summaryrefslogtreecommitdiffstats
path: root/contrib/gcc/cse.c
diff options
context:
space:
mode:
authorpeter <peter@FreeBSD.org>1996-09-18 05:35:50 +0000
committerpeter <peter@FreeBSD.org>1996-09-18 05:35:50 +0000
commitd4691e641ba47cb86eef80f5c879e13f9d961724 (patch)
tree5b7ea73fc49c8998d9dc87d3eeff5b96439e6856 /contrib/gcc/cse.c
downloadFreeBSD-src-d4691e641ba47cb86eef80f5c879e13f9d961724.zip
FreeBSD-src-d4691e641ba47cb86eef80f5c879e13f9d961724.tar.gz
Import of unmodified (but trimmed) gcc-2.7.2. The bigger parts of the
non-i386, non-unix, and generatable files have been trimmed, but can easily be added in later if needed. gcc-2.7.2.1 will follow shortly, it's a very small delta to this and it's handy to have both available for reference for such little cost. The freebsd-specific changes will then be committed, and once the dust has settled, the bmakefiles will be committed to use this code.
Diffstat (limited to 'contrib/gcc/cse.c')
-rw-r--r--contrib/gcc/cse.c8779
1 files changed, 8779 insertions, 0 deletions
diff --git a/contrib/gcc/cse.c b/contrib/gcc/cse.c
new file mode 100644
index 0000000..efd05de
--- /dev/null
+++ b/contrib/gcc/cse.c
@@ -0,0 +1,8779 @@
+/* Common subexpression elimination for GNU compiler.
+ Copyright (C) 1987, 88, 89, 92, 93, 94, 1995 Free Software Foundation, Inc.
+
+This file is part of GNU CC.
+
+GNU CC is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2, or (at your option)
+any later version.
+
+GNU CC is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GNU CC; see the file COPYING. If not, write to
+the Free Software Foundation, 59 Temple Place - Suite 330,
+Boston, MA 02111-1307, USA. */
+
+
+#include "config.h"
+/* Must precede rtl.h for FFS. */
+#include <stdio.h>
+
+#include "rtl.h"
+#include "regs.h"
+#include "hard-reg-set.h"
+#include "flags.h"
+#include "real.h"
+#include "insn-config.h"
+#include "recog.h"
+
+#include <setjmp.h>
+
+/* The basic idea of common subexpression elimination is to go
+ through the code, keeping a record of expressions that would
+ have the same value at the current scan point, and replacing
+ expressions encountered with the cheapest equivalent expression.
+
+ It is too complicated to keep track of the different possibilities
+ when control paths merge; so, at each label, we forget all that is
+ known and start fresh. This can be described as processing each
+ basic block separately. Note, however, that these are not quite
+ the same as the basic blocks found by a later pass and used for
+ data flow analysis and register packing. We do not need to start fresh
+ after a conditional jump instruction if there is no label there.
+
+ We use two data structures to record the equivalent expressions:
+ a hash table for most expressions, and several vectors together
+ with "quantity numbers" to record equivalent (pseudo) registers.
+
+ The use of the special data structure for registers is desirable
+ because it is faster. It is possible because registers references
+ contain a fairly small number, the register number, taken from
+ a contiguously allocated series, and two register references are
+ identical if they have the same number. General expressions
+ do not have any such thing, so the only way to retrieve the
+ information recorded on an expression other than a register
+ is to keep it in a hash table.
+
+Registers and "quantity numbers":
+
+ At the start of each basic block, all of the (hardware and pseudo)
+ registers used in the function are given distinct quantity
+ numbers to indicate their contents. During scan, when the code
+ copies one register into another, we copy the quantity number.
+ When a register is loaded in any other way, we allocate a new
+ quantity number to describe the value generated by this operation.
+ `reg_qty' records what quantity a register is currently thought
+ of as containing.
+
+ All real quantity numbers are greater than or equal to `max_reg'.
+ If register N has not been assigned a quantity, reg_qty[N] will equal N.
+
+ Quantity numbers below `max_reg' do not exist and none of the `qty_...'
+ variables should be referenced with an index below `max_reg'.
+
+ We also maintain a bidirectional chain of registers for each
+ quantity number. `qty_first_reg', `qty_last_reg',
+ `reg_next_eqv' and `reg_prev_eqv' hold these chains.
+
+ The first register in a chain is the one whose lifespan is least local.
+ Among equals, it is the one that was seen first.
+ We replace any equivalent register with that one.
+
+ If two registers have the same quantity number, it must be true that
+ REG expressions with `qty_mode' must be in the hash table for both
+ registers and must be in the same class.
+
+ The converse is not true. Since hard registers may be referenced in
+ any mode, two REG expressions might be equivalent in the hash table
+ but not have the same quantity number if the quantity number of one
+ of the registers is not the same mode as those expressions.
+
+Constants and quantity numbers
+
+ When a quantity has a known constant value, that value is stored
+ in the appropriate element of qty_const. This is in addition to
+ putting the constant in the hash table as is usual for non-regs.
+
+ Whether a reg or a constant is preferred is determined by the configuration
+ macro CONST_COSTS and will often depend on the constant value. In any
+ event, expressions containing constants can be simplified, by fold_rtx.
+
+ When a quantity has a known nearly constant value (such as an address
+ of a stack slot), that value is stored in the appropriate element
+ of qty_const.
+
+ Integer constants don't have a machine mode. However, cse
+ determines the intended machine mode from the destination
+ of the instruction that moves the constant. The machine mode
+ is recorded in the hash table along with the actual RTL
+ constant expression so that different modes are kept separate.
+
+Other expressions:
+
+ To record known equivalences among expressions in general
+ we use a hash table called `table'. It has a fixed number of buckets
+ that contain chains of `struct table_elt' elements for expressions.
+ These chains connect the elements whose expressions have the same
+ hash codes.
+
+ Other chains through the same elements connect the elements which
+ currently have equivalent values.
+
+ Register references in an expression are canonicalized before hashing
+ the expression. This is done using `reg_qty' and `qty_first_reg'.
+ The hash code of a register reference is computed using the quantity
+ number, not the register number.
+
+ When the value of an expression changes, it is necessary to remove from the
+ hash table not just that expression but all expressions whose values
+ could be different as a result.
+
+ 1. If the value changing is in memory, except in special cases
+ ANYTHING referring to memory could be changed. That is because
+ nobody knows where a pointer does not point.
+ The function `invalidate_memory' removes what is necessary.
+
+ The special cases are when the address is constant or is
+ a constant plus a fixed register such as the frame pointer
+ or a static chain pointer. When such addresses are stored in,
+ we can tell exactly which other such addresses must be invalidated
+ due to overlap. `invalidate' does this.
+ All expressions that refer to non-constant
+ memory addresses are also invalidated. `invalidate_memory' does this.
+
+ 2. If the value changing is a register, all expressions
+ containing references to that register, and only those,
+ must be removed.
+
+ Because searching the entire hash table for expressions that contain
+ a register is very slow, we try to figure out when it isn't necessary.
+ Precisely, this is necessary only when expressions have been
+ entered in the hash table using this register, and then the value has
+ changed, and then another expression wants to be added to refer to
+ the register's new value. This sequence of circumstances is rare
+ within any one basic block.
+
+ The vectors `reg_tick' and `reg_in_table' are used to detect this case.
+ reg_tick[i] is incremented whenever a value is stored in register i.
+ reg_in_table[i] holds -1 if no references to register i have been
+ entered in the table; otherwise, it contains the value reg_tick[i] had
+ when the references were entered. If we want to enter a reference
+ and reg_in_table[i] != reg_tick[i], we must scan and remove old references.
+ Until we want to enter a new entry, the mere fact that the two vectors
+ don't match makes the entries be ignored if anyone tries to match them.
+
+ Registers themselves are entered in the hash table as well as in
+ the equivalent-register chains. However, the vectors `reg_tick'
+ and `reg_in_table' do not apply to expressions which are simple
+ register references. These expressions are removed from the table
+ immediately when they become invalid, and this can be done even if
+ we do not immediately search for all the expressions that refer to
+ the register.
+
+ A CLOBBER rtx in an instruction invalidates its operand for further
+ reuse. A CLOBBER or SET rtx whose operand is a MEM:BLK
+ invalidates everything that resides in memory.
+
+Related expressions:
+
+ Constant expressions that differ only by an additive integer
+ are called related. When a constant expression is put in
+ the table, the related expression with no constant term
+ is also entered. These are made to point at each other
+ so that it is possible to find out if there exists any
+ register equivalent to an expression related to a given expression. */
+
+/* One plus largest register number used in this function. */
+
+static int max_reg;
+
+/* Length of vectors indexed by quantity number.
+ We know in advance we will not need a quantity number this big. */
+
+static int max_qty;
+
+/* Next quantity number to be allocated.
+ This is 1 + the largest number needed so far. */
+
+static int next_qty;
+
+/* Indexed by quantity number, gives the first (or last) (pseudo) register
+ in the chain of registers that currently contain this quantity. */
+
+static int *qty_first_reg;
+static int *qty_last_reg;
+
+/* Index by quantity number, gives the mode of the quantity. */
+
+static enum machine_mode *qty_mode;
+
+/* Indexed by quantity number, gives the rtx of the constant value of the
+ quantity, or zero if it does not have a known value.
+ A sum of the frame pointer (or arg pointer) plus a constant
+ can also be entered here. */
+
+static rtx *qty_const;
+
+/* Indexed by qty number, gives the insn that stored the constant value
+ recorded in `qty_const'. */
+
+static rtx *qty_const_insn;
+
+/* The next three variables are used to track when a comparison between a
+ quantity and some constant or register has been passed. In that case, we
+ know the results of the comparison in case we see it again. These variables
+ record a comparison that is known to be true. */
+
+/* Indexed by qty number, gives the rtx code of a comparison with a known
+ result involving this quantity. If none, it is UNKNOWN. */
+static enum rtx_code *qty_comparison_code;
+
+/* Indexed by qty number, gives the constant being compared against in a
+ comparison of known result. If no such comparison, it is undefined.
+ If the comparison is not with a constant, it is zero. */
+
+static rtx *qty_comparison_const;
+
+/* Indexed by qty number, gives the quantity being compared against in a
+ comparison of known result. If no such comparison, if it undefined.
+ If the comparison is not with a register, it is -1. */
+
+static int *qty_comparison_qty;
+
+#ifdef HAVE_cc0
+/* For machines that have a CC0, we do not record its value in the hash
+ table since its use is guaranteed to be the insn immediately following
+ its definition and any other insn is presumed to invalidate it.
+
+ Instead, we store below the value last assigned to CC0. If it should
+ happen to be a constant, it is stored in preference to the actual
+ assigned value. In case it is a constant, we store the mode in which
+ the constant should be interpreted. */
+
+static rtx prev_insn_cc0;
+static enum machine_mode prev_insn_cc0_mode;
+#endif
+
+/* Previous actual insn. 0 if at first insn of basic block. */
+
+static rtx prev_insn;
+
+/* Insn being scanned. */
+
+static rtx this_insn;
+
+/* Index by (pseudo) register number, gives the quantity number
+ of the register's current contents. */
+
+static int *reg_qty;
+
+/* Index by (pseudo) register number, gives the number of the next (or
+ previous) (pseudo) register in the chain of registers sharing the same
+ value.
+
+ Or -1 if this register is at the end of the chain.
+
+ If reg_qty[N] == N, reg_next_eqv[N] is undefined. */
+
+static int *reg_next_eqv;
+static int *reg_prev_eqv;
+
+/* Index by (pseudo) register number, gives the number of times
+ that register has been altered in the current basic block. */
+
+static int *reg_tick;
+
+/* Index by (pseudo) register number, gives the reg_tick value at which
+ rtx's containing this register are valid in the hash table.
+ If this does not equal the current reg_tick value, such expressions
+ existing in the hash table are invalid.
+ If this is -1, no expressions containing this register have been
+ entered in the table. */
+
+static int *reg_in_table;
+
+/* A HARD_REG_SET containing all the hard registers for which there is
+ currently a REG expression in the hash table. Note the difference
+ from the above variables, which indicate if the REG is mentioned in some
+ expression in the table. */
+
+static HARD_REG_SET hard_regs_in_table;
+
+/* A HARD_REG_SET containing all the hard registers that are invalidated
+ by a CALL_INSN. */
+
+static HARD_REG_SET regs_invalidated_by_call;
+
+/* Two vectors of ints:
+ one containing max_reg -1's; the other max_reg + 500 (an approximation
+ for max_qty) elements where element i contains i.
+ These are used to initialize various other vectors fast. */
+
+static int *all_minus_one;
+static int *consec_ints;
+
+/* CUID of insn that starts the basic block currently being cse-processed. */
+
+static int cse_basic_block_start;
+
+/* CUID of insn that ends the basic block currently being cse-processed. */
+
+static int cse_basic_block_end;
+
+/* Vector mapping INSN_UIDs to cuids.
+ The cuids are like uids but increase monotonically always.
+ We use them to see whether a reg is used outside a given basic block. */
+
+static int *uid_cuid;
+
+/* Highest UID in UID_CUID. */
+static int max_uid;
+
+/* Get the cuid of an insn. */
+
+#define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
+
+/* Nonzero if cse has altered conditional jump insns
+ in such a way that jump optimization should be redone. */
+
+static int cse_jumps_altered;
+
+/* Nonzero if we put a LABEL_REF into the hash table. Since we may have put
+ it into an INSN without a REG_LABEL, we have to rerun jump after CSE
+ to put in the note. */
+static int recorded_label_ref;
+
+/* canon_hash stores 1 in do_not_record
+ if it notices a reference to CC0, PC, or some other volatile
+ subexpression. */
+
+static int do_not_record;
+
+#ifdef LOAD_EXTEND_OP
+
+/* Scratch rtl used when looking for load-extended copy of a MEM. */
+static rtx memory_extend_rtx;
+#endif
+
+/* canon_hash stores 1 in hash_arg_in_memory
+ if it notices a reference to memory within the expression being hashed. */
+
+static int hash_arg_in_memory;
+
+/* canon_hash stores 1 in hash_arg_in_struct
+ if it notices a reference to memory that's part of a structure. */
+
+static int hash_arg_in_struct;
+
+/* The hash table contains buckets which are chains of `struct table_elt's,
+ each recording one expression's information.
+ That expression is in the `exp' field.
+
+ Those elements with the same hash code are chained in both directions
+ through the `next_same_hash' and `prev_same_hash' fields.
+
+ Each set of expressions with equivalent values
+ are on a two-way chain through the `next_same_value'
+ and `prev_same_value' fields, and all point with
+ the `first_same_value' field at the first element in
+ that chain. The chain is in order of increasing cost.
+ Each element's cost value is in its `cost' field.
+
+ The `in_memory' field is nonzero for elements that
+ involve any reference to memory. These elements are removed
+ whenever a write is done to an unidentified location in memory.
+ To be safe, we assume that a memory address is unidentified unless
+ the address is either a symbol constant or a constant plus
+ the frame pointer or argument pointer.
+
+ The `in_struct' field is nonzero for elements that
+ involve any reference to memory inside a structure or array.
+
+ The `related_value' field is used to connect related expressions
+ (that differ by adding an integer).
+ The related expressions are chained in a circular fashion.
+ `related_value' is zero for expressions for which this
+ chain is not useful.
+
+ The `cost' field stores the cost of this element's expression.
+
+ The `is_const' flag is set if the element is a constant (including
+ a fixed address).
+
+ The `flag' field is used as a temporary during some search routines.
+
+ The `mode' field is usually the same as GET_MODE (`exp'), but
+ if `exp' is a CONST_INT and has no machine mode then the `mode'
+ field is the mode it was being used as. Each constant is
+ recorded separately for each mode it is used with. */
+
+
+struct table_elt
+{
+ rtx exp;
+ struct table_elt *next_same_hash;
+ struct table_elt *prev_same_hash;
+ struct table_elt *next_same_value;
+ struct table_elt *prev_same_value;
+ struct table_elt *first_same_value;
+ struct table_elt *related_value;
+ int cost;
+ enum machine_mode mode;
+ char in_memory;
+ char in_struct;
+ char is_const;
+ char flag;
+};
+
+/* We don't want a lot of buckets, because we rarely have very many
+ things stored in the hash table, and a lot of buckets slows
+ down a lot of loops that happen frequently. */
+#define NBUCKETS 31
+
+/* Compute hash code of X in mode M. Special-case case where X is a pseudo
+ register (hard registers may require `do_not_record' to be set). */
+
+#define HASH(X, M) \
+ (GET_CODE (X) == REG && REGNO (X) >= FIRST_PSEUDO_REGISTER \
+ ? (((unsigned) REG << 7) + (unsigned) reg_qty[REGNO (X)]) % NBUCKETS \
+ : canon_hash (X, M) % NBUCKETS)
+
+/* Determine whether register number N is considered a fixed register for CSE.
+ It is desirable to replace other regs with fixed regs, to reduce need for
+ non-fixed hard regs.
+ A reg wins if it is either the frame pointer or designated as fixed,
+ but not if it is an overlapping register. */
+#ifdef OVERLAPPING_REGNO_P
+#define FIXED_REGNO_P(N) \
+ (((N) == FRAME_POINTER_REGNUM || (N) == HARD_FRAME_POINTER_REGNUM \
+ || fixed_regs[N] || global_regs[N]) \
+ && ! OVERLAPPING_REGNO_P ((N)))
+#else
+#define FIXED_REGNO_P(N) \
+ ((N) == FRAME_POINTER_REGNUM || (N) == HARD_FRAME_POINTER_REGNUM \
+ || fixed_regs[N] || global_regs[N])
+#endif
+
+/* Compute cost of X, as stored in the `cost' field of a table_elt. Fixed
+ hard registers and pointers into the frame are the cheapest with a cost
+ of 0. Next come pseudos with a cost of one and other hard registers with
+ a cost of 2. Aside from these special cases, call `rtx_cost'. */
+
+#define CHEAP_REGNO(N) \
+ ((N) == FRAME_POINTER_REGNUM || (N) == HARD_FRAME_POINTER_REGNUM \
+ || (N) == STACK_POINTER_REGNUM || (N) == ARG_POINTER_REGNUM \
+ || ((N) >= FIRST_VIRTUAL_REGISTER && (N) <= LAST_VIRTUAL_REGISTER) \
+ || ((N) < FIRST_PSEUDO_REGISTER \
+ && FIXED_REGNO_P (N) && REGNO_REG_CLASS (N) != NO_REGS))
+
+/* A register is cheap if it is a user variable assigned to the register
+ or if its register number always corresponds to a cheap register. */
+
+#define CHEAP_REG(N) \
+ ((REG_USERVAR_P (N) && REGNO (N) < FIRST_PSEUDO_REGISTER) \
+ || CHEAP_REGNO (REGNO (N)))
+
+#define COST(X) \
+ (GET_CODE (X) == REG \
+ ? (CHEAP_REG (X) ? 0 \
+ : REGNO (X) >= FIRST_PSEUDO_REGISTER ? 1 \
+ : 2) \
+ : rtx_cost (X, SET) * 2)
+
+/* Determine if the quantity number for register X represents a valid index
+ into the `qty_...' variables. */
+
+#define REGNO_QTY_VALID_P(N) (reg_qty[N] != (N))
+
+static struct table_elt *table[NBUCKETS];
+
+/* Chain of `struct table_elt's made so far for this function
+ but currently removed from the table. */
+
+static struct table_elt *free_element_chain;
+
+/* Number of `struct table_elt' structures made so far for this function. */
+
+static int n_elements_made;
+
+/* Maximum value `n_elements_made' has had so far in this compilation
+ for functions previously processed. */
+
+static int max_elements_made;
+
+/* Surviving equivalence class when two equivalence classes are merged
+ by recording the effects of a jump in the last insn. Zero if the
+ last insn was not a conditional jump. */
+
+static struct table_elt *last_jump_equiv_class;
+
+/* Set to the cost of a constant pool reference if one was found for a
+ symbolic constant. If this was found, it means we should try to
+ convert constants into constant pool entries if they don't fit in
+ the insn. */
+
+static int constant_pool_entries_cost;
+
+/* Bits describing what kind of values in memory must be invalidated
+ for a particular instruction. If all three bits are zero,
+ no memory refs need to be invalidated. Each bit is more powerful
+ than the preceding ones, and if a bit is set then the preceding
+ bits are also set.
+
+ Here is how the bits are set:
+ Pushing onto the stack invalidates only the stack pointer,
+ writing at a fixed address invalidates only variable addresses,
+ writing in a structure element at variable address
+ invalidates all but scalar variables,
+ and writing in anything else at variable address invalidates everything. */
+
+struct write_data
+{
+ int sp : 1; /* Invalidate stack pointer. */
+ int var : 1; /* Invalidate variable addresses. */
+ int nonscalar : 1; /* Invalidate all but scalar variables. */
+ int all : 1; /* Invalidate all memory refs. */
+};
+
+/* Define maximum length of a branch path. */
+
+#define PATHLENGTH 10
+
+/* This data describes a block that will be processed by cse_basic_block. */
+
+struct cse_basic_block_data {
+ /* Lowest CUID value of insns in block. */
+ int low_cuid;
+ /* Highest CUID value of insns in block. */
+ int high_cuid;
+ /* Total number of SETs in block. */
+ int nsets;
+ /* Last insn in the block. */
+ rtx last;
+ /* Size of current branch path, if any. */
+ int path_size;
+ /* Current branch path, indicating which branches will be taken. */
+ struct branch_path {
+ /* The branch insn. */
+ rtx branch;
+ /* Whether it should be taken or not. AROUND is the same as taken
+ except that it is used when the destination label is not preceded
+ by a BARRIER. */
+ enum taken {TAKEN, NOT_TAKEN, AROUND} status;
+ } path[PATHLENGTH];
+};
+
+/* Nonzero if X has the form (PLUS frame-pointer integer). We check for
+ virtual regs here because the simplify_*_operation routines are called
+ by integrate.c, which is called before virtual register instantiation. */
+
+#define FIXED_BASE_PLUS_P(X) \
+ ((X) == frame_pointer_rtx || (X) == hard_frame_pointer_rtx \
+ || (X) == arg_pointer_rtx \
+ || (X) == virtual_stack_vars_rtx \
+ || (X) == virtual_incoming_args_rtx \
+ || (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == CONST_INT \
+ && (XEXP (X, 0) == frame_pointer_rtx \
+ || XEXP (X, 0) == hard_frame_pointer_rtx \
+ || XEXP (X, 0) == arg_pointer_rtx \
+ || XEXP (X, 0) == virtual_stack_vars_rtx \
+ || XEXP (X, 0) == virtual_incoming_args_rtx)))
+
+/* Similar, but also allows reference to the stack pointer.
+
+ This used to include FIXED_BASE_PLUS_P, however, we can't assume that
+ arg_pointer_rtx by itself is nonzero, because on at least one machine,
+ the i960, the arg pointer is zero when it is unused. */
+
+#define NONZERO_BASE_PLUS_P(X) \
+ ((X) == frame_pointer_rtx || (X) == hard_frame_pointer_rtx \
+ || (X) == virtual_stack_vars_rtx \
+ || (X) == virtual_incoming_args_rtx \
+ || (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == CONST_INT \
+ && (XEXP (X, 0) == frame_pointer_rtx \
+ || XEXP (X, 0) == hard_frame_pointer_rtx \
+ || XEXP (X, 0) == arg_pointer_rtx \
+ || XEXP (X, 0) == virtual_stack_vars_rtx \
+ || XEXP (X, 0) == virtual_incoming_args_rtx)) \
+ || (X) == stack_pointer_rtx \
+ || (X) == virtual_stack_dynamic_rtx \
+ || (X) == virtual_outgoing_args_rtx \
+ || (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == CONST_INT \
+ && (XEXP (X, 0) == stack_pointer_rtx \
+ || XEXP (X, 0) == virtual_stack_dynamic_rtx \
+ || XEXP (X, 0) == virtual_outgoing_args_rtx)))
+
+static void new_basic_block PROTO((void));
+static void make_new_qty PROTO((int));
+static void make_regs_eqv PROTO((int, int));
+static void delete_reg_equiv PROTO((int));
+static int mention_regs PROTO((rtx));
+static int insert_regs PROTO((rtx, struct table_elt *, int));
+static void free_element PROTO((struct table_elt *));
+static void remove_from_table PROTO((struct table_elt *, unsigned));
+static struct table_elt *get_element PROTO((void));
+static struct table_elt *lookup PROTO((rtx, unsigned, enum machine_mode)),
+ *lookup_for_remove PROTO((rtx, unsigned, enum machine_mode));
+static rtx lookup_as_function PROTO((rtx, enum rtx_code));
+static struct table_elt *insert PROTO((rtx, struct table_elt *, unsigned,
+ enum machine_mode));
+static void merge_equiv_classes PROTO((struct table_elt *,
+ struct table_elt *));
+static void invalidate PROTO((rtx, enum machine_mode));
+static void remove_invalid_refs PROTO((int));
+static void rehash_using_reg PROTO((rtx));
+static void invalidate_memory PROTO((struct write_data *));
+static void invalidate_for_call PROTO((void));
+static rtx use_related_value PROTO((rtx, struct table_elt *));
+static unsigned canon_hash PROTO((rtx, enum machine_mode));
+static unsigned safe_hash PROTO((rtx, enum machine_mode));
+static int exp_equiv_p PROTO((rtx, rtx, int, int));
+static void set_nonvarying_address_components PROTO((rtx, int, rtx *,
+ HOST_WIDE_INT *,
+ HOST_WIDE_INT *));
+static int refers_to_p PROTO((rtx, rtx));
+static int refers_to_mem_p PROTO((rtx, rtx, HOST_WIDE_INT,
+ HOST_WIDE_INT));
+static int cse_rtx_addr_varies_p PROTO((rtx));
+static rtx canon_reg PROTO((rtx, rtx));
+static void find_best_addr PROTO((rtx, rtx *));
+static enum rtx_code find_comparison_args PROTO((enum rtx_code, rtx *, rtx *,
+ enum machine_mode *,
+ enum machine_mode *));
+static rtx cse_gen_binary PROTO((enum rtx_code, enum machine_mode,
+ rtx, rtx));
+static rtx simplify_plus_minus PROTO((enum rtx_code, enum machine_mode,
+ rtx, rtx));
+static rtx fold_rtx PROTO((rtx, rtx));
+static rtx equiv_constant PROTO((rtx));
+static void record_jump_equiv PROTO((rtx, int));
+static void record_jump_cond PROTO((enum rtx_code, enum machine_mode,
+ rtx, rtx, int));
+static void cse_insn PROTO((rtx, int));
+static void note_mem_written PROTO((rtx, struct write_data *));
+static void invalidate_from_clobbers PROTO((struct write_data *, rtx));
+static rtx cse_process_notes PROTO((rtx, rtx));
+static void cse_around_loop PROTO((rtx));
+static void invalidate_skipped_set PROTO((rtx, rtx));
+static void invalidate_skipped_block PROTO((rtx));
+static void cse_check_loop_start PROTO((rtx, rtx));
+static void cse_set_around_loop PROTO((rtx, rtx, rtx));
+static rtx cse_basic_block PROTO((rtx, rtx, struct branch_path *, int));
+static void count_reg_usage PROTO((rtx, int *, rtx, int));
+
+extern int rtx_equal_function_value_matters;
+
+/* Return an estimate of the cost of computing rtx X.
+ One use is in cse, to decide which expression to keep in the hash table.
+ Another is in rtl generation, to pick the cheapest way to multiply.
+ Other uses like the latter are expected in the future. */
+
+/* Return the right cost to give to an operation
+ to make the cost of the corresponding register-to-register instruction
+ N times that of a fast register-to-register instruction. */
+
+#define COSTS_N_INSNS(N) ((N) * 4 - 2)
+
+int
+rtx_cost (x, outer_code)
+ rtx x;
+ enum rtx_code outer_code;
+{
+ register int i, j;
+ register enum rtx_code code;
+ register char *fmt;
+ register int total;
+
+ if (x == 0)
+ return 0;
+
+ /* Compute the default costs of certain things.
+ Note that RTX_COSTS can override the defaults. */
+
+ code = GET_CODE (x);
+ switch (code)
+ {
+ case MULT:
+ /* Count multiplication by 2**n as a shift,
+ because if we are considering it, we would output it as a shift. */
+ if (GET_CODE (XEXP (x, 1)) == CONST_INT
+ && exact_log2 (INTVAL (XEXP (x, 1))) >= 0)
+ total = 2;
+ else
+ total = COSTS_N_INSNS (5);
+ break;
+ case DIV:
+ case UDIV:
+ case MOD:
+ case UMOD:
+ total = COSTS_N_INSNS (7);
+ break;
+ case USE:
+ /* Used in loop.c and combine.c as a marker. */
+ total = 0;
+ break;
+ case ASM_OPERANDS:
+ /* We don't want these to be used in substitutions because
+ we have no way of validating the resulting insn. So assign
+ anything containing an ASM_OPERANDS a very high cost. */
+ total = 1000;
+ break;
+ default:
+ total = 2;
+ }
+
+ switch (code)
+ {
+ case REG:
+ return ! CHEAP_REG (x);
+
+ case SUBREG:
+ /* If we can't tie these modes, make this expensive. The larger
+ the mode, the more expensive it is. */
+ if (! MODES_TIEABLE_P (GET_MODE (x), GET_MODE (SUBREG_REG (x))))
+ return COSTS_N_INSNS (2
+ + GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD);
+ return 2;
+#ifdef RTX_COSTS
+ RTX_COSTS (x, code, outer_code);
+#endif
+ CONST_COSTS (x, code, outer_code);
+ }
+
+ /* Sum the costs of the sub-rtx's, plus cost of this operation,
+ which is already in total. */
+
+ fmt = GET_RTX_FORMAT (code);
+ for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
+ if (fmt[i] == 'e')
+ total += rtx_cost (XEXP (x, i), code);
+ else if (fmt[i] == 'E')
+ for (j = 0; j < XVECLEN (x, i); j++)
+ total += rtx_cost (XVECEXP (x, i, j), code);
+
+ return total;
+}
+
+/* Clear the hash table and initialize each register with its own quantity,
+ for a new basic block. */
+
+static void
+new_basic_block ()
+{
+ register int i;
+
+ next_qty = max_reg;
+
+ bzero ((char *) reg_tick, max_reg * sizeof (int));
+
+ bcopy ((char *) all_minus_one, (char *) reg_in_table,
+ max_reg * sizeof (int));
+ bcopy ((char *) consec_ints, (char *) reg_qty, max_reg * sizeof (int));
+ CLEAR_HARD_REG_SET (hard_regs_in_table);
+
+ /* The per-quantity values used to be initialized here, but it is
+ much faster to initialize each as it is made in `make_new_qty'. */
+
+ for (i = 0; i < NBUCKETS; i++)
+ {
+ register struct table_elt *this, *next;
+ for (this = table[i]; this; this = next)
+ {
+ next = this->next_same_hash;
+ free_element (this);
+ }
+ }
+
+ bzero ((char *) table, sizeof table);
+
+ prev_insn = 0;
+
+#ifdef HAVE_cc0
+ prev_insn_cc0 = 0;
+#endif
+}
+
+/* Say that register REG contains a quantity not in any register before
+ and initialize that quantity. */
+
+static void
+make_new_qty (reg)
+ register int reg;
+{
+ register int q;
+
+ if (next_qty >= max_qty)
+ abort ();
+
+ q = reg_qty[reg] = next_qty++;
+ qty_first_reg[q] = reg;
+ qty_last_reg[q] = reg;
+ qty_const[q] = qty_const_insn[q] = 0;
+ qty_comparison_code[q] = UNKNOWN;
+
+ reg_next_eqv[reg] = reg_prev_eqv[reg] = -1;
+}
+
+/* Make reg NEW equivalent to reg OLD.
+ OLD is not changing; NEW is. */
+
+static void
+make_regs_eqv (new, old)
+ register int new, old;
+{
+ register int lastr, firstr;
+ register int q = reg_qty[old];
+
+ /* Nothing should become eqv until it has a "non-invalid" qty number. */
+ if (! REGNO_QTY_VALID_P (old))
+ abort ();
+
+ reg_qty[new] = q;
+ firstr = qty_first_reg[q];
+ lastr = qty_last_reg[q];
+
+ /* Prefer fixed hard registers to anything. Prefer pseudo regs to other
+ hard regs. Among pseudos, if NEW will live longer than any other reg
+ of the same qty, and that is beyond the current basic block,
+ make it the new canonical replacement for this qty. */
+ if (! (firstr < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (firstr))
+ /* Certain fixed registers might be of the class NO_REGS. This means
+ that not only can they not be allocated by the compiler, but
+ they cannot be used in substitutions or canonicalizations
+ either. */
+ && (new >= FIRST_PSEUDO_REGISTER || REGNO_REG_CLASS (new) != NO_REGS)
+ && ((new < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (new))
+ || (new >= FIRST_PSEUDO_REGISTER
+ && (firstr < FIRST_PSEUDO_REGISTER
+ || ((uid_cuid[regno_last_uid[new]] > cse_basic_block_end
+ || (uid_cuid[regno_first_uid[new]]
+ < cse_basic_block_start))
+ && (uid_cuid[regno_last_uid[new]]
+ > uid_cuid[regno_last_uid[firstr]]))))))
+ {
+ reg_prev_eqv[firstr] = new;
+ reg_next_eqv[new] = firstr;
+ reg_prev_eqv[new] = -1;
+ qty_first_reg[q] = new;
+ }
+ else
+ {
+ /* If NEW is a hard reg (known to be non-fixed), insert at end.
+ Otherwise, insert before any non-fixed hard regs that are at the
+ end. Registers of class NO_REGS cannot be used as an
+ equivalent for anything. */
+ while (lastr < FIRST_PSEUDO_REGISTER && reg_prev_eqv[lastr] >= 0
+ && (REGNO_REG_CLASS (lastr) == NO_REGS || ! FIXED_REGNO_P (lastr))
+ && new >= FIRST_PSEUDO_REGISTER)
+ lastr = reg_prev_eqv[lastr];
+ reg_next_eqv[new] = reg_next_eqv[lastr];
+ if (reg_next_eqv[lastr] >= 0)
+ reg_prev_eqv[reg_next_eqv[lastr]] = new;
+ else
+ qty_last_reg[q] = new;
+ reg_next_eqv[lastr] = new;
+ reg_prev_eqv[new] = lastr;
+ }
+}
+
+/* Remove REG from its equivalence class. */
+
+static void
+delete_reg_equiv (reg)
+ register int reg;
+{
+ register int q = reg_qty[reg];
+ register int p, n;
+
+ /* If invalid, do nothing. */
+ if (q == reg)
+ return;
+
+ p = reg_prev_eqv[reg];
+ n = reg_next_eqv[reg];
+
+ if (n != -1)
+ reg_prev_eqv[n] = p;
+ else
+ qty_last_reg[q] = p;
+ if (p != -1)
+ reg_next_eqv[p] = n;
+ else
+ qty_first_reg[q] = n;
+
+ reg_qty[reg] = reg;
+}
+
+/* Remove any invalid expressions from the hash table
+ that refer to any of the registers contained in expression X.
+
+ Make sure that newly inserted references to those registers
+ as subexpressions will be considered valid.
+
+ mention_regs is not called when a register itself
+ is being stored in the table.
+
+ Return 1 if we have done something that may have changed the hash code
+ of X. */
+
+static int
+mention_regs (x)
+ rtx x;
+{
+ register enum rtx_code code;
+ register int i, j;
+ register char *fmt;
+ register int changed = 0;
+
+ if (x == 0)
+ return 0;
+
+ code = GET_CODE (x);
+ if (code == REG)
+ {
+ register int regno = REGNO (x);
+ register int endregno
+ = regno + (regno >= FIRST_PSEUDO_REGISTER ? 1
+ : HARD_REGNO_NREGS (regno, GET_MODE (x)));
+ int i;
+
+ for (i = regno; i < endregno; i++)
+ {
+ if (reg_in_table[i] >= 0 && reg_in_table[i] != reg_tick[i])
+ remove_invalid_refs (i);
+
+ reg_in_table[i] = reg_tick[i];
+ }
+
+ return 0;
+ }
+
+ /* If X is a comparison or a COMPARE and either operand is a register
+ that does not have a quantity, give it one. This is so that a later
+ call to record_jump_equiv won't cause X to be assigned a different
+ hash code and not found in the table after that call.
+
+ It is not necessary to do this here, since rehash_using_reg can
+ fix up the table later, but doing this here eliminates the need to
+ call that expensive function in the most common case where the only
+ use of the register is in the comparison. */
+
+ if (code == COMPARE || GET_RTX_CLASS (code) == '<')
+ {
+ if (GET_CODE (XEXP (x, 0)) == REG
+ && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
+ if (insert_regs (XEXP (x, 0), NULL_PTR, 0))
+ {
+ rehash_using_reg (XEXP (x, 0));
+ changed = 1;
+ }
+
+ if (GET_CODE (XEXP (x, 1)) == REG
+ && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
+ if (insert_regs (XEXP (x, 1), NULL_PTR, 0))
+ {
+ rehash_using_reg (XEXP (x, 1));
+ changed = 1;
+ }
+ }
+
+ fmt = GET_RTX_FORMAT (code);
+ for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
+ if (fmt[i] == 'e')
+ changed |= mention_regs (XEXP (x, i));
+ else if (fmt[i] == 'E')
+ for (j = 0; j < XVECLEN (x, i); j++)
+ changed |= mention_regs (XVECEXP (x, i, j));
+
+ return changed;
+}
+
+/* Update the register quantities for inserting X into the hash table
+ with a value equivalent to CLASSP.
+ (If the class does not contain a REG, it is irrelevant.)
+ If MODIFIED is nonzero, X is a destination; it is being modified.
+ Note that delete_reg_equiv should be called on a register
+ before insert_regs is done on that register with MODIFIED != 0.
+
+ Nonzero value means that elements of reg_qty have changed
+ so X's hash code may be different. */
+
+static int
+insert_regs (x, classp, modified)
+ rtx x;
+ struct table_elt *classp;
+ int modified;
+{
+ if (GET_CODE (x) == REG)
+ {
+ register int regno = REGNO (x);
+
+ /* If REGNO is in the equivalence table already but is of the
+ wrong mode for that equivalence, don't do anything here. */
+
+ if (REGNO_QTY_VALID_P (regno)
+ && qty_mode[reg_qty[regno]] != GET_MODE (x))
+ return 0;
+
+ if (modified || ! REGNO_QTY_VALID_P (regno))
+ {
+ if (classp)
+ for (classp = classp->first_same_value;
+ classp != 0;
+ classp = classp->next_same_value)
+ if (GET_CODE (classp->exp) == REG
+ && GET_MODE (classp->exp) == GET_MODE (x))
+ {
+ make_regs_eqv (regno, REGNO (classp->exp));
+ return 1;
+ }
+
+ make_new_qty (regno);
+ qty_mode[reg_qty[regno]] = GET_MODE (x);
+ return 1;
+ }
+
+ return 0;
+ }
+
+ /* If X is a SUBREG, we will likely be inserting the inner register in the
+ table. If that register doesn't have an assigned quantity number at
+ this point but does later, the insertion that we will be doing now will
+ not be accessible because its hash code will have changed. So assign
+ a quantity number now. */
+
+ else if (GET_CODE (x) == SUBREG && GET_CODE (SUBREG_REG (x)) == REG
+ && ! REGNO_QTY_VALID_P (REGNO (SUBREG_REG (x))))
+ {
+ insert_regs (SUBREG_REG (x), NULL_PTR, 0);
+ mention_regs (SUBREG_REG (x));
+ return 1;
+ }
+ else
+ return mention_regs (x);
+}
+
+/* Look in or update the hash table. */
+
+/* Put the element ELT on the list of free elements. */
+
+static void
+free_element (elt)
+ struct table_elt *elt;
+{
+ elt->next_same_hash = free_element_chain;
+ free_element_chain = elt;
+}
+
+/* Return an element that is free for use. */
+
+static struct table_elt *
+get_element ()
+{
+ struct table_elt *elt = free_element_chain;
+ if (elt)
+ {
+ free_element_chain = elt->next_same_hash;
+ return elt;
+ }
+ n_elements_made++;
+ return (struct table_elt *) oballoc (sizeof (struct table_elt));
+}
+
+/* Remove table element ELT from use in the table.
