HOST_WIDE_INT) 1 << pre_shift) - 1),
+ remainder, 0, OPTAB_LIB_WIDEN);
+ if (remainder)
+ return gen_lowpart (mode, remainder);
+ }
+ quotient = expand_shift (RSHIFT_EXPR, compute_mode, op0,
+ build_int_2 (pre_shift, 0),
+ tquotient, 0);
+ }
+ else
+ {
+ rtx t1, t2, t3, t4;
+
+ mh = choose_multiplier (d, size, size - 1,
+ &ml, &post_shift, &lgup);
+ if (mh)
+ abort ();
+
+ t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
+ build_int_2 (size - 1, 0), NULL_RTX, 0);
+ t2 = expand_binop (compute_mode, xor_optab, op0, t1,
+ NULL_RTX, 0, OPTAB_WIDEN);
+ extra_cost = (shift_cost[post_shift]
+ + shift_cost[size - 1] + 2 * add_cost);
+ t3 = expand_mult_highpart (compute_mode, t2, ml,
+ NULL_RTX, 1,
+ max_cost - extra_cost);
+ if (t3 != 0)
+ {
+ t4 = expand_shift (RSHIFT_EXPR, compute_mode, t3,
+ build_int_2 (post_shift, 0),
+ NULL_RTX, 1);
+ quotient = expand_binop (compute_mode, xor_optab,
+ t4, t1, tquotient, 0,
+ OPTAB_WIDEN);
+ }
+ }
+ }
+ else
+ {
+ rtx nsign, t1, t2, t3, t4;
+ t1 = force_operand (gen_rtx (PLUS, compute_mode,
+ op0, constm1_rtx), NULL_RTX);
+ t2 = expand_binop (compute_mode, ior_optab, op0, t1, NULL_RTX,
+ 0, OPTAB_WIDEN);
+ nsign = expand_shift (RSHIFT_EXPR, compute_mode, t2,
+ build_int_2 (size - 1, 0), NULL_RTX, 0);
+ t3 = force_operand (gen_rtx (MINUS, compute_mode, t1, nsign),
+ NULL_RTX);
+ t4 = expand_divmod (0, TRUNC_DIV_EXPR, compute_mode, t3, op1,
+ NULL_RTX, 0);
+ if (t4)
+ {
+ rtx t5;
+ t5 = expand_unop (compute_mode, one_cmpl_optab, nsign,
+ NULL_RTX, 0);
+ quotient = force_operand (gen_rtx (PLUS, compute_mode,
+ t4, t5),
+ tquotient);
+ }
+ }
+ }
+
+ if (quotient != 0)
+ break;
+ delete_insns_since (last);
+
+ /* Try using an instruction that produces both the quotient and
+ remainder, using truncation. We can easily compensate the quotient
+ or remainder to get floor rounding, once we have the remainder.
+ Notice that we compute also the final remainder value here,
+ and return the result right away. */
+ if (target == 0)
+ target = gen_reg_rtx (compute_mode);
+
+ if (rem_flag)
+ {
+ remainder
+ = GET_CODE (target) == REG ? target : gen_reg_rtx (compute_mode);
+ quotient = gen_reg_rtx (compute_mode);
+ }
+ else
+ {
+ quotient
+ = GET_CODE (target) == REG ? target : gen_reg_rtx (compute_mode);
+ remainder = gen_reg_rtx (compute_mode);
+ }
+
+ if (expand_twoval_binop (sdivmod_optab, op0, op1,
+ quotient, remainder, 0))
+ {
+ /* This could be computed with a branch-less sequence.
+ Save that for later. */
+ rtx tem;
+ rtx label = gen_label_rtx ();
+ emit_cmp_insn (remainder, const0_rtx, EQ, NULL_RTX,
+ compute_mode, 0, 0);
+ emit_jump_insn (gen_beq (label));
+ tem = expand_binop (compute_mode, xor_optab, op0, op1,
+ NULL_RTX, 0, OPTAB_WIDEN);
+ emit_cmp_insn (tem, const0_rtx, GE, NULL_RTX, compute_mode, 0, 0);
+ emit_jump_insn (gen_bge (label));
+ expand_dec (quotient, const1_rtx);
+ expand_inc (remainder, op1);
+ emit_label (label);
+ return gen_lowpart (mode, rem_flag ? remainder : quotient);
+ }
+
+ /* No luck with division elimination or divmod. Have to do it
+ by conditionally adjusting op0 *and* the result. */
+ {
+ rtx label1, label2, label3, label4, label5;
+ rtx adjusted_op0;
+ rtx tem;
+
+ quotient = gen_reg_rtx (compute_mode);
+ adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
+ label1 = gen_label_rtx ();
+ label2 = gen_label_rtx ();
+ label3 = gen_label_rtx ();
+ label4 = gen_label_rtx ();
+ label5 = gen_label_rtx ();
+ emit_cmp_insn (op1, const0_rtx, LT, NULL_RTX, compute_mode, 0, 0);
+ emit_jump_insn (gen_blt (label2));
+ emit_cmp_insn (adjusted_op0, const0_rtx, LT, NULL_RTX,
+ compute_mode, 0, 0);
+ emit_jump_insn (gen_blt (label1));
+ tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
+ quotient, 0, OPTAB_LIB_WIDEN);
+ if (tem != quotient)
+ emit_move_insn (quotient, tem);
+ emit_jump_insn (gen_jump (label5));
+ emit_barrier ();
+ emit_label (label1);
+ expand_inc (adjusted_op0, const1_rtx);
+ emit_jump_insn (gen_jump (label4));
+ emit_barrier ();
+ emit_label (label2);
+ emit_cmp_insn (adjusted_op0, const0_rtx, GT, NULL_RTX,
+ compute_mode, 0, 0);
+ emit_jump_insn (gen_bgt (label3));
+ tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
