summaryrefslogtreecommitdiffstats
path: root/contrib/gcc/cp/parser.c
diff options
context:
space:
mode:
authorkan <kan@FreeBSD.org>2004-07-28 03:11:36 +0000
committerkan <kan@FreeBSD.org>2004-07-28 03:11:36 +0000
commite0020c9fe3d2c91658ad0f59cb6a55c44f909db3 (patch)
treeb406472295ae0b130894cc19f02f43b36157fec6 /contrib/gcc/cp/parser.c
parentb754d213ab76dee1e7bcd5acb4becd5658c0ca99 (diff)
parent5e00ec74d8ce58f99801200d4d3d0412c7cc1b28 (diff)
downloadFreeBSD-src-e0020c9fe3d2c91658ad0f59cb6a55c44f909db3.zip
FreeBSD-src-e0020c9fe3d2c91658ad0f59cb6a55c44f909db3.tar.gz
This commit was generated by cvs2svn to compensate for changes in r132718,
which included commits to RCS files with non-trunk default branches.
Diffstat (limited to 'contrib/gcc/cp/parser.c')
-rw-r--r--contrib/gcc/cp/parser.c15323
1 files changed, 15323 insertions, 0 deletions
diff --git a/contrib/gcc/cp/parser.c b/contrib/gcc/cp/parser.c
new file mode 100644
index 0000000..344a8f5
--- /dev/null
+++ b/contrib/gcc/cp/parser.c
@@ -0,0 +1,15323 @@
+/* C++ Parser.
+ Copyright (C) 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
+ Written by Mark Mitchell <mark@codesourcery.com>.
+
+ This file is part of GCC.
+
+ GCC is free software; you can redistribute it and/or modify it
+ under the terms of the GNU General Public License as published by
+ the Free Software Foundation; either version 2, or (at your option)
+ any later version.
+
+ GCC is distributed in the hope that it will be useful, but
+ WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with GCC; see the file COPYING. If not, write to the Free
+ Software Foundation, 59 Temple Place - Suite 330, Boston, MA
+ 02111-1307, USA. */
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "tm.h"
+#include "dyn-string.h"
+#include "varray.h"
+#include "cpplib.h"
+#include "tree.h"
+#include "cp-tree.h"
+#include "c-pragma.h"
+#include "decl.h"
+#include "flags.h"
+#include "diagnostic.h"
+#include "toplev.h"
+#include "output.h"
+
+
+/* The lexer. */
+
+/* Overview
+ --------
+
+ A cp_lexer represents a stream of cp_tokens. It allows arbitrary
+ look-ahead.
+
+ Methodology
+ -----------
+
+ We use a circular buffer to store incoming tokens.
+
+ Some artifacts of the C++ language (such as the
+ expression/declaration ambiguity) require arbitrary look-ahead.
+ The strategy we adopt for dealing with these problems is to attempt
+ to parse one construct (e.g., the declaration) and fall back to the
+ other (e.g., the expression) if that attempt does not succeed.
+ Therefore, we must sometimes store an arbitrary number of tokens.
+
+ The parser routinely peeks at the next token, and then consumes it
+ later. That also requires a buffer in which to store the tokens.
+
+ In order to easily permit adding tokens to the end of the buffer,
+ while removing them from the beginning of the buffer, we use a
+ circular buffer. */
+
+/* A C++ token. */
+
+typedef struct cp_token GTY (())
+{
+ /* The kind of token. */
+ ENUM_BITFIELD (cpp_ttype) type : 8;
+ /* If this token is a keyword, this value indicates which keyword.
+ Otherwise, this value is RID_MAX. */
+ ENUM_BITFIELD (rid) keyword : 8;
+ /* Token flags. */
+ unsigned char flags;
+ /* The value associated with this token, if any. */
+ tree value;
+ /* The location at which this token was found. */
+ location_t location;
+} cp_token;
+
+/* The number of tokens in a single token block.
+ Computed so that cp_token_block fits in a 512B allocation unit. */
+
+#define CP_TOKEN_BLOCK_NUM_TOKENS ((512 - 3*sizeof (char*))/sizeof (cp_token))
+
+/* A group of tokens. These groups are chained together to store
+ large numbers of tokens. (For example, a token block is created
+ when the body of an inline member function is first encountered;
+ the tokens are processed later after the class definition is
+ complete.)
+
+ This somewhat ungainly data structure (as opposed to, say, a
+ variable-length array), is used due to constraints imposed by the
+ current garbage-collection methodology. If it is made more
+ flexible, we could perhaps simplify the data structures involved. */
+
+typedef struct cp_token_block GTY (())
+{
+ /* The tokens. */
+ cp_token tokens[CP_TOKEN_BLOCK_NUM_TOKENS];
+ /* The number of tokens in this block. */
+ size_t num_tokens;
+ /* The next token block in the chain. */
+ struct cp_token_block *next;
+ /* The previous block in the chain. */
+ struct cp_token_block *prev;
+} cp_token_block;
+
+typedef struct cp_token_cache GTY (())
+{
+ /* The first block in the cache. NULL if there are no tokens in the
+ cache. */
+ cp_token_block *first;
+ /* The last block in the cache. NULL If there are no tokens in the
+ cache. */
+ cp_token_block *last;
+} cp_token_cache;
+
+/* Prototypes. */
+
+static cp_token_cache *cp_token_cache_new
+ (void);
+static void cp_token_cache_push_token
+ (cp_token_cache *, cp_token *);
+
+/* Create a new cp_token_cache. */
+
+static cp_token_cache *
+cp_token_cache_new (void)
+{
+ return ggc_alloc_cleared (sizeof (cp_token_cache));
+}
+
+/* Add *TOKEN to *CACHE. */
+
+static void
+cp_token_cache_push_token (cp_token_cache *cache,
+ cp_token *token)
+{
+ cp_token_block *b = cache->last;
+
+ /* See if we need to allocate a new token block. */
+ if (!b || b->num_tokens == CP_TOKEN_BLOCK_NUM_TOKENS)
+ {
+ b = ggc_alloc_cleared (sizeof (cp_token_block));
+ b->prev = cache->last;
+ if (cache->last)
+ {
+ cache->last->next = b;
+ cache->last = b;
+ }
+ else
+ cache->first = cache->last = b;
+ }
+ /* Add this token to the current token block. */
+ b->tokens[b->num_tokens++] = *token;
+}
+
+/* The cp_lexer structure represents the C++ lexer. It is responsible
+ for managing the token stream from the preprocessor and supplying
+ it to the parser. */
+
+typedef struct cp_lexer GTY (())
+{
+ /* The memory allocated for the buffer. Never NULL. */
+ cp_token * GTY ((length ("(%h.buffer_end - %h.buffer)"))) buffer;
+ /* A pointer just past the end of the memory allocated for the buffer. */
+ cp_token * GTY ((skip (""))) buffer_end;
+ /* The first valid token in the buffer, or NULL if none. */
+ cp_token * GTY ((skip (""))) first_token;
+ /* The next available token. If NEXT_TOKEN is NULL, then there are
+ no more available tokens. */
+ cp_token * GTY ((skip (""))) next_token;
+ /* A pointer just past the last available token. If FIRST_TOKEN is
+ NULL, however, there are no available tokens, and then this
+ location is simply the place in which the next token read will be
+ placed. If LAST_TOKEN == FIRST_TOKEN, then the buffer is full.
+ When the LAST_TOKEN == BUFFER, then the last token is at the
+ highest memory address in the BUFFER. */
+ cp_token * GTY ((skip (""))) last_token;
+
+ /* A stack indicating positions at which cp_lexer_save_tokens was
+ called. The top entry is the most recent position at which we
+ began saving tokens. The entries are differences in token
+ position between FIRST_TOKEN and the first saved token.
+
+ If the stack is non-empty, we are saving tokens. When a token is
+ consumed, the NEXT_TOKEN pointer will move, but the FIRST_TOKEN
+ pointer will not. The token stream will be preserved so that it
+ can be reexamined later.
+
+ If the stack is empty, then we are not saving tokens. Whenever a
+ token is consumed, the FIRST_TOKEN pointer will be moved, and the
+ consumed token will be gone forever. */
+ varray_type saved_tokens;
+
+ /* The STRING_CST tokens encountered while processing the current
+ string literal. */
+ varray_type string_tokens;
+
+ /* True if we should obtain more tokens from the preprocessor; false
+ if we are processing a saved token cache. */
+ bool main_lexer_p;
+
+ /* True if we should output debugging information. */
+ bool debugging_p;
+
+ /* The next lexer in a linked list of lexers. */
+ struct cp_lexer *next;
+} cp_lexer;
+
+/* Prototypes. */
+
+static cp_lexer *cp_lexer_new_main
+ (void);
+static cp_lexer *cp_lexer_new_from_tokens
+ (struct cp_token_cache *);
+static int cp_lexer_saving_tokens
+ (const cp_lexer *);
+static cp_token *cp_lexer_next_token
+ (cp_lexer *, cp_token *);
+static cp_token *cp_lexer_prev_token
+ (cp_lexer *, cp_token *);
+static ptrdiff_t cp_lexer_token_difference
+ (cp_lexer *, cp_token *, cp_token *);
+static cp_token *cp_lexer_read_token
+ (cp_lexer *);
+static void cp_lexer_maybe_grow_buffer
+ (cp_lexer *);
+static void cp_lexer_get_preprocessor_token
+ (cp_lexer *, cp_token *);
+static cp_token *cp_lexer_peek_token
+ (cp_lexer *);
+static cp_token *cp_lexer_peek_nth_token
+ (cp_lexer *, size_t);
+static inline bool cp_lexer_next_token_is
+ (cp_lexer *, enum cpp_ttype);
+static bool cp_lexer_next_token_is_not
+ (cp_lexer *, enum cpp_ttype);
+static bool cp_lexer_next_token_is_keyword
+ (cp_lexer *, enum rid);
+static cp_token *cp_lexer_consume_token
+ (cp_lexer *);
+static void cp_lexer_purge_token
+ (cp_lexer *);
+static void cp_lexer_purge_tokens_after
+ (cp_lexer *, cp_token *);
+static void cp_lexer_save_tokens
+ (cp_lexer *);
+static void cp_lexer_commit_tokens
+ (cp_lexer *);
+static void cp_lexer_rollback_tokens
+ (cp_lexer *);
+static inline void cp_lexer_set_source_position_from_token
+ (cp_lexer *, const cp_token *);
+static void cp_lexer_print_token
+ (FILE *, cp_token *);
+static inline bool cp_lexer_debugging_p
+ (cp_lexer *);
+static void cp_lexer_start_debugging
+ (cp_lexer *) ATTRIBUTE_UNUSED;
+static void cp_lexer_stop_debugging
+ (cp_lexer *) ATTRIBUTE_UNUSED;
+
+/* Manifest constants. */
+
+#define CP_TOKEN_BUFFER_SIZE 5
+#define CP_SAVED_TOKENS_SIZE 5
+
+/* A token type for keywords, as opposed to ordinary identifiers. */
+#define CPP_KEYWORD ((enum cpp_ttype) (N_TTYPES + 1))
+
+/* A token type for template-ids. If a template-id is processed while
+ parsing tentatively, it is replaced with a CPP_TEMPLATE_ID token;
+ the value of the CPP_TEMPLATE_ID is whatever was returned by
+ cp_parser_template_id. */
+#define CPP_TEMPLATE_ID ((enum cpp_ttype) (CPP_KEYWORD + 1))
+
+/* A token type for nested-name-specifiers. If a
+ nested-name-specifier is processed while parsing tentatively, it is
+ replaced with a CPP_NESTED_NAME_SPECIFIER token; the value of the
+ CPP_NESTED_NAME_SPECIFIER is whatever was returned by
+ cp_parser_nested_name_specifier_opt. */
+#define CPP_NESTED_NAME_SPECIFIER ((enum cpp_ttype) (CPP_TEMPLATE_ID + 1))
+
+/* A token type for tokens that are not tokens at all; these are used
+ to mark the end of a token block. */
+#define CPP_NONE (CPP_NESTED_NAME_SPECIFIER + 1)
+
+/* Variables. */
+
+/* The stream to which debugging output should be written. */
+static FILE *cp_lexer_debug_stream;
+
+/* Create a new main C++ lexer, the lexer that gets tokens from the
+ preprocessor. */
+
+static cp_lexer *
+cp_lexer_new_main (void)
+{
+ cp_lexer *lexer;
+ cp_token first_token;
+
+ /* It's possible that lexing the first token will load a PCH file,
+ which is a GC collection point. So we have to grab the first
+ token before allocating any memory. */
+ cp_lexer_get_preprocessor_token (NULL, &first_token);
+ c_common_no_more_pch ();
+
+ /* Allocate the memory. */
+ lexer = ggc_alloc_cleared (sizeof (cp_lexer));
+
+ /* Create the circular buffer. */
+ lexer->buffer = ggc_calloc (CP_TOKEN_BUFFER_SIZE, sizeof (cp_token));
+ lexer->buffer_end = lexer->buffer + CP_TOKEN_BUFFER_SIZE;
+
+ /* There is one token in the buffer. */
+ lexer->last_token = lexer->buffer + 1;
+ lexer->first_token = lexer->buffer;
+ lexer->next_token = lexer->buffer;
+ memcpy (lexer->buffer, &first_token, sizeof (cp_token));
+
+ /* This lexer obtains more tokens by calling c_lex. */
+ lexer->main_lexer_p = true;
+
+ /* Create the SAVED_TOKENS stack. */
+ VARRAY_INT_INIT (lexer->saved_tokens, CP_SAVED_TOKENS_SIZE, "saved_tokens");
+
+ /* Create the STRINGS array. */
+ VARRAY_TREE_INIT (lexer->string_tokens, 32, "strings");
+
+ /* Assume we are not debugging. */
+ lexer->debugging_p = false;
+
+ return lexer;
+}
+
+/* Create a new lexer whose token stream is primed with the TOKENS.
+ When these tokens are exhausted, no new tokens will be read. */
+
+static cp_lexer *
+cp_lexer_new_from_tokens (cp_token_cache *tokens)
+{
+ cp_lexer *lexer;
+ cp_token *token;
+ cp_token_block *block;
+ ptrdiff_t num_tokens;
+
+ /* Allocate the memory. */
+ lexer = ggc_alloc_cleared (sizeof (cp_lexer));
+
+ /* Create a new buffer, appropriately sized. */
+ num_tokens = 0;
+ for (block = tokens->first; block != NULL; block = block->next)
+ num_tokens += block->num_tokens;
+ lexer->buffer = ggc_alloc (num_tokens * sizeof (cp_token));
+ lexer->buffer_end = lexer->buffer + num_tokens;
+
+ /* Install the tokens. */
+ token = lexer->buffer;
+ for (block = tokens->first; block != NULL; block = block->next)
+ {
+ memcpy (token, block->tokens, block->num_tokens * sizeof (cp_token));
+ token += block->num_tokens;
+ }
+
+ /* The FIRST_TOKEN is the beginning of the buffer. */
+ lexer->first_token = lexer->buffer;
+ /* The next available token is also at the beginning of the buffer. */
+ lexer->next_token = lexer->buffer;
+ /* The buffer is full. */
+ lexer->last_token = lexer->first_token;
+
+ /* This lexer doesn't obtain more tokens. */
+ lexer->main_lexer_p = false;
+
+ /* Create the SAVED_TOKENS stack. */
+ VARRAY_INT_INIT (lexer->saved_tokens, CP_SAVED_TOKENS_SIZE, "saved_tokens");
+
+ /* Create the STRINGS array. */
+ VARRAY_TREE_INIT (lexer->string_tokens, 32, "strings");
+
+ /* Assume we are not debugging. */
+ lexer->debugging_p = false;
+
+ return lexer;
+}
+
+/* Returns nonzero if debugging information should be output. */
+
+static inline bool
+cp_lexer_debugging_p (cp_lexer *lexer)
+{
+ return lexer->debugging_p;
+}
+
+/* Set the current source position from the information stored in
+ TOKEN. */
+
+static inline void
+cp_lexer_set_source_position_from_token (cp_lexer *lexer ATTRIBUTE_UNUSED ,
+ const cp_token *token)
+{
+ /* Ideally, the source position information would not be a global
+ variable, but it is. */
+
+ /* Update the line number. */
+ if (token->type != CPP_EOF)
+ input_location = token->location;
+}
+
+/* TOKEN points into the circular token buffer. Return a pointer to
+ the next token in the buffer. */
+
+static inline cp_token *
+cp_lexer_next_token (cp_lexer* lexer, cp_token* token)
+{
+ token++;
+ if (token == lexer->buffer_end)
+ token = lexer->buffer;
+ return token;
+}
+
+/* TOKEN points into the circular token buffer. Return a pointer to
+ the previous token in the buffer. */
+
+static inline cp_token *
+cp_lexer_prev_token (cp_lexer* lexer, cp_token* token)
+{
+ if (token == lexer->buffer)
+ token = lexer->buffer_end;
+ return token - 1;
+}
+
+/* nonzero if we are presently saving tokens. */
+
+static int
+cp_lexer_saving_tokens (const cp_lexer* lexer)
+{
+ return VARRAY_ACTIVE_SIZE (lexer->saved_tokens) != 0;
+}
+
+/* Return a pointer to the token that is N tokens beyond TOKEN in the
+ buffer. */
+
+static cp_token *
+cp_lexer_advance_token (cp_lexer *lexer, cp_token *token, ptrdiff_t n)
+{
+ token += n;
+ if (token >= lexer->buffer_end)
+ token = lexer->buffer + (token - lexer->buffer_end);
+ return token;
+}
+
+/* Returns the number of times that START would have to be incremented
+ to reach FINISH. If START and FINISH are the same, returns zero. */
+
+static ptrdiff_t
+cp_lexer_token_difference (cp_lexer* lexer, cp_token* start, cp_token* finish)
+{
+ if (finish >= start)
+ return finish - start;
+ else
+ return ((lexer->buffer_end - lexer->buffer)
+ - (start - finish));
+}
+
+/* Obtain another token from the C preprocessor and add it to the
+ token buffer. Returns the newly read token. */
+
+static cp_token *
+cp_lexer_read_token (cp_lexer* lexer)
+{
+ cp_token *token;
+
+ /* Make sure there is room in the buffer. */
+ cp_lexer_maybe_grow_buffer (lexer);
+
+ /* If there weren't any tokens, then this one will be the first. */
+ if (!lexer->first_token)
+ lexer->first_token = lexer->last_token;
+ /* Similarly, if there were no available tokens, there is one now. */
+ if (!lexer->next_token)
+ lexer->next_token = lexer->last_token;
+
+ /* Figure out where we're going to store the new token. */
+ token = lexer->last_token;
+
+ /* Get a new token from the preprocessor. */
+ cp_lexer_get_preprocessor_token (lexer, token);
+
+ /* Increment LAST_TOKEN. */
+ lexer->last_token = cp_lexer_next_token (lexer, token);
+
+ /* Strings should have type `const char []'. Right now, we will
+ have an ARRAY_TYPE that is constant rather than an array of
+ constant elements.
+ FIXME: Make fix_string_type get this right in the first place. */
+ if ((token->type == CPP_STRING || token->type == CPP_WSTRING)
+ && flag_const_strings)
+ {
+ tree type;
+
+ /* Get the current type. It will be an ARRAY_TYPE. */
+ type = TREE_TYPE (token->value);
+ /* Use build_cplus_array_type to rebuild the array, thereby
+ getting the right type. */
+ type = build_cplus_array_type (TREE_TYPE (type), TYPE_DOMAIN (type));
+ /* Reset the type of the token. */
+ TREE_TYPE (token->value) = type;
+ }
+
+ return token;
+}
+
+/* If the circular buffer is full, make it bigger. */
+
+static void
+cp_lexer_maybe_grow_buffer (cp_lexer* lexer)
+{
+ /* If the buffer is full, enlarge it. */
+ if (lexer->last_token == lexer->first_token)
+ {
+ cp_token *new_buffer;
+ cp_token *old_buffer;
+ cp_token *new_first_token;
+ ptrdiff_t buffer_length;
+ size_t num_tokens_to_copy;
+
+ /* Remember the current buffer pointer. It will become invalid,
+ but we will need to do pointer arithmetic involving this
+ value. */
+ old_buffer = lexer->buffer;
+ /* Compute the current buffer size. */
+ buffer_length = lexer->buffer_end - lexer->buffer;
+ /* Allocate a buffer twice as big. */
+ new_buffer = ggc_realloc (lexer->buffer,
+ 2 * buffer_length * sizeof (cp_token));
+
+ /* Because the buffer is circular, logically consecutive tokens
+ are not necessarily placed consecutively in memory.
+ Therefore, we must keep move the tokens that were before
+ FIRST_TOKEN to the second half of the newly allocated
+ buffer. */
+ num_tokens_to_copy = (lexer->first_token - old_buffer);
+ memcpy (new_buffer + buffer_length,
+ new_buffer,
+ num_tokens_to_copy * sizeof (cp_token));
+ /* Clear the rest of the buffer. We never look at this storage,
+ but the garbage collector may. */
+ memset (new_buffer + buffer_length + num_tokens_to_copy, 0,
+ (buffer_length - num_tokens_to_copy) * sizeof (cp_token));
+
+ /* Now recompute all of the buffer pointers. */
+ new_first_token
+ = new_buffer + (lexer->first_token - old_buffer);
+ if (lexer->next_token != NULL)
+ {
+ ptrdiff_t next_token_delta;
+
+ if (lexer->next_token > lexer->first_token)
+ next_token_delta = lexer->next_token - lexer->first_token;
+ else
+ next_token_delta =
+ buffer_length - (lexer->first_token - lexer->next_token);
+ lexer->next_token = new_first_token + next_token_delta;
+ }
+ lexer->last_token = new_first_token + buffer_length;
+ lexer->buffer = new_buffer;
+ lexer->buffer_end = new_buffer + buffer_length * 2;
+ lexer->first_token = new_first_token;
+ }
+}
+
+/* Store the next token from the preprocessor in *TOKEN. */
+
+static void
+cp_lexer_get_preprocessor_token (cp_lexer *lexer ATTRIBUTE_UNUSED ,
+ cp_token *token)
+{
+ bool done;
+
+ /* If this not the main lexer, return a terminating CPP_EOF token. */
+ if (lexer != NULL && !lexer->main_lexer_p)
+ {
+ token->type = CPP_EOF;
+ token->location.line = 0;
+ token->location.file = NULL;
+ token->value = NULL_TREE;
+ token->keyword = RID_MAX;
+
+ return;
+ }
+
+ done = false;
+ /* Keep going until we get a token we like. */
+ while (!done)
+ {
+ /* Get a new token from the preprocessor. */
+ token->type = c_lex_with_flags (&token->value, &token->flags);
+ /* Issue messages about tokens we cannot process. */
+ switch (token->type)
+ {
+ case CPP_ATSIGN:
+ case CPP_HASH:
+ case CPP_PASTE:
+ error ("invalid token");
+ break;
+
+ default:
+ /* This is a good token, so we exit the loop. */
+ done = true;
+ break;
+ }
+ }
+ /* Now we've got our token. */
+ token->location = input_location;
+
+ /* Check to see if this token is a keyword. */
+ if (token->type == CPP_NAME
+ && C_IS_RESERVED_WORD (token->value))
+ {
+ /* Mark this token as a keyword. */
+ token->type = CPP_KEYWORD;
+ /* Record which keyword. */
+ token->keyword = C_RID_CODE (token->value);
+ /* Update the value. Some keywords are mapped to particular
+ entities, rather than simply having the value of the
+ corresponding IDENTIFIER_NODE. For example, `__const' is
+ mapped to `const'. */
+ token->value = ridpointers[token->keyword];
+ }
+ else
+ token->keyword = RID_MAX;
+}
+
+/* Return a pointer to the next token in the token stream, but do not
+ consume it. */
+
+static cp_token *
+cp_lexer_peek_token (cp_lexer* lexer)
+{
+ cp_token *token;
+
+ /* If there are no tokens, read one now. */
+ if (!lexer->next_token)
+ cp_lexer_read_token (lexer);
+
+ /* Provide debugging output. */
+ if (cp_lexer_debugging_p (lexer))
+ {
+ fprintf (cp_lexer_debug_stream, "cp_lexer: peeking at token: ");
+ cp_lexer_print_token (cp_lexer_debug_stream, lexer->next_token);
+ fprintf (cp_lexer_debug_stream, "\n");
+ }
+
+ token = lexer->next_token;
+ cp_lexer_set_source_position_from_token (lexer, token);
+ return token;
+}
+
+/* Return true if the next token has the indicated TYPE. */
+
+static bool
+cp_lexer_next_token_is (cp_lexer* lexer, enum cpp_ttype type)
+{
+ cp_token *token;
+
+ /* Peek at the next token. */
+ token = cp_lexer_peek_token (lexer);
+ /* Check to see if it has the indicated TYPE. */
+ return token->type == type;
+}
+
+/* Return true if the next token does not have the indicated TYPE. */
+
+static bool
+cp_lexer_next_token_is_not (cp_lexer* lexer, enum cpp_ttype type)
+{
+ return !cp_lexer_next_token_is (lexer, type);
+}
+
+/* Return true if the next token is the indicated KEYWORD. */
+
+static bool
+cp_lexer_next_token_is_keyword (cp_lexer* lexer, enum rid keyword)
+{
+ cp_token *token;
+
+ /* Peek at the next token. */
+ token = cp_lexer_peek_token (lexer);
+ /* Check to see if it is the indicated keyword. */
+ return token->keyword == keyword;
+}
+
+/* Return a pointer to the Nth token in the token stream. If N is 1,
+ then this is precisely equivalent to cp_lexer_peek_token. */
+
+static cp_token *
+cp_lexer_peek_nth_token (cp_lexer* lexer, size_t n)
+{
+ cp_token *token;
+
+ /* N is 1-based, not zero-based. */
+ my_friendly_assert (n > 0, 20000224);
+
+ /* Skip ahead from NEXT_TOKEN, reading more tokens as necessary. */
+ token = lexer->next_token;
+ /* If there are no tokens in the buffer, get one now. */
+ if (!token)
+ {
+ cp_lexer_read_token (lexer);
+ token = lexer->next_token;
+ }
+
+ /* Now, read tokens until we have enough. */
+ while (--n > 0)
+ {
+ /* Advance to the next token. */
+ token = cp_lexer_next_token (lexer, token);
+ /* If that's all the tokens we have, read a new one. */
+ if (token == lexer->last_token)
+ token = cp_lexer_read_token (lexer);
+ }
+
+ return token;
+}
+
+/* Consume the next token. The pointer returned is valid only until
+ another token is read. Callers should preserve copy the token
+ explicitly if they will need its value for a longer period of
+ time. */
+
+static cp_token *
+cp_lexer_consume_token (cp_lexer* lexer)
+{
+ cp_token *token;
+
+ /* If there are no tokens, read one now. */
+ if (!lexer->next_token)
+ cp_lexer_read_token (lexer);
+
+ /* Remember the token we'll be returning. */
+ token = lexer->next_token;
+
+ /* Increment NEXT_TOKEN. */
+ lexer->next_token = cp_lexer_next_token (lexer,
+ lexer->next_token);
+ /* Check to see if we're all out of tokens. */
+ if (lexer->next_token == lexer->last_token)
+ lexer->next_token = NULL;
+
+ /* If we're not saving tokens, then move FIRST_TOKEN too. */
+ if (!cp_lexer_saving_tokens (lexer))
+ {
+ /* If there are no tokens available, set FIRST_TOKEN to NULL. */
+ if (!lexer->next_token)
+ lexer->first_token = NULL;
+ else
+ lexer->first_token = lexer->next_token;
+ }
+
+ /* Provide debugging output. */
+ if (cp_lexer_debugging_p (lexer))
+ {
+ fprintf (cp_lexer_debug_stream, "cp_lexer: consuming token: ");
+ cp_lexer_print_token (cp_lexer_debug_stream, token);
+ fprintf (cp_lexer_debug_stream, "\n");
+ }
+
+ return token;
+}
+
+/* Permanently remove the next token from the token stream. There
+ must be a valid next token already; this token never reads
+ additional tokens from the preprocessor. */
+
+static void
+cp_lexer_purge_token (cp_lexer *lexer)
+{
+ cp_token *token;
+ cp_token *next_token;
+
+ token = lexer->next_token;
+ while (true)
+ {
+ next_token = cp_lexer_next_token (lexer, token);
+ if (next_token == lexer->last_token)
+ break;
+ *token = *next_token;
+ token = next_token;
+ }
+
+ lexer->last_token = token;
+ /* The token purged may have been the only token remaining; if so,
+ clear NEXT_TOKEN. */
+ if (lexer->next_token == token)
+ lexer->next_token = NULL;
+}
+
+/* Permanently remove all tokens after TOKEN, up to, but not
+ including, the token that will be returned next by
+ cp_lexer_peek_token. */
+
+static void
+cp_lexer_purge_tokens_after (cp_lexer *lexer, cp_token *token)
+{
+ cp_token *peek;
+ cp_token *t1;
+ cp_token *t2;
+
+ if (lexer->next_token)
+ {
+ /* Copy the tokens that have not yet been read to the location
+ immediately following TOKEN. */
+ t1 = cp_lexer_next_token (lexer, token);
+ t2 = peek = cp_lexer_peek_token (lexer);
+ /* Move tokens into the vacant area between TOKEN and PEEK. */
+ while (t2 != lexer->last_token)
+ {
+ *t1 = *t2;
+ t1 = cp_lexer_next_token (lexer, t1);
+ t2 = cp_lexer_next_token (lexer, t2);
+ }
+ /* Now, the next available token is right after TOKEN. */
+ lexer->next_token = cp_lexer_next_token (lexer, token);
+ /* And the last token is wherever we ended up. */
+ lexer->last_token = t1;
+ }
+ else
+ {
+ /* There are no tokens in the buffer, so there is nothing to
+ copy. The last token in the buffer is TOKEN itself. */
+ lexer->last_token = cp_lexer_next_token (lexer, token);
+ }
+}
+
+/* Begin saving tokens. All tokens consumed after this point will be
+ preserved. */
+
+static void
+cp_lexer_save_tokens (cp_lexer* lexer)
+{
+ /* Provide debugging output. */
+ if (cp_lexer_debugging_p (lexer))
+ fprintf (cp_lexer_debug_stream, "cp_lexer: saving tokens\n");
+
+ /* Make sure that LEXER->NEXT_TOKEN is non-NULL so that we can
+ restore the tokens if required. */
+ if (!lexer->next_token)
+ cp_lexer_read_token (lexer);
+
+ VARRAY_PUSH_INT (lexer->saved_tokens,
+ cp_lexer_token_difference (lexer,
+ lexer->first_token,
+ lexer->next_token));
+}
+
+/* Commit to the portion of the token stream most recently saved. */
+
+static void
+cp_lexer_commit_tokens (cp_lexer* lexer)
+{
+ /* Provide debugging output. */
+ if (cp_lexer_debugging_p (lexer))
+ fprintf (cp_lexer_debug_stream, "cp_lexer: committing tokens\n");
+
+ VARRAY_POP (lexer->saved_tokens);
+}
+
+/* Return all tokens saved since the last call to cp_lexer_save_tokens
+ to the token stream. Stop saving tokens. */
+
+static void
+cp_lexer_rollback_tokens (cp_lexer* lexer)
+{
+ size_t delta;
+
+ /* Provide debugging output. */
+ if (cp_lexer_debugging_p (lexer))
+ fprintf (cp_lexer_debug_stream, "cp_lexer: restoring tokens\n");
+
+ /* Find the token that was the NEXT_TOKEN when we started saving
+ tokens. */
+ delta = VARRAY_TOP_INT(lexer->saved_tokens);
+ /* Make it the next token again now. */
+ lexer->next_token = cp_lexer_advance_token (lexer,
+ lexer->first_token,
+ delta);
+ /* It might be the case that there were no tokens when we started
+ saving tokens, but that there are some tokens now. */
+ if (!lexer->next_token && lexer->first_token)
+ lexer->next_token = lexer->first_token;
+
+ /* Stop saving tokens. */
+ VARRAY_POP (lexer->saved_tokens);
+}
+
+/* Print a representation of the TOKEN on the STREAM. */
+
+static void
+cp_lexer_print_token (FILE * stream, cp_token* token)
+{
+ const char *token_type = NULL;
+
+ /* Figure out what kind of token this is. */
+ switch (token->type)
+ {
+ case CPP_EQ:
+ token_type = "EQ";
+ break;
+
+ case CPP_COMMA:
+ token_type = "COMMA";
+ break;
+
+ case CPP_OPEN_PAREN:
+ token_type = "OPEN_PAREN";
+ break;
+
+ case CPP_CLOSE_PAREN:
+ token_type = "CLOSE_PAREN";
+ break;
+
+ case CPP_OPEN_BRACE:
+ token_type = "OPEN_BRACE";
+ break;
+
+ case CPP_CLOSE_BRACE:
+ token_type = "CLOSE_BRACE";
+ break;
+
+ case CPP_SEMICOLON:
+ token_type = "SEMICOLON";
+ break;
+
+ case CPP_NAME:
+ token_type = "NAME";
+ break;
+
+ case CPP_EOF:
+ token_type = "EOF";
+ break;
+
+ case CPP_KEYWORD:
+ token_type = "keyword";
+ break;
+
+ /* This is not a token that we know how to handle yet. */
+ default:
+ break;
+ }
+
+ /* If we have a name for the token, print it out. Otherwise, we
+ simply give the numeric code. */
+ if (token_type)
+ fprintf (stream, "%s", token_type);
+ else
+ fprintf (stream, "%d", token->type);
+ /* And, for an identifier, print the identifier name. */
+ if (token->type == CPP_NAME
+ /* Some keywords have a value that is not an IDENTIFIER_NODE.
+ For example, `struct' is mapped to an INTEGER_CST. */
+ || (token->type == CPP_KEYWORD
+ && TREE_CODE (token->value) == IDENTIFIER_NODE))
+ fprintf (stream, " %s", IDENTIFIER_POINTER (token->value));
+}
+
+/* Start emitting debugging information. */
+
+static void
+cp_lexer_start_debugging (cp_lexer* lexer)
+{
+ ++lexer->debugging_p;
+}
+
+/* Stop emitting debugging information. */
+
+static void
+cp_lexer_stop_debugging (cp_lexer* lexer)
+{
+ --lexer->debugging_p;
+}
+
+
+/* The parser. */
+
+/* Overview
+ --------
+
+ A cp_parser parses the token stream as specified by the C++
+ grammar. Its job is purely parsing, not semantic analysis. For
+ example, the parser breaks the token stream into declarators,
+ expressions, statements, and other similar syntactic constructs.
+ It does not check that the types of the expressions on either side
+ of an assignment-statement are compatible, or that a function is
+ not declared with a parameter of type `void'.
+
+ The parser invokes routines elsewhere in the compiler to perform
+ semantic analysis and to build up the abstract syntax tree for the
+ code processed.
+
+ The parser (and the template instantiation code, which is, in a
+ way, a close relative of parsing) are the only parts of the
+ compiler that should be calling push_scope and pop_scope, or
+ related functions. The parser (and template instantiation code)
+ keeps track of what scope is presently active; everything else
+ should simply honor that. (The code that generates static
+ initializers may also need to set the scope, in order to check
+ access control correctly when emitting the initializers.)
+
+ Methodology
+ -----------
+
+ The parser is of the standard recursive-descent variety. Upcoming
+ tokens in the token stream are examined in order to determine which
+ production to use when parsing a non-terminal. Some C++ constructs
+ require arbitrary look ahead to disambiguate. For example, it is
+ impossible, in the general case, to tell whether a statement is an
+ expression or declaration without scanning the entire statement.
+ Therefore, the parser is capable of "parsing tentatively." When the
+ parser is not sure what construct comes next, it enters this mode.
+ Then, while we attempt to parse the construct, the parser queues up
+ error messages, rather than issuing them immediately, and saves the
+ tokens it consumes. If the construct is parsed successfully, the
+ parser "commits", i.e., it issues any queued error messages and
+ the tokens that were being preserved are permanently discarded.
+ If, however, the construct is not parsed successfully, the parser
+ rolls back its state completely so that it can resume parsing using
+ a different alternative.
+
+ Future Improvements
+ -------------------
+
+ The performance of the parser could probably be improved
+ substantially. Some possible improvements include:
+
+ - The expression parser recurses through the various levels of
+ precedence as specified in the grammar, rather than using an
+ operator-precedence technique. Therefore, parsing a simple
+ identifier requires multiple recursive calls.
+
+ - We could often eliminate the need to parse tentatively by
+ looking ahead a little bit. In some places, this approach
+ might not entirely eliminate the need to parse tentatively, but
+ it might still speed up the average case. */
+
+/* Flags that are passed to some parsing functions. These values can
+ be bitwise-ored together. */
+
+typedef enum cp_parser_flags
+{
+ /* No flags. */
+ CP_PARSER_FLAGS_NONE = 0x0,
+ /* The construct is optional. If it is not present, then no error
+ should be issued. */
+ CP_PARSER_FLAGS_OPTIONAL = 0x1,
+ /* When parsing a type-specifier, do not allow user-defined types. */
+ CP_PARSER_FLAGS_NO_USER_DEFINED_TYPES = 0x2
+} cp_parser_flags;
+
+/* The different kinds of declarators we want to parse. */
+
+typedef enum cp_parser_declarator_kind
+{
+ /* We want an abstract declartor. */
+ CP_PARSER_DECLARATOR_ABSTRACT,
+ /* We want a named declarator. */
+ CP_PARSER_DECLARATOR_NAMED,
+ /* We don't mind, but the name must be an unqualified-id. */
+ CP_PARSER_DECLARATOR_EITHER
+} cp_parser_declarator_kind;
+
+/* A mapping from a token type to a corresponding tree node type. */
+
+typedef struct cp_parser_token_tree_map_node
+{
+ /* The token type. */
+ ENUM_BITFIELD (cpp_ttype) token_type : 8;
+ /* The corresponding tree code. */
+ ENUM_BITFIELD (tree_code) tree_type : 8;
+} cp_parser_token_tree_map_node;
+
+/* A complete map consists of several ordinary entries, followed by a
+ terminator. The terminating entry has a token_type of CPP_EOF. */
+
+typedef cp_parser_token_tree_map_node cp_parser_token_tree_map[];
+
+/* The status of a tentative parse. */
+
+typedef enum cp_parser_status_kind
+{
+ /* No errors have occurred. */
+ CP_PARSER_STATUS_KIND_NO_ERROR,
+ /* An error has occurred. */
+ CP_PARSER_STATUS_KIND_ERROR,
+ /* We are committed to this tentative parse, whether or not an error
+ has occurred. */
+ CP_PARSER_STATUS_KIND_COMMITTED
+} cp_parser_status_kind;
+
+/* Context that is saved and restored when parsing tentatively. */
+
+typedef struct cp_parser_context GTY (())
+{
+ /* If this is a tentative parsing context, the status of the
+ tentative parse. */
+ enum cp_parser_status_kind status;
+ /* If non-NULL, we have just seen a `x->' or `x.' expression. Names
+ that are looked up in this context must be looked up both in the
+ scope given by OBJECT_TYPE (the type of `x' or `*x') and also in
+ the context of the containing expression. */
+ tree object_type;
+ /* The next parsing context in the stack. */
+ struct cp_parser_context *next;
+} cp_parser_context;
+
+/* Prototypes. */
+
+/* Constructors and destructors. */
+
+static cp_parser_context *cp_parser_context_new
+ (cp_parser_context *);
+
+/* Class variables. */
+
+static GTY((deletable (""))) cp_parser_context* cp_parser_context_free_list;
+
+/* Constructors and destructors. */
+
+/* Construct a new context. The context below this one on the stack
+ is given by NEXT. */
+
+static cp_parser_context *
+cp_parser_context_new (cp_parser_context* next)
+{
+ cp_parser_context *context;
+
+ /* Allocate the storage. */
+ if (cp_parser_context_free_list != NULL)
+ {
+ /* Pull the first entry from the free list. */
+ context = cp_parser_context_free_list;
+ cp_parser_context_free_list = context->next;
+ memset (context, 0, sizeof (*context));
+ }
+ else
+ context = ggc_alloc_cleared (sizeof (cp_parser_context));
+ /* No errors have occurred yet in this context. */
+ context->status = CP_PARSER_STATUS_KIND_NO_ERROR;
+ /* If this is not the bottomost context, copy information that we
+ need from the previous context. */
+ if (next)
+ {
+ /* If, in the NEXT context, we are parsing an `x->' or `x.'
+ expression, then we are parsing one in this context, too. */
+ context->object_type = next->object_type;
+ /* Thread the stack. */
+ context->next = next;
+ }
+
+ return context;
+}
+
+/* The cp_parser structure represents the C++ parser. */
+
+typedef struct cp_parser GTY(())
+{
+ /* The lexer from which we are obtaining tokens. */
+ cp_lexer *lexer;
+
+ /* The scope in which names should be looked up. If NULL_TREE, then
+ we look up names in the scope that is currently open in the
+ source program. If non-NULL, this is either a TYPE or
+ NAMESPACE_DECL for the scope in which we should look.
+
+ This value is not cleared automatically after a name is looked
+ up, so we must be careful to clear it before starting a new look
+ up sequence. (If it is not cleared, then `X::Y' followed by `Z'
+ will look up `Z' in the scope of `X', rather than the current
+ scope.) Unfortunately, it is difficult to tell when name lookup
+ is complete, because we sometimes peek at a token, look it up,
+ and then decide not to consume it. */
+ tree scope;
+
+ /* OBJECT_SCOPE and QUALIFYING_SCOPE give the scopes in which the
+ last lookup took place. OBJECT_SCOPE is used if an expression
+ like "x->y" or "x.y" was used; it gives the type of "*x" or "x",
+ respectively. QUALIFYING_SCOPE is used for an expression of the
+ form "X::Y"; it refers to X. */
+ tree object_scope;
+ tree qualifying_scope;
+
+ /* A stack of parsing contexts. All but the bottom entry on the
+ stack will be tentative contexts.
+
+ We parse tentatively in order to determine which construct is in
+ use in some situations. For example, in order to determine
+ whether a statement is an expression-statement or a
+ declaration-statement we parse it tentatively as a
+ declaration-statement. If that fails, we then reparse the same
+ token stream as an expression-statement. */
+ cp_parser_context *context;
+
+ /* True if we are parsing GNU C++. If this flag is not set, then
+ GNU extensions are not recognized. */
+ bool allow_gnu_extensions_p;
+
+ /* TRUE if the `>' token should be interpreted as the greater-than
+ operator. FALSE if it is the end of a template-id or
+ template-parameter-list. */
+ bool greater_than_is_operator_p;
+
+ /* TRUE if default arguments are allowed within a parameter list
+ that starts at this point. FALSE if only a gnu extension makes
+ them permissible. */
+ bool default_arg_ok_p;
+
+ /* TRUE if we are parsing an integral constant-expression. See
+ [expr.const] for a precise definition. */
+ bool integral_constant_expression_p;
+
+ /* TRUE if we are parsing an integral constant-expression -- but a
+ non-constant expression should be permitted as well. This flag
+ is used when parsing an array bound so that GNU variable-length
+ arrays are tolerated. */
+ bool allow_non_integral_constant_expression_p;
+
+ /* TRUE if ALLOW_NON_CONSTANT_EXPRESSION_P is TRUE and something has
+ been seen that makes the expression non-constant. */
+ bool non_integral_constant_expression_p;
+
+ /* TRUE if we are parsing the argument to "__offsetof__". */
+ bool in_offsetof_p;
+
+ /* TRUE if local variable names and `this' are forbidden in the
+ current context. */
+ bool local_variables_forbidden_p;
+
+ /* TRUE if the declaration we are parsing is part of a
+ linkage-specification of the form `extern string-literal
+ declaration'. */
+ bool in_unbraced_linkage_specification_p;
+
+ /* TRUE if we are presently parsing a declarator, after the
+ direct-declarator. */
+ bool in_declarator_p;
+
+ /* TRUE if we are presently parsing a template-argument-list. */
+ bool in_template_argument_list_p;
+
+ /* TRUE if we are presently parsing the body of an
+ iteration-statement. */
+ bool in_iteration_statement_p;
+
+ /* TRUE if we are presently parsing the body of a switch
+ statement. */
+ bool in_switch_statement_p;
+
+ /* TRUE if we are parsing a type-id in an expression context. In
+ such a situation, both "type (expr)" and "type (type)" are valid
+ alternatives. */
+ bool in_type_id_in_expr_p;
+
+ /* If non-NULL, then we are parsing a construct where new type
+ definitions are not permitted. The string stored here will be
+ issued as an error message if a type is defined. */
+ const char *type_definition_forbidden_message;
+
+ /* A list of lists. The outer list is a stack, used for member
+ functions of local classes. At each level there are two sub-list,
+ one on TREE_VALUE and one on TREE_PURPOSE. Each of those
+ sub-lists has a FUNCTION_DECL or TEMPLATE_DECL on their
+ TREE_VALUE's. The functions are chained in reverse declaration
+ order.
+
+ The TREE_PURPOSE sublist contains those functions with default
+ arguments that need post processing, and the TREE_VALUE sublist
+ contains those functions with definitions that need post
+ processing.
+
+ These lists can only be processed once the outermost class being
+ defined is complete. */
+ tree unparsed_functions_queues;
+
+ /* The number of classes whose definitions are currently in
+ progress. */
+ unsigned num_classes_being_defined;
+
+ /* The number of template parameter lists that apply directly to the
+ current declaration. */
+ unsigned num_template_parameter_lists;
+} cp_parser;
+
+/* The type of a function that parses some kind of expression. */
+typedef tree (*cp_parser_expression_fn) (cp_parser *);
+
+/* Prototypes. */
+
+/* Constructors and destructors. */
+
+static cp_parser *cp_parser_new
+ (void);
+
+/* Routines to parse various constructs.
+
+ Those that return `tree' will return the error_mark_node (rather
+ than NULL_TREE) if a parse error occurs, unless otherwise noted.
+ Sometimes, they will return an ordinary node if error-recovery was
+ attempted, even though a parse error occurred. So, to check
+ whether or not a parse error occurred, you should always use
+ cp_parser_error_occurred. If the construct is optional (indicated
+ either by an `_opt' in the name of the function that does the
+ parsing or via a FLAGS parameter), then NULL_TREE is returned if
+ the construct is not present. */
+
+/* Lexical conventions [gram.lex] */
+
+static tree cp_parser_identifier
+ (cp_parser *);
+
+/* Basic concepts [gram.basic] */
+
+static bool cp_parser_translation_unit
+ (cp_parser *);
+
+/* Expressions [gram.expr] */
+
+static tree cp_parser_primary_expression
+ (cp_parser *, cp_id_kind *, tree *);
+static tree cp_parser_id_expression
+ (cp_parser *, bool, bool, bool *, bool);
+static tree cp_parser_unqualified_id
+ (cp_parser *, bool, bool, bool);
+static tree cp_parser_nested_name_specifier_opt
+ (cp_parser *, bool, bool, bool, bool);
+static tree cp_parser_nested_name_specifier
+ (cp_parser *, bool, bool, bool, bool);
+static tree cp_parser_class_or_namespace_name
+ (cp_parser *, bool, bool, bool, bool, bool);
+static tree cp_parser_postfix_expression
+ (cp_parser *, bool);
+static tree cp_parser_parenthesized_expression_list
+ (cp_parser *, bool, bool *);
+static void cp_parser_pseudo_destructor_name
+ (cp_parser *, tree *, tree *);
+static tree cp_parser_unary_expression
+ (cp_parser *, bool);
+static enum tree_code cp_parser_unary_operator
+ (cp_token *);
+static tree cp_parser_new_expression
+ (cp_parser *);
+static tree cp_parser_new_placement
+ (cp_parser *);
+static tree cp_parser_new_type_id
+ (cp_parser *);
+static tree cp_parser_new_declarator_opt
+ (cp_parser *);
+static tree cp_parser_direct_new_declarator
+ (cp_parser *);
+static tree cp_parser_new_initializer
+ (cp_parser *);
+static tree cp_parser_delete_expression
+ (cp_parser *);
+static tree cp_parser_cast_expression
+ (cp_parser *, bool);
+static tree cp_parser_pm_expression
+ (cp_parser *);
+static tree cp_parser_multiplicative_expression
+ (cp_parser *);
+static tree cp_parser_additive_expression
+ (cp_parser *);
+static tree cp_parser_shift_expression
+ (cp_parser *);
+static tree cp_parser_relational_expression
+ (cp_parser *);
+static tree cp_parser_equality_expression
+ (cp_parser *);
+static tree cp_parser_and_expression
+ (cp_parser *);
+static tree cp_parser_exclusive_or_expression
+ (cp_parser *);
+static tree cp_parser_inclusive_or_expression
+ (cp_parser *);
+static tree cp_parser_logical_and_expression
+ (cp_parser *);
+static tree cp_parser_logical_or_expression
+ (cp_parser *);
+static tree cp_parser_question_colon_clause
+ (cp_parser *, tree);
+static tree cp_parser_assignment_expression
+ (cp_parser *);
+static enum tree_code cp_parser_assignment_operator_opt
+ (cp_parser *);
+static tree cp_parser_expression
+ (cp_parser *);
+static tree cp_parser_constant_expression
+ (cp_parser *, bool, bool *);
+
+/* Statements [gram.stmt.stmt] */
+
+static void cp_parser_statement
+ (cp_parser *, bool);
+static tree cp_parser_labeled_statement
+ (cp_parser *, bool);
+static tree cp_parser_expression_statement
+ (cp_parser *, bool);
+static tree cp_parser_compound_statement
+ (cp_parser *, bool);
+static void cp_parser_statement_seq_opt
+ (cp_parser *, bool);
+static tree cp_parser_selection_statement
+ (cp_parser *);
+static tree cp_parser_condition
+ (cp_parser *);
+static tree cp_parser_iteration_statement
+ (cp_parser *);
+static void cp_parser_for_init_statement
+ (cp_parser *);
+static tree cp_parser_jump_statement
+ (cp_parser *);
+static void cp_parser_declaration_statement
+ (cp_parser *);
+
+static tree cp_parser_implicitly_scoped_statement
+ (cp_parser *);
+static void cp_parser_already_scoped_statement
+ (cp_parser *);
+
+/* Declarations [gram.dcl.dcl] */
+
+static void cp_parser_declaration_seq_opt
+ (cp_parser *);
+static void cp_parser_declaration
+ (cp_parser *);
+static void cp_parser_block_declaration
+ (cp_parser *, bool);
+static void cp_parser_simple_declaration
+ (cp_parser *, bool);
+static tree cp_parser_decl_specifier_seq
+ (cp_parser *, cp_parser_flags, tree *, int *);
+static tree cp_parser_storage_class_specifier_opt
+ (cp_parser *);
+static tree cp_parser_function_specifier_opt
+ (cp_parser *);
+static tree cp_parser_type_specifier
+ (cp_parser *, cp_parser_flags, bool, bool, int *, bool *);
+static tree cp_parser_simple_type_specifier
+ (cp_parser *, cp_parser_flags, bool);
+static tree cp_parser_type_name
+ (cp_parser *);
+static tree cp_parser_elaborated_type_specifier
+ (cp_parser *, bool, bool);
+static tree cp_parser_enum_specifier
+ (cp_parser *);
+static void cp_parser_enumerator_list
+ (cp_parser *, tree);
+static void cp_parser_enumerator_definition
+ (cp_parser *, tree);
+static tree cp_parser_namespace_name
+ (cp_parser *);
+static void cp_parser_namespace_definition
+ (cp_parser *);
+static void cp_parser_namespace_body
+ (cp_parser *);
+static tree cp_parser_qualified_namespace_specifier
+ (cp_parser *);
+static void cp_parser_namespace_alias_definition
+ (cp_parser *);
+static void cp_parser_using_declaration
+ (cp_parser *);
+static void cp_parser_using_directive
+ (cp_parser *);
+static void cp_parser_asm_definition
+ (cp_parser *);
+static void cp_parser_linkage_specification
+ (cp_parser *);
+
+/* Declarators [gram.dcl.decl] */
+
+static tree cp_parser_init_declarator
+ (cp_parser *, tree, tree, bool, bool, int, bool *);
+static tree cp_parser_declarator
+ (cp_parser *, cp_parser_declarator_kind, int *, bool *);
+static tree cp_parser_direct_declarator
+ (cp_parser *, cp_parser_declarator_kind, int *);
+static enum tree_code cp_parser_ptr_operator
+ (cp_parser *, tree *, tree *);
+static tree cp_parser_cv_qualifier_seq_opt
+ (cp_parser *);
+static tree cp_parser_cv_qualifier_opt
+ (cp_parser *);
+static tree cp_parser_declarator_id
+ (cp_parser *);
+static tree cp_parser_type_id
+ (cp_parser *);
+static tree cp_parser_type_specifier_seq
+ (cp_parser *);
+static tree cp_parser_parameter_declaration_clause
+ (cp_parser *);
+static tree cp_parser_parameter_declaration_list
+ (cp_parser *);
+static tree cp_parser_parameter_declaration
+ (cp_parser *, bool, bool *);
+static void cp_parser_function_body
+ (cp_parser *);
+static tree cp_parser_initializer
+ (cp_parser *, bool *, bool *);
+static tree cp_parser_initializer_clause
+ (cp_parser *, bool *);
+static tree cp_parser_initializer_list
+ (cp_parser *, bool *);
+
+static bool cp_parser_ctor_initializer_opt_and_function_body
+ (cp_parser *);
+
+/* Classes [gram.class] */
+
+static tree cp_parser_class_name
+ (cp_parser *, bool, bool, bool, bool, bool, bool);
+static tree cp_parser_class_specifier
+ (cp_parser *);
+static tree cp_parser_class_head
+ (cp_parser *, bool *, tree *);
+static enum tag_types cp_parser_class_key
+ (cp_parser *);
+static void cp_parser_member_specification_opt
+ (cp_parser *);
+static void cp_parser_member_declaration
+ (cp_parser *);
+static tree cp_parser_pure_specifier
+ (cp_parser *);
+static tree cp_parser_constant_initializer
+ (cp_parser *);
+
+/* Derived classes [gram.class.derived] */
+
+static tree cp_parser_base_clause
+ (cp_parser *);
+static tree cp_parser_base_specifier
+ (cp_parser *);
+
+/* Special member functions [gram.special] */
+
+static tree cp_parser_conversion_function_id
+ (cp_parser *);
+static tree cp_parser_conversion_type_id
+ (cp_parser *);
+static tree cp_parser_conversion_declarator_opt
+ (cp_parser *);
+static bool cp_parser_ctor_initializer_opt
+ (cp_parser *);
+static void cp_parser_mem_initializer_list
+ (cp_parser *);
+static tree cp_parser_mem_initializer
+ (cp_parser *);
+static tree cp_parser_mem_initializer_id
+ (cp_parser *);
+
+/* Overloading [gram.over] */
+
+static tree cp_parser_operator_function_id
+ (cp_parser *);
+static tree cp_parser_operator
+ (cp_parser *);
+
+/* Templates [gram.temp] */
+
+static void cp_parser_template_declaration
+ (cp_parser *, bool);
+static tree cp_parser_template_parameter_list
+ (cp_parser *);
+static tree cp_parser_template_parameter
+ (cp_parser *);
+static tree cp_parser_type_parameter
+ (cp_parser *);
+static tree cp_parser_template_id
+ (cp_parser *, bool, bool, bool);
+static tree cp_parser_template_name
+ (cp_parser *, bool, bool, bool, bool *);
+static tree cp_parser_template_argument_list
+ (cp_parser *);
+static tree cp_parser_template_argument
+ (cp_parser *);
+static void cp_parser_explicit_instantiation
+ (cp_parser *);
+static void cp_parser_explicit_specialization
+ (cp_parser *);
+
+/* Exception handling [gram.exception] */
+
+static tree cp_parser_try_block
+ (cp_parser *);
+static bool cp_parser_function_try_block
+ (cp_parser *);
+static void cp_parser_handler_seq
+ (cp_parser *);
+static void cp_parser_handler
+ (cp_parser *);
+static tree cp_parser_exception_declaration
+ (cp_parser *);
+static tree cp_parser_throw_expression
+ (cp_parser *);
+static tree cp_parser_exception_specification_opt
+ (cp_parser *);
+static tree cp_parser_type_id_list
+ (cp_parser *);
+
+/* GNU Extensions */
+
+static tree cp_parser_asm_specification_opt
+ (cp_parser *);
+static tree cp_parser_asm_operand_list
+ (cp_parser *);
+static tree cp_parser_asm_clobber_list
+ (cp_parser *);
+static tree cp_parser_attributes_opt
+ (cp_parser *);
+static tree cp_parser_attribute_list
+ (cp_parser *);
+static bool cp_parser_extension_opt
+ (cp_parser *, int *);
+static void cp_parser_label_declaration
+ (cp_parser *);
+
+/* Utility Routines */
+
+static tree cp_parser_lookup_name
+ (cp_parser *, tree, bool, bool, bool, bool);
+static tree cp_parser_lookup_name_simple
+ (cp_parser *, tree);
+static tree cp_parser_maybe_treat_template_as_class
+ (tree, bool);
+static bool cp_parser_check_declarator_template_parameters
+ (cp_parser *, tree);
+static bool cp_parser_check_template_parameters
+ (cp_parser *, unsigned);
+static tree cp_parser_simple_cast_expression
+ (cp_parser *);
+static tree cp_parser_binary_expression
+ (cp_parser *, const cp_parser_token_tree_map, cp_parser_expression_fn);
+static tree cp_parser_global_scope_opt
+ (cp_parser *, bool);
+static bool cp_parser_constructor_declarator_p
+ (cp_parser *, bool);
+static tree cp_parser_function_definition_from_specifiers_and_declarator
+ (cp_parser *, tree, tree, tree);
+static tree cp_parser_function_definition_after_declarator
+ (cp_parser *, bool);
+static void cp_parser_template_declaration_after_export
+ (cp_parser *, bool);
+static tree cp_parser_single_declaration
+ (cp_parser *, bool, bool *);
+static tree cp_parser_functional_cast
+ (cp_parser *, tree);
+static tree cp_parser_save_member_function_body
+ (cp_parser *, tree, tree, tree);
+static tree cp_parser_enclosed_template_argument_list
+ (cp_parser *);
+static void cp_parser_save_default_args
+ (cp_parser *, tree);
+static void cp_parser_late_parsing_for_member
+ (cp_parser *, tree);
+static void cp_parser_late_parsing_default_args
+ (cp_parser *, tree);
+static tree cp_parser_sizeof_operand
+ (cp_parser *, enum rid);
+static bool cp_parser_declares_only_class_p
+ (cp_parser *);
+static bool cp_parser_friend_p
+ (tree);
+static cp_token *cp_parser_require
+ (cp_parser *, enum cpp_ttype, const char *);
+static cp_token *cp_parser_require_keyword
+ (cp_parser *, enum rid, const char *);
+static bool cp_parser_token_starts_function_definition_p
+ (cp_token *);
+static bool cp_parser_next_token_starts_class_definition_p
+ (cp_parser *);
+static bool cp_parser_next_token_ends_template_argument_p
+ (cp_parser *);
+static bool cp_parser_nth_token_starts_template_argument_list_p
+ (cp_parser *, size_t);
+static enum tag_types cp_parser_token_is_class_key
+ (cp_token *);
+static void cp_parser_check_class_key
+ (enum tag_types, tree type);
+static void cp_parser_check_access_in_redeclaration
+ (tree type);
+static bool cp_parser_optional_template_keyword
+ (cp_parser *);
+static void cp_parser_pre_parsed_nested_name_specifier
+ (cp_parser *);
+static void cp_parser_cache_group
+ (cp_parser *, cp_token_cache *, enum cpp_ttype, unsigned);
+static void cp_parser_parse_tentatively
+ (cp_parser *);
+static void cp_parser_commit_to_tentative_parse
+ (cp_parser *);
+static void cp_parser_abort_tentative_parse
+ (cp_parser *);
+static bool cp_parser_parse_definitely
+ (cp_parser *);
+static inline bool cp_parser_parsing_tentatively
+ (cp_parser *);
+static bool cp_parser_committed_to_tentative_parse
+ (cp_parser *);
+static void cp_parser_error
+ (cp_parser *, const char *);
+static void cp_parser_name_lookup_error
+ (cp_parser *, tree, tree, const char *);
+static bool cp_parser_simulate_error
+ (cp_parser *);
+static void cp_parser_check_type_definition
+ (cp_parser *);
+static void cp_parser_check_for_definition_in_return_type
+ (tree, int);
+static void cp_parser_check_for_invalid_template_id
+ (cp_parser *, tree);
+static bool cp_parser_non_integral_constant_expression
+ (cp_parser *, const char *);
+static bool cp_parser_diagnose_invalid_type_name
+ (cp_parser *);
+static int cp_parser_skip_to_closing_parenthesis
+ (cp_parser *, bool, bool, bool);
+static void cp_parser_skip_to_end_of_statement
+ (cp_parser *);
+static void cp_parser_consume_semicolon_at_end_of_statement
+ (cp_parser *);
+static void cp_parser_skip_to_end_of_block_or_statement
+ (cp_parser *);
+static void cp_parser_skip_to_closing_brace
+ (cp_parser *);
+static void cp_parser_skip_until_found
+ (cp_parser *, enum cpp_ttype, const char *);
+static bool cp_parser_error_occurred
+ (cp_parser *);
+static bool cp_parser_allow_gnu_extensions_p
+ (cp_parser *);
+static bool cp_parser_is_string_literal
+ (cp_token *);
+static bool cp_parser_is_keyword
+ (cp_token *, enum rid);
+
+/* Returns nonzero if we are parsing tentatively. */
+
+static inline bool
+cp_parser_parsing_tentatively (cp_parser* parser)
+{
+ return parser->context->next != NULL;
+}
+
+/* Returns nonzero if TOKEN is a string literal. */
+
+static bool
+cp_parser_is_string_literal (cp_token* token)
+{
+ return (token->type == CPP_STRING || token->type == CPP_WSTRING);
+}
+
+/* Returns nonzero if TOKEN is the indicated KEYWORD. */
+
+static bool
+cp_parser_is_keyword (cp_token* token, enum rid keyword)
+{
+ return token->keyword == keyword;
+}
+
+/* Issue the indicated error MESSAGE. */
+
+static void
+cp_parser_error (cp_parser* parser, const char* message)
+{
+ /* Output the MESSAGE -- unless we're parsing tentatively. */
+ if (!cp_parser_simulate_error (parser))
+ {
+ cp_token *token;
+ token = cp_lexer_peek_token (parser->lexer);
+ c_parse_error (message,
+ /* Because c_parser_error does not understand
+ CPP_KEYWORD, keywords are treated like
+ identifiers. */
+ (token->type == CPP_KEYWORD ? CPP_NAME : token->type),
+ token->value);
+ }
+}
+
+/* Issue an error about name-lookup failing. NAME is the
+ IDENTIFIER_NODE DECL is the result of
+ the lookup (as returned from cp_parser_lookup_name). DESIRED is
+ the thing that we hoped to find. */
+
+static void
+cp_parser_name_lookup_error (cp_parser* parser,
+ tree name,
+ tree decl,
+ const char* desired)
+{
+ /* If name lookup completely failed, tell the user that NAME was not
+ declared. */
+ if (decl == error_mark_node)
+ {
+ if (parser->scope && parser->scope != global_namespace)
+ error ("`%D::%D' has not been declared",
+ parser->scope, name);
+ else if (parser->scope == global_namespace)
+ error ("`::%D' has not been declared", name);
+ else
+ error ("`%D' has not been declared", name);
+ }
+ else if (parser->scope && parser->scope != global_namespace)
+ error ("`%D::%D' %s", parser->scope, name, desired);
+ else if (parser->scope == global_namespace)
+ error ("`::%D' %s", name, desired);
+ else
+ error ("`%D' %s", name, desired);
+}
+
+/* If we are parsing tentatively, remember that an error has occurred
+ during this tentative parse. Returns true if the error was
+ simulated; false if a messgae should be issued by the caller. */
+
+static bool
+cp_parser_simulate_error (cp_parser* parser)
+{
+ if (cp_parser_parsing_tentatively (parser)
+ && !cp_parser_committed_to_tentative_parse (parser))
+ {
+ parser->context->status = CP_PARSER_STATUS_KIND_ERROR;
+ return true;
+ }
+ return false;
+}
+
+/* This function is called when a type is defined. If type
+ definitions are forbidden at this point, an error message is
+ issued. */
+
+static void
+cp_parser_check_type_definition (cp_parser* parser)
+{
+ /* If types are forbidden here, issue a message. */
+ if (parser->type_definition_forbidden_message)
+ /* Use `%s' to print the string in case there are any escape
+ characters in the message. */
+ error ("%s", parser->type_definition_forbidden_message);
+}
+
+/* This function is called when a declaration is parsed. If
+ DECLARATOR is a function declarator and DECLARES_CLASS_OR_ENUM
+ indicates that a type was defined in the decl-specifiers for DECL,
+ then an error is issued. */
+
+static void
+cp_parser_check_for_definition_in_return_type (tree declarator,
+ int declares_class_or_enum)
+{
+ /* [dcl.fct] forbids type definitions in return types.