+ HASH is its hash code, made using the HASH macro.
+ It's an argument because often that is known in advance
+ and we save much time not recomputing it. */
+
+static void
+remove_from_table (elt, hash)
+ register struct table_elt *elt;
+ unsigned hash;
+{
+ if (elt == 0)
+ return;
+
+ /* Mark this element as removed. See cse_insn. */
+ elt->first_same_value = 0;
+
+ /* Remove the table element from its equivalence class. */
+
+ {
+ register struct table_elt *prev = elt->prev_same_value;
+ register struct table_elt *next = elt->next_same_value;
+
+ if (next) next->prev_same_value = prev;
+
+ if (prev)
+ prev->next_same_value = next;
+ else
+ {
+ register struct table_elt *newfirst = next;
+ while (next)
+ {
+ next->first_same_value = newfirst;
+ next = next->next_same_value;
+ }
+ }
+ }
+
+ /* Remove the table element from its hash bucket. */
+
+ {
+ register struct table_elt *prev = elt->prev_same_hash;
+ register struct table_elt *next = elt->next_same_hash;
+
+ if (next) next->prev_same_hash = prev;
+
+ if (prev)
+ prev->next_same_hash = next;
+ else if (table[hash] == elt)
+ table[hash] = next;
+ else
+ {
+ /* This entry is not in the proper hash bucket. This can happen
+ when two classes were merged by `merge_equiv_classes'. Search
+ for the hash bucket that it heads. This happens only very
+ rarely, so the cost is acceptable. */
+ for (hash = 0; hash < NBUCKETS; hash++)
+ if (table[hash] == elt)
+ table[hash] = next;
+ }
+ }
+
+ /* Remove the table element from its related-value circular chain. */
+
+ if (elt->related_value != 0 && elt->related_value != elt)
+ {
+ register struct table_elt *p = elt->related_value;
+ while (p->related_value != elt)
+ p = p->related_value;
+ p->related_value = elt->related_value;
+ if (p->related_value == p)
+ p->related_value = 0;
+ }
+
+ free_element (elt);
+}
+
+/* Look up X in the hash table and return its table element,
+ or 0 if X is not in the table.
+
+ MODE is the machine-mode of X, or if X is an integer constant
+ with VOIDmode then MODE is the mode with which X will be used.
+
+ Here we are satisfied to find an expression whose tree structure
+ looks like X. */
+
+static struct table_elt *
+lookup (x, hash, mode)
+ rtx x;
+ unsigned hash;
+ enum machine_mode mode;
+{
+ register struct table_elt *p;
+
+ for (p = table[hash]; p; p = p->next_same_hash)
+ if (mode == p->mode && ((x == p->exp && GET_CODE (x) == REG)
+ || exp_equiv_p (x, p->exp, GET_CODE (x) != REG, 0)))
+ return p;
+
+ return 0;
+}
+
+/* Like `lookup' but don't care whether the table element uses invalid regs.
+ Also ignore discrepancies in the machine mode of a register. */
+
+static struct table_elt *
+lookup_for_remove (x, hash, mode)
+ rtx x;
+ unsigned hash;
+ enum machine_mode mode;
+{
+ register struct table_elt *p;
+
+ if (GET_CODE (x) == REG)
+ {
+ int regno = REGNO (x);
+ /* Don't check the machine mode when comparing registers;
+ invalidating (REG:SI 0) also invalidates (REG:DF 0). */
+ for (p = table[hash]; p; p = p->next_same_hash)
+ if (GET_CODE (p->exp) == REG
+ && REGNO (p->exp) == regno)
+ return p;
+ }
+ else
+ {
+ for (p = table[hash]; p; p = p->next_same_hash)
+ if (mode == p->mode && (x == p->exp || exp_equiv_p (x, p->exp, 0, 0)))
+ return p;
+ }
+
+ return 0;
+}
+
+/* Look for an expression equivalent to X and with code CODE.
+ If one is found, return that expression. */
+
+static rtx
+lookup_as_function (x, code)
+ rtx x;
+ enum rtx_code code;
+{
+ register struct table_elt *p = lookup (x, safe_hash (x, VOIDmode) % NBUCKETS,
+ GET_MODE (x));
+ if (p == 0)
+ return 0;
+
+ for (p = p->first_same_value; p; p = p->next_same_value)
+ {
+ if (GET_CODE (p->exp) == code
+ /* Make sure this is a valid entry in the table. */
+ && exp_equiv_p (p->exp, p->exp, 1, 0))
+ return p->exp;
+ }
+
+ return 0;
+}
+
+/* Insert X in the hash table, assuming HASH is its hash code
+ and CLASSP is an element of the class it should go in
+ (or 0 if a new class should be made).
+ It is inserted at the proper position to keep the class in
+ the order cheapest first.
+
+ MODE is the machine-mode of X, or if X is an integer constant
+ with VOIDmode then MODE is the mode with which X will be used.
+
+ For elements of equal cheapness, the most recent one
+ goes in front, except that the first element in the list
+ remains first unless a cheaper element is added. The order of
+ pseudo-registers does not matter, as canon_reg will be called to
+ find the cheapest when a register is retrieved from the table.
+
+ The in_memory field in the hash table element is set to 0.
+ The caller must set it nonzero if appropriate.
+
+ You should call insert_regs (X, CLASSP, MODIFY) before calling here,
+ and if insert_regs returns a nonzero value
+ you must then recompute its hash code before calling here.
+
+ If necessary, update table showing constant values of quantities. */
+
+#define CHEAPER(X,Y) ((X)->cost < (Y)->cost)
+
+static struct table_elt *
+insert (x, classp, hash, mode)
+ register rtx x;
+ register struct table_elt *classp;
+ unsigned hash;
+ enum machine_mode mode;
+{
+ register struct table_elt *elt;
+
+ /* If X is a register and we haven't made a quantity for it,
+ something is wrong. */
+ if (GET_CODE (x) == REG && ! REGNO_QTY_VALID_P (REGNO (x)))
+ abort ();
+
+ /* If X is a hard register, show it is being put in the table. */
+ if (GET_CODE (x) == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
+ {
+ int regno = REGNO (x);
+ int endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
+ int i;
+
+ for (i = regno; i < endregno; i++)
+ SET_HARD_REG_BIT (hard_regs_in_table, i);
+ }
+
+ /* If X is a label, show we recorded it. */
+ if (GET_CODE (x) == LABEL_REF
+ || (GET_CODE (x) == CONST && GET_CODE (XEXP (x, 0)) == PLUS
+ && GET_CODE (XEXP (XEXP (x, 0), 0)) == LABEL_REF))
+ recorded_label_ref = 1;
+
+ /* Put an element for X into the right hash bucket. */
+
+ elt = get_element ();
+ elt->exp = x;
+ elt->cost = COST (x);
+ elt->next_same_value = 0;
+ elt->prev_same_value = 0;
+ elt->next_same_hash = table[hash];
+ elt->prev_same_hash = 0;
+ elt->related_value = 0;
+ elt->in_memory = 0;
+ elt->mode = mode;
+ elt->is_const = (CONSTANT_P (x)
+ /* GNU C++ takes advantage of this for `this'
+ (and other const values). */
+ || (RTX_UNCHANGING_P (x)
+ && GET_CODE (x) == REG
+ && REGNO (x) >= FIRST_PSEUDO_REGISTER)
+ || FIXED_BASE_PLUS_P (x));
+
+ if (table[hash])
+ table[hash]->prev_same_hash = elt;
+ table[hash] = elt;
+
+ /* Put it into the proper value-class. */
+ if (classp)
+ {
+ classp = classp->first_same_value;
+ if (CHEAPER (elt, classp))
+ /* Insert at the head of the class */
+ {
+ register struct table_elt *p;
+ elt->next_same_value = classp;
+ classp->prev_same_value = elt;
+ elt->first_same_value = elt;
+
+ for (p = classp; p; p = p->next_same_value)
+ p->first_same_value = elt;
+ }
+ else
+ {
+ /* Insert not at head of the class. */
+ /* Put it after the last element cheaper than X. */
+ register struct table_elt *p, *next;
+ for (p = classp; (next = p->next_same_value) && CHEAPER (next, elt);
+ p = next);
+ /* Put it after P and before NEXT. */
+ elt->next_same_value = next;
+ if (next)
+ next->prev_same_value = elt;
+ elt->prev_same_value = p;
+ p->next_same_value = elt;
+ elt->first_same_value = classp;
+ }
+ }
+ else
+ elt->first_same_value = elt;
+
+ /* If this is a constant being set equivalent to a register or a register
+ being set equivalent to a constant, note the constant equivalence.
+
+ If this is a constant, it cannot be equivalent to a different constant,
+ and a constant is the only thing that can be cheaper than a register. So
+ we know the register is the head of the class (before the constant was
+ inserted).
+
+ If this is a register that is not already known equivalent to a
+ constant, we must check the entire class.
+
+ If this is a register that is already known equivalent to an insn,
+ update `qty_const_insn' to show that `this_insn' is the latest
+ insn making that quantity equivalent to the constant. */
+
+ if (elt->is_const && classp && GET_CODE (classp->exp) == REG
+ && GET_CODE (x) != REG)
+ {
+ qty_const[reg_qty[REGNO (classp->exp)]]
+ = gen_lowpart_if_possible (qty_mode[reg_qty[REGNO (classp->exp)]], x);
+ qty_const_insn[reg_qty[REGNO (classp->exp)]] = this_insn;
+ }
+
+ else if (GET_CODE (x) == REG && classp && ! qty_const[reg_qty[REGNO (x)]]
+ && ! elt->is_const)
+ {
+ register struct table_elt *p;
+
+ for (p = classp; p != 0; p = p->next_same_value)
+ {
+ if (p->is_const && GET_CODE (p->exp) != REG)
+ {
+ qty_const[reg_qty[REGNO (x)]]
+ = gen_lowpart_if_possible (GET_MODE (x), p->exp);
+ qty_const_insn[reg_qty[REGNO (x)]] = this_insn;
+ break;
+ }
+ }
+ }
+
+ else if (GET_CODE (x) == REG && qty_const[reg_qty[REGNO (x)]]
+ && GET_MODE (x) == qty_mode[reg_qty[REGNO (x)]])
+ qty_const_insn[reg_qty[REGNO (x)]] = this_insn;
+
+ /* If this is a constant with symbolic value,
+ and it has a term with an explicit integer value,
+ link it up with related expressions. */
+ if (GET_CODE (x) == CONST)
+ {
+ rtx subexp = get_related_value (x);
+ unsigned subhash;
+ struct table_elt *subelt, *subelt_prev;
+
+ if (subexp != 0)
+ {
+ /* Get the integer-free subexpression in the hash table. */
+ subhash = safe_hash (subexp, mode) % NBUCKETS;
+ subelt = lookup (subexp, subhash, mode);
+ if (subelt == 0)
+ subelt = insert (subexp, NULL_PTR, subhash, mode);
+ /* Initialize SUBELT's circular chain if it has none. */
+ if (subelt->related_value == 0)
+ subelt->related_value = subelt;
+ /* Find the element in the circular chain that precedes SUBELT. */
+ subelt_prev = subelt;
+ while (subelt_prev->related_value != subelt)
+ subelt_prev = subelt_prev->related_value;
+ /* Put new ELT into SUBELT's circular chain just before SUBELT.
+ This way the element that follows SUBELT is the oldest one. */
+ elt->related_value = subelt_prev->related_value;
+ subelt_prev->related_value = elt;
+ }
+ }
+
+ return elt;
+}
+
+/* Given two equivalence classes, CLASS1 and CLASS2, put all the entries from
+ CLASS2 into CLASS1. This is done when we have reached an insn which makes
+ the two classes equivalent.
+
+ CLASS1 will be the surviving class; CLASS2 should not be used after this
+ call.
+
+ Any invalid entries in CLASS2 will not be copied. */
+
+static void
+merge_equiv_classes (class1, class2)
+ struct table_elt *class1, *class2;
+{
+ struct table_elt *elt, *next, *new;
+
+ /* Ensure we start with the head of the classes. */
+ class1 = class1->first_same_value;
+ class2 = class2->first_same_value;
+
+ /* If they were already equal, forget it. */
+ if (class1 == class2)
+ return;
+
+ for (elt = class2; elt; elt = next)
+ {
+ unsigned hash;
+ rtx exp = elt->exp;
+ enum machine_mode mode = elt->mode;
+
+ next = elt->next_same_value;
+
+ /* Remove old entry, make a new one in CLASS1's class.
+ Don't do this for invalid entries as we cannot find their
+ hash code (it also isn't necessary). */
+ if (GET_CODE (exp) == REG || exp_equiv_p (exp, exp, 1, 0))
+ {
+ hash_arg_in_memory = 0;
+ hash_arg_in_struct = 0;
+ hash = HASH (exp, mode);
+
+ if (GET_CODE (exp) == REG)
+ delete_reg_equiv (REGNO (exp));
+
+ remove_from_table (elt, hash);
+
+ if (insert_regs (exp, class1, 0))
+ {
+ rehash_using_reg (exp);
+ hash = HASH (exp, mode);
+ }
+ new = insert (exp, class1, hash, mode);
+ new->in_memory = hash_arg_in_memory;
+ new->in_struct = hash_arg_in_struct;
+ }
+ }
+}
+
+/* Remove from the hash table, or mark as invalid,
+ all expressions whose values could be altered by storing in X.
+ X is a register, a subreg, or a memory reference with nonvarying address
+ (because, when a memory reference with a varying address is stored in,
+ all memory references are removed by invalidate_memory
+ so specific invalidation is superfluous).
+ FULL_MODE, if not VOIDmode, indicates that this much should be invalidated
+ instead of just the amount indicated by the mode of X. This is only used
+ for bitfield stores into memory.
+
+ A nonvarying address may be just a register or just
+ a symbol reference, or it may be either of those plus
+ a numeric offset. */
+
+static void
+invalidate (x, full_mode)
+ rtx x;
+ enum machine_mode full_mode;
+{
+ register int i;
+ register struct table_elt *p;
+ rtx base;
+ HOST_WIDE_INT start, end;
+
+ /* If X is a register, dependencies on its contents
+ are recorded through the qty number mechanism.
+ Just change the qty number of the register,
+ mark it as invalid for expressions that refer to it,
+ and remove it itself. */
+
+ if (GET_CODE (x) == REG)
+ {
+ register int regno = REGNO (x);
+ register unsigned hash = HASH (x, GET_MODE (x));
+
+ /* Remove REGNO from any quantity list it might be on and indicate
+ that it's value might have changed. If it is a pseudo, remove its
+ entry from the hash table.
+
+ For a hard register, we do the first two actions above for any
+ additional hard registers corresponding to X. Then, if any of these
+ registers are in the table, we must remove any REG entries that
+ overlap these registers. */
+
+ delete_reg_equiv (regno);
+ reg_tick[regno]++;
+
+ if (regno >= FIRST_PSEUDO_REGISTER)
+ {
+ /* Because a register can be referenced in more than one mode,
+ we might have to remove more than one table entry. */
+
+ struct table_elt *elt;
+
+ while (elt = lookup_for_remove (x, hash, GET_MODE (x)))
+ remove_from_table (elt, hash);
+ }
+ else
+ {
+ HOST_WIDE_INT in_table
+ = TEST_HARD_REG_BIT (hard_regs_in_table, regno);
+ int endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
+ int tregno, tendregno;
+ register struct table_elt *p, *next;
+
+ CLEAR_HARD_REG_BIT (hard_regs_in_table, regno);
+
+ for (i = regno + 1; i < endregno; i++)
+ {
+ in_table |= TEST_HARD_REG_BIT (hard_regs_in_table, i);
+ CLEAR_HARD_REG_BIT (hard_regs_in_table, i);
+ delete_reg_equiv (i);
+ reg_tick[i]++;
+ }
+
+ if (in_table)
+ for (hash = 0; hash < NBUCKETS; hash++)
+ for (p = table[hash]; p; p = next)
+ {
+ next = p->next_same_hash;
+
+ if (GET_CODE (p->exp) != REG
+ || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
+ continue;
+
+ tregno = REGNO (p->exp);
+ tendregno
+ = tregno + HARD_REGNO_NREGS (tregno, GET_MODE (p->exp));
+ if (tendregno > regno && tregno < endregno)
+ remove_from_table (p, hash);
+ }
+ }
+
+ return;
+ }
+
+ if (GET_CODE (x) == SUBREG)
+ {
+ if (GET_CODE (SUBREG_REG (x)) != REG)
+ abort ();
+ invalidate (SUBREG_REG (x), VOIDmode);
+ return;
+ }
+
+ /* X is not a register; it must be a memory reference with
+ a nonvarying address. Remove all hash table elements
+ that refer to overlapping pieces of memory. */
+
+ if (GET_CODE (x) != MEM)
+ abort ();
+
+ if (full_mode == VOIDmode)
+ full_mode = GET_MODE (x);
+
+ set_nonvarying_address_components (XEXP (x, 0), GET_MODE_SIZE (full_mode),
+ &base, &start, &end);
+
+ for (i = 0; i < NBUCKETS; i++)
+ {
+ register struct table_elt *next;
+ for (p = table[i]; p; p = next)
+ {
+ next = p->next_same_hash;
+ if (refers_to_mem_p (p->exp, base, start, end))
+ remove_from_table (p, i);
+ }
+ }
+}
+
+/* Remove all expressions that refer to register REGNO,
+ since they are already invalid, and we are about to
+ mark that register valid again and don't want the old
+ expressions to reappear as valid. */
+
+static void
+remove_invalid_refs (regno)
+ int regno;
+{
+ register int i;
+ register struct table_elt *p, *next;
+
+ for (i = 0; i < NBUCKETS; i++)
+ for (p = table[i]; p; p = next)
+ {
+ next = p->next_same_hash;
+ if (GET_CODE (p->exp) != REG
+ && refers_to_regno_p (regno, regno + 1, p->exp, NULL_PTR))
+ remove_from_table (p, i);
+ }
+}
+
+/* Recompute the hash codes of any valid entries in the hash table that
+ reference X, if X is a register, or SUBREG_REG (X) if X is a SUBREG.
+
+ This is called when we make a jump equivalence. */
+
+static void
+rehash_using_reg (x)
+ rtx x;
+{
+ int i;
+ struct table_elt *p, *next;
+ unsigned hash;
+
+ if (GET_CODE (x) == SUBREG)
+ x = SUBREG_REG (x);
+
+ /* If X is not a register or if the register is known not to be in any
+ valid entries in the table, we have no work to do. */
+
+ if (GET_CODE (x) != REG
+ || reg_in_table[REGNO (x)] < 0
+ || reg_in_table[REGNO (x)] != reg_tick[REGNO (x)])
+ return;
+
+ /* Scan all hash chains looking for valid entries that mention X.
+ If we find one and it is in the wrong hash chain, move it. We can skip
+ objects that are registers, since they are handled specially. */
+
+ for (i = 0; i < NBUCKETS; i++)
+ for (p = table[i]; p; p = next)
+ {
+ next = p->next_same_hash;
+ if (GET_CODE (p->exp) != REG && reg_mentioned_p (x, p->exp)
+ && exp_equiv_p (p->exp, p->exp, 1, 0)
+ && i != (hash = safe_hash (p->exp, p->mode) % NBUCKETS))
+ {
+ if (p->next_same_hash)
+ p->next_same_hash->prev_same_hash = p->prev_same_hash;
+
+ if (p->prev_same_hash)
+ p->prev_same_hash->next_same_hash = p->next_same_hash;
+ else
+ table[i] = p->next_same_hash;
+
+ p->next_same_hash = table[hash];
+ p->prev_same_hash = 0;
+ if (table[hash])
+ table[hash]->prev_same_hash = p;
+ table[hash] = p;
+ }
+ }
+}
+
+/* Remove from the hash table all expressions that reference memory,
+ or some of them as specified by *WRITES. */
+
+static void
+invalidate_memory (writes)
+ struct write_data *writes;
+{
+ register int i;
+ register struct table_elt *p, *next;
+ int all = writes->all;
+ int nonscalar = writes->nonscalar;
+
+ for (i = 0; i < NBUCKETS; i++)
+ for (p = table[i]; p; p = next)
+ {
+ next = p->next_same_hash;
+ if (p->in_memory
+ && (all
+ || (nonscalar && p->in_struct)
+ || cse_rtx_addr_varies_p (p->exp)))
+ remove_from_table (p, i);
+ }
+}
+
+/* Remove from the hash table any expression that is a call-clobbered
+ register. Also update their TICK values. */
+
+static void
+invalidate_for_call ()
+{
+ int regno, endregno;
+ int i;
+ unsigned hash;
+ struct table_elt *p, *next;
+ int in_table = 0;
+
+ /* Go through all the hard registers. For each that is clobbered in
+ a CALL_INSN, remove the register from quantity chains and update
+ reg_tick if defined. Also see if any of these registers is currently
+ in the table. */
+
+ for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
+ if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
+ {
+ delete_reg_equiv (regno);
+ if (reg_tick[regno] >= 0)
+ reg_tick[regno]++;
+
+ in_table |= (TEST_HARD_REG_BIT (hard_regs_in_table, regno) != 0);
+ }
+
+ /* In the case where we have no call-clobbered hard registers in the
+ table, we are done. Otherwise, scan the table and remove any
+ entry that overlaps a call-clobbered register. */
+
+ if (in_table)
+ for (hash = 0; hash < NBUCKETS; hash++)
+ for (p = table[hash]; p; p = next)
+ {
+ next = p->next_same_hash;
+
+ if (GET_CODE (p->exp) != REG
+ || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
+ continue;
+
+ regno = REGNO (p->exp);
+ endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (p->exp));
+
+ for (i = regno; i < endregno; i++)
+ if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
+ {
+ remove_from_table (p, hash);
+ break;
+ }
+ }
+}
+
+/* Given an expression X of type CONST,
+ and ELT which is its table entry (or 0 if it
+ is not in the hash table),
+ return an alternate expression for X as a register plus integer.
+ If none can be found, return 0. */
+
+static rtx
+use_related_value (x, elt)
+ rtx x;
+ struct table_elt *elt;
+{
+ register struct table_elt *relt = 0;
+ register struct table_elt *p, *q;
+ HOST_WIDE_INT offset;
+
+ /* First, is there anything related known?
+ If we have a table element, we can tell from that.
+ Otherwise, must look it up. */
+
+ if (elt != 0 && elt->related_value != 0)
+ relt = elt;
+ else if (elt == 0 && GET_CODE (x) == CONST)
+ {
+ rtx subexp = get_related_value (x);
+ if (subexp != 0)
+ relt = lookup (subexp,
+ safe_hash (subexp, GET_MODE (subexp)) % NBUCKETS,
+ GET_MODE (subexp));
+ }
+
+ if (relt == 0)
+ return 0;
+
+ /* Search all related table entries for one that has an
+ equivalent register. */
+
+ p = relt;
+ while (1)
+ {
+ /* This loop is strange in that it is executed in two different cases.
+ The first is when X is already in the table. Then it is searching
+ the RELATED_VALUE list of X's class (RELT). The second case is when
+ X is not in the table. Then RELT points to a class for the related
+ value.
+
+ Ensure that, whatever case we are in, that we ignore classes that have
+ the same value as X. */
+
+ if (rtx_equal_p (x, p->exp))
+ q = 0;
+ else
+ for (q = p->first_same_value; q; q = q->next_same_value)
+ if (GET_CODE (q->exp) == REG)
+ break;
+
+ if (q)
+ break;
+
+ p = p->related_value;
+
+ /* We went all the way around, so there is nothing to be found.
+ Alternatively, perhaps RELT was in the table for some other reason
+ and it has no related values recorded. */
+ if (p == relt || p == 0)
+ break;
+ }
+
+ if (q == 0)
+ return 0;
+
+ offset = (get_integer_term (x) - get_integer_term (p->exp));
+ /* Note: OFFSET may be 0 if P->xexp and X are related by commutativity. */
+ return plus_constant (q->exp, offset);
+}
+
+/* Hash an rtx. We are careful to make sure the value is never negative.
+ Equivalent registers hash identically.
+ MODE is used in hashing for CONST_INTs only;
+ otherwise the mode of X is used.
+
+ Store 1 in do_not_record if any subexpression is volatile.
+
+ Store 1 in hash_arg_in_memory if X contains a MEM rtx
+ which does not have the RTX_UNCHANGING_P bit set.
+ In this case, also store 1 in hash_arg_in_struct
+ if there is a MEM rtx which has the MEM_IN_STRUCT_P bit set.
+
+ Note that cse_insn knows that the hash code of a MEM expression
+ is just (int) MEM plus the hash code of the address. */
+
+static unsigned
+canon_hash (x, mode)
+ rtx x;
+ enum machine_mode mode;
+{
+ register int i, j;
+ register unsigned hash = 0;
+ register enum rtx_code code;
+ register char *fmt;
+
+ /* repeat is used to turn tail-recursion into iteration. */
+ repeat:
+ if (x == 0)
+ return hash;
+
+ code = GET_CODE (x);
+ switch (code)
+ {
+ case REG:
+ {
+ register int regno = REGNO (x);
+
+ /* On some machines, we can't record any non-fixed hard register,
+ because extending its life will cause reload problems. We
+ consider ap, fp, and sp to be fixed for this purpose.
+ On all machines, we can't record any global registers. */
+
+ if (regno < FIRST_PSEUDO_REGISTER
+ && (global_regs[regno]
+#ifdef SMALL_REGISTER_CLASSES
+ || (! fixed_regs[regno]
+ && regno != FRAME_POINTER_REGNUM
+ && regno != HARD_FRAME_POINTER_REGNUM
+ && regno != ARG_POINTER_REGNUM
+ && regno != STACK_POINTER_REGNUM)
+#endif
+ ))
+ {
+ do_not_record = 1;
+ return 0;
+ }
+ hash += ((unsigned) REG << 7) + (unsigned) reg_qty[regno];
+ return hash;
+ }
+
+ case CONST_INT:
+ {
+ unsigned HOST_WIDE_INT tem = INTVAL (x);
+ hash += ((unsigned) CONST_INT << 7) + (unsigned) mode + tem;
+ return hash;
+ }
+
+ case CONST_DOUBLE:
+ /* This is like the general case, except that it only counts
+ the integers representing the constant. */
+ hash += (unsigned) code + (unsigned) GET_MODE (x);
+ if (GET_MODE (x) != VOIDmode)
+ for (i = 2; i < GET_RTX_LENGTH (CONST_DOUBLE); i++)
+ {
+ unsigned tem = XINT (x, i);
+ hash += tem;
+ }
+ else
+ hash += ((unsigned) CONST_DOUBLE_LOW (x)
+ + (unsigned) CONST_DOUBLE_HIGH (x));
+ return hash;
+
+ /* Assume there is only one rtx object for any given label. */
+ case LABEL_REF:
+ hash
+ += ((unsigned) LABEL_REF << 7) + (unsigned HOST_WIDE_INT) XEXP (x, 0);
+ return hash;
+
+ case SYMBOL_REF:
+ hash
+ += ((unsigned) SYMBOL_REF << 7) + (unsigned HOST_WIDE_INT) XSTR (x, 0);
+ return hash;
+
+ case MEM:
+ if (MEM_VOLATILE_P (x))
+ {
+ do_not_record = 1;
+ return 0;
+ }
+ if (! RTX_UNCHANGING_P (x))
+ {
+ hash_arg_in_memory = 1;
+ if (MEM_IN_STRUCT_P (x)) hash_arg_in_struct = 1;
+ }
+ /* Now that we have already found this special case,
+ might as well speed it up as much as possible. */
+ hash += (unsigned) MEM;
+ x = XEXP (x, 0);
+ goto repeat;
+
+ case PRE_DEC:
+ case PRE_INC:
+ case POST_DEC:
+ case POST_INC:
+ case PC:
+ case CC0:
+ case CALL:
+ case UNSPEC_VOLATILE:
+ do_not_record = 1;
+ return 0;
+
+ case ASM_OPERANDS:
+ if (MEM_VOLATILE_P (x))
+ {
+ do_not_record = 1;
+ return 0;
+ }
+ }
+
+ i = GET_RTX_LENGTH (code) - 1;
+ hash += (unsigned) code + (unsigned) GET_MODE (x);
+ fmt = GET_RTX_FORMAT (code);
+ for (; i >= 0; i--)
+ {
+ if (fmt[i] == 'e')
+ {
+ rtx tem = XEXP (x, i);
+
+ /* If we are about to do the last recursive call
+ needed at this level, change it into iteration.
+ This function is called enough to be worth it. */
+ if (i == 0)
+ {
+ x = tem;
+ goto repeat;
+ }
+ hash += canon_hash (tem, 0);
+ }
+ else if (fmt[i] == 'E')
+ for (j = 0; j < XVECLEN (x, i); j++)
+ hash += canon_hash (XVECEXP (x, i, j), 0);
+ else if (fmt[i] == 's')
+ {
+ register unsigned char *p = (unsigned char *) XSTR (x, i);
+ if (p)
+ while (*p)
+ hash += *p++;
+ }
+ else if (fmt[i] == 'i')
+ {
+ register unsigned tem = XINT (x, i);
+ hash += tem;
+ }
+ else
+ abort ();
+ }
+ return hash;
+}
+
+/* Like canon_hash but with no side effects. */
+
+static unsigned
+safe_hash (x, mode)
+ rtx x;
+ enum machine_mode mode;
+{
+ int save_do_not_record = do_not_record;
+ int save_hash_arg_in_memory = hash_arg_in_memory;
+ int save_hash_arg_in_struct = hash_arg_in_struct;
+ unsigned hash = canon_hash (x, mode);
+ hash_arg_in_memory = save_hash_arg_in_memory;
+ hash_arg_in_struct = save_hash_arg_in_struct;
+ do_not_record = save_do_not_record;
+ return hash;
+}
+
+/* Return 1 iff X and Y would canonicalize into the same thing,
+ without actually constructing the canonicalization of either one.
+ If VALIDATE is nonzero,
+ we assume X is an expression being processed from the rtl
+ and Y was found in the hash table. We check register refs
+ in Y for being marked as valid.
+
+ If EQUAL_VALUES is nonzero, we allow a register to match a constant value
+ that is known to be in the register. Ordinarily, we don't allow them
+ to match, because letting them match would cause unpredictable results
+ in all the places that search a hash table chain for an equivalent
+ for a given value. A possible equivalent that has different structure
+ has its hash code computed from different data. Whether the hash code
+ is the same as that of the the given value is pure luck. */
+
+static int
+exp_equiv_p (x, y, validate, equal_values)
+ rtx x, y;
+ int validate;
+ int equal_values;
+{
+ register int i, j;
+ register enum rtx_code code;
+ register char *fmt;
+
+ /* Note: it is incorrect to assume an expression is equivalent to itself
+ if VALIDATE is nonzero. */
+ if (x == y && !validate)
+ return 1;
+ if (x == 0 || y == 0)
+ return x == y;
+
+ code = GET_CODE (x);
+ if (code != GET_CODE (y))
+ {
+ if (!equal_values)
+ return 0;
+
+ /* If X is a constant and Y is a register or vice versa, they may be
+ equivalent. We only have to validate if Y is a register. */
+ if (CONSTANT_P (x) && GET_CODE (y) == REG
+ && REGNO_QTY_VALID_P (REGNO (y))
+ && GET_MODE (y) == qty_mode[reg_qty[REGNO (y)]]
+ && rtx_equal_p (x, qty_const[reg_qty[REGNO (y)]])
+ && (! validate || reg_in_table[REGNO (y)] == reg_tick[REGNO (y)]))
+ return 1;
+
+ if (CONSTANT_P (y) && code == REG
+ && REGNO_QTY_VALID_P (REGNO (x))
+ && GET_MODE (x) == qty_mode[reg_qty[REGNO (x)]]
+ && rtx_equal_p (y, qty_const[reg_qty[REGNO (x)]]))
+ return 1;
+
+ return 0;
+ }
+
+ /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
+ if (GET_MODE (x) != GET_MODE (y))
+ return 0;
+
+ switch (code)
+ {
+ case PC:
+ case CC0:
+ return x == y;
+
+ case CONST_INT:
+ return INTVAL (x) == INTVAL (y);
+
+ case LABEL_REF:
+ return XEXP (x, 0) == XEXP (y, 0);
+
+ case SYMBOL_REF:
+ return XSTR (x, 0) == XSTR (y, 0);
+
+ case REG:
+ {
+ int regno = REGNO (y);
+ int endregno
+ = regno + (regno >= FIRST_PSEUDO_REGISTER ? 1
+ : HARD_REGNO_NREGS (regno, GET_MODE (y)));
+ int i;
+
+ /* If the quantities are not the same, the expressions are not
+ equivalent. If there are and we are not to validate, they
+ are equivalent. Otherwise, ensure all regs are up-to-date. */
+
+ if (reg_qty[REGNO (x)] != reg_qty[regno])
+ return 0;
+
+ if (! validate)
+ return 1;
+
+ for (i = regno; i < endregno; i++)
+ if (reg_in_table[i] != reg_tick[i])
+ return 0;
+
+ return 1;
+ }
+
+ /* For commutative operations, check both orders. */
+ case PLUS:
+ case MULT:
+ case AND:
+ case IOR:
+ case XOR:
+ case NE:
+ case EQ:
+ return ((exp_equiv_p (XEXP (x, 0), XEXP (y, 0), validate, equal_values)
+ && exp_equiv_p (XEXP (x, 1), XEXP (y, 1),
+ validate, equal_values))
+ || (exp_equiv_p (XEXP (x, 0), XEXP (y, 1),
+ validate, equal_values)
+ && exp_equiv_p (XEXP (x, 1), XEXP (y, 0),
+ validate, equal_values)));
+ }
+
+ /* Compare the elements. If any pair of corresponding elements
+ fail to match, return 0 for the whole things. */
+
+ fmt = GET_RTX_FORMAT (code);
+ for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
+ {
+ switch (fmt[i])
+ {
+ case 'e':
+ if (! exp_equiv_p (XEXP (x, i), XEXP (y, i), validate, equal_values))
+ return 0;
+ break;
+
+ case 'E':
+ if (XVECLEN (x, i) != XVECLEN (y, i))
+ return 0;
+ for (j = 0; j < XVECLEN (x, i); j++)
+ if (! exp_equiv_p (XVECEXP (x, i, j), XVECEXP (y, i, j),
+ validate, equal_values))
+ return 0;
+ break;
+
+ case 's':
+ if (strcmp (XSTR (x, i), XSTR (y, i)))
+ return 0;
+ break;
+
+ case 'i':
+ if (XINT (x, i) != XINT (y, i))
+ return 0;
+ break;
+
+ case 'w':
+ if (XWINT (x, i) != XWINT (y, i))
+ return 0;
+ break;
+
+ case '0':
+ break;
+
+ default:
+ abort ();
+ }
+ }
+
+ return 1;
+}
+
+/* Return 1 iff any subexpression of X matches Y.
+ Here we do not require that X or Y be valid (for registers referred to)
+ for being in the hash table. */
+
+static int
+refers_to_p (x, y)
+ rtx x, y;
+{
+ register int i;
+ register enum rtx_code code;
+ register char *fmt;
+
+ repeat:
+ if (x == y)
+ return 1;
+ if (x == 0 || y == 0)
+ return 0;
+
+ code = GET_CODE (x);
+ /* If X as a whole has the same code as Y, they may match.
+ If so, return 1. */
+ if (code == GET_CODE (y))
+ {
+ if (exp_equiv_p (x, y, 0, 1))
+ return 1;
+ }
+
+ /* X does not match, so try its subexpressions. */
+
+ fmt = GET_RTX_FORMAT (code);
+ for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
+ if (fmt[i] == 'e')
+ {
+ if (i == 0)
+ {
+ x = XEXP (x, 0);
+ goto repeat;
+ }
+ else
+ if (refers_to_p (XEXP (x, i), y))
+ return 1;
+ }
+ else if (fmt[i] == 'E')
+ {
+ int j;
+ for (j = 0; j < XVECLEN (x, i); j++)
+ if (refers_to_p (XVECEXP (x, i, j), y))
+ return 1;
+ }
+
+ return 0;
+}
+
+/* Given ADDR and SIZE (a memory address, and the size of the memory reference),
+ set PBASE, PSTART, and PEND which correspond to the base of the address,
+ the starting offset, and ending offset respectively.
+
+ ADDR is known to be a nonvarying address. */
+
+/* ??? Despite what the comments say, this function is in fact frequently
+ passed varying addresses. This does not appear to cause any problems. */
+
+static void
+set_nonvarying_address_components (addr, size, pbase, pstart, pend)
+ rtx addr;
+ int size;
+ rtx *pbase;
+ HOST_WIDE_INT *pstart, *pend;
+{
+ rtx base;
+ HOST_WIDE_INT start, end;
+
+ base = addr;
+ start = 0;
+ end = 0;
+
+ /* Registers with nonvarying addresses usually have constant equivalents;
+ but the frame pointer register is also possible. */
+ if (GET_CODE (base) == REG
+ && qty_const != 0
+ && REGNO_QTY_VALID_P (REGNO (base))
+ && qty_mode[reg_qty[REGNO (base)]] == GET_MODE (base)
+ && qty_const[reg_qty[REGNO (base)]] != 0)
+ base = qty_const[reg_qty[REGNO (base)]];
+ else if (GET_CODE (base) == PLUS
+ && GET_CODE (XEXP (base, 1)) == CONST_INT
+ && GET_CODE (XEXP (base, 0)) == REG
+ && qty_const != 0
+ && REGNO_QTY_VALID_P (REGNO (XEXP (base, 0)))
+ && (qty_mode[reg_qty[REGNO (XEXP (base, 0))]]
+ == GET_MODE (XEXP (base, 0)))
+ && qty_const[reg_qty[REGNO (XEXP (base, 0))]])
+ {
+ start = INTVAL (XEXP (base, 1));
+ base = qty_const[reg_qty[REGNO (XEXP (base, 0))]];
+ }
+ /* This can happen as the result of virtual register instantiation,
+ if the initial offset is too large to be a valid address. */
+ else if (GET_CODE (base) == PLUS
+ && GET_CODE (XEXP (base, 0)) == REG
+ && GET_CODE (XEXP (base, 1)) == REG
+ && qty_const != 0
+ && REGNO_QTY_VALID_P (REGNO (XEXP (base, 0)))
+ && (qty_mode[reg_qty[REGNO (XEXP (base, 0))]]
+ == GET_MODE (XEXP (base, 0)))
+ && qty_const[reg_qty[REGNO (XEXP (base, 0))]]
+ && REGNO_QTY_VALID_P (REGNO (XEXP (base, 1)))
+ && (qty_mode[reg_qty[REGNO (XEXP (base, 1))]]
+ == GET_MODE (XEXP (base, 1)))
+ && qty_const[reg_qty[REGNO (XEXP (base, 1))]])
+ {
+ rtx tem = qty_const[reg_qty[REGNO (XEXP (base, 1))]];
+ base = qty_const[reg_qty[REGNO (XEXP (base, 0))]];
+
+ /* One of the two values must be a constant. */
+ if (GET_CODE (base) != CONST_INT)
+ {
+ if (GET_CODE (tem) != CONST_INT)
+ abort ();
+ start = INTVAL (tem);
+ }
+ else
+ {
+ start = INTVAL (base);
+ base = tem;
+ }
+ }
+
+ /* Handle everything that we can find inside an address that has been
+ viewed as constant. */
+
+ while (1)
+ {
+ /* If no part of this switch does a "continue", the code outside
+ will exit this loop. */
+
+ switch (GET_CODE (base))
+ {
+ case LO_SUM:
+ /* By definition, operand1 of a LO_SUM is the associated constant
+ address. Use the associated constant address as the base
+ instead. */
+ base = XEXP (base, 1);
+ continue;
+
+ case CONST:
+ /* Strip off CONST. */
+ base = XEXP (base, 0);
+ continue;
+
+ case PLUS:
+ if (GET_CODE (XEXP (base, 1)) == CONST_INT)
+ {
+ start += INTVAL (XEXP (base, 1));
+ base = XEXP (base, 0);
+ continue;
+ }
+ break;
+
+ case AND:
+ /* Handle the case of an AND which is the negative of a power of
+ two. This is used to represent unaligned memory operations. */
+ if (GET_CODE (XEXP (base, 1)) == CONST_INT
+ && exact_log2 (- INTVAL (XEXP (base, 1))) > 0)
+ {
+ set_nonvarying_address_components (XEXP (base, 0), size,
+ pbase, pstart, pend);
+
+ /* Assume the worst misalignment. START is affected, but not
+ END, so compensate but adjusting SIZE. Don't lose any
+ constant we already had. */
+
+ size = *pend - *pstart - INTVAL (XEXP (base, 1)) - 1;
+ start += *pstart + INTVAL (XEXP (base, 1)) + 1;
+ end += *pend;
+ base = *pbase;
+ }
+ break;
+ }
+
+ break;
+ }
+
+ if (GET_CODE (base) == CONST_INT)
+ {
+ start += INTVAL (base);
+ base = const0_rtx;
+ }
+
+ end = start + size;
+
+ /* Set the return values. */
+ *pbase = base;
+ *pstart = start;
+ *pend = end;
+}
+
+/* Return 1 iff any subexpression of X refers to memory
+ at an address of BASE plus some offset
+ such that any of the bytes' offsets fall between START (inclusive)
+ and END (exclusive).