+ quotient, 0, OPTAB_LIB_WIDEN);
+ if (tem != quotient)
+ emit_move_insn (quotient, tem);
+ emit_jump_insn (gen_jump (label5));
+ emit_barrier ();
+ emit_label (label3);
+ expand_dec (adjusted_op0, const1_rtx);
+ emit_label (label4);
+ tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
+ quotient, 0, OPTAB_LIB_WIDEN);
+ if (tem != quotient)
+ emit_move_insn (quotient, tem);
+ expand_dec (quotient, const1_rtx);
+ emit_label (label5);
+ }
+ break;
+
+ case CEIL_DIV_EXPR:
+ case CEIL_MOD_EXPR:
+ if (unsignedp)
+ {
+ if (op1_is_constant && EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1)))
+ {
+ rtx t1, t2, t3;
+ unsigned HOST_WIDE_INT d = INTVAL (op1);
+ t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
+ build_int_2 (floor_log2 (d), 0),
+ tquotient, 1);
+ t2 = expand_binop (compute_mode, and_optab, op0,
+ GEN_INT (d - 1),
+ NULL_RTX, 1, OPTAB_LIB_WIDEN);
+ t3 = gen_reg_rtx (compute_mode);
+ t3 = emit_store_flag (t3, NE, t2, const0_rtx,
+ compute_mode, 1, 1);
+ if (t3 == 0)
+ {
+ rtx lab;
+ lab = gen_label_rtx ();
+ emit_cmp_insn (t2, const0_rtx, EQ, NULL_RTX,
+ compute_mode, 0, 0);
+ emit_jump_insn (gen_beq (lab));
+ expand_inc (t1, const1_rtx);
+ emit_label (lab);
+ quotient = t1;
+ }
+ else
+ quotient = force_operand (gen_rtx (PLUS, compute_mode,
+ t1, t3),
+ tquotient);
+ break;
+ }
+
+ /* Try using an instruction that produces both the quotient and
+ remainder, using truncation. We can easily compensate the
+ quotient or remainder to get ceiling rounding, once we have the
+ remainder. Notice that we compute also the final remainder
+ value here, and return the result right away. */
+ if (target == 0)
+ target = gen_reg_rtx (compute_mode);
+
+ if (rem_flag)
+ {
+ remainder = (GET_CODE (target) == REG
+ ? target : gen_reg_rtx (compute_mode));
+ quotient = gen_reg_rtx (compute_mode);
+ }
+ else
+ {
+ quotient = (GET_CODE (target) == REG
+ ? target : gen_reg_rtx (compute_mode));
+ remainder = gen_reg_rtx (compute_mode);
+ }
+
+ if (expand_twoval_binop (udivmod_optab, op0, op1, quotient,
+ remainder, 1))
+ {
+ /* This could be computed with a branch-less sequence.
+ Save that for later. */
+ rtx label = gen_label_rtx ();
+ emit_cmp_insn (remainder, const0_rtx, EQ, NULL_RTX,
+ compute_mode, 0, 0);
+ emit_jump_insn (gen_beq (label));
+ expand_inc (quotient, const1_rtx);
+ expand_dec (remainder, op1);
+ emit_label (label);
+ return gen_lowpart (mode, rem_flag ? remainder : quotient);
+ }
+
+ /* No luck with division elimination or divmod. Have to do it
+ by conditionally adjusting op0 *and* the result. */
+ {
+ rtx label1, label2;
+ rtx adjusted_op0, tem;
+
+ quotient = gen_reg_rtx (compute_mode);
+ adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
+ label1 = gen_label_rtx ();
+ label2 = gen_label_rtx ();
+ emit_cmp_insn (adjusted_op0, const0_rtx, NE, NULL_RTX,
+ compute_mode, 0, 0);
+ emit_jump_insn (gen_bne (label1));
+ emit_move_insn (quotient, const0_rtx);
+ emit_jump_insn (gen_jump (label2));
+ emit_barrier ();
+ emit_label (label1);
+ expand_dec (adjusted_op0, const1_rtx);
+ tem = expand_binop (compute_mode, udiv_optab, adjusted_op0, op1,
+ quotient, 1, OPTAB_LIB_WIDEN);
+ if (tem != quotient)
+ emit_move_insn (quotient, tem);
+ expand_inc (quotient, const1_rtx);
+ emit_label (label2);
+ }
+ }
+ else /* signed */
+ {
+ if (op1_is_constant && EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1))
+ && INTVAL (op1) >= 0)
+ {
+ /* This is extremely similar to the code for the unsigned case
+ above. For 2.7 we should merge these variants, but for
+ 2.6.1 I don't want to touch the code for unsigned since that
+ get used in C. The signed case will only be used by other
+ languages (Ada). */
+
+ rtx t1, t2, t3;
+ unsigned HOST_WIDE_INT d = INTVAL (op1);
+ t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
+ build_int_2 (floor_log2 (d), 0),
+ tquotient, 0);
+ t2 = expand_binop (compute_mode, and_optab, op0,
+ GEN_INT (d - 1),
+ NULL_RTX, 1, OPTAB_LIB_WIDEN);
+ t3 = gen_reg_rtx (compute_mode);
+ t3 = emit_store_flag (t3, NE, t2, const0_rtx,
+ compute_mode, 1, 1);
+ if (t3 == 0)
+ {
+ rtx lab;
+ lab = gen_label_rtx ();
