summaryrefslogtreecommitdiffstats
path: root/contrib/gcc/config/frv
diff options
context:
space:
mode:
authorkan <kan@FreeBSD.org>2003-07-11 03:40:53 +0000
committerkan <kan@FreeBSD.org>2003-07-11 03:40:53 +0000
commitb2a8872fbe1ec1c49094559ac7b78e6ea4ab7180 (patch)
treef6b0610f4a17fd26aa234354f050080f789861a4 /contrib/gcc/config/frv
parent52e69d78eee5612ac195e0701a5cebe40d1ab0e1 (diff)
downloadFreeBSD-src-b2a8872fbe1ec1c49094559ac7b78e6ea4ab7180.zip
FreeBSD-src-b2a8872fbe1ec1c49094559ac7b78e6ea4ab7180.tar.gz
Gcc 3.3.1-pre as of 2003-07-11.
Diffstat (limited to 'contrib/gcc/config/frv')
-rw-r--r--contrib/gcc/config/frv/cmovd.c47
-rw-r--r--contrib/gcc/config/frv/cmovh.c43
-rw-r--r--contrib/gcc/config/frv/cmovw.c47
-rw-r--r--contrib/gcc/config/frv/frv-abi.h181
-rw-r--r--contrib/gcc/config/frv/frv-asm.h49
-rw-r--r--contrib/gcc/config/frv/frv-modes.def30
-rw-r--r--contrib/gcc/config/frv/frv-protos.h247
-rw-r--r--contrib/gcc/config/frv/frv.c9788
-rw-r--r--contrib/gcc/config/frv/frv.h3592
-rw-r--r--contrib/gcc/config/frv/frv.md7441
-rw-r--r--contrib/gcc/config/frv/frvbegin.c150
-rw-r--r--contrib/gcc/config/frv/frvend.c63
-rw-r--r--contrib/gcc/config/frv/lib1funcs.asm275
-rw-r--r--contrib/gcc/config/frv/modi.c4
-rw-r--r--contrib/gcc/config/frv/t-frv93
-rw-r--r--contrib/gcc/config/frv/uitod.c4
-rw-r--r--contrib/gcc/config/frv/uitof.c4
-rw-r--r--contrib/gcc/config/frv/ulltod.c4
-rw-r--r--contrib/gcc/config/frv/ulltof.c4
-rw-r--r--contrib/gcc/config/frv/umodi.c4
20 files changed, 22070 insertions, 0 deletions
diff --git a/contrib/gcc/config/frv/cmovd.c b/contrib/gcc/config/frv/cmovd.c
new file mode 100644
index 0000000..11b50ba
--- /dev/null
+++ b/contrib/gcc/config/frv/cmovd.c
@@ -0,0 +1,47 @@
+/* Move double-word library function.
+ Copyright (C) 2000 Free Software Foundation, Inc.
+ Contributed by Red Hat, Inc.
+
+ This file is part of GNU CC.
+
+ GNU CC is free software ; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation * either version 2, or (at your option)
+ any later version.
+
+ GNU CC is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY ; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with GNU CC; see the file COPYING. If not, write to
+ the Free Software Foundation, 59 Temple Place - Suite 330,
+ Boston, MA 02111-1307, USA. */
+
+void
+__cmovd (long long *dest, const long long *src, unsigned len)
+{
+ unsigned i;
+ unsigned num = len >> 3;
+ unsigned xlen = len & ~7;
+ char *dest_byte = (char *)dest;
+ const char *src_byte = (const char *)src;
+
+ if (dest_byte < src_byte || dest_byte > src_byte+len)
+ {
+ for (i = 0; i < num; i++)
+ dest[i] = src[i];
+
+ while (len > xlen)
+ {
+ dest_byte[xlen] = src_byte[xlen];
+ xlen++;
+ }
+ }
+ else
+ {
+ while (len-- > 0)
+ dest_byte[len] = src_byte[len];
+ }
+}
diff --git a/contrib/gcc/config/frv/cmovh.c b/contrib/gcc/config/frv/cmovh.c
new file mode 100644
index 0000000..018a0b4
--- /dev/null
+++ b/contrib/gcc/config/frv/cmovh.c
@@ -0,0 +1,43 @@
+/* Move half-word library function.
+ Copyright (C) 2000 Free Software Foundation, Inc.
+ Contributed by Red Hat, Inc.
+
+ This file is part of GNU CC.
+
+ GNU CC is free software ; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation * either version 2, or (at your option)
+ any later version.
+
+ GNU CC is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY ; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with GNU CC; see the file COPYING. If not, write to
+ the Free Software Foundation, 59 Temple Place - Suite 330,
+ Boston, MA 02111-1307, USA. */
+
+void
+__cmovh (short *dest, const short *src, unsigned len)
+{
+ unsigned i;
+ unsigned num = len >> 1;
+ char *dest_byte = (char *)dest;
+ const char *src_byte = (const char *)src;
+
+ if (dest_byte < src_byte || dest_byte > src_byte+len)
+ {
+ for (i = 0; i < num; i++)
+ dest[i] = src[i];
+
+ if ((len & 1) != 0)
+ dest_byte[len-1] = src_byte[len-1];
+ }
+ else
+ {
+ while (len-- > 0)
+ dest_byte[len] = src_byte[len];
+ }
+}
diff --git a/contrib/gcc/config/frv/cmovw.c b/contrib/gcc/config/frv/cmovw.c
new file mode 100644
index 0000000..5509e06
--- /dev/null
+++ b/contrib/gcc/config/frv/cmovw.c
@@ -0,0 +1,47 @@
+/* Move word library function.
+ Copyright (C) 2000 Free Software Foundation, Inc.
+ Contributed by Red Hat, Inc.
+
+ This file is part of GNU CC.
+
+ GNU CC is free software ; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation * either version 2, or (at your option)
+ any later version.
+
+ GNU CC is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY ; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with GNU CC; see the file COPYING. If not, write to
+ the Free Software Foundation, 59 Temple Place - Suite 330,
+ Boston, MA 02111-1307, USA. */
+
+void
+__cmovw (int *dest, const int *src, unsigned len)
+{
+ unsigned i;
+ unsigned num = len >> 2;
+ unsigned xlen = len & ~3;
+ char *dest_byte = (char *)dest;
+ const char *src_byte = (const char *)src;
+
+ if (dest_byte < src_byte || dest_byte > src_byte+len)
+ {
+ for (i = 0; i < num; i++)
+ dest[i] = src[i];
+
+ while (len > xlen)
+ {
+ dest_byte[xlen] = src_byte[xlen];
+ xlen++;
+ }
+ }
+ else
+ {
+ while (len-- > 0)
+ dest_byte[len] = src_byte[len];
+ }
+}
diff --git a/contrib/gcc/config/frv/frv-abi.h b/contrib/gcc/config/frv/frv-abi.h
new file mode 100644
index 0000000..68fd32f
--- /dev/null
+++ b/contrib/gcc/config/frv/frv-abi.h
@@ -0,0 +1,181 @@
+/* Frv map GCC names to FR-V ABI.
+ Copyright (C) 2000 Free Software Foundation, Inc.
+ Contributed by Red Hat, Inc.
+
+This file is part of GNU CC.
+
+GNU CC is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2, or (at your option)
+any later version.
+
+GNU CC is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GNU CC; see the file COPYING. If not, write to
+the Free Software Foundation, 59 Temple Place - Suite 330,
+Boston, MA 02111-1307, USA. */
+
+/* For each of the functions in the library that has a corresponding name in
+ the ABI, add an equivalence between the GCC name and the ABI name. This is
+ in a separate file from frv.h so that fp-bit.c can be made to include it. */
+
+#ifdef __GNUC__
+#ifdef __FRV_UNDERSCORE__
+#define RENAME_LIBRARY(OLD,NEW) \
+__asm__ (".globl\t_" #NEW "\n" \
+ "_" #NEW "=_" #OLD "\n" \
+ "\t.type\t_" #NEW ",@function\n");
+
+#else
+#define RENAME_LIBRARY(OLD,NEW) \
+__asm__ (".globl\t" #NEW "\n" \
+ #NEW "=" #OLD "\n" \
+ "\t.type\t" #NEW ",@function\n");
+#endif
+
+#define CREATE_DOUBLE_SHIFT(OLD,NEW) \
+__asm__ (".text\n" \
+ "\t.globl\t" #NEW "\n" \
+ "\t.type\t" #NEW ",@function\n" \
+ #NEW ":\n" \
+ "\tor\tgr11, gr0, gr10\n" \
+ "\tbra\t" #OLD "\n");
+
+#ifdef L_sf_to_df
+#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY(__extendsfdf2,__ftod)
+#endif
+
+#ifdef L_sf_to_si
+#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY(__fixsfsi,__ftoi)
+#endif
+
+#ifdef L_sf_to_usi
+#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY(__fixunssfsi,__ftoui)
+#endif
+
+#ifdef L_df_to_si
+#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY(__fixdfsi,__dtoi)
+#endif
+
+#ifdef L_fixunssfsi
+#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY(__fixunssfsi,__ftoui)
+#endif
+
+#ifdef L_fixunsdfsi
+#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY(__fixunsdfsi,__dtoui)
+#endif
+
+#ifdef L_fixsfdi
+#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY(__fixsfdi,__ftoll)
+#endif
+
+#ifdef L_fixdfdi
+#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY(__fixdfdi,__dtoll)
+#endif
+
+#ifdef L_fixunssfdi
+#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY(__fixunssfdi,__ftoull)
+#endif
+
+#ifdef L_fixunsdfdi
+#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY(__fixunsdfdi,__dtoull)
+#endif
+
+#ifdef L_si_to_sf
+#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY(__floatsisf,__itof)
+#endif
+
+#ifdef L_di_to_sf
+#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY(__floatdisf,__lltof)
+#endif
+
+#ifdef L_df_to_sf
+#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY(__truncdfsf2,__dtof)
+#endif
+
+#ifdef L_si_to_df
+#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY(__floatsidf,__itod)
+#endif
+
+#ifdef L_floatdisf
+#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY(__floatdisf,__lltof)
+#endif
+
+#ifdef L_floatdidf
+#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY(__floatdidf,__lltod)
+#endif
+
+#ifdef L_addsub_df
+#define DECLARE_LIBRARY_RENAMES \
+ RENAME_LIBRARY(__adddf3,__addd)
+ RENAME_LIBRARY(__subdf3,__subd)
+#endif
+
+#ifdef L_mul_df
+#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY(__muldf3,__muld)
+#endif
+
+#ifdef L_div_df
+#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY(__divdf3,__divd)
+#endif
+
+#ifdef L_addsub_sf
+#define DECLARE_LIBRARY_RENAMES \
+ RENAME_LIBRARY(__addsf3,__addf) \
+ RENAME_LIBRARY(__subsf3,__subf)
+#endif
+
+#ifdef L_mul_sf
+#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY(__mulsf3,__mulf)
+#endif
+
+#ifdef L_div_sf
+#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY(__divsf3,__divf)
+#endif
+
+#ifdef L_ashldi3
+#define DECLARE_LIBRARY_RENAMES CREATE_DOUBLE_SHIFT (__ashldi3,__sllll)
+#endif
+
+#ifdef L_lshrdi3
+#define DECLARE_LIBRARY_RENAMES CREATE_DOUBLE_SHIFT (__lshrdi3,__srlll)
+#endif
+
+#ifdef L_ashrdi3
+#define DECLARE_LIBRARY_RENAMES CREATE_DOUBLE_SHIFT (__ashrdi3,__srall)
+#endif
+
+#ifdef L_adddi3
+#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY(__adddi3,__addll)
+#endif
+
+#ifdef L_subdi3
+#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY(__subdi3,__subll)
+#endif
+
+#ifdef L_muldi3
+#define DECLARE_LIBRARY_RENAMES \
+ RENAME_LIBRARY(__muldi3,__mulll)
+ RENAME_LIBRARY(__muldi3,__umulll)
+#endif
+
+#ifdef L_divdi3
+#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY(__divdi3,__divll)
+#endif
+
+#ifdef L_udivdi3
+#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY(__udivdi3,__udivll)
+#endif
+
+#ifdef L_moddi3
+#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY(__moddi3,__modll)
+#endif
+
+#ifdef L_umoddi3
+#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY(__umoddi3,__umodll)
+#endif
+#endif /* __GNUC__ */
diff --git a/contrib/gcc/config/frv/frv-asm.h b/contrib/gcc/config/frv/frv-asm.h
new file mode 100644
index 0000000..e8447a6
--- /dev/null
+++ b/contrib/gcc/config/frv/frv-asm.h
@@ -0,0 +1,49 @@
+/* Assembler Support.
+ Copyright (C) 2000 Free Software Foundation, Inc.
+ Contributed by Red Hat, Inc.
+
+ This file is part of GNU CC.
+
+ GNU CC is free software ; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation * either version 2, or (at your option)
+ any later version.
+
+ GNU CC is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY ; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with GNU CC; see the file COPYING. If not, write to
+ the Free Software Foundation, 59 Temple Place - Suite 330,
+ Boston, MA 02111-1307, USA. */
+
+/* P(INSN): Emit INSN.P for VLIW machines, otherwise emit plain INSN.
+ P2(INSN): Emit INSN.P on the FR500 and above, otherwise emit plain INSN. */
+#ifdef __FRV_VLIW__
+#ifdef __STDC__
+#define P(A) A##.p
+#else
+#define P(A) A/**/.p
+#endif
+#if __FRV_VLIW__ > 2
+#define P2(A) P(A)
+#else
+#define P2(A) A
+#endif
+#else
+#define P(A) A
+#define P2(A) A
+#endif
+
+/* Add underscore if necessary to external name. */
+#ifdef __FRV_UNDERSCORE__
+#ifdef __STDC__
+#define EXT(NAME) _##NAME
+#else
+#define EXT(NAME) _/**/NAME
+#endif
+#else
+#define EXT(NAME) NAME
+#endif
diff --git a/contrib/gcc/config/frv/frv-modes.def b/contrib/gcc/config/frv/frv-modes.def
new file mode 100644
index 0000000..ca7818c
--- /dev/null
+++ b/contrib/gcc/config/frv/frv-modes.def
@@ -0,0 +1,30 @@
+/* Definitions of target machine for GNU compiler for FRV.
+ Copyright (C) 2002 Free Software Foundation, Inc.
+
+This file is part of GNU CC.
+
+GNU CC is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2, or (at your option)
+any later version.
+
+GNU CC is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GNU CC; see the file COPYING. If not, write to
+the Free Software Foundation, 59 Temple Place - Suite 330,
+Boston, MA 02111-1307, USA. */
+
+/* On the FRV, the CC modes used are:
+
+ CCmode set ICC's from comparing signed integers
+ CC_UNSmode set ICC's from comparing unsigned integers
+ CC_FPmode set FCC's from comparing floating point
+ CC_CCRmode set CCR's to do conditional execution */
+
+CC (CC_UNS)
+CC (CC_FP)
+CC (CC_CCR)
diff --git a/contrib/gcc/config/frv/frv-protos.h b/contrib/gcc/config/frv/frv-protos.h
new file mode 100644
index 0000000..4f5a422
--- /dev/null
+++ b/contrib/gcc/config/frv/frv-protos.h
@@ -0,0 +1,247 @@
+/* Frv prototypes.
+ Copyright (C) 1999, 2000, 2001 Free Software Foundation, Inc.
+ Contributed by Red Hat, Inc.
+
+This file is part of GNU CC.
+
+GNU CC is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2, or (at your option)
+any later version.
+
+GNU CC is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GNU CC; see the file COPYING. If not, write to
+the Free Software Foundation, 59 Temple Place - Suite 330,
+Boston, MA 02111-1307, USA. */
+
+/* Define the information needed to generate branch and scc insns. This is
+ stored from the compare operation. Note that we can't use "rtx" here
+ since it hasn't been defined! */
+
+/* Define global data defined in frv.c */
+extern const char *frv_branch_cost_string; /* -mbranch-cost option */
+extern int frv_branch_cost_int; /* value of -mbranch_cost */
+
+extern const char *frv_cpu_string; /* -mcpu= option */
+
+extern const char *frv_condexec_insns_str; /* -mcond-exec-insns= option */
+extern int frv_condexec_insns; /* value of -mcond-exec-insns */
+
+extern const char *frv_condexec_temps_str; /* -mcond-exec-temps= option */
+extern int frv_condexec_temps; /* value of -mcond-exec-temps */
+
+extern const char *frv_sched_lookahead_str; /* -msched-lookahead= option */
+extern int frv_sched_lookahead; /* value -msched-lookahead= */
+
+/* CPU type. This must be identical to the cpu enumeration in frv.md. */
+typedef enum frv_cpu
+{
+ FRV_CPU_GENERIC,
+ FRV_CPU_FR500,
+ FRV_CPU_FR400,
+ FRV_CPU_FR300,
+ FRV_CPU_SIMPLE,
+ FRV_CPU_TOMCAT
+} frv_cpu_t;
+
+extern frv_cpu_t frv_cpu_type; /* value of -mcpu= */
+
+/* Define functions defined in frv.c */
+extern void frv_expand_prologue PARAMS ((void));
+extern void frv_expand_epilogue PARAMS ((int));
+extern void frv_override_options PARAMS ((void));
+extern void frv_optimization_options PARAMS ((int, int));
+extern void frv_conditional_register_usage PARAMS ((void));
+extern frv_stack_t *frv_stack_info PARAMS ((void));
+extern void frv_debug_stack PARAMS ((frv_stack_t *));
+extern int frv_frame_pointer_required PARAMS ((void));
+extern int frv_initial_elimination_offset PARAMS ((int, int));
+
+#ifdef RTX_CODE
+extern int frv_legitimate_address_p PARAMS ((enum machine_mode, rtx,
+ int, int));
+extern rtx frv_legitimize_address PARAMS ((rtx, rtx,
+ enum machine_mode));
+
+#ifdef TREE_CODE
+extern void frv_init_cumulative_args PARAMS ((CUMULATIVE_ARGS *, tree,
+ rtx, int, int));
+
+extern int frv_function_arg_boundary PARAMS ((enum machine_mode, tree));
+extern rtx frv_function_arg PARAMS ((CUMULATIVE_ARGS *,
+ enum machine_mode,
+ tree, int, int));
+
+extern void frv_function_arg_advance PARAMS ((CUMULATIVE_ARGS *,
+ enum machine_mode,
+ tree, int));
+
+extern int frv_function_arg_partial_nregs PARAMS ((CUMULATIVE_ARGS *,
+ enum machine_mode,
+ tree, int));
+
+extern int frv_function_arg_pass_by_reference PARAMS ((CUMULATIVE_ARGS *,
+ enum machine_mode,
+ tree, int));
+
+extern int frv_function_arg_callee_copies PARAMS ((CUMULATIVE_ARGS *,
+ enum machine_mode,
+ tree, int));
+
+extern int frv_function_arg_keep_as_reference PARAMS ((CUMULATIVE_ARGS *,
+ enum machine_mode,
+ tree, int));
+
+extern rtx frv_expand_builtin_saveregs PARAMS ((void));
+extern void frv_setup_incoming_varargs PARAMS ((CUMULATIVE_ARGS *,
+ enum machine_mode,
+ tree, int *, int));
+
+extern void frv_expand_builtin_va_start PARAMS ((tree, rtx));
+extern rtx frv_expand_builtin_va_arg PARAMS ((tree, tree));
+#endif /* TREE_CODE */
+
+extern int frv_expand_block_move PARAMS ((rtx *));
+extern int frv_expand_block_clear PARAMS ((rtx *));
+extern rtx frv_dynamic_chain_address PARAMS ((rtx));
+extern rtx frv_return_addr_rtx PARAMS ((int, rtx));
+extern rtx frv_index_memory PARAMS ((rtx,
+ enum machine_mode,
+ int));
+extern const char *frv_asm_output_opcode
+ PARAMS ((FILE *, const char *));
+extern void frv_final_prescan_insn PARAMS ((rtx, rtx *, int));
+extern void frv_print_operand PARAMS ((FILE *, rtx, int));
+extern void frv_print_operand_address PARAMS ((FILE *, rtx));
+extern int frv_emit_movsi PARAMS ((rtx, rtx));
+extern const char *output_move_single PARAMS ((rtx *, rtx));
+extern const char *output_move_double PARAMS ((rtx *, rtx));
+extern const char *output_condmove_single
+ PARAMS ((rtx *, rtx));
+extern int frv_emit_cond_branch PARAMS ((enum rtx_code, rtx));
+extern int frv_emit_scc PARAMS ((enum rtx_code, rtx));
+extern rtx frv_split_scc PARAMS ((rtx, rtx, rtx, rtx,
+ HOST_WIDE_INT));
+extern int frv_emit_cond_move PARAMS ((rtx, rtx, rtx, rtx));
+extern rtx frv_split_cond_move PARAMS ((rtx *));
+extern rtx frv_split_minmax PARAMS ((rtx *));
+extern rtx frv_split_abs PARAMS ((rtx *));
+extern void frv_split_double_load PARAMS ((rtx, rtx));
+extern void frv_split_double_store PARAMS ((rtx, rtx));
+#ifdef BLOCK_HEAD
+extern void frv_ifcvt_init_extra_fields PARAMS ((ce_if_block_t *));
+extern void frv_ifcvt_modify_tests PARAMS ((ce_if_block_t *,
+ rtx *, rtx *));
+extern void frv_ifcvt_modify_multiple_tests
+ PARAMS ((ce_if_block_t *,
+ basic_block,
+ rtx *, rtx *));
+extern rtx frv_ifcvt_modify_insn PARAMS ((ce_if_block_t *,
+ rtx, rtx));
+extern void frv_ifcvt_modify_final PARAMS ((ce_if_block_t *));
+extern void frv_ifcvt_modify_cancel PARAMS ((ce_if_block_t *));
+#endif
+extern int frv_trampoline_size PARAMS ((void));
+extern void frv_initialize_trampoline PARAMS ((rtx, rtx, rtx));
+extern enum reg_class frv_secondary_reload_class
+ PARAMS ((enum reg_class class,
+ enum machine_mode mode,
+ rtx x, int));
+extern int frv_class_likely_spilled_p PARAMS ((enum reg_class class));
+extern int frv_hard_regno_mode_ok PARAMS ((int, enum machine_mode));
+extern int frv_hard_regno_nregs PARAMS ((int, enum machine_mode));
+extern int frv_class_max_nregs PARAMS ((enum reg_class class,
+ enum machine_mode mode));
+extern int frv_legitimate_constant_p PARAMS ((rtx));
+#endif /* RTX_CODE */
+
+extern int direct_return_p PARAMS ((void));
+extern int frv_register_move_cost PARAMS ((enum reg_class, enum reg_class));
+
+#ifdef TREE_CODE
+extern int frv_adjust_field_align PARAMS ((tree, int));
+#endif
+
+extern void fixup_section PARAMS ((void));
+extern void sdata_section PARAMS ((void));
+extern void sbss_section PARAMS ((void));
+extern void const_section PARAMS ((void));
+extern void data_section PARAMS ((void));
+
+#ifdef RTX_CODE
+extern int integer_register_operand PARAMS ((rtx, enum machine_mode));
+extern int frv_load_operand PARAMS ((rtx, enum machine_mode));
+extern int gpr_or_fpr_operand PARAMS ((rtx, enum machine_mode));
+extern int gpr_no_subreg_operand PARAMS ((rtx, enum machine_mode));
+extern int gpr_or_int6_operand PARAMS ((rtx, enum machine_mode));
+extern int fpr_or_int6_operand PARAMS ((rtx, enum machine_mode));
+extern int gpr_or_int_operand PARAMS ((rtx, enum machine_mode));
+extern int gpr_or_int12_operand PARAMS ((rtx, enum machine_mode));
+extern int gpr_fpr_or_int12_operand PARAMS ((rtx, enum machine_mode));
+extern int gpr_or_int10_operand PARAMS ((rtx, enum machine_mode));
+extern int move_source_operand PARAMS ((rtx, enum machine_mode));
+extern int move_destination_operand PARAMS ((rtx, enum machine_mode));
+extern int condexec_source_operand PARAMS ((rtx, enum machine_mode));
+extern int condexec_dest_operand PARAMS ((rtx, enum machine_mode));
+extern int lr_operand PARAMS ((rtx, enum machine_mode));
+extern int gpr_or_memory_operand PARAMS ((rtx, enum machine_mode));
+extern int fpr_or_memory_operand PARAMS ((rtx, enum machine_mode));
+extern int reg_or_0_operand PARAMS ((rtx, enum machine_mode));
+extern int fcc_operand PARAMS ((rtx, enum machine_mode));
+extern int icc_operand PARAMS ((rtx, enum machine_mode));
+extern int cc_operand PARAMS ((rtx, enum machine_mode));
+extern int fcr_operand PARAMS ((rtx, enum machine_mode));
+extern int icr_operand PARAMS ((rtx, enum machine_mode));
+extern int cr_operand PARAMS ((rtx, enum machine_mode));
+extern int call_operand PARAMS ((rtx, enum machine_mode));
+extern int fpr_operand PARAMS ((rtx, enum machine_mode));
+extern int even_reg_operand PARAMS ((rtx, enum machine_mode));
+extern int odd_reg_operand PARAMS ((rtx, enum machine_mode));
+extern int even_gpr_operand PARAMS ((rtx, enum machine_mode));
+extern int odd_gpr_operand PARAMS ((rtx, enum machine_mode));
+extern int quad_fpr_operand PARAMS ((rtx, enum machine_mode));
+extern int even_fpr_operand PARAMS ((rtx, enum machine_mode));
+extern int odd_fpr_operand PARAMS ((rtx, enum machine_mode));
+extern int dbl_memory_one_insn_operand PARAMS ((rtx, enum machine_mode));
+extern int dbl_memory_two_insn_operand PARAMS ((rtx, enum machine_mode));
+extern int int12_operand PARAMS ((rtx, enum machine_mode));
+extern int int6_operand PARAMS ((rtx, enum machine_mode));
+extern int int5_operand PARAMS ((rtx, enum machine_mode));
+extern int uint5_operand PARAMS ((rtx, enum machine_mode));
+extern int uint4_operand PARAMS ((rtx, enum machine_mode));
+extern int uint1_operand PARAMS ((rtx, enum machine_mode));
+extern int int_2word_operand PARAMS ((rtx, enum machine_mode));
+extern int pic_register_operand PARAMS ((rtx, enum machine_mode));
+extern int pic_symbolic_operand PARAMS ((rtx, enum machine_mode));
+extern int small_data_register_operand PARAMS ((rtx, enum machine_mode));
+extern int small_data_symbolic_operand PARAMS ((rtx, enum machine_mode));
+extern int upper_int16_operand PARAMS ((rtx, enum machine_mode));
+extern int uint16_operand PARAMS ((rtx, enum machine_mode));
+extern int relational_operator PARAMS ((rtx, enum machine_mode));
+extern int signed_relational_operator PARAMS ((rtx, enum machine_mode));
+extern int unsigned_relational_operator PARAMS ((rtx, enum machine_mode));
+extern int float_relational_operator PARAMS ((rtx, enum machine_mode));
+extern int ccr_eqne_operator PARAMS ((rtx, enum machine_mode));
+extern int minmax_operator PARAMS ((rtx, enum machine_mode));
+extern int condexec_si_binary_operator PARAMS ((rtx, enum machine_mode));
+extern int condexec_si_media_operator PARAMS ((rtx, enum machine_mode));
+extern int condexec_si_divide_operator PARAMS ((rtx, enum machine_mode));
+extern int condexec_si_unary_operator PARAMS ((rtx, enum machine_mode));
+extern int condexec_sf_conv_operator PARAMS ((rtx, enum machine_mode));
+extern int condexec_sf_add_operator PARAMS ((rtx, enum machine_mode));
+extern int condexec_memory_operand PARAMS ((rtx, enum machine_mode));
+extern int intop_compare_operator PARAMS ((rtx, enum machine_mode));
+extern int condexec_intop_cmp_operator PARAMS ((rtx, enum machine_mode));
+extern int acc_operand PARAMS ((rtx, enum machine_mode));
+extern int even_acc_operand PARAMS ((rtx, enum machine_mode));
+extern int quad_acc_operand PARAMS ((rtx, enum machine_mode));
+extern int accg_operand PARAMS ((rtx, enum machine_mode));
+extern rtx frv_matching_accg_for_acc PARAMS ((rtx));
+extern void frv_machine_dependent_reorg PARAMS ((rtx));
+#endif
+
diff --git a/contrib/gcc/config/frv/frv.c b/contrib/gcc/config/frv/frv.c
new file mode 100644
index 0000000..d09533a
--- /dev/null
+++ b/contrib/gcc/config/frv/frv.c
@@ -0,0 +1,9788 @@
+/* Copyright (C) 1997, 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
+ Contributed by Red Hat, Inc.
+
+This file is part of GNU CC.
+
+GNU CC is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2, or (at your option)
+any later version.
+
+GNU CC is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GNU CC; see the file COPYING. If not, write to
+the Free Software Foundation, 59 Temple Place - Suite 330,
+Boston, MA 02111-1307, USA. */
+
+#include "config.h"
+#include "system.h"
+#include "rtl.h"
+#include "tree.h"
+#include "regs.h"
+#include "hard-reg-set.h"
+#include "real.h"
+#include "insn-config.h"
+#include "conditions.h"
+#include "insn-flags.h"
+#include "output.h"
+#include "insn-attr.h"
+#include "flags.h"
+#include "recog.h"
+#include "reload.h"
+#include "expr.h"
+#include "obstack.h"
+#include "except.h"
+#include "function.h"
+#include "optabs.h"
+#include "toplev.h"
+#include "basic-block.h"
+#include "tm_p.h"
+#include "ggc.h"
+#include <ctype.h>
+#include "target.h"
+#include "target-def.h"
+
+#ifndef FRV_INLINE
+#define FRV_INLINE inline
+#endif
+
+/* Temporary register allocation support structure. */
+typedef struct frv_tmp_reg_struct
+ {
+ HARD_REG_SET regs; /* possible registers to allocate */
+ int next_reg[N_REG_CLASSES]; /* next register to allocate per class */
+ }
+frv_tmp_reg_t;
+
+/* Register state information for VLIW re-packing phase. These values must fit
+ within an unsigned char. */
+#define REGSTATE_DEAD 0x00 /* register is currently dead */
+#define REGSTATE_CC_MASK 0x07 /* Mask to isolate CCn for cond exec */
+#define REGSTATE_LIVE 0x08 /* register is live */
+#define REGSTATE_MODIFIED 0x10 /* reg modified in current VLIW insn */
+#define REGSTATE_IF_TRUE 0x20 /* reg modified in cond exec true */
+#define REGSTATE_IF_FALSE 0x40 /* reg modified in cond exec false */
+#define REGSTATE_UNUSED 0x80 /* bit for hire */
+#define REGSTATE_MASK 0xff /* mask for the bits to set */
+
+ /* conditional expression used */
+#define REGSTATE_IF_EITHER (REGSTATE_IF_TRUE | REGSTATE_IF_FALSE)
+
+/* the following is not sure in the reg_state bytes, so can have a larger value
+ than 0xff. */
+#define REGSTATE_CONDJUMP 0x100 /* conditional jump done in VLIW insn */
+
+/* Used in frv_frame_accessor_t to indicate the direction of a register-to-
+ memory move. */
+enum frv_stack_op
+{
+ FRV_LOAD,
+ FRV_STORE
+};
+
+/* Information required by frv_frame_access. */
+typedef struct
+{
+ /* This field is FRV_LOAD if registers are to be loaded from the stack and
+ FRV_STORE if they should be stored onto the stack. FRV_STORE implies
+ the move is being done by the prologue code while FRV_LOAD implies it
+ is being done by the epilogue. */
+ enum frv_stack_op op;
+
+ /* The base register to use when accessing the stack. This may be the
+ frame pointer, stack pointer, or a temporary. The choice of register
+ depends on which part of the frame is being accessed and how big the
+ frame is. */
+ rtx base;
+
+ /* The offset of BASE from the bottom of the current frame, in bytes. */
+ int base_offset;
+} frv_frame_accessor_t;
+
+/* Define the information needed to generate branch and scc insns. This is
+ stored from the compare operation. */
+rtx frv_compare_op0;
+rtx frv_compare_op1;
+
+/* Conditional execution support gathered together in one structure */
+typedef struct
+ {
+ /* Linked list of insns to add if the conditional execution conversion was
+ successful. Each link points to an EXPR_LIST which points to the pattern
+ of the insn to add, and the insn to be inserted before. */
+ rtx added_insns_list;
+
+ /* Identify which registers are safe to allocate for if conversions to
+ conditional execution. We keep the last allocated register in the
+ register classes between COND_EXEC statements. This will mean we allocate
+ different registers for each different COND_EXEC group if we can. This
+ might allow the scheduler to intermix two different COND_EXEC sections. */
+ frv_tmp_reg_t tmp_reg;
+
+ /* For nested IFs, identify which CC registers are used outside of setting
+ via a compare isnsn, and using via a check insn. This will allow us to
+ know if we can rewrite the register to use a different register that will
+ be paired with the CR register controlling the nested IF-THEN blocks. */
+ HARD_REG_SET nested_cc_ok_rewrite;
+
+ /* Temporary registers allocated to hold constants during conditional
+ execution. */
+ rtx scratch_regs[FIRST_PSEUDO_REGISTER];
+
+ /* Current number of temp registers available. */
+ int cur_scratch_regs;
+
+ /* Number of nested conditional execution blocks */
+ int num_nested_cond_exec;
+
+ /* Map of insns that set up constants in scratch registers. */
+ bitmap scratch_insns_bitmap;
+
+ /* Conditional execution test register (CC0..CC7) */
+ rtx cr_reg;
+
+ /* Conditional execution compare register that is paired with cr_reg, so that
+ nested compares can be done. The csubcc and caddcc instructions don't
+ have enough bits to specify both a CC register to be set and a CR register
+ to do the test on, so the same bit number is used for both. Needless to
+ say, this is rather inconvient for GCC. */
+ rtx nested_cc_reg;
+
+ /* Extra CR registers used for &&, ||. */
+ rtx extra_int_cr;
+ rtx extra_fp_cr;
+
+ /* Previous CR used in nested if, to make sure we are dealing with the same
+ nested if as the previous statement. */
+ rtx last_nested_if_cr;
+ }
+frv_ifcvt_t;
+
+static /* GTY(()) */ frv_ifcvt_t frv_ifcvt;
+
+/* Map register number to smallest register class. */
+enum reg_class regno_reg_class[FIRST_PSEUDO_REGISTER];
+
+/* Map class letter into register class */
+enum reg_class reg_class_from_letter[256];
+
+/* Cached value of frv_stack_info */
+static frv_stack_t *frv_stack_cache = (frv_stack_t *)0;
+
+/* -mbranch-cost= support */
+const char *frv_branch_cost_string;
+int frv_branch_cost_int = DEFAULT_BRANCH_COST;
+
+/* -mcpu= support */
+const char *frv_cpu_string; /* -mcpu= option */
+frv_cpu_t frv_cpu_type = CPU_TYPE; /* value of -mcpu= */
+
+/* -mcond-exec-insns= support */
+const char *frv_condexec_insns_str; /* -mcond-exec-insns= option */
+int frv_condexec_insns = DEFAULT_CONDEXEC_INSNS; /* value of -mcond-exec-insns*/
+
+/* -mcond-exec-temps= support */
+const char *frv_condexec_temps_str; /* -mcond-exec-temps= option */
+int frv_condexec_temps = DEFAULT_CONDEXEC_TEMPS; /* value of -mcond-exec-temps*/
+
+/* -msched-lookahead=n */
+const char *frv_sched_lookahead_str; /* -msched-lookahead=n */
+int frv_sched_lookahead = 4; /* -msched-lookahead=n */
+
+/* Forward references */
+static int frv_default_flags_for_cpu PARAMS ((void));
+static int frv_string_begins_with PARAMS ((tree, const char *));
+static FRV_INLINE int symbol_ref_small_data_p PARAMS ((rtx));
+static FRV_INLINE int const_small_data_p PARAMS ((rtx));
+static FRV_INLINE int plus_small_data_p PARAMS ((rtx, rtx));
+static void frv_print_operand_memory_reference_reg
+ PARAMS ((FILE *, rtx));
+static void frv_print_operand_memory_reference PARAMS ((FILE *, rtx, int));
+static int frv_print_operand_jump_hint PARAMS ((rtx));
+static FRV_INLINE int frv_regno_ok_for_base_p PARAMS ((int, int));
+static rtx single_set_pattern PARAMS ((rtx));
+static int frv_function_contains_far_jump PARAMS ((void));
+static rtx frv_alloc_temp_reg PARAMS ((frv_tmp_reg_t *,
+ enum reg_class,
+ enum machine_mode,
+ int, int));
+static rtx frv_frame_offset_rtx PARAMS ((int));
+static rtx frv_frame_mem PARAMS ((enum machine_mode,
+ rtx, int));
+static rtx frv_dwarf_store PARAMS ((rtx, int));
+static void frv_frame_insn PARAMS ((rtx, rtx));
+static void frv_frame_access PARAMS ((frv_frame_accessor_t*,
+ rtx, int));
+static void frv_frame_access_multi PARAMS ((frv_frame_accessor_t*,
+ frv_stack_t *, int));
+static void frv_frame_access_standard_regs PARAMS ((enum frv_stack_op,
+ frv_stack_t *));
+static struct machine_function *frv_init_machine_status PARAMS ((void));
+static int frv_legitimate_memory_operand PARAMS ((rtx,
+ enum machine_mode,
+ int));
+static rtx frv_int_to_acc PARAMS ((enum insn_code,
+ int, rtx));
+static enum machine_mode frv_matching_accg_mode PARAMS ((enum machine_mode));
+static rtx frv_read_argument PARAMS ((tree *));
+static int frv_check_constant_argument PARAMS ((enum insn_code,
+ int, rtx));
+static rtx frv_legitimize_target PARAMS ((enum insn_code, rtx));
+static rtx frv_legitimize_argument PARAMS ((enum insn_code,
+ int, rtx));
+static rtx frv_expand_set_builtin PARAMS ((enum insn_code,
+ tree, rtx));
+static rtx frv_expand_unop_builtin PARAMS ((enum insn_code,
+ tree, rtx));
+static rtx frv_expand_binop_builtin PARAMS ((enum insn_code,
+ tree, rtx));
+static rtx frv_expand_cut_builtin PARAMS ((enum insn_code,
+ tree, rtx));
+static rtx frv_expand_binopimm_builtin PARAMS ((enum insn_code,
+ tree, rtx));
+static rtx frv_expand_voidbinop_builtin PARAMS ((enum insn_code,
+ tree));
+static rtx frv_expand_voidtriop_builtin PARAMS ((enum insn_code,
+ tree));
+static rtx frv_expand_voidaccop_builtin PARAMS ((enum insn_code,
+ tree));
+static rtx frv_expand_mclracc_builtin PARAMS ((tree));
+static rtx frv_expand_mrdacc_builtin PARAMS ((enum insn_code,
+ tree));
+static rtx frv_expand_mwtacc_builtin PARAMS ((enum insn_code,
+ tree));
+static rtx frv_expand_noargs_builtin PARAMS ((enum insn_code));
+static rtx frv_emit_comparison PARAMS ((enum rtx_code, rtx,
+ rtx));
+static int frv_clear_registers_used PARAMS ((rtx *, void *));
+static void frv_ifcvt_add_insn PARAMS ((rtx, rtx, int));
+static rtx frv_ifcvt_rewrite_mem PARAMS ((rtx,
+ enum machine_mode,
+ rtx));
+static rtx frv_ifcvt_load_value PARAMS ((rtx, rtx));
+static void frv_registers_update PARAMS ((rtx, unsigned char [],
+ int [], int *, int));
+static int frv_registers_used_p PARAMS ((rtx, unsigned char [],
+ int));
+static int frv_registers_set_p PARAMS ((rtx, unsigned char [],
+ int));
+static void frv_pack_insns PARAMS ((void));
+static void frv_function_prologue PARAMS ((FILE *, HOST_WIDE_INT));
+static void frv_function_epilogue PARAMS ((FILE *, HOST_WIDE_INT));
+static bool frv_assemble_integer PARAMS ((rtx, unsigned, int));
+static const char * frv_strip_name_encoding PARAMS ((const char *));
+static void frv_encode_section_info PARAMS ((tree, int));
+static void frv_init_builtins PARAMS ((void));
+static rtx frv_expand_builtin PARAMS ((tree, rtx, rtx, enum machine_mode, int));
+static bool frv_in_small_data_p PARAMS ((tree));
+static void frv_asm_output_mi_thunk
+ PARAMS ((FILE *, tree, HOST_WIDE_INT, HOST_WIDE_INT, tree));
+
+/* Initialize the GCC target structure. */
+#undef TARGET_ASM_FUNCTION_PROLOGUE
+#define TARGET_ASM_FUNCTION_PROLOGUE frv_function_prologue
+#undef TARGET_ASM_FUNCTION_EPILOGUE
+#define TARGET_ASM_FUNCTION_EPILOGUE frv_function_epilogue
+#undef TARGET_ASM_INTEGER
+#define TARGET_ASM_INTEGER frv_assemble_integer
+#undef TARGET_STRIP_NAME_ENCODING
+#define TARGET_STRIP_NAME_ENCODING frv_strip_name_encoding
+#undef TARGET_ENCODE_SECTION_INFO
+#define TARGET_ENCODE_SECTION_INFO frv_encode_section_info
+#undef TARGET_INIT_BUILTINS
+#define TARGET_INIT_BUILTINS frv_init_builtins
+#undef TARGET_EXPAND_BUILTIN
+#define TARGET_EXPAND_BUILTIN frv_expand_builtin
+#undef TARGET_IN_SMALL_DATA_P
+#define TARGET_IN_SMALL_DATA_P frv_in_small_data_p
+
+#undef TARGET_ASM_OUTPUT_MI_THUNK
+#define TARGET_ASM_OUTPUT_MI_THUNK frv_asm_output_mi_thunk
+#undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
+#define TARGET_ASM_CAN_OUTPUT_MI_THUNK default_can_output_mi_thunk_no_vcall
+
+struct gcc_target targetm = TARGET_INITIALIZER;
+
+/* Given a SYMBOL_REF, return true if it points to small data. */
+
+static FRV_INLINE int
+symbol_ref_small_data_p (x)
+ rtx x;
+{
+ return SDATA_NAME_P (XSTR (x, 0));
+}
+
+/* Given a CONST, return true if the symbol_ref points to small data. */
+
+static FRV_INLINE int
+const_small_data_p (x)
+ rtx x;
+{
+ rtx x0, x1;
+
+ if (GET_CODE (XEXP (x, 0)) != PLUS)
+ return FALSE;
+
+ x0 = XEXP (XEXP (x, 0), 0);
+ if (GET_CODE (x0) != SYMBOL_REF || !SDATA_NAME_P (XSTR (x0, 0)))
+ return FALSE;
+
+ x1 = XEXP (XEXP (x, 0), 1);
+ if (GET_CODE (x1) != CONST_INT
+ || !IN_RANGE_P (INTVAL (x1), -2048, 2047))
+ return FALSE;
+
+ return TRUE;
+}
+
+/* Given a PLUS, return true if this is a small data reference. */
+
+static FRV_INLINE int
+plus_small_data_p (op0, op1)
+ rtx op0;
+ rtx op1;
+{
+ if (GET_MODE (op0) == SImode
+ && GET_CODE (op0) == REG
+ && REGNO (op0) == SDA_BASE_REG)
+ {
+ if (GET_CODE (op1) == SYMBOL_REF)
+ return symbol_ref_small_data_p (op1);
+
+ if (GET_CODE (op1) == CONST)
+ return const_small_data_p (op1);
+ }
+
+ return FALSE;
+}
+
+
+static int
+frv_default_flags_for_cpu ()
+{
+ switch (frv_cpu_type)
+ {
+ case FRV_CPU_GENERIC:
+ return MASK_DEFAULT_FRV;
+
+ case FRV_CPU_FR500:
+ case FRV_CPU_TOMCAT:
+ return MASK_DEFAULT_FR500;
+
+ case FRV_CPU_FR400:
+ return MASK_DEFAULT_FR400;
+
+ case FRV_CPU_FR300:
+ case FRV_CPU_SIMPLE:
+ return MASK_DEFAULT_SIMPLE;
+ }
+ abort ();
+}
+
+/* Sometimes certain combinations of command options do not make
+ sense on a particular target machine. You can define a macro
+ `OVERRIDE_OPTIONS' to take account of this. This macro, if
+ defined, is executed once just after all the command options have
+ been parsed.
+
+ Don't use this macro to turn on various extra optimizations for
+ `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
+
+void
+frv_override_options ()
+{
+ int regno, i;
+
+ /* Set the cpu type */
+ if (frv_cpu_string)
+ {
+ if (strcmp (frv_cpu_string, "simple") == 0)
+ frv_cpu_type = FRV_CPU_SIMPLE;
+
+ else if (strcmp (frv_cpu_string, "tomcat") == 0)
+ frv_cpu_type = FRV_CPU_TOMCAT;
+
+ else if (strncmp (frv_cpu_string, "fr", sizeof ("fr")-1) != 0)
+ error ("Unknown cpu: -mcpu=%s", frv_cpu_string);
+
+ else
+ {
+ const char *p = frv_cpu_string + sizeof ("fr") - 1;
+ if (strcmp (p, "500") == 0)
+ frv_cpu_type = FRV_CPU_FR500;
+
+ else if (strcmp (p, "400") == 0)
+ frv_cpu_type = FRV_CPU_FR400;
+
+ else if (strcmp (p, "300") == 0)
+ frv_cpu_type = FRV_CPU_FR300;
+
+ else if (strcmp (p, "v") == 0)
+ frv_cpu_type = FRV_CPU_GENERIC;
+
+ else
+ error ("Unknown cpu: -mcpu=%s", frv_cpu_string);
+ }
+ }
+
+ target_flags |= (frv_default_flags_for_cpu () & ~target_flags_explicit);
+
+ /* -mlibrary-pic sets -fPIC and -G0 and also suppresses warnings from the
+ linker about linking pic and non-pic code. */
+ if (TARGET_LIBPIC)
+ {
+ if (!flag_pic) /* -fPIC */
+ flag_pic = 2;
+
+ if (! g_switch_set) /* -G0 */
+ {
+ g_switch_set = 1;
+ g_switch_value = 0;
+ }
+ }
+
+ /* Both -fpic and -gdwarf want to use .previous and the assembler only keeps
+ one level. */
+ if (write_symbols == DWARF_DEBUG && flag_pic)
+ error ("-fpic and -gdwarf are incompatible (-fpic and -g/-gdwarf-2 are fine)");
+
+ /* Change the branch cost value */
+ if (frv_branch_cost_string)
+ frv_branch_cost_int = atoi (frv_branch_cost_string);
+
+ /* Change the # of insns to be converted to conditional execution */
+ if (frv_condexec_insns_str)
+ frv_condexec_insns = atoi (frv_condexec_insns_str);
+
+ /* Change # of temporary registers used to hold integer constants */
+ if (frv_condexec_temps_str)
+ frv_condexec_temps = atoi (frv_condexec_temps_str);
+
+ /* Change scheduling look ahead. */
+ if (frv_sched_lookahead_str)
+ frv_sched_lookahead = atoi (frv_sched_lookahead_str);
+
+ /* A C expression whose value is a register class containing hard
+ register REGNO. In general there is more than one such class;
+ choose a class which is "minimal", meaning that no smaller class
+ also contains the register. */
+
+ for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
+ {
+ enum reg_class class;
+
+ if (GPR_P (regno))
+ {
+ int gpr_reg = regno - GPR_FIRST;
+ if ((gpr_reg & 3) == 0)
+ class = QUAD_REGS;
+
+ else if ((gpr_reg & 1) == 0)
+ class = EVEN_REGS;
+
+ else
+ class = GPR_REGS;
+ }
+
+ else if (FPR_P (regno))
+ {
+ int fpr_reg = regno - GPR_FIRST;
+ if ((fpr_reg & 3) == 0)
+ class = QUAD_FPR_REGS;
+
+ else if ((fpr_reg & 1) == 0)
+ class = FEVEN_REGS;
+
+ else
+ class = FPR_REGS;
+ }
+
+ else if (regno == LR_REGNO)
+ class = LR_REG;
+
+ else if (regno == LCR_REGNO)
+ class = LCR_REG;
+
+ else if (ICC_P (regno))
+ class = ICC_REGS;
+
+ else if (FCC_P (regno))
+ class = FCC_REGS;
+
+ else if (ICR_P (regno))
+ class = ICR_REGS;
+
+ else if (FCR_P (regno))
+ class = FCR_REGS;
+
+ else if (ACC_P (regno))
+ {
+ int r = regno - ACC_FIRST;
+ if ((r & 3) == 0)
+ class = QUAD_ACC_REGS;
+ else if ((r & 1) == 0)
+ class = EVEN_ACC_REGS;
+ else
+ class = ACC_REGS;
+ }
+
+ else if (ACCG_P (regno))
+ class = ACCG_REGS;
+
+ else
+ class = NO_REGS;
+
+ regno_reg_class[regno] = class;
+ }
+
+ /* Check for small data option */
+ if (!g_switch_set)
+ g_switch_value = SDATA_DEFAULT_SIZE;
+
+ /* A C expression which defines the machine-dependent operand
+ constraint letters for register classes. If CHAR is such a
+ letter, the value should be the register class corresponding to
+ it. Otherwise, the value should be `NO_REGS'. The register
+ letter `r', corresponding to class `GENERAL_REGS', will not be
+ passed to this macro; you do not need to handle it.