+
+ The value is undefined if X is a varying address (as determined by
+ cse_rtx_addr_varies_p). This function is not used in such cases.
+
+ When used in the cse pass, `qty_const' is nonzero, and it is used
+ to treat an address that is a register with a known constant value
+ as if it were that constant value.
+ In the loop pass, `qty_const' is zero, so this is not done. */
+
+static int
+refers_to_mem_p (x, base, start, end)
+ rtx x, base;
+ HOST_WIDE_INT start, end;
+{
+ register HOST_WIDE_INT i;
+ register enum rtx_code code;
+ register char *fmt;
+
+ repeat:
+ if (x == 0)
+ return 0;
+
+ code = GET_CODE (x);
+ if (code == MEM)
+ {
+ register rtx addr = XEXP (x, 0); /* Get the address. */
+ rtx mybase;
+ HOST_WIDE_INT mystart, myend;
+
+ set_nonvarying_address_components (addr, GET_MODE_SIZE (GET_MODE (x)),
+ &mybase, &mystart, &myend);
+
+
+ /* refers_to_mem_p is never called with varying addresses.
+ If the base addresses are not equal, there is no chance
+ of the memory addresses conflicting. */
+ if (! rtx_equal_p (mybase, base))
+ return 0;
+
+ return myend > start && mystart < end;
+ }
+
+ /* X does not match, so try its subexpressions. */
+
+ fmt = GET_RTX_FORMAT (code);
+ for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
+ if (fmt[i] == 'e')
+ {
+ if (i == 0)
+ {
+ x = XEXP (x, 0);
+ goto repeat;
+ }
+ else
+ if (refers_to_mem_p (XEXP (x, i), base, start, end))
+ return 1;
+ }
+ else if (fmt[i] == 'E')
+ {
+ int j;
+ for (j = 0; j < XVECLEN (x, i); j++)
+ if (refers_to_mem_p (XVECEXP (x, i, j), base, start, end))
+ return 1;
+ }
+
+ return 0;
+}
+
+/* Nonzero if X refers to memory at a varying address;
+ except that a register which has at the moment a known constant value
+ isn't considered variable. */
+
+static int
+cse_rtx_addr_varies_p (x)
+ rtx x;
+{
+ /* We need not check for X and the equivalence class being of the same
+ mode because if X is equivalent to a constant in some mode, it
+ doesn't vary in any mode. */
+
+ if (GET_CODE (x) == MEM
+ && GET_CODE (XEXP (x, 0)) == REG
+ && REGNO_QTY_VALID_P (REGNO (XEXP (x, 0)))
+ && GET_MODE (XEXP (x, 0)) == qty_mode[reg_qty[REGNO (XEXP (x, 0))]]
+ && qty_const[reg_qty[REGNO (XEXP (x, 0))]] != 0)
+ return 0;
+
+ if (GET_CODE (x) == MEM
+ && GET_CODE (XEXP (x, 0)) == PLUS
+ && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
+ && GET_CODE (XEXP (XEXP (x, 0), 0)) == REG
+ && REGNO_QTY_VALID_P (REGNO (XEXP (XEXP (x, 0), 0)))
+ && (GET_MODE (XEXP (XEXP (x, 0), 0))
+ == qty_mode[reg_qty[REGNO (XEXP (XEXP (x, 0), 0))]])
+ && qty_const[reg_qty[REGNO (XEXP (XEXP (x, 0), 0))]])
+ return 0;
+
+ /* This can happen as the result of virtual register instantiation, if
+ the initial constant is too large to be a valid address. This gives
+ us a three instruction sequence, load large offset into a register,
+ load fp minus a constant into a register, then a MEM which is the
+ sum of the two `constant' registers. */
+ if (GET_CODE (x) == MEM
+ && GET_CODE (XEXP (x, 0)) == PLUS
+ && GET_CODE (XEXP (XEXP (x, 0), 0)) == REG
+ && GET_CODE (XEXP (XEXP (x, 0), 1)) == REG
+ && REGNO_QTY_VALID_P (REGNO (XEXP (XEXP (x, 0), 0)))
+ && (GET_MODE (XEXP (XEXP (x, 0), 0))
+ == qty_mode[reg_qty[REGNO (XEXP (XEXP (x, 0), 0))]])
+ && qty_const[reg_qty[REGNO (XEXP (XEXP (x, 0), 0))]]
+ && REGNO_QTY_VALID_P (REGNO (XEXP (XEXP (x, 0), 1)))
+ && (GET_MODE (XEXP (XEXP (x, 0), 1))
+ == qty_mode[reg_qty[REGNO (XEXP (XEXP (x, 0), 1))]])
+ && qty_const[reg_qty[REGNO (XEXP (XEXP (x, 0), 1))]])
+ return 0;
+
+ return rtx_addr_varies_p (x);
+}
+
+/* Canonicalize an expression:
+ replace each register reference inside it
+ with the "oldest" equivalent register.
+
+ If INSN is non-zero and we are replacing a pseudo with a hard register
+ or vice versa, validate_change is used to ensure that INSN remains valid
+ after we make our substitution. The calls are made with IN_GROUP non-zero
+ so apply_change_group must be called upon the outermost return from this
+ function (unless INSN is zero). The result of apply_change_group can
+ generally be discarded since the changes we are making are optional. */
+
+static rtx
+canon_reg (x, insn)
+ rtx x;
+ rtx insn;
+{
+ register int i;
+ register enum rtx_code code;
+ register char *fmt;
+
+ if (x == 0)
+ return x;
+
+ code = GET_CODE (x);
+ switch (code)
+ {
+ case PC:
+ case CC0:
+ case CONST:
+ case CONST_INT:
+ case CONST_DOUBLE:
+ case SYMBOL_REF:
+ case LABEL_REF:
+ case ADDR_VEC:
+ case ADDR_DIFF_VEC:
+ return x;
+
+ case REG:
+ {
+ register int first;
+
+ /* Never replace a hard reg, because hard regs can appear
+ in more than one machine mode, and we must preserve the mode
+ of each occurrence. Also, some hard regs appear in
+ MEMs that are shared and mustn't be altered. Don't try to
+ replace any reg that maps to a reg of class NO_REGS. */
+ if (REGNO (x) < FIRST_PSEUDO_REGISTER
+ || ! REGNO_QTY_VALID_P (REGNO (x)))
+ return x;
+
+ first = qty_first_reg[reg_qty[REGNO (x)]];
+ return (first >= FIRST_PSEUDO_REGISTER ? regno_reg_rtx[first]
+ : REGNO_REG_CLASS (first) == NO_REGS ? x
+ : gen_rtx (REG, qty_mode[reg_qty[REGNO (x)]], first));
+ }
+ }
+
+ fmt = GET_RTX_FORMAT (code);
+ for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
+ {
+ register int j;
+
+ if (fmt[i] == 'e')
+ {
+ rtx new = canon_reg (XEXP (x, i), insn);
+
+ /* If replacing pseudo with hard reg or vice versa, ensure the
+ insn remains valid. Likewise if the insn has MATCH_DUPs. */
+ if (insn != 0 && new != 0
+ && GET_CODE (new) == REG && GET_CODE (XEXP (x, i)) == REG
+ && (((REGNO (new) < FIRST_PSEUDO_REGISTER)
+ != (REGNO (XEXP (x, i)) < FIRST_PSEUDO_REGISTER))
+ || insn_n_dups[recog_memoized (insn)] > 0))
+ validate_change (insn, &XEXP (x, i), new, 1);
+ else
+ XEXP (x, i) = new;
+ }
+ else if (fmt[i] == 'E')
+ for (j = 0; j < XVECLEN (x, i); j++)
+ XVECEXP (x, i, j) = canon_reg (XVECEXP (x, i, j), insn);
+ }
+
+ return x;
+}
+
+/* LOC is a location with INSN that is an operand address (the contents of
+ a MEM). Find the best equivalent address to use that is valid for this
+ insn.
+
+ On most CISC machines, complicated address modes are costly, and rtx_cost
+ is a good approximation for that cost. However, most RISC machines have
+ only a few (usually only one) memory reference formats. If an address is
+ valid at all, it is often just as cheap as any other address. Hence, for
+ RISC machines, we use the configuration macro `ADDRESS_COST' to compare the
+ costs of various addresses. For two addresses of equal cost, choose the one
+ with the highest `rtx_cost' value as that has the potential of eliminating
+ the most insns. For equal costs, we choose the first in the equivalence
+ class. Note that we ignore the fact that pseudo registers are cheaper
+ than hard registers here because we would also prefer the pseudo registers.
+ */
+
+static void
+find_best_addr (insn, loc)
+ rtx insn;
+ rtx *loc;
+{
+ struct table_elt *elt, *p;
+ rtx addr = *loc;
+ int our_cost;
+ int found_better = 1;
+ int save_do_not_record = do_not_record;
+ int save_hash_arg_in_memory = hash_arg_in_memory;
+ int save_hash_arg_in_struct = hash_arg_in_struct;
+ int addr_volatile;
+ int regno;
+ unsigned hash;
+
+ /* Do not try to replace constant addresses or addresses of local and
+ argument slots. These MEM expressions are made only once and inserted
+ in many instructions, as well as being used to control symbol table
+ output. It is not safe to clobber them.
+
+ There are some uncommon cases where the address is already in a register
+ for some reason, but we cannot take advantage of that because we have
+ no easy way to unshare the MEM. In addition, looking up all stack
+ addresses is costly. */
+ if ((GET_CODE (addr) == PLUS
+ && GET_CODE (XEXP (addr, 0)) == REG
+ && GET_CODE (XEXP (addr, 1)) == CONST_INT
+ && (regno = REGNO (XEXP (addr, 0)),
+ regno == FRAME_POINTER_REGNUM || regno == HARD_FRAME_POINTER_REGNUM
+ || regno == ARG_POINTER_REGNUM))
+ || (GET_CODE (addr) == REG
+ && (regno = REGNO (addr), regno == FRAME_POINTER_REGNUM
+ || regno == HARD_FRAME_POINTER_REGNUM
+ || regno == ARG_POINTER_REGNUM))
+ || CONSTANT_ADDRESS_P (addr))
+ return;
+
+ /* If this address is not simply a register, try to fold it. This will
+ sometimes simplify the expression. Many simplifications
+ will not be valid, but some, usually applying the associative rule, will
+ be valid and produce better code. */
+ if (GET_CODE (addr) != REG
+ && validate_change (insn, loc, fold_rtx (addr, insn), 0))
+ addr = *loc;
+
+ /* If this address is not in the hash table, we can't look for equivalences
+ of the whole address. Also, ignore if volatile. */
+
+ do_not_record = 0;
+ hash = HASH (addr, Pmode);
+ addr_volatile = do_not_record;
+ do_not_record = save_do_not_record;
+ hash_arg_in_memory = save_hash_arg_in_memory;
+ hash_arg_in_struct = save_hash_arg_in_struct;
+
+ if (addr_volatile)
+ return;
+
+ elt = lookup (addr, hash, Pmode);
+
+#ifndef ADDRESS_COST
+ if (elt)
+ {
+ our_cost = elt->cost;
+
+ /* Find the lowest cost below ours that works. */
+ for (elt = elt->first_same_value; elt; elt = elt->next_same_value)
+ if (elt->cost < our_cost
+ && (GET_CODE (elt->exp) == REG
+ || exp_equiv_p (elt->exp, elt->exp, 1, 0))
+ && validate_change (insn, loc,
+ canon_reg (copy_rtx (elt->exp), NULL_RTX), 0))
+ return;
+ }
+#else
+
+ if (elt)
+ {
+ /* We need to find the best (under the criteria documented above) entry
+ in the class that is valid. We use the `flag' field to indicate
+ choices that were invalid and iterate until we can't find a better
+ one that hasn't already been tried. */
+
+ for (p = elt->first_same_value; p; p = p->next_same_value)
+ p->flag = 0;
+
+ while (found_better)
+ {
+ int best_addr_cost = ADDRESS_COST (*loc);
+ int best_rtx_cost = (elt->cost + 1) >> 1;
+ struct table_elt *best_elt = elt;
+
+ found_better = 0;
+ for (p = elt->first_same_value; p; p = p->next_same_value)
+ if (! p->flag
+ && (GET_CODE (p->exp) == REG
+ || exp_equiv_p (p->exp, p->exp, 1, 0))
+ && (ADDRESS_COST (p->exp) < best_addr_cost
+ || (ADDRESS_COST (p->exp) == best_addr_cost
+ && (p->cost + 1) >> 1 > best_rtx_cost)))
+ {
+ found_better = 1;
+ best_addr_cost = ADDRESS_COST (p->exp);
+ best_rtx_cost = (p->cost + 1) >> 1;
+ best_elt = p;
+ }
+
+ if (found_better)
+ {
+ if (validate_change (insn, loc,
+ canon_reg (copy_rtx (best_elt->exp),
+ NULL_RTX), 0))
+ return;
+ else
+ best_elt->flag = 1;
+ }
+ }
+ }
+
+ /* If the address is a binary operation with the first operand a register
+ and the second a constant, do the same as above, but looking for
+ equivalences of the register. Then try to simplify before checking for
+ the best address to use. This catches a few cases: First is when we
+ have REG+const and the register is another REG+const. We can often merge
+ the constants and eliminate one insn and one register. It may also be
+ that a machine has a cheap REG+REG+const. Finally, this improves the
+ code on the Alpha for unaligned byte stores. */
+
+ if (flag_expensive_optimizations
+ && (GET_RTX_CLASS (GET_CODE (*loc)) == '2'
+ || GET_RTX_CLASS (GET_CODE (*loc)) == 'c')
+ && GET_CODE (XEXP (*loc, 0)) == REG
+ && GET_CODE (XEXP (*loc, 1)) == CONST_INT)
+ {
+ rtx c = XEXP (*loc, 1);
+
+ do_not_record = 0;
+ hash = HASH (XEXP (*loc, 0), Pmode);
+ do_not_record = save_do_not_record;
+ hash_arg_in_memory = save_hash_arg_in_memory;
+ hash_arg_in_struct = save_hash_arg_in_struct;
+
+ elt = lookup (XEXP (*loc, 0), hash, Pmode);
+ if (elt == 0)
+ return;
+
+ /* We need to find the best (under the criteria documented above) entry
+ in the class that is valid. We use the `flag' field to indicate
+ choices that were invalid and iterate until we can't find a better
+ one that hasn't already been tried. */
+
+ for (p = elt->first_same_value; p; p = p->next_same_value)
+ p->flag = 0;
+
+ while (found_better)
+ {
+ int best_addr_cost = ADDRESS_COST (*loc);
+ int best_rtx_cost = (COST (*loc) + 1) >> 1;
+ struct table_elt *best_elt = elt;
+ rtx best_rtx = *loc;
+ int count;
+
+ /* This is at worst case an O(n^2) algorithm, so limit our search
+ to the first 32 elements on the list. This avoids trouble
+ compiling code with very long basic blocks that can easily
+ call cse_gen_binary so many times that we run out of memory. */
+
+ found_better = 0;
+ for (p = elt->first_same_value, count = 0;
+ p && count < 32;
+ p = p->next_same_value, count++)
+ if (! p->flag
+ && (GET_CODE (p->exp) == REG
+ || exp_equiv_p (p->exp, p->exp, 1, 0)))
+ {
+ rtx new = cse_gen_binary (GET_CODE (*loc), Pmode, p->exp, c);
+
+ if ((ADDRESS_COST (new) < best_addr_cost
+ || (ADDRESS_COST (new) == best_addr_cost
+ && (COST (new) + 1) >> 1 > best_rtx_cost)))
+ {
+ found_better = 1;
+ best_addr_cost = ADDRESS_COST (new);
+ best_rtx_cost = (COST (new) + 1) >> 1;
+ best_elt = p;
+ best_rtx = new;
+ }
+ }
+
+ if (found_better)
+ {
+ if (validate_change (insn, loc,
+ canon_reg (copy_rtx (best_rtx),
+ NULL_RTX), 0))
+ return;
+ else
+ best_elt->flag = 1;
+ }
+ }
+ }
+#endif
+}
+
+/* Given an operation (CODE, *PARG1, *PARG2), where code is a comparison
+ operation (EQ, NE, GT, etc.), follow it back through the hash table and
+ what values are being compared.
+
+ *PARG1 and *PARG2 are updated to contain the rtx representing the values
+ actually being compared. For example, if *PARG1 was (cc0) and *PARG2
+ was (const_int 0), *PARG1 and *PARG2 will be set to the objects that were
+ compared to produce cc0.
+
+ The return value is the comparison operator and is either the code of
+ A or the code corresponding to the inverse of the comparison. */
+
+static enum rtx_code
+find_comparison_args (code, parg1, parg2, pmode1, pmode2)
+ enum rtx_code code;
+ rtx *parg1, *parg2;
+ enum machine_mode *pmode1, *pmode2;
+{
+ rtx arg1, arg2;
+
+ arg1 = *parg1, arg2 = *parg2;
+
+ /* If ARG2 is const0_rtx, see what ARG1 is equivalent to. */
+
+ while (arg2 == CONST0_RTX (GET_MODE (arg1)))
+ {
+ /* Set non-zero when we find something of interest. */
+ rtx x = 0;
+ int reverse_code = 0;
+ struct table_elt *p = 0;
+
+ /* If arg1 is a COMPARE, extract the comparison arguments from it.
+ On machines with CC0, this is the only case that can occur, since
+ fold_rtx will return the COMPARE or item being compared with zero
+ when given CC0. */
+
+ if (GET_CODE (arg1) == COMPARE && arg2 == const0_rtx)
+ x = arg1;
+
+ /* If ARG1 is a comparison operator and CODE is testing for
+ STORE_FLAG_VALUE, get the inner arguments. */
+
+ else if (GET_RTX_CLASS (GET_CODE (arg1)) == '<')
+ {
+ if (code == NE
+ || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
+ && code == LT && STORE_FLAG_VALUE == -1)
+#ifdef FLOAT_STORE_FLAG_VALUE
+ || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_FLOAT
+ && FLOAT_STORE_FLAG_VALUE < 0)
+#endif
+ )
+ x = arg1;
+ else if (code == EQ
+ || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
+ && code == GE && STORE_FLAG_VALUE == -1)
+#ifdef FLOAT_STORE_FLAG_VALUE
+ || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_FLOAT
+ && FLOAT_STORE_FLAG_VALUE < 0)
+#endif
+ )
+ x = arg1, reverse_code = 1;
+ }
+
+ /* ??? We could also check for
+
+ (ne (and (eq (...) (const_int 1))) (const_int 0))
+
+ and related forms, but let's wait until we see them occurring. */
+
+ if (x == 0)
+ /* Look up ARG1 in the hash table and see if it has an equivalence
+ that lets us see what is being compared. */
+ p = lookup (arg1, safe_hash (arg1, GET_MODE (arg1)) % NBUCKETS,
+ GET_MODE (arg1));
+ if (p) p = p->first_same_value;
+
+ for (; p; p = p->next_same_value)
+ {
+ enum machine_mode inner_mode = GET_MODE (p->exp);
+
+ /* If the entry isn't valid, skip it. */
+ if (! exp_equiv_p (p->exp, p->exp, 1, 0))
+ continue;
+
+ if (GET_CODE (p->exp) == COMPARE
+ /* Another possibility is that this machine has a compare insn
+ that includes the comparison code. In that case, ARG1 would
+ be equivalent to a comparison operation that would set ARG1 to
+ either STORE_FLAG_VALUE or zero. If this is an NE operation,
+ ORIG_CODE is the actual comparison being done; if it is an EQ,
+ we must reverse ORIG_CODE. On machine with a negative value
+ for STORE_FLAG_VALUE, also look at LT and GE operations. */
+ || ((code == NE
+ || (code == LT
+ && GET_MODE_CLASS (inner_mode) == MODE_INT
+ && (GET_MODE_BITSIZE (inner_mode)
+ <= HOST_BITS_PER_WIDE_INT)
+ && (STORE_FLAG_VALUE
+ & ((HOST_WIDE_INT) 1
+ << (GET_MODE_BITSIZE (inner_mode) - 1))))
+#ifdef FLOAT_STORE_FLAG_VALUE
+ || (code == LT
+ && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
+ && FLOAT_STORE_FLAG_VALUE < 0)
+#endif
+ )
+ && GET_RTX_CLASS (GET_CODE (p->exp)) == '<'))
+ {
+ x = p->exp;
+ break;
+ }
+ else if ((code == EQ
+ || (code == GE
+ && GET_MODE_CLASS (inner_mode) == MODE_INT
+ && (GET_MODE_BITSIZE (inner_mode)
+ <= HOST_BITS_PER_WIDE_INT)
+ && (STORE_FLAG_VALUE
+ & ((HOST_WIDE_INT) 1
+ << (GET_MODE_BITSIZE (inner_mode) - 1))))
+#ifdef FLOAT_STORE_FLAG_VALUE
+ || (code == GE
+ && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
+ && FLOAT_STORE_FLAG_VALUE < 0)
+#endif
+ )
+ && GET_RTX_CLASS (GET_CODE (p->exp)) == '<')
+ {
+ reverse_code = 1;
+ x = p->exp;
+ break;
+ }
+
+ /* If this is fp + constant, the equivalent is a better operand since
+ it may let us predict the value of the comparison. */
+ else if (NONZERO_BASE_PLUS_P (p->exp))
+ {
+ arg1 = p->exp;
+ continue;
+ }
+ }
+
+ /* If we didn't find a useful equivalence for ARG1, we are done.
+ Otherwise, set up for the next iteration. */
+ if (x == 0)
+ break;
+
+ arg1 = XEXP (x, 0), arg2 = XEXP (x, 1);
+ if (GET_RTX_CLASS (GET_CODE (x)) == '<')
+ code = GET_CODE (x);
+
+ if (reverse_code)
+ code = reverse_condition (code);
+ }
+
+ /* Return our results. Return the modes from before fold_rtx
+ because fold_rtx might produce const_int, and then it's too late. */
+ *pmode1 = GET_MODE (arg1), *pmode2 = GET_MODE (arg2);
+ *parg1 = fold_rtx (arg1, 0), *parg2 = fold_rtx (arg2, 0);
+
+ return code;
+}
+
+/* Try to simplify a unary operation CODE whose output mode is to be
+ MODE with input operand OP whose mode was originally OP_MODE.
+ Return zero if no simplification can be made. */
+
+rtx
+simplify_unary_operation (code, mode, op, op_mode)
+ enum rtx_code code;
+ enum machine_mode mode;
+ rtx op;
+ enum machine_mode op_mode;
+{
+ register int width = GET_MODE_BITSIZE (mode);
+
+ /* The order of these tests is critical so that, for example, we don't
+ check the wrong mode (input vs. output) for a conversion operation,
+ such as FIX. At some point, this should be simplified. */
+
+#if !defined(REAL_IS_NOT_DOUBLE) || defined(REAL_ARITHMETIC)
+
+ if (code == FLOAT && GET_MODE (op) == VOIDmode
+ && (GET_CODE (op) == CONST_DOUBLE || GET_CODE (op) == CONST_INT))
+ {
+ HOST_WIDE_INT hv, lv;
+ REAL_VALUE_TYPE d;
+
+ if (GET_CODE (op) == CONST_INT)
+ lv = INTVAL (op), hv = INTVAL (op) < 0 ? -1 : 0;
+ else
+ lv = CONST_DOUBLE_LOW (op), hv = CONST_DOUBLE_HIGH (op);
+
+#ifdef REAL_ARITHMETIC
+ REAL_VALUE_FROM_INT (d, lv, hv);
+#else
+ if (hv < 0)
+ {
+ d = (double) (~ hv);
+ d *= ((double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2))
+ * (double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)));
+ d += (double) (unsigned HOST_WIDE_INT) (~ lv);
+ d = (- d - 1.0);
+ }
+ else
+ {
+ d = (double) hv;
+ d *= ((double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2))
+ * (double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)));
+ d += (double) (unsigned HOST_WIDE_INT) lv;
+ }
+#endif /* REAL_ARITHMETIC */
+ d = real_value_truncate (mode, d);
+ return CONST_DOUBLE_FROM_REAL_VALUE (d, mode);
+ }
+ else if (code == UNSIGNED_FLOAT && GET_MODE (op) == VOIDmode
+ && (GET_CODE (op) == CONST_DOUBLE || GET_CODE (op) == CONST_INT))
+ {
+ HOST_WIDE_INT hv, lv;
+ REAL_VALUE_TYPE d;
+
+ if (GET_CODE (op) == CONST_INT)
+ lv = INTVAL (op), hv = INTVAL (op) < 0 ? -1 : 0;
+ else
+ lv = CONST_DOUBLE_LOW (op), hv = CONST_DOUBLE_HIGH (op);
+
+ if (op_mode == VOIDmode)
+ {
+ /* We don't know how to interpret negative-looking numbers in
+ this case, so don't try to fold those. */
+ if (hv < 0)
+ return 0;
+ }
+ else if (GET_MODE_BITSIZE (op_mode) >= HOST_BITS_PER_WIDE_INT * 2)
+ ;
+ else
+ hv = 0, lv &= GET_MODE_MASK (op_mode);
+
+#ifdef REAL_ARITHMETIC
+ REAL_VALUE_FROM_UNSIGNED_INT (d, lv, hv);
+#else
+
+ d = (double) (unsigned HOST_WIDE_INT) hv;
+ d *= ((double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2))
+ * (double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)));
+ d += (double) (unsigned HOST_WIDE_INT) lv;
+#endif /* REAL_ARITHMETIC */
+ d = real_value_truncate (mode, d);
+ return CONST_DOUBLE_FROM_REAL_VALUE (d, mode);
+ }
+#endif
+
+ if (GET_CODE (op) == CONST_INT
+ && width <= HOST_BITS_PER_WIDE_INT && width > 0)
+ {
+ register HOST_WIDE_INT arg0 = INTVAL (op);
+ register HOST_WIDE_INT val;
+
+ switch (code)
+ {
+ case NOT:
+ val = ~ arg0;
+ break;
+
+ case NEG:
+ val = - arg0;
+ break;
+
+ case ABS:
+ val = (arg0 >= 0 ? arg0 : - arg0);
+ break;
+
+ case FFS:
+ /* Don't use ffs here. Instead, get low order bit and then its
+ number. If arg0 is zero, this will return 0, as desired. */
+ arg0 &= GET_MODE_MASK (mode);
+ val = exact_log2 (arg0 & (- arg0)) + 1;
+ break;
+
+ case TRUNCATE:
+ val = arg0;
+ break;
+
+ case ZERO_EXTEND:
+ if (op_mode == VOIDmode)
+ op_mode = mode;
+ if (GET_MODE_BITSIZE (op_mode) == HOST_BITS_PER_WIDE_INT)
+ {
+ /* If we were really extending the mode,
+ we would have to distinguish between zero-extension
+ and sign-extension. */
+ if (width != GET_MODE_BITSIZE (op_mode))
+ abort ();
+ val = arg0;
+ }
+ else if (GET_MODE_BITSIZE (op_mode) < HOST_BITS_PER_WIDE_INT)
+ val = arg0 & ~((HOST_WIDE_INT) (-1) << GET_MODE_BITSIZE (op_mode));
+ else
+ return 0;
+ break;
+
+ case SIGN_EXTEND:
+ if (op_mode == VOIDmode)
+ op_mode = mode;
+ if (GET_MODE_BITSIZE (op_mode) == HOST_BITS_PER_WIDE_INT)
+ {
+ /* If we were really extending the mode,
+ we would have to distinguish between zero-extension
+ and sign-extension. */
+ if (width != GET_MODE_BITSIZE (op_mode))
+ abort ();
+ val = arg0;
+ }
+ else if (GET_MODE_BITSIZE (op_mode) < HOST_BITS_PER_WIDE_INT)
+ {
+ val
+ = arg0 & ~((HOST_WIDE_INT) (-1) << GET_MODE_BITSIZE (op_mode));
+ if (val
+ & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (op_mode) - 1)))
+ val -= (HOST_WIDE_INT) 1 << GET_MODE_BITSIZE (op_mode);
+ }
+ else
+ return 0;
+ break;
+
+ case SQRT:
+ return 0;
+
+ default:
+ abort ();
+ }
+
+ /* Clear the bits that don't belong in our mode,
+ unless they and our sign bit are all one.
+ So we get either a reasonable negative value or a reasonable
+ unsigned value for this mode. */
+ if (width < HOST_BITS_PER_WIDE_INT
+ && ((val & ((HOST_WIDE_INT) (-1) << (width - 1)))
+ != ((HOST_WIDE_INT) (-1) << (width - 1))))
+ val &= ((HOST_WIDE_INT) 1 << width) - 1;
+
+ return GEN_INT (val);
+ }
+
+ /* We can do some operations on integer CONST_DOUBLEs. Also allow
+ for a DImode operation on a CONST_INT. */
+ else if (GET_MODE (op) == VOIDmode && width <= HOST_BITS_PER_INT * 2
+ && (GET_CODE (op) == CONST_DOUBLE || GET_CODE (op) == CONST_INT))
+ {
+ HOST_WIDE_INT l1, h1, lv, hv;
+
+ if (GET_CODE (op) == CONST_DOUBLE)
+ l1 = CONST_DOUBLE_LOW (op), h1 = CONST_DOUBLE_HIGH (op);
+ else
+ l1 = INTVAL (op), h1 = l1 < 0 ? -1 : 0;
+
+ switch (code)
+ {
+ case NOT:
+ lv = ~ l1;
+ hv = ~ h1;
+ break;
+
+ case NEG:
+ neg_double (l1, h1, &lv, &hv);
+ break;
+
+ case ABS:
+ if (h1 < 0)
+ neg_double (l1, h1, &lv, &hv);
+ else
+ lv = l1, hv = h1;
+ break;
+
+ case FFS:
+ hv = 0;
+ if (l1 == 0)
+ lv = HOST_BITS_PER_WIDE_INT + exact_log2 (h1 & (-h1)) + 1;
+ else
+ lv = exact_log2 (l1 & (-l1)) + 1;
+ break;
+
+ case TRUNCATE:
+ /* This is just a change-of-mode, so do nothing. */
+ lv = l1, hv = h1;
+ break;
+
+ case ZERO_EXTEND:
+ if (op_mode == VOIDmode
+ || GET_MODE_BITSIZE (op_mode) > HOST_BITS_PER_WIDE_INT)
+ return 0;
+
+ hv = 0;
+ lv = l1 & GET_MODE_MASK (op_mode);
+ break;
+
+ case SIGN_EXTEND:
+ if (op_mode == VOIDmode
+ || GET_MODE_BITSIZE (op_mode) > HOST_BITS_PER_WIDE_INT)
+ return 0;
+ else
+ {
+ lv = l1 & GET_MODE_MASK (op_mode);
+ if (GET_MODE_BITSIZE (op_mode) < HOST_BITS_PER_WIDE_INT
+ && (lv & ((HOST_WIDE_INT) 1
+ << (GET_MODE_BITSIZE (op_mode) - 1))) != 0)
+ lv -= (HOST_WIDE_INT) 1 << GET_MODE_BITSIZE (op_mode);
+
+ hv = (lv < 0) ? ~ (HOST_WIDE_INT) 0 : 0;
+ }
+ break;
+
+ case SQRT:
+ return 0;
+
+ default:
+ return 0;
+ }
+
+ return immed_double_const (lv, hv, mode);
+ }
+
+#if ! defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
+ else if (GET_CODE (op) == CONST_DOUBLE
+ && GET_MODE_CLASS (mode) == MODE_FLOAT)
+ {
+ REAL_VALUE_TYPE d;
+ jmp_buf handler;
+ rtx x;
+
+ if (setjmp (handler))
+ /* There used to be a warning here, but that is inadvisable.
+ People may want to cause traps, and the natural way
+ to do it should not get a warning. */
+ return 0;
+
+ set_float_handler (handler);
+
+ REAL_VALUE_FROM_CONST_DOUBLE (d, op);
+
+ switch (code)
+ {
+ case NEG:
+ d = REAL_VALUE_NEGATE (d);
+ break;
+
+ case ABS:
+ if (REAL_VALUE_NEGATIVE (d))
+ d = REAL_VALUE_NEGATE (d);
+ break;
+
+ case FLOAT_TRUNCATE:
+ d = real_value_truncate (mode, d);
+ break;
+
+ case FLOAT_EXTEND:
+ /* All this does is change the mode. */
+ break;
+
+ case FIX:
+ d = REAL_VALUE_RNDZINT (d);
+ break;
+
+ case UNSIGNED_FIX:
+ d = REAL_VALUE_UNSIGNED_RNDZINT (d);
+ break;
+
+ case SQRT:
+ return 0;
+
+ default:
+ abort ();
+ }
+
+ x = CONST_DOUBLE_FROM_REAL_VALUE (d, mode);
+ set_float_handler (NULL_PTR);
+ return x;
+ }
+
+ else if (GET_CODE (op) == CONST_DOUBLE
+ && GET_MODE_CLASS (GET_MODE (op)) == MODE_FLOAT
+ && GET_MODE_CLASS (mode) == MODE_INT
+ && width <= HOST_BITS_PER_WIDE_INT && width > 0)
+ {
+ REAL_VALUE_TYPE d;
+ jmp_buf handler;
+ HOST_WIDE_INT val;
+
+ if (setjmp (handler))
+ return 0;
+
+ set_float_handler (handler);
+
+ REAL_VALUE_FROM_CONST_DOUBLE (d, op);
+
+ switch (code)
+ {
+ case FIX:
+ val = REAL_VALUE_FIX (d);
+ break;
+
+ case UNSIGNED_FIX:
+ val = REAL_VALUE_UNSIGNED_FIX (d);
+ break;
+
+ default:
+ abort ();
+ }
+
+ set_float_handler (NULL_PTR);
+
+ /* Clear the bits that don't belong in our mode,
+ unless they and our sign bit are all one.
+ So we get either a reasonable negative value or a reasonable
+ unsigned value for this mode. */
+ if (width < HOST_BITS_PER_WIDE_INT
+ && ((val & ((HOST_WIDE_INT) (-1) << (width - 1)))
+ != ((HOST_WIDE_INT) (-1) << (width - 1))))
+ val &= ((HOST_WIDE_INT) 1 << width) - 1;
+
+ /* If this would be an entire word for the target, but is not for
+ the host, then sign-extend on the host so that the number will look
+ the same way on the host that it would on the target.
+
+ For example, when building a 64 bit alpha hosted 32 bit sparc
+ targeted compiler, then we want the 32 bit unsigned value -1 to be
+ represented as a 64 bit value -1, and not as 0x00000000ffffffff.
+ The later confuses the sparc backend. */
+
+ if (BITS_PER_WORD < HOST_BITS_PER_WIDE_INT && BITS_PER_WORD == width
+ && (val & ((HOST_WIDE_INT) 1 << (width - 1))))
+ val |= ((HOST_WIDE_INT) (-1) << width);
+
+ return GEN_INT (val);
+ }
+#endif
+ /* This was formerly used only for non-IEEE float.
+ eggert@twinsun.com says it is safe for IEEE also. */
+ else
+ {
+ /* There are some simplifications we can do even if the operands
+ aren't constant. */
+ switch (code)
+ {
+ case NEG:
+ case NOT:
+ /* (not (not X)) == X, similarly for NEG. */
+ if (GET_CODE (op) == code)
+ return XEXP (op, 0);
+ break;
+
+ case SIGN_EXTEND:
+ /* (sign_extend (truncate (minus (label_ref L1) (label_ref L2))))
+ becomes just the MINUS if its mode is MODE. This allows
+ folding switch statements on machines using casesi (such as
+ the Vax). */
+ if (GET_CODE (op) == TRUNCATE
+ && GET_MODE (XEXP (op, 0)) == mode
+ && GET_CODE (XEXP (op, 0)) == MINUS
+ && GET_CODE (XEXP (XEXP (op, 0), 0)) == LABEL_REF
+ && GET_CODE (XEXP (XEXP (op, 0), 1)) == LABEL_REF)
+ return XEXP (op, 0);
+
+#ifdef POINTERS_EXTEND_UNSIGNED
+ if (! POINTERS_EXTEND_UNSIGNED
+ && mode == Pmode && GET_MODE (op) == ptr_mode
+ && CONSTANT_P (op))
+ return convert_memory_address (Pmode, op);
+#endif
+ break;
+
+#ifdef POINTERS_EXTEND_UNSIGNED
+ case ZERO_EXTEND:
+ if (POINTERS_EXTEND_UNSIGNED
+ && mode == Pmode && GET_MODE (op) == ptr_mode
+ && CONSTANT_P (op))
+ return convert_memory_address (Pmode, op);
+ break;
+#endif
+ }
+
+ return 0;
+ }
+}
+
+/* Simplify a binary operation CODE with result mode MODE, operating on OP0
+ and OP1. Return 0 if no simplification is possible.
+
+ Don't use this for relational operations such as EQ or LT.
+ Use simplify_relational_operation instead. */
+
+rtx
+simplify_binary_operation (code, mode, op0, op1)
+ enum rtx_code code;
+ enum machine_mode mode;
+ rtx op0, op1;
+{
+ register HOST_WIDE_INT arg0, arg1, arg0s, arg1s;
+ HOST_WIDE_INT val;
+ int width = GET_MODE_BITSIZE (mode);
+ rtx tem;
+
+ /* Relational operations don't work here. We must know the mode
+ of the operands in order to do the comparison correctly.
+ Assuming a full word can give incorrect results.