+ Unfortunately, it's not easy to know whether or not we are
+ processing a return type until after the fact. */
+ while (declarator
+ && (TREE_CODE (declarator) == INDIRECT_REF
+ || TREE_CODE (declarator) == ADDR_EXPR))
+ declarator = TREE_OPERAND (declarator, 0);
+ if (declarator
+ && TREE_CODE (declarator) == CALL_EXPR
+ && declares_class_or_enum & 2)
+ error ("new types may not be defined in a return type");
+}
+
+/* A type-specifier (TYPE) has been parsed which cannot be followed by
+ "<" in any valid C++ program. If the next token is indeed "<",
+ issue a message warning the user about what appears to be an
+ invalid attempt to form a template-id. */
+
+static void
+cp_parser_check_for_invalid_template_id (cp_parser* parser,
+ tree type)
+{
+ ptrdiff_t start;
+ cp_token *token;
+
+ if (cp_lexer_next_token_is (parser->lexer, CPP_LESS))
+ {
+ if (TYPE_P (type))
+ error ("`%T' is not a template", type);
+ else if (TREE_CODE (type) == IDENTIFIER_NODE)
+ error ("`%s' is not a template", IDENTIFIER_POINTER (type));
+ else
+ error ("invalid template-id");
+ /* Remember the location of the invalid "<". */
+ if (cp_parser_parsing_tentatively (parser)
+ && !cp_parser_committed_to_tentative_parse (parser))
+ {
+ token = cp_lexer_peek_token (parser->lexer);
+ token = cp_lexer_prev_token (parser->lexer, token);
+ start = cp_lexer_token_difference (parser->lexer,
+ parser->lexer->first_token,
+ token);
+ }
+ else
+ start = -1;
+ /* Consume the "<". */
+ cp_lexer_consume_token (parser->lexer);
+ /* Parse the template arguments. */
+ cp_parser_enclosed_template_argument_list (parser);
+ /* Permanently remove the invalid template arguments so that
+ this error message is not issued again. */
+ if (start >= 0)
+ {
+ token = cp_lexer_advance_token (parser->lexer,
+ parser->lexer->first_token,
+ start);
+ cp_lexer_purge_tokens_after (parser->lexer, token);
+ }
+ }
+}
+
+/* If parsing an integral constant-expression, issue an error message
+ about the fact that THING appeared and return true. Otherwise,
+ return false, marking the current expression as non-constant. */
+
+static bool
+cp_parser_non_integral_constant_expression (cp_parser *parser,
+ const char *thing)
+{
+ if (parser->integral_constant_expression_p)
+ {
+ if (!parser->allow_non_integral_constant_expression_p)
+ {
+ error ("%s cannot appear in a constant-expression", thing);
+ return true;
+ }
+ parser->non_integral_constant_expression_p = true;
+ }
+ return false;
+}
+
+/* Check for a common situation where a type-name should be present,
+ but is not, and issue a sensible error message. Returns true if an
+ invalid type-name was detected. */
+
+static bool
+cp_parser_diagnose_invalid_type_name (cp_parser *parser)
+{
+ /* If the next two tokens are both identifiers, the code is
+ erroneous. The usual cause of this situation is code like:
+
+ T t;
+
+ where "T" should name a type -- but does not. */
+ if (cp_lexer_next_token_is (parser->lexer, CPP_NAME)
+ && cp_lexer_peek_nth_token (parser->lexer, 2)->type == CPP_NAME)
+ {
+ tree name;
+
+ /* If parsing tentatively, we should commit; we really are
+ looking at a declaration. */
+ /* Consume the first identifier. */
+ name = cp_lexer_consume_token (parser->lexer)->value;
+ /* Issue an error message. */
+ error ("`%s' does not name a type", IDENTIFIER_POINTER (name));
+ /* If we're in a template class, it's possible that the user was
+ referring to a type from a base class. For example:
+
+ template <typename T> struct A { typedef T X; };
+ template <typename T> struct B : public A<T> { X x; };
+
+ The user should have said "typename A<T>::X". */
+ if (processing_template_decl && current_class_type)
+ {
+ tree b;
+
+ for (b = TREE_CHAIN (TYPE_BINFO (current_class_type));
+ b;
+ b = TREE_CHAIN (b))
+ {
+ tree base_type = BINFO_TYPE (b);
+ if (CLASS_TYPE_P (base_type)
+ && dependent_type_p (base_type))
+ {
+ tree field;
+ /* Go from a particular instantiation of the
+ template (which will have an empty TYPE_FIELDs),
+ to the main version. */
+ base_type = CLASSTYPE_PRIMARY_TEMPLATE_TYPE (base_type);
+ for (field = TYPE_FIELDS (base_type);
+ field;
+ field = TREE_CHAIN (field))
+ if (TREE_CODE (field) == TYPE_DECL
+ && DECL_NAME (field) == name)
+ {
+ error ("(perhaps `typename %T::%s' was intended)",
+ BINFO_TYPE (b), IDENTIFIER_POINTER (name));
+ break;
+ }
+ if (field)
+ break;
+ }
+ }
+ }
+ /* Skip to the end of the declaration; there's no point in
+ trying to process it. */
+ cp_parser_skip_to_end_of_statement (parser);
+
+ return true;
+ }
+
+ return false;
+}
+
+/* Consume tokens up to, and including, the next non-nested closing `)'.
+ Returns 1 iff we found a closing `)'. RECOVERING is true, if we
+ are doing error recovery. Returns -1 if OR_COMMA is true and we
+ found an unnested comma. */
+
+static int
+cp_parser_skip_to_closing_parenthesis (cp_parser *parser,
+ bool recovering,
+ bool or_comma,
+ bool consume_paren)
+{
+ unsigned paren_depth = 0;
+ unsigned brace_depth = 0;
+
+ if (recovering && !or_comma && cp_parser_parsing_tentatively (parser)
+ && !cp_parser_committed_to_tentative_parse (parser))
+ return 0;
+
+ while (true)
+ {
+ cp_token *token;
+
+ /* If we've run out of tokens, then there is no closing `)'. */
+ if (cp_lexer_next_token_is (parser->lexer, CPP_EOF))
+ return 0;
+
+ token = cp_lexer_peek_token (parser->lexer);
+
+ /* This matches the processing in skip_to_end_of_statement. */
+ if (token->type == CPP_SEMICOLON && !brace_depth)
+ return 0;
+ if (token->type == CPP_OPEN_BRACE)
+ ++brace_depth;
+ if (token->type == CPP_CLOSE_BRACE)
+ {
+ if (!brace_depth--)
+ return 0;
+ }
+ if (recovering && or_comma && token->type == CPP_COMMA
+ && !brace_depth && !paren_depth)
+ return -1;
+
+ if (!brace_depth)
+ {
+ /* If it is an `(', we have entered another level of nesting. */
+ if (token->type == CPP_OPEN_PAREN)
+ ++paren_depth;
+ /* If it is a `)', then we might be done. */
+ else if (token->type == CPP_CLOSE_PAREN && !paren_depth--)
+ {
+ if (consume_paren)
+ cp_lexer_consume_token (parser->lexer);
+ return 1;
+ }
+ }
+
+ /* Consume the token. */
+ cp_lexer_consume_token (parser->lexer);
+ }
+}
+
+/* Consume tokens until we reach the end of the current statement.
+ Normally, that will be just before consuming a `;'. However, if a
+ non-nested `}' comes first, then we stop before consuming that. */
+
+static void
+cp_parser_skip_to_end_of_statement (cp_parser* parser)
+{
+ unsigned nesting_depth = 0;
+
+ while (true)
+ {
+ cp_token *token;
+
+ /* Peek at the next token. */
+ token = cp_lexer_peek_token (parser->lexer);
+ /* If we've run out of tokens, stop. */
+ if (token->type == CPP_EOF)
+ break;
+ /* If the next token is a `;', we have reached the end of the
+ statement. */
+ if (token->type == CPP_SEMICOLON && !nesting_depth)
+ break;
+ /* If the next token is a non-nested `}', then we have reached
+ the end of the current block. */
+ if (token->type == CPP_CLOSE_BRACE)
+ {
+ /* If this is a non-nested `}', stop before consuming it.
+ That way, when confronted with something like:
+
+ { 3 + }
+
+ we stop before consuming the closing `}', even though we
+ have not yet reached a `;'. */
+ if (nesting_depth == 0)
+ break;
+ /* If it is the closing `}' for a block that we have
+ scanned, stop -- but only after consuming the token.
+ That way given:
+
+ void f g () { ... }
+ typedef int I;
+
+ we will stop after the body of the erroneously declared
+ function, but before consuming the following `typedef'
+ declaration. */
+ if (--nesting_depth == 0)
+ {
+ cp_lexer_consume_token (parser->lexer);
+ break;
+ }
+ }
+ /* If it the next token is a `{', then we are entering a new
+ block. Consume the entire block. */
+ else if (token->type == CPP_OPEN_BRACE)
+ ++nesting_depth;
+ /* Consume the token. */
+ cp_lexer_consume_token (parser->lexer);
+ }
+}
+
+/* This function is called at the end of a statement or declaration.
+ If the next token is a semicolon, it is consumed; otherwise, error
+ recovery is attempted. */
+
+static void
+cp_parser_consume_semicolon_at_end_of_statement (cp_parser *parser)
+{
+ /* Look for the trailing `;'. */
+ if (!cp_parser_require (parser, CPP_SEMICOLON, "`;'"))
+ {
+ /* If there is additional (erroneous) input, skip to the end of
+ the statement. */
+ cp_parser_skip_to_end_of_statement (parser);
+ /* If the next token is now a `;', consume it. */
+ if (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON))
+ cp_lexer_consume_token (parser->lexer);
+ }
+}
+
+/* Skip tokens until we have consumed an entire block, or until we
+ have consumed a non-nested `;'. */
+
+static void
+cp_parser_skip_to_end_of_block_or_statement (cp_parser* parser)
+{
+ unsigned nesting_depth = 0;
+
+ while (true)
+ {
+ cp_token *token;
+
+ /* Peek at the next token. */
+ token = cp_lexer_peek_token (parser->lexer);
+ /* If we've run out of tokens, stop. */
+ if (token->type == CPP_EOF)
+ break;
+ /* If the next token is a `;', we have reached the end of the
+ statement. */
+ if (token->type == CPP_SEMICOLON && !nesting_depth)
+ {
+ /* Consume the `;'. */
+ cp_lexer_consume_token (parser->lexer);
+ break;
+ }
+ /* Consume the token. */
+ token = cp_lexer_consume_token (parser->lexer);
+ /* If the next token is a non-nested `}', then we have reached
+ the end of the current block. */
+ if (token->type == CPP_CLOSE_BRACE
+ && (nesting_depth == 0 || --nesting_depth == 0))
+ break;
+ /* If it the next token is a `{', then we are entering a new
+ block. Consume the entire block. */
+ if (token->type == CPP_OPEN_BRACE)
+ ++nesting_depth;
+ }
+}
+
+/* Skip tokens until a non-nested closing curly brace is the next
+ token. */
+
+static void
+cp_parser_skip_to_closing_brace (cp_parser *parser)
+{
+ unsigned nesting_depth = 0;
+
+ while (true)
+ {
+ cp_token *token;
+
+ /* Peek at the next token. */
+ token = cp_lexer_peek_token (parser->lexer);
+ /* If we've run out of tokens, stop. */
+ if (token->type == CPP_EOF)
+ break;
+ /* If the next token is a non-nested `}', then we have reached
+ the end of the current block. */
+ if (token->type == CPP_CLOSE_BRACE && nesting_depth-- == 0)
+ break;
+ /* If it the next token is a `{', then we are entering a new
+ block. Consume the entire block. */
+ else if (token->type == CPP_OPEN_BRACE)
+ ++nesting_depth;
+ /* Consume the token. */
+ cp_lexer_consume_token (parser->lexer);
+ }
+}
+
+/* Create a new C++ parser. */
+
+static cp_parser *
+cp_parser_new (void)
+{
+ cp_parser *parser;
+ cp_lexer *lexer;
+
+ /* cp_lexer_new_main is called before calling ggc_alloc because
+ cp_lexer_new_main might load a PCH file. */
+ lexer = cp_lexer_new_main ();
+
+ parser = ggc_alloc_cleared (sizeof (cp_parser));
+ parser->lexer = lexer;
+ parser->context = cp_parser_context_new (NULL);
+
+ /* For now, we always accept GNU extensions. */
+ parser->allow_gnu_extensions_p = 1;
+
+ /* The `>' token is a greater-than operator, not the end of a
+ template-id. */
+ parser->greater_than_is_operator_p = true;
+
+ parser->default_arg_ok_p = true;
+
+ /* We are not parsing a constant-expression. */
+ parser->integral_constant_expression_p = false;
+ parser->allow_non_integral_constant_expression_p = false;
+ parser->non_integral_constant_expression_p = false;
+
+ /* We are not parsing offsetof. */
+ parser->in_offsetof_p = false;
+
+ /* Local variable names are not forbidden. */
+ parser->local_variables_forbidden_p = false;
+
+ /* We are not processing an `extern "C"' declaration. */
+ parser->in_unbraced_linkage_specification_p = false;
+
+ /* We are not processing a declarator. */
+ parser->in_declarator_p = false;
+
+ /* We are not processing a template-argument-list. */
+ parser->in_template_argument_list_p = false;
+
+ /* We are not in an iteration statement. */
+ parser->in_iteration_statement_p = false;
+
+ /* We are not in a switch statement. */
+ parser->in_switch_statement_p = false;
+
+ /* We are not parsing a type-id inside an expression. */
+ parser->in_type_id_in_expr_p = false;
+
+ /* The unparsed function queue is empty. */
+ parser->unparsed_functions_queues = build_tree_list (NULL_TREE, NULL_TREE);
+
+ /* There are no classes being defined. */
+ parser->num_classes_being_defined = 0;
+
+ /* No template parameters apply. */
+ parser->num_template_parameter_lists = 0;
+
+ return parser;
+}
+
+/* Lexical conventions [gram.lex] */
+
+/* Parse an identifier. Returns an IDENTIFIER_NODE representing the
+ identifier. */
+
+static tree
+cp_parser_identifier (cp_parser* parser)
+{
+ cp_token *token;
+
+ /* Look for the identifier. */
+ token = cp_parser_require (parser, CPP_NAME, "identifier");
+ /* Return the value. */
+ return token ? token->value : error_mark_node;
+}
+
+/* Basic concepts [gram.basic] */
+
+/* Parse a translation-unit.
+
+ translation-unit:
+ declaration-seq [opt]
+
+ Returns TRUE if all went well. */
+
+static bool
+cp_parser_translation_unit (cp_parser* parser)
+{
+ while (true)
+ {
+ cp_parser_declaration_seq_opt (parser);
+
+ /* If there are no tokens left then all went well. */
+ if (cp_lexer_next_token_is (parser->lexer, CPP_EOF))
+ break;
+
+ /* Otherwise, issue an error message. */
+ cp_parser_error (parser, "expected declaration");
+ return false;
+ }
+
+ /* Consume the EOF token. */
+ cp_parser_require (parser, CPP_EOF, "end-of-file");
+
+ /* Finish up. */
+ finish_translation_unit ();
+
+ /* All went well. */
+ return true;
+}
+
+/* Expressions [gram.expr] */
+
+/* Parse a primary-expression.
+
+ primary-expression:
+ literal
+ this
+ ( expression )
+ id-expression
+
+ GNU Extensions:
+
+ primary-expression:
+ ( compound-statement )
+ __builtin_va_arg ( assignment-expression , type-id )
+
+ literal:
+ __null
+
+ Returns a representation of the expression.
+
+ *IDK indicates what kind of id-expression (if any) was present.
+
+ *QUALIFYING_CLASS is set to a non-NULL value if the id-expression can be
+ used as the operand of a pointer-to-member. In that case,
+ *QUALIFYING_CLASS gives the class that is used as the qualifying
+ class in the pointer-to-member. */
+
+static tree
+cp_parser_primary_expression (cp_parser *parser,
+ cp_id_kind *idk,
+ tree *qualifying_class)
+{
+ cp_token *token;
+
+ /* Assume the primary expression is not an id-expression. */
+ *idk = CP_ID_KIND_NONE;
+ /* And that it cannot be used as pointer-to-member. */
+ *qualifying_class = NULL_TREE;
+
+ /* Peek at the next token. */
+ token = cp_lexer_peek_token (parser->lexer);
+ switch (token->type)
+ {
+ /* literal:
+ integer-literal
+ character-literal
+ floating-literal
+ string-literal
+ boolean-literal */
+ case CPP_CHAR:
+ case CPP_WCHAR:
+ case CPP_STRING:
+ case CPP_WSTRING:
+ case CPP_NUMBER:
+ token = cp_lexer_consume_token (parser->lexer);
+ return token->value;
+
+ case CPP_OPEN_PAREN:
+ {
+ tree expr;
+ bool saved_greater_than_is_operator_p;
+
+ /* Consume the `('. */
+ cp_lexer_consume_token (parser->lexer);
+ /* Within a parenthesized expression, a `>' token is always
+ the greater-than operator. */
+ saved_greater_than_is_operator_p
+ = parser->greater_than_is_operator_p;
+ parser->greater_than_is_operator_p = true;
+ /* If we see `( { ' then we are looking at the beginning of
+ a GNU statement-expression. */
+ if (cp_parser_allow_gnu_extensions_p (parser)
+ && cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE))
+ {
+ /* Statement-expressions are not allowed by the standard. */
+ if (pedantic)
+ pedwarn ("ISO C++ forbids braced-groups within expressions");
+
+ /* And they're not allowed outside of a function-body; you
+ cannot, for example, write:
+
+ int i = ({ int j = 3; j + 1; });
+
+ at class or namespace scope. */
+ if (!at_function_scope_p ())
+ error ("statement-expressions are allowed only inside functions");
+ /* Start the statement-expression. */
+ expr = begin_stmt_expr ();
+ /* Parse the compound-statement. */
+ cp_parser_compound_statement (parser, true);
+ /* Finish up. */
+ expr = finish_stmt_expr (expr, false);
+ }
+ else
+ {
+ /* Parse the parenthesized expression. */
+ expr = cp_parser_expression (parser);
+ /* Let the front end know that this expression was
+ enclosed in parentheses. This matters in case, for
+ example, the expression is of the form `A::B', since
+ `&A::B' might be a pointer-to-member, but `&(A::B)' is
+ not. */
+ finish_parenthesized_expr (expr);
+ }
+ /* The `>' token might be the end of a template-id or
+ template-parameter-list now. */
+ parser->greater_than_is_operator_p
+ = saved_greater_than_is_operator_p;
+ /* Consume the `)'. */
+ if (!cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'"))
+ cp_parser_skip_to_end_of_statement (parser);
+
+ return expr;
+ }
+
+ case CPP_KEYWORD:
+ switch (token->keyword)
+ {
+ /* These two are the boolean literals. */
+ case RID_TRUE:
+ cp_lexer_consume_token (parser->lexer);
+ return boolean_true_node;
+ case RID_FALSE:
+ cp_lexer_consume_token (parser->lexer);
+ return boolean_false_node;
+
+ /* The `__null' literal. */
+ case RID_NULL:
+ cp_lexer_consume_token (parser->lexer);
+ return null_node;
+
+ /* Recognize the `this' keyword. */
+ case RID_THIS:
+ cp_lexer_consume_token (parser->lexer);
+ if (parser->local_variables_forbidden_p)
+ {
+ error ("`this' may not be used in this context");
+ return error_mark_node;
+ }
+ /* Pointers cannot appear in constant-expressions. */
+ if (cp_parser_non_integral_constant_expression (parser,
+ "`this'"))
+ return error_mark_node;
+ return finish_this_expr ();
+
+ /* The `operator' keyword can be the beginning of an
+ id-expression. */
+ case RID_OPERATOR:
+ goto id_expression;
+
+ case RID_FUNCTION_NAME:
+ case RID_PRETTY_FUNCTION_NAME:
+ case RID_C99_FUNCTION_NAME:
+ /* The symbols __FUNCTION__, __PRETTY_FUNCTION__, and
+ __func__ are the names of variables -- but they are
+ treated specially. Therefore, they are handled here,
+ rather than relying on the generic id-expression logic
+ below. Grammatically, these names are id-expressions.
+
+ Consume the token. */
+ token = cp_lexer_consume_token (parser->lexer);
+ /* Look up the name. */
+ return finish_fname (token->value);
+
+ case RID_VA_ARG:
+ {
+ tree expression;
+ tree type;
+
+ /* The `__builtin_va_arg' construct is used to handle
+ `va_arg'. Consume the `__builtin_va_arg' token. */
+ cp_lexer_consume_token (parser->lexer);
+ /* Look for the opening `('. */
+ cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
+ /* Now, parse the assignment-expression. */
+ expression = cp_parser_assignment_expression (parser);
+ /* Look for the `,'. */
+ cp_parser_require (parser, CPP_COMMA, "`,'");
+ /* Parse the type-id. */
+ type = cp_parser_type_id (parser);
+ /* Look for the closing `)'. */
+ cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
+ /* Using `va_arg' in a constant-expression is not
+ allowed. */
+ if (cp_parser_non_integral_constant_expression (parser,
+ "`va_arg'"))
+ return error_mark_node;
+ return build_x_va_arg (expression, type);
+ }
+
+ case RID_OFFSETOF:
+ {
+ tree expression;
+ bool saved_in_offsetof_p;
+
+ /* Consume the "__offsetof__" token. */
+ cp_lexer_consume_token (parser->lexer);
+ /* Consume the opening `('. */
+ cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
+ /* Parse the parenthesized (almost) constant-expression. */
+ saved_in_offsetof_p = parser->in_offsetof_p;
+ parser->in_offsetof_p = true;
+ expression
+ = cp_parser_constant_expression (parser,
+ /*allow_non_constant_p=*/false,
+ /*non_constant_p=*/NULL);
+ parser->in_offsetof_p = saved_in_offsetof_p;
+ /* Consume the closing ')'. */
+ cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
+
+ return expression;
+ }
+
+ default:
+ cp_parser_error (parser, "expected primary-expression");
+ return error_mark_node;
+ }
+
+ /* An id-expression can start with either an identifier, a
+ `::' as the beginning of a qualified-id, or the "operator"
+ keyword. */
+ case CPP_NAME:
+ case CPP_SCOPE:
+ case CPP_TEMPLATE_ID:
+ case CPP_NESTED_NAME_SPECIFIER:
+ {
+ tree id_expression;
+ tree decl;
+ const char *error_msg;
+
+ id_expression:
+ /* Parse the id-expression. */
+ id_expression
+ = cp_parser_id_expression (parser,
+ /*template_keyword_p=*/false,
+ /*check_dependency_p=*/true,
+ /*template_p=*/NULL,
+ /*declarator_p=*/false);
+ if (id_expression == error_mark_node)
+ return error_mark_node;
+ /* If we have a template-id, then no further lookup is
+ required. If the template-id was for a template-class, we
+ will sometimes have a TYPE_DECL at this point. */
+ else if (TREE_CODE (id_expression) == TEMPLATE_ID_EXPR
+ || TREE_CODE (id_expression) == TYPE_DECL)
+ decl = id_expression;
+ /* Look up the name. */
+ else
+ {
+ decl = cp_parser_lookup_name_simple (parser, id_expression);
+ /* If name lookup gives us a SCOPE_REF, then the
+ qualifying scope was dependent. Just propagate the
+ name. */
+ if (TREE_CODE (decl) == SCOPE_REF)
+ {
+ if (TYPE_P (TREE_OPERAND (decl, 0)))
+ *qualifying_class = TREE_OPERAND (decl, 0);
+ return decl;
+ }
+ /* Check to see if DECL is a local variable in a context
+ where that is forbidden. */
+ if (parser->local_variables_forbidden_p
+ && local_variable_p (decl))
+ {
+ /* It might be that we only found DECL because we are
+ trying to be generous with pre-ISO scoping rules.
+ For example, consider:
+
+ int i;
+ void g() {
+ for (int i = 0; i < 10; ++i) {}
+ extern void f(int j = i);
+ }
+
+ Here, name look up will originally find the out
+ of scope `i'. We need to issue a warning message,
+ but then use the global `i'. */
+ decl = check_for_out_of_scope_variable (decl);
+ if (local_variable_p (decl))
+ {
+ error ("local variable `%D' may not appear in this context",
+ decl);
+ return error_mark_node;
+ }
+ }
+ }
+
+ decl = finish_id_expression (id_expression, decl, parser->scope,
+ idk, qualifying_class,
+ parser->integral_constant_expression_p,
+ parser->allow_non_integral_constant_expression_p,
+ &parser->non_integral_constant_expression_p,
+ &error_msg);
+ if (error_msg)
+ cp_parser_error (parser, error_msg);
+ return decl;
+ }
+
+ /* Anything else is an error. */
+ default:
+ cp_parser_error (parser, "expected primary-expression");
+ return error_mark_node;
+ }
+}
+
+/* Parse an id-expression.
+
+ id-expression:
+ unqualified-id
+ qualified-id
+
+ qualified-id:
+ :: [opt] nested-name-specifier template [opt] unqualified-id
+ :: identifier
+ :: operator-function-id
+ :: template-id
+
+ Return a representation of the unqualified portion of the
+ identifier. Sets PARSER->SCOPE to the qualifying scope if there is
+ a `::' or nested-name-specifier.
+
+ Often, if the id-expression was a qualified-id, the caller will
+ want to make a SCOPE_REF to represent the qualified-id. This
+ function does not do this in order to avoid wastefully creating
+ SCOPE_REFs when they are not required.
+
+ If TEMPLATE_KEYWORD_P is true, then we have just seen the
+ `template' keyword.
+
+ If CHECK_DEPENDENCY_P is false, then names are looked up inside
+ uninstantiated templates.
+
+ If *TEMPLATE_P is non-NULL, it is set to true iff the
+ `template' keyword is used to explicitly indicate that the entity
+ named is a template.
+
+ If DECLARATOR_P is true, the id-expression is appearing as part of
+ a declarator, rather than as part of an expression. */
+
+static tree
+cp_parser_id_expression (cp_parser *parser,
+ bool template_keyword_p,
+ bool check_dependency_p,
+ bool *template_p,
+ bool declarator_p)
+{
+ bool global_scope_p;
+ bool nested_name_specifier_p;
+
+ /* Assume the `template' keyword was not used. */
+ if (template_p)
+ *template_p = false;
+
+ /* Look for the optional `::' operator. */
+ global_scope_p
+ = (cp_parser_global_scope_opt (parser, /*current_scope_valid_p=*/false)
+ != NULL_TREE);
+ /* Look for the optional nested-name-specifier. */
+ nested_name_specifier_p
+ = (cp_parser_nested_name_specifier_opt (parser,
+ /*typename_keyword_p=*/false,
+ check_dependency_p,
+ /*type_p=*/false,
+ /*is_declarator=*/false)
+ != NULL_TREE);
+ /* If there is a nested-name-specifier, then we are looking at
+ the first qualified-id production. */
+ if (nested_name_specifier_p)
+ {
+ tree saved_scope;
+ tree saved_object_scope;
+ tree saved_qualifying_scope;
+ tree unqualified_id;
+ bool is_template;
+
+ /* See if the next token is the `template' keyword. */
+ if (!template_p)
+ template_p = &is_template;
+ *template_p = cp_parser_optional_template_keyword (parser);
+ /* Name lookup we do during the processing of the
+ unqualified-id might obliterate SCOPE. */
+ saved_scope = parser->scope;
+ saved_object_scope = parser->object_scope;
+ saved_qualifying_scope = parser->qualifying_scope;
+ /* Process the final unqualified-id. */
+ unqualified_id = cp_parser_unqualified_id (parser, *template_p,
+ check_dependency_p,
+ declarator_p);
+ /* Restore the SAVED_SCOPE for our caller. */
+ parser->scope = saved_scope;
+ parser->object_scope = saved_object_scope;
+ parser->qualifying_scope = saved_qualifying_scope;
+
+ return unqualified_id;
+ }
+ /* Otherwise, if we are in global scope, then we are looking at one
+ of the other qualified-id productions. */
+ else if (global_scope_p)
+ {
+ cp_token *token;
+ tree id;
+
+ /* Peek at the next token. */
+ token = cp_lexer_peek_token (parser->lexer);
+
+ /* If it's an identifier, and the next token is not a "<", then
+ we can avoid the template-id case. This is an optimization
+ for this common case. */
+ if (token->type == CPP_NAME
+ && !cp_parser_nth_token_starts_template_argument_list_p
+ (parser, 2))
+ return cp_parser_identifier (parser);
+
+ cp_parser_parse_tentatively (parser);
+ /* Try a template-id. */
+ id = cp_parser_template_id (parser,
+ /*template_keyword_p=*/false,
+ /*check_dependency_p=*/true,
+ declarator_p);
+ /* If that worked, we're done. */
+ if (cp_parser_parse_definitely (parser))
+ return id;
+
+ /* Peek at the next token. (Changes in the token buffer may
+ have invalidated the pointer obtained above.) */
+ token = cp_lexer_peek_token (parser->lexer);
+
+ switch (token->type)
+ {
+ case CPP_NAME:
+ return cp_parser_identifier (parser);
+
+ case CPP_KEYWORD:
+ if (token->keyword == RID_OPERATOR)
+ return cp_parser_operator_function_id (parser);
+ /* Fall through. */
+
+ default:
+ cp_parser_error (parser, "expected id-expression");
+ return error_mark_node;
+ }
+ }
+ else
+ return cp_parser_unqualified_id (parser, template_keyword_p,
+ /*check_dependency_p=*/true,
+ declarator_p);
+}
+
+/* Parse an unqualified-id.
+
+ unqualified-id:
+ identifier
+ operator-function-id
+ conversion-function-id
+ ~ class-name
+ template-id
+
+ If TEMPLATE_KEYWORD_P is TRUE, we have just seen the `template'
+ keyword, in a construct like `A::template ...'.
+
+ Returns a representation of unqualified-id. For the `identifier'
+ production, an IDENTIFIER_NODE is returned. For the `~ class-name'
+ production a BIT_NOT_EXPR is returned; the operand of the
+ BIT_NOT_EXPR is an IDENTIFIER_NODE for the class-name. For the
+ other productions, see the documentation accompanying the
+ corresponding parsing functions. If CHECK_DEPENDENCY_P is false,
+ names are looked up in uninstantiated templates. If DECLARATOR_P
+ is true, the unqualified-id is appearing as part of a declarator,
+ rather than as part of an expression. */
+
+static tree
+cp_parser_unqualified_id (cp_parser* parser,
+ bool template_keyword_p,
+ bool check_dependency_p,
+ bool declarator_p)
+{
+ cp_token *token;
+
+ /* Peek at the next token. */
+ token = cp_lexer_peek_token (parser->lexer);
+
+ switch (token->type)
+ {
+ case CPP_NAME:
+ {
+ tree id;
+
+ /* We don't know yet whether or not this will be a
+ template-id. */
+ cp_parser_parse_tentatively (parser);
+ /* Try a template-id. */
+ id = cp_parser_template_id (parser, template_keyword_p,
+ check_dependency_p,
+ declarator_p);
+ /* If it worked, we're done. */
+ if (cp_parser_parse_definitely (parser))
+ return id;
+ /* Otherwise, it's an ordinary identifier. */
+ return cp_parser_identifier (parser);
+ }
+
+ case CPP_TEMPLATE_ID:
+ return cp_parser_template_id (parser, template_keyword_p,
+ check_dependency_p,
+ declarator_p);
+
+ case CPP_COMPL:
+ {
+ tree type_decl;
+ tree qualifying_scope;
+ tree object_scope;
+ tree scope;
+
+ /* Consume the `~' token. */
+ cp_lexer_consume_token (parser->lexer);
+ /* Parse the class-name. The standard, as written, seems to
+ say that:
+
+ template <typename T> struct S { ~S (); };
+ template <typename T> S<T>::~S() {}
+
+ is invalid, since `~' must be followed by a class-name, but
+ `S<T>' is dependent, and so not known to be a class.
+ That's not right; we need to look in uninstantiated
+ templates. A further complication arises from:
+
+ template <typename T> void f(T t) {
+ t.T::~T();
+ }
+
+ Here, it is not possible to look up `T' in the scope of `T'
+ itself. We must look in both the current scope, and the
+ scope of the containing complete expression.
+
+ Yet another issue is:
+
+ struct S {
+ int S;
+ ~S();
+ };
+
+ S::~S() {}
+
+ The standard does not seem to say that the `S' in `~S'
+ should refer to the type `S' and not the data member
+ `S::S'. */
+
+ /* DR 244 says that we look up the name after the "~" in the
+ same scope as we looked up the qualifying name. That idea
+ isn't fully worked out; it's more complicated than that. */
+ scope = parser->scope;
+ object_scope = parser->object_scope;
+ qualifying_scope = parser->qualifying_scope;
+
+ /* If the name is of the form "X::~X" it's OK. */
+ if (scope && TYPE_P (scope)
+ && cp_lexer_next_token_is (parser->lexer, CPP_NAME)
+ && (cp_lexer_peek_nth_token (parser->lexer, 2)->type
+ == CPP_OPEN_PAREN)
+ && (cp_lexer_peek_token (parser->lexer)->value
+ == TYPE_IDENTIFIER (scope)))
+ {
+ cp_lexer_consume_token (parser->lexer);
+ return build_nt (BIT_NOT_EXPR, scope);
+ }
+
+ /* If there was an explicit qualification (S::~T), first look
+ in the scope given by the qualification (i.e., S). */
+ if (scope)
+ {
+ cp_parser_parse_tentatively (parser);
+ type_decl = cp_parser_class_name (parser,
+ /*typename_keyword_p=*/false,
+ /*template_keyword_p=*/false,
+ /*type_p=*/false,
+ /*check_dependency=*/false,
+ /*class_head_p=*/false,
+ declarator_p);
+ if (cp_parser_parse_definitely (parser))
+ return build_nt (BIT_NOT_EXPR, TREE_TYPE (type_decl));
+ }
+ /* In "N::S::~S", look in "N" as well. */
+ if (scope && qualifying_scope)
+ {
+ cp_parser_parse_tentatively (parser);
+ parser->scope = qualifying_scope;
+ parser->object_scope = NULL_TREE;
+ parser->qualifying_scope = NULL_TREE;
+ type_decl
+ = cp_parser_class_name (parser,
+ /*typename_keyword_p=*/false,
+ /*template_keyword_p=*/false,
+ /*type_p=*/false,
+ /*check_dependency=*/false,
+ /*class_head_p=*/false,
+ declarator_p);
+ if (cp_parser_parse_definitely (parser))
+ return build_nt (BIT_NOT_EXPR, TREE_TYPE (type_decl));
+ }
+ /* In "p->S::~T", look in the scope given by "*p" as well. */
+ else if (object_scope)
+ {
+ cp_parser_parse_tentatively (parser);
+ parser->scope = object_scope;
+ parser->object_scope = NULL_TREE;
+ parser->qualifying_scope = NULL_TREE;
+ type_decl
+ = cp_parser_class_name (parser,
+ /*typename_keyword_p=*/false,
+ /*template_keyword_p=*/false,
+ /*type_p=*/false,
+ /*check_dependency=*/false,
+ /*class_head_p=*/false,
+ declarator_p);
+ if (cp_parser_parse_definitely (parser))
+ return build_nt (BIT_NOT_EXPR, TREE_TYPE (type_decl));
+ }
+ /* Look in the surrounding context. */
+ parser->scope = NULL_TREE;
+ parser->object_scope = NULL_TREE;
+ parser->qualifying_scope = NULL_TREE;
+ type_decl
+ = cp_parser_class_name (parser,
+ /*typename_keyword_p=*/false,
+ /*template_keyword_p=*/false,
+ /*type_p=*/false,
+ /*check_dependency=*/false,
+ /*class_head_p=*/false,
+ declarator_p);
+ /* If an error occurred, assume that the name of the
+ destructor is the same as the name of the qualifying
+ class. That allows us to keep parsing after running
+ into ill-formed destructor names. */
+ if (type_decl == error_mark_node && scope && TYPE_P (scope))
+ return build_nt (BIT_NOT_EXPR, scope);
+ else if (type_decl == error_mark_node)
+ return error_mark_node;
+
+ /* [class.dtor]
+
+ A typedef-name that names a class shall not be used as the
+ identifier in the declarator for a destructor declaration. */
+ if (declarator_p
+ && !DECL_IMPLICIT_TYPEDEF_P (type_decl)
+ && !DECL_SELF_REFERENCE_P (type_decl))
+ error ("typedef-name `%D' used as destructor declarator",
+ type_decl);
+
+ return build_nt (BIT_NOT_EXPR, TREE_TYPE (type_decl));
+ }
+
+ case CPP_KEYWORD:
+ if (token->keyword == RID_OPERATOR)
+ {
+ tree id;
+
+ /* This could be a template-id, so we try that first. */
+ cp_parser_parse_tentatively (parser);
+ /* Try a template-id. */
+ id = cp_parser_template_id (parser, template_keyword_p,
+ /*check_dependency_p=*/true,
+ declarator_p);
+ /* If that worked, we're done. */
+ if (cp_parser_parse_definitely (parser))
+ return id;
+ /* We still don't know whether we're looking at an
+ operator-function-id or a conversion-function-id. */
+ cp_parser_parse_tentatively (parser);
+ /* Try an operator-function-id. */
+ id = cp_parser_operator_function_id (parser);
+ /* If that didn't work, try a conversion-function-id. */
+ if (!cp_parser_parse_definitely (parser))
+ id = cp_parser_conversion_function_id (parser);
+
+ return id;
+ }
+ /* Fall through. */
+
+ default:
+ cp_parser_error (parser, "expected unqualified-id");
+ return error_mark_node;
+ }
+}
+
+/* Parse an (optional) nested-name-specifier.
+
+ nested-name-specifier:
+ class-or-namespace-name :: nested-name-specifier [opt]
+ class-or-namespace-name :: template nested-name-specifier [opt]
+
+ PARSER->SCOPE should be set appropriately before this function is
+ called. TYPENAME_KEYWORD_P is TRUE if the `typename' keyword is in
+ effect. TYPE_P is TRUE if we non-type bindings should be ignored
+ in name lookups.
+
+ Sets PARSER->SCOPE to the class (TYPE) or namespace
+ (NAMESPACE_DECL) specified by the nested-name-specifier, or leaves
+ it unchanged if there is no nested-name-specifier. Returns the new
+ scope iff there is a nested-name-specifier, or NULL_TREE otherwise.
+
+ If IS_DECLARATION is TRUE, the nested-name-specifier is known to be
+ part of a declaration and/or decl-specifier. */
+
+static tree
+cp_parser_nested_name_specifier_opt (cp_parser *parser,
+ bool typename_keyword_p,
+ bool check_dependency_p,
+ bool type_p,
+ bool is_declaration)
+{
+ bool success = false;
+ tree access_check = NULL_TREE;
+ ptrdiff_t start;
+ cp_token* token;
+
+ /* If the next token corresponds to a nested name specifier, there
+ is no need to reparse it. However, if CHECK_DEPENDENCY_P is
+ false, it may have been true before, in which case something
+ like `A<X>::B<Y>::C' may have resulted in a nested-name-specifier
+ of `A<X>::', where it should now be `A<X>::B<Y>::'. So, when
+ CHECK_DEPENDENCY_P is false, we have to fall through into the
+ main loop. */
+ if (check_dependency_p
+ && cp_lexer_next_token_is (parser->lexer, CPP_NESTED_NAME_SPECIFIER))
+ {
+ cp_parser_pre_parsed_nested_name_specifier (parser);
+ return parser->scope;
+ }
+
+ /* Remember where the nested-name-specifier starts. */
+ if (cp_parser_parsing_tentatively (parser)
+ && !cp_parser_committed_to_tentative_parse (parser))
+ {
+ token = cp_lexer_peek_token (parser->lexer);
+ start = cp_lexer_token_difference (parser->lexer,
+ parser->lexer->first_token,
+ token);
+ }
+ else
+ start = -1;
+
+ push_deferring_access_checks (dk_deferred);
+
+ while (true)
+ {
+ tree new_scope;
+ tree old_scope;
+ tree saved_qualifying_scope;
+ bool template_keyword_p;
+
+ /* Spot cases that cannot be the beginning of a
+ nested-name-specifier. */
+ token = cp_lexer_peek_token (parser->lexer);
+
+ /* If the next token is CPP_NESTED_NAME_SPECIFIER, just process
+ the already parsed nested-name-specifier. */
+ if (token->type == CPP_NESTED_NAME_SPECIFIER)
+ {
+ /* Grab the nested-name-specifier and continue the loop. */
+ cp_parser_pre_parsed_nested_name_specifier (parser);
+ success = true;
+ continue;
+ }
+
+ /* Spot cases that cannot be the beginning of a
+ nested-name-specifier. On the second and subsequent times
+ through the loop, we look for the `template' keyword. */
+ if (success && token->keyword == RID_TEMPLATE)
+ ;
+ /* A template-id can start a nested-name-specifier. */
+ else if (token->type == CPP_TEMPLATE_ID)
+ ;
+ else
+ {
+ /* If the next token is not an identifier, then it is
+ definitely not a class-or-namespace-name. */
+ if (token->type != CPP_NAME)
+ break;
+ /* If the following token is neither a `<' (to begin a
+ template-id), nor a `::', then we are not looking at a
+ nested-name-specifier. */
+ token = cp_lexer_peek_nth_token (parser->lexer, 2);
+ if (token->type != CPP_SCOPE
+ && !cp_parser_nth_token_starts_template_argument_list_p
+ (parser, 2))
+ break;
+ }
+
+ /* The nested-name-specifier is optional, so we parse
+ tentatively. */
+ cp_parser_parse_tentatively (parser);
+
+ /* Look for the optional `template' keyword, if this isn't the
+ first time through the loop. */
+ if (success)
+ template_keyword_p = cp_parser_optional_template_keyword (parser);
+ else
+ template_keyword_p = false;
+
+ /* Save the old scope since the name lookup we are about to do
+ might destroy it. */
+ old_scope = parser->scope;
+ saved_qualifying_scope = parser->qualifying_scope;
+ /* Parse the qualifying entity. */
+ new_scope
+ = cp_parser_class_or_namespace_name (parser,
+ typename_keyword_p,
+ template_keyword_p,
+ check_dependency_p,
+ type_p,
+ is_declaration);
+ /* Look for the `::' token. */
+ cp_parser_require (parser, CPP_SCOPE, "`::'");
+
+ /* If we found what we wanted, we keep going; otherwise, we're
+ done. */
+ if (!cp_parser_parse_definitely (parser))
+ {
+ bool error_p = false;
+
+ /* Restore the OLD_SCOPE since it was valid before the
+ failed attempt at finding the last
+ class-or-namespace-name. */
+ parser->scope = old_scope;
+ parser->qualifying_scope = saved_qualifying_scope;
+ /* If the next token is an identifier, and the one after
+ that is a `::', then any valid interpretation would have
+ found a class-or-namespace-name. */
+ while (cp_lexer_next_token_is (parser->lexer, CPP_NAME)
+ && (cp_lexer_peek_nth_token (parser->lexer, 2)->type
+ == CPP_SCOPE)
+ && (cp_lexer_peek_nth_token (parser->lexer, 3)->type
+ != CPP_COMPL))
+ {
+ token = cp_lexer_consume_token (parser->lexer);
+ if (!error_p)
+ {
+ tree decl;
+
+ decl = cp_parser_lookup_name_simple (parser, token->value);
+ if (TREE_CODE (decl) == TEMPLATE_DECL)
+ error ("`%D' used without template parameters",
+ decl);
+ else
+ cp_parser_name_lookup_error
+ (parser, token->value, decl,
+ "is not a class or namespace");
+ parser->scope = NULL_TREE;
+ error_p = true;
+ /* Treat this as a successful nested-name-specifier
+ due to:
+
+ [basic.lookup.qual]
+
+ If the name found is not a class-name (clause
+ _class_) or namespace-name (_namespace.def_), the
+ program is ill-formed. */
+ success = true;
+ }
+ cp_lexer_consume_token (parser->lexer);
+ }
+ break;
+ }
+
+ /* We've found one valid nested-name-specifier. */
+ success = true;
+ /* Make sure we look in the right scope the next time through
+ the loop. */
+ parser->scope = (TREE_CODE (new_scope) == TYPE_DECL
+ ? TREE_TYPE (new_scope)
+ : new_scope);
+ /* If it is a class scope, try to complete it; we are about to
+ be looking up names inside the class. */
+ if (TYPE_P (parser->scope)
+ /* Since checking types for dependency can be expensive,
+ avoid doing it if the type is already complete. */
+ && !COMPLETE_TYPE_P (parser->scope)
+ /* Do not try to complete dependent types. */
+ && !dependent_type_p (parser->scope))
+ complete_type (parser->scope);
+ }
+
+ /* Retrieve any deferred checks. Do not pop this access checks yet
+ so the memory will not be reclaimed during token replacing below. */
+ access_check = get_deferred_access_checks ();
+
+ /* If parsing tentatively, replace the sequence of tokens that makes
+ up the nested-name-specifier with a CPP_NESTED_NAME_SPECIFIER
+ token. That way, should we re-parse the token stream, we will
+ not have to repeat the effort required to do the parse, nor will
+ we issue duplicate error messages. */
+ if (success && start >= 0)
+ {
+ /* Find the token that corresponds to the start of the
+ template-id. */
+ token = cp_lexer_advance_token (parser->lexer,
+ parser->lexer->first_token,
+ start);
+
+ /* Reset the contents of the START token. */
+ token->type = CPP_NESTED_NAME_SPECIFIER;
+ token->value = build_tree_list (access_check, parser->scope);
+ TREE_TYPE (token->value) = parser->qualifying_scope;
+ token->keyword = RID_MAX;
+ /* Purge all subsequent tokens. */
+ cp_lexer_purge_tokens_after (parser->lexer, token);
+ }
+
+ pop_deferring_access_checks ();
+ return success ? parser->scope : NULL_TREE;
+}
+
+/* Parse a nested-name-specifier. See
+ cp_parser_nested_name_specifier_opt for details. This function
+ behaves identically, except that it will an issue an error if no
+ nested-name-specifier is present, and it will return
+ ERROR_MARK_NODE, rather than NULL_TREE, if no nested-name-specifier
+ is present. */
+
+static tree
+cp_parser_nested_name_specifier (cp_parser *parser,
+ bool typename_keyword_p,
+ bool check_dependency_p,
+ bool type_p,
+ bool is_declaration)
+{
+ tree scope;
+
+ /* Look for the nested-name-specifier. */
+ scope = cp_parser_nested_name_specifier_opt (parser,
+ typename_keyword_p,
+ check_dependency_p,
+ type_p,
+ is_declaration);
+ /* If it was not present, issue an error message. */
+ if (!scope)
+ {
+ cp_parser_error (parser, "expected nested-name-specifier");
+ parser->scope = NULL_TREE;
+ return error_mark_node;
+ }
+
+ return scope;
+}
+
+/* Parse a class-or-namespace-name.
+
+ class-or-namespace-name:
+ class-name
+ namespace-name
+
+ TYPENAME_KEYWORD_P is TRUE iff the `typename' keyword is in effect.
+ TEMPLATE_KEYWORD_P is TRUE iff the `template' keyword is in effect.
+ CHECK_DEPENDENCY_P is FALSE iff dependent names should be looked up.
+ TYPE_P is TRUE iff the next name should be taken as a class-name,
+ even the same name is declared to be another entity in the same
+ scope.
+
+ Returns the class (TYPE_DECL) or namespace (NAMESPACE_DECL)
+ specified by the class-or-namespace-name. If neither is found the
+ ERROR_MARK_NODE is returned. */
+
+static tree
+cp_parser_class_or_namespace_name (cp_parser *parser,
+ bool typename_keyword_p,
+ bool template_keyword_p,
+ bool check_dependency_p,
+ bool type_p,
+ bool is_declaration)
+{
+ tree saved_scope;
+ tree saved_qualifying_scope;
+ tree saved_object_scope;
+ tree scope;
+ bool only_class_p;
+
+ /* Before we try to parse the class-name, we must save away the
+ current PARSER->SCOPE since cp_parser_class_name will destroy
+ it. */
+ saved_scope = parser->scope;
+ saved_qualifying_scope = parser->qualifying_scope;
+ saved_object_scope = parser->object_scope;
+ /* Try for a class-name first. If the SAVED_SCOPE is a type, then
+ there is no need to look for a namespace-name. */
+ only_class_p = template_keyword_p || (saved_scope && TYPE_P (saved_scope));
+ if (!only_class_p)
+ cp_parser_parse_tentatively (parser);
+ scope = cp_parser_class_name (parser,
+ typename_keyword_p,
+ template_keyword_p,
+ type_p,
+ check_dependency_p,
+ /*class_head_p=*/false,
+ is_declaration);
+ /* If that didn't work, try for a namespace-name. */
+ if (!only_class_p && !cp_parser_parse_definitely (parser))
+ {
+ /* Restore the saved scope. */
+ parser->scope = saved_scope;
+ parser->qualifying_scope = saved_qualifying_scope;
+ parser->object_scope = saved_object_scope;
+ /* If we are not looking at an identifier followed by the scope
+ resolution operator, then this is not part of a
+ nested-name-specifier. (Note that this function is only used
+ to parse the components of a nested-name-specifier.) */
+ if (cp_lexer_next_token_is_not (parser->lexer, CPP_NAME)
+ || cp_lexer_peek_nth_token (parser->lexer, 2)->type != CPP_SCOPE)
+ return error_mark_node;
+ scope = cp_parser_namespace_name (parser);
+ }
+
+ return scope;
+}
+
+/* Parse a postfix-expression.
+
+ postfix-expression:
+ primary-expression
+ postfix-expression [ expression ]
+ postfix-expression ( expression-list [opt] )
+ simple-type-specifier ( expression-list [opt] )
+ typename :: [opt] nested-name-specifier identifier
+ ( expression-list [opt] )
+ typename :: [opt] nested-name-specifier template [opt] template-id
+ ( expression-list [opt] )
+ postfix-expression . template [opt] id-expression
+ postfix-expression -> template [opt] id-expression
+ postfix-expression . pseudo-destructor-name
+ postfix-expression -> pseudo-destructor-name
+ postfix-expression ++
+ postfix-expression --
+ dynamic_cast < type-id > ( expression )
+ static_cast < type-id > ( expression )
+ reinterpret_cast < type-id > ( expression )
+ const_cast < type-id > ( expression )
+ typeid ( expression )
+ typeid ( type-id )
+
+ GNU Extension:
+
+ postfix-expression:
+ ( type-id ) { initializer-list , [opt] }
+
+ This extension is a GNU version of the C99 compound-literal
+ construct. (The C99 grammar uses `type-name' instead of `type-id',
+ but they are essentially the same concept.)
+
+ If ADDRESS_P is true, the postfix expression is the operand of the
+ `&' operator.
+
+ Returns a representation of the expression. */
+
+static tree
+cp_parser_postfix_expression (cp_parser *parser, bool address_p)
+{
+ cp_token *token;
+ enum rid keyword;
+ cp_id_kind idk = CP_ID_KIND_NONE;
+ tree postfix_expression = NULL_TREE;
+ /* Non-NULL only if the current postfix-expression can be used to
+ form a pointer-to-member. In that case, QUALIFYING_CLASS is the
+ class used to qualify the member. */
+ tree qualifying_class = NULL_TREE;
+
+ /* Peek at the next token. */
+ token = cp_lexer_peek_token (parser->lexer);
+ /* Some of the productions are determined by keywords. */
+ keyword = token->keyword;
+ switch (keyword)
+ {
+ case RID_DYNCAST:
+ case RID_STATCAST:
+ case RID_REINTCAST:
+ case RID_CONSTCAST:
+ {
+ tree type;
+ tree expression;
+ const char *saved_message;
+
+ /* All of these can be handled in the same way from the point
+ of view of parsing. Begin by consuming the token
+ identifying the cast. */
+ cp_lexer_consume_token (parser->lexer);
+
+ /* New types cannot be defined in the cast. */
+ saved_message = parser->type_definition_forbidden_message;
+ parser->type_definition_forbidden_message
+ = "types may not be defined in casts";
+
+ /* Look for the opening `<'. */
+ cp_parser_require (parser, CPP_LESS, "`<'");
+ /* Parse the type to which we are casting. */
+ type = cp_parser_type_id (parser);
+ /* Look for the closing `>'. */
+ cp_parser_require (parser, CPP_GREATER, "`>'");
+ /* Restore the old message. */
+ parser->type_definition_forbidden_message = saved_message;
+
+ /* And the expression which is being cast. */
+ cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
+ expression = cp_parser_expression (parser);
+ cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
+
+ /* Only type conversions to integral or enumeration types
+ can be used in constant-expressions. */
+ if (parser->integral_constant_expression_p
+ && !dependent_type_p (type)
+ && !INTEGRAL_OR_ENUMERATION_TYPE_P (type)
+ /* A cast to pointer or reference type is allowed in the
+ implementation of "offsetof". */
+ && !(parser->in_offsetof_p && POINTER_TYPE_P (type))
+ && (cp_parser_non_integral_constant_expression
+ (parser,
+ "a cast to a type other than an integral or "
+ "enumeration type")))
+ return error_mark_node;
+
+ switch (keyword)
+ {
+ case RID_DYNCAST:
+ postfix_expression
+ = build_dynamic_cast (type, expression);
+ break;
+ case RID_STATCAST:
+ postfix_expression
+ = build_static_cast (type, expression);
+ break;
+ case RID_REINTCAST:
+ postfix_expression
+ = build_reinterpret_cast (type, expression);
+ break;
+ case RID_CONSTCAST:
+ postfix_expression
+ = build_const_cast (type, expression);
+ break;
+ default:
+ abort ();
+ }
+ }
+ break;
+
+ case RID_TYPEID:
+ {
+ tree type;
+ const char *saved_message;
+ bool saved_in_type_id_in_expr_p;
+
+ /* Consume the `typeid' token. */
+ cp_lexer_consume_token (parser->lexer);
+ /* Look for the `(' token. */
+ cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
+ /* Types cannot be defined in a `typeid' expression. */
+ saved_message = parser->type_definition_forbidden_message;
+ parser->type_definition_forbidden_message
+ = "types may not be defined in a `typeid\' expression";
+ /* We can't be sure yet whether we're looking at a type-id or an
+ expression. */
+ cp_parser_parse_tentatively (parser);
+ /* Try a type-id first. */
+ saved_in_type_id_in_expr_p = parser->in_type_id_in_expr_p;
+ parser->in_type_id_in_expr_p = true;
+ type = cp_parser_type_id (parser);
+ parser->in_type_id_in_expr_p = saved_in_type_id_in_expr_p;
+ /* Look for the `)' token. Otherwise, we can't be sure that
+ we're not looking at an expression: consider `typeid (int
+ (3))', for example. */
+ cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
+ /* If all went well, simply lookup the type-id. */
+ if (cp_parser_parse_definitely (parser))
+ postfix_expression = get_typeid (type);
+ /* Otherwise, fall back to the expression variant. */
+ else
+ {
+ tree expression;
+
+ /* Look for an expression. */
+ expression = cp_parser_expression (parser);
+ /* Compute its typeid. */
+ postfix_expression = build_typeid (expression);
+ /* Look for the `)' token. */
+ cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
+ }
+ /* `typeid' may not appear in an integral constant expression. */
+ if (cp_parser_non_integral_constant_expression(parser,
+ "`typeid' operator"))
+ return error_mark_node;
+ /* Restore the saved message. */
+ parser->type_definition_forbidden_message = saved_message;
+ }
+ break;
+
+ case RID_TYPENAME:
+ {
+ bool template_p = false;
+ tree id;
+ tree type;
+
+ /* Consume the `typename' token. */
+ cp_lexer_consume_token (parser->lexer);
+ /* Look for the optional `::' operator. */
+ cp_parser_global_scope_opt (parser,
+ /*current_scope_valid_p=*/false);
+ /* Look for the nested-name-specifier. */
+ cp_parser_nested_name_specifier (parser,
+ /*typename_keyword_p=*/true,
+ /*check_dependency_p=*/true,
+ /*type_p=*/true,
+ /*is_declaration=*/true);
+ /* Look for the optional `template' keyword. */
+ template_p = cp_parser_optional_template_keyword (parser);
+ /* We don't know whether we're looking at a template-id or an
+ identifier. */
+ cp_parser_parse_tentatively (parser);
+ /* Try a template-id. */
+ id = cp_parser_template_id (parser, template_p,
+ /*check_dependency_p=*/true,
+ /*is_declaration=*/true);
+ /* If that didn't work, try an identifier. */
+ if (!cp_parser_parse_definitely (parser))
+ id = cp_parser_identifier (parser);
+ /* If we look up a template-id in a non-dependent qualifying
+ scope, there's no need to create a dependent type. */
+ if (TREE_CODE (id) == TYPE_DECL
+ && !dependent_type_p (parser->scope))
+ type = TREE_TYPE (id);
+ /* Create a TYPENAME_TYPE to represent the type to which the
+ functional cast is being performed. */
+ else
+ type = make_typename_type (parser->scope, id,
+ /*complain=*/1);
+
+ postfix_expression = cp_parser_functional_cast (parser, type);
+ }
+ break;
+
+ default:
+ {
+ tree type;
+
+ /* If the next thing is a simple-type-specifier, we may be
+ looking at a functional cast. We could also be looking at
+ an id-expression. So, we try the functional cast, and if
+ that doesn't work we fall back to the primary-expression. */
+ cp_parser_parse_tentatively (parser);
+ /* Look for the simple-type-specifier. */
+ type = cp_parser_simple_type_specifier (parser,
+ CP_PARSER_FLAGS_NONE,
+ /*identifier_p=*/false);
+ /* Parse the cast itself. */
+ if (!cp_parser_error_occurred (parser))
+ postfix_expression
+ = cp_parser_functional_cast (parser, type);
+ /* If that worked, we're done. */
+ if (cp_parser_parse_definitely (parser))
+ break;
+
+ /* If the functional-cast didn't work out, try a
+ compound-literal. */
+ if (cp_parser_allow_gnu_extensions_p (parser)
+ && cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN))
+ {
+ tree initializer_list = NULL_TREE;
+ bool saved_in_type_id_in_expr_p;
+
+ cp_parser_parse_tentatively (parser);
+ /* Consume the `('. */
+ cp_lexer_consume_token (parser->lexer);
+ /* Parse the type. */
+ saved_in_type_id_in_expr_p = parser->in_type_id_in_expr_p;
+ parser->in_type_id_in_expr_p = true;
+ type = cp_parser_type_id (parser);
+ parser->in_type_id_in_expr_p = saved_in_type_id_in_expr_p;
+ /* Look for the `)'. */
+ cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
+ /* Look for the `{'. */
+ cp_parser_require (parser, CPP_OPEN_BRACE, "`{'");
+ /* If things aren't going well, there's no need to
+ keep going. */
+ if (!cp_parser_error_occurred (parser))
+ {
+ bool non_constant_p;
+ /* Parse the initializer-list. */
+ initializer_list
+ = cp_parser_initializer_list (parser, &non_constant_p);
+ /* Allow a trailing `,'. */
+ if (cp_lexer_next_token_is (parser->lexer, CPP_COMMA))
+ cp_lexer_consume_token (parser->lexer);
+ /* Look for the final `}'. */
+ cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
+ }
+ /* If that worked, we're definitely looking at a
+ compound-literal expression. */
+ if (cp_parser_parse_definitely (parser))
+ {
+ /* Warn the user that a compound literal is not
+ allowed in standard C++. */
+ if (pedantic)
+ pedwarn ("ISO C++ forbids compound-literals");
+ /* Form the representation of the compound-literal. */
+ postfix_expression
+ = finish_compound_literal (type, initializer_list);
+ break;
+ }
+ }
+
+ /* It must be a primary-expression. */
+ postfix_expression = cp_parser_primary_expression (parser,
+ &idk,
+ &qualifying_class);
+ }
+ break;
+ }
+
+ /* If we were avoiding committing to the processing of a
+ qualified-id until we knew whether or not we had a
+ pointer-to-member, we now know. */
+ if (qualifying_class)
+ {
+ bool done;
+
+ /* Peek at the next token. */
+ token = cp_lexer_peek_token (parser->lexer);
+ done = (token->type != CPP_OPEN_SQUARE
+ && token->type != CPP_OPEN_PAREN
+ && token->type != CPP_DOT
+ && token->type != CPP_DEREF
+ && token->type != CPP_PLUS_PLUS
+ && token->type != CPP_MINUS_MINUS);
+
+ postfix_expression = finish_qualified_id_expr (qualifying_class,
+ postfix_expression,
+ done,
+ address_p);
+ if (done)
+ return postfix_expression;
+ }
+
+ /* Keep looping until the postfix-expression is complete. */
+ while (true)
+ {
+ if (idk == CP_ID_KIND_UNQUALIFIED
+ && TREE_CODE (postfix_expression) == IDENTIFIER_NODE
+ && cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_PAREN))
+ /* It is not a Koenig lookup function call. */
+ postfix_expression
+ = unqualified_name_lookup_error (postfix_expression);
+
+ /* Peek at the next token. */
+ token = cp_lexer_peek_token (parser->lexer);
+
+ switch (token->type)
+ {
+ case CPP_OPEN_SQUARE:
+ /* postfix-expression [ expression ] */
+ {
+ tree index;
+
+ /* Consume the `[' token. */
+ cp_lexer_consume_token (parser->lexer);
+ /* Parse the index expression. */
+ index = cp_parser_expression (parser);
+ /* Look for the closing `]'. */
+ cp_parser_require (parser, CPP_CLOSE_SQUARE, "`]'");
+
+ /* Build the ARRAY_REF. */
+ postfix_expression
+ = grok_array_decl (postfix_expression, index);
+ idk = CP_ID_KIND_NONE;
+ /* Array references are not permitted in
+ constant-expressions (but they are allowed
+ in offsetof). */
+ if (!parser->in_offsetof_p
+ && cp_parser_non_integral_constant_expression
+ (parser, "an array reference"))
+ postfix_expression = error_mark_node;
+ }
+ break;
+
+ case CPP_OPEN_PAREN:
+ /* postfix-expression ( expression-list [opt] ) */
+ {
+ bool koenig_p;
+ tree args = (cp_parser_parenthesized_expression_list
+ (parser, false, /*non_constant_p=*/NULL));
+
+ if (args == error_mark_node)
+ {
+ postfix_expression = error_mark_node;
+ break;
+ }
+
+ /* Function calls are not permitted in
+ constant-expressions. */
+ if (cp_parser_non_integral_constant_expression (parser,
+ "a function call"))
+ {
+ postfix_expression = error_mark_node;
+ break;
+ }
+
+ koenig_p = false;
+ if (idk == CP_ID_KIND_UNQUALIFIED)
+ {
+ /* We do not perform argument-dependent lookup if
+ normal lookup finds a non-function, in accordance
+ with the expected resolution of DR 218. */
+ if (args
+ && (is_overloaded_fn (postfix_expression)
+ || TREE_CODE (postfix_expression) == IDENTIFIER_NODE))
+ {
+ koenig_p = true;
+ postfix_expression
+ = perform_koenig_lookup (postfix_expression, args);
+ }
+ else if (TREE_CODE (postfix_expression) == IDENTIFIER_NODE)
+ postfix_expression
+ = unqualified_fn_lookup_error (postfix_expression);
+ }
+
+ if (TREE_CODE (postfix_expression) == COMPONENT_REF)
+ {
+ tree instance = TREE_OPERAND (postfix_expression, 0);
+ tree fn = TREE_OPERAND (postfix_expression, 1);
+
+ if (processing_template_decl
+ && (type_dependent_expression_p (instance)
+ || (!BASELINK_P (fn)
+ && TREE_CODE (fn) != FIELD_DECL)
+ || type_dependent_expression_p (fn)
+ || any_type_dependent_arguments_p (args)))
+ {
+ postfix_expression
+ = build_min_nt (CALL_EXPR, postfix_expression, args);
+ break;
+ }
+
+ if (BASELINK_P (fn))
+ postfix_expression
+ = (build_new_method_call
+ (instance, fn, args, NULL_TREE,
+ (idk == CP_ID_KIND_QUALIFIED
+ ? LOOKUP_NONVIRTUAL : LOOKUP_NORMAL)));
+ else
+ postfix_expression
+ = finish_call_expr (postfix_expression, args,
+ /*disallow_virtual=*/false,
+ /*koenig_p=*/false);
+ }
+ else if (TREE_CODE (postfix_expression) == OFFSET_REF
+ || TREE_CODE (postfix_expression) == MEMBER_REF
+ || TREE_CODE (postfix_expression) == DOTSTAR_EXPR)
+ postfix_expression = (build_offset_ref_call_from_tree
+ (postfix_expression, args));
+ else if (idk == CP_ID_KIND_QUALIFIED)
+ /* A call to a static class member, or a namespace-scope
+ function. */
+ postfix_expression
+ = finish_call_expr (postfix_expression, args,
+ /*disallow_virtual=*/true,
+ koenig_p);
+ else
+ /* All other function calls. */
+ postfix_expression
+ = finish_call_expr (postfix_expression, args,
+ /*disallow_virtual=*/false,
+ koenig_p);
+
+ /* The POSTFIX_EXPRESSION is certainly no longer an id. */
+ idk = CP_ID_KIND_NONE;
+ }
+ break;
+
+ case CPP_DOT:
+ case CPP_DEREF:
+ /* postfix-expression . template [opt] id-expression
+ postfix-expression . pseudo-destructor-name
+ postfix-expression -> template [opt] id-expression
+ postfix-expression -> pseudo-destructor-name */
+ {
+ tree name;
+ bool dependent_p;
+ bool template_p;
+ tree scope = NULL_TREE;
+ enum cpp_ttype token_type = token->type;
+
+ /* If this is a `->' operator, dereference the pointer. */
+ if (token->type == CPP_DEREF)
+ postfix_expression = build_x_arrow (postfix_expression);
+ /* Check to see whether or not the expression is
+ type-dependent. */
+ dependent_p = type_dependent_expression_p (postfix_expression);
+ /* The identifier following the `->' or `.' is not
+ qualified. */
+ parser->scope = NULL_TREE;
+ parser->qualifying_scope = NULL_TREE;
+ parser->object_scope = NULL_TREE;
+ idk = CP_ID_KIND_NONE;
+ /* Enter the scope corresponding to the type of the object
+ given by the POSTFIX_EXPRESSION. */
+ if (!dependent_p
+ && TREE_TYPE (postfix_expression) != NULL_TREE)
+ {
+ scope = TREE_TYPE (postfix_expression);
+ /* According to the standard, no expression should
+ ever have reference type. Unfortunately, we do not
+ currently match the standard in this respect in
+ that our internal representation of an expression
+ may have reference type even when the standard says
+ it does not. Therefore, we have to manually obtain
+ the underlying type here. */
+ scope = non_reference (scope);
+ /* The type of the POSTFIX_EXPRESSION must be
+ complete. */
+ scope = complete_type_or_else (scope, NULL_TREE);
+ /* Let the name lookup machinery know that we are
+ processing a class member access expression. */
+ parser->context->object_type = scope;
+ /* If something went wrong, we want to be able to
+ discern that case, as opposed to the case where
+ there was no SCOPE due to the type of expression
+ being dependent. */
+ if (!scope)
+ scope = error_mark_node;
+ /* If the SCOPE was erroneous, make the various
+ semantic analysis functions exit quickly -- and
+ without issuing additional error messages. */
+ if (scope == error_mark_node)
+ postfix_expression = error_mark_node;
+ }
+
+ /* Consume the `.' or `->' operator. */
+ cp_lexer_consume_token (parser->lexer);
+ /* If the SCOPE is not a scalar type, we are looking at an
+ ordinary class member access expression, rather than a
+ pseudo-destructor-name. */
+ if (!scope || !SCALAR_TYPE_P (scope))
+ {
+ template_p = cp_parser_optional_template_keyword (parser);
+ /* Parse the id-expression. */
+ name = cp_parser_id_expression (parser,
+ template_p,
+ /*check_dependency_p=*/true,
+ /*template_p=*/NULL,
+ /*declarator_p=*/false);
+ /* In general, build a SCOPE_REF if the member name is
+ qualified. However, if the name was not dependent
+ and has already been resolved; there is no need to
+ build the SCOPE_REF. For example;
+
+ struct X { void f(); };
+ template <typename T> void f(T* t) { t->X::f(); }
+
+ Even though "t" is dependent, "X::f" is not and has
+ been resolved to a BASELINK; there is no need to
+ include scope information. */
+
+ /* But we do need to remember that there was an explicit
+ scope for virtual function calls. */
+ if (parser->scope)
+ idk = CP_ID_KIND_QUALIFIED;
+
+ if (name != error_mark_node
+ && !BASELINK_P (name)
+ && parser->scope)
+ {
+ name = build_nt (SCOPE_REF, parser->scope, name);
+ parser->scope = NULL_TREE;
+ parser->qualifying_scope = NULL_TREE;
+ parser->object_scope = NULL_TREE;
+ }
+ if (scope && name && BASELINK_P (name))
+ adjust_result_of_qualified_name_lookup
+ (name, BINFO_TYPE (BASELINK_BINFO (name)), scope);
+ postfix_expression
+ = finish_class_member_access_expr (postfix_expression, name);
+ }
+ /* Otherwise, try the pseudo-destructor-name production. */
+ else
+ {
+ tree s = NULL_TREE;
+ tree type;
+
+ /* Parse the pseudo-destructor-name. */
+ cp_parser_pseudo_destructor_name (parser, &s, &type);
+ /* Form the call. */
+ postfix_expression
+ = finish_pseudo_destructor_expr (postfix_expression,
+ s, TREE_TYPE (type));
+ }
+
+ /* We no longer need to look up names in the scope of the
+ object on the left-hand side of the `.' or `->'
+ operator. */
+ parser->context->object_type = NULL_TREE;
+ /* These operators may not appear in constant-expressions. */
+ if (/* The "->" operator is allowed in the implementation
+ of "offsetof". The "." operator may appear in the
+ name of the member. */
+ !parser->in_offsetof_p
+ && (cp_parser_non_integral_constant_expression
+ (parser,
+ token_type == CPP_DEREF ? "'->'" : "`.'")))