+
+ The following letters are unavailable, due to being used as
+ constraints:
+ '0'..'9'
+ '<', '>'
+ 'E', 'F', 'G', 'H'
+ 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P'
+ 'Q', 'R', 'S', 'T', 'U'
+ 'V', 'X'
+ 'g', 'i', 'm', 'n', 'o', 'p', 'r', 's' */
+
+ for (i = 0; i < 256; i++)
+ reg_class_from_letter[i] = NO_REGS;
+
+ reg_class_from_letter['a'] = ACC_REGS;
+ reg_class_from_letter['b'] = EVEN_ACC_REGS;
+ reg_class_from_letter['c'] = CC_REGS;
+ reg_class_from_letter['d'] = GPR_REGS;
+ reg_class_from_letter['e'] = EVEN_REGS;
+ reg_class_from_letter['f'] = FPR_REGS;
+ reg_class_from_letter['h'] = FEVEN_REGS;
+ reg_class_from_letter['l'] = LR_REG;
+ reg_class_from_letter['q'] = QUAD_REGS;
+ reg_class_from_letter['t'] = ICC_REGS;
+ reg_class_from_letter['u'] = FCC_REGS;
+ reg_class_from_letter['v'] = ICR_REGS;
+ reg_class_from_letter['w'] = FCR_REGS;
+ reg_class_from_letter['x'] = QUAD_FPR_REGS;
+ reg_class_from_letter['y'] = LCR_REG;
+ reg_class_from_letter['z'] = SPR_REGS;
+ reg_class_from_letter['A'] = QUAD_ACC_REGS;
+ reg_class_from_letter['B'] = ACCG_REGS;
+ reg_class_from_letter['C'] = CR_REGS;
+
+ /* There is no single unaligned SI op for PIC code. Sometimes we
+ need to use ".4byte" and sometimes we need to use ".picptr".
+ See frv_assemble_integer for details. */
+ if (flag_pic)
+ targetm.asm_out.unaligned_op.si = 0;
+
+ init_machine_status = frv_init_machine_status;
+}
+
+
+/* Some machines may desire to change what optimizations are performed for
+ various optimization levels. This macro, if defined, is executed once just
+ after the optimization level is determined and before the remainder of the
+ command options have been parsed. Values set in this macro are used as the
+ default values for the other command line options.
+
+ LEVEL is the optimization level specified; 2 if `-O2' is specified, 1 if
+ `-O' is specified, and 0 if neither is specified.
+
+ SIZE is nonzero if `-Os' is specified, 0 otherwise.
+
+ You should not use this macro to change options that are not
+ machine-specific. These should uniformly selected by the same optimization
+ level on all supported machines. Use this macro to enable machbine-specific
+ optimizations.
+
+ *Do not examine `write_symbols' in this macro!* The debugging options are
+ *not supposed to alter the generated code. */
+
+/* On the FRV, possibly disable VLIW packing which is done by the 2nd
+ scheduling pass at the current time. */
+void
+frv_optimization_options (level, size)
+ int level;
+ int size ATTRIBUTE_UNUSED;
+{
+ if (level >= 2)
+ {
+#ifdef DISABLE_SCHED2
+ flag_schedule_insns_after_reload = 0;
+#endif
+#ifdef ENABLE_RCSP
+ flag_rcsp = 1;
+#endif
+ }
+}
+
+
+/* Return true if NAME (a STRING_CST node) begins with PREFIX. */
+
+static int
+frv_string_begins_with (name, prefix)
+ tree name;
+ const char *prefix;
+{
+ int prefix_len = strlen (prefix);
+
+ /* Remember: NAME's length includes the null terminator. */
+ return (TREE_STRING_LENGTH (name) > prefix_len
+ && strncmp (TREE_STRING_POINTER (name), prefix, prefix_len) == 0);
+}
+
+/* Encode section information of DECL, which is either a VAR_DECL,
+ FUNCTION_DECL, STRING_CST, CONSTRUCTOR, or ???.
+
+ For the FRV we want to record:
+
+ - whether the object lives in .sdata/.sbss.
+ objects living in .sdata/.sbss are prefixed with SDATA_FLAG_CHAR
+
+*/
+
+static void
+frv_encode_section_info (decl, first)
+ tree decl;
+ int first;
+{
+ if (! first)
+ return;
+ if (TREE_CODE (decl) == VAR_DECL)
+ {
+ int size = int_size_in_bytes (TREE_TYPE (decl));
+ tree section_name = DECL_SECTION_NAME (decl);
+ int is_small = 0;
+
+ /* Don't apply the -G flag to internal compiler structures. We
+ should leave such structures in the main data section, partly
+ for efficiency and partly because the size of some of them
+ (such as C++ typeinfos) is not known until later. */
+ if (!DECL_ARTIFICIAL (decl) && size > 0 && size <= g_switch_value)
+ is_small = 1;
+
+ /* If we already know which section the decl should be in, see if
+ it's a small data section. */
+ if (section_name)
+ {
+ if (TREE_CODE (section_name) == STRING_CST)
+ {
+ if (frv_string_begins_with (section_name, ".sdata"))
+ is_small = 1;
+ if (frv_string_begins_with (section_name, ".sbss"))
+ is_small = 1;
+ }
+ else
+ abort ();
+ }
+
+ if (is_small)
+ {
+ rtx sym_ref = XEXP (DECL_RTL (decl), 0);
+ char * str = xmalloc (2 + strlen (XSTR (sym_ref, 0)));
+
+ str[0] = SDATA_FLAG_CHAR;
+ strcpy (&str[1], XSTR (sym_ref, 0));
+ XSTR (sym_ref, 0) = str;
+ }
+ }
+}
+
+
+/* Zero or more C statements that may conditionally modify two variables
+ `fixed_regs' and `call_used_regs' (both of type `char []') after they have
+ been initialized from the two preceding macros.
+
+ This is necessary in case the fixed or call-clobbered registers depend on
+ target flags.
+
+ You need not define this macro if it has no work to do.
+
+ If the usage of an entire class of registers depends on the target flags,
+ you may indicate this to GCC by using this macro to modify `fixed_regs' and
+ `call_used_regs' to 1 for each of the registers in the classes which should
+ not be used by GCC. Also define the macro `REG_CLASS_FROM_LETTER' to return
+ `NO_REGS' if it is called with a letter for a class that shouldn't be used.
+
+ (However, if this class is not included in `GENERAL_REGS' and all of the
+ insn patterns whose constraints permit this class are controlled by target
+ switches, then GCC will automatically avoid using these registers when the
+ target switches are opposed to them.) */
+
+void
+frv_conditional_register_usage ()
+{
+ int i;
+
+ for (i = GPR_FIRST + NUM_GPRS; i <= GPR_LAST; i++)
+ fixed_regs[i] = call_used_regs[i] = 1;
+
+ for (i = FPR_FIRST + NUM_FPRS; i <= FPR_LAST; i++)
+ fixed_regs[i] = call_used_regs[i] = 1;
+
+ for (i = ACC_FIRST + NUM_ACCS; i <= ACC_LAST; i++)
+ fixed_regs[i] = call_used_regs[i] = 1;
+
+ for (i = ACCG_FIRST + NUM_ACCS; i <= ACCG_LAST; i++)
+ fixed_regs[i] = call_used_regs[i] = 1;
+
+ /* Reserve the registers used for conditional execution. At present, we need
+ 1 ICC and 1 ICR register. */
+ fixed_regs[ICC_TEMP] = call_used_regs[ICC_TEMP] = 1;
+ fixed_regs[ICR_TEMP] = call_used_regs[ICR_TEMP] = 1;
+
+ if (TARGET_FIXED_CC)
+ {
+ fixed_regs[ICC_FIRST] = call_used_regs[ICC_FIRST] = 1;
+ fixed_regs[FCC_FIRST] = call_used_regs[FCC_FIRST] = 1;
+ fixed_regs[ICR_FIRST] = call_used_regs[ICR_FIRST] = 1;
+ fixed_regs[FCR_FIRST] = call_used_regs[FCR_FIRST] = 1;
+ }
+
+#if 0
+ /* If -fpic, SDA_BASE_REG is the PIC register. */
+ if (g_switch_value == 0 && !flag_pic)
+ fixed_regs[SDA_BASE_REG] = call_used_regs[SDA_BASE_REG] = 0;
+
+ if (!flag_pic)
+ fixed_regs[PIC_REGNO] = call_used_regs[PIC_REGNO] = 0;
+#endif
+}
+
+
+/*
+ * Compute the stack frame layout
+ *
+ * Register setup:
+ * +---------------+-----------------------+-----------------------+
+ * |Register |type |caller-save/callee-save|
+ * +---------------+-----------------------+-----------------------+
+ * |GR0 |Zero register | - |
+ * |GR1 |Stack pointer(SP) | - |
+ * |GR2 |Frame pointer(FP) | - |
+ * |GR3 |Hidden parameter | caller save |
+ * |GR4-GR7 | - | caller save |
+ * |GR8-GR13 |Argument register | caller save |
+ * |GR14-GR15 | - | caller save |
+ * |GR16-GR31 | - | callee save |
+ * |GR32-GR47 | - | caller save |
+ * |GR48-GR63 | - | callee save |
+ * |FR0-FR15 | - | caller save |
+ * |FR16-FR31 | - | callee save |
+ * |FR32-FR47 | - | caller save |
+ * |FR48-FR63 | - | callee save |
+ * +---------------+-----------------------+-----------------------+
+ *
+ * Stack frame setup:
+ * Low
+ * SP-> |-----------------------------------|
+ * | Argument area |
+ * |-----------------------------------|
+ * | Register save area |
+ * |-----------------------------------|
+ * | Local variable save area |
+ * FP-> |-----------------------------------|
+ * | Old FP |
+ * |-----------------------------------|
+ * | Hidden parameter save area |
+ * |-----------------------------------|
+ * | Return address(LR) storage area |
+ * |-----------------------------------|
+ * | Padding for alignment |
+ * |-----------------------------------|
+ * | Register argument area |
+ * OLD SP-> |-----------------------------------|
+ * | Parameter area |
+ * |-----------------------------------|
+ * High
+ *
+ * Argument area/Parameter area:
+ *
+ * When a function is called, this area is used for argument transfer. When
+ * the argument is set up by the caller function, this area is referred to as
+ * the argument area. When the argument is referenced by the callee function,
+ * this area is referred to as the parameter area. The area is allocated when
+ * all arguments cannot be placed on the argument register at the time of
+ * argument transfer.
+ *
+ * Register save area:
+ *
+ * This is a register save area that must be guaranteed for the caller
+ * function. This area is not secured when the register save operation is not
+ * needed.
+ *
+ * Local variable save area:
+ *
+ * This is the area for local variables and temporary variables.
+ *
+ * Old FP:
+ *
+ * This area stores the FP value of the caller function.
+ *
+ * Hidden parameter save area:
+ *
+ * This area stores the start address of the return value storage
+ * area for a struct/union return function.
+ * When a struct/union is used as the return value, the caller
+ * function stores the return value storage area start address in
+ * register GR3 and passes it to the caller function.
+ * The callee function interprets the address stored in the GR3
+ * as the return value storage area start address.
+ * When register GR3 needs to be saved into memory, the callee
+ * function saves it in the hidden parameter save area. This
+ * area is not secured when the save operation is not needed.
+ *
+ * Return address(LR) storage area:
+ *
+ * This area saves the LR. The LR stores the address of a return to the caller
+ * function for the purpose of function calling.
+ *
+ * Argument register area:
+ *
+ * This area saves the argument register. This area is not secured when the
+ * save operation is not needed.
+ *
+ * Argument:
+ *
+ * Arguments, the count of which equals the count of argument registers (6
+ * words), are positioned in registers GR8 to GR13 and delivered to the callee
+ * function. When a struct/union return function is called, the return value
+ * area address is stored in register GR3. Arguments not placed in the
+ * argument registers will be stored in the stack argument area for transfer
+ * purposes. When an 8-byte type argument is to be delivered using registers,
+ * it is divided into two and placed in two registers for transfer. When
+ * argument registers must be saved to memory, the callee function secures an
+ * argument register save area in the stack. In this case, a continuous
+ * argument register save area must be established in the parameter area. The
+ * argument register save area must be allocated as needed to cover the size of
+ * the argument register to be saved. If the function has a variable count of
+ * arguments, it saves all argument registers in the argument register save
+ * area.
+ *
+ * Argument Extension Format:
+ *
+ * When an argument is to be stored in the stack, its type is converted to an
+ * extended type in accordance with the individual argument type. The argument
+ * is freed by the caller function after the return from the callee function is
+ * made.
+ *
+ * +-----------------------+---------------+------------------------+
+ * | Argument Type |Extended Type |Stack Storage Size(byte)|
+ * +-----------------------+---------------+------------------------+
+ * |char |int | 4 |
+ * |signed char |int | 4 |
+ * |unsigned char |int | 4 |
+ * |[signed] short int |int | 4 |
+ * |unsigned short int |int | 4 |
+ * |[signed] int |No extension | 4 |
+ * |unsigned int |No extension | 4 |
+ * |[signed] long int |No extension | 4 |
+ * |unsigned long int |No extension | 4 |
+ * |[signed] long long int |No extension | 8 |
+ * |unsigned long long int |No extension | 8 |
+ * |float |double | 8 |
+ * |double |No extension | 8 |
+ * |long double |No extension | 8 |
+ * |pointer |No extension | 4 |
+ * |struct/union |- | 4 (*1) |
+ * +-----------------------+---------------+------------------------+
+ *
+ * When a struct/union is to be delivered as an argument, the caller copies it
+ * to the local variable area and delivers the address of that area.
+ *
+ * Return Value:
+ *
+ * +-------------------------------+----------------------+
+ * |Return Value Type |Return Value Interface|
+ * +-------------------------------+----------------------+
+ * |void |None |
+ * |[signed|unsigned] char |GR8 |
+ * |[signed|unsigned] short int |GR8 |
+ * |[signed|unsigned] int |GR8 |
+ * |[signed|unsigned] long int |GR8 |
+ * |pointer |GR8 |
+ * |[signed|unsigned] long long int|GR8 & GR9 |
+ * |float |GR8 |
+ * |double |GR8 & GR9 |
+ * |long double |GR8 & GR9 |
+ * |struct/union |(*1) |
+ * +-------------------------------+----------------------+
+ *
+ * When a struct/union is used as the return value, the caller function stores
+ * the start address of the return value storage area into GR3 and then passes
+ * it to the callee function. The callee function interprets GR3 as the start
+ * address of the return value storage area. When this address needs to be
+ * saved in memory, the callee function secures the hidden parameter save area
+ * and saves the address in that area.
+ */
+
+frv_stack_t *
+frv_stack_info ()
+{
+ static frv_stack_t info, zero_info;
+ frv_stack_t *info_ptr = &info;
+ tree fndecl = current_function_decl;
+ int varargs_p = 0;
+ tree cur_arg;
+ tree next_arg;
+ int range;
+ int alignment;
+ int offset;
+
+ /* If we've already calculated the values and reload is complete, just return now */
+ if (frv_stack_cache)
+ return frv_stack_cache;
+
+ /* Zero all fields */
+ info = zero_info;
+
+ /* Set up the register range information */
+ info_ptr->regs[STACK_REGS_GPR].name = "gpr";
+ info_ptr->regs[STACK_REGS_GPR].first = LAST_ARG_REGNUM + 1;
+ info_ptr->regs[STACK_REGS_GPR].last = GPR_LAST;
+ info_ptr->regs[STACK_REGS_GPR].dword_p = TRUE;
+
+ info_ptr->regs[STACK_REGS_FPR].name = "fpr";
+ info_ptr->regs[STACK_REGS_FPR].first = FPR_FIRST;
+ info_ptr->regs[STACK_REGS_FPR].last = FPR_LAST;
+ info_ptr->regs[STACK_REGS_FPR].dword_p = TRUE;
+
+ info_ptr->regs[STACK_REGS_LR].name = "lr";
+ info_ptr->regs[STACK_REGS_LR].first = LR_REGNO;
+ info_ptr->regs[STACK_REGS_LR].last = LR_REGNO;
+ info_ptr->regs[STACK_REGS_LR].special_p = 1;
+
+ info_ptr->regs[STACK_REGS_CC].name = "cc";
+ info_ptr->regs[STACK_REGS_CC].first = CC_FIRST;
+ info_ptr->regs[STACK_REGS_CC].last = CC_LAST;
+ info_ptr->regs[STACK_REGS_CC].field_p = TRUE;
+
+ info_ptr->regs[STACK_REGS_LCR].name = "lcr";
+ info_ptr->regs[STACK_REGS_LCR].first = LCR_REGNO;
+ info_ptr->regs[STACK_REGS_LCR].last = LCR_REGNO;
+
+ info_ptr->regs[STACK_REGS_STDARG].name = "stdarg";
+ info_ptr->regs[STACK_REGS_STDARG].first = FIRST_ARG_REGNUM;
+ info_ptr->regs[STACK_REGS_STDARG].last = LAST_ARG_REGNUM;
+ info_ptr->regs[STACK_REGS_STDARG].dword_p = 1;
+ info_ptr->regs[STACK_REGS_STDARG].special_p = 1;
+
+ info_ptr->regs[STACK_REGS_STRUCT].name = "struct";
+ info_ptr->regs[STACK_REGS_STRUCT].first = STRUCT_VALUE_REGNUM;
+ info_ptr->regs[STACK_REGS_STRUCT].last = STRUCT_VALUE_REGNUM;
+ info_ptr->regs[STACK_REGS_STRUCT].special_p = 1;
+
+ info_ptr->regs[STACK_REGS_FP].name = "fp";
+ info_ptr->regs[STACK_REGS_FP].first = FRAME_POINTER_REGNUM;
+ info_ptr->regs[STACK_REGS_FP].last = FRAME_POINTER_REGNUM;
+ info_ptr->regs[STACK_REGS_FP].special_p = 1;
+
+ /* Determine if this is a stdarg function. If so, allocate space to store
+ the 6 arguments. */
+ if (cfun->stdarg)
+ varargs_p = 1;
+
+ else
+ {
+ /* Find the last argument, and see if it is __builtin_va_alist. */
+ for (cur_arg = DECL_ARGUMENTS (fndecl); cur_arg != (tree)0; cur_arg = next_arg)
+ {
+ next_arg = TREE_CHAIN (cur_arg);
+ if (next_arg == (tree)0)
+ {
+ if (DECL_NAME (cur_arg)
+ && !strcmp (IDENTIFIER_POINTER (DECL_NAME (cur_arg)), "__builtin_va_alist"))
+ varargs_p = 1;
+
+ break;
+ }
+ }
+ }
+
+ /* Iterate over all of the register ranges */
+ for (range = 0; range < STACK_REGS_MAX; range++)
+ {
+ frv_stack_regs_t *reg_ptr = &(info_ptr->regs[range]);
+ int first = reg_ptr->first;
+ int last = reg_ptr->last;
+ int size_1word = 0;
+ int size_2words = 0;
+ int regno;
+
+ /* Calculate which registers need to be saved & save area size */
+ switch (range)
+ {
+ default:
+ for (regno = first; regno <= last; regno++)
+ {
+ if ((regs_ever_live[regno] && !call_used_regs[regno])
+ || (current_function_calls_eh_return
+ && (regno >= FIRST_EH_REGNUM && regno <= LAST_EH_REGNUM))
+ || (flag_pic && cfun->uses_pic_offset_table && regno == PIC_REGNO))
+ {
+ info_ptr->save_p[regno] = REG_SAVE_1WORD;
+ size_1word += UNITS_PER_WORD;
+ }
+ }
+ break;
+
+ /* Calculate whether we need to create a frame after everything else
+ has been processed. */
+ case STACK_REGS_FP:
+ break;
+
+ case STACK_REGS_LR:
+ if (regs_ever_live[LR_REGNO]
+ || profile_flag
+ || frame_pointer_needed
+ || (flag_pic && cfun->uses_pic_offset_table))
+ {
+ info_ptr->save_p[LR_REGNO] = REG_SAVE_1WORD;
+ size_1word += UNITS_PER_WORD;
+ }
+ break;
+
+ case STACK_REGS_STDARG:
+ if (varargs_p)
+ {
+ /* If this is a stdarg function with an non varardic argument split
+ between registers and the stack, adjust the saved registers
+ downward */
+ last -= (ADDR_ALIGN (cfun->pretend_args_size, UNITS_PER_WORD)
+ / UNITS_PER_WORD);
+
+ for (regno = first; regno <= last; regno++)
+ {
+ info_ptr->save_p[regno] = REG_SAVE_1WORD;
+ size_1word += UNITS_PER_WORD;
+ }
+
+ info_ptr->stdarg_size = size_1word;
+ }
+ break;
+
+ case STACK_REGS_STRUCT:
+ if (cfun->returns_struct)
+ {
+ info_ptr->save_p[STRUCT_VALUE_REGNUM] = REG_SAVE_1WORD;
+ size_1word += UNITS_PER_WORD;
+ }
+ break;
+ }
+
+
+ if (size_1word)
+ {
+ /* If this is a field, it only takes one word */
+ if (reg_ptr->field_p)
+ size_1word = UNITS_PER_WORD;
+
+ /* Determine which register pairs can be saved together */
+ else if (reg_ptr->dword_p && TARGET_DWORD)
+ {
+ for (regno = first; regno < last; regno += 2)
+ {
+ if (info_ptr->save_p[regno] && info_ptr->save_p[regno+1])
+ {
+ size_2words += 2 * UNITS_PER_WORD;
+ size_1word -= 2 * UNITS_PER_WORD;
+ info_ptr->save_p[regno] = REG_SAVE_2WORDS;
+ info_ptr->save_p[regno+1] = REG_SAVE_NO_SAVE;
+ }
+ }
+ }
+
+ reg_ptr->size_1word = size_1word;
+ reg_ptr->size_2words = size_2words;
+
+ if (! reg_ptr->special_p)
+ {
+ info_ptr->regs_size_1word += size_1word;
+ info_ptr->regs_size_2words += size_2words;
+ }
+ }
+ }
+
+ /* Set up the sizes of each each field in the frame body, making the sizes
+ of each be divisible by the size of a dword if dword operations might
+ be used, or the size of a word otherwise. */
+ alignment = (TARGET_DWORD? 2 * UNITS_PER_WORD : UNITS_PER_WORD);
+
+ info_ptr->parameter_size = ADDR_ALIGN (cfun->outgoing_args_size, alignment);
+ info_ptr->regs_size = ADDR_ALIGN (info_ptr->regs_size_2words
+ + info_ptr->regs_size_1word,
+ alignment);
+ info_ptr->vars_size = ADDR_ALIGN (get_frame_size (), alignment);
+
+ info_ptr->pretend_size = cfun->pretend_args_size;
+
+ /* Work out the size of the frame, excluding the header. Both the frame
+ body and register parameter area will be dword-aligned. */
+ info_ptr->total_size
+ = (ADDR_ALIGN (info_ptr->parameter_size
+ + info_ptr->regs_size
+ + info_ptr->vars_size,
+ 2 * UNITS_PER_WORD)
+ + ADDR_ALIGN (info_ptr->pretend_size
+ + info_ptr->stdarg_size,
+ 2 * UNITS_PER_WORD));
+
+ /* See if we need to create a frame at all, if so add header area. */
+ if (info_ptr->total_size > 0
+ || info_ptr->regs[STACK_REGS_LR].size_1word > 0
+ || info_ptr->regs[STACK_REGS_STRUCT].size_1word > 0)
+ {
+ offset = info_ptr->parameter_size;
+ info_ptr->header_size = 4 * UNITS_PER_WORD;
+ info_ptr->total_size += 4 * UNITS_PER_WORD;
+
+ /* Calculate the offsets to save normal register pairs */
+ for (range = 0; range < STACK_REGS_MAX; range++)
+ {
+ frv_stack_regs_t *reg_ptr = &(info_ptr->regs[range]);
+ if (! reg_ptr->special_p)
+ {
+ int first = reg_ptr->first;
+ int last = reg_ptr->last;
+ int regno;
+
+ for (regno = first; regno <= last; regno++)
+ if (info_ptr->save_p[regno] == REG_SAVE_2WORDS
+ && regno != FRAME_POINTER_REGNUM
+ && (regno < FIRST_ARG_REGNUM
+ || regno > LAST_ARG_REGNUM))
+ {
+ info_ptr->reg_offset[regno] = offset;
+ offset += 2 * UNITS_PER_WORD;
+ }
+ }
+ }
+
+ /* Calculate the offsets to save normal single registers */
+ for (range = 0; range < STACK_REGS_MAX; range++)
+ {
+ frv_stack_regs_t *reg_ptr = &(info_ptr->regs[range]);
+ if (! reg_ptr->special_p)
+ {
+ int first = reg_ptr->first;
+ int last = reg_ptr->last;
+ int regno;
+
+ for (regno = first; regno <= last; regno++)
+ if (info_ptr->save_p[regno] == REG_SAVE_1WORD
+ && regno != FRAME_POINTER_REGNUM
+ && (regno < FIRST_ARG_REGNUM
+ || regno > LAST_ARG_REGNUM))
+ {
+ info_ptr->reg_offset[regno] = offset;
+ offset += UNITS_PER_WORD;
+ }
+ }
+ }
+
+ /* Calculate the offset to save the local variables at. */
+ offset = ADDR_ALIGN (offset, alignment);
+ if (info_ptr->vars_size)
+ {
+ info_ptr->vars_offset = offset;
+ offset += info_ptr->vars_size;
+ }
+
+ /* Align header to a dword-boundary. */
+ offset = ADDR_ALIGN (offset, 2 * UNITS_PER_WORD);
+
+ /* Calculate the offsets in the fixed frame. */
+ info_ptr->save_p[FRAME_POINTER_REGNUM] = REG_SAVE_1WORD;
+ info_ptr->reg_offset[FRAME_POINTER_REGNUM] = offset;
+ info_ptr->regs[STACK_REGS_FP].size_1word = UNITS_PER_WORD;
+
+ info_ptr->save_p[LR_REGNO] = REG_SAVE_1WORD;
+ info_ptr->reg_offset[LR_REGNO] = offset + 2*UNITS_PER_WORD;
+ info_ptr->regs[STACK_REGS_LR].size_1word = UNITS_PER_WORD;
+
+ if (cfun->returns_struct)
+ {
+ info_ptr->save_p[STRUCT_VALUE_REGNUM] = REG_SAVE_1WORD;
+ info_ptr->reg_offset[STRUCT_VALUE_REGNUM] = offset + UNITS_PER_WORD;
+ info_ptr->regs[STACK_REGS_STRUCT].size_1word = UNITS_PER_WORD;
+ }
+
+ /* Calculate the offsets to store the arguments passed in registers
+ for stdarg functions. The register pairs are first and the single
+ register if any is last. The register save area starts on a
+ dword-boundary. */
+ if (info_ptr->stdarg_size)
+ {
+ int first = info_ptr->regs[STACK_REGS_STDARG].first;
+ int last = info_ptr->regs[STACK_REGS_STDARG].last;
+ int regno;
+
+ /* Skip the header. */
+ offset += 4 * UNITS_PER_WORD;
+ for (regno = first; regno <= last; regno++)
+ {
+ if (info_ptr->save_p[regno] == REG_SAVE_2WORDS)
+ {
+ info_ptr->reg_offset[regno] = offset;
+ offset += 2 * UNITS_PER_WORD;
+ }
+ else if (info_ptr->save_p[regno] == REG_SAVE_1WORD)
+ {
+ info_ptr->reg_offset[regno] = offset;
+ offset += UNITS_PER_WORD;
+ }
+ }
+ }
+ }
+
+ if (reload_completed)
+ frv_stack_cache = info_ptr;
+
+ return info_ptr;
+}
+
+
+/* Print the information about the frv stack offsets, etc. when debugging. */
+
+void
+frv_debug_stack (info)
+ frv_stack_t *info;
+{
+ int range;
+
+ if (!info)
+ info = frv_stack_info ();
+
+ fprintf (stderr, "\nStack information for function %s:\n",
+ ((current_function_decl && DECL_NAME (current_function_decl))
+ ? IDENTIFIER_POINTER (DECL_NAME (current_function_decl))
+ : "<unknown>"));
+
+ fprintf (stderr, "\ttotal_size\t= %6d\n", info->total_size);
+ fprintf (stderr, "\tvars_size\t= %6d\n", info->vars_size);
+ fprintf (stderr, "\tparam_size\t= %6d\n", info->parameter_size);
+ fprintf (stderr, "\tregs_size\t= %6d, 1w = %3d, 2w = %3d\n",
+ info->regs_size, info->regs_size_1word, info->regs_size_2words);
+
+ fprintf (stderr, "\theader_size\t= %6d\n", info->header_size);
+ fprintf (stderr, "\tpretend_size\t= %6d\n", info->pretend_size);
+ fprintf (stderr, "\tvars_offset\t= %6d\n", info->vars_offset);
+ fprintf (stderr, "\tregs_offset\t= %6d\n", info->regs_offset);
+
+ for (range = 0; range < STACK_REGS_MAX; range++)
+ {
+ frv_stack_regs_t *regs = &(info->regs[range]);
+ if ((regs->size_1word + regs->size_2words) > 0)
+ {
+ int first = regs->first;
+ int last = regs->last;
+ int regno;
+
+ fprintf (stderr, "\t%s\tsize\t= %6d, 1w = %3d, 2w = %3d, save =",
+ regs->name, regs->size_1word + regs->size_2words,
+ regs->size_1word, regs->size_2words);
+
+ for (regno = first; regno <= last; regno++)
+ {
+ if (info->save_p[regno] == REG_SAVE_1WORD)
+ fprintf (stderr, " %s (%d)", reg_names[regno],
+ info->reg_offset[regno]);
+
+ else if (info->save_p[regno] == REG_SAVE_2WORDS)
+ fprintf (stderr, " %s-%s (%d)", reg_names[regno],
+ reg_names[regno+1], info->reg_offset[regno]);
+ }
+
+ fputc ('\n', stderr);
+ }
+ }
+
+ fflush (stderr);
+}
+
+
+
+
+/* The following variable value is TRUE if the next output insn should
+ finish cpu cycle. In order words the insn will have packing bit
+ (which means absence of asm code suffix `.p' on assembler. */
+
+static int frv_insn_packing_flag;
+
+/* True if the current function contains a far jump. */
+
+static int
+frv_function_contains_far_jump ()
+{
+ rtx insn = get_insns ();
+ while (insn != NULL
+ && !(GET_CODE (insn) == JUMP_INSN
+ /* Ignore tablejump patterns. */
+ && GET_CODE (PATTERN (insn)) != ADDR_VEC
+ && GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC
+ && get_attr_far_jump (insn) == FAR_JUMP_YES))
+ insn = NEXT_INSN (insn);
+ return (insn != NULL);
+}
+
+/* For the FRV, this function makes sure that a function with far jumps
+ will return correctly. It also does the VLIW packing. */
+
+static void
+frv_function_prologue (file, size)
+ FILE *file;
+ HOST_WIDE_INT size ATTRIBUTE_UNUSED;
+{
+ /* If no frame was created, check whether the function uses a call
+ instruction to implement a far jump. If so, save the link in gr3 and
+ replace all returns to LR with returns to GR3. GR3 is used because it
+ is call-clobbered, because is not available to the register allocator,
+ and because all functions that take a hidden argument pointer will have
+ a stack frame. */
+ if (frv_stack_info ()->total_size == 0 && frv_function_contains_far_jump ())
+ {
+ rtx insn;
+
+ /* Just to check that the above comment is true. */
+ if (regs_ever_live[GPR_FIRST + 3])
+ abort ();
+
+ /* Generate the instruction that saves the link register. */
+ fprintf (file, "\tmovsg lr,gr3\n");
+
+ /* Replace the LR with GR3 in *return_internal patterns. The insn
+ will now return using jmpl @(gr3,0) rather than bralr. We cannot
+ simply emit a different assembly directive because bralr and jmpl
+ execute in different units. */
+ for (insn = get_insns(); insn != NULL; insn = NEXT_INSN (insn))
+ if (GET_CODE (insn) == JUMP_INSN)
+ {
+ rtx pattern = PATTERN (insn);
+ if (GET_CODE (pattern) == PARALLEL
+ && XVECLEN (pattern, 0) >= 2
+ && GET_CODE (XVECEXP (pattern, 0, 0)) == RETURN
+ && GET_CODE (XVECEXP (pattern, 0, 1)) == USE)
+ {
+ rtx address = XEXP (XVECEXP (pattern, 0, 1), 0);
+ if (GET_CODE (address) == REG && REGNO (address) == LR_REGNO)
+ REGNO (address) = GPR_FIRST + 3;
+ }
+ }
+ }
+
+ frv_pack_insns ();
+ frv_insn_packing_flag = TRUE;
+}
+
+
+/* Return the next available temporary register in a given class. */
+
+static rtx
+frv_alloc_temp_reg (info, class, mode, mark_as_used, no_abort)
+ frv_tmp_reg_t *info; /* which registers are available */
+ enum reg_class class; /* register class desired */
+ enum machine_mode mode; /* mode to allocate register with */
+ int mark_as_used; /* register not available after allocation */
+ int no_abort; /* return NULL instead of aborting */
+{
+ int regno = info->next_reg[ (int)class ];
+ int orig_regno = regno;
+ HARD_REG_SET *reg_in_class = &reg_class_contents[ (int)class ];
+ int i, nr;
+
+ for (;;)
+ {
+ if (TEST_HARD_REG_BIT (*reg_in_class, regno)
+ && TEST_HARD_REG_BIT (info->regs, regno))
+ break;
+
+ if (++regno >= FIRST_PSEUDO_REGISTER)
+ regno = 0;
+ if (regno == orig_regno)
+ {
+ if (no_abort)
+ return NULL_RTX;
+ else
+ abort ();
+ }
+ }
+
+ nr = HARD_REGNO_NREGS (regno, mode);
+ info->next_reg[ (int)class ] = regno + nr;
+
+ if (mark_as_used)
+ for (i = 0; i < nr; i++)
+ CLEAR_HARD_REG_BIT (info->regs, regno+i);
+
+ return gen_rtx_REG (mode, regno);
+}
+
+
+/* Return an rtx with the value OFFSET, which will either be a register or a
+ signed 12-bit integer. It can be used as the second operand in an "add"
+ instruction, or as the index in a load or store.
+
+ The function returns a constant rtx if OFFSET is small enough, otherwise
+ it loads the constant into register OFFSET_REGNO and returns that. */
+static rtx
+frv_frame_offset_rtx (offset)
+ int offset;
+{
+ rtx offset_rtx = GEN_INT (offset);
+ if (IN_RANGE_P (offset, -2048, 2047))
+ return offset_rtx;
+ else
+ {
+ rtx reg_rtx = gen_rtx_REG (SImode, OFFSET_REGNO);
+ if (IN_RANGE_P (offset, -32768, 32767))
+ emit_insn (gen_movsi (reg_rtx, offset_rtx));
+ else
+ {
+ emit_insn (gen_movsi_high (reg_rtx, offset_rtx));
+ emit_insn (gen_movsi_lo_sum (reg_rtx, offset_rtx));
+ }
+ return reg_rtx;
+ }
+}
+
+/* Generate (mem:MODE (plus:Pmode BASE (frv_frame_offset OFFSET)))). The
+ prologue and epilogue uses such expressions to access the stack. */
+static rtx
+frv_frame_mem (mode, base, offset)
+ enum machine_mode mode;
+ rtx base;
+ int offset;
+{
+ return gen_rtx_MEM (mode, gen_rtx_PLUS (Pmode,
+ base,
+ frv_frame_offset_rtx (offset)));
+}
+
+/* Generate a frame-related expression:
+
+ (set REG (mem (plus (sp) (const_int OFFSET)))).
+
+ Such expressions are used in FRAME_RELATED_EXPR notes for more complex
+ instructions. Marking the expressions as frame-related is superfluous if
+ the note contains just a single set. But if the note contains a PARALLEL
+ or SEQUENCE that has several sets, each set must be individually marked
+ as frame-related. */
+static rtx
+frv_dwarf_store (reg, offset)
+ rtx reg;
+ int offset;
+{
+ rtx set = gen_rtx_SET (VOIDmode,
+ gen_rtx_MEM (GET_MODE (reg),
+ plus_constant (stack_pointer_rtx,
+ offset)),
+ reg);
+ RTX_FRAME_RELATED_P (set) = 1;
+ return set;
+}
+
+/* Emit a frame-related instruction whose pattern is PATTERN. The
+ instruction is the last in a sequence that cumulatively performs the
+ operation described by DWARF_PATTERN. The instruction is marked as
+ frame-related and has a REG_FRAME_RELATED_EXPR note containing
+ DWARF_PATTERN. */
+static void
+frv_frame_insn (pattern, dwarf_pattern)
+ rtx pattern;
+ rtx dwarf_pattern;
+{
+ rtx insn = emit_insn (pattern);
+ RTX_FRAME_RELATED_P (insn) = 1;
+ REG_NOTES (insn) = alloc_EXPR_LIST (REG_FRAME_RELATED_EXPR,
+ dwarf_pattern,
+ REG_NOTES (insn));
+}
+
+/* Emit instructions that transfer REG to or from the memory location (sp +
+ STACK_OFFSET). The register is stored in memory if ACCESSOR->OP is
+ FRV_STORE and loaded if it is FRV_LOAD. Only the prologue uses this
+ function to store registers and only the epilogue uses it to load them.
+
+ The caller sets up ACCESSOR so that BASE is equal to (sp + BASE_OFFSET).
+ The generated instruction will use BASE as its base register. BASE may
+ simply be the stack pointer, but if several accesses are being made to a
+ region far away from the stack pointer, it may be more efficient to set
+ up a temporary instead.
+
+ Store instructions will be frame-related and will be annotated with the
+ overall effect of the store. Load instructions will be followed by a
+ (use) to prevent later optimizations from zapping them.
+
+ The function takes care of the moves to and from SPRs, using TEMP_REGNO
+ as a temporary in such cases. */
+static void
+frv_frame_access (accessor, reg, stack_offset)
+ frv_frame_accessor_t *accessor;
+ rtx reg;
+ int stack_offset;
+{
+ enum machine_mode mode = GET_MODE (reg);
+ rtx mem = frv_frame_mem (mode,
+ accessor->base,
+ stack_offset - accessor->base_offset);
+
+ if (accessor->op == FRV_LOAD)
+ {
+ if (SPR_P (REGNO (reg)))
+ {
+ rtx temp = gen_rtx_REG (mode, TEMP_REGNO);
+ emit_insn (gen_rtx_SET (VOIDmode, temp, mem));
+ emit_insn (gen_rtx_SET (VOIDmode, reg, temp));
+ }
+ else
+ emit_insn (gen_rtx_SET (VOIDmode, reg, mem));
+ emit_insn (gen_rtx_USE (VOIDmode, reg));
+ }
+ else
+ {
+ if (SPR_P (REGNO (reg)))
+ {
+ rtx temp = gen_rtx_REG (mode, TEMP_REGNO);
+ emit_insn (gen_rtx_SET (VOIDmode, temp, reg));
+ frv_frame_insn (gen_rtx_SET (Pmode, mem, temp),
+ frv_dwarf_store (reg, stack_offset));
+ }
+ else if (GET_MODE (reg) == DImode)
+ {
+ /* For DImode saves, the dwarf2 version needs to be a SEQUENCE
+ with a separate save for each register. */
+ rtx reg1 = gen_rtx_REG (SImode, REGNO (reg));
+ rtx reg2 = gen_rtx_REG (SImode, REGNO (reg) + 1);
+ rtx set1 = frv_dwarf_store (reg1, stack_offset);
+ rtx set2 = frv_dwarf_store (reg2, stack_offset + 4);
+ frv_frame_insn (gen_rtx_SET (Pmode, mem, reg),
+ gen_rtx_PARALLEL (VOIDmode,
+ gen_rtvec (2, set1, set2)));
+ }
+ else
+ frv_frame_insn (gen_rtx_SET (Pmode, mem, reg),
+ frv_dwarf_store (reg, stack_offset));
+ }
+}
+
+/* A function that uses frv_frame_access to transfer a group of registers to
+ or from the stack. ACCESSOR is passed directly to frv_frame_access, INFO
+ is the stack information generated by frv_stack_info, and REG_SET is the
+ number of the register set to transfer. */
+static void
+frv_frame_access_multi (accessor, info, reg_set)
+ frv_frame_accessor_t *accessor;
+ frv_stack_t *info;
+ int reg_set;
+{
+ frv_stack_regs_t *regs_info;
+ int regno;
+
+ regs_info = &info->regs[reg_set];
+ for (regno = regs_info->first; regno <= regs_info->last; regno++)
+ if (info->save_p[regno])
+ frv_frame_access (accessor,
+ info->save_p[regno] == REG_SAVE_2WORDS
+ ? gen_rtx_REG (DImode, regno)
+ : gen_rtx_REG (SImode, regno),
+ info->reg_offset[regno]);
+}
+
+/* Save or restore callee-saved registers that are kept outside the frame
+ header. The function saves the registers if OP is FRV_STORE and restores
+ them if OP is FRV_LOAD. INFO is the stack information generated by
+ frv_stack_info. */
+static void
+frv_frame_access_standard_regs (op, info)
+ enum frv_stack_op op;
+ frv_stack_t *info;
+{
+ frv_frame_accessor_t accessor;
+
+ accessor.op = op;
+ accessor.base = stack_pointer_rtx;
+ accessor.base_offset = 0;
+ frv_frame_access_multi (&accessor, info, STACK_REGS_GPR);
+ frv_frame_access_multi (&accessor, info, STACK_REGS_FPR);
+ frv_frame_access_multi (&accessor, info, STACK_REGS_LCR);
+}
+
+
+/* Called after register allocation to add any instructions needed for the
+ prologue. Using a prologue insn is favored compared to putting all of the
+ instructions in the FUNCTION_PROLOGUE macro, since it allows the scheduler
+ to intermix instructions with the saves of the caller saved registers. In
+ some cases, it might be necessary to emit a barrier instruction as the last
+ insn to prevent such scheduling.
+
+ Also any insns generated here should have RTX_FRAME_RELATED_P(insn) = 1
+ so that the debug info generation code can handle them properly. */
+void
+frv_expand_prologue ()
+{
+ frv_stack_t *info = frv_stack_info ();
+ rtx sp = stack_pointer_rtx;
+ rtx fp = frame_pointer_rtx;
+ frv_frame_accessor_t accessor;
+
+ if (TARGET_DEBUG_STACK)
+ frv_debug_stack (info);
+
+ if (info->total_size == 0)
+ return;
+
+ /* We're interested in three areas of the frame here:
+
+ A: the register save area
+ B: the old FP
+ C: the header after B
+
+ If the frame pointer isn't used, we'll have to set up A, B and C
+ using the stack pointer. If the frame pointer is used, we'll access
+ them as follows:
+
+ A: set up using sp
+ B: set up using sp or a temporary (see below)
+ C: set up using fp
+
+ We set up B using the stack pointer if the frame is small enough.
+ Otherwise, it's more efficient to copy the old stack pointer into a
+ temporary and use that.
+
+ Note that it's important to make sure the prologue and epilogue use the
+ same registers to access A and C, since doing otherwise will confuse
+ the aliasing code. */
+
+ /* Set up ACCESSOR for accessing region B above. If the frame pointer
+ isn't used, the same method will serve for C. */
+ accessor.op = FRV_STORE;
+ if (frame_pointer_needed && info->total_size > 2048)
+ {
+ rtx insn;
+
+ accessor.base = gen_rtx_REG (Pmode, OLD_SP_REGNO);
+ accessor.base_offset = info->total_size;
+ insn = emit_insn (gen_movsi (accessor.base, sp));
+ }
+ else
+ {
+ accessor.base = stack_pointer_rtx;
+ accessor.base_offset = 0;
+ }
+
+ /* Allocate the stack space. */
+ {
+ rtx asm_offset = frv_frame_offset_rtx (-info->total_size);
+ rtx dwarf_offset = GEN_INT (-info->total_size);
+
+ frv_frame_insn (gen_stack_adjust (sp, sp, asm_offset),
+ gen_rtx_SET (Pmode,
+ sp,
+ gen_rtx_PLUS (Pmode, sp, dwarf_offset)));
+ }
+
+ /* If the frame pointer is needed, store the old one at (sp + FP_OFFSET)
+ and point the new one to that location. */
+ if (frame_pointer_needed)
+ {
+ int fp_offset = info->reg_offset[FRAME_POINTER_REGNUM];
+
+ /* ASM_SRC and DWARF_SRC both point to the frame header. ASM_SRC is
+ based on ACCESSOR.BASE but DWARF_SRC is always based on the stack
+ pointer. */
+ rtx asm_src = plus_constant (accessor.base,
+ fp_offset - accessor.base_offset);
+ rtx dwarf_src = plus_constant (sp, fp_offset);
+
+ /* Store the old frame pointer at (sp + FP_OFFSET). */
+ frv_frame_access (&accessor, fp, fp_offset);
+
+ /* Set up the new frame pointer. */
+ frv_frame_insn (gen_rtx_SET (VOIDmode, fp, asm_src),
+ gen_rtx_SET (VOIDmode, fp, dwarf_src));
+
+ /* Access region C from the frame pointer. */
+ accessor.base = fp;
+ accessor.base_offset = fp_offset;
+ }
+
+ /* Set up region C. */
+ frv_frame_access_multi (&accessor, info, STACK_REGS_STRUCT);
+ frv_frame_access_multi (&accessor, info, STACK_REGS_LR);
+ frv_frame_access_multi (&accessor, info, STACK_REGS_STDARG);
+
+ /* Set up region A. */
+ frv_frame_access_standard_regs (FRV_STORE, info);
+
+ /* If this is a varargs/stdarg function, issue a blockage to prevent the
+ scheduler from moving loads before the stores saving the registers. */
+ if (info->stdarg_size > 0)
+ emit_insn (gen_blockage ());
+
+ /* Set up pic register/small data register for this function. */
+ if (flag_pic && cfun->uses_pic_offset_table)
+ emit_insn (gen_pic_prologue (gen_rtx_REG (Pmode, PIC_REGNO),
+ gen_rtx_REG (Pmode, LR_REGNO),
+ gen_rtx_REG (SImode, OFFSET_REGNO)));
+}
+
+
+/* Under frv, all of the work is done via frv_expand_epilogue, but
+ this function provides a convient place to do cleanup. */
+
+static void
+frv_function_epilogue (file, size)
+ FILE *file ATTRIBUTE_UNUSED;
+ HOST_WIDE_INT size ATTRIBUTE_UNUSED;
+{
+ frv_stack_cache = (frv_stack_t *)0;
+
+ /* zap last used registers for conditional execution. */
+ memset ((PTR) &frv_ifcvt.tmp_reg, 0, sizeof (frv_ifcvt.tmp_reg));
+
+ /* release the bitmap of created insns. */
+ BITMAP_XFREE (frv_ifcvt.scratch_insns_bitmap);
+}
+
+
+/* Called after register allocation to add any instructions needed for the
+ epilogue. Using an epilogue insn is favored compared to putting all of the
+ instructions in the FUNCTION_PROLOGUE macro, since it allows the scheduler
+ to intermix instructions with the saves of the caller saved registers. In
+ some cases, it might be necessary to emit a barrier instruction as the last
+ insn to prevent such scheduling.
+
+ If SIBCALL_P is true, the final branch back to the calling function is
+ omitted, and is used for sibling call (aka tail call) sites. For sibcalls,
+ we must not clobber any arguments used for parameter passing or any stack
+ slots for arguments passed to the current function. */
+
+void
+frv_expand_epilogue (sibcall_p)
+ int sibcall_p;
+{
+ frv_stack_t *info = frv_stack_info ();
+ rtx fp = frame_pointer_rtx;
+ rtx sp = stack_pointer_rtx;
+ rtx return_addr;
+ int fp_offset;
+
+ fp_offset = info->reg_offset[FRAME_POINTER_REGNUM];
+
+ /* Restore the stack pointer to its original value if alloca or the like
+ is used. */
+ if (! current_function_sp_is_unchanging)
+ emit_insn (gen_addsi3 (sp, fp, frv_frame_offset_rtx (-fp_offset)));
+
+ /* Restore the callee-saved registers that were used in this function. */
+ frv_frame_access_standard_regs (FRV_LOAD, info);
+
+ /* Set RETURN_ADDR to the address we should return to. Set it to NULL if
+ no return instruction should be emitted. */
+ if (sibcall_p)
+ return_addr = 0;
+ else if (info->save_p[LR_REGNO])
+ {
+ int lr_offset;
+ rtx mem;
+
+ /* Use the same method to access the link register's slot as we did in
+ the prologue. In other words, use the frame pointer if available,
+ otherwise use the stack pointer.
+
+ LR_OFFSET is the offset of the link register's slot from the start
+ of the frame and MEM is a memory rtx for it. */
+ lr_offset = info->reg_offset[LR_REGNO];
+ if (frame_pointer_needed)
+ mem = frv_frame_mem (Pmode, fp, lr_offset - fp_offset);
+ else
+ mem = frv_frame_mem (Pmode, sp, lr_offset);
+
+ /* Load the old link register into a GPR. */
+ return_addr = gen_rtx_REG (Pmode, TEMP_REGNO);
+ emit_insn (gen_rtx_SET (VOIDmode, return_addr, mem));
+ }
+ else
+ return_addr = gen_rtx_REG (Pmode, LR_REGNO);
+
+ /* Restore the old frame pointer. Emit a USE afterwards to make sure
+ the load is preserved. */
+ if (frame_pointer_needed)
+ {
+ emit_insn (gen_rtx_SET (VOIDmode, fp, gen_rtx_MEM (Pmode, fp)));
+ emit_insn (gen_rtx_USE (VOIDmode, fp));
+ }
+
+ /* Deallocate the stack frame. */
+ if (info->total_size != 0)
+ {
+ rtx offset = frv_frame_offset_rtx (info->total_size);
+ emit_insn (gen_stack_adjust (sp, sp, offset));
+ }
+
+ /* If this function uses eh_return, add the final stack adjustment now. */
+ if (current_function_calls_eh_return)
+ emit_insn (gen_stack_adjust (sp, sp, EH_RETURN_STACKADJ_RTX));
+
+ if (return_addr)
+ emit_jump_insn (gen_epilogue_return (return_addr));
+}
+
+
+/* A C compound statement that outputs the assembler code for a thunk function,
+ used to implement C++ virtual function calls with multiple inheritance. The
+ thunk acts as a wrapper around a virtual function, adjusting the implicit
+ object parameter before handing control off to the real function.