+ Consider comparing 128 with -128 in QImode. */
+
+ if (GET_RTX_CLASS (code) == '<')
+ abort ();
+
+#if ! defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
+ if (GET_MODE_CLASS (mode) == MODE_FLOAT
+ && GET_CODE (op0) == CONST_DOUBLE && GET_CODE (op1) == CONST_DOUBLE
+ && mode == GET_MODE (op0) && mode == GET_MODE (op1))
+ {
+ REAL_VALUE_TYPE f0, f1, value;
+ jmp_buf handler;
+
+ if (setjmp (handler))
+ return 0;
+
+ set_float_handler (handler);
+
+ REAL_VALUE_FROM_CONST_DOUBLE (f0, op0);
+ REAL_VALUE_FROM_CONST_DOUBLE (f1, op1);
+ f0 = real_value_truncate (mode, f0);
+ f1 = real_value_truncate (mode, f1);
+
+#ifdef REAL_ARITHMETIC
+ REAL_ARITHMETIC (value, rtx_to_tree_code (code), f0, f1);
+#else
+ switch (code)
+ {
+ case PLUS:
+ value = f0 + f1;
+ break;
+ case MINUS:
+ value = f0 - f1;
+ break;
+ case MULT:
+ value = f0 * f1;
+ break;
+ case DIV:
+#ifndef REAL_INFINITY
+ if (f1 == 0)
+ return 0;
+#endif
+ value = f0 / f1;
+ break;
+ case SMIN:
+ value = MIN (f0, f1);
+ break;
+ case SMAX:
+ value = MAX (f0, f1);
+ break;
+ default:
+ abort ();
+ }
+#endif
+
+ value = real_value_truncate (mode, value);
+ set_float_handler (NULL_PTR);
+ return CONST_DOUBLE_FROM_REAL_VALUE (value, mode);
+ }
+#endif /* not REAL_IS_NOT_DOUBLE, or REAL_ARITHMETIC */
+
+ /* We can fold some multi-word operations. */
+ if (GET_MODE_CLASS (mode) == MODE_INT
+ && width == HOST_BITS_PER_WIDE_INT * 2
+ && (GET_CODE (op0) == CONST_DOUBLE || GET_CODE (op0) == CONST_INT)
+ && (GET_CODE (op1) == CONST_DOUBLE || GET_CODE (op1) == CONST_INT))
+ {
+ HOST_WIDE_INT l1, l2, h1, h2, lv, hv;
+
+ if (GET_CODE (op0) == CONST_DOUBLE)
+ l1 = CONST_DOUBLE_LOW (op0), h1 = CONST_DOUBLE_HIGH (op0);
+ else
+ l1 = INTVAL (op0), h1 = l1 < 0 ? -1 : 0;
+
+ if (GET_CODE (op1) == CONST_DOUBLE)
+ l2 = CONST_DOUBLE_LOW (op1), h2 = CONST_DOUBLE_HIGH (op1);
+ else
+ l2 = INTVAL (op1), h2 = l2 < 0 ? -1 : 0;
+
+ switch (code)
+ {
+ case MINUS:
+ /* A - B == A + (-B). */
+ neg_double (l2, h2, &lv, &hv);
+ l2 = lv, h2 = hv;
+
+ /* .. fall through ... */
+
+ case PLUS:
+ add_double (l1, h1, l2, h2, &lv, &hv);
+ break;
+
+ case MULT:
+ mul_double (l1, h1, l2, h2, &lv, &hv);
+ break;
+
+ case DIV: case MOD: case UDIV: case UMOD:
+ /* We'd need to include tree.h to do this and it doesn't seem worth
+ it. */
+ return 0;
+
+ case AND:
+ lv = l1 & l2, hv = h1 & h2;
+ break;
+
+ case IOR:
+ lv = l1 | l2, hv = h1 | h2;
+ break;
+
+ case XOR:
+ lv = l1 ^ l2, hv = h1 ^ h2;
+ break;
+
+ case SMIN:
+ if (h1 < h2
+ || (h1 == h2
+ && ((unsigned HOST_WIDE_INT) l1
+ < (unsigned HOST_WIDE_INT) l2)))
+ lv = l1, hv = h1;
+ else
+ lv = l2, hv = h2;
+ break;
+
+ case SMAX:
+ if (h1 > h2
+ || (h1 == h2
+ && ((unsigned HOST_WIDE_INT) l1
+ > (unsigned HOST_WIDE_INT) l2)))
+ lv = l1, hv = h1;
+ else
+ lv = l2, hv = h2;
+ break;
+
+ case UMIN:
+ if ((unsigned HOST_WIDE_INT) h1 < (unsigned HOST_WIDE_INT) h2
+ || (h1 == h2
+ && ((unsigned HOST_WIDE_INT) l1
+ < (unsigned HOST_WIDE_INT) l2)))
+ lv = l1, hv = h1;
+ else
+ lv = l2, hv = h2;
+ break;
+
+ case UMAX:
+ if ((unsigned HOST_WIDE_INT) h1 > (unsigned HOST_WIDE_INT) h2
+ || (h1 == h2
+ && ((unsigned HOST_WIDE_INT) l1
+ > (unsigned HOST_WIDE_INT) l2)))
+ lv = l1, hv = h1;
+ else
+ lv = l2, hv = h2;
+ break;
+
+ case LSHIFTRT: case ASHIFTRT:
+ case ASHIFT:
+ case ROTATE: case ROTATERT:
+#ifdef SHIFT_COUNT_TRUNCATED
+ if (SHIFT_COUNT_TRUNCATED)
+ l2 &= (GET_MODE_BITSIZE (mode) - 1), h2 = 0;
+#endif
+
+ if (h2 != 0 || l2 < 0 || l2 >= GET_MODE_BITSIZE (mode))
+ return 0;
+
+ if (code == LSHIFTRT || code == ASHIFTRT)
+ rshift_double (l1, h1, l2, GET_MODE_BITSIZE (mode), &lv, &hv,
+ code == ASHIFTRT);
+ else if (code == ASHIFT)
+ lshift_double (l1, h1, l2, GET_MODE_BITSIZE (mode), &lv, &hv, 1);
+ else if (code == ROTATE)
+ lrotate_double (l1, h1, l2, GET_MODE_BITSIZE (mode), &lv, &hv);
+ else /* code == ROTATERT */
+ rrotate_double (l1, h1, l2, GET_MODE_BITSIZE (mode), &lv, &hv);
+ break;
+
+ default:
+ return 0;
+ }
+
+ return immed_double_const (lv, hv, mode);
+ }
+
+ if (GET_CODE (op0) != CONST_INT || GET_CODE (op1) != CONST_INT
+ || width > HOST_BITS_PER_WIDE_INT || width == 0)
+ {
+ /* Even if we can't compute a constant result,
+ there are some cases worth simplifying. */
+
+ switch (code)
+ {
+ case PLUS:
+ /* In IEEE floating point, x+0 is not the same as x. Similarly
+ for the other optimizations below. */
+ if (TARGET_FLOAT_FORMAT == IEEE_FLOAT_FORMAT
+ && FLOAT_MODE_P (mode) && ! flag_fast_math)
+ break;
+
+ if (op1 == CONST0_RTX (mode))
+ return op0;
+
+ /* ((-a) + b) -> (b - a) and similarly for (a + (-b)) */
+ if (GET_CODE (op0) == NEG)
+ return cse_gen_binary (MINUS, mode, op1, XEXP (op0, 0));
+ else if (GET_CODE (op1) == NEG)
+ return cse_gen_binary (MINUS, mode, op0, XEXP (op1, 0));
+
+ /* Handle both-operands-constant cases. We can only add
+ CONST_INTs to constants since the sum of relocatable symbols
+ can't be handled by most assemblers. Don't add CONST_INT
+ to CONST_INT since overflow won't be computed properly if wider
+ than HOST_BITS_PER_WIDE_INT. */
+
+ if (CONSTANT_P (op0) && GET_MODE (op0) != VOIDmode
+ && GET_CODE (op1) == CONST_INT)
+ return plus_constant (op0, INTVAL (op1));
+ else if (CONSTANT_P (op1) && GET_MODE (op1) != VOIDmode
+ && GET_CODE (op0) == CONST_INT)
+ return plus_constant (op1, INTVAL (op0));
+
+ /* See if this is something like X * C - X or vice versa or
+ if the multiplication is written as a shift. If so, we can
+ distribute and make a new multiply, shift, or maybe just
+ have X (if C is 2 in the example above). But don't make
+ real multiply if we didn't have one before. */
+
+ if (! FLOAT_MODE_P (mode))
+ {
+ HOST_WIDE_INT coeff0 = 1, coeff1 = 1;
+ rtx lhs = op0, rhs = op1;
+ int had_mult = 0;
+
+ if (GET_CODE (lhs) == NEG)
+ coeff0 = -1, lhs = XEXP (lhs, 0);
+ else if (GET_CODE (lhs) == MULT
+ && GET_CODE (XEXP (lhs, 1)) == CONST_INT)
+ {
+ coeff0 = INTVAL (XEXP (lhs, 1)), lhs = XEXP (lhs, 0);
+ had_mult = 1;
+ }
+ else if (GET_CODE (lhs) == ASHIFT
+ && GET_CODE (XEXP (lhs, 1)) == CONST_INT
+ && INTVAL (XEXP (lhs, 1)) >= 0
+ && INTVAL (XEXP (lhs, 1)) < HOST_BITS_PER_WIDE_INT)
+ {
+ coeff0 = ((HOST_WIDE_INT) 1) << INTVAL (XEXP (lhs, 1));
+ lhs = XEXP (lhs, 0);
+ }
+
+ if (GET_CODE (rhs) == NEG)
+ coeff1 = -1, rhs = XEXP (rhs, 0);
+ else if (GET_CODE (rhs) == MULT
+ && GET_CODE (XEXP (rhs, 1)) == CONST_INT)
+ {
+ coeff1 = INTVAL (XEXP (rhs, 1)), rhs = XEXP (rhs, 0);
+ had_mult = 1;
+ }
+ else if (GET_CODE (rhs) == ASHIFT
+ && GET_CODE (XEXP (rhs, 1)) == CONST_INT
+ && INTVAL (XEXP (rhs, 1)) >= 0
+ && INTVAL (XEXP (rhs, 1)) < HOST_BITS_PER_WIDE_INT)
+ {
+ coeff1 = ((HOST_WIDE_INT) 1) << INTVAL (XEXP (rhs, 1));
+ rhs = XEXP (rhs, 0);
+ }
+
+ if (rtx_equal_p (lhs, rhs))
+ {
+ tem = cse_gen_binary (MULT, mode, lhs,
+ GEN_INT (coeff0 + coeff1));
+ return (GET_CODE (tem) == MULT && ! had_mult) ? 0 : tem;
+ }
+ }
+
+ /* If one of the operands is a PLUS or a MINUS, see if we can
+ simplify this by the associative law.
+ Don't use the associative law for floating point.
+ The inaccuracy makes it nonassociative,
+ and subtle programs can break if operations are associated. */
+
+ if (INTEGRAL_MODE_P (mode)
+ && (GET_CODE (op0) == PLUS || GET_CODE (op0) == MINUS
+ || GET_CODE (op1) == PLUS || GET_CODE (op1) == MINUS)
+ && (tem = simplify_plus_minus (code, mode, op0, op1)) != 0)
+ return tem;
+ break;
+
+ case COMPARE:
+#ifdef HAVE_cc0
+ /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
+ using cc0, in which case we want to leave it as a COMPARE
+ so we can distinguish it from a register-register-copy.
+
+ In IEEE floating point, x-0 is not the same as x. */
+
+ if ((TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
+ || ! FLOAT_MODE_P (mode) || flag_fast_math)
+ && op1 == CONST0_RTX (mode))
+ return op0;
+#else
+ /* Do nothing here. */
+#endif
+ break;
+
+ case MINUS:
+ /* None of these optimizations can be done for IEEE
+ floating point. */
+ if (TARGET_FLOAT_FORMAT == IEEE_FLOAT_FORMAT
+ && FLOAT_MODE_P (mode) && ! flag_fast_math)
+ break;
+
+ /* We can't assume x-x is 0 even with non-IEEE floating point,
+ but since it is zero except in very strange circumstances, we
+ will treat it as zero with -ffast-math. */
+ if (rtx_equal_p (op0, op1)
+ && ! side_effects_p (op0)
+ && (! FLOAT_MODE_P (mode) || flag_fast_math))
+ return CONST0_RTX (mode);
+
+ /* Change subtraction from zero into negation. */
+ if (op0 == CONST0_RTX (mode))
+ return gen_rtx (NEG, mode, op1);
+
+ /* (-1 - a) is ~a. */
+ if (op0 == constm1_rtx)
+ return gen_rtx (NOT, mode, op1);
+
+ /* Subtracting 0 has no effect. */
+ if (op1 == CONST0_RTX (mode))
+ return op0;
+
+ /* See if this is something like X * C - X or vice versa or
+ if the multiplication is written as a shift. If so, we can
+ distribute and make a new multiply, shift, or maybe just
+ have X (if C is 2 in the example above). But don't make
+ real multiply if we didn't have one before. */
+
+ if (! FLOAT_MODE_P (mode))
+ {
+ HOST_WIDE_INT coeff0 = 1, coeff1 = 1;
+ rtx lhs = op0, rhs = op1;
+ int had_mult = 0;
+
+ if (GET_CODE (lhs) == NEG)
+ coeff0 = -1, lhs = XEXP (lhs, 0);
+ else if (GET_CODE (lhs) == MULT
+ && GET_CODE (XEXP (lhs, 1)) == CONST_INT)
+ {
+ coeff0 = INTVAL (XEXP (lhs, 1)), lhs = XEXP (lhs, 0);
+ had_mult = 1;
+ }
+ else if (GET_CODE (lhs) == ASHIFT
+ && GET_CODE (XEXP (lhs, 1)) == CONST_INT
+ && INTVAL (XEXP (lhs, 1)) >= 0
+ && INTVAL (XEXP (lhs, 1)) < HOST_BITS_PER_WIDE_INT)
+ {
+ coeff0 = ((HOST_WIDE_INT) 1) << INTVAL (XEXP (lhs, 1));
+ lhs = XEXP (lhs, 0);
+ }
+
+ if (GET_CODE (rhs) == NEG)
+ coeff1 = - 1, rhs = XEXP (rhs, 0);
+ else if (GET_CODE (rhs) == MULT
+ && GET_CODE (XEXP (rhs, 1)) == CONST_INT)
+ {
+ coeff1 = INTVAL (XEXP (rhs, 1)), rhs = XEXP (rhs, 0);
+ had_mult = 1;
+ }
+ else if (GET_CODE (rhs) == ASHIFT
+ && GET_CODE (XEXP (rhs, 1)) == CONST_INT
+ && INTVAL (XEXP (rhs, 1)) >= 0
+ && INTVAL (XEXP (rhs, 1)) < HOST_BITS_PER_WIDE_INT)
+ {
+ coeff1 = ((HOST_WIDE_INT) 1) << INTVAL (XEXP (rhs, 1));
+ rhs = XEXP (rhs, 0);
+ }
+
+ if (rtx_equal_p (lhs, rhs))
+ {
+ tem = cse_gen_binary (MULT, mode, lhs,
+ GEN_INT (coeff0 - coeff1));
+ return (GET_CODE (tem) == MULT && ! had_mult) ? 0 : tem;
+ }
+ }
+
+ /* (a - (-b)) -> (a + b). */
+ if (GET_CODE (op1) == NEG)
+ return cse_gen_binary (PLUS, mode, op0, XEXP (op1, 0));
+
+ /* If one of the operands is a PLUS or a MINUS, see if we can
+ simplify this by the associative law.
+ Don't use the associative law for floating point.
+ The inaccuracy makes it nonassociative,
+ and subtle programs can break if operations are associated. */
+
+ if (INTEGRAL_MODE_P (mode)
+ && (GET_CODE (op0) == PLUS || GET_CODE (op0) == MINUS
+ || GET_CODE (op1) == PLUS || GET_CODE (op1) == MINUS)
+ && (tem = simplify_plus_minus (code, mode, op0, op1)) != 0)
+ return tem;
+
+ /* Don't let a relocatable value get a negative coeff. */
+ if (GET_CODE (op1) == CONST_INT && GET_MODE (op0) != VOIDmode)
+ return plus_constant (op0, - INTVAL (op1));
+
+ /* (x - (x & y)) -> (x & ~y) */
+ if (GET_CODE (op1) == AND)
+ {
+ if (rtx_equal_p (op0, XEXP (op1, 0)))
+ return cse_gen_binary (AND, mode, op0, gen_rtx (NOT, mode, XEXP (op1, 1)));
+ if (rtx_equal_p (op0, XEXP (op1, 1)))
+ return cse_gen_binary (AND, mode, op0, gen_rtx (NOT, mode, XEXP (op1, 0)));
+ }
+ break;
+
+ case MULT:
+ if (op1 == constm1_rtx)
+ {
+ tem = simplify_unary_operation (NEG, mode, op0, mode);
+
+ return tem ? tem : gen_rtx (NEG, mode, op0);
+ }
+
+ /* In IEEE floating point, x*0 is not always 0. */
+ if ((TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
+ || ! FLOAT_MODE_P (mode) || flag_fast_math)
+ && op1 == CONST0_RTX (mode)
+ && ! side_effects_p (op0))
+ return op1;
+
+ /* In IEEE floating point, x*1 is not equivalent to x for nans.
+ However, ANSI says we can drop signals,
+ so we can do this anyway. */
+ if (op1 == CONST1_RTX (mode))
+ return op0;
+
+ /* Convert multiply by constant power of two into shift unless
+ we are still generating RTL. This test is a kludge. */
+ if (GET_CODE (op1) == CONST_INT
+ && (val = exact_log2 (INTVAL (op1))) >= 0
+ && ! rtx_equal_function_value_matters)
+ return gen_rtx (ASHIFT, mode, op0, GEN_INT (val));
+
+ if (GET_CODE (op1) == CONST_DOUBLE
+ && GET_MODE_CLASS (GET_MODE (op1)) == MODE_FLOAT)
+ {
+ REAL_VALUE_TYPE d;
+ jmp_buf handler;
+ int op1is2, op1ism1;
+
+ if (setjmp (handler))
+ return 0;
+
+ set_float_handler (handler);
+ REAL_VALUE_FROM_CONST_DOUBLE (d, op1);
+ op1is2 = REAL_VALUES_EQUAL (d, dconst2);
+ op1ism1 = REAL_VALUES_EQUAL (d, dconstm1);
+ set_float_handler (NULL_PTR);
+
+ /* x*2 is x+x and x*(-1) is -x */
+ if (op1is2 && GET_MODE (op0) == mode)
+ return gen_rtx (PLUS, mode, op0, copy_rtx (op0));
+
+ else if (op1ism1 && GET_MODE (op0) == mode)
+ return gen_rtx (NEG, mode, op0);
+ }
+ break;
+
+ case IOR:
+ if (op1 == const0_rtx)
+ return op0;
+ if (GET_CODE (op1) == CONST_INT
+ && (INTVAL (op1) & GET_MODE_MASK (mode)) == GET_MODE_MASK (mode))
+ return op1;
+ if (rtx_equal_p (op0, op1) && ! side_effects_p (op0))
+ return op0;
+ /* A | (~A) -> -1 */
+ if (((GET_CODE (op0) == NOT && rtx_equal_p (XEXP (op0, 0), op1))
+ || (GET_CODE (op1) == NOT && rtx_equal_p (XEXP (op1, 0), op0)))
+ && ! side_effects_p (op0)
+ && GET_MODE_CLASS (mode) != MODE_CC)
+ return constm1_rtx;
+ break;
+
+ case XOR:
+ if (op1 == const0_rtx)
+ return op0;
+ if (GET_CODE (op1) == CONST_INT
+ && (INTVAL (op1) & GET_MODE_MASK (mode)) == GET_MODE_MASK (mode))
+ return gen_rtx (NOT, mode, op0);
+ if (op0 == op1 && ! side_effects_p (op0)
+ && GET_MODE_CLASS (mode) != MODE_CC)
+ return const0_rtx;
+ break;
+
+ case AND:
+ if (op1 == const0_rtx && ! side_effects_p (op0))
+ return const0_rtx;
+ if (GET_CODE (op1) == CONST_INT
+ && (INTVAL (op1) & GET_MODE_MASK (mode)) == GET_MODE_MASK (mode))
+ return op0;
+ if (op0 == op1 && ! side_effects_p (op0)
+ && GET_MODE_CLASS (mode) != MODE_CC)
+ return op0;
+ /* A & (~A) -> 0 */
+ if (((GET_CODE (op0) == NOT && rtx_equal_p (XEXP (op0, 0), op1))
+ || (GET_CODE (op1) == NOT && rtx_equal_p (XEXP (op1, 0), op0)))
+ && ! side_effects_p (op0)
+ && GET_MODE_CLASS (mode) != MODE_CC)
+ return const0_rtx;
+ break;
+
+ case UDIV:
+ /* Convert divide by power of two into shift (divide by 1 handled
+ below). */
+ if (GET_CODE (op1) == CONST_INT
+ && (arg1 = exact_log2 (INTVAL (op1))) > 0)
+ return gen_rtx (LSHIFTRT, mode, op0, GEN_INT (arg1));
+
+ /* ... fall through ... */
+
+ case DIV:
+ if (op1 == CONST1_RTX (mode))
+ return op0;
+
+ /* In IEEE floating point, 0/x is not always 0. */
+ if ((TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
+ || ! FLOAT_MODE_P (mode) || flag_fast_math)
+ && op0 == CONST0_RTX (mode)
+ && ! side_effects_p (op1))
+ return op0;
+
+#if ! defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
+ /* Change division by a constant into multiplication. Only do
+ this with -ffast-math until an expert says it is safe in
+ general. */
+ else if (GET_CODE (op1) == CONST_DOUBLE
+ && GET_MODE_CLASS (GET_MODE (op1)) == MODE_FLOAT
+ && op1 != CONST0_RTX (mode)
+ && flag_fast_math)
+ {
+ REAL_VALUE_TYPE d;
+ REAL_VALUE_FROM_CONST_DOUBLE (d, op1);
+
+ if (! REAL_VALUES_EQUAL (d, dconst0))
+ {
+#if defined (REAL_ARITHMETIC)
+ REAL_ARITHMETIC (d, rtx_to_tree_code (DIV), dconst1, d);
+ return gen_rtx (MULT, mode, op0,
+ CONST_DOUBLE_FROM_REAL_VALUE (d, mode));
+#else
+ return gen_rtx (MULT, mode, op0,
+ CONST_DOUBLE_FROM_REAL_VALUE (1./d, mode));
+#endif
+ }
+ }
+#endif
+ break;
+
+ case UMOD:
+ /* Handle modulus by power of two (mod with 1 handled below). */
+ if (GET_CODE (op1) == CONST_INT
+ && exact_log2 (INTVAL (op1)) > 0)
+ return gen_rtx (AND, mode, op0, GEN_INT (INTVAL (op1) - 1));
+
+ /* ... fall through ... */
+
+ case MOD:
+ if ((op0 == const0_rtx || op1 == const1_rtx)
+ && ! side_effects_p (op0) && ! side_effects_p (op1))
+ return const0_rtx;
+ break;
+
+ case ROTATERT:
+ case ROTATE:
+ /* Rotating ~0 always results in ~0. */
+ if (GET_CODE (op0) == CONST_INT && width <= HOST_BITS_PER_WIDE_INT
+ && INTVAL (op0) == GET_MODE_MASK (mode)
+ && ! side_effects_p (op1))
+ return op0;
+
+ /* ... fall through ... */
+
+ case ASHIFT:
+ case ASHIFTRT:
+ case LSHIFTRT:
+ if (op1 == const0_rtx)
+ return op0;
+ if (op0 == const0_rtx && ! side_effects_p (op1))
+ return op0;
+ break;
+
+ case SMIN:
+ if (width <= HOST_BITS_PER_WIDE_INT && GET_CODE (op1) == CONST_INT
+ && INTVAL (op1) == (HOST_WIDE_INT) 1 << (width -1)
+ && ! side_effects_p (op0))
+ return op1;
+ else if (rtx_equal_p (op0, op1) && ! side_effects_p (op0))
+ return op0;
+ break;
+
+ case SMAX:
+ if (width <= HOST_BITS_PER_WIDE_INT && GET_CODE (op1) == CONST_INT
+ && (INTVAL (op1)
+ == (unsigned HOST_WIDE_INT) GET_MODE_MASK (mode) >> 1)
+ && ! side_effects_p (op0))
+ return op1;
+ else if (rtx_equal_p (op0, op1) && ! side_effects_p (op0))
+ return op0;
+ break;
+
+ case UMIN:
+ if (op1 == const0_rtx && ! side_effects_p (op0))
+ return op1;
+ else if (rtx_equal_p (op0, op1) && ! side_effects_p (op0))
+ return op0;
+ break;
+
+ case UMAX:
+ if (op1 == constm1_rtx && ! side_effects_p (op0))
+ return op1;
+ else if (rtx_equal_p (op0, op1) && ! side_effects_p (op0))
+ return op0;
+ break;
+
+ default:
+ abort ();
+ }
+
+ return 0;
+ }
+
+ /* Get the integer argument values in two forms:
+ zero-extended in ARG0, ARG1 and sign-extended in ARG0S, ARG1S. */
+
+ arg0 = INTVAL (op0);
+ arg1 = INTVAL (op1);
+
+ if (width < HOST_BITS_PER_WIDE_INT)
+ {
+ arg0 &= ((HOST_WIDE_INT) 1 << width) - 1;
+ arg1 &= ((HOST_WIDE_INT) 1 << width) - 1;
+
+ arg0s = arg0;
+ if (arg0s & ((HOST_WIDE_INT) 1 << (width - 1)))
+ arg0s |= ((HOST_WIDE_INT) (-1) << width);
+
+ arg1s = arg1;
+ if (arg1s & ((HOST_WIDE_INT) 1 << (width - 1)))
+ arg1s |= ((HOST_WIDE_INT) (-1) << width);
+ }
+ else
+ {
+ arg0s = arg0;
+ arg1s = arg1;
+ }
+
+ /* Compute the value of the arithmetic. */
+
+ switch (code)
+ {
+ case PLUS:
+ val = arg0s + arg1s;
+ break;
+
+ case MINUS:
+ val = arg0s - arg1s;
+ break;
+
+ case MULT:
+ val = arg0s * arg1s;
+ break;
+
+ case DIV:
+ if (arg1s == 0)
+ return 0;
+ val = arg0s / arg1s;
+ break;
+
+ case MOD:
+ if (arg1s == 0)
+ return 0;
+ val = arg0s % arg1s;
+ break;
+
+ case UDIV:
+ if (arg1 == 0)
+ return 0;
+ val = (unsigned HOST_WIDE_INT) arg0 / arg1;
+ break;
+
+ case UMOD:
+ if (arg1 == 0)
+ return 0;
+ val = (unsigned HOST_WIDE_INT) arg0 % arg1;
+ break;
+
+ case AND:
+ val = arg0 & arg1;
+ break;
+
+ case IOR:
+ val = arg0 | arg1;
+ break;
+
+ case XOR:
+ val = arg0 ^ arg1;
+ break;
+
+ case LSHIFTRT:
+ /* If shift count is undefined, don't fold it; let the machine do
+ what it wants. But truncate it if the machine will do that. */
+ if (arg1 < 0)
+ return 0;
+
+#ifdef SHIFT_COUNT_TRUNCATED
+ if (SHIFT_COUNT_TRUNCATED)
+ arg1 %= width;
+#endif
+
+ val = ((unsigned HOST_WIDE_INT) arg0) >> arg1;
+ break;
+
+ case ASHIFT:
+ if (arg1 < 0)
+ return 0;
+
+#ifdef SHIFT_COUNT_TRUNCATED
+ if (SHIFT_COUNT_TRUNCATED)
+ arg1 %= width;
+#endif
+
+ val = ((unsigned HOST_WIDE_INT) arg0) << arg1;
+ break;
+
+ case ASHIFTRT:
+ if (arg1 < 0)
+ return 0;
+
+#ifdef SHIFT_COUNT_TRUNCATED
+ if (SHIFT_COUNT_TRUNCATED)
+ arg1 %= width;
+#endif
+
+ val = arg0s >> arg1;
+
+ /* Bootstrap compiler may not have sign extended the right shift.
+ Manually extend the sign to insure bootstrap cc matches gcc. */
+ if (arg0s < 0 && arg1 > 0)
+ val |= ((HOST_WIDE_INT) -1) << (HOST_BITS_PER_WIDE_INT - arg1);
+
+ break;
+
+ case ROTATERT:
+ if (arg1 < 0)
+ return 0;
+
+ arg1 %= width;
+ val = ((((unsigned HOST_WIDE_INT) arg0) << (width - arg1))
+ | (((unsigned HOST_WIDE_INT) arg0) >> arg1));
+ break;
+
+ case ROTATE:
+ if (arg1 < 0)
+ return 0;
+
+ arg1 %= width;
+ val = ((((unsigned HOST_WIDE_INT) arg0) << arg1)
+ | (((unsigned HOST_WIDE_INT) arg0) >> (width - arg1)));
+ break;
+
+ case COMPARE:
+ /* Do nothing here. */
+ return 0;
+
+ case SMIN:
+ val = arg0s <= arg1s ? arg0s : arg1s;
+ break;
+
+ case UMIN:
+ val = ((unsigned HOST_WIDE_INT) arg0
+ <= (unsigned HOST_WIDE_INT) arg1 ? arg0 : arg1);
+ break;
+
+ case SMAX:
+ val = arg0s > arg1s ? arg0s : arg1s;
+ break;
+
+ case UMAX:
+ val = ((unsigned HOST_WIDE_INT) arg0
+ > (unsigned HOST_WIDE_INT) arg1 ? arg0 : arg1);
+ break;
+
+ default:
+ abort ();
+ }
+
+ /* Clear the bits that don't belong in our mode, unless they and our sign
+ bit are all one. So we get either a reasonable negative value or a
+ reasonable unsigned value for this mode. */
+ if (width < HOST_BITS_PER_WIDE_INT
+ && ((val & ((HOST_WIDE_INT) (-1) << (width - 1)))
+ != ((HOST_WIDE_INT) (-1) << (width - 1))))
+ val &= ((HOST_WIDE_INT) 1 << width) - 1;
+
+ /* If this would be an entire word for the target, but is not for
+ the host, then sign-extend on the host so that the number will look
+ the same way on the host that it would on the target.
+
+ For example, when building a 64 bit alpha hosted 32 bit sparc
+ targeted compiler, then we want the 32 bit unsigned value -1 to be
+ represented as a 64 bit value -1, and not as 0x00000000ffffffff.
+ The later confuses the sparc backend. */
+
+ if (BITS_PER_WORD < HOST_BITS_PER_WIDE_INT && BITS_PER_WORD == width
+ && (val & ((HOST_WIDE_INT) 1 << (width - 1))))
+ val |= ((HOST_WIDE_INT) (-1) << width);
+
+ return GEN_INT (val);
+}
+
+/* Simplify a PLUS or MINUS, at least one of whose operands may be another
+ PLUS or MINUS.
+
+ Rather than test for specific case, we do this by a brute-force method
+ and do all possible simplifications until no more changes occur. Then
+ we rebuild the operation. */
+
+static rtx
+simplify_plus_minus (code, mode, op0, op1)
+ enum rtx_code code;
+ enum machine_mode mode;
+ rtx op0, op1;
+{
+ rtx ops[8];
+ int negs[8];
+ rtx result, tem;
+ int n_ops = 2, input_ops = 2, input_consts = 0, n_consts = 0;
+ int first = 1, negate = 0, changed;
+ int i, j;
+
+ bzero ((char *) ops, sizeof ops);
+
+ /* Set up the two operands and then expand them until nothing has been
+ changed. If we run out of room in our array, give up; this should
+ almost never happen. */
+
+ ops[0] = op0, ops[1] = op1, negs[0] = 0, negs[1] = (code == MINUS);
+
+ changed = 1;
+ while (changed)
+ {
+ changed = 0;
+
+ for (i = 0; i < n_ops; i++)
+ switch (GET_CODE (ops[i]))
+ {
+ case PLUS:
+ case MINUS:
+ if (n_ops == 7)
+ return 0;
+
+ ops[n_ops] = XEXP (ops[i], 1);
+ negs[n_ops++] = GET_CODE (ops[i]) == MINUS ? !negs[i] : negs[i];
+ ops[i] = XEXP (ops[i], 0);
+ input_ops++;
+ changed = 1;
+ break;
+
+ case NEG:
+ ops[i] = XEXP (ops[i], 0);
+ negs[i] = ! negs[i];
+ changed = 1;
+ break;
+
+ case CONST:
+ ops[i] = XEXP (ops[i], 0);
+ input_consts++;
+ changed = 1;
+ break;
+
+ case NOT:
+ /* ~a -> (-a - 1) */
+ if (n_ops != 7)
+ {
+ ops[n_ops] = constm1_rtx;
+ negs[n_ops++] = negs[i];
+ ops[i] = XEXP (ops[i], 0);
+ negs[i] = ! negs[i];
+ changed = 1;
+ }
+ break;
+
+ case CONST_INT:
+ if (negs[i])
+ ops[i] = GEN_INT (- INTVAL (ops[i])), negs[i] = 0, changed = 1;
+ break;
+ }
+ }
+
+ /* If we only have two operands, we can't do anything. */
+ if (n_ops <= 2)
+ return 0;
+
+ /* Now simplify each pair of operands until nothing changes. The first
+ time through just simplify constants against each other. */
+
+ changed = 1;
+ while (changed)
+ {
+ changed = first;
+
+ for (i = 0; i < n_ops - 1; i++)
+ for (j = i + 1; j < n_ops; j++)
+ if (ops[i] != 0 && ops[j] != 0
+ && (! first || (CONSTANT_P (ops[i]) && CONSTANT_P (ops[j]))))
+ {
+ rtx lhs = ops[i], rhs = ops[j];
+ enum rtx_code ncode = PLUS;
+
+ if (negs[i] && ! negs[j])
+ lhs = ops[j], rhs = ops[i], ncode = MINUS;
+ else if (! negs[i] && negs[j])
+ ncode = MINUS;
+
+ tem = simplify_binary_operation (ncode, mode, lhs, rhs);
+ if (tem)
+ {
+ ops[i] = tem, ops[j] = 0;
+ negs[i] = negs[i] && negs[j];
+ if (GET_CODE (tem) == NEG)
+ ops[i] = XEXP (tem, 0), negs[i] = ! negs[i];
+
+ if (GET_CODE (ops[i]) == CONST_INT && negs[i])
+ ops[i] = GEN_INT (- INTVAL (ops[i])), negs[i] = 0;
+ changed = 1;
+ }
+ }
+
+ first = 0;
+ }
+
+ /* Pack all the operands to the lower-numbered entries and give up if
+ we didn't reduce the number of operands we had. Make sure we
+ count a CONST as two operands. If we have the same number of
+ operands, but have made more CONSTs than we had, this is also
+ an improvement, so accept it. */
+
+ for (i = 0, j = 0; j < n_ops; j++)
+ if (ops[j] != 0)
+ {
+ ops[i] = ops[j], negs[i++] = negs[j];
+ if (GET_CODE (ops[j]) == CONST)
+ n_consts++;
+ }
+
+ if (i + n_consts > input_ops
+ || (i + n_consts == input_ops && n_consts <= input_consts))
+ return 0;
+
+ n_ops = i;
+
+ /* If we have a CONST_INT, put it last. */
+ for (i = 0; i < n_ops - 1; i++)
+ if (GET_CODE (ops[i]) == CONST_INT)
+ {
+ tem = ops[n_ops - 1], ops[n_ops - 1] = ops[i] , ops[i] = tem;
+ j = negs[n_ops - 1], negs[n_ops - 1] = negs[i], negs[i] = j;
+ }
+
+ /* Put a non-negated operand first. If there aren't any, make all
+ operands positive and negate the whole thing later. */
+ for (i = 0; i < n_ops && negs[i]; i++)
+ ;
+
+ if (i == n_ops)
+ {
+ for (i = 0; i < n_ops; i++)
+ negs[i] = 0;
+ negate = 1;
+ }
+ else if (i != 0)
+ {
+ tem = ops[0], ops[0] = ops[i], ops[i] = tem;
+ j = negs[0], negs[0] = negs[i], negs[i] = j;
+ }
+
+ /* Now make the result by performing the requested operations. */
+ result = ops[0];
+ for (i = 1; i < n_ops; i++)
+ result = cse_gen_binary (negs[i] ? MINUS : PLUS, mode, result, ops[i]);
+
+ return negate ? gen_rtx (NEG, mode, result) : result;
+}
+
+/* Make a binary operation by properly ordering the operands and
+ seeing if the expression folds. */
+
+static rtx
+cse_gen_binary (code, mode, op0, op1)
+ enum rtx_code code;
+ enum machine_mode mode;
+ rtx op0, op1;
+{
+ rtx tem;
+
+ /* Put complex operands first and constants second if commutative. */
+ if (GET_RTX_CLASS (code) == 'c'
+ && ((CONSTANT_P (op0) && GET_CODE (op1) != CONST_INT)
+ || (GET_RTX_CLASS (GET_CODE (op0)) == 'o'
+ && GET_RTX_CLASS (GET_CODE (op1)) != 'o')
+ || (GET_CODE (op0) == SUBREG
+ && GET_RTX_CLASS (GET_CODE (SUBREG_REG (op0))) == 'o'
+ && GET_RTX_CLASS (GET_CODE (op1)) != 'o')))
+ tem = op0, op0 = op1, op1 = tem;
+
+ /* If this simplifies, do it. */
+ tem = simplify_binary_operation (code, mode, op0, op1);
+
+ if (tem)
+ return tem;
+
+ /* Handle addition and subtraction of CONST_INT specially. Otherwise,
+ just form the operation. */
+
+ if (code == PLUS && GET_CODE (op1) == CONST_INT
+ && GET_MODE (op0) != VOIDmode)
+ return plus_constant (op0, INTVAL (op1));
+ else if (code == MINUS && GET_CODE (op1) == CONST_INT
+ && GET_MODE (op0) != VOIDmode)
+ return plus_constant (op0, - INTVAL (op1));
+ else
+ return gen_rtx (code, mode, op0, op1);
+}
+
+/* Like simplify_binary_operation except used for relational operators.
+ MODE is the mode of the operands, not that of the result. If MODE
+ is VOIDmode, both operands must also be VOIDmode and we compare the
+ operands in "infinite precision".
+
+ If no simplification is possible, this function returns zero. Otherwise,
+ it returns either const_true_rtx or const0_rtx. */
+
+rtx
+simplify_relational_operation (code, mode, op0, op1)
+ enum rtx_code code;
+ enum machine_mode mode;
+ rtx op0, op1;
+{
+ int equal, op0lt, op0ltu, op1lt, op1ltu;
+ rtx tem;
+
+ /* If op0 is a compare, extract the comparison arguments from it. */
+ if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
+ op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
+
+ /* We can't simplify MODE_CC values since we don't know what the
+ actual comparison is. */
+ if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC
+#ifdef HAVE_cc0
+ || op0 == cc0_rtx
+#endif
+ )
+ return 0;
+
+ /* For integer comparisons of A and B maybe we can simplify A - B and can
+ then simplify a comparison of that with zero. If A and B are both either
+ a register or a CONST_INT, this can't help; testing for these cases will
+ prevent infinite recursion here and speed things up.
+
+ If CODE is an unsigned comparison, then we can never do this optimization,
+ because it gives an incorrect result if the subtraction wraps around zero.