+ postfix_expression = error_mark_node;
+ }
+ break;
+
+ case CPP_PLUS_PLUS:
+ /* postfix-expression ++ */
+ /* Consume the `++' token. */
+ cp_lexer_consume_token (parser->lexer);
+ /* Generate a representation for the complete expression. */
+ postfix_expression
+ = finish_increment_expr (postfix_expression,
+ POSTINCREMENT_EXPR);
+ /* Increments may not appear in constant-expressions. */
+ if (cp_parser_non_integral_constant_expression (parser,
+ "an increment"))
+ postfix_expression = error_mark_node;
+ idk = CP_ID_KIND_NONE;
+ break;
+
+ case CPP_MINUS_MINUS:
+ /* postfix-expression -- */
+ /* Consume the `--' token. */
+ cp_lexer_consume_token (parser->lexer);
+ /* Generate a representation for the complete expression. */
+ postfix_expression
+ = finish_increment_expr (postfix_expression,
+ POSTDECREMENT_EXPR);
+ /* Decrements may not appear in constant-expressions. */
+ if (cp_parser_non_integral_constant_expression (parser,
+ "a decrement"))
+ postfix_expression = error_mark_node;
+ idk = CP_ID_KIND_NONE;
+ break;
+
+ default:
+ return postfix_expression;
+ }
+ }
+
+ /* We should never get here. */
+ abort ();
+ return error_mark_node;
+}
+
+/* Parse a parenthesized expression-list.
+
+ expression-list:
+ assignment-expression
+ expression-list, assignment-expression
+
+ attribute-list:
+ expression-list
+ identifier
+ identifier, expression-list
+
+ Returns a TREE_LIST. The TREE_VALUE of each node is a
+ representation of an assignment-expression. Note that a TREE_LIST
+ is returned even if there is only a single expression in the list.
+ error_mark_node is returned if the ( and or ) are
+ missing. NULL_TREE is returned on no expressions. The parentheses
+ are eaten. IS_ATTRIBUTE_LIST is true if this is really an attribute
+ list being parsed. If NON_CONSTANT_P is non-NULL, *NON_CONSTANT_P
+ indicates whether or not all of the expressions in the list were
+ constant. */
+
+static tree
+cp_parser_parenthesized_expression_list (cp_parser* parser,
+ bool is_attribute_list,
+ bool *non_constant_p)
+{
+ tree expression_list = NULL_TREE;
+ tree identifier = NULL_TREE;
+
+ /* Assume all the expressions will be constant. */
+ if (non_constant_p)
+ *non_constant_p = false;
+
+ if (!cp_parser_require (parser, CPP_OPEN_PAREN, "`('"))
+ return error_mark_node;
+
+ /* Consume expressions until there are no more. */
+ if (cp_lexer_next_token_is_not (parser->lexer, CPP_CLOSE_PAREN))
+ while (true)
+ {
+ tree expr;
+
+ /* At the beginning of attribute lists, check to see if the
+ next token is an identifier. */
+ if (is_attribute_list
+ && cp_lexer_peek_token (parser->lexer)->type == CPP_NAME)
+ {
+ cp_token *token;
+
+ /* Consume the identifier. */
+ token = cp_lexer_consume_token (parser->lexer);
+ /* Save the identifier. */
+ identifier = token->value;
+ }
+ else
+ {
+ /* Parse the next assignment-expression. */
+ if (non_constant_p)
+ {
+ bool expr_non_constant_p;
+ expr = (cp_parser_constant_expression
+ (parser, /*allow_non_constant_p=*/true,
+ &expr_non_constant_p));
+ if (expr_non_constant_p)
+ *non_constant_p = true;
+ }
+ else
+ expr = cp_parser_assignment_expression (parser);
+
+ /* Add it to the list. We add error_mark_node
+ expressions to the list, so that we can still tell if
+ the correct form for a parenthesized expression-list
+ is found. That gives better errors. */
+ expression_list = tree_cons (NULL_TREE, expr, expression_list);
+
+ if (expr == error_mark_node)
+ goto skip_comma;
+ }
+
+ /* After the first item, attribute lists look the same as
+ expression lists. */
+ is_attribute_list = false;
+
+ get_comma:;
+ /* If the next token isn't a `,', then we are done. */
+ if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
+ break;
+
+ /* Otherwise, consume the `,' and keep going. */
+ cp_lexer_consume_token (parser->lexer);
+ }
+
+ if (!cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'"))
+ {
+ int ending;
+
+ skip_comma:;
+ /* We try and resync to an unnested comma, as that will give the
+ user better diagnostics. */
+ ending = cp_parser_skip_to_closing_parenthesis (parser,
+ /*recovering=*/true,
+ /*or_comma=*/true,
+ /*consume_paren=*/true);
+ if (ending < 0)
+ goto get_comma;
+ if (!ending)
+ return error_mark_node;
+ }
+
+ /* We built up the list in reverse order so we must reverse it now. */
+ expression_list = nreverse (expression_list);
+ if (identifier)
+ expression_list = tree_cons (NULL_TREE, identifier, expression_list);
+
+ return expression_list;
+}
+
+/* Parse a pseudo-destructor-name.
+
+ pseudo-destructor-name:
+ :: [opt] nested-name-specifier [opt] type-name :: ~ type-name
+ :: [opt] nested-name-specifier template template-id :: ~ type-name
+ :: [opt] nested-name-specifier [opt] ~ type-name
+
+ If either of the first two productions is used, sets *SCOPE to the
+ TYPE specified before the final `::'. Otherwise, *SCOPE is set to
+ NULL_TREE. *TYPE is set to the TYPE_DECL for the final type-name,
+ or ERROR_MARK_NODE if the parse fails. */
+
+static void
+cp_parser_pseudo_destructor_name (cp_parser* parser,
+ tree* scope,
+ tree* type)
+{
+ bool nested_name_specifier_p;
+
+ /* Look for the optional `::' operator. */
+ cp_parser_global_scope_opt (parser, /*current_scope_valid_p=*/true);
+ /* Look for the optional nested-name-specifier. */
+ nested_name_specifier_p
+ = (cp_parser_nested_name_specifier_opt (parser,
+ /*typename_keyword_p=*/false,
+ /*check_dependency_p=*/true,
+ /*type_p=*/false,
+ /*is_declaration=*/true)
+ != NULL_TREE);
+ /* Now, if we saw a nested-name-specifier, we might be doing the
+ second production. */
+ if (nested_name_specifier_p
+ && cp_lexer_next_token_is_keyword (parser->lexer, RID_TEMPLATE))
+ {
+ /* Consume the `template' keyword. */
+ cp_lexer_consume_token (parser->lexer);
+ /* Parse the template-id. */
+ cp_parser_template_id (parser,
+ /*template_keyword_p=*/true,
+ /*check_dependency_p=*/false,
+ /*is_declaration=*/true);
+ /* Look for the `::' token. */
+ cp_parser_require (parser, CPP_SCOPE, "`::'");
+ }
+ /* If the next token is not a `~', then there might be some
+ additional qualification. */
+ else if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMPL))
+ {
+ /* Look for the type-name. */
+ *scope = TREE_TYPE (cp_parser_type_name (parser));
+
+ /* If we didn't get an aggregate type, or we don't have ::~,
+ then something has gone wrong. Since the only caller of this
+ function is looking for something after `.' or `->' after a
+ scalar type, most likely the program is trying to get a
+ member of a non-aggregate type. */
+ if (*scope == error_mark_node
+ || cp_lexer_next_token_is_not (parser->lexer, CPP_SCOPE)
+ || cp_lexer_peek_nth_token (parser->lexer, 2)->type != CPP_COMPL)
+ {
+ cp_parser_error (parser, "request for member of non-aggregate type");
+ *type = error_mark_node;
+ return;
+ }
+
+ /* Look for the `::' token. */
+ cp_parser_require (parser, CPP_SCOPE, "`::'");
+ }
+ else
+ *scope = NULL_TREE;
+
+ /* Look for the `~'. */
+ cp_parser_require (parser, CPP_COMPL, "`~'");
+ /* Look for the type-name again. We are not responsible for
+ checking that it matches the first type-name. */
+ *type = cp_parser_type_name (parser);
+}
+
+/* Parse a unary-expression.
+
+ unary-expression:
+ postfix-expression
+ ++ cast-expression
+ -- cast-expression
+ unary-operator cast-expression
+ sizeof unary-expression
+ sizeof ( type-id )
+ new-expression
+ delete-expression
+
+ GNU Extensions:
+
+ unary-expression:
+ __extension__ cast-expression
+ __alignof__ unary-expression
+ __alignof__ ( type-id )
+ __real__ cast-expression
+ __imag__ cast-expression
+ && identifier
+
+ ADDRESS_P is true iff the unary-expression is appearing as the
+ operand of the `&' operator.
+
+ Returns a representation of the expression. */
+
+static tree
+cp_parser_unary_expression (cp_parser *parser, bool address_p)
+{
+ cp_token *token;
+ enum tree_code unary_operator;
+
+ /* Peek at the next token. */
+ token = cp_lexer_peek_token (parser->lexer);
+ /* Some keywords give away the kind of expression. */
+ if (token->type == CPP_KEYWORD)
+ {
+ enum rid keyword = token->keyword;
+
+ switch (keyword)
+ {
+ case RID_ALIGNOF:
+ case RID_SIZEOF:
+ {
+ tree operand;
+ enum tree_code op;
+
+ op = keyword == RID_ALIGNOF ? ALIGNOF_EXPR : SIZEOF_EXPR;
+ /* Consume the token. */
+ cp_lexer_consume_token (parser->lexer);
+ /* Parse the operand. */
+ operand = cp_parser_sizeof_operand (parser, keyword);
+
+ if (TYPE_P (operand))
+ return cxx_sizeof_or_alignof_type (operand, op, true);
+ else
+ return cxx_sizeof_or_alignof_expr (operand, op);
+ }
+
+ case RID_NEW:
+ return cp_parser_new_expression (parser);
+
+ case RID_DELETE:
+ return cp_parser_delete_expression (parser);
+
+ case RID_EXTENSION:
+ {
+ /* The saved value of the PEDANTIC flag. */
+ int saved_pedantic;
+ tree expr;
+
+ /* Save away the PEDANTIC flag. */
+ cp_parser_extension_opt (parser, &saved_pedantic);
+ /* Parse the cast-expression. */
+ expr = cp_parser_simple_cast_expression (parser);
+ /* Restore the PEDANTIC flag. */
+ pedantic = saved_pedantic;
+
+ return expr;
+ }
+
+ case RID_REALPART:
+ case RID_IMAGPART:
+ {
+ tree expression;
+
+ /* Consume the `__real__' or `__imag__' token. */
+ cp_lexer_consume_token (parser->lexer);
+ /* Parse the cast-expression. */
+ expression = cp_parser_simple_cast_expression (parser);
+ /* Create the complete representation. */
+ return build_x_unary_op ((keyword == RID_REALPART
+ ? REALPART_EXPR : IMAGPART_EXPR),
+ expression);
+ }
+ break;
+
+ default:
+ break;
+ }
+ }
+
+ /* Look for the `:: new' and `:: delete', which also signal the
+ beginning of a new-expression, or delete-expression,
+ respectively. If the next token is `::', then it might be one of
+ these. */
+ if (cp_lexer_next_token_is (parser->lexer, CPP_SCOPE))
+ {
+ enum rid keyword;
+
+ /* See if the token after the `::' is one of the keywords in
+ which we're interested. */
+ keyword = cp_lexer_peek_nth_token (parser->lexer, 2)->keyword;
+ /* If it's `new', we have a new-expression. */
+ if (keyword == RID_NEW)
+ return cp_parser_new_expression (parser);
+ /* Similarly, for `delete'. */
+ else if (keyword == RID_DELETE)
+ return cp_parser_delete_expression (parser);
+ }
+
+ /* Look for a unary operator. */
+ unary_operator = cp_parser_unary_operator (token);
+ /* The `++' and `--' operators can be handled similarly, even though
+ they are not technically unary-operators in the grammar. */
+ if (unary_operator == ERROR_MARK)
+ {
+ if (token->type == CPP_PLUS_PLUS)
+ unary_operator = PREINCREMENT_EXPR;
+ else if (token->type == CPP_MINUS_MINUS)
+ unary_operator = PREDECREMENT_EXPR;
+ /* Handle the GNU address-of-label extension. */
+ else if (cp_parser_allow_gnu_extensions_p (parser)
+ && token->type == CPP_AND_AND)
+ {
+ tree identifier;
+
+ /* Consume the '&&' token. */
+ cp_lexer_consume_token (parser->lexer);
+ /* Look for the identifier. */
+ identifier = cp_parser_identifier (parser);
+ /* Create an expression representing the address. */
+ return finish_label_address_expr (identifier);
+ }
+ }
+ if (unary_operator != ERROR_MARK)
+ {
+ tree cast_expression;
+ tree expression = error_mark_node;
+ const char *non_constant_p = NULL;
+
+ /* Consume the operator token. */
+ token = cp_lexer_consume_token (parser->lexer);
+ /* Parse the cast-expression. */
+ cast_expression
+ = cp_parser_cast_expression (parser, unary_operator == ADDR_EXPR);
+ /* Now, build an appropriate representation. */
+ switch (unary_operator)
+ {
+ case INDIRECT_REF:
+ non_constant_p = "`*'";
+ expression = build_x_indirect_ref (cast_expression, "unary *");
+ break;
+
+ case ADDR_EXPR:
+ /* The "&" operator is allowed in the implementation of
+ "offsetof". */
+ if (!parser->in_offsetof_p)
+ non_constant_p = "`&'";
+ /* Fall through. */
+ case BIT_NOT_EXPR:
+ expression = build_x_unary_op (unary_operator, cast_expression);
+ break;
+
+ case PREINCREMENT_EXPR:
+ case PREDECREMENT_EXPR:
+ non_constant_p = (unary_operator == PREINCREMENT_EXPR
+ ? "`++'" : "`--'");
+ /* Fall through. */
+ case CONVERT_EXPR:
+ case NEGATE_EXPR:
+ case TRUTH_NOT_EXPR:
+ expression = finish_unary_op_expr (unary_operator, cast_expression);
+ break;
+
+ default:
+ abort ();
+ }
+
+ if (non_constant_p
+ && cp_parser_non_integral_constant_expression (parser,
+ non_constant_p))
+ expression = error_mark_node;
+
+ return expression;
+ }
+
+ return cp_parser_postfix_expression (parser, address_p);
+}
+
+/* Returns ERROR_MARK if TOKEN is not a unary-operator. If TOKEN is a
+ unary-operator, the corresponding tree code is returned. */
+
+static enum tree_code
+cp_parser_unary_operator (cp_token* token)
+{
+ switch (token->type)
+ {
+ case CPP_MULT:
+ return INDIRECT_REF;
+
+ case CPP_AND:
+ return ADDR_EXPR;
+
+ case CPP_PLUS:
+ return CONVERT_EXPR;
+
+ case CPP_MINUS:
+ return NEGATE_EXPR;
+
+ case CPP_NOT:
+ return TRUTH_NOT_EXPR;
+
+ case CPP_COMPL:
+ return BIT_NOT_EXPR;
+
+ default:
+ return ERROR_MARK;
+ }
+}
+
+/* Parse a new-expression.
+
+ new-expression:
+ :: [opt] new new-placement [opt] new-type-id new-initializer [opt]
+ :: [opt] new new-placement [opt] ( type-id ) new-initializer [opt]
+
+ Returns a representation of the expression. */
+
+static tree
+cp_parser_new_expression (cp_parser* parser)
+{
+ bool global_scope_p;
+ tree placement;
+ tree type;
+ tree initializer;
+
+ /* Look for the optional `::' operator. */
+ global_scope_p
+ = (cp_parser_global_scope_opt (parser,
+ /*current_scope_valid_p=*/false)
+ != NULL_TREE);
+ /* Look for the `new' operator. */
+ cp_parser_require_keyword (parser, RID_NEW, "`new'");
+ /* There's no easy way to tell a new-placement from the
+ `( type-id )' construct. */
+ cp_parser_parse_tentatively (parser);
+ /* Look for a new-placement. */
+ placement = cp_parser_new_placement (parser);
+ /* If that didn't work out, there's no new-placement. */
+ if (!cp_parser_parse_definitely (parser))
+ placement = NULL_TREE;
+
+ /* If the next token is a `(', then we have a parenthesized
+ type-id. */
+ if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN))
+ {
+ /* Consume the `('. */
+ cp_lexer_consume_token (parser->lexer);
+ /* Parse the type-id. */
+ type = cp_parser_type_id (parser);
+ /* Look for the closing `)'. */
+ cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
+ /* There should not be a direct-new-declarator in this production,
+ but GCC used to allowed this, so we check and emit a sensible error
+ message for this case. */
+ if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_SQUARE))
+ {
+ error ("array bound forbidden after parenthesized type-id");
+ inform ("try removing the parentheses around the type-id");
+ cp_parser_direct_new_declarator (parser);
+ }
+ }
+ /* Otherwise, there must be a new-type-id. */
+ else
+ type = cp_parser_new_type_id (parser);
+
+ /* If the next token is a `(', then we have a new-initializer. */
+ if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN))
+ initializer = cp_parser_new_initializer (parser);
+ else
+ initializer = NULL_TREE;
+
+ /* A new-expression may not appear in an integral constant
+ expression. */
+ if (cp_parser_non_integral_constant_expression (parser, "`new'"))
+ return error_mark_node;
+
+ /* Create a representation of the new-expression. */
+ return build_new (placement, type, initializer, global_scope_p);
+}
+
+/* Parse a new-placement.
+
+ new-placement:
+ ( expression-list )
+
+ Returns the same representation as for an expression-list. */
+
+static tree
+cp_parser_new_placement (cp_parser* parser)
+{
+ tree expression_list;
+
+ /* Parse the expression-list. */
+ expression_list = (cp_parser_parenthesized_expression_list
+ (parser, false, /*non_constant_p=*/NULL));
+
+ return expression_list;
+}
+
+/* Parse a new-type-id.
+
+ new-type-id:
+ type-specifier-seq new-declarator [opt]
+
+ Returns a TREE_LIST whose TREE_PURPOSE is the type-specifier-seq,
+ and whose TREE_VALUE is the new-declarator. */
+
+static tree
+cp_parser_new_type_id (cp_parser* parser)
+{
+ tree type_specifier_seq;
+ tree declarator;
+ const char *saved_message;
+
+ /* The type-specifier sequence must not contain type definitions.
+ (It cannot contain declarations of new types either, but if they
+ are not definitions we will catch that because they are not
+ complete.) */
+ saved_message = parser->type_definition_forbidden_message;
+ parser->type_definition_forbidden_message
+ = "types may not be defined in a new-type-id";
+ /* Parse the type-specifier-seq. */
+ type_specifier_seq = cp_parser_type_specifier_seq (parser);
+ /* Restore the old message. */
+ parser->type_definition_forbidden_message = saved_message;
+ /* Parse the new-declarator. */
+ declarator = cp_parser_new_declarator_opt (parser);
+
+ return build_tree_list (type_specifier_seq, declarator);
+}
+
+/* Parse an (optional) new-declarator.
+
+ new-declarator:
+ ptr-operator new-declarator [opt]
+ direct-new-declarator
+
+ Returns a representation of the declarator. See
+ cp_parser_declarator for the representations used. */
+
+static tree
+cp_parser_new_declarator_opt (cp_parser* parser)
+{
+ enum tree_code code;
+ tree type;
+ tree cv_qualifier_seq;
+
+ /* We don't know if there's a ptr-operator next, or not. */
+ cp_parser_parse_tentatively (parser);
+ /* Look for a ptr-operator. */
+ code = cp_parser_ptr_operator (parser, &type, &cv_qualifier_seq);
+ /* If that worked, look for more new-declarators. */
+ if (cp_parser_parse_definitely (parser))
+ {
+ tree declarator;
+
+ /* Parse another optional declarator. */
+ declarator = cp_parser_new_declarator_opt (parser);
+
+ /* Create the representation of the declarator. */
+ if (code == INDIRECT_REF)
+ declarator = make_pointer_declarator (cv_qualifier_seq,
+ declarator);
+ else
+ declarator = make_reference_declarator (cv_qualifier_seq,
+ declarator);
+
+ /* Handle the pointer-to-member case. */
+ if (type)
+ declarator = build_nt (SCOPE_REF, type, declarator);
+
+ return declarator;
+ }
+
+ /* If the next token is a `[', there is a direct-new-declarator. */
+ if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_SQUARE))
+ return cp_parser_direct_new_declarator (parser);
+
+ return NULL_TREE;
+}
+
+/* Parse a direct-new-declarator.
+
+ direct-new-declarator:
+ [ expression ]
+ direct-new-declarator [constant-expression]
+
+ Returns an ARRAY_REF, following the same conventions as are
+ documented for cp_parser_direct_declarator. */
+
+static tree
+cp_parser_direct_new_declarator (cp_parser* parser)
+{
+ tree declarator = NULL_TREE;
+
+ while (true)
+ {
+ tree expression;
+
+ /* Look for the opening `['. */
+ cp_parser_require (parser, CPP_OPEN_SQUARE, "`['");
+ /* The first expression is not required to be constant. */
+ if (!declarator)
+ {
+ expression = cp_parser_expression (parser);
+ /* The standard requires that the expression have integral
+ type. DR 74 adds enumeration types. We believe that the
+ real intent is that these expressions be handled like the
+ expression in a `switch' condition, which also allows
+ classes with a single conversion to integral or
+ enumeration type. */
+ if (!processing_template_decl)
+ {
+ expression
+ = build_expr_type_conversion (WANT_INT | WANT_ENUM,
+ expression,
+ /*complain=*/true);
+ if (!expression)
+ {
+ error ("expression in new-declarator must have integral or enumeration type");
+ expression = error_mark_node;
+ }
+ }
+ }
+ /* But all the other expressions must be. */
+ else
+ expression
+ = cp_parser_constant_expression (parser,
+ /*allow_non_constant=*/false,
+ NULL);
+ /* Look for the closing `]'. */
+ cp_parser_require (parser, CPP_CLOSE_SQUARE, "`]'");
+
+ /* Add this bound to the declarator. */
+ declarator = build_nt (ARRAY_REF, declarator, expression);
+
+ /* If the next token is not a `[', then there are no more
+ bounds. */
+ if (cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_SQUARE))
+ break;
+ }
+
+ return declarator;
+}
+
+/* Parse a new-initializer.
+
+ new-initializer:
+ ( expression-list [opt] )
+
+ Returns a representation of the expression-list. If there is no
+ expression-list, VOID_ZERO_NODE is returned. */
+
+static tree
+cp_parser_new_initializer (cp_parser* parser)
+{
+ tree expression_list;
+
+ expression_list = (cp_parser_parenthesized_expression_list
+ (parser, false, /*non_constant_p=*/NULL));
+ if (!expression_list)
+ expression_list = void_zero_node;
+
+ return expression_list;
+}
+
+/* Parse a delete-expression.
+
+ delete-expression:
+ :: [opt] delete cast-expression
+ :: [opt] delete [ ] cast-expression
+
+ Returns a representation of the expression. */
+
+static tree
+cp_parser_delete_expression (cp_parser* parser)
+{
+ bool global_scope_p;
+ bool array_p;
+ tree expression;
+
+ /* Look for the optional `::' operator. */
+ global_scope_p
+ = (cp_parser_global_scope_opt (parser,
+ /*current_scope_valid_p=*/false)
+ != NULL_TREE);
+ /* Look for the `delete' keyword. */
+ cp_parser_require_keyword (parser, RID_DELETE, "`delete'");
+ /* See if the array syntax is in use. */
+ if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_SQUARE))
+ {
+ /* Consume the `[' token. */
+ cp_lexer_consume_token (parser->lexer);
+ /* Look for the `]' token. */
+ cp_parser_require (parser, CPP_CLOSE_SQUARE, "`]'");
+ /* Remember that this is the `[]' construct. */
+ array_p = true;
+ }
+ else
+ array_p = false;
+
+ /* Parse the cast-expression. */
+ expression = cp_parser_simple_cast_expression (parser);
+
+ /* A delete-expression may not appear in an integral constant
+ expression. */
+ if (cp_parser_non_integral_constant_expression (parser, "`delete'"))
+ return error_mark_node;
+
+ return delete_sanity (expression, NULL_TREE, array_p, global_scope_p);
+}
+
+/* Parse a cast-expression.
+
+ cast-expression:
+ unary-expression
+ ( type-id ) cast-expression
+
+ Returns a representation of the expression. */
+
+static tree
+cp_parser_cast_expression (cp_parser *parser, bool address_p)
+{
+ /* If it's a `(', then we might be looking at a cast. */
+ if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN))
+ {
+ tree type = NULL_TREE;
+ tree expr = NULL_TREE;
+ bool compound_literal_p;
+ const char *saved_message;
+
+ /* There's no way to know yet whether or not this is a cast.
+ For example, `(int (3))' is a unary-expression, while `(int)
+ 3' is a cast. So, we resort to parsing tentatively. */
+ cp_parser_parse_tentatively (parser);
+ /* Types may not be defined in a cast. */
+ saved_message = parser->type_definition_forbidden_message;
+ parser->type_definition_forbidden_message
+ = "types may not be defined in casts";
+ /* Consume the `('. */
+ cp_lexer_consume_token (parser->lexer);
+ /* A very tricky bit is that `(struct S) { 3 }' is a
+ compound-literal (which we permit in C++ as an extension).
+ But, that construct is not a cast-expression -- it is a
+ postfix-expression. (The reason is that `(struct S) { 3 }.i'
+ is legal; if the compound-literal were a cast-expression,
+ you'd need an extra set of parentheses.) But, if we parse
+ the type-id, and it happens to be a class-specifier, then we
+ will commit to the parse at that point, because we cannot
+ undo the action that is done when creating a new class. So,
+ then we cannot back up and do a postfix-expression.
+
+ Therefore, we scan ahead to the closing `)', and check to see
+ if the token after the `)' is a `{'. If so, we are not
+ looking at a cast-expression.
+
+ Save tokens so that we can put them back. */
+ cp_lexer_save_tokens (parser->lexer);
+ /* Skip tokens until the next token is a closing parenthesis.
+ If we find the closing `)', and the next token is a `{', then
+ we are looking at a compound-literal. */
+ compound_literal_p
+ = (cp_parser_skip_to_closing_parenthesis (parser, false, false,
+ /*consume_paren=*/true)
+ && cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE));
+ /* Roll back the tokens we skipped. */
+ cp_lexer_rollback_tokens (parser->lexer);
+ /* If we were looking at a compound-literal, simulate an error
+ so that the call to cp_parser_parse_definitely below will
+ fail. */
+ if (compound_literal_p)
+ cp_parser_simulate_error (parser);
+ else
+ {
+ bool saved_in_type_id_in_expr_p = parser->in_type_id_in_expr_p;
+ parser->in_type_id_in_expr_p = true;
+ /* Look for the type-id. */
+ type = cp_parser_type_id (parser);
+ /* Look for the closing `)'. */
+ cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
+ parser->in_type_id_in_expr_p = saved_in_type_id_in_expr_p;
+ }
+
+ /* Restore the saved message. */
+ parser->type_definition_forbidden_message = saved_message;
+
+ /* If ok so far, parse the dependent expression. We cannot be
+ sure it is a cast. Consider `(T ())'. It is a parenthesized
+ ctor of T, but looks like a cast to function returning T
+ without a dependent expression. */
+ if (!cp_parser_error_occurred (parser))
+ expr = cp_parser_simple_cast_expression (parser);
+
+ if (cp_parser_parse_definitely (parser))
+ {
+ /* Warn about old-style casts, if so requested. */
+ if (warn_old_style_cast
+ && !in_system_header
+ && !VOID_TYPE_P (type)
+ && current_lang_name != lang_name_c)
+ warning ("use of old-style cast");
+
+ /* Only type conversions to integral or enumeration types
+ can be used in constant-expressions. */
+ if (parser->integral_constant_expression_p
+ && !dependent_type_p (type)
+ && !INTEGRAL_OR_ENUMERATION_TYPE_P (type)
+ && (cp_parser_non_integral_constant_expression
+ (parser,
+ "a casts to a type other than an integral or "
+ "enumeration type")))
+ return error_mark_node;
+
+ /* Perform the cast. */
+ expr = build_c_cast (type, expr);
+ return expr;
+ }
+ }
+
+ /* If we get here, then it's not a cast, so it must be a
+ unary-expression. */
+ return cp_parser_unary_expression (parser, address_p);
+}
+
+/* Parse a pm-expression.
+
+ pm-expression:
+ cast-expression
+ pm-expression .* cast-expression
+ pm-expression ->* cast-expression
+
+ Returns a representation of the expression. */
+
+static tree
+cp_parser_pm_expression (cp_parser* parser)
+{
+ static const cp_parser_token_tree_map map = {
+ { CPP_DEREF_STAR, MEMBER_REF },
+ { CPP_DOT_STAR, DOTSTAR_EXPR },
+ { CPP_EOF, ERROR_MARK }
+ };
+
+ return cp_parser_binary_expression (parser, map,
+ cp_parser_simple_cast_expression);
+}
+
+/* Parse a multiplicative-expression.
+
+ mulitplicative-expression:
+ pm-expression
+ multiplicative-expression * pm-expression
+ multiplicative-expression / pm-expression
+ multiplicative-expression % pm-expression
+
+ Returns a representation of the expression. */
+
+static tree
+cp_parser_multiplicative_expression (cp_parser* parser)
+{
+ static const cp_parser_token_tree_map map = {
+ { CPP_MULT, MULT_EXPR },
+ { CPP_DIV, TRUNC_DIV_EXPR },
+ { CPP_MOD, TRUNC_MOD_EXPR },
+ { CPP_EOF, ERROR_MARK }
+ };
+
+ return cp_parser_binary_expression (parser,
+ map,
+ cp_parser_pm_expression);
+}
+
+/* Parse an additive-expression.
+
+ additive-expression:
+ multiplicative-expression
+ additive-expression + multiplicative-expression
+ additive-expression - multiplicative-expression
+
+ Returns a representation of the expression. */
+
+static tree
+cp_parser_additive_expression (cp_parser* parser)
+{
+ static const cp_parser_token_tree_map map = {
+ { CPP_PLUS, PLUS_EXPR },
+ { CPP_MINUS, MINUS_EXPR },
+ { CPP_EOF, ERROR_MARK }
+ };
+
+ return cp_parser_binary_expression (parser,
+ map,
+ cp_parser_multiplicative_expression);
+}
+
+/* Parse a shift-expression.
+
+ shift-expression:
+ additive-expression
+ shift-expression << additive-expression
+ shift-expression >> additive-expression
+
+ Returns a representation of the expression. */
+
+static tree
+cp_parser_shift_expression (cp_parser* parser)
+{
+ static const cp_parser_token_tree_map map = {
+ { CPP_LSHIFT, LSHIFT_EXPR },
+ { CPP_RSHIFT, RSHIFT_EXPR },
+ { CPP_EOF, ERROR_MARK }
+ };
+
+ return cp_parser_binary_expression (parser,
+ map,
+ cp_parser_additive_expression);
+}
+
+/* Parse a relational-expression.
+
+ relational-expression:
+ shift-expression
+ relational-expression < shift-expression
+ relational-expression > shift-expression
+ relational-expression <= shift-expression
+ relational-expression >= shift-expression
+
+ GNU Extension:
+
+ relational-expression:
+ relational-expression <? shift-expression
+ relational-expression >? shift-expression
+
+ Returns a representation of the expression. */
+
+static tree
+cp_parser_relational_expression (cp_parser* parser)
+{
+ static const cp_parser_token_tree_map map = {
+ { CPP_LESS, LT_EXPR },
+ { CPP_GREATER, GT_EXPR },
+ { CPP_LESS_EQ, LE_EXPR },
+ { CPP_GREATER_EQ, GE_EXPR },
+ { CPP_MIN, MIN_EXPR },
+ { CPP_MAX, MAX_EXPR },
+ { CPP_EOF, ERROR_MARK }
+ };
+
+ return cp_parser_binary_expression (parser,
+ map,
+ cp_parser_shift_expression);
+}
+
+/* Parse an equality-expression.
+
+ equality-expression:
+ relational-expression
+ equality-expression == relational-expression
+ equality-expression != relational-expression
+
+ Returns a representation of the expression. */
+
+static tree
+cp_parser_equality_expression (cp_parser* parser)
+{
+ static const cp_parser_token_tree_map map = {
+ { CPP_EQ_EQ, EQ_EXPR },
+ { CPP_NOT_EQ, NE_EXPR },
+ { CPP_EOF, ERROR_MARK }
+ };
+
+ return cp_parser_binary_expression (parser,
+ map,
+ cp_parser_relational_expression);
+}
+
+/* Parse an and-expression.
+
+ and-expression:
+ equality-expression
+ and-expression & equality-expression
+
+ Returns a representation of the expression. */
+
+static tree
+cp_parser_and_expression (cp_parser* parser)
+{
+ static const cp_parser_token_tree_map map = {
+ { CPP_AND, BIT_AND_EXPR },
+ { CPP_EOF, ERROR_MARK }
+ };
+
+ return cp_parser_binary_expression (parser,
+ map,
+ cp_parser_equality_expression);
+}
+
+/* Parse an exclusive-or-expression.
+
+ exclusive-or-expression:
+ and-expression
+ exclusive-or-expression ^ and-expression
+
+ Returns a representation of the expression. */
+
+static tree
+cp_parser_exclusive_or_expression (cp_parser* parser)
+{
+ static const cp_parser_token_tree_map map = {
+ { CPP_XOR, BIT_XOR_EXPR },
+ { CPP_EOF, ERROR_MARK }
+ };
+
+ return cp_parser_binary_expression (parser,
+ map,
+ cp_parser_and_expression);
+}
+
+
+/* Parse an inclusive-or-expression.
+
+ inclusive-or-expression:
+ exclusive-or-expression
+ inclusive-or-expression | exclusive-or-expression
+
+ Returns a representation of the expression. */
+
+static tree
+cp_parser_inclusive_or_expression (cp_parser* parser)
+{
+ static const cp_parser_token_tree_map map = {
+ { CPP_OR, BIT_IOR_EXPR },
+ { CPP_EOF, ERROR_MARK }
+ };
+
+ return cp_parser_binary_expression (parser,
+ map,
+ cp_parser_exclusive_or_expression);
+}
+
+/* Parse a logical-and-expression.
+
+ logical-and-expression:
+ inclusive-or-expression
+ logical-and-expression && inclusive-or-expression
+
+ Returns a representation of the expression. */
+
+static tree
+cp_parser_logical_and_expression (cp_parser* parser)
+{
+ static const cp_parser_token_tree_map map = {
+ { CPP_AND_AND, TRUTH_ANDIF_EXPR },
+ { CPP_EOF, ERROR_MARK }
+ };
+
+ return cp_parser_binary_expression (parser,
+ map,
+ cp_parser_inclusive_or_expression);
+}
+
+/* Parse a logical-or-expression.
+
+ logical-or-expression:
+ logical-and-expression
+ logical-or-expression || logical-and-expression
+
+ Returns a representation of the expression. */
+
+static tree
+cp_parser_logical_or_expression (cp_parser* parser)
+{
+ static const cp_parser_token_tree_map map = {
+ { CPP_OR_OR, TRUTH_ORIF_EXPR },
+ { CPP_EOF, ERROR_MARK }
+ };
+
+ return cp_parser_binary_expression (parser,
+ map,
+ cp_parser_logical_and_expression);
+}
+
+/* Parse the `? expression : assignment-expression' part of a
+ conditional-expression. The LOGICAL_OR_EXPR is the
+ logical-or-expression that started the conditional-expression.
+ Returns a representation of the entire conditional-expression.
+
+ This routine is used by cp_parser_assignment_expression.
+
+ ? expression : assignment-expression
+
+ GNU Extensions:
+
+ ? : assignment-expression */
+
+static tree
+cp_parser_question_colon_clause (cp_parser* parser, tree logical_or_expr)
+{
+ tree expr;
+ tree assignment_expr;
+
+ /* Consume the `?' token. */
+ cp_lexer_consume_token (parser->lexer);
+ if (cp_parser_allow_gnu_extensions_p (parser)
+ && cp_lexer_next_token_is (parser->lexer, CPP_COLON))
+ /* Implicit true clause. */
+ expr = NULL_TREE;
+ else
+ /* Parse the expression. */
+ expr = cp_parser_expression (parser);
+
+ /* The next token should be a `:'. */
+ cp_parser_require (parser, CPP_COLON, "`:'");
+ /* Parse the assignment-expression. */
+ assignment_expr = cp_parser_assignment_expression (parser);
+
+ /* Build the conditional-expression. */
+ return build_x_conditional_expr (logical_or_expr,
+ expr,
+ assignment_expr);
+}
+
+/* Parse an assignment-expression.
+
+ assignment-expression:
+ conditional-expression
+ logical-or-expression assignment-operator assignment_expression
+ throw-expression
+
+ Returns a representation for the expression. */
+
+static tree
+cp_parser_assignment_expression (cp_parser* parser)
+{
+ tree expr;
+
+ /* If the next token is the `throw' keyword, then we're looking at
+ a throw-expression. */
+ if (cp_lexer_next_token_is_keyword (parser->lexer, RID_THROW))
+ expr = cp_parser_throw_expression (parser);
+ /* Otherwise, it must be that we are looking at a
+ logical-or-expression. */
+ else
+ {
+ /* Parse the logical-or-expression. */
+ expr = cp_parser_logical_or_expression (parser);
+ /* If the next token is a `?' then we're actually looking at a
+ conditional-expression. */
+ if (cp_lexer_next_token_is (parser->lexer, CPP_QUERY))
+ return cp_parser_question_colon_clause (parser, expr);
+ else
+ {
+ enum tree_code assignment_operator;
+
+ /* If it's an assignment-operator, we're using the second
+ production. */
+ assignment_operator
+ = cp_parser_assignment_operator_opt (parser);
+ if (assignment_operator != ERROR_MARK)
+ {
+ tree rhs;
+
+ /* Parse the right-hand side of the assignment. */
+ rhs = cp_parser_assignment_expression (parser);
+ /* An assignment may not appear in a
+ constant-expression. */
+ if (cp_parser_non_integral_constant_expression (parser,
+ "an assignment"))
+ return error_mark_node;
+ /* Build the assignment expression. */
+ expr = build_x_modify_expr (expr,
+ assignment_operator,
+ rhs);
+ }
+ }
+ }
+
+ return expr;
+}
+
+/* Parse an (optional) assignment-operator.
+
+ assignment-operator: one of
+ = *= /= %= += -= >>= <<= &= ^= |=
+
+ GNU Extension:
+
+ assignment-operator: one of
+ <?= >?=
+
+ If the next token is an assignment operator, the corresponding tree
+ code is returned, and the token is consumed. For example, for
+ `+=', PLUS_EXPR is returned. For `=' itself, the code returned is
+ NOP_EXPR. For `/', TRUNC_DIV_EXPR is returned; for `%',
+ TRUNC_MOD_EXPR is returned. If TOKEN is not an assignment
+ operator, ERROR_MARK is returned. */
+
+static enum tree_code
+cp_parser_assignment_operator_opt (cp_parser* parser)
+{
+ enum tree_code op;
+ cp_token *token;
+
+ /* Peek at the next toen. */
+ token = cp_lexer_peek_token (parser->lexer);
+
+ switch (token->type)
+ {
+ case CPP_EQ:
+ op = NOP_EXPR;
+ break;
+
+ case CPP_MULT_EQ:
+ op = MULT_EXPR;
+ break;
+
+ case CPP_DIV_EQ:
+ op = TRUNC_DIV_EXPR;
+ break;
+
+ case CPP_MOD_EQ:
+ op = TRUNC_MOD_EXPR;
+ break;
+
+ case CPP_PLUS_EQ:
+ op = PLUS_EXPR;
+ break;
+
+ case CPP_MINUS_EQ:
+ op = MINUS_EXPR;
+ break;
+
+ case CPP_RSHIFT_EQ:
+ op = RSHIFT_EXPR;
+ break;
+
+ case CPP_LSHIFT_EQ:
+ op = LSHIFT_EXPR;
+ break;
+
+ case CPP_AND_EQ:
+ op = BIT_AND_EXPR;
+ break;
+
+ case CPP_XOR_EQ:
+ op = BIT_XOR_EXPR;
+ break;
+
+ case CPP_OR_EQ:
+ op = BIT_IOR_EXPR;
+ break;
+
+ case CPP_MIN_EQ:
+ op = MIN_EXPR;
+ break;
+
+ case CPP_MAX_EQ:
+ op = MAX_EXPR;
+ break;
+
+ default:
+ /* Nothing else is an assignment operator. */
+ op = ERROR_MARK;
+ }
+
+ /* If it was an assignment operator, consume it. */
+ if (op != ERROR_MARK)
+ cp_lexer_consume_token (parser->lexer);
+
+ return op;
+}
+
+/* Parse an expression.
+
+ expression:
+ assignment-expression
+ expression , assignment-expression
+
+ Returns a representation of the expression. */
+
+static tree
+cp_parser_expression (cp_parser* parser)
+{
+ tree expression = NULL_TREE;
+
+ while (true)
+ {
+ tree assignment_expression;
+
+ /* Parse the next assignment-expression. */
+ assignment_expression
+ = cp_parser_assignment_expression (parser);
+ /* If this is the first assignment-expression, we can just
+ save it away. */
+ if (!expression)
+ expression = assignment_expression;
+ else
+ expression = build_x_compound_expr (expression,
+ assignment_expression);
+ /* If the next token is not a comma, then we are done with the
+ expression. */
+ if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
+ break;
+ /* Consume the `,'. */
+ cp_lexer_consume_token (parser->lexer);
+ /* A comma operator cannot appear in a constant-expression. */
+ if (cp_parser_non_integral_constant_expression (parser,
+ "a comma operator"))
+ expression = error_mark_node;
+ }
+
+ return expression;
+}
+
+/* Parse a constant-expression.
+
+ constant-expression:
+ conditional-expression
+
+ If ALLOW_NON_CONSTANT_P a non-constant expression is silently
+ accepted. If ALLOW_NON_CONSTANT_P is true and the expression is not
+ constant, *NON_CONSTANT_P is set to TRUE. If ALLOW_NON_CONSTANT_P
+ is false, NON_CONSTANT_P should be NULL. */
+
+static tree
+cp_parser_constant_expression (cp_parser* parser,
+ bool allow_non_constant_p,
+ bool *non_constant_p)
+{
+ bool saved_integral_constant_expression_p;
+ bool saved_allow_non_integral_constant_expression_p;
+ bool saved_non_integral_constant_expression_p;
+ tree expression;
+
+ /* It might seem that we could simply parse the
+ conditional-expression, and then check to see if it were
+ TREE_CONSTANT. However, an expression that is TREE_CONSTANT is
+ one that the compiler can figure out is constant, possibly after
+ doing some simplifications or optimizations. The standard has a
+ precise definition of constant-expression, and we must honor
+ that, even though it is somewhat more restrictive.
+
+ For example:
+
+ int i[(2, 3)];
+
+ is not a legal declaration, because `(2, 3)' is not a
+ constant-expression. The `,' operator is forbidden in a
+ constant-expression. However, GCC's constant-folding machinery
+ will fold this operation to an INTEGER_CST for `3'. */
+
+ /* Save the old settings. */
+ saved_integral_constant_expression_p = parser->integral_constant_expression_p;
+ saved_allow_non_integral_constant_expression_p
+ = parser->allow_non_integral_constant_expression_p;
+ saved_non_integral_constant_expression_p = parser->non_integral_constant_expression_p;
+ /* We are now parsing a constant-expression. */
+ parser->integral_constant_expression_p = true;
+ parser->allow_non_integral_constant_expression_p = allow_non_constant_p;
+ parser->non_integral_constant_expression_p = false;
+ /* Although the grammar says "conditional-expression", we parse an
+ "assignment-expression", which also permits "throw-expression"
+ and the use of assignment operators. In the case that
+ ALLOW_NON_CONSTANT_P is false, we get better errors than we would
+ otherwise. In the case that ALLOW_NON_CONSTANT_P is true, it is
+ actually essential that we look for an assignment-expression.
+ For example, cp_parser_initializer_clauses uses this function to
+ determine whether a particular assignment-expression is in fact
+ constant. */
+ expression = cp_parser_assignment_expression (parser);
+ /* Restore the old settings. */
+ parser->integral_constant_expression_p = saved_integral_constant_expression_p;
+ parser->allow_non_integral_constant_expression_p
+ = saved_allow_non_integral_constant_expression_p;
+ if (allow_non_constant_p)
+ *non_constant_p = parser->non_integral_constant_expression_p;
+ parser->non_integral_constant_expression_p = saved_non_integral_constant_expression_p;
+
+ return expression;
+}
+
+/* Statements [gram.stmt.stmt] */
+
+/* Parse a statement.
+
+ statement:
+ labeled-statement
+ expression-statement
+ compound-statement
+ selection-statement
+ iteration-statement
+ jump-statement
+ declaration-statement
+ try-block */
+
+static void
+cp_parser_statement (cp_parser* parser, bool in_statement_expr_p)
+{
+ tree statement;
+ cp_token *token;
+ int statement_line_number;
+
+ /* There is no statement yet. */
+ statement = NULL_TREE;
+ /* Peek at the next token. */
+ token = cp_lexer_peek_token (parser->lexer);
+ /* Remember the line number of the first token in the statement. */
+ statement_line_number = token->location.line;
+ /* If this is a keyword, then that will often determine what kind of
+ statement we have. */
+ if (token->type == CPP_KEYWORD)
+ {
+ enum rid keyword = token->keyword;
+
+ switch (keyword)
+ {
+ case RID_CASE:
+ case RID_DEFAULT:
+ statement = cp_parser_labeled_statement (parser,
+ in_statement_expr_p);
+ break;
+
+ case RID_IF:
+ case RID_SWITCH:
+ statement = cp_parser_selection_statement (parser);
+ break;
+
+ case RID_WHILE:
+ case RID_DO:
+ case RID_FOR:
+ statement = cp_parser_iteration_statement (parser);
+ break;
+
+ case RID_BREAK:
+ case RID_CONTINUE:
+ case RID_RETURN:
+ case RID_GOTO:
+ statement = cp_parser_jump_statement (parser);
+ break;
+
+ case RID_TRY:
+ statement = cp_parser_try_block (parser);
+ break;
+
+ default:
+ /* It might be a keyword like `int' that can start a
+ declaration-statement. */
+ break;
+ }
+ }
+ else if (token->type == CPP_NAME)
+ {
+ /* If the next token is a `:', then we are looking at a
+ labeled-statement. */
+ token = cp_lexer_peek_nth_token (parser->lexer, 2);
+ if (token->type == CPP_COLON)
+ statement = cp_parser_labeled_statement (parser, in_statement_expr_p);
+ }
+ /* Anything that starts with a `{' must be a compound-statement. */
+ else if (token->type == CPP_OPEN_BRACE)
+ statement = cp_parser_compound_statement (parser, false);
+
+ /* Everything else must be a declaration-statement or an
+ expression-statement. Try for the declaration-statement
+ first, unless we are looking at a `;', in which case we know that
+ we have an expression-statement. */
+ if (!statement)
+ {
+ if (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON))
+ {
+ cp_parser_parse_tentatively (parser);
+ /* Try to parse the declaration-statement. */
+ cp_parser_declaration_statement (parser);
+ /* If that worked, we're done. */
+ if (cp_parser_parse_definitely (parser))
+ return;
+ }
+ /* Look for an expression-statement instead. */
+ statement = cp_parser_expression_statement (parser, in_statement_expr_p);
+ }
+
+ /* Set the line number for the statement. */
+ if (statement && STATEMENT_CODE_P (TREE_CODE (statement)))
+ STMT_LINENO (statement) = statement_line_number;
+}
+
+/* Parse a labeled-statement.
+
+ labeled-statement:
+ identifier : statement
+ case constant-expression : statement
+ default : statement
+
+ GNU Extension:
+
+ labeled-statement:
+ case constant-expression ... constant-expression : statement
+
+ Returns the new CASE_LABEL, for a `case' or `default' label. For
+ an ordinary label, returns a LABEL_STMT. */
+
+static tree
+cp_parser_labeled_statement (cp_parser* parser, bool in_statement_expr_p)
+{
+ cp_token *token;
+ tree statement = error_mark_node;
+
+ /* The next token should be an identifier. */
+ token = cp_lexer_peek_token (parser->lexer);
+ if (token->type != CPP_NAME
+ && token->type != CPP_KEYWORD)
+ {
+ cp_parser_error (parser, "expected labeled-statement");
+ return error_mark_node;
+ }
+
+ switch (token->keyword)
+ {
+ case RID_CASE:
+ {
+ tree expr, expr_hi;
+ cp_token *ellipsis;
+
+ /* Consume the `case' token. */
+ cp_lexer_consume_token (parser->lexer);
+ /* Parse the constant-expression. */
+ expr = cp_parser_constant_expression (parser,
+ /*allow_non_constant_p=*/false,
+ NULL);
+
+ ellipsis = cp_lexer_peek_token (parser->lexer);
+ if (ellipsis->type == CPP_ELLIPSIS)
+ {
+ /* Consume the `...' token. */
+ cp_lexer_consume_token (parser->lexer);
+ expr_hi =
+ cp_parser_constant_expression (parser,
+ /*allow_non_constant_p=*/false,
+ NULL);
+ /* We don't need to emit warnings here, as the common code
+ will do this for us. */
+ }
+ else
+ expr_hi = NULL_TREE;
+
+ if (!parser->in_switch_statement_p)
+ error ("case label `%E' not within a switch statement", expr);
+ else
+ statement = finish_case_label (expr, expr_hi);
+ }
+ break;
+
+ case RID_DEFAULT:
+ /* Consume the `default' token. */
+ cp_lexer_consume_token (parser->lexer);
+ if (!parser->in_switch_statement_p)
+ error ("case label not within a switch statement");
+ else
+ statement = finish_case_label (NULL_TREE, NULL_TREE);
+ break;
+
+ default:
+ /* Anything else must be an ordinary label. */
+ statement = finish_label_stmt (cp_parser_identifier (parser));
+ break;
+ }
+
+ /* Require the `:' token. */
+ cp_parser_require (parser, CPP_COLON, "`:'");
+ /* Parse the labeled statement. */
+ cp_parser_statement (parser, in_statement_expr_p);
+
+ /* Return the label, in the case of a `case' or `default' label. */
+ return statement;
+}
+
+/* Parse an expression-statement.
+
+ expression-statement:
+ expression [opt] ;
+
+ Returns the new EXPR_STMT -- or NULL_TREE if the expression
+ statement consists of nothing more than an `;'. IN_STATEMENT_EXPR_P
+ indicates whether this expression-statement is part of an
+ expression statement. */
+
+static tree
+cp_parser_expression_statement (cp_parser* parser, bool in_statement_expr_p)
+{
+ tree statement = NULL_TREE;
+
+ /* If the next token is a ';', then there is no expression
+ statement. */
+ if (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON))
+ statement = cp_parser_expression (parser);
+
+ /* Consume the final `;'. */
+ cp_parser_consume_semicolon_at_end_of_statement (parser);
+
+ if (in_statement_expr_p
+ && cp_lexer_next_token_is (parser->lexer, CPP_CLOSE_BRACE))
+ {
+ /* This is the final expression statement of a statement
+ expression. */
+ statement = finish_stmt_expr_expr (statement);
+ }
+ else if (statement)
+ statement = finish_expr_stmt (statement);
+ else
+ finish_stmt ();
+
+ return statement;
+}
+
+/* Parse a compound-statement.
+
+ compound-statement:
+ { statement-seq [opt] }
+
+ Returns a COMPOUND_STMT representing the statement. */
+
+static tree
+cp_parser_compound_statement (cp_parser *parser, bool in_statement_expr_p)
+{
+ tree compound_stmt;
+
+ /* Consume the `{'. */
+ if (!cp_parser_require (parser, CPP_OPEN_BRACE, "`{'"))
+ return error_mark_node;
+ /* Begin the compound-statement. */
+ compound_stmt = begin_compound_stmt (/*has_no_scope=*/false);
+ /* Parse an (optional) statement-seq. */
+ cp_parser_statement_seq_opt (parser, in_statement_expr_p);
+ /* Finish the compound-statement. */
+ finish_compound_stmt (compound_stmt);
+ /* Consume the `}'. */
+ cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
+
+ return compound_stmt;
+}
+
+/* Parse an (optional) statement-seq.
+
+ statement-seq:
+ statement
+ statement-seq [opt] statement */
+
+static void
+cp_parser_statement_seq_opt (cp_parser* parser, bool in_statement_expr_p)
+{
+ /* Scan statements until there aren't any more. */
+ while (true)
+ {
+ /* If we're looking at a `}', then we've run out of statements. */
+ if (cp_lexer_next_token_is (parser->lexer, CPP_CLOSE_BRACE)
+ || cp_lexer_next_token_is (parser->lexer, CPP_EOF))
+ break;
+
+ /* Parse the statement. */
+ cp_parser_statement (parser, in_statement_expr_p);
+ }
+}
+
+/* Parse a selection-statement.