+
+ First, emit code to add the integer DELTA to the location that contains the
+ incoming first argument. Assume that this argument contains a pointer, and
+ is the one used to pass the `this' pointer in C++. This is the incoming
+ argument *before* the function prologue, e.g. `%o0' on a sparc. The
+ addition must preserve the values of all other incoming arguments.
+
+ After the addition, emit code to jump to FUNCTION, which is a
+ `FUNCTION_DECL'. This is a direct pure jump, not a call, and does not touch
+ the return address. Hence returning from FUNCTION will return to whoever
+ called the current `thunk'.
+
+ The effect must be as if FUNCTION had been called directly with the adjusted
+ first argument. This macro is responsible for emitting all of the code for
+ a thunk function; `FUNCTION_PROLOGUE' and `FUNCTION_EPILOGUE' are not
+ invoked.
+
+ The THUNK_FNDECL is redundant. (DELTA and FUNCTION have already been
+ extracted from it.) It might possibly be useful on some targets, but
+ probably not.
+
+ If you do not define this macro, the target-independent code in the C++
+ frontend will generate a less efficient heavyweight thunk that calls
+ FUNCTION instead of jumping to it. The generic approach does not support
+ varargs. */
+
+static void
+frv_asm_output_mi_thunk (file, thunk_fndecl, delta, vcall_offset, function)
+ FILE *file;
+ tree thunk_fndecl ATTRIBUTE_UNUSED;
+ HOST_WIDE_INT delta;
+ HOST_WIDE_INT vcall_offset ATTRIBUTE_UNUSED;
+ tree function;
+{
+ const char *name_func = XSTR (XEXP (DECL_RTL (function), 0), 0);
+ const char *name_arg0 = reg_names[FIRST_ARG_REGNUM];
+ const char *name_jmp = reg_names[JUMP_REGNO];
+ const char *parallel = ((PACKING_FLAG_USED_P ()) ? ".p" : "");
+
+ /* Do the add using an addi if possible */
+ if (IN_RANGE_P (delta, -2048, 2047))
+ fprintf (file, "\taddi %s,#%d,%s\n", name_arg0, (int) delta, name_arg0);
+ else
+ {
+ const char *name_add = reg_names[TEMP_REGNO];
+ fprintf (file, "\tsethi%s #hi(", parallel);
+ fprintf (file, HOST_WIDE_INT_PRINT_DEC, delta);
+ fprintf (file, "),%s\n", name_add);
+ fprintf (file, "\tsetlo #lo(");
+ fprintf (file, HOST_WIDE_INT_PRINT_DEC, delta);
+ fprintf (file, "),%s\n", name_add);
+ fprintf (file, "\tadd %s,%s,%s\n", name_add, name_arg0, name_arg0);
+ }
+
+ if (!flag_pic)
+ {
+ fprintf (file, "\tsethi%s #hi(", parallel);
+ assemble_name (file, name_func);
+ fprintf (file, "),%s\n", name_jmp);
+
+ fprintf (file, "\tsetlo #lo(");
+ assemble_name (file, name_func);
+ fprintf (file, "),%s\n", name_jmp);
+ }
+ else
+ {
+ /* Use JUMP_REGNO as a temporary PIC register. */
+ const char *name_lr = reg_names[LR_REGNO];
+ const char *name_gppic = name_jmp;
+ const char *name_tmp = reg_names[TEMP_REGNO];
+
+ fprintf (file, "\tmovsg %s,%s\n", name_lr, name_tmp);
+ fprintf (file, "\tcall 1f\n");
+ fprintf (file, "1:\tmovsg %s,%s\n", name_lr, name_gppic);
+ fprintf (file, "\tmovgs %s,%s\n", name_tmp, name_lr);
+ fprintf (file, "\tsethi%s #gprelhi(1b),%s\n", parallel, name_tmp);
+ fprintf (file, "\tsetlo #gprello(1b),%s\n", name_tmp);
+ fprintf (file, "\tsub %s,%s,%s\n", name_gppic, name_tmp, name_gppic);
+
+ fprintf (file, "\tsethi%s #gprelhi(", parallel);
+ assemble_name (file, name_func);
+ fprintf (file, "),%s\n", name_tmp);
+
+ fprintf (file, "\tsetlo #gprello(");
+ assemble_name (file, name_func);
+ fprintf (file, "),%s\n", name_tmp);
+
+ fprintf (file, "\tadd %s,%s,%s\n", name_gppic, name_tmp, name_jmp);
+ }
+
+ /* Jump to the function address */
+ fprintf (file, "\tjmpl @(%s,%s)\n", name_jmp, reg_names[GPR_FIRST+0]);
+}
+
+
+/* A C expression which is nonzero if a function must have and use a frame
+ pointer. This expression is evaluated in the reload pass. If its value is
+ nonzero the function will have a frame pointer.
+
+ The expression can in principle examine the current function and decide
+ according to the facts, but on most machines the constant 0 or the constant
+ 1 suffices. Use 0 when the machine allows code to be generated with no
+ frame pointer, and doing so saves some time or space. Use 1 when there is
+ no possible advantage to avoiding a frame pointer.
+
+ In certain cases, the compiler does not know how to produce valid code
+ without a frame pointer. The compiler recognizes those cases and
+ automatically gives the function a frame pointer regardless of what
+ `FRAME_POINTER_REQUIRED' says. You don't need to worry about them.
+
+ In a function that does not require a frame pointer, the frame pointer
+ register can be allocated for ordinary usage, unless you mark it as a fixed
+ register. See `FIXED_REGISTERS' for more information. */
+
+/* On frv, create a frame whenever we need to create stack */
+
+int
+frv_frame_pointer_required ()
+{
+ if (! current_function_is_leaf)
+ return TRUE;
+
+ if (get_frame_size () != 0)
+ return TRUE;
+
+ if (cfun->stdarg)
+ return TRUE;
+
+ if (!current_function_sp_is_unchanging)
+ return TRUE;
+
+ if (flag_pic && cfun->uses_pic_offset_table)
+ return TRUE;
+
+ if (profile_flag)
+ return TRUE;
+
+ if (cfun->machine->frame_needed)
+ return TRUE;
+
+ return FALSE;
+}
+
+
+/* This macro is similar to `INITIAL_FRAME_POINTER_OFFSET'. It specifies the
+ initial difference between the specified pair of registers. This macro must
+ be defined if `ELIMINABLE_REGS' is defined. */
+
+/* See frv_stack_info for more details on the frv stack frame. */
+
+int
+frv_initial_elimination_offset (from, to)
+ int from;
+ int to;
+{
+ frv_stack_t *info = frv_stack_info ();
+ int ret = 0;
+
+ if (to == STACK_POINTER_REGNUM && from == ARG_POINTER_REGNUM)
+ ret = info->total_size - info->pretend_size;
+
+ else if (to == STACK_POINTER_REGNUM && from == FRAME_POINTER_REGNUM)
+ ret = - info->reg_offset[FRAME_POINTER_REGNUM];
+
+ else if (to == FRAME_POINTER_REGNUM && from == ARG_POINTER_REGNUM)
+ ret = (info->total_size
+ - info->reg_offset[FRAME_POINTER_REGNUM]
+ - info->pretend_size);
+
+ else
+ abort ();
+
+ if (TARGET_DEBUG_STACK)
+ fprintf (stderr, "Eliminate %s to %s by adding %d\n",
+ reg_names [from], reg_names[to], ret);
+
+ return ret;
+}
+
+
+/* This macro offers an alternative to using `__builtin_saveregs' and defining
+ the macro `EXPAND_BUILTIN_SAVEREGS'. Use it to store the anonymous register
+ arguments into the stack so that all the arguments appear to have been
+ passed consecutively on the stack. Once this is done, you can use the
+ standard implementation of varargs that works for machines that pass all
+ their arguments on the stack.
+
+ The argument ARGS_SO_FAR is the `CUMULATIVE_ARGS' data structure, containing
+ the values that obtain after processing of the named arguments. The
+ arguments MODE and TYPE describe the last named argument--its machine mode
+ and its data type as a tree node.
+
+ The macro implementation should do two things: first, push onto the stack
+ all the argument registers *not* used for the named arguments, and second,
+ store the size of the data thus pushed into the `int'-valued variable whose
+ name is supplied as the argument PRETEND_ARGS_SIZE. The value that you
+ store here will serve as additional offset for setting up the stack frame.
+
+ Because you must generate code to push the anonymous arguments at compile
+ time without knowing their data types, `SETUP_INCOMING_VARARGS' is only
+ useful on machines that have just a single category of argument register and
+ use it uniformly for all data types.
+
+ If the argument SECOND_TIME is nonzero, it means that the arguments of the
+ function are being analyzed for the second time. This happens for an inline
+ function, which is not actually compiled until the end of the source file.
+ The macro `SETUP_INCOMING_VARARGS' should not generate any instructions in
+ this case. */
+
+void
+frv_setup_incoming_varargs (cum, mode, type, pretend_size, second_time)
+ CUMULATIVE_ARGS *cum;
+ enum machine_mode mode;
+ tree type ATTRIBUTE_UNUSED;
+ int *pretend_size;
+ int second_time;
+{
+ if (TARGET_DEBUG_ARG)
+ fprintf (stderr,
+ "setup_vararg: words = %2d, mode = %4s, pretend_size = %d, second_time = %d\n",
+ *cum, GET_MODE_NAME (mode), *pretend_size, second_time);
+}
+
+
+/* If defined, is a C expression that produces the machine-specific code for a
+ call to `__builtin_saveregs'. This code will be moved to the very beginning
+ of the function, before any parameter access are made. The return value of
+ this function should be an RTX that contains the value to use as the return
+ of `__builtin_saveregs'.
+
+ If this macro is not defined, the compiler will output an ordinary call to
+ the library function `__builtin_saveregs'. */
+
+rtx
+frv_expand_builtin_saveregs ()
+{
+ int offset = UNITS_PER_WORD * FRV_NUM_ARG_REGS;
+
+ if (TARGET_DEBUG_ARG)
+ fprintf (stderr, "expand_builtin_saveregs: offset from ap = %d\n",
+ offset);
+
+ return gen_rtx (PLUS, Pmode, virtual_incoming_args_rtx, GEN_INT (- offset));
+}
+
+
+/* Expand __builtin_va_start to do the va_start macro. */
+
+void
+frv_expand_builtin_va_start (valist, nextarg)
+ tree valist;
+ rtx nextarg;
+{
+ tree t;
+ int num = cfun->args_info - FIRST_ARG_REGNUM - FRV_NUM_ARG_REGS;
+
+ nextarg = gen_rtx_PLUS (Pmode, virtual_incoming_args_rtx,
+ GEN_INT (UNITS_PER_WORD * num));
+
+ if (TARGET_DEBUG_ARG)
+ {
+ fprintf (stderr, "va_start: args_info = %d, num = %d\n",
+ cfun->args_info, num);
+
+ debug_rtx (nextarg);
+ }
+
+ t = build (MODIFY_EXPR, TREE_TYPE (valist), valist,
+ make_tree (ptr_type_node, nextarg));
+ TREE_SIDE_EFFECTS (t) = 1;
+
+ expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
+}
+
+
+/* Expand __builtin_va_arg to do the va_arg macro. */
+
+rtx
+frv_expand_builtin_va_arg(valist, type)
+ tree valist;
+ tree type;
+{
+ rtx addr;
+ rtx mem;
+ rtx reg;
+
+ if (TARGET_DEBUG_ARG)
+ {
+ fprintf (stderr, "va_arg:\n");
+ debug_tree (type);
+ }
+
+ if (! AGGREGATE_TYPE_P (type))
+ return std_expand_builtin_va_arg (valist, type);
+
+ addr = std_expand_builtin_va_arg (valist, ptr_type_node);
+ mem = gen_rtx_MEM (Pmode, addr);
+ reg = gen_reg_rtx (Pmode);
+
+ set_mem_alias_set (mem, get_varargs_alias_set ());
+ emit_move_insn (reg, mem);
+
+ return reg;
+}
+
+
+/* Expand a block move operation, and return 1 if successful. Return 0
+ if we should let the compiler generate normal code.
+
+ operands[0] is the destination
+ operands[1] is the source
+ operands[2] is the length
+ operands[3] is the alignment */
+
+/* Maximum number of loads to do before doing the stores */
+#ifndef MAX_MOVE_REG
+#define MAX_MOVE_REG 4
+#endif
+
+/* Maximum number of total loads to do. */
+#ifndef TOTAL_MOVE_REG
+#define TOTAL_MOVE_REG 8
+#endif
+
+int
+frv_expand_block_move (operands)
+ rtx operands[];
+{
+ rtx orig_dest = operands[0];
+ rtx orig_src = operands[1];
+ rtx bytes_rtx = operands[2];
+ rtx align_rtx = operands[3];
+ int constp = (GET_CODE (bytes_rtx) == CONST_INT);
+ int align;
+ int bytes;
+ int offset;
+ int num_reg;
+ int i;
+ rtx src_reg;
+ rtx dest_reg;
+ rtx src_addr;
+ rtx dest_addr;
+ rtx src_mem;
+ rtx dest_mem;
+ rtx tmp_reg;
+ rtx stores[MAX_MOVE_REG];
+ int move_bytes;
+ enum machine_mode mode;
+
+ /* If this is not a fixed size move, just call memcpy */
+ if (! constp)
+ return FALSE;
+
+ /* If this is not a fixed size alignment, abort */
+ if (GET_CODE (align_rtx) != CONST_INT)
+ abort ();
+
+ align = INTVAL (align_rtx);
+
+ /* Anything to move? */
+ bytes = INTVAL (bytes_rtx);
+ if (bytes <= 0)
+ return TRUE;
+
+ /* Don't support real large moves. */
+ if (bytes > TOTAL_MOVE_REG*align)
+ return FALSE;
+
+ /* Move the address into scratch registers. */
+ dest_reg = copy_addr_to_reg (XEXP (orig_dest, 0));
+ src_reg = copy_addr_to_reg (XEXP (orig_src, 0));
+
+ num_reg = offset = 0;
+ for ( ; bytes > 0; (bytes -= move_bytes), (offset += move_bytes))
+ {
+ /* Calculate the correct offset for src/dest */
+ if (offset == 0)
+ {
+ src_addr = src_reg;
+ dest_addr = dest_reg;
+ }
+ else
+ {
+ src_addr = plus_constant (src_reg, offset);
+ dest_addr = plus_constant (dest_reg, offset);
+ }
+
+ /* Generate the appropriate load and store, saving the stores
+ for later. */
+ if (bytes >= 4 && align >= 4)
+ mode = SImode;
+ else if (bytes >= 2 && align >= 2)
+ mode = HImode;
+ else
+ mode = QImode;
+
+ move_bytes = GET_MODE_SIZE (mode);
+ tmp_reg = gen_reg_rtx (mode);
+ src_mem = change_address (orig_src, mode, src_addr);
+ dest_mem = change_address (orig_dest, mode, dest_addr);
+ emit_insn (gen_rtx_SET (VOIDmode, tmp_reg, src_mem));
+ stores[num_reg++] = gen_rtx_SET (VOIDmode, dest_mem, tmp_reg);
+
+ if (num_reg >= MAX_MOVE_REG)
+ {
+ for (i = 0; i < num_reg; i++)
+ emit_insn (stores[i]);
+ num_reg = 0;
+ }
+ }
+
+ for (i = 0; i < num_reg; i++)
+ emit_insn (stores[i]);
+
+ return TRUE;
+}
+
+
+/* Expand a block clear operation, and return 1 if successful. Return 0
+ if we should let the compiler generate normal code.
+
+ operands[0] is the destination
+ operands[1] is the length
+ operands[2] is the alignment */
+
+int
+frv_expand_block_clear (operands)
+ rtx operands[];
+{
+ rtx orig_dest = operands[0];
+ rtx bytes_rtx = operands[1];
+ rtx align_rtx = operands[2];
+ int constp = (GET_CODE (bytes_rtx) == CONST_INT);
+ int align;
+ int bytes;
+ int offset;
+ int num_reg;
+ rtx dest_reg;
+ rtx dest_addr;
+ rtx dest_mem;
+ int clear_bytes;
+ enum machine_mode mode;
+
+ /* If this is not a fixed size move, just call memcpy */
+ if (! constp)
+ return FALSE;
+
+ /* If this is not a fixed size alignment, abort */
+ if (GET_CODE (align_rtx) != CONST_INT)
+ abort ();
+
+ align = INTVAL (align_rtx);
+
+ /* Anything to move? */
+ bytes = INTVAL (bytes_rtx);
+ if (bytes <= 0)
+ return TRUE;
+
+ /* Don't support real large clears. */
+ if (bytes > TOTAL_MOVE_REG*align)
+ return FALSE;
+
+ /* Move the address into a scratch register. */
+ dest_reg = copy_addr_to_reg (XEXP (orig_dest, 0));
+
+ num_reg = offset = 0;
+ for ( ; bytes > 0; (bytes -= clear_bytes), (offset += clear_bytes))
+ {
+ /* Calculate the correct offset for src/dest */
+ dest_addr = ((offset == 0)
+ ? dest_reg
+ : plus_constant (dest_reg, offset));
+
+ /* Generate the appropriate store of gr0 */
+ if (bytes >= 4 && align >= 4)
+ mode = SImode;
+ else if (bytes >= 2 && align >= 2)
+ mode = HImode;
+ else
+ mode = QImode;
+
+ clear_bytes = GET_MODE_SIZE (mode);
+ dest_mem = change_address (orig_dest, mode, dest_addr);
+ emit_insn (gen_rtx_SET (VOIDmode, dest_mem, const0_rtx));
+ }
+
+ return TRUE;
+}
+
+
+/* The following variable is used to output modifiers of assembler
+ code of the current output insn.. */
+
+static rtx *frv_insn_operands;
+
+/* The following function is used to add assembler insn code suffix .p
+ if it is necessary. */
+
+const char *
+frv_asm_output_opcode (f, ptr)
+ FILE *f;
+ const char *ptr;
+{
+ int c;
+
+ if (! PACKING_FLAG_USED_P())
+ return ptr;
+
+ for (; *ptr && *ptr != ' ' && *ptr != '\t';)
+ {
+ c = *ptr++;
+ if (c == '%' && ((*ptr >= 'a' && *ptr <= 'z')
+ || (*ptr >= 'A' && *ptr <= 'Z')))
+ {
+ int letter = *ptr++;
+
+ c = atoi (ptr);
+ frv_print_operand (f, frv_insn_operands [c], letter);
+ while ((c = *ptr) >= '0' && c <= '9')
+ ptr++;
+ }
+ else
+ fputc (c, f);
+ }
+
+ if (!frv_insn_packing_flag)
+ fprintf (f, ".p");
+
+ return ptr;
+}
+
+/* The following function sets up the packing bit for the current
+ output insn. Remember that the function is not called for asm
+ insns. */
+
+void
+frv_final_prescan_insn (insn, opvec, noperands)
+ rtx insn;
+ rtx *opvec;
+ int noperands ATTRIBUTE_UNUSED;
+{
+ if (! PACKING_FLAG_USED_P())
+ return;
+
+ if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
+ return;
+
+ frv_insn_operands = opvec;
+
+ /* Look for the next printable instruction. frv_pack_insns () has set
+ things up so that any printable instruction will have TImode if it
+ starts a new packet and VOIDmode if it should be packed with the
+ previous instruction.
+
+ Printable instructions will be asm_operands or match one of the .md
+ patterns. Since asm instructions cannot be packed -- and will
+ therefore have TImode -- this loop terminates on any recognisable
+ instruction, and on any unrecognisable instruction with TImode. */
+ for (insn = NEXT_INSN (insn); insn; insn = NEXT_INSN (insn))
+ {
+ if (NOTE_P (insn))
+ continue;
+ else if (!INSN_P (insn))
+ break;
+ else if (GET_MODE (insn) == TImode || INSN_CODE (insn) != -1)
+ break;
+ }
+
+ /* Set frv_insn_packing_flag to FALSE if the next instruction should
+ be packed with this one. Set it to TRUE otherwise. If the next
+ instruction is an asm insntruction, this statement will set the
+ flag to TRUE, and that value will still hold when the asm operands
+ themselves are printed. */
+ frv_insn_packing_flag = ! (insn && INSN_P (insn)
+ && GET_MODE (insn) != TImode);
+}
+
+
+
+/* A C expression whose value is RTL representing the address in a stack frame
+ where the pointer to the caller's frame is stored. Assume that FRAMEADDR is
+ an RTL expression for the address of the stack frame itself.
+
+ If you don't define this macro, the default is to return the value of
+ FRAMEADDR--that is, the stack frame address is also the address of the stack
+ word that points to the previous frame. */
+
+/* The default is correct, but we need to make sure the frame gets created. */
+rtx
+frv_dynamic_chain_address (frame)
+ rtx frame;
+{
+ cfun->machine->frame_needed = 1;
+ return frame;
+}
+
+
+/* A C expression whose value is RTL representing the value of the return
+ address for the frame COUNT steps up from the current frame, after the
+ prologue. FRAMEADDR is the frame pointer of the COUNT frame, or the frame
+ pointer of the COUNT - 1 frame if `RETURN_ADDR_IN_PREVIOUS_FRAME' is
+ defined.
+
+ The value of the expression must always be the correct address when COUNT is
+ zero, but may be `NULL_RTX' if there is not way to determine the return
+ address of other frames. */
+
+rtx
+frv_return_addr_rtx (count, frame)
+ int count ATTRIBUTE_UNUSED;
+ rtx frame;
+{
+ cfun->machine->frame_needed = 1;
+ return gen_rtx_MEM (Pmode, plus_constant (frame, 8));
+}
+
+/* Given a memory reference MEMREF, interpret the referenced memory as
+ an array of MODE values, and return a reference to the element
+ specified by INDEX. Assume that any pre-modification implicit in
+ MEMREF has already happened.
+
+ MEMREF must be a legitimate operand for modes larger than SImode.
+ GO_IF_LEGITIMATE_ADDRESS forbids register+register addresses, which
+ this function cannot handle. */
+rtx
+frv_index_memory (memref, mode, index)
+ rtx memref;
+ enum machine_mode mode;
+ int index;
+{
+ rtx base = XEXP (memref, 0);
+ if (GET_CODE (base) == PRE_MODIFY)
+ base = XEXP (base, 0);
+ return change_address (memref, mode,
+ plus_constant (base, index * GET_MODE_SIZE (mode)));
+}
+
+
+/* Print a memory address as an operand to reference that memory location. */
+void
+frv_print_operand_address (stream, x)
+ FILE * stream;
+ rtx x;
+{
+ if (GET_CODE (x) == MEM)
+ x = XEXP (x, 0);
+
+ switch (GET_CODE (x))
+ {
+ case REG:
+ fputs (reg_names [ REGNO (x)], stream);
+ return;
+
+ case CONST_INT:
+ fprintf (stream, "%ld", (long) INTVAL (x));
+ return;
+
+ case SYMBOL_REF:
+ assemble_name (stream, XSTR (x, 0));
+ return;
+
+ case LABEL_REF:
+ case CONST:
+ output_addr_const (stream, x);
+ return;
+
+ default:
+ break;
+ }
+
+ fatal_insn ("Bad insn to frv_print_operand_address:", x);
+}
+
+
+static void
+frv_print_operand_memory_reference_reg (stream, x)
+ FILE *stream;
+ rtx x;
+{
+ int regno = true_regnum (x);
+ if (GPR_P (regno))
+ fputs (reg_names[regno], stream);
+ else
+ fatal_insn ("Bad register to frv_print_operand_memory_reference_reg:", x);
+}
+
+/* Print a memory reference suitable for the ld/st instructions. */
+
+static void
+frv_print_operand_memory_reference (stream, x, addr_offset)
+ FILE *stream;
+ rtx x;
+ int addr_offset;
+{
+ rtx x0 = NULL_RTX;
+ rtx x1 = NULL_RTX;
+
+ switch (GET_CODE (x))
+ {
+ case SUBREG:
+ case REG:
+ x0 = x;
+ break;
+
+ case PRE_MODIFY: /* (pre_modify (reg) (plus (reg) (reg))) */
+ x0 = XEXP (x, 0);
+ x1 = XEXP (XEXP (x, 1), 1);
+ break;
+
+ case CONST_INT:
+ x1 = x;
+ break;
+
+ case PLUS:
+ x0 = XEXP (x, 0);
+ x1 = XEXP (x, 1);
+ if (GET_CODE (x0) == CONST_INT)
+ {
+ x0 = XEXP (x, 1);
+ x1 = XEXP (x, 0);
+ }
+ break;
+
+ default:
+ fatal_insn ("Bad insn to frv_print_operand_memory_reference:", x);
+ break;
+
+ }
+
+ if (addr_offset)
+ {
+ if (!x1)
+ x1 = const0_rtx;
+ else if (GET_CODE (x1) != CONST_INT)
+ fatal_insn ("Bad insn to frv_print_operand_memory_reference:", x);
+ }
+
+ fputs ("@(", stream);
+ if (!x0)
+ fputs (reg_names[GPR_R0], stream);
+ else if (GET_CODE (x0) == REG || GET_CODE (x0) == SUBREG)
+ frv_print_operand_memory_reference_reg (stream, x0);
+ else
+ fatal_insn ("Bad insn to frv_print_operand_memory_reference:", x);
+
+ fputs (",", stream);
+ if (!x1)
+ fputs (reg_names [GPR_R0], stream);
+
+ else
+ {
+ switch (GET_CODE (x1))
+ {
+ case SUBREG:
+ case REG:
+ frv_print_operand_memory_reference_reg (stream, x1);
+ break;
+
+ case CONST_INT:
+ fprintf (stream, "%ld", (long) (INTVAL (x1) + addr_offset));
+ break;
+
+ case SYMBOL_REF:
+ if (x0 && GET_CODE (x0) == REG && REGNO (x0) == SDA_BASE_REG
+ && symbol_ref_small_data_p (x1))
+ {
+ fputs ("#gprel12(", stream);
+ assemble_name (stream, XSTR (x1, 0));
+ fputs (")", stream);
+ }
+ else
+ fatal_insn ("Bad insn to frv_print_operand_memory_reference:", x);
+ break;
+
+ case CONST:
+ if (x0 && GET_CODE (x0) == REG && REGNO (x0) == SDA_BASE_REG
+ && const_small_data_p (x1))
+ {
+ fputs ("#gprel12(", stream);
+ assemble_name (stream, XSTR (XEXP (XEXP (x1, 0), 0), 0));
+ fprintf (stream, "+%d)", INTVAL (XEXP (XEXP (x1, 0), 1)));
+ }
+ else
+ fatal_insn ("Bad insn to frv_print_operand_memory_reference:", x);
+ break;
+
+ default:
+ fatal_insn ("Bad insn to frv_print_operand_memory_reference:", x);
+ }
+ }
+
+ fputs (")", stream);
+}
+
+
+/* Return 2 for likely branches and 0 for non-likely branches */
+
+#define FRV_JUMP_LIKELY 2
+#define FRV_JUMP_NOT_LIKELY 0
+
+static int
+frv_print_operand_jump_hint (insn)
+ rtx insn;
+{
+ rtx note;
+ rtx labelref;
+ int ret;
+ HOST_WIDE_INT prob = -1;
+ enum { UNKNOWN, BACKWARD, FORWARD } jump_type = UNKNOWN;
+
+ if (GET_CODE (insn) != JUMP_INSN)
+ abort ();
+
+ /* Assume any non-conditional jump is likely. */
+ if (! any_condjump_p (insn))
+ ret = FRV_JUMP_LIKELY;
+
+ else
+ {
+ labelref = condjump_label (insn);
+ if (labelref)
+ {
+ rtx label = XEXP (labelref, 0);
+ jump_type = (insn_current_address > INSN_ADDRESSES (INSN_UID (label))
+ ? BACKWARD
+ : FORWARD);
+ }
+
+ note = find_reg_note (insn, REG_BR_PROB, 0);
+ if (!note)
+ ret = ((jump_type == BACKWARD) ? FRV_JUMP_LIKELY : FRV_JUMP_NOT_LIKELY);
+
+ else
+ {
+ prob = INTVAL (XEXP (note, 0));
+ ret = ((prob >= (REG_BR_PROB_BASE / 2))
+ ? FRV_JUMP_LIKELY
+ : FRV_JUMP_NOT_LIKELY);
+ }
+ }
+
+#if 0
+ if (TARGET_DEBUG)
+ {
+ char *direction;
+
+ switch (jump_type)
+ {
+ default:
+ case UNKNOWN: direction = "unknown jump direction"; break;
+ case BACKWARD: direction = "jump backward"; break;
+ case FORWARD: direction = "jump forward"; break;
+ }
+
+ fprintf (stderr,
+ "%s: uid %ld, %s, probability = %ld, max prob. = %ld, hint = %d\n",
+ IDENTIFIER_POINTER (DECL_NAME (current_function_decl)),
+ (long)INSN_UID (insn), direction, (long)prob,
+ (long)REG_BR_PROB_BASE, ret);
+ }
+#endif
+
+ return ret;
+}
+
+
+/* Print an operand to an assembler instruction.
+
+ `%' followed by a letter and a digit says to output an operand in an
+ alternate fashion. Four letters have standard, built-in meanings described
+ below. The machine description macro `PRINT_OPERAND' can define additional
+ letters with nonstandard meanings.
+
+ `%cDIGIT' can be used to substitute an operand that is a constant value
+ without the syntax that normally indicates an immediate operand.
+
+ `%nDIGIT' is like `%cDIGIT' except that the value of the constant is negated
+ before printing.
+
+ `%aDIGIT' can be used to substitute an operand as if it were a memory
+ reference, with the actual operand treated as the address. This may be
+ useful when outputting a "load address" instruction, because often the
+ assembler syntax for such an instruction requires you to write the operand
+ as if it were a memory reference.
+
+ `%lDIGIT' is used to substitute a `label_ref' into a jump instruction.
+
+ `%=' outputs a number which is unique to each instruction in the entire
+ compilation. This is useful for making local labels to be referred to more
+ than once in a single template that generates multiple assembler
+ instructions.
+
+ `%' followed by a punctuation character specifies a substitution that does
+ not use an operand. Only one case is standard: `%%' outputs a `%' into the
+ assembler code. Other nonstandard cases can be defined in the
+ `PRINT_OPERAND' macro. You must also define which punctuation characters
+ are valid with the `PRINT_OPERAND_PUNCT_VALID_P' macro. */
+
+void
+frv_print_operand (file, x, code)
+ FILE * file;
+ rtx x;
+ int code;
+{
+ HOST_WIDE_INT value;
+ int offset;
+
+ if (code != 0 && !isalpha (code))
+ value = 0;
+
+ else if (GET_CODE (x) == CONST_INT)
+ value = INTVAL (x);
+
+ else if (GET_CODE (x) == CONST_DOUBLE)
+ {
+ if (GET_MODE (x) == SFmode)
+ {
+ REAL_VALUE_TYPE rv;
+ long l;
+
+ REAL_VALUE_FROM_CONST_DOUBLE (rv, x);
+ REAL_VALUE_TO_TARGET_SINGLE (rv, l);
+ value = l;
+ }
+
+ else if (GET_MODE (x) == VOIDmode)
+ value = CONST_DOUBLE_LOW (x);
+
+ else
+ fatal_insn ("Bad insn in frv_print_operand, bad const_double", x);
+ }
+
+ else
+ value = 0;
+
+ switch (code)
+ {
+
+ case '.':
+ /* Output r0 */
+ fputs (reg_names[GPR_R0], file);
+ break;
+
+ case '#':
+ fprintf (file, "%d", frv_print_operand_jump_hint (current_output_insn));
+ break;
+
+ case SDATA_FLAG_CHAR:
+ /* Output small data area base register (gr16). */
+ fputs (reg_names[SDA_BASE_REG], file);
+ break;
+
+ case '~':
+ /* Output pic register (gr17). */
+ fputs (reg_names[PIC_REGNO], file);
+ break;
+
+ case '*':
+ /* Output the temporary integer CCR register */
+ fputs (reg_names[ICR_TEMP], file);
+ break;
+
+ case '&':
+ /* Output the temporary integer CC register */
+ fputs (reg_names[ICC_TEMP], file);
+ break;
+
+ /* case 'a': print an address */
+
+ case 'C':
+ /* Print appropriate test for integer branch false operation */
+ switch (GET_CODE (x))
+ {
+ default:
+ fatal_insn ("Bad insn to frv_print_operand, 'C' modifier:", x);
+
+ case EQ: fputs ("ne", file); break;
+ case NE: fputs ("eq", file); break;
+ case LT: fputs ("ge", file); break;
+ case LE: fputs ("gt", file); break;
+ case GT: fputs ("le", file); break;
+ case GE: fputs ("lt", file); break;
+ case LTU: fputs ("nc", file); break;
+ case LEU: fputs ("hi", file); break;
+ case GTU: fputs ("ls", file); break;
+ case GEU: fputs ("c", file); break;
+ }
+ break;
+
+ /* case 'c': print a constant without the constant prefix. If
+ CONSTANT_ADDRESS_P(x) is not true, PRINT_OPERAND is called. */
+
+ case 'c':
+ /* Print appropriate test for integer branch true operation */
+ switch (GET_CODE (x))
+ {
+ default:
+ fatal_insn ("Bad insn to frv_print_operand, 'c' modifier:", x);
+
+ case EQ: fputs ("eq", file); break;
+ case NE: fputs ("ne", file); break;
+ case LT: fputs ("lt", file); break;
+ case LE: fputs ("le", file); break;
+ case GT: fputs ("gt", file); break;
+ case GE: fputs ("ge", file); break;
+ case LTU: fputs ("c", file); break;
+ case LEU: fputs ("ls", file); break;
+ case GTU: fputs ("hi", file); break;
+ case GEU: fputs ("nc", file); break;
+ }
+ break;
+
+ case 'e':
+ /* Print 1 for a NE and 0 for an EQ to give the final argument
+ for a conditional instruction. */
+ if (GET_CODE (x) == NE)
+ fputs ("1", file);
+
+ else if (GET_CODE (x) == EQ)
+ fputs ("0", file);
+
+ else
+ fatal_insn ("Bad insn to frv_print_operand, 'e' modifier:", x);
+ break;
+
+ case 'F':
+ /* Print appropriate test for floating point branch false operation */
+ switch (GET_CODE (x))
+ {
+ default:
+ fatal_insn ("Bad insn to frv_print_operand, 'F' modifier:", x);
+
+ case EQ: fputs ("ne", file); break;
+ case NE: fputs ("eq", file); break;
+ case LT: fputs ("uge", file); break;
+ case LE: fputs ("ug", file); break;
+ case GT: fputs ("ule", file); break;
+ case GE: fputs ("ul", file); break;
+ }
+ break;
+
+ case 'f':
+ /* Print appropriate test for floating point branch true operation */
+ switch (GET_CODE (x))
+ {
+ default:
+ fatal_insn ("Bad insn to frv_print_operand, 'f' modifier:", x);
+
+ case EQ: fputs ("eq", file); break;
+ case NE: fputs ("ne", file); break;
+ case LT: fputs ("lt", file); break;
+ case LE: fputs ("le", file); break;
+ case GT: fputs ("gt", file); break;
+ case GE: fputs ("ge", file); break;
+ }
+ break;
+
+ case 'I':
+ /* Print 'i' if the operand is a constant, or is a memory reference that
+ adds a constant */
+ if (GET_CODE (x) == MEM)
+ x = ((GET_CODE (XEXP (x, 0)) == PLUS)
+ ? XEXP (XEXP (x, 0), 1)
+ : XEXP (x, 0));
+
+ switch (GET_CODE (x))
+ {
+ default:
+ break;
+
+ case CONST_INT:
+ case SYMBOL_REF:
+ case CONST:
+ fputs ("i", file);
+ break;
+ }
+ break;
+
+ case 'i':
+ /* For jump instructions, print 'i' if the operand is a constant or
+ is an expression that adds a constant */
+ if (GET_CODE (x) == CONST_INT)
+ fputs ("i", file);
+
+ else
+ {
+ if (GET_CODE (x) == CONST_INT
+ || (GET_CODE (x) == PLUS
+ && (GET_CODE (XEXP (x, 1)) == CONST_INT
+ || GET_CODE (XEXP (x, 0)) == CONST_INT)))
+ fputs ("i", file);
+ }
+ break;
+
+ case 'L':
+ /* Print the lower register of a double word register pair */
+ if (GET_CODE (x) == REG)
+ fputs (reg_names[ REGNO (x)+1 ], file);
+ else
+ fatal_insn ("Bad insn to frv_print_operand, 'L' modifier:", x);
+ break;
+
+ /* case 'l': print a LABEL_REF */
+
+ case 'M':
+ case 'N':
+ /* Print a memory reference for ld/st/jmp, %N prints a memory reference
+ for the second word of double memory operations. */
+ offset = (code == 'M') ? 0 : UNITS_PER_WORD;
+ switch (GET_CODE (x))
+ {
+ default:
+ fatal_insn ("Bad insn to frv_print_operand, 'M/N' modifier:", x);
+
+ case MEM:
+ frv_print_operand_memory_reference (file, XEXP (x, 0), offset);
+ break;
+
+ case REG:
+ case SUBREG:
+ case CONST_INT:
+ case PLUS:
+ case SYMBOL_REF:
+ frv_print_operand_memory_reference (file, x, offset);
+ break;
+ }
+ break;
+
+ case 'O':
+ /* Print the opcode of a command. */
+ switch (GET_CODE (x))
+ {
+ default:
+ fatal_insn ("Bad insn to frv_print_operand, 'O' modifier:", x);
+
+ case PLUS: fputs ("add", file); break;
+ case MINUS: fputs ("sub", file); break;
+ case AND: fputs ("and", file); break;
+ case IOR: fputs ("or", file); break;
+ case XOR: fputs ("xor", file); break;
+ case ASHIFT: fputs ("sll", file); break;
+ case ASHIFTRT: fputs ("sra", file); break;
+ case LSHIFTRT: fputs ("srl", file); break;
+ }
+ break;
+
+ /* case 'n': negate and print a constant int */
+
+ case 'P':
+ /* Print PIC label using operand as the number. */
+ if (GET_CODE (x) != CONST_INT)
+ fatal_insn ("Bad insn to frv_print_operand, P modifier:", x);
+
+ fprintf (file, ".LCF%ld", (long)INTVAL (x));
+ break;
+
+ case 'U':
+ /* Print 'u' if the operand is a update load/store */
+ if (GET_CODE (x) == MEM && GET_CODE (XEXP (x, 0)) == PRE_MODIFY)
+ fputs ("u", file);
+ break;
+
+ case 'z':
+ /* If value is 0, print gr0, otherwise it must be a register */
+ if (GET_CODE (x) == CONST_INT && INTVAL (x) == 0)
+ fputs (reg_names[GPR_R0], file);
+
+ else if (GET_CODE (x) == REG)
+ fputs (reg_names [REGNO (x)], file);
+
+ else
+ fatal_insn ("Bad insn in frv_print_operand, z case", x);
+ break;
+
+ case 'x':
+ /* Print constant in hex */
+ if (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE)
+ {
+ fprintf (file, "%s0x%.4lx", IMMEDIATE_PREFIX, (long) value);
+ break;
+ }
+
+ /* fall through */
+
+ case '\0':
+ if (GET_CODE (x) == REG)
+ fputs (reg_names [REGNO (x)], file);
+
+ else if (GET_CODE (x) == CONST_INT
+ || GET_CODE (x) == CONST_DOUBLE)
+ fprintf (file, "%s%ld", IMMEDIATE_PREFIX, (long) value);
+
+ else if (GET_CODE (x) == MEM)
+ frv_print_operand_address (file, XEXP (x, 0));
+
+ else if (CONSTANT_ADDRESS_P (x))
+ frv_print_operand_address (file, x);
+
+ else
+ fatal_insn ("Bad insn in frv_print_operand, 0 case", x);
+
+ break;
+
+ default:
+ fatal_insn ("frv_print_operand: unknown code", x);
+ break;
+ }
+
+ return;
+}
+
+
+/* A C statement (sans semicolon) for initializing the variable CUM for the
+ state at the beginning of the argument list. The variable has type
+ `CUMULATIVE_ARGS'. The value of FNTYPE is the tree node for the data type
+ of the function which will receive the args, or 0 if the args are to a
+ compiler support library function. The value of INDIRECT is nonzero when
+ processing an indirect call, for example a call through a function pointer.
+ The value of INDIRECT is zero for a call to an explicitly named function, a
+ library function call, or when `INIT_CUMULATIVE_ARGS' is used to find
+ arguments for the function being compiled.
+
+ When processing a call to a compiler support library function, LIBNAME
+ identifies which one. It is a `symbol_ref' rtx which contains the name of
+ the function, as a string. LIBNAME is 0 when an ordinary C function call is
+ being processed. Thus, each time this macro is called, either LIBNAME or
+ FNTYPE is nonzero, but never both of them at once. */
+
+void
+frv_init_cumulative_args (cum, fntype, libname, indirect, incoming)
+ CUMULATIVE_ARGS *cum;
+ tree fntype;
+ rtx libname;
+ int indirect;
+ int incoming;
+{
+ *cum = FIRST_ARG_REGNUM;
+
+ if (TARGET_DEBUG_ARG)
+ {
+ fprintf (stderr, "\ninit_cumulative_args:");
+ if (indirect)
+ fputs (" indirect", stderr);
+
+ if (incoming)
+ fputs (" incoming", stderr);
+
+ if (fntype)
+ {
+ tree ret_type = TREE_TYPE (fntype);
+ fprintf (stderr, " return=%s,",
+ tree_code_name[ (int)TREE_CODE (ret_type) ]);
+ }
+
+ if (libname && GET_CODE (libname) == SYMBOL_REF)
+ fprintf (stderr, " libname=%s", XSTR (libname, 0));
+
+ if (cfun->returns_struct)
+ fprintf (stderr, " return-struct");
+
+ putc ('\n', stderr);
+ }
+}
+
+
+/* If defined, a C expression that gives the alignment boundary, in bits, of an
+ argument with the specified mode and type. If it is not defined,
+ `PARM_BOUNDARY' is used for all arguments. */
+
+int
+frv_function_arg_boundary (mode, type)
+ enum machine_mode mode ATTRIBUTE_UNUSED;
+ tree type ATTRIBUTE_UNUSED;
+{
+ return BITS_PER_WORD;
+}
+
+
+/* A C expression that controls whether a function argument is passed in a
+ register, and which register.
+
+ The arguments are CUM, of type CUMULATIVE_ARGS, which summarizes (in a way
+ defined by INIT_CUMULATIVE_ARGS and FUNCTION_ARG_ADVANCE) all of the previous
+ arguments so far passed in registers; MODE, the machine mode of the argument;
+ TYPE, the data type of the argument as a tree node or 0 if that is not known
+ (which happens for C support library functions); and NAMED, which is 1 for an
+ ordinary argument and 0 for nameless arguments that correspond to `...' in the
+ called function's prototype.
+
+ The value of the expression should either be a `reg' RTX for the hard
+ register in which to pass the argument, or zero to pass the argument on the
+ stack.
+
+ For machines like the VAX and 68000, where normally all arguments are
+ pushed, zero suffices as a definition.
+
+ The usual way to make the ANSI library `stdarg.h' work on a machine where
+ some arguments are usually passed in registers, is to cause nameless
+ arguments to be passed on the stack instead. This is done by making
+ `FUNCTION_ARG' return 0 whenever NAMED is 0.
+
+ You may use the macro `MUST_PASS_IN_STACK (MODE, TYPE)' in the definition of
+ this macro to determine if this argument is of a type that must be passed in
+ the stack. If `REG_PARM_STACK_SPACE' is not defined and `FUNCTION_ARG'
+ returns nonzero for such an argument, the compiler will abort. If
+ `REG_PARM_STACK_SPACE' is defined, the argument will be computed in the
+ stack and then loaded into a register. */
+
+rtx
+frv_function_arg (cum, mode, type, named, incoming)
+ CUMULATIVE_ARGS *cum;
+ enum machine_mode mode;
+ tree type ATTRIBUTE_UNUSED;
+ int named;
+ int incoming ATTRIBUTE_UNUSED;
+{
+ enum machine_mode xmode = (mode == BLKmode) ? SImode : mode;
+ int arg_num = *cum;
+ rtx ret;
+ const char *debstr;
+
+ /* Return a marker for use in the call instruction. */
+ if (xmode == VOIDmode)
+ {
+ ret = const0_rtx;
+ debstr = "<0>";
+ }
+
+ else if (arg_num <= LAST_ARG_REGNUM)
+ {
+ ret = gen_rtx (REG, xmode, arg_num);
+ debstr = reg_names[arg_num];
+ }
+
+ else
+ {
+ ret = NULL_RTX;
+ debstr = "memory";
+ }
+
+ if (TARGET_DEBUG_ARG)
+ fprintf (stderr,
+ "function_arg: words = %2d, mode = %4s, named = %d, size = %3d, arg = %s\n",
+ arg_num, GET_MODE_NAME (mode), named, GET_MODE_SIZE (mode), debstr);
+
+ return ret;
+}
+
+
+/* A C statement (sans semicolon) to update the summarizer variable CUM to
+ advance past an argument in the argument list. The values MODE, TYPE and
+ NAMED describe that argument. Once this is done, the variable CUM is
+ suitable for analyzing the *following* argument with `FUNCTION_ARG', etc.
+
+ This macro need not do anything if the argument in question was passed on
+ the stack. The compiler knows how to track the amount of stack space used
+ for arguments without any special help. */
+
+void
+frv_function_arg_advance (cum, mode, type, named)
+ CUMULATIVE_ARGS *cum;
+ enum machine_mode mode;
+ tree type ATTRIBUTE_UNUSED;
+ int named;
+{
+ enum machine_mode xmode = (mode == BLKmode) ? SImode : mode;
+ int bytes = GET_MODE_SIZE (xmode);
+ int words = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
+ int arg_num = *cum;
+
+ *cum = arg_num + words;
+
+ if (TARGET_DEBUG_ARG)
+ fprintf (stderr,
+ "function_adv: words = %2d, mode = %4s, named = %d, size = %3d\n",
+ arg_num, GET_MODE_NAME (mode), named, words * UNITS_PER_WORD);
+}
+
+
+/* A C expression for the number of words, at the beginning of an argument,
+ must be put in registers. The value must be zero for arguments that are
+ passed entirely in registers or that are entirely pushed on the stack.
+
+ On some machines, certain arguments must be passed partially in registers
+ and partially in memory. On these machines, typically the first N words of
+ arguments are passed in registers, and the rest on the stack. If a
+ multi-word argument (a `double' or a structure) crosses that boundary, its
+ first few words must be passed in registers and the rest must be pushed.
+ This macro tells the compiler when this occurs, and how many of the words
+ should go in registers.
+
+ `FUNCTION_ARG' for these arguments should return the first register to be
+ used by the caller for this argument; likewise `FUNCTION_INCOMING_ARG', for
+ the called function. */
+
+int
+frv_function_arg_partial_nregs (cum, mode, type, named)
+ CUMULATIVE_ARGS *cum;
+ enum machine_mode mode;
+ tree type ATTRIBUTE_UNUSED;
+ int named ATTRIBUTE_UNUSED;
+{
+ enum machine_mode xmode = (mode == BLKmode) ? SImode : mode;
+ int bytes = GET_MODE_SIZE (xmode);
+ int words = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
+ int arg_num = *cum;
+ int ret;
+
+ ret = ((arg_num <= LAST_ARG_REGNUM && arg_num + words > LAST_ARG_REGNUM+1)
+ ? LAST_ARG_REGNUM - arg_num + 1
+ : 0);
+
+ if (TARGET_DEBUG_ARG && ret)
+ fprintf (stderr, "function_arg_partial_nregs: %d\n", ret);
+
+ return ret;
+
+}
+
+
+
+/* A C expression that indicates when an argument must be passed by reference.
+ If nonzero for an argument, a copy of that argument is made in memory and a
+ pointer to the argument is passed instead of the argument itself. The
+ pointer is passed in whatever way is appropriate for passing a pointer to
+ that type.
+
+ On machines where `REG_PARM_STACK_SPACE' is not defined, a suitable
+ definition of this macro might be
+ #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
+ MUST_PASS_IN_STACK (MODE, TYPE) */
+
+int
+frv_function_arg_pass_by_reference (cum, mode, type, named)
+ CUMULATIVE_ARGS *cum ATTRIBUTE_UNUSED;
+ enum machine_mode mode;
+ tree type;
+ int named ATTRIBUTE_UNUSED;
+{
+ return MUST_PASS_IN_STACK (mode, type);
+}
+
+/* If defined, a C expression that indicates when it is the called function's
+ responsibility to make a copy of arguments passed by invisible reference.
+ Normally, the caller makes a copy and passes the address of the copy to the
+ routine being called. When FUNCTION_ARG_CALLEE_COPIES is defined and is
+ nonzero, the caller does not make a copy. Instead, it passes a pointer to
+ the "live" value. The called function must not modify this value. If it
+ can be determined that the value won't be modified, it need not make a copy;
+ otherwise a copy must be made. */
+
+int
+frv_function_arg_callee_copies (cum, mode, type, named)
+ CUMULATIVE_ARGS *cum ATTRIBUTE_UNUSED;
+ enum machine_mode mode ATTRIBUTE_UNUSED;
+ tree type ATTRIBUTE_UNUSED;
+ int named ATTRIBUTE_UNUSED;
+{
+ return 0;
+}
+
+/* If defined, a C expression that indicates when it is more desirable to keep
+ an argument passed by invisible reference as a reference, rather than
+ copying it to a pseudo register. */
+
+int
+frv_function_arg_keep_as_reference (cum, mode, type, named)
+ CUMULATIVE_ARGS *cum ATTRIBUTE_UNUSED;
+ enum machine_mode mode ATTRIBUTE_UNUSED;
+ tree type ATTRIBUTE_UNUSED;
+ int named ATTRIBUTE_UNUSED;
+{
+ return 0;
+}
+
+
+/* Return true if a register is ok to use as a base or index register. */
+
+static FRV_INLINE int
+frv_regno_ok_for_base_p (regno, strict_p)
+ int regno;
+ int strict_p;
+{
+ if (GPR_P (regno))
+ return TRUE;
+
+ if (strict_p)
+ return (reg_renumber[regno] >= 0 && GPR_P (reg_renumber[regno]));
+
+ if (regno == ARG_POINTER_REGNUM)
+ return TRUE;
+
+ return (regno >= FIRST_PSEUDO_REGISTER);
+}
+
+
+/* A C compound statement with a conditional `goto LABEL;' executed if X (an
+ RTX) is a legitimate memory address on the target machine for a memory
+ operand of mode MODE.