+ emit_cmp_insn (t2, const0_rtx, EQ, NULL_RTX,
+ compute_mode, 0, 0);
+ emit_jump_insn (gen_beq (lab));
+ expand_inc (t1, const1_rtx);
+ emit_label (lab);
+ quotient = t1;
+ }
+ else
+ quotient = force_operand (gen_rtx (PLUS, compute_mode,
+ t1, t3),
+ tquotient);
+ break;
+ }
+
+ /* Try using an instruction that produces both the quotient and
+ remainder, using truncation. We can easily compensate the
+ quotient or remainder to get ceiling rounding, once we have the
+ remainder. Notice that we compute also the final remainder
+ value here, and return the result right away. */
+ if (target == 0)
+ target = gen_reg_rtx (compute_mode);
+ if (rem_flag)
+ {
+ remainder= (GET_CODE (target) == REG
+ ? target : gen_reg_rtx (compute_mode));
+ quotient = gen_reg_rtx (compute_mode);
+ }
+ else
+ {
+ quotient = (GET_CODE (target) == REG
+ ? target : gen_reg_rtx (compute_mode));
+ remainder = gen_reg_rtx (compute_mode);
+ }
+
+ if (expand_twoval_binop (sdivmod_optab, op0, op1, quotient,
+ remainder, 0))
+ {
+ /* This could be computed with a branch-less sequence.
+ Save that for later. */
+ rtx tem;
+ rtx label = gen_label_rtx ();
+ emit_cmp_insn (remainder, const0_rtx, EQ, NULL_RTX,
+ compute_mode, 0, 0);
+ emit_jump_insn (gen_beq (label));
+ tem = expand_binop (compute_mode, xor_optab, op0, op1,
+ NULL_RTX, 0, OPTAB_WIDEN);
+ emit_cmp_insn (tem, const0_rtx, LT, NULL_RTX,
+ compute_mode, 0, 0);
+ emit_jump_insn (gen_blt (label));
+ expand_inc (quotient, const1_rtx);
+ expand_dec (remainder, op1);
+ emit_label (label);
+ return gen_lowpart (mode, rem_flag ? remainder : quotient);
+ }
+
+ /* No luck with division elimination or divmod. Have to do it
+ by conditionally adjusting op0 *and* the result. */
+ {
+ rtx label1, label2, label3, label4, label5;
+ rtx adjusted_op0;
+ rtx tem;
+
+ quotient = gen_reg_rtx (compute_mode);
+ adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
+ label1 = gen_label_rtx ();
+ label2 = gen_label_rtx ();
+ label3 = gen_label_rtx ();
+ label4 = gen_label_rtx ();
+ label5 = gen_label_rtx ();
+ emit_cmp_insn (op1, const0_rtx, LT, NULL_RTX,
+ compute_mode, 0, 0);
+ emit_jump_insn (gen_blt (label2));
+ emit_cmp_insn (adjusted_op0, const0_rtx, GT, NULL_RTX,
+ compute_mode, 0, 0);
+ emit_jump_insn (gen_bgt (label1));
+ tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
+ quotient, 0, OPTAB_LIB_WIDEN);
+ if (tem != quotient)
+ emit_move_insn (quotient, tem);
+ emit_jump_insn (gen_jump (label5));
+ emit_barrier ();
+ emit_label (label1);
+ expand_dec (adjusted_op0, const1_rtx);
+ emit_jump_insn (gen_jump (label4));
+ emit_barrier ();
+ emit_label (label2);
+ emit_cmp_insn (adjusted_op0, const0_rtx, LT, NULL_RTX,
+ compute_mode, 0, 0);
+ emit_jump_insn (gen_blt (label3));
+ tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
+ quotient, 0, OPTAB_LIB_WIDEN);
+ if (tem != quotient)
+ emit_move_insn (quotient, tem);
+ emit_jump_insn (gen_jump (label5));
+ emit_barrier ();
+ emit_label (label3);
+ expand_inc (adjusted_op0, const1_rtx);
+ emit_label (label4);
+ tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
+ quotient, 0, OPTAB_LIB_WIDEN);
+ if (tem != quotient)
+ emit_move_insn (quotient, tem);
+ expand_inc (quotient, const1_rtx);
+ emit_label (label5);
+ }
+ }
+ break;
+
+ case EXACT_DIV_EXPR:
+ if (op1_is_constant && HOST_BITS_PER_WIDE_INT >= size)
+ {
+ HOST_WIDE_INT d = INTVAL (op1);
+ unsigned HOST_WIDE_INT ml;
+ int post_shift;
+ rtx t1;
+
+ post_shift = floor_log2 (d & -d);
+ ml = invert_mod2n (d >> post_shift, size);
+ t1 = expand_mult (compute_mode, op0, GEN_INT (ml), NULL_RTX,
+ unsignedp);
+ quotient = expand_shift (RSHIFT_EXPR, compute_mode, t1,
+ build_int_2 (post_shift, 0),
+ NULL_RTX, unsignedp);
+
+ insn = get_last_insn ();
+ REG_NOTES (insn)
+ = gen_rtx (EXPR_LIST, REG_EQUAL,
+ gen_rtx (unsignedp ? UDIV : DIV, compute_mode,
+ op0, op1),
+ REG_NOTES (insn));
+ }
+ break;
+
+ case ROUND_DIV_EXPR:
+ case ROUND_MOD_EXPR:
+ if (unsignedp)
+ {
+ rtx tem;
+ rtx label;
+ label = gen_label_rtx ();
+ quotient = gen_reg_rtx (compute_mode);
+ remainder = gen_reg_rtx (compute_mode);
+ if (expand_twoval_binop (udivmod_optab, op0, op1, quotient, remainder, 1) == 0)