+
+ selection-statement:
+ if ( condition ) statement
+ if ( condition ) statement else statement
+ switch ( condition ) statement
+
+ Returns the new IF_STMT or SWITCH_STMT. */
+
+static tree
+cp_parser_selection_statement (cp_parser* parser)
+{
+ cp_token *token;
+ enum rid keyword;
+
+ /* Peek at the next token. */
+ token = cp_parser_require (parser, CPP_KEYWORD, "selection-statement");
+
+ /* See what kind of keyword it is. */
+ keyword = token->keyword;
+ switch (keyword)
+ {
+ case RID_IF:
+ case RID_SWITCH:
+ {
+ tree statement;
+ tree condition;
+
+ /* Look for the `('. */
+ if (!cp_parser_require (parser, CPP_OPEN_PAREN, "`('"))
+ {
+ cp_parser_skip_to_end_of_statement (parser);
+ return error_mark_node;
+ }
+
+ /* Begin the selection-statement. */
+ if (keyword == RID_IF)
+ statement = begin_if_stmt ();
+ else
+ statement = begin_switch_stmt ();
+
+ /* Parse the condition. */
+ condition = cp_parser_condition (parser);
+ /* Look for the `)'. */
+ if (!cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'"))
+ cp_parser_skip_to_closing_parenthesis (parser, true, false,
+ /*consume_paren=*/true);
+
+ if (keyword == RID_IF)
+ {
+ tree then_stmt;
+
+ /* Add the condition. */
+ finish_if_stmt_cond (condition, statement);
+
+ /* Parse the then-clause. */
+ then_stmt = cp_parser_implicitly_scoped_statement (parser);
+ finish_then_clause (statement);
+
+ /* If the next token is `else', parse the else-clause. */
+ if (cp_lexer_next_token_is_keyword (parser->lexer,
+ RID_ELSE))
+ {
+ tree else_stmt;
+
+ /* Consume the `else' keyword. */
+ cp_lexer_consume_token (parser->lexer);
+ /* Parse the else-clause. */
+ else_stmt
+ = cp_parser_implicitly_scoped_statement (parser);
+ finish_else_clause (statement);
+ }
+
+ /* Now we're all done with the if-statement. */
+ finish_if_stmt ();
+ }
+ else
+ {
+ tree body;
+ bool in_switch_statement_p;
+
+ /* Add the condition. */
+ finish_switch_cond (condition, statement);
+
+ /* Parse the body of the switch-statement. */
+ in_switch_statement_p = parser->in_switch_statement_p;
+ parser->in_switch_statement_p = true;
+ body = cp_parser_implicitly_scoped_statement (parser);
+ parser->in_switch_statement_p = in_switch_statement_p;
+
+ /* Now we're all done with the switch-statement. */
+ finish_switch_stmt (statement);
+ }
+
+ return statement;
+ }
+ break;
+
+ default:
+ cp_parser_error (parser, "expected selection-statement");
+ return error_mark_node;
+ }
+}
+
+/* Parse a condition.
+
+ condition:
+ expression
+ type-specifier-seq declarator = assignment-expression
+
+ GNU Extension:
+
+ condition:
+ type-specifier-seq declarator asm-specification [opt]
+ attributes [opt] = assignment-expression
+
+ Returns the expression that should be tested. */
+
+static tree
+cp_parser_condition (cp_parser* parser)
+{
+ tree type_specifiers;
+ const char *saved_message;
+
+ /* Try the declaration first. */
+ cp_parser_parse_tentatively (parser);
+ /* New types are not allowed in the type-specifier-seq for a
+ condition. */
+ saved_message = parser->type_definition_forbidden_message;
+ parser->type_definition_forbidden_message
+ = "types may not be defined in conditions";
+ /* Parse the type-specifier-seq. */
+ type_specifiers = cp_parser_type_specifier_seq (parser);
+ /* Restore the saved message. */
+ parser->type_definition_forbidden_message = saved_message;
+ /* If all is well, we might be looking at a declaration. */
+ if (!cp_parser_error_occurred (parser))
+ {
+ tree decl;
+ tree asm_specification;
+ tree attributes;
+ tree declarator;
+ tree initializer = NULL_TREE;
+
+ /* Parse the declarator. */
+ declarator = cp_parser_declarator (parser, CP_PARSER_DECLARATOR_NAMED,
+ /*ctor_dtor_or_conv_p=*/NULL,
+ /*parenthesized_p=*/NULL);
+ /* Parse the attributes. */
+ attributes = cp_parser_attributes_opt (parser);
+ /* Parse the asm-specification. */
+ asm_specification = cp_parser_asm_specification_opt (parser);
+ /* If the next token is not an `=', then we might still be
+ looking at an expression. For example:
+
+ if (A(a).x)
+
+ looks like a decl-specifier-seq and a declarator -- but then
+ there is no `=', so this is an expression. */
+ cp_parser_require (parser, CPP_EQ, "`='");
+ /* If we did see an `=', then we are looking at a declaration
+ for sure. */
+ if (cp_parser_parse_definitely (parser))
+ {
+ /* Create the declaration. */
+ decl = start_decl (declarator, type_specifiers,
+ /*initialized_p=*/true,
+ attributes, /*prefix_attributes=*/NULL_TREE);
+ /* Parse the assignment-expression. */
+ initializer = cp_parser_assignment_expression (parser);
+
+ /* Process the initializer. */
+ cp_finish_decl (decl,
+ initializer,
+ asm_specification,
+ LOOKUP_ONLYCONVERTING);
+
+ return convert_from_reference (decl);
+ }
+ }
+ /* If we didn't even get past the declarator successfully, we are
+ definitely not looking at a declaration. */
+ else
+ cp_parser_abort_tentative_parse (parser);
+
+ /* Otherwise, we are looking at an expression. */
+ return cp_parser_expression (parser);
+}
+
+/* Parse an iteration-statement.
+
+ iteration-statement:
+ while ( condition ) statement
+ do statement while ( expression ) ;
+ for ( for-init-statement condition [opt] ; expression [opt] )
+ statement
+
+ Returns the new WHILE_STMT, DO_STMT, or FOR_STMT. */
+
+static tree
+cp_parser_iteration_statement (cp_parser* parser)
+{
+ cp_token *token;
+ enum rid keyword;
+ tree statement;
+ bool in_iteration_statement_p;
+
+
+ /* Peek at the next token. */
+ token = cp_parser_require (parser, CPP_KEYWORD, "iteration-statement");
+ if (!token)
+ return error_mark_node;
+
+ /* Remember whether or not we are already within an iteration
+ statement. */
+ in_iteration_statement_p = parser->in_iteration_statement_p;
+
+ /* See what kind of keyword it is. */
+ keyword = token->keyword;
+ switch (keyword)
+ {
+ case RID_WHILE:
+ {
+ tree condition;
+
+ /* Begin the while-statement. */
+ statement = begin_while_stmt ();
+ /* Look for the `('. */
+ cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
+ /* Parse the condition. */
+ condition = cp_parser_condition (parser);
+ finish_while_stmt_cond (condition, statement);
+ /* Look for the `)'. */
+ cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
+ /* Parse the dependent statement. */
+ parser->in_iteration_statement_p = true;
+ cp_parser_already_scoped_statement (parser);
+ parser->in_iteration_statement_p = in_iteration_statement_p;
+ /* We're done with the while-statement. */
+ finish_while_stmt (statement);
+ }
+ break;
+
+ case RID_DO:
+ {
+ tree expression;
+
+ /* Begin the do-statement. */
+ statement = begin_do_stmt ();
+ /* Parse the body of the do-statement. */
+ parser->in_iteration_statement_p = true;
+ cp_parser_implicitly_scoped_statement (parser);
+ parser->in_iteration_statement_p = in_iteration_statement_p;
+ finish_do_body (statement);
+ /* Look for the `while' keyword. */
+ cp_parser_require_keyword (parser, RID_WHILE, "`while'");
+ /* Look for the `('. */
+ cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
+ /* Parse the expression. */
+ expression = cp_parser_expression (parser);
+ /* We're done with the do-statement. */
+ finish_do_stmt (expression, statement);
+ /* Look for the `)'. */
+ cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
+ /* Look for the `;'. */
+ cp_parser_require (parser, CPP_SEMICOLON, "`;'");
+ }
+ break;
+
+ case RID_FOR:
+ {
+ tree condition = NULL_TREE;
+ tree expression = NULL_TREE;
+
+ /* Begin the for-statement. */
+ statement = begin_for_stmt ();
+ /* Look for the `('. */
+ cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
+ /* Parse the initialization. */
+ cp_parser_for_init_statement (parser);
+ finish_for_init_stmt (statement);
+
+ /* If there's a condition, process it. */
+ if (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON))
+ condition = cp_parser_condition (parser);
+ finish_for_cond (condition, statement);
+ /* Look for the `;'. */
+ cp_parser_require (parser, CPP_SEMICOLON, "`;'");
+
+ /* If there's an expression, process it. */
+ if (cp_lexer_next_token_is_not (parser->lexer, CPP_CLOSE_PAREN))
+ expression = cp_parser_expression (parser);
+ finish_for_expr (expression, statement);
+ /* Look for the `)'. */
+ cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
+
+ /* Parse the body of the for-statement. */
+ parser->in_iteration_statement_p = true;
+ cp_parser_already_scoped_statement (parser);
+ parser->in_iteration_statement_p = in_iteration_statement_p;
+
+ /* We're done with the for-statement. */
+ finish_for_stmt (statement);
+ }
+ break;
+
+ default:
+ cp_parser_error (parser, "expected iteration-statement");
+ statement = error_mark_node;
+ break;
+ }
+
+ return statement;
+}
+
+/* Parse a for-init-statement.
+
+ for-init-statement:
+ expression-statement
+ simple-declaration */
+
+static void
+cp_parser_for_init_statement (cp_parser* parser)
+{
+ /* If the next token is a `;', then we have an empty
+ expression-statement. Grammatically, this is also a
+ simple-declaration, but an invalid one, because it does not
+ declare anything. Therefore, if we did not handle this case
+ specially, we would issue an error message about an invalid
+ declaration. */
+ if (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON))
+ {
+ /* We're going to speculatively look for a declaration, falling back
+ to an expression, if necessary. */
+ cp_parser_parse_tentatively (parser);
+ /* Parse the declaration. */
+ cp_parser_simple_declaration (parser,
+ /*function_definition_allowed_p=*/false);
+ /* If the tentative parse failed, then we shall need to look for an
+ expression-statement. */
+ if (cp_parser_parse_definitely (parser))
+ return;
+ }
+
+ cp_parser_expression_statement (parser, false);
+}
+
+/* Parse a jump-statement.
+
+ jump-statement:
+ break ;
+ continue ;
+ return expression [opt] ;
+ goto identifier ;
+
+ GNU extension:
+
+ jump-statement:
+ goto * expression ;
+
+ Returns the new BREAK_STMT, CONTINUE_STMT, RETURN_STMT, or
+ GOTO_STMT. */
+
+static tree
+cp_parser_jump_statement (cp_parser* parser)
+{
+ tree statement = error_mark_node;
+ cp_token *token;
+ enum rid keyword;
+
+ /* Peek at the next token. */
+ token = cp_parser_require (parser, CPP_KEYWORD, "jump-statement");
+ if (!token)
+ return error_mark_node;
+
+ /* See what kind of keyword it is. */
+ keyword = token->keyword;
+ switch (keyword)
+ {
+ case RID_BREAK:
+ if (!parser->in_switch_statement_p
+ && !parser->in_iteration_statement_p)
+ {
+ error ("break statement not within loop or switch");
+ statement = error_mark_node;
+ }
+ else
+ statement = finish_break_stmt ();
+ cp_parser_require (parser, CPP_SEMICOLON, "`;'");
+ break;
+
+ case RID_CONTINUE:
+ if (!parser->in_iteration_statement_p)
+ {
+ error ("continue statement not within a loop");
+ statement = error_mark_node;
+ }
+ else
+ statement = finish_continue_stmt ();
+ cp_parser_require (parser, CPP_SEMICOLON, "`;'");
+ break;
+
+ case RID_RETURN:
+ {
+ tree expr;
+
+ /* If the next token is a `;', then there is no
+ expression. */
+ if (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON))
+ expr = cp_parser_expression (parser);
+ else
+ expr = NULL_TREE;
+ /* Build the return-statement. */
+ statement = finish_return_stmt (expr);
+ /* Look for the final `;'. */
+ cp_parser_require (parser, CPP_SEMICOLON, "`;'");
+ }
+ break;
+
+ case RID_GOTO:
+ /* Create the goto-statement. */
+ if (cp_lexer_next_token_is (parser->lexer, CPP_MULT))
+ {
+ /* Issue a warning about this use of a GNU extension. */
+ if (pedantic)
+ pedwarn ("ISO C++ forbids computed gotos");
+ /* Consume the '*' token. */
+ cp_lexer_consume_token (parser->lexer);
+ /* Parse the dependent expression. */
+ finish_goto_stmt (cp_parser_expression (parser));
+ }
+ else
+ finish_goto_stmt (cp_parser_identifier (parser));
+ /* Look for the final `;'. */
+ cp_parser_require (parser, CPP_SEMICOLON, "`;'");
+ break;
+
+ default:
+ cp_parser_error (parser, "expected jump-statement");
+ break;
+ }
+
+ return statement;
+}
+
+/* Parse a declaration-statement.
+
+ declaration-statement:
+ block-declaration */
+
+static void
+cp_parser_declaration_statement (cp_parser* parser)
+{
+ /* Parse the block-declaration. */
+ cp_parser_block_declaration (parser, /*statement_p=*/true);
+
+ /* Finish off the statement. */
+ finish_stmt ();
+}
+
+/* Some dependent statements (like `if (cond) statement'), are
+ implicitly in their own scope. In other words, if the statement is
+ a single statement (as opposed to a compound-statement), it is
+ none-the-less treated as if it were enclosed in braces. Any
+ declarations appearing in the dependent statement are out of scope
+ after control passes that point. This function parses a statement,
+ but ensures that is in its own scope, even if it is not a
+ compound-statement.
+
+ Returns the new statement. */
+
+static tree
+cp_parser_implicitly_scoped_statement (cp_parser* parser)
+{
+ tree statement;
+
+ /* If the token is not a `{', then we must take special action. */
+ if (cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_BRACE))
+ {
+ /* Create a compound-statement. */
+ statement = begin_compound_stmt (/*has_no_scope=*/false);
+ /* Parse the dependent-statement. */
+ cp_parser_statement (parser, false);
+ /* Finish the dummy compound-statement. */
+ finish_compound_stmt (statement);
+ }
+ /* Otherwise, we simply parse the statement directly. */
+ else
+ statement = cp_parser_compound_statement (parser, false);
+
+ /* Return the statement. */
+ return statement;
+}
+
+/* For some dependent statements (like `while (cond) statement'), we
+ have already created a scope. Therefore, even if the dependent
+ statement is a compound-statement, we do not want to create another
+ scope. */
+
+static void
+cp_parser_already_scoped_statement (cp_parser* parser)
+{
+ /* If the token is not a `{', then we must take special action. */
+ if (cp_lexer_next_token_is_not(parser->lexer, CPP_OPEN_BRACE))
+ {
+ tree statement;
+
+ /* Create a compound-statement. */
+ statement = begin_compound_stmt (/*has_no_scope=*/true);
+ /* Parse the dependent-statement. */
+ cp_parser_statement (parser, false);
+ /* Finish the dummy compound-statement. */
+ finish_compound_stmt (statement);
+ }
+ /* Otherwise, we simply parse the statement directly. */
+ else
+ cp_parser_statement (parser, false);
+}
+
+/* Declarations [gram.dcl.dcl] */
+
+/* Parse an optional declaration-sequence.
+
+ declaration-seq:
+ declaration
+ declaration-seq declaration */
+
+static void
+cp_parser_declaration_seq_opt (cp_parser* parser)
+{
+ while (true)
+ {
+ cp_token *token;
+
+ token = cp_lexer_peek_token (parser->lexer);
+
+ if (token->type == CPP_CLOSE_BRACE
+ || token->type == CPP_EOF)
+ break;
+
+ if (token->type == CPP_SEMICOLON)
+ {
+ /* A declaration consisting of a single semicolon is
+ invalid. Allow it unless we're being pedantic. */
+ if (pedantic && !in_system_header)
+ pedwarn ("extra `;'");
+ cp_lexer_consume_token (parser->lexer);
+ continue;
+ }
+
+ /* The C lexer modifies PENDING_LANG_CHANGE when it wants the
+ parser to enter or exit implicit `extern "C"' blocks. */
+ while (pending_lang_change > 0)
+ {
+ push_lang_context (lang_name_c);
+ --pending_lang_change;
+ }
+ while (pending_lang_change < 0)
+ {
+ pop_lang_context ();
+ ++pending_lang_change;
+ }
+
+ /* Parse the declaration itself. */
+ cp_parser_declaration (parser);
+ }
+}
+
+/* Parse a declaration.
+
+ declaration:
+ block-declaration
+ function-definition
+ template-declaration
+ explicit-instantiation
+ explicit-specialization
+ linkage-specification
+ namespace-definition
+
+ GNU extension:
+
+ declaration:
+ __extension__ declaration */
+
+static void
+cp_parser_declaration (cp_parser* parser)
+{
+ cp_token token1;
+ cp_token token2;
+ int saved_pedantic;
+
+ /* Check for the `__extension__' keyword. */
+ if (cp_parser_extension_opt (parser, &saved_pedantic))
+ {
+ /* Parse the qualified declaration. */
+ cp_parser_declaration (parser);
+ /* Restore the PEDANTIC flag. */
+ pedantic = saved_pedantic;
+
+ return;
+ }
+
+ /* Try to figure out what kind of declaration is present. */
+ token1 = *cp_lexer_peek_token (parser->lexer);
+ if (token1.type != CPP_EOF)
+ token2 = *cp_lexer_peek_nth_token (parser->lexer, 2);
+
+ /* If the next token is `extern' and the following token is a string
+ literal, then we have a linkage specification. */
+ if (token1.keyword == RID_EXTERN
+ && cp_parser_is_string_literal (&token2))
+ cp_parser_linkage_specification (parser);
+ /* If the next token is `template', then we have either a template
+ declaration, an explicit instantiation, or an explicit
+ specialization. */
+ else if (token1.keyword == RID_TEMPLATE)
+ {
+ /* `template <>' indicates a template specialization. */
+ if (token2.type == CPP_LESS
+ && cp_lexer_peek_nth_token (parser->lexer, 3)->type == CPP_GREATER)
+ cp_parser_explicit_specialization (parser);
+ /* `template <' indicates a template declaration. */
+ else if (token2.type == CPP_LESS)
+ cp_parser_template_declaration (parser, /*member_p=*/false);
+ /* Anything else must be an explicit instantiation. */
+ else
+ cp_parser_explicit_instantiation (parser);
+ }
+ /* If the next token is `export', then we have a template
+ declaration. */
+ else if (token1.keyword == RID_EXPORT)
+ cp_parser_template_declaration (parser, /*member_p=*/false);
+ /* If the next token is `extern', 'static' or 'inline' and the one
+ after that is `template', we have a GNU extended explicit
+ instantiation directive. */
+ else if (cp_parser_allow_gnu_extensions_p (parser)
+ && (token1.keyword == RID_EXTERN
+ || token1.keyword == RID_STATIC
+ || token1.keyword == RID_INLINE)
+ && token2.keyword == RID_TEMPLATE)
+ cp_parser_explicit_instantiation (parser);
+ /* If the next token is `namespace', check for a named or unnamed
+ namespace definition. */
+ else if (token1.keyword == RID_NAMESPACE
+ && (/* A named namespace definition. */
+ (token2.type == CPP_NAME
+ && (cp_lexer_peek_nth_token (parser->lexer, 3)->type
+ == CPP_OPEN_BRACE))
+ /* An unnamed namespace definition. */
+ || token2.type == CPP_OPEN_BRACE))
+ cp_parser_namespace_definition (parser);
+ /* We must have either a block declaration or a function
+ definition. */
+ else
+ /* Try to parse a block-declaration, or a function-definition. */
+ cp_parser_block_declaration (parser, /*statement_p=*/false);
+}
+
+/* Parse a block-declaration.
+
+ block-declaration:
+ simple-declaration
+ asm-definition
+ namespace-alias-definition
+ using-declaration
+ using-directive
+
+ GNU Extension:
+
+ block-declaration:
+ __extension__ block-declaration
+ label-declaration
+
+ If STATEMENT_P is TRUE, then this block-declaration is occurring as
+ part of a declaration-statement. */
+
+static void
+cp_parser_block_declaration (cp_parser *parser,
+ bool statement_p)
+{
+ cp_token *token1;
+ int saved_pedantic;
+
+ /* Check for the `__extension__' keyword. */
+ if (cp_parser_extension_opt (parser, &saved_pedantic))
+ {
+ /* Parse the qualified declaration. */
+ cp_parser_block_declaration (parser, statement_p);
+ /* Restore the PEDANTIC flag. */
+ pedantic = saved_pedantic;
+
+ return;
+ }
+
+ /* Peek at the next token to figure out which kind of declaration is
+ present. */
+ token1 = cp_lexer_peek_token (parser->lexer);
+
+ /* If the next keyword is `asm', we have an asm-definition. */
+ if (token1->keyword == RID_ASM)
+ {
+ if (statement_p)
+ cp_parser_commit_to_tentative_parse (parser);
+ cp_parser_asm_definition (parser);
+ }
+ /* If the next keyword is `namespace', we have a
+ namespace-alias-definition. */
+ else if (token1->keyword == RID_NAMESPACE)
+ cp_parser_namespace_alias_definition (parser);
+ /* If the next keyword is `using', we have either a
+ using-declaration or a using-directive. */
+ else if (token1->keyword == RID_USING)
+ {
+ cp_token *token2;
+
+ if (statement_p)
+ cp_parser_commit_to_tentative_parse (parser);
+ /* If the token after `using' is `namespace', then we have a
+ using-directive. */
+ token2 = cp_lexer_peek_nth_token (parser->lexer, 2);
+ if (token2->keyword == RID_NAMESPACE)
+ cp_parser_using_directive (parser);
+ /* Otherwise, it's a using-declaration. */
+ else
+ cp_parser_using_declaration (parser);
+ }
+ /* If the next keyword is `__label__' we have a label declaration. */
+ else if (token1->keyword == RID_LABEL)
+ {
+ if (statement_p)
+ cp_parser_commit_to_tentative_parse (parser);
+ cp_parser_label_declaration (parser);
+ }
+ /* Anything else must be a simple-declaration. */
+ else
+ cp_parser_simple_declaration (parser, !statement_p);
+}
+
+/* Parse a simple-declaration.
+
+ simple-declaration:
+ decl-specifier-seq [opt] init-declarator-list [opt] ;
+
+ init-declarator-list:
+ init-declarator
+ init-declarator-list , init-declarator
+
+ If FUNCTION_DEFINITION_ALLOWED_P is TRUE, then we also recognize a
+ function-definition as a simple-declaration. */
+
+static void
+cp_parser_simple_declaration (cp_parser* parser,
+ bool function_definition_allowed_p)
+{
+ tree decl_specifiers;
+ tree attributes;
+ int declares_class_or_enum;
+ bool saw_declarator;
+
+ /* Defer access checks until we know what is being declared; the
+ checks for names appearing in the decl-specifier-seq should be
+ done as if we were in the scope of the thing being declared. */
+ push_deferring_access_checks (dk_deferred);
+
+ /* Parse the decl-specifier-seq. We have to keep track of whether
+ or not the decl-specifier-seq declares a named class or
+ enumeration type, since that is the only case in which the
+ init-declarator-list is allowed to be empty.
+
+ [dcl.dcl]
+
+ In a simple-declaration, the optional init-declarator-list can be
+ omitted only when declaring a class or enumeration, that is when
+ the decl-specifier-seq contains either a class-specifier, an
+ elaborated-type-specifier, or an enum-specifier. */
+ decl_specifiers
+ = cp_parser_decl_specifier_seq (parser,
+ CP_PARSER_FLAGS_OPTIONAL,
+ &attributes,
+ &declares_class_or_enum);
+ /* We no longer need to defer access checks. */
+ stop_deferring_access_checks ();
+
+ /* In a block scope, a valid declaration must always have a
+ decl-specifier-seq. By not trying to parse declarators, we can
+ resolve the declaration/expression ambiguity more quickly. */
+ if (!function_definition_allowed_p && !decl_specifiers)
+ {
+ cp_parser_error (parser, "expected declaration");
+ goto done;
+ }
+
+ /* If the next two tokens are both identifiers, the code is
+ erroneous. The usual cause of this situation is code like:
+
+ T t;
+
+ where "T" should name a type -- but does not. */
+ if (cp_parser_diagnose_invalid_type_name (parser))
+ {
+ /* If parsing tentatively, we should commit; we really are
+ looking at a declaration. */
+ cp_parser_commit_to_tentative_parse (parser);
+ /* Give up. */
+ goto done;
+ }
+
+ /* Keep going until we hit the `;' at the end of the simple
+ declaration. */
+ saw_declarator = false;
+ while (cp_lexer_next_token_is_not (parser->lexer,
+ CPP_SEMICOLON))
+ {
+ cp_token *token;
+ bool function_definition_p;
+ tree decl;
+
+ saw_declarator = true;
+ /* Parse the init-declarator. */
+ decl = cp_parser_init_declarator (parser, decl_specifiers, attributes,
+ function_definition_allowed_p,
+ /*member_p=*/false,
+ declares_class_or_enum,
+ &function_definition_p);
+ /* If an error occurred while parsing tentatively, exit quickly.
+ (That usually happens when in the body of a function; each
+ statement is treated as a declaration-statement until proven
+ otherwise.) */
+ if (cp_parser_error_occurred (parser))
+ goto done;
+ /* Handle function definitions specially. */
+ if (function_definition_p)
+ {
+ /* If the next token is a `,', then we are probably
+ processing something like:
+
+ void f() {}, *p;
+
+ which is erroneous. */
+ if (cp_lexer_next_token_is (parser->lexer, CPP_COMMA))
+ error ("mixing declarations and function-definitions is forbidden");
+ /* Otherwise, we're done with the list of declarators. */
+ else
+ {
+ pop_deferring_access_checks ();
+ return;
+ }
+ }
+ /* The next token should be either a `,' or a `;'. */
+ token = cp_lexer_peek_token (parser->lexer);
+ /* If it's a `,', there are more declarators to come. */
+ if (token->type == CPP_COMMA)
+ cp_lexer_consume_token (parser->lexer);
+ /* If it's a `;', we are done. */
+ else if (token->type == CPP_SEMICOLON)
+ break;
+ /* Anything else is an error. */
+ else
+ {
+ cp_parser_error (parser, "expected `,' or `;'");
+ /* Skip tokens until we reach the end of the statement. */
+ cp_parser_skip_to_end_of_statement (parser);
+ /* If the next token is now a `;', consume it. */
+ if (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON))
+ cp_lexer_consume_token (parser->lexer);
+ goto done;
+ }
+ /* After the first time around, a function-definition is not
+ allowed -- even if it was OK at first. For example:
+
+ int i, f() {}
+
+ is not valid. */
+ function_definition_allowed_p = false;
+ }
+
+ /* Issue an error message if no declarators are present, and the
+ decl-specifier-seq does not itself declare a class or
+ enumeration. */
+ if (!saw_declarator)
+ {
+ if (cp_parser_declares_only_class_p (parser))
+ shadow_tag (decl_specifiers);
+ /* Perform any deferred access checks. */
+ perform_deferred_access_checks ();
+ }
+
+ /* Consume the `;'. */
+ cp_parser_require (parser, CPP_SEMICOLON, "`;'");
+
+ done:
+ pop_deferring_access_checks ();
+}
+
+/* Parse a decl-specifier-seq.
+
+ decl-specifier-seq:
+ decl-specifier-seq [opt] decl-specifier
+
+ decl-specifier:
+ storage-class-specifier
+ type-specifier
+ function-specifier
+ friend
+ typedef
+
+ GNU Extension:
+
+ decl-specifier:
+ attributes
+
+ Returns a TREE_LIST, giving the decl-specifiers in the order they
+ appear in the source code. The TREE_VALUE of each node is the
+ decl-specifier. For a keyword (such as `auto' or `friend'), the
+ TREE_VALUE is simply the corresponding TREE_IDENTIFIER. For the
+ representation of a type-specifier, see cp_parser_type_specifier.
+
+ If there are attributes, they will be stored in *ATTRIBUTES,
+ represented as described above cp_parser_attributes.
+
+ If FRIEND_IS_NOT_CLASS_P is non-NULL, and the `friend' specifier
+ appears, and the entity that will be a friend is not going to be a
+ class, then *FRIEND_IS_NOT_CLASS_P will be set to TRUE. Note that
+ even if *FRIEND_IS_NOT_CLASS_P is FALSE, the entity to which
+ friendship is granted might not be a class.
+
+ *DECLARES_CLASS_OR_ENUM is set to the bitwise or of the following
+ flags:
+
+ 1: one of the decl-specifiers is an elaborated-type-specifier
+ (i.e., a type declaration)
+ 2: one of the decl-specifiers is an enum-specifier or a
+ class-specifier (i.e., a type definition)
+
+ */
+
+static tree
+cp_parser_decl_specifier_seq (cp_parser* parser,
+ cp_parser_flags flags,
+ tree* attributes,
+ int* declares_class_or_enum)
+{
+ tree decl_specs = NULL_TREE;
+ bool friend_p = false;
+ bool constructor_possible_p = !parser->in_declarator_p;
+
+ /* Assume no class or enumeration type is declared. */
+ *declares_class_or_enum = 0;
+
+ /* Assume there are no attributes. */
+ *attributes = NULL_TREE;
+
+ /* Keep reading specifiers until there are no more to read. */
+ while (true)
+ {
+ tree decl_spec = NULL_TREE;
+ bool constructor_p;
+ cp_token *token;
+
+ /* Peek at the next token. */
+ token = cp_lexer_peek_token (parser->lexer);
+ /* Handle attributes. */
+ if (token->keyword == RID_ATTRIBUTE)
+ {
+ /* Parse the attributes. */
+ decl_spec = cp_parser_attributes_opt (parser);
+ /* Add them to the list. */
+ *attributes = chainon (*attributes, decl_spec);
+ continue;
+ }
+ /* If the next token is an appropriate keyword, we can simply
+ add it to the list. */
+ switch (token->keyword)
+ {
+ case RID_FRIEND:
+ /* decl-specifier:
+ friend */
+ if (friend_p)
+ error ("duplicate `friend'");
+ else
+ friend_p = true;
+ /* The representation of the specifier is simply the
+ appropriate TREE_IDENTIFIER node. */
+ decl_spec = token->value;
+ /* Consume the token. */
+ cp_lexer_consume_token (parser->lexer);
+ break;
+
+ /* function-specifier:
+ inline
+ virtual
+ explicit */
+ case RID_INLINE:
+ case RID_VIRTUAL:
+ case RID_EXPLICIT:
+ decl_spec = cp_parser_function_specifier_opt (parser);
+ break;
+
+ /* decl-specifier:
+ typedef */
+ case RID_TYPEDEF:
+ /* The representation of the specifier is simply the
+ appropriate TREE_IDENTIFIER node. */
+ decl_spec = token->value;
+ /* Consume the token. */
+ cp_lexer_consume_token (parser->lexer);
+ /* A constructor declarator cannot appear in a typedef. */
+ constructor_possible_p = false;
+ /* The "typedef" keyword can only occur in a declaration; we
+ may as well commit at this point. */
+ cp_parser_commit_to_tentative_parse (parser);
+ break;
+
+ /* storage-class-specifier:
+ auto
+ register
+ static
+ extern
+ mutable
+
+ GNU Extension:
+ thread */
+ case RID_AUTO:
+ case RID_REGISTER:
+ case RID_STATIC:
+ case RID_EXTERN:
+ case RID_MUTABLE:
+ case RID_THREAD:
+ decl_spec = cp_parser_storage_class_specifier_opt (parser);
+ break;
+
+ default:
+ break;
+ }
+
+ /* Constructors are a special case. The `S' in `S()' is not a
+ decl-specifier; it is the beginning of the declarator. */
+ constructor_p = (!decl_spec
+ && constructor_possible_p
+ && cp_parser_constructor_declarator_p (parser,
+ friend_p));
+
+ /* If we don't have a DECL_SPEC yet, then we must be looking at
+ a type-specifier. */
+ if (!decl_spec && !constructor_p)
+ {
+ int decl_spec_declares_class_or_enum;
+ bool is_cv_qualifier;
+
+ decl_spec
+ = cp_parser_type_specifier (parser, flags,
+ friend_p,
+ /*is_declaration=*/true,
+ &decl_spec_declares_class_or_enum,
+ &is_cv_qualifier);
+
+ *declares_class_or_enum |= decl_spec_declares_class_or_enum;
+
+ /* If this type-specifier referenced a user-defined type
+ (a typedef, class-name, etc.), then we can't allow any
+ more such type-specifiers henceforth.
+
+ [dcl.spec]
+
+ The longest sequence of decl-specifiers that could
+ possibly be a type name is taken as the
+ decl-specifier-seq of a declaration. The sequence shall
+ be self-consistent as described below.
+
+ [dcl.type]
+
+ As a general rule, at most one type-specifier is allowed
+ in the complete decl-specifier-seq of a declaration. The
+ only exceptions are the following:
+
+ -- const or volatile can be combined with any other
+ type-specifier.
+
+ -- signed or unsigned can be combined with char, long,
+ short, or int.
+
+ -- ..
+
+ Example:
+
+ typedef char* Pc;
+ void g (const int Pc);
+
+ Here, Pc is *not* part of the decl-specifier seq; it's
+ the declarator. Therefore, once we see a type-specifier
+ (other than a cv-qualifier), we forbid any additional
+ user-defined types. We *do* still allow things like `int
+ int' to be considered a decl-specifier-seq, and issue the
+ error message later. */
+ if (decl_spec && !is_cv_qualifier)
+ flags |= CP_PARSER_FLAGS_NO_USER_DEFINED_TYPES;
+ /* A constructor declarator cannot follow a type-specifier. */
+ if (decl_spec)
+ constructor_possible_p = false;
+ }
+
+ /* If we still do not have a DECL_SPEC, then there are no more
+ decl-specifiers. */
+ if (!decl_spec)
+ {
+ /* Issue an error message, unless the entire construct was
+ optional. */
+ if (!(flags & CP_PARSER_FLAGS_OPTIONAL))
+ {
+ cp_parser_error (parser, "expected decl specifier");
+ return error_mark_node;
+ }
+
+ break;
+ }
+
+ /* Add the DECL_SPEC to the list of specifiers. */
+ if (decl_specs == NULL || TREE_VALUE (decl_specs) != error_mark_node)
+ decl_specs = tree_cons (NULL_TREE, decl_spec, decl_specs);
+
+ /* After we see one decl-specifier, further decl-specifiers are
+ always optional. */
+ flags |= CP_PARSER_FLAGS_OPTIONAL;
+ }
+
+ /* Don't allow a friend specifier with a class definition. */
+ if (friend_p && (*declares_class_or_enum & 2))
+ error ("class definition may not be declared a friend");
+
+ /* We have built up the DECL_SPECS in reverse order. Return them in
+ the correct order. */
+ return nreverse (decl_specs);
+}
+
+/* Parse an (optional) storage-class-specifier.
+
+ storage-class-specifier:
+ auto
+ register
+ static
+ extern
+ mutable
+
+ GNU Extension:
+
+ storage-class-specifier:
+ thread
+
+ Returns an IDENTIFIER_NODE corresponding to the keyword used. */
+
+static tree
+cp_parser_storage_class_specifier_opt (cp_parser* parser)
+{
+ switch (cp_lexer_peek_token (parser->lexer)->keyword)
+ {
+ case RID_AUTO:
+ case RID_REGISTER:
+ case RID_STATIC:
+ case RID_EXTERN:
+ case RID_MUTABLE:
+ case RID_THREAD:
+ /* Consume the token. */
+ return cp_lexer_consume_token (parser->lexer)->value;
+
+ default:
+ return NULL_TREE;
+ }
+}
+
+/* Parse an (optional) function-specifier.
+
+ function-specifier:
+ inline
+ virtual
+ explicit
+
+ Returns an IDENTIFIER_NODE corresponding to the keyword used. */
+
+static tree
+cp_parser_function_specifier_opt (cp_parser* parser)
+{
+ switch (cp_lexer_peek_token (parser->lexer)->keyword)
+ {
+ case RID_INLINE:
+ case RID_VIRTUAL:
+ case RID_EXPLICIT:
+ /* Consume the token. */
+ return cp_lexer_consume_token (parser->lexer)->value;
+
+ default:
+ return NULL_TREE;
+ }
+}
+
+/* Parse a linkage-specification.
+
+ linkage-specification:
+ extern string-literal { declaration-seq [opt] }
+ extern string-literal declaration */
+
+static void
+cp_parser_linkage_specification (cp_parser* parser)
+{
+ cp_token *token;
+ tree linkage;
+
+ /* Look for the `extern' keyword. */
+ cp_parser_require_keyword (parser, RID_EXTERN, "`extern'");
+
+ /* Peek at the next token. */
+ token = cp_lexer_peek_token (parser->lexer);
+ /* If it's not a string-literal, then there's a problem. */
+ if (!cp_parser_is_string_literal (token))
+ {
+ cp_parser_error (parser, "expected language-name");
+ return;
+ }
+ /* Consume the token. */
+ cp_lexer_consume_token (parser->lexer);
+
+ /* Transform the literal into an identifier. If the literal is a
+ wide-character string, or contains embedded NULs, then we can't
+ handle it as the user wants. */
+ if (token->type == CPP_WSTRING
+ || (strlen (TREE_STRING_POINTER (token->value))
+ != (size_t) (TREE_STRING_LENGTH (token->value) - 1)))
+ {
+ cp_parser_error (parser, "invalid linkage-specification");
+ /* Assume C++ linkage. */
+ linkage = get_identifier ("c++");
+ }
+ /* If it's a simple string constant, things are easier. */
+ else
+ linkage = get_identifier (TREE_STRING_POINTER (token->value));
+
+ /* We're now using the new linkage. */
+ push_lang_context (linkage);
+
+ /* If the next token is a `{', then we're using the first
+ production. */
+ if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE))
+ {
+ /* Consume the `{' token. */
+ cp_lexer_consume_token (parser->lexer);
+ /* Parse the declarations. */
+ cp_parser_declaration_seq_opt (parser);
+ /* Look for the closing `}'. */
+ cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
+ }
+ /* Otherwise, there's just one declaration. */
+ else
+ {
+ bool saved_in_unbraced_linkage_specification_p;
+
+ saved_in_unbraced_linkage_specification_p
+ = parser->in_unbraced_linkage_specification_p;
+ parser->in_unbraced_linkage_specification_p = true;
+ have_extern_spec = true;
+ cp_parser_declaration (parser);
+ have_extern_spec = false;
+ parser->in_unbraced_linkage_specification_p
+ = saved_in_unbraced_linkage_specification_p;
+ }
+
+ /* We're done with the linkage-specification. */
+ pop_lang_context ();
+}
+
+/* Special member functions [gram.special] */
+
+/* Parse a conversion-function-id.
+
+ conversion-function-id:
+ operator conversion-type-id
+
+ Returns an IDENTIFIER_NODE representing the operator. */
+
+static tree
+cp_parser_conversion_function_id (cp_parser* parser)
+{
+ tree type;
+ tree saved_scope;
+ tree saved_qualifying_scope;
+ tree saved_object_scope;
+ bool pop_p = false;
+
+ /* Look for the `operator' token. */
+ if (!cp_parser_require_keyword (parser, RID_OPERATOR, "`operator'"))
+ return error_mark_node;
+ /* When we parse the conversion-type-id, the current scope will be
+ reset. However, we need that information in able to look up the
+ conversion function later, so we save it here. */
+ saved_scope = parser->scope;
+ saved_qualifying_scope = parser->qualifying_scope;
+ saved_object_scope = parser->object_scope;
+ /* We must enter the scope of the class so that the names of
+ entities declared within the class are available in the
+ conversion-type-id. For example, consider:
+
+ struct S {
+ typedef int I;
+ operator I();
+ };
+
+ S::operator I() { ... }
+
+ In order to see that `I' is a type-name in the definition, we
+ must be in the scope of `S'. */
+ if (saved_scope)
+ pop_p = push_scope (saved_scope);
+ /* Parse the conversion-type-id. */
+ type = cp_parser_conversion_type_id (parser);
+ /* Leave the scope of the class, if any. */
+ if (pop_p)
+ pop_scope (saved_scope);
+ /* Restore the saved scope. */
+ parser->scope = saved_scope;
+ parser->qualifying_scope = saved_qualifying_scope;
+ parser->object_scope = saved_object_scope;
+ /* If the TYPE is invalid, indicate failure. */
+ if (type == error_mark_node)
+ return error_mark_node;
+ return mangle_conv_op_name_for_type (type);
+}
+
+/* Parse a conversion-type-id:
+
+ conversion-type-id:
+ type-specifier-seq conversion-declarator [opt]
+
+ Returns the TYPE specified. */
+
+static tree
+cp_parser_conversion_type_id (cp_parser* parser)
+{
+ tree attributes;
+ tree type_specifiers;
+ tree declarator;
+
+ /* Parse the attributes. */
+ attributes = cp_parser_attributes_opt (parser);
+ /* Parse the type-specifiers. */
+ type_specifiers = cp_parser_type_specifier_seq (parser);
+ /* If that didn't work, stop. */
+ if (type_specifiers == error_mark_node)
+ return error_mark_node;
+ /* Parse the conversion-declarator. */
+ declarator = cp_parser_conversion_declarator_opt (parser);
+
+ return grokdeclarator (declarator, type_specifiers, TYPENAME,
+ /*initialized=*/0, &attributes);
+}
+
+/* Parse an (optional) conversion-declarator.
+
+ conversion-declarator:
+ ptr-operator conversion-declarator [opt]
+
+ Returns a representation of the declarator. See
+ cp_parser_declarator for details. */
+
+static tree
+cp_parser_conversion_declarator_opt (cp_parser* parser)
+{
+ enum tree_code code;
+ tree class_type;
+ tree cv_qualifier_seq;
+
+ /* We don't know if there's a ptr-operator next, or not. */
+ cp_parser_parse_tentatively (parser);
+ /* Try the ptr-operator. */
+ code = cp_parser_ptr_operator (parser, &class_type,
+ &cv_qualifier_seq);
+ /* If it worked, look for more conversion-declarators. */
+ if (cp_parser_parse_definitely (parser))
+ {
+ tree declarator;
+
+ /* Parse another optional declarator. */
+ declarator = cp_parser_conversion_declarator_opt (parser);
+
+ /* Create the representation of the declarator. */
+ if (code == INDIRECT_REF)
+ declarator = make_pointer_declarator (cv_qualifier_seq,
+ declarator);
+ else
+ declarator = make_reference_declarator (cv_qualifier_seq,
+ declarator);
+
+ /* Handle the pointer-to-member case. */
+ if (class_type)
+ declarator = build_nt (SCOPE_REF, class_type, declarator);
+
+ return declarator;
+ }
+
+ return NULL_TREE;
+}
+
+/* Parse an (optional) ctor-initializer.
+
+ ctor-initializer:
+ : mem-initializer-list
+
+ Returns TRUE iff the ctor-initializer was actually present. */
+
+static bool
+cp_parser_ctor_initializer_opt (cp_parser* parser)
+{
+ /* If the next token is not a `:', then there is no
+ ctor-initializer. */
+ if (cp_lexer_next_token_is_not (parser->lexer, CPP_COLON))
+ {
+ /* Do default initialization of any bases and members. */
+ if (DECL_CONSTRUCTOR_P (current_function_decl))
+ finish_mem_initializers (NULL_TREE);
+
+ return false;
+ }
+
+ /* Consume the `:' token. */
+ cp_lexer_consume_token (parser->lexer);
+ /* And the mem-initializer-list. */
+ cp_parser_mem_initializer_list (parser);
+
+ return true;
+}
+
+/* Parse a mem-initializer-list.
+
+ mem-initializer-list:
+ mem-initializer
+ mem-initializer , mem-initializer-list */
+
+static void
+cp_parser_mem_initializer_list (cp_parser* parser)
+{
+ tree mem_initializer_list = NULL_TREE;
+
+ /* Let the semantic analysis code know that we are starting the
+ mem-initializer-list. */
+ if (!DECL_CONSTRUCTOR_P (current_function_decl))
+ error ("only constructors take base initializers");
+
+ /* Loop through the list. */
+ while (true)
+ {
+ tree mem_initializer;
+
+ /* Parse the mem-initializer. */
+ mem_initializer = cp_parser_mem_initializer (parser);
+ /* Add it to the list, unless it was erroneous. */
+ if (mem_initializer)
+ {
+ TREE_CHAIN (mem_initializer) = mem_initializer_list;
+ mem_initializer_list = mem_initializer;
+ }
+ /* If the next token is not a `,', we're done. */
+ if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
+ break;
+ /* Consume the `,' token. */
+ cp_lexer_consume_token (parser->lexer);
+ }
+
+ /* Perform semantic analysis. */
+ if (DECL_CONSTRUCTOR_P (current_function_decl))
+ finish_mem_initializers (mem_initializer_list);
+}
+
+/* Parse a mem-initializer.
+
+ mem-initializer:
+ mem-initializer-id ( expression-list [opt] )
+
+ GNU extension:
+
+ mem-initializer:
+ ( expression-list [opt] )
+
+ Returns a TREE_LIST. The TREE_PURPOSE is the TYPE (for a base
+ class) or FIELD_DECL (for a non-static data member) to initialize;
+ the TREE_VALUE is the expression-list. */
+
+static tree
+cp_parser_mem_initializer (cp_parser* parser)
+{
+ tree mem_initializer_id;
+ tree expression_list;
+ tree member;
+
+ /* Find out what is being initialized. */
+ if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN))
+ {
+ pedwarn ("anachronistic old-style base class initializer");
+ mem_initializer_id = NULL_TREE;
+ }
+ else
+ mem_initializer_id = cp_parser_mem_initializer_id (parser);
+ member = expand_member_init (mem_initializer_id);
+ if (member && !DECL_P (member))
+ in_base_initializer = 1;
+
+ expression_list
+ = cp_parser_parenthesized_expression_list (parser, false,
+ /*non_constant_p=*/NULL);
+ if (!expression_list)
+ expression_list = void_type_node;
+
+ in_base_initializer = 0;
+
+ return member ? build_tree_list (member, expression_list) : NULL_TREE;
+}
+
+/* Parse a mem-initializer-id.
+
+ mem-initializer-id:
+ :: [opt] nested-name-specifier [opt] class-name
+ identifier
+
+ Returns a TYPE indicating the class to be initializer for the first
+ production. Returns an IDENTIFIER_NODE indicating the data member
+ to be initialized for the second production. */
+
+static tree
+cp_parser_mem_initializer_id (cp_parser* parser)
+{
+ bool global_scope_p;
+ bool nested_name_specifier_p;
+ bool template_p = false;
+ tree id;
+
+ /* `typename' is not allowed in this context ([temp.res]). */
+ if (cp_lexer_next_token_is_keyword (parser->lexer, RID_TYPENAME))
+ {
+ error ("keyword `typename' not allowed in this context (a qualified "
+ "member initializer is implicitly a type)");
+ cp_lexer_consume_token (parser->lexer);
+ }
+ /* Look for the optional `::' operator. */
+ global_scope_p
+ = (cp_parser_global_scope_opt (parser,
+ /*current_scope_valid_p=*/false)
+ != NULL_TREE);
+ /* Look for the optional nested-name-specifier. The simplest way to
+ implement:
+
+ [temp.res]
+
+ The keyword `typename' is not permitted in a base-specifier or
+ mem-initializer; in these contexts a qualified name that
+ depends on a template-parameter is implicitly assumed to be a
+ type name.
+
+ is to assume that we have seen the `typename' keyword at this
+ point. */
+ nested_name_specifier_p
+ = (cp_parser_nested_name_specifier_opt (parser,
+ /*typename_keyword_p=*/true,
+ /*check_dependency_p=*/true,
+ /*type_p=*/true,
+ /*is_declaration=*/true)
+ != NULL_TREE);
+ if (nested_name_specifier_p)
+ template_p = cp_parser_optional_template_keyword (parser);
+ /* If there is a `::' operator or a nested-name-specifier, then we
+ are definitely looking for a class-name. */
+ if (global_scope_p || nested_name_specifier_p)
+ return cp_parser_class_name (parser,
+ /*typename_keyword_p=*/true,
+ /*template_keyword_p=*/template_p,
+ /*type_p=*/false,
+ /*check_dependency_p=*/true,
+ /*class_head_p=*/false,
+ /*is_declaration=*/true);
+ /* Otherwise, we could also be looking for an ordinary identifier. */
+ cp_parser_parse_tentatively (parser);
+ /* Try a class-name. */
+ id = cp_parser_class_name (parser,
+ /*typename_keyword_p=*/true,
+ /*template_keyword_p=*/false,
+ /*type_p=*/false,
+ /*check_dependency_p=*/true,
+ /*class_head_p=*/false,
+ /*is_declaration=*/true);
+ /* If we found one, we're done. */
+ if (cp_parser_parse_definitely (parser))
+ return id;
+ /* Otherwise, look for an ordinary identifier. */
+ return cp_parser_identifier (parser);
+}
+
+/* Overloading [gram.over] */
+
+/* Parse an operator-function-id.
+
+ operator-function-id:
+ operator operator
+
+ Returns an IDENTIFIER_NODE for the operator which is a
+ human-readable spelling of the identifier, e.g., `operator +'. */
+
+static tree
+cp_parser_operator_function_id (cp_parser* parser)
+{
+ /* Look for the `operator' keyword. */
+ if (!cp_parser_require_keyword (parser, RID_OPERATOR, "`operator'"))
+ return error_mark_node;
+ /* And then the name of the operator itself. */
+ return cp_parser_operator (parser);
+}
+
+/* Parse an operator.
+
+ operator:
+ new delete new[] delete[] + - * / % ^ & | ~ ! = < >
+ += -= *= /= %= ^= &= |= << >> >>= <<= == != <= >= &&
+ || ++ -- , ->* -> () []
+
+ GNU Extensions:
+
+ operator:
+ <? >? <?= >?=
+
+ Returns an IDENTIFIER_NODE for the operator which is a
+ human-readable spelling of the identifier, e.g., `operator +'. */
+
+static tree
+cp_parser_operator (cp_parser* parser)
+{
+ tree id = NULL_TREE;
+ cp_token *token;
+
+ /* Peek at the next token. */
+ token = cp_lexer_peek_token (parser->lexer);
+ /* Figure out which operator we have. */
+ switch (token->type)
+ {
+ case CPP_KEYWORD:
+ {
+ enum tree_code op;
+
+ /* The keyword should be either `new' or `delete'. */
+ if (token->keyword == RID_NEW)
+ op = NEW_EXPR;
+ else if (token->keyword == RID_DELETE)
+ op = DELETE_EXPR;
+ else
+ break;
+
+ /* Consume the `new' or `delete' token. */
+ cp_lexer_consume_token (parser->lexer);
+
+ /* Peek at the next token. */
+ token = cp_lexer_peek_token (parser->lexer);
+ /* If it's a `[' token then this is the array variant of the
+ operator. */
+ if (token->type == CPP_OPEN_SQUARE)
+ {
+ /* Consume the `[' token. */
+ cp_lexer_consume_token (parser->lexer);
+ /* Look for the `]' token. */
+ cp_parser_require (parser, CPP_CLOSE_SQUARE, "`]'");
+ id = ansi_opname (op == NEW_EXPR
+ ? VEC_NEW_EXPR : VEC_DELETE_EXPR);
+ }
+ /* Otherwise, we have the non-array variant. */
+ else
+ id = ansi_opname (op);
+
+ return id;
+ }
+
+ case CPP_PLUS:
+ id = ansi_opname (PLUS_EXPR);
+ break;
+
+ case CPP_MINUS:
+ id = ansi_opname (MINUS_EXPR);
+ break;
+
+ case CPP_MULT:
+ id = ansi_opname (MULT_EXPR);
+ break;
+
+ case CPP_DIV:
+ id = ansi_opname (TRUNC_DIV_EXPR);
+ break;
+
+ case CPP_MOD:
+ id = ansi_opname (TRUNC_MOD_EXPR);
+ break;
+
+ case CPP_XOR:
+ id = ansi_opname (BIT_XOR_EXPR);
+ break;
+
+ case CPP_AND:
+ id = ansi_opname (BIT_AND_EXPR);
+ break;
+
+ case CPP_OR:
+ id = ansi_opname (BIT_IOR_EXPR);
+ break;
+
+ case CPP_COMPL:
+ id = ansi_opname (BIT_NOT_EXPR);
+ break;
+
+ case CPP_NOT:
+ id = ansi_opname (TRUTH_NOT_EXPR);
+ break;
+
+ case CPP_EQ:
+ id = ansi_assopname (NOP_EXPR);
+ break;
+
+ case CPP_LESS:
+ id = ansi_opname (LT_EXPR);
+ break;
+
+ case CPP_GREATER:
+ id = ansi_opname (GT_EXPR);
+ break;
+
+ case CPP_PLUS_EQ:
+ id = ansi_assopname (PLUS_EXPR);
+ break;
+
+ case CPP_MINUS_EQ:
+ id = ansi_assopname (MINUS_EXPR);
+ break;
+
+ case CPP_MULT_EQ:
+ id = ansi_assopname (MULT_EXPR);
+ break;
+
+ case CPP_DIV_EQ:
+ id = ansi_assopname (TRUNC_DIV_EXPR);
+ break;
+
+ case CPP_MOD_EQ:
+ id = ansi_assopname (TRUNC_MOD_EXPR);
+ break;
+
+ case CPP_XOR_EQ:
+ id = ansi_assopname (BIT_XOR_EXPR);
+ break;
+
+ case CPP_AND_EQ:
+ id = ansi_assopname (BIT_AND_EXPR);
+ break;
+
+ case CPP_OR_EQ:
+ id = ansi_assopname (BIT_IOR_EXPR);
+ break;
+
+ case CPP_LSHIFT:
+ id = ansi_opname (LSHIFT_EXPR);
+ break;
+
+ case CPP_RSHIFT:
+ id = ansi_opname (RSHIFT_EXPR);
+ break;
+
+ case CPP_LSHIFT_EQ:
+ id = ansi_assopname (LSHIFT_EXPR);
+ break;
+
+ case CPP_RSHIFT_EQ:
+ id = ansi_assopname (RSHIFT_EXPR);
+ break;
+
+ case CPP_EQ_EQ:
+ id = ansi_opname (EQ_EXPR);
+ break;
+
+ case CPP_NOT_EQ:
+ id = ansi_opname (NE_EXPR);
+ break;
+
+ case CPP_LESS_EQ:
+ id = ansi_opname (LE_EXPR);
+ break;
+
+ case CPP_GREATER_EQ:
+ id = ansi_opname (GE_EXPR);
+ break;
+
+ case CPP_AND_AND:
+ id = ansi_opname (TRUTH_ANDIF_EXPR);
+ break;
+
+ case CPP_OR_OR:
+ id = ansi_opname (TRUTH_ORIF_EXPR);
+ break;
+
+ case CPP_PLUS_PLUS:
+ id = ansi_opname (POSTINCREMENT_EXPR);
+ break;
+
+ case CPP_MINUS_MINUS:
+ id = ansi_opname (PREDECREMENT_EXPR);
+ break;
+
+ case CPP_COMMA:
+ id = ansi_opname (COMPOUND_EXPR);
+ break;
+
+ case CPP_DEREF_STAR:
+ id = ansi_opname (MEMBER_REF);
+ break;
+
+ case CPP_DEREF:
+ id = ansi_opname (COMPONENT_REF);
+ break;
+
+ case CPP_OPEN_PAREN:
+ /* Consume the `('. */
+ cp_lexer_consume_token (parser->lexer);
+ /* Look for the matching `)'. */
+ cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
+ return ansi_opname (CALL_EXPR);
+
+ case CPP_OPEN_SQUARE:
+ /* Consume the `['. */
+ cp_lexer_consume_token (parser->lexer);
+ /* Look for the matching `]'. */
+ cp_parser_require (parser, CPP_CLOSE_SQUARE, "`]'");
+ return ansi_opname (ARRAY_REF);
+
+ /* Extensions. */
+ case CPP_MIN:
+ id = ansi_opname (MIN_EXPR);
+ break;
+
+ case CPP_MAX:
+ id = ansi_opname (MAX_EXPR);
+ break;
+
+ case CPP_MIN_EQ:
+ id = ansi_assopname (MIN_EXPR);
+ break;
+
+ case CPP_MAX_EQ:
+ id = ansi_assopname (MAX_EXPR);
+ break;
+
+ default:
+ /* Anything else is an error. */
+ break;
+ }
+
+ /* If we have selected an identifier, we need to consume the
+ operator token. */
+ if (id)
+ cp_lexer_consume_token (parser->lexer);
+ /* Otherwise, no valid operator name was present. */
+ else
+ {
+ cp_parser_error (parser, "expected operator");
+ id = error_mark_node;
+ }
+
+ return id;
+}
+
+/* Parse a template-declaration.
+
+ template-declaration:
+ export [opt] template < template-parameter-list > declaration
+
+ If MEMBER_P is TRUE, this template-declaration occurs within a
+ class-specifier.
+
+ The grammar rule given by the standard isn't correct. What
+ is really meant is:
+
+ template-declaration:
+ export [opt] template-parameter-list-seq
+ decl-specifier-seq [opt] init-declarator [opt] ;
+ export [opt] template-parameter-list-seq
+ function-definition
+
+ template-parameter-list-seq:
+ template-parameter-list-seq [opt]
+ template < template-parameter-list > */
+
+static void
+cp_parser_template_declaration (cp_parser* parser, bool member_p)
+{
+ /* Check for `export'. */
+ if (cp_lexer_next_token_is_keyword (parser->lexer, RID_EXPORT))
+ {
+ /* Consume the `export' token. */
+ cp_lexer_consume_token (parser->lexer);
+ /* Warn that we do not support `export'. */
+ warning ("keyword `export' not implemented, and will be ignored");
+ }
+
+ cp_parser_template_declaration_after_export (parser, member_p);
+}
+
+/* Parse a template-parameter-list.
+
+ template-parameter-list:
+ template-parameter
+ template-parameter-list , template-parameter
+
+ Returns a TREE_LIST. Each node represents a template parameter.
+ The nodes are connected via their TREE_CHAINs. */
+
+static tree
+cp_parser_template_parameter_list (cp_parser* parser)
+{
+ tree parameter_list = NULL_TREE;
+
+ while (true)
+ {
+ tree parameter;
+ cp_token *token;
+
+ /* Parse the template-parameter. */
+ parameter = cp_parser_template_parameter (parser);
+ /* Add it to the list. */
+ parameter_list = process_template_parm (parameter_list,
+ parameter);
+
+ /* Peek at the next token. */
+ token = cp_lexer_peek_token (parser->lexer);
+ /* If it's not a `,', we're done. */
+ if (token->type != CPP_COMMA)
+ break;
+ /* Otherwise, consume the `,' token. */
+ cp_lexer_consume_token (parser->lexer);
+ }
+
+ return parameter_list;
+}
+
+/* Parse a template-parameter.
+
+ template-parameter:
+ type-parameter
+ parameter-declaration
+
+ Returns a TREE_LIST. The TREE_VALUE represents the parameter. The
+ TREE_PURPOSE is the default value, if any. */
+
+static tree
+cp_parser_template_parameter (cp_parser* parser)
+{
+ cp_token *token;
+
+ /* Peek at the next token. */
+ token = cp_lexer_peek_token (parser->lexer);
+ /* If it is `class' or `template', we have a type-parameter. */
+ if (token->keyword == RID_TEMPLATE)
+ return cp_parser_type_parameter (parser);
+ /* If it is `class' or `typename' we do not know yet whether it is a
+ type parameter or a non-type parameter. Consider:
+
+ template <typename T, typename T::X X> ...
+
+ or:
+
+ template <class C, class D*> ...
+
+ Here, the first parameter is a type parameter, and the second is
+ a non-type parameter. We can tell by looking at the token after
+ the identifier -- if it is a `,', `=', or `>' then we have a type
+ parameter. */
+ if (token->keyword == RID_TYPENAME || token->keyword == RID_CLASS)
+ {
+ /* Peek at the token after `class' or `typename'. */
+ token = cp_lexer_peek_nth_token (parser->lexer, 2);
+ /* If it's an identifier, skip it. */
+ if (token->type == CPP_NAME)
+ token = cp_lexer_peek_nth_token (parser->lexer, 3);
+ /* Now, see if the token looks like the end of a template
+ parameter. */
+ if (token->type == CPP_COMMA
+ || token->type == CPP_EQ
+ || token->type == CPP_GREATER)
+ return cp_parser_type_parameter (parser);
+ }
+
+ /* Otherwise, it is a non-type parameter.
+
+ [temp.param]
+
+ When parsing a default template-argument for a non-type
+ template-parameter, the first non-nested `>' is taken as the end
+ of the template parameter-list rather than a greater-than
+ operator. */
+ return
+ cp_parser_parameter_declaration (parser, /*template_parm_p=*/true,
+ /*parenthesized_p=*/NULL);
+}
+
+/* Parse a type-parameter.
+
+ type-parameter:
+ class identifier [opt]
+ class identifier [opt] = type-id
+ typename identifier [opt]
+ typename identifier [opt] = type-id
+ template < template-parameter-list > class identifier [opt]
+ template < template-parameter-list > class identifier [opt]
+ = id-expression
+
+ Returns a TREE_LIST. The TREE_VALUE is itself a TREE_LIST. The
+ TREE_PURPOSE is the default-argument, if any. The TREE_VALUE is
+ the declaration of the parameter. */
+
+static tree
+cp_parser_type_parameter (cp_parser* parser)
+{
+ cp_token *token;
+ tree parameter;
+
+ /* Look for a keyword to tell us what kind of parameter this is. */
+ token = cp_parser_require (parser, CPP_KEYWORD,
+ "`class', `typename', or `template'");
+ if (!token)
+ return error_mark_node;
+
+ switch (token->keyword)
+ {
+ case RID_CLASS:
+ case RID_TYPENAME:
+ {
+ tree identifier;
+ tree default_argument;
+
+ /* If the next token is an identifier, then it names the
+ parameter. */
+ if (cp_lexer_next_token_is (parser->lexer, CPP_NAME))
+ identifier = cp_parser_identifier (parser);
+ else
+ identifier = NULL_TREE;
+
+ /* Create the parameter. */
+ parameter = finish_template_type_parm (class_type_node, identifier);
+
+ /* If the next token is an `=', we have a default argument. */
+ if (cp_lexer_next_token_is (parser->lexer, CPP_EQ))
+ {
+ /* Consume the `=' token. */
+ cp_lexer_consume_token (parser->lexer);
+ /* Parse the default-argument. */
+ default_argument = cp_parser_type_id (parser);
+ }
+ else
+ default_argument = NULL_TREE;
+
+ /* Create the combined representation of the parameter and the
+ default argument. */
+ parameter = build_tree_list (default_argument, parameter);
+ }
+ break;
+
+ case RID_TEMPLATE:
+ {
+ tree parameter_list;
+ tree identifier;
+ tree default_argument;
+
+ /* Look for the `<'. */
+ cp_parser_require (parser, CPP_LESS, "`<'");
+ /* Parse the template-parameter-list. */
+ begin_template_parm_list ();
+ parameter_list
+ = cp_parser_template_parameter_list (parser);
+ parameter_list = end_template_parm_list (parameter_list);
+ /* Look for the `>'. */
+ cp_parser_require (parser, CPP_GREATER, "`>'");
+ /* Look for the `class' keyword. */
+ cp_parser_require_keyword (parser, RID_CLASS, "`class'");
+ /* If the next token is an `=', then there is a
+ default-argument. If the next token is a `>', we are at
+ the end of the parameter-list. If the next token is a `,',
+ then we are at the end of this parameter. */
+ if (cp_lexer_next_token_is_not (parser->lexer, CPP_EQ)
+ && cp_lexer_next_token_is_not (parser->lexer, CPP_GREATER)
+ && cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
+ identifier = cp_parser_identifier (parser);
+ else
+ identifier = NULL_TREE;
+ /* Create the template parameter. */
+ parameter = finish_template_template_parm (class_type_node,
+ identifier);
+
+ /* If the next token is an `=', then there is a
+ default-argument. */
+ if (cp_lexer_next_token_is (parser->lexer, CPP_EQ))
+ {
+ bool is_template;
+
+ /* Consume the `='. */
+ cp_lexer_consume_token (parser->lexer);
+ /* Parse the id-expression. */
+ default_argument
+ = cp_parser_id_expression (parser,
+ /*template_keyword_p=*/false,
+ /*check_dependency_p=*/true,
+ /*template_p=*/&is_template,
+ /*declarator_p=*/false);
+ if (TREE_CODE (default_argument) == TYPE_DECL)
+ /* If the id-expression was a template-id that refers to
+ a template-class, we already have the declaration here,
+ so no further lookup is needed. */
+ ;
+ else
+ /* Look up the name. */
+ default_argument
+ = cp_parser_lookup_name (parser, default_argument,
+ /*is_type=*/false,
+ /*is_template=*/is_template,
+ /*is_namespace=*/false,
+ /*check_dependency=*/true);
+ /* See if the default argument is valid. */
+ default_argument
+ = check_template_template_default_arg (default_argument);
+ }
+ else
+ default_argument = NULL_TREE;
+
+ /* Create the combined representation of the parameter and the
+ default argument. */
+ parameter = build_tree_list (default_argument, parameter);
+ }
+ break;
+
+ default:
+ /* Anything else is an error. */
+ cp_parser_error (parser,
+ "expected `class', `typename', or `template'");
+ parameter = error_mark_node;
+ }
+
+ return parameter;
+}
+
+/* Parse a template-id.