+ ANSI C defines unsigned operations such that they never overflow, and
+ thus such cases can not be ignored. */
+
+ if (INTEGRAL_MODE_P (mode) && op1 != const0_rtx
+ && ! ((GET_CODE (op0) == REG || GET_CODE (op0) == CONST_INT)
+ && (GET_CODE (op1) == REG || GET_CODE (op1) == CONST_INT))
+ && 0 != (tem = simplify_binary_operation (MINUS, mode, op0, op1))
+ && code != GTU && code != GEU && code != LTU && code != LEU)
+ return simplify_relational_operation (signed_condition (code),
+ mode, tem, const0_rtx);
+
+ /* For non-IEEE floating-point, if the two operands are equal, we know the
+ result. */
+ if (rtx_equal_p (op0, op1)
+ && (TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
+ || ! FLOAT_MODE_P (GET_MODE (op0)) || flag_fast_math))
+ equal = 1, op0lt = 0, op0ltu = 0, op1lt = 0, op1ltu = 0;
+
+ /* If the operands are floating-point constants, see if we can fold
+ the result. */
+#if ! defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
+ else if (GET_CODE (op0) == CONST_DOUBLE && GET_CODE (op1) == CONST_DOUBLE
+ && GET_MODE_CLASS (GET_MODE (op0)) == MODE_FLOAT)
+ {
+ REAL_VALUE_TYPE d0, d1;
+ jmp_buf handler;
+
+ if (setjmp (handler))
+ return 0;
+
+ set_float_handler (handler);
+ REAL_VALUE_FROM_CONST_DOUBLE (d0, op0);
+ REAL_VALUE_FROM_CONST_DOUBLE (d1, op1);
+ equal = REAL_VALUES_EQUAL (d0, d1);
+ op0lt = op0ltu = REAL_VALUES_LESS (d0, d1);
+ op1lt = op1ltu = REAL_VALUES_LESS (d1, d0);
+ set_float_handler (NULL_PTR);
+ }
+#endif /* not REAL_IS_NOT_DOUBLE, or REAL_ARITHMETIC */
+
+ /* Otherwise, see if the operands are both integers. */
+ else if ((GET_MODE_CLASS (mode) == MODE_INT || mode == VOIDmode)
+ && (GET_CODE (op0) == CONST_DOUBLE || GET_CODE (op0) == CONST_INT)
+ && (GET_CODE (op1) == CONST_DOUBLE || GET_CODE (op1) == CONST_INT))
+ {
+ int width = GET_MODE_BITSIZE (mode);
+ HOST_WIDE_INT l0s, h0s, l1s, h1s;
+ unsigned HOST_WIDE_INT l0u, h0u, l1u, h1u;
+
+ /* Get the two words comprising each integer constant. */
+ if (GET_CODE (op0) == CONST_DOUBLE)
+ {
+ l0u = l0s = CONST_DOUBLE_LOW (op0);
+ h0u = h0s = CONST_DOUBLE_HIGH (op0);
+ }
+ else
+ {
+ l0u = l0s = INTVAL (op0);
+ h0u = 0, h0s = l0s < 0 ? -1 : 0;
+ }
+
+ if (GET_CODE (op1) == CONST_DOUBLE)
+ {
+ l1u = l1s = CONST_DOUBLE_LOW (op1);
+ h1u = h1s = CONST_DOUBLE_HIGH (op1);
+ }
+ else
+ {
+ l1u = l1s = INTVAL (op1);
+ h1u = 0, h1s = l1s < 0 ? -1 : 0;
+ }
+
+ /* If WIDTH is nonzero and smaller than HOST_BITS_PER_WIDE_INT,
+ we have to sign or zero-extend the values. */
+ if (width != 0 && width <= HOST_BITS_PER_WIDE_INT)
+ h0u = h1u = 0, h0s = l0s < 0 ? -1 : 0, h1s = l1s < 0 ? -1 : 0;
+
+ if (width != 0 && width < HOST_BITS_PER_WIDE_INT)
+ {
+ l0u &= ((HOST_WIDE_INT) 1 << width) - 1;
+ l1u &= ((HOST_WIDE_INT) 1 << width) - 1;
+
+ if (l0s & ((HOST_WIDE_INT) 1 << (width - 1)))
+ l0s |= ((HOST_WIDE_INT) (-1) << width);
+
+ if (l1s & ((HOST_WIDE_INT) 1 << (width - 1)))
+ l1s |= ((HOST_WIDE_INT) (-1) << width);
+ }
+
+ equal = (h0u == h1u && l0u == l1u);
+ op0lt = (h0s < h1s || (h0s == h1s && l0s < l1s));
+ op1lt = (h1s < h0s || (h1s == h0s && l1s < l0s));
+ op0ltu = (h0u < h1u || (h0u == h1u && l0u < l1u));
+ op1ltu = (h1u < h0u || (h1u == h0u && l1u < l0u));
+ }
+
+ /* Otherwise, there are some code-specific tests we can make. */
+ else
+ {
+ switch (code)
+ {
+ case EQ:
+ /* References to the frame plus a constant or labels cannot
+ be zero, but a SYMBOL_REF can due to #pragma weak. */
+ if (((NONZERO_BASE_PLUS_P (op0) && op1 == const0_rtx)
+ || GET_CODE (op0) == LABEL_REF)
+#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
+ /* On some machines, the ap reg can be 0 sometimes. */
+ && op0 != arg_pointer_rtx
+#endif
+ )
+ return const0_rtx;
+ break;
+
+ case NE:
+ if (((NONZERO_BASE_PLUS_P (op0) && op1 == const0_rtx)
+ || GET_CODE (op0) == LABEL_REF)
+#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
+ && op0 != arg_pointer_rtx
+#endif
+ )
+ return const_true_rtx;
+ break;
+
+ case GEU:
+ /* Unsigned values are never negative. */
+ if (op1 == const0_rtx)
+ return const_true_rtx;
+ break;
+
+ case LTU:
+ if (op1 == const0_rtx)
+ return const0_rtx;
+ break;
+
+ case LEU:
+ /* Unsigned values are never greater than the largest
+ unsigned value. */
+ if (GET_CODE (op1) == CONST_INT
+ && INTVAL (op1) == GET_MODE_MASK (mode)
+ && INTEGRAL_MODE_P (mode))
+ return const_true_rtx;
+ break;
+
+ case GTU:
+ if (GET_CODE (op1) == CONST_INT
+ && INTVAL (op1) == GET_MODE_MASK (mode)
+ && INTEGRAL_MODE_P (mode))
+ return const0_rtx;
+ break;
+ }
+
+ return 0;
+ }
+
+ /* If we reach here, EQUAL, OP0LT, OP0LTU, OP1LT, and OP1LTU are set
+ as appropriate. */
+ switch (code)
+ {
+ case EQ:
+ return equal ? const_true_rtx : const0_rtx;
+ case NE:
+ return ! equal ? const_true_rtx : const0_rtx;
+ case LT:
+ return op0lt ? const_true_rtx : const0_rtx;
+ case GT:
+ return op1lt ? const_true_rtx : const0_rtx;
+ case LTU:
+ return op0ltu ? const_true_rtx : const0_rtx;
+ case GTU:
+ return op1ltu ? const_true_rtx : const0_rtx;
+ case LE:
+ return equal || op0lt ? const_true_rtx : const0_rtx;
+ case GE:
+ return equal || op1lt ? const_true_rtx : const0_rtx;
+ case LEU:
+ return equal || op0ltu ? const_true_rtx : const0_rtx;
+ case GEU:
+ return equal || op1ltu ? const_true_rtx : const0_rtx;
+ }
+
+ abort ();
+}
+
+/* Simplify CODE, an operation with result mode MODE and three operands,
+ OP0, OP1, and OP2. OP0_MODE was the mode of OP0 before it became
+ a constant. Return 0 if no simplifications is possible. */
+
+rtx
+simplify_ternary_operation (code, mode, op0_mode, op0, op1, op2)
+ enum rtx_code code;
+ enum machine_mode mode, op0_mode;
+ rtx op0, op1, op2;
+{
+ int width = GET_MODE_BITSIZE (mode);
+
+ /* VOIDmode means "infinite" precision. */
+ if (width == 0)
+ width = HOST_BITS_PER_WIDE_INT;
+
+ switch (code)
+ {
+ case SIGN_EXTRACT:
+ case ZERO_EXTRACT:
+ if (GET_CODE (op0) == CONST_INT
+ && GET_CODE (op1) == CONST_INT
+ && GET_CODE (op2) == CONST_INT
+ && INTVAL (op1) + INTVAL (op2) <= GET_MODE_BITSIZE (op0_mode)
+ && width <= HOST_BITS_PER_WIDE_INT)
+ {
+ /* Extracting a bit-field from a constant */
+ HOST_WIDE_INT val = INTVAL (op0);
+
+ if (BITS_BIG_ENDIAN)
+ val >>= (GET_MODE_BITSIZE (op0_mode)
+ - INTVAL (op2) - INTVAL (op1));
+ else
+ val >>= INTVAL (op2);
+
+ if (HOST_BITS_PER_WIDE_INT != INTVAL (op1))
+ {
+ /* First zero-extend. */
+ val &= ((HOST_WIDE_INT) 1 << INTVAL (op1)) - 1;
+ /* If desired, propagate sign bit. */
+ if (code == SIGN_EXTRACT
+ && (val & ((HOST_WIDE_INT) 1 << (INTVAL (op1) - 1))))
+ val |= ~ (((HOST_WIDE_INT) 1 << INTVAL (op1)) - 1);
+ }
+
+ /* Clear the bits that don't belong in our mode,
+ unless they and our sign bit are all one.
+ So we get either a reasonable negative value or a reasonable
+ unsigned value for this mode. */
+ if (width < HOST_BITS_PER_WIDE_INT
+ && ((val & ((HOST_WIDE_INT) (-1) << (width - 1)))
+ != ((HOST_WIDE_INT) (-1) << (width - 1))))
+ val &= ((HOST_WIDE_INT) 1 << width) - 1;
+
+ return GEN_INT (val);
+ }
+ break;
+
+ case IF_THEN_ELSE:
+ if (GET_CODE (op0) == CONST_INT)
+ return op0 != const0_rtx ? op1 : op2;
+ break;
+
+ default:
+ abort ();
+ }
+
+ return 0;
+}
+
+/* If X is a nontrivial arithmetic operation on an argument
+ for which a constant value can be determined, return
+ the result of operating on that value, as a constant.
+ Otherwise, return X, possibly with one or more operands
+ modified by recursive calls to this function.
+
+ If X is a register whose contents are known, we do NOT
+ return those contents here. equiv_constant is called to
+ perform that task.
+
+ INSN is the insn that we may be modifying. If it is 0, make a copy
+ of X before modifying it. */
+
+static rtx
+fold_rtx (x, insn)
+ rtx x;
+ rtx insn;
+{
+ register enum rtx_code code;
+ register enum machine_mode mode;
+ register char *fmt;
+ register int i;
+ rtx new = 0;
+ int copied = 0;
+ int must_swap = 0;
+
+ /* Folded equivalents of first two operands of X. */
+ rtx folded_arg0;
+ rtx folded_arg1;
+
+ /* Constant equivalents of first three operands of X;
+ 0 when no such equivalent is known. */
+ rtx const_arg0;
+ rtx const_arg1;
+ rtx const_arg2;
+
+ /* The mode of the first operand of X. We need this for sign and zero
+ extends. */
+ enum machine_mode mode_arg0;
+
+ if (x == 0)
+ return x;
+
+ mode = GET_MODE (x);
+ code = GET_CODE (x);
+ switch (code)
+ {
+ case CONST:
+ case CONST_INT:
+ case CONST_DOUBLE:
+ case SYMBOL_REF:
+ case LABEL_REF:
+ case REG:
+ /* No use simplifying an EXPR_LIST
+ since they are used only for lists of args
+ in a function call's REG_EQUAL note. */
+ case EXPR_LIST:
+ return x;
+
+#ifdef HAVE_cc0
+ case CC0:
+ return prev_insn_cc0;
+#endif
+
+ case PC:
+ /* If the next insn is a CODE_LABEL followed by a jump table,
+ PC's value is a LABEL_REF pointing to that label. That
+ lets us fold switch statements on the Vax. */
+ if (insn && GET_CODE (insn) == JUMP_INSN)
+ {
+ rtx next = next_nonnote_insn (insn);
+
+ if (next && GET_CODE (next) == CODE_LABEL
+ && NEXT_INSN (next) != 0
+ && GET_CODE (NEXT_INSN (next)) == JUMP_INSN
+ && (GET_CODE (PATTERN (NEXT_INSN (next))) == ADDR_VEC
+ || GET_CODE (PATTERN (NEXT_INSN (next))) == ADDR_DIFF_VEC))
+ return gen_rtx (LABEL_REF, Pmode, next);
+ }
+ break;
+
+ case SUBREG:
+ /* See if we previously assigned a constant value to this SUBREG. */
+ if ((new = lookup_as_function (x, CONST_INT)) != 0
+ || (new = lookup_as_function (x, CONST_DOUBLE)) != 0)
+ return new;
+
+ /* If this is a paradoxical SUBREG, we have no idea what value the
+ extra bits would have. However, if the operand is equivalent
+ to a SUBREG whose operand is the same as our mode, and all the
+ modes are within a word, we can just use the inner operand
+ because these SUBREGs just say how to treat the register.
+
+ Similarly if we find an integer constant. */
+
+ if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
+ {
+ enum machine_mode imode = GET_MODE (SUBREG_REG (x));
+ struct table_elt *elt;
+
+ if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
+ && GET_MODE_SIZE (imode) <= UNITS_PER_WORD
+ && (elt = lookup (SUBREG_REG (x), HASH (SUBREG_REG (x), imode),
+ imode)) != 0)
+ for (elt = elt->first_same_value;
+ elt; elt = elt->next_same_value)
+ {
+ if (CONSTANT_P (elt->exp)
+ && GET_MODE (elt->exp) == VOIDmode)
+ return elt->exp;
+
+ if (GET_CODE (elt->exp) == SUBREG
+ && GET_MODE (SUBREG_REG (elt->exp)) == mode
+ && exp_equiv_p (elt->exp, elt->exp, 1, 0))
+ return copy_rtx (SUBREG_REG (elt->exp));
+ }
+
+ return x;
+ }
+
+ /* Fold SUBREG_REG. If it changed, see if we can simplify the SUBREG.
+ We might be able to if the SUBREG is extracting a single word in an
+ integral mode or extracting the low part. */
+
+ folded_arg0 = fold_rtx (SUBREG_REG (x), insn);
+ const_arg0 = equiv_constant (folded_arg0);
+ if (const_arg0)
+ folded_arg0 = const_arg0;
+
+ if (folded_arg0 != SUBREG_REG (x))
+ {
+ new = 0;
+
+ if (GET_MODE_CLASS (mode) == MODE_INT
+ && GET_MODE_SIZE (mode) == UNITS_PER_WORD
+ && GET_MODE (SUBREG_REG (x)) != VOIDmode)
+ new = operand_subword (folded_arg0, SUBREG_WORD (x), 0,
+ GET_MODE (SUBREG_REG (x)));
+ if (new == 0 && subreg_lowpart_p (x))
+ new = gen_lowpart_if_possible (mode, folded_arg0);
+ if (new)
+ return new;
+ }
+
+ /* If this is a narrowing SUBREG and our operand is a REG, see if
+ we can find an equivalence for REG that is an arithmetic operation
+ in a wider mode where both operands are paradoxical SUBREGs
+ from objects of our result mode. In that case, we couldn't report
+ an equivalent value for that operation, since we don't know what the
+ extra bits will be. But we can find an equivalence for this SUBREG
+ by folding that operation is the narrow mode. This allows us to
+ fold arithmetic in narrow modes when the machine only supports
+ word-sized arithmetic.
+
+ Also look for a case where we have a SUBREG whose operand is the
+ same as our result. If both modes are smaller than a word, we
+ are simply interpreting a register in different modes and we
+ can use the inner value. */
+
+ if (GET_CODE (folded_arg0) == REG
+ && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (folded_arg0))
+ && subreg_lowpart_p (x))
+ {
+ struct table_elt *elt;
+
+ /* We can use HASH here since we know that canon_hash won't be
+ called. */
+ elt = lookup (folded_arg0,
+ HASH (folded_arg0, GET_MODE (folded_arg0)),
+ GET_MODE (folded_arg0));
+
+ if (elt)
+ elt = elt->first_same_value;
+
+ for (; elt; elt = elt->next_same_value)
+ {
+ enum rtx_code eltcode = GET_CODE (elt->exp);
+
+ /* Just check for unary and binary operations. */
+ if (GET_RTX_CLASS (GET_CODE (elt->exp)) == '1'
+ && GET_CODE (elt->exp) != SIGN_EXTEND
+ && GET_CODE (elt->exp) != ZERO_EXTEND
+ && GET_CODE (XEXP (elt->exp, 0)) == SUBREG
+ && GET_MODE (SUBREG_REG (XEXP (elt->exp, 0))) == mode)
+ {
+ rtx op0 = SUBREG_REG (XEXP (elt->exp, 0));
+
+ if (GET_CODE (op0) != REG && ! CONSTANT_P (op0))
+ op0 = fold_rtx (op0, NULL_RTX);
+
+ op0 = equiv_constant (op0);
+ if (op0)
+ new = simplify_unary_operation (GET_CODE (elt->exp), mode,
+ op0, mode);
+ }
+ else if ((GET_RTX_CLASS (GET_CODE (elt->exp)) == '2'
+ || GET_RTX_CLASS (GET_CODE (elt->exp)) == 'c')
+ && eltcode != DIV && eltcode != MOD
+ && eltcode != UDIV && eltcode != UMOD
+ && eltcode != ASHIFTRT && eltcode != LSHIFTRT
+ && eltcode != ROTATE && eltcode != ROTATERT
+ && ((GET_CODE (XEXP (elt->exp, 0)) == SUBREG
+ && (GET_MODE (SUBREG_REG (XEXP (elt->exp, 0)))
+ == mode))
+ || CONSTANT_P (XEXP (elt->exp, 0)))
+ && ((GET_CODE (XEXP (elt->exp, 1)) == SUBREG
+ && (GET_MODE (SUBREG_REG (XEXP (elt->exp, 1)))
+ == mode))
+ || CONSTANT_P (XEXP (elt->exp, 1))))
+ {
+ rtx op0 = gen_lowpart_common (mode, XEXP (elt->exp, 0));
+ rtx op1 = gen_lowpart_common (mode, XEXP (elt->exp, 1));
+
+ if (op0 && GET_CODE (op0) != REG && ! CONSTANT_P (op0))
+ op0 = fold_rtx (op0, NULL_RTX);
+
+ if (op0)
+ op0 = equiv_constant (op0);
+
+ if (op1 && GET_CODE (op1) != REG && ! CONSTANT_P (op1))
+ op1 = fold_rtx (op1, NULL_RTX);
+
+ if (op1)
+ op1 = equiv_constant (op1);
+
+ /* If we are looking for the low SImode part of
+ (ashift:DI c (const_int 32)), it doesn't work
+ to compute that in SImode, because a 32-bit shift
+ in SImode is unpredictable. We know the value is 0. */
+ if (op0 && op1
+ && GET_CODE (elt->exp) == ASHIFT
+ && GET_CODE (op1) == CONST_INT
+ && INTVAL (op1) >= GET_MODE_BITSIZE (mode))
+ {
+ if (INTVAL (op1) < GET_MODE_BITSIZE (GET_MODE (elt->exp)))
+
+ /* If the count fits in the inner mode's width,
+ but exceeds the outer mode's width,
+ the value will get truncated to 0
+ by the subreg. */
+ new = const0_rtx;
+ else
+ /* If the count exceeds even the inner mode's width,
+ don't fold this expression. */
+ new = 0;
+ }
+ else if (op0 && op1)
+ new = simplify_binary_operation (GET_CODE (elt->exp), mode,
+ op0, op1);
+ }
+
+ else if (GET_CODE (elt->exp) == SUBREG
+ && GET_MODE (SUBREG_REG (elt->exp)) == mode
+ && (GET_MODE_SIZE (GET_MODE (folded_arg0))
+ <= UNITS_PER_WORD)
+ && exp_equiv_p (elt->exp, elt->exp, 1, 0))
+ new = copy_rtx (SUBREG_REG (elt->exp));
+
+ if (new)
+ return new;
+ }
+ }
+
+ return x;
+
+ case NOT:
+ case NEG:
+ /* If we have (NOT Y), see if Y is known to be (NOT Z).
+ If so, (NOT Y) simplifies to Z. Similarly for NEG. */
+ new = lookup_as_function (XEXP (x, 0), code);
+ if (new)
+ return fold_rtx (copy_rtx (XEXP (new, 0)), insn);
+ break;
+
+ case MEM:
+ /* If we are not actually processing an insn, don't try to find the
+ best address. Not only don't we care, but we could modify the
+ MEM in an invalid way since we have no insn to validate against. */
+ if (insn != 0)
+ find_best_addr (insn, &XEXP (x, 0));
+
+ {
+ /* Even if we don't fold in the insn itself,
+ we can safely do so here, in hopes of getting a constant. */
+ rtx addr = fold_rtx (XEXP (x, 0), NULL_RTX);
+ rtx base = 0;
+ HOST_WIDE_INT offset = 0;
+
+ if (GET_CODE (addr) == REG
+ && REGNO_QTY_VALID_P (REGNO (addr))
+ && GET_MODE (addr) == qty_mode[reg_qty[REGNO (addr)]]
+ && qty_const[reg_qty[REGNO (addr)]] != 0)
+ addr = qty_const[reg_qty[REGNO (addr)]];
+
+ /* If address is constant, split it into a base and integer offset. */
+ if (GET_CODE (addr) == SYMBOL_REF || GET_CODE (addr) == LABEL_REF)
+ base = addr;
+ else if (GET_CODE (addr) == CONST && GET_CODE (XEXP (addr, 0)) == PLUS
+ && GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST_INT)
+ {
+ base = XEXP (XEXP (addr, 0), 0);
+ offset = INTVAL (XEXP (XEXP (addr, 0), 1));
+ }
+ else if (GET_CODE (addr) == LO_SUM
+ && GET_CODE (XEXP (addr, 1)) == SYMBOL_REF)
+ base = XEXP (addr, 1);
+
+ /* If this is a constant pool reference, we can fold it into its
+ constant to allow better value tracking. */
+ if (base && GET_CODE (base) == SYMBOL_REF
+ && CONSTANT_POOL_ADDRESS_P (base))
+ {
+ rtx constant = get_pool_constant (base);
+ enum machine_mode const_mode = get_pool_mode (base);
+ rtx new;
+
+ if (CONSTANT_P (constant) && GET_CODE (constant) != CONST_INT)
+ constant_pool_entries_cost = COST (constant);
+
+ /* If we are loading the full constant, we have an equivalence. */
+ if (offset == 0 && mode == const_mode)
+ return constant;
+
+ /* If this actually isn't a constant (weird!), we can't do
+ anything. Otherwise, handle the two most common cases:
+ extracting a word from a multi-word constant, and extracting
+ the low-order bits. Other cases don't seem common enough to
+ worry about. */
+ if (! CONSTANT_P (constant))
+ return x;
+
+ if (GET_MODE_CLASS (mode) == MODE_INT
+ && GET_MODE_SIZE (mode) == UNITS_PER_WORD
+ && offset % UNITS_PER_WORD == 0
+ && (new = operand_subword (constant,
+ offset / UNITS_PER_WORD,
+ 0, const_mode)) != 0)
+ return new;
+
+ if (((BYTES_BIG_ENDIAN
+ && offset == GET_MODE_SIZE (GET_MODE (constant)) - 1)
+ || (! BYTES_BIG_ENDIAN && offset == 0))
+ && (new = gen_lowpart_if_possible (mode, constant)) != 0)
+ return new;
+ }
+
+ /* If this is a reference to a label at a known position in a jump
+ table, we also know its value. */
+ if (base && GET_CODE (base) == LABEL_REF)
+ {
+ rtx label = XEXP (base, 0);
+ rtx table_insn = NEXT_INSN (label);
+
+ if (table_insn && GET_CODE (table_insn) == JUMP_INSN
+ && GET_CODE (PATTERN (table_insn)) == ADDR_VEC)
+ {
+ rtx table = PATTERN (table_insn);
+
+ if (offset >= 0
+ && (offset / GET_MODE_SIZE (GET_MODE (table))
+ < XVECLEN (table, 0)))
+ return XVECEXP (table, 0,
+ offset / GET_MODE_SIZE (GET_MODE (table)));
+ }
+ if (table_insn && GET_CODE (table_insn) == JUMP_INSN
+ && GET_CODE (PATTERN (table_insn)) == ADDR_DIFF_VEC)
+ {
+ rtx table = PATTERN (table_insn);
+
+ if (offset >= 0
+ && (offset / GET_MODE_SIZE (GET_MODE (table))
+ < XVECLEN (table, 1)))
+ {
+ offset /= GET_MODE_SIZE (GET_MODE (table));
+ new = gen_rtx (MINUS, Pmode, XVECEXP (table, 1, offset),
+ XEXP (table, 0));
+
+ if (GET_MODE (table) != Pmode)
+ new = gen_rtx (TRUNCATE, GET_MODE (table), new);
+
+ /* Indicate this is a constant. This isn't a
+ valid form of CONST, but it will only be used
+ to fold the next insns and then discarded, so
+ it should be safe. */
+ return gen_rtx (CONST, GET_MODE (new), new);
+ }
+ }
+ }
+
+ return x;
+ }
+ }
+
+ const_arg0 = 0;
+ const_arg1 = 0;
+ const_arg2 = 0;
+ mode_arg0 = VOIDmode;
+
+ /* Try folding our operands.
+ Then see which ones have constant values known. */
+
+ fmt = GET_RTX_FORMAT (code);
+ for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
+ if (fmt[i] == 'e')
+ {
+ rtx arg = XEXP (x, i);
+ rtx folded_arg = arg, const_arg = 0;
+ enum machine_mode mode_arg = GET_MODE (arg);
+ rtx cheap_arg, expensive_arg;
+ rtx replacements[2];
+ int j;
+
+ /* Most arguments are cheap, so handle them specially. */
+ switch (GET_CODE (arg))
+ {
+ case REG:
+ /* This is the same as calling equiv_constant; it is duplicated
+ here for speed. */
+ if (REGNO_QTY_VALID_P (REGNO (arg))
+ && qty_const[reg_qty[REGNO (arg)]] != 0
+ && GET_CODE (qty_const[reg_qty[REGNO (arg)]]) != REG
+ && GET_CODE (qty_const[reg_qty[REGNO (arg)]]) != PLUS)
+ const_arg
+ = gen_lowpart_if_possible (GET_MODE (arg),
+ qty_const[reg_qty[REGNO (arg)]]);
+ break;
+
+ case CONST:
+ case CONST_INT:
+ case SYMBOL_REF:
+ case LABEL_REF:
+ case CONST_DOUBLE:
+ const_arg = arg;
+ break;
+
+#ifdef HAVE_cc0
+ case CC0:
+ folded_arg = prev_insn_cc0;
+ mode_arg = prev_insn_cc0_mode;
+ const_arg = equiv_constant (folded_arg);
+ break;
+#endif
+
+ default:
+ folded_arg = fold_rtx (arg, insn);
+ const_arg = equiv_constant (folded_arg);
+ }
+
+ /* For the first three operands, see if the operand
+ is constant or equivalent to a constant. */
+ switch (i)
+ {
+ case 0:
+ folded_arg0 = folded_arg;
+ const_arg0 = const_arg;
+ mode_arg0 = mode_arg;
+ break;
+ case 1:
+ folded_arg1 = folded_arg;
+ const_arg1 = const_arg;
+ break;
+ case 2:
+ const_arg2 = const_arg;
+ break;
+ }
+
+ /* Pick the least expensive of the folded argument and an
+ equivalent constant argument. */
+ if (const_arg == 0 || const_arg == folded_arg
+ || COST (const_arg) > COST (folded_arg))
+ cheap_arg = folded_arg, expensive_arg = const_arg;
+ else
+ cheap_arg = const_arg, expensive_arg = folded_arg;
+
+ /* Try to replace the operand with the cheapest of the two
+ possibilities. If it doesn't work and this is either of the first
+ two operands of a commutative operation, try swapping them.
+ If THAT fails, try the more expensive, provided it is cheaper
+ than what is already there. */
+
+ if (cheap_arg == XEXP (x, i))
+ continue;
+
+ if (insn == 0 && ! copied)
+ {
+ x = copy_rtx (x);
+ copied = 1;
+ }
+
+ replacements[0] = cheap_arg, replacements[1] = expensive_arg;
+ for (j = 0;
+ j < 2 && replacements[j]
+ && COST (replacements[j]) < COST (XEXP (x, i));
+ j++)
+ {
+ if (validate_change (insn, &XEXP (x, i), replacements[j], 0))
+ break;
+
+ if (code == NE || code == EQ || GET_RTX_CLASS (code) == 'c')
+ {
+ validate_change (insn, &XEXP (x, i), XEXP (x, 1 - i), 1);
+ validate_change (insn, &XEXP (x, 1 - i), replacements[j], 1);
+
+ if (apply_change_group ())
+ {
+ /* Swap them back to be invalid so that this loop can
+ continue and flag them to be swapped back later. */
+ rtx tem;
+
+ tem = XEXP (x, 0); XEXP (x, 0) = XEXP (x, 1);
+ XEXP (x, 1) = tem;
+ must_swap = 1;
+ break;
+ }
+ }
+ }
+ }
+
+ else if (fmt[i] == 'E')
+ /* Don't try to fold inside of a vector of expressions.
+ Doing nothing is harmless. */
+ ;
+
+ /* If a commutative operation, place a constant integer as the second
+ operand unless the first operand is also a constant integer. Otherwise,
+ place any constant second unless the first operand is also a constant. */
+
+ if (code == EQ || code == NE || GET_RTX_CLASS (code) == 'c')
+ {
+ if (must_swap || (const_arg0
+ && (const_arg1 == 0
+ || (GET_CODE (const_arg0) == CONST_INT
+ && GET_CODE (const_arg1) != CONST_INT))))
+ {
+ register rtx tem = XEXP (x, 0);
+
+ if (insn == 0 && ! copied)
+ {
+ x = copy_rtx (x);
+ copied = 1;
+ }
+
+ validate_change (insn, &XEXP (x, 0), XEXP (x, 1), 1);
+ validate_change (insn, &XEXP (x, 1), tem, 1);
+ if (apply_change_group ())
+ {
+ tem = const_arg0, const_arg0 = const_arg1, const_arg1 = tem;
+ tem = folded_arg0, folded_arg0 = folded_arg1, folded_arg1 = tem;
+ }
+ }
+ }
+
+ /* If X is an arithmetic operation, see if we can simplify it. */
+
+ switch (GET_RTX_CLASS (code))
+ {
+ case '1':
+ {
+ int is_const = 0;
+
+ /* We can't simplify extension ops unless we know the
+ original mode. */
+ if ((code == ZERO_EXTEND || code == SIGN_EXTEND)
+ && mode_arg0 == VOIDmode)
+ break;
+
+ /* If we had a CONST, strip it off and put it back later if we
+ fold. */
+ if (const_arg0 != 0 && GET_CODE (const_arg0) == CONST)
+ is_const = 1, const_arg0 = XEXP (const_arg0, 0);
+
+ new = simplify_unary_operation (code, mode,
+ const_arg0 ? const_arg0 : folded_arg0,
+ mode_arg0);
+ if (new != 0 && is_const)
+ new = gen_rtx (CONST, mode, new);
+ }
+ break;
+
+ case '<':
+ /* See what items are actually being compared and set FOLDED_ARG[01]
+ to those values and CODE to the actual comparison code. If any are
+ constant, set CONST_ARG0 and CONST_ARG1 appropriately. We needn't
+ do anything if both operands are already known to be constant. */
+
+ if (const_arg0 == 0 || const_arg1 == 0)
+ {
+ struct table_elt *p0, *p1;
+ rtx true = const_true_rtx, false = const0_rtx;
+ enum machine_mode mode_arg1;
+
+#ifdef FLOAT_STORE_FLAG_VALUE
+ if (GET_MODE_CLASS (mode) == MODE_FLOAT)
+ {
+ true = CONST_DOUBLE_FROM_REAL_VALUE (FLOAT_STORE_FLAG_VALUE,
+ mode);
+ false = CONST0_RTX (mode);
+ }
+#endif
+
+ code = find_comparison_args (code, &folded_arg0, &folded_arg1,
+ &mode_arg0, &mode_arg1);
+ const_arg0 = equiv_constant (folded_arg0);
+ const_arg1 = equiv_constant (folded_arg1);
+
+ /* If the mode is VOIDmode or a MODE_CC mode, we don't know
+ what kinds of things are being compared, so we can't do
+ anything with this comparison. */
+
+ if (mode_arg0 == VOIDmode || GET_MODE_CLASS (mode_arg0) == MODE_CC)
+ break;
+
+ /* If we do not now have two constants being compared, see if we
+ can nevertheless deduce some things about the comparison. */
+ if (const_arg0 == 0 || const_arg1 == 0)
+ {
+ /* Is FOLDED_ARG0 frame-pointer plus a constant? Or non-explicit
+ constant? These aren't zero, but we don't know their sign. */
+ if (const_arg1 == const0_rtx
+ && (NONZERO_BASE_PLUS_P (folded_arg0)
+#if 0 /* Sad to say, on sysvr4, #pragma weak can make a symbol address
+ come out as 0. */
+ || GET_CODE (folded_arg0) == SYMBOL_REF
+#endif
+ || GET_CODE (folded_arg0) == LABEL_REF
+ || GET_CODE (folded_arg0) == CONST))
+ {
+ if (code == EQ)
+ return false;
+ else if (code == NE)
+ return true;
+ }
+
+ /* See if the two operands are the same. We don't do this
+ for IEEE floating-point since we can't assume x == x
+ since x might be a NaN. */
+
+ if ((TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
+ || ! FLOAT_MODE_P (mode_arg0) || flag_fast_math)
+ && (folded_arg0 == folded_arg1
+ || (GET_CODE (folded_arg0) == REG
+ && GET_CODE (folded_arg1) == REG
+ && (reg_qty[REGNO (folded_arg0)]
+ == reg_qty[REGNO (folded_arg1)]))
+ || ((p0 = lookup (folded_arg0,
+ (safe_hash (folded_arg0, mode_arg0)
+ % NBUCKETS), mode_arg0))
+ && (p1 = lookup (folded_arg1,
+ (safe_hash (folded_arg1, mode_arg0)
+ % NBUCKETS), mode_arg0))
+ && p0->first_same_value == p1->first_same_value)))
+ return ((code == EQ || code == LE || code == GE
+ || code == LEU || code == GEU)
+ ? true : false);
+
+ /* If FOLDED_ARG0 is a register, see if the comparison we are
+ doing now is either the same as we did before or the reverse
+ (we only check the reverse if not floating-point). */
+ else if (GET_CODE (folded_arg0) == REG)
+ {
+ int qty = reg_qty[REGNO (folded_arg0)];
+
+ if (REGNO_QTY_VALID_P (REGNO (folded_arg0))
+ && (comparison_dominates_p (qty_comparison_code[qty], code)
+ || (comparison_dominates_p (qty_comparison_code[qty],
+ reverse_condition (code))
+ && ! FLOAT_MODE_P (mode_arg0)))
+ && (rtx_equal_p (qty_comparison_const[qty], folded_arg1)
+ || (const_arg1
+ && rtx_equal_p (qty_comparison_const[qty],
+ const_arg1))
+ || (GET_CODE (folded_arg1) == REG
+ && (reg_qty[REGNO (folded_arg1)]
+ == qty_comparison_qty[qty]))))
+ return (comparison_dominates_p (qty_comparison_code[qty],
+ code)
+ ? true : false);
+ }
+ }
+ }
+
+ /* If we are comparing against zero, see if the first operand is
+ equivalent to an IOR with a constant. If so, we may be able to
+ determine the result of this comparison. */
+
+ if (const_arg1 == const0_rtx)
+ {
+ rtx y = lookup_as_function (folded_arg0, IOR);
+ rtx inner_const;
+
+ if (y != 0
+ && (inner_const = equiv_constant (XEXP (y, 1))) != 0
+ && GET_CODE (inner_const) == CONST_INT
+ && INTVAL (inner_const) != 0)
+ {
+ int sign_bitnum = GET_MODE_BITSIZE (mode_arg0) - 1;
+ int has_sign = (HOST_BITS_PER_WIDE_INT >= sign_bitnum
+ && (INTVAL (inner_const)
+ & ((HOST_WIDE_INT) 1 << sign_bitnum)));
+ rtx true = const_true_rtx, false = const0_rtx;
+
+#ifdef FLOAT_STORE_FLAG_VALUE
+ if (GET_MODE_CLASS (mode) == MODE_FLOAT)
+ {
+ true = CONST_DOUBLE_FROM_REAL_VALUE (FLOAT_STORE_FLAG_VALUE,
+ mode);
+ false = CONST0_RTX (mode);
+ }
+#endif
+
+ switch (code)
+ {
+ case EQ:
+ return false;
+ case NE:
+ return true;
+ case LT: case LE:
+ if (has_sign)
+ return true;
+ break;
+ case GT: case GE:
+ if (has_sign)
+ return false;
+ break;
+ }
+ }
+ }
+
+ new = simplify_relational_operation (code, mode_arg0,
+ const_arg0 ? const_arg0 : folded_arg0,
+ const_arg1 ? const_arg1 : folded_arg1);
+#ifdef FLOAT_STORE_FLAG_VALUE
+ if (new != 0 && GET_MODE_CLASS (mode) == MODE_FLOAT)
+ new = ((new == const0_rtx) ? CONST0_RTX (mode)
+ : CONST_DOUBLE_FROM_REAL_VALUE (FLOAT_STORE_FLAG_VALUE, mode));
+#endif
+ break;
+
+ case '2':
+ case 'c':
+ switch (code)
+ {
+ case PLUS:
+ /* If the second operand is a LABEL_REF, see if the first is a MINUS
+ with that LABEL_REF as its second operand. If so, the result is
+ the first operand of that MINUS. This handles switches with an
+ ADDR_DIFF_VEC table. */
+ if (const_arg1 && GET_CODE (const_arg1) == LABEL_REF)
+ {
+ rtx y
+ = GET_CODE (folded_arg0) == MINUS ? folded_arg0
+ : lookup_as_function (folded_arg0, MINUS);
+
+ if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
+ && XEXP (XEXP (y, 1), 0) == XEXP (const_arg1, 0))
+ return XEXP (y, 0);
+
+ /* Now try for a CONST of a MINUS like the above. */
+ if ((y = (GET_CODE (folded_arg0) == CONST ? folded_arg0
+ : lookup_as_function (folded_arg0, CONST))) != 0
+ && GET_CODE (XEXP (y, 0)) == MINUS
+ && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
+ && XEXP (XEXP (XEXP (y, 0),1), 0) == XEXP (const_arg1, 0))
+ return XEXP (XEXP (y, 0), 0);
+ }
+
+ /* Likewise if the operands are in the other order. */
+ if (const_arg0 && GET_CODE (const_arg0) == LABEL_REF)
+ {
+ rtx y
+ = GET_CODE (folded_arg1) == MINUS ? folded_arg1
+ : lookup_as_function (folded_arg1, MINUS);
+
+ if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
+ && XEXP (XEXP (y, 1), 0) == XEXP (const_arg0, 0))
+ return XEXP (y, 0);
+
+ /* Now try for a CONST of a MINUS like the above. */
+ if ((y = (GET_CODE (folded_arg1) == CONST ? folded_arg1
+ : lookup_as_function (folded_arg1, CONST))) != 0
+ && GET_CODE (XEXP (y, 0)) == MINUS
+ && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
+ && XEXP (XEXP (XEXP (y, 0),1), 0) == XEXP (const_arg0, 0))
+ return XEXP (XEXP (y, 0), 0);
+ }
+
+ /* If second operand is a register equivalent to a negative
+ CONST_INT, see if we can find a register equivalent to the
+ positive constant. Make a MINUS if so. Don't do this for
+ a negative constant since we might then alternate between
+ chosing positive and negative constants. Having the positive
+ constant previously-used is the more common case. */
+ if (const_arg1 && GET_CODE (const_arg1) == CONST_INT
+ && INTVAL (const_arg1) < 0 && GET_CODE (folded_arg1) == REG)
+ {
+ rtx new_const = GEN_INT (- INTVAL (const_arg1));
+ struct table_elt *p
+ = lookup (new_const, safe_hash (new_const, mode) % NBUCKETS,
+ mode);
+
+ if (p)
+ for (p = p->first_same_value; p; p = p->next_same_value)
+ if (GET_CODE (p->exp) == REG)
+ return cse_gen_binary (MINUS, mode, folded_arg0,
+ canon_reg (p->exp, NULL_RTX));
+ }
+ goto from_plus;
+
+ case MINUS:
+ /* If we have (MINUS Y C), see if Y is known to be (PLUS Z C2).
+ If so, produce (PLUS Z C2-C). */
+ if (const_arg1 != 0 && GET_CODE (const_arg1) == CONST_INT)
+ {
+ rtx y = lookup_as_function (XEXP (x, 0), PLUS);
+ if (y && GET_CODE (XEXP (y, 1)) == CONST_INT)
+ return fold_rtx (plus_constant (copy_rtx (y),
+ -INTVAL (const_arg1)),
+ NULL_RTX);
+ }
+
+ /* ... fall through ... */
+
+ from_plus:
+ case SMIN: case SMAX: case UMIN: case UMAX:
+ case IOR: case AND: case XOR:
+ case MULT: case DIV: case UDIV:
+ case ASHIFT: case LSHIFTRT: case ASHIFTRT:
+ /* If we have (<op> <reg> <const_int>) for an associative OP and REG
+ is known to be of similar form, we may be able to replace the
+ operation with a combined operation. This may eliminate the
+ intermediate operation if every use is simplified in this way.