+
+ It usually pays to define several simpler macros to serve as subroutines for
+ this one. Otherwise it may be too complicated to understand.
+
+ This macro must exist in two variants: a strict variant and a non-strict
+ one. The strict variant is used in the reload pass. It must be defined so
+ that any pseudo-register that has not been allocated a hard register is
+ considered a memory reference. In contexts where some kind of register is
+ required, a pseudo-register with no hard register must be rejected.
+
+ The non-strict variant is used in other passes. It must be defined to
+ accept all pseudo-registers in every context where some kind of register is
+ required.
+
+ Compiler source files that want to use the strict variant of this macro
+ define the macro `REG_OK_STRICT'. You should use an `#ifdef REG_OK_STRICT'
+ conditional to define the strict variant in that case and the non-strict
+ variant otherwise.
+
+ Subroutines to check for acceptable registers for various purposes (one for
+ base registers, one for index registers, and so on) are typically among the
+ subroutines used to define `GO_IF_LEGITIMATE_ADDRESS'. Then only these
+ subroutine macros need have two variants; the higher levels of macros may be
+ the same whether strict or not.
+
+ Normally, constant addresses which are the sum of a `symbol_ref' and an
+ integer are stored inside a `const' RTX to mark them as constant.
+ Therefore, there is no need to recognize such sums specifically as
+ legitimate addresses. Normally you would simply recognize any `const' as
+ legitimate.
+
+ Usually `PRINT_OPERAND_ADDRESS' is not prepared to handle constant sums that
+ are not marked with `const'. It assumes that a naked `plus' indicates
+ indexing. If so, then you *must* reject such naked constant sums as
+ illegitimate addresses, so that none of them will be given to
+ `PRINT_OPERAND_ADDRESS'.
+
+ On some machines, whether a symbolic address is legitimate depends on the
+ section that the address refers to. On these machines, define the macro
+ `ENCODE_SECTION_INFO' to store the information into the `symbol_ref', and
+ then check for it here. When you see a `const', you will have to look
+ inside it to find the `symbol_ref' in order to determine the section.
+
+ The best way to modify the name string is by adding text to the beginning,
+ with suitable punctuation to prevent any ambiguity. Allocate the new name
+ in `saveable_obstack'. You will have to modify `ASM_OUTPUT_LABELREF' to
+ remove and decode the added text and output the name accordingly, and define
+ `(* targetm.strip_name_encoding)' to access the original name string.
+
+ You can check the information stored here into the `symbol_ref' in the
+ definitions of the macros `GO_IF_LEGITIMATE_ADDRESS' and
+ `PRINT_OPERAND_ADDRESS'. */
+
+int
+frv_legitimate_address_p (mode, x, strict_p, condexec_p)
+ enum machine_mode mode;
+ rtx x;
+ int strict_p;
+ int condexec_p;
+{
+ rtx x0, x1;
+ int ret = 0;
+ HOST_WIDE_INT value;
+ unsigned regno0;
+
+ switch (GET_CODE (x))
+ {
+ default:
+ break;
+
+ case SUBREG:
+ x = SUBREG_REG (x);
+ if (GET_CODE (x) != REG)
+ break;
+
+ /* fall through */
+
+ case REG:
+ ret = frv_regno_ok_for_base_p (REGNO (x), strict_p);
+ break;
+
+ case PRE_MODIFY:
+ x0 = XEXP (x, 0);
+ x1 = XEXP (x, 1);
+ if (GET_CODE (x0) != REG
+ || ! frv_regno_ok_for_base_p (REGNO (x0), strict_p)
+ || GET_CODE (x1) != PLUS
+ || ! rtx_equal_p (x0, XEXP (x1, 0))
+ || GET_CODE (XEXP (x1, 1)) != REG
+ || ! frv_regno_ok_for_base_p (REGNO (XEXP (x1, 1)), strict_p))
+ break;
+
+ ret = 1;
+ break;
+
+ case CONST_INT:
+ /* 12 bit immediate */
+ if (condexec_p)
+ ret = FALSE;
+ else
+ {
+ ret = IN_RANGE_P (INTVAL (x), -2048, 2047);
+
+ /* If we can't use load/store double operations, make sure we can
+ address the second word. */
+ if (ret && GET_MODE_SIZE (mode) > UNITS_PER_WORD)
+ ret = IN_RANGE_P (INTVAL (x) + GET_MODE_SIZE (mode) - 1,
+ -2048, 2047);
+ }
+ break;
+
+ case PLUS:
+ x0 = XEXP (x, 0);
+ x1 = XEXP (x, 1);
+
+ if (GET_CODE (x0) == SUBREG)
+ x0 = SUBREG_REG (x0);
+
+ if (GET_CODE (x0) != REG)
+ break;
+
+ regno0 = REGNO (x0);
+ if (!frv_regno_ok_for_base_p (regno0, strict_p))
+ break;
+
+ switch (GET_CODE (x1))
+ {
+ default:
+ break;
+
+ case SUBREG:
+ x1 = SUBREG_REG (x1);
+ if (GET_CODE (x1) != REG)
+ break;
+
+ /* fall through */
+
+ case REG:
+ /* Do not allow reg+reg addressing for modes > 1 word if we can't depend
+ on having move double instructions */
+ if (GET_MODE_SIZE (mode) > UNITS_PER_WORD)
+ ret = FALSE;
+ else
+ ret = frv_regno_ok_for_base_p (REGNO (x1), strict_p);
+ break;
+
+ case CONST_INT:
+ /* 12 bit immediate */
+ if (condexec_p)
+ ret = FALSE;
+ else
+ {
+ value = INTVAL (x1);
+ ret = IN_RANGE_P (value, -2048, 2047);
+
+ /* If we can't use load/store double operations, make sure we can
+ address the second word. */
+ if (ret && GET_MODE_SIZE (mode) > UNITS_PER_WORD)
+ ret = IN_RANGE_P (value + GET_MODE_SIZE (mode) - 1, -2048, 2047);
+ }
+ break;
+
+ case SYMBOL_REF:
+ if (!condexec_p
+ && regno0 == SDA_BASE_REG
+ && symbol_ref_small_data_p (x1))
+ ret = TRUE;
+ break;
+
+ case CONST:
+ if (!condexec_p && regno0 == SDA_BASE_REG && const_small_data_p (x1))
+ ret = TRUE;
+ break;
+
+ }
+ break;
+ }
+
+ if (TARGET_DEBUG_ADDR)
+ {
+ fprintf (stderr, "\n========== GO_IF_LEGITIMATE_ADDRESS, mode = %s, result = %d, addresses are %sstrict%s\n",
+ GET_MODE_NAME (mode), ret, (strict_p) ? "" : "not ",
+ (condexec_p) ? ", inside conditional code" : "");
+ debug_rtx (x);
+ }
+
+ return ret;
+}
+
+
+/* A C compound statement that attempts to replace X with a valid memory
+ address for an operand of mode MODE. WIN will be a C statement label
+ elsewhere in the code; the macro definition may use
+
+ GO_IF_LEGITIMATE_ADDRESS (MODE, X, WIN);
+
+ to avoid further processing if the address has become legitimate.
+
+ X will always be the result of a call to `break_out_memory_refs', and OLDX
+ will be the operand that was given to that function to produce X.
+
+ The code generated by this macro should not alter the substructure of X. If
+ it transforms X into a more legitimate form, it should assign X (which will
+ always be a C variable) a new value.
+
+ It is not necessary for this macro to come up with a legitimate address.
+ The compiler has standard ways of doing so in all cases. In fact, it is
+ safe for this macro to do nothing. But often a machine-dependent strategy
+ can generate better code. */
+
+rtx
+frv_legitimize_address (x, oldx, mode)
+ rtx x;
+ rtx oldx ATTRIBUTE_UNUSED;
+ enum machine_mode mode ATTRIBUTE_UNUSED;
+{
+ rtx ret = NULL_RTX;
+
+ /* Don't try to legitimize addresses if we are not optimizing, since the
+ address we generate is not a general operand, and will horribly mess
+ things up when force_reg is called to try and put it in a register because
+ we aren't optimizing. */
+ if (optimize
+ && ((GET_CODE (x) == SYMBOL_REF && symbol_ref_small_data_p (x))
+ || (GET_CODE (x) == CONST && const_small_data_p (x))))
+ {
+ ret = gen_rtx_PLUS (Pmode, gen_rtx_REG (Pmode, SDA_BASE_REG), x);
+ if (flag_pic)
+ cfun->uses_pic_offset_table = TRUE;
+ }
+
+ if (TARGET_DEBUG_ADDR && ret != NULL_RTX)
+ {
+ fprintf (stderr, "\n========== LEGITIMIZE_ADDRESS, mode = %s, modified address\n",
+ GET_MODE_NAME (mode));
+ debug_rtx (ret);
+ }
+
+ return ret;
+}
+
+/* Return 1 if operand is a valid FRV address. CONDEXEC_P is true if
+ the operand is used by a predicated instruction. */
+
+static int
+frv_legitimate_memory_operand (op, mode, condexec_p)
+ rtx op;
+ enum machine_mode mode;
+ int condexec_p;
+{
+ return ((GET_MODE (op) == mode || mode == VOIDmode)
+ && GET_CODE (op) == MEM
+ && frv_legitimate_address_p (mode, XEXP (op, 0),
+ reload_completed, condexec_p));
+}
+
+
+/* Return 1 is OP is a memory operand, or will be turned into one by
+ reload. */
+
+int frv_load_operand (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ if (GET_MODE (op) != mode && mode != VOIDmode)
+ return FALSE;
+
+ if (reload_in_progress)
+ {
+ rtx tmp = op;
+ if (GET_CODE (tmp) == SUBREG)
+ tmp = SUBREG_REG (tmp);
+ if (GET_CODE (tmp) == REG
+ && REGNO (tmp) >= FIRST_PSEUDO_REGISTER)
+ op = reg_equiv_memory_loc[REGNO (tmp)];
+ }
+
+ return op && memory_operand (op, mode);
+}
+
+
+/* Return 1 if operand is a GPR register or a FPR register. */
+
+int gpr_or_fpr_operand (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ int regno;
+
+ if (GET_MODE (op) != mode && mode != VOIDmode)
+ return FALSE;
+
+ if (GET_CODE (op) == SUBREG)
+ {
+ if (GET_CODE (SUBREG_REG (op)) != REG)
+ return register_operand (op, mode);
+
+ op = SUBREG_REG (op);
+ }
+
+ if (GET_CODE (op) != REG)
+ return FALSE;
+
+ regno = REGNO (op);
+ if (GPR_P (regno) || FPR_P (regno) || regno >= FIRST_PSEUDO_REGISTER)
+ return TRUE;
+
+ return FALSE;
+}
+
+/* Return 1 if operand is a GPR register or 12 bit signed immediate. */
+
+int gpr_or_int12_operand (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ if (GET_CODE (op) == CONST_INT)
+ return IN_RANGE_P (INTVAL (op), -2048, 2047);
+
+ if (GET_MODE (op) != mode && mode != VOIDmode)
+ return FALSE;
+
+ if (GET_CODE (op) == SUBREG)
+ {
+ if (GET_CODE (SUBREG_REG (op)) != REG)
+ return register_operand (op, mode);
+
+ op = SUBREG_REG (op);
+ }
+
+ if (GET_CODE (op) != REG)
+ return FALSE;
+
+ return GPR_OR_PSEUDO_P (REGNO (op));
+}
+
+/* Return 1 if operand is a GPR register, or a FPR register, or a 12 bit
+ signed immediate. */
+
+int gpr_fpr_or_int12_operand (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ int regno;
+
+ if (GET_CODE (op) == CONST_INT)
+ return IN_RANGE_P (INTVAL (op), -2048, 2047);
+
+ if (GET_MODE (op) != mode && mode != VOIDmode)
+ return FALSE;
+
+ if (GET_CODE (op) == SUBREG)
+ {
+ if (GET_CODE (SUBREG_REG (op)) != REG)
+ return register_operand (op, mode);
+
+ op = SUBREG_REG (op);
+ }
+
+ if (GET_CODE (op) != REG)
+ return FALSE;
+
+ regno = REGNO (op);
+ if (GPR_P (regno) || FPR_P (regno) || regno >= FIRST_PSEUDO_REGISTER)
+ return TRUE;
+
+ return FALSE;
+}
+
+/* Return 1 if operand is a register or 6 bit signed immediate. */
+
+int fpr_or_int6_operand (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ if (GET_CODE (op) == CONST_INT)
+ return IN_RANGE_P (INTVAL (op), -32, 31);
+
+ if (GET_MODE (op) != mode && mode != VOIDmode)
+ return FALSE;
+
+ if (GET_CODE (op) == SUBREG)
+ {
+ if (GET_CODE (SUBREG_REG (op)) != REG)
+ return register_operand (op, mode);
+
+ op = SUBREG_REG (op);
+ }
+
+ if (GET_CODE (op) != REG)
+ return FALSE;
+
+ return FPR_OR_PSEUDO_P (REGNO (op));
+}
+
+/* Return 1 if operand is a register or 10 bit signed immediate. */
+
+int gpr_or_int10_operand (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ if (GET_CODE (op) == CONST_INT)
+ return IN_RANGE_P (INTVAL (op), -512, 511);
+
+ if (GET_MODE (op) != mode && mode != VOIDmode)
+ return FALSE;
+
+ if (GET_CODE (op) == SUBREG)
+ {
+ if (GET_CODE (SUBREG_REG (op)) != REG)
+ return register_operand (op, mode);
+
+ op = SUBREG_REG (op);
+ }
+
+ if (GET_CODE (op) != REG)
+ return FALSE;
+
+ return GPR_OR_PSEUDO_P (REGNO (op));
+}
+
+/* Return 1 if operand is a register or an integer immediate. */
+
+int gpr_or_int_operand (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ if (GET_CODE (op) == CONST_INT)
+ return TRUE;
+
+ if (GET_MODE (op) != mode && mode != VOIDmode)
+ return FALSE;
+
+ if (GET_CODE (op) == SUBREG)
+ {
+ if (GET_CODE (SUBREG_REG (op)) != REG)
+ return register_operand (op, mode);
+
+ op = SUBREG_REG (op);
+ }
+
+ if (GET_CODE (op) != REG)
+ return FALSE;
+
+ return GPR_OR_PSEUDO_P (REGNO (op));
+}
+
+/* Return 1 if operand is a 12 bit signed immediate. */
+
+int int12_operand (op, mode)
+ rtx op;
+ enum machine_mode mode ATTRIBUTE_UNUSED;
+{
+ if (GET_CODE (op) != CONST_INT)
+ return FALSE;
+
+ return IN_RANGE_P (INTVAL (op), -2048, 2047);
+}
+
+/* Return 1 if operand is a 6 bit signed immediate. */
+
+int int6_operand (op, mode)
+ rtx op;
+ enum machine_mode mode ATTRIBUTE_UNUSED;
+{
+ if (GET_CODE (op) != CONST_INT)
+ return FALSE;
+
+ return IN_RANGE_P (INTVAL (op), -32, 31);
+}
+
+/* Return 1 if operand is a 5 bit signed immediate. */
+
+int int5_operand (op, mode)
+ rtx op;
+ enum machine_mode mode ATTRIBUTE_UNUSED;
+{
+ return GET_CODE (op) == CONST_INT && IN_RANGE_P (INTVAL (op), -16, 15);
+}
+
+/* Return 1 if operand is a 5 bit unsigned immediate. */
+
+int uint5_operand (op, mode)
+ rtx op;
+ enum machine_mode mode ATTRIBUTE_UNUSED;
+{
+ return GET_CODE (op) == CONST_INT && IN_RANGE_P (INTVAL (op), 0, 31);
+}
+
+/* Return 1 if operand is a 4 bit unsigned immediate. */
+
+int uint4_operand (op, mode)
+ rtx op;
+ enum machine_mode mode ATTRIBUTE_UNUSED;
+{
+ return GET_CODE (op) == CONST_INT && IN_RANGE_P (INTVAL (op), 0, 15);
+}
+
+/* Return 1 if operand is a 1 bit unsigned immediate (0 or 1). */
+
+int uint1_operand (op, mode)
+ rtx op;
+ enum machine_mode mode ATTRIBUTE_UNUSED;
+{
+ return GET_CODE (op) == CONST_INT && IN_RANGE_P (INTVAL (op), 0, 1);
+}
+
+/* Return 1 if operand is an integer constant that takes 2 instructions
+ to load up and can be split into sethi/setlo instructions.. */
+
+int int_2word_operand (op, mode)
+ rtx op;
+ enum machine_mode mode ATTRIBUTE_UNUSED;
+{
+ HOST_WIDE_INT value;
+ REAL_VALUE_TYPE rv;
+ long l;
+
+ switch (GET_CODE (op))
+ {
+ default:
+ break;
+
+ case LABEL_REF:
+ return (flag_pic == 0);
+
+ case CONST:
+ /* small data references are already 1 word */
+ return (flag_pic == 0) && (! const_small_data_p (op));
+
+ case SYMBOL_REF:
+ /* small data references are already 1 word */
+ return (flag_pic == 0) && (! symbol_ref_small_data_p (op));
+
+ case CONST_INT:
+ return ! IN_RANGE_P (INTVAL (op), -32768, 32767);
+
+ case CONST_DOUBLE:
+ if (GET_MODE (op) == SFmode)
+ {
+ REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
+ REAL_VALUE_TO_TARGET_SINGLE (rv, l);
+ value = l;
+ return ! IN_RANGE_P (value, -32768, 32767);
+ }
+ else if (GET_MODE (op) == VOIDmode)
+ {
+ value = CONST_DOUBLE_LOW (op);
+ return ! IN_RANGE_P (value, -32768, 32767);
+ }
+ break;
+ }
+
+ return FALSE;
+}
+
+/* Return 1 if operand is the pic address register. */
+int
+pic_register_operand (op, mode)
+ rtx op;
+ enum machine_mode mode ATTRIBUTE_UNUSED;
+{
+ if (! flag_pic)
+ return FALSE;
+
+ if (GET_CODE (op) != REG)
+ return FALSE;
+
+ if (REGNO (op) != PIC_REGNO)
+ return FALSE;
+
+ return TRUE;
+}
+
+/* Return 1 if operand is a symbolic reference when a PIC option is specified
+ that takes 3 seperate instructions to form. */
+
+int pic_symbolic_operand (op, mode)
+ rtx op;
+ enum machine_mode mode ATTRIBUTE_UNUSED;
+{
+ if (! flag_pic)
+ return FALSE;
+
+ switch (GET_CODE (op))
+ {
+ default:
+ break;
+
+ case LABEL_REF:
+ return TRUE;
+
+ case SYMBOL_REF:
+ /* small data references are already 1 word */
+ return ! symbol_ref_small_data_p (op);
+
+ case CONST:
+ /* small data references are already 1 word */
+ return ! const_small_data_p (op);
+ }
+
+ return FALSE;
+}
+
+/* Return 1 if operand is the small data register. */
+int
+small_data_register_operand (op, mode)
+ rtx op;
+ enum machine_mode mode ATTRIBUTE_UNUSED;
+{
+ if (GET_CODE (op) != REG)
+ return FALSE;
+
+ if (REGNO (op) != SDA_BASE_REG)
+ return FALSE;
+
+ return TRUE;
+}
+
+/* Return 1 if operand is a symbolic reference to a small data area static or
+ global object. */
+
+int small_data_symbolic_operand (op, mode)
+ rtx op;
+ enum machine_mode mode ATTRIBUTE_UNUSED;
+{
+ switch (GET_CODE (op))
+ {
+ default:
+ break;
+
+ case CONST:
+ return const_small_data_p (op);
+
+ case SYMBOL_REF:
+ return symbol_ref_small_data_p (op);
+ }
+
+ return FALSE;
+}
+
+/* Return 1 if operand is a 16 bit unsigned immediate */
+
+int uint16_operand (op, mode)
+ rtx op;
+ enum machine_mode mode ATTRIBUTE_UNUSED;
+{
+ if (GET_CODE (op) != CONST_INT)
+ return FALSE;
+
+ return IN_RANGE_P (INTVAL (op), 0, 0xffff);
+}
+
+/* Return 1 if operand is an integer constant with the bottom 16 bits clear */
+
+int upper_int16_operand (op, mode)
+ rtx op;
+ enum machine_mode mode ATTRIBUTE_UNUSED;
+{
+ if (GET_CODE (op) != CONST_INT)
+ return FALSE;
+
+ return ((INTVAL (op) & 0xffff) == 0);
+}
+
+/* Return true if operand is a GPR register. */
+
+int
+integer_register_operand (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ if (GET_MODE (op) != mode && mode != VOIDmode)
+ return FALSE;
+
+ if (GET_CODE (op) == SUBREG)
+ {
+ if (GET_CODE (SUBREG_REG (op)) != REG)
+ return register_operand (op, mode);
+
+ op = SUBREG_REG (op);
+ }
+
+ if (GET_CODE (op) != REG)
+ return FALSE;
+
+ return GPR_OR_PSEUDO_P (REGNO (op));
+}
+
+/* Return true if operand is a GPR register. Do not allow SUBREG's
+ here, in order to prevent a combine bug. */
+
+int
+gpr_no_subreg_operand (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ if (GET_MODE (op) != mode && mode != VOIDmode)
+ return FALSE;
+
+ if (GET_CODE (op) != REG)
+ return FALSE;
+
+ return GPR_OR_PSEUDO_P (REGNO (op));
+}
+
+/* Return true if operand is a FPR register. */
+
+int
+fpr_operand (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ if (GET_MODE (op) != mode && mode != VOIDmode)
+ return FALSE;
+
+ if (GET_CODE (op) == SUBREG)
+ {
+ if (GET_CODE (SUBREG_REG (op)) != REG)
+ return register_operand (op, mode);
+
+ op = SUBREG_REG (op);
+ }
+
+ if (GET_CODE (op) != REG)
+ return FALSE;
+
+ return FPR_OR_PSEUDO_P (REGNO (op));
+}
+
+/* Return true if operand is an even GPR or FPR register. */
+
+int
+even_reg_operand (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ int regno;
+
+ if (GET_MODE (op) != mode && mode != VOIDmode)
+ return FALSE;
+
+ if (GET_CODE (op) == SUBREG)
+ {
+ if (GET_CODE (SUBREG_REG (op)) != REG)
+ return register_operand (op, mode);
+
+ op = SUBREG_REG (op);
+ }
+
+ if (GET_CODE (op) != REG)
+ return FALSE;
+
+ regno = REGNO (op);
+ if (regno >= FIRST_PSEUDO_REGISTER)
+ return TRUE;
+
+ if (GPR_P (regno))
+ return (((regno - GPR_FIRST) & 1) == 0);
+
+ if (FPR_P (regno))
+ return (((regno - FPR_FIRST) & 1) == 0);
+
+ return FALSE;
+}
+
+/* Return true if operand is an odd GPR register. */
+
+int
+odd_reg_operand (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ int regno;
+
+ if (GET_MODE (op) != mode && mode != VOIDmode)
+ return FALSE;
+
+ if (GET_CODE (op) == SUBREG)
+ {
+ if (GET_CODE (SUBREG_REG (op)) != REG)
+ return register_operand (op, mode);
+
+ op = SUBREG_REG (op);
+ }
+
+ if (GET_CODE (op) != REG)
+ return FALSE;
+
+ regno = REGNO (op);
+ /* assume that reload will give us an even register */
+ if (regno >= FIRST_PSEUDO_REGISTER)
+ return FALSE;
+
+ if (GPR_P (regno))
+ return (((regno - GPR_FIRST) & 1) != 0);
+
+ if (FPR_P (regno))
+ return (((regno - FPR_FIRST) & 1) != 0);
+
+ return FALSE;
+}
+
+/* Return true if operand is an even GPR register. */
+
+int
+even_gpr_operand (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ int regno;
+
+ if (GET_MODE (op) != mode && mode != VOIDmode)
+ return FALSE;
+
+ if (GET_CODE (op) == SUBREG)
+ {
+ if (GET_CODE (SUBREG_REG (op)) != REG)
+ return register_operand (op, mode);
+
+ op = SUBREG_REG (op);
+ }
+
+ if (GET_CODE (op) != REG)
+ return FALSE;
+
+ regno = REGNO (op);
+ if (regno >= FIRST_PSEUDO_REGISTER)
+ return TRUE;
+
+ if (! GPR_P (regno))
+ return FALSE;
+
+ return (((regno - GPR_FIRST) & 1) == 0);
+}
+
+/* Return true if operand is an odd GPR register. */
+
+int
+odd_gpr_operand (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ int regno;
+
+ if (GET_MODE (op) != mode && mode != VOIDmode)
+ return FALSE;
+
+ if (GET_CODE (op) == SUBREG)
+ {
+ if (GET_CODE (SUBREG_REG (op)) != REG)
+ return register_operand (op, mode);
+
+ op = SUBREG_REG (op);
+ }
+
+ if (GET_CODE (op) != REG)
+ return FALSE;
+
+ regno = REGNO (op);
+ /* assume that reload will give us an even register */
+ if (regno >= FIRST_PSEUDO_REGISTER)
+ return FALSE;
+
+ if (! GPR_P (regno))
+ return FALSE;
+
+ return (((regno - GPR_FIRST) & 1) != 0);
+}
+
+/* Return true if operand is a quad aligned FPR register. */
+
+int
+quad_fpr_operand (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ int regno;
+
+ if (GET_MODE (op) != mode && mode != VOIDmode)
+ return FALSE;
+
+ if (GET_CODE (op) == SUBREG)
+ {
+ if (GET_CODE (SUBREG_REG (op)) != REG)
+ return register_operand (op, mode);
+
+ op = SUBREG_REG (op);
+ }
+
+ if (GET_CODE (op) != REG)
+ return FALSE;
+
+ regno = REGNO (op);
+ if (regno >= FIRST_PSEUDO_REGISTER)
+ return TRUE;
+
+ if (! FPR_P (regno))
+ return FALSE;
+
+ return (((regno - FPR_FIRST) & 3) == 0);
+}
+
+/* Return true if operand is an even FPR register. */
+
+int
+even_fpr_operand (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ int regno;
+
+ if (GET_MODE (op) != mode && mode != VOIDmode)
+ return FALSE;
+
+ if (GET_CODE (op) == SUBREG)
+ {
+ if (GET_CODE (SUBREG_REG (op)) != REG)
+ return register_operand (op, mode);
+
+ op = SUBREG_REG (op);
+ }
+
+ if (GET_CODE (op) != REG)
+ return FALSE;
+
+ regno = REGNO (op);
+ if (regno >= FIRST_PSEUDO_REGISTER)
+ return TRUE;
+
+ if (! FPR_P (regno))
+ return FALSE;
+
+ return (((regno - FPR_FIRST) & 1) == 0);
+}
+
+/* Return true if operand is an odd FPR register. */
+
+int
+odd_fpr_operand (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ int regno;
+
+ if (GET_MODE (op) != mode && mode != VOIDmode)
+ return FALSE;
+
+ if (GET_CODE (op) == SUBREG)
+ {
+ if (GET_CODE (SUBREG_REG (op)) != REG)
+ return register_operand (op, mode);
+
+ op = SUBREG_REG (op);
+ }
+
+ if (GET_CODE (op) != REG)
+ return FALSE;
+
+ regno = REGNO (op);
+ /* assume that reload will give us an even register */
+ if (regno >= FIRST_PSEUDO_REGISTER)
+ return FALSE;
+
+ if (! FPR_P (regno))
+ return FALSE;
+
+ return (((regno - FPR_FIRST) & 1) != 0);
+}
+
+/* Return true if operand is a 2 word memory address that can be loaded in one
+ instruction to load or store. We assume the stack and frame pointers are
+ suitably aligned, and variables in the small data area. FIXME -- at some we
+ should recognize other globals and statics. We can't assume that any old
+ pointer is aligned, given that arguments could be passed on an odd word on
+ the stack and the address taken and passed through to another function. */
+
+int
+dbl_memory_one_insn_operand (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ rtx addr;
+ rtx addr_reg;
+
+ if (! TARGET_DWORD)
+ return FALSE;
+
+ if (GET_CODE (op) != MEM)
+ return FALSE;
+
+ if (mode != VOIDmode && GET_MODE_SIZE (mode) != 2*UNITS_PER_WORD)
+ return FALSE;
+
+ addr = XEXP (op, 0);
+ if (GET_CODE (addr) == REG)
+ addr_reg = addr;
+
+ else if (GET_CODE (addr) == PLUS)
+ {
+ rtx addr0 = XEXP (addr, 0);
+ rtx addr1 = XEXP (addr, 1);
+
+ if (GET_CODE (addr0) != REG)
+ return FALSE;
+
+ if (plus_small_data_p (addr0, addr1))
+ return TRUE;
+
+ if (GET_CODE (addr1) != CONST_INT)
+ return FALSE;
+
+ if ((INTVAL (addr1) & 7) != 0)
+ return FALSE;
+
+ addr_reg = addr0;
+ }
+
+ else
+ return FALSE;
+
+ if (addr_reg == frame_pointer_rtx || addr_reg == stack_pointer_rtx)
+ return TRUE;
+
+ return FALSE;
+}
+
+/* Return true if operand is a 2 word memory address that needs to
+ use two instructions to load or store. */
+
+int
+dbl_memory_two_insn_operand (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ if (GET_CODE (op) != MEM)
+ return FALSE;
+
+ if (mode != VOIDmode && GET_MODE_SIZE (mode) != 2*UNITS_PER_WORD)
+ return FALSE;
+
+ if (! TARGET_DWORD)
+ return TRUE;
+
+ return ! dbl_memory_one_insn_operand (op, mode);
+}
+
+/* Return true if operand is something that can be an output for a move
+ operation. */
+
+int
+move_destination_operand (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ rtx subreg;
+ enum rtx_code code;
+
+ switch (GET_CODE (op))
+ {
+ default:
+ break;
+
+ case SUBREG:
+ if (GET_MODE (op) != mode && mode != VOIDmode)
+ return FALSE;
+
+ subreg = SUBREG_REG (op);
+ code = GET_CODE (subreg);
+ if (code == MEM)
+ return frv_legitimate_address_p (mode, XEXP (subreg, 0),
+ reload_completed, FALSE);
+
+ return (code == REG);
+
+ case REG:
+ if (GET_MODE (op) != mode && mode != VOIDmode)
+ return FALSE;
+
+ return TRUE;
+
+ case MEM:
+ if (GET_CODE (XEXP (op, 0)) == ADDRESSOF)
+ return TRUE;
+
+ return frv_legitimate_memory_operand (op, mode, FALSE);
+ }
+
+ return FALSE;
+}
+
+/* Return true if operand is something that can be an input for a move
+ operation. */
+
+int
+move_source_operand (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ rtx subreg;
+ enum rtx_code code;
+
+ switch (GET_CODE (op))
+ {
+ default:
+ break;
+
+ case CONST_INT:
+ case CONST_DOUBLE:
+ case SYMBOL_REF:
+ case LABEL_REF:
+ case CONST:
+ return immediate_operand (op, mode);
+
+ case SUBREG:
+ if (GET_MODE (op) != mode && mode != VOIDmode)
+ return FALSE;
+
+ subreg = SUBREG_REG (op);
+ code = GET_CODE (subreg);
+ if (code == MEM)
+ return frv_legitimate_address_p (mode, XEXP (subreg, 0),
+ reload_completed, FALSE);
+
+ return (code == REG);
+
+ case REG:
+ if (GET_MODE (op) != mode && mode != VOIDmode)
+ return FALSE;
+
+ return TRUE;
+
+ case MEM:
+ if (GET_CODE (XEXP (op, 0)) == ADDRESSOF)
+ return TRUE;
+
+ return frv_legitimate_memory_operand (op, mode, FALSE);
+ }
+
+ return FALSE;
+}
+
+/* Return true if operand is something that can be an output for a conditional
+ move operation. */
+
+int
+condexec_dest_operand (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ rtx subreg;
+ enum rtx_code code;
+
+ switch (GET_CODE (op))
+ {
+ default:
+ break;
+
+ case SUBREG:
+ if (GET_MODE (op) != mode && mode != VOIDmode)
+ return FALSE;
+
+ subreg = SUBREG_REG (op);
+ code = GET_CODE (subreg);
+ if (code == MEM)
+ return frv_legitimate_address_p (mode, XEXP (subreg, 0),
+ reload_completed, TRUE);
+
+ return (code == REG);
+
+ case REG:
+ if (GET_MODE (op) != mode && mode != VOIDmode)
+ return FALSE;
+
+ return TRUE;
+
+ case MEM:
+ if (GET_CODE (XEXP (op, 0)) == ADDRESSOF)
+ return TRUE;
+
+ return frv_legitimate_memory_operand (op, mode, TRUE);
+ }
+
+ return FALSE;
+}
+
+/* Return true if operand is something that can be an input for a conditional
+ move operation. */
+
+int
+condexec_source_operand (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ rtx subreg;
+ enum rtx_code code;
+
+ switch (GET_CODE (op))
+ {
+ default:
+ break;
+
+ case CONST_INT:
+ case CONST_DOUBLE:
+ return ZERO_P (op);
+
+ case SUBREG:
+ if (GET_MODE (op) != mode && mode != VOIDmode)
+ return FALSE;
+
+ subreg = SUBREG_REG (op);
+ code = GET_CODE (subreg);
+ if (code == MEM)
+ return frv_legitimate_address_p (mode, XEXP (subreg, 0),
+ reload_completed, TRUE);
+
+ return (code == REG);
+
+ case REG:
+ if (GET_MODE (op) != mode && mode != VOIDmode)
+ return FALSE;
+
+ return TRUE;
+
+ case MEM:
+ if (GET_CODE (XEXP (op, 0)) == ADDRESSOF)
+ return TRUE;
+
+ return frv_legitimate_memory_operand (op, mode, TRUE);
+ }
+
+ return FALSE;
+}
+
+/* Return true if operand is a register of any flavor or a 0 of the
+ appropriate type. */
+
+int
+reg_or_0_operand (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ switch (GET_CODE (op))
+ {
+ default:
+ break;
+
+ case REG:
+ case SUBREG:
+ if (GET_MODE (op) != mode && mode != VOIDmode)
+ return FALSE;
+
+ return register_operand (op, mode);
+
+ case CONST_INT:
+ case CONST_DOUBLE:
+ return ZERO_P (op);
+ }
+
+ return FALSE;
+}
+
+/* Return true if operand is the link register */
+
+int
+lr_operand (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ if (GET_CODE (op) != REG)
+ return FALSE;
+
+ if (GET_MODE (op) != mode && mode != VOIDmode)
+ return FALSE;
+
+ if (REGNO (op) != LR_REGNO && REGNO (op) < FIRST_PSEUDO_REGISTER)
+ return FALSE;
+
+ return TRUE;
+}
+
+/* Return true if operand is a gpr register or a valid memory operation. */
+
+int
+gpr_or_memory_operand (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ return (integer_register_operand (op, mode)
+ || frv_legitimate_memory_operand (op, mode, FALSE));
+}
+
+/* Return true if operand is a fpr register or a valid memory operation. */
+
+int
+fpr_or_memory_operand (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ return (fpr_operand (op, mode)
+ || frv_legitimate_memory_operand (op, mode, FALSE));
+}
+
+/* Return true if operand is an icc register */
+
+int
+icc_operand (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ int regno;
+
+ if (GET_MODE (op) != mode && mode != VOIDmode)
+ return FALSE;
+
+ if (GET_CODE (op) != REG)
+ return FALSE;
+
+ regno = REGNO (op);
+ return ICC_OR_PSEUDO_P (regno);
+}
+
+/* Return true if operand is an fcc register */
+
+int
+fcc_operand (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ int regno;
+
+ if (GET_MODE (op) != mode && mode != VOIDmode)
+ return FALSE;
+
+ if (GET_CODE (op) != REG)
+ return FALSE;
+
+ regno = REGNO (op);
+ return FCC_OR_PSEUDO_P (regno);
+}
+
+/* Return true if operand is either an fcc or icc register */
+
+int
+cc_operand (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ int regno;
+
+ if (GET_MODE (op) != mode && mode != VOIDmode)
+ return FALSE;
+
+ if (GET_CODE (op) != REG)
+ return FALSE;
+
+ regno = REGNO (op);
+ if (CC_OR_PSEUDO_P (regno))
+ return TRUE;
+
+ return FALSE;
+}
+
+/* Return true if operand is an integer CCR register */
+
+int
+icr_operand (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ int regno;
+
+ if (GET_MODE (op) != mode && mode != VOIDmode)
+ return FALSE;
+
+ if (GET_CODE (op) != REG)
+ return FALSE;
+
+ regno = REGNO (op);
+ return ICR_OR_PSEUDO_P (regno);
+}
+
+/* Return true if operand is an fcc register */
+
+int
+fcr_operand (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ int regno;
+
+ if (GET_MODE (op) != mode && mode != VOIDmode)
+ return FALSE;
+
+ if (GET_CODE (op) != REG)
+ return FALSE;
+
+ regno = REGNO (op);
+ return FCR_OR_PSEUDO_P (regno);
+}
+
+/* Return true if operand is either an fcc or icc register */
+
+int
+cr_operand (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ int regno;
+
+ if (GET_MODE (op) != mode && mode != VOIDmode)
+ return FALSE;
+
+ if (GET_CODE (op) != REG)
+ return FALSE;
+
+ regno = REGNO (op);
+ if (CR_OR_PSEUDO_P (regno))
+ return TRUE;
+
+ return FALSE;
+}
+
+/* Return true if operand is a memory reference suitable for a call. */
+
+int
+call_operand (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ if (GET_MODE (op) != mode && mode != VOIDmode && GET_CODE (op) != CONST_INT)
+ return FALSE;
+
+ if (GET_CODE (op) == SYMBOL_REF)
+ return TRUE;
+
+ /* Note this doesn't allow reg+reg or reg+imm12 addressing (which should
+ never occur anyway), but prevents reload from not handling the case
+ properly of a call through a pointer on a function that calls
+ vfork/setjmp, etc. due to the need to flush all of the registers to stack. */
+ return gpr_or_int12_operand (op, mode);
+}
+
+/* Return true if operator is an kind of relational operator */
+
+int
+relational_operator (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ rtx op0;
+ rtx op1;
+ int regno;
+
+ if (mode != VOIDmode && mode != GET_MODE (op))
+ return FALSE;
+
+ switch (GET_CODE (op))
+ {
+ default:
+ return FALSE;
+
+ case EQ:
+ case NE:
+ case LE:
+ case LT:
+ case GE:
+ case GT:
+ case LEU:
+ case LTU:
+ case GEU:
+ case GTU:
+ break;
+ }
+
+ op1 = XEXP (op, 1);
+ if (op1 != const0_rtx)
+ return FALSE;
+
+ op0 = XEXP (op, 0);
+ if (GET_CODE (op0) != REG)
+ return FALSE;
+
+ regno = REGNO (op0);
+ switch (GET_MODE (op0))
+ {
+ default:
+ break;
+
+ case CCmode:
+ case CC_UNSmode:
+ return ICC_OR_PSEUDO_P (regno);
+
+ case CC_FPmode:
+ return FCC_OR_PSEUDO_P (regno);
+
+ case CC_CCRmode:
+ return CR_OR_PSEUDO_P (regno);
+ }
+
+ return FALSE;
+}
+
+/* Return true if operator is a signed integer relational operator */
+
+int
+signed_relational_operator (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ rtx op0;
+ rtx op1;
+ int regno;
+
+ if (mode != VOIDmode && mode != GET_MODE (op))
+ return FALSE;
+
+ switch (GET_CODE (op))
+ {
+ default:
+ return FALSE;
+
+ case EQ:
+ case NE:
+ case LE:
+ case LT:
+ case GE:
+ case GT:
+ break;
+ }
+
+ op1 = XEXP (op, 1);
+ if (op1 != const0_rtx)
+ return FALSE;
+
+ op0 = XEXP (op, 0);
+ if (GET_CODE (op0) != REG)
+ return FALSE;
+
+ regno = REGNO (op0);
+ if (GET_MODE (op0) == CCmode && ICC_OR_PSEUDO_P (regno))
+ return TRUE;
+
+ if (GET_MODE (op0) == CC_CCRmode && CR_OR_PSEUDO_P (regno))
+ return TRUE;
+
+ return FALSE;
+}
+
+/* Return true if operator is a signed integer relational operator */
+
+int
+unsigned_relational_operator (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ rtx op0;
+ rtx op1;
+ int regno;
+
+ if (mode != VOIDmode && mode != GET_MODE (op))
+ return FALSE;
+
+ switch (GET_CODE (op))
+ {
+ default:
+ return FALSE;
+
+ case LEU:
+ case LTU:
+ case GEU:
+ case GTU:
+ break;
+ }
+
+ op1 = XEXP (op, 1);
+ if (op1 != const0_rtx)
+ return FALSE;
+
+ op0 = XEXP (op, 0);
+ if (GET_CODE (op0) != REG)
+ return FALSE;
+
+ regno = REGNO (op0);
+ if (GET_MODE (op0) == CC_UNSmode && ICC_OR_PSEUDO_P (regno))
+ return TRUE;
+
+ if (GET_MODE (op0) == CC_CCRmode && CR_OR_PSEUDO_P (regno))
+ return TRUE;
+
+ return FALSE;
+}
+
+/* Return true if operator is a floating point relational operator */
+
+int
+float_relational_operator (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ rtx op0;
+ rtx op1;
+ int regno;
+
+ if (mode != VOIDmode && mode != GET_MODE (op))
+ return FALSE;
+
+ switch (GET_CODE (op))
+ {
+ default:
+ return FALSE;
+
+ case EQ: case NE:
+ case LE: case LT:
+ case GE: case GT:
+#if 0
+ case UEQ: case UNE:
+ case ULE: case ULT:
+ case UGE: case UGT:
+ case ORDERED:
+ case UNORDERED:
+#endif
+ break;
+ }
+
+ op1 = XEXP (op, 1);
+ if (op1 != const0_rtx)
+ return FALSE;
+
+ op0 = XEXP (op, 0);
+ if (GET_CODE (op0) != REG)
+ return FALSE;
+
+ regno = REGNO (op0);
+ if (GET_MODE (op0) == CC_FPmode && FCC_OR_PSEUDO_P (regno))
+ return TRUE;
+
+ if (GET_MODE (op0) == CC_CCRmode && CR_OR_PSEUDO_P (regno))
+ return TRUE;
+
+ return FALSE;
+}
+
+/* Return true if operator is EQ/NE of a conditional execution register. */
+
+int
+ccr_eqne_operator (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ enum machine_mode op_mode = GET_MODE (op);
+ rtx op0;
+ rtx op1;
+ int regno;
+
+ if (mode != VOIDmode && op_mode != mode)
+ return FALSE;
+
+ switch (GET_CODE (op))
+ {
+ default:
+ return FALSE;
+
+ case EQ:
+ case NE:
+ break;
+ }
+
+ op1 = XEXP (op, 1);
+ if (op1 != const0_rtx)
+ return FALSE;
+
+ op0 = XEXP (op, 0);
+ if (GET_CODE (op0) != REG)
+ return FALSE;
+
+ regno = REGNO (op0);
+ if (op_mode == CC_CCRmode && CR_OR_PSEUDO_P (regno))
+ return TRUE;
+
+ return FALSE;
+}
+
+/* Return true if operator is a minimum or maximum operator (both signed and
+ unsigned). */
+
+int
+minmax_operator (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ if (mode != VOIDmode && mode != GET_MODE (op))
+ return FALSE;
+
+ switch (GET_CODE (op))
+ {
+ default:
+ return FALSE;
+
+ case SMIN:
+ case SMAX:
+ case UMIN:
+ case UMAX:
+ break;
+ }
+
+ if (! integer_register_operand (XEXP (op, 0), mode))
+ return FALSE;
+
+ if (! gpr_or_int10_operand (XEXP (op, 1), mode))
+ return FALSE;
+
+ return TRUE;
+}
+
+/* Return true if operator is an integer binary operator that can executed
+ conditionally and takes 1 cycle. */
+
+int
+condexec_si_binary_operator (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ enum machine_mode op_mode = GET_MODE (op);
+
+ if (mode != VOIDmode && op_mode != mode)
+ return FALSE;
+
+ switch (GET_CODE (op))
+ {
+ default:
+ return FALSE;
+
+ case PLUS:
+ case MINUS:
+ case AND:
+ case IOR:
+ case XOR:
+ case ASHIFT:
+ case ASHIFTRT:
+ case LSHIFTRT:
+ return TRUE;
+ }
+}
+
+/* Return true if operator is an integer binary operator that can be
+ executed conditionally by a media instruction. */
+
+int
+condexec_si_media_operator (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ enum machine_mode op_mode = GET_MODE (op);
+
+ if (mode != VOIDmode && op_mode != mode)
+ return FALSE;
+
+ switch (GET_CODE (op))
+ {
+ default:
+ return FALSE;
+
+ case AND:
+ case IOR:
+ case XOR:
+ return TRUE;
+ }
+}
+
+/* Return true if operator is an integer division operator that can executed
+ conditionally. */
+
+int
+condexec_si_divide_operator (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ enum machine_mode op_mode = GET_MODE (op);
+
+ if (mode != VOIDmode && op_mode != mode)
+ return FALSE;
+
+ switch (GET_CODE (op))
+ {
+ default:
+ return FALSE;
+
+ case DIV:
+ case UDIV:
+ return TRUE;
+ }
+}
+
+/* Return true if operator is an integer unary operator that can executed
+ conditionally. */
+
+int
+condexec_si_unary_operator (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ enum machine_mode op_mode = GET_MODE (op);
+
+ if (mode != VOIDmode && op_mode != mode)
+ return FALSE;
+
+ switch (GET_CODE (op))
+ {
+ default:
+ return FALSE;
+
+ case NEG:
+ case NOT:
+ return TRUE;
+ }
+}
+
+/* Return true if operator is a conversion-type expression that can be
+ evaluated conditionally by floating-point instructions. */
+
+int
+condexec_sf_conv_operator (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ enum machine_mode op_mode = GET_MODE (op);
+
+ if (mode != VOIDmode && op_mode != mode)
+ return FALSE;
+
+ switch (GET_CODE (op))
+ {
+ default:
+ return FALSE;
+
+ case NEG:
+ case ABS:
+ return TRUE;
+ }
+}
+
+/* Return true if operator is an addition or subtraction expression.