+ {
+ rtx tem;
+ quotient = expand_binop (compute_mode, udiv_optab, op0, op1,
+ quotient, 1, OPTAB_LIB_WIDEN);
+ tem = expand_mult (compute_mode, quotient, op1, NULL_RTX, 1);
+ remainder = expand_binop (compute_mode, sub_optab, op0, tem,
+ remainder, 1, OPTAB_LIB_WIDEN);
+ }
+ tem = plus_constant (op1, -1);
+ tem = expand_shift (RSHIFT_EXPR, compute_mode, tem,
+ build_int_2 (1, 0), NULL_RTX, 1);
+ emit_cmp_insn (remainder, tem, LEU, NULL_RTX, compute_mode, 0, 0);
+ emit_jump_insn (gen_bleu (label));
+ expand_inc (quotient, const1_rtx);
+ expand_dec (remainder, op1);
+ emit_label (label);
+ }
+ else
+ {
+ rtx abs_rem, abs_op1, tem, mask;
+ rtx label;
+ label = gen_label_rtx ();
+ quotient = gen_reg_rtx (compute_mode);
+ remainder = gen_reg_rtx (compute_mode);
+ if (expand_twoval_binop (sdivmod_optab, op0, op1, quotient, remainder, 0) == 0)
+ {
+ rtx tem;
+ quotient = expand_binop (compute_mode, sdiv_optab, op0, op1,
+ quotient, 0, OPTAB_LIB_WIDEN);
+ tem = expand_mult (compute_mode, quotient, op1, NULL_RTX, 0);
+ remainder = expand_binop (compute_mode, sub_optab, op0, tem,
+ remainder, 0, OPTAB_LIB_WIDEN);
+ }
+ abs_rem = expand_abs (compute_mode, remainder, NULL_RTX, 0, 0);
+ abs_op1 = expand_abs (compute_mode, op1, NULL_RTX, 0, 0);
+ tem = expand_shift (LSHIFT_EXPR, compute_mode, abs_rem,
+ build_int_2 (1, 0), NULL_RTX, 1);
+ emit_cmp_insn (tem, abs_op1, LTU, NULL_RTX, compute_mode, 0, 0);
+ emit_jump_insn (gen_bltu (label));
+ tem = expand_binop (compute_mode, xor_optab, op0, op1,
+ NULL_RTX, 0, OPTAB_WIDEN);
+ mask = expand_shift (RSHIFT_EXPR, compute_mode, tem,
+ build_int_2 (size - 1, 0), NULL_RTX, 0);
+ tem = expand_binop (compute_mode, xor_optab, mask, const1_rtx,
+ NULL_RTX, 0, OPTAB_WIDEN);
+ tem = expand_binop (compute_mode, sub_optab, tem, mask,
+ NULL_RTX, 0, OPTAB_WIDEN);
+ expand_inc (quotient, tem);
+ tem = expand_binop (compute_mode, xor_optab, mask, op1,
+ NULL_RTX, 0, OPTAB_WIDEN);
+ tem = expand_binop (compute_mode, sub_optab, tem, mask,
+ NULL_RTX, 0, OPTAB_WIDEN);
+ expand_dec (remainder, tem);
+ emit_label (label);
+ }
+ return gen_lowpart (mode, rem_flag ? remainder : quotient);
+ }
+
+ if (quotient == 0)
+ {
+ if (rem_flag)
+ {
+ /* Try to produce the remainder directly without a library call. */
+ remainder = sign_expand_binop (compute_mode, umod_optab, smod_optab,
+ op0, op1, target,
+ unsignedp, OPTAB_WIDEN);
+ if (remainder == 0)
+ {
+ /* No luck there. Can we do remainder and divide at once
+ without a library call? */
+ remainder = gen_reg_rtx (compute_mode);
+ if (! expand_twoval_binop ((unsignedp
+ ? udivmod_optab
+ : sdivmod_optab),
+ op0, op1,
+ NULL_RTX, remainder, unsignedp))
+ remainder = 0;
+ }
+
+ if (remainder)
+ return gen_lowpart (mode, remainder);
+ }
+
+ /* Produce the quotient. */
+ /* Try a quotient insn, but not a library call. */
+ quotient = sign_expand_binop (compute_mode, udiv_optab, sdiv_optab,
+ op0, op1, rem_flag ? NULL_RTX : target,
+ unsignedp, OPTAB_WIDEN);
+ if (quotient == 0)
+ {
+ /* No luck there. Try a quotient-and-remainder insn,
+ keeping the quotient alone. */
+ quotient = gen_reg_rtx (compute_mode);
+ if (! expand_twoval_binop (unsignedp ? udivmod_optab : sdivmod_optab,
+ op0, op1,
+ quotient, NULL_RTX, unsignedp))
+ {
+ quotient = 0;
+ if (! rem_flag)
+ /* Still no luck. If we are not computing the remainder,
+ use a library call for the quotient. */
+ quotient = sign_expand_binop (compute_mode,
+ udiv_optab, sdiv_optab,
+ op0, op1, target,
+ unsignedp, OPTAB_LIB_WIDEN);
+ }
+ }
+ }
+
+ if (rem_flag)
+ {
+ if (quotient == 0)
+ /* No divide instruction either. Use library for remainder. */
+ remainder = sign_expand_binop (compute_mode, umod_optab, smod_optab,
+ op0, op1, target,
+ unsignedp, OPTAB_LIB_WIDEN);
+ else
+ {
+ /* We divided. Now finish doing X - Y * (X / Y). */
+ remainder = expand_mult (compute_mode, quotient, op1,
+ NULL_RTX, unsignedp);
+ remainder = expand_binop (compute_mode, sub_optab, op0,
+ remainder, target, unsignedp,
+ OPTAB_LIB_WIDEN);
+ }
+ }
+
+ return gen_lowpart (mode, rem_flag ? remainder : quotient);
+}
+
+/* Return a tree node with data type TYPE, describing the value of X.