+
+ template-id:
+ template-name < template-argument-list [opt] >
+
+ If TEMPLATE_KEYWORD_P is TRUE, then we have just seen the
+ `template' keyword. In this case, a TEMPLATE_ID_EXPR will be
+ returned. Otherwise, if the template-name names a function, or set
+ of functions, returns a TEMPLATE_ID_EXPR. If the template-name
+ names a class, returns a TYPE_DECL for the specialization.
+
+ If CHECK_DEPENDENCY_P is FALSE, names are looked up in
+ uninstantiated templates. */
+
+static tree
+cp_parser_template_id (cp_parser *parser,
+ bool template_keyword_p,
+ bool check_dependency_p,
+ bool is_declaration)
+{
+ tree template;
+ tree arguments;
+ tree template_id;
+ ptrdiff_t start_of_id;
+ tree access_check = NULL_TREE;
+ cp_token *next_token, *next_token_2;
+ bool is_identifier;
+
+ /* If the next token corresponds to a template-id, there is no need
+ to reparse it. */
+ next_token = cp_lexer_peek_token (parser->lexer);
+ if (next_token->type == CPP_TEMPLATE_ID)
+ {
+ tree value;
+ tree check;
+
+ /* Get the stored value. */
+ value = cp_lexer_consume_token (parser->lexer)->value;
+ /* Perform any access checks that were deferred. */
+ for (check = TREE_PURPOSE (value); check; check = TREE_CHAIN (check))
+ perform_or_defer_access_check (TREE_PURPOSE (check),
+ TREE_VALUE (check));
+ /* Return the stored value. */
+ return TREE_VALUE (value);
+ }
+
+ /* Avoid performing name lookup if there is no possibility of
+ finding a template-id. */
+ if ((next_token->type != CPP_NAME && next_token->keyword != RID_OPERATOR)
+ || (next_token->type == CPP_NAME
+ && !cp_parser_nth_token_starts_template_argument_list_p
+ (parser, 2)))
+ {
+ cp_parser_error (parser, "expected template-id");
+ return error_mark_node;
+ }
+
+ /* Remember where the template-id starts. */
+ if (cp_parser_parsing_tentatively (parser)
+ && !cp_parser_committed_to_tentative_parse (parser))
+ {
+ next_token = cp_lexer_peek_token (parser->lexer);
+ start_of_id = cp_lexer_token_difference (parser->lexer,
+ parser->lexer->first_token,
+ next_token);
+ }
+ else
+ start_of_id = -1;
+
+ push_deferring_access_checks (dk_deferred);
+
+ /* Parse the template-name. */
+ is_identifier = false;
+ template = cp_parser_template_name (parser, template_keyword_p,
+ check_dependency_p,
+ is_declaration,
+ &is_identifier);
+ if (template == error_mark_node || is_identifier)
+ {
+ pop_deferring_access_checks ();
+ return template;
+ }
+
+ /* If we find the sequence `[:' after a template-name, it's probably
+ a digraph-typo for `< ::'. Substitute the tokens and check if we can
+ parse correctly the argument list. */
+ next_token = cp_lexer_peek_nth_token (parser->lexer, 1);
+ next_token_2 = cp_lexer_peek_nth_token (parser->lexer, 2);
+ if (next_token->type == CPP_OPEN_SQUARE
+ && next_token->flags & DIGRAPH
+ && next_token_2->type == CPP_COLON
+ && !(next_token_2->flags & PREV_WHITE))
+ {
+ cp_parser_parse_tentatively (parser);
+ /* Change `:' into `::'. */
+ next_token_2->type = CPP_SCOPE;
+ /* Consume the first token (CPP_OPEN_SQUARE - which we pretend it is
+ CPP_LESS. */
+ cp_lexer_consume_token (parser->lexer);
+ /* Parse the arguments. */
+ arguments = cp_parser_enclosed_template_argument_list (parser);
+ if (!cp_parser_parse_definitely (parser))
+ {
+ /* If we couldn't parse an argument list, then we revert our changes
+ and return simply an error. Maybe this is not a template-id
+ after all. */
+ next_token_2->type = CPP_COLON;
+ cp_parser_error (parser, "expected `<'");
+ pop_deferring_access_checks ();
+ return error_mark_node;
+ }
+ /* Otherwise, emit an error about the invalid digraph, but continue
+ parsing because we got our argument list. */
+ pedwarn ("`<::' cannot begin a template-argument list");
+ inform ("`<:' is an alternate spelling for `['. Insert whitespace "
+ "between `<' and `::'");
+ if (!flag_permissive)
+ {
+ static bool hint;
+ if (!hint)
+ {
+ inform ("(if you use `-fpermissive' G++ will accept your code)");
+ hint = true;
+ }
+ }
+ }
+ else
+ {
+ /* Look for the `<' that starts the template-argument-list. */
+ if (!cp_parser_require (parser, CPP_LESS, "`<'"))
+ {
+ pop_deferring_access_checks ();
+ return error_mark_node;
+ }
+ /* Parse the arguments. */
+ arguments = cp_parser_enclosed_template_argument_list (parser);
+ }
+
+ /* Build a representation of the specialization. */
+ if (TREE_CODE (template) == IDENTIFIER_NODE)
+ template_id = build_min_nt (TEMPLATE_ID_EXPR, template, arguments);
+ else if (DECL_CLASS_TEMPLATE_P (template)
+ || DECL_TEMPLATE_TEMPLATE_PARM_P (template))
+ template_id
+ = finish_template_type (template, arguments,
+ cp_lexer_next_token_is (parser->lexer,
+ CPP_SCOPE));
+ else
+ {
+ /* If it's not a class-template or a template-template, it should be
+ a function-template. */
+ my_friendly_assert ((DECL_FUNCTION_TEMPLATE_P (template)
+ || TREE_CODE (template) == OVERLOAD
+ || BASELINK_P (template)),
+ 20010716);
+
+ template_id = lookup_template_function (template, arguments);
+ }
+
+ /* Retrieve any deferred checks. Do not pop this access checks yet
+ so the memory will not be reclaimed during token replacing below. */
+ access_check = get_deferred_access_checks ();
+
+ /* If parsing tentatively, replace the sequence of tokens that makes
+ up the template-id with a CPP_TEMPLATE_ID token. That way,
+ should we re-parse the token stream, we will not have to repeat
+ the effort required to do the parse, nor will we issue duplicate
+ error messages about problems during instantiation of the
+ template. */
+ if (start_of_id >= 0)
+ {
+ cp_token *token;
+
+ /* Find the token that corresponds to the start of the
+ template-id. */
+ token = cp_lexer_advance_token (parser->lexer,
+ parser->lexer->first_token,
+ start_of_id);
+
+ /* Reset the contents of the START_OF_ID token. */
+ token->type = CPP_TEMPLATE_ID;
+ token->value = build_tree_list (access_check, template_id);
+ token->keyword = RID_MAX;
+ /* Purge all subsequent tokens. */
+ cp_lexer_purge_tokens_after (parser->lexer, token);
+ }
+
+ pop_deferring_access_checks ();
+ return template_id;
+}
+
+/* Parse a template-name.
+
+ template-name:
+ identifier
+
+ The standard should actually say:
+
+ template-name:
+ identifier
+ operator-function-id
+
+ A defect report has been filed about this issue.
+
+ A conversion-function-id cannot be a template name because they cannot
+ be part of a template-id. In fact, looking at this code:
+
+ a.operator K<int>()
+
+ the conversion-function-id is "operator K<int>", and K<int> is a type-id.
+ It is impossible to call a templated conversion-function-id with an
+ explicit argument list, since the only allowed template parameter is
+ the type to which it is converting.
+
+ If TEMPLATE_KEYWORD_P is true, then we have just seen the
+ `template' keyword, in a construction like:
+
+ T::template f<3>()
+
+ In that case `f' is taken to be a template-name, even though there
+ is no way of knowing for sure.
+
+ Returns the TEMPLATE_DECL for the template, or an OVERLOAD if the
+ name refers to a set of overloaded functions, at least one of which
+ is a template, or an IDENTIFIER_NODE with the name of the template,
+ if TEMPLATE_KEYWORD_P is true. If CHECK_DEPENDENCY_P is FALSE,
+ names are looked up inside uninstantiated templates. */
+
+static tree
+cp_parser_template_name (cp_parser* parser,
+ bool template_keyword_p,
+ bool check_dependency_p,
+ bool is_declaration,
+ bool *is_identifier)
+{
+ tree identifier;
+ tree decl;
+ tree fns;
+
+ /* If the next token is `operator', then we have either an
+ operator-function-id or a conversion-function-id. */
+ if (cp_lexer_next_token_is_keyword (parser->lexer, RID_OPERATOR))
+ {
+ /* We don't know whether we're looking at an
+ operator-function-id or a conversion-function-id. */
+ cp_parser_parse_tentatively (parser);
+ /* Try an operator-function-id. */
+ identifier = cp_parser_operator_function_id (parser);
+ /* If that didn't work, try a conversion-function-id. */
+ if (!cp_parser_parse_definitely (parser))
+ {
+ cp_parser_error (parser, "expected template-name");
+ return error_mark_node;
+ }
+ }
+ /* Look for the identifier. */
+ else
+ identifier = cp_parser_identifier (parser);
+
+ /* If we didn't find an identifier, we don't have a template-id. */
+ if (identifier == error_mark_node)
+ return error_mark_node;
+
+ /* If the name immediately followed the `template' keyword, then it
+ is a template-name. However, if the next token is not `<', then
+ we do not treat it as a template-name, since it is not being used
+ as part of a template-id. This enables us to handle constructs
+ like:
+
+ template <typename T> struct S { S(); };
+ template <typename T> S<T>::S();
+
+ correctly. We would treat `S' as a template -- if it were `S<T>'
+ -- but we do not if there is no `<'. */
+
+ if (processing_template_decl
+ && cp_parser_nth_token_starts_template_argument_list_p (parser, 1))
+ {
+ /* In a declaration, in a dependent context, we pretend that the
+ "template" keyword was present in order to improve error
+ recovery. For example, given:
+
+ template <typename T> void f(T::X<int>);
+
+ we want to treat "X<int>" as a template-id. */
+ if (is_declaration
+ && !template_keyword_p
+ && parser->scope && TYPE_P (parser->scope)
+ && dependent_type_p (parser->scope)
+ /* Do not do this for dtors (or ctors), since they never
+ need the template keyword before their name. */
+ && !constructor_name_p (identifier, parser->scope))
+ {
+ ptrdiff_t start;
+ cp_token* token;
+ /* Explain what went wrong. */
+ error ("non-template `%D' used as template", identifier);
+ inform ("use `%T::template %D' to indicate that it is a template",
+ parser->scope, identifier);
+ /* If parsing tentatively, find the location of the "<"
+ token. */
+ if (cp_parser_parsing_tentatively (parser)
+ && !cp_parser_committed_to_tentative_parse (parser))
+ {
+ cp_parser_simulate_error (parser);
+ token = cp_lexer_peek_token (parser->lexer);
+ token = cp_lexer_prev_token (parser->lexer, token);
+ start = cp_lexer_token_difference (parser->lexer,
+ parser->lexer->first_token,
+ token);
+ }
+ else
+ start = -1;
+ /* Parse the template arguments so that we can issue error
+ messages about them. */
+ cp_lexer_consume_token (parser->lexer);
+ cp_parser_enclosed_template_argument_list (parser);
+ /* Skip tokens until we find a good place from which to
+ continue parsing. */
+ cp_parser_skip_to_closing_parenthesis (parser,
+ /*recovering=*/true,
+ /*or_comma=*/true,
+ /*consume_paren=*/false);
+ /* If parsing tentatively, permanently remove the
+ template argument list. That will prevent duplicate
+ error messages from being issued about the missing
+ "template" keyword. */
+ if (start >= 0)
+ {
+ token = cp_lexer_advance_token (parser->lexer,
+ parser->lexer->first_token,
+ start);
+ cp_lexer_purge_tokens_after (parser->lexer, token);
+ }
+ if (is_identifier)
+ *is_identifier = true;
+ return identifier;
+ }
+
+ /* If the "template" keyword is present, then there is generally
+ no point in doing name-lookup, so we just return IDENTIFIER.
+ But, if the qualifying scope is non-dependent then we can
+ (and must) do name-lookup normally. */
+ if (template_keyword_p
+ && (!parser->scope
+ || (TYPE_P (parser->scope)
+ && dependent_type_p (parser->scope))))
+ return identifier;
+ }
+
+ /* Look up the name. */
+ decl = cp_parser_lookup_name (parser, identifier,
+ /*is_type=*/false,
+ /*is_template=*/false,
+ /*is_namespace=*/false,
+ check_dependency_p);
+ decl = maybe_get_template_decl_from_type_decl (decl);
+
+ /* If DECL is a template, then the name was a template-name. */
+ if (TREE_CODE (decl) == TEMPLATE_DECL)
+ ;
+ else
+ {
+ /* The standard does not explicitly indicate whether a name that
+ names a set of overloaded declarations, some of which are
+ templates, is a template-name. However, such a name should
+ be a template-name; otherwise, there is no way to form a
+ template-id for the overloaded templates. */
+ fns = BASELINK_P (decl) ? BASELINK_FUNCTIONS (decl) : decl;
+ if (TREE_CODE (fns) == OVERLOAD)
+ {
+ tree fn;
+
+ for (fn = fns; fn; fn = OVL_NEXT (fn))
+ if (TREE_CODE (OVL_CURRENT (fn)) == TEMPLATE_DECL)
+ break;
+ }
+ else
+ {
+ /* Otherwise, the name does not name a template. */
+ cp_parser_error (parser, "expected template-name");
+ return error_mark_node;
+ }
+ }
+
+ /* If DECL is dependent, and refers to a function, then just return
+ its name; we will look it up again during template instantiation. */
+ if (DECL_FUNCTION_TEMPLATE_P (decl) || !DECL_P (decl))
+ {
+ tree scope = CP_DECL_CONTEXT (get_first_fn (decl));
+ if (TYPE_P (scope) && dependent_type_p (scope))
+ return identifier;
+ }
+
+ return decl;
+}
+
+/* Parse a template-argument-list.
+
+ template-argument-list:
+ template-argument
+ template-argument-list , template-argument
+
+ Returns a TREE_VEC containing the arguments. */
+
+static tree
+cp_parser_template_argument_list (cp_parser* parser)
+{
+ tree fixed_args[10];
+ unsigned n_args = 0;
+ unsigned alloced = 10;
+ tree *arg_ary = fixed_args;
+ tree vec;
+ bool saved_in_template_argument_list_p;
+
+ saved_in_template_argument_list_p = parser->in_template_argument_list_p;
+ parser->in_template_argument_list_p = true;
+ do
+ {
+ tree argument;
+
+ if (n_args)
+ /* Consume the comma. */
+ cp_lexer_consume_token (parser->lexer);
+
+ /* Parse the template-argument. */
+ argument = cp_parser_template_argument (parser);
+ if (n_args == alloced)
+ {
+ alloced *= 2;
+
+ if (arg_ary == fixed_args)
+ {
+ arg_ary = xmalloc (sizeof (tree) * alloced);
+ memcpy (arg_ary, fixed_args, sizeof (tree) * n_args);
+ }
+ else
+ arg_ary = xrealloc (arg_ary, sizeof (tree) * alloced);
+ }
+ arg_ary[n_args++] = argument;
+ }
+ while (cp_lexer_next_token_is (parser->lexer, CPP_COMMA));
+
+ vec = make_tree_vec (n_args);
+
+ while (n_args--)
+ TREE_VEC_ELT (vec, n_args) = arg_ary[n_args];
+
+ if (arg_ary != fixed_args)
+ free (arg_ary);
+ parser->in_template_argument_list_p = saved_in_template_argument_list_p;
+ return vec;
+}
+
+/* Parse a template-argument.
+
+ template-argument:
+ assignment-expression
+ type-id
+ id-expression
+
+ The representation is that of an assignment-expression, type-id, or
+ id-expression -- except that the qualified id-expression is
+ evaluated, so that the value returned is either a DECL or an
+ OVERLOAD.
+
+ Although the standard says "assignment-expression", it forbids
+ throw-expressions or assignments in the template argument.
+ Therefore, we use "conditional-expression" instead. */
+
+static tree
+cp_parser_template_argument (cp_parser* parser)
+{
+ tree argument;
+ bool template_p;
+ bool address_p;
+ bool maybe_type_id = false;
+ cp_token *token;
+ cp_id_kind idk;
+ tree qualifying_class;
+
+ /* There's really no way to know what we're looking at, so we just
+ try each alternative in order.
+
+ [temp.arg]
+
+ In a template-argument, an ambiguity between a type-id and an
+ expression is resolved to a type-id, regardless of the form of
+ the corresponding template-parameter.
+
+ Therefore, we try a type-id first. */
+ cp_parser_parse_tentatively (parser);
+ argument = cp_parser_type_id (parser);
+ /* If there was no error parsing the type-id but the next token is a '>>',
+ we probably found a typo for '> >'. But there are type-id which are
+ also valid expressions. For instance:
+
+ struct X { int operator >> (int); };
+ template <int V> struct Foo {};
+ Foo<X () >> 5> r;
+
+ Here 'X()' is a valid type-id of a function type, but the user just
+ wanted to write the expression "X() >> 5". Thus, we remember that we
+ found a valid type-id, but we still try to parse the argument as an
+ expression to see what happens. */
+ if (!cp_parser_error_occurred (parser)
+ && cp_lexer_next_token_is (parser->lexer, CPP_RSHIFT))
+ {
+ maybe_type_id = true;
+ cp_parser_abort_tentative_parse (parser);
+ }
+ else
+ {
+ /* If the next token isn't a `,' or a `>', then this argument wasn't
+ really finished. This means that the argument is not a valid
+ type-id. */
+ if (!cp_parser_next_token_ends_template_argument_p (parser))
+ cp_parser_error (parser, "expected template-argument");
+ /* If that worked, we're done. */
+ if (cp_parser_parse_definitely (parser))
+ return argument;
+ }
+ /* We're still not sure what the argument will be. */
+ cp_parser_parse_tentatively (parser);
+ /* Try a template. */
+ argument = cp_parser_id_expression (parser,
+ /*template_keyword_p=*/false,
+ /*check_dependency_p=*/true,
+ &template_p,
+ /*declarator_p=*/false);
+ /* If the next token isn't a `,' or a `>', then this argument wasn't
+ really finished. */
+ if (!cp_parser_next_token_ends_template_argument_p (parser))
+ cp_parser_error (parser, "expected template-argument");
+ if (!cp_parser_error_occurred (parser))
+ {
+ /* Figure out what is being referred to. If the id-expression
+ was for a class template specialization, then we will have a
+ TYPE_DECL at this point. There is no need to do name lookup
+ at this point in that case. */
+ if (TREE_CODE (argument) != TYPE_DECL)
+ argument = cp_parser_lookup_name (parser, argument,
+ /*is_type=*/false,
+ /*is_template=*/template_p,
+ /*is_namespace=*/false,
+ /*check_dependency=*/true);
+ if (TREE_CODE (argument) != TEMPLATE_DECL
+ && TREE_CODE (argument) != UNBOUND_CLASS_TEMPLATE)
+ cp_parser_error (parser, "expected template-name");
+ }
+ if (cp_parser_parse_definitely (parser))
+ return argument;
+ /* It must be a non-type argument. There permitted cases are given
+ in [temp.arg.nontype]:
+
+ -- an integral constant-expression of integral or enumeration
+ type; or
+
+ -- the name of a non-type template-parameter; or
+
+ -- the name of an object or function with external linkage...
+
+ -- the address of an object or function with external linkage...
+
+ -- a pointer to member... */
+ /* Look for a non-type template parameter. */
+ if (cp_lexer_next_token_is (parser->lexer, CPP_NAME))
+ {
+ cp_parser_parse_tentatively (parser);
+ argument = cp_parser_primary_expression (parser,
+ &idk,
+ &qualifying_class);
+ if (TREE_CODE (argument) != TEMPLATE_PARM_INDEX
+ || !cp_parser_next_token_ends_template_argument_p (parser))
+ cp_parser_simulate_error (parser);
+ if (cp_parser_parse_definitely (parser))
+ return argument;
+ }
+ /* If the next token is "&", the argument must be the address of an
+ object or function with external linkage. */
+ address_p = cp_lexer_next_token_is (parser->lexer, CPP_AND);
+ if (address_p)
+ cp_lexer_consume_token (parser->lexer);
+ /* See if we might have an id-expression. */
+ token = cp_lexer_peek_token (parser->lexer);
+ if (token->type == CPP_NAME
+ || token->keyword == RID_OPERATOR
+ || token->type == CPP_SCOPE
+ || token->type == CPP_TEMPLATE_ID
+ || token->type == CPP_NESTED_NAME_SPECIFIER)
+ {
+ cp_parser_parse_tentatively (parser);
+ argument = cp_parser_primary_expression (parser,
+ &idk,
+ &qualifying_class);
+ if (cp_parser_error_occurred (parser)
+ || !cp_parser_next_token_ends_template_argument_p (parser))
+ cp_parser_abort_tentative_parse (parser);
+ else
+ {
+ if (qualifying_class)
+ argument = finish_qualified_id_expr (qualifying_class,
+ argument,
+ /*done=*/true,
+ address_p);
+ if (TREE_CODE (argument) == VAR_DECL)
+ {
+ /* A variable without external linkage might still be a
+ valid constant-expression, so no error is issued here
+ if the external-linkage check fails. */
+ if (!DECL_EXTERNAL_LINKAGE_P (argument))
+ cp_parser_simulate_error (parser);
+ }
+ else if (is_overloaded_fn (argument))
+ /* All overloaded functions are allowed; if the external
+ linkage test does not pass, an error will be issued
+ later. */
+ ;
+ else if (address_p
+ && (TREE_CODE (argument) == OFFSET_REF
+ || TREE_CODE (argument) == SCOPE_REF))
+ /* A pointer-to-member. */
+ ;
+ else
+ cp_parser_simulate_error (parser);
+
+ if (cp_parser_parse_definitely (parser))
+ {
+ if (address_p)
+ argument = build_x_unary_op (ADDR_EXPR, argument);
+ return argument;
+ }
+ }
+ }
+ /* If the argument started with "&", there are no other valid
+ alternatives at this point. */
+ if (address_p)
+ {
+ cp_parser_error (parser, "invalid non-type template argument");
+ return error_mark_node;
+ }
+ /* If the argument wasn't successfully parsed as a type-id followed
+ by '>>', the argument can only be a constant expression now.
+ Otherwise, we try parsing the constant-expression tentatively,
+ because the argument could really be a type-id. */
+ if (maybe_type_id)
+ cp_parser_parse_tentatively (parser);
+ argument = cp_parser_constant_expression (parser,
+ /*allow_non_constant_p=*/false,
+ /*non_constant_p=*/NULL);
+ argument = fold_non_dependent_expr (argument);
+ if (!maybe_type_id)
+ return argument;
+ if (!cp_parser_next_token_ends_template_argument_p (parser))
+ cp_parser_error (parser, "expected template-argument");
+ if (cp_parser_parse_definitely (parser))
+ return argument;
+ /* We did our best to parse the argument as a non type-id, but that
+ was the only alternative that matched (albeit with a '>' after
+ it). We can assume it's just a typo from the user, and a
+ diagnostic will then be issued. */
+ return cp_parser_type_id (parser);
+}
+
+/* Parse an explicit-instantiation.
+
+ explicit-instantiation:
+ template declaration
+
+ Although the standard says `declaration', what it really means is:
+
+ explicit-instantiation:
+ template decl-specifier-seq [opt] declarator [opt] ;
+
+ Things like `template int S<int>::i = 5, int S<double>::j;' are not
+ supposed to be allowed. A defect report has been filed about this
+ issue.
+
+ GNU Extension:
+
+ explicit-instantiation:
+ storage-class-specifier template
+ decl-specifier-seq [opt] declarator [opt] ;
+ function-specifier template
+ decl-specifier-seq [opt] declarator [opt] ; */
+
+static void
+cp_parser_explicit_instantiation (cp_parser* parser)
+{
+ int declares_class_or_enum;
+ tree decl_specifiers;
+ tree attributes;
+ tree extension_specifier = NULL_TREE;
+
+ /* Look for an (optional) storage-class-specifier or
+ function-specifier. */
+ if (cp_parser_allow_gnu_extensions_p (parser))
+ {
+ extension_specifier
+ = cp_parser_storage_class_specifier_opt (parser);
+ if (!extension_specifier)
+ extension_specifier = cp_parser_function_specifier_opt (parser);
+ }
+
+ /* Look for the `template' keyword. */
+ cp_parser_require_keyword (parser, RID_TEMPLATE, "`template'");
+ /* Let the front end know that we are processing an explicit
+ instantiation. */
+ begin_explicit_instantiation ();
+ /* [temp.explicit] says that we are supposed to ignore access
+ control while processing explicit instantiation directives. */
+ push_deferring_access_checks (dk_no_check);
+ /* Parse a decl-specifier-seq. */
+ decl_specifiers
+ = cp_parser_decl_specifier_seq (parser,
+ CP_PARSER_FLAGS_OPTIONAL,
+ &attributes,
+ &declares_class_or_enum);
+ /* If there was exactly one decl-specifier, and it declared a class,
+ and there's no declarator, then we have an explicit type
+ instantiation. */
+ if (declares_class_or_enum && cp_parser_declares_only_class_p (parser))
+ {
+ tree type;
+
+ type = check_tag_decl (decl_specifiers);
+ /* Turn access control back on for names used during
+ template instantiation. */
+ pop_deferring_access_checks ();
+ if (type)
+ do_type_instantiation (type, extension_specifier, /*complain=*/1);
+ }
+ else
+ {
+ tree declarator;
+ tree decl;
+
+ /* Parse the declarator. */
+ declarator
+ = cp_parser_declarator (parser, CP_PARSER_DECLARATOR_NAMED,
+ /*ctor_dtor_or_conv_p=*/NULL,
+ /*parenthesized_p=*/NULL);
+ cp_parser_check_for_definition_in_return_type (declarator,
+ declares_class_or_enum);
+ if (declarator != error_mark_node)
+ {
+ decl = grokdeclarator (declarator, decl_specifiers,
+ NORMAL, 0, NULL);
+ /* Turn access control back on for names used during
+ template instantiation. */
+ pop_deferring_access_checks ();
+ /* Do the explicit instantiation. */
+ do_decl_instantiation (decl, extension_specifier);
+ }
+ else
+ {
+ pop_deferring_access_checks ();
+ /* Skip the body of the explicit instantiation. */
+ cp_parser_skip_to_end_of_statement (parser);
+ }
+ }
+ /* We're done with the instantiation. */
+ end_explicit_instantiation ();
+
+ cp_parser_consume_semicolon_at_end_of_statement (parser);
+}
+
+/* Parse an explicit-specialization.
+
+ explicit-specialization:
+ template < > declaration
+
+ Although the standard says `declaration', what it really means is:
+
+ explicit-specialization:
+ template <> decl-specifier [opt] init-declarator [opt] ;
+ template <> function-definition
+ template <> explicit-specialization
+ template <> template-declaration */
+
+static void
+cp_parser_explicit_specialization (cp_parser* parser)
+{
+ /* Look for the `template' keyword. */
+ cp_parser_require_keyword (parser, RID_TEMPLATE, "`template'");
+ /* Look for the `<'. */
+ cp_parser_require (parser, CPP_LESS, "`<'");
+ /* Look for the `>'. */
+ cp_parser_require (parser, CPP_GREATER, "`>'");
+ /* We have processed another parameter list. */
+ ++parser->num_template_parameter_lists;
+ /* Let the front end know that we are beginning a specialization. */
+ begin_specialization ();
+
+ /* If the next keyword is `template', we need to figure out whether
+ or not we're looking a template-declaration. */
+ if (cp_lexer_next_token_is_keyword (parser->lexer, RID_TEMPLATE))
+ {
+ if (cp_lexer_peek_nth_token (parser->lexer, 2)->type == CPP_LESS
+ && cp_lexer_peek_nth_token (parser->lexer, 3)->type != CPP_GREATER)
+ cp_parser_template_declaration_after_export (parser,
+ /*member_p=*/false);
+ else
+ cp_parser_explicit_specialization (parser);
+ }
+ else
+ /* Parse the dependent declaration. */
+ cp_parser_single_declaration (parser,
+ /*member_p=*/false,
+ /*friend_p=*/NULL);
+
+ /* We're done with the specialization. */
+ end_specialization ();
+ /* We're done with this parameter list. */
+ --parser->num_template_parameter_lists;
+}
+
+/* Parse a type-specifier.
+
+ type-specifier:
+ simple-type-specifier
+ class-specifier
+ enum-specifier
+ elaborated-type-specifier
+ cv-qualifier
+
+ GNU Extension:
+
+ type-specifier:
+ __complex__
+
+ Returns a representation of the type-specifier. If the
+ type-specifier is a keyword (like `int' or `const', or
+ `__complex__') then the corresponding IDENTIFIER_NODE is returned.
+ For a class-specifier, enum-specifier, or elaborated-type-specifier
+ a TREE_TYPE is returned; otherwise, a TYPE_DECL is returned.
+
+ If IS_FRIEND is TRUE then this type-specifier is being declared a
+ `friend'. If IS_DECLARATION is TRUE, then this type-specifier is
+ appearing in a decl-specifier-seq.
+
+ If DECLARES_CLASS_OR_ENUM is non-NULL, and the type-specifier is a
+ class-specifier, enum-specifier, or elaborated-type-specifier, then
+ *DECLARES_CLASS_OR_ENUM is set to a nonzero value. The value is 1
+ if a type is declared; 2 if it is defined. Otherwise, it is set to
+ zero.
+
+ If IS_CV_QUALIFIER is non-NULL, and the type-specifier is a
+ cv-qualifier, then IS_CV_QUALIFIER is set to TRUE. Otherwise, it
+ is set to FALSE. */
+
+static tree
+cp_parser_type_specifier (cp_parser* parser,
+ cp_parser_flags flags,
+ bool is_friend,
+ bool is_declaration,
+ int* declares_class_or_enum,
+ bool* is_cv_qualifier)
+{
+ tree type_spec = NULL_TREE;
+ cp_token *token;
+ enum rid keyword;
+
+ /* Assume this type-specifier does not declare a new type. */
+ if (declares_class_or_enum)
+ *declares_class_or_enum = 0;
+ /* And that it does not specify a cv-qualifier. */
+ if (is_cv_qualifier)
+ *is_cv_qualifier = false;
+ /* Peek at the next token. */
+ token = cp_lexer_peek_token (parser->lexer);
+
+ /* If we're looking at a keyword, we can use that to guide the
+ production we choose. */
+ keyword = token->keyword;
+ switch (keyword)
+ {
+ /* Any of these indicate either a class-specifier, or an
+ elaborated-type-specifier. */
+ case RID_CLASS:
+ case RID_STRUCT:
+ case RID_UNION:
+ case RID_ENUM:
+ /* Parse tentatively so that we can back up if we don't find a
+ class-specifier or enum-specifier. */
+ cp_parser_parse_tentatively (parser);
+ /* Look for the class-specifier or enum-specifier. */
+ if (keyword == RID_ENUM)
+ type_spec = cp_parser_enum_specifier (parser);
+ else
+ type_spec = cp_parser_class_specifier (parser);
+
+ /* If that worked, we're done. */
+ if (cp_parser_parse_definitely (parser))
+ {
+ if (declares_class_or_enum)
+ *declares_class_or_enum = 2;
+ return type_spec;
+ }
+
+ /* Fall through. */
+
+ case RID_TYPENAME:
+ /* Look for an elaborated-type-specifier. */
+ type_spec = cp_parser_elaborated_type_specifier (parser,
+ is_friend,
+ is_declaration);
+ /* We're declaring a class or enum -- unless we're using
+ `typename'. */
+ if (declares_class_or_enum && keyword != RID_TYPENAME)
+ *declares_class_or_enum = 1;
+ return type_spec;
+
+ case RID_CONST:
+ case RID_VOLATILE:
+ case RID_RESTRICT:
+ type_spec = cp_parser_cv_qualifier_opt (parser);
+ /* Even though we call a routine that looks for an optional
+ qualifier, we know that there should be one. */
+ my_friendly_assert (type_spec != NULL, 20000328);
+ /* This type-specifier was a cv-qualified. */
+ if (is_cv_qualifier)
+ *is_cv_qualifier = true;
+
+ return type_spec;
+
+ case RID_COMPLEX:
+ /* The `__complex__' keyword is a GNU extension. */
+ return cp_lexer_consume_token (parser->lexer)->value;
+
+ default:
+ break;
+ }
+
+ /* If we do not already have a type-specifier, assume we are looking
+ at a simple-type-specifier. */
+ type_spec = cp_parser_simple_type_specifier (parser, flags,
+ /*identifier_p=*/true);
+
+ /* If we didn't find a type-specifier, and a type-specifier was not
+ optional in this context, issue an error message. */
+ if (!type_spec && !(flags & CP_PARSER_FLAGS_OPTIONAL))
+ {
+ cp_parser_error (parser, "expected type specifier");
+ return error_mark_node;
+ }
+
+ return type_spec;
+}
+
+/* Parse a simple-type-specifier.
+
+ simple-type-specifier:
+ :: [opt] nested-name-specifier [opt] type-name
+ :: [opt] nested-name-specifier template template-id
+ char
+ wchar_t
+ bool
+ short
+ int
+ long
+ signed
+ unsigned
+ float
+ double
+ void
+
+ GNU Extension:
+
+ simple-type-specifier:
+ __typeof__ unary-expression
+ __typeof__ ( type-id )
+
+ For the various keywords, the value returned is simply the
+ TREE_IDENTIFIER representing the keyword if IDENTIFIER_P is true.
+ For the first two productions, and if IDENTIFIER_P is false, the
+ value returned is the indicated TYPE_DECL. */
+
+static tree
+cp_parser_simple_type_specifier (cp_parser* parser, cp_parser_flags flags,
+ bool identifier_p)
+{
+ tree type = NULL_TREE;
+ cp_token *token;
+
+ /* Peek at the next token. */
+ token = cp_lexer_peek_token (parser->lexer);
+
+ /* If we're looking at a keyword, things are easy. */
+ switch (token->keyword)
+ {
+ case RID_CHAR:
+ type = char_type_node;
+ break;
+ case RID_WCHAR:
+ type = wchar_type_node;
+ break;
+ case RID_BOOL:
+ type = boolean_type_node;
+ break;
+ case RID_SHORT:
+ type = short_integer_type_node;
+ break;
+ case RID_INT:
+ type = integer_type_node;
+ break;
+ case RID_LONG:
+ type = long_integer_type_node;
+ break;
+ case RID_SIGNED:
+ type = integer_type_node;
+ break;
+ case RID_UNSIGNED:
+ type = unsigned_type_node;
+ break;
+ case RID_FLOAT:
+ type = float_type_node;
+ break;
+ case RID_DOUBLE:
+ type = double_type_node;
+ break;
+ case RID_VOID:
+ type = void_type_node;
+ break;
+
+ case RID_TYPEOF:
+ {
+ tree operand;
+
+ /* Consume the `typeof' token. */
+ cp_lexer_consume_token (parser->lexer);
+ /* Parse the operand to `typeof'. */
+ operand = cp_parser_sizeof_operand (parser, RID_TYPEOF);
+ /* If it is not already a TYPE, take its type. */
+ if (!TYPE_P (operand))
+ operand = finish_typeof (operand);
+
+ return operand;
+ }
+
+ default:
+ break;
+ }
+
+ /* If the type-specifier was for a built-in type, we're done. */
+ if (type)
+ {
+ tree id;
+
+ /* Consume the token. */
+ id = cp_lexer_consume_token (parser->lexer)->value;
+
+ /* There is no valid C++ program where a non-template type is
+ followed by a "<". That usually indicates that the user thought
+ that the type was a template. */
+ cp_parser_check_for_invalid_template_id (parser, type);
+
+ return identifier_p ? id : TYPE_NAME (type);
+ }
+
+ /* The type-specifier must be a user-defined type. */
+ if (!(flags & CP_PARSER_FLAGS_NO_USER_DEFINED_TYPES))
+ {
+ bool qualified_p;
+ bool global_p;
+
+ /* Don't gobble tokens or issue error messages if this is an
+ optional type-specifier. */
+ if (flags & CP_PARSER_FLAGS_OPTIONAL)
+ cp_parser_parse_tentatively (parser);
+
+ /* Look for the optional `::' operator. */
+ global_p
+ = (cp_parser_global_scope_opt (parser,
+ /*current_scope_valid_p=*/false)
+ != NULL_TREE);
+ /* Look for the nested-name specifier. */
+ qualified_p
+ = (cp_parser_nested_name_specifier_opt (parser,
+ /*typename_keyword_p=*/false,
+ /*check_dependency_p=*/true,
+ /*type_p=*/false,
+ /*is_declaration=*/false)
+ != NULL_TREE);
+ /* If we have seen a nested-name-specifier, and the next token
+ is `template', then we are using the template-id production. */
+ if (parser->scope
+ && cp_parser_optional_template_keyword (parser))
+ {
+ /* Look for the template-id. */
+ type = cp_parser_template_id (parser,
+ /*template_keyword_p=*/true,
+ /*check_dependency_p=*/true,
+ /*is_declaration=*/false);
+ /* If the template-id did not name a type, we are out of
+ luck. */
+ if (TREE_CODE (type) != TYPE_DECL)
+ {
+ cp_parser_error (parser, "expected template-id for type");
+ type = NULL_TREE;
+ }
+ }
+ /* Otherwise, look for a type-name. */
+ else
+ type = cp_parser_type_name (parser);
+ /* Keep track of all name-lookups performed in class scopes. */
+ if (type
+ && !global_p
+ && !qualified_p
+ && TREE_CODE (type) == TYPE_DECL
+ && TREE_CODE (DECL_NAME (type)) == IDENTIFIER_NODE)
+ maybe_note_name_used_in_class (DECL_NAME (type), type);
+ /* If it didn't work out, we don't have a TYPE. */
+ if ((flags & CP_PARSER_FLAGS_OPTIONAL)
+ && !cp_parser_parse_definitely (parser))
+ type = NULL_TREE;
+ }
+
+ /* If we didn't get a type-name, issue an error message. */
+ if (!type && !(flags & CP_PARSER_FLAGS_OPTIONAL))
+ {
+ cp_parser_error (parser, "expected type-name");
+ return error_mark_node;
+ }
+
+ /* There is no valid C++ program where a non-template type is
+ followed by a "<". That usually indicates that the user thought
+ that the type was a template. */
+ if (type && type != error_mark_node)
+ cp_parser_check_for_invalid_template_id (parser, TREE_TYPE (type));
+
+ return type;
+}
+
+/* Parse a type-name.
+
+ type-name:
+ class-name
+ enum-name
+ typedef-name
+
+ enum-name:
+ identifier
+
+ typedef-name:
+ identifier
+
+ Returns a TYPE_DECL for the the type. */
+
+static tree
+cp_parser_type_name (cp_parser* parser)
+{
+ tree type_decl;
+ tree identifier;
+
+ /* We can't know yet whether it is a class-name or not. */
+ cp_parser_parse_tentatively (parser);
+ /* Try a class-name. */
+ type_decl = cp_parser_class_name (parser,
+ /*typename_keyword_p=*/false,
+ /*template_keyword_p=*/false,
+ /*type_p=*/false,
+ /*check_dependency_p=*/true,
+ /*class_head_p=*/false,
+ /*is_declaration=*/false);
+ /* If it's not a class-name, keep looking. */
+ if (!cp_parser_parse_definitely (parser))
+ {
+ /* It must be a typedef-name or an enum-name. */
+ identifier = cp_parser_identifier (parser);
+ if (identifier == error_mark_node)
+ return error_mark_node;
+
+ /* Look up the type-name. */
+ type_decl = cp_parser_lookup_name_simple (parser, identifier);
+ /* Issue an error if we did not find a type-name. */
+ if (TREE_CODE (type_decl) != TYPE_DECL)
+ {
+ if (!cp_parser_simulate_error (parser))
+ cp_parser_name_lookup_error (parser, identifier, type_decl,
+ "is not a type");
+ type_decl = error_mark_node;
+ }
+ /* Remember that the name was used in the definition of the
+ current class so that we can check later to see if the
+ meaning would have been different after the class was
+ entirely defined. */
+ else if (type_decl != error_mark_node
+ && !parser->scope)
+ maybe_note_name_used_in_class (identifier, type_decl);
+ }
+
+ return type_decl;
+}
+
+
+/* Parse an elaborated-type-specifier. Note that the grammar given
+ here incorporates the resolution to DR68.
+
+ elaborated-type-specifier:
+ class-key :: [opt] nested-name-specifier [opt] identifier
+ class-key :: [opt] nested-name-specifier [opt] template [opt] template-id
+ enum :: [opt] nested-name-specifier [opt] identifier
+ typename :: [opt] nested-name-specifier identifier
+ typename :: [opt] nested-name-specifier template [opt]
+ template-id
+
+ GNU extension:
+
+ elaborated-type-specifier:
+ class-key attributes :: [opt] nested-name-specifier [opt] identifier
+ class-key attributes :: [opt] nested-name-specifier [opt]
+ template [opt] template-id
+ enum attributes :: [opt] nested-name-specifier [opt] identifier
+
+ If IS_FRIEND is TRUE, then this elaborated-type-specifier is being
+ declared `friend'. If IS_DECLARATION is TRUE, then this
+ elaborated-type-specifier appears in a decl-specifiers-seq, i.e.,
+ something is being declared.
+
+ Returns the TYPE specified. */
+
+static tree
+cp_parser_elaborated_type_specifier (cp_parser* parser,
+ bool is_friend,
+ bool is_declaration)
+{
+ enum tag_types tag_type;
+ tree identifier;
+ tree type = NULL_TREE;
+ tree attributes = NULL_TREE;
+
+ /* See if we're looking at the `enum' keyword. */
+ if (cp_lexer_next_token_is_keyword (parser->lexer, RID_ENUM))
+ {
+ /* Consume the `enum' token. */
+ cp_lexer_consume_token (parser->lexer);
+ /* Remember that it's an enumeration type. */
+ tag_type = enum_type;
+ /* Parse the attributes. */
+ attributes = cp_parser_attributes_opt (parser);
+ }
+ /* Or, it might be `typename'. */
+ else if (cp_lexer_next_token_is_keyword (parser->lexer,
+ RID_TYPENAME))
+ {
+ /* Consume the `typename' token. */
+ cp_lexer_consume_token (parser->lexer);
+ /* Remember that it's a `typename' type. */
+ tag_type = typename_type;
+ /* The `typename' keyword is only allowed in templates. */
+ if (!processing_template_decl)
+ pedwarn ("using `typename' outside of template");
+ }
+ /* Otherwise it must be a class-key. */
+ else
+ {
+ tag_type = cp_parser_class_key (parser);
+ if (tag_type == none_type)
+ return error_mark_node;
+ /* Parse the attributes. */
+ attributes = cp_parser_attributes_opt (parser);
+ }
+
+ /* Look for the `::' operator. */
+ cp_parser_global_scope_opt (parser,
+ /*current_scope_valid_p=*/false);
+ /* Look for the nested-name-specifier. */
+ if (tag_type == typename_type)
+ {
+ if (cp_parser_nested_name_specifier (parser,
+ /*typename_keyword_p=*/true,
+ /*check_dependency_p=*/true,
+ /*type_p=*/true,
+ is_declaration)
+ == error_mark_node)
+ return error_mark_node;
+ }
+ else
+ /* Even though `typename' is not present, the proposed resolution
+ to Core Issue 180 says that in `class A<T>::B', `B' should be
+ considered a type-name, even if `A<T>' is dependent. */
+ cp_parser_nested_name_specifier_opt (parser,
+ /*typename_keyword_p=*/true,
+ /*check_dependency_p=*/true,
+ /*type_p=*/true,
+ is_declaration);
+ /* For everything but enumeration types, consider a template-id. */
+ if (tag_type != enum_type)
+ {
+ bool template_p = false;
+ tree decl;
+
+ /* Allow the `template' keyword. */
+ template_p = cp_parser_optional_template_keyword (parser);
+ /* If we didn't see `template', we don't know if there's a
+ template-id or not. */
+ if (!template_p)
+ cp_parser_parse_tentatively (parser);
+ /* Parse the template-id. */
+ decl = cp_parser_template_id (parser, template_p,
+ /*check_dependency_p=*/true,
+ is_declaration);
+ /* If we didn't find a template-id, look for an ordinary
+ identifier. */
+ if (!template_p && !cp_parser_parse_definitely (parser))
+ ;
+ /* If DECL is a TEMPLATE_ID_EXPR, and the `typename' keyword is
+ in effect, then we must assume that, upon instantiation, the
+ template will correspond to a class. */
+ else if (TREE_CODE (decl) == TEMPLATE_ID_EXPR
+ && tag_type == typename_type)
+ type = make_typename_type (parser->scope, decl,
+ /*complain=*/1);
+ else
+ type = TREE_TYPE (decl);
+ }
+
+ /* For an enumeration type, consider only a plain identifier. */
+ if (!type)
+ {
+ identifier = cp_parser_identifier (parser);
+
+ if (identifier == error_mark_node)
+ {
+ parser->scope = NULL_TREE;
+ return error_mark_node;
+ }
+
+ /* For a `typename', we needn't call xref_tag. */
+ if (tag_type == typename_type)
+ return make_typename_type (parser->scope, identifier,
+ /*complain=*/1);
+ /* Look up a qualified name in the usual way. */
+ if (parser->scope)
+ {
+ tree decl;
+
+ /* In an elaborated-type-specifier, names are assumed to name
+ types, so we set IS_TYPE to TRUE when calling
+ cp_parser_lookup_name. */
+ decl = cp_parser_lookup_name (parser, identifier,
+ /*is_type=*/true,
+ /*is_template=*/false,
+ /*is_namespace=*/false,
+ /*check_dependency=*/true);
+
+ /* If we are parsing friend declaration, DECL may be a
+ TEMPLATE_DECL tree node here. However, we need to check
+ whether this TEMPLATE_DECL results in valid code. Consider
+ the following example:
+
+ namespace N {
+ template <class T> class C {};
+ }
+ class X {
+ template <class T> friend class N::C; // #1, valid code
+ };
+ template <class T> class Y {
+ friend class N::C; // #2, invalid code
+ };
+
+ For both case #1 and #2, we arrive at a TEMPLATE_DECL after
+ name lookup of `N::C'. We see that friend declaration must
+ be template for the code to be valid. Note that
+ processing_template_decl does not work here since it is
+ always 1 for the above two cases. */
+
+ decl = (cp_parser_maybe_treat_template_as_class
+ (decl, /*tag_name_p=*/is_friend
+ && parser->num_template_parameter_lists));
+
+ if (TREE_CODE (decl) != TYPE_DECL)
+ {
+ error ("expected type-name");
+ return error_mark_node;
+ }
+
+ if (TREE_CODE (TREE_TYPE (decl)) != TYPENAME_TYPE)
+ check_elaborated_type_specifier
+ (tag_type, decl,
+ (parser->num_template_parameter_lists
+ || DECL_SELF_REFERENCE_P (decl)));
+
+ type = TREE_TYPE (decl);
+ }
+ else
+ {
+ /* An elaborated-type-specifier sometimes introduces a new type and
+ sometimes names an existing type. Normally, the rule is that it
+ introduces a new type only if there is not an existing type of
+ the same name already in scope. For example, given:
+
+ struct S {};
+ void f() { struct S s; }
+
+ the `struct S' in the body of `f' is the same `struct S' as in
+ the global scope; the existing definition is used. However, if
+ there were no global declaration, this would introduce a new
+ local class named `S'.
+
+ An exception to this rule applies to the following code:
+
+ namespace N { struct S; }
+
+ Here, the elaborated-type-specifier names a new type
+ unconditionally; even if there is already an `S' in the
+ containing scope this declaration names a new type.
+ This exception only applies if the elaborated-type-specifier
+ forms the complete declaration:
+
+ [class.name]
+
+ A declaration consisting solely of `class-key identifier ;' is
+ either a redeclaration of the name in the current scope or a
+ forward declaration of the identifier as a class name. It
+ introduces the name into the current scope.
+
+ We are in this situation precisely when the next token is a `;'.
+
+ An exception to the exception is that a `friend' declaration does
+ *not* name a new type; i.e., given:
+
+ struct S { friend struct T; };
+
+ `T' is not a new type in the scope of `S'.
+
+ Also, `new struct S' or `sizeof (struct S)' never results in the
+ definition of a new type; a new type can only be declared in a
+ declaration context. */
+
+ /* Warn about attributes. They are ignored. */
+ if (attributes)
+ warning ("type attributes are honored only at type definition");
+
+ type = xref_tag (tag_type, identifier,
+ (is_friend
+ || !is_declaration
+ || cp_lexer_next_token_is_not (parser->lexer,
+ CPP_SEMICOLON)),
+ parser->num_template_parameter_lists);
+ }
+ }
+ if (tag_type != enum_type)
+ cp_parser_check_class_key (tag_type, type);
+
+ /* A "<" cannot follow an elaborated type specifier. If that
+ happens, the user was probably trying to form a template-id. */
+ cp_parser_check_for_invalid_template_id (parser, type);
+
+ return type;
+}
+
+/* Parse an enum-specifier.
+
+ enum-specifier:
+ enum identifier [opt] { enumerator-list [opt] }
+
+ Returns an ENUM_TYPE representing the enumeration. */
+
+static tree
+cp_parser_enum_specifier (cp_parser* parser)
+{
+ cp_token *token;
+ tree identifier = NULL_TREE;
+ tree type;
+
+ /* Look for the `enum' keyword. */
+ if (!cp_parser_require_keyword (parser, RID_ENUM, "`enum'"))
+ return error_mark_node;
+ /* Peek at the next token. */
+ token = cp_lexer_peek_token (parser->lexer);
+
+ /* See if it is an identifier. */
+ if (token->type == CPP_NAME)
+ identifier = cp_parser_identifier (parser);
+
+ /* Look for the `{'. */
+ if (!cp_parser_require (parser, CPP_OPEN_BRACE, "`{'"))
+ return error_mark_node;
+
+ /* At this point, we're going ahead with the enum-specifier, even
+ if some other problem occurs. */
+ cp_parser_commit_to_tentative_parse (parser);
+
+ /* Issue an error message if type-definitions are forbidden here. */
+ cp_parser_check_type_definition (parser);
+
+ /* Create the new type. */
+ type = start_enum (identifier ? identifier : make_anon_name ());
+
+ /* Peek at the next token. */
+ token = cp_lexer_peek_token (parser->lexer);
+ /* If it's not a `}', then there are some enumerators. */
+ if (token->type != CPP_CLOSE_BRACE)
+ cp_parser_enumerator_list (parser, type);
+ /* Look for the `}'. */
+ cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
+
+ /* Finish up the enumeration. */
+ finish_enum (type);
+
+ return type;
+}
+
+/* Parse an enumerator-list. The enumerators all have the indicated
+ TYPE.
+
+ enumerator-list:
+ enumerator-definition
+ enumerator-list , enumerator-definition */
+
+static void
+cp_parser_enumerator_list (cp_parser* parser, tree type)
+{
+ while (true)
+ {
+ cp_token *token;
+
+ /* Parse an enumerator-definition. */
+ cp_parser_enumerator_definition (parser, type);
+ /* Peek at the next token. */
+ token = cp_lexer_peek_token (parser->lexer);
+ /* If it's not a `,', then we've reached the end of the
+ list. */
+ if (token->type != CPP_COMMA)
+ break;
+ /* Otherwise, consume the `,' and keep going. */
+ cp_lexer_consume_token (parser->lexer);
+ /* If the next token is a `}', there is a trailing comma. */
+ if (cp_lexer_next_token_is (parser->lexer, CPP_CLOSE_BRACE))
+ {
+ if (pedantic && !in_system_header)
+ pedwarn ("comma at end of enumerator list");
+ break;
+ }
+ }
+}
+
+/* Parse an enumerator-definition. The enumerator has the indicated
+ TYPE.
+
+ enumerator-definition:
+ enumerator
+ enumerator = constant-expression
+
+ enumerator:
+ identifier */
+
+static void
+cp_parser_enumerator_definition (cp_parser* parser, tree type)
+{
+ cp_token *token;
+ tree identifier;
+ tree value;
+
+ /* Look for the identifier. */
+ identifier = cp_parser_identifier (parser);
+ if (identifier == error_mark_node)
+ return;
+
+ /* Peek at the next token. */
+ token = cp_lexer_peek_token (parser->lexer);
+ /* If it's an `=', then there's an explicit value. */
+ if (token->type == CPP_EQ)
+ {
+ /* Consume the `=' token. */
+ cp_lexer_consume_token (parser->lexer);
+ /* Parse the value. */
+ value = cp_parser_constant_expression (parser,
+ /*allow_non_constant_p=*/false,
+ NULL);
+ }
+ else
+ value = NULL_TREE;
+
+ /* Create the enumerator. */
+ build_enumerator (identifier, value, type);
+}
+
+/* Parse a namespace-name.
+
+ namespace-name:
+ original-namespace-name
+ namespace-alias
+
+ Returns the NAMESPACE_DECL for the namespace. */
+
+static tree
+cp_parser_namespace_name (cp_parser* parser)
+{
+ tree identifier;
+ tree namespace_decl;
+
+ /* Get the name of the namespace. */
+ identifier = cp_parser_identifier (parser);
+ if (identifier == error_mark_node)
+ return error_mark_node;
+
+ /* Look up the identifier in the currently active scope. Look only
+ for namespaces, due to:
+
+ [basic.lookup.udir]
+
+ When looking up a namespace-name in a using-directive or alias
+ definition, only namespace names are considered.
+
+ And:
+
+ [basic.lookup.qual]
+
+ During the lookup of a name preceding the :: scope resolution
+ operator, object, function, and enumerator names are ignored.
+
+ (Note that cp_parser_class_or_namespace_name only calls this
+ function if the token after the name is the scope resolution
+ operator.) */
+ namespace_decl = cp_parser_lookup_name (parser, identifier,
+ /*is_type=*/false,
+ /*is_template=*/false,
+ /*is_namespace=*/true,
+ /*check_dependency=*/true);
+ /* If it's not a namespace, issue an error. */
+ if (namespace_decl == error_mark_node
+ || TREE_CODE (namespace_decl) != NAMESPACE_DECL)
+ {
+ cp_parser_error (parser, "expected namespace-name");
+ namespace_decl = error_mark_node;
+ }
+
+ return namespace_decl;
+}
+
+/* Parse a namespace-definition.
+
+ namespace-definition:
+ named-namespace-definition
+ unnamed-namespace-definition
+
+ named-namespace-definition:
+ original-namespace-definition
+ extension-namespace-definition
+
+ original-namespace-definition:
+ namespace identifier { namespace-body }
+
+ extension-namespace-definition:
+ namespace original-namespace-name { namespace-body }
+
+ unnamed-namespace-definition:
+ namespace { namespace-body } */
+
+static void
+cp_parser_namespace_definition (cp_parser* parser)
+{
+ tree identifier;
+
+ /* Look for the `namespace' keyword. */
+ cp_parser_require_keyword (parser, RID_NAMESPACE, "`namespace'");
+
+ /* Get the name of the namespace. We do not attempt to distinguish
+ between an original-namespace-definition and an
+ extension-namespace-definition at this point. The semantic
+ analysis routines are responsible for that. */
+ if (cp_lexer_next_token_is (parser->lexer, CPP_NAME))
+ identifier = cp_parser_identifier (parser);
+ else
+ identifier = NULL_TREE;
+
+ /* Look for the `{' to start the namespace. */
+ cp_parser_require (parser, CPP_OPEN_BRACE, "`{'");
+ /* Start the namespace. */
+ push_namespace (identifier);
+ /* Parse the body of the namespace. */
+ cp_parser_namespace_body (parser);
+ /* Finish the namespace. */
+ pop_namespace ();
+ /* Look for the final `}'. */
+ cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
+}
+
+/* Parse a namespace-body.
+
+ namespace-body:
+ declaration-seq [opt] */
+
+static void
+cp_parser_namespace_body (cp_parser* parser)
+{
+ cp_parser_declaration_seq_opt (parser);
+}
+
+/* Parse a namespace-alias-definition.
+
+ namespace-alias-definition:
+ namespace identifier = qualified-namespace-specifier ; */
+
+static void
+cp_parser_namespace_alias_definition (cp_parser* parser)
+{
+ tree identifier;
+ tree namespace_specifier;
+
+ /* Look for the `namespace' keyword. */
+ cp_parser_require_keyword (parser, RID_NAMESPACE, "`namespace'");
+ /* Look for the identifier. */
+ identifier = cp_parser_identifier (parser);
+ if (identifier == error_mark_node)
+ return;
+ /* Look for the `=' token. */
+ cp_parser_require (parser, CPP_EQ, "`='");
+ /* Look for the qualified-namespace-specifier. */
+ namespace_specifier
+ = cp_parser_qualified_namespace_specifier (parser);
+ /* Look for the `;' token. */
+ cp_parser_require (parser, CPP_SEMICOLON, "`;'");
+
+ /* Register the alias in the symbol table. */
+ do_namespace_alias (identifier, namespace_specifier);
+}
+
+/* Parse a qualified-namespace-specifier.
+
+ qualified-namespace-specifier:
+ :: [opt] nested-name-specifier [opt] namespace-name
+
+ Returns a NAMESPACE_DECL corresponding to the specified
+ namespace. */
+
+static tree
+cp_parser_qualified_namespace_specifier (cp_parser* parser)
+{
+ /* Look for the optional `::'. */
+ cp_parser_global_scope_opt (parser,
+ /*current_scope_valid_p=*/false);
+
+ /* Look for the optional nested-name-specifier. */
+ cp_parser_nested_name_specifier_opt (parser,
+ /*typename_keyword_p=*/false,
+ /*check_dependency_p=*/true,
+ /*type_p=*/false,
+ /*is_declaration=*/true);
+
+ return cp_parser_namespace_name (parser);
+}
+
+/* Parse a using-declaration.
+
+ using-declaration:
+ using typename [opt] :: [opt] nested-name-specifier unqualified-id ;
+ using :: unqualified-id ; */
+
+static void
+cp_parser_using_declaration (cp_parser* parser)
+{
+ cp_token *token;
+ bool typename_p = false;
+ bool global_scope_p;
+ tree decl;
+ tree identifier;
+ tree scope;
+ tree qscope;
+
+ /* Look for the `using' keyword. */
+ cp_parser_require_keyword (parser, RID_USING, "`using'");
+
+ /* Peek at the next token. */
+ token = cp_lexer_peek_token (parser->lexer);
+ /* See if it's `typename'. */
+ if (token->keyword == RID_TYPENAME)
+ {
+ /* Remember that we've seen it. */
+ typename_p = true;
+ /* Consume the `typename' token. */
+ cp_lexer_consume_token (parser->lexer);
+ }
+
+ /* Look for the optional global scope qualification. */
+ global_scope_p
+ = (cp_parser_global_scope_opt (parser,
+ /*current_scope_valid_p=*/false)
+ != NULL_TREE);
+
+ /* If we saw `typename', or didn't see `::', then there must be a
+ nested-name-specifier present. */
+ if (typename_p || !global_scope_p)
+ qscope = cp_parser_nested_name_specifier (parser, typename_p,
+ /*check_dependency_p=*/true,
+ /*type_p=*/false,
+ /*is_declaration=*/true);
+ /* Otherwise, we could be in either of the two productions. In that
+ case, treat the nested-name-specifier as optional. */
+ else
+ qscope = cp_parser_nested_name_specifier_opt (parser,
+ /*typename_keyword_p=*/false,
+ /*check_dependency_p=*/true,
+ /*type_p=*/false,
+ /*is_declaration=*/true);
+ if (!qscope)
+ qscope = global_namespace;
+
+ /* Parse the unqualified-id. */
+ identifier = cp_parser_unqualified_id (parser,
+ /*template_keyword_p=*/false,
+ /*check_dependency_p=*/true,
+ /*declarator_p=*/true);
+
+ /* The function we call to handle a using-declaration is different
+ depending on what scope we are in. */
+ if (identifier == error_mark_node)
+ ;
+ else if (TREE_CODE (identifier) != IDENTIFIER_NODE
+ && TREE_CODE (identifier) != BIT_NOT_EXPR)
+ /* [namespace.udecl]
+
+ A using declaration shall not name a template-id. */
+ error ("a template-id may not appear in a using-declaration");
+ else
+ {
+ scope = current_scope ();
+ if (scope && TYPE_P (scope))
+ {
+ /* Create the USING_DECL. */
+ decl = do_class_using_decl (build_nt (SCOPE_REF,
+ parser->scope,
+ identifier));
+ /* Add it to the list of members in this class. */
+ finish_member_declaration (decl);
+ }
+ else
+ {
+ decl = cp_parser_lookup_name_simple (parser, identifier);
+ if (decl == error_mark_node)
+ cp_parser_name_lookup_error (parser, identifier, decl, NULL);
+ else if (scope)
+ do_local_using_decl (decl, qscope, identifier);
+ else
+ do_toplevel_using_decl (decl, qscope, identifier);
+ }
+ }
+
+ /* Look for the final `;'. */
+ cp_parser_require (parser, CPP_SEMICOLON, "`;'");
+}
+
+/* Parse a using-directive.