+ Such expressions can be evaluated conditionally by floating-point
+ instructions. */
+
+int
+condexec_sf_add_operator (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ enum machine_mode op_mode = GET_MODE (op);
+
+ if (mode != VOIDmode && op_mode != mode)
+ return FALSE;
+
+ switch (GET_CODE (op))
+ {
+ default:
+ return FALSE;
+
+ case PLUS:
+ case MINUS:
+ return TRUE;
+ }
+}
+
+/* Return true if the memory operand is one that can be conditionally
+ executed. */
+
+int
+condexec_memory_operand (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ enum machine_mode op_mode = GET_MODE (op);
+ rtx addr;
+
+ if (mode != VOIDmode && op_mode != mode)
+ return FALSE;
+
+ switch (op_mode)
+ {
+ default:
+ return FALSE;
+
+ case QImode:
+ case HImode:
+ case SImode:
+ case SFmode:
+ break;
+ }
+
+ if (GET_CODE (op) != MEM)
+ return FALSE;
+
+ addr = XEXP (op, 0);
+ if (GET_CODE (addr) == ADDRESSOF)
+ return TRUE;
+
+ return frv_legitimate_address_p (mode, addr, reload_completed, TRUE);
+}
+
+/* Return true if operator is an integer binary operator that can be combined
+ with a setcc operation. Do not allow the arithmetic operations that could
+ potentially overflow since the FR-V sets the condition code based on the
+ "true" value of the result, not the result after truncating to a 32-bit
+ register. */
+
+int
+intop_compare_operator (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ enum machine_mode op_mode = GET_MODE (op);
+
+ if (mode != VOIDmode && op_mode != mode)
+ return FALSE;
+
+ switch (GET_CODE (op))
+ {
+ default:
+ return FALSE;
+
+ case AND:
+ case IOR:
+ case XOR:
+ case ASHIFTRT:
+ case LSHIFTRT:
+ break;
+ }
+
+ if (! integer_register_operand (XEXP (op, 0), SImode))
+ return FALSE;
+
+ if (! gpr_or_int10_operand (XEXP (op, 1), SImode))
+ return FALSE;
+
+ return TRUE;
+}
+
+/* Return true if operator is an integer binary operator that can be combined
+ with a setcc operation inside of a conditional execution. */
+
+int
+condexec_intop_cmp_operator (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ enum machine_mode op_mode = GET_MODE (op);
+
+ if (mode != VOIDmode && op_mode != mode)
+ return FALSE;
+
+ switch (GET_CODE (op))
+ {
+ default:
+ return FALSE;
+
+ case AND:
+ case IOR:
+ case XOR:
+ case ASHIFTRT:
+ case LSHIFTRT:
+ break;
+ }
+
+ if (! integer_register_operand (XEXP (op, 0), SImode))
+ return FALSE;
+
+ if (! integer_register_operand (XEXP (op, 1), SImode))
+ return FALSE;
+
+ return TRUE;
+}
+
+/* Return 1 if operand is a valid ACC register number */
+
+int
+acc_operand (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ int regno;
+
+ if (GET_MODE (op) != mode && mode != VOIDmode)
+ return FALSE;
+
+ if (GET_CODE (op) == SUBREG)
+ {
+ if (GET_CODE (SUBREG_REG (op)) != REG)
+ return register_operand (op, mode);
+
+ op = SUBREG_REG (op);
+ }
+
+ if (GET_CODE (op) != REG)
+ return FALSE;
+
+ regno = REGNO (op);
+ return ACC_OR_PSEUDO_P (regno);
+}
+
+/* Return 1 if operand is a valid even ACC register number */
+
+int
+even_acc_operand (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ int regno;
+
+ if (GET_MODE (op) != mode && mode != VOIDmode)
+ return FALSE;
+
+ if (GET_CODE (op) == SUBREG)
+ {
+ if (GET_CODE (SUBREG_REG (op)) != REG)
+ return register_operand (op, mode);
+
+ op = SUBREG_REG (op);
+ }
+
+ if (GET_CODE (op) != REG)
+ return FALSE;
+
+ regno = REGNO (op);
+ return (ACC_OR_PSEUDO_P (regno) && ((regno - ACC_FIRST) & 1) == 0);
+}
+
+/* Return 1 if operand is zero or four */
+
+int
+quad_acc_operand (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ int regno;
+
+ if (GET_MODE (op) != mode && mode != VOIDmode)
+ return FALSE;
+
+ if (GET_CODE (op) == SUBREG)
+ {
+ if (GET_CODE (SUBREG_REG (op)) != REG)
+ return register_operand (op, mode);
+
+ op = SUBREG_REG (op);
+ }
+
+ if (GET_CODE (op) != REG)
+ return FALSE;
+
+ regno = REGNO (op);
+ return (ACC_OR_PSEUDO_P (regno) && ((regno - ACC_FIRST) & 3) == 0);
+}
+
+/* Return 1 if operand is a valid ACCG register number */
+
+int
+accg_operand (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ if (GET_MODE (op) != mode && mode != VOIDmode)
+ return FALSE;
+
+ if (GET_CODE (op) == SUBREG)
+ {
+ if (GET_CODE (SUBREG_REG (op)) != REG)
+ return register_operand (op, mode);
+
+ op = SUBREG_REG (op);
+ }
+
+ if (GET_CODE (op) != REG)
+ return FALSE;
+
+ return ACCG_OR_PSEUDO_P (REGNO (op));
+}
+
+
+/* Return true if the bare return instruction can be used outside of the
+ epilog code. For frv, we only do it if there was no stack allocation. */
+
+int
+direct_return_p ()
+{
+ frv_stack_t *info;
+
+ if (!reload_completed)
+ return FALSE;
+
+ info = frv_stack_info ();
+ return (info->total_size == 0);
+}
+
+
+/* Emit code to handle a MOVSI, adding in the small data register or pic
+ register if needed to load up addresses. Return TRUE if the appropriate
+ instructions are emitted. */
+
+int
+frv_emit_movsi (dest, src)
+ rtx dest;
+ rtx src;
+{
+ int base_regno = -1;
+
+ if (!reload_in_progress
+ && !reload_completed
+ && !register_operand (dest, SImode)
+ && (!reg_or_0_operand (src, SImode)
+ /* Virtual registers will almost always be replaced by an
+ add instruction, so expose this to CSE by copying to
+ an intermediate register */
+ || (GET_CODE (src) == REG
+ && IN_RANGE_P (REGNO (src),
+ FIRST_VIRTUAL_REGISTER,
+ LAST_VIRTUAL_REGISTER))))
+ {
+ emit_insn (gen_rtx_SET (VOIDmode, dest, copy_to_mode_reg (SImode, src)));
+ return TRUE;
+ }
+
+ /* Explicitly add in the PIC or small data register if needed. */
+ switch (GET_CODE (src))
+ {
+ default:
+ break;
+
+ case LABEL_REF:
+ if (flag_pic)
+ base_regno = PIC_REGNO;
+
+ break;
+
+ case CONST:
+ if (const_small_data_p (src))
+ base_regno = SDA_BASE_REG;
+
+ else if (flag_pic)
+ base_regno = PIC_REGNO;
+
+ break;
+
+ case SYMBOL_REF:
+ if (symbol_ref_small_data_p (src))
+ base_regno = SDA_BASE_REG;
+
+ else if (flag_pic)
+ base_regno = PIC_REGNO;
+
+ break;
+ }
+
+ if (base_regno >= 0)
+ {
+ emit_insn (gen_rtx_SET (VOIDmode, dest,
+ gen_rtx_PLUS (Pmode,
+ gen_rtx_REG (Pmode, base_regno),
+ src)));
+
+ if (base_regno == PIC_REGNO)
+ cfun->uses_pic_offset_table = TRUE;
+
+ return TRUE;
+ }
+
+ return FALSE;
+}
+
+
+/* Return a string to output a single word move. */
+
+const char *
+output_move_single (operands, insn)
+ rtx operands[];
+ rtx insn;
+{
+ rtx dest = operands[0];
+ rtx src = operands[1];
+
+ if (GET_CODE (dest) == REG)
+ {
+ int dest_regno = REGNO (dest);
+ enum machine_mode mode = GET_MODE (dest);
+
+ if (GPR_P (dest_regno))
+ {
+ if (GET_CODE (src) == REG)
+ {
+ /* gpr <- some sort of register */
+ int src_regno = REGNO (src);
+
+ if (GPR_P (src_regno))
+ return "mov %1, %0";
+
+ else if (FPR_P (src_regno))
+ return "movfg %1, %0";
+
+ else if (SPR_P (src_regno))
+ return "movsg %1, %0";
+ }
+
+ else if (GET_CODE (src) == MEM)
+ {
+ /* gpr <- memory */
+ switch (mode)
+ {
+ default:
+ break;
+
+ case QImode:
+ return "ldsb%I1%U1 %M1,%0";
+
+ case HImode:
+ return "ldsh%I1%U1 %M1,%0";
+
+ case SImode:
+ case SFmode:
+ return "ld%I1%U1 %M1, %0";
+ }
+ }
+
+ else if (GET_CODE (src) == CONST_INT
+ || GET_CODE (src) == CONST_DOUBLE)
+ {
+ /* gpr <- integer/floating constant */
+ HOST_WIDE_INT value;
+
+ if (GET_CODE (src) == CONST_INT)
+ value = INTVAL (src);
+
+ else if (mode == SFmode)
+ {
+ REAL_VALUE_TYPE rv;
+ long l;
+
+ REAL_VALUE_FROM_CONST_DOUBLE (rv, src);
+ REAL_VALUE_TO_TARGET_SINGLE (rv, l);
+ value = l;
+ }
+
+ else
+ value = CONST_DOUBLE_LOW (src);
+
+ if (IN_RANGE_P (value, -32768, 32767))
+ return "setlos %1, %0";
+
+ return "#";
+ }
+
+ else if (GET_CODE (src) == SYMBOL_REF
+ || GET_CODE (src) == LABEL_REF
+ || GET_CODE (src) == CONST)
+ {
+ /* Silently fix up instances where the small data pointer is not
+ used in the address. */
+ if (small_data_symbolic_operand (src, GET_MODE (src)))
+ return "addi %@, #gprel12(%1), %0";
+
+ return "#";
+ }
+ }
+
+ else if (FPR_P (dest_regno))
+ {
+ if (GET_CODE (src) == REG)
+ {
+ /* fpr <- some sort of register */
+ int src_regno = REGNO (src);
+
+ if (GPR_P (src_regno))
+ return "movgf %1, %0";
+
+ else if (FPR_P (src_regno))
+ {
+ if (TARGET_HARD_FLOAT)
+ return "fmovs %1, %0";
+ else
+ return "mor %1, %1, %0";
+ }
+ }
+
+ else if (GET_CODE (src) == MEM)
+ {
+ /* fpr <- memory */
+ switch (mode)
+ {
+ default:
+ break;
+
+ case QImode:
+ return "ldbf%I1%U1 %M1,%0";
+
+ case HImode:
+ return "ldhf%I1%U1 %M1,%0";
+
+ case SImode:
+ case SFmode:
+ return "ldf%I1%U1 %M1, %0";
+ }
+ }
+
+ else if (ZERO_P (src))
+ return "movgf %., %0";
+ }
+
+ else if (SPR_P (dest_regno))
+ {
+ if (GET_CODE (src) == REG)
+ {
+ /* spr <- some sort of register */
+ int src_regno = REGNO (src);
+
+ if (GPR_P (src_regno))
+ return "movgs %1, %0";
+ }
+ }
+ }
+
+ else if (GET_CODE (dest) == MEM)
+ {
+ if (GET_CODE (src) == REG)
+ {
+ int src_regno = REGNO (src);
+ enum machine_mode mode = GET_MODE (dest);
+
+ if (GPR_P (src_regno))
+ {
+ switch (mode)
+ {
+ default:
+ break;
+
+ case QImode:
+ return "stb%I0%U0 %1, %M0";
+
+ case HImode:
+ return "sth%I0%U0 %1, %M0";
+
+ case SImode:
+ case SFmode:
+ return "st%I0%U0 %1, %M0";
+ }
+ }
+
+ else if (FPR_P (src_regno))
+ {
+ switch (mode)
+ {
+ default:
+ break;
+
+ case QImode:
+ return "stbf%I0%U0 %1, %M0";
+
+ case HImode:
+ return "sthf%I0%U0 %1, %M0";
+
+ case SImode:
+ case SFmode:
+ return "stf%I0%U0 %1, %M0";
+ }
+ }
+ }
+
+ else if (ZERO_P (src))
+ {
+ switch (GET_MODE (dest))
+ {
+ default:
+ break;
+
+ case QImode:
+ return "stb%I0%U0 %., %M0";
+
+ case HImode:
+ return "sth%I0%U0 %., %M0";
+
+ case SImode:
+ case SFmode:
+ return "st%I0%U0 %., %M0";
+ }
+ }
+ }
+
+ fatal_insn ("Bad output_move_single operand", insn);
+ return "";
+}
+
+
+/* Return a string to output a double word move. */
+
+const char *
+output_move_double (operands, insn)
+ rtx operands[];
+ rtx insn;
+{
+ rtx dest = operands[0];
+ rtx src = operands[1];
+ enum machine_mode mode = GET_MODE (dest);
+
+ if (GET_CODE (dest) == REG)
+ {
+ int dest_regno = REGNO (dest);
+
+ if (GPR_P (dest_regno))
+ {
+ if (GET_CODE (src) == REG)
+ {
+ /* gpr <- some sort of register */
+ int src_regno = REGNO (src);
+
+ if (GPR_P (src_regno))
+ return "#";
+
+ else if (FPR_P (src_regno))
+ {
+ if (((dest_regno - GPR_FIRST) & 1) == 0
+ && ((src_regno - FPR_FIRST) & 1) == 0)
+ return "movfgd %1, %0";
+
+ return "#";
+ }
+ }
+
+ else if (GET_CODE (src) == MEM)
+ {
+ /* gpr <- memory */
+ if (dbl_memory_one_insn_operand (src, mode))
+ return "ldd%I1%U1 %M1, %0";
+
+ return "#";
+ }
+
+ else if (GET_CODE (src) == CONST_INT
+ || GET_CODE (src) == CONST_DOUBLE)
+ return "#";
+ }
+
+ else if (FPR_P (dest_regno))
+ {
+ if (GET_CODE (src) == REG)
+ {
+ /* fpr <- some sort of register */
+ int src_regno = REGNO (src);
+
+ if (GPR_P (src_regno))
+ {
+ if (((dest_regno - FPR_FIRST) & 1) == 0
+ && ((src_regno - GPR_FIRST) & 1) == 0)
+ return "movgfd %1, %0";
+
+ return "#";
+ }
+
+ else if (FPR_P (src_regno))
+ {
+ if (TARGET_DOUBLE
+ && ((dest_regno - FPR_FIRST) & 1) == 0
+ && ((src_regno - FPR_FIRST) & 1) == 0)
+ return "fmovd %1, %0";
+
+ return "#";
+ }
+ }
+
+ else if (GET_CODE (src) == MEM)
+ {
+ /* fpr <- memory */
+ if (dbl_memory_one_insn_operand (src, mode))
+ return "lddf%I1%U1 %M1, %0";
+
+ return "#";
+ }
+
+ else if (ZERO_P (src))
+ return "#";
+ }
+ }
+
+ else if (GET_CODE (dest) == MEM)
+ {
+ if (GET_CODE (src) == REG)
+ {
+ int src_regno = REGNO (src);
+
+ if (GPR_P (src_regno))
+ {
+ if (((src_regno - GPR_FIRST) & 1) == 0
+ && dbl_memory_one_insn_operand (dest, mode))
+ return "std%I0%U0 %1, %M0";
+
+ return "#";
+ }
+
+ if (FPR_P (src_regno))
+ {
+ if (((src_regno - FPR_FIRST) & 1) == 0
+ && dbl_memory_one_insn_operand (dest, mode))
+ return "stdf%I0%U0 %1, %M0";
+
+ return "#";
+ }
+ }
+
+ else if (ZERO_P (src))
+ {
+ if (dbl_memory_one_insn_operand (dest, mode))
+ return "std%I0%U0 %., %M0";
+
+ return "#";
+ }
+ }
+
+ fatal_insn ("Bad output_move_double operand", insn);
+ return "";
+}
+
+
+/* Return a string to output a single word conditional move.
+ Operand0 -- EQ/NE of ccr register and 0
+ Operand1 -- CCR register
+ Operand2 -- destination
+ Operand3 -- source */
+
+const char *
+output_condmove_single (operands, insn)
+ rtx operands[];
+ rtx insn;
+{
+ rtx dest = operands[2];
+ rtx src = operands[3];
+
+ if (GET_CODE (dest) == REG)
+ {
+ int dest_regno = REGNO (dest);
+ enum machine_mode mode = GET_MODE (dest);
+
+ if (GPR_P (dest_regno))
+ {
+ if (GET_CODE (src) == REG)
+ {
+ /* gpr <- some sort of register */
+ int src_regno = REGNO (src);
+
+ if (GPR_P (src_regno))
+ return "cmov %z3, %2, %1, %e0";
+
+ else if (FPR_P (src_regno))
+ return "cmovfg %3, %2, %1, %e0";
+ }
+
+ else if (GET_CODE (src) == MEM)
+ {
+ /* gpr <- memory */
+ switch (mode)
+ {
+ default:
+ break;
+
+ case QImode:
+ return "cldsb%I3%U3 %M3, %2, %1, %e0";
+
+ case HImode:
+ return "cldsh%I3%U3 %M3, %2, %1, %e0";
+
+ case SImode:
+ case SFmode:
+ return "cld%I3%U3 %M3, %2, %1, %e0";
+ }
+ }
+
+ else if (ZERO_P (src))
+ return "cmov %., %2, %1, %e0";
+ }
+
+ else if (FPR_P (dest_regno))
+ {
+ if (GET_CODE (src) == REG)
+ {
+ /* fpr <- some sort of register */
+ int src_regno = REGNO (src);
+
+ if (GPR_P (src_regno))
+ return "cmovgf %3, %2, %1, %e0";
+
+ else if (FPR_P (src_regno))
+ {
+ if (TARGET_HARD_FLOAT)
+ return "cfmovs %3,%2,%1,%e0";
+ else
+ return "cmor %3, %3, %2, %1, %e0";
+ }
+ }
+
+ else if (GET_CODE (src) == MEM)
+ {
+ /* fpr <- memory */
+ if (mode == SImode || mode == SFmode)
+ return "cldf%I3%U3 %M3, %2, %1, %e0";
+ }
+
+ else if (ZERO_P (src))
+ return "cmovgf %., %2, %1, %e0";
+ }
+ }
+
+ else if (GET_CODE (dest) == MEM)
+ {
+ if (GET_CODE (src) == REG)
+ {
+ int src_regno = REGNO (src);
+ enum machine_mode mode = GET_MODE (dest);
+
+ if (GPR_P (src_regno))
+ {
+ switch (mode)
+ {
+ default:
+ break;
+
+ case QImode:
+ return "cstb%I2%U2 %3, %M2, %1, %e0";
+
+ case HImode:
+ return "csth%I2%U2 %3, %M2, %1, %e0";
+
+ case SImode:
+ case SFmode:
+ return "cst%I2%U2 %3, %M2, %1, %e0";
+ }
+ }
+
+ else if (FPR_P (src_regno) && (mode == SImode || mode == SFmode))
+ return "cstf%I2%U2 %3, %M2, %1, %e0";
+ }
+
+ else if (ZERO_P (src))
+ {
+ enum machine_mode mode = GET_MODE (dest);
+ switch (mode)
+ {
+ default:
+ break;
+
+ case QImode:
+ return "cstb%I2%U2 %., %M2, %1, %e0";
+
+ case HImode:
+ return "csth%I2%U2 %., %M2, %1, %e0";
+
+ case SImode:
+ case SFmode:
+ return "cst%I2%U2 %., %M2, %1, %e0";
+ }
+ }
+ }
+
+ fatal_insn ("Bad output_condmove_single operand", insn);
+ return "";
+}
+
+
+/* Emit the appropriate code to do a comparison, returning the register the
+ comparison was done it. */
+
+static rtx
+frv_emit_comparison (test, op0, op1)
+ enum rtx_code test;
+ rtx op0;
+ rtx op1;
+{
+ enum machine_mode cc_mode;
+ rtx cc_reg;
+
+ /* Floating point doesn't have comparison against a constant */
+ if (GET_MODE (op0) == CC_FPmode && GET_CODE (op1) != REG)
+ op1 = force_reg (GET_MODE (op0), op1);
+
+ /* Possibly disable using anything but a fixed register in order to work
+ around cse moving comparisons past function calls. */
+ cc_mode = SELECT_CC_MODE (test, op0, op1);
+ cc_reg = ((TARGET_ALLOC_CC)
+ ? gen_reg_rtx (cc_mode)
+ : gen_rtx_REG (cc_mode,
+ (cc_mode == CC_FPmode) ? FCC_FIRST : ICC_FIRST));
+
+ emit_insn (gen_rtx_SET (VOIDmode, cc_reg,
+ gen_rtx_COMPARE (cc_mode, op0, op1)));
+
+ return cc_reg;
+}
+
+
+/* Emit code for a conditional branch. The comparison operands were previously
+ stored in frv_compare_op0 and frv_compare_op1.
+
+ XXX: I originally wanted to add a clobber of a CCR register to use in
+ conditional execution, but that confuses the rest of the compiler. */
+
+int
+frv_emit_cond_branch (test, label)
+ enum rtx_code test;
+ rtx label;
+{
+ rtx test_rtx;
+ rtx label_ref;
+ rtx if_else;
+ rtx cc_reg = frv_emit_comparison (test, frv_compare_op0, frv_compare_op1);
+ enum machine_mode cc_mode = GET_MODE (cc_reg);
+
+ /* Branches generate:
+ (set (pc)
+ (if_then_else (<test>, <cc_reg>, (const_int 0))
+ (label_ref <branch_label>)
+ (pc))) */
+ label_ref = gen_rtx_LABEL_REF (VOIDmode, label);
+ test_rtx = gen_rtx (test, cc_mode, cc_reg, const0_rtx);
+ if_else = gen_rtx_IF_THEN_ELSE (cc_mode, test_rtx, label_ref, pc_rtx);
+ emit_jump_insn (gen_rtx_SET (VOIDmode, pc_rtx, if_else));
+ return TRUE;
+}
+
+
+/* Emit code to set a gpr to 1/0 based on a comparison. The comparison
+ operands were previously stored in frv_compare_op0 and frv_compare_op1. */
+
+int
+frv_emit_scc (test, target)
+ enum rtx_code test;
+ rtx target;
+{
+ rtx set;
+ rtx test_rtx;
+ rtx clobber;
+ rtx cr_reg;
+ rtx cc_reg = frv_emit_comparison (test, frv_compare_op0, frv_compare_op1);
+
+ /* SCC instructions generate:
+ (parallel [(set <target> (<test>, <cc_reg>, (const_int 0))
+ (clobber (<ccr_reg>))]) */
+ test_rtx = gen_rtx_fmt_ee (test, SImode, cc_reg, const0_rtx);
+ set = gen_rtx_SET (VOIDmode, target, test_rtx);
+
+ cr_reg = ((TARGET_ALLOC_CC)
+ ? gen_reg_rtx (CC_CCRmode)
+ : gen_rtx_REG (CC_CCRmode,
+ ((GET_MODE (cc_reg) == CC_FPmode)
+ ? FCR_FIRST
+ : ICR_FIRST)));
+
+ clobber = gen_rtx_CLOBBER (VOIDmode, cr_reg);
+ emit_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, set, clobber)));
+ return TRUE;
+}
+
+
+/* Split a SCC instruction into component parts, returning a SEQUENCE to hold
+ the seperate insns. */
+
+rtx
+frv_split_scc (dest, test, cc_reg, cr_reg, value)
+ rtx dest;
+ rtx test;
+ rtx cc_reg;
+ rtx cr_reg;
+ HOST_WIDE_INT value;
+{
+ rtx ret;
+
+ start_sequence ();
+
+ /* Set the appropriate CCR bit. */
+ emit_insn (gen_rtx_SET (VOIDmode,
+ cr_reg,
+ gen_rtx_fmt_ee (GET_CODE (test),
+ GET_MODE (cr_reg),
+ cc_reg,
+ const0_rtx)));
+
+ /* Move the value into the destination. */
+ emit_move_insn (dest, GEN_INT (value));
+
+ /* Move 0 into the destination if the test failed */
+ emit_insn (gen_rtx_COND_EXEC (VOIDmode,
+ gen_rtx_EQ (GET_MODE (cr_reg),
+ cr_reg,
+ const0_rtx),
+ gen_rtx_SET (VOIDmode, dest, const0_rtx)));
+
+ /* Finish up, return sequence. */
+ ret = get_insns ();
+ end_sequence ();
+ return ret;
+}
+
+
+/* Emit the code for a conditional move, return TRUE if we could do the
+ move. */
+
+int
+frv_emit_cond_move (dest, test_rtx, src1, src2)
+ rtx dest;
+ rtx test_rtx;
+ rtx src1;
+ rtx src2;
+{
+ rtx set;
+ rtx clobber_cc;
+ rtx test2;
+ rtx cr_reg;
+ rtx if_rtx;
+ enum rtx_code test = GET_CODE (test_rtx);
+ rtx cc_reg = frv_emit_comparison (test, frv_compare_op0, frv_compare_op1);
+ enum machine_mode cc_mode = GET_MODE (cc_reg);
+
+ /* Conditional move instructions generate:
+ (parallel [(set <target>
+ (if_then_else (<test> <cc_reg> (const_int 0))
+ <src1>
+ <src2>))
+ (clobber (<ccr_reg>))]) */
+
+ /* Handle various cases of conditional move involving two constants. */
+ if (GET_CODE (src1) == CONST_INT && GET_CODE (src2) == CONST_INT)
+ {
+ HOST_WIDE_INT value1 = INTVAL (src1);
+ HOST_WIDE_INT value2 = INTVAL (src2);
+
+ /* having 0 as one of the constants can be done by loading the other
+ constant, and optionally moving in gr0. */
+ if (value1 == 0 || value2 == 0)
+ ;
+
+ /* If the first value is within an addi range and also the difference
+ between the two fits in an addi's range, load up the difference, then
+ conditionally move in 0, and then unconditionally add the first
+ value. */
+ else if (IN_RANGE_P (value1, -2048, 2047)
+ && IN_RANGE_P (value2 - value1, -2048, 2047))
+ ;
+
+ /* If neither condition holds, just force the constant into a
+ register. */
+ else
+ {
+ src1 = force_reg (GET_MODE (dest), src1);
+ src2 = force_reg (GET_MODE (dest), src2);
+ }
+ }
+
+ /* If one value is a register, insure the other value is either 0 or a
+ register. */
+ else
+ {
+ if (GET_CODE (src1) == CONST_INT && INTVAL (src1) != 0)
+ src1 = force_reg (GET_MODE (dest), src1);
+
+ if (GET_CODE (src2) == CONST_INT && INTVAL (src2) != 0)
+ src2 = force_reg (GET_MODE (dest), src2);
+ }
+
+ test2 = gen_rtx_fmt_ee (test, cc_mode, cc_reg, const0_rtx);
+ if_rtx = gen_rtx_IF_THEN_ELSE (GET_MODE (dest), test2, src1, src2);
+
+ set = gen_rtx_SET (VOIDmode, dest, if_rtx);
+
+ cr_reg = ((TARGET_ALLOC_CC)
+ ? gen_reg_rtx (CC_CCRmode)
+ : gen_rtx_REG (CC_CCRmode,
+ (cc_mode == CC_FPmode) ? FCR_FIRST : ICR_FIRST));
+
+ clobber_cc = gen_rtx_CLOBBER (VOIDmode, cr_reg);
+ emit_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, set, clobber_cc)));
+ return TRUE;
+}
+
+
+/* Split a conditonal move into constituent parts, returning a SEQUENCE
+ containing all of the insns. */
+
+rtx
+frv_split_cond_move (operands)
+ rtx operands[];
+{
+ rtx dest = operands[0];
+ rtx test = operands[1];
+ rtx cc_reg = operands[2];
+ rtx src1 = operands[3];
+ rtx src2 = operands[4];
+ rtx cr_reg = operands[5];
+ rtx ret;
+ enum machine_mode cr_mode = GET_MODE (cr_reg);
+
+ start_sequence ();
+
+ /* Set the appropriate CCR bit. */
+ emit_insn (gen_rtx_SET (VOIDmode,
+ cr_reg,
+ gen_rtx_fmt_ee (GET_CODE (test),
+ GET_MODE (cr_reg),
+ cc_reg,
+ const0_rtx)));
+
+ /* Handle various cases of conditional move involving two constants. */
+ if (GET_CODE (src1) == CONST_INT && GET_CODE (src2) == CONST_INT)
+ {
+ HOST_WIDE_INT value1 = INTVAL (src1);
+ HOST_WIDE_INT value2 = INTVAL (src2);
+
+ /* having 0 as one of the constants can be done by loading the other
+ constant, and optionally moving in gr0. */
+ if (value1 == 0)
+ {
+ emit_move_insn (dest, src2);
+ emit_insn (gen_rtx_COND_EXEC (VOIDmode,
+ gen_rtx_NE (cr_mode, cr_reg,
+ const0_rtx),
+ gen_rtx_SET (VOIDmode, dest, src1)));
+ }
+
+ else if (value2 == 0)
+ {
+ emit_move_insn (dest, src1);
+ emit_insn (gen_rtx_COND_EXEC (VOIDmode,
+ gen_rtx_EQ (cr_mode, cr_reg,
+ const0_rtx),
+ gen_rtx_SET (VOIDmode, dest, src2)));
+ }
+
+ /* If the first value is within an addi range and also the difference
+ between the two fits in an addi's range, load up the difference, then
+ conditionally move in 0, and then unconditionally add the first
+ value. */
+ else if (IN_RANGE_P (value1, -2048, 2047)
+ && IN_RANGE_P (value2 - value1, -2048, 2047))
+ {
+ rtx dest_si = ((GET_MODE (dest) == SImode)
+ ? dest
+ : gen_rtx_SUBREG (SImode, dest, 0));
+
+ emit_move_insn (dest_si, GEN_INT (value2 - value1));
+ emit_insn (gen_rtx_COND_EXEC (VOIDmode,
+ gen_rtx_NE (cr_mode, cr_reg,
+ const0_rtx),
+ gen_rtx_SET (VOIDmode, dest_si,
+ const0_rtx)));
+ emit_insn (gen_addsi3 (dest_si, dest_si, src1));
+ }
+
+ else
+ abort ();
+ }
+ else
+ {
+ /* Emit the conditional move for the test being true if needed. */
+ if (! rtx_equal_p (dest, src1))
+ emit_insn (gen_rtx_COND_EXEC (VOIDmode,
+ gen_rtx_NE (cr_mode, cr_reg, const0_rtx),
+ gen_rtx_SET (VOIDmode, dest, src1)));
+
+ /* Emit the conditional move for the test being false if needed. */
+ if (! rtx_equal_p (dest, src2))
+ emit_insn (gen_rtx_COND_EXEC (VOIDmode,
+ gen_rtx_EQ (cr_mode, cr_reg, const0_rtx),
+ gen_rtx_SET (VOIDmode, dest, src2)));
+ }
+
+ /* Finish up, return sequence. */
+ ret = get_insns ();
+ end_sequence ();
+ return ret;
+}
+
+
+/* Split (set DEST SOURCE), where DEST is a double register and SOURCE is a
+ memory location that is not known to be dword-aligned. */
+void
+frv_split_double_load (dest, source)
+ rtx dest;
+ rtx source;
+{
+ int regno = REGNO (dest);
+ rtx dest1 = gen_highpart (SImode, dest);
+ rtx dest2 = gen_lowpart (SImode, dest);
+ rtx address = XEXP (source, 0);
+
+ /* If the address is pre-modified, load the lower-numbered register
+ first, then load the other register using an integer offset from
+ the modified base register. This order should always be safe,
+ since the pre-modification cannot affect the same registers as the
+ load does.
+
+ The situation for other loads is more complicated. Loading one
+ of the registers could affect the value of ADDRESS, so we must
+ be careful which order we do them in. */
+ if (GET_CODE (address) == PRE_MODIFY
+ || ! refers_to_regno_p (regno, regno + 1, address, NULL))
+ {
+ /* It is safe to load the lower-numbered register first. */
+ emit_move_insn (dest1, change_address (source, SImode, NULL));
+ emit_move_insn (dest2, frv_index_memory (source, SImode, 1));
+ }
+ else
+ {
+ /* ADDRESS is not pre-modified and the address depends on the
+ lower-numbered register. Load the higher-numbered register
+ first. */
+ emit_move_insn (dest2, frv_index_memory (source, SImode, 1));
+ emit_move_insn (dest1, change_address (source, SImode, NULL));
+ }
+}
+
+/* Split (set DEST SOURCE), where DEST refers to a dword memory location
+ and SOURCE is either a double register or the constant zero. */
+void
+frv_split_double_store (dest, source)
+ rtx dest;
+ rtx source;
+{
+ rtx dest1 = change_address (dest, SImode, NULL);
+ rtx dest2 = frv_index_memory (dest, SImode, 1);
+ if (ZERO_P (source))
+ {
+ emit_move_insn (dest1, CONST0_RTX (SImode));
+ emit_move_insn (dest2, CONST0_RTX (SImode));
+ }
+ else
+ {
+ emit_move_insn (dest1, gen_highpart (SImode, source));
+ emit_move_insn (dest2, gen_lowpart (SImode, source));
+ }
+}
+
+
+/* Split a min/max operation returning a SEQUENCE containing all of the
+ insns. */
+
+rtx
+frv_split_minmax (operands)
+ rtx operands[];
+{
+ rtx dest = operands[0];
+ rtx minmax = operands[1];
+ rtx src1 = operands[2];
+ rtx src2 = operands[3];
+ rtx cc_reg = operands[4];
+ rtx cr_reg = operands[5];
+ rtx ret;
+ enum rtx_code test_code;
+ enum machine_mode cr_mode = GET_MODE (cr_reg);
+
+ start_sequence ();
+
+ /* Figure out which test to use */
+ switch (GET_CODE (minmax))
+ {
+ default:
+ abort ();
+
+ case SMIN: test_code = LT; break;
+ case SMAX: test_code = GT; break;
+ case UMIN: test_code = LTU; break;
+ case UMAX: test_code = GTU; break;
+ }
+
+ /* Issue the compare instruction. */
+ emit_insn (gen_rtx_SET (VOIDmode,
+ cc_reg,
+ gen_rtx_COMPARE (GET_MODE (cc_reg),
+ src1, src2)));
+
+ /* Set the appropriate CCR bit. */
+ emit_insn (gen_rtx_SET (VOIDmode,
+ cr_reg,
+ gen_rtx_fmt_ee (test_code,
+ GET_MODE (cr_reg),
+ cc_reg,
+ const0_rtx)));
+
+ /* If are taking the min/max of a nonzero constant, load that first, and
+ then do a conditional move of the other value. */
+ if (GET_CODE (src2) == CONST_INT && INTVAL (src2) != 0)
+ {
+ if (rtx_equal_p (dest, src1))
+ abort ();
+
+ emit_move_insn (dest, src2);
+ emit_insn (gen_rtx_COND_EXEC (VOIDmode,
+ gen_rtx_NE (cr_mode, cr_reg, const0_rtx),
+ gen_rtx_SET (VOIDmode, dest, src1)));
+ }
+
+ /* Otherwise, do each half of the move. */
+ else
+ {
+ /* Emit the conditional move for the test being true if needed. */
+ if (! rtx_equal_p (dest, src1))
+ emit_insn (gen_rtx_COND_EXEC (VOIDmode,
+ gen_rtx_NE (cr_mode, cr_reg, const0_rtx),
+ gen_rtx_SET (VOIDmode, dest, src1)));
+
+ /* Emit the conditional move for the test being false if needed. */
+ if (! rtx_equal_p (dest, src2))
+ emit_insn (gen_rtx_COND_EXEC (VOIDmode,
+ gen_rtx_EQ (cr_mode, cr_reg, const0_rtx),
+ gen_rtx_SET (VOIDmode, dest, src2)));
+ }
+
+ /* Finish up, return sequence. */
+ ret = get_insns ();
+ end_sequence ();
+ return ret;
+}
+
+
+/* Split an integer abs operation returning a SEQUENCE containing all of the
+ insns. */
+
+rtx
+frv_split_abs (operands)
+ rtx operands[];
+{
+ rtx dest = operands[0];
+ rtx src = operands[1];
+ rtx cc_reg = operands[2];
+ rtx cr_reg = operands[3];
+ rtx ret;
+
+ start_sequence ();
+
+ /* Issue the compare < 0 instruction. */
+ emit_insn (gen_rtx_SET (VOIDmode,
+ cc_reg,
+ gen_rtx_COMPARE (CCmode, src, const0_rtx)));
+
+ /* Set the appropriate CCR bit. */
+ emit_insn (gen_rtx_SET (VOIDmode,
+ cr_reg,
+ gen_rtx_fmt_ee (LT, CC_CCRmode, cc_reg, const0_rtx)));
+
+ /* Emit the conditional negate if the value is negative */
+ emit_insn (gen_rtx_COND_EXEC (VOIDmode,
+ gen_rtx_NE (CC_CCRmode, cr_reg, const0_rtx),
+ gen_negsi2 (dest, src)));
+
+ /* Emit the conditional move for the test being false if needed. */
+ if (! rtx_equal_p (dest, src))
+ emit_insn (gen_rtx_COND_EXEC (VOIDmode,
+ gen_rtx_EQ (CC_CCRmode, cr_reg, const0_rtx),
+ gen_rtx_SET (VOIDmode, dest, src)));
+
+ /* Finish up, return sequence. */
+ ret = get_insns ();
+ end_sequence ();
+ return ret;
+}
+
+
+/* An internal function called by for_each_rtx to clear in a hard_reg set each
+ register used in an insn. */
+
+static int
+frv_clear_registers_used (ptr, data)
+ rtx *ptr;
+ void *data;
+{
+ if (GET_CODE (*ptr) == REG)
+ {
+ int regno = REGNO (*ptr);
+ HARD_REG_SET *p_regs = (HARD_REG_SET *)data;
+
+ if (regno < FIRST_PSEUDO_REGISTER)
+ {
+ int reg_max = regno + HARD_REGNO_NREGS (regno, GET_MODE (*ptr));
+
+ while (regno < reg_max)
+ {
+ CLEAR_HARD_REG_BIT (*p_regs, regno);
+ regno++;
+ }
+ }
+ }
+
+ return 0;
+}
+
+
+/* Initialize the extra fields provided by IFCVT_EXTRA_FIELDS. */
+
+/* On the FR-V, we don't have any extra fields per se, but it is useful hook to
+ initialize the static storage. */
+void
+frv_ifcvt_init_extra_fields (ce_info)
+ ce_if_block_t *ce_info ATTRIBUTE_UNUSED;
+{
+ frv_ifcvt.added_insns_list = NULL_RTX;
+ frv_ifcvt.cur_scratch_regs = 0;
+ frv_ifcvt.num_nested_cond_exec = 0;
+ frv_ifcvt.cr_reg = NULL_RTX;
+ frv_ifcvt.nested_cc_reg = NULL_RTX;
+ frv_ifcvt.extra_int_cr = NULL_RTX;
+ frv_ifcvt.extra_fp_cr = NULL_RTX;
+ frv_ifcvt.last_nested_if_cr = NULL_RTX;
+}
+
+
+/* Internal function to add a potenial insn to the list of insns to be inserted
+ if the conditional execution conversion is successful. */
+
+static void
+frv_ifcvt_add_insn (pattern, insn, before_p)
+ rtx pattern;
+ rtx insn;
+ int before_p;
+{
+ rtx link = alloc_EXPR_LIST (VOIDmode, pattern, insn);
+
+ link->jump = before_p; /* mark to add this before or after insn */
+ frv_ifcvt.added_insns_list = alloc_EXPR_LIST (VOIDmode, link,
+ frv_ifcvt.added_insns_list);
+
+ if (TARGET_DEBUG_COND_EXEC)
+ {
+ fprintf (stderr,
+ "\n:::::::::: frv_ifcvt_add_insn: add the following %s insn %d:\n",
+ (before_p) ? "before" : "after",
+ (int)INSN_UID (insn));
+
+ debug_rtx (pattern);
+ }
+}
+
+
+/* A C expression to modify the code described by the conditional if
+ information CE_INFO, possibly updating the tests in TRUE_EXPR, and
+ FALSE_EXPR for converting if-then and if-then-else code to conditional
+ instructions. Set either TRUE_EXPR or FALSE_EXPR to a null pointer if the
+ tests cannot be converted. */
+
+void
+frv_ifcvt_modify_tests (ce_info, p_true, p_false)
+ ce_if_block_t *ce_info;
+ rtx *p_true;
+ rtx *p_false;
+{
+ basic_block test_bb = ce_info->test_bb; /* test basic block */
+ basic_block then_bb = ce_info->then_bb; /* THEN */
+ basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
+ basic_block join_bb = ce_info->join_bb; /* join block or NULL */
+ rtx true_expr = *p_true;
+ rtx cr;
+ rtx cc;
+ rtx nested_cc;
+ enum machine_mode mode = GET_MODE (true_expr);
+ int j;
+ basic_block *bb;
+ int num_bb;
+ frv_tmp_reg_t *tmp_reg = &frv_ifcvt.tmp_reg;
+ rtx check_insn;
+ rtx sub_cond_exec_reg;
+ enum rtx_code code;
+ enum rtx_code code_true;
+ enum rtx_code code_false;
+ enum reg_class cc_class;
+ enum reg_class cr_class;
+ int cc_first;
+ int cc_last;
+
+ /* Make sure we are only dealing with hard registers. Also honor the
+ -mno-cond-exec switch, and -mno-nested-cond-exec switches if
+ applicable. */
+ if (!reload_completed || TARGET_NO_COND_EXEC
+ || (TARGET_NO_NESTED_CE && ce_info->pass > 1))
+ goto fail;
+
+ /* Figure out which registers we can allocate for our own purposes. Only
+ consider registers that are not preserved across function calls and are
+ not fixed. However, allow the ICC/ICR temporary registers to be allocated
+ if we did not need to use them in reloading other registers. */
+ memset ((PTR) &tmp_reg->regs, 0, sizeof (tmp_reg->regs));
+ COPY_HARD_REG_SET (tmp_reg->regs, call_used_reg_set);
+ AND_COMPL_HARD_REG_SET (tmp_reg->regs, fixed_reg_set);
+ SET_HARD_REG_BIT (tmp_reg->regs, ICC_TEMP);
+ SET_HARD_REG_BIT (tmp_reg->regs, ICR_TEMP);
+
+ /* If this is a nested IF, we need to discover whether the CC registers that
+ are set/used inside of the block are used anywhere else. If not, we can
+ change them to be the CC register that is paired with the CR register that
+ controls the outermost IF block. */
+ if (ce_info->pass > 1)
+ {
+ CLEAR_HARD_REG_SET (frv_ifcvt.nested_cc_ok_rewrite);
+ for (j = CC_FIRST; j <= CC_LAST; j++)
+ if (TEST_HARD_REG_BIT (tmp_reg->regs, j))
+ {
+ if (REGNO_REG_SET_P (then_bb->global_live_at_start, j))
+ continue;
+
+ if (else_bb && REGNO_REG_SET_P (else_bb->global_live_at_start, j))
+ continue;
+
+ if (join_bb && REGNO_REG_SET_P (join_bb->global_live_at_start, j))
+ continue;
+
+ SET_HARD_REG_BIT (frv_ifcvt.nested_cc_ok_rewrite, j);
+ }
+ }
+
+ for (j = 0; j < frv_ifcvt.cur_scratch_regs; j++)
+ frv_ifcvt.scratch_regs[j] = NULL_RTX;
+
+ frv_ifcvt.added_insns_list = NULL_RTX;
+ frv_ifcvt.cur_scratch_regs = 0;
+
+ bb = (basic_block *) alloca ((2 + ce_info->num_multiple_test_blocks)
+ * sizeof (basic_block));
+
+ if (join_bb)
+ {
+ int regno;
+
+ /* Remove anything live at the beginning of the join block from being
+ available for allocation. */
+ EXECUTE_IF_SET_IN_REG_SET (join_bb->global_live_at_start, 0, regno,
+ {
+ if (regno < FIRST_PSEUDO_REGISTER)
+ CLEAR_HARD_REG_BIT (tmp_reg->regs, regno);
+ });
+ }
+
+ /* Add in all of the blocks in multiple &&/|| blocks to be scanned. */
+ num_bb = 0;
+ if (ce_info->num_multiple_test_blocks)
+ {
+ basic_block multiple_test_bb = ce_info->last_test_bb;
+
+ while (multiple_test_bb != test_bb)
+ {
+ bb[num_bb++] = multiple_test_bb;
+ multiple_test_bb = multiple_test_bb->pred->src;
+ }
+ }
+
+ /* Add in the THEN and ELSE blocks to be scanned. */
+ bb[num_bb++] = then_bb;
+ if (else_bb)
+ bb[num_bb++] = else_bb;
+
+ sub_cond_exec_reg = NULL_RTX;
+ frv_ifcvt.num_nested_cond_exec = 0;
+
+ /* Scan all of the blocks for registers that must not be allocated. */
+ for (j = 0; j < num_bb; j++)
+ {
+ rtx last_insn = bb[j]->end;
+ rtx insn = bb[j]->head;
+ int regno;
+
+ if (rtl_dump_file)
+ fprintf (rtl_dump_file, "Scanning %s block %d, start %d, end %d\n",
+ (bb[j] == else_bb) ? "else" : ((bb[j] == then_bb) ? "then" : "test"),
+ (int) bb[j]->index,
+ (int) INSN_UID (bb[j]->head),
+ (int) INSN_UID (bb[j]->end));
+
+ /* Anything live at the beginning of the block is obviously unavailable
+ for allocation. */
+ EXECUTE_IF_SET_IN_REG_SET (bb[j]->global_live_at_start, 0, regno,
+ {
+ if (regno < FIRST_PSEUDO_REGISTER)
+ CLEAR_HARD_REG_BIT (tmp_reg->regs, regno);
+ });
+
+ /* loop through the insns in the block. */
+ for (;;)
+ {
+ /* Mark any new registers that are created as being unavailable for
+ allocation. Also see if the CC register used in nested IFs can be
+ reallocated. */
+ if (INSN_P (insn))
+ {
+ rtx pattern;
+ rtx set;
+ int skip_nested_if = FALSE;
+
+ for_each_rtx (&PATTERN (insn), frv_clear_registers_used,
+ (void *)&tmp_reg->regs);
+
+ pattern = PATTERN (insn);
+ if (GET_CODE (pattern) == COND_EXEC)
+ {
+ rtx reg = XEXP (COND_EXEC_TEST (pattern), 0);
+
+ if (reg != sub_cond_exec_reg)
+ {
+ sub_cond_exec_reg = reg;
+ frv_ifcvt.num_nested_cond_exec++;
+ }
+ }
+
+ set = single_set_pattern (pattern);
+ if (set)
+ {
+ rtx dest = SET_DEST (set);
+ rtx src = SET_SRC (set);
+
+ if (GET_CODE (dest) == REG)
+ {
+ int regno = REGNO (dest);
+ enum rtx_code src_code = GET_CODE (src);
+
+ if (CC_P (regno) && src_code == COMPARE)
+ skip_nested_if = TRUE;
+
+ else if (CR_P (regno)
+ && (src_code == IF_THEN_ELSE
+ || GET_RTX_CLASS (src_code) == '<'))
+ skip_nested_if = TRUE;
+ }
+ }
+
+ if (! skip_nested_if)
+ for_each_rtx (&PATTERN (insn), frv_clear_registers_used,
+ (void *)&frv_ifcvt.nested_cc_ok_rewrite);
+ }
+
+ if (insn == last_insn)
+ break;
+
+ insn = NEXT_INSN (insn);
+ }
+ }
+
+ /* If this is a nested if, rewrite the CC registers that are available to
+ include the ones that can be rewritten, to increase the chance of being
+ able to allocate a paired CC/CR register combination. */
+ if (ce_info->pass > 1)
+ {
+ for (j = CC_FIRST; j <= CC_LAST; j++)
+ if (TEST_HARD_REG_BIT (frv_ifcvt.nested_cc_ok_rewrite, j))
+ SET_HARD_REG_BIT (tmp_reg->regs, j);
+ else
+ CLEAR_HARD_REG_BIT (tmp_reg->regs, j);
+ }
+
+ if (rtl_dump_file)
+ {
+ int num_gprs = 0;
+ fprintf (rtl_dump_file, "Available GPRs: ");
+
+ for (j = GPR_FIRST; j <= GPR_LAST; j++)
+ if (TEST_HARD_REG_BIT (tmp_reg->regs, j))
+ {
+ fprintf (rtl_dump_file, " %d [%s]", j, reg_names[j]);
+ if (++num_gprs > GPR_TEMP_NUM+2)
+ break;
+ }
+
+ fprintf (rtl_dump_file, "%s\nAvailable CRs: ",
+ (num_gprs > GPR_TEMP_NUM+2) ? " ..." : "");
+
+ for (j = CR_FIRST; j <= CR_LAST; j++)
+ if (TEST_HARD_REG_BIT (tmp_reg->regs, j))
+ fprintf (rtl_dump_file, " %d [%s]", j, reg_names[j]);
+
+ fputs ("\n", rtl_dump_file);
+
+ if (ce_info->pass > 1)
+ {
+ fprintf (rtl_dump_file, "Modifiable CCs: ");
+ for (j = CC_FIRST; j <= CC_LAST; j++)
+ if (TEST_HARD_REG_BIT (tmp_reg->regs, j))
+ fprintf (rtl_dump_file, " %d [%s]", j, reg_names[j]);
+
+ fprintf (rtl_dump_file, "\n%d nested COND_EXEC statements\n",
+ frv_ifcvt.num_nested_cond_exec);
+ }
+ }
+
+ /* Allocate the appropriate temporary condition code register. Try to
+ allocate the ICR/FCR register that corresponds to the ICC/FCC register so
+ that conditional cmp's can be done. */
+ if (mode == CCmode || mode == CC_UNSmode)
+ {
+ cr_class = ICR_REGS;
+ cc_class = ICC_REGS;
+ cc_first = ICC_FIRST;
+ cc_last = ICC_LAST;
+ }
+ else if (mode == CC_FPmode)
+ {
+ cr_class = FCR_REGS;
+ cc_class = FCC_REGS;
+ cc_first = FCC_FIRST;
+ cc_last = FCC_LAST;
+ }
+ else
+ {
+ cc_first = cc_last = 0;
+ cr_class = cc_class = NO_REGS;
+ }
+
+ cc = XEXP (true_expr, 0);
+ nested_cc = cr = NULL_RTX;
+ if (cc_class != NO_REGS)
+ {
+ /* For nested IFs and &&/||, see if we can find a CC and CR register pair
+ so we can execute a csubcc/caddcc/cfcmps instruction. */
+ int cc_regno;
+
+ for (cc_regno = cc_first; cc_regno <= cc_last; cc_regno++)
+ {
+ int cr_regno = cc_regno - CC_FIRST + CR_FIRST;
+
+ if (TEST_HARD_REG_BIT (frv_ifcvt.tmp_reg.regs, cc_regno)
+ && TEST_HARD_REG_BIT (frv_ifcvt.tmp_reg.regs, cr_regno))
+ {
+ frv_ifcvt.tmp_reg.next_reg[ (int)cr_class ] = cr_regno;
+ cr = frv_alloc_temp_reg (tmp_reg, cr_class, CC_CCRmode, TRUE,
+ TRUE);
+
+ frv_ifcvt.tmp_reg.next_reg[ (int)cc_class ] = cc_regno;
+ nested_cc = frv_alloc_temp_reg (tmp_reg, cc_class, CCmode,
+ TRUE, TRUE);
+ break;
+ }
+ }
+ }
+
+ if (! cr)
+ {
+ if (rtl_dump_file)
+ fprintf (rtl_dump_file, "Could not allocate a CR temporary register\n");
+
+ goto fail;
+ }
+
+ if (rtl_dump_file)
+ fprintf (rtl_dump_file,
+ "Will use %s for conditional execution, %s for nested comparisons\n",
+ reg_names[ REGNO (cr)],
+ (nested_cc) ? reg_names[ REGNO (nested_cc) ] : "<none>");
+
+ /* Set the CCR bit. Note for integer tests, we reverse the condition so that
+ in an IF-THEN-ELSE sequence, we are testing the TRUE case against the CCR
+ bit being true. We don't do this for floating point, because of NaNs. */
+ code = GET_CODE (true_expr);
+ if (GET_MODE (cc) != CC_FPmode)
+ {
+ code = reverse_condition (code);
+ code_true = EQ;
+ code_false = NE;
+ }
+ else
+ {
+ code_true = NE;
+ code_false = EQ;
+ }
+
+ check_insn = gen_rtx_SET (VOIDmode, cr,
+ gen_rtx_fmt_ee (code, CC_CCRmode, cc, const0_rtx));
+
+ /* Record the check insn to be inserted later. */
+ frv_ifcvt_add_insn (check_insn, test_bb->end, TRUE);
+
+ /* Update the tests. */
+ frv_ifcvt.cr_reg = cr;
+ frv_ifcvt.nested_cc_reg = nested_cc;
+ *p_true = gen_rtx_fmt_ee (code_true, CC_CCRmode, cr, const0_rtx);
+ *p_false = gen_rtx_fmt_ee (code_false, CC_CCRmode, cr, const0_rtx);
+ return;
+
+ /* Fail, don't do this conditional execution. */
+ fail:
+ *p_true = NULL_RTX;
+ *p_false = NULL_RTX;
+ if (rtl_dump_file)
+ fprintf (rtl_dump_file, "Disabling this conditional execution.\n");
+
+ return;
+}
+
+
+/* A C expression to modify the code described by the conditional if