+ Usually this is an RTL_EXPR, if there is no obvious better choice.
+ X may be an expression, however we only support those expressions
+ generated by loop.c. */
+
+tree
+make_tree (type, x)
+ tree type;
+ rtx x;
+{
+ tree t;
+
+ switch (GET_CODE (x))
+ {
+ case CONST_INT:
+ t = build_int_2 (INTVAL (x),
+ TREE_UNSIGNED (type) || INTVAL (x) >= 0 ? 0 : -1);
+ TREE_TYPE (t) = type;
+ return t;
+
+ case CONST_DOUBLE:
+ if (GET_MODE (x) == VOIDmode)
+ {
+ t = build_int_2 (CONST_DOUBLE_LOW (x), CONST_DOUBLE_HIGH (x));
+ TREE_TYPE (t) = type;
+ }
+ else
+ {
+ REAL_VALUE_TYPE d;
+
+ REAL_VALUE_FROM_CONST_DOUBLE (d, x);
+ t = build_real (type, d);
+ }
+
+ return t;
+
+ case PLUS:
+ return fold (build (PLUS_EXPR, type, make_tree (type, XEXP (x, 0)),
+ make_tree (type, XEXP (x, 1))));
+
+ case MINUS:
+ return fold (build (MINUS_EXPR, type, make_tree (type, XEXP (x, 0)),
+ make_tree (type, XEXP (x, 1))));
+
+ case NEG:
+ return fold (build1 (NEGATE_EXPR, type, make_tree (type, XEXP (x, 0))));
+
+ case MULT:
+ return fold (build (MULT_EXPR, type, make_tree (type, XEXP (x, 0)),
+ make_tree (type, XEXP (x, 1))));
+
+ case ASHIFT:
+ return fold (build (LSHIFT_EXPR, type, make_tree (type, XEXP (x, 0)),
+ make_tree (type, XEXP (x, 1))));
+
+ case LSHIFTRT:
+ return fold (convert (type,
+ build (RSHIFT_EXPR, unsigned_type (type),
+ make_tree (unsigned_type (type),
+ XEXP (x, 0)),
+ make_tree (type, XEXP (x, 1)))));
+
+ case ASHIFTRT:
+ return fold (convert (type,
+ build (RSHIFT_EXPR, signed_type (type),
+ make_tree (signed_type (type), XEXP (x, 0)),
+ make_tree (type, XEXP (x, 1)))));
+
+ case DIV:
+ if (TREE_CODE (type) != REAL_TYPE)
+ t = signed_type (type);
+ else
+ t = type;
+
+ return fold (convert (type,
+ build (TRUNC_DIV_EXPR, t,
+ make_tree (t, XEXP (x, 0)),
+ make_tree (t, XEXP (x, 1)))));
+ case UDIV:
+ t = unsigned_type (type);
+ return fold (convert (type,
+ build (TRUNC_DIV_EXPR, t,
+ make_tree (t, XEXP (x, 0)),
+ make_tree (t, XEXP (x, 1)))));
+ default:
+ t = make_node (RTL_EXPR);
+ TREE_TYPE (t) = type;
+ RTL_EXPR_RTL (t) = x;
+ /* There are no insns to be output
+ when this rtl_expr is used. */
+ RTL_EXPR_SEQUENCE (t) = 0;
+ return t;
+ }
+}
+
+/* Return an rtx representing the value of X * MULT + ADD.
+ TARGET is a suggestion for where to store the result (an rtx).
+ MODE is the machine mode for the computation.
+ X and MULT must have mode MODE. ADD may have a different mode.
+ So can X (defaults to same as MODE).
+ UNSIGNEDP is non-zero to do unsigned multiplication.