+ Note that the similar optimization done by combine.c only works
+ if the intermediate operation's result has only one reference. */
+
+ if (GET_CODE (folded_arg0) == REG
+ && const_arg1 && GET_CODE (const_arg1) == CONST_INT)
+ {
+ int is_shift
+ = (code == ASHIFT || code == ASHIFTRT || code == LSHIFTRT);
+ rtx y = lookup_as_function (folded_arg0, code);
+ rtx inner_const;
+ enum rtx_code associate_code;
+ rtx new_const;
+
+ if (y == 0
+ || 0 == (inner_const
+ = equiv_constant (fold_rtx (XEXP (y, 1), 0)))
+ || GET_CODE (inner_const) != CONST_INT
+ /* If we have compiled a statement like
+ "if (x == (x & mask1))", and now are looking at
+ "x & mask2", we will have a case where the first operand
+ of Y is the same as our first operand. Unless we detect
+ this case, an infinite loop will result. */
+ || XEXP (y, 0) == folded_arg0)
+ break;
+
+ /* Don't associate these operations if they are a PLUS with the
+ same constant and it is a power of two. These might be doable
+ with a pre- or post-increment. Similarly for two subtracts of
+ identical powers of two with post decrement. */
+
+ if (code == PLUS && INTVAL (const_arg1) == INTVAL (inner_const)
+ && (0
+#if defined(HAVE_PRE_INCREMENT) || defined(HAVE_POST_INCREMENT)
+ || exact_log2 (INTVAL (const_arg1)) >= 0
+#endif
+#if defined(HAVE_PRE_DECREMENT) || defined(HAVE_POST_DECREMENT)
+ || exact_log2 (- INTVAL (const_arg1)) >= 0
+#endif
+ ))
+ break;
+
+ /* Compute the code used to compose the constants. For example,
+ A/C1/C2 is A/(C1 * C2), so if CODE == DIV, we want MULT. */
+
+ associate_code
+ = (code == MULT || code == DIV || code == UDIV ? MULT
+ : is_shift || code == PLUS || code == MINUS ? PLUS : code);
+
+ new_const = simplify_binary_operation (associate_code, mode,
+ const_arg1, inner_const);
+
+ if (new_const == 0)
+ break;
+
+ /* If we are associating shift operations, don't let this
+ produce a shift of the size of the object or larger.
+ This could occur when we follow a sign-extend by a right
+ shift on a machine that does a sign-extend as a pair
+ of shifts. */
+
+ if (is_shift && GET_CODE (new_const) == CONST_INT
+ && INTVAL (new_const) >= GET_MODE_BITSIZE (mode))
+ {
+ /* As an exception, we can turn an ASHIFTRT of this
+ form into a shift of the number of bits - 1. */
+ if (code == ASHIFTRT)
+ new_const = GEN_INT (GET_MODE_BITSIZE (mode) - 1);
+ else
+ break;
+ }
+
+ y = copy_rtx (XEXP (y, 0));
+
+ /* If Y contains our first operand (the most common way this
+ can happen is if Y is a MEM), we would do into an infinite
+ loop if we tried to fold it. So don't in that case. */
+
+ if (! reg_mentioned_p (folded_arg0, y))
+ y = fold_rtx (y, insn);
+
+ return cse_gen_binary (code, mode, y, new_const);
+ }
+ }
+
+ new = simplify_binary_operation (code, mode,
+ const_arg0 ? const_arg0 : folded_arg0,
+ const_arg1 ? const_arg1 : folded_arg1);
+ break;
+
+ case 'o':
+ /* (lo_sum (high X) X) is simply X. */
+ if (code == LO_SUM && const_arg0 != 0
+ && GET_CODE (const_arg0) == HIGH
+ && rtx_equal_p (XEXP (const_arg0, 0), const_arg1))
+ return const_arg1;
+ break;
+
+ case '3':
+ case 'b':
+ new = simplify_ternary_operation (code, mode, mode_arg0,
+ const_arg0 ? const_arg0 : folded_arg0,
+ const_arg1 ? const_arg1 : folded_arg1,
+ const_arg2 ? const_arg2 : XEXP (x, 2));
+ break;
+ }
+
+ return new ? new : x;
+}
+
+/* Return a constant value currently equivalent to X.
+ Return 0 if we don't know one. */
+
+static rtx
+equiv_constant (x)
+ rtx x;
+{
+ if (GET_CODE (x) == REG
+ && REGNO_QTY_VALID_P (REGNO (x))
+ && qty_const[reg_qty[REGNO (x)]])
+ x = gen_lowpart_if_possible (GET_MODE (x), qty_const[reg_qty[REGNO (x)]]);
+
+ if (x != 0 && CONSTANT_P (x))
+ return x;
+
+ /* If X is a MEM, try to fold it outside the context of any insn to see if
+ it might be equivalent to a constant. That handles the case where it
+ is a constant-pool reference. Then try to look it up in the hash table
+ in case it is something whose value we have seen before. */
+
+ if (GET_CODE (x) == MEM)
+ {
+ struct table_elt *elt;
+
+ x = fold_rtx (x, NULL_RTX);
+ if (CONSTANT_P (x))
+ return x;
+
+ elt = lookup (x, safe_hash (x, GET_MODE (x)) % NBUCKETS, GET_MODE (x));
+ if (elt == 0)
+ return 0;
+
+ for (elt = elt->first_same_value; elt; elt = elt->next_same_value)
+ if (elt->is_const && CONSTANT_P (elt->exp))
+ return elt->exp;
+ }
+
+ return 0;
+}
+
+/* Assuming that X is an rtx (e.g., MEM, REG or SUBREG) for a fixed-point
+ number, return an rtx (MEM, SUBREG, or CONST_INT) that refers to the
+ least-significant part of X.
+ MODE specifies how big a part of X to return.
+
+ If the requested operation cannot be done, 0 is returned.
+
+ This is similar to gen_lowpart in emit-rtl.c. */
+
+rtx
+gen_lowpart_if_possible (mode, x)
+ enum machine_mode mode;
+ register rtx x;
+{
+ rtx result = gen_lowpart_common (mode, x);
+
+ if (result)
+ return result;
+ else if (GET_CODE (x) == MEM)
+ {
+ /* This is the only other case we handle. */
+ register int offset = 0;
+ rtx new;
+
+ if (WORDS_BIG_ENDIAN)
+ offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
+ - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
+ if (BYTES_BIG_ENDIAN)
+ /* Adjust the address so that the address-after-the-data is
+ unchanged. */
+ offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
+ - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
+ new = gen_rtx (MEM, mode, plus_constant (XEXP (x, 0), offset));
+ if (! memory_address_p (mode, XEXP (new, 0)))
+ return 0;
+ MEM_VOLATILE_P (new) = MEM_VOLATILE_P (x);
+ RTX_UNCHANGING_P (new) = RTX_UNCHANGING_P (x);
+ MEM_IN_STRUCT_P (new) = MEM_IN_STRUCT_P (x);
+ return new;
+ }
+ else
+ return 0;
+}
+
+/* Given INSN, a jump insn, TAKEN indicates if we are following the "taken"
+ branch. It will be zero if not.
+
+ In certain cases, this can cause us to add an equivalence. For example,
+ if we are following the taken case of
+ if (i == 2)
+ we can add the fact that `i' and '2' are now equivalent.
+
+ In any case, we can record that this comparison was passed. If the same
+ comparison is seen later, we will know its value. */
+
+static void
+record_jump_equiv (insn, taken)
+ rtx insn;
+ int taken;
+{
+ int cond_known_true;
+ rtx op0, op1;
+ enum machine_mode mode, mode0, mode1;
+ int reversed_nonequality = 0;
+ enum rtx_code code;
+
+ /* Ensure this is the right kind of insn. */
+ if (! condjump_p (insn) || simplejump_p (insn))
+ return;
+
+ /* See if this jump condition is known true or false. */
+ if (taken)
+ cond_known_true = (XEXP (SET_SRC (PATTERN (insn)), 2) == pc_rtx);
+ else
+ cond_known_true = (XEXP (SET_SRC (PATTERN (insn)), 1) == pc_rtx);
+
+ /* Get the type of comparison being done and the operands being compared.
+ If we had to reverse a non-equality condition, record that fact so we
+ know that it isn't valid for floating-point. */
+ code = GET_CODE (XEXP (SET_SRC (PATTERN (insn)), 0));
+ op0 = fold_rtx (XEXP (XEXP (SET_SRC (PATTERN (insn)), 0), 0), insn);
+ op1 = fold_rtx (XEXP (XEXP (SET_SRC (PATTERN (insn)), 0), 1), insn);
+
+ code = find_comparison_args (code, &op0, &op1, &mode0, &mode1);
+ if (! cond_known_true)
+ {
+ reversed_nonequality = (code != EQ && code != NE);
+ code = reverse_condition (code);
+ }
+
+ /* The mode is the mode of the non-constant. */
+ mode = mode0;
+ if (mode1 != VOIDmode)
+ mode = mode1;
+
+ record_jump_cond (code, mode, op0, op1, reversed_nonequality);
+}
+
+/* We know that comparison CODE applied to OP0 and OP1 in MODE is true.
+ REVERSED_NONEQUALITY is nonzero if CODE had to be swapped.
+ Make any useful entries we can with that information. Called from
+ above function and called recursively. */
+
+static void
+record_jump_cond (code, mode, op0, op1, reversed_nonequality)
+ enum rtx_code code;
+ enum machine_mode mode;
+ rtx op0, op1;
+ int reversed_nonequality;
+{
+ unsigned op0_hash, op1_hash;
+ int op0_in_memory, op0_in_struct, op1_in_memory, op1_in_struct;
+ struct table_elt *op0_elt, *op1_elt;
+
+ /* If OP0 and OP1 are known equal, and either is a paradoxical SUBREG,
+ we know that they are also equal in the smaller mode (this is also
+ true for all smaller modes whether or not there is a SUBREG, but
+ is not worth testing for with no SUBREG. */
+
+ /* Note that GET_MODE (op0) may not equal MODE. */
+ if (code == EQ && GET_CODE (op0) == SUBREG
+ && (GET_MODE_SIZE (GET_MODE (op0))
+ > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))))
+ {
+ enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
+ rtx tem = gen_lowpart_if_possible (inner_mode, op1);
+
+ record_jump_cond (code, mode, SUBREG_REG (op0),
+ tem ? tem : gen_rtx (SUBREG, inner_mode, op1, 0),
+ reversed_nonequality);
+ }
+
+ if (code == EQ && GET_CODE (op1) == SUBREG
+ && (GET_MODE_SIZE (GET_MODE (op1))
+ > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1)))))
+ {
+ enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
+ rtx tem = gen_lowpart_if_possible (inner_mode, op0);
+
+ record_jump_cond (code, mode, SUBREG_REG (op1),
+ tem ? tem : gen_rtx (SUBREG, inner_mode, op0, 0),
+ reversed_nonequality);
+ }
+
+ /* Similarly, if this is an NE comparison, and either is a SUBREG
+ making a smaller mode, we know the whole thing is also NE. */
+
+ /* Note that GET_MODE (op0) may not equal MODE;
+ if we test MODE instead, we can get an infinite recursion
+ alternating between two modes each wider than MODE. */
+
+ if (code == NE && GET_CODE (op0) == SUBREG
+ && subreg_lowpart_p (op0)
+ && (GET_MODE_SIZE (GET_MODE (op0))
+ < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))))
+ {
+ enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
+ rtx tem = gen_lowpart_if_possible (inner_mode, op1);
+
+ record_jump_cond (code, mode, SUBREG_REG (op0),
+ tem ? tem : gen_rtx (SUBREG, inner_mode, op1, 0),
+ reversed_nonequality);
+ }
+
+ if (code == NE && GET_CODE (op1) == SUBREG
+ && subreg_lowpart_p (op1)
+ && (GET_MODE_SIZE (GET_MODE (op1))
+ < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1)))))
+ {
+ enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
+ rtx tem = gen_lowpart_if_possible (inner_mode, op0);
+
+ record_jump_cond (code, mode, SUBREG_REG (op1),
+ tem ? tem : gen_rtx (SUBREG, inner_mode, op0, 0),
+ reversed_nonequality);
+ }
+
+ /* Hash both operands. */
+
+ do_not_record = 0;
+ hash_arg_in_memory = 0;
+ hash_arg_in_struct = 0;
+ op0_hash = HASH (op0, mode);
+ op0_in_memory = hash_arg_in_memory;
+ op0_in_struct = hash_arg_in_struct;
+
+ if (do_not_record)
+ return;
+
+ do_not_record = 0;
+ hash_arg_in_memory = 0;
+ hash_arg_in_struct = 0;
+ op1_hash = HASH (op1, mode);
+ op1_in_memory = hash_arg_in_memory;
+ op1_in_struct = hash_arg_in_struct;
+
+ if (do_not_record)
+ return;
+
+ /* Look up both operands. */
+ op0_elt = lookup (op0, op0_hash, mode);
+ op1_elt = lookup (op1, op1_hash, mode);
+
+ /* If both operands are already equivalent or if they are not in the
+ table but are identical, do nothing. */
+ if ((op0_elt != 0 && op1_elt != 0
+ && op0_elt->first_same_value == op1_elt->first_same_value)
+ || op0 == op1 || rtx_equal_p (op0, op1))
+ return;
+
+ /* If we aren't setting two things equal all we can do is save this
+ comparison. Similarly if this is floating-point. In the latter
+ case, OP1 might be zero and both -0.0 and 0.0 are equal to it.
+ If we record the equality, we might inadvertently delete code
+ whose intent was to change -0 to +0. */
+
+ if (code != EQ || FLOAT_MODE_P (GET_MODE (op0)))
+ {
+ /* If we reversed a floating-point comparison, if OP0 is not a
+ register, or if OP1 is neither a register or constant, we can't
+ do anything. */
+
+ if (GET_CODE (op1) != REG)
+ op1 = equiv_constant (op1);
+
+ if ((reversed_nonequality && FLOAT_MODE_P (mode))
+ || GET_CODE (op0) != REG || op1 == 0)
+ return;
+
+ /* Put OP0 in the hash table if it isn't already. This gives it a
+ new quantity number. */
+ if (op0_elt == 0)
+ {
+ if (insert_regs (op0, NULL_PTR, 0))
+ {
+ rehash_using_reg (op0);
+ op0_hash = HASH (op0, mode);
+
+ /* If OP0 is contained in OP1, this changes its hash code
+ as well. Faster to rehash than to check, except
+ for the simple case of a constant. */
+ if (! CONSTANT_P (op1))
+ op1_hash = HASH (op1,mode);
+ }
+
+ op0_elt = insert (op0, NULL_PTR, op0_hash, mode);
+ op0_elt->in_memory = op0_in_memory;
+ op0_elt->in_struct = op0_in_struct;
+ }
+
+ qty_comparison_code[reg_qty[REGNO (op0)]] = code;
+ if (GET_CODE (op1) == REG)
+ {
+ /* Look it up again--in case op0 and op1 are the same. */
+ op1_elt = lookup (op1, op1_hash, mode);
+
+ /* Put OP1 in the hash table so it gets a new quantity number. */
+ if (op1_elt == 0)
+ {
+ if (insert_regs (op1, NULL_PTR, 0))
+ {
+ rehash_using_reg (op1);
+ op1_hash = HASH (op1, mode);
+ }
+
+ op1_elt = insert (op1, NULL_PTR, op1_hash, mode);
+ op1_elt->in_memory = op1_in_memory;
+ op1_elt->in_struct = op1_in_struct;
+ }
+
+ qty_comparison_qty[reg_qty[REGNO (op0)]] = reg_qty[REGNO (op1)];
+ qty_comparison_const[reg_qty[REGNO (op0)]] = 0;
+ }
+ else
+ {
+ qty_comparison_qty[reg_qty[REGNO (op0)]] = -1;
+ qty_comparison_const[reg_qty[REGNO (op0)]] = op1;
+ }
+
+ return;
+ }
+
+ /* If either side is still missing an equivalence, make it now,
+ then merge the equivalences. */
+
+ if (op0_elt == 0)
+ {
+ if (insert_regs (op0, NULL_PTR, 0))
+ {
+ rehash_using_reg (op0);
+ op0_hash = HASH (op0, mode);
+ }
+
+ op0_elt = insert (op0, NULL_PTR, op0_hash, mode);
+ op0_elt->in_memory = op0_in_memory;
+ op0_elt->in_struct = op0_in_struct;
+ }
+
+ if (op1_elt == 0)
+ {
+ if (insert_regs (op1, NULL_PTR, 0))
+ {
+ rehash_using_reg (op1);
+ op1_hash = HASH (op1, mode);
+ }
+
+ op1_elt = insert (op1, NULL_PTR, op1_hash, mode);
+ op1_elt->in_memory = op1_in_memory;
+ op1_elt->in_struct = op1_in_struct;
+ }
+
+ merge_equiv_classes (op0_elt, op1_elt);
+ last_jump_equiv_class = op0_elt;
+}
+
+/* CSE processing for one instruction.
+ First simplify sources and addresses of all assignments
+ in the instruction, using previously-computed equivalents values.
+ Then install the new sources and destinations in the table
+ of available values.
+
+ If IN_LIBCALL_BLOCK is nonzero, don't record any equivalence made in
+ the insn. */
+
+/* Data on one SET contained in the instruction. */
+
+struct set
+{
+ /* The SET rtx itself. */
+ rtx rtl;
+ /* The SET_SRC of the rtx (the original value, if it is changing). */
+ rtx src;
+ /* The hash-table element for the SET_SRC of the SET. */
+ struct table_elt *src_elt;
+ /* Hash value for the SET_SRC. */
+ unsigned src_hash;
+ /* Hash value for the SET_DEST. */
+ unsigned dest_hash;
+ /* The SET_DEST, with SUBREG, etc., stripped. */
+ rtx inner_dest;
+ /* Place where the pointer to the INNER_DEST was found. */
+ rtx *inner_dest_loc;
+ /* Nonzero if the SET_SRC is in memory. */
+ char src_in_memory;
+ /* Nonzero if the SET_SRC is in a structure. */
+ char src_in_struct;
+ /* Nonzero if the SET_SRC contains something
+ whose value cannot be predicted and understood. */
+ char src_volatile;
+ /* Original machine mode, in case it becomes a CONST_INT. */
+ enum machine_mode mode;
+ /* A constant equivalent for SET_SRC, if any. */
+ rtx src_const;
+ /* Hash value of constant equivalent for SET_SRC. */
+ unsigned src_const_hash;
+ /* Table entry for constant equivalent for SET_SRC, if any. */
+ struct table_elt *src_const_elt;
+};
+
+static void
+cse_insn (insn, in_libcall_block)
+ rtx insn;
+ int in_libcall_block;
+{
+ register rtx x = PATTERN (insn);
+ register int i;
+ rtx tem;
+ register int n_sets = 0;
+
+ /* Records what this insn does to set CC0. */
+ rtx this_insn_cc0 = 0;
+ enum machine_mode this_insn_cc0_mode;
+ struct write_data writes_memory;
+ static struct write_data init = {0, 0, 0, 0};
+
+ rtx src_eqv = 0;
+ struct table_elt *src_eqv_elt = 0;
+ int src_eqv_volatile;
+ int src_eqv_in_memory;
+ int src_eqv_in_struct;
+ unsigned src_eqv_hash;
+
+ struct set *sets;
+
+ this_insn = insn;
+ writes_memory = init;
+
+ /* Find all the SETs and CLOBBERs in this instruction.
+ Record all the SETs in the array `set' and count them.
+ Also determine whether there is a CLOBBER that invalidates
+ all memory references, or all references at varying addresses. */
+
+ if (GET_CODE (insn) == CALL_INSN)
+ {
+ for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
+ if (GET_CODE (XEXP (tem, 0)) == CLOBBER)
+ invalidate (SET_DEST (XEXP (tem, 0)), VOIDmode);
+ }
+
+ if (GET_CODE (x) == SET)
+ {
+ sets = (struct set *) alloca (sizeof (struct set));
+ sets[0].rtl = x;
+
+ /* Ignore SETs that are unconditional jumps.
+ They never need cse processing, so this does not hurt.
+ The reason is not efficiency but rather
+ so that we can test at the end for instructions
+ that have been simplified to unconditional jumps
+ and not be misled by unchanged instructions
+ that were unconditional jumps to begin with. */
+ if (SET_DEST (x) == pc_rtx
+ && GET_CODE (SET_SRC (x)) == LABEL_REF)
+ ;
+
+ /* Don't count call-insns, (set (reg 0) (call ...)), as a set.
+ The hard function value register is used only once, to copy to
+ someplace else, so it isn't worth cse'ing (and on 80386 is unsafe)!
+ Ensure we invalidate the destination register. On the 80386 no
+ other code would invalidate it since it is a fixed_reg.
+ We need not check the return of apply_change_group; see canon_reg. */
+
+ else if (GET_CODE (SET_SRC (x)) == CALL)
+ {
+ canon_reg (SET_SRC (x), insn);
+ apply_change_group ();
+ fold_rtx (SET_SRC (x), insn);
+ invalidate (SET_DEST (x), VOIDmode);
+ }
+ else
+ n_sets = 1;
+ }
+ else if (GET_CODE (x) == PARALLEL)
+ {
+ register int lim = XVECLEN (x, 0);
+
+ sets = (struct set *) alloca (lim * sizeof (struct set));
+
+ /* Find all regs explicitly clobbered in this insn,
+ and ensure they are not replaced with any other regs
+ elsewhere in this insn.
+ When a reg that is clobbered is also used for input,
+ we should presume that that is for a reason,
+ and we should not substitute some other register
+ which is not supposed to be clobbered.
+ Therefore, this loop cannot be merged into the one below
+ because a CALL may precede a CLOBBER and refer to the
+ value clobbered. We must not let a canonicalization do
+ anything in that case. */
+ for (i = 0; i < lim; i++)
+ {
+ register rtx y = XVECEXP (x, 0, i);
+ if (GET_CODE (y) == CLOBBER)
+ {
+ rtx clobbered = XEXP (y, 0);
+
+ if (GET_CODE (clobbered) == REG
+ || GET_CODE (clobbered) == SUBREG)
+ invalidate (clobbered, VOIDmode);
+ else if (GET_CODE (clobbered) == STRICT_LOW_PART
+ || GET_CODE (clobbered) == ZERO_EXTRACT)
+ invalidate (XEXP (clobbered, 0), GET_MODE (clobbered));
+ }
+ }
+
+ for (i = 0; i < lim; i++)
+ {
+ register rtx y = XVECEXP (x, 0, i);
+ if (GET_CODE (y) == SET)
+ {
+ /* As above, we ignore unconditional jumps and call-insns and
+ ignore the result of apply_change_group. */
+ if (GET_CODE (SET_SRC (y)) == CALL)
+ {
+ canon_reg (SET_SRC (y), insn);
+ apply_change_group ();
+ fold_rtx (SET_SRC (y), insn);
+ invalidate (SET_DEST (y), VOIDmode);
+ }
+ else if (SET_DEST (y) == pc_rtx
+ && GET_CODE (SET_SRC (y)) == LABEL_REF)
+ ;
+ else
+ sets[n_sets++].rtl = y;
+ }
+ else if (GET_CODE (y) == CLOBBER)
+ {
+ /* If we clobber memory, take note of that,
+ and canon the address.
+ This does nothing when a register is clobbered
+ because we have already invalidated the reg. */
+ if (GET_CODE (XEXP (y, 0)) == MEM)
+ {
+ canon_reg (XEXP (y, 0), NULL_RTX);
+ note_mem_written (XEXP (y, 0), &writes_memory);
+ }
+ }
+ else if (GET_CODE (y) == USE
+ && ! (GET_CODE (XEXP (y, 0)) == REG
+ && REGNO (XEXP (y, 0)) < FIRST_PSEUDO_REGISTER))
+ canon_reg (y, NULL_RTX);
+ else if (GET_CODE (y) == CALL)
+ {
+ /* The result of apply_change_group can be ignored; see
+ canon_reg. */
+ canon_reg (y, insn);
+ apply_change_group ();
+ fold_rtx (y, insn);
+ }
+ }
+ }
+ else if (GET_CODE (x) == CLOBBER)
+ {
+ if (GET_CODE (XEXP (x, 0)) == MEM)
+ {
+ canon_reg (XEXP (x, 0), NULL_RTX);
+ note_mem_written (XEXP (x, 0), &writes_memory);
+ }
+ }
+
+ /* Canonicalize a USE of a pseudo register or memory location. */
+ else if (GET_CODE (x) == USE
+ && ! (GET_CODE (XEXP (x, 0)) == REG
+ && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER))
+ canon_reg (XEXP (x, 0), NULL_RTX);
+ else if (GET_CODE (x) == CALL)
+ {
+ /* The result of apply_change_group can be ignored; see canon_reg. */
+ canon_reg (x, insn);
+ apply_change_group ();
+ fold_rtx (x, insn);
+ }
+
+ /* Store the equivalent value in SRC_EQV, if different, or if the DEST
+ is a STRICT_LOW_PART. The latter condition is necessary because SRC_EQV
+ is handled specially for this case, and if it isn't set, then there will
+ be no equivalence for the destination. */
+ if (n_sets == 1 && REG_NOTES (insn) != 0
+ && (tem = find_reg_note (insn, REG_EQUAL, NULL_RTX)) != 0
+ && (! rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl))
+ || GET_CODE (SET_DEST (sets[0].rtl)) == STRICT_LOW_PART))
+ src_eqv = canon_reg (XEXP (tem, 0), NULL_RTX);
+
+ /* Canonicalize sources and addresses of destinations.
+ We do this in a separate pass to avoid problems when a MATCH_DUP is
+ present in the insn pattern. In that case, we want to ensure that
+ we don't break the duplicate nature of the pattern. So we will replace
+ both operands at the same time. Otherwise, we would fail to find an
+ equivalent substitution in the loop calling validate_change below.
+
+ We used to suppress canonicalization of DEST if it appears in SRC,
+ but we don't do this any more. */
+
+ for (i = 0; i < n_sets; i++)
+ {
+ rtx dest = SET_DEST (sets[i].rtl);
+ rtx src = SET_SRC (sets[i].rtl);
+ rtx new = canon_reg (src, insn);
+
+ if ((GET_CODE (new) == REG && GET_CODE (src) == REG
+ && ((REGNO (new) < FIRST_PSEUDO_REGISTER)
+ != (REGNO (src) < FIRST_PSEUDO_REGISTER)))
+ || insn_n_dups[recog_memoized (insn)] > 0)
+ validate_change (insn, &SET_SRC (sets[i].rtl), new, 1);
+ else
+ SET_SRC (sets[i].rtl) = new;
+
+ if (GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == SIGN_EXTRACT)
+ {
+ validate_change (insn, &XEXP (dest, 1),
+ canon_reg (XEXP (dest, 1), insn), 1);
+ validate_change (insn, &XEXP (dest, 2),
+ canon_reg (XEXP (dest, 2), insn), 1);
+ }
+
+ while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
+ || GET_CODE (dest) == ZERO_EXTRACT
+ || GET_CODE (dest) == SIGN_EXTRACT)
+ dest = XEXP (dest, 0);
+
+ if (GET_CODE (dest) == MEM)
+ canon_reg (dest, insn);
+ }
+
+ /* Now that we have done all the replacements, we can apply the change
+ group and see if they all work. Note that this will cause some
+ canonicalizations that would have worked individually not to be applied
+ because some other canonicalization didn't work, but this should not
+ occur often.
+
+ The result of apply_change_group can be ignored; see canon_reg. */
+
+ apply_change_group ();
+
+ /* Set sets[i].src_elt to the class each source belongs to.
+ Detect assignments from or to volatile things
+ and set set[i] to zero so they will be ignored
+ in the rest of this function.
+
+ Nothing in this loop changes the hash table or the register chains. */
+
+ for (i = 0; i < n_sets; i++)
+ {
+ register rtx src, dest;
+ register rtx src_folded;
+ register struct table_elt *elt = 0, *p;
+ enum machine_mode mode;
+ rtx src_eqv_here;
+ rtx src_const = 0;
+ rtx src_related = 0;
+ struct table_elt *src_const_elt = 0;
+ int src_cost = 10000, src_eqv_cost = 10000, src_folded_cost = 10000;
+ int src_related_cost = 10000, src_elt_cost = 10000;
+ /* Set non-zero if we need to call force_const_mem on with the
+ contents of src_folded before using it. */
+ int src_folded_force_flag = 0;
+
+ dest = SET_DEST (sets[i].rtl);
+ src = SET_SRC (sets[i].rtl);
+
+ /* If SRC is a constant that has no machine mode,
+ hash it with the destination's machine mode.
+ This way we can keep different modes separate. */
+
+ mode = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
+ sets[i].mode = mode;
+
+ if (src_eqv)
+ {
+ enum machine_mode eqvmode = mode;
+ if (GET_CODE (dest) == STRICT_LOW_PART)
+ eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
+ do_not_record = 0;
+ hash_arg_in_memory = 0;
+ hash_arg_in_struct = 0;
+ src_eqv = fold_rtx (src_eqv, insn);
+ src_eqv_hash = HASH (src_eqv, eqvmode);
+
+ /* Find the equivalence class for the equivalent expression. */
+
+ if (!do_not_record)
+ src_eqv_elt = lookup (src_eqv, src_eqv_hash, eqvmode);
+
+ src_eqv_volatile = do_not_record;
+ src_eqv_in_memory = hash_arg_in_memory;
+ src_eqv_in_struct = hash_arg_in_struct;
+ }
+
+ /* If this is a STRICT_LOW_PART assignment, src_eqv corresponds to the
+ value of the INNER register, not the destination. So it is not
+ a valid substitution for the source. But save it for later. */
+ if (GET_CODE (dest) == STRICT_LOW_PART)
+ src_eqv_here = 0;
+ else
+ src_eqv_here = src_eqv;
+
+ /* Simplify and foldable subexpressions in SRC. Then get the fully-
+ simplified result, which may not necessarily be valid. */
+ src_folded = fold_rtx (src, insn);
+
+#if 0
+ /* ??? This caused bad code to be generated for the m68k port with -O2.
+ Suppose src is (CONST_INT -1), and that after truncation src_folded
+ is (CONST_INT 3). Suppose src_folded is then used for src_const.
+ At the end we will add src and src_const to the same equivalence
+ class. We now have 3 and -1 on the same equivalence class. This
+ causes later instructions to be mis-optimized. */
+ /* If storing a constant in a bitfield, pre-truncate the constant
+ so we will be able to record it later. */
+ if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT
+ || GET_CODE (SET_DEST (sets[i].rtl)) == SIGN_EXTRACT)
+ {
+ rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
+
+ if (GET_CODE (src) == CONST_INT
+ && GET_CODE (width) == CONST_INT
+ && INTVAL (width) < HOST_BITS_PER_WIDE_INT
+ && (INTVAL (src) & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
+ src_folded
+ = GEN_INT (INTVAL (src) & (((HOST_WIDE_INT) 1
+ << INTVAL (width)) - 1));
+ }
+#endif
+
+ /* Compute SRC's hash code, and also notice if it
+ should not be recorded at all. In that case,
+ prevent any further processing of this assignment. */
+ do_not_record = 0;
+ hash_arg_in_memory = 0;
+ hash_arg_in_struct = 0;
+
+ sets[i].src = src;
+ sets[i].src_hash = HASH (src, mode);
+ sets[i].src_volatile = do_not_record;
+ sets[i].src_in_memory = hash_arg_in_memory;
+ sets[i].src_in_struct = hash_arg_in_struct;
+
+#if 0
+ /* It is no longer clear why we used to do this, but it doesn't
+ appear to still be needed. So let's try without it since this
+ code hurts cse'ing widened ops. */
+ /* If source is a perverse subreg (such as QI treated as an SI),
+ treat it as volatile. It may do the work of an SI in one context
+ where the extra bits are not being used, but cannot replace an SI
+ in general. */
+ if (GET_CODE (src) == SUBREG
+ && (GET_MODE_SIZE (GET_MODE (src))
+ > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))))
+ sets[i].src_volatile = 1;
+#endif
+
+ /* Locate all possible equivalent forms for SRC. Try to replace
+ SRC in the insn with each cheaper equivalent.
+
+ We have the following types of equivalents: SRC itself, a folded
+ version, a value given in a REG_EQUAL note, or a value related
+ to a constant.
+
+ Each of these equivalents may be part of an additional class
+ of equivalents (if more than one is in the table, they must be in
+ the same class; we check for this).
+
+ If the source is volatile, we don't do any table lookups.
+
+ We note any constant equivalent for possible later use in a
+ REG_NOTE. */
+
+ if (!sets[i].src_volatile)
+ elt = lookup (src, sets[i].src_hash, mode);
+
+ sets[i].src_elt = elt;
+
+ if (elt && src_eqv_here && src_eqv_elt)
+ {
+ if (elt->first_same_value != src_eqv_elt->first_same_value)
+ {
+ /* The REG_EQUAL is indicating that two formerly distinct
+ classes are now equivalent. So merge them. */
+ merge_equiv_classes (elt, src_eqv_elt);
+ src_eqv_hash = HASH (src_eqv, elt->mode);
+ src_eqv_elt = lookup (src_eqv, src_eqv_hash, elt->mode);
+ }
+
+ src_eqv_here = 0;
+ }
+
+ else if (src_eqv_elt)
+ elt = src_eqv_elt;
+
+ /* Try to find a constant somewhere and record it in `src_const'.
+ Record its table element, if any, in `src_const_elt'. Look in
+ any known equivalences first. (If the constant is not in the
+ table, also set `sets[i].src_const_hash'). */
+ if (elt)
+ for (p = elt->first_same_value; p; p = p->next_same_value)
+ if (p->is_const)
+ {
+ src_const = p->exp;
+ src_const_elt = elt;
+ break;
+ }
+
+ if (src_const == 0
+ && (CONSTANT_P (src_folded)
+ /* Consider (minus (label_ref L1) (label_ref L2)) as
+ "constant" here so we will record it. This allows us
+ to fold switch statements when an ADDR_DIFF_VEC is used. */
+ || (GET_CODE (src_folded) == MINUS
+ && GET_CODE (XEXP (src_folded, 0)) == LABEL_REF
+ && GET_CODE (XEXP (src_folded, 1)) == LABEL_REF)))
+ src_const = src_folded, src_const_elt = elt;
+ else if (src_const == 0 && src_eqv_here && CONSTANT_P (src_eqv_here))
+ src_const = src_eqv_here, src_const_elt = src_eqv_elt;
+
+ /* If we don't know if the constant is in the table, get its
+ hash code and look it up. */
+ if (src_const && src_const_elt == 0)
+ {
+ sets[i].src_const_hash = HASH (src_const, mode);
+ src_const_elt = lookup (src_const, sets[i].src_const_hash, mode);
+ }
+
+ sets[i].src_const = src_const;
+ sets[i].src_const_elt = src_const_elt;
+
+ /* If the constant and our source are both in the table, mark them as
+ equivalent. Otherwise, if a constant is in the table but the source
+ isn't, set ELT to it. */
+ if (src_const_elt && elt
+ && src_const_elt->first_same_value != elt->first_same_value)
+ merge_equiv_classes (elt, src_const_elt);
+ else if (src_const_elt && elt == 0)
+ elt = src_const_elt;
+
+ /* See if there is a register linearly related to a constant
+ equivalent of SRC. */
+ if (src_const
+ && (GET_CODE (src_const) == CONST
+ || (src_const_elt && src_const_elt->related_value != 0)))
+ {
+ src_related = use_related_value (src_const, src_const_elt);
+ if (src_related)
+ {
+ struct table_elt *src_related_elt
+ = lookup (src_related, HASH (src_related, mode), mode);
+ if (src_related_elt && elt)
+ {
+ if (elt->first_same_value
+ != src_related_elt->first_same_value)
+ /* This can occur when we previously saw a CONST
+ involving a SYMBOL_REF and then see the SYMBOL_REF
+ twice. Merge the involved classes. */
+ merge_equiv_classes (elt, src_related_elt);
+
+ src_related = 0;
+ src_related_elt = 0;
+ }
+ else if (src_related_elt && elt == 0)
+ elt = src_related_elt;
+ }
+ }
+
+ /* See if we have a CONST_INT that is already in a register in a
+ wider mode. */
+
+ if (src_const && src_related == 0 && GET_CODE (src_const) == CONST_INT
+ && GET_MODE_CLASS (mode) == MODE_INT
+ && GET_MODE_BITSIZE (mode) < BITS_PER_WORD)
+ {
+ enum machine_mode wider_mode;
+
+ for (wider_mode = GET_MODE_WIDER_MODE (mode);
+ GET_MODE_BITSIZE (wider_mode) <= BITS_PER_WORD
+ && src_related == 0;
+ wider_mode = GET_MODE_WIDER_MODE (wider_mode))
+ {
+ struct table_elt *const_elt
+ = lookup (src_const, HASH (src_const, wider_mode), wider_mode);
+
+ if (const_elt == 0)
+ continue;
+
+ for (const_elt = const_elt->first_same_value;
+ const_elt; const_elt = const_elt->next_same_value)
+ if (GET_CODE (const_elt->exp) == REG)
+ {
+ src_related = gen_lowpart_if_possible (mode,
+ const_elt->exp);
+ break;
+ }
+ }
+ }
+
+ /* Another possibility is that we have an AND with a constant in
+ a mode narrower than a word. If so, it might have been generated
+ as part of an "if" which would narrow the AND. If we already
+ have done the AND in a wider mode, we can use a SUBREG of that
+ value. */
+
+ if (flag_expensive_optimizations && ! src_related
+ && GET_CODE (src) == AND && GET_CODE (XEXP (src, 1)) == CONST_INT
+ && GET_MODE_SIZE (mode) < UNITS_PER_WORD)
+ {
+ enum machine_mode tmode;
+ rtx new_and = gen_rtx (AND, VOIDmode, NULL_RTX, XEXP (src, 1));
+
+ for (tmode = GET_MODE_WIDER_MODE (mode);
+ GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
+ tmode = GET_MODE_WIDER_MODE (tmode))
+ {
+ rtx inner = gen_lowpart_if_possible (tmode, XEXP (src, 0));
+ struct table_elt *larger_elt;
+
+ if (inner)
+ {
+ PUT_MODE (new_and, tmode);
+ XEXP (new_and, 0) = inner;
+ larger_elt = lookup (new_and, HASH (new_and, tmode), tmode);
+ if (larger_elt == 0)
+ continue;
+
+ for (larger_elt = larger_elt->first_same_value;
+ larger_elt; larger_elt = larger_elt->next_same_value)
+ if (GET_CODE (larger_elt->exp) == REG)
+ {
+ src_related
+ = gen_lowpart_if_possible (mode, larger_elt->exp);
+ break;
+ }
+
+ if (src_related)
+ break;
+ }
+ }
+ }
+
+#ifdef LOAD_EXTEND_OP
+ /* See if a MEM has already been loaded with a widening operation;
+ if it has, we can use a subreg of that. Many CISC machines
+ also have such operations, but this is only likely to be
+ beneficial these machines. */
+
+ if (flag_expensive_optimizations && src_related == 0
+ && (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
+ && GET_MODE_CLASS (mode) == MODE_INT
+ && GET_CODE (src) == MEM && ! do_not_record
+ && LOAD_EXTEND_OP (mode) != NIL)
+ {
+ enum machine_mode tmode;
+
+ /* Set what we are trying to extend and the operation it might
+ have been extended with. */
+ PUT_CODE (memory_extend_rtx, LOAD_EXTEND_OP (mode));
+ XEXP (memory_extend_rtx, 0) = src;
+
+ for (tmode = GET_MODE_WIDER_MODE (mode);
+ GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
+ tmode = GET_MODE_WIDER_MODE (tmode))
+ {
+ struct table_elt *larger_elt;
+
+ PUT_MODE (memory_extend_rtx, tmode);
+ larger_elt = lookup (memory_extend_rtx,
+ HASH (memory_extend_rtx, tmode), tmode);
+ if (larger_elt == 0)
+ continue;
+
+ for (larger_elt = larger_elt->first_same_value;
+ larger_elt; larger_elt = larger_elt->next_same_value)
+ if (GET_CODE (larger_elt->exp) == REG)
+ {
+ src_related = gen_lowpart_if_possible (mode,
+ larger_elt->exp);
+ break;
+ }
+
+ if (src_related)
+ break;
+ }
+ }
+#endif /* LOAD_EXTEND_OP */
+
+ if (src == src_folded)
+ src_folded = 0;
+
+ /* At this point, ELT, if non-zero, points to a class of expressions
+ equivalent to the source of this SET and SRC, SRC_EQV, SRC_FOLDED,
+ and SRC_RELATED, if non-zero, each contain additional equivalent
+ expressions. Prune these latter expressions by deleting expressions
+ already in the equivalence class.