+ information CE_INFO, for the basic block BB, possibly updating the tests in
+ TRUE_EXPR, and FALSE_EXPR for converting the && and || parts of if-then or
+ if-then-else code to conditional instructions. Set either TRUE_EXPR or
+ FALSE_EXPR to a null pointer if the tests cannot be converted. */
+
+/* p_true and p_false are given expressions of the form:
+
+ (and (eq:CC_CCR (reg:CC_CCR)
+ (const_int 0))
+ (eq:CC (reg:CC)
+ (const_int 0))) */
+
+void
+frv_ifcvt_modify_multiple_tests (ce_info, bb, p_true, p_false)
+ ce_if_block_t *ce_info;
+ basic_block bb;
+ rtx *p_true;
+ rtx *p_false;
+{
+ rtx old_true = XEXP (*p_true, 0);
+ rtx old_false = XEXP (*p_false, 0);
+ rtx true_expr = XEXP (*p_true, 1);
+ rtx false_expr = XEXP (*p_false, 1);
+ rtx test_expr;
+ rtx old_test;
+ rtx cr = XEXP (old_true, 0);
+ rtx check_insn;
+ rtx new_cr = NULL_RTX;
+ rtx *p_new_cr = (rtx *)0;
+ rtx if_else;
+ rtx compare;
+ rtx cc;
+ enum reg_class cr_class;
+ enum machine_mode mode = GET_MODE (true_expr);
+ rtx (*logical_func)(rtx, rtx, rtx);
+
+ if (TARGET_DEBUG_COND_EXEC)
+ {
+ fprintf (stderr,
+ "\n:::::::::: frv_ifcvt_modify_multiple_tests, before modification for %s\ntrue insn:\n",
+ ce_info->and_and_p ? "&&" : "||");
+
+ debug_rtx (*p_true);
+
+ fputs ("\nfalse insn:\n", stderr);
+ debug_rtx (*p_false);
+ }
+
+ if (TARGET_NO_MULTI_CE)
+ goto fail;
+
+ if (GET_CODE (cr) != REG)
+ goto fail;
+
+ if (mode == CCmode || mode == CC_UNSmode)
+ {
+ cr_class = ICR_REGS;
+ p_new_cr = &frv_ifcvt.extra_int_cr;
+ }
+ else if (mode == CC_FPmode)
+ {
+ cr_class = FCR_REGS;
+ p_new_cr = &frv_ifcvt.extra_fp_cr;
+ }
+ else
+ goto fail;
+
+ /* Allocate a temp CR, reusing a previously allocated temp CR if we have 3 or
+ more &&/|| tests. */
+ new_cr = *p_new_cr;
+ if (! new_cr)
+ {
+ new_cr = *p_new_cr = frv_alloc_temp_reg (&frv_ifcvt.tmp_reg, cr_class,
+ CC_CCRmode, TRUE, TRUE);
+ if (! new_cr)
+ goto fail;
+ }
+
+ if (ce_info->and_and_p)
+ {
+ old_test = old_false;
+ test_expr = true_expr;
+ logical_func = (GET_CODE (old_true) == EQ) ? gen_andcr : gen_andncr;
+ *p_true = gen_rtx_NE (CC_CCRmode, cr, const0_rtx);
+ *p_false = gen_rtx_EQ (CC_CCRmode, cr, const0_rtx);
+ }
+ else
+ {
+ old_test = old_false;
+ test_expr = false_expr;
+ logical_func = (GET_CODE (old_false) == EQ) ? gen_orcr : gen_orncr;
+ *p_true = gen_rtx_EQ (CC_CCRmode, cr, const0_rtx);
+ *p_false = gen_rtx_NE (CC_CCRmode, cr, const0_rtx);
+ }
+
+ /* First add the andcr/andncr/orcr/orncr, which will be added after the
+ conditional check instruction, due to frv_ifcvt_add_insn being a LIFO
+ stack. */
+ frv_ifcvt_add_insn ((*logical_func) (cr, cr, new_cr), bb->end, TRUE);
+
+ /* Now add the conditional check insn. */
+ cc = XEXP (test_expr, 0);
+ compare = gen_rtx_fmt_ee (GET_CODE (test_expr), CC_CCRmode, cc, const0_rtx);
+ if_else = gen_rtx_IF_THEN_ELSE (CC_CCRmode, old_test, compare, const0_rtx);
+
+ check_insn = gen_rtx_SET (VOIDmode, new_cr, if_else);
+
+ /* add the new check insn to the list of check insns that need to be
+ inserted. */
+ frv_ifcvt_add_insn (check_insn, bb->end, TRUE);
+
+ if (TARGET_DEBUG_COND_EXEC)
+ {
+ fputs ("\n:::::::::: frv_ifcvt_modify_multiple_tests, after modification\ntrue insn:\n",
+ stderr);
+
+ debug_rtx (*p_true);
+
+ fputs ("\nfalse insn:\n", stderr);
+ debug_rtx (*p_false);
+ }
+
+ return;
+
+ fail:
+ *p_true = *p_false = NULL_RTX;
+
+ /* If we allocated a CR register, release it. */
+ if (new_cr)
+ {
+ CLEAR_HARD_REG_BIT (frv_ifcvt.tmp_reg.regs, REGNO (new_cr));
+ *p_new_cr = NULL_RTX;
+ }
+
+ if (TARGET_DEBUG_COND_EXEC)
+ fputs ("\n:::::::::: frv_ifcvt_modify_multiple_tests, failed.\n", stderr);
+
+ return;
+}
+
+
+/* Return a register which will be loaded with a value if an IF block is
+ converted to conditional execution. This is used to rewrite instructions
+ that use constants to ones that just use registers. */
+
+static rtx
+frv_ifcvt_load_value (value, insn)
+ rtx value;
+ rtx insn ATTRIBUTE_UNUSED;
+{
+ int num_alloc = frv_ifcvt.cur_scratch_regs;
+ int i;
+ rtx reg;
+
+ /* We know gr0 == 0, so replace any errant uses. */
+ if (value == const0_rtx)
+ return gen_rtx_REG (SImode, GPR_FIRST);
+
+ /* First search all registers currently loaded to see if we have an
+ applicable constant. */
+ if (CONSTANT_P (value)
+ || (GET_CODE (value) == REG && REGNO (value) == LR_REGNO))
+ {
+ for (i = 0; i < num_alloc; i++)
+ {
+ if (rtx_equal_p (SET_SRC (frv_ifcvt.scratch_regs[i]), value))
+ return SET_DEST (frv_ifcvt.scratch_regs[i]);
+ }
+ }
+
+ /* Have we exhausted the number of registers available? */
+ if (num_alloc >= GPR_TEMP_NUM)
+ {
+ if (rtl_dump_file)
+ fprintf (rtl_dump_file, "Too many temporary registers allocated\n");
+
+ return NULL_RTX;
+ }
+
+ /* Allocate the new register. */
+ reg = frv_alloc_temp_reg (&frv_ifcvt.tmp_reg, GPR_REGS, SImode, TRUE, TRUE);
+ if (! reg)
+ {
+ if (rtl_dump_file)
+ fputs ("Could not find a scratch register\n", rtl_dump_file);
+
+ return NULL_RTX;
+ }
+
+ frv_ifcvt.cur_scratch_regs++;
+ frv_ifcvt.scratch_regs[num_alloc] = gen_rtx_SET (VOIDmode, reg, value);
+
+ if (rtl_dump_file)
+ {
+ if (GET_CODE (value) == CONST_INT)
+ fprintf (rtl_dump_file, "Register %s will hold %ld\n",
+ reg_names[ REGNO (reg)], (long)INTVAL (value));
+
+ else if (GET_CODE (value) == REG && REGNO (value) == LR_REGNO)
+ fprintf (rtl_dump_file, "Register %s will hold LR\n",
+ reg_names[ REGNO (reg)]);
+
+ else
+ fprintf (rtl_dump_file, "Register %s will hold a saved value\n",
+ reg_names[ REGNO (reg)]);
+ }
+
+ return reg;
+}
+
+
+/* Update a MEM used in conditional code that might contain an offset to put
+ the offset into a scratch register, so that the conditional load/store
+ operations can be used. This function returns the original pointer if the
+ MEM is valid to use in conditional code, NULL if we can't load up the offset
+ into a temporary register, or the new MEM if we were successful. */
+
+static rtx
+frv_ifcvt_rewrite_mem (mem, mode, insn)
+ rtx mem;
+ enum machine_mode mode;
+ rtx insn;
+{
+ rtx addr = XEXP (mem, 0);
+
+ if (!frv_legitimate_address_p (mode, addr, reload_completed, TRUE))
+ {
+ if (GET_CODE (addr) == PLUS)
+ {
+ rtx addr_op0 = XEXP (addr, 0);
+ rtx addr_op1 = XEXP (addr, 1);
+
+ if (plus_small_data_p (addr_op0, addr_op1))
+ addr = frv_ifcvt_load_value (addr, insn);
+
+ else if (GET_CODE (addr_op0) == REG && CONSTANT_P (addr_op1))
+ {
+ rtx reg = frv_ifcvt_load_value (addr_op1, insn);
+ if (!reg)
+ return NULL_RTX;
+
+ addr = gen_rtx_PLUS (Pmode, addr_op0, reg);
+ }
+
+ else
+ return NULL_RTX;
+ }
+
+ else if (CONSTANT_P (addr))
+ addr = frv_ifcvt_load_value (addr, insn);
+
+ else
+ return NULL_RTX;
+
+ if (addr == NULL_RTX)
+ return NULL_RTX;
+
+ else if (XEXP (mem, 0) != addr)
+ return change_address (mem, mode, addr);
+ }
+
+ return mem;
+}
+
+
+/* Given a PATTERN, return a SET expression if this PATTERN has only a single
+ SET, possibly conditionally executed. It may also have CLOBBERs, USEs. */
+
+static rtx
+single_set_pattern (pattern)
+ rtx pattern;
+{
+ rtx set;
+ int i;
+
+ if (GET_CODE (pattern) == COND_EXEC)
+ pattern = COND_EXEC_CODE (pattern);
+
+ if (GET_CODE (pattern) == SET)
+ return pattern;
+
+ else if (GET_CODE (pattern) == PARALLEL)
+ {
+ for (i = 0, set = 0; i < XVECLEN (pattern, 0); i++)
+ {
+ rtx sub = XVECEXP (pattern, 0, i);
+
+ switch (GET_CODE (sub))
+ {
+ case USE:
+ case CLOBBER:
+ break;
+
+ case SET:
+ if (set)
+ return 0;
+ else
+ set = sub;
+ break;
+
+ default:
+ return 0;
+ }
+ }
+ return set;
+ }
+
+ return 0;
+}
+
+
+/* A C expression to modify the code described by the conditional if
+ information CE_INFO with the new PATTERN in INSN. If PATTERN is a null
+ pointer after the IFCVT_MODIFY_INSN macro executes, it is assumed that that
+ insn cannot be converted to be executed conditionally. */
+
+rtx
+frv_ifcvt_modify_insn (ce_info, pattern, insn)
+ ce_if_block_t *ce_info ATTRIBUTE_UNUSED;
+ rtx pattern;
+ rtx insn;
+{
+ rtx orig_ce_pattern = pattern;
+ rtx set;
+ rtx op0;
+ rtx op1;
+ rtx test;
+
+ if (GET_CODE (pattern) != COND_EXEC)
+ abort ();
+
+ test = COND_EXEC_TEST (pattern);
+ if (GET_CODE (test) == AND)
+ {
+ rtx cr = frv_ifcvt.cr_reg;
+ rtx test_reg;
+
+ op0 = XEXP (test, 0);
+ if (! rtx_equal_p (cr, XEXP (op0, 0)))
+ goto fail;
+
+ op1 = XEXP (test, 1);
+ test_reg = XEXP (op1, 0);
+ if (GET_CODE (test_reg) != REG)
+ goto fail;
+
+ /* Is this the first nested if block in this sequence? If so, generate
+ an andcr or andncr. */
+ if (! frv_ifcvt.last_nested_if_cr)
+ {
+ rtx and_op;
+
+ frv_ifcvt.last_nested_if_cr = test_reg;
+ if (GET_CODE (op0) == NE)
+ and_op = gen_andcr (test_reg, cr, test_reg);
+ else
+ and_op = gen_andncr (test_reg, cr, test_reg);
+
+ frv_ifcvt_add_insn (and_op, insn, TRUE);
+ }
+
+ /* If this isn't the first statement in the nested if sequence, see if we
+ are dealing with the same register. */
+ else if (! rtx_equal_p (test_reg, frv_ifcvt.last_nested_if_cr))
+ goto fail;
+
+ COND_EXEC_TEST (pattern) = test = op1;
+ }
+
+ /* If this isn't a nested if, reset state variables. */
+ else
+ {
+ frv_ifcvt.last_nested_if_cr = NULL_RTX;
+ }
+
+ set = single_set_pattern (pattern);
+ if (set)
+ {
+ rtx dest = SET_DEST (set);
+ rtx src = SET_SRC (set);
+ enum machine_mode mode = GET_MODE (dest);
+
+ /* Check for normal binary operators */
+ if (mode == SImode
+ && (GET_RTX_CLASS (GET_CODE (src)) == '2'
+ || GET_RTX_CLASS (GET_CODE (src)) == 'c'))
+ {
+ op0 = XEXP (src, 0);
+ op1 = XEXP (src, 1);
+
+ /* Special case load of small data address which looks like:
+ r16+symbol_ref */
+ if (GET_CODE (src) == PLUS && plus_small_data_p (op0, op1))
+ {
+ src = frv_ifcvt_load_value (src, insn);
+ if (src)
+ COND_EXEC_CODE (pattern) = gen_rtx_SET (VOIDmode, dest, src);
+ else
+ goto fail;
+ }
+
+ else if (integer_register_operand (op0, SImode) && CONSTANT_P (op1))
+ {
+ op1 = frv_ifcvt_load_value (op1, insn);
+ if (op1)
+ COND_EXEC_CODE (pattern)
+ = gen_rtx_SET (VOIDmode, dest, gen_rtx_fmt_ee (GET_CODE (src),
+ GET_MODE (src),
+ op0, op1));
+ else
+ goto fail;
+ }
+ }
+
+ /* For multiply by a constant, we need to handle the sign extending
+ correctly. Add a USE of the value after the multiply to prevent flow
+ from cratering because only one register out of the two were used. */
+ else if (mode == DImode && GET_CODE (src) == MULT)
+ {
+ op0 = XEXP (src, 0);
+ op1 = XEXP (src, 1);
+ if (GET_CODE (op0) == SIGN_EXTEND && GET_CODE (op1) == CONST_INT)
+ {
+ op1 = frv_ifcvt_load_value (op1, insn);
+ if (op1)
+ {
+ op1 = gen_rtx_SIGN_EXTEND (DImode, op1);
+ COND_EXEC_CODE (pattern)
+ = gen_rtx_SET (VOIDmode, dest,
+ gen_rtx_MULT (DImode, op0, op1));
+ }
+ else
+ goto fail;
+ }
+
+ frv_ifcvt_add_insn (gen_rtx_USE (VOIDmode, dest), insn, FALSE);
+ }
+
+ /* If we are just loading a constant created for a nested conditional
+ execution statement, just load the constant without any conditional
+ execution, since we know that the constant will not interfere with any
+ other registers. */
+ else if (frv_ifcvt.scratch_insns_bitmap
+ && bitmap_bit_p (frv_ifcvt.scratch_insns_bitmap,
+ INSN_UID (insn)))
+ pattern = set;
+
+ else if (mode == QImode || mode == HImode || mode == SImode
+ || mode == SFmode)
+ {
+ int changed_p = FALSE;
+
+ /* Check for just loading up a constant */
+ if (CONSTANT_P (src) && integer_register_operand (dest, mode))
+ {
+ src = frv_ifcvt_load_value (src, insn);
+ if (!src)
+ goto fail;
+
+ changed_p = TRUE;
+ }
+
+ /* See if we need to fix up stores */
+ if (GET_CODE (dest) == MEM)
+ {
+ rtx new_mem = frv_ifcvt_rewrite_mem (dest, mode, insn);
+
+ if (!new_mem)
+ goto fail;
+
+ else if (new_mem != dest)
+ {
+ changed_p = TRUE;
+ dest = new_mem;
+ }
+ }
+
+ /* See if we need to fix up loads */
+ if (GET_CODE (src) == MEM)
+ {
+ rtx new_mem = frv_ifcvt_rewrite_mem (src, mode, insn);
+
+ if (!new_mem)
+ goto fail;
+
+ else if (new_mem != src)
+ {
+ changed_p = TRUE;
+ src = new_mem;
+ }
+ }
+
+ /* If either src or destination changed, redo SET. */
+ if (changed_p)
+ COND_EXEC_CODE (pattern) = gen_rtx_SET (VOIDmode, dest, src);
+ }
+
+ /* Rewrite a nested set cccr in terms of IF_THEN_ELSE. Also deal with
+ rewriting the CC register to be the same as the paired CC/CR register
+ for nested ifs. */
+ else if (mode == CC_CCRmode && GET_RTX_CLASS (GET_CODE (src)) == '<')
+ {
+ int regno = REGNO (XEXP (src, 0));
+ rtx if_else;
+
+ if (ce_info->pass > 1
+ && regno != (int)REGNO (frv_ifcvt.nested_cc_reg)
+ && TEST_HARD_REG_BIT (frv_ifcvt.nested_cc_ok_rewrite, regno))
+ {
+ src = gen_rtx_fmt_ee (GET_CODE (src),
+ CC_CCRmode,
+ frv_ifcvt.nested_cc_reg,
+ XEXP (src, 1));
+ }
+
+ if_else = gen_rtx_IF_THEN_ELSE (CC_CCRmode, test, src, const0_rtx);
+ pattern = gen_rtx_SET (VOIDmode, dest, if_else);
+ }
+
+ /* Remap a nested compare instruction to use the paired CC/CR reg. */
+ else if (ce_info->pass > 1
+ && GET_CODE (dest) == REG
+ && CC_P (REGNO (dest))
+ && REGNO (dest) != REGNO (frv_ifcvt.nested_cc_reg)
+ && TEST_HARD_REG_BIT (frv_ifcvt.nested_cc_ok_rewrite,
+ REGNO (dest))
+ && GET_CODE (src) == COMPARE)
+ {
+ PUT_MODE (frv_ifcvt.nested_cc_reg, GET_MODE (dest));
+ COND_EXEC_CODE (pattern)
+ = gen_rtx_SET (VOIDmode, frv_ifcvt.nested_cc_reg, copy_rtx (src));
+ }
+ }
+
+ if (TARGET_DEBUG_COND_EXEC)
+ {
+ rtx orig_pattern = PATTERN (insn);
+
+ PATTERN (insn) = pattern;
+ fprintf (stderr,
+ "\n:::::::::: frv_ifcvt_modify_insn: pass = %d, insn after modification:\n",
+ ce_info->pass);
+
+ debug_rtx (insn);
+ PATTERN (insn) = orig_pattern;
+ }
+
+ return pattern;
+
+ fail:
+ if (TARGET_DEBUG_COND_EXEC)
+ {
+ rtx orig_pattern = PATTERN (insn);
+
+ PATTERN (insn) = orig_ce_pattern;
+ fprintf (stderr,
+ "\n:::::::::: frv_ifcvt_modify_insn: pass = %d, insn could not be modified:\n",
+ ce_info->pass);
+
+ debug_rtx (insn);
+ PATTERN (insn) = orig_pattern;
+ }
+
+ return NULL_RTX;
+}
+
+
+/* A C expression to perform any final machine dependent modifications in
+ converting code to conditional execution in the code described by the
+ conditional if information CE_INFO. */
+
+void
+frv_ifcvt_modify_final (ce_info)
+ ce_if_block_t *ce_info ATTRIBUTE_UNUSED;
+{
+ rtx existing_insn;
+ rtx check_insn;
+ rtx p = frv_ifcvt.added_insns_list;
+ int i;
+
+ /* Loop inserting the check insns. The last check insn is the first test,
+ and is the appropriate place to insert constants. */
+ if (! p)
+ abort ();
+
+ do
+ {
+ rtx check_and_insert_insns = XEXP (p, 0);
+ rtx old_p = p;
+
+ check_insn = XEXP (check_and_insert_insns, 0);
+ existing_insn = XEXP (check_and_insert_insns, 1);
+ p = XEXP (p, 1);
+
+ /* The jump bit is used to say that the new insn is to be inserted BEFORE
+ the existing insn, otherwise it is to be inserted AFTER. */
+ if (check_and_insert_insns->jump)
+ {
+ emit_insn_before (check_insn, existing_insn);
+ check_and_insert_insns->jump = 0;
+ }
+ else
+ emit_insn_after (check_insn, existing_insn);
+
+ free_EXPR_LIST_node (check_and_insert_insns);
+ free_EXPR_LIST_node (old_p);
+ }
+ while (p != NULL_RTX);
+
+ /* Load up any constants needed into temp gprs */
+ for (i = 0; i < frv_ifcvt.cur_scratch_regs; i++)
+ {
+ rtx insn = emit_insn_before (frv_ifcvt.scratch_regs[i], existing_insn);
+ if (! frv_ifcvt.scratch_insns_bitmap)
+ frv_ifcvt.scratch_insns_bitmap = BITMAP_XMALLOC ();
+ bitmap_set_bit (frv_ifcvt.scratch_insns_bitmap, INSN_UID (insn));
+ frv_ifcvt.scratch_regs[i] = NULL_RTX;
+ }
+
+ frv_ifcvt.added_insns_list = NULL_RTX;
+ frv_ifcvt.cur_scratch_regs = 0;
+}
+
+
+/* A C expression to cancel any machine dependent modifications in converting
+ code to conditional execution in the code described by the conditional if
+ information CE_INFO. */
+
+void
+frv_ifcvt_modify_cancel (ce_info)
+ ce_if_block_t *ce_info ATTRIBUTE_UNUSED;
+{
+ int i;
+ rtx p = frv_ifcvt.added_insns_list;
+
+ /* Loop freeing up the EXPR_LIST's allocated. */
+ while (p != NULL_RTX)
+ {
+ rtx check_and_jump = XEXP (p, 0);
+ rtx old_p = p;
+
+ p = XEXP (p, 1);
+ free_EXPR_LIST_node (check_and_jump);
+ free_EXPR_LIST_node (old_p);
+ }
+
+ /* Release any temporary gprs allocated. */
+ for (i = 0; i < frv_ifcvt.cur_scratch_regs; i++)
+ frv_ifcvt.scratch_regs[i] = NULL_RTX;
+
+ frv_ifcvt.added_insns_list = NULL_RTX;
+ frv_ifcvt.cur_scratch_regs = 0;
+ return;
+}
+
+/* A C expression for the size in bytes of the trampoline, as an integer.
+ The template is:
+
+ setlo #0, <jmp_reg>
+ setlo #0, <static_chain>
+ sethi #0, <jmp_reg>
+ sethi #0, <static_chain>
+ jmpl @(gr0,<jmp_reg>) */
+
+int
+frv_trampoline_size ()
+{
+ return 5 /* instructions */ * 4 /* instruction size */;
+}
+
+
+/* A C statement to initialize the variable parts of a trampoline. ADDR is an
+ RTX for the address of the trampoline; FNADDR is an RTX for the address of
+ the nested function; STATIC_CHAIN is an RTX for the static chain value that
+ should be passed to the function when it is called.
+
+ The template is:
+
+ setlo #0, <jmp_reg>
+ setlo #0, <static_chain>
+ sethi #0, <jmp_reg>
+ sethi #0, <static_chain>
+ jmpl @(gr0,<jmp_reg>) */
+
+void
+frv_initialize_trampoline (addr, fnaddr, static_chain)
+ rtx addr;
+ rtx fnaddr;
+ rtx static_chain;
+{
+ rtx sc_reg = force_reg (Pmode, static_chain);
+
+ emit_library_call (gen_rtx_SYMBOL_REF (SImode, "__trampoline_setup"),
+ FALSE, VOIDmode, 4,
+ addr, Pmode,
+ GEN_INT (frv_trampoline_size ()), SImode,
+ fnaddr, Pmode,
+ sc_reg, Pmode);
+}
+
+
+/* Many machines have some registers that cannot be copied directly to or from
+ memory or even from other types of registers. An example is the `MQ'
+ register, which on most machines, can only be copied to or from general
+ registers, but not memory. Some machines allow copying all registers to and
+ from memory, but require a scratch register for stores to some memory
+ locations (e.g., those with symbolic address on the RT, and those with
+ certain symbolic address on the SPARC when compiling PIC). In some cases,
+ both an intermediate and a scratch register are required.
+
+ You should define these macros to indicate to the reload phase that it may
+ need to allocate at least one register for a reload in addition to the
+ register to contain the data. Specifically, if copying X to a register
+ CLASS in MODE requires an intermediate register, you should define
+ `SECONDARY_INPUT_RELOAD_CLASS' to return the largest register class all of
+ whose registers can be used as intermediate registers or scratch registers.
+
+ If copying a register CLASS in MODE to X requires an intermediate or scratch
+ register, `SECONDARY_OUTPUT_RELOAD_CLASS' should be defined to return the
+ largest register class required. If the requirements for input and output
+ reloads are the same, the macro `SECONDARY_RELOAD_CLASS' should be used
+ instead of defining both macros identically.
+
+ The values returned by these macros are often `GENERAL_REGS'. Return
+ `NO_REGS' if no spare register is needed; i.e., if X can be directly copied
+ to or from a register of CLASS in MODE without requiring a scratch register.
+ Do not define this macro if it would always return `NO_REGS'.
+
+ If a scratch register is required (either with or without an intermediate
+ register), you should define patterns for `reload_inM' or `reload_outM', as
+ required.. These patterns, which will normally be implemented with a
+ `define_expand', should be similar to the `movM' patterns, except that
+ operand 2 is the scratch register.
+
+ Define constraints for the reload register and scratch register that contain
+ a single register class. If the original reload register (whose class is
+ CLASS) can meet the constraint given in the pattern, the value returned by
+ these macros is used for the class of the scratch register. Otherwise, two
+ additional reload registers are required. Their classes are obtained from
+ the constraints in the insn pattern.
+
+ X might be a pseudo-register or a `subreg' of a pseudo-register, which could
+ either be in a hard register or in memory. Use `true_regnum' to find out;
+ it will return -1 if the pseudo is in memory and the hard register number if
+ it is in a register.
+
+ These macros should not be used in the case where a particular class of
+ registers can only be copied to memory and not to another class of
+ registers. In that case, secondary reload registers are not needed and
+ would not be helpful. Instead, a stack location must be used to perform the
+ copy and the `movM' pattern should use memory as an intermediate storage.
+ This case often occurs between floating-point and general registers. */
+
+enum reg_class
+frv_secondary_reload_class (class, mode, x, in_p)
+ enum reg_class class;
+ enum machine_mode mode ATTRIBUTE_UNUSED;
+ rtx x;
+ int in_p ATTRIBUTE_UNUSED;
+{
+ enum reg_class ret;
+
+ switch (class)
+ {
+ default:
+ ret = NO_REGS;
+ break;
+
+ /* Accumulators/Accumulator guard registers need to go through floating
+ point registers. */
+ case QUAD_REGS:
+ case EVEN_REGS:
+ case GPR_REGS:
+ ret = NO_REGS;
+ if (x && GET_CODE (x) == REG)
+ {
+ int regno = REGNO (x);
+
+ if (ACC_P (regno) || ACCG_P (regno))
+ ret = FPR_REGS;
+ }
+ break;
+
+ /* Nonzero constants should be loaded into an FPR through a GPR. */
+ case QUAD_FPR_REGS:
+ case FEVEN_REGS:
+ case FPR_REGS:
+ if (x && CONSTANT_P (x) && !ZERO_P (x))
+ ret = GPR_REGS;
+ else
+ ret = NO_REGS;
+ break;
+
+ /* All of these types need gpr registers. */
+ case ICC_REGS:
+ case FCC_REGS:
+ case CC_REGS:
+ case ICR_REGS:
+ case FCR_REGS:
+ case CR_REGS:
+ case LCR_REG:
+ case LR_REG:
+ ret = GPR_REGS;
+ break;
+
+ /* The accumulators need fpr registers */
+ case ACC_REGS:
+ case EVEN_ACC_REGS:
+ case QUAD_ACC_REGS:
+ case ACCG_REGS:
+ ret = FPR_REGS;
+ break;
+ }
+
+ return ret;
+}
+
+
+/* A C expression whose value is nonzero if pseudos that have been assigned to
+ registers of class CLASS would likely be spilled because registers of CLASS
+ are needed for spill registers.
+
+ The default value of this macro returns 1 if CLASS has exactly one register
+ and zero otherwise. On most machines, this default should be used. Only
+ define this macro to some other expression if pseudo allocated by
+ `local-alloc.c' end up in memory because their hard registers were needed
+ for spill registers. If this macro returns nonzero for those classes, those
+ pseudos will only be allocated by `global.c', which knows how to reallocate
+ the pseudo to another register. If there would not be another register
+ available for reallocation, you should not change the definition of this
+ macro since the only effect of such a definition would be to slow down
+ register allocation. */
+
+int
+frv_class_likely_spilled_p (class)
+ enum reg_class class;
+{
+ switch (class)
+ {
+ default:
+ break;
+
+ case ICC_REGS:
+ case FCC_REGS:
+ case CC_REGS:
+ case ICR_REGS:
+ case FCR_REGS:
+ case CR_REGS:
+ case LCR_REG:
+ case LR_REG:
+ case SPR_REGS:
+ case QUAD_ACC_REGS:
+ case EVEN_ACC_REGS:
+ case ACC_REGS:
+ case ACCG_REGS:
+ return TRUE;
+ }
+
+ return FALSE;
+}
+
+
+/* An expression for the alignment of a structure field FIELD if the
+ alignment computed in the usual way is COMPUTED. GNU CC uses this
+ value instead of the value in `BIGGEST_ALIGNMENT' or
+ `BIGGEST_FIELD_ALIGNMENT', if defined, for structure fields only. */
+
+/* The definition type of the bit field data is either char, short, long or
+ long long. The maximum bit size is the number of bits of its own type.
+
+ The bit field data is assigned to a storage unit that has an adequate size
+ for bit field data retention and is located at the smallest address.
+
+ Consecutive bit field data are packed at consecutive bits having the same
+ storage unit, with regard to the type, beginning with the MSB and continuing
+ toward the LSB.
+
+ If a field to be assigned lies over a bit field type boundary, its
+ assignment is completed by aligning it with a boundary suitable for the
+ type.
+
+ When a bit field having a bit length of 0 is declared, it is forcibly
+ assigned to the next storage unit.
+
+ e.g)
+ struct {
+ int a:2;
+ int b:6;
+ char c:4;
+ int d:10;
+ int :0;
+ int f:2;
+ } x;
+
+ +0 +1 +2 +3
+ &x 00000000 00000000 00000000 00000000
+ MLM----L
+ a b
+ &x+4 00000000 00000000 00000000 00000000
+ M--L
+ c
+ &x+8 00000000 00000000 00000000 00000000
+ M----------L
+ d
+ &x+12 00000000 00000000 00000000 00000000
+ ML
+ f
+*/
+
+int
+frv_adjust_field_align (field, computed)
+ tree field;
+ int computed;
+{
+ /* C++ provides a null DECL_CONTEXT if the bit field is wider than its
+ type. */
+ if (DECL_BIT_FIELD (field) && DECL_CONTEXT (field))
+ {
+ tree parent = DECL_CONTEXT (field);
+ tree prev = NULL_TREE;
+ tree cur;
+
+ /* Loop finding the previous field to the current one */
+ for (cur = TYPE_FIELDS (parent); cur && cur != field; cur = TREE_CHAIN (cur))
+ {
+ if (TREE_CODE (cur) != FIELD_DECL)
+ continue;
+
+ prev = cur;
+ }
+
+ if (!cur)
+ abort ();
+
+ /* If this isn't a :0 field and if the previous element is a bitfield
+ also, see if the type is different, if so, we will need to align the
+ bit-field to the next boundary */
+ if (prev
+ && ! DECL_PACKED (field)
+ && ! integer_zerop (DECL_SIZE (field))
+ && DECL_BIT_FIELD_TYPE (field) != DECL_BIT_FIELD_TYPE (prev))
+ {
+ int prev_align = TYPE_ALIGN (TREE_TYPE (prev));
+ int cur_align = TYPE_ALIGN (TREE_TYPE (field));
+ computed = (prev_align > cur_align) ? prev_align : cur_align;
+ }
+ }
+
+ return computed;
+}
+
+
+/* A C expression that is nonzero if it is permissible to store a value of mode
+ MODE in hard register number REGNO (or in several registers starting with
+ that one). For a machine where all registers are equivalent, a suitable
+ definition is
+
+ #define HARD_REGNO_MODE_OK(REGNO, MODE) 1
+
+ It is not necessary for this macro to check for the numbers of fixed
+ registers, because the allocation mechanism considers them to be always
+ occupied.
+
+ On some machines, double-precision values must be kept in even/odd register
+ pairs. The way to implement that is to define this macro to reject odd
+ register numbers for such modes.
+
+ The minimum requirement for a mode to be OK in a register is that the
+ `movMODE' instruction pattern support moves between the register and any
+ other hard register for which the mode is OK; and that moving a value into
+ the register and back out not alter it.
+
+ Since the same instruction used to move `SImode' will work for all narrower
+ integer modes, it is not necessary on any machine for `HARD_REGNO_MODE_OK'
+ to distinguish between these modes, provided you define patterns `movhi',
+ etc., to take advantage of this. This is useful because of the interaction
+ between `HARD_REGNO_MODE_OK' and `MODES_TIEABLE_P'; it is very desirable for
+ all integer modes to be tieable.
+
+ Many machines have special registers for floating point arithmetic. Often
+ people assume that floating point machine modes are allowed only in floating
+ point registers. This is not true. Any registers that can hold integers
+ can safely *hold* a floating point machine mode, whether or not floating
+ arithmetic can be done on it in those registers. Integer move instructions
+ can be used to move the values.
+
+ On some machines, though, the converse is true: fixed-point machine modes
+ may not go in floating registers. This is true if the floating registers
+ normalize any value stored in them, because storing a non-floating value
+ there would garble it. In this case, `HARD_REGNO_MODE_OK' should reject
+ fixed-point machine modes in floating registers. But if the floating
+ registers do not automatically normalize, if you can store any bit pattern
+ in one and retrieve it unchanged without a trap, then any machine mode may
+ go in a floating register, so you can define this macro to say so.
+
+ The primary significance of special floating registers is rather that they
+ are the registers acceptable in floating point arithmetic instructions.
+ However, this is of no concern to `HARD_REGNO_MODE_OK'. You handle it by
+ writing the proper constraints for those instructions.
+
+ On some machines, the floating registers are especially slow to access, so
+ that it is better to store a value in a stack frame than in such a register
+ if floating point arithmetic is not being done. As long as the floating
+ registers are not in class `GENERAL_REGS', they will not be used unless some
+ pattern's constraint asks for one. */
+
+int
+frv_hard_regno_mode_ok (regno, mode)
+ int regno;
+ enum machine_mode mode;
+{
+ int base;
+ int mask;
+
+ switch (mode)
+ {
+ case CCmode:
+ case CC_UNSmode:
+ return ICC_P (regno) || GPR_P (regno);
+
+ case CC_CCRmode:
+ return CR_P (regno) || GPR_P (regno);
+
+ case CC_FPmode:
+ return FCC_P (regno) || GPR_P (regno);
+
+ default:
+ break;
+ }
+
+ /* Set BASE to the first register in REGNO's class. Set MASK to the
+ bits that must be clear in (REGNO - BASE) for the register to be
+ well-aligned. */
+ if (INTEGRAL_MODE_P (mode) || FLOAT_MODE_P (mode) || VECTOR_MODE_P (mode))
+ {
+ if (ACCG_P (regno))
+ {
+ /* ACCGs store one byte. Two-byte quantities must start in
+ even-numbered registers, four-byte ones in registers whose
+ numbers are divisible by four, and so on. */
+ base = ACCG_FIRST;
+ mask = GET_MODE_SIZE (mode) - 1;
+ }
+ else
+ {
+ /* The other registers store one word. */
+ if (GPR_P (regno))
+ base = GPR_FIRST;
+
+ else if (FPR_P (regno))
+ base = FPR_FIRST;
+
+ else if (ACC_P (regno))
+ base = ACC_FIRST;
+
+ else
+ return 0;
+
+ /* Anything smaller than an SI is OK in any word-sized register. */
+ if (GET_MODE_SIZE (mode) < 4)
+ return 1;
+
+ mask = (GET_MODE_SIZE (mode) / 4) - 1;
+ }
+ return (((regno - base) & mask) == 0);
+ }
+
+ return 0;
+}
+
+
+/* A C expression for the number of consecutive hard registers, starting at
+ register number REGNO, required to hold a value of mode MODE.
+
+ On a machine where all registers are exactly one word, a suitable definition
+ of this macro is
+
+ #define HARD_REGNO_NREGS(REGNO, MODE) \
+ ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) \
+ / UNITS_PER_WORD)) */
+
+/* On the FRV, make the CC_FP mode take 3 words in the integer registers, so
+ that we can build the appropriate instructions to properly reload the
+ values. Also, make the byte-sized accumulator guards use one guard
+ for each byte. */
+
+int
+frv_hard_regno_nregs (regno, mode)
+ int regno;
+ enum machine_mode mode;
+{
+ if (ACCG_P (regno))
+ return GET_MODE_SIZE (mode);
+ else
+ return (GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
+}
+
+
+/* A C expression for the maximum number of consecutive registers of
+ class CLASS needed to hold a value of mode MODE.
+
+ This is closely related to the macro `HARD_REGNO_NREGS'. In fact, the value
+ of the macro `CLASS_MAX_NREGS (CLASS, MODE)' should be the maximum value of
+ `HARD_REGNO_NREGS (REGNO, MODE)' for all REGNO values in the class CLASS.
+
+ This macro helps control the handling of multiple-word values in
+ the reload pass.
+
+ This declaration is required. */
+
+int
+frv_class_max_nregs (class, mode)
+ enum reg_class class;
+ enum machine_mode mode;
+{
+ if (class == ACCG_REGS)
+ /* An N-byte value requires N accumulator guards. */
+ return GET_MODE_SIZE (mode);
+ else
+ return (GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
+}
+
+
+/* A C expression that is nonzero if X is a legitimate constant for an
+ immediate operand on the target machine. You can assume that X satisfies
+ `CONSTANT_P', so you need not check this. In fact, `1' is a suitable
+ definition for this macro on machines where anything `CONSTANT_P' is valid. */
+
+int
+frv_legitimate_constant_p (x)
+ rtx x;
+{
+ enum machine_mode mode = GET_MODE (x);
+
+ /* All of the integer constants are ok */
+ if (GET_CODE (x) != CONST_DOUBLE)
+ return TRUE;
+
+ /* double integer constants are ok */
+ if (mode == VOIDmode || mode == DImode)
+ return TRUE;
+
+ /* 0 is always ok */
+ if (x == CONST0_RTX (mode))
+ return TRUE;
+
+ /* If floating point is just emulated, allow any constant, since it will be
+ constructed in the GPRs */
+ if (!TARGET_HAS_FPRS)
+ return TRUE;
+
+ if (mode == DFmode && !TARGET_DOUBLE)
+ return TRUE;
+
+ /* Otherwise store the constant away and do a load. */
+ return FALSE;
+}
+
+/* A C expression for the cost of moving data from a register in class FROM to
+ one in class TO. The classes are expressed using the enumeration values
+ such as `GENERAL_REGS'. A value of 4 is the default; other values are
+ interpreted relative to that.
+
+ It is not required that the cost always equal 2 when FROM is the same as TO;
+ on some machines it is expensive to move between registers if they are not
+ general registers.
+
+ If reload sees an insn consisting of a single `set' between two hard
+ registers, and if `REGISTER_MOVE_COST' applied to their classes returns a
+ value of 2, reload does not check to ensure that the constraints of the insn
+ are met. Setting a cost of other than 2 will allow reload to verify that
+ the constraints are met. You should do this if the `movM' pattern's
+ constraints do not allow such copying. */
+
+#define HIGH_COST 40
+#define MEDIUM_COST 3
+#define LOW_COST 1
+
+int
+frv_register_move_cost (from, to)
+ enum reg_class from;
+ enum reg_class to;
+{
+ switch (from)
+ {
+ default:
+ break;
+
+ case QUAD_REGS:
+ case EVEN_REGS:
+ case GPR_REGS:
+ switch (to)
+ {
+ default:
+ break;
+
+ case QUAD_REGS:
+ case EVEN_REGS:
+ case GPR_REGS:
+ return LOW_COST;
+
+ case FEVEN_REGS:
+ case FPR_REGS:
+ return LOW_COST;
+
+ case LCR_REG:
+ case LR_REG:
+ case SPR_REGS:
+ return LOW_COST;
+ }
+
+ case FEVEN_REGS:
+ case FPR_REGS:
+ switch (to)
+ {
+ default:
+ break;
+
+ case QUAD_REGS:
+ case EVEN_REGS:
+ case GPR_REGS:
+ case ACC_REGS:
+ case EVEN_ACC_REGS:
+ case QUAD_ACC_REGS:
+ case ACCG_REGS:
+ return MEDIUM_COST;
+
+ case FEVEN_REGS:
+ case FPR_REGS:
+ return LOW_COST;
+ }
+
+ case LCR_REG:
+ case LR_REG:
+ case SPR_REGS:
+ switch (to)
+ {
+ default:
+ break;
+
+ case QUAD_REGS:
+ case EVEN_REGS:
+ case GPR_REGS:
+ return MEDIUM_COST;
+ }
+
+ case ACC_REGS:
+ case EVEN_ACC_REGS:
+ case QUAD_ACC_REGS:
+ case ACCG_REGS:
+ switch (to)
+ {
+ default:
+ break;
+
+ case FEVEN_REGS:
+ case FPR_REGS:
+ return MEDIUM_COST;
+
+ }
+ }
+
+ return HIGH_COST;
+}
+
+/* Implementation of TARGET_ASM_INTEGER. In the FRV case we need to
+ use ".picptr" to generate safe relocations for PIC code. We also
+ need a fixup entry for aligned (non-debugging) code. */
+
+static bool
+frv_assemble_integer (value, size, aligned_p)
+ rtx value;
+ unsigned int size;
+ int aligned_p;
+{
+ if (flag_pic && size == UNITS_PER_WORD)
+ {
+ if (GET_CODE (value) == CONST
+ || GET_CODE (value) == SYMBOL_REF
+ || GET_CODE (value) == LABEL_REF)
+ {
+ if (aligned_p)
+ {
+ static int label_num = 0;
+ char buf[256];
+ const char *p;
+
+ ASM_GENERATE_INTERNAL_LABEL (buf, "LCP", label_num++);
+ p = (* targetm.strip_name_encoding) (buf);
+
+ fprintf (asm_out_file, "%s:\n", p);
+ fprintf (asm_out_file, "%s\n", FIXUP_SECTION_ASM_OP);
+ fprintf (asm_out_file, "\t.picptr\t%s\n", p);
+ fprintf (asm_out_file, "\t.previous\n");
+ }
+ assemble_integer_with_op ("\t.picptr\t", value);
+ return true;
+ }
+ if (!aligned_p)
+ {
+ /* We've set the unaligned SI op to NULL, so we always have to
+ handle the unaligned case here. */
+ assemble_integer_with_op ("\t.4byte\t", value);
+ return true;
+ }
+ }
+ return default_assemble_integer (value, size, aligned_p);
+}
+
+/* Function to set up the backend function structure. */
+
+static struct machine_function *
+frv_init_machine_status ()
+{
+ return ggc_alloc_cleared (sizeof (struct machine_function));
+}
+
+
+/* Update the register state information, to know about which registers are set
+ or clobbered. */
+
+static void
+frv_registers_update (x, reg_state, modified, p_num_mod, flag)
+ rtx x;
+ unsigned char reg_state[];
+ int modified[];
+ int *p_num_mod;
+ int flag;
+{
+ int regno, reg_max;
+ rtx reg;
+ rtx cond;
+ const char *format;
+ int length;
+ int j;
+
+ switch (GET_CODE (x))
+ {
+ default:
+ break;
+
+ /* Clobber just modifies a register, it doesn't make it live. */
+ case CLOBBER:
+ frv_registers_update (XEXP (x, 0), reg_state, modified, p_num_mod,
+ flag | REGSTATE_MODIFIED);
+ return;
+
+ /* Pre modify updates the first argument, just references the second. */
+ case PRE_MODIFY:
+ case SET:
+ frv_registers_update (XEXP (x, 0), reg_state, modified, p_num_mod,
+ flag | REGSTATE_MODIFIED | REGSTATE_LIVE);
+ frv_registers_update (XEXP (x, 1), reg_state, modified, p_num_mod, flag);
+ return;
+
+ /* For COND_EXEC, pass the appropriate flag to evaluate the conditional
+ statement, but just to be sure, make sure it is the type of cond_exec
+ we expect. */
+ case COND_EXEC:
+ cond = XEXP (x, 0);
+ if ((GET_CODE (cond) == EQ || GET_CODE (cond) == NE)
+ && GET_CODE (XEXP (cond, 0)) == REG
+ && CR_P (REGNO (XEXP (cond, 0)))
+ && GET_CODE (XEXP (cond, 1)) == CONST_INT
+ && INTVAL (XEXP (cond, 1)) == 0
+ && (flag & (REGSTATE_MODIFIED | REGSTATE_IF_EITHER)) == 0)
+ {
+ frv_registers_update (cond, reg_state, modified, p_num_mod, flag);
+ flag |= ((REGNO (XEXP (cond, 0)) - CR_FIRST)
+ | ((GET_CODE (cond) == NE)
+ ? REGSTATE_IF_TRUE
+ : REGSTATE_IF_FALSE));
+
+ frv_registers_update (XEXP (x, 1), reg_state, modified, p_num_mod,
+ flag);
+ return;
+ }
+ else
+ fatal_insn ("frv_registers_update", x);
+
+ /* MEM resets the modification bits. */
+ case MEM:
+ flag &= ~REGSTATE_MODIFIED;
+ break;
+
+ /* See if we need to set the modified flag. */
+ case SUBREG:
+ reg = SUBREG_REG (x);
+ if (GET_CODE (reg) == REG)
+ {
+ regno = subreg_regno (x);
+ reg_max = REGNO (reg) + HARD_REGNO_NREGS (regno, GET_MODE (reg));
+ goto reg_common;
+ }
+ break;
+
+ case REG:
+ regno = REGNO (x);
+ reg_max = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
+ /* fall through */
+
+ reg_common:
+ if (flag & REGSTATE_MODIFIED)
+ {
+ flag &= REGSTATE_MASK;
+ while (regno < reg_max)
+ {
+ int rs = reg_state[regno];
+
+ if (flag != rs)
+ {
+ if ((rs & REGSTATE_MODIFIED) == 0)
+ {
+ modified[ *p_num_mod ] = regno;
+ (*p_num_mod)++;
+ }
+
+ /* If the previous register state had the register as
+ modified, possibly in some conditional execution context,
+ and the current insn modifies in some other context, or
+ outside of conditional execution, just mark the variable
+ as modified. */
+ else
+ flag &= ~(REGSTATE_IF_EITHER | REGSTATE_CC_MASK);
+
+ reg_state[regno] = (rs | flag);
+ }
+ regno++;
+ }
+ }
+ return;
+ }
+
+
+ length = GET_RTX_LENGTH (GET_CODE (x));
+ format = GET_RTX_FORMAT (GET_CODE (x));
+
+ for (j = 0; j < length; ++j)
+ {
+ switch (format[j])
+ {
+ case 'e':
+ frv_registers_update (XEXP (x, j), reg_state, modified, p_num_mod,
+ flag);
+ break;
+
+ case 'V':
+ case 'E':
+ if (XVEC (x, j) != 0)
+ {
+ int k;
+ for (k = 0; k < XVECLEN (x, j); ++k)
+ frv_registers_update (XVECEXP (x, j, k), reg_state, modified,
+ p_num_mod, flag);
+ }
+ break;
+
+ default:
+ /* Nothing to do. */
+ break;
+ }
+ }
+
+ return;
+}
+
+
+/* Return if any registers in a hard register set were used an insn. */
+
+static int
+frv_registers_used_p (x, reg_state, flag)
+ rtx x;
+ unsigned char reg_state[];
+ int flag;
+{
+ int regno, reg_max;
+ rtx reg;
+ rtx cond;
+ rtx dest;
+ const char *format;
+ int result;
+ int length;
+ int j;
+
+ switch (GET_CODE (x))
+ {
+ default:
+ break;
+
+ /* Skip clobber, that doesn't use the previous value */
+ case CLOBBER:
+ return FALSE;
+
+ /* For SET, if a conditional jump has occurred in the same insn, only
+ allow a set of a CR register if that register is not currently live.