+ This may emit insns. */
+
+rtx
+expand_mult_add (x, target, mult, add, mode, unsignedp)
+ rtx x, target, mult, add;
+ enum machine_mode mode;
+ int unsignedp;
+{
+ tree type = type_for_mode (mode, unsignedp);
+ tree add_type = (GET_MODE (add) == VOIDmode
+ ? type : type_for_mode (GET_MODE (add), unsignedp));
+ tree result = fold (build (PLUS_EXPR, type,
+ fold (build (MULT_EXPR, type,
+ make_tree (type, x),
+ make_tree (type, mult))),
+ make_tree (add_type, add)));
+
+ return expand_expr (result, target, VOIDmode, 0);
+}
+
+/* Compute the logical-and of OP0 and OP1, storing it in TARGET
+ and returning TARGET.
+
+ If TARGET is 0, a pseudo-register or constant is returned. */
+
+rtx
+expand_and (op0, op1, target)
+ rtx op0, op1, target;
+{
+ enum machine_mode mode = VOIDmode;
+ rtx tem;
+
+ if (GET_MODE (op0) != VOIDmode)
+ mode = GET_MODE (op0);
+ else if (GET_MODE (op1) != VOIDmode)
+ mode = GET_MODE (op1);
+
+ if (mode != VOIDmode)
+ tem = expand_binop (mode, and_optab, op0, op1, target, 0, OPTAB_LIB_WIDEN);
+ else if (GET_CODE (op0) == CONST_INT && GET_CODE (op1) == CONST_INT)
+ tem = GEN_INT (INTVAL (op0) & INTVAL (op1));
+ else
+ abort ();
+
+ if (target == 0)
+ target = tem;
+ else if (tem != target)
+ emit_move_insn (target, tem);
+ return target;
+}
+
+/* Emit a store-flags instruction for comparison CODE on OP0 and OP1
+ and storing in TARGET. Normally return TARGET.
+ Return 0 if that cannot be done.
+
+ MODE is the mode to use for OP0 and OP1 should they be CONST_INTs. If
+ it is VOIDmode, they cannot both be CONST_INT.
+
+ UNSIGNEDP is for the case where we have to widen the operands
+ to perform the operation. It says to use zero-extension.
+
+ NORMALIZEP is 1 if we should convert the result to be either zero
+ or one one. Normalize is -1 if we should convert the result to be
+ either zero or -1. If NORMALIZEP is zero, the result will be left
+ "raw" out of the scc insn. */
+
+rtx
+emit_store_flag (target, code, op0, op1, mode, unsignedp, normalizep)
+ rtx target;
+ enum rtx_code code;
+ rtx op0, op1;
+ enum machine_mode mode;
+ int unsignedp;
+ int normalizep;
+{
+ rtx subtarget;
+ enum insn_code icode;
+ enum machine_mode compare_mode;
+ enum machine_mode target_mode = GET_MODE (target);
+ rtx tem;
+ rtx last = get_last_insn ();
+ rtx pattern, comparison;
+
+ /* If one operand is constant, make it the second one. Only do this
+ if the other operand is not constant as well. */
+
+ if ((CONSTANT_P (op0) && ! CONSTANT_P (op1))
+ || (GET_CODE (op0) == CONST_INT && GET_CODE (op1) != CONST_INT))
+ {
+ tem = op0;
+ op0 = op1;
+ op1 = tem;
+ code = swap_condition (code);
+ }
+
+ if (mode == VOIDmode)
+ mode = GET_MODE (op0);
+
+ /* For some comparisons with 1 and -1, we can convert this to
+ comparisons with zero. This will often produce more opportunities for
+ store-flag insns. */
+
+ switch (code)
+ {
+ case LT:
+ if (op1 == const1_rtx)
+ op1 = const0_rtx, code = LE;
+ break;
+ case LE:
+ if (op1 == constm1_rtx)
+ op1 = const0_rtx, code = LT;
+ break;
+ case GE:
+ if (op1 == const1_rtx)
+ op1 = const0_rtx, code = GT;
+ break;
+ case GT:
+ if (op1 == constm1_rtx)
+ op1 = const0_rtx, code = GE;
+ break;
+ case GEU:
+ if (op1 == const1_rtx)
+ op1 = const0_rtx, code = NE;
+ break;
+ case LTU:
+ if (op1 == const1_rtx)
+ op1 = const0_rtx, code = EQ;
+ break;
+ }
+
+ /* From now on, we won't change CODE, so set ICODE now. */
+ icode = setcc_gen_code[(int) code];
+
+ /* If this is A < 0 or A >= 0, we can do this by taking the ones
+ complement of A (for GE) and shifting the sign bit to the low bit. */
+ if (op1 == const0_rtx && (code == LT || code == GE)
+ && GET_MODE_CLASS (mode) == MODE_INT
+ && (normalizep || STORE_FLAG_VALUE == 1
+ || (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
+ && (STORE_FLAG_VALUE
+ == (HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1)))))
+ {
+ subtarget = target;
+
+ /* If the result is to be wider than OP0, it is best to convert it
+ first. If it is to be narrower, it is *incorrect* to convert it
+ first. */
+ if (GET_MODE_SIZE (target_mode) > GET_MODE_SIZE (mode))
+ {
+ op0 = protect_from_queue (op0, 0);
+ op0 = convert_modes (target_mode, mode, op0, 0);
+ mode = target_mode;
+ }
+
+ if (target_mode != mode)
+ subtarget = 0;
+
+ if (code == GE)
+ op0 = expand_unop (mode, one_cmpl_optab, op0, subtarget, 0);
+
+ if (normalizep || STORE_FLAG_VALUE == 1)
+ /* If we are supposed to produce a 0/1 value, we want to do
+ a logical shift from the sign bit to the low-order bit; for
+ a -1/0 value, we do an arithmetic shift. */
+ op0 = expand_shift (RSHIFT_EXPR, mode, op0,
+ size_int (GET_MODE_BITSIZE (mode) - 1),
+ subtarget, normalizep != -1);
+
+ if (mode != target_mode)
+ op0 = convert_modes (target_mode, mode, op0, 0);
+
+ return op0;
+ }
+
+ if (icode != CODE_FOR_nothing)
+ {
+ /* We think we may be able to do this with a scc insn. Emit the
+ comparison and then the scc insn.