+
+ Check for an equivalent identical to the destination. If found,
+ this is the preferred equivalent since it will likely lead to
+ elimination of the insn. Indicate this by placing it in
+ `src_related'. */
+
+ if (elt) elt = elt->first_same_value;
+ for (p = elt; p; p = p->next_same_value)
+ {
+ enum rtx_code code = GET_CODE (p->exp);
+
+ /* If the expression is not valid, ignore it. Then we do not
+ have to check for validity below. In most cases, we can use
+ `rtx_equal_p', since canonicalization has already been done. */
+ if (code != REG && ! exp_equiv_p (p->exp, p->exp, 1, 0))
+ continue;
+
+ if (src && GET_CODE (src) == code && rtx_equal_p (src, p->exp))
+ src = 0;
+ else if (src_folded && GET_CODE (src_folded) == code
+ && rtx_equal_p (src_folded, p->exp))
+ src_folded = 0;
+ else if (src_eqv_here && GET_CODE (src_eqv_here) == code
+ && rtx_equal_p (src_eqv_here, p->exp))
+ src_eqv_here = 0;
+ else if (src_related && GET_CODE (src_related) == code
+ && rtx_equal_p (src_related, p->exp))
+ src_related = 0;
+
+ /* This is the same as the destination of the insns, we want
+ to prefer it. Copy it to src_related. The code below will
+ then give it a negative cost. */
+ if (GET_CODE (dest) == code && rtx_equal_p (p->exp, dest))
+ src_related = dest;
+
+ }
+
+ /* Find the cheapest valid equivalent, trying all the available
+ possibilities. Prefer items not in the hash table to ones
+ that are when they are equal cost. Note that we can never
+ worsen an insn as the current contents will also succeed.
+ If we find an equivalent identical to the destination, use it as best,
+ since this insn will probably be eliminated in that case. */
+ if (src)
+ {
+ if (rtx_equal_p (src, dest))
+ src_cost = -1;
+ else
+ src_cost = COST (src);
+ }
+
+ if (src_eqv_here)
+ {
+ if (rtx_equal_p (src_eqv_here, dest))
+ src_eqv_cost = -1;
+ else
+ src_eqv_cost = COST (src_eqv_here);
+ }
+
+ if (src_folded)
+ {
+ if (rtx_equal_p (src_folded, dest))
+ src_folded_cost = -1;
+ else
+ src_folded_cost = COST (src_folded);
+ }
+
+ if (src_related)
+ {
+ if (rtx_equal_p (src_related, dest))
+ src_related_cost = -1;
+ else
+ src_related_cost = COST (src_related);
+ }
+
+ /* If this was an indirect jump insn, a known label will really be
+ cheaper even though it looks more expensive. */
+ if (dest == pc_rtx && src_const && GET_CODE (src_const) == LABEL_REF)
+ src_folded = src_const, src_folded_cost = -1;
+
+ /* Terminate loop when replacement made. This must terminate since
+ the current contents will be tested and will always be valid. */
+ while (1)
+ {
+ rtx trial;
+
+ /* Skip invalid entries. */
+ while (elt && GET_CODE (elt->exp) != REG
+ && ! exp_equiv_p (elt->exp, elt->exp, 1, 0))
+ elt = elt->next_same_value;
+
+ if (elt) src_elt_cost = elt->cost;
+
+ /* Find cheapest and skip it for the next time. For items
+ of equal cost, use this order:
+ src_folded, src, src_eqv, src_related and hash table entry. */
+ if (src_folded_cost <= src_cost
+ && src_folded_cost <= src_eqv_cost
+ && src_folded_cost <= src_related_cost
+ && src_folded_cost <= src_elt_cost)
+ {
+ trial = src_folded, src_folded_cost = 10000;
+ if (src_folded_force_flag)
+ trial = force_const_mem (mode, trial);
+ }
+ else if (src_cost <= src_eqv_cost
+ && src_cost <= src_related_cost
+ && src_cost <= src_elt_cost)
+ trial = src, src_cost = 10000;
+ else if (src_eqv_cost <= src_related_cost
+ && src_eqv_cost <= src_elt_cost)
+ trial = copy_rtx (src_eqv_here), src_eqv_cost = 10000;
+ else if (src_related_cost <= src_elt_cost)
+ trial = copy_rtx (src_related), src_related_cost = 10000;
+ else
+ {
+ trial = copy_rtx (elt->exp);
+ elt = elt->next_same_value;
+ src_elt_cost = 10000;
+ }
+
+ /* We don't normally have an insn matching (set (pc) (pc)), so
+ check for this separately here. We will delete such an
+ insn below.
+
+ Tablejump insns contain a USE of the table, so simply replacing
+ the operand with the constant won't match. This is simply an
+ unconditional branch, however, and is therefore valid. Just
+ insert the substitution here and we will delete and re-emit
+ the insn later. */
+
+ if (n_sets == 1 && dest == pc_rtx
+ && (trial == pc_rtx
+ || (GET_CODE (trial) == LABEL_REF
+ && ! condjump_p (insn))))
+ {
+ /* If TRIAL is a label in front of a jump table, we are
+ really falling through the switch (this is how casesi
+ insns work), so we must branch around the table. */
+ if (GET_CODE (trial) == CODE_LABEL
+ && NEXT_INSN (trial) != 0
+ && GET_CODE (NEXT_INSN (trial)) == JUMP_INSN
+ && (GET_CODE (PATTERN (NEXT_INSN (trial))) == ADDR_DIFF_VEC
+ || GET_CODE (PATTERN (NEXT_INSN (trial))) == ADDR_VEC))
+
+ trial = gen_rtx (LABEL_REF, Pmode, get_label_after (trial));
+
+ SET_SRC (sets[i].rtl) = trial;
+ cse_jumps_altered = 1;
+ break;
+ }
+
+ /* Look for a substitution that makes a valid insn. */
+ else if (validate_change (insn, &SET_SRC (sets[i].rtl), trial, 0))
+ {
+ /* The result of apply_change_group can be ignored; see
+ canon_reg. */
+
+ validate_change (insn, &SET_SRC (sets[i].rtl),
+ canon_reg (SET_SRC (sets[i].rtl), insn),
+ 1);
+ apply_change_group ();
+ break;
+ }
+
+ /* If we previously found constant pool entries for
+ constants and this is a constant, try making a
+ pool entry. Put it in src_folded unless we already have done
+ this since that is where it likely came from. */
+
+ else if (constant_pool_entries_cost
+ && CONSTANT_P (trial)
+ && ! (GET_CODE (trial) == CONST
+ && GET_CODE (XEXP (trial, 0)) == TRUNCATE)
+ && (src_folded == 0
+ || (GET_CODE (src_folded) != MEM
+ && ! src_folded_force_flag))
+ && GET_MODE_CLASS (mode) != MODE_CC)
+ {
+ src_folded_force_flag = 1;
+ src_folded = trial;
+ src_folded_cost = constant_pool_entries_cost;
+ }
+ }
+
+ src = SET_SRC (sets[i].rtl);
+
+ /* In general, it is good to have a SET with SET_SRC == SET_DEST.
+ However, there is an important exception: If both are registers
+ that are not the head of their equivalence class, replace SET_SRC
+ with the head of the class. If we do not do this, we will have
+ both registers live over a portion of the basic block. This way,
+ their lifetimes will likely abut instead of overlapping. */
+ if (GET_CODE (dest) == REG
+ && REGNO_QTY_VALID_P (REGNO (dest))
+ && qty_mode[reg_qty[REGNO (dest)]] == GET_MODE (dest)
+ && qty_first_reg[reg_qty[REGNO (dest)]] != REGNO (dest)
+ && GET_CODE (src) == REG && REGNO (src) == REGNO (dest)
+ /* Don't do this if the original insn had a hard reg as
+ SET_SRC. */
+ && (GET_CODE (sets[i].src) != REG
+ || REGNO (sets[i].src) >= FIRST_PSEUDO_REGISTER))
+ /* We can't call canon_reg here because it won't do anything if
+ SRC is a hard register. */
+ {
+ int first = qty_first_reg[reg_qty[REGNO (src)]];
+
+ src = SET_SRC (sets[i].rtl)
+ = first >= FIRST_PSEUDO_REGISTER ? regno_reg_rtx[first]
+ : gen_rtx (REG, GET_MODE (src), first);
+
+ /* If we had a constant that is cheaper than what we are now
+ setting SRC to, use that constant. We ignored it when we
+ thought we could make this into a no-op. */
+ if (src_const && COST (src_const) < COST (src)
+ && validate_change (insn, &SET_SRC (sets[i].rtl), src_const, 0))
+ src = src_const;
+ }
+
+ /* If we made a change, recompute SRC values. */
+ if (src != sets[i].src)
+ {
+ do_not_record = 0;
+ hash_arg_in_memory = 0;
+ hash_arg_in_struct = 0;
+ sets[i].src = src;
+ sets[i].src_hash = HASH (src, mode);
+ sets[i].src_volatile = do_not_record;
+ sets[i].src_in_memory = hash_arg_in_memory;
+ sets[i].src_in_struct = hash_arg_in_struct;
+ sets[i].src_elt = lookup (src, sets[i].src_hash, mode);
+ }
+
+ /* If this is a single SET, we are setting a register, and we have an
+ equivalent constant, we want to add a REG_NOTE. We don't want
+ to write a REG_EQUAL note for a constant pseudo since verifying that
+ that pseudo hasn't been eliminated is a pain. Such a note also
+ won't help anything. */
+ if (n_sets == 1 && src_const && GET_CODE (dest) == REG
+ && GET_CODE (src_const) != REG)
+ {
+ tem = find_reg_note (insn, REG_EQUAL, NULL_RTX);
+
+ /* Record the actual constant value in a REG_EQUAL note, making
+ a new one if one does not already exist. */
+ if (tem)
+ XEXP (tem, 0) = src_const;
+ else
+ REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_EQUAL,
+ src_const, REG_NOTES (insn));
+
+ /* If storing a constant value in a register that
+ previously held the constant value 0,
+ record this fact with a REG_WAS_0 note on this insn.
+
+ Note that the *register* is required to have previously held 0,
+ not just any register in the quantity and we must point to the
+ insn that set that register to zero.
+
+ Rather than track each register individually, we just see if
+ the last set for this quantity was for this register. */
+
+ if (REGNO_QTY_VALID_P (REGNO (dest))
+ && qty_const[reg_qty[REGNO (dest)]] == const0_rtx)
+ {
+ /* See if we previously had a REG_WAS_0 note. */
+ rtx note = find_reg_note (insn, REG_WAS_0, NULL_RTX);
+ rtx const_insn = qty_const_insn[reg_qty[REGNO (dest)]];
+
+ if ((tem = single_set (const_insn)) != 0
+ && rtx_equal_p (SET_DEST (tem), dest))
+ {
+ if (note)
+ XEXP (note, 0) = const_insn;
+ else
+ REG_NOTES (insn) = gen_rtx (INSN_LIST, REG_WAS_0,
+ const_insn, REG_NOTES (insn));
+ }
+ }
+ }
+
+ /* Now deal with the destination. */
+ do_not_record = 0;
+ sets[i].inner_dest_loc = &SET_DEST (sets[0].rtl);
+
+ /* Look within any SIGN_EXTRACT or ZERO_EXTRACT
+ to the MEM or REG within it. */
+ while (GET_CODE (dest) == SIGN_EXTRACT
+ || GET_CODE (dest) == ZERO_EXTRACT
+ || GET_CODE (dest) == SUBREG
+ || GET_CODE (dest) == STRICT_LOW_PART)
+ {
+ sets[i].inner_dest_loc = &XEXP (dest, 0);
+ dest = XEXP (dest, 0);
+ }
+
+ sets[i].inner_dest = dest;
+
+ if (GET_CODE (dest) == MEM)
+ {
+ dest = fold_rtx (dest, insn);
+
+ /* Decide whether we invalidate everything in memory,
+ or just things at non-fixed places.
+ Writing a large aggregate must invalidate everything
+ because we don't know how long it is. */
+ note_mem_written (dest, &writes_memory);
+ }
+
+ /* Compute the hash code of the destination now,
+ before the effects of this instruction are recorded,
+ since the register values used in the address computation
+ are those before this instruction. */
+ sets[i].dest_hash = HASH (dest, mode);
+
+ /* Don't enter a bit-field in the hash table
+ because the value in it after the store
+ may not equal what was stored, due to truncation. */
+
+ if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT
+ || GET_CODE (SET_DEST (sets[i].rtl)) == SIGN_EXTRACT)
+ {
+ rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
+
+ if (src_const != 0 && GET_CODE (src_const) == CONST_INT
+ && GET_CODE (width) == CONST_INT
+ && INTVAL (width) < HOST_BITS_PER_WIDE_INT
+ && ! (INTVAL (src_const)
+ & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
+ /* Exception: if the value is constant,
+ and it won't be truncated, record it. */
+ ;
+ else
+ {
+ /* This is chosen so that the destination will be invalidated
+ but no new value will be recorded.
+ We must invalidate because sometimes constant
+ values can be recorded for bitfields. */
+ sets[i].src_elt = 0;
+ sets[i].src_volatile = 1;
+ src_eqv = 0;
+ src_eqv_elt = 0;
+ }
+ }
+
+ /* If only one set in a JUMP_INSN and it is now a no-op, we can delete
+ the insn. */
+ else if (n_sets == 1 && dest == pc_rtx && src == pc_rtx)
+ {
+ PUT_CODE (insn, NOTE);
+ NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
+ NOTE_SOURCE_FILE (insn) = 0;
+ cse_jumps_altered = 1;
+ /* One less use of the label this insn used to jump to. */
+ --LABEL_NUSES (JUMP_LABEL (insn));
+ /* No more processing for this set. */
+ sets[i].rtl = 0;
+ }
+
+ /* If this SET is now setting PC to a label, we know it used to
+ be a conditional or computed branch. So we see if we can follow
+ it. If it was a computed branch, delete it and re-emit. */
+ else if (dest == pc_rtx && GET_CODE (src) == LABEL_REF)
+ {
+ rtx p;
+
+ /* If this is not in the format for a simple branch and
+ we are the only SET in it, re-emit it. */
+ if (! simplejump_p (insn) && n_sets == 1)
+ {
+ rtx new = emit_jump_insn_before (gen_jump (XEXP (src, 0)), insn);
+ JUMP_LABEL (new) = XEXP (src, 0);
+ LABEL_NUSES (XEXP (src, 0))++;
+ delete_insn (insn);
+ insn = new;
+ }
+ else
+ /* Otherwise, force rerecognition, since it probably had
+ a different pattern before.
+ This shouldn't really be necessary, since whatever
+ changed the source value above should have done this.
+ Until the right place is found, might as well do this here. */
+ INSN_CODE (insn) = -1;
+
+ /* Now that we've converted this jump to an unconditional jump,
+ there is dead code after it. Delete the dead code until we
+ reach a BARRIER, the end of the function, or a label. Do
+ not delete NOTEs except for NOTE_INSN_DELETED since later
+ phases assume these notes are retained. */
+
+ p = insn;
+
+ while (NEXT_INSN (p) != 0
+ && GET_CODE (NEXT_INSN (p)) != BARRIER
+ && GET_CODE (NEXT_INSN (p)) != CODE_LABEL)
+ {
+ if (GET_CODE (NEXT_INSN (p)) != NOTE
+ || NOTE_LINE_NUMBER (NEXT_INSN (p)) == NOTE_INSN_DELETED)
+ delete_insn (NEXT_INSN (p));
+ else
+ p = NEXT_INSN (p);
+ }
+
+ /* If we don't have a BARRIER immediately after INSN, put one there.
+ Much code assumes that there are no NOTEs between a JUMP_INSN and
+ BARRIER. */
+
+ if (NEXT_INSN (insn) == 0
+ || GET_CODE (NEXT_INSN (insn)) != BARRIER)
+ emit_barrier_before (NEXT_INSN (insn));
+
+ /* We might have two BARRIERs separated by notes. Delete the second
+ one if so. */
+
+ if (p != insn && NEXT_INSN (p) != 0
+ && GET_CODE (NEXT_INSN (p)) == BARRIER)
+ delete_insn (NEXT_INSN (p));
+
+ cse_jumps_altered = 1;
+ sets[i].rtl = 0;
+ }
+
+ /* If destination is volatile, invalidate it and then do no further
+ processing for this assignment. */
+
+ else if (do_not_record)
+ {
+ if (GET_CODE (dest) == REG || GET_CODE (dest) == SUBREG
+ || GET_CODE (dest) == MEM)
+ invalidate (dest, VOIDmode);
+ else if (GET_CODE (dest) == STRICT_LOW_PART
+ || GET_CODE (dest) == ZERO_EXTRACT)
+ invalidate (XEXP (dest, 0), GET_MODE (dest));
+ sets[i].rtl = 0;
+ }
+
+ if (sets[i].rtl != 0 && dest != SET_DEST (sets[i].rtl))
+ sets[i].dest_hash = HASH (SET_DEST (sets[i].rtl), mode);
+
+#ifdef HAVE_cc0
+ /* If setting CC0, record what it was set to, or a constant, if it
+ is equivalent to a constant. If it is being set to a floating-point
+ value, make a COMPARE with the appropriate constant of 0. If we
+ don't do this, later code can interpret this as a test against
+ const0_rtx, which can cause problems if we try to put it into an
+ insn as a floating-point operand. */
+ if (dest == cc0_rtx)
+ {
+ this_insn_cc0 = src_const && mode != VOIDmode ? src_const : src;
+ this_insn_cc0_mode = mode;
+ if (FLOAT_MODE_P (mode))
+ this_insn_cc0 = gen_rtx (COMPARE, VOIDmode, this_insn_cc0,
+ CONST0_RTX (mode));
+ }
+#endif
+ }
+
+ /* Now enter all non-volatile source expressions in the hash table
+ if they are not already present.
+ Record their equivalence classes in src_elt.
+ This way we can insert the corresponding destinations into
+ the same classes even if the actual sources are no longer in them
+ (having been invalidated). */
+
+ if (src_eqv && src_eqv_elt == 0 && sets[0].rtl != 0 && ! src_eqv_volatile
+ && ! rtx_equal_p (src_eqv, SET_DEST (sets[0].rtl)))
+ {
+ register struct table_elt *elt;
+ register struct table_elt *classp = sets[0].src_elt;
+ rtx dest = SET_DEST (sets[0].rtl);
+ enum machine_mode eqvmode = GET_MODE (dest);
+
+ if (GET_CODE (dest) == STRICT_LOW_PART)
+ {
+ eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
+ classp = 0;
+ }
+ if (insert_regs (src_eqv, classp, 0))
+ {
+ rehash_using_reg (src_eqv);
+ src_eqv_hash = HASH (src_eqv, eqvmode);
+ }
+ elt = insert (src_eqv, classp, src_eqv_hash, eqvmode);
+ elt->in_memory = src_eqv_in_memory;
+ elt->in_struct = src_eqv_in_struct;
+ src_eqv_elt = elt;
+
+ /* Check to see if src_eqv_elt is the same as a set source which
+ does not yet have an elt, and if so set the elt of the set source
+ to src_eqv_elt. */
+ for (i = 0; i < n_sets; i++)
+ if (sets[i].rtl && sets[i].src_elt == 0
+ && rtx_equal_p (SET_SRC (sets[i].rtl), src_eqv))
+ sets[i].src_elt = src_eqv_elt;
+ }
+
+ for (i = 0; i < n_sets; i++)
+ if (sets[i].rtl && ! sets[i].src_volatile
+ && ! rtx_equal_p (SET_SRC (sets[i].rtl), SET_DEST (sets[i].rtl)))
+ {
+ if (GET_CODE (SET_DEST (sets[i].rtl)) == STRICT_LOW_PART)
+ {
+ /* REG_EQUAL in setting a STRICT_LOW_PART
+ gives an equivalent for the entire destination register,
+ not just for the subreg being stored in now.
+ This is a more interesting equivalence, so we arrange later
+ to treat the entire reg as the destination. */
+ sets[i].src_elt = src_eqv_elt;
+ sets[i].src_hash = src_eqv_hash;
+ }
+ else
+ {
+ /* Insert source and constant equivalent into hash table, if not
+ already present. */
+ register struct table_elt *classp = src_eqv_elt;
+ register rtx src = sets[i].src;
+ register rtx dest = SET_DEST (sets[i].rtl);
+ enum machine_mode mode
+ = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
+
+ if (sets[i].src_elt == 0)
+ {
+ register struct table_elt *elt;
+
+ /* Note that these insert_regs calls cannot remove
+ any of the src_elt's, because they would have failed to
+ match if not still valid. */
+ if (insert_regs (src, classp, 0))
+ {
+ rehash_using_reg (src);
+ sets[i].src_hash = HASH (src, mode);
+ }
+ elt = insert (src, classp, sets[i].src_hash, mode);
+ elt->in_memory = sets[i].src_in_memory;
+ elt->in_struct = sets[i].src_in_struct;
+ sets[i].src_elt = classp = elt;
+ }
+
+ if (sets[i].src_const && sets[i].src_const_elt == 0
+ && src != sets[i].src_const
+ && ! rtx_equal_p (sets[i].src_const, src))
+ sets[i].src_elt = insert (sets[i].src_const, classp,
+ sets[i].src_const_hash, mode);
+ }
+ }
+ else if (sets[i].src_elt == 0)
+ /* If we did not insert the source into the hash table (e.g., it was
+ volatile), note the equivalence class for the REG_EQUAL value, if any,
+ so that the destination goes into that class. */
+ sets[i].src_elt = src_eqv_elt;
+
+ invalidate_from_clobbers (&writes_memory, x);
+
+ /* Some registers are invalidated by subroutine calls. Memory is
+ invalidated by non-constant calls. */
+
+ if (GET_CODE (insn) == CALL_INSN)
+ {
+ static struct write_data everything = {0, 1, 1, 1};
+
+ if (! CONST_CALL_P (insn))
+ invalidate_memory (&everything);
+ invalidate_for_call ();
+ }
+
+ /* Now invalidate everything set by this instruction.
+ If a SUBREG or other funny destination is being set,
+ sets[i].rtl is still nonzero, so here we invalidate the reg
+ a part of which is being set. */
+
+ for (i = 0; i < n_sets; i++)
+ if (sets[i].rtl)
+ {
+ /* We can't use the inner dest, because the mode associated with
+ a ZERO_EXTRACT is significant. */
+ register rtx dest = SET_DEST (sets[i].rtl);
+
+ /* Needed for registers to remove the register from its
+ previous quantity's chain.
+ Needed for memory if this is a nonvarying address, unless
+ we have just done an invalidate_memory that covers even those. */
+ if (GET_CODE (dest) == REG || GET_CODE (dest) == SUBREG
+ || (GET_CODE (dest) == MEM && ! writes_memory.all
+ && ! cse_rtx_addr_varies_p (dest)))
+ invalidate (dest, VOIDmode);
+ else if (GET_CODE (dest) == STRICT_LOW_PART
+ || GET_CODE (dest) == ZERO_EXTRACT)
+ invalidate (XEXP (dest, 0), GET_MODE (dest));
+ }
+
+ /* Make sure registers mentioned in destinations
+ are safe for use in an expression to be inserted.
+ This removes from the hash table
+ any invalid entry that refers to one of these registers.
+
+ We don't care about the return value from mention_regs because
+ we are going to hash the SET_DEST values unconditionally. */
+
+ for (i = 0; i < n_sets; i++)
+ if (sets[i].rtl && GET_CODE (SET_DEST (sets[i].rtl)) != REG)
+ mention_regs (SET_DEST (sets[i].rtl));
+
+ /* We may have just removed some of the src_elt's from the hash table.
+ So replace each one with the current head of the same class. */
+
+ for (i = 0; i < n_sets; i++)
+ if (sets[i].rtl)
+ {
+ if (sets[i].src_elt && sets[i].src_elt->first_same_value == 0)
+ /* If elt was removed, find current head of same class,
+ or 0 if nothing remains of that class. */
+ {
+ register struct table_elt *elt = sets[i].src_elt;
+
+ while (elt && elt->prev_same_value)
+ elt = elt->prev_same_value;
+
+ while (elt && elt->first_same_value == 0)
+ elt = elt->next_same_value;
+ sets[i].src_elt = elt ? elt->first_same_value : 0;
+ }
+ }
+
+ /* Now insert the destinations into their equivalence classes. */
+
+ for (i = 0; i < n_sets; i++)
+ if (sets[i].rtl)
+ {
+ register rtx dest = SET_DEST (sets[i].rtl);
+ register struct table_elt *elt;
+
+ /* Don't record value if we are not supposed to risk allocating
+ floating-point values in registers that might be wider than
+ memory. */
+ if ((flag_float_store
+ && GET_CODE (dest) == MEM
+ && FLOAT_MODE_P (GET_MODE (dest)))
+ /* Don't record values of destinations set inside a libcall block
+ since we might delete the libcall. Things should have been set
+ up so we won't want to reuse such a value, but we play it safe
+ here. */
+ || in_libcall_block
+ /* If we didn't put a REG_EQUAL value or a source into the hash
+ table, there is no point is recording DEST. */
+ || sets[i].src_elt == 0
+ /* If DEST is a paradoxical SUBREG and SRC is a ZERO_EXTEND
+ or SIGN_EXTEND, don't record DEST since it can cause
+ some tracking to be wrong.
+
+ ??? Think about this more later. */
+ || (GET_CODE (dest) == SUBREG
+ && (GET_MODE_SIZE (GET_MODE (dest))
+ > GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))
+ && (GET_CODE (sets[i].src) == SIGN_EXTEND
+ || GET_CODE (sets[i].src) == ZERO_EXTEND)))
+ continue;
+
+ /* STRICT_LOW_PART isn't part of the value BEING set,
+ and neither is the SUBREG inside it.
+ Note that in this case SETS[I].SRC_ELT is really SRC_EQV_ELT. */
+ if (GET_CODE (dest) == STRICT_LOW_PART)
+ dest = SUBREG_REG (XEXP (dest, 0));
+
+ if (GET_CODE (dest) == REG || GET_CODE (dest) == SUBREG)
+ /* Registers must also be inserted into chains for quantities. */
+ if (insert_regs (dest, sets[i].src_elt, 1))
+ {
+ /* If `insert_regs' changes something, the hash code must be
+ recalculated. */
+ rehash_using_reg (dest);
+ sets[i].dest_hash = HASH (dest, GET_MODE (dest));
+ }
+
+ elt = insert (dest, sets[i].src_elt,
+ sets[i].dest_hash, GET_MODE (dest));
+ elt->in_memory = (GET_CODE (sets[i].inner_dest) == MEM
+ && ! RTX_UNCHANGING_P (sets[i].inner_dest));
+
+ if (elt->in_memory)
+ {
+ /* This implicitly assumes a whole struct
+ need not have MEM_IN_STRUCT_P.
+ But a whole struct is *supposed* to have MEM_IN_STRUCT_P. */
+ elt->in_struct = (MEM_IN_STRUCT_P (sets[i].inner_dest)
+ || sets[i].inner_dest != SET_DEST (sets[i].rtl));
+ }
+
+ /* If we have (set (subreg:m1 (reg:m2 foo) 0) (bar:m1)), M1 is no
+ narrower than M2, and both M1 and M2 are the same number of words,
+ we are also doing (set (reg:m2 foo) (subreg:m2 (bar:m1) 0)) so
+ make that equivalence as well.
+
+ However, BAR may have equivalences for which gen_lowpart_if_possible
+ will produce a simpler value than gen_lowpart_if_possible applied to
+ BAR (e.g., if BAR was ZERO_EXTENDed from M2), so we will scan all
+ BAR's equivalences. If we don't get a simplified form, make
+ the SUBREG. It will not be used in an equivalence, but will
+ cause two similar assignments to be detected.
+
+ Note the loop below will find SUBREG_REG (DEST) since we have
+ already entered SRC and DEST of the SET in the table. */
+
+ if (GET_CODE (dest) == SUBREG
+ && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))) - 1)
+ / UNITS_PER_WORD)
+ == (GET_MODE_SIZE (GET_MODE (dest)) - 1)/ UNITS_PER_WORD)
+ && (GET_MODE_SIZE (GET_MODE (dest))
+ >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))
+ && sets[i].src_elt != 0)
+ {
+ enum machine_mode new_mode = GET_MODE (SUBREG_REG (dest));
+ struct table_elt *elt, *classp = 0;
+
+ for (elt = sets[i].src_elt->first_same_value; elt;
+ elt = elt->next_same_value)
+ {
+ rtx new_src = 0;
+ unsigned src_hash;
+ struct table_elt *src_elt;
+
+ /* Ignore invalid entries. */
+ if (GET_CODE (elt->exp) != REG
+ && ! exp_equiv_p (elt->exp, elt->exp, 1, 0))
+ continue;
+
+ new_src = gen_lowpart_if_possible (new_mode, elt->exp);
+ if (new_src == 0)
+ new_src = gen_rtx (SUBREG, new_mode, elt->exp, 0);
+
+ src_hash = HASH (new_src, new_mode);
+ src_elt = lookup (new_src, src_hash, new_mode);
+
+ /* Put the new source in the hash table is if isn't
+ already. */
+ if (src_elt == 0)
+ {
+ if (insert_regs (new_src, classp, 0))
+ {
+ rehash_using_reg (new_src);
+ src_hash = HASH (new_src, new_mode);
+ }
+ src_elt = insert (new_src, classp, src_hash, new_mode);
+ src_elt->in_memory = elt->in_memory;
+ src_elt->in_struct = elt->in_struct;
+ }
+ else if (classp && classp != src_elt->first_same_value)
+ /* Show that two things that we've seen before are
+ actually the same. */
+ merge_equiv_classes (src_elt, classp);
+
+ classp = src_elt->first_same_value;
+ }
+ }
+ }
+
+ /* Special handling for (set REG0 REG1)
+ where REG0 is the "cheapest", cheaper than REG1.
+ After cse, REG1 will probably not be used in the sequel,
+ so (if easily done) change this insn to (set REG1 REG0) and
+ replace REG1 with REG0 in the previous insn that computed their value.
+ Then REG1 will become a dead store and won't cloud the situation
+ for later optimizations.
+
+ Do not make this change if REG1 is a hard register, because it will
+ then be used in the sequel and we may be changing a two-operand insn
+ into a three-operand insn.
+
+ Also do not do this if we are operating on a copy of INSN. */
+
+ if (n_sets == 1 && sets[0].rtl && GET_CODE (SET_DEST (sets[0].rtl)) == REG
+ && NEXT_INSN (PREV_INSN (insn)) == insn
+ && GET_CODE (SET_SRC (sets[0].rtl)) == REG
+ && REGNO (SET_SRC (sets[0].rtl)) >= FIRST_PSEUDO_REGISTER
+ && REGNO_QTY_VALID_P (REGNO (SET_SRC (sets[0].rtl)))
+ && (qty_first_reg[reg_qty[REGNO (SET_SRC (sets[0].rtl))]]
+ == REGNO (SET_DEST (sets[0].rtl))))
+ {
+ rtx prev = PREV_INSN (insn);
+ while (prev && GET_CODE (prev) == NOTE)
+ prev = PREV_INSN (prev);
+
+ if (prev && GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SET
+ && SET_DEST (PATTERN (prev)) == SET_SRC (sets[0].rtl))
+ {
+ rtx dest = SET_DEST (sets[0].rtl);
+ rtx note = find_reg_note (prev, REG_EQUIV, NULL_RTX);
+
+ validate_change (prev, & SET_DEST (PATTERN (prev)), dest, 1);
+ validate_change (insn, & SET_DEST (sets[0].rtl),
+ SET_SRC (sets[0].rtl), 1);
+ validate_change (insn, & SET_SRC (sets[0].rtl), dest, 1);
+ apply_change_group ();
+
+ /* If REG1 was equivalent to a constant, REG0 is not. */
+ if (note)
+ PUT_REG_NOTE_KIND (note, REG_EQUAL);
+
+ /* If there was a REG_WAS_0 note on PREV, remove it. Move
+ any REG_WAS_0 note on INSN to PREV. */
+ note = find_reg_note (prev, REG_WAS_0, NULL_RTX);
+ if (note)
+ remove_note (prev, note);
+
+ note = find_reg_note (insn, REG_WAS_0, NULL_RTX);
+ if (note)
+ {
+ remove_note (insn, note);
+ XEXP (note, 1) = REG_NOTES (prev);
+ REG_NOTES (prev) = note;
+ }
+
+ /* If INSN has a REG_EQUAL note, and this note mentions REG0,
+ then we must delete it, because the value in REG0 has changed. */
+ note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
+ if (note && reg_mentioned_p (dest, XEXP (note, 0)))
+ remove_note (insn, note);
+ }
+ }
+
+ /* If this is a conditional jump insn, record any known equivalences due to
+ the condition being tested. */
+
+ last_jump_equiv_class = 0;
+ if (GET_CODE (insn) == JUMP_INSN
+ && n_sets == 1 && GET_CODE (x) == SET
+ && GET_CODE (SET_SRC (x)) == IF_THEN_ELSE)
+ record_jump_equiv (insn, 0);
+
+#ifdef HAVE_cc0
+ /* If the previous insn set CC0 and this insn no longer references CC0,
+ delete the previous insn. Here we use the fact that nothing expects CC0
+ to be valid over an insn, which is true until the final pass. */
+ if (prev_insn && GET_CODE (prev_insn) == INSN
+ && (tem = single_set (prev_insn)) != 0
+ && SET_DEST (tem) == cc0_rtx
+ && ! reg_mentioned_p (cc0_rtx, x))
+ {
+ PUT_CODE (prev_insn, NOTE);
+ NOTE_LINE_NUMBER (prev_insn) = NOTE_INSN_DELETED;
+ NOTE_SOURCE_FILE (prev_insn) = 0;
+ }
+
+ prev_insn_cc0 = this_insn_cc0;
+ prev_insn_cc0_mode = this_insn_cc0_mode;
+#endif
+
+ prev_insn = insn;
+}
+
+/* Store 1 in *WRITES_PTR for those categories of memory ref
+ that must be invalidated when the expression WRITTEN is stored in.
+ If WRITTEN is null, say everything must be invalidated. */
+
+static void
+note_mem_written (written, writes_ptr)
+ rtx written;
+ struct write_data *writes_ptr;
+{
+ static struct write_data everything = {0, 1, 1, 1};
+
+ if (written == 0)
+ *writes_ptr = everything;
+ else if (GET_CODE (written) == MEM)
+ {
+ /* Pushing or popping the stack invalidates just the stack pointer. */
+ rtx addr = XEXP (written, 0);
+ if ((GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == PRE_INC
+ || GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC)
+ && GET_CODE (XEXP (addr, 0)) == REG
+ && REGNO (XEXP (addr, 0)) == STACK_POINTER_REGNUM)
+ {
+ writes_ptr->sp = 1;
+ return;
+ }
+ else if (GET_MODE (written) == BLKmode)
+ *writes_ptr = everything;
+ /* (mem (scratch)) means clobber everything. */
+ else if (GET_CODE (addr) == SCRATCH)
+ *writes_ptr = everything;
+ else if (cse_rtx_addr_varies_p (written))
+ {
+ /* A varying address that is a sum indicates an array element,
+ and that's just as good as a structure element
+ in implying that we need not invalidate scalar variables.
+ However, we must allow QImode aliasing of scalars, because the
+ ANSI C standard allows character pointers to alias anything. */
+ if (! ((MEM_IN_STRUCT_P (written)
+ || GET_CODE (XEXP (written, 0)) == PLUS)
+ && GET_MODE (written) != QImode))
+ writes_ptr->all = 1;
+ writes_ptr->nonscalar = 1;
+ }
+ writes_ptr->var = 1;
+ }
+}
+
+/* Perform invalidation on the basis of everything about an insn
+ except for invalidating the actual places that are SET in it.
+ This includes the places CLOBBERed, and anything that might
+ alias with something that is SET or CLOBBERed.
+
+ W points to the writes_memory for this insn, a struct write_data
+ saying which kinds of memory references must be invalidated.
+ X is the pattern of the insn. */
+
+static void
+invalidate_from_clobbers (w, x)
+ struct write_data *w;
+ rtx x;
+{
+ /* If W->var is not set, W specifies no action.
+ If W->all is set, this step gets all memory refs
+ so they can be ignored in the rest of this function. */
+ if (w->var)
+ invalidate_memory (w);
+
+ if (w->sp)
+ {
+ if (reg_tick[STACK_POINTER_REGNUM] >= 0)
+ reg_tick[STACK_POINTER_REGNUM]++;
+
+ /* This should be *very* rare. */
+ if (TEST_HARD_REG_BIT (hard_regs_in_table, STACK_POINTER_REGNUM))
+ invalidate (stack_pointer_rtx, VOIDmode);
+ }
+
+ if (GET_CODE (x) == CLOBBER)
+ {
+ rtx ref = XEXP (x, 0);
+ if (ref)
+ {
+ if (GET_CODE (ref) == REG || GET_CODE (ref) == SUBREG
+ || (GET_CODE (ref) == MEM && ! w->all))
+ invalidate (ref, VOIDmode);
+ else if (GET_CODE (ref) == STRICT_LOW_PART
+ || GET_CODE (ref) == ZERO_EXTRACT)
+ invalidate (XEXP (ref, 0), GET_MODE (ref));
+ }
+ }
+ else if (GET_CODE (x) == PARALLEL)
+ {
+ register int i;
+ for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
+ {
+ register rtx y = XVECEXP (x, 0, i);
+ if (GET_CODE (y) == CLOBBER)
+ {
+ rtx ref = XEXP (y, 0);
+ if (ref)
+ {
+ if (GET_CODE (ref) == REG || GET_CODE (ref) == SUBREG
+ || (GET_CODE (ref) == MEM && !w->all))
+ invalidate (ref, VOIDmode);
+ else if (GET_CODE (ref) == STRICT_LOW_PART
+ || GET_CODE (ref) == ZERO_EXTRACT)
+ invalidate (XEXP (ref, 0), GET_MODE (ref));
+ }
+ }
+ }
+ }
+}
+
+/* Process X, part of the REG_NOTES of an insn. Look at any REG_EQUAL notes
+ and replace any registers in them with either an equivalent constant
+ or the canonical form of the register. If we are inside an address,
+ only do this if the address remains valid.
+
+ OBJECT is 0 except when within a MEM in which case it is the MEM.
+
+ Return the replacement for X. */
+
+static rtx
+cse_process_notes (x, object)
+ rtx x;
+ rtx object;
+{
+ enum rtx_code code = GET_CODE (x);
+ char *fmt = GET_RTX_FORMAT (code);
+ int i;
+
+ switch (code)
+ {
+ case CONST_INT:
+ case CONST:
+ case SYMBOL_REF:
+ case LABEL_REF:
+ case CONST_DOUBLE:
+ case PC:
+ case CC0:
+ case LO_SUM:
+ return x;
+
+ case MEM:
+ XEXP (x, 0) = cse_process_notes (XEXP (x, 0), x);
+ return x;
+
+ case EXPR_LIST:
+ case INSN_LIST:
+ if (REG_NOTE_KIND (x) == REG_EQUAL)
+ XEXP (x, 0) = cse_process_notes (XEXP (x, 0), NULL_RTX);
+ if (XEXP (x, 1))
+ XEXP (x, 1) = cse_process_notes (XEXP (x, 1), NULL_RTX);
+ return x;
+
+ case SIGN_EXTEND:
+ case ZERO_EXTEND:
+ {
+ rtx new = cse_process_notes (XEXP (x, 0), object);
+ /* We don't substitute VOIDmode constants into these rtx,
+ since they would impede folding. */
+ if (GET_MODE (new) != VOIDmode)
+ validate_change (object, &XEXP (x, 0), new, 0);
+ return x;
+ }
+
+ case REG:
+ i = reg_qty[REGNO (x)];
+
+ /* Return a constant or a constant register. */
+ if (REGNO_QTY_VALID_P (REGNO (x))
+ && qty_const[i] != 0
+ && (CONSTANT_P (qty_const[i])
+ || GET_CODE (qty_const[i]) == REG))
+ {
+ rtx new = gen_lowpart_if_possible (GET_MODE (x), qty_const[i]);
+ if (new)
+ return new;
+ }
+
+ /* Otherwise, canonicalize this register. */
+ return canon_reg (x, NULL_RTX);
+ }
+
+ for (i = 0; i < GET_RTX_LENGTH (code); i++)
+ if (fmt[i] == 'e')
+ validate_change (object, &XEXP (x, i),
+ cse_process_notes (XEXP (x, i), object), 0);
+
+ return x;
+}
+
+/* Find common subexpressions between the end test of a loop and the beginning
+ of the loop. LOOP_START is the CODE_LABEL at the start of a loop.