+
+ using-directive:
+ using namespace :: [opt] nested-name-specifier [opt]
+ namespace-name ; */
+
+static void
+cp_parser_using_directive (cp_parser* parser)
+{
+ tree namespace_decl;
+ tree attribs;
+
+ /* Look for the `using' keyword. */
+ cp_parser_require_keyword (parser, RID_USING, "`using'");
+ /* And the `namespace' keyword. */
+ cp_parser_require_keyword (parser, RID_NAMESPACE, "`namespace'");
+ /* Look for the optional `::' operator. */
+ cp_parser_global_scope_opt (parser, /*current_scope_valid_p=*/false);
+ /* And the optional nested-name-specifier. */
+ cp_parser_nested_name_specifier_opt (parser,
+ /*typename_keyword_p=*/false,
+ /*check_dependency_p=*/true,
+ /*type_p=*/false,
+ /*is_declaration=*/true);
+ /* Get the namespace being used. */
+ namespace_decl = cp_parser_namespace_name (parser);
+ /* And any specified attributes. */
+ attribs = cp_parser_attributes_opt (parser);
+ /* Update the symbol table. */
+ parse_using_directive (namespace_decl, attribs);
+ /* Look for the final `;'. */
+ cp_parser_require (parser, CPP_SEMICOLON, "`;'");
+}
+
+/* Parse an asm-definition.
+
+ asm-definition:
+ asm ( string-literal ) ;
+
+ GNU Extension:
+
+ asm-definition:
+ asm volatile [opt] ( string-literal ) ;
+ asm volatile [opt] ( string-literal : asm-operand-list [opt] ) ;
+ asm volatile [opt] ( string-literal : asm-operand-list [opt]
+ : asm-operand-list [opt] ) ;
+ asm volatile [opt] ( string-literal : asm-operand-list [opt]
+ : asm-operand-list [opt]
+ : asm-operand-list [opt] ) ; */
+
+static void
+cp_parser_asm_definition (cp_parser* parser)
+{
+ cp_token *token;
+ tree string;
+ tree outputs = NULL_TREE;
+ tree inputs = NULL_TREE;
+ tree clobbers = NULL_TREE;
+ tree asm_stmt;
+ bool volatile_p = false;
+ bool extended_p = false;
+
+ /* Look for the `asm' keyword. */
+ cp_parser_require_keyword (parser, RID_ASM, "`asm'");
+ /* See if the next token is `volatile'. */
+ if (cp_parser_allow_gnu_extensions_p (parser)
+ && cp_lexer_next_token_is_keyword (parser->lexer, RID_VOLATILE))
+ {
+ /* Remember that we saw the `volatile' keyword. */
+ volatile_p = true;
+ /* Consume the token. */
+ cp_lexer_consume_token (parser->lexer);
+ }
+ /* Look for the opening `('. */
+ cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
+ /* Look for the string. */
+ token = cp_parser_require (parser, CPP_STRING, "asm body");
+ if (!token)
+ return;
+ string = token->value;
+ /* If we're allowing GNU extensions, check for the extended assembly
+ syntax. Unfortunately, the `:' tokens need not be separated by
+ a space in C, and so, for compatibility, we tolerate that here
+ too. Doing that means that we have to treat the `::' operator as
+ two `:' tokens. */
+ if (cp_parser_allow_gnu_extensions_p (parser)
+ && at_function_scope_p ()
+ && (cp_lexer_next_token_is (parser->lexer, CPP_COLON)
+ || cp_lexer_next_token_is (parser->lexer, CPP_SCOPE)))
+ {
+ bool inputs_p = false;
+ bool clobbers_p = false;
+
+ /* The extended syntax was used. */
+ extended_p = true;
+
+ /* Look for outputs. */
+ if (cp_lexer_next_token_is (parser->lexer, CPP_COLON))
+ {
+ /* Consume the `:'. */
+ cp_lexer_consume_token (parser->lexer);
+ /* Parse the output-operands. */
+ if (cp_lexer_next_token_is_not (parser->lexer,
+ CPP_COLON)
+ && cp_lexer_next_token_is_not (parser->lexer,
+ CPP_SCOPE)
+ && cp_lexer_next_token_is_not (parser->lexer,
+ CPP_CLOSE_PAREN))
+ outputs = cp_parser_asm_operand_list (parser);
+ }
+ /* If the next token is `::', there are no outputs, and the
+ next token is the beginning of the inputs. */
+ else if (cp_lexer_next_token_is (parser->lexer, CPP_SCOPE))
+ {
+ /* Consume the `::' token. */
+ cp_lexer_consume_token (parser->lexer);
+ /* The inputs are coming next. */
+ inputs_p = true;
+ }
+
+ /* Look for inputs. */
+ if (inputs_p
+ || cp_lexer_next_token_is (parser->lexer, CPP_COLON))
+ {
+ if (!inputs_p)
+ /* Consume the `:'. */
+ cp_lexer_consume_token (parser->lexer);
+ /* Parse the output-operands. */
+ if (cp_lexer_next_token_is_not (parser->lexer,
+ CPP_COLON)
+ && cp_lexer_next_token_is_not (parser->lexer,
+ CPP_SCOPE)
+ && cp_lexer_next_token_is_not (parser->lexer,
+ CPP_CLOSE_PAREN))
+ inputs = cp_parser_asm_operand_list (parser);
+ }
+ else if (cp_lexer_next_token_is (parser->lexer, CPP_SCOPE))
+ /* The clobbers are coming next. */
+ clobbers_p = true;
+
+ /* Look for clobbers. */
+ if (clobbers_p
+ || cp_lexer_next_token_is (parser->lexer, CPP_COLON))
+ {
+ if (!clobbers_p)
+ /* Consume the `:'. */
+ cp_lexer_consume_token (parser->lexer);
+ /* Parse the clobbers. */
+ if (cp_lexer_next_token_is_not (parser->lexer,
+ CPP_CLOSE_PAREN))
+ clobbers = cp_parser_asm_clobber_list (parser);
+ }
+ }
+ /* Look for the closing `)'. */
+ if (!cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'"))
+ cp_parser_skip_to_closing_parenthesis (parser, true, false,
+ /*consume_paren=*/true);
+ cp_parser_require (parser, CPP_SEMICOLON, "`;'");
+
+ /* Create the ASM_STMT. */
+ if (at_function_scope_p ())
+ {
+ asm_stmt =
+ finish_asm_stmt (volatile_p
+ ? ridpointers[(int) RID_VOLATILE] : NULL_TREE,
+ string, outputs, inputs, clobbers);
+ /* If the extended syntax was not used, mark the ASM_STMT. */
+ if (!extended_p)
+ ASM_INPUT_P (asm_stmt) = 1;
+ }
+ else
+ assemble_asm (string);
+}
+
+/* Declarators [gram.dcl.decl] */
+
+/* Parse an init-declarator.
+
+ init-declarator:
+ declarator initializer [opt]
+
+ GNU Extension:
+
+ init-declarator:
+ declarator asm-specification [opt] attributes [opt] initializer [opt]
+
+ function-definition:
+ decl-specifier-seq [opt] declarator ctor-initializer [opt]
+ function-body
+ decl-specifier-seq [opt] declarator function-try-block
+
+ GNU Extension:
+
+ function-definition:
+ __extension__ function-definition
+
+ The DECL_SPECIFIERS and PREFIX_ATTRIBUTES apply to this declarator.
+ Returns a representation of the entity declared. If MEMBER_P is TRUE,
+ then this declarator appears in a class scope. The new DECL created
+ by this declarator is returned.
+
+ If FUNCTION_DEFINITION_ALLOWED_P then we handle the declarator and
+ for a function-definition here as well. If the declarator is a
+ declarator for a function-definition, *FUNCTION_DEFINITION_P will
+ be TRUE upon return. By that point, the function-definition will
+ have been completely parsed.
+
+ FUNCTION_DEFINITION_P may be NULL if FUNCTION_DEFINITION_ALLOWED_P
+ is FALSE. */
+
+static tree
+cp_parser_init_declarator (cp_parser* parser,
+ tree decl_specifiers,
+ tree prefix_attributes,
+ bool function_definition_allowed_p,
+ bool member_p,
+ int declares_class_or_enum,
+ bool* function_definition_p)
+{
+ cp_token *token;
+ tree declarator;
+ tree attributes;
+ tree asm_specification;
+ tree initializer;
+ tree decl = NULL_TREE;
+ tree scope;
+ bool is_initialized;
+ bool is_parenthesized_init;
+ bool is_non_constant_init;
+ int ctor_dtor_or_conv_p;
+ bool friend_p;
+ bool pop_p = false;
+
+ /* Assume that this is not the declarator for a function
+ definition. */
+ if (function_definition_p)
+ *function_definition_p = false;
+
+ /* Defer access checks while parsing the declarator; we cannot know
+ what names are accessible until we know what is being
+ declared. */
+ resume_deferring_access_checks ();
+
+ /* Parse the declarator. */
+ declarator
+ = cp_parser_declarator (parser, CP_PARSER_DECLARATOR_NAMED,
+ &ctor_dtor_or_conv_p,
+ /*parenthesized_p=*/NULL);
+ /* Gather up the deferred checks. */
+ stop_deferring_access_checks ();
+
+ /* If the DECLARATOR was erroneous, there's no need to go
+ further. */
+ if (declarator == error_mark_node)
+ return error_mark_node;
+
+ cp_parser_check_for_definition_in_return_type (declarator,
+ declares_class_or_enum);
+
+ /* Figure out what scope the entity declared by the DECLARATOR is
+ located in. `grokdeclarator' sometimes changes the scope, so
+ we compute it now. */
+ scope = get_scope_of_declarator (declarator);
+
+ /* If we're allowing GNU extensions, look for an asm-specification
+ and attributes. */
+ if (cp_parser_allow_gnu_extensions_p (parser))
+ {
+ /* Look for an asm-specification. */
+ asm_specification = cp_parser_asm_specification_opt (parser);
+ /* And attributes. */
+ attributes = cp_parser_attributes_opt (parser);
+ }
+ else
+ {
+ asm_specification = NULL_TREE;
+ attributes = NULL_TREE;
+ }
+
+ /* Peek at the next token. */
+ token = cp_lexer_peek_token (parser->lexer);
+ /* Check to see if the token indicates the start of a
+ function-definition. */
+ if (cp_parser_token_starts_function_definition_p (token))
+ {
+ if (!function_definition_allowed_p)
+ {
+ /* If a function-definition should not appear here, issue an
+ error message. */
+ cp_parser_error (parser,
+ "a function-definition is not allowed here");
+ return error_mark_node;
+ }
+ else
+ {
+ /* Neither attributes nor an asm-specification are allowed
+ on a function-definition. */
+ if (asm_specification)
+ error ("an asm-specification is not allowed on a function-definition");
+ if (attributes)
+ error ("attributes are not allowed on a function-definition");
+ /* This is a function-definition. */
+ *function_definition_p = true;
+
+ /* Parse the function definition. */
+ if (member_p)
+ decl = cp_parser_save_member_function_body (parser,
+ decl_specifiers,
+ declarator,
+ prefix_attributes);
+ else
+ decl
+ = (cp_parser_function_definition_from_specifiers_and_declarator
+ (parser, decl_specifiers, prefix_attributes, declarator));
+
+ return decl;
+ }
+ }
+
+ /* [dcl.dcl]
+
+ Only in function declarations for constructors, destructors, and
+ type conversions can the decl-specifier-seq be omitted.
+
+ We explicitly postpone this check past the point where we handle
+ function-definitions because we tolerate function-definitions
+ that are missing their return types in some modes. */
+ if (!decl_specifiers && ctor_dtor_or_conv_p <= 0)
+ {
+ cp_parser_error (parser,
+ "expected constructor, destructor, or type conversion");
+ return error_mark_node;
+ }
+
+ /* An `=' or an `(' indicates an initializer. */
+ is_initialized = (token->type == CPP_EQ
+ || token->type == CPP_OPEN_PAREN);
+ /* If the init-declarator isn't initialized and isn't followed by a
+ `,' or `;', it's not a valid init-declarator. */
+ if (!is_initialized
+ && token->type != CPP_COMMA
+ && token->type != CPP_SEMICOLON)
+ {
+ cp_parser_error (parser, "expected init-declarator");
+ return error_mark_node;
+ }
+
+ /* Because start_decl has side-effects, we should only call it if we
+ know we're going ahead. By this point, we know that we cannot
+ possibly be looking at any other construct. */
+ cp_parser_commit_to_tentative_parse (parser);
+
+ /* If the decl specifiers were bad, issue an error now that we're
+ sure this was intended to be a declarator. Then continue
+ declaring the variable(s), as int, to try to cut down on further
+ errors. */
+ if (decl_specifiers != NULL
+ && TREE_VALUE (decl_specifiers) == error_mark_node)
+ {
+ cp_parser_error (parser, "invalid type in declaration");
+ TREE_VALUE (decl_specifiers) = integer_type_node;
+ }
+
+ /* Check to see whether or not this declaration is a friend. */
+ friend_p = cp_parser_friend_p (decl_specifiers);
+
+ /* Check that the number of template-parameter-lists is OK. */
+ if (!cp_parser_check_declarator_template_parameters (parser, declarator))
+ return error_mark_node;
+
+ /* Enter the newly declared entry in the symbol table. If we're
+ processing a declaration in a class-specifier, we wait until
+ after processing the initializer. */
+ if (!member_p)
+ {
+ if (parser->in_unbraced_linkage_specification_p)
+ {
+ decl_specifiers = tree_cons (error_mark_node,
+ get_identifier ("extern"),
+ decl_specifiers);
+ have_extern_spec = false;
+ }
+ decl = start_decl (declarator, decl_specifiers,
+ is_initialized, attributes, prefix_attributes);
+ }
+
+ /* Enter the SCOPE. That way unqualified names appearing in the
+ initializer will be looked up in SCOPE. */
+ if (scope)
+ pop_p = push_scope (scope);
+
+ /* Perform deferred access control checks, now that we know in which
+ SCOPE the declared entity resides. */
+ if (!member_p && decl)
+ {
+ tree saved_current_function_decl = NULL_TREE;
+
+ /* If the entity being declared is a function, pretend that we
+ are in its scope. If it is a `friend', it may have access to
+ things that would not otherwise be accessible. */
+ if (TREE_CODE (decl) == FUNCTION_DECL)
+ {
+ saved_current_function_decl = current_function_decl;
+ current_function_decl = decl;
+ }
+
+ /* Perform the access control checks for the declarator and the
+ the decl-specifiers. */
+ perform_deferred_access_checks ();
+
+ /* Restore the saved value. */
+ if (TREE_CODE (decl) == FUNCTION_DECL)
+ current_function_decl = saved_current_function_decl;
+ }
+
+ /* Parse the initializer. */
+ if (is_initialized)
+ initializer = cp_parser_initializer (parser,
+ &is_parenthesized_init,
+ &is_non_constant_init);
+ else
+ {
+ initializer = NULL_TREE;
+ is_parenthesized_init = false;
+ is_non_constant_init = true;
+ }
+
+ /* The old parser allows attributes to appear after a parenthesized
+ initializer. Mark Mitchell proposed removing this functionality
+ on the GCC mailing lists on 2002-08-13. This parser accepts the
+ attributes -- but ignores them. */
+ if (cp_parser_allow_gnu_extensions_p (parser) && is_parenthesized_init)
+ if (cp_parser_attributes_opt (parser))
+ warning ("attributes after parenthesized initializer ignored");
+
+ /* Leave the SCOPE, now that we have processed the initializer. It
+ is important to do this before calling cp_finish_decl because it
+ makes decisions about whether to create DECL_STMTs or not based
+ on the current scope. */
+ if (pop_p)
+ pop_scope (scope);
+
+ /* For an in-class declaration, use `grokfield' to create the
+ declaration. */
+ if (member_p)
+ {
+ decl = grokfield (declarator, decl_specifiers,
+ initializer, /*asmspec=*/NULL_TREE,
+ /*attributes=*/NULL_TREE);
+ if (decl && TREE_CODE (decl) == FUNCTION_DECL)
+ cp_parser_save_default_args (parser, decl);
+ }
+
+ /* Finish processing the declaration. But, skip friend
+ declarations. */
+ if (!friend_p && decl)
+ cp_finish_decl (decl,
+ initializer,
+ asm_specification,
+ /* If the initializer is in parentheses, then this is
+ a direct-initialization, which means that an
+ `explicit' constructor is OK. Otherwise, an
+ `explicit' constructor cannot be used. */
+ ((is_parenthesized_init || !is_initialized)
+ ? 0 : LOOKUP_ONLYCONVERTING));
+
+ /* Remember whether or not variables were initialized by
+ constant-expressions. */
+ if (decl && TREE_CODE (decl) == VAR_DECL
+ && is_initialized && !is_non_constant_init)
+ DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (decl) = true;
+
+ return decl;
+}
+
+/* Parse a declarator.
+
+ declarator:
+ direct-declarator
+ ptr-operator declarator
+
+ abstract-declarator:
+ ptr-operator abstract-declarator [opt]
+ direct-abstract-declarator
+
+ GNU Extensions:
+
+ declarator:
+ attributes [opt] direct-declarator
+ attributes [opt] ptr-operator declarator
+
+ abstract-declarator:
+ attributes [opt] ptr-operator abstract-declarator [opt]
+ attributes [opt] direct-abstract-declarator
+
+ Returns a representation of the declarator. If the declarator has
+ the form `* declarator', then an INDIRECT_REF is returned, whose
+ only operand is the sub-declarator. Analogously, `& declarator' is
+ represented as an ADDR_EXPR. For `X::* declarator', a SCOPE_REF is
+ used. The first operand is the TYPE for `X'. The second operand
+ is an INDIRECT_REF whose operand is the sub-declarator.
+
+ Otherwise, the representation is as for a direct-declarator.
+
+ (It would be better to define a structure type to represent
+ declarators, rather than abusing `tree' nodes to represent
+ declarators. That would be much clearer and save some memory.
+ There is no reason for declarators to be garbage-collected, for
+ example; they are created during parser and no longer needed after
+ `grokdeclarator' has been called.)
+
+ For a ptr-operator that has the optional cv-qualifier-seq,
+ cv-qualifiers will be stored in the TREE_TYPE of the INDIRECT_REF
+ node.
+
+ If CTOR_DTOR_OR_CONV_P is not NULL, *CTOR_DTOR_OR_CONV_P is used to
+ detect constructor, destructor or conversion operators. It is set
+ to -1 if the declarator is a name, and +1 if it is a
+ function. Otherwise it is set to zero. Usually you just want to
+ test for >0, but internally the negative value is used.
+
+ (The reason for CTOR_DTOR_OR_CONV_P is that a declaration must have
+ a decl-specifier-seq unless it declares a constructor, destructor,
+ or conversion. It might seem that we could check this condition in
+ semantic analysis, rather than parsing, but that makes it difficult
+ to handle something like `f()'. We want to notice that there are
+ no decl-specifiers, and therefore realize that this is an
+ expression, not a declaration.)
+
+ If PARENTHESIZED_P is non-NULL, *PARENTHESIZED_P is set to true iff
+ the declarator is a direct-declarator of the form "(...)". */
+
+static tree
+cp_parser_declarator (cp_parser* parser,
+ cp_parser_declarator_kind dcl_kind,
+ int* ctor_dtor_or_conv_p,
+ bool* parenthesized_p)
+{
+ cp_token *token;
+ tree declarator;
+ enum tree_code code;
+ tree cv_qualifier_seq;
+ tree class_type;
+ tree attributes = NULL_TREE;
+
+ /* Assume this is not a constructor, destructor, or type-conversion
+ operator. */
+ if (ctor_dtor_or_conv_p)
+ *ctor_dtor_or_conv_p = 0;
+
+ if (cp_parser_allow_gnu_extensions_p (parser))
+ attributes = cp_parser_attributes_opt (parser);
+
+ /* Peek at the next token. */
+ token = cp_lexer_peek_token (parser->lexer);
+
+ /* Check for the ptr-operator production. */
+ cp_parser_parse_tentatively (parser);
+ /* Parse the ptr-operator. */
+ code = cp_parser_ptr_operator (parser,
+ &class_type,
+ &cv_qualifier_seq);
+ /* If that worked, then we have a ptr-operator. */
+ if (cp_parser_parse_definitely (parser))
+ {
+ /* If a ptr-operator was found, then this declarator was not
+ parenthesized. */
+ if (parenthesized_p)
+ *parenthesized_p = true;
+ /* The dependent declarator is optional if we are parsing an
+ abstract-declarator. */
+ if (dcl_kind != CP_PARSER_DECLARATOR_NAMED)
+ cp_parser_parse_tentatively (parser);
+
+ /* Parse the dependent declarator. */
+ declarator = cp_parser_declarator (parser, dcl_kind,
+ /*ctor_dtor_or_conv_p=*/NULL,
+ /*parenthesized_p=*/NULL);
+
+ /* If we are parsing an abstract-declarator, we must handle the
+ case where the dependent declarator is absent. */
+ if (dcl_kind != CP_PARSER_DECLARATOR_NAMED
+ && !cp_parser_parse_definitely (parser))
+ declarator = NULL_TREE;
+
+ /* Build the representation of the ptr-operator. */
+ if (code == INDIRECT_REF)
+ declarator = make_pointer_declarator (cv_qualifier_seq,
+ declarator);
+ else
+ declarator = make_reference_declarator (cv_qualifier_seq,
+ declarator);
+ /* Handle the pointer-to-member case. */
+ if (class_type)
+ declarator = build_nt (SCOPE_REF, class_type, declarator);
+ }
+ /* Everything else is a direct-declarator. */
+ else
+ {
+ if (parenthesized_p)
+ *parenthesized_p = cp_lexer_next_token_is (parser->lexer,
+ CPP_OPEN_PAREN);
+ declarator = cp_parser_direct_declarator (parser, dcl_kind,
+ ctor_dtor_or_conv_p);
+ }
+
+ if (attributes && declarator != error_mark_node)
+ declarator = tree_cons (attributes, declarator, NULL_TREE);
+
+ return declarator;
+}
+
+/* Parse a direct-declarator or direct-abstract-declarator.
+
+ direct-declarator:
+ declarator-id
+ direct-declarator ( parameter-declaration-clause )
+ cv-qualifier-seq [opt]
+ exception-specification [opt]
+ direct-declarator [ constant-expression [opt] ]
+ ( declarator )
+
+ direct-abstract-declarator:
+ direct-abstract-declarator [opt]
+ ( parameter-declaration-clause )
+ cv-qualifier-seq [opt]
+ exception-specification [opt]
+ direct-abstract-declarator [opt] [ constant-expression [opt] ]
+ ( abstract-declarator )
+
+ Returns a representation of the declarator. DCL_KIND is
+ CP_PARSER_DECLARATOR_ABSTRACT, if we are parsing a
+ direct-abstract-declarator. It is CP_PARSER_DECLARATOR_NAMED, if
+ we are parsing a direct-declarator. It is
+ CP_PARSER_DECLARATOR_EITHER, if we can accept either - in the case
+ of ambiguity we prefer an abstract declarator, as per
+ [dcl.ambig.res]. CTOR_DTOR_OR_CONV_P is as for
+ cp_parser_declarator.
+
+ For the declarator-id production, the representation is as for an
+ id-expression, except that a qualified name is represented as a
+ SCOPE_REF. A function-declarator is represented as a CALL_EXPR;
+ see the documentation of the FUNCTION_DECLARATOR_* macros for
+ information about how to find the various declarator components.
+ An array-declarator is represented as an ARRAY_REF. The
+ direct-declarator is the first operand; the constant-expression
+ indicating the size of the array is the second operand. */
+
+static tree
+cp_parser_direct_declarator (cp_parser* parser,
+ cp_parser_declarator_kind dcl_kind,
+ int* ctor_dtor_or_conv_p)
+{
+ cp_token *token;
+ tree declarator = NULL_TREE;
+ tree scope = NULL_TREE;
+ bool saved_default_arg_ok_p = parser->default_arg_ok_p;
+ bool saved_in_declarator_p = parser->in_declarator_p;
+ bool first = true;
+ bool pop_p = false;
+
+ while (true)
+ {
+ /* Peek at the next token. */
+ token = cp_lexer_peek_token (parser->lexer);
+ if (token->type == CPP_OPEN_PAREN)
+ {
+ /* This is either a parameter-declaration-clause, or a
+ parenthesized declarator. When we know we are parsing a
+ named declarator, it must be a parenthesized declarator
+ if FIRST is true. For instance, `(int)' is a
+ parameter-declaration-clause, with an omitted
+ direct-abstract-declarator. But `((*))', is a
+ parenthesized abstract declarator. Finally, when T is a
+ template parameter `(T)' is a
+ parameter-declaration-clause, and not a parenthesized
+ named declarator.
+
+ We first try and parse a parameter-declaration-clause,
+ and then try a nested declarator (if FIRST is true).
+
+ It is not an error for it not to be a
+ parameter-declaration-clause, even when FIRST is
+ false. Consider,
+
+ int i (int);
+ int i (3);
+
+ The first is the declaration of a function while the
+ second is a the definition of a variable, including its
+ initializer.
+
+ Having seen only the parenthesis, we cannot know which of
+ these two alternatives should be selected. Even more
+ complex are examples like:
+
+ int i (int (a));
+ int i (int (3));
+
+ The former is a function-declaration; the latter is a
+ variable initialization.
+
+ Thus again, we try a parameter-declaration-clause, and if
+ that fails, we back out and return. */
+
+ if (!first || dcl_kind != CP_PARSER_DECLARATOR_NAMED)
+ {
+ tree params;
+ unsigned saved_num_template_parameter_lists;
+
+ cp_parser_parse_tentatively (parser);
+
+ /* Consume the `('. */
+ cp_lexer_consume_token (parser->lexer);
+ if (first)
+ {
+ /* If this is going to be an abstract declarator, we're
+ in a declarator and we can't have default args. */
+ parser->default_arg_ok_p = false;
+ parser->in_declarator_p = true;
+ }
+
+ /* Inside the function parameter list, surrounding
+ template-parameter-lists do not apply. */
+ saved_num_template_parameter_lists
+ = parser->num_template_parameter_lists;
+ parser->num_template_parameter_lists = 0;
+
+ /* Parse the parameter-declaration-clause. */
+ params = cp_parser_parameter_declaration_clause (parser);
+
+ parser->num_template_parameter_lists
+ = saved_num_template_parameter_lists;
+
+ /* If all went well, parse the cv-qualifier-seq and the
+ exception-specification. */
+ if (cp_parser_parse_definitely (parser))
+ {
+ tree cv_qualifiers;
+ tree exception_specification;
+
+ if (ctor_dtor_or_conv_p)
+ *ctor_dtor_or_conv_p = *ctor_dtor_or_conv_p < 0;
+ first = false;
+ /* Consume the `)'. */
+ cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
+
+ /* Parse the cv-qualifier-seq. */
+ cv_qualifiers = cp_parser_cv_qualifier_seq_opt (parser);
+ /* And the exception-specification. */
+ exception_specification
+ = cp_parser_exception_specification_opt (parser);
+
+ /* Create the function-declarator. */
+ declarator = make_call_declarator (declarator,
+ params,
+ cv_qualifiers,
+ exception_specification);
+ /* Any subsequent parameter lists are to do with
+ return type, so are not those of the declared
+ function. */
+ parser->default_arg_ok_p = false;
+
+ /* Repeat the main loop. */
+ continue;
+ }
+ }
+
+ /* If this is the first, we can try a parenthesized
+ declarator. */
+ if (first)
+ {
+ bool saved_in_type_id_in_expr_p;
+
+ parser->default_arg_ok_p = saved_default_arg_ok_p;
+ parser->in_declarator_p = saved_in_declarator_p;
+
+ /* Consume the `('. */
+ cp_lexer_consume_token (parser->lexer);
+ /* Parse the nested declarator. */
+ saved_in_type_id_in_expr_p = parser->in_type_id_in_expr_p;
+ parser->in_type_id_in_expr_p = true;
+ declarator
+ = cp_parser_declarator (parser, dcl_kind, ctor_dtor_or_conv_p,
+ /*parenthesized_p=*/NULL);
+ parser->in_type_id_in_expr_p = saved_in_type_id_in_expr_p;
+ first = false;
+ /* Expect a `)'. */
+ if (!cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'"))
+ declarator = error_mark_node;
+ if (declarator == error_mark_node)
+ break;
+
+ goto handle_declarator;
+ }
+ /* Otherwise, we must be done. */
+ else
+ break;
+ }
+ else if ((!first || dcl_kind != CP_PARSER_DECLARATOR_NAMED)
+ && token->type == CPP_OPEN_SQUARE)
+ {
+ /* Parse an array-declarator. */
+ tree bounds;
+
+ if (ctor_dtor_or_conv_p)
+ *ctor_dtor_or_conv_p = 0;
+
+ first = false;
+ parser->default_arg_ok_p = false;
+ parser->in_declarator_p = true;
+ /* Consume the `['. */
+ cp_lexer_consume_token (parser->lexer);
+ /* Peek at the next token. */
+ token = cp_lexer_peek_token (parser->lexer);
+ /* If the next token is `]', then there is no
+ constant-expression. */
+ if (token->type != CPP_CLOSE_SQUARE)
+ {
+ bool non_constant_p;
+
+ bounds
+ = cp_parser_constant_expression (parser,
+ /*allow_non_constant=*/true,
+ &non_constant_p);
+ if (!non_constant_p)
+ bounds = fold_non_dependent_expr (bounds);
+ }
+ else
+ bounds = NULL_TREE;
+ /* Look for the closing `]'. */
+ if (!cp_parser_require (parser, CPP_CLOSE_SQUARE, "`]'"))
+ {
+ declarator = error_mark_node;
+ break;
+ }
+
+ declarator = build_nt (ARRAY_REF, declarator, bounds);
+ }
+ else if (first && dcl_kind != CP_PARSER_DECLARATOR_ABSTRACT)
+ {
+ /* Parse a declarator-id */
+ if (dcl_kind == CP_PARSER_DECLARATOR_EITHER)
+ cp_parser_parse_tentatively (parser);
+ declarator = cp_parser_declarator_id (parser);
+ if (dcl_kind == CP_PARSER_DECLARATOR_EITHER)
+ {
+ if (!cp_parser_parse_definitely (parser))
+ declarator = error_mark_node;
+ else if (TREE_CODE (declarator) != IDENTIFIER_NODE)
+ {
+ cp_parser_error (parser, "expected unqualified-id");
+ declarator = error_mark_node;
+ }
+ }
+
+ if (declarator == error_mark_node)
+ break;
+
+ if (TREE_CODE (declarator) == SCOPE_REF
+ && !current_scope ())
+ {
+ tree scope = TREE_OPERAND (declarator, 0);
+
+ /* In the declaration of a member of a template class
+ outside of the class itself, the SCOPE will sometimes
+ be a TYPENAME_TYPE. For example, given:
+
+ template <typename T>
+ int S<T>::R::i = 3;
+
+ the SCOPE will be a TYPENAME_TYPE for `S<T>::R'. In
+ this context, we must resolve S<T>::R to an ordinary
+ type, rather than a typename type.
+
+ The reason we normally avoid resolving TYPENAME_TYPEs
+ is that a specialization of `S' might render
+ `S<T>::R' not a type. However, if `S' is
+ specialized, then this `i' will not be used, so there
+ is no harm in resolving the types here. */
+ if (TREE_CODE (scope) == TYPENAME_TYPE)
+ {
+ tree type;
+
+ /* Resolve the TYPENAME_TYPE. */
+ type = resolve_typename_type (scope,
+ /*only_current_p=*/false);
+ /* If that failed, the declarator is invalid. */
+ if (type == error_mark_node)
+ error ("`%T::%D' is not a type",
+ TYPE_CONTEXT (scope),
+ TYPE_IDENTIFIER (scope));
+ /* Build a new DECLARATOR. */
+ declarator = build_nt (SCOPE_REF,
+ type,
+ TREE_OPERAND (declarator, 1));
+ }
+ }
+
+ /* Check to see whether the declarator-id names a constructor,
+ destructor, or conversion. */
+ if (declarator && ctor_dtor_or_conv_p
+ && ((TREE_CODE (declarator) == SCOPE_REF
+ && CLASS_TYPE_P (TREE_OPERAND (declarator, 0)))
+ || (TREE_CODE (declarator) != SCOPE_REF
+ && at_class_scope_p ())))
+ {
+ tree unqualified_name;
+ tree class_type;
+
+ /* Get the unqualified part of the name. */
+ if (TREE_CODE (declarator) == SCOPE_REF)
+ {
+ class_type = TREE_OPERAND (declarator, 0);
+ unqualified_name = TREE_OPERAND (declarator, 1);
+ }
+ else
+ {
+ class_type = current_class_type;
+ unqualified_name = declarator;
+ }
+
+ /* See if it names ctor, dtor or conv. */
+ if (TREE_CODE (unqualified_name) == BIT_NOT_EXPR
+ || IDENTIFIER_TYPENAME_P (unqualified_name)
+ || constructor_name_p (unqualified_name, class_type)
+ || (TREE_CODE (unqualified_name) == TYPE_DECL
+ && same_type_p (TREE_TYPE (unqualified_name),
+ class_type)))
+ *ctor_dtor_or_conv_p = -1;
+ }
+
+ handle_declarator:;
+ scope = get_scope_of_declarator (declarator);
+ if (scope)
+ /* Any names that appear after the declarator-id for a
+ member are looked up in the containing scope. */
+ pop_p = push_scope (scope);
+ parser->in_declarator_p = true;
+ if ((ctor_dtor_or_conv_p && *ctor_dtor_or_conv_p)
+ || (declarator
+ && (TREE_CODE (declarator) == SCOPE_REF
+ || TREE_CODE (declarator) == IDENTIFIER_NODE)))
+ /* Default args are only allowed on function
+ declarations. */
+ parser->default_arg_ok_p = saved_default_arg_ok_p;
+ else
+ parser->default_arg_ok_p = false;
+
+ first = false;
+ }
+ /* We're done. */
+ else
+ break;
+ }
+
+ /* For an abstract declarator, we might wind up with nothing at this
+ point. That's an error; the declarator is not optional. */
+ if (!declarator)
+ cp_parser_error (parser, "expected declarator");
+
+ /* If we entered a scope, we must exit it now. */
+ if (pop_p)
+ pop_scope (scope);
+
+ parser->default_arg_ok_p = saved_default_arg_ok_p;
+ parser->in_declarator_p = saved_in_declarator_p;
+
+ return declarator;
+}
+
+/* Parse a ptr-operator.
+
+ ptr-operator:
+ * cv-qualifier-seq [opt]
+ &
+ :: [opt] nested-name-specifier * cv-qualifier-seq [opt]
+
+ GNU Extension:
+
+ ptr-operator:
+ & cv-qualifier-seq [opt]
+
+ Returns INDIRECT_REF if a pointer, or pointer-to-member, was
+ used. Returns ADDR_EXPR if a reference was used. In the
+ case of a pointer-to-member, *TYPE is filled in with the
+ TYPE containing the member. *CV_QUALIFIER_SEQ is filled in
+ with the cv-qualifier-seq, or NULL_TREE, if there are no
+ cv-qualifiers. Returns ERROR_MARK if an error occurred. */
+
+static enum tree_code
+cp_parser_ptr_operator (cp_parser* parser,
+ tree* type,
+ tree* cv_qualifier_seq)
+{
+ enum tree_code code = ERROR_MARK;
+ cp_token *token;
+
+ /* Assume that it's not a pointer-to-member. */
+ *type = NULL_TREE;
+ /* And that there are no cv-qualifiers. */
+ *cv_qualifier_seq = NULL_TREE;
+
+ /* Peek at the next token. */
+ token = cp_lexer_peek_token (parser->lexer);
+ /* If it's a `*' or `&' we have a pointer or reference. */
+ if (token->type == CPP_MULT || token->type == CPP_AND)
+ {
+ /* Remember which ptr-operator we were processing. */
+ code = (token->type == CPP_AND ? ADDR_EXPR : INDIRECT_REF);
+
+ /* Consume the `*' or `&'. */
+ cp_lexer_consume_token (parser->lexer);
+
+ /* A `*' can be followed by a cv-qualifier-seq, and so can a
+ `&', if we are allowing GNU extensions. (The only qualifier
+ that can legally appear after `&' is `restrict', but that is
+ enforced during semantic analysis. */
+ if (code == INDIRECT_REF
+ || cp_parser_allow_gnu_extensions_p (parser))
+ *cv_qualifier_seq = cp_parser_cv_qualifier_seq_opt (parser);
+ }
+ else
+ {
+ /* Try the pointer-to-member case. */
+ cp_parser_parse_tentatively (parser);
+ /* Look for the optional `::' operator. */
+ cp_parser_global_scope_opt (parser,
+ /*current_scope_valid_p=*/false);
+ /* Look for the nested-name specifier. */
+ cp_parser_nested_name_specifier (parser,
+ /*typename_keyword_p=*/false,
+ /*check_dependency_p=*/true,
+ /*type_p=*/false,
+ /*is_declaration=*/false);
+ /* If we found it, and the next token is a `*', then we are
+ indeed looking at a pointer-to-member operator. */
+ if (!cp_parser_error_occurred (parser)
+ && cp_parser_require (parser, CPP_MULT, "`*'"))
+ {
+ /* The type of which the member is a member is given by the
+ current SCOPE. */
+ *type = parser->scope;
+ /* The next name will not be qualified. */
+ parser->scope = NULL_TREE;
+ parser->qualifying_scope = NULL_TREE;
+ parser->object_scope = NULL_TREE;
+ /* Indicate that the `*' operator was used. */
+ code = INDIRECT_REF;
+ /* Look for the optional cv-qualifier-seq. */
+ *cv_qualifier_seq = cp_parser_cv_qualifier_seq_opt (parser);
+ }
+ /* If that didn't work we don't have a ptr-operator. */
+ if (!cp_parser_parse_definitely (parser))
+ cp_parser_error (parser, "expected ptr-operator");
+ }
+
+ return code;
+}
+
+/* Parse an (optional) cv-qualifier-seq.
+
+ cv-qualifier-seq:
+ cv-qualifier cv-qualifier-seq [opt]
+
+ Returns a TREE_LIST. The TREE_VALUE of each node is the
+ representation of a cv-qualifier. */
+
+static tree
+cp_parser_cv_qualifier_seq_opt (cp_parser* parser)
+{
+ tree cv_qualifiers = NULL_TREE;
+
+ while (true)
+ {
+ tree cv_qualifier;
+
+ /* Look for the next cv-qualifier. */
+ cv_qualifier = cp_parser_cv_qualifier_opt (parser);
+ /* If we didn't find one, we're done. */
+ if (!cv_qualifier)
+ break;
+
+ /* Add this cv-qualifier to the list. */
+ cv_qualifiers
+ = tree_cons (NULL_TREE, cv_qualifier, cv_qualifiers);
+ }
+
+ /* We built up the list in reverse order. */
+ return nreverse (cv_qualifiers);
+}
+
+/* Parse an (optional) cv-qualifier.
+
+ cv-qualifier:
+ const
+ volatile
+
+ GNU Extension:
+
+ cv-qualifier:
+ __restrict__ */
+
+static tree
+cp_parser_cv_qualifier_opt (cp_parser* parser)
+{
+ cp_token *token;
+ tree cv_qualifier = NULL_TREE;
+
+ /* Peek at the next token. */
+ token = cp_lexer_peek_token (parser->lexer);
+ /* See if it's a cv-qualifier. */
+ switch (token->keyword)
+ {
+ case RID_CONST:
+ case RID_VOLATILE:
+ case RID_RESTRICT:
+ /* Save the value of the token. */
+ cv_qualifier = token->value;
+ /* Consume the token. */
+ cp_lexer_consume_token (parser->lexer);
+ break;
+
+ default:
+ break;
+ }
+
+ return cv_qualifier;
+}
+
+/* Parse a declarator-id.
+
+ declarator-id:
+ id-expression
+ :: [opt] nested-name-specifier [opt] type-name
+
+ In the `id-expression' case, the value returned is as for
+ cp_parser_id_expression if the id-expression was an unqualified-id.
+ If the id-expression was a qualified-id, then a SCOPE_REF is
+ returned. The first operand is the scope (either a NAMESPACE_DECL
+ or TREE_TYPE), but the second is still just a representation of an
+ unqualified-id. */
+
+static tree
+cp_parser_declarator_id (cp_parser* parser)
+{
+ tree id_expression;
+
+ /* The expression must be an id-expression. Assume that qualified
+ names are the names of types so that:
+
+ template <class T>
+ int S<T>::R::i = 3;
+
+ will work; we must treat `S<T>::R' as the name of a type.
+ Similarly, assume that qualified names are templates, where
+ required, so that:
+
+ template <class T>
+ int S<T>::R<T>::i = 3;
+
+ will work, too. */
+ id_expression = cp_parser_id_expression (parser,
+ /*template_keyword_p=*/false,
+ /*check_dependency_p=*/false,
+ /*template_p=*/NULL,
+ /*declarator_p=*/true);
+ /* If the name was qualified, create a SCOPE_REF to represent
+ that. */
+ if (parser->scope)
+ {
+ id_expression = build_nt (SCOPE_REF, parser->scope, id_expression);
+ parser->scope = NULL_TREE;
+ }
+
+ return id_expression;
+}
+
+/* Parse a type-id.
+
+ type-id:
+ type-specifier-seq abstract-declarator [opt]
+
+ Returns the TYPE specified. */
+
+static tree
+cp_parser_type_id (cp_parser* parser)
+{
+ tree type_specifier_seq;
+ tree abstract_declarator;
+
+ /* Parse the type-specifier-seq. */
+ type_specifier_seq
+ = cp_parser_type_specifier_seq (parser);
+ if (type_specifier_seq == error_mark_node)
+ return error_mark_node;
+
+ /* There might or might not be an abstract declarator. */
+ cp_parser_parse_tentatively (parser);
+ /* Look for the declarator. */
+ abstract_declarator
+ = cp_parser_declarator (parser, CP_PARSER_DECLARATOR_ABSTRACT, NULL,
+ /*parenthesized_p=*/NULL);
+ /* Check to see if there really was a declarator. */
+ if (!cp_parser_parse_definitely (parser))
+ abstract_declarator = NULL_TREE;
+
+ return groktypename (build_tree_list (type_specifier_seq,
+ abstract_declarator));
+}
+
+/* Parse a type-specifier-seq.
+
+ type-specifier-seq:
+ type-specifier type-specifier-seq [opt]
+
+ GNU extension:
+
+ type-specifier-seq:
+ attributes type-specifier-seq [opt]
+
+ Returns a TREE_LIST. Either the TREE_VALUE of each node is a
+ type-specifier, or the TREE_PURPOSE is a list of attributes. */
+
+static tree
+cp_parser_type_specifier_seq (cp_parser* parser)
+{
+ bool seen_type_specifier = false;
+ tree type_specifier_seq = NULL_TREE;
+
+ /* Parse the type-specifiers and attributes. */
+ while (true)
+ {
+ tree type_specifier;
+
+ /* Check for attributes first. */
+ if (cp_lexer_next_token_is_keyword (parser->lexer, RID_ATTRIBUTE))
+ {
+ type_specifier_seq = tree_cons (cp_parser_attributes_opt (parser),
+ NULL_TREE,
+ type_specifier_seq);
+ continue;
+ }
+
+ /* After the first type-specifier, others are optional. */
+ if (seen_type_specifier)
+ cp_parser_parse_tentatively (parser);
+ /* Look for the type-specifier. */
+ type_specifier = cp_parser_type_specifier (parser,
+ CP_PARSER_FLAGS_NONE,
+ /*is_friend=*/false,
+ /*is_declaration=*/false,
+ NULL,
+ NULL);
+ /* If the first type-specifier could not be found, this is not a
+ type-specifier-seq at all. */
+ if (!seen_type_specifier && type_specifier == error_mark_node)
+ return error_mark_node;
+ /* If subsequent type-specifiers could not be found, the
+ type-specifier-seq is complete. */
+ else if (seen_type_specifier && !cp_parser_parse_definitely (parser))
+ break;
+
+ /* Add the new type-specifier to the list. */
+ type_specifier_seq
+ = tree_cons (NULL_TREE, type_specifier, type_specifier_seq);
+ seen_type_specifier = true;
+ }
+
+ /* We built up the list in reverse order. */
+ return nreverse (type_specifier_seq);
+}
+
+/* Parse a parameter-declaration-clause.
+
+ parameter-declaration-clause:
+ parameter-declaration-list [opt] ... [opt]
+ parameter-declaration-list , ...
+
+ Returns a representation for the parameter declarations. Each node
+ is a TREE_LIST. (See cp_parser_parameter_declaration for the exact
+ representation.) If the parameter-declaration-clause ends with an
+ ellipsis, PARMLIST_ELLIPSIS_P will hold of the first node in the
+ list. A return value of NULL_TREE indicates a
+ parameter-declaration-clause consisting only of an ellipsis. */
+
+static tree
+cp_parser_parameter_declaration_clause (cp_parser* parser)
+{
+ tree parameters;
+ cp_token *token;
+ bool ellipsis_p;
+
+ /* Peek at the next token. */
+ token = cp_lexer_peek_token (parser->lexer);
+ /* Check for trivial parameter-declaration-clauses. */
+ if (token->type == CPP_ELLIPSIS)
+ {
+ /* Consume the `...' token. */
+ cp_lexer_consume_token (parser->lexer);
+ return NULL_TREE;
+ }
+ else if (token->type == CPP_CLOSE_PAREN)
+ /* There are no parameters. */
+ {
+#ifndef NO_IMPLICIT_EXTERN_C
+ if (in_system_header && current_class_type == NULL
+ && current_lang_name == lang_name_c)
+ return NULL_TREE;
+ else
+#endif
+ return void_list_node;
+ }
+ /* Check for `(void)', too, which is a special case. */
+ else if (token->keyword == RID_VOID
+ && (cp_lexer_peek_nth_token (parser->lexer, 2)->type
+ == CPP_CLOSE_PAREN))
+ {
+ /* Consume the `void' token. */
+ cp_lexer_consume_token (parser->lexer);
+ /* There are no parameters. */
+ return void_list_node;
+ }
+
+ /* Parse the parameter-declaration-list. */
+ parameters = cp_parser_parameter_declaration_list (parser);
+ /* If a parse error occurred while parsing the
+ parameter-declaration-list, then the entire
+ parameter-declaration-clause is erroneous. */
+ if (parameters == error_mark_node)
+ return error_mark_node;
+
+ /* Peek at the next token. */
+ token = cp_lexer_peek_token (parser->lexer);
+ /* If it's a `,', the clause should terminate with an ellipsis. */
+ if (token->type == CPP_COMMA)
+ {
+ /* Consume the `,'. */
+ cp_lexer_consume_token (parser->lexer);
+ /* Expect an ellipsis. */
+ ellipsis_p
+ = (cp_parser_require (parser, CPP_ELLIPSIS, "`...'") != NULL);
+ }
+ /* It might also be `...' if the optional trailing `,' was
+ omitted. */
+ else if (token->type == CPP_ELLIPSIS)
+ {
+ /* Consume the `...' token. */
+ cp_lexer_consume_token (parser->lexer);
+ /* And remember that we saw it. */
+ ellipsis_p = true;
+ }
+ else
+ ellipsis_p = false;
+
+ /* Finish the parameter list. */
+ return finish_parmlist (parameters, ellipsis_p);
+}
+
+/* Parse a parameter-declaration-list.
+
+ parameter-declaration-list:
+ parameter-declaration
+ parameter-declaration-list , parameter-declaration
+
+ Returns a representation of the parameter-declaration-list, as for
+ cp_parser_parameter_declaration_clause. However, the
+ `void_list_node' is never appended to the list. */
+
+static tree
+cp_parser_parameter_declaration_list (cp_parser* parser)
+{
+ tree parameters = NULL_TREE;
+
+ /* Look for more parameters. */
+ while (true)
+ {
+ tree parameter;
+ bool parenthesized_p;
+ /* Parse the parameter. */
+ parameter
+ = cp_parser_parameter_declaration (parser,
+ /*template_parm_p=*/false,
+ &parenthesized_p);
+
+ /* If a parse error occurred parsing the parameter declaration,
+ then the entire parameter-declaration-list is erroneous. */
+ if (parameter == error_mark_node)
+ {
+ parameters = error_mark_node;
+ break;
+ }
+ /* Add the new parameter to the list. */
+ TREE_CHAIN (parameter) = parameters;
+ parameters = parameter;
+
+ /* Peek at the next token. */
+ if (cp_lexer_next_token_is (parser->lexer, CPP_CLOSE_PAREN)
+ || cp_lexer_next_token_is (parser->lexer, CPP_ELLIPSIS))
+ /* The parameter-declaration-list is complete. */
+ break;
+ else if (cp_lexer_next_token_is (parser->lexer, CPP_COMMA))
+ {
+ cp_token *token;
+
+ /* Peek at the next token. */
+ token = cp_lexer_peek_nth_token (parser->lexer, 2);
+ /* If it's an ellipsis, then the list is complete. */
+ if (token->type == CPP_ELLIPSIS)
+ break;
+ /* Otherwise, there must be more parameters. Consume the
+ `,'. */
+ cp_lexer_consume_token (parser->lexer);
+ /* When parsing something like:
+
+ int i(float f, double d)
+
+ we can tell after seeing the declaration for "f" that we
+ are not looking at an initialization of a variable "i",
+ but rather at the declaration of a function "i".
+
+ Due to the fact that the parsing of template arguments
+ (as specified to a template-id) requires backtracking we
+ cannot use this technique when inside a template argument
+ list. */
+ if (!parser->in_template_argument_list_p
+ && !parser->in_type_id_in_expr_p
+ && cp_parser_parsing_tentatively (parser)
+ && !cp_parser_committed_to_tentative_parse (parser)
+ /* However, a parameter-declaration of the form
+ "foat(f)" (which is a valid declaration of a
+ parameter "f") can also be interpreted as an
+ expression (the conversion of "f" to "float"). */
+ && !parenthesized_p)
+ cp_parser_commit_to_tentative_parse (parser);
+ }
+ else
+ {
+ cp_parser_error (parser, "expected `,' or `...'");
+ if (!cp_parser_parsing_tentatively (parser)
+ || cp_parser_committed_to_tentative_parse (parser))
+ cp_parser_skip_to_closing_parenthesis (parser,
+ /*recovering=*/true,
+ /*or_comma=*/false,
+ /*consume_paren=*/false);
+ break;
+ }
+ }
+
+ /* We built up the list in reverse order; straighten it out now. */
+ return nreverse (parameters);
+}
+
+/* Parse a parameter declaration.
+
+ parameter-declaration:
+ decl-specifier-seq declarator
+ decl-specifier-seq declarator = assignment-expression
+ decl-specifier-seq abstract-declarator [opt]
+ decl-specifier-seq abstract-declarator [opt] = assignment-expression
+
+ If TEMPLATE_PARM_P is TRUE, then this parameter-declaration
+ declares a template parameter. (In that case, a non-nested `>'
+ token encountered during the parsing of the assignment-expression
+ is not interpreted as a greater-than operator.)
+
+ Returns a TREE_LIST representing the parameter-declaration. The
+ TREE_PURPOSE is the default argument expression, or NULL_TREE if
+ there is no default argument. The TREE_VALUE is a representation
+ of the decl-specifier-seq and declarator. In particular, the
+ TREE_VALUE will be a TREE_LIST whose TREE_PURPOSE represents the
+ decl-specifier-seq and whose TREE_VALUE represents the declarator.
+ If PARENTHESIZED_P is non-NULL, *PARENTHESIZED_P is set to true iff
+ the declarator is of the form "(p)". */
+
+static tree
+cp_parser_parameter_declaration (cp_parser *parser,
+ bool template_parm_p,
+ bool *parenthesized_p)
+{
+ int declares_class_or_enum;
+ bool greater_than_is_operator_p;
+ tree decl_specifiers;
+ tree attributes;
+ tree declarator;
+ tree default_argument;
+ tree parameter;
+ cp_token *token;
+ const char *saved_message;
+
+ /* In a template parameter, `>' is not an operator.
+
+ [temp.param]
+
+ When parsing a default template-argument for a non-type
+ template-parameter, the first non-nested `>' is taken as the end
+ of the template parameter-list rather than a greater-than
+ operator. */
+ greater_than_is_operator_p = !template_parm_p;
+
+ /* Type definitions may not appear in parameter types. */
+ saved_message = parser->type_definition_forbidden_message;
+ parser->type_definition_forbidden_message
+ = "types may not be defined in parameter types";
+
+ /* Parse the declaration-specifiers. */
+ decl_specifiers
+ = cp_parser_decl_specifier_seq (parser,
+ CP_PARSER_FLAGS_NONE,
+ &attributes,
+ &declares_class_or_enum);
+ /* If an error occurred, there's no reason to attempt to parse the
+ rest of the declaration. */
+ if (cp_parser_error_occurred (parser))
+ {
+ parser->type_definition_forbidden_message = saved_message;
+ return error_mark_node;
+ }
+
+ /* Peek at the next token. */
+ token = cp_lexer_peek_token (parser->lexer);
+ /* If the next token is a `)', `,', `=', `>', or `...', then there
+ is no declarator. */
+ if (token->type == CPP_CLOSE_PAREN
+ || token->type == CPP_COMMA
+ || token->type == CPP_EQ
+ || token->type == CPP_ELLIPSIS
+ || token->type == CPP_GREATER)
+ {
+ declarator = NULL_TREE;
+ if (parenthesized_p)
+ *parenthesized_p = false;
+ }
+ /* Otherwise, there should be a declarator. */
+ else
+ {
+ bool saved_default_arg_ok_p = parser->default_arg_ok_p;
+ parser->default_arg_ok_p = false;
+
+ /* After seeing a decl-specifier-seq, if the next token is not a
+ "(", there is no possibility that the code is a valid
+ expression. Therefore, if parsing tentatively, we commit at
+ this point. */
+ if (!parser->in_template_argument_list_p
+ /* In an expression context, having seen:
+
+ (int((char ...
+
+ we cannot be sure whether we are looking at a
+ function-type (taking a "char" as a parameter) or a cast
+ of some object of type "char" to "int". */
+ && !parser->in_type_id_in_expr_p
+ && cp_parser_parsing_tentatively (parser)
+ && !cp_parser_committed_to_tentative_parse (parser)
+ && cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_PAREN))
+ cp_parser_commit_to_tentative_parse (parser);
+ /* Parse the declarator. */
+ declarator = cp_parser_declarator (parser,
+ CP_PARSER_DECLARATOR_EITHER,
+ /*ctor_dtor_or_conv_p=*/NULL,
+ parenthesized_p);
+ parser->default_arg_ok_p = saved_default_arg_ok_p;
+ /* After the declarator, allow more attributes. */
+ attributes = chainon (attributes, cp_parser_attributes_opt (parser));
+ }
+
+ /* The restriction on defining new types applies only to the type
+ of the parameter, not to the default argument. */
+ parser->type_definition_forbidden_message = saved_message;
+
+ /* If the next token is `=', then process a default argument. */
+ if (cp_lexer_next_token_is (parser->lexer, CPP_EQ))
+ {
+ bool saved_greater_than_is_operator_p;
+ /* Consume the `='. */
+ cp_lexer_consume_token (parser->lexer);
+
+ /* If we are defining a class, then the tokens that make up the
+ default argument must be saved and processed later. */
+ if (!template_parm_p && at_class_scope_p ()
+ && TYPE_BEING_DEFINED (current_class_type))
+ {
+ unsigned depth = 0;
+
+ /* Create a DEFAULT_ARG to represented the unparsed default
+ argument. */
+ default_argument = make_node (DEFAULT_ARG);
+ DEFARG_TOKENS (default_argument) = cp_token_cache_new ();
+
+ /* Add tokens until we have processed the entire default
+ argument. */
+ while (true)
+ {
+ bool done = false;
+ cp_token *token;
+
+ /* Peek at the next token. */
+ token = cp_lexer_peek_token (parser->lexer);
+ /* What we do depends on what token we have. */
+ switch (token->type)
+ {
+ /* In valid code, a default argument must be
+ immediately followed by a `,' `)', or `...'. */
+ case CPP_COMMA:
+ case CPP_CLOSE_PAREN:
+ case CPP_ELLIPSIS:
+ /* If we run into a non-nested `;', `}', or `]',
+ then the code is invalid -- but the default
+ argument is certainly over. */
+ case CPP_SEMICOLON:
+ case CPP_CLOSE_BRACE:
+ case CPP_CLOSE_SQUARE:
+ if (depth == 0)
+ done = true;
+ /* Update DEPTH, if necessary. */
+ else if (token->type == CPP_CLOSE_PAREN
+ || token->type == CPP_CLOSE_BRACE
+ || token->type == CPP_CLOSE_SQUARE)
+ --depth;
+ break;
+
+ case CPP_OPEN_PAREN:
+ case CPP_OPEN_SQUARE:
+ case CPP_OPEN_BRACE:
+ ++depth;
+ break;
+
+ case CPP_GREATER:
+ /* If we see a non-nested `>', and `>' is not an
+ operator, then it marks the end of the default
+ argument. */
+ if (!depth && !greater_than_is_operator_p)
+ done = true;
+ break;
+
+ /* If we run out of tokens, issue an error message. */
+ case CPP_EOF:
+ error ("file ends in default argument");
+ done = true;
+ break;
+
+ case CPP_NAME:
+ case CPP_SCOPE:
+ /* In these cases, we should look for template-ids.
+ For example, if the default argument is
+ `X<int, double>()', we need to do name lookup to
+ figure out whether or not `X' is a template; if
+ so, the `,' does not end the default argument.
+
+ That is not yet done. */
+ break;
+
+ default:
+ break;
+ }
+
+ /* If we've reached the end, stop. */
+ if (done)
+ break;
+
+ /* Add the token to the token block. */
+ token = cp_lexer_consume_token (parser->lexer);
+ cp_token_cache_push_token (DEFARG_TOKENS (default_argument),
+ token);
+ }
+ }
+ /* Outside of a class definition, we can just parse the
+ assignment-expression. */
+ else
+ {
+ bool saved_local_variables_forbidden_p;
+
+ /* Make sure that PARSER->GREATER_THAN_IS_OPERATOR_P is
+ set correctly. */
+ saved_greater_than_is_operator_p
+ = parser->greater_than_is_operator_p;
+ parser->greater_than_is_operator_p = greater_than_is_operator_p;
+ /* Local variable names (and the `this' keyword) may not
+ appear in a default argument. */
+ saved_local_variables_forbidden_p
+ = parser->local_variables_forbidden_p;
+ parser->local_variables_forbidden_p = true;
+ /* Parse the assignment-expression. */
+ default_argument = cp_parser_assignment_expression (parser);
+ /* Restore saved state. */
+ parser->greater_than_is_operator_p
+ = saved_greater_than_is_operator_p;
+ parser->local_variables_forbidden_p
+ = saved_local_variables_forbidden_p;
+ }
+ if (!parser->default_arg_ok_p)
+ {
+ if (!flag_pedantic_errors)
+ warning ("deprecated use of default argument for parameter of non-function");
+ else
+ {
+ error ("default arguments are only permitted for function parameters");
+ default_argument = NULL_TREE;
+ }
+ }
+ }
+ else
+ default_argument = NULL_TREE;
+
+ /* Create the representation of the parameter. */
+ if (attributes)
+ decl_specifiers = tree_cons (attributes, NULL_TREE, decl_specifiers);
+ parameter = build_tree_list (default_argument,
+ build_tree_list (decl_specifiers,
+ declarator));
+
+ return parameter;
+}
+
+/* Parse a function-body.
+
+ function-body:
+ compound_statement */
+
+static void
+cp_parser_function_body (cp_parser *parser)
+{
+ cp_parser_compound_statement (parser, false);
+}
+
+/* Parse a ctor-initializer-opt followed by a function-body. Return
+ true if a ctor-initializer was present. */
+
+static bool
+cp_parser_ctor_initializer_opt_and_function_body (cp_parser *parser)
+{
+ tree body;
+ bool ctor_initializer_p;
+
+ /* Begin the function body. */
+ body = begin_function_body ();
+ /* Parse the optional ctor-initializer. */
+ ctor_initializer_p = cp_parser_ctor_initializer_opt (parser);
+ /* Parse the function-body. */
+ cp_parser_function_body (parser);
+ /* Finish the function body. */
+ finish_function_body (body);
+
+ return ctor_initializer_p;
+}
+
+/* Parse an initializer.
+
+ initializer:
+ = initializer-clause
+ ( expression-list )
+
+ Returns a expression representing the initializer. If no
+ initializer is present, NULL_TREE is returned.
+
+ *IS_PARENTHESIZED_INIT is set to TRUE if the `( expression-list )'
+ production is used, and zero otherwise. *IS_PARENTHESIZED_INIT is
+ set to FALSE if there is no initializer present. If there is an
+ initializer, and it is not a constant-expression, *NON_CONSTANT_P
+ is set to true; otherwise it is set to false. */
+
+static tree
+cp_parser_initializer (cp_parser* parser, bool* is_parenthesized_init,
+ bool* non_constant_p)
+{
+ cp_token *token;
+ tree init;
+
+ /* Peek at the next token. */
+ token = cp_lexer_peek_token (parser->lexer);
+
+ /* Let our caller know whether or not this initializer was
+ parenthesized. */
+ *is_parenthesized_init = (token->type == CPP_OPEN_PAREN);
+ /* Assume that the initializer is constant. */
+ *non_constant_p = false;
+
+ if (token->type == CPP_EQ)
+ {
+ /* Consume the `='. */
+ cp_lexer_consume_token (parser->lexer);
+ /* Parse the initializer-clause. */
+ init = cp_parser_initializer_clause (parser, non_constant_p);
+ }
+ else if (token->type == CPP_OPEN_PAREN)
+ init = cp_parser_parenthesized_expression_list (parser, false,
+ non_constant_p);
+ else
+ {
+ /* Anything else is an error. */
+ cp_parser_error (parser, "expected initializer");
+ init = error_mark_node;
+ }
+
+ return init;
+}
+
+/* Parse an initializer-clause.
+
+ initializer-clause:
+ assignment-expression
+ { initializer-list , [opt] }
+ { }
+
+ Returns an expression representing the initializer.
+
+ If the `assignment-expression' production is used the value
+ returned is simply a representation for the expression.
+
+ Otherwise, a CONSTRUCTOR is returned. The CONSTRUCTOR_ELTS will be
+ the elements of the initializer-list (or NULL_TREE, if the last
+ production is used). The TREE_TYPE for the CONSTRUCTOR will be
+ NULL_TREE. There is no way to detect whether or not the optional
+ trailing `,' was provided. NON_CONSTANT_P is as for
+ cp_parser_initializer. */
+
+static tree
+cp_parser_initializer_clause (cp_parser* parser, bool* non_constant_p)
+{
+ tree initializer;
+
+ /* If it is not a `{', then we are looking at an
+ assignment-expression. */
+ if (cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_BRACE))
+ {
+ initializer
+ = cp_parser_constant_expression (parser,
+ /*allow_non_constant_p=*/true,
+ non_constant_p);
+ if (!*non_constant_p)
+ initializer = fold_non_dependent_expr (initializer);
+ }
+ else
+ {
+ /* Consume the `{' token. */
+ cp_lexer_consume_token (parser->lexer);
+ /* Create a CONSTRUCTOR to represent the braced-initializer. */
+ initializer = make_node (CONSTRUCTOR);
+ /* Mark it with TREE_HAS_CONSTRUCTOR. This should not be
+ necessary, but check_initializer depends upon it, for
+ now. */
+ TREE_HAS_CONSTRUCTOR (initializer) = 1;
+ /* If it's not a `}', then there is a non-trivial initializer. */
+ if (cp_lexer_next_token_is_not (parser->lexer, CPP_CLOSE_BRACE))
+ {
+ /* Parse the initializer list. */
+ CONSTRUCTOR_ELTS (initializer)
+ = cp_parser_initializer_list (parser, non_constant_p);
+ /* A trailing `,' token is allowed. */
+ if (cp_lexer_next_token_is (parser->lexer, CPP_COMMA))
+ cp_lexer_consume_token (parser->lexer);
+ }
+ /* Now, there should be a trailing `}'. */
+ cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
+ }
+
+ return initializer;
+}
+
+/* Parse an initializer-list.