+
+ compare_from_rtx may call emit_queue, which would be deleted below
+ if the scc insn fails. So call it ourselves before setting LAST. */
+
+ emit_queue ();
+ last = get_last_insn ();
+
+ comparison
+ = compare_from_rtx (op0, op1, code, unsignedp, mode, NULL_RTX, 0);
+ if (GET_CODE (comparison) == CONST_INT)
+ return (comparison == const0_rtx ? const0_rtx
+ : normalizep == 1 ? const1_rtx
+ : normalizep == -1 ? constm1_rtx
+ : const_true_rtx);
+
+ /* If the code of COMPARISON doesn't match CODE, something is
+ wrong; we can no longer be sure that we have the operation.
+ We could handle this case, but it should not happen. */
+
+ if (GET_CODE (comparison) != code)
+ abort ();
+
+ /* Get a reference to the target in the proper mode for this insn. */
+ compare_mode = insn_operand_mode[(int) icode][0];
+ subtarget = target;
+ if (preserve_subexpressions_p ()
+ || ! (*insn_operand_predicate[(int) icode][0]) (subtarget, compare_mode))
+ subtarget = gen_reg_rtx (compare_mode);
+
+ pattern = GEN_FCN (icode) (subtarget);
+ if (pattern)
+ {
+ emit_insn (pattern);
+
+ /* If we are converting to a wider mode, first convert to
+ TARGET_MODE, then normalize. This produces better combining
+ opportunities on machines that have a SIGN_EXTRACT when we are
+ testing a single bit. This mostly benefits the 68k.
+
+ If STORE_FLAG_VALUE does not have the sign bit set when
+ interpreted in COMPARE_MODE, we can do this conversion as
+ unsigned, which is usually more efficient. */
+ if (GET_MODE_SIZE (target_mode) > GET_MODE_SIZE (compare_mode))
+ {
+ convert_move (target, subtarget,
+ (GET_MODE_BITSIZE (compare_mode)
+ <= HOST_BITS_PER_WIDE_INT)
+ && 0 == (STORE_FLAG_VALUE
+ & ((HOST_WIDE_INT) 1
+ << (GET_MODE_BITSIZE (compare_mode) -1))));
+ op0 = target;
+ compare_mode = target_mode;
+ }
+ else
+ op0 = subtarget;
+
+ /* If we want to keep subexpressions around, don't reuse our
+ last target. */
+
+ if (preserve_subexpressions_p ())
+ subtarget = 0;
+
+ /* Now normalize to the proper value in COMPARE_MODE. Sometimes
+ we don't have to do anything. */
+ if (normalizep == 0 || normalizep == STORE_FLAG_VALUE)
+ ;
+ else if (normalizep == - STORE_FLAG_VALUE)
+ op0 = expand_unop (compare_mode, neg_optab, op0, subtarget, 0);
+
+ /* We don't want to use STORE_FLAG_VALUE < 0 below since this
+ makes it hard to use a value of just the sign bit due to
+ ANSI integer constant typing rules. */
+ else if (GET_MODE_BITSIZE (compare_mode) <= HOST_BITS_PER_WIDE_INT
+ && (STORE_FLAG_VALUE
+ & ((HOST_WIDE_INT) 1
+ << (GET_MODE_BITSIZE (compare_mode) - 1))))
+ op0 = expand_shift (RSHIFT_EXPR, compare_mode, op0,
+ size_int (GET_MODE_BITSIZE (compare_mode) - 1),
+ subtarget, normalizep == 1);
+ else if (STORE_FLAG_VALUE & 1)
+ {
+ op0 = expand_and (op0, const1_rtx, subtarget);
+ if (normalizep == -1)
+ op0 = expand_unop (compare_mode, neg_optab, op0, op0, 0);
+ }
+ else
+ abort ();
+
+ /* If we were converting to a smaller mode, do the
+ conversion now. */
+ if (target_mode != compare_mode)
+ {
+ convert_move (target, op0, 0);
+ return target;
+ }
+ else
+ return op0;
+ }
+ }
+
+ delete_insns_since (last);
+
+ /* If expensive optimizations, use different pseudo registers for each
+ insn, instead of reusing the same pseudo. This leads to better CSE,
+ but slows down the compiler, since there are more pseudos */
+ subtarget = (!flag_expensive_optimizations
+ && (target_mode == mode)) ? target : NULL_RTX;
+
+ /* If we reached here, we can't do this with a scc insn. However, there
+ are some comparisons that can be done directly. For example, if
+ this is an equality comparison of integers, we can try to exclusive-or
+ (or subtract) the two operands and use a recursive call to try the
+ comparison with zero. Don't do any of these cases if branches are
+ very cheap. */
+
+ if (BRANCH_COST > 0
+ && GET_MODE_CLASS (mode) == MODE_INT && (code == EQ || code == NE)
+ && op1 != const0_rtx)
+ {
+ tem = expand_binop (mode, xor_optab, op0, op1, subtarget, 1,
+ OPTAB_WIDEN);
+
+ if (tem == 0)
+ tem = expand_binop (mode, sub_optab, op0, op1, subtarget, 1,
+ OPTAB_WIDEN);
+ if (tem != 0)