+ This is because on the FR-V, B0/B1 instructions are always last.
+ Otherwise, don't look at the result, except within a MEM, but do look
+ at the source. */
+ case SET:
+ dest = SET_DEST (x);
+ if (flag & REGSTATE_CONDJUMP
+ && GET_CODE (dest) == REG && CR_P (REGNO (dest))
+ && (reg_state[ REGNO (dest) ] & REGSTATE_LIVE) != 0)
+ return TRUE;
+
+ if (GET_CODE (dest) == MEM)
+ {
+ result = frv_registers_used_p (XEXP (dest, 0), reg_state, flag);
+ if (result)
+ return result;
+ }
+
+ return frv_registers_used_p (SET_SRC (x), reg_state, flag);
+
+ /* For COND_EXEC, pass the appropriate flag to evaluate the conditional
+ statement, but just to be sure, make sure it is the type of cond_exec
+ we expect. */
+ case COND_EXEC:
+ cond = XEXP (x, 0);
+ if ((GET_CODE (cond) == EQ || GET_CODE (cond) == NE)
+ && GET_CODE (XEXP (cond, 0)) == REG
+ && CR_P (REGNO (XEXP (cond, 0)))
+ && GET_CODE (XEXP (cond, 1)) == CONST_INT
+ && INTVAL (XEXP (cond, 1)) == 0
+ && (flag & (REGSTATE_MODIFIED | REGSTATE_IF_EITHER)) == 0)
+ {
+ result = frv_registers_used_p (cond, reg_state, flag);
+ if (result)
+ return result;
+
+ flag |= ((REGNO (XEXP (cond, 0)) - CR_FIRST)
+ | ((GET_CODE (cond) == NE)
+ ? REGSTATE_IF_TRUE
+ : REGSTATE_IF_FALSE));
+
+ return frv_registers_used_p (XEXP (x, 1), reg_state, flag);
+ }
+ else
+ fatal_insn ("frv_registers_used_p", x);
+
+ /* See if a register or subreg was modified in the same VLIW insn. */
+ case SUBREG:
+ reg = SUBREG_REG (x);
+ if (GET_CODE (reg) == REG)
+ {
+ regno = subreg_regno (x);
+ reg_max = REGNO (reg) + HARD_REGNO_NREGS (regno, GET_MODE (reg));
+ goto reg_common;
+ }
+ break;
+
+ case REG:
+ regno = REGNO (x);
+ reg_max = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
+ /* fall through */
+
+ reg_common:
+ while (regno < reg_max)
+ {
+ int rs = reg_state[regno];
+
+ if (rs & REGSTATE_MODIFIED)
+ {
+ int rs_if = rs & REGSTATE_IF_EITHER;
+ int flag_if = flag & REGSTATE_IF_EITHER;
+
+ /* Simple modification, no conditional execution */
+ if ((rs & REGSTATE_IF_EITHER) == 0)
+ return TRUE;
+
+ /* See if the variable is only modified in a conditional
+ execution expression opposite to the conditional execution
+ expression that governs this expression (ie, true vs. false
+ for the same CC register). If this isn't two halves of the
+ same conditional expression, consider the register
+ modified. */
+ if (((rs_if == REGSTATE_IF_TRUE && flag_if == REGSTATE_IF_FALSE)
+ || (rs_if == REGSTATE_IF_FALSE && flag_if == REGSTATE_IF_TRUE))
+ && ((rs & REGSTATE_CC_MASK) == (flag & REGSTATE_CC_MASK)))
+ ;
+ else
+ return TRUE;
+ }
+
+ regno++;
+ }
+ return FALSE;
+ }
+
+
+ length = GET_RTX_LENGTH (GET_CODE (x));
+ format = GET_RTX_FORMAT (GET_CODE (x));
+
+ for (j = 0; j < length; ++j)
+ {
+ switch (format[j])
+ {
+ case 'e':
+ result = frv_registers_used_p (XEXP (x, j), reg_state, flag);
+ if (result != 0)
+ return result;
+ break;
+
+ case 'V':
+ case 'E':
+ if (XVEC (x, j) != 0)
+ {
+ int k;
+ for (k = 0; k < XVECLEN (x, j); ++k)
+ {
+ result = frv_registers_used_p (XVECEXP (x, j, k), reg_state,
+ flag);
+ if (result != 0)
+ return result;
+ }
+ }
+ break;
+
+ default:
+ /* Nothing to do. */
+ break;
+ }
+ }
+
+ return 0;
+}
+
+/* Return if any registers in a hard register set were set in an insn. */
+
+static int
+frv_registers_set_p (x, reg_state, modify_p)
+ rtx x;
+ unsigned char reg_state[];
+ int modify_p;
+{
+ int regno, reg_max;
+ rtx reg;
+ rtx cond;
+ const char *format;
+ int length;
+ int j;
+
+ switch (GET_CODE (x))
+ {
+ default:
+ break;
+
+ case CLOBBER:
+ return frv_registers_set_p (XEXP (x, 0), reg_state, TRUE);
+
+ case PRE_MODIFY:
+ case SET:
+ return (frv_registers_set_p (XEXP (x, 0), reg_state, TRUE)
+ || frv_registers_set_p (XEXP (x, 1), reg_state, FALSE));
+
+ case COND_EXEC:
+ cond = XEXP (x, 0);
+ /* just to be sure, make sure it is the type of cond_exec we
+ expect. */
+ if ((GET_CODE (cond) == EQ || GET_CODE (cond) == NE)
+ && GET_CODE (XEXP (cond, 0)) == REG
+ && CR_P (REGNO (XEXP (cond, 0)))
+ && GET_CODE (XEXP (cond, 1)) == CONST_INT
+ && INTVAL (XEXP (cond, 1)) == 0
+ && !modify_p)
+ return frv_registers_set_p (XEXP (x, 1), reg_state, modify_p);
+ else
+ fatal_insn ("frv_registers_set_p", x);
+
+ /* MEM resets the modification bits. */
+ case MEM:
+ modify_p = FALSE;
+ break;
+
+ /* See if we need to set the modified modify_p. */
+ case SUBREG:
+ reg = SUBREG_REG (x);
+ if (GET_CODE (reg) == REG)
+ {
+ regno = subreg_regno (x);
+ reg_max = REGNO (reg) + HARD_REGNO_NREGS (regno, GET_MODE (reg));
+ goto reg_common;
+ }
+ break;
+
+ case REG:
+ regno = REGNO (x);
+ reg_max = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
+ /* fall through */
+
+ reg_common:
+ if (modify_p)
+ while (regno < reg_max)
+ {
+ int rs = reg_state[regno];
+
+ if (rs & REGSTATE_MODIFIED)
+ return TRUE;
+ regno++;
+ }
+ return FALSE;
+ }
+
+
+ length = GET_RTX_LENGTH (GET_CODE (x));
+ format = GET_RTX_FORMAT (GET_CODE (x));
+
+ for (j = 0; j < length; ++j)
+ {
+ switch (format[j])
+ {
+ case 'e':
+ if (frv_registers_set_p (XEXP (x, j), reg_state, modify_p))
+ return TRUE;
+ break;
+
+ case 'V':
+ case 'E':
+ if (XVEC (x, j) != 0)
+ {
+ int k;
+ for (k = 0; k < XVECLEN (x, j); ++k)
+ if (frv_registers_set_p (XVECEXP (x, j, k), reg_state,
+ modify_p))
+ return TRUE;
+ }
+ break;
+
+ default:
+ /* Nothing to do. */
+ break;
+ }
+ }
+
+ return FALSE;
+}
+
+
+/* In rare cases, correct code generation requires extra machine dependent
+ processing between the second jump optimization pass and delayed branch
+ scheduling. On those machines, define this macro as a C statement to act on
+ the code starting at INSN. */
+
+/* On the FR-V, this pass is used to rescan the insn chain, and pack
+ conditional branches/calls/jumps, etc. with previous insns where it can. It
+ does not reorder the instructions. We assume the scheduler left the flow
+ information in a reasonable state. */
+
+static void
+frv_pack_insns ()
+{
+ state_t frv_state; /* frv state machine */
+ int cur_start_vliw_p; /* current insn starts a VLIW insn */
+ int next_start_vliw_p; /* next insn starts a VLIW insn */
+ int cur_condjump_p; /* flag if current insn is a cond jump*/
+ int next_condjump_p; /* flag if next insn is a cond jump */
+ rtx insn;
+ rtx link;
+ int j;
+ int num_mod = 0; /* # of modified registers */
+ int modified[FIRST_PSEUDO_REGISTER]; /* registers modified in current VLIW */
+ /* register state information */
+ unsigned char reg_state[FIRST_PSEUDO_REGISTER];
+
+ /* If we weren't going to pack the insns, don't bother with this pass. */
+ if (!optimize || !flag_schedule_insns_after_reload || TARGET_NO_VLIW_BRANCH)
+ return;
+
+ switch (frv_cpu_type)
+ {
+ default:
+ case FRV_CPU_FR300: /* FR300/simple are single issue */
+ case FRV_CPU_SIMPLE:
+ return;
+
+ case FRV_CPU_GENERIC: /* FR-V and FR500 are multi-issue */
+ case FRV_CPU_FR400:
+ case FRV_CPU_FR500:
+ case FRV_CPU_TOMCAT:
+ break;
+ }
+
+ /* Set up the instruction and register states. */
+ dfa_start ();
+ frv_state = (state_t) xmalloc (state_size ());
+ memset ((PTR) reg_state, REGSTATE_DEAD, sizeof (reg_state));
+
+ /* Go through the insns, and repack the insns. */
+ state_reset (frv_state);
+ cur_start_vliw_p = FALSE;
+ next_start_vliw_p = TRUE;
+ cur_condjump_p = 0;
+ next_condjump_p = 0;
+
+ for (insn = get_insns (); insn != NULL_RTX; insn = NEXT_INSN (insn))
+ {
+ enum rtx_code code = GET_CODE (insn);
+ enum rtx_code pattern_code;
+
+ /* For basic block begin notes redo the live information, and skip other
+ notes. */
+ if (code == NOTE)
+ {
+ if (NOTE_LINE_NUMBER (insn) == (int)NOTE_INSN_BASIC_BLOCK)
+ {
+ regset live;
+
+ for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
+ reg_state[j] &= ~ REGSTATE_LIVE;
+
+ live = NOTE_BASIC_BLOCK (insn)->global_live_at_start;
+ EXECUTE_IF_SET_IN_REG_SET(live, 0, j,
+ {
+ reg_state[j] |= REGSTATE_LIVE;
+ });
+ }
+
+ continue;
+ }
+
+ /* things like labels reset everything. */
+ if (GET_RTX_CLASS (code) != 'i')
+ {
+ next_start_vliw_p = TRUE;
+ continue;
+ }
+
+ /* Clear the VLIW start flag on random USE and CLOBBER insns, which is
+ set on the USE insn that preceeds the return, and potentially on
+ CLOBBERs for setting multiword variables. Also skip the ADDR_VEC
+ holding the case table labels. */
+ pattern_code = GET_CODE (PATTERN (insn));
+ if (pattern_code == USE || pattern_code == CLOBBER
+ || pattern_code == ADDR_VEC || pattern_code == ADDR_DIFF_VEC)
+ {
+ CLEAR_VLIW_START (insn);
+ continue;
+ }
+
+ cur_start_vliw_p = next_start_vliw_p;
+ next_start_vliw_p = FALSE;
+
+ cur_condjump_p |= next_condjump_p;
+ next_condjump_p = 0;
+
+ /* Unconditional branches and calls end the current VLIW insn. */
+ if (code == CALL_INSN)
+ {
+ next_start_vliw_p = TRUE;
+
+ /* On a TOMCAT, calls must be alone in the VLIW insns. */
+ if (frv_cpu_type == FRV_CPU_TOMCAT)
+ cur_start_vliw_p = TRUE;
+ }
+ else if (code == JUMP_INSN)
+ {
+ if (any_condjump_p (insn))
+ next_condjump_p = REGSTATE_CONDJUMP;
+ else
+ next_start_vliw_p = TRUE;
+ }
+
+ /* Only allow setting a CCR register after a conditional branch. */
+ else if (((cur_condjump_p & REGSTATE_CONDJUMP) != 0)
+ && get_attr_type (insn) != TYPE_CCR)
+ cur_start_vliw_p = TRUE;
+
+ /* Determine if we need to start a new VLIW instruction. */
+ if (cur_start_vliw_p
+ /* Do not check for register conflicts in a setlo instruction
+ because any output or true dependencies will be with the
+ partnering sethi instruction, with which it can be packed.
+
+ Although output dependencies are rare they are still
+ possible. So check output dependencies in VLIW insn. */
+ || (get_attr_type (insn) != TYPE_SETLO
+ && (frv_registers_used_p (PATTERN (insn),
+ reg_state,
+ cur_condjump_p)
+ || frv_registers_set_p (PATTERN (insn), reg_state, FALSE)))
+ || state_transition (frv_state, insn) >= 0)
+ {
+ SET_VLIW_START (insn);
+ state_reset (frv_state);
+ state_transition (frv_state, insn);
+ cur_condjump_p = 0;
+
+ /* Update the modified registers. */
+ for (j = 0; j < num_mod; j++)
+ reg_state[ modified[j] ] &= ~(REGSTATE_CC_MASK
+ | REGSTATE_IF_EITHER
+ | REGSTATE_MODIFIED);
+
+ num_mod = 0;
+ }
+ else
+ CLEAR_VLIW_START (insn);
+
+ /* Record which registers are modified. */
+ frv_registers_update (PATTERN (insn), reg_state, modified, &num_mod, 0);
+
+ /* Process the death notices */
+ for (link = REG_NOTES (insn);
+ link != NULL_RTX;
+ link = XEXP (link, 1))
+ {
+ rtx reg = XEXP (link, 0);
+
+ if (REG_NOTE_KIND (link) == REG_DEAD && GET_CODE (reg) == REG)
+ {
+ int regno = REGNO (reg);
+ int n = regno + HARD_REGNO_NREGS (regno, GET_MODE (reg));
+ for (; regno < n; regno++)
+ reg_state[regno] &= ~REGSTATE_LIVE;
+ }
+ }
+ }
+
+ free ((PTR) frv_state);
+ dfa_finish ();
+ return;
+}
+
+
+#define def_builtin(name, type, code) \
+ builtin_function ((name), (type), (code), BUILT_IN_MD, NULL, NULL)
+
+struct builtin_description
+{
+ enum insn_code icode;
+ const char *name;
+ enum frv_builtins code;
+ enum rtx_code comparison;
+ unsigned int flag;
+};
+
+/* Media intrinsics that take a single, constant argument. */
+
+static struct builtin_description bdesc_set[] =
+{
+ { CODE_FOR_mhdsets, "__MHDSETS", FRV_BUILTIN_MHDSETS, 0, 0 }
+};
+
+/* Media intrinsics that take just one argument. */
+
+static struct builtin_description bdesc_1arg[] =
+{
+ { CODE_FOR_mnot, "__MNOT", FRV_BUILTIN_MNOT, 0, 0 },
+ { CODE_FOR_munpackh, "__MUNPACKH", FRV_BUILTIN_MUNPACKH, 0, 0 },
+ { CODE_FOR_mbtoh, "__MBTOH", FRV_BUILTIN_MBTOH, 0, 0 },
+ { CODE_FOR_mhtob, "__MHTOB", FRV_BUILTIN_MHTOB, 0, 0 },
+ { CODE_FOR_mabshs, "__MABSHS", FRV_BUILTIN_MABSHS, 0, 0 }
+};
+
+/* Media intrinsics that take two arguments. */
+
+static struct builtin_description bdesc_2arg[] =
+{
+ { CODE_FOR_mand, "__MAND", FRV_BUILTIN_MAND, 0, 0 },
+ { CODE_FOR_mor, "__MOR", FRV_BUILTIN_MOR, 0, 0 },
+ { CODE_FOR_mxor, "__MXOR", FRV_BUILTIN_MXOR, 0, 0 },
+ { CODE_FOR_maveh, "__MAVEH", FRV_BUILTIN_MAVEH, 0, 0 },
+ { CODE_FOR_msaths, "__MSATHS", FRV_BUILTIN_MSATHS, 0, 0 },
+ { CODE_FOR_msathu, "__MSATHU", FRV_BUILTIN_MSATHU, 0, 0 },
+ { CODE_FOR_maddhss, "__MADDHSS", FRV_BUILTIN_MADDHSS, 0, 0 },
+ { CODE_FOR_maddhus, "__MADDHUS", FRV_BUILTIN_MADDHUS, 0, 0 },
+ { CODE_FOR_msubhss, "__MSUBHSS", FRV_BUILTIN_MSUBHSS, 0, 0 },
+ { CODE_FOR_msubhus, "__MSUBHUS", FRV_BUILTIN_MSUBHUS, 0, 0 },
+ { CODE_FOR_mqaddhss, "__MQADDHSS", FRV_BUILTIN_MQADDHSS, 0, 0 },
+ { CODE_FOR_mqaddhus, "__MQADDHUS", FRV_BUILTIN_MQADDHUS, 0, 0 },
+ { CODE_FOR_mqsubhss, "__MQSUBHSS", FRV_BUILTIN_MQSUBHSS, 0, 0 },
+ { CODE_FOR_mqsubhus, "__MQSUBHUS", FRV_BUILTIN_MQSUBHUS, 0, 0 },
+ { CODE_FOR_mpackh, "__MPACKH", FRV_BUILTIN_MPACKH, 0, 0 },
+ { CODE_FOR_mdpackh, "__MDPACKH", FRV_BUILTIN_MDPACKH, 0, 0 },
+ { CODE_FOR_mcop1, "__Mcop1", FRV_BUILTIN_MCOP1, 0, 0 },
+ { CODE_FOR_mcop2, "__Mcop2", FRV_BUILTIN_MCOP2, 0, 0 },
+ { CODE_FOR_mwcut, "__MWCUT", FRV_BUILTIN_MWCUT, 0, 0 },
+ { CODE_FOR_mqsaths, "__MQSATHS", FRV_BUILTIN_MQSATHS, 0, 0 }
+};
+
+/* Media intrinsics that take two arguments, the first being an ACC number. */
+
+static struct builtin_description bdesc_cut[] =
+{
+ { CODE_FOR_mcut, "__MCUT", FRV_BUILTIN_MCUT, 0, 0 },
+ { CODE_FOR_mcutss, "__MCUTSS", FRV_BUILTIN_MCUTSS, 0, 0 },
+ { CODE_FOR_mdcutssi, "__MDCUTSSI", FRV_BUILTIN_MDCUTSSI, 0, 0 }
+};
+
+/* Two-argument media intrinsics with an immediate second argument. */
+
+static struct builtin_description bdesc_2argimm[] =
+{
+ { CODE_FOR_mrotli, "__MROTLI", FRV_BUILTIN_MROTLI, 0, 0 },
+ { CODE_FOR_mrotri, "__MROTRI", FRV_BUILTIN_MROTRI, 0, 0 },
+ { CODE_FOR_msllhi, "__MSLLHI", FRV_BUILTIN_MSLLHI, 0, 0 },
+ { CODE_FOR_msrlhi, "__MSRLHI", FRV_BUILTIN_MSRLHI, 0, 0 },
+ { CODE_FOR_msrahi, "__MSRAHI", FRV_BUILTIN_MSRAHI, 0, 0 },
+ { CODE_FOR_mexpdhw, "__MEXPDHW", FRV_BUILTIN_MEXPDHW, 0, 0 },
+ { CODE_FOR_mexpdhd, "__MEXPDHD", FRV_BUILTIN_MEXPDHD, 0, 0 },
+ { CODE_FOR_mdrotli, "__MDROTLI", FRV_BUILTIN_MDROTLI, 0, 0 },
+ { CODE_FOR_mcplhi, "__MCPLHI", FRV_BUILTIN_MCPLHI, 0, 0 },
+ { CODE_FOR_mcpli, "__MCPLI", FRV_BUILTIN_MCPLI, 0, 0 },
+ { CODE_FOR_mhsetlos, "__MHSETLOS", FRV_BUILTIN_MHSETLOS, 0, 0 },
+ { CODE_FOR_mhsetloh, "__MHSETLOH", FRV_BUILTIN_MHSETLOH, 0, 0 },
+ { CODE_FOR_mhsethis, "__MHSETHIS", FRV_BUILTIN_MHSETHIS, 0, 0 },
+ { CODE_FOR_mhsethih, "__MHSETHIH", FRV_BUILTIN_MHSETHIH, 0, 0 },
+ { CODE_FOR_mhdseth, "__MHDSETH", FRV_BUILTIN_MHDSETH, 0, 0 }
+};
+
+/* Media intrinsics that take two arguments and return void, the first argument
+ being a pointer to 4 words in memory. */
+
+static struct builtin_description bdesc_void2arg[] =
+{
+ { CODE_FOR_mdunpackh, "__MDUNPACKH", FRV_BUILTIN_MDUNPACKH, 0, 0 },
+ { CODE_FOR_mbtohe, "__MBTOHE", FRV_BUILTIN_MBTOHE, 0, 0 },
+};
+
+/* Media intrinsics that take three arguments, the first being a const_int that
+ denotes an accumulator, and that return void. */
+
+static struct builtin_description bdesc_void3arg[] =
+{
+ { CODE_FOR_mcpxrs, "__MCPXRS", FRV_BUILTIN_MCPXRS, 0, 0 },
+ { CODE_FOR_mcpxru, "__MCPXRU", FRV_BUILTIN_MCPXRU, 0, 0 },
+ { CODE_FOR_mcpxis, "__MCPXIS", FRV_BUILTIN_MCPXIS, 0, 0 },
+ { CODE_FOR_mcpxiu, "__MCPXIU", FRV_BUILTIN_MCPXIU, 0, 0 },
+ { CODE_FOR_mmulhs, "__MMULHS", FRV_BUILTIN_MMULHS, 0, 0 },
+ { CODE_FOR_mmulhu, "__MMULHU", FRV_BUILTIN_MMULHU, 0, 0 },
+ { CODE_FOR_mmulxhs, "__MMULXHS", FRV_BUILTIN_MMULXHS, 0, 0 },
+ { CODE_FOR_mmulxhu, "__MMULXHU", FRV_BUILTIN_MMULXHU, 0, 0 },
+ { CODE_FOR_mmachs, "__MMACHS", FRV_BUILTIN_MMACHS, 0, 0 },
+ { CODE_FOR_mmachu, "__MMACHU", FRV_BUILTIN_MMACHU, 0, 0 },
+ { CODE_FOR_mmrdhs, "__MMRDHS", FRV_BUILTIN_MMRDHS, 0, 0 },
+ { CODE_FOR_mmrdhu, "__MMRDHU", FRV_BUILTIN_MMRDHU, 0, 0 },
+ { CODE_FOR_mqcpxrs, "__MQCPXRS", FRV_BUILTIN_MQCPXRS, 0, 0 },
+ { CODE_FOR_mqcpxru, "__MQCPXRU", FRV_BUILTIN_MQCPXRU, 0, 0 },
+ { CODE_FOR_mqcpxis, "__MQCPXIS", FRV_BUILTIN_MQCPXIS, 0, 0 },
+ { CODE_FOR_mqcpxiu, "__MQCPXIU", FRV_BUILTIN_MQCPXIU, 0, 0 },
+ { CODE_FOR_mqmulhs, "__MQMULHS", FRV_BUILTIN_MQMULHS, 0, 0 },
+ { CODE_FOR_mqmulhu, "__MQMULHU", FRV_BUILTIN_MQMULHU, 0, 0 },
+ { CODE_FOR_mqmulxhs, "__MQMULXHS", FRV_BUILTIN_MQMULXHS, 0, 0 },
+ { CODE_FOR_mqmulxhu, "__MQMULXHU", FRV_BUILTIN_MQMULXHU, 0, 0 },
+ { CODE_FOR_mqmachs, "__MQMACHS", FRV_BUILTIN_MQMACHS, 0, 0 },
+ { CODE_FOR_mqmachu, "__MQMACHU", FRV_BUILTIN_MQMACHU, 0, 0 },
+ { CODE_FOR_mqxmachs, "__MQXMACHS", FRV_BUILTIN_MQXMACHS, 0, 0 },
+ { CODE_FOR_mqxmacxhs, "__MQXMACXHS", FRV_BUILTIN_MQXMACXHS, 0, 0 },
+ { CODE_FOR_mqmacxhs, "__MQMACXHS", FRV_BUILTIN_MQMACXHS, 0, 0 }
+};
+
+/* Media intrinsics that take two accumulator numbers as argument and
+ return void. */
+
+static struct builtin_description bdesc_voidacc[] =
+{
+ { CODE_FOR_maddaccs, "__MADDACCS", FRV_BUILTIN_MADDACCS, 0, 0 },
+ { CODE_FOR_msubaccs, "__MSUBACCS", FRV_BUILTIN_MSUBACCS, 0, 0 },
+ { CODE_FOR_masaccs, "__MASACCS", FRV_BUILTIN_MASACCS, 0, 0 },
+ { CODE_FOR_mdaddaccs, "__MDADDACCS", FRV_BUILTIN_MDADDACCS, 0, 0 },
+ { CODE_FOR_mdsubaccs, "__MDSUBACCS", FRV_BUILTIN_MDSUBACCS, 0, 0 },
+ { CODE_FOR_mdasaccs, "__MDASACCS", FRV_BUILTIN_MDASACCS, 0, 0 }
+};
+
+/* Initialize media builtins. */
+
+static void
+frv_init_builtins ()
+{
+ tree endlink = void_list_node;
+ tree accumulator = integer_type_node;
+ tree integer = integer_type_node;
+ tree voidt = void_type_node;
+ tree uhalf = short_unsigned_type_node;
+ tree sword1 = long_integer_type_node;
+ tree uword1 = long_unsigned_type_node;
+ tree sword2 = long_long_integer_type_node;
+ tree uword2 = long_long_unsigned_type_node;
+ tree uword4 = build_pointer_type (uword1);
+
+#define UNARY(RET, T1) \
+ build_function_type (RET, tree_cons (NULL_TREE, T1, endlink))
+
+#define BINARY(RET, T1, T2) \
+ build_function_type (RET, tree_cons (NULL_TREE, T1, \
+ tree_cons (NULL_TREE, T2, endlink)))
+
+#define TRINARY(RET, T1, T2, T3) \
+ build_function_type (RET, tree_cons (NULL_TREE, T1, \
+ tree_cons (NULL_TREE, T2, \
+ tree_cons (NULL_TREE, T3, endlink))))
+
+ tree void_ftype_void = build_function_type (voidt, endlink);
+
+ tree void_ftype_acc = UNARY (voidt, accumulator);
+ tree void_ftype_uw4_uw1 = BINARY (voidt, uword4, uword1);
+ tree void_ftype_uw4_uw2 = BINARY (voidt, uword4, uword2);
+ tree void_ftype_acc_uw1 = BINARY (voidt, accumulator, uword1);
+ tree void_ftype_acc_acc = BINARY (voidt, accumulator, accumulator);
+ tree void_ftype_acc_uw1_uw1 = TRINARY (voidt, accumulator, uword1, uword1);
+ tree void_ftype_acc_sw1_sw1 = TRINARY (voidt, accumulator, sword1, sword1);
+ tree void_ftype_acc_uw2_uw2 = TRINARY (voidt, accumulator, uword2, uword2);
+ tree void_ftype_acc_sw2_sw2 = TRINARY (voidt, accumulator, sword2, sword2);
+
+ tree uw1_ftype_uw1 = UNARY (uword1, uword1);
+ tree uw1_ftype_sw1 = UNARY (uword1, sword1);
+ tree uw1_ftype_uw2 = UNARY (uword1, uword2);
+ tree uw1_ftype_acc = UNARY (uword1, accumulator);
+ tree uw1_ftype_uh_uh = BINARY (uword1, uhalf, uhalf);
+ tree uw1_ftype_uw1_uw1 = BINARY (uword1, uword1, uword1);
+ tree uw1_ftype_uw1_int = BINARY (uword1, uword1, integer);
+ tree uw1_ftype_acc_uw1 = BINARY (uword1, accumulator, uword1);
+ tree uw1_ftype_acc_sw1 = BINARY (uword1, accumulator, sword1);
+ tree uw1_ftype_uw2_uw1 = BINARY (uword1, uword2, uword1);
+ tree uw1_ftype_uw2_int = BINARY (uword1, uword2, integer);
+
+ tree sw1_ftype_int = UNARY (sword1, integer);
+ tree sw1_ftype_sw1_sw1 = BINARY (sword1, sword1, sword1);
+ tree sw1_ftype_sw1_int = BINARY (sword1, sword1, integer);
+
+ tree uw2_ftype_uw1 = UNARY (uword2, uword1);
+ tree uw2_ftype_uw1_int = BINARY (uword2, uword1, integer);
+ tree uw2_ftype_uw2_uw2 = BINARY (uword2, uword2, uword2);
+ tree uw2_ftype_uw2_int = BINARY (uword2, uword2, integer);
+ tree uw2_ftype_acc_int = BINARY (uword2, accumulator, integer);
+
+ tree sw2_ftype_sw2_sw2 = BINARY (sword2, sword2, sword2);
+
+ def_builtin ("__MAND", uw1_ftype_uw1_uw1, FRV_BUILTIN_MAND);
+ def_builtin ("__MOR", uw1_ftype_uw1_uw1, FRV_BUILTIN_MOR);
+ def_builtin ("__MXOR", uw1_ftype_uw1_uw1, FRV_BUILTIN_MXOR);
+ def_builtin ("__MNOT", uw1_ftype_uw1, FRV_BUILTIN_MNOT);
+ def_builtin ("__MROTLI", uw1_ftype_uw1_int, FRV_BUILTIN_MROTLI);
+ def_builtin ("__MROTRI", uw1_ftype_uw1_int, FRV_BUILTIN_MROTRI);
+ def_builtin ("__MWCUT", uw1_ftype_uw2_uw1, FRV_BUILTIN_MWCUT);
+ def_builtin ("__MAVEH", uw1_ftype_uw1_uw1, FRV_BUILTIN_MAVEH);
+ def_builtin ("__MSLLHI", uw1_ftype_uw1_int, FRV_BUILTIN_MSLLHI);
+ def_builtin ("__MSRLHI", uw1_ftype_uw1_int, FRV_BUILTIN_MSRLHI);
+ def_builtin ("__MSRAHI", sw1_ftype_sw1_int, FRV_BUILTIN_MSRAHI);
+ def_builtin ("__MSATHS", sw1_ftype_sw1_sw1, FRV_BUILTIN_MSATHS);
+ def_builtin ("__MSATHU", uw1_ftype_uw1_uw1, FRV_BUILTIN_MSATHU);
+ def_builtin ("__MADDHSS", sw1_ftype_sw1_sw1, FRV_BUILTIN_MADDHSS);
+ def_builtin ("__MADDHUS", uw1_ftype_uw1_uw1, FRV_BUILTIN_MADDHUS);
+ def_builtin ("__MSUBHSS", sw1_ftype_sw1_sw1, FRV_BUILTIN_MSUBHSS);
+ def_builtin ("__MSUBHUS", uw1_ftype_uw1_uw1, FRV_BUILTIN_MSUBHUS);
+ def_builtin ("__MMULHS", void_ftype_acc_sw1_sw1, FRV_BUILTIN_MMULHS);
+ def_builtin ("__MMULHU", void_ftype_acc_uw1_uw1, FRV_BUILTIN_MMULHU);
+ def_builtin ("__MMULXHS", void_ftype_acc_sw1_sw1, FRV_BUILTIN_MMULXHS);
+ def_builtin ("__MMULXHU", void_ftype_acc_uw1_uw1, FRV_BUILTIN_MMULXHU);
+ def_builtin ("__MMACHS", void_ftype_acc_sw1_sw1, FRV_BUILTIN_MMACHS);
+ def_builtin ("__MMACHU", void_ftype_acc_uw1_uw1, FRV_BUILTIN_MMACHU);
+ def_builtin ("__MMRDHS", void_ftype_acc_sw1_sw1, FRV_BUILTIN_MMRDHS);
+ def_builtin ("__MMRDHU", void_ftype_acc_uw1_uw1, FRV_BUILTIN_MMRDHU);
+ def_builtin ("__MQADDHSS", sw2_ftype_sw2_sw2, FRV_BUILTIN_MQADDHSS);
+ def_builtin ("__MQADDHUS", uw2_ftype_uw2_uw2, FRV_BUILTIN_MQADDHUS);
+ def_builtin ("__MQSUBHSS", sw2_ftype_sw2_sw2, FRV_BUILTIN_MQSUBHSS);
+ def_builtin ("__MQSUBHUS", uw2_ftype_uw2_uw2, FRV_BUILTIN_MQSUBHUS);
+ def_builtin ("__MQMULHS", void_ftype_acc_sw2_sw2, FRV_BUILTIN_MQMULHS);
+ def_builtin ("__MQMULHU", void_ftype_acc_uw2_uw2, FRV_BUILTIN_MQMULHU);
+ def_builtin ("__MQMULXHS", void_ftype_acc_sw2_sw2, FRV_BUILTIN_MQMULXHS);
+ def_builtin ("__MQMULXHU", void_ftype_acc_uw2_uw2, FRV_BUILTIN_MQMULXHU);
+ def_builtin ("__MQMACHS", void_ftype_acc_sw2_sw2, FRV_BUILTIN_MQMACHS);
+ def_builtin ("__MQMACHU", void_ftype_acc_uw2_uw2, FRV_BUILTIN_MQMACHU);
+ def_builtin ("__MCPXRS", void_ftype_acc_sw1_sw1, FRV_BUILTIN_MCPXRS);
+ def_builtin ("__MCPXRU", void_ftype_acc_uw1_uw1, FRV_BUILTIN_MCPXRU);
+ def_builtin ("__MCPXIS", void_ftype_acc_sw1_sw1, FRV_BUILTIN_MCPXIS);
+ def_builtin ("__MCPXIU", void_ftype_acc_uw1_uw1, FRV_BUILTIN_MCPXIU);
+ def_builtin ("__MQCPXRS", void_ftype_acc_sw2_sw2, FRV_BUILTIN_MQCPXRS);
+ def_builtin ("__MQCPXRU", void_ftype_acc_uw2_uw2, FRV_BUILTIN_MQCPXRU);
+ def_builtin ("__MQCPXIS", void_ftype_acc_sw2_sw2, FRV_BUILTIN_MQCPXIS);
+ def_builtin ("__MQCPXIU", void_ftype_acc_uw2_uw2, FRV_BUILTIN_MQCPXIU);
+ def_builtin ("__MCUT", uw1_ftype_acc_uw1, FRV_BUILTIN_MCUT);
+ def_builtin ("__MCUTSS", uw1_ftype_acc_sw1, FRV_BUILTIN_MCUTSS);
+ def_builtin ("__MEXPDHW", uw1_ftype_uw1_int, FRV_BUILTIN_MEXPDHW);
+ def_builtin ("__MEXPDHD", uw2_ftype_uw1_int, FRV_BUILTIN_MEXPDHD);
+ def_builtin ("__MPACKH", uw1_ftype_uh_uh, FRV_BUILTIN_MPACKH);
+ def_builtin ("__MUNPACKH", uw2_ftype_uw1, FRV_BUILTIN_MUNPACKH);
+ def_builtin ("__MDPACKH", uw2_ftype_uw2_uw2, FRV_BUILTIN_MDPACKH);
+ def_builtin ("__MDUNPACKH", void_ftype_uw4_uw2, FRV_BUILTIN_MDUNPACKH);
+ def_builtin ("__MBTOH", uw2_ftype_uw1, FRV_BUILTIN_MBTOH);
+ def_builtin ("__MHTOB", uw1_ftype_uw2, FRV_BUILTIN_MHTOB);
+ def_builtin ("__MBTOHE", void_ftype_uw4_uw1, FRV_BUILTIN_MBTOHE);
+ def_builtin ("__MCLRACC", void_ftype_acc, FRV_BUILTIN_MCLRACC);
+ def_builtin ("__MCLRACCA", void_ftype_void, FRV_BUILTIN_MCLRACCA);
+ def_builtin ("__MRDACC", uw1_ftype_acc, FRV_BUILTIN_MRDACC);
+ def_builtin ("__MRDACCG", uw1_ftype_acc, FRV_BUILTIN_MRDACCG);
+ def_builtin ("__MWTACC", void_ftype_acc_uw1, FRV_BUILTIN_MWTACC);
+ def_builtin ("__MWTACCG", void_ftype_acc_uw1, FRV_BUILTIN_MWTACCG);
+ def_builtin ("__Mcop1", uw1_ftype_uw1_uw1, FRV_BUILTIN_MCOP1);
+ def_builtin ("__Mcop2", uw1_ftype_uw1_uw1, FRV_BUILTIN_MCOP2);
+ def_builtin ("__MTRAP", void_ftype_void, FRV_BUILTIN_MTRAP);
+ def_builtin ("__MQXMACHS", void_ftype_acc_sw2_sw2, FRV_BUILTIN_MQXMACHS);
+ def_builtin ("__MQXMACXHS", void_ftype_acc_sw2_sw2, FRV_BUILTIN_MQXMACXHS);
+ def_builtin ("__MQMACXHS", void_ftype_acc_sw2_sw2, FRV_BUILTIN_MQMACXHS);
+ def_builtin ("__MADDACCS", void_ftype_acc_acc, FRV_BUILTIN_MADDACCS);
+ def_builtin ("__MSUBACCS", void_ftype_acc_acc, FRV_BUILTIN_MSUBACCS);
+ def_builtin ("__MASACCS", void_ftype_acc_acc, FRV_BUILTIN_MASACCS);
+ def_builtin ("__MDADDACCS", void_ftype_acc_acc, FRV_BUILTIN_MDADDACCS);
+ def_builtin ("__MDSUBACCS", void_ftype_acc_acc, FRV_BUILTIN_MDSUBACCS);
+ def_builtin ("__MDASACCS", void_ftype_acc_acc, FRV_BUILTIN_MDASACCS);
+ def_builtin ("__MABSHS", uw1_ftype_sw1, FRV_BUILTIN_MABSHS);
+ def_builtin ("__MDROTLI", uw2_ftype_uw2_int, FRV_BUILTIN_MDROTLI);
+ def_builtin ("__MCPLHI", uw1_ftype_uw2_int, FRV_BUILTIN_MCPLHI);
+ def_builtin ("__MCPLI", uw1_ftype_uw2_int, FRV_BUILTIN_MCPLI);
+ def_builtin ("__MDCUTSSI", uw2_ftype_acc_int, FRV_BUILTIN_MDCUTSSI);
+ def_builtin ("__MQSATHS", sw2_ftype_sw2_sw2, FRV_BUILTIN_MQSATHS);
+ def_builtin ("__MHSETLOS", sw1_ftype_sw1_int, FRV_BUILTIN_MHSETLOS);
+ def_builtin ("__MHSETHIS", sw1_ftype_sw1_int, FRV_BUILTIN_MHSETHIS);
+ def_builtin ("__MHDSETS", sw1_ftype_int, FRV_BUILTIN_MHDSETS);
+ def_builtin ("__MHSETLOH", uw1_ftype_uw1_int, FRV_BUILTIN_MHSETLOH);
+ def_builtin ("__MHSETHIH", uw1_ftype_uw1_int, FRV_BUILTIN_MHSETHIH);
+ def_builtin ("__MHDSETH", uw1_ftype_uw1_int, FRV_BUILTIN_MHDSETH);
+
+#undef UNARY
+#undef BINARY
+#undef TRINARY
+}
+
+/* Convert an integer constant to an accumulator register. ICODE is the
+ code of the target instruction, OPNUM is the number of the
+ accumulator operand and OPVAL is the constant integer. Try both
+ ACC and ACCG registers; only report an error if neither fit the
+ instruction. */
+
+static rtx
+frv_int_to_acc (icode, opnum, opval)
+ enum insn_code icode;
+ int opnum;
+ rtx opval;
+{
+ rtx reg;
+
+ if (GET_CODE (opval) != CONST_INT)
+ {
+ error ("accumulator is not a constant integer");
+ return NULL_RTX;
+ }
+ if (! IN_RANGE_P (INTVAL (opval), 0, NUM_ACCS - 1))
+ {
+ error ("accumulator number is out of bounds");
+ return NULL_RTX;
+ }
+
+ reg = gen_rtx_REG (insn_data[icode].operand[opnum].mode,
+ ACC_FIRST + INTVAL (opval));
+ if (! (*insn_data[icode].operand[opnum].predicate) (reg, VOIDmode))
+ REGNO (reg) = ACCG_FIRST + INTVAL (opval);
+
+ if (! (*insn_data[icode].operand[opnum].predicate) (reg, VOIDmode))
+ {
+ error ("inappropriate accumulator for `%s'", insn_data[icode].name);
+ return NULL_RTX;
+ }
+ return reg;
+}
+
+/* If an ACC rtx has mode MODE, return the mode that the matching ACCG
+ should have. */
+
+static enum machine_mode
+frv_matching_accg_mode (mode)
+ enum machine_mode mode;
+{
+ switch (mode)
+ {
+ case V4SImode:
+ return V4QImode;
+
+ case DImode:
+ return HImode;
+
+ case SImode:
+ return QImode;
+
+ default:
+ abort ();
+ }
+}
+
+/* Return the accumulator guard that should be paired with accumulator
+ register ACC. The mode of the returned register is in the same
+ class as ACC, but is four times smaller. */
+
+rtx
+frv_matching_accg_for_acc (acc)
+ rtx acc;
+{
+ return gen_rtx_REG (frv_matching_accg_mode (GET_MODE (acc)),
+ REGNO (acc) - ACC_FIRST + ACCG_FIRST);
+}
+
+/* Read a value from the head of the tree list pointed to by ARGLISTPTR.
+ Return the value as an rtx and replace *ARGLISTPTR with the tail of the
+ list. */
+
+static rtx
+frv_read_argument (arglistptr)
+ tree *arglistptr;
+{
+ tree next = TREE_VALUE (*arglistptr);
+ *arglistptr = TREE_CHAIN (*arglistptr);
+ return expand_expr (next, NULL_RTX, VOIDmode, 0);
+}
+
+/* Return true if OPVAL can be used for operand OPNUM of instruction ICODE.
+ The instruction should require a constant operand of some sort. The
+ function prints an error if OPVAL is not valid. */
+
+static int
+frv_check_constant_argument (icode, opnum, opval)
+ enum insn_code icode;
+ int opnum;
+ rtx opval;
+{
+ if (GET_CODE (opval) != CONST_INT)
+ {
+ error ("`%s' expects a constant argument", insn_data[icode].name);
+ return FALSE;
+ }
+ if (! (*insn_data[icode].operand[opnum].predicate) (opval, VOIDmode))
+ {
+ error ("constant argument out of range for `%s'", insn_data[icode].name);
+ return FALSE;
+ }
+ return TRUE;
+}
+
+/* Return a legitimate rtx for instruction ICODE's return value. Use TARGET
+ if it's not null, has the right mode, and satisfies operand 0's
+ predicate. */
+
+static rtx
+frv_legitimize_target (icode, target)
+ enum insn_code icode;
+ rtx target;
+{
+ enum machine_mode mode = insn_data[icode].operand[0].mode;
+
+ if (! target
+ || GET_MODE (target) != mode
+ || ! (*insn_data[icode].operand[0].predicate) (target, mode))
+ return gen_reg_rtx (mode);
+ else
+ return target;
+}
+
+/* Given that ARG is being passed as operand OPNUM to instruction ICODE,
+ check whether ARG satisfies the operand's contraints. If it doesn't,
+ copy ARG to a temporary register and return that. Otherwise return ARG
+ itself. */
+
+static rtx
+frv_legitimize_argument (icode, opnum, arg)
+ enum insn_code icode;
+ int opnum;
+ rtx arg;
+{
+ enum machine_mode mode = insn_data[icode].operand[opnum].mode;
+
+ if ((*insn_data[icode].operand[opnum].predicate) (arg, mode))
+ return arg;
+ else
+ return copy_to_mode_reg (mode, arg);
+}
+
+/* Expand builtins that take a single, constant argument. At the moment,
+ only MHDSETS falls into this category. */
+
+static rtx
+frv_expand_set_builtin (icode, arglist, target)
+ enum insn_code icode;
+ tree arglist;
+ rtx target;
+{
+ rtx pat;
+ rtx op0 = frv_read_argument (&arglist);
+
+ if (! frv_check_constant_argument (icode, 1, op0))
+ return NULL_RTX;
+
+ target = frv_legitimize_target (icode, target);
+ pat = GEN_FCN (icode) (target, op0);
+ if (! pat)
+ return NULL_RTX;
+
+ emit_insn (pat);
+ return target;
+}
+
+/* Expand builtins that take one operand. */
+
+static rtx
+frv_expand_unop_builtin (icode, arglist, target)
+ enum insn_code icode;
+ tree arglist;
+ rtx target;
+{
+ rtx pat;
+ rtx op0 = frv_read_argument (&arglist);
+
+ target = frv_legitimize_target (icode, target);
+ op0 = frv_legitimize_argument (icode, 1, op0);
+ pat = GEN_FCN (icode) (target, op0);
+ if (! pat)
+ return NULL_RTX;
+
+ emit_insn (pat);
+ return target;
+}
+
+/* Expand builtins that take two operands. */
+
+static rtx
+frv_expand_binop_builtin (icode, arglist, target)
+ enum insn_code icode;
+ tree arglist;
+ rtx target;
+{
+ rtx pat;
+ rtx op0 = frv_read_argument (&arglist);
+ rtx op1 = frv_read_argument (&arglist);
+
+ target = frv_legitimize_target (icode, target);
+ op0 = frv_legitimize_argument (icode, 1, op0);
+ op1 = frv_legitimize_argument (icode, 2, op1);
+ pat = GEN_FCN (icode) (target, op0, op1);
+ if (! pat)
+ return NULL_RTX;
+
+ emit_insn (pat);
+ return target;
+}
+
+/* Expand cut-style builtins, which take two operands and an implicit ACCG
+ one. */
+
+static rtx
+frv_expand_cut_builtin (icode, arglist, target)
+ enum insn_code icode;
+ tree arglist;
+ rtx target;
+{
+ rtx pat;
+ rtx op0 = frv_read_argument (&arglist);
+ rtx op1 = frv_read_argument (&arglist);
+ rtx op2;
+
+ target = frv_legitimize_target (icode, target);
+ op0 = frv_int_to_acc (icode, 1, op0);
+ if (! op0)
+ return NULL_RTX;
+
+ if (icode == CODE_FOR_mdcutssi || GET_CODE (op1) == CONST_INT)
+ {
+ if (! frv_check_constant_argument (icode, 2, op1))
+ return NULL_RTX;
+ }
+ else
+ op1 = frv_legitimize_argument (icode, 2, op1);
+
+ op2 = frv_matching_accg_for_acc (op0);
+ pat = GEN_FCN (icode) (target, op0, op1, op2);
+ if (! pat)
+ return NULL_RTX;
+
+ emit_insn (pat);
+ return target;
+}
+
+/* Expand builtins that take two operands and the second is immediate. */
+
+static rtx
+frv_expand_binopimm_builtin (icode, arglist, target)
+ enum insn_code icode;
+ tree arglist;
+ rtx target;
+{
+ rtx pat;
+ rtx op0 = frv_read_argument (&arglist);
+ rtx op1 = frv_read_argument (&arglist);
+
+ if (! frv_check_constant_argument (icode, 2, op1))
+ return NULL_RTX;
+
+ target = frv_legitimize_target (icode, target);
+ op0 = frv_legitimize_argument (icode, 1, op0);
+ pat = GEN_FCN (icode) (target, op0, op1);
+ if (! pat)
+ return NULL_RTX;
+
+ emit_insn (pat);
+ return target;
+}
+
+/* Expand builtins that take two operands, the first operand being a pointer to
+ ints and return void. */
+
+static rtx
+frv_expand_voidbinop_builtin (icode, arglist)
+ enum insn_code icode;
+ tree arglist;
+{
+ rtx pat;
+ rtx op0 = frv_read_argument (&arglist);
+ rtx op1 = frv_read_argument (&arglist);
+ enum machine_mode mode0 = insn_data[icode].operand[0].mode;
+ rtx addr;
+
+ if (GET_CODE (op0) != MEM)
+ {
+ rtx reg = op0;
+
+ if (! offsettable_address_p (0, mode0, op0))
+ {
+ reg = gen_reg_rtx (Pmode);
+ emit_insn (gen_rtx_SET (VOIDmode, reg, op0));
+ }
+
+ op0 = gen_rtx_MEM (SImode, reg);
+ }
+
+ addr = XEXP (op0, 0);
+ if (! offsettable_address_p (0, mode0, addr))
+ addr = copy_to_mode_reg (Pmode, op0);
+
+ op0 = change_address (op0, V4SImode, addr);
+ op1 = frv_legitimize_argument (icode, 1, op1);
+ pat = GEN_FCN (icode) (op0, op1);
+ if (! pat)
+ return 0;
+
+ emit_insn (pat);
+ return 0;
+}
+
+/* Expand builtins that take three operands and return void. The first
+ argument must be a constant that describes a pair or quad accumulators. A
+ fourth argument is created that is the accumulator guard register that
+ corresponds to the accumulator. */
+
+static rtx
+frv_expand_voidtriop_builtin (icode, arglist)
+ enum insn_code icode;
+ tree arglist;
+{
+ rtx pat;
+ rtx op0 = frv_read_argument (&arglist);
+ rtx op1 = frv_read_argument (&arglist);
+ rtx op2 = frv_read_argument (&arglist);
+ rtx op3;
+
+ op0 = frv_int_to_acc (icode, 0, op0);
+ if (! op0)
+ return NULL_RTX;
+
+ op1 = frv_legitimize_argument (icode, 1, op1);
+ op2 = frv_legitimize_argument (icode, 2, op2);
+ op3 = frv_matching_accg_for_acc (op0);
+ pat = GEN_FCN (icode) (op0, op1, op2, op3);
+ if (! pat)
+ return NULL_RTX;
+
+ emit_insn (pat);
+ return NULL_RTX;
+}
+
+/* Expand builtins that perform accumulator-to-accumulator operations.