+
+ initializer-list:
+ initializer-clause
+ initializer-list , initializer-clause
+
+ GNU Extension:
+
+ initializer-list:
+ identifier : initializer-clause
+ initializer-list, identifier : initializer-clause
+
+ Returns a TREE_LIST. The TREE_VALUE of each node is an expression
+ for the initializer. If the TREE_PURPOSE is non-NULL, it is the
+ IDENTIFIER_NODE naming the field to initialize. NON_CONSTANT_P is
+ as for cp_parser_initializer. */
+
+static tree
+cp_parser_initializer_list (cp_parser* parser, bool* non_constant_p)
+{
+ tree initializers = NULL_TREE;
+
+ /* Assume all of the expressions are constant. */
+ *non_constant_p = false;
+
+ /* Parse the rest of the list. */
+ while (true)
+ {
+ cp_token *token;
+ tree identifier;
+ tree initializer;
+ bool clause_non_constant_p;
+
+ /* If the next token is an identifier and the following one is a
+ colon, we are looking at the GNU designated-initializer
+ syntax. */
+ if (cp_parser_allow_gnu_extensions_p (parser)
+ && cp_lexer_next_token_is (parser->lexer, CPP_NAME)
+ && cp_lexer_peek_nth_token (parser->lexer, 2)->type == CPP_COLON)
+ {
+ /* Consume the identifier. */
+ identifier = cp_lexer_consume_token (parser->lexer)->value;
+ /* Consume the `:'. */
+ cp_lexer_consume_token (parser->lexer);
+ }
+ else
+ identifier = NULL_TREE;
+
+ /* Parse the initializer. */
+ initializer = cp_parser_initializer_clause (parser,
+ &clause_non_constant_p);
+ /* If any clause is non-constant, so is the entire initializer. */
+ if (clause_non_constant_p)
+ *non_constant_p = true;
+ /* Add it to the list. */
+ initializers = tree_cons (identifier, initializer, initializers);
+
+ /* If the next token is not a comma, we have reached the end of
+ the list. */
+ if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
+ break;
+
+ /* Peek at the next token. */
+ token = cp_lexer_peek_nth_token (parser->lexer, 2);
+ /* If the next token is a `}', then we're still done. An
+ initializer-clause can have a trailing `,' after the
+ initializer-list and before the closing `}'. */
+ if (token->type == CPP_CLOSE_BRACE)
+ break;
+
+ /* Consume the `,' token. */
+ cp_lexer_consume_token (parser->lexer);
+ }
+
+ /* The initializers were built up in reverse order, so we need to
+ reverse them now. */
+ return nreverse (initializers);
+}
+
+/* Classes [gram.class] */
+
+/* Parse a class-name.
+
+ class-name:
+ identifier
+ template-id
+
+ TYPENAME_KEYWORD_P is true iff the `typename' keyword has been used
+ to indicate that names looked up in dependent types should be
+ assumed to be types. TEMPLATE_KEYWORD_P is true iff the `template'
+ keyword has been used to indicate that the name that appears next
+ is a template. TYPE_P is true iff the next name should be treated
+ as class-name, even if it is declared to be some other kind of name
+ as well. If CHECK_DEPENDENCY_P is FALSE, names are looked up in
+ dependent scopes. If CLASS_HEAD_P is TRUE, this class is the class
+ being defined in a class-head.
+
+ Returns the TYPE_DECL representing the class. */
+
+static tree
+cp_parser_class_name (cp_parser *parser,
+ bool typename_keyword_p,
+ bool template_keyword_p,
+ bool type_p,
+ bool check_dependency_p,
+ bool class_head_p,
+ bool is_declaration)
+{
+ tree decl;
+ tree scope;
+ bool typename_p;
+ cp_token *token;
+
+ /* All class-names start with an identifier. */
+ token = cp_lexer_peek_token (parser->lexer);
+ if (token->type != CPP_NAME && token->type != CPP_TEMPLATE_ID)
+ {
+ cp_parser_error (parser, "expected class-name");
+ return error_mark_node;
+ }
+
+ /* PARSER->SCOPE can be cleared when parsing the template-arguments
+ to a template-id, so we save it here. */
+ scope = parser->scope;
+ if (scope == error_mark_node)
+ return error_mark_node;
+
+ /* Any name names a type if we're following the `typename' keyword
+ in a qualified name where the enclosing scope is type-dependent. */
+ typename_p = (typename_keyword_p && scope && TYPE_P (scope)
+ && dependent_type_p (scope));
+ /* Handle the common case (an identifier, but not a template-id)
+ efficiently. */
+ if (token->type == CPP_NAME
+ && !cp_parser_nth_token_starts_template_argument_list_p (parser, 2))
+ {
+ tree identifier;
+
+ /* Look for the identifier. */
+ identifier = cp_parser_identifier (parser);
+ /* If the next token isn't an identifier, we are certainly not
+ looking at a class-name. */
+ if (identifier == error_mark_node)
+ decl = error_mark_node;
+ /* If we know this is a type-name, there's no need to look it
+ up. */
+ else if (typename_p)
+ decl = identifier;
+ else
+ {
+ /* If the next token is a `::', then the name must be a type
+ name.
+
+ [basic.lookup.qual]
+
+ During the lookup for a name preceding the :: scope
+ resolution operator, object, function, and enumerator
+ names are ignored. */
+ if (cp_lexer_next_token_is (parser->lexer, CPP_SCOPE))
+ type_p = true;
+ /* Look up the name. */
+ decl = cp_parser_lookup_name (parser, identifier,
+ type_p,
+ /*is_template=*/false,
+ /*is_namespace=*/false,
+ check_dependency_p);
+ }
+ }
+ else
+ {
+ /* Try a template-id. */
+ decl = cp_parser_template_id (parser, template_keyword_p,
+ check_dependency_p,
+ is_declaration);
+ if (decl == error_mark_node)
+ return error_mark_node;
+ }
+
+ decl = cp_parser_maybe_treat_template_as_class (decl, class_head_p);
+
+ /* If this is a typename, create a TYPENAME_TYPE. */
+ if (typename_p && decl != error_mark_node)
+ {
+ decl = make_typename_type (scope, decl, /*complain=*/1);
+ if (decl != error_mark_node)
+ decl = TYPE_NAME (decl);
+ }
+
+ /* Check to see that it is really the name of a class. */
+ if (TREE_CODE (decl) == TEMPLATE_ID_EXPR
+ && TREE_CODE (TREE_OPERAND (decl, 0)) == IDENTIFIER_NODE
+ && cp_lexer_next_token_is (parser->lexer, CPP_SCOPE))
+ /* Situations like this:
+
+ template <typename T> struct A {
+ typename T::template X<int>::I i;
+ };
+
+ are problematic. Is `T::template X<int>' a class-name? The
+ standard does not seem to be definitive, but there is no other
+ valid interpretation of the following `::'. Therefore, those
+ names are considered class-names. */
+ decl = TYPE_NAME (make_typename_type (scope, decl, tf_error));
+ else if (decl == error_mark_node
+ || TREE_CODE (decl) != TYPE_DECL
+ || !IS_AGGR_TYPE (TREE_TYPE (decl)))
+ {
+ cp_parser_error (parser, "expected class-name");
+ return error_mark_node;
+ }
+
+ return decl;
+}
+
+/* Parse a class-specifier.
+
+ class-specifier:
+ class-head { member-specification [opt] }
+
+ Returns the TREE_TYPE representing the class. */
+
+static tree
+cp_parser_class_specifier (cp_parser* parser)
+{
+ cp_token *token;
+ tree type;
+ tree attributes;
+ int has_trailing_semicolon;
+ bool nested_name_specifier_p;
+ unsigned saved_num_template_parameter_lists;
+ bool pop_p = false;
+
+ push_deferring_access_checks (dk_no_deferred);
+
+ /* Parse the class-head. */
+ type = cp_parser_class_head (parser,
+ &nested_name_specifier_p,
+ &attributes);
+ /* If the class-head was a semantic disaster, skip the entire body
+ of the class. */
+ if (!type)
+ {
+ cp_parser_skip_to_end_of_block_or_statement (parser);
+ pop_deferring_access_checks ();
+ return error_mark_node;
+ }
+
+ /* Look for the `{'. */
+ if (!cp_parser_require (parser, CPP_OPEN_BRACE, "`{'"))
+ {
+ pop_deferring_access_checks ();
+ return error_mark_node;
+ }
+
+ /* Issue an error message if type-definitions are forbidden here. */
+ cp_parser_check_type_definition (parser);
+ /* Remember that we are defining one more class. */
+ ++parser->num_classes_being_defined;
+ /* Inside the class, surrounding template-parameter-lists do not
+ apply. */
+ saved_num_template_parameter_lists
+ = parser->num_template_parameter_lists;
+ parser->num_template_parameter_lists = 0;
+
+ /* Start the class. */
+ if (nested_name_specifier_p)
+ pop_p = push_scope (CP_DECL_CONTEXT (TYPE_MAIN_DECL (type)));
+ type = begin_class_definition (type);
+ if (type == error_mark_node)
+ /* If the type is erroneous, skip the entire body of the class. */
+ cp_parser_skip_to_closing_brace (parser);
+ else
+ /* Parse the member-specification. */
+ cp_parser_member_specification_opt (parser);
+ /* Look for the trailing `}'. */
+ cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
+ /* We get better error messages by noticing a common problem: a
+ missing trailing `;'. */
+ token = cp_lexer_peek_token (parser->lexer);
+ has_trailing_semicolon = (token->type == CPP_SEMICOLON);
+ /* Look for trailing attributes to apply to this class. */
+ if (cp_parser_allow_gnu_extensions_p (parser))
+ {
+ tree sub_attr = cp_parser_attributes_opt (parser);
+ attributes = chainon (attributes, sub_attr);
+ }
+ if (type != error_mark_node)
+ type = finish_struct (type, attributes);
+ if (pop_p)
+ pop_scope (CP_DECL_CONTEXT (TYPE_MAIN_DECL (type)));
+ /* If this class is not itself within the scope of another class,
+ then we need to parse the bodies of all of the queued function
+ definitions. Note that the queued functions defined in a class
+ are not always processed immediately following the
+ class-specifier for that class. Consider:
+
+ struct A {
+ struct B { void f() { sizeof (A); } };
+ };
+
+ If `f' were processed before the processing of `A' were
+ completed, there would be no way to compute the size of `A'.
+ Note that the nesting we are interested in here is lexical --
+ not the semantic nesting given by TYPE_CONTEXT. In particular,
+ for:
+
+ struct A { struct B; };
+ struct A::B { void f() { } };
+
+ there is no need to delay the parsing of `A::B::f'. */
+ if (--parser->num_classes_being_defined == 0)
+ {
+ tree queue_entry;
+ tree fn;
+
+ /* In a first pass, parse default arguments to the functions.
+ Then, in a second pass, parse the bodies of the functions.
+ This two-phased approach handles cases like:
+
+ struct S {
+ void f() { g(); }
+ void g(int i = 3);
+ };
+
+ */
+ for (TREE_PURPOSE (parser->unparsed_functions_queues)
+ = nreverse (TREE_PURPOSE (parser->unparsed_functions_queues));
+ (queue_entry = TREE_PURPOSE (parser->unparsed_functions_queues));
+ TREE_PURPOSE (parser->unparsed_functions_queues)
+ = TREE_CHAIN (TREE_PURPOSE (parser->unparsed_functions_queues)))
+ {
+ fn = TREE_VALUE (queue_entry);
+ /* Make sure that any template parameters are in scope. */
+ maybe_begin_member_template_processing (fn);
+ /* If there are default arguments that have not yet been processed,
+ take care of them now. */
+ cp_parser_late_parsing_default_args (parser, fn);
+ /* Remove any template parameters from the symbol table. */
+ maybe_end_member_template_processing ();
+ }
+ /* Now parse the body of the functions. */
+ for (TREE_VALUE (parser->unparsed_functions_queues)
+ = nreverse (TREE_VALUE (parser->unparsed_functions_queues));
+ (queue_entry = TREE_VALUE (parser->unparsed_functions_queues));
+ TREE_VALUE (parser->unparsed_functions_queues)
+ = TREE_CHAIN (TREE_VALUE (parser->unparsed_functions_queues)))
+ {
+ /* Figure out which function we need to process. */
+ fn = TREE_VALUE (queue_entry);
+
+ /* A hack to prevent garbage collection. */
+ function_depth++;
+
+ /* Parse the function. */
+ cp_parser_late_parsing_for_member (parser, fn);
+ function_depth--;
+ }
+
+ }
+
+ /* Put back any saved access checks. */
+ pop_deferring_access_checks ();
+
+ /* Restore the count of active template-parameter-lists. */
+ parser->num_template_parameter_lists
+ = saved_num_template_parameter_lists;
+
+ return type;
+}
+
+/* Parse a class-head.
+
+ class-head:
+ class-key identifier [opt] base-clause [opt]
+ class-key nested-name-specifier identifier base-clause [opt]
+ class-key nested-name-specifier [opt] template-id
+ base-clause [opt]
+
+ GNU Extensions:
+ class-key attributes identifier [opt] base-clause [opt]
+ class-key attributes nested-name-specifier identifier base-clause [opt]
+ class-key attributes nested-name-specifier [opt] template-id
+ base-clause [opt]
+
+ Returns the TYPE of the indicated class. Sets
+ *NESTED_NAME_SPECIFIER_P to TRUE iff one of the productions
+ involving a nested-name-specifier was used, and FALSE otherwise.
+
+ Returns NULL_TREE if the class-head is syntactically valid, but
+ semantically invalid in a way that means we should skip the entire
+ body of the class. */
+
+static tree
+cp_parser_class_head (cp_parser* parser,
+ bool* nested_name_specifier_p,
+ tree *attributes_p)
+{
+ cp_token *token;
+ tree nested_name_specifier;
+ enum tag_types class_key;
+ tree id = NULL_TREE;
+ tree type = NULL_TREE;
+ tree attributes;
+ bool template_id_p = false;
+ bool qualified_p = false;
+ bool invalid_nested_name_p = false;
+ bool invalid_explicit_specialization_p = false;
+ bool pop_p = false;
+ unsigned num_templates;
+
+ /* Assume no nested-name-specifier will be present. */
+ *nested_name_specifier_p = false;
+ /* Assume no template parameter lists will be used in defining the
+ type. */
+ num_templates = 0;
+
+ /* Look for the class-key. */
+ class_key = cp_parser_class_key (parser);
+ if (class_key == none_type)
+ return error_mark_node;
+
+ /* Parse the attributes. */
+ attributes = cp_parser_attributes_opt (parser);
+
+ /* If the next token is `::', that is invalid -- but sometimes
+ people do try to write:
+
+ struct ::S {};
+
+ Handle this gracefully by accepting the extra qualifier, and then
+ issuing an error about it later if this really is a
+ class-head. If it turns out just to be an elaborated type
+ specifier, remain silent. */
+ if (cp_parser_global_scope_opt (parser, /*current_scope_valid_p=*/false))
+ qualified_p = true;
+
+ push_deferring_access_checks (dk_no_check);
+
+ /* Determine the name of the class. Begin by looking for an
+ optional nested-name-specifier. */
+ nested_name_specifier
+ = cp_parser_nested_name_specifier_opt (parser,
+ /*typename_keyword_p=*/false,
+ /*check_dependency_p=*/false,
+ /*type_p=*/false,
+ /*is_declaration=*/false);
+ /* If there was a nested-name-specifier, then there *must* be an
+ identifier. */
+ if (nested_name_specifier)
+ {
+ /* Although the grammar says `identifier', it really means
+ `class-name' or `template-name'. You are only allowed to
+ define a class that has already been declared with this
+ syntax.
+
+ The proposed resolution for Core Issue 180 says that whever
+ you see `class T::X' you should treat `X' as a type-name.
+
+ It is OK to define an inaccessible class; for example:
+
+ class A { class B; };
+ class A::B {};
+
+ We do not know if we will see a class-name, or a
+ template-name. We look for a class-name first, in case the
+ class-name is a template-id; if we looked for the
+ template-name first we would stop after the template-name. */
+ cp_parser_parse_tentatively (parser);
+ type = cp_parser_class_name (parser,
+ /*typename_keyword_p=*/false,
+ /*template_keyword_p=*/false,
+ /*type_p=*/true,
+ /*check_dependency_p=*/false,
+ /*class_head_p=*/true,
+ /*is_declaration=*/false);
+ /* If that didn't work, ignore the nested-name-specifier. */
+ if (!cp_parser_parse_definitely (parser))
+ {
+ invalid_nested_name_p = true;
+ id = cp_parser_identifier (parser);
+ if (id == error_mark_node)
+ id = NULL_TREE;
+ }
+ /* If we could not find a corresponding TYPE, treat this
+ declaration like an unqualified declaration. */
+ if (type == error_mark_node)
+ nested_name_specifier = NULL_TREE;
+ /* Otherwise, count the number of templates used in TYPE and its
+ containing scopes. */
+ else
+ {
+ tree scope;
+
+ for (scope = TREE_TYPE (type);
+ scope && TREE_CODE (scope) != NAMESPACE_DECL;
+ scope = (TYPE_P (scope)
+ ? TYPE_CONTEXT (scope)
+ : DECL_CONTEXT (scope)))
+ if (TYPE_P (scope)
+ && CLASS_TYPE_P (scope)
+ && CLASSTYPE_TEMPLATE_INFO (scope)
+ && PRIMARY_TEMPLATE_P (CLASSTYPE_TI_TEMPLATE (scope))
+ && !CLASSTYPE_TEMPLATE_SPECIALIZATION (scope))
+ ++num_templates;
+ }
+ }
+ /* Otherwise, the identifier is optional. */
+ else
+ {
+ /* We don't know whether what comes next is a template-id,
+ an identifier, or nothing at all. */
+ cp_parser_parse_tentatively (parser);
+ /* Check for a template-id. */
+ id = cp_parser_template_id (parser,
+ /*template_keyword_p=*/false,
+ /*check_dependency_p=*/true,
+ /*is_declaration=*/true);
+ /* If that didn't work, it could still be an identifier. */
+ if (!cp_parser_parse_definitely (parser))
+ {
+ if (cp_lexer_next_token_is (parser->lexer, CPP_NAME))
+ id = cp_parser_identifier (parser);
+ else
+ id = NULL_TREE;
+ }
+ else
+ {
+ template_id_p = true;
+ ++num_templates;
+ }
+ }
+
+ pop_deferring_access_checks ();
+
+ if (id)
+ cp_parser_check_for_invalid_template_id (parser, id);
+
+ /* If it's not a `:' or a `{' then we can't really be looking at a
+ class-head, since a class-head only appears as part of a
+ class-specifier. We have to detect this situation before calling
+ xref_tag, since that has irreversible side-effects. */
+ if (!cp_parser_next_token_starts_class_definition_p (parser))
+ {
+ cp_parser_error (parser, "expected `{' or `:'");
+ return error_mark_node;
+ }
+
+ /* At this point, we're going ahead with the class-specifier, even
+ if some other problem occurs. */
+ cp_parser_commit_to_tentative_parse (parser);
+ /* Issue the error about the overly-qualified name now. */
+ if (qualified_p)
+ cp_parser_error (parser,
+ "global qualification of class name is invalid");
+ else if (invalid_nested_name_p)
+ cp_parser_error (parser,
+ "qualified name does not name a class");
+ else if (nested_name_specifier)
+ {
+ tree scope;
+ /* Figure out in what scope the declaration is being placed. */
+ scope = current_scope ();
+ if (!scope)
+ scope = current_namespace;
+ /* If that scope does not contain the scope in which the
+ class was originally declared, the program is invalid. */
+ if (scope && !is_ancestor (scope, nested_name_specifier))
+ {
+ error ("declaration of `%D' in `%D' which does not "
+ "enclose `%D'", type, scope, nested_name_specifier);
+ type = NULL_TREE;
+ goto done;
+ }
+ /* [dcl.meaning]
+
+ A declarator-id shall not be qualified exception of the
+ definition of a ... nested class outside of its class
+ ... [or] a the definition or explicit instantiation of a
+ class member of a namespace outside of its namespace. */
+ if (scope == nested_name_specifier)
+ {
+ pedwarn ("extra qualification ignored");
+ nested_name_specifier = NULL_TREE;
+ num_templates = 0;
+ }
+ }
+ /* An explicit-specialization must be preceded by "template <>". If
+ it is not, try to recover gracefully. */
+ if (at_namespace_scope_p ()
+ && parser->num_template_parameter_lists == 0
+ && template_id_p)
+ {
+ error ("an explicit specialization must be preceded by 'template <>'");
+ invalid_explicit_specialization_p = true;
+ /* Take the same action that would have been taken by
+ cp_parser_explicit_specialization. */
+ ++parser->num_template_parameter_lists;
+ begin_specialization ();
+ }
+ /* There must be no "return" statements between this point and the
+ end of this function; set "type "to the correct return value and
+ use "goto done;" to return. */
+ /* Make sure that the right number of template parameters were
+ present. */
+ if (!cp_parser_check_template_parameters (parser, num_templates))
+ {
+ /* If something went wrong, there is no point in even trying to
+ process the class-definition. */
+ type = NULL_TREE;
+ goto done;
+ }
+
+ /* Look up the type. */
+ if (template_id_p)
+ {
+ type = TREE_TYPE (id);
+ maybe_process_partial_specialization (type);
+ }
+ else if (!nested_name_specifier)
+ {
+ /* If the class was unnamed, create a dummy name. */
+ if (!id)
+ id = make_anon_name ();
+ type = xref_tag (class_key, id, /*globalize=*/false,
+ parser->num_template_parameter_lists);
+ }
+ else
+ {
+ tree class_type;
+ bool pop_p = false;
+
+ /* Given:
+
+ template <typename T> struct S { struct T };
+ template <typename T> struct S<T>::T { };
+
+ we will get a TYPENAME_TYPE when processing the definition of
+ `S::T'. We need to resolve it to the actual type before we
+ try to define it. */
+ if (TREE_CODE (TREE_TYPE (type)) == TYPENAME_TYPE)
+ {
+ class_type = resolve_typename_type (TREE_TYPE (type),
+ /*only_current_p=*/false);
+ if (class_type != error_mark_node)
+ type = TYPE_NAME (class_type);
+ else
+ {
+ cp_parser_error (parser, "could not resolve typename type");
+ type = error_mark_node;
+ }
+ }
+
+ maybe_process_partial_specialization (TREE_TYPE (type));
+ class_type = current_class_type;
+ /* Enter the scope indicated by the nested-name-specifier. */
+ if (nested_name_specifier)
+ pop_p = push_scope (nested_name_specifier);
+ /* Get the canonical version of this type. */
+ type = TYPE_MAIN_DECL (TREE_TYPE (type));
+ if (PROCESSING_REAL_TEMPLATE_DECL_P ()
+ && !CLASSTYPE_TEMPLATE_SPECIALIZATION (TREE_TYPE (type)))
+ type = push_template_decl (type);
+ type = TREE_TYPE (type);
+ if (nested_name_specifier)
+ {
+ *nested_name_specifier_p = true;
+ if (pop_p)
+ pop_scope (nested_name_specifier);
+ }
+ }
+ /* Indicate whether this class was declared as a `class' or as a
+ `struct'. */
+ if (TREE_CODE (type) == RECORD_TYPE)
+ CLASSTYPE_DECLARED_CLASS (type) = (class_key == class_type);
+ cp_parser_check_class_key (class_key, type);
+
+ /* Enter the scope containing the class; the names of base classes
+ should be looked up in that context. For example, given:
+
+ struct A { struct B {}; struct C; };
+ struct A::C : B {};
+
+ is valid. */
+ if (nested_name_specifier)
+ pop_p = push_scope (nested_name_specifier);
+ /* Now, look for the base-clause. */
+ token = cp_lexer_peek_token (parser->lexer);
+ if (token->type == CPP_COLON)
+ {
+ tree bases;
+
+ /* Get the list of base-classes. */
+ bases = cp_parser_base_clause (parser);
+ /* Process them. */
+ xref_basetypes (type, bases);
+ }
+ /* Leave the scope given by the nested-name-specifier. We will
+ enter the class scope itself while processing the members. */
+ if (pop_p)
+ pop_scope (nested_name_specifier);
+
+ done:
+ if (invalid_explicit_specialization_p)
+ {
+ end_specialization ();
+ --parser->num_template_parameter_lists;
+ }
+ *attributes_p = attributes;
+ return type;
+}
+
+/* Parse a class-key.
+
+ class-key:
+ class
+ struct
+ union
+
+ Returns the kind of class-key specified, or none_type to indicate
+ error. */
+
+static enum tag_types
+cp_parser_class_key (cp_parser* parser)
+{
+ cp_token *token;
+ enum tag_types tag_type;
+
+ /* Look for the class-key. */
+ token = cp_parser_require (parser, CPP_KEYWORD, "class-key");
+ if (!token)
+ return none_type;
+
+ /* Check to see if the TOKEN is a class-key. */
+ tag_type = cp_parser_token_is_class_key (token);
+ if (!tag_type)
+ cp_parser_error (parser, "expected class-key");
+ return tag_type;
+}
+
+/* Parse an (optional) member-specification.
+
+ member-specification:
+ member-declaration member-specification [opt]
+ access-specifier : member-specification [opt] */
+
+static void
+cp_parser_member_specification_opt (cp_parser* parser)
+{
+ while (true)
+ {
+ cp_token *token;
+ enum rid keyword;
+
+ /* Peek at the next token. */
+ token = cp_lexer_peek_token (parser->lexer);
+ /* If it's a `}', or EOF then we've seen all the members. */
+ if (token->type == CPP_CLOSE_BRACE || token->type == CPP_EOF)
+ break;
+
+ /* See if this token is a keyword. */
+ keyword = token->keyword;
+ switch (keyword)
+ {
+ case RID_PUBLIC:
+ case RID_PROTECTED:
+ case RID_PRIVATE:
+ /* Consume the access-specifier. */
+ cp_lexer_consume_token (parser->lexer);
+ /* Remember which access-specifier is active. */
+ current_access_specifier = token->value;
+ /* Look for the `:'. */
+ cp_parser_require (parser, CPP_COLON, "`:'");
+ break;
+
+ default:
+ /* Otherwise, the next construction must be a
+ member-declaration. */
+ cp_parser_member_declaration (parser);
+ }
+ }
+}
+
+/* Parse a member-declaration.
+
+ member-declaration:
+ decl-specifier-seq [opt] member-declarator-list [opt] ;
+ function-definition ; [opt]
+ :: [opt] nested-name-specifier template [opt] unqualified-id ;
+ using-declaration
+ template-declaration
+
+ member-declarator-list:
+ member-declarator
+ member-declarator-list , member-declarator
+
+ member-declarator:
+ declarator pure-specifier [opt]
+ declarator constant-initializer [opt]
+ identifier [opt] : constant-expression
+
+ GNU Extensions:
+
+ member-declaration:
+ __extension__ member-declaration
+
+ member-declarator:
+ declarator attributes [opt] pure-specifier [opt]
+ declarator attributes [opt] constant-initializer [opt]
+ identifier [opt] attributes [opt] : constant-expression */
+
+static void
+cp_parser_member_declaration (cp_parser* parser)
+{
+ tree decl_specifiers;
+ tree prefix_attributes;
+ tree decl;
+ int declares_class_or_enum;
+ bool friend_p;
+ cp_token *token;
+ int saved_pedantic;
+
+ /* Check for the `__extension__' keyword. */
+ if (cp_parser_extension_opt (parser, &saved_pedantic))
+ {
+ /* Recurse. */
+ cp_parser_member_declaration (parser);
+ /* Restore the old value of the PEDANTIC flag. */
+ pedantic = saved_pedantic;
+
+ return;
+ }
+
+ /* Check for a template-declaration. */
+ if (cp_lexer_next_token_is_keyword (parser->lexer, RID_TEMPLATE))
+ {
+ /* Parse the template-declaration. */
+ cp_parser_template_declaration (parser, /*member_p=*/true);
+
+ return;
+ }
+
+ /* Check for a using-declaration. */
+ if (cp_lexer_next_token_is_keyword (parser->lexer, RID_USING))
+ {
+ /* Parse the using-declaration. */
+ cp_parser_using_declaration (parser);
+
+ return;
+ }
+
+ /* Parse the decl-specifier-seq. */
+ decl_specifiers
+ = cp_parser_decl_specifier_seq (parser,
+ CP_PARSER_FLAGS_OPTIONAL,
+ &prefix_attributes,
+ &declares_class_or_enum);
+ /* Check for an invalid type-name. */
+ if (cp_parser_diagnose_invalid_type_name (parser))
+ return;
+ /* If there is no declarator, then the decl-specifier-seq should
+ specify a type. */
+ if (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON))
+ {
+ /* If there was no decl-specifier-seq, and the next token is a
+ `;', then we have something like:
+
+ struct S { ; };
+
+ [class.mem]
+
+ Each member-declaration shall declare at least one member
+ name of the class. */
+ if (!decl_specifiers)
+ {
+ if (pedantic)
+ pedwarn ("extra semicolon");
+ }
+ else
+ {
+ tree type;
+
+ /* See if this declaration is a friend. */
+ friend_p = cp_parser_friend_p (decl_specifiers);
+ /* If there were decl-specifiers, check to see if there was
+ a class-declaration. */
+ type = check_tag_decl (decl_specifiers);
+ /* Nested classes have already been added to the class, but
+ a `friend' needs to be explicitly registered. */
+ if (friend_p)
+ {
+ /* If the `friend' keyword was present, the friend must
+ be introduced with a class-key. */
+ if (!declares_class_or_enum)
+ error ("a class-key must be used when declaring a friend");
+ /* In this case:
+
+ template <typename T> struct A {
+ friend struct A<T>::B;
+ };
+
+ A<T>::B will be represented by a TYPENAME_TYPE, and
+ therefore not recognized by check_tag_decl. */
+ if (!type)
+ {
+ tree specifier;
+
+ for (specifier = decl_specifiers;
+ specifier;
+ specifier = TREE_CHAIN (specifier))
+ {
+ tree s = TREE_VALUE (specifier);
+
+ if (TREE_CODE (s) == IDENTIFIER_NODE)
+ get_global_value_if_present (s, &type);
+ if (TREE_CODE (s) == TYPE_DECL)
+ s = TREE_TYPE (s);
+ if (TYPE_P (s))
+ {
+ type = s;
+ break;
+ }
+ }
+ }
+ if (!type || !TYPE_P (type))
+ error ("friend declaration does not name a class or "
+ "function");
+ else
+ make_friend_class (current_class_type, type,
+ /*complain=*/true);
+ }
+ /* If there is no TYPE, an error message will already have
+ been issued. */
+ else if (!type)
+ ;
+ /* An anonymous aggregate has to be handled specially; such
+ a declaration really declares a data member (with a
+ particular type), as opposed to a nested class. */
+ else if (ANON_AGGR_TYPE_P (type))
+ {
+ /* Remove constructors and such from TYPE, now that we
+ know it is an anonymous aggregate. */
+ fixup_anonymous_aggr (type);
+ /* And make the corresponding data member. */
+ decl = build_decl (FIELD_DECL, NULL_TREE, type);
+ /* Add it to the class. */
+ finish_member_declaration (decl);
+ }
+ else
+ cp_parser_check_access_in_redeclaration (TYPE_NAME (type));
+ }
+ }
+ else
+ {
+ /* See if these declarations will be friends. */
+ friend_p = cp_parser_friend_p (decl_specifiers);
+
+ /* Keep going until we hit the `;' at the end of the
+ declaration. */
+ while (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON))
+ {
+ tree attributes = NULL_TREE;
+ tree first_attribute;
+
+ /* Peek at the next token. */
+ token = cp_lexer_peek_token (parser->lexer);
+
+ /* Check for a bitfield declaration. */
+ if (token->type == CPP_COLON
+ || (token->type == CPP_NAME
+ && cp_lexer_peek_nth_token (parser->lexer, 2)->type
+ == CPP_COLON))
+ {
+ tree identifier;
+ tree width;
+
+ /* Get the name of the bitfield. Note that we cannot just
+ check TOKEN here because it may have been invalidated by
+ the call to cp_lexer_peek_nth_token above. */
+ if (cp_lexer_peek_token (parser->lexer)->type != CPP_COLON)
+ identifier = cp_parser_identifier (parser);
+ else
+ identifier = NULL_TREE;
+
+ /* Consume the `:' token. */
+ cp_lexer_consume_token (parser->lexer);
+ /* Get the width of the bitfield. */
+ width
+ = cp_parser_constant_expression (parser,
+ /*allow_non_constant=*/false,
+ NULL);
+
+ /* Look for attributes that apply to the bitfield. */
+ attributes = cp_parser_attributes_opt (parser);
+ /* Remember which attributes are prefix attributes and
+ which are not. */
+ first_attribute = attributes;
+ /* Combine the attributes. */
+ attributes = chainon (prefix_attributes, attributes);
+
+ /* Create the bitfield declaration. */
+ decl = grokbitfield (identifier,
+ decl_specifiers,
+ width);
+ /* Apply the attributes. */
+ cplus_decl_attributes (&decl, attributes, /*flags=*/0);
+ }
+ else
+ {
+ tree declarator;
+ tree initializer;
+ tree asm_specification;
+ int ctor_dtor_or_conv_p;
+
+ /* Parse the declarator. */
+ declarator
+ = cp_parser_declarator (parser, CP_PARSER_DECLARATOR_NAMED,
+ &ctor_dtor_or_conv_p,
+ /*parenthesized_p=*/NULL);
+
+ /* If something went wrong parsing the declarator, make sure
+ that we at least consume some tokens. */
+ if (declarator == error_mark_node)
+ {
+ /* Skip to the end of the statement. */
+ cp_parser_skip_to_end_of_statement (parser);
+ /* If the next token is not a semicolon, that is
+ probably because we just skipped over the body of
+ a function. So, we consume a semicolon if
+ present, but do not issue an error message if it
+ is not present. */
+ if (cp_lexer_next_token_is (parser->lexer,
+ CPP_SEMICOLON))
+ cp_lexer_consume_token (parser->lexer);
+ return;
+ }
+
+ cp_parser_check_for_definition_in_return_type
+ (declarator, declares_class_or_enum);
+
+ /* Look for an asm-specification. */
+ asm_specification = cp_parser_asm_specification_opt (parser);
+ /* Look for attributes that apply to the declaration. */
+ attributes = cp_parser_attributes_opt (parser);
+ /* Remember which attributes are prefix attributes and
+ which are not. */
+ first_attribute = attributes;
+ /* Combine the attributes. */
+ attributes = chainon (prefix_attributes, attributes);
+
+ /* If it's an `=', then we have a constant-initializer or a
+ pure-specifier. It is not correct to parse the
+ initializer before registering the member declaration
+ since the member declaration should be in scope while
+ its initializer is processed. However, the rest of the
+ front end does not yet provide an interface that allows
+ us to handle this correctly. */
+ if (cp_lexer_next_token_is (parser->lexer, CPP_EQ))
+ {
+ /* In [class.mem]:
+
+ A pure-specifier shall be used only in the declaration of
+ a virtual function.
+
+ A member-declarator can contain a constant-initializer
+ only if it declares a static member of integral or
+ enumeration type.
+
+ Therefore, if the DECLARATOR is for a function, we look
+ for a pure-specifier; otherwise, we look for a
+ constant-initializer. When we call `grokfield', it will
+ perform more stringent semantics checks. */
+ if (TREE_CODE (declarator) == CALL_EXPR)
+ initializer = cp_parser_pure_specifier (parser);
+ else
+ /* Parse the initializer. */
+ initializer = cp_parser_constant_initializer (parser);
+ }
+ /* Otherwise, there is no initializer. */
+ else
+ initializer = NULL_TREE;
+
+ /* See if we are probably looking at a function
+ definition. We are certainly not looking at at a
+ member-declarator. Calling `grokfield' has
+ side-effects, so we must not do it unless we are sure
+ that we are looking at a member-declarator. */
+ if (cp_parser_token_starts_function_definition_p
+ (cp_lexer_peek_token (parser->lexer)))
+ {
+ /* The grammar does not allow a pure-specifier to be
+ used when a member function is defined. (It is
+ possible that this fact is an oversight in the
+ standard, since a pure function may be defined
+ outside of the class-specifier. */
+ if (initializer)
+ error ("pure-specifier on function-definition");
+ decl = cp_parser_save_member_function_body (parser,
+ decl_specifiers,
+ declarator,
+ attributes);
+ /* If the member was not a friend, declare it here. */
+ if (!friend_p)
+ finish_member_declaration (decl);
+ /* Peek at the next token. */
+ token = cp_lexer_peek_token (parser->lexer);
+ /* If the next token is a semicolon, consume it. */
+ if (token->type == CPP_SEMICOLON)
+ cp_lexer_consume_token (parser->lexer);
+ return;
+ }
+ else
+ {
+ /* Create the declaration. */
+ decl = grokfield (declarator, decl_specifiers,
+ initializer, asm_specification,
+ attributes);
+ /* Any initialization must have been from a
+ constant-expression. */
+ if (decl && TREE_CODE (decl) == VAR_DECL && initializer)
+ DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (decl) = 1;
+ }
+ }
+
+ /* Reset PREFIX_ATTRIBUTES. */
+ while (attributes && TREE_CHAIN (attributes) != first_attribute)
+ attributes = TREE_CHAIN (attributes);
+ if (attributes)
+ TREE_CHAIN (attributes) = NULL_TREE;
+
+ /* If there is any qualification still in effect, clear it
+ now; we will be starting fresh with the next declarator. */
+ parser->scope = NULL_TREE;
+ parser->qualifying_scope = NULL_TREE;
+ parser->object_scope = NULL_TREE;
+ /* If it's a `,', then there are more declarators. */
+ if (cp_lexer_next_token_is (parser->lexer, CPP_COMMA))
+ cp_lexer_consume_token (parser->lexer);
+ /* If the next token isn't a `;', then we have a parse error. */
+ else if (cp_lexer_next_token_is_not (parser->lexer,
+ CPP_SEMICOLON))
+ {
+ cp_parser_error (parser, "expected `;'");
+ /* Skip tokens until we find a `;'. */
+ cp_parser_skip_to_end_of_statement (parser);
+
+ break;
+ }
+
+ if (decl)
+ {
+ /* Add DECL to the list of members. */
+ if (!friend_p)
+ finish_member_declaration (decl);
+
+ if (TREE_CODE (decl) == FUNCTION_DECL)
+ cp_parser_save_default_args (parser, decl);
+ }
+ }
+ }
+
+ cp_parser_require (parser, CPP_SEMICOLON, "`;'");
+}
+
+/* Parse a pure-specifier.
+
+ pure-specifier:
+ = 0
+
+ Returns INTEGER_ZERO_NODE if a pure specifier is found.
+ Otherwise, ERROR_MARK_NODE is returned. */
+
+static tree
+cp_parser_pure_specifier (cp_parser* parser)
+{
+ cp_token *token;
+
+ /* Look for the `=' token. */
+ if (!cp_parser_require (parser, CPP_EQ, "`='"))
+ return error_mark_node;
+ /* Look for the `0' token. */
+ token = cp_parser_require (parser, CPP_NUMBER, "`0'");
+ /* Unfortunately, this will accept `0L' and `0x00' as well. We need
+ to get information from the lexer about how the number was
+ spelled in order to fix this problem. */
+ if (!token || !integer_zerop (token->value))
+ return error_mark_node;
+
+ return integer_zero_node;
+}
+
+/* Parse a constant-initializer.
+
+ constant-initializer:
+ = constant-expression
+
+ Returns a representation of the constant-expression. */
+
+static tree
+cp_parser_constant_initializer (cp_parser* parser)
+{
+ /* Look for the `=' token. */
+ if (!cp_parser_require (parser, CPP_EQ, "`='"))
+ return error_mark_node;
+
+ /* It is invalid to write:
+
+ struct S { static const int i = { 7 }; };
+
+ */
+ if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE))
+ {
+ cp_parser_error (parser,
+ "a brace-enclosed initializer is not allowed here");
+ /* Consume the opening brace. */
+ cp_lexer_consume_token (parser->lexer);
+ /* Skip the initializer. */
+ cp_parser_skip_to_closing_brace (parser);
+ /* Look for the trailing `}'. */
+ cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
+
+ return error_mark_node;
+ }
+
+ return cp_parser_constant_expression (parser,
+ /*allow_non_constant=*/false,
+ NULL);
+}
+
+/* Derived classes [gram.class.derived] */
+
+/* Parse a base-clause.
+
+ base-clause:
+ : base-specifier-list
+
+ base-specifier-list:
+ base-specifier
+ base-specifier-list , base-specifier
+
+ Returns a TREE_LIST representing the base-classes, in the order in
+ which they were declared. The representation of each node is as
+ described by cp_parser_base_specifier.
+
+ In the case that no bases are specified, this function will return
+ NULL_TREE, not ERROR_MARK_NODE. */
+
+static tree
+cp_parser_base_clause (cp_parser* parser)
+{
+ tree bases = NULL_TREE;
+
+ /* Look for the `:' that begins the list. */
+ cp_parser_require (parser, CPP_COLON, "`:'");
+
+ /* Scan the base-specifier-list. */
+ while (true)
+ {
+ cp_token *token;
+ tree base;
+
+ /* Look for the base-specifier. */
+ base = cp_parser_base_specifier (parser);
+ /* Add BASE to the front of the list. */
+ if (base != error_mark_node)
+ {
+ TREE_CHAIN (base) = bases;
+ bases = base;
+ }
+ /* Peek at the next token. */
+ token = cp_lexer_peek_token (parser->lexer);
+ /* If it's not a comma, then the list is complete. */
+ if (token->type != CPP_COMMA)
+ break;
+ /* Consume the `,'. */
+ cp_lexer_consume_token (parser->lexer);
+ }
+
+ /* PARSER->SCOPE may still be non-NULL at this point, if the last
+ base class had a qualified name. However, the next name that
+ appears is certainly not qualified. */
+ parser->scope = NULL_TREE;
+ parser->qualifying_scope = NULL_TREE;
+ parser->object_scope = NULL_TREE;
+
+ return nreverse (bases);
+}
+
+/* Parse a base-specifier.
+
+ base-specifier:
+ :: [opt] nested-name-specifier [opt] class-name
+ virtual access-specifier [opt] :: [opt] nested-name-specifier
+ [opt] class-name
+ access-specifier virtual [opt] :: [opt] nested-name-specifier
+ [opt] class-name
+
+ Returns a TREE_LIST. The TREE_PURPOSE will be one of
+ ACCESS_{DEFAULT,PUBLIC,PROTECTED,PRIVATE}_[VIRTUAL]_NODE to
+ indicate the specifiers provided. The TREE_VALUE will be a TYPE
+ (or the ERROR_MARK_NODE) indicating the type that was specified. */
+
+static tree
+cp_parser_base_specifier (cp_parser* parser)
+{
+ cp_token *token;
+ bool done = false;
+ bool virtual_p = false;
+ bool duplicate_virtual_error_issued_p = false;
+ bool duplicate_access_error_issued_p = false;
+ bool class_scope_p, template_p;
+ tree access = access_default_node;
+ tree type;
+
+ /* Process the optional `virtual' and `access-specifier'. */
+ while (!done)
+ {
+ /* Peek at the next token. */
+ token = cp_lexer_peek_token (parser->lexer);
+ /* Process `virtual'. */
+ switch (token->keyword)
+ {
+ case RID_VIRTUAL:
+ /* If `virtual' appears more than once, issue an error. */
+ if (virtual_p && !duplicate_virtual_error_issued_p)
+ {
+ cp_parser_error (parser,
+ "`virtual' specified more than once in base-specified");
+ duplicate_virtual_error_issued_p = true;
+ }
+
+ virtual_p = true;
+
+ /* Consume the `virtual' token. */
+ cp_lexer_consume_token (parser->lexer);
+
+ break;
+
+ case RID_PUBLIC:
+ case RID_PROTECTED:
+ case RID_PRIVATE:
+ /* If more than one access specifier appears, issue an
+ error. */
+ if (access != access_default_node
+ && !duplicate_access_error_issued_p)
+ {
+ cp_parser_error (parser,
+ "more than one access specifier in base-specified");
+ duplicate_access_error_issued_p = true;
+ }
+
+ access = ridpointers[(int) token->keyword];
+
+ /* Consume the access-specifier. */
+ cp_lexer_consume_token (parser->lexer);
+
+ break;
+
+ default:
+ done = true;
+ break;
+ }
+ }
+ /* It is not uncommon to see programs mechanically, errouneously, use
+ the 'typename' keyword to denote (dependent) qualified types
+ as base classes. */
+ if (cp_lexer_next_token_is_keyword (parser->lexer, RID_TYPENAME))
+ {
+ if (!processing_template_decl)
+ error ("keyword `typename' not allowed outside of templates");
+ else
+ error ("keyword `typename' not allowed in this context "
+ "(the base class is implicitly a type)");
+ cp_lexer_consume_token (parser->lexer);
+ }
+
+ /* Look for the optional `::' operator. */
+ cp_parser_global_scope_opt (parser, /*current_scope_valid_p=*/false);
+ /* Look for the nested-name-specifier. The simplest way to
+ implement:
+
+ [temp.res]
+
+ The keyword `typename' is not permitted in a base-specifier or
+ mem-initializer; in these contexts a qualified name that
+ depends on a template-parameter is implicitly assumed to be a
+ type name.
+
+ is to pretend that we have seen the `typename' keyword at this
+ point. */
+ cp_parser_nested_name_specifier_opt (parser,
+ /*typename_keyword_p=*/true,
+ /*check_dependency_p=*/true,
+ /*type_p=*/true,
+ /*is_declaration=*/true);
+ /* If the base class is given by a qualified name, assume that names
+ we see are type names or templates, as appropriate. */
+ class_scope_p = (parser->scope && TYPE_P (parser->scope));
+ template_p = class_scope_p && cp_parser_optional_template_keyword (parser);
+
+ /* Finally, look for the class-name. */
+ type = cp_parser_class_name (parser,
+ class_scope_p,
+ template_p,
+ /*type_p=*/true,
+ /*check_dependency_p=*/true,
+ /*class_head_p=*/false,
+ /*is_declaration=*/true);
+
+ if (type == error_mark_node)
+ return error_mark_node;
+
+ return finish_base_specifier (TREE_TYPE (type), access, virtual_p);
+}
+
+/* Exception handling [gram.exception] */
+
+/* Parse an (optional) exception-specification.
+
+ exception-specification:
+ throw ( type-id-list [opt] )
+
+ Returns a TREE_LIST representing the exception-specification. The
+ TREE_VALUE of each node is a type. */
+
+static tree
+cp_parser_exception_specification_opt (cp_parser* parser)
+{
+ cp_token *token;
+ tree type_id_list;
+
+ /* Peek at the next token. */
+ token = cp_lexer_peek_token (parser->lexer);
+ /* If it's not `throw', then there's no exception-specification. */
+ if (!cp_parser_is_keyword (token, RID_THROW))
+ return NULL_TREE;
+
+ /* Consume the `throw'. */
+ cp_lexer_consume_token (parser->lexer);
+
+ /* Look for the `('. */
+ cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
+
+ /* Peek at the next token. */
+ token = cp_lexer_peek_token (parser->lexer);
+ /* If it's not a `)', then there is a type-id-list. */
+ if (token->type != CPP_CLOSE_PAREN)
+ {
+ const char *saved_message;
+
+ /* Types may not be defined in an exception-specification. */
+ saved_message = parser->type_definition_forbidden_message;
+ parser->type_definition_forbidden_message
+ = "types may not be defined in an exception-specification";
+ /* Parse the type-id-list. */
+ type_id_list = cp_parser_type_id_list (parser);
+ /* Restore the saved message. */
+ parser->type_definition_forbidden_message = saved_message;
+ }
+ else
+ type_id_list = empty_except_spec;
+
+ /* Look for the `)'. */
+ cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
+
+ return type_id_list;
+}
+
+/* Parse an (optional) type-id-list.
+
+ type-id-list:
+ type-id
+ type-id-list , type-id
+
+ Returns a TREE_LIST. The TREE_VALUE of each node is a TYPE,
+ in the order that the types were presented. */
+
+static tree
+cp_parser_type_id_list (cp_parser* parser)
+{
+ tree types = NULL_TREE;
+
+ while (true)
+ {
+ cp_token *token;
+ tree type;
+
+ /* Get the next type-id. */
+ type = cp_parser_type_id (parser);
+ /* Add it to the list. */
+ types = add_exception_specifier (types, type, /*complain=*/1);
+ /* Peek at the next token. */
+ token = cp_lexer_peek_token (parser->lexer);
+ /* If it is not a `,', we are done. */
+ if (token->type != CPP_COMMA)
+ break;
+ /* Consume the `,'. */
+ cp_lexer_consume_token (parser->lexer);
+ }
+
+ return nreverse (types);
+}
+
+/* Parse a try-block.
+
+ try-block:
+ try compound-statement handler-seq */
+
+static tree
+cp_parser_try_block (cp_parser* parser)
+{
+ tree try_block;
+
+ cp_parser_require_keyword (parser, RID_TRY, "`try'");
+ try_block = begin_try_block ();
+ cp_parser_compound_statement (parser, false);
+ finish_try_block (try_block);
+ cp_parser_handler_seq (parser);
+ finish_handler_sequence (try_block);
+
+ return try_block;
+}
+
+/* Parse a function-try-block.
+
+ function-try-block:
+ try ctor-initializer [opt] function-body handler-seq */
+
+static bool
+cp_parser_function_try_block (cp_parser* parser)
+{
+ tree try_block;
+ bool ctor_initializer_p;
+
+ /* Look for the `try' keyword. */
+ if (!cp_parser_require_keyword (parser, RID_TRY, "`try'"))
+ return false;
+ /* Let the rest of the front-end know where we are. */
+ try_block = begin_function_try_block ();
+ /* Parse the function-body. */
+ ctor_initializer_p
+ = cp_parser_ctor_initializer_opt_and_function_body (parser);
+ /* We're done with the `try' part. */
+ finish_function_try_block (try_block);
+ /* Parse the handlers. */
+ cp_parser_handler_seq (parser);
+ /* We're done with the handlers. */
+ finish_function_handler_sequence (try_block);
+
+ return ctor_initializer_p;
+}
+
+/* Parse a handler-seq.
+
+ handler-seq:
+ handler handler-seq [opt] */
+
+static void
+cp_parser_handler_seq (cp_parser* parser)
+{
+ while (true)
+ {
+ cp_token *token;
+
+ /* Parse the handler. */
+ cp_parser_handler (parser);
+ /* Peek at the next token. */
+ token = cp_lexer_peek_token (parser->lexer);
+ /* If it's not `catch' then there are no more handlers. */
+ if (!cp_parser_is_keyword (token, RID_CATCH))
+ break;
+ }
+}
+
+/* Parse a handler.
+
+ handler:
+ catch ( exception-declaration ) compound-statement */
+
+static void
+cp_parser_handler (cp_parser* parser)
+{
+ tree handler;
+ tree declaration;
+
+ cp_parser_require_keyword (parser, RID_CATCH, "`catch'");
+ handler = begin_handler ();
+ cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
+ declaration = cp_parser_exception_declaration (parser);
+ finish_handler_parms (declaration, handler);
+ cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
+ cp_parser_compound_statement (parser, false);
+ finish_handler (handler);
+}
+
+/* Parse an exception-declaration.
+
+ exception-declaration:
+ type-specifier-seq declarator
+ type-specifier-seq abstract-declarator
+ type-specifier-seq
+ ...
+
+ Returns a VAR_DECL for the declaration, or NULL_TREE if the
+ ellipsis variant is used. */
+
+static tree
+cp_parser_exception_declaration (cp_parser* parser)
+{
+ tree type_specifiers;
+ tree declarator;
+ const char *saved_message;
+
+ /* If it's an ellipsis, it's easy to handle. */
+ if (cp_lexer_next_token_is (parser->lexer, CPP_ELLIPSIS))
+ {
+ /* Consume the `...' token. */
+ cp_lexer_consume_token (parser->lexer);
+ return NULL_TREE;
+ }
+
+ /* Types may not be defined in exception-declarations. */
+ saved_message = parser->type_definition_forbidden_message;
+ parser->type_definition_forbidden_message
+ = "types may not be defined in exception-declarations";
+
+ /* Parse the type-specifier-seq. */
+ type_specifiers = cp_parser_type_specifier_seq (parser);
+ /* If it's a `)', then there is no declarator. */
+ if (cp_lexer_next_token_is (parser->lexer, CPP_CLOSE_PAREN))
+ declarator = NULL_TREE;
+ else
+ declarator = cp_parser_declarator (parser, CP_PARSER_DECLARATOR_EITHER,
+ /*ctor_dtor_or_conv_p=*/NULL,
+ /*parenthesized_p=*/NULL);
+
+ /* Restore the saved message. */
+ parser->type_definition_forbidden_message = saved_message;
+
+ return start_handler_parms (type_specifiers, declarator);
+}
+
+/* Parse a throw-expression.
+
+ throw-expression:
+ throw assignment-expression [opt]
+
+ Returns a THROW_EXPR representing the throw-expression. */
+
+static tree
+cp_parser_throw_expression (cp_parser* parser)
+{
+ tree expression;
+ cp_token* token;
+
+ cp_parser_require_keyword (parser, RID_THROW, "`throw'");
+ token = cp_lexer_peek_token (parser->lexer);
+ /* Figure out whether or not there is an assignment-expression
+ following the "throw" keyword. */
+ if (token->type == CPP_COMMA
+ || token->type == CPP_SEMICOLON
+ || token->type == CPP_CLOSE_PAREN
+ || token->type == CPP_CLOSE_SQUARE
+ || token->type == CPP_CLOSE_BRACE
+ || token->type == CPP_COLON)
+ expression = NULL_TREE;
+ else
+ expression = cp_parser_assignment_expression (parser);
+
+ return build_throw (expression);
+}
+
+/* GNU Extensions */
+
+/* Parse an (optional) asm-specification.
+
+ asm-specification:
+ asm ( string-literal )
+
+ If the asm-specification is present, returns a STRING_CST
+ corresponding to the string-literal. Otherwise, returns
+ NULL_TREE. */
+
+static tree
+cp_parser_asm_specification_opt (cp_parser* parser)
+{
+ cp_token *token;
+ tree asm_specification;
+
+ /* Peek at the next token. */
+ token = cp_lexer_peek_token (parser->lexer);
+ /* If the next token isn't the `asm' keyword, then there's no
+ asm-specification. */
+ if (!cp_parser_is_keyword (token, RID_ASM))
+ return NULL_TREE;
+
+ /* Consume the `asm' token. */
+ cp_lexer_consume_token (parser->lexer);
+ /* Look for the `('. */
+ cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
+
+ /* Look for the string-literal. */
+ token = cp_parser_require (parser, CPP_STRING, "string-literal");
+ if (token)
+ asm_specification = token->value;
+ else
+ asm_specification = NULL_TREE;
+
+ /* Look for the `)'. */
+ cp_parser_require (parser, CPP_CLOSE_PAREN, "`('");
+
+ return asm_specification;
+}
+
+/* Parse an asm-operand-list.
+
+ asm-operand-list:
+ asm-operand
+ asm-operand-list , asm-operand
+
+ asm-operand:
+ string-literal ( expression )
+ [ string-literal ] string-literal ( expression )
+
+ Returns a TREE_LIST representing the operands. The TREE_VALUE of
+ each node is the expression. The TREE_PURPOSE is itself a
+ TREE_LIST whose TREE_PURPOSE is a STRING_CST for the bracketed
+ string-literal (or NULL_TREE if not present) and whose TREE_VALUE
+ is a STRING_CST for the string literal before the parenthesis. */
+
+static tree
+cp_parser_asm_operand_list (cp_parser* parser)
+{
+ tree asm_operands = NULL_TREE;
+
+ while (true)
+ {
+ tree string_literal;
+ tree expression;
+ tree name;
+ cp_token *token;
+
+ if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_SQUARE))
+ {
+ /* Consume the `[' token. */
+ cp_lexer_consume_token (parser->lexer);
+ /* Read the operand name. */
+ name = cp_parser_identifier (parser);
+ if (name != error_mark_node)
+ name = build_string (IDENTIFIER_LENGTH (name),
+ IDENTIFIER_POINTER (name));
+ /* Look for the closing `]'. */
+ cp_parser_require (parser, CPP_CLOSE_SQUARE, "`]'");
+ }
+ else
+ name = NULL_TREE;
+ /* Look for the string-literal. */
+ token = cp_parser_require (parser, CPP_STRING, "string-literal");
+ string_literal = token ? token->value : error_mark_node;
+ /* Look for the `('. */
+ cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
+ /* Parse the expression. */
+ expression = cp_parser_expression (parser);
+ /* Look for the `)'. */
+ cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
+ /* Add this operand to the list. */
+ asm_operands = tree_cons (build_tree_list (name, string_literal),
+ expression,
+ asm_operands);
+ /* If the next token is not a `,', there are no more
+ operands. */
+ if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
+ break;
+ /* Consume the `,'. */
+ cp_lexer_consume_token (parser->lexer);
+ }
+
+ return nreverse (asm_operands);
+}
+
+/* Parse an asm-clobber-list.
+
+ asm-clobber-list:
+ string-literal
+ asm-clobber-list , string-literal
+
+ Returns a TREE_LIST, indicating the clobbers in the order that they
+ appeared. The TREE_VALUE of each node is a STRING_CST. */
+
+static tree
+cp_parser_asm_clobber_list (cp_parser* parser)
+{
+ tree clobbers = NULL_TREE;
+
+ while (true)
+ {
+ cp_token *token;
+ tree string_literal;
+
+ /* Look for the string literal. */
+ token = cp_parser_require (parser, CPP_STRING, "string-literal");
+ string_literal = token ? token->value : error_mark_node;
+ /* Add it to the list. */
+ clobbers = tree_cons (NULL_TREE, string_literal, clobbers);
+ /* If the next token is not a `,', then the list is
+ complete. */
+ if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
+ break;
+ /* Consume the `,' token. */
+ cp_lexer_consume_token (parser->lexer);
+ }
+
+ return clobbers;
+}
+
+/* Parse an (optional) series of attributes.
+
+ attributes:
+ attributes attribute
+
+ attribute:
+ __attribute__ (( attribute-list [opt] ))
+
+ The return value is as for cp_parser_attribute_list. */
+
+static tree
+cp_parser_attributes_opt (cp_parser* parser)
+{
+ tree attributes = NULL_TREE;
+
+ while (true)
+ {
+ cp_token *token;
+ tree attribute_list;
+
+ /* Peek at the next token. */
+ token = cp_lexer_peek_token (parser->lexer);
+ /* If it's not `__attribute__', then we're done. */
+ if (token->keyword != RID_ATTRIBUTE)
+ break;
+
+ /* Consume the `__attribute__' keyword. */
+ cp_lexer_consume_token (parser->lexer);
+ /* Look for the two `(' tokens. */
+ cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
+ cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
+
+ /* Peek at the next token. */
+ token = cp_lexer_peek_token (parser->lexer);
+ if (token->type != CPP_CLOSE_PAREN)
+ /* Parse the attribute-list. */
+ attribute_list = cp_parser_attribute_list (parser);
+ else
+ /* If the next token is a `)', then there is no attribute
+ list. */
+ attribute_list = NULL;
+
+ /* Look for the two `)' tokens. */
+ cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
+ cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
+
+ /* Add these new attributes to the list. */
+ attributes = chainon (attributes, attribute_list);
+ }
+
+ return attributes;
+}
+
+/* Parse an attribute-list.
+
+ attribute-list:
+ attribute
+ attribute-list , attribute
+
+ attribute:
+ identifier
+ identifier ( identifier )
+ identifier ( identifier , expression-list )
+ identifier ( expression-list )
+
+ Returns a TREE_LIST. Each node corresponds to an attribute. THe
+ TREE_PURPOSE of each node is the identifier indicating which
+ attribute is in use. The TREE_VALUE represents the arguments, if
+ any. */
+
+static tree
+cp_parser_attribute_list (cp_parser* parser)
+{
+ tree attribute_list = NULL_TREE;
+
+ while (true)
+ {
+ cp_token *token;
+ tree identifier;
+ tree attribute;
+
+ /* Look for the identifier. We also allow keywords here; for
+ example `__attribute__ ((const))' is legal. */
+ token = cp_lexer_peek_token (parser->lexer);
+ if (token->type != CPP_NAME
+ && token->type != CPP_KEYWORD)
+ return error_mark_node;
+ /* Consume the token. */
+ token = cp_lexer_consume_token (parser->lexer);
+
+ /* Save away the identifier that indicates which attribute this is. */
+ identifier = token->value;
+ attribute = build_tree_list (identifier, NULL_TREE);
+
+ /* Peek at the next token. */
+ token = cp_lexer_peek_token (parser->lexer);
+ /* If it's an `(', then parse the attribute arguments. */
+ if (token->type == CPP_OPEN_PAREN)
+ {
+ tree arguments;
+
+ arguments = (cp_parser_parenthesized_expression_list
+ (parser, true, /*non_constant_p=*/NULL));
+ /* Save the identifier and arguments away. */
+ TREE_VALUE (attribute) = arguments;
+ }
+
+ /* Add this attribute to the list. */
+ TREE_CHAIN (attribute) = attribute_list;
+ attribute_list = attribute;
+
+ /* Now, look for more attributes. */
+ token = cp_lexer_peek_token (parser->lexer);
+ /* If the next token isn't a `,', we're done. */
+ if (token->type != CPP_COMMA)
+ break;
+
+ /* Consume the comma and keep going. */
+ cp_lexer_consume_token (parser->lexer);
+ }
+
+ /* We built up the list in reverse order. */
+ return nreverse (attribute_list);
+}
+
+/* Parse an optional `__extension__' keyword. Returns TRUE if it is
+ present, and FALSE otherwise. *SAVED_PEDANTIC is set to the
+ current value of the PEDANTIC flag, regardless of whether or not
+ the `__extension__' keyword is present. The caller is responsible
+ for restoring the value of the PEDANTIC flag. */
+
+static bool
+cp_parser_extension_opt (cp_parser* parser, int* saved_pedantic)
+{
+ /* Save the old value of the PEDANTIC flag. */
+ *saved_pedantic = pedantic;
+
+ if (cp_lexer_next_token_is_keyword (parser->lexer, RID_EXTENSION))
+ {
+ /* Consume the `__extension__' token. */
+ cp_lexer_consume_token (parser->lexer);
+ /* We're not being pedantic while the `__extension__' keyword is
+ in effect. */
+ pedantic = 0;
+
+ return true;
+ }
+
+ return false;
+}
+
+/* Parse a label declaration.