+ tem = emit_store_flag (target, code, tem, const0_rtx,
+ mode, unsignedp, normalizep);
+ if (tem == 0)
+ delete_insns_since (last);
+ return tem;
+ }
+
+ /* Some other cases we can do are EQ, NE, LE, and GT comparisons with
+ the constant zero. Reject all other comparisons at this point. Only
+ do LE and GT if branches are expensive since they are expensive on
+ 2-operand machines. */
+
+ if (BRANCH_COST == 0
+ || GET_MODE_CLASS (mode) != MODE_INT || op1 != const0_rtx
+ || (code != EQ && code != NE
+ && (BRANCH_COST <= 1 || (code != LE && code != GT))))
+ return 0;
+
+ /* See what we need to return. We can only return a 1, -1, or the
+ sign bit. */
+
+ if (normalizep == 0)
+ {
+ if (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
+ normalizep = STORE_FLAG_VALUE;
+
+ else if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
+ && (STORE_FLAG_VALUE
+ == (HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1)))
+ ;
+ else
+ return 0;
+ }
+
+ /* Try to put the result of the comparison in the sign bit. Assume we can't
+ do the necessary operation below. */
+
+ tem = 0;
+
+ /* To see if A <= 0, compute (A | (A - 1)). A <= 0 iff that result has
+ the sign bit set. */
+
+ if (code == LE)
+ {
+ /* This is destructive, so SUBTARGET can't be OP0. */
+ if (rtx_equal_p (subtarget, op0))
+ subtarget = 0;
+
+ tem = expand_binop (mode, sub_optab, op0, const1_rtx, subtarget, 0,
+ OPTAB_WIDEN);
+ if (tem)
+ tem = expand_binop (mode, ior_optab, op0, tem, subtarget, 0,
+ OPTAB_WIDEN);
+ }
+
+ /* To see if A > 0, compute (((signed) A) << BITS) - A, where BITS is the
+ number of bits in the mode of OP0, minus one. */
+
+ if (code == GT)
+ {
+ if (rtx_equal_p (subtarget, op0))
+ subtarget = 0;
+
+ tem = expand_shift (RSHIFT_EXPR, mode, op0,
+ size_int (GET_MODE_BITSIZE (mode) - 1),
+ subtarget, 0);
+ tem = expand_binop (mode, sub_optab, tem, op0, subtarget, 0,
+ OPTAB_WIDEN);
+ }
+
+ if (code == EQ || code == NE)
+ {
+ /* For EQ or NE, one way to do the comparison is to apply an operation
+ that converts the operand into a positive number if it is non-zero
+ or zero if it was originally zero. Then, for EQ, we subtract 1 and
+ for NE we negate. This puts the result in the sign bit. Then we
+ normalize with a shift, if needed.
+
+ Two operations that can do the above actions are ABS and FFS, so try
+ them. If that doesn't work, and MODE is smaller than a full word,
+ we can use zero-extension to the wider mode (an unsigned conversion)
+ as the operation. */
+
+ if (abs_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
+ tem = expand_unop (mode, abs_optab, op0, subtarget, 1);
+ else if (ffs_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
+ tem = expand_unop (mode, ffs_optab, op0, subtarget, 1);
+ else if (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
+ {
+ op0 = protect_from_queue (op0, 0);
+ tem = convert_modes (word_mode, mode, op0, 1);
+ mode = word_mode;
+ }
+
+ if (tem != 0)
+ {
+ if (code == EQ)
+ tem = expand_binop (mode, sub_optab, tem, const1_rtx, subtarget,
+ 0, OPTAB_WIDEN);
+ else
+ tem = expand_unop (mode, neg_optab, tem, subtarget, 0);
+ }
+
+ /* If we couldn't do it that way, for NE we can "or" the two's complement
+ of the value with itself. For EQ, we take the one's complement of
+ that "or", which is an extra insn, so we only handle EQ if branches
+ are expensive. */
+
+ if (tem == 0 && (code == NE || BRANCH_COST > 1))
+ {
+ if (rtx_equal_p (subtarget, op0))
+ subtarget = 0;
+
+ tem = expand_unop (mode, neg_optab, op0, subtarget, 0);
+ tem = expand_binop (mode, ior_optab, tem, op0, subtarget, 0,
+ OPTAB_WIDEN);
+
+ if (tem && code == EQ)
+ tem = expand_unop (mode, one_cmpl_optab, tem, subtarget, 0);
+ }
+ }
+
+ if (tem && normalizep)
+ tem = expand_shift (RSHIFT_EXPR, mode, tem,
+ size_int (GET_MODE_BITSIZE (mode) - 1),
+ subtarget, normalizep == 1);
+
+ if (tem)
+ {
+ if (GET_MODE (tem) != target_mode)
+ {
+ convert_move (target, tem, 0);
+ tem = target;
+ }
+ else if (!subtarget)
+ {
+ emit_move_insn (target, tem);
+ tem = target;
+ }
+ }
+ else
+ delete_insns_since (last);
+
+ return tem;
+}
OpenPOWER on IntegriCloud