+
+ Often we have a loop where an expression in the exit test is used
+ in the body of the loop. For example "while (*p) *q++ = *p++;".
+ Because of the way we duplicate the loop exit test in front of the loop,
+ however, we don't detect that common subexpression. This will be caught
+ when global cse is implemented, but this is a quite common case.
+
+ This function handles the most common cases of these common expressions.
+ It is called after we have processed the basic block ending with the
+ NOTE_INSN_LOOP_END note that ends a loop and the previous JUMP_INSN
+ jumps to a label used only once. */
+
+static void
+cse_around_loop (loop_start)
+ rtx loop_start;
+{
+ rtx insn;
+ int i;
+ struct table_elt *p;
+
+ /* If the jump at the end of the loop doesn't go to the start, we don't
+ do anything. */
+ for (insn = PREV_INSN (loop_start);
+ insn && (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) >= 0);
+ insn = PREV_INSN (insn))
+ ;
+
+ if (insn == 0
+ || GET_CODE (insn) != NOTE
+ || NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_BEG)
+ return;
+
+ /* If the last insn of the loop (the end test) was an NE comparison,
+ we will interpret it as an EQ comparison, since we fell through
+ the loop. Any equivalences resulting from that comparison are
+ therefore not valid and must be invalidated. */
+ if (last_jump_equiv_class)
+ for (p = last_jump_equiv_class->first_same_value; p;
+ p = p->next_same_value)
+ if (GET_CODE (p->exp) == MEM || GET_CODE (p->exp) == REG
+ || (GET_CODE (p->exp) == SUBREG
+ && GET_CODE (SUBREG_REG (p->exp)) == REG))
+ invalidate (p->exp, VOIDmode);
+ else if (GET_CODE (p->exp) == STRICT_LOW_PART
+ || GET_CODE (p->exp) == ZERO_EXTRACT)
+ invalidate (XEXP (p->exp, 0), GET_MODE (p->exp));
+
+ /* Process insns starting after LOOP_START until we hit a CALL_INSN or
+ a CODE_LABEL (we could handle a CALL_INSN, but it isn't worth it).
+
+ The only thing we do with SET_DEST is invalidate entries, so we
+ can safely process each SET in order. It is slightly less efficient
+ to do so, but we only want to handle the most common cases. */
+
+ for (insn = NEXT_INSN (loop_start);
+ GET_CODE (insn) != CALL_INSN && GET_CODE (insn) != CODE_LABEL
+ && ! (GET_CODE (insn) == NOTE
+ && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END);
+ insn = NEXT_INSN (insn))
+ {
+ if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
+ && (GET_CODE (PATTERN (insn)) == SET
+ || GET_CODE (PATTERN (insn)) == CLOBBER))
+ cse_set_around_loop (PATTERN (insn), insn, loop_start);
+ else if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
+ && GET_CODE (PATTERN (insn)) == PARALLEL)
+ for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
+ if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET
+ || GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == CLOBBER)
+ cse_set_around_loop (XVECEXP (PATTERN (insn), 0, i), insn,
+ loop_start);
+ }
+}
+
+/* Variable used for communications between the next two routines. */
+
+static struct write_data skipped_writes_memory;
+
+/* Process one SET of an insn that was skipped. We ignore CLOBBERs
+ since they are done elsewhere. This function is called via note_stores. */
+
+static void
+invalidate_skipped_set (dest, set)
+ rtx set;
+ rtx dest;
+{
+ if (GET_CODE (set) == CLOBBER
+#ifdef HAVE_cc0
+ || dest == cc0_rtx
+#endif
+ || dest == pc_rtx)
+ return;
+
+ if (GET_CODE (dest) == MEM)
+ note_mem_written (dest, &skipped_writes_memory);
+
+ /* There are times when an address can appear varying and be a PLUS
+ during this scan when it would be a fixed address were we to know
+ the proper equivalences. So promote "nonscalar" to be "all". */
+ if (skipped_writes_memory.nonscalar)
+ skipped_writes_memory.all = 1;
+
+ if (GET_CODE (dest) == REG || GET_CODE (dest) == SUBREG
+ || (! skipped_writes_memory.all && ! cse_rtx_addr_varies_p (dest)))
+ invalidate (dest, VOIDmode);
+ else if (GET_CODE (dest) == STRICT_LOW_PART
+ || GET_CODE (dest) == ZERO_EXTRACT)
+ invalidate (XEXP (dest, 0), GET_MODE (dest));
+}
+
+/* Invalidate all insns from START up to the end of the function or the
+ next label. This called when we wish to CSE around a block that is
+ conditionally executed. */
+
+static void
+invalidate_skipped_block (start)
+ rtx start;
+{
+ rtx insn;
+ static struct write_data init = {0, 0, 0, 0};
+ static struct write_data everything = {0, 1, 1, 1};
+
+ for (insn = start; insn && GET_CODE (insn) != CODE_LABEL;
+ insn = NEXT_INSN (insn))
+ {
+ if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
+ continue;
+
+ skipped_writes_memory = init;
+
+ if (GET_CODE (insn) == CALL_INSN)
+ {
+ invalidate_for_call ();
+ skipped_writes_memory = everything;
+ }
+
+ note_stores (PATTERN (insn), invalidate_skipped_set);
+ invalidate_from_clobbers (&skipped_writes_memory, PATTERN (insn));
+ }
+}
+
+/* Used for communication between the following two routines; contains a
+ value to be checked for modification. */
+
+static rtx cse_check_loop_start_value;
+
+/* If modifying X will modify the value in CSE_CHECK_LOOP_START_VALUE,
+ indicate that fact by setting CSE_CHECK_LOOP_START_VALUE to 0. */
+
+static void
+cse_check_loop_start (x, set)
+ rtx x;
+ rtx set;
+{
+ if (cse_check_loop_start_value == 0
+ || GET_CODE (x) == CC0 || GET_CODE (x) == PC)
+ return;
+
+ if ((GET_CODE (x) == MEM && GET_CODE (cse_check_loop_start_value) == MEM)
+ || reg_overlap_mentioned_p (x, cse_check_loop_start_value))
+ cse_check_loop_start_value = 0;
+}
+
+/* X is a SET or CLOBBER contained in INSN that was found near the start of
+ a loop that starts with the label at LOOP_START.
+
+ If X is a SET, we see if its SET_SRC is currently in our hash table.
+ If so, we see if it has a value equal to some register used only in the
+ loop exit code (as marked by jump.c).
+
+ If those two conditions are true, we search backwards from the start of
+ the loop to see if that same value was loaded into a register that still
+ retains its value at the start of the loop.
+
+ If so, we insert an insn after the load to copy the destination of that
+ load into the equivalent register and (try to) replace our SET_SRC with that
+ register.
+
+ In any event, we invalidate whatever this SET or CLOBBER modifies. */
+
+static void
+cse_set_around_loop (x, insn, loop_start)
+ rtx x;
+ rtx insn;
+ rtx loop_start;
+{
+ struct table_elt *src_elt;
+ static struct write_data init = {0, 0, 0, 0};
+ struct write_data writes_memory;
+
+ writes_memory = init;
+
+ /* If this is a SET, see if we can replace SET_SRC, but ignore SETs that
+ are setting PC or CC0 or whose SET_SRC is already a register. */
+ if (GET_CODE (x) == SET
+ && GET_CODE (SET_DEST (x)) != PC && GET_CODE (SET_DEST (x)) != CC0
+ && GET_CODE (SET_SRC (x)) != REG)
+ {
+ src_elt = lookup (SET_SRC (x),
+ HASH (SET_SRC (x), GET_MODE (SET_DEST (x))),
+ GET_MODE (SET_DEST (x)));
+
+ if (src_elt)
+ for (src_elt = src_elt->first_same_value; src_elt;
+ src_elt = src_elt->next_same_value)
+ if (GET_CODE (src_elt->exp) == REG && REG_LOOP_TEST_P (src_elt->exp)
+ && COST (src_elt->exp) < COST (SET_SRC (x)))
+ {
+ rtx p, set;
+
+ /* Look for an insn in front of LOOP_START that sets
+ something in the desired mode to SET_SRC (x) before we hit
+ a label or CALL_INSN. */
+
+ for (p = prev_nonnote_insn (loop_start);
+ p && GET_CODE (p) != CALL_INSN
+ && GET_CODE (p) != CODE_LABEL;
+ p = prev_nonnote_insn (p))
+ if ((set = single_set (p)) != 0
+ && GET_CODE (SET_DEST (set)) == REG
+ && GET_MODE (SET_DEST (set)) == src_elt->mode
+ && rtx_equal_p (SET_SRC (set), SET_SRC (x)))
+ {
+ /* We now have to ensure that nothing between P
+ and LOOP_START modified anything referenced in
+ SET_SRC (x). We know that nothing within the loop
+ can modify it, or we would have invalidated it in
+ the hash table. */
+ rtx q;
+
+ cse_check_loop_start_value = SET_SRC (x);
+ for (q = p; q != loop_start; q = NEXT_INSN (q))
+ if (GET_RTX_CLASS (GET_CODE (q)) == 'i')
+ note_stores (PATTERN (q), cse_check_loop_start);
+
+ /* If nothing was changed and we can replace our
+ SET_SRC, add an insn after P to copy its destination
+ to what we will be replacing SET_SRC with. */
+ if (cse_check_loop_start_value
+ && validate_change (insn, &SET_SRC (x),
+ src_elt->exp, 0))
+ emit_insn_after (gen_move_insn (src_elt->exp,
+ SET_DEST (set)),
+ p);
+ break;
+ }
+ }
+ }
+
+ /* Now invalidate anything modified by X. */
+ note_mem_written (SET_DEST (x), &writes_memory);
+
+ if (writes_memory.var)
+ invalidate_memory (&writes_memory);
+
+ /* See comment on similar code in cse_insn for explanation of these tests. */
+ if (GET_CODE (SET_DEST (x)) == REG || GET_CODE (SET_DEST (x)) == SUBREG
+ || (GET_CODE (SET_DEST (x)) == MEM && ! writes_memory.all
+ && ! cse_rtx_addr_varies_p (SET_DEST (x))))
+ invalidate (SET_DEST (x), VOIDmode);
+ else if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
+ || GET_CODE (SET_DEST (x)) == ZERO_EXTRACT)
+ invalidate (XEXP (SET_DEST (x), 0), GET_MODE (SET_DEST (x)));
+}
+
+/* Find the end of INSN's basic block and return its range,
+ the total number of SETs in all the insns of the block, the last insn of the
+ block, and the branch path.
+
+ The branch path indicates which branches should be followed. If a non-zero
+ path size is specified, the block should be rescanned and a different set
+ of branches will be taken. The branch path is only used if
+ FLAG_CSE_FOLLOW_JUMPS or FLAG_CSE_SKIP_BLOCKS is non-zero.
+
+ DATA is a pointer to a struct cse_basic_block_data, defined below, that is
+ used to describe the block. It is filled in with the information about
+ the current block. The incoming structure's branch path, if any, is used
+ to construct the output branch path. */
+
+void
+cse_end_of_basic_block (insn, data, follow_jumps, after_loop, skip_blocks)
+ rtx insn;
+ struct cse_basic_block_data *data;
+ int follow_jumps;
+ int after_loop;
+ int skip_blocks;
+{
+ rtx p = insn, q;
+ int nsets = 0;
+ int low_cuid = INSN_CUID (insn), high_cuid = INSN_CUID (insn);
+ rtx next = GET_RTX_CLASS (GET_CODE (insn)) == 'i' ? insn : next_real_insn (insn);
+ int path_size = data->path_size;
+ int path_entry = 0;
+ int i;
+
+ /* Update the previous branch path, if any. If the last branch was
+ previously TAKEN, mark it NOT_TAKEN. If it was previously NOT_TAKEN,
+ shorten the path by one and look at the previous branch. We know that
+ at least one branch must have been taken if PATH_SIZE is non-zero. */
+ while (path_size > 0)
+ {
+ if (data->path[path_size - 1].status != NOT_TAKEN)
+ {
+ data->path[path_size - 1].status = NOT_TAKEN;
+ break;
+ }
+ else
+ path_size--;
+ }
+
+ /* Scan to end of this basic block. */
+ while (p && GET_CODE (p) != CODE_LABEL)
+ {
+ /* Don't cse out the end of a loop. This makes a difference
+ only for the unusual loops that always execute at least once;
+ all other loops have labels there so we will stop in any case.
+ Cse'ing out the end of the loop is dangerous because it
+ might cause an invariant expression inside the loop
+ to be reused after the end of the loop. This would make it
+ hard to move the expression out of the loop in loop.c,
+ especially if it is one of several equivalent expressions
+ and loop.c would like to eliminate it.
+
+ If we are running after loop.c has finished, we can ignore
+ the NOTE_INSN_LOOP_END. */
+
+ if (! after_loop && GET_CODE (p) == NOTE
+ && NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_END)
+ break;
+
+ /* Don't cse over a call to setjmp; on some machines (eg vax)
+ the regs restored by the longjmp come from
+ a later time than the setjmp. */
+ if (GET_CODE (p) == NOTE
+ && NOTE_LINE_NUMBER (p) == NOTE_INSN_SETJMP)
+ break;
+
+ /* A PARALLEL can have lots of SETs in it,
+ especially if it is really an ASM_OPERANDS. */
+ if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
+ && GET_CODE (PATTERN (p)) == PARALLEL)
+ nsets += XVECLEN (PATTERN (p), 0);
+ else if (GET_CODE (p) != NOTE)
+ nsets += 1;
+
+ /* Ignore insns made by CSE; they cannot affect the boundaries of
+ the basic block. */
+
+ if (INSN_UID (p) <= max_uid && INSN_CUID (p) > high_cuid)
+ high_cuid = INSN_CUID (p);
+ if (INSN_UID (p) <= max_uid && INSN_CUID (p) < low_cuid)
+ low_cuid = INSN_CUID (p);
+
+ /* See if this insn is in our branch path. If it is and we are to
+ take it, do so. */
+ if (path_entry < path_size && data->path[path_entry].branch == p)
+ {
+ if (data->path[path_entry].status != NOT_TAKEN)
+ p = JUMP_LABEL (p);
+
+ /* Point to next entry in path, if any. */
+ path_entry++;
+ }
+
+ /* If this is a conditional jump, we can follow it if -fcse-follow-jumps
+ was specified, we haven't reached our maximum path length, there are
+ insns following the target of the jump, this is the only use of the
+ jump label, and the target label is preceded by a BARRIER.
+
+ Alternatively, we can follow the jump if it branches around a
+ block of code and there are no other branches into the block.
+ In this case invalidate_skipped_block will be called to invalidate any
+ registers set in the block when following the jump. */
+
+ else if ((follow_jumps || skip_blocks) && path_size < PATHLENGTH - 1
+ && GET_CODE (p) == JUMP_INSN
+ && GET_CODE (PATTERN (p)) == SET
+ && GET_CODE (SET_SRC (PATTERN (p))) == IF_THEN_ELSE
+ && LABEL_NUSES (JUMP_LABEL (p)) == 1
+ && NEXT_INSN (JUMP_LABEL (p)) != 0)
+ {
+ for (q = PREV_INSN (JUMP_LABEL (p)); q; q = PREV_INSN (q))
+ if ((GET_CODE (q) != NOTE
+ || NOTE_LINE_NUMBER (q) == NOTE_INSN_LOOP_END
+ || NOTE_LINE_NUMBER (q) == NOTE_INSN_SETJMP)
+ && (GET_CODE (q) != CODE_LABEL || LABEL_NUSES (q) != 0))
+ break;
+
+ /* If we ran into a BARRIER, this code is an extension of the
+ basic block when the branch is taken. */
+ if (follow_jumps && q != 0 && GET_CODE (q) == BARRIER)
+ {
+ /* Don't allow ourself to keep walking around an
+ always-executed loop. */
+ if (next_real_insn (q) == next)
+ {
+ p = NEXT_INSN (p);
+ continue;
+ }
+
+ /* Similarly, don't put a branch in our path more than once. */
+ for (i = 0; i < path_entry; i++)
+ if (data->path[i].branch == p)
+ break;
+
+ if (i != path_entry)
+ break;
+
+ data->path[path_entry].branch = p;
+ data->path[path_entry++].status = TAKEN;
+
+ /* This branch now ends our path. It was possible that we
+ didn't see this branch the last time around (when the
+ insn in front of the target was a JUMP_INSN that was
+ turned into a no-op). */
+ path_size = path_entry;
+
+ p = JUMP_LABEL (p);
+ /* Mark block so we won't scan it again later. */
+ PUT_MODE (NEXT_INSN (p), QImode);
+ }
+ /* Detect a branch around a block of code. */
+ else if (skip_blocks && q != 0 && GET_CODE (q) != CODE_LABEL)
+ {
+ register rtx tmp;
+
+ if (next_real_insn (q) == next)
+ {
+ p = NEXT_INSN (p);
+ continue;
+ }
+
+ for (i = 0; i < path_entry; i++)
+ if (data->path[i].branch == p)
+ break;
+
+ if (i != path_entry)
+ break;
+
+ /* This is no_labels_between_p (p, q) with an added check for
+ reaching the end of a function (in case Q precedes P). */
+ for (tmp = NEXT_INSN (p); tmp && tmp != q; tmp = NEXT_INSN (tmp))
+ if (GET_CODE (tmp) == CODE_LABEL)
+ break;
+
+ if (tmp == q)
+ {
+ data->path[path_entry].branch = p;
+ data->path[path_entry++].status = AROUND;
+
+ path_size = path_entry;
+
+ p = JUMP_LABEL (p);
+ /* Mark block so we won't scan it again later. */
+ PUT_MODE (NEXT_INSN (p), QImode);
+ }
+ }
+ }
+ p = NEXT_INSN (p);
+ }
+
+ data->low_cuid = low_cuid;
+ data->high_cuid = high_cuid;
+ data->nsets = nsets;
+ data->last = p;
+
+ /* If all jumps in the path are not taken, set our path length to zero
+ so a rescan won't be done. */
+ for (i = path_size - 1; i >= 0; i--)
+ if (data->path[i].status != NOT_TAKEN)
+ break;
+
+ if (i == -1)
+ data->path_size = 0;
+ else
+ data->path_size = path_size;
+
+ /* End the current branch path. */
+ data->path[path_size].branch = 0;
+}
+
+/* Perform cse on the instructions of a function.
+ F is the first instruction.
+ NREGS is one plus the highest pseudo-reg number used in the instruction.
+
+ AFTER_LOOP is 1 if this is the cse call done after loop optimization
+ (only if -frerun-cse-after-loop).
+
+ Returns 1 if jump_optimize should be redone due to simplifications
+ in conditional jump instructions. */
+
+int
+cse_main (f, nregs, after_loop, file)
+ rtx f;
+ int nregs;
+ int after_loop;
+ FILE *file;
+{
+ struct cse_basic_block_data val;
+ register rtx insn = f;
+ register int i;
+
+ cse_jumps_altered = 0;
+ recorded_label_ref = 0;
+ constant_pool_entries_cost = 0;
+ val.path_size = 0;
+
+ init_recog ();
+
+ max_reg = nregs;
+
+ all_minus_one = (int *) alloca (nregs * sizeof (int));
+ consec_ints = (int *) alloca (nregs * sizeof (int));
+
+ for (i = 0; i < nregs; i++)
+ {
+ all_minus_one[i] = -1;
+ consec_ints[i] = i;
+ }
+
+ reg_next_eqv = (int *) alloca (nregs * sizeof (int));
+ reg_prev_eqv = (int *) alloca (nregs * sizeof (int));
+ reg_qty = (int *) alloca (nregs * sizeof (int));
+ reg_in_table = (int *) alloca (nregs * sizeof (int));
+ reg_tick = (int *) alloca (nregs * sizeof (int));
+
+#ifdef LOAD_EXTEND_OP
+
+ /* Allocate scratch rtl here. cse_insn will fill in the memory reference
+ and change the code and mode as appropriate. */
+ memory_extend_rtx = gen_rtx (ZERO_EXTEND, VOIDmode, 0);
+#endif
+
+ /* Discard all the free elements of the previous function
+ since they are allocated in the temporarily obstack. */
+ bzero ((char *) table, sizeof table);
+ free_element_chain = 0;
+ n_elements_made = 0;
+
+ /* Find the largest uid. */
+
+ max_uid = get_max_uid ();
+ uid_cuid = (int *) alloca ((max_uid + 1) * sizeof (int));
+ bzero ((char *) uid_cuid, (max_uid + 1) * sizeof (int));
+
+ /* Compute the mapping from uids to cuids.
+ CUIDs are numbers assigned to insns, like uids,
+ except that cuids increase monotonically through the code.
+ Don't assign cuids to line-number NOTEs, so that the distance in cuids
+ between two insns is not affected by -g. */
+
+ for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
+ {
+ if (GET_CODE (insn) != NOTE
+ || NOTE_LINE_NUMBER (insn) < 0)
+ INSN_CUID (insn) = ++i;
+ else
+ /* Give a line number note the same cuid as preceding insn. */
+ INSN_CUID (insn) = i;
+ }
+
+ /* Initialize which registers are clobbered by calls. */
+
+ CLEAR_HARD_REG_SET (regs_invalidated_by_call);
+
+ for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
+ if ((call_used_regs[i]
+ /* Used to check !fixed_regs[i] here, but that isn't safe;
+ fixed regs are still call-clobbered, and sched can get
+ confused if they can "live across calls".
+
+ The frame pointer is always preserved across calls. The arg
+ pointer is if it is fixed. The stack pointer usually is, unless
+ RETURN_POPS_ARGS, in which case an explicit CLOBBER
+ will be present. If we are generating PIC code, the PIC offset
+ table register is preserved across calls. */
+
+ && i != STACK_POINTER_REGNUM
+ && i != FRAME_POINTER_REGNUM
+#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
+ && i != HARD_FRAME_POINTER_REGNUM
+#endif
+#if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
+ && ! (i == ARG_POINTER_REGNUM && fixed_regs[i])
+#endif
+#if defined (PIC_OFFSET_TABLE_REGNUM) && !defined (PIC_OFFSET_TABLE_REG_CALL_CLOBBERED)
+ && ! (i == PIC_OFFSET_TABLE_REGNUM && flag_pic)
+#endif
+ )
+ || global_regs[i])
+ SET_HARD_REG_BIT (regs_invalidated_by_call, i);
+
+ /* Loop over basic blocks.
+ Compute the maximum number of qty's needed for each basic block
+ (which is 2 for each SET). */
+ insn = f;
+ while (insn)
+ {
+ cse_end_of_basic_block (insn, &val, flag_cse_follow_jumps, after_loop,
+ flag_cse_skip_blocks);
+
+ /* If this basic block was already processed or has no sets, skip it. */
+ if (val.nsets == 0 || GET_MODE (insn) == QImode)
+ {
+ PUT_MODE (insn, VOIDmode);
+ insn = (val.last ? NEXT_INSN (val.last) : 0);
+ val.path_size = 0;
+ continue;
+ }
+
+ cse_basic_block_start = val.low_cuid;
+ cse_basic_block_end = val.high_cuid;
+ max_qty = val.nsets * 2;
+
+ if (file)
+ fprintf (file, ";; Processing block from %d to %d, %d sets.\n",
+ INSN_UID (insn), val.last ? INSN_UID (val.last) : 0,
+ val.nsets);
+
+ /* Make MAX_QTY bigger to give us room to optimize
+ past the end of this basic block, if that should prove useful. */
+ if (max_qty < 500)
+ max_qty = 500;
+
+ max_qty += max_reg;
+
+ /* If this basic block is being extended by following certain jumps,
+ (see `cse_end_of_basic_block'), we reprocess the code from the start.
+ Otherwise, we start after this basic block. */
+ if (val.path_size > 0)
+ cse_basic_block (insn, val.last, val.path, 0);
+ else
+ {
+ int old_cse_jumps_altered = cse_jumps_altered;
+ rtx temp;
+
+ /* When cse changes a conditional jump to an unconditional
+ jump, we want to reprocess the block, since it will give
+ us a new branch path to investigate. */
+ cse_jumps_altered = 0;
+ temp = cse_basic_block (insn, val.last, val.path, ! after_loop);
+ if (cse_jumps_altered == 0
+ || (flag_cse_follow_jumps == 0 && flag_cse_skip_blocks == 0))
+ insn = temp;
+
+ cse_jumps_altered |= old_cse_jumps_altered;
+ }
+
+#ifdef USE_C_ALLOCA
+ alloca (0);
+#endif
+ }
+
+ /* Tell refers_to_mem_p that qty_const info is not available. */
+ qty_const = 0;
+
+ if (max_elements_made < n_elements_made)
+ max_elements_made = n_elements_made;
+
+ return cse_jumps_altered || recorded_label_ref;
+}
+
+/* Process a single basic block. FROM and TO and the limits of the basic
+ block. NEXT_BRANCH points to the branch path when following jumps or
+ a null path when not following jumps.
+
+ AROUND_LOOP is non-zero if we are to try to cse around to the start of a
+ loop. This is true when we are being called for the last time on a
+ block and this CSE pass is before loop.c. */
+
+static rtx
+cse_basic_block (from, to, next_branch, around_loop)
+ register rtx from, to;
+ struct branch_path *next_branch;
+ int around_loop;
+{
+ register rtx insn;
+ int to_usage = 0;
+ int in_libcall_block = 0;
+
+ /* Each of these arrays is undefined before max_reg, so only allocate
+ the space actually needed and adjust the start below. */
+
+ qty_first_reg = (int *) alloca ((max_qty - max_reg) * sizeof (int));
+ qty_last_reg = (int *) alloca ((max_qty - max_reg) * sizeof (int));
+ qty_mode= (enum machine_mode *) alloca ((max_qty - max_reg) * sizeof (enum machine_mode));
+ qty_const = (rtx *) alloca ((max_qty - max_reg) * sizeof (rtx));
+ qty_const_insn = (rtx *) alloca ((max_qty - max_reg) * sizeof (rtx));
+ qty_comparison_code
+ = (enum rtx_code *) alloca ((max_qty - max_reg) * sizeof (enum rtx_code));
+ qty_comparison_qty = (int *) alloca ((max_qty - max_reg) * sizeof (int));
+ qty_comparison_const = (rtx *) alloca ((max_qty - max_reg) * sizeof (rtx));
+
+ qty_first_reg -= max_reg;
+ qty_last_reg -= max_reg;
+ qty_mode -= max_reg;
+ qty_const -= max_reg;
+ qty_const_insn -= max_reg;
+ qty_comparison_code -= max_reg;
+ qty_comparison_qty -= max_reg;
+ qty_comparison_const -= max_reg;
+
+ new_basic_block ();
+
+ /* TO might be a label. If so, protect it from being deleted. */
+ if (to != 0 && GET_CODE (to) == CODE_LABEL)
+ ++LABEL_NUSES (to);
+
+ for (insn = from; insn != to; insn = NEXT_INSN (insn))
+ {
+ register enum rtx_code code;
+
+ /* See if this is a branch that is part of the path. If so, and it is
+ to be taken, do so. */
+ if (next_branch->branch == insn)
+ {
+ enum taken status = next_branch++->status;
+ if (status != NOT_TAKEN)
+ {
+ if (status == TAKEN)
+ record_jump_equiv (insn, 1);
+ else
+ invalidate_skipped_block (NEXT_INSN (insn));
+
+ /* Set the last insn as the jump insn; it doesn't affect cc0.
+ Then follow this branch. */
+#ifdef HAVE_cc0
+ prev_insn_cc0 = 0;
+#endif
+ prev_insn = insn;
+ insn = JUMP_LABEL (insn);
+ continue;
+ }
+ }
+
+ code = GET_CODE (insn);
+ if (GET_MODE (insn) == QImode)
+ PUT_MODE (insn, VOIDmode);
+
+ if (GET_RTX_CLASS (code) == 'i')
+ {
+ /* Process notes first so we have all notes in canonical forms when
+ looking for duplicate operations. */
+
+ if (REG_NOTES (insn))
+ REG_NOTES (insn) = cse_process_notes (REG_NOTES (insn), NULL_RTX);
+
+ /* Track when we are inside in LIBCALL block. Inside such a block,
+ we do not want to record destinations. The last insn of a
+ LIBCALL block is not considered to be part of the block, since
+ its destination is the result of the block and hence should be
+ recorded. */
+
+ if (find_reg_note (insn, REG_LIBCALL, NULL_RTX))
+ in_libcall_block = 1;
+ else if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
+ in_libcall_block = 0;
+
+ cse_insn (insn, in_libcall_block);
+ }
+
+ /* If INSN is now an unconditional jump, skip to the end of our
+ basic block by pretending that we just did the last insn in the
+ basic block. If we are jumping to the end of our block, show
+ that we can have one usage of TO. */
+
+ if (simplejump_p (insn))
+ {
+ if (to == 0)
+ return 0;
+
+ if (JUMP_LABEL (insn) == to)
+ to_usage = 1;
+
+ /* Maybe TO was deleted because the jump is unconditional.
+ If so, there is nothing left in this basic block. */
+ /* ??? Perhaps it would be smarter to set TO
+ to whatever follows this insn,
+ and pretend the basic block had always ended here. */
+ if (INSN_DELETED_P (to))
+ break;
+
+ insn = PREV_INSN (to);
+ }
+
+ /* See if it is ok to keep on going past the label
+ which used to end our basic block. Remember that we incremented
+ the count of that label, so we decrement it here. If we made
+ a jump unconditional, TO_USAGE will be one; in that case, we don't
+ want to count the use in that jump. */
+
+ if (to != 0 && NEXT_INSN (insn) == to
+ && GET_CODE (to) == CODE_LABEL && --LABEL_NUSES (to) == to_usage)
+ {
+ struct cse_basic_block_data val;
+ rtx prev;
+
+ insn = NEXT_INSN (to);
+
+ if (LABEL_NUSES (to) == 0)
+ insn = delete_insn (to);
+
+ /* If TO was the last insn in the function, we are done. */
+ if (insn == 0)
+ return 0;
+
+ /* If TO was preceded by a BARRIER we are done with this block
+ because it has no continuation. */
+ prev = prev_nonnote_insn (to);
+ if (prev && GET_CODE (prev) == BARRIER)
+ return insn;
+
+ /* Find the end of the following block. Note that we won't be
+ following branches in this case. */
+ to_usage = 0;
+ val.path_size = 0;
+ cse_end_of_basic_block (insn, &val, 0, 0, 0);
+
+ /* If the tables we allocated have enough space left
+ to handle all the SETs in the next basic block,
+ continue through it. Otherwise, return,
+ and that block will be scanned individually. */
+ if (val.nsets * 2 + next_qty > max_qty)
+ break;
+
+ cse_basic_block_start = val.low_cuid;
+ cse_basic_block_end = val.high_cuid;
+ to = val.last;
+
+ /* Prevent TO from being deleted if it is a label. */
+ if (to != 0 && GET_CODE (to) == CODE_LABEL)
+ ++LABEL_NUSES (to);
+
+ /* Back up so we process the first insn in the extension. */
+ insn = PREV_INSN (insn);
+ }
+ }
+
+ if (next_qty > max_qty)
+ abort ();
+
+ /* If we are running before loop.c, we stopped on a NOTE_INSN_LOOP_END, and
+ the previous insn is the only insn that branches to the head of a loop,
+ we can cse into the loop. Don't do this if we changed the jump
+ structure of a loop unless we aren't going to be following jumps. */
+
+ if ((cse_jumps_altered == 0
+ || (flag_cse_follow_jumps == 0 && flag_cse_skip_blocks == 0))
+ && around_loop && to != 0
+ && GET_CODE (to) == NOTE && NOTE_LINE_NUMBER (to) == NOTE_INSN_LOOP_END
+ && GET_CODE (PREV_INSN (to)) == JUMP_INSN
+ && JUMP_LABEL (PREV_INSN (to)) != 0
+ && LABEL_NUSES (JUMP_LABEL (PREV_INSN (to))) == 1)
+ cse_around_loop (JUMP_LABEL (PREV_INSN (to)));
+
+ return to ? NEXT_INSN (to) : 0;
+}
+
+/* Count the number of times registers are used (not set) in X.
+ COUNTS is an array in which we accumulate the count, INCR is how much
+ we count each register usage.
+
+ Don't count a usage of DEST, which is the SET_DEST of a SET which
+ contains X in its SET_SRC. This is because such a SET does not
+ modify the liveness of DEST. */
+
+static void
+count_reg_usage (x, counts, dest, incr)
+ rtx x;
+ int *counts;
+ rtx dest;
+ int incr;
+{
+ enum rtx_code code;
+ char *fmt;
+ int i, j;
+
+ if (x == 0)
+ return;
+
+ switch (code = GET_CODE (x))
+ {
+ case REG:
+ if (x != dest)
+ counts[REGNO (x)] += incr;
+ return;
+
+ case PC:
+ case CC0:
+ case CONST:
+ case CONST_INT:
+ case CONST_DOUBLE:
+ case SYMBOL_REF:
+ case LABEL_REF:
+ case CLOBBER:
+ return;
+
+ case SET:
+ /* Unless we are setting a REG, count everything in SET_DEST. */
+ if (GET_CODE (SET_DEST (x)) != REG)
+ count_reg_usage (SET_DEST (x), counts, NULL_RTX, incr);
+
+ /* If SRC has side-effects, then we can't delete this insn, so the
+ usage of SET_DEST inside SRC counts.
+
+ ??? Strictly-speaking, we might be preserving this insn
+ because some other SET has side-effects, but that's hard
+ to do and can't happen now. */
+ count_reg_usage (SET_SRC (x), counts,
+ side_effects_p (SET_SRC (x)) ? NULL_RTX : SET_DEST (x),
+ incr);
+ return;
+
+ case CALL_INSN:
+ count_reg_usage (CALL_INSN_FUNCTION_USAGE (x), counts, NULL_RTX, incr);
+
+ /* ... falls through ... */
+ case INSN:
+ case JUMP_INSN:
+ count_reg_usage (PATTERN (x), counts, NULL_RTX, incr);
+
+ /* Things used in a REG_EQUAL note aren't dead since loop may try to
+ use them. */
+
+ count_reg_usage (REG_NOTES (x), counts, NULL_RTX, incr);
+ return;
+
+ case EXPR_LIST:
+ case INSN_LIST:
+ if (REG_NOTE_KIND (x) == REG_EQUAL
+ || GET_CODE (XEXP (x,0)) == USE)
+ count_reg_usage (XEXP (x, 0), counts, NULL_RTX, incr);
+ count_reg_usage (XEXP (x, 1), counts, NULL_RTX, incr);
+ return;
+ }
+
+ fmt = GET_RTX_FORMAT (code);
+ for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
+ {
+ if (fmt[i] == 'e')
+ count_reg_usage (XEXP (x, i), counts, dest, incr);
+ else if (fmt[i] == 'E')
+ for (j = XVECLEN (x, i) - 1; j >= 0; j--)
+ count_reg_usage (XVECEXP (x, i, j), counts, dest, incr);
+ }
+}
+
+/* Scan all the insns and delete any that are dead; i.e., they store a register
+ that is never used or they copy a register to itself.
+
+ This is used to remove insns made obviously dead by cse. It improves the
+ heuristics in loop since it won't try to move dead invariants out of loops
+ or make givs for dead quantities. The remaining passes of the compilation
+ are also sped up. */
+
+void
+delete_dead_from_cse (insns, nreg)
+ rtx insns;
+ int nreg;
+{
+ int *counts = (int *) alloca (nreg * sizeof (int));
+ rtx insn, prev;
+ rtx tem;
+ int i;
+ int in_libcall = 0;
+
+ /* First count the number of times each register is used. */
+ bzero ((char *) counts, sizeof (int) * nreg);
+ for (insn = next_real_insn (insns); insn; insn = next_real_insn (insn))
+ count_reg_usage (insn, counts, NULL_RTX, 1);
+
+ /* Go from the last insn to the first and delete insns that only set unused
+ registers or copy a register to itself. As we delete an insn, remove
+ usage counts for registers it uses. */
+ for (insn = prev_real_insn (get_last_insn ()); insn; insn = prev)
+ {
+ int live_insn = 0;
+
+ prev = prev_real_insn (insn);
+
+ /* Don't delete any insns that are part of a libcall block.
+ Flow or loop might get confused if we did that. Remember
+ that we are scanning backwards. */
+ if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
+ in_libcall = 1;
+
+ if (in_libcall)
+ live_insn = 1;
+ else if (GET_CODE (PATTERN (insn)) == SET)
+ {
+ if (GET_CODE (SET_DEST (PATTERN (insn))) == REG
+ && SET_DEST (PATTERN (insn)) == SET_SRC (PATTERN (insn)))
+ ;
+
+#ifdef HAVE_cc0
+ else if (GET_CODE (SET_DEST (PATTERN (insn))) == CC0
+ && ! side_effects_p (SET_SRC (PATTERN (insn)))
+ && ((tem = next_nonnote_insn (insn)) == 0
+ || GET_RTX_CLASS (GET_CODE (tem)) != 'i'
+ || ! reg_referenced_p (cc0_rtx, PATTERN (tem))))
+ ;
+#endif
+ else if (GET_CODE (SET_DEST (PATTERN (insn))) != REG
+ || REGNO (SET_DEST (PATTERN (insn))) < FIRST_PSEUDO_REGISTER
+ || counts[REGNO (SET_DEST (PATTERN (insn)))] != 0
+ || side_effects_p (SET_SRC (PATTERN (insn))))
+ live_insn = 1;
+ }
+ else if (GET_CODE (PATTERN (insn)) == PARALLEL)
+ for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
+ {
+ rtx elt = XVECEXP (PATTERN (insn), 0, i);
+
+ if (GET_CODE (elt) == SET)
+ {
+ if (GET_CODE (SET_DEST (elt)) == REG
+ && SET_DEST (elt) == SET_SRC (elt))
+ ;
+
+#ifdef HAVE_cc0
+ else if (GET_CODE (SET_DEST (elt)) == CC0
+ && ! side_effects_p (SET_SRC (elt))
+ && ((tem = next_nonnote_insn (insn)) == 0
+ || GET_RTX_CLASS (GET_CODE (tem)) != 'i'
+ || ! reg_referenced_p (cc0_rtx, PATTERN (tem))))
+ ;
+#endif
+ else if (GET_CODE (SET_DEST (elt)) != REG
+ || REGNO (SET_DEST (elt)) < FIRST_PSEUDO_REGISTER
+ || counts[REGNO (SET_DEST (elt))] != 0
+ || side_effects_p (SET_SRC (elt)))
+ live_insn = 1;
+ }
+ else if (GET_CODE (elt) != CLOBBER && GET_CODE (elt) != USE)
+ live_insn = 1;
+ }
+ else
+ live_insn = 1;
+
+ /* If this is a dead insn, delete it and show registers in it aren't
+ being used. */
+
+ if (! live_insn)
+ {
+ count_reg_usage (insn, counts, NULL_RTX, -1);
+ delete_insn (insn);
+ }
+
+ if (find_reg_note (insn, REG_LIBCALL, NULL_RTX))
+ in_libcall = 0;
+ }
+}
OpenPOWER on IntegriCloud