+
+ label-declaration:
+ __label__ label-declarator-seq ;
+
+ label-declarator-seq:
+ identifier , label-declarator-seq
+ identifier */
+
+static void
+cp_parser_label_declaration (cp_parser* parser)
+{
+ /* Look for the `__label__' keyword. */
+ cp_parser_require_keyword (parser, RID_LABEL, "`__label__'");
+
+ while (true)
+ {
+ tree identifier;
+
+ /* Look for an identifier. */
+ identifier = cp_parser_identifier (parser);
+ /* Declare it as a lobel. */
+ finish_label_decl (identifier);
+ /* If the next token is a `;', stop. */
+ if (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON))
+ break;
+ /* Look for the `,' separating the label declarations. */
+ cp_parser_require (parser, CPP_COMMA, "`,'");
+ }
+
+ /* Look for the final `;'. */
+ cp_parser_require (parser, CPP_SEMICOLON, "`;'");
+}
+
+/* Support Functions */
+
+/* Looks up NAME in the current scope, as given by PARSER->SCOPE.
+ NAME should have one of the representations used for an
+ id-expression. If NAME is the ERROR_MARK_NODE, the ERROR_MARK_NODE
+ is returned. If PARSER->SCOPE is a dependent type, then a
+ SCOPE_REF is returned.
+
+ If NAME is a TEMPLATE_ID_EXPR, then it will be immediately
+ returned; the name was already resolved when the TEMPLATE_ID_EXPR
+ was formed. Abstractly, such entities should not be passed to this
+ function, because they do not need to be looked up, but it is
+ simpler to check for this special case here, rather than at the
+ call-sites.
+
+ In cases not explicitly covered above, this function returns a
+ DECL, OVERLOAD, or baselink representing the result of the lookup.
+ If there was no entity with the indicated NAME, the ERROR_MARK_NODE
+ is returned.
+
+ If IS_TYPE is TRUE, bindings that do not refer to types are
+ ignored.
+
+ If IS_TEMPLATE is TRUE, bindings that do not refer to templates are
+ ignored.
+
+ If IS_NAMESPACE is TRUE, bindings that do not refer to namespaces
+ are ignored.
+
+ If CHECK_DEPENDENCY is TRUE, names are not looked up in dependent
+ types. */
+
+static tree
+cp_parser_lookup_name (cp_parser *parser, tree name,
+ bool is_type, bool is_template, bool is_namespace,
+ bool check_dependency)
+{
+ tree decl;
+ tree object_type = parser->context->object_type;
+
+ /* Now that we have looked up the name, the OBJECT_TYPE (if any) is
+ no longer valid. Note that if we are parsing tentatively, and
+ the parse fails, OBJECT_TYPE will be automatically restored. */
+ parser->context->object_type = NULL_TREE;
+
+ if (name == error_mark_node)
+ return error_mark_node;
+
+ /* A template-id has already been resolved; there is no lookup to
+ do. */
+ if (TREE_CODE (name) == TEMPLATE_ID_EXPR)
+ return name;
+ if (BASELINK_P (name))
+ {
+ my_friendly_assert ((TREE_CODE (BASELINK_FUNCTIONS (name))
+ == TEMPLATE_ID_EXPR),
+ 20020909);
+ return name;
+ }
+
+ /* A BIT_NOT_EXPR is used to represent a destructor. By this point,
+ it should already have been checked to make sure that the name
+ used matches the type being destroyed. */
+ if (TREE_CODE (name) == BIT_NOT_EXPR)
+ {
+ tree type;
+
+ /* Figure out to which type this destructor applies. */
+ if (parser->scope)
+ type = parser->scope;
+ else if (object_type)
+ type = object_type;
+ else
+ type = current_class_type;
+ /* If that's not a class type, there is no destructor. */
+ if (!type || !CLASS_TYPE_P (type))
+ return error_mark_node;
+ if (!CLASSTYPE_DESTRUCTORS (type))
+ return error_mark_node;
+ /* If it was a class type, return the destructor. */
+ return CLASSTYPE_DESTRUCTORS (type);
+ }
+
+ /* By this point, the NAME should be an ordinary identifier. If
+ the id-expression was a qualified name, the qualifying scope is
+ stored in PARSER->SCOPE at this point. */
+ my_friendly_assert (TREE_CODE (name) == IDENTIFIER_NODE,
+ 20000619);
+
+ /* Perform the lookup. */
+ if (parser->scope)
+ {
+ bool dependent_p;
+
+ if (parser->scope == error_mark_node)
+ return error_mark_node;
+
+ /* If the SCOPE is dependent, the lookup must be deferred until
+ the template is instantiated -- unless we are explicitly
+ looking up names in uninstantiated templates. Even then, we
+ cannot look up the name if the scope is not a class type; it
+ might, for example, be a template type parameter. */
+ dependent_p = (TYPE_P (parser->scope)
+ && !(parser->in_declarator_p
+ && currently_open_class (parser->scope))
+ && dependent_type_p (parser->scope));
+ if ((check_dependency || !CLASS_TYPE_P (parser->scope))
+ && dependent_p)
+ {
+ if (is_type)
+ /* The resolution to Core Issue 180 says that `struct A::B'
+ should be considered a type-name, even if `A' is
+ dependent. */
+ decl = TYPE_NAME (make_typename_type (parser->scope,
+ name,
+ /*complain=*/1));
+ else if (is_template)
+ decl = make_unbound_class_template (parser->scope,
+ name,
+ /*complain=*/1);
+ else
+ decl = build_nt (SCOPE_REF, parser->scope, name);
+ }
+ else
+ {
+ bool pop_p = false;
+
+ /* If PARSER->SCOPE is a dependent type, then it must be a
+ class type, and we must not be checking dependencies;
+ otherwise, we would have processed this lookup above. So
+ that PARSER->SCOPE is not considered a dependent base by
+ lookup_member, we must enter the scope here. */
+ if (dependent_p)
+ pop_p = push_scope (parser->scope);
+ /* If the PARSER->SCOPE is a a template specialization, it
+ may be instantiated during name lookup. In that case,
+ errors may be issued. Even if we rollback the current
+ tentative parse, those errors are valid. */
+ decl = lookup_qualified_name (parser->scope, name, is_type,
+ /*complain=*/true);
+ if (pop_p)
+ pop_scope (parser->scope);
+ }
+ parser->qualifying_scope = parser->scope;
+ parser->object_scope = NULL_TREE;
+ }
+ else if (object_type)
+ {
+ tree object_decl = NULL_TREE;
+ /* Look up the name in the scope of the OBJECT_TYPE, unless the
+ OBJECT_TYPE is not a class. */
+ if (CLASS_TYPE_P (object_type))
+ /* If the OBJECT_TYPE is a template specialization, it may
+ be instantiated during name lookup. In that case, errors
+ may be issued. Even if we rollback the current tentative
+ parse, those errors are valid. */
+ object_decl = lookup_member (object_type,
+ name,
+ /*protect=*/0, is_type);
+ /* Look it up in the enclosing context, too. */
+ decl = lookup_name_real (name, is_type, /*nonclass=*/0,
+ is_namespace,
+ /*flags=*/0);
+ parser->object_scope = object_type;
+ parser->qualifying_scope = NULL_TREE;
+ if (object_decl)
+ decl = object_decl;
+ }
+ else
+ {
+ decl = lookup_name_real (name, is_type, /*nonclass=*/0,
+ is_namespace,
+ /*flags=*/0);
+ parser->qualifying_scope = NULL_TREE;
+ parser->object_scope = NULL_TREE;
+ }
+
+ /* If the lookup failed, let our caller know. */
+ if (!decl
+ || decl == error_mark_node
+ || (TREE_CODE (decl) == FUNCTION_DECL
+ && DECL_ANTICIPATED (decl)))
+ return error_mark_node;
+
+ /* If it's a TREE_LIST, the result of the lookup was ambiguous. */
+ if (TREE_CODE (decl) == TREE_LIST)
+ {
+ /* The error message we have to print is too complicated for
+ cp_parser_error, so we incorporate its actions directly. */
+ if (!cp_parser_simulate_error (parser))
+ {
+ error ("reference to `%D' is ambiguous", name);
+ print_candidates (decl);
+ }
+ return error_mark_node;
+ }
+
+ my_friendly_assert (DECL_P (decl)
+ || TREE_CODE (decl) == OVERLOAD
+ || TREE_CODE (decl) == SCOPE_REF
+ || TREE_CODE (decl) == UNBOUND_CLASS_TEMPLATE
+ || BASELINK_P (decl),
+ 20000619);
+
+ /* If we have resolved the name of a member declaration, check to
+ see if the declaration is accessible. When the name resolves to
+ set of overloaded functions, accessibility is checked when
+ overload resolution is done.
+
+ During an explicit instantiation, access is not checked at all,
+ as per [temp.explicit]. */
+ if (DECL_P (decl))
+ check_accessibility_of_qualified_id (decl, object_type, parser->scope);
+
+ return decl;
+}
+
+/* Like cp_parser_lookup_name, but for use in the typical case where
+ CHECK_ACCESS is TRUE, IS_TYPE is FALSE, IS_TEMPLATE is FALSE,
+ IS_NAMESPACE is FALSE, and CHECK_DEPENDENCY is TRUE. */
+
+static tree
+cp_parser_lookup_name_simple (cp_parser* parser, tree name)
+{
+ return cp_parser_lookup_name (parser, name,
+ /*is_type=*/false,
+ /*is_template=*/false,
+ /*is_namespace=*/false,
+ /*check_dependency=*/true);
+}
+
+/* If DECL is a TEMPLATE_DECL that can be treated like a TYPE_DECL in
+ the current context, return the TYPE_DECL. If TAG_NAME_P is
+ true, the DECL indicates the class being defined in a class-head,
+ or declared in an elaborated-type-specifier.
+
+ Otherwise, return DECL. */
+
+static tree
+cp_parser_maybe_treat_template_as_class (tree decl, bool tag_name_p)
+{
+ /* If the TEMPLATE_DECL is being declared as part of a class-head,
+ the translation from TEMPLATE_DECL to TYPE_DECL occurs:
+
+ struct A {
+ template <typename T> struct B;
+ };
+
+ template <typename T> struct A::B {};
+
+ Similarly, in a elaborated-type-specifier:
+
+ namespace N { struct X{}; }
+
+ struct A {
+ template <typename T> friend struct N::X;
+ };
+
+ However, if the DECL refers to a class type, and we are in
+ the scope of the class, then the name lookup automatically
+ finds the TYPE_DECL created by build_self_reference rather
+ than a TEMPLATE_DECL. For example, in:
+
+ template <class T> struct S {
+ S s;
+ };
+
+ there is no need to handle such case. */
+
+ if (DECL_CLASS_TEMPLATE_P (decl) && tag_name_p)
+ return DECL_TEMPLATE_RESULT (decl);
+
+ return decl;
+}
+
+/* If too many, or too few, template-parameter lists apply to the
+ declarator, issue an error message. Returns TRUE if all went well,
+ and FALSE otherwise. */
+
+static bool
+cp_parser_check_declarator_template_parameters (cp_parser* parser,
+ tree declarator)
+{
+ unsigned num_templates;
+
+ /* We haven't seen any classes that involve template parameters yet. */
+ num_templates = 0;
+
+ switch (TREE_CODE (declarator))
+ {
+ case CALL_EXPR:
+ case ARRAY_REF:
+ case INDIRECT_REF:
+ case ADDR_EXPR:
+ {
+ tree main_declarator = TREE_OPERAND (declarator, 0);
+ return
+ cp_parser_check_declarator_template_parameters (parser,
+ main_declarator);
+ }
+
+ case SCOPE_REF:
+ {
+ tree scope;
+ tree member;
+
+ scope = TREE_OPERAND (declarator, 0);
+ member = TREE_OPERAND (declarator, 1);
+
+ /* If this is a pointer-to-member, then we are not interested
+ in the SCOPE, because it does not qualify the thing that is
+ being declared. */
+ if (TREE_CODE (member) == INDIRECT_REF)
+ return (cp_parser_check_declarator_template_parameters
+ (parser, member));
+
+ while (scope && CLASS_TYPE_P (scope))
+ {
+ /* You're supposed to have one `template <...>'
+ for every template class, but you don't need one
+ for a full specialization. For example:
+
+ template <class T> struct S{};
+ template <> struct S<int> { void f(); };
+ void S<int>::f () {}
+
+ is correct; there shouldn't be a `template <>' for
+ the definition of `S<int>::f'. */
+ if (CLASSTYPE_TEMPLATE_INFO (scope)
+ && (CLASSTYPE_TEMPLATE_INSTANTIATION (scope)
+ || uses_template_parms (CLASSTYPE_TI_ARGS (scope)))
+ && PRIMARY_TEMPLATE_P (CLASSTYPE_TI_TEMPLATE (scope)))
+ ++num_templates;
+
+ scope = TYPE_CONTEXT (scope);
+ }
+ }
+
+ /* Fall through. */
+
+ default:
+ /* If the DECLARATOR has the form `X<y>' then it uses one
+ additional level of template parameters. */
+ if (TREE_CODE (declarator) == TEMPLATE_ID_EXPR)
+ ++num_templates;
+
+ return cp_parser_check_template_parameters (parser,
+ num_templates);
+ }
+}
+
+/* NUM_TEMPLATES were used in the current declaration. If that is
+ invalid, return FALSE and issue an error messages. Otherwise,
+ return TRUE. */
+
+static bool
+cp_parser_check_template_parameters (cp_parser* parser,
+ unsigned num_templates)
+{
+ /* If there are more template classes than parameter lists, we have
+ something like:
+
+ template <class T> void S<T>::R<T>::f (); */
+ if (parser->num_template_parameter_lists < num_templates)
+ {
+ error ("too few template-parameter-lists");
+ return false;
+ }
+ /* If there are the same number of template classes and parameter
+ lists, that's OK. */
+ if (parser->num_template_parameter_lists == num_templates)
+ return true;
+ /* If there are more, but only one more, then we are referring to a
+ member template. That's OK too. */
+ if (parser->num_template_parameter_lists == num_templates + 1)
+ return true;
+ /* Otherwise, there are too many template parameter lists. We have
+ something like:
+
+ template <class T> template <class U> void S::f(); */
+ error ("too many template-parameter-lists");
+ return false;
+}
+
+/* Parse a binary-expression of the general form:
+
+ binary-expression:
+ <expr>
+ binary-expression <token> <expr>
+
+ The TOKEN_TREE_MAP maps <token> types to <expr> codes. FN is used
+ to parser the <expr>s. If the first production is used, then the
+ value returned by FN is returned directly. Otherwise, a node with
+ the indicated EXPR_TYPE is returned, with operands corresponding to
+ the two sub-expressions. */
+
+static tree
+cp_parser_binary_expression (cp_parser* parser,
+ const cp_parser_token_tree_map token_tree_map,
+ cp_parser_expression_fn fn)
+{
+ tree lhs;
+
+ /* Parse the first expression. */
+ lhs = (*fn) (parser);
+ /* Now, look for more expressions. */
+ while (true)
+ {
+ cp_token *token;
+ const cp_parser_token_tree_map_node *map_node;
+ tree rhs;
+
+ /* Peek at the next token. */
+ token = cp_lexer_peek_token (parser->lexer);
+ /* If the token is `>', and that's not an operator at the
+ moment, then we're done. */
+ if (token->type == CPP_GREATER
+ && !parser->greater_than_is_operator_p)
+ break;
+ /* If we find one of the tokens we want, build the corresponding
+ tree representation. */
+ for (map_node = token_tree_map;
+ map_node->token_type != CPP_EOF;
+ ++map_node)
+ if (map_node->token_type == token->type)
+ {
+ /* Assume that an overloaded operator will not be used. */
+ bool overloaded_p = false;
+
+ /* Consume the operator token. */
+ cp_lexer_consume_token (parser->lexer);
+ /* Parse the right-hand side of the expression. */
+ rhs = (*fn) (parser);
+ /* Build the binary tree node. */
+ lhs = build_x_binary_op (map_node->tree_type, lhs, rhs,
+ &overloaded_p);
+ /* If the binary operator required the use of an
+ overloaded operator, then this expression cannot be an
+ integral constant-expression. An overloaded operator
+ can be used even if both operands are otherwise
+ permissible in an integral constant-expression if at
+ least one of the operands is of enumeration type. */
+ if (overloaded_p
+ && (cp_parser_non_integral_constant_expression
+ (parser, "calls to overloaded operators")))
+ lhs = error_mark_node;
+ break;
+ }
+
+ /* If the token wasn't one of the ones we want, we're done. */
+ if (map_node->token_type == CPP_EOF)
+ break;
+ }
+
+ return lhs;
+}
+
+/* Parse an optional `::' token indicating that the following name is
+ from the global namespace. If so, PARSER->SCOPE is set to the
+ GLOBAL_NAMESPACE. Otherwise, PARSER->SCOPE is set to NULL_TREE,
+ unless CURRENT_SCOPE_VALID_P is TRUE, in which case it is left alone.
+ Returns the new value of PARSER->SCOPE, if the `::' token is
+ present, and NULL_TREE otherwise. */
+
+static tree
+cp_parser_global_scope_opt (cp_parser* parser, bool current_scope_valid_p)
+{
+ cp_token *token;
+
+ /* Peek at the next token. */
+ token = cp_lexer_peek_token (parser->lexer);
+ /* If we're looking at a `::' token then we're starting from the
+ global namespace, not our current location. */
+ if (token->type == CPP_SCOPE)
+ {
+ /* Consume the `::' token. */
+ cp_lexer_consume_token (parser->lexer);
+ /* Set the SCOPE so that we know where to start the lookup. */
+ parser->scope = global_namespace;
+ parser->qualifying_scope = global_namespace;
+ parser->object_scope = NULL_TREE;
+
+ return parser->scope;
+ }
+ else if (!current_scope_valid_p)
+ {
+ parser->scope = NULL_TREE;
+ parser->qualifying_scope = NULL_TREE;
+ parser->object_scope = NULL_TREE;
+ }
+
+ return NULL_TREE;
+}
+
+/* Returns TRUE if the upcoming token sequence is the start of a
+ constructor declarator. If FRIEND_P is true, the declarator is
+ preceded by the `friend' specifier. */
+
+static bool
+cp_parser_constructor_declarator_p (cp_parser *parser, bool friend_p)
+{
+ bool constructor_p;
+ tree type_decl = NULL_TREE;
+ bool nested_name_p;
+ cp_token *next_token;
+
+ /* The common case is that this is not a constructor declarator, so
+ try to avoid doing lots of work if at all possible. It's not
+ valid declare a constructor at function scope. */
+ if (at_function_scope_p ())
+ return false;
+ /* And only certain tokens can begin a constructor declarator. */
+ next_token = cp_lexer_peek_token (parser->lexer);
+ if (next_token->type != CPP_NAME
+ && next_token->type != CPP_SCOPE
+ && next_token->type != CPP_NESTED_NAME_SPECIFIER
+ && next_token->type != CPP_TEMPLATE_ID)
+ return false;
+
+ /* Parse tentatively; we are going to roll back all of the tokens
+ consumed here. */
+ cp_parser_parse_tentatively (parser);
+ /* Assume that we are looking at a constructor declarator. */
+ constructor_p = true;
+
+ /* Look for the optional `::' operator. */
+ cp_parser_global_scope_opt (parser,
+ /*current_scope_valid_p=*/false);
+ /* Look for the nested-name-specifier. */
+ nested_name_p
+ = (cp_parser_nested_name_specifier_opt (parser,
+ /*typename_keyword_p=*/false,
+ /*check_dependency_p=*/false,
+ /*type_p=*/false,
+ /*is_declaration=*/false)
+ != NULL_TREE);
+ /* Outside of a class-specifier, there must be a
+ nested-name-specifier. */
+ if (!nested_name_p &&
+ (!at_class_scope_p () || !TYPE_BEING_DEFINED (current_class_type)
+ || friend_p))
+ constructor_p = false;
+ /* If we still think that this might be a constructor-declarator,
+ look for a class-name. */
+ if (constructor_p)
+ {
+ /* If we have:
+
+ template <typename T> struct S { S(); };
+ template <typename T> S<T>::S ();
+
+ we must recognize that the nested `S' names a class.
+ Similarly, for:
+
+ template <typename T> S<T>::S<T> ();
+
+ we must recognize that the nested `S' names a template. */
+ type_decl = cp_parser_class_name (parser,
+ /*typename_keyword_p=*/false,
+ /*template_keyword_p=*/false,
+ /*type_p=*/false,
+ /*check_dependency_p=*/false,
+ /*class_head_p=*/false,
+ /*is_declaration=*/false);
+ /* If there was no class-name, then this is not a constructor. */
+ constructor_p = !cp_parser_error_occurred (parser);
+ }
+
+ /* If we're still considering a constructor, we have to see a `(',
+ to begin the parameter-declaration-clause, followed by either a
+ `)', an `...', or a decl-specifier. We need to check for a
+ type-specifier to avoid being fooled into thinking that:
+
+ S::S (f) (int);
+
+ is a constructor. (It is actually a function named `f' that
+ takes one parameter (of type `int') and returns a value of type
+ `S::S'. */
+ if (constructor_p
+ && cp_parser_require (parser, CPP_OPEN_PAREN, "`('"))
+ {
+ if (cp_lexer_next_token_is_not (parser->lexer, CPP_CLOSE_PAREN)
+ && cp_lexer_next_token_is_not (parser->lexer, CPP_ELLIPSIS)
+ /* A parameter declaration begins with a decl-specifier,
+ which is either the "attribute" keyword, a storage class
+ specifier, or (usually) a type-specifier. */
+ && !cp_lexer_next_token_is_keyword (parser->lexer, RID_ATTRIBUTE)
+ && !cp_parser_storage_class_specifier_opt (parser))
+ {
+ tree type;
+ bool pop_p = false;
+ unsigned saved_num_template_parameter_lists;
+
+ /* Names appearing in the type-specifier should be looked up
+ in the scope of the class. */
+ if (current_class_type)
+ type = NULL_TREE;
+ else
+ {
+ type = TREE_TYPE (type_decl);
+ if (TREE_CODE (type) == TYPENAME_TYPE)
+ {
+ type = resolve_typename_type (type,
+ /*only_current_p=*/false);
+ if (type == error_mark_node)
+ {
+ cp_parser_abort_tentative_parse (parser);
+ return false;
+ }
+ }
+ pop_p = push_scope (type);
+ }
+
+ /* Inside the constructor parameter list, surrounding
+ template-parameter-lists do not apply. */
+ saved_num_template_parameter_lists
+ = parser->num_template_parameter_lists;
+ parser->num_template_parameter_lists = 0;
+
+ /* Look for the type-specifier. */
+ cp_parser_type_specifier (parser,
+ CP_PARSER_FLAGS_NONE,
+ /*is_friend=*/false,
+ /*is_declarator=*/true,
+ /*declares_class_or_enum=*/NULL,
+ /*is_cv_qualifier=*/NULL);
+
+ parser->num_template_parameter_lists
+ = saved_num_template_parameter_lists;
+
+ /* Leave the scope of the class. */
+ if (pop_p)
+ pop_scope (type);
+
+ constructor_p = !cp_parser_error_occurred (parser);
+ }
+ }
+ else
+ constructor_p = false;
+ /* We did not really want to consume any tokens. */
+ cp_parser_abort_tentative_parse (parser);
+
+ return constructor_p;
+}
+
+/* Parse the definition of the function given by the DECL_SPECIFIERS,
+ ATTRIBUTES, and DECLARATOR. The access checks have been deferred;
+ they must be performed once we are in the scope of the function.
+
+ Returns the function defined. */
+
+static tree
+cp_parser_function_definition_from_specifiers_and_declarator
+ (cp_parser* parser,
+ tree decl_specifiers,
+ tree attributes,
+ tree declarator)
+{
+ tree fn;
+ bool success_p;
+
+ /* Begin the function-definition. */
+ success_p = begin_function_definition (decl_specifiers,
+ attributes,
+ declarator);
+
+ /* If there were names looked up in the decl-specifier-seq that we
+ did not check, check them now. We must wait until we are in the
+ scope of the function to perform the checks, since the function
+ might be a friend. */
+ perform_deferred_access_checks ();
+
+ if (!success_p)
+ {
+ /* If begin_function_definition didn't like the definition, skip
+ the entire function. */
+ error ("invalid function declaration");
+ cp_parser_skip_to_end_of_block_or_statement (parser);
+ fn = error_mark_node;
+ }
+ else
+ fn = cp_parser_function_definition_after_declarator (parser,
+ /*inline_p=*/false);
+
+ return fn;
+}
+
+/* Parse the part of a function-definition that follows the
+ declarator. INLINE_P is TRUE iff this function is an inline
+ function defined with a class-specifier.
+
+ Returns the function defined. */
+
+static tree
+cp_parser_function_definition_after_declarator (cp_parser* parser,
+ bool inline_p)
+{
+ tree fn;
+ bool ctor_initializer_p = false;
+ bool saved_in_unbraced_linkage_specification_p;
+ unsigned saved_num_template_parameter_lists;
+
+ /* If the next token is `return', then the code may be trying to
+ make use of the "named return value" extension that G++ used to
+ support. */
+ if (cp_lexer_next_token_is_keyword (parser->lexer, RID_RETURN))
+ {
+ /* Consume the `return' keyword. */
+ cp_lexer_consume_token (parser->lexer);
+ /* Look for the identifier that indicates what value is to be
+ returned. */
+ cp_parser_identifier (parser);
+ /* Issue an error message. */
+ error ("named return values are no longer supported");
+ /* Skip tokens until we reach the start of the function body. */
+ while (cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_BRACE)
+ && cp_lexer_next_token_is_not (parser->lexer, CPP_EOF))
+ cp_lexer_consume_token (parser->lexer);
+ }
+ /* The `extern' in `extern "C" void f () { ... }' does not apply to
+ anything declared inside `f'. */
+ saved_in_unbraced_linkage_specification_p
+ = parser->in_unbraced_linkage_specification_p;
+ parser->in_unbraced_linkage_specification_p = false;
+ /* Inside the function, surrounding template-parameter-lists do not
+ apply. */
+ saved_num_template_parameter_lists
+ = parser->num_template_parameter_lists;
+ parser->num_template_parameter_lists = 0;
+ /* If the next token is `try', then we are looking at a
+ function-try-block. */
+ if (cp_lexer_next_token_is_keyword (parser->lexer, RID_TRY))
+ ctor_initializer_p = cp_parser_function_try_block (parser);
+ /* A function-try-block includes the function-body, so we only do
+ this next part if we're not processing a function-try-block. */
+ else
+ ctor_initializer_p
+ = cp_parser_ctor_initializer_opt_and_function_body (parser);
+
+ /* Finish the function. */
+ fn = finish_function ((ctor_initializer_p ? 1 : 0) |
+ (inline_p ? 2 : 0));
+ /* Generate code for it, if necessary. */
+ expand_or_defer_fn (fn);
+ /* Restore the saved values. */
+ parser->in_unbraced_linkage_specification_p
+ = saved_in_unbraced_linkage_specification_p;
+ parser->num_template_parameter_lists
+ = saved_num_template_parameter_lists;
+
+ return fn;
+}
+
+/* Parse a template-declaration, assuming that the `export' (and
+ `extern') keywords, if present, has already been scanned. MEMBER_P
+ is as for cp_parser_template_declaration. */
+
+static void
+cp_parser_template_declaration_after_export (cp_parser* parser, bool member_p)
+{
+ tree decl = NULL_TREE;
+ tree parameter_list;
+ bool friend_p = false;
+
+ /* Look for the `template' keyword. */
+ if (!cp_parser_require_keyword (parser, RID_TEMPLATE, "`template'"))
+ return;
+
+ /* And the `<'. */
+ if (!cp_parser_require (parser, CPP_LESS, "`<'"))
+ return;
+
+ /* If the next token is `>', then we have an invalid
+ specialization. Rather than complain about an invalid template
+ parameter, issue an error message here. */
+ if (cp_lexer_next_token_is (parser->lexer, CPP_GREATER))
+ {
+ cp_parser_error (parser, "invalid explicit specialization");
+ begin_specialization ();
+ parameter_list = NULL_TREE;
+ }
+ else
+ {
+ /* Parse the template parameters. */
+ begin_template_parm_list ();
+ parameter_list = cp_parser_template_parameter_list (parser);
+ parameter_list = end_template_parm_list (parameter_list);
+ }
+
+ /* Look for the `>'. */
+ cp_parser_skip_until_found (parser, CPP_GREATER, "`>'");
+ /* We just processed one more parameter list. */
+ ++parser->num_template_parameter_lists;
+ /* If the next token is `template', there are more template
+ parameters. */
+ if (cp_lexer_next_token_is_keyword (parser->lexer,
+ RID_TEMPLATE))
+ cp_parser_template_declaration_after_export (parser, member_p);
+ else
+ {
+ decl = cp_parser_single_declaration (parser,
+ member_p,
+ &friend_p);
+
+ /* If this is a member template declaration, let the front
+ end know. */
+ if (member_p && !friend_p && decl)
+ {
+ if (TREE_CODE (decl) == TYPE_DECL)
+ cp_parser_check_access_in_redeclaration (decl);
+
+ decl = finish_member_template_decl (decl);
+ }
+ else if (friend_p && decl && TREE_CODE (decl) == TYPE_DECL)
+ make_friend_class (current_class_type, TREE_TYPE (decl),
+ /*complain=*/true);
+ }
+ /* We are done with the current parameter list. */
+ --parser->num_template_parameter_lists;
+
+ /* Finish up. */
+ finish_template_decl (parameter_list);
+
+ /* Register member declarations. */
+ if (member_p && !friend_p && decl && !DECL_CLASS_TEMPLATE_P (decl))
+ finish_member_declaration (decl);
+
+ /* If DECL is a function template, we must return to parse it later.
+ (Even though there is no definition, there might be default
+ arguments that need handling.) */
+ if (member_p && decl
+ && (TREE_CODE (decl) == FUNCTION_DECL
+ || DECL_FUNCTION_TEMPLATE_P (decl)))
+ TREE_VALUE (parser->unparsed_functions_queues)
+ = tree_cons (NULL_TREE, decl,
+ TREE_VALUE (parser->unparsed_functions_queues));
+}
+
+/* Parse a `decl-specifier-seq [opt] init-declarator [opt] ;' or
+ `function-definition' sequence. MEMBER_P is true, this declaration
+ appears in a class scope.
+
+ Returns the DECL for the declared entity. If FRIEND_P is non-NULL,
+ *FRIEND_P is set to TRUE iff the declaration is a friend. */
+
+static tree
+cp_parser_single_declaration (cp_parser* parser,
+ bool member_p,
+ bool* friend_p)
+{
+ int declares_class_or_enum;
+ tree decl = NULL_TREE;
+ tree decl_specifiers;
+ tree attributes;
+ bool function_definition_p = false;
+
+ /* Defer access checks until we know what is being declared. */
+ push_deferring_access_checks (dk_deferred);
+
+ /* Try the `decl-specifier-seq [opt] init-declarator [opt]'
+ alternative. */
+ decl_specifiers
+ = cp_parser_decl_specifier_seq (parser,
+ CP_PARSER_FLAGS_OPTIONAL,
+ &attributes,
+ &declares_class_or_enum);
+ if (friend_p)
+ *friend_p = cp_parser_friend_p (decl_specifiers);
+ /* Gather up the access checks that occurred the
+ decl-specifier-seq. */
+ stop_deferring_access_checks ();
+
+ /* Check for the declaration of a template class. */
+ if (declares_class_or_enum)
+ {
+ if (cp_parser_declares_only_class_p (parser))
+ {
+ decl = shadow_tag (decl_specifiers);
+ if (decl)
+ decl = TYPE_NAME (decl);
+ else
+ decl = error_mark_node;
+ }
+ }
+ else
+ decl = NULL_TREE;
+ /* If it's not a template class, try for a template function. If
+ the next token is a `;', then this declaration does not declare
+ anything. But, if there were errors in the decl-specifiers, then
+ the error might well have come from an attempted class-specifier.
+ In that case, there's no need to warn about a missing declarator. */
+ if (!decl
+ && (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON)
+ || !value_member (error_mark_node, decl_specifiers)))
+ decl = cp_parser_init_declarator (parser,
+ decl_specifiers,
+ attributes,
+ /*function_definition_allowed_p=*/true,
+ member_p,
+ declares_class_or_enum,
+ &function_definition_p);
+
+ pop_deferring_access_checks ();
+
+ /* Clear any current qualification; whatever comes next is the start
+ of something new. */
+ parser->scope = NULL_TREE;
+ parser->qualifying_scope = NULL_TREE;
+ parser->object_scope = NULL_TREE;
+ /* Look for a trailing `;' after the declaration. */
+ if (!function_definition_p
+ && !cp_parser_require (parser, CPP_SEMICOLON, "`;'"))
+ cp_parser_skip_to_end_of_block_or_statement (parser);
+
+ return decl;
+}
+
+/* Parse a cast-expression that is not the operand of a unary "&". */
+
+static tree
+cp_parser_simple_cast_expression (cp_parser *parser)
+{
+ return cp_parser_cast_expression (parser, /*address_p=*/false);
+}
+
+/* Parse a functional cast to TYPE. Returns an expression
+ representing the cast. */
+
+static tree
+cp_parser_functional_cast (cp_parser* parser, tree type)
+{
+ tree expression_list;
+ tree cast;
+
+ expression_list
+ = cp_parser_parenthesized_expression_list (parser, false,
+ /*non_constant_p=*/NULL);
+
+ cast = build_functional_cast (type, expression_list);
+ /* [expr.const]/1: In an integral constant expression "only type
+ conversions to integral or enumeration type can be used". */
+ if (cast != error_mark_node && !type_dependent_expression_p (type)
+ && !INTEGRAL_OR_ENUMERATION_TYPE_P (TREE_TYPE (type)))
+ {
+ if (cp_parser_non_integral_constant_expression
+ (parser, "a call to a constructor"))
+ return error_mark_node;
+ }
+ return cast;
+}
+
+/* Save the tokens that make up the body of a member function defined
+ in a class-specifier. The DECL_SPECIFIERS and DECLARATOR have
+ already been parsed. The ATTRIBUTES are any GNU "__attribute__"
+ specifiers applied to the declaration. Returns the FUNCTION_DECL
+ for the member function. */
+
+static tree
+cp_parser_save_member_function_body (cp_parser* parser,
+ tree decl_specifiers,
+ tree declarator,
+ tree attributes)
+{
+ cp_token_cache *cache;
+ tree fn;
+
+ /* Create the function-declaration. */
+ fn = start_method (decl_specifiers, declarator, attributes);
+ /* If something went badly wrong, bail out now. */
+ if (fn == error_mark_node)
+ {
+ /* If there's a function-body, skip it. */
+ if (cp_parser_token_starts_function_definition_p
+ (cp_lexer_peek_token (parser->lexer)))
+ cp_parser_skip_to_end_of_block_or_statement (parser);
+ return error_mark_node;
+ }
+
+ /* Remember it, if there default args to post process. */
+ cp_parser_save_default_args (parser, fn);
+
+ /* Create a token cache. */
+ cache = cp_token_cache_new ();
+ /* Save away the tokens that make up the body of the
+ function. */
+ cp_parser_cache_group (parser, cache, CPP_CLOSE_BRACE, /*depth=*/0);
+ /* Handle function try blocks. */
+ while (cp_lexer_next_token_is_keyword (parser->lexer, RID_CATCH))
+ cp_parser_cache_group (parser, cache, CPP_CLOSE_BRACE, /*depth=*/0);
+
+ /* Save away the inline definition; we will process it when the
+ class is complete. */
+ DECL_PENDING_INLINE_INFO (fn) = cache;
+ DECL_PENDING_INLINE_P (fn) = 1;
+
+ /* We need to know that this was defined in the class, so that
+ friend templates are handled correctly. */
+ DECL_INITIALIZED_IN_CLASS_P (fn) = 1;
+
+ /* We're done with the inline definition. */
+ finish_method (fn);
+
+ /* Add FN to the queue of functions to be parsed later. */
+ TREE_VALUE (parser->unparsed_functions_queues)
+ = tree_cons (NULL_TREE, fn,
+ TREE_VALUE (parser->unparsed_functions_queues));
+
+ return fn;
+}
+
+/* Parse a template-argument-list, as well as the trailing ">" (but
+ not the opening ">"). See cp_parser_template_argument_list for the
+ return value. */
+
+static tree
+cp_parser_enclosed_template_argument_list (cp_parser* parser)
+{
+ tree arguments;
+ tree saved_scope;
+ tree saved_qualifying_scope;
+ tree saved_object_scope;
+ bool saved_greater_than_is_operator_p;
+
+ /* [temp.names]
+
+ When parsing a template-id, the first non-nested `>' is taken as
+ the end of the template-argument-list rather than a greater-than
+ operator. */
+ saved_greater_than_is_operator_p
+ = parser->greater_than_is_operator_p;
+ parser->greater_than_is_operator_p = false;
+ /* Parsing the argument list may modify SCOPE, so we save it
+ here. */
+ saved_scope = parser->scope;
+ saved_qualifying_scope = parser->qualifying_scope;
+ saved_object_scope = parser->object_scope;
+ /* Parse the template-argument-list itself. */
+ if (cp_lexer_next_token_is (parser->lexer, CPP_GREATER))
+ arguments = NULL_TREE;
+ else
+ arguments = cp_parser_template_argument_list (parser);
+ /* Look for the `>' that ends the template-argument-list. If we find
+ a '>>' instead, it's probably just a typo. */
+ if (cp_lexer_next_token_is (parser->lexer, CPP_RSHIFT))
+ {
+ if (!saved_greater_than_is_operator_p)
+ {
+ /* If we're in a nested template argument list, the '>>' has to be
+ a typo for '> >'. We emit the error message, but we continue
+ parsing and we push a '>' as next token, so that the argument
+ list will be parsed correctly.. */
+ cp_token* token;
+ error ("`>>' should be `> >' within a nested template argument list");
+ token = cp_lexer_peek_token (parser->lexer);
+ token->type = CPP_GREATER;
+ }
+ else
+ {
+ /* If this is not a nested template argument list, the '>>' is
+ a typo for '>'. Emit an error message and continue. */
+ error ("spurious `>>', use `>' to terminate a template argument list");
+ cp_lexer_consume_token (parser->lexer);
+ }
+ }
+ else if (!cp_parser_require (parser, CPP_GREATER, "`>'"))
+ error ("missing `>' to terminate the template argument list");
+ /* The `>' token might be a greater-than operator again now. */
+ parser->greater_than_is_operator_p
+ = saved_greater_than_is_operator_p;
+ /* Restore the SAVED_SCOPE. */
+ parser->scope = saved_scope;
+ parser->qualifying_scope = saved_qualifying_scope;
+ parser->object_scope = saved_object_scope;
+
+ return arguments;
+}
+
+/* MEMBER_FUNCTION is a member function, or a friend. If default
+ arguments, or the body of the function have not yet been parsed,
+ parse them now. */
+
+static void
+cp_parser_late_parsing_for_member (cp_parser* parser, tree member_function)
+{
+ cp_lexer *saved_lexer;
+
+ /* If this member is a template, get the underlying
+ FUNCTION_DECL. */
+ if (DECL_FUNCTION_TEMPLATE_P (member_function))
+ member_function = DECL_TEMPLATE_RESULT (member_function);
+
+ /* There should not be any class definitions in progress at this
+ point; the bodies of members are only parsed outside of all class
+ definitions. */
+ my_friendly_assert (parser->num_classes_being_defined == 0, 20010816);
+ /* While we're parsing the member functions we might encounter more
+ classes. We want to handle them right away, but we don't want
+ them getting mixed up with functions that are currently in the
+ queue. */
+ parser->unparsed_functions_queues
+ = tree_cons (NULL_TREE, NULL_TREE, parser->unparsed_functions_queues);
+
+ /* Make sure that any template parameters are in scope. */
+ maybe_begin_member_template_processing (member_function);
+
+ /* If the body of the function has not yet been parsed, parse it
+ now. */
+ if (DECL_PENDING_INLINE_P (member_function))
+ {
+ tree function_scope;
+ cp_token_cache *tokens;
+
+ /* The function is no longer pending; we are processing it. */
+ tokens = DECL_PENDING_INLINE_INFO (member_function);
+ DECL_PENDING_INLINE_INFO (member_function) = NULL;
+ DECL_PENDING_INLINE_P (member_function) = 0;
+ /* If this was an inline function in a local class, enter the scope
+ of the containing function. */
+ function_scope = decl_function_context (member_function);
+ if (function_scope)
+ push_function_context_to (function_scope);
+
+ /* Save away the current lexer. */
+ saved_lexer = parser->lexer;
+ /* Make a new lexer to feed us the tokens saved for this function. */
+ parser->lexer = cp_lexer_new_from_tokens (tokens);
+ parser->lexer->next = saved_lexer;
+
+ /* Set the current source position to be the location of the first
+ token in the saved inline body. */
+ cp_lexer_peek_token (parser->lexer);
+
+ /* Let the front end know that we going to be defining this
+ function. */
+ start_function (NULL_TREE, member_function, NULL_TREE,
+ SF_PRE_PARSED | SF_INCLASS_INLINE);
+
+ /* Now, parse the body of the function. */
+ cp_parser_function_definition_after_declarator (parser,
+ /*inline_p=*/true);
+
+ /* Leave the scope of the containing function. */
+ if (function_scope)
+ pop_function_context_from (function_scope);
+ /* Restore the lexer. */
+ parser->lexer = saved_lexer;
+ }
+
+ /* Remove any template parameters from the symbol table. */
+ maybe_end_member_template_processing ();
+
+ /* Restore the queue. */
+ parser->unparsed_functions_queues
+ = TREE_CHAIN (parser->unparsed_functions_queues);
+}
+
+/* If DECL contains any default args, remember it on the unparsed
+ functions queue. */
+
+static void
+cp_parser_save_default_args (cp_parser* parser, tree decl)
+{
+ tree probe;
+
+ for (probe = TYPE_ARG_TYPES (TREE_TYPE (decl));
+ probe;
+ probe = TREE_CHAIN (probe))
+ if (TREE_PURPOSE (probe))
+ {
+ TREE_PURPOSE (parser->unparsed_functions_queues)
+ = tree_cons (NULL_TREE, decl,
+ TREE_PURPOSE (parser->unparsed_functions_queues));
+ break;
+ }
+ return;
+}
+
+/* FN is a FUNCTION_DECL which may contains a parameter with an
+ unparsed DEFAULT_ARG. Parse the default args now. */
+
+static void
+cp_parser_late_parsing_default_args (cp_parser *parser, tree fn)
+{
+ cp_lexer *saved_lexer;
+ cp_token_cache *tokens;
+ bool saved_local_variables_forbidden_p;
+ tree parameters;
+
+ /* While we're parsing the default args, we might (due to the
+ statement expression extension) encounter more classes. We want
+ to handle them right away, but we don't want them getting mixed
+ up with default args that are currently in the queue. */
+ parser->unparsed_functions_queues
+ = tree_cons (NULL_TREE, NULL_TREE, parser->unparsed_functions_queues);
+
+ for (parameters = TYPE_ARG_TYPES (TREE_TYPE (fn));
+ parameters;
+ parameters = TREE_CHAIN (parameters))
+ {
+ if (!TREE_PURPOSE (parameters)
+ || TREE_CODE (TREE_PURPOSE (parameters)) != DEFAULT_ARG)
+ continue;
+
+ /* Save away the current lexer. */
+ saved_lexer = parser->lexer;
+ /* Create a new one, using the tokens we have saved. */
+ tokens = DEFARG_TOKENS (TREE_PURPOSE (parameters));
+ parser->lexer = cp_lexer_new_from_tokens (tokens);
+
+ /* Set the current source position to be the location of the
+ first token in the default argument. */
+ cp_lexer_peek_token (parser->lexer);
+
+ /* Local variable names (and the `this' keyword) may not appear
+ in a default argument. */
+ saved_local_variables_forbidden_p = parser->local_variables_forbidden_p;
+ parser->local_variables_forbidden_p = true;
+ /* Parse the assignment-expression. */
+ if (DECL_CLASS_SCOPE_P (fn))
+ push_nested_class (DECL_CONTEXT (fn));
+ TREE_PURPOSE (parameters) = cp_parser_assignment_expression (parser);
+ if (DECL_CLASS_SCOPE_P (fn))
+ pop_nested_class ();
+
+ /* If the token stream has not been completely used up, then
+ there was extra junk after the end of the default
+ argument. */
+ if (!cp_lexer_next_token_is (parser->lexer, CPP_EOF))
+ cp_parser_error (parser, "expected `,'");
+
+ /* Restore saved state. */
+ parser->lexer = saved_lexer;
+ parser->local_variables_forbidden_p = saved_local_variables_forbidden_p;
+ }
+
+ /* Restore the queue. */
+ parser->unparsed_functions_queues
+ = TREE_CHAIN (parser->unparsed_functions_queues);
+}
+
+/* Parse the operand of `sizeof' (or a similar operator). Returns
+ either a TYPE or an expression, depending on the form of the
+ input. The KEYWORD indicates which kind of expression we have
+ encountered. */
+
+static tree
+cp_parser_sizeof_operand (cp_parser* parser, enum rid keyword)
+{
+ static const char *format;
+ tree expr = NULL_TREE;
+ const char *saved_message;
+ bool saved_integral_constant_expression_p;
+
+ /* Initialize FORMAT the first time we get here. */
+ if (!format)
+ format = "types may not be defined in `%s' expressions";
+
+ /* Types cannot be defined in a `sizeof' expression. Save away the
+ old message. */
+ saved_message = parser->type_definition_forbidden_message;
+ /* And create the new one. */
+ parser->type_definition_forbidden_message
+ = xmalloc (strlen (format)
+ + strlen (IDENTIFIER_POINTER (ridpointers[keyword]))
+ + 1 /* `\0' */);
+ sprintf ((char *) parser->type_definition_forbidden_message,
+ format, IDENTIFIER_POINTER (ridpointers[keyword]));
+
+ /* The restrictions on constant-expressions do not apply inside
+ sizeof expressions. */
+ saved_integral_constant_expression_p = parser->integral_constant_expression_p;
+ parser->integral_constant_expression_p = false;
+
+ /* Do not actually evaluate the expression. */
+ ++skip_evaluation;
+ /* If it's a `(', then we might be looking at the type-id
+ construction. */
+ if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN))
+ {
+ tree type;
+ bool saved_in_type_id_in_expr_p;
+
+ /* We can't be sure yet whether we're looking at a type-id or an
+ expression. */
+ cp_parser_parse_tentatively (parser);
+ /* Consume the `('. */
+ cp_lexer_consume_token (parser->lexer);
+ /* Parse the type-id. */
+ saved_in_type_id_in_expr_p = parser->in_type_id_in_expr_p;
+ parser->in_type_id_in_expr_p = true;
+ type = cp_parser_type_id (parser);
+ parser->in_type_id_in_expr_p = saved_in_type_id_in_expr_p;
+ /* Now, look for the trailing `)'. */
+ cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
+ /* If all went well, then we're done. */
+ if (cp_parser_parse_definitely (parser))
+ {
+ /* Build a list of decl-specifiers; right now, we have only
+ a single type-specifier. */
+ type = build_tree_list (NULL_TREE,
+ type);
+
+ /* Call grokdeclarator to figure out what type this is. */
+ expr = grokdeclarator (NULL_TREE,
+ type,
+ TYPENAME,
+ /*initialized=*/0,
+ /*attrlist=*/NULL);
+ }
+ }
+
+ /* If the type-id production did not work out, then we must be
+ looking at the unary-expression production. */
+ if (!expr)
+ expr = cp_parser_unary_expression (parser, /*address_p=*/false);
+ /* Go back to evaluating expressions. */
+ --skip_evaluation;
+
+ /* Free the message we created. */
+ free ((char *) parser->type_definition_forbidden_message);
+ /* And restore the old one. */
+ parser->type_definition_forbidden_message = saved_message;
+ parser->integral_constant_expression_p = saved_integral_constant_expression_p;
+
+ return expr;
+}
+
+/* If the current declaration has no declarator, return true. */
+
+static bool
+cp_parser_declares_only_class_p (cp_parser *parser)
+{
+ /* If the next token is a `;' or a `,' then there is no
+ declarator. */
+ return (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON)
+ || cp_lexer_next_token_is (parser->lexer, CPP_COMMA));
+}
+
+/* DECL_SPECIFIERS is the representation of a decl-specifier-seq.
+ Returns TRUE iff `friend' appears among the DECL_SPECIFIERS. */
+
+static bool
+cp_parser_friend_p (tree decl_specifiers)
+{
+ while (decl_specifiers)
+ {
+ /* See if this decl-specifier is `friend'. */
+ if (TREE_CODE (TREE_VALUE (decl_specifiers)) == IDENTIFIER_NODE
+ && C_RID_CODE (TREE_VALUE (decl_specifiers)) == RID_FRIEND)
+ return true;
+
+ /* Go on to the next decl-specifier. */
+ decl_specifiers = TREE_CHAIN (decl_specifiers);
+ }
+
+ return false;
+}
+
+/* If the next token is of the indicated TYPE, consume it. Otherwise,
+ issue an error message indicating that TOKEN_DESC was expected.
+
+ Returns the token consumed, if the token had the appropriate type.
+ Otherwise, returns NULL. */
+
+static cp_token *
+cp_parser_require (cp_parser* parser,
+ enum cpp_ttype type,
+ const char* token_desc)
+{
+ if (cp_lexer_next_token_is (parser->lexer, type))
+ return cp_lexer_consume_token (parser->lexer);
+ else
+ {
+ /* Output the MESSAGE -- unless we're parsing tentatively. */
+ if (!cp_parser_simulate_error (parser))
+ {
+ char *message = concat ("expected ", token_desc, NULL);
+ cp_parser_error (parser, message);
+ free (message);
+ }
+ return NULL;
+ }
+}
+
+/* Like cp_parser_require, except that tokens will be skipped until
+ the desired token is found. An error message is still produced if
+ the next token is not as expected. */
+
+static void
+cp_parser_skip_until_found (cp_parser* parser,
+ enum cpp_ttype type,
+ const char* token_desc)
+{
+ cp_token *token;
+ unsigned nesting_depth = 0;
+
+ if (cp_parser_require (parser, type, token_desc))
+ return;
+
+ /* Skip tokens until the desired token is found. */
+ while (true)
+ {
+ /* Peek at the next token. */
+ token = cp_lexer_peek_token (parser->lexer);
+ /* If we've reached the token we want, consume it and
+ stop. */
+ if (token->type == type && !nesting_depth)
+ {
+ cp_lexer_consume_token (parser->lexer);
+ return;
+ }
+ /* If we've run out of tokens, stop. */
+ if (token->type == CPP_EOF)
+ return;
+ if (token->type == CPP_OPEN_BRACE
+ || token->type == CPP_OPEN_PAREN
+ || token->type == CPP_OPEN_SQUARE)
+ ++nesting_depth;
+ else if (token->type == CPP_CLOSE_BRACE
+ || token->type == CPP_CLOSE_PAREN
+ || token->type == CPP_CLOSE_SQUARE)
+ {
+ if (nesting_depth-- == 0)
+ return;
+ }
+ /* Consume this token. */
+ cp_lexer_consume_token (parser->lexer);
+ }
+}
+
+/* If the next token is the indicated keyword, consume it. Otherwise,
+ issue an error message indicating that TOKEN_DESC was expected.
+
+ Returns the token consumed, if the token had the appropriate type.
+ Otherwise, returns NULL. */
+
+static cp_token *
+cp_parser_require_keyword (cp_parser* parser,
+ enum rid keyword,
+ const char* token_desc)
+{
+ cp_token *token = cp_parser_require (parser, CPP_KEYWORD, token_desc);
+
+ if (token && token->keyword != keyword)
+ {
+ dyn_string_t error_msg;
+
+ /* Format the error message. */
+ error_msg = dyn_string_new (0);
+ dyn_string_append_cstr (error_msg, "expected ");
+ dyn_string_append_cstr (error_msg, token_desc);
+ cp_parser_error (parser, error_msg->s);
+ dyn_string_delete (error_msg);
+ return NULL;
+ }
+
+ return token;
+}
+
+/* Returns TRUE iff TOKEN is a token that can begin the body of a
+ function-definition. */
+
+static bool
+cp_parser_token_starts_function_definition_p (cp_token* token)
+{
+ return (/* An ordinary function-body begins with an `{'. */
+ token->type == CPP_OPEN_BRACE
+ /* A ctor-initializer begins with a `:'. */
+ || token->type == CPP_COLON
+ /* A function-try-block begins with `try'. */
+ || token->keyword == RID_TRY
+ /* The named return value extension begins with `return'. */
+ || token->keyword == RID_RETURN);
+}
+
+/* Returns TRUE iff the next token is the ":" or "{" beginning a class
+ definition. */
+
+static bool
+cp_parser_next_token_starts_class_definition_p (cp_parser *parser)
+{
+ cp_token *token;
+
+ token = cp_lexer_peek_token (parser->lexer);
+ return (token->type == CPP_OPEN_BRACE || token->type == CPP_COLON);
+}
+
+/* Returns TRUE iff the next token is the "," or ">" ending a
+ template-argument. ">>" is also accepted (after the full
+ argument was parsed) because it's probably a typo for "> >",
+ and there is a specific diagnostic for this. */
+
+static bool
+cp_parser_next_token_ends_template_argument_p (cp_parser *parser)
+{
+ cp_token *token;
+
+ token = cp_lexer_peek_token (parser->lexer);
+ return (token->type == CPP_COMMA || token->type == CPP_GREATER
+ || token->type == CPP_RSHIFT);
+}
+
+/* Returns TRUE iff the n-th token is a ">", or the n-th is a "[" and the
+ (n+1)-th is a ":" (which is a possible digraph typo for "< ::"). */
+
+static bool
+cp_parser_nth_token_starts_template_argument_list_p (cp_parser * parser,
+ size_t n)
+{
+ cp_token *token;
+
+ token = cp_lexer_peek_nth_token (parser->lexer, n);
+ if (token->type == CPP_LESS)
+ return true;
+ /* Check for the sequence `<::' in the original code. It would be lexed as
+ `[:', where `[' is a digraph, and there is no whitespace before
+ `:'. */
+ if (token->type == CPP_OPEN_SQUARE && token->flags & DIGRAPH)
+ {
+ cp_token *token2;
+ token2 = cp_lexer_peek_nth_token (parser->lexer, n+1);
+ if (token2->type == CPP_COLON && !(token2->flags & PREV_WHITE))
+ return true;
+ }
+ return false;
+}
+
+/* Returns the kind of tag indicated by TOKEN, if it is a class-key,
+ or none_type otherwise. */
+
+static enum tag_types
+cp_parser_token_is_class_key (cp_token* token)
+{
+ switch (token->keyword)
+ {
+ case RID_CLASS:
+ return class_type;
+ case RID_STRUCT:
+ return record_type;
+ case RID_UNION:
+ return union_type;
+
+ default:
+ return none_type;
+ }
+}
+
+/* Issue an error message if the CLASS_KEY does not match the TYPE. */
+
+static void
+cp_parser_check_class_key (enum tag_types class_key, tree type)
+{
+ if ((TREE_CODE (type) == UNION_TYPE) != (class_key == union_type))
+ pedwarn ("`%s' tag used in naming `%#T'",
+ class_key == union_type ? "union"
+ : class_key == record_type ? "struct" : "class",
+ type);
+}
+
+/* Issue an error message if DECL is redeclared with different
+ access than its original declaration [class.access.spec/3].
+ This applies to nested classes and nested class templates.
+ [class.mem/1]. */
+
+static void cp_parser_check_access_in_redeclaration (tree decl)
+{
+ if (!CLASS_TYPE_P (TREE_TYPE (decl)))
+ return;
+
+ if ((TREE_PRIVATE (decl)
+ != (current_access_specifier == access_private_node))
+ || (TREE_PROTECTED (decl)
+ != (current_access_specifier == access_protected_node)))
+ error ("%D redeclared with different access", decl);
+}
+
+/* Look for the `template' keyword, as a syntactic disambiguator.
+ Return TRUE iff it is present, in which case it will be
+ consumed. */
+
+static bool
+cp_parser_optional_template_keyword (cp_parser *parser)
+{
+ if (cp_lexer_next_token_is_keyword (parser->lexer, RID_TEMPLATE))
+ {
+ /* The `template' keyword can only be used within templates;
+ outside templates the parser can always figure out what is a
+ template and what is not. */
+ if (!processing_template_decl)
+ {
+ error ("`template' (as a disambiguator) is only allowed "
+ "within templates");
+ /* If this part of the token stream is rescanned, the same
+ error message would be generated. So, we purge the token
+ from the stream. */
+ cp_lexer_purge_token (parser->lexer);
+ return false;
+ }
+ else
+ {
+ /* Consume the `template' keyword. */
+ cp_lexer_consume_token (parser->lexer);
+ return true;
+ }
+ }
+
+ return false;
+}
+
+/* The next token is a CPP_NESTED_NAME_SPECIFIER. Consume the token,
+ set PARSER->SCOPE, and perform other related actions. */
+
+static void
+cp_parser_pre_parsed_nested_name_specifier (cp_parser *parser)
+{
+ tree value;
+ tree check;
+
+ /* Get the stored value. */
+ value = cp_lexer_consume_token (parser->lexer)->value;
+ /* Perform any access checks that were deferred. */
+ for (check = TREE_PURPOSE (value); check; check = TREE_CHAIN (check))
+ perform_or_defer_access_check (TREE_PURPOSE (check), TREE_VALUE (check));
+ /* Set the scope from the stored value. */
+ parser->scope = TREE_VALUE (value);
+ parser->qualifying_scope = TREE_TYPE (value);
+ parser->object_scope = NULL_TREE;
+}
+
+/* Add tokens to CACHE until an non-nested END token appears. */
+
+static void
+cp_parser_cache_group (cp_parser *parser,
+ cp_token_cache *cache,
+ enum cpp_ttype end,
+ unsigned depth)
+{
+ while (true)
+ {
+ cp_token *token;
+
+ /* Abort a parenthesized expression if we encounter a brace. */
+ if ((end == CPP_CLOSE_PAREN || depth == 0)
+ && cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON))
+ return;
+ /* If we've reached the end of the file, stop. */
+ if (cp_lexer_next_token_is (parser->lexer, CPP_EOF))
+ return;
+ /* Consume the next token. */
+ token = cp_lexer_consume_token (parser->lexer);
+ /* Add this token to the tokens we are saving. */
+ cp_token_cache_push_token (cache, token);
+ /* See if it starts a new group. */
+ if (token->type == CPP_OPEN_BRACE)
+ {
+ cp_parser_cache_group (parser, cache, CPP_CLOSE_BRACE, depth + 1);
+ if (depth == 0)
+ return;
+ }
+ else if (token->type == CPP_OPEN_PAREN)
+ cp_parser_cache_group (parser, cache, CPP_CLOSE_PAREN, depth + 1);
+ else if (token->type == end)
+ return;
+ }
+}
+
+/* Begin parsing tentatively. We always save tokens while parsing
+ tentatively so that if the tentative parsing fails we can restore the
+ tokens. */
+
+static void
+cp_parser_parse_tentatively (cp_parser* parser)
+{
+ /* Enter a new parsing context. */
+ parser->context = cp_parser_context_new (parser->context);
+ /* Begin saving tokens. */
+ cp_lexer_save_tokens (parser->lexer);
+ /* In order to avoid repetitive access control error messages,
+ access checks are queued up until we are no longer parsing
+ tentatively. */
+ push_deferring_access_checks (dk_deferred);
+}
+
+/* Commit to the currently active tentative parse. */
+
+static void
+cp_parser_commit_to_tentative_parse (cp_parser* parser)
+{
+ cp_parser_context *context;
+ cp_lexer *lexer;
+
+ /* Mark all of the levels as committed. */
+ lexer = parser->lexer;
+ for (context = parser->context; context->next; context = context->next)
+ {
+ if (context->status == CP_PARSER_STATUS_KIND_COMMITTED)
+ break;
+ context->status = CP_PARSER_STATUS_KIND_COMMITTED;
+ while (!cp_lexer_saving_tokens (lexer))
+ lexer = lexer->next;
+ cp_lexer_commit_tokens (lexer);
+ }
+}
+
+/* Abort the currently active tentative parse. All consumed tokens
+ will be rolled back, and no diagnostics will be issued. */
+
+static void
+cp_parser_abort_tentative_parse (cp_parser* parser)
+{
+ cp_parser_simulate_error (parser);
+ /* Now, pretend that we want to see if the construct was
+ successfully parsed. */
+ cp_parser_parse_definitely (parser);
+}
+
+/* Stop parsing tentatively. If a parse error has occurred, restore the
+ token stream. Otherwise, commit to the tokens we have consumed.
+ Returns true if no error occurred; false otherwise. */
+
+static bool
+cp_parser_parse_definitely (cp_parser* parser)
+{
+ bool error_occurred;
+ cp_parser_context *context;
+
+ /* Remember whether or not an error occurred, since we are about to
+ destroy that information. */
+ error_occurred = cp_parser_error_occurred (parser);
+ /* Remove the topmost context from the stack. */
+ context = parser->context;
+ parser->context = context->next;
+ /* If no parse errors occurred, commit to the tentative parse. */
+ if (!error_occurred)
+ {
+ /* Commit to the tokens read tentatively, unless that was
+ already done. */
+ if (context->status != CP_PARSER_STATUS_KIND_COMMITTED)
+ cp_lexer_commit_tokens (parser->lexer);
+
+ pop_to_parent_deferring_access_checks ();
+ }
+ /* Otherwise, if errors occurred, roll back our state so that things
+ are just as they were before we began the tentative parse. */
+ else
+ {
+ cp_lexer_rollback_tokens (parser->lexer);
+ pop_deferring_access_checks ();
+ }
+ /* Add the context to the front of the free list. */
+ context->next = cp_parser_context_free_list;
+ cp_parser_context_free_list = context;
+
+ return !error_occurred;
+}
+
+/* Returns true if we are parsing tentatively -- but have decided that
+ we will stick with this tentative parse, even if errors occur. */
+
+static bool
+cp_parser_committed_to_tentative_parse (cp_parser* parser)
+{
+ return (cp_parser_parsing_tentatively (parser)
+ && parser->context->status == CP_PARSER_STATUS_KIND_COMMITTED);
+}
+
+/* Returns nonzero iff an error has occurred during the most recent
+ tentative parse. */
+
+static bool
+cp_parser_error_occurred (cp_parser* parser)
+{
+ return (cp_parser_parsing_tentatively (parser)
+ && parser->context->status == CP_PARSER_STATUS_KIND_ERROR);
+}
+
+/* Returns nonzero if GNU extensions are allowed. */
+
+static bool
+cp_parser_allow_gnu_extensions_p (cp_parser* parser)
+{
+ return parser->allow_gnu_extensions_p;
+}
+
+
+
+/* The parser. */
+
+static GTY (()) cp_parser *the_parser;
+
+/* External interface. */
+
+/* Parse one entire translation unit. */
+
+void
+c_parse_file (void)
+{
+ bool error_occurred;
+
+ the_parser = cp_parser_new ();
+ push_deferring_access_checks (flag_access_control
+ ? dk_no_deferred : dk_no_check);
+ error_occurred = cp_parser_translation_unit (the_parser);
+ the_parser = NULL;
+}
+
+/* This variable must be provided by every front end. */
+
+int yydebug;
+
+#include "gt-cp-parser.h"
OpenPOWER on IntegriCloud