+ These builtins take two accumulator numbers as argument and return
+ void. */
+
+static rtx
+frv_expand_voidaccop_builtin (icode, arglist)
+ enum insn_code icode;
+ tree arglist;
+{
+ rtx pat;
+ rtx op0 = frv_read_argument (&arglist);
+ rtx op1 = frv_read_argument (&arglist);
+ rtx op2;
+ rtx op3;
+
+ op0 = frv_int_to_acc (icode, 0, op0);
+ if (! op0)
+ return NULL_RTX;
+
+ op1 = frv_int_to_acc (icode, 1, op1);
+ if (! op1)
+ return NULL_RTX;
+
+ op2 = frv_matching_accg_for_acc (op0);
+ op3 = frv_matching_accg_for_acc (op1);
+ pat = GEN_FCN (icode) (op0, op1, op2, op3);
+ if (! pat)
+ return NULL_RTX;
+
+ emit_insn (pat);
+ return NULL_RTX;
+}
+
+/* Expand the MCLRACC builtin. This builtin takes a single accumulator
+ number as argument. */
+
+static rtx
+frv_expand_mclracc_builtin (arglist)
+ tree arglist;
+{
+ enum insn_code icode = CODE_FOR_mclracc;
+ rtx pat;
+ rtx op0 = frv_read_argument (&arglist);
+
+ op0 = frv_int_to_acc (icode, 0, op0);
+ if (! op0)
+ return NULL_RTX;
+
+ pat = GEN_FCN (icode) (op0);
+ if (pat)
+ emit_insn (pat);
+
+ return NULL_RTX;
+}
+
+/* Expand builtins that take no arguments. */
+
+static rtx
+frv_expand_noargs_builtin (icode)
+ enum insn_code icode;
+{
+ rtx pat = GEN_FCN (icode) (GEN_INT (0));
+ if (pat)
+ emit_insn (pat);
+
+ return NULL_RTX;
+}
+
+/* Expand MRDACC and MRDACCG. These builtins take a single accumulator
+ number or accumulator guard number as argument and return an SI integer. */
+
+static rtx
+frv_expand_mrdacc_builtin (icode, arglist)
+ enum insn_code icode;
+ tree arglist;
+{
+ rtx pat;
+ rtx target = gen_reg_rtx (SImode);
+ rtx op0 = frv_read_argument (&arglist);
+
+ op0 = frv_int_to_acc (icode, 1, op0);
+ if (! op0)
+ return NULL_RTX;
+
+ pat = GEN_FCN (icode) (target, op0);
+ if (! pat)
+ return NULL_RTX;
+
+ emit_insn (pat);
+ return target;
+}
+
+/* Expand MWTACC and MWTACCG. These builtins take an accumulator or
+ accumulator guard as their first argument and an SImode value as their
+ second. */
+
+static rtx
+frv_expand_mwtacc_builtin (icode, arglist)
+ enum insn_code icode;
+ tree arglist;
+{
+ rtx pat;
+ rtx op0 = frv_read_argument (&arglist);
+ rtx op1 = frv_read_argument (&arglist);
+
+ op0 = frv_int_to_acc (icode, 0, op0);
+ if (! op0)
+ return NULL_RTX;
+
+ op1 = frv_legitimize_argument (icode, 1, op1);
+ pat = GEN_FCN (icode) (op0, op1);
+ if (pat)
+ emit_insn (pat);
+
+ return NULL_RTX;
+}
+
+/* Expand builtins. */
+
+static rtx
+frv_expand_builtin (exp, target, subtarget, mode, ignore)
+ tree exp;
+ rtx target;
+ rtx subtarget ATTRIBUTE_UNUSED;
+ enum machine_mode mode ATTRIBUTE_UNUSED;
+ int ignore ATTRIBUTE_UNUSED;
+{
+ tree arglist = TREE_OPERAND (exp, 1);
+ tree fndecl = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
+ unsigned fcode = (unsigned)DECL_FUNCTION_CODE (fndecl);
+ unsigned i;
+ struct builtin_description *d;
+
+ if (! TARGET_MEDIA)
+ {
+ error ("media functions are not available unless -mmedia is used");
+ return NULL_RTX;
+ }
+
+ switch (fcode)
+ {
+ case FRV_BUILTIN_MCOP1:
+ case FRV_BUILTIN_MCOP2:
+ case FRV_BUILTIN_MDUNPACKH:
+ case FRV_BUILTIN_MBTOHE:
+ if (! TARGET_MEDIA_REV1)
+ {
+ error ("this media function is only available on the fr500");
+ return NULL_RTX;
+ }
+ break;
+
+ case FRV_BUILTIN_MQXMACHS:
+ case FRV_BUILTIN_MQXMACXHS:
+ case FRV_BUILTIN_MQMACXHS:
+ case FRV_BUILTIN_MADDACCS:
+ case FRV_BUILTIN_MSUBACCS:
+ case FRV_BUILTIN_MASACCS:
+ case FRV_BUILTIN_MDADDACCS:
+ case FRV_BUILTIN_MDSUBACCS:
+ case FRV_BUILTIN_MDASACCS:
+ case FRV_BUILTIN_MABSHS:
+ case FRV_BUILTIN_MDROTLI:
+ case FRV_BUILTIN_MCPLHI:
+ case FRV_BUILTIN_MCPLI:
+ case FRV_BUILTIN_MDCUTSSI:
+ case FRV_BUILTIN_MQSATHS:
+ case FRV_BUILTIN_MHSETLOS:
+ case FRV_BUILTIN_MHSETLOH:
+ case FRV_BUILTIN_MHSETHIS:
+ case FRV_BUILTIN_MHSETHIH:
+ case FRV_BUILTIN_MHDSETS:
+ case FRV_BUILTIN_MHDSETH:
+ if (! TARGET_MEDIA_REV2)
+ {
+ error ("this media function is only available on the fr400");
+ return NULL_RTX;
+ }
+ break;
+
+ default:
+ break;
+ }
+
+ /* Expand unique builtins. */
+
+ switch (fcode)
+ {
+ case FRV_BUILTIN_MTRAP:
+ return frv_expand_noargs_builtin (CODE_FOR_mtrap);
+
+ case FRV_BUILTIN_MCLRACC:
+ return frv_expand_mclracc_builtin (arglist);
+
+ case FRV_BUILTIN_MCLRACCA:
+ if (TARGET_ACC_8)
+ return frv_expand_noargs_builtin (CODE_FOR_mclracca8);
+ else
+ return frv_expand_noargs_builtin (CODE_FOR_mclracca4);
+
+ case FRV_BUILTIN_MRDACC:
+ return frv_expand_mrdacc_builtin (CODE_FOR_mrdacc, arglist);
+
+ case FRV_BUILTIN_MRDACCG:
+ return frv_expand_mrdacc_builtin (CODE_FOR_mrdaccg, arglist);
+
+ case FRV_BUILTIN_MWTACC:
+ return frv_expand_mwtacc_builtin (CODE_FOR_mwtacc, arglist);
+
+ case FRV_BUILTIN_MWTACCG:
+ return frv_expand_mwtacc_builtin (CODE_FOR_mwtaccg, arglist);
+
+ default:
+ break;
+ }
+
+ /* Expand groups of builtins. */
+
+ for (i = 0, d = bdesc_set; i < sizeof (bdesc_set) / sizeof *d; i++, d++)
+ if (d->code == fcode)
+ return frv_expand_set_builtin (d->icode, arglist, target);
+
+ for (i = 0, d = bdesc_1arg; i < sizeof (bdesc_1arg) / sizeof *d; i++, d++)
+ if (d->code == fcode)
+ return frv_expand_unop_builtin (d->icode, arglist, target);
+
+ for (i = 0, d = bdesc_2arg; i < sizeof (bdesc_2arg) / sizeof *d; i++, d++)
+ if (d->code == fcode)
+ return frv_expand_binop_builtin (d->icode, arglist, target);
+
+ for (i = 0, d = bdesc_cut; i < sizeof (bdesc_cut) / sizeof *d; i++, d++)
+ if (d->code == fcode)
+ return frv_expand_cut_builtin (d->icode, arglist, target);
+
+ for (i = 0, d = bdesc_2argimm;
+ i < sizeof (bdesc_2argimm) / sizeof *d;
+ i++, d++)
+ {
+ if (d->code == fcode)
+ return frv_expand_binopimm_builtin (d->icode, arglist, target);
+ }
+
+ for (i = 0, d = bdesc_void2arg;
+ i < sizeof (bdesc_void2arg) / sizeof *d;
+ i++, d++)
+ {
+ if (d->code == fcode)
+ return frv_expand_voidbinop_builtin (d->icode, arglist);
+ }
+
+ for (i = 0, d = bdesc_void3arg;
+ i < sizeof (bdesc_void3arg) / sizeof *d;
+ i++, d++)
+ {
+ if (d->code == fcode)
+ return frv_expand_voidtriop_builtin (d->icode, arglist);
+ }
+
+ for (i = 0, d = bdesc_voidacc;
+ i < sizeof (bdesc_voidacc) / sizeof *d;
+ i++, d++)
+ {
+ if (d->code == fcode)
+ return frv_expand_voidaccop_builtin (d->icode, arglist);
+ }
+ return 0;
+}
+
+static const char *
+frv_strip_name_encoding (str)
+ const char *str;
+{
+ while (*str == '*' || *str == SDATA_FLAG_CHAR)
+ str++;
+ return str;
+}
+
+static bool
+frv_in_small_data_p (decl)
+ tree decl;
+{
+ HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (decl));
+
+ return symbol_ref_small_data_p (XEXP (DECL_RTL (decl), 0))
+ && size > 0 && size <= g_switch_value;
+}
diff --git a/contrib/gcc/config/frv/frv.h b/contrib/gcc/config/frv/frv.h
new file mode 100644
index 0000000..f9900b2
--- /dev/null
+++ b/contrib/gcc/config/frv/frv.h
@@ -0,0 +1,3592 @@
+/* Target macros for the FRV port of GCC.
+ Copyright (C) 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
+ Contributed by Red Hat Inc.
+
+ This file is part of GCC.
+
+ GCC is free software; you can redistribute it and/or modify it
+ under the terms of the GNU General Public License as published
+ by the Free Software Foundation; either version 2, or (at your
+ option) any later version.
+
+ GCC is distributed in the hope that it will be useful, but WITHOUT
+ ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
+ or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
+ License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with GCC; see the file COPYING. If not, write to the Free
+ Software Foundation, 59 Temple Place - Suite 330, Boston, MA
+ 02111-1307, USA. */
+
+#ifndef __FRV_H__
+#define __FRV_H__
+
+/* Set up System V.4 (aka ELF) defaults. */
+#include "svr4.h"
+
+
+/* Frv general purpose macros. */
+/* Align an address. */
+#define ADDR_ALIGN(addr,align) (((addr) + (align) - 1) & ~((align) - 1))
+
+/* Return true if a value is inside a range. */
+#define IN_RANGE_P(VALUE, LOW, HIGH) \
+ ( (((HOST_WIDE_INT)(VALUE)) >= (HOST_WIDE_INT)(LOW)) \
+ && (((HOST_WIDE_INT)(VALUE)) <= ((HOST_WIDE_INT)(HIGH))))
+
+
+/* Driver configuration. */
+
+/* A C expression which determines whether the option `-CHAR' takes arguments.
+ The value should be the number of arguments that option takes-zero, for many
+ options.
+
+ By default, this macro is defined to handle the standard options properly.
+ You need not define it unless you wish to add additional options which take
+ arguments.
+
+ Defined in svr4.h. */
+#undef SWITCH_TAKES_ARG
+#define SWITCH_TAKES_ARG(CHAR) \
+ (DEFAULT_SWITCH_TAKES_ARG (CHAR) || (CHAR) == 'G')
+
+/* A C expression which determines whether the option `-NAME' takes arguments.
+ The value should be the number of arguments that option takes-zero, for many
+ options. This macro rather than `SWITCH_TAKES_ARG' is used for
+ multi-character option names.
+
+ By default, this macro is defined as `DEFAULT_WORD_SWITCH_TAKES_ARG', which
+ handles the standard options properly. You need not define
+ `WORD_SWITCH_TAKES_ARG' unless you wish to add additional options which take
+ arguments. Any redefinition should call `DEFAULT_WORD_SWITCH_TAKES_ARG' and
+ then check for additional options.
+
+ Defined in svr4.h. */
+#undef WORD_SWITCH_TAKES_ARG
+
+/* A C string constant that tells the GNU CC driver program options to pass to
+ the assembler. It can also specify how to translate options you give to GNU
+ CC into options for GNU CC to pass to the assembler. See the file `sun3.h'
+ for an example of this.
+
+ Do not define this macro if it does not need to do anything.
+
+ Defined in svr4.h. */
+#undef ASM_SPEC
+#define ASM_SPEC "\
+%{G*} %{v} %{n} %{T} %{Ym,*} %{Yd,*} %{Wa,*:%*} \
+%{mtomcat-stats} \
+%{!mno-eflags: \
+ %{mcpu=*} \
+ %{mgpr-*} %{mfpr-*} \
+ %{msoft-float} %{mhard-float} \
+ %{mdword} %{mno-dword} \
+ %{mdouble} %{mno-double} \
+ %{mmedia} %{mno-media} \
+ %{mmuladd} %{mno-muladd} \
+ %{mpack} %{mno-pack} \
+ %{fpic: -mpic} %{fPIC: -mPIC} %{mlibrary-pic}}"
+
+/* Another C string constant used much like `LINK_SPEC'. The difference
+ between the two is that `STARTFILE_SPEC' is used at the very beginning of
+ the command given to the linker.
+
+ If this macro is not defined, a default is provided that loads the standard
+ C startup file from the usual place. See `gcc.c'.
+
+ Defined in svr4.h. */
+#undef STARTFILE_SPEC
+#define STARTFILE_SPEC "crt0%O%s frvbegin%O%s"
+
+/* Another C string constant used much like `LINK_SPEC'. The difference
+ between the two is that `ENDFILE_SPEC' is used at the very end of the
+ command given to the linker.
+
+ Do not define this macro if it does not need to do anything.
+
+ Defined in svr4.h. */
+#undef ENDFILE_SPEC
+#define ENDFILE_SPEC "frvend%O%s"
+
+/* A C string constant that tells the GNU CC driver program options to pass to
+ CPP. It can also specify how to translate options you give to GNU CC into
+ options for GNU CC to pass to the CPP.
+
+ Do not define this macro if it does not need to do anything. */
+
+/* The idea here is to use the -mcpu option to define macros based on the
+ processor's features, using the features of the default processor if
+ no -mcpu option is given. These macros can then be overridden by
+ other -m options. */
+#define CPP_SPEC "\
+%{mcpu=frv: %(cpp_frv)} \
+%{mcpu=fr500: %(cpp_fr500)} \
+%{mcpu=fr400: %(cpp_fr400)} \
+%{mcpu=fr300: %(cpp_simple)} \
+%{mcpu=tomcat: %(cpp_fr500)} \
+%{mcpu=simple: %(cpp_simple)} \
+%{!mcpu*: %(cpp_cpu_default)} \
+%{mno-media: -D__FRV_ACC__=0 %{msoft-float: -D__FRV_FPR__=0}} \
+%{mhard-float: -D__FRV_HARD_FLOAT__} \
+%{msoft-float: -U__FRV_HARD_FLOAT__} \
+%{mgpr-32: -U__FRV_GPR__ -D__FRV_GPR__=32} \
+%{mgpr-64: -U__FRV_GPR__ -D__FRV_GPR__=64} \
+%{mfpr-32: -U__FRV_FPR__ -D__FRV_FPR__=32} \
+%{mfpr-64: -U__FRV_FPR__ -D__FRV_FPR__=64} \
+%{macc-4: -U__FRV_ACC__ -D__FRV_ACC__=4} \
+%{macc-8: -U__FRV_ACC__ -D__FRV_ACC__=8} \
+%{mdword: -D__FRV_DWORD__} \
+%{mno-dword: -U__FRV_DWORD__} \
+%{mno-pack: -U__FRV_VLIW__} \
+%{fleading-underscore: -D__FRV_UNDERSCORE__}"
+
+/* CPU defaults. Each CPU has its own CPP spec that defines the default
+ macros for that CPU. Each CPU also has its own default target mask.
+
+ CPU GPRs FPRs ACCs FPU MulAdd ldd/std Issue rate
+ --- ---- ---- ---- --- ------ ------- ----------
+ FRV 64 64 8 double yes yes 4
+ FR500 64 64 8 single no yes 4
+ FR400 32 32 4 none no yes 2
+ Simple 32 0 0 none no no 1 */
+
+
+#define CPP_FRV_SPEC "\
+-D__FRV_GPR__=64 \
+-D__FRV_FPR__=64 \
+-D__FRV_ACC__=8 \
+-D__FRV_HARD_FLOAT__ \
+-D__FRV_DWORD__ \
+-D__FRV_VLIW__=4"
+
+#define CPP_FR500_SPEC "\
+-D__FRV_GPR__=64 \
+-D__FRV_FPR__=64 \
+-D__FRV_ACC__=8 \
+-D__FRV_HARD_FLOAT__ \
+-D__FRV_DWORD__ \
+-D__FRV_VLIW__=4"
+
+#define CPP_FR400_SPEC "\
+-D__FRV_GPR__=32 \
+-D__FRV_FPR__=32 \
+-D__FRV_ACC__=4 \
+-D__FRV_DWORD__ \
+-D__FRV_VLIW__=2"
+
+#define CPP_SIMPLE_SPEC "\
+-D__FRV_GPR__=32 \
+-D__FRV_FPR__=0 \
+-D__FRV_ACC__=0 \
+%{mmedia: -D__FRV_ACC__=8} \
+%{mhard-float|mmedia: -D__FRV_FPR__=64}"
+
+#define MASK_DEFAULT_FRV \
+ (MASK_MEDIA \
+ | MASK_DOUBLE \
+ | MASK_MULADD \
+ | MASK_DWORD \
+ | MASK_PACK)
+
+#define MASK_DEFAULT_FR500 \
+ (MASK_MEDIA | MASK_DWORD | MASK_PACK)
+
+#define MASK_DEFAULT_FR400 \
+ (MASK_GPR_32 \
+ | MASK_FPR_32 \
+ | MASK_MEDIA \
+ | MASK_ACC_4 \
+ | MASK_SOFT_FLOAT \
+ | MASK_DWORD \
+ | MASK_PACK)
+
+#define MASK_DEFAULT_SIMPLE \
+ (MASK_GPR_32 | MASK_SOFT_FLOAT)
+
+/* A C string constant that tells the GNU CC driver program options to pass to
+ `cc1'. It can also specify how to translate options you give to GNU CC into
+ options for GNU CC to pass to the `cc1'.
+
+ Do not define this macro if it does not need to do anything. */
+/* For ABI compliance, we need to put bss data into the normal data section. */
+#define CC1_SPEC "%{G*}"
+
+/* A C string constant that tells the GNU CC driver program options to pass to
+ the linker. It can also specify how to translate options you give to GNU CC
+ into options for GNU CC to pass to the linker.
+
+ Do not define this macro if it does not need to do anything.
+
+ Defined in svr4.h. */
+/* Override the svr4.h version with one that dispenses without the svr4
+ shared library options, notably -G. */
+#undef LINK_SPEC
+#define LINK_SPEC "\
+%{h*} %{v:-V} \
+%{b} %{Wl,*:%*} \
+%{static:-dn -Bstatic} \
+%{shared:-Bdynamic} \
+%{symbolic:-Bsymbolic} \
+%{G*} \
+%{YP,*} \
+%{Qy:} %{!Qn:-Qy}"
+
+/* Another C string constant used much like `LINK_SPEC'. The difference
+ between the two is that `LIB_SPEC' is used at the end of the command given
+ to the linker.
+
+ If this macro is not defined, a default is provided that loads the standard
+ C library from the usual place. See `gcc.c'.
+
+ Defined in svr4.h. */
+
+#undef LIB_SPEC
+#define LIB_SPEC "--start-group -lc -lsim --end-group"
+
+/* This macro defines names of additional specifications to put in the specs
+ that can be used in various specifications like CC1_SPEC. Its definition
+ is an initializer with a subgrouping for each command option.
+
+ Each subgrouping contains a string constant, that defines the
+ specification name, and a string constant that used by the GNU CC driver
+ program.
+
+ Do not define this macro if it does not need to do anything. */
+
+#ifndef SUBTARGET_EXTRA_SPECS
+#define SUBTARGET_EXTRA_SPECS
+#endif
+
+#define EXTRA_SPECS \
+ { "cpp_frv", CPP_FRV_SPEC }, \
+ { "cpp_fr500", CPP_FR500_SPEC }, \
+ { "cpp_fr400", CPP_FR400_SPEC }, \
+ { "cpp_simple", CPP_SIMPLE_SPEC }, \
+ { "cpp_cpu_default", CPP_CPU_DEFAULT_SPEC }, \
+ SUBTARGET_EXTRA_SPECS
+
+#ifndef CPP_CPU_DEFAULT_SPEC
+#define CPP_CPU_DEFAULT_SPEC CPP_FR500_SPEC
+#define CPU_TYPE FRV_CPU_FR500
+#endif
+
+/* Allow us to easily change the default for -malloc-cc. */
+#ifndef DEFAULT_NO_ALLOC_CC
+#define MASK_DEFAULT_ALLOC_CC MASK_ALLOC_CC
+#else
+#define MASK_DEFAULT_ALLOC_CC 0
+#endif
+
+/* Run-time target specifications */
+
+/* Define this to be a string constant containing `-D' options to define the
+ predefined macros that identify this machine and system. These macros will
+ be predefined unless the `-ansi' option is specified.
+
+ In addition, a parallel set of macros are predefined, whose names are made
+ by appending `__' at the beginning and at the end. These `__' macros are
+ permitted by the ANSI standard, so they are predefined regardless of whether
+ `-ansi' is specified. */
+
+#define CPP_PREDEFINES "-D__frv__ -Amachine(frv)"
+
+
+/* This declaration should be present. */
+extern int target_flags;
+
+/* This series of macros is to allow compiler command arguments to enable or
+ disable the use of optional features of the target machine. For example,
+ one machine description serves both the 68000 and the 68020; a command
+ argument tells the compiler whether it should use 68020-only instructions or
+ not. This command argument works by means of a macro `TARGET_68020' that
+ tests a bit in `target_flags'.
+
+ Define a macro `TARGET_FEATURENAME' for each such option. Its definition
+ should test a bit in `target_flags'; for example:
+
+ #define TARGET_68020 (target_flags & 1)
+
+ One place where these macros are used is in the condition-expressions of
+ instruction patterns. Note how `TARGET_68020' appears frequently in the
+ 68000 machine description file, `m68k.md'. Another place they are used is
+ in the definitions of the other macros in the `MACHINE.h' file. */
+
+#define MASK_GPR_32 0x00000001 /* Limit gprs to 32 registers */
+#define MASK_FPR_32 0x00000002 /* Limit fprs to 32 registers */
+#define MASK_SOFT_FLOAT 0x00000004 /* Use software floating point */
+#define MASK_ALLOC_CC 0x00000008 /* Dynamically allocate icc/fcc's */
+#define MASK_DWORD 0x00000010 /* Change ABi to allow dbl word insns*/
+#define MASK_DOUBLE 0x00000020 /* Use double precision instructions */
+#define MASK_MEDIA 0x00000040 /* Use media instructions */
+#define MASK_MULADD 0x00000080 /* Use multiply add/subtract insns */
+#define MASK_LIBPIC 0x00000100 /* -fpic that can be linked w/o pic */
+#define MASK_ACC_4 0x00000200 /* Only use four media accumulators */
+#define MASK_PACK 0x00000400 /* Set to enable packed output */
+
+ /* put debug masks up high */
+#define MASK_DEBUG_ARG 0x40000000 /* debug argument handling */
+#define MASK_DEBUG_ADDR 0x20000000 /* debug go_if_legitimate_address */
+#define MASK_DEBUG_STACK 0x10000000 /* debug stack frame */
+#define MASK_DEBUG 0x08000000 /* general debugging switch */
+#define MASK_DEBUG_LOC 0x04000000 /* optimize line # table */
+#define MASK_DEBUG_COND_EXEC 0x02000000 /* debug cond exec code */
+#define MASK_NO_COND_MOVE 0x01000000 /* disable conditional moves */
+#define MASK_NO_SCC 0x00800000 /* disable set conditional codes */
+#define MASK_NO_COND_EXEC 0x00400000 /* disable conditional execution */
+#define MASK_NO_VLIW_BRANCH 0x00200000 /* disable repacking branches */
+#define MASK_NO_MULTI_CE 0x00100000 /* disable multi-level cond exec */
+#define MASK_NO_NESTED_CE 0x00080000 /* disable nested cond exec */
+
+#define MASK_DEFAULT MASK_DEFAULT_ALLOC_CC
+
+#define TARGET_GPR_32 ((target_flags & MASK_GPR_32) != 0)
+#define TARGET_FPR_32 ((target_flags & MASK_FPR_32) != 0)
+#define TARGET_SOFT_FLOAT ((target_flags & MASK_SOFT_FLOAT) != 0)
+#define TARGET_ALLOC_CC ((target_flags & MASK_ALLOC_CC) != 0)
+#define TARGET_DWORD ((target_flags & MASK_DWORD) != 0)
+#define TARGET_DOUBLE ((target_flags & MASK_DOUBLE) != 0)
+#define TARGET_MEDIA ((target_flags & MASK_MEDIA) != 0)
+#define TARGET_MULADD ((target_flags & MASK_MULADD) != 0)
+#define TARGET_LIBPIC ((target_flags & MASK_LIBPIC) != 0)
+#define TARGET_ACC_4 ((target_flags & MASK_ACC_4) != 0)
+#define TARGET_DEBUG_ARG ((target_flags & MASK_DEBUG_ARG) != 0)
+#define TARGET_DEBUG_ADDR ((target_flags & MASK_DEBUG_ADDR) != 0)
+#define TARGET_DEBUG_STACK ((target_flags & MASK_DEBUG_STACK) != 0)
+#define TARGET_DEBUG ((target_flags & MASK_DEBUG) != 0)
+#define TARGET_DEBUG_LOC ((target_flags & MASK_DEBUG_LOC) != 0)
+#define TARGET_DEBUG_COND_EXEC ((target_flags & MASK_DEBUG_COND_EXEC) != 0)
+#define TARGET_NO_COND_MOVE ((target_flags & MASK_NO_COND_MOVE) != 0)
+#define TARGET_NO_SCC ((target_flags & MASK_NO_SCC) != 0)
+#define TARGET_NO_COND_EXEC ((target_flags & MASK_NO_COND_EXEC) != 0)
+#define TARGET_NO_VLIW_BRANCH ((target_flags & MASK_NO_VLIW_BRANCH) != 0)
+#define TARGET_NO_MULTI_CE ((target_flags & MASK_NO_MULTI_CE) != 0)
+#define TARGET_NO_NESTED_CE ((target_flags & MASK_NO_NESTED_CE) != 0)
+#define TARGET_PACK ((target_flags & MASK_PACK) != 0)
+
+#define TARGET_GPR_64 (! TARGET_GPR_32)
+#define TARGET_FPR_64 (! TARGET_FPR_32)
+#define TARGET_HARD_FLOAT (! TARGET_SOFT_FLOAT)
+#define TARGET_FIXED_CC (! TARGET_ALLOC_CC)
+#define TARGET_COND_MOVE (! TARGET_NO_COND_MOVE)
+#define TARGET_SCC (! TARGET_NO_SCC)
+#define TARGET_COND_EXEC (! TARGET_NO_COND_EXEC)
+#define TARGET_VLIW_BRANCH (! TARGET_NO_VLIW_BRANCH)
+#define TARGET_MULTI_CE (! TARGET_NO_MULTI_CE)
+#define TARGET_NESTED_CE (! TARGET_NO_NESTED_CE)
+#define TARGET_ACC_8 (! TARGET_ACC_4)
+
+#define TARGET_HAS_FPRS (TARGET_HARD_FLOAT || TARGET_MEDIA)
+
+#define NUM_GPRS (TARGET_GPR_32? 32 : 64)
+#define NUM_FPRS (!TARGET_HAS_FPRS? 0 : TARGET_FPR_32? 32 : 64)
+#define NUM_ACCS (!TARGET_MEDIA? 0 : TARGET_ACC_4? 4 : 8)
+
+/* Macros to identify the blend of media instructions available. Revision 1
+ is the one found on the FR500. Revision 2 includes the changes made for
+ the FR400.
+
+ Treat the generic processor as a revision 1 machine for now, for
+ compatibility with earlier releases. */
+
+#define TARGET_MEDIA_REV1 \
+ (TARGET_MEDIA \
+ && (frv_cpu_type == FRV_CPU_GENERIC \
+ || frv_cpu_type == FRV_CPU_FR500))
+
+#define TARGET_MEDIA_REV2 \
+ (TARGET_MEDIA && frv_cpu_type == FRV_CPU_FR400)
+
+/* This macro defines names of command options to set and clear bits in
+ `target_flags'. Its definition is an initializer with a subgrouping for
+ each command option.
+
+ Each subgrouping contains a string constant, that defines the option name,
+ a number, which contains the bits to set in `target_flags', and an optional
+ second string which is the textual description that will be displayed when
+ the user passes --help on the command line. If the number entry is negative
+ then the specified bits will be cleared instead of being set. If the second
+ string entry is present but empty, then no help information will be displayed
+ for that option, but it will not count as an undocumented option. The actual
+ option name, asseen on the command line is made by appending `-m' to the
+ specified name.
+
+ One of the subgroupings should have a null string. The number in this
+ grouping is the default value for `target_flags'. Any target options act
+ starting with that value.
+
+ Here is an example which defines `-m68000' and `-m68020' with opposite
+ meanings, and picks the latter as the default:
+
+ #define TARGET_SWITCHES \
+ { { "68020", 1, ""}, \
+ { "68000", -1, "Compile for the m68000"}, \
+ { "", 1, }}
+
+ This declaration must be present. */
+
+#define TARGET_SWITCHES \
+{{ "gpr-32", MASK_GPR_32, "Only use 32 gprs"}, \
+ { "gpr-64", -MASK_GPR_32, "Use 64 gprs"}, \
+ { "fpr-32", MASK_FPR_32, "Only use 32 fprs"}, \
+ { "fpr-64", -MASK_FPR_32, "Use 64 fprs"}, \
+ { "hard-float", -MASK_SOFT_FLOAT, "Use hardware floating point" },\
+ { "soft-float", MASK_SOFT_FLOAT, "Use software floating point" },\
+ { "alloc-cc", MASK_ALLOC_CC, "Dynamically allocate cc's" }, \
+ { "fixed-cc", -MASK_ALLOC_CC, "Just use icc0/fcc0" }, \
+ { "dword", MASK_DWORD, "Change ABI to allow double word insns" }, \
+ { "no-dword", -MASK_DWORD, "Do not use double word insns" }, \
+ { "double", MASK_DOUBLE, "Use fp double instructions" }, \
+ { "no-double", -MASK_DOUBLE, "Do not use fp double insns" }, \
+ { "media", MASK_MEDIA, "Use media instructions" }, \
+ { "no-media", -MASK_MEDIA, "Do not use media insns" }, \
+ { "muladd", MASK_MULADD, "Use multiply add/subtract instructions" }, \
+ { "no-muladd", -MASK_MULADD, "Do not use multiply add/subtract insns" }, \
+ { "library-pic", MASK_LIBPIC, "PIC support for building libraries" }, \
+ { "acc-4", MASK_ACC_4, "Use 4 media accumulators" }, \
+ { "acc-8", -MASK_ACC_4, "Use 8 media accumulators" }, \
+ { "pack", MASK_PACK, "Pack VLIW instructions" }, \
+ { "no-pack", -MASK_PACK, "Do not pack VLIW instructions" }, \
+ { "no-eflags", 0, "Do not mark ABI switches in e_flags" }, \
+ { "debug-arg", MASK_DEBUG_ARG, "Internal debug switch" }, \
+ { "debug-addr", MASK_DEBUG_ADDR, "Internal debug switch" }, \
+ { "debug-stack", MASK_DEBUG_STACK, "Internal debug switch" }, \
+ { "debug", MASK_DEBUG, "Internal debug switch" }, \
+ { "debug-cond-exec", MASK_DEBUG_COND_EXEC, "Internal debug switch" }, \
+ { "debug-loc", MASK_DEBUG_LOC, "Internal debug switch" }, \
+ { "cond-move", -MASK_NO_COND_MOVE, "Enable conditional moves" }, \
+ { "no-cond-move", MASK_NO_COND_MOVE, "Disable conditional moves" }, \
+ { "scc", -MASK_NO_SCC, "Enable setting gprs to the result of comparisons" }, \
+ { "no-scc", MASK_NO_SCC, "Disable setting gprs to the result of comparisons" }, \
+ { "cond-exec", -MASK_NO_COND_EXEC, "Enable conditional execution other than moves/scc" }, \
+ { "no-cond-exec", MASK_NO_COND_EXEC, "Disable conditional execution other than moves/scc" }, \
+ { "vliw-branch", -MASK_NO_VLIW_BRANCH, "Run pass to pack branches into VLIW insns" }, \
+ { "no-vliw-branch", MASK_NO_VLIW_BRANCH, "Do not run pass to pack branches into VLIW insns" }, \
+ { "multi-cond-exec", -MASK_NO_MULTI_CE, "Disable optimizing &&/|| in conditional execution" }, \
+ { "no-multi-cond-exec", MASK_NO_MULTI_CE, "Enable optimizing &&/|| in conditional execution" }, \
+ { "nested-cond-exec", -MASK_NO_NESTED_CE, "Enable nested conditional execution optimizations" }, \
+ { "no-nested-cond-exec" ,MASK_NO_NESTED_CE, "Disable nested conditional execution optimizations" }, \
+ { "tomcat-stats", 0, "Cause gas to print tomcat statistics" }, \
+ { "", MASK_DEFAULT, "" }} \
+
+/* This macro is similar to `TARGET_SWITCHES' but defines names of command
+ options that have values. Its definition is an initializer with a
+ subgrouping for each command option.
+
+ Each subgrouping contains a string constant, that defines the fixed part of
+ the option name, the address of a variable, and an optional description string.
+ The variable, of type `char *', is set to the text following the fixed part of
+ the option as it is specified on the command line. The actual option name is
+ made by appending `-m' to the specified name.
+
+ Here is an example which defines `-mshort-data-NUMBER'. If the given option
+ is `-mshort-data-512', the variable `m88k_short_data' will be set to the
+ string `"512"'.
+
+ extern char *m88k_short_data;
+ #define TARGET_OPTIONS \
+ { { "short-data-", & m88k_short_data, \
+ "Specify the size of the short data section" } }
+
+ This declaration is optional. */
+#define TARGET_OPTIONS \
+{ \
+ { "cpu=", &frv_cpu_string, "Set cpu type" }, \
+ { "branch-cost=", &frv_branch_cost_string, "Internal debug switch" }, \
+ { "cond-exec-insns=", &frv_condexec_insns_str, "Internal debug switch" }, \
+ { "cond-exec-temps=", &frv_condexec_temps_str, "Internal debug switch" }, \
+ { "sched-lookahead=", &frv_sched_lookahead_str,"Internal debug switch" }, \
+}
+
+/* This macro is a C statement to print on `stderr' a string describing the
+ particular machine description choice. Every machine description should
+ define `TARGET_VERSION'. For example:
+
+ #ifdef MOTOROLA
+ #define TARGET_VERSION \
+ fprintf (stderr, " (68k, Motorola syntax)");
+ #else
+ #define TARGET_VERSION \
+ fprintf (stderr, " (68k, MIT syntax)");
+ #endif */
+#define TARGET_VERSION fprintf (stderr, _(" (frv)"))
+
+/* Sometimes certain combinations of command options do not make sense on a
+ particular target machine. You can define a macro `OVERRIDE_OPTIONS' to
+ take account of this. This macro, if defined, is executed once just after
+ all the command options have been parsed.
+
+ Don't use this macro to turn on various extra optimizations for `-O'. That
+ is what `OPTIMIZATION_OPTIONS' is for. */
+
+#define OVERRIDE_OPTIONS frv_override_options ()
+
+/* Some machines may desire to change what optimizations are performed for
+ various optimization levels. This macro, if defined, is executed once just
+ after the optimization level is determined and before the remainder of the
+ command options have been parsed. Values set in this macro are used as the
+ default values for the other command line options.
+
+ LEVEL is the optimization level specified; 2 if `-O2' is specified, 1 if
+ `-O' is specified, and 0 if neither is specified.
+
+ SIZE is nonzero if `-Os' is specified, 0 otherwise.
+
+ You should not use this macro to change options that are not
+ machine-specific. These should uniformly selected by the same optimization
+ level on all supported machines. Use this macro to enable machbine-specific
+ optimizations.
+
+ *Do not examine `write_symbols' in this macro!* The debugging options are
+ *not supposed to alter the generated code. */
+#define OPTIMIZATION_OPTIONS(LEVEL,SIZE) frv_optimization_options (LEVEL, SIZE)
+
+
+/* Define this macro if debugging can be performed even without a frame
+ pointer. If this macro is defined, GNU CC will turn on the
+ `-fomit-frame-pointer' option whenever `-O' is specified. */
+/* Frv needs a specific frame layout that includes the frame pointer */
+
+#define CAN_DEBUG_WITHOUT_FP
+
+
+/* Small Data Area Support. */
+/* Maximum size of variables that go in .sdata/.sbss.
+ The -msdata=foo switch also controls how small variables are handled. */
+#ifndef SDATA_DEFAULT_SIZE
+#define SDATA_DEFAULT_SIZE 8
+#endif
+
+extern int g_switch_value; /* value of the -G xx switch */
+extern int g_switch_set; /* whether -G xx was passed. */
+
+
+/* Storage Layout */
+
+/* Define this macro to have the value 1 if the most significant bit in a byte
+ has the lowest number; otherwise define it to have the value zero. This
+ means that bit-field instructions count from the most significant bit. If
+ the machine has no bit-field instructions, then this must still be defined,
+ but it doesn't matter which value it is defined to. This macro need not be
+ a constant.
+
+ This macro does not affect the way structure fields are packed into bytes or
+ words; that is controlled by `BYTES_BIG_ENDIAN'. */
+#define BITS_BIG_ENDIAN 1
+
+/* Define this macro to have the value 1 if the most significant byte in a word
+ has the lowest number. This macro need not be a constant. */
+#define BYTES_BIG_ENDIAN 1
+
+/* Define this macro to have the value 1 if, in a multiword object, the most
+ significant word has the lowest number. This applies to both memory
+ locations and registers; GNU CC fundamentally assumes that the order of
+ words in memory is the same as the order in registers. This macro need not
+ be a constant. */
+#define WORDS_BIG_ENDIAN 1
+
+/* Number of storage units in a word; normally 4. */
+#define UNITS_PER_WORD 4
+
+/* A macro to update MODE and UNSIGNEDP when an object whose type is TYPE and
+ which has the specified mode and signedness is to be stored in a register.
+ This macro is only called when TYPE is a scalar type.
+
+ On most RISC machines, which only have operations that operate on a full
+ register, define this macro to set M to `word_mode' if M is an integer mode
+ narrower than `BITS_PER_WORD'. In most cases, only integer modes should be
+ widened because wider-precision floating-point operations are usually more
+ expensive than their narrower counterparts.
+
+ For most machines, the macro definition does not change UNSIGNEDP. However,
+ some machines, have instructions that preferentially handle either signed or
+ unsigned quantities of certain modes. For example, on the DEC Alpha, 32-bit
+ loads from memory and 32-bit add instructions sign-extend the result to 64
+ bits. On such machines, set UNSIGNEDP according to which kind of extension
+ is more efficient.
+
+ Do not define this macro if it would never modify MODE. */
+#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
+ do \
+ { \
+ if (GET_MODE_CLASS (MODE) == MODE_INT \
+ && GET_MODE_SIZE (MODE) < 4) \
+ (MODE) = SImode; \
+ } \
+ while (0)
+
+/* Normal alignment required for function parameters on the stack, in bits.
+ All stack parameters receive at least this much alignment regardless of data
+ type. On most machines, this is the same as the size of an integer. */
+#define PARM_BOUNDARY 32
+
+/* Define this macro if you wish to preserve a certain alignment for the stack
+ pointer. The definition is a C expression for the desired alignment
+ (measured in bits).
+
+ If `PUSH_ROUNDING' is not defined, the stack will always be aligned to the
+ specified boundary. If `PUSH_ROUNDING' is defined and specifies a less
+ strict alignment than `STACK_BOUNDARY', the stack may be momentarily
+ unaligned while pushing arguments. */
+#define STACK_BOUNDARY 64
+
+/* Alignment required for a function entry point, in bits. */
+#define FUNCTION_BOUNDARY 128
+
+/* Biggest alignment that any data type can require on this machine,
+ in bits. */
+#define BIGGEST_ALIGNMENT 64
+
+/* @@@ A hack, needed because libobjc wants to use ADJUST_FIELD_ALIGN for
+ some reason. */
+#ifdef IN_TARGET_LIBS
+#define BIGGEST_FIELD_ALIGNMENT 64
+#else
+/* An expression for the alignment of a structure field FIELD if the
+ alignment computed in the usual way is COMPUTED. GNU CC uses this
+ value instead of the value in `BIGGEST_ALIGNMENT' or
+ `BIGGEST_FIELD_ALIGNMENT', if defined, for structure fields only. */
+#define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
+ frv_adjust_field_align (FIELD, COMPUTED)
+#endif
+
+/* If defined, a C expression to compute the alignment for a static variable.
+ TYPE is the data type, and ALIGN is the alignment that the object
+ would ordinarily have. The value of this macro is used instead of that
+ alignment to align the object.
+
+ If this macro is not defined, then ALIGN is used.
+
+ One use of this macro is to increase alignment of medium-size data to make
+ it all fit in fewer cache lines. Another is to cause character arrays to be
+ word-aligned so that `strcpy' calls that copy constants to character arrays
+ can be done inline. */
+#define DATA_ALIGNMENT(TYPE, ALIGN) \
+ (TREE_CODE (TYPE) == ARRAY_TYPE \
+ && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
+ && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
+
+/* If defined, a C expression to compute the alignment given to a constant that
+ is being placed in memory. CONSTANT is the constant and ALIGN is the
+ alignment that the object would ordinarily have. The value of this macro is
+ used instead of that alignment to align the object.
+
+ If this macro is not defined, then ALIGN is used.
+
+ The typical use of this macro is to increase alignment for string constants
+ to be word aligned so that `strcpy' calls that copy constants can be done
+ inline. */
+#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
+ (TREE_CODE (EXP) == STRING_CST \
+ && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
+
+/* Define this macro to be the value 1 if instructions will fail to work if
+ given data not on the nominal alignment. If instructions will merely go
+ slower in that case, define this macro as 0. */
+#define STRICT_ALIGNMENT 1
+
+/* Define this if you wish to imitate the way many other C compilers handle
+ alignment of bitfields and the structures that contain them.
+
+ The behavior is that the type written for a bit-field (`int', `short', or
+ other integer type) imposes an alignment for the entire structure, as if the
+ structure really did contain an ordinary field of that type. In addition,
+ the bit-field is placed within the structure so that it would fit within such
+ a field, not crossing a boundary for it.
+
+ Thus, on most machines, a bit-field whose type is written as `int' would not
+ cross a four-byte boundary, and would force four-byte alignment for the
+ whole structure. (The alignment used may not be four bytes; it is
+ controlled by the other alignment parameters.)
+
+ If the macro is defined, its definition should be a C expression; a nonzero
+ value for the expression enables this behavior.
+
+ Note that if this macro is not defined, or its value is zero, some bitfields
+ may cross more than one alignment boundary. The compiler can support such
+ references if there are `insv', `extv', and `extzv' insns that can directly
+ reference memory.
+
+ The other known way of making bitfields work is to define
+ `STRUCTURE_SIZE_BOUNDARY' as large as `BIGGEST_ALIGNMENT'. Then every
+ structure can be accessed with fullwords.
+
+ Unless the machine has bit-field instructions or you define
+ `STRUCTURE_SIZE_BOUNDARY' that way, you must define
+ `PCC_BITFIELD_TYPE_MATTERS' to have a nonzero value.
+
+ If your aim is to make GNU CC use the same conventions for laying out
+ bitfields as are used by another compiler, here is how to investigate what
+ the other compiler does. Compile and run this program:
+
+ struct foo1
+ {
+ char x;
+ char :0;
+ char y;
+ };
+
+ struct foo2
+ {
+ char x;
+ int :0;
+ char y;
+ };
+
+ main ()
+ {
+ printf ("Size of foo1 is %d\n",
+ sizeof (struct foo1));
+ printf ("Size of foo2 is %d\n",
+ sizeof (struct foo2));
+ exit (0);
+ }
+
+ If this prints 2 and 5, then the compiler's behavior is what you would get
+ from `PCC_BITFIELD_TYPE_MATTERS'.
+
+ Defined in svr4.h. */
+#define PCC_BITFIELD_TYPE_MATTERS 1
+
+
+/* Layout of Source Language Data Types. */
+
+#define CHAR_TYPE_SIZE 8
+#define SHORT_TYPE_SIZE 16
+#define INT_TYPE_SIZE 32
+#define LONG_TYPE_SIZE 32
+#define LONG_LONG_TYPE_SIZE 64
+#define FLOAT_TYPE_SIZE 32
+#define DOUBLE_TYPE_SIZE 64
+#define LONG_DOUBLE_TYPE_SIZE 64
+
+/* An expression whose value is 1 or 0, according to whether the type `char'
+ should be signed or unsigned by default. The user can always override this
+ default with the options `-fsigned-char' and `-funsigned-char'. */
+#define DEFAULT_SIGNED_CHAR 1
+
+
+/* General purpose registers. */
+#define GPR_FIRST 0 /* First gpr */
+#define GPR_LAST (GPR_FIRST + 63) /* Last gpr */
+#define GPR_R0 GPR_FIRST /* R0, constant 0 */
+#define GPR_FP (GPR_FIRST + 2) /* Frame pointer */
+#define GPR_SP (GPR_FIRST + 1) /* Stack pointer */
+ /* small data register */
+#define SDA_BASE_REG ((unsigned)(flag_pic ? PIC_REGNO : (GPR_FIRST+16)))
+#define PIC_REGNO (GPR_FIRST + 17) /* PIC register */
+
+#define FPR_FIRST 64 /* First FP reg */
+#define FPR_LAST 127 /* Last FP reg */
+
+#define DEFAULT_CONDEXEC_TEMPS 4 /* reserve 4 regs by default */
+#define GPR_TEMP_NUM frv_condexec_temps /* # gprs to reserve for temps */
+
+/* We reserve the last CR and CCR in each category to be used as a reload
+ register to reload the CR/CCR registers. This is a kludge. */
+#define CC_FIRST 128 /* First ICC/FCC reg */
+#define CC_LAST 135 /* Last ICC/FCC reg */
+#define ICC_FIRST (CC_FIRST + 4) /* First ICC reg */
+#define ICC_LAST (CC_FIRST + 7) /* Last ICC reg */
+#define ICC_TEMP (CC_FIRST + 7) /* Temporary ICC reg */
+#define FCC_FIRST (CC_FIRST) /* First FCC reg */
+#define FCC_LAST (CC_FIRST + 3) /* Last FCC reg */
+
+/* Amount to shift a value to locate a ICC or FCC register in the CCR
+ register and shift it to the bottom 4 bits. */
+#define CC_SHIFT_RIGHT(REGNO) (((REGNO) - CC_FIRST) << 2)
+
+/* Mask to isolate a single ICC/FCC value. */
+#define CC_MASK 0xf
+
+/* Masks to isolate the various bits in an ICC field. */
+#define ICC_MASK_N 0x8 /* negative */
+#define ICC_MASK_Z 0x4 /* zero */
+#define ICC_MASK_V 0x2 /* overflow */
+#define ICC_MASK_C 0x1 /* carry */
+
+/* Mask to isolate the N/Z flags in an ICC. */
+#define ICC_MASK_NZ (ICC_MASK_N | ICC_MASK_Z)
+
+/* Mask to isolate the Z/C flags in an ICC. */
+#define ICC_MASK_ZC (ICC_MASK_Z | ICC_MASK_C)
+
+/* Masks to isolate the various bits in a FCC field. */
+#define FCC_MASK_E 0x8 /* equal */
+#define FCC_MASK_L 0x4 /* less than */
+#define FCC_MASK_G 0x2 /* greater than */
+#define FCC_MASK_U 0x1 /* unordered */
+
+/* For CCR registers, the machine wants CR4..CR7 to be used for integer
+ code and CR0..CR3 to be used for floating point. */
+#define CR_FIRST 136 /* First CCR */
+#define CR_LAST 143 /* Last CCR */
+#define CR_NUM (CR_LAST-CR_FIRST+1) /* # of CCRs (8) */
+#define ICR_FIRST (CR_FIRST + 4) /* First integer CCR */
+#define ICR_LAST (CR_FIRST + 7) /* Last integer CCR */
+#define ICR_TEMP ICR_LAST /* Temp integer CCR */
+#define FCR_FIRST (CR_FIRST + 0) /* First float CCR */
+#define FCR_LAST (CR_FIRST + 3) /* Last float CCR */
+
+/* Amount to shift a value to locate a CR register in the CCCR special purpose
+ register and shift it to the bottom 2 bits. */
+#define CR_SHIFT_RIGHT(REGNO) (((REGNO) - CR_FIRST) << 1)
+
+/* Mask to isolate a single CR value. */
+#define CR_MASK 0x3
+
+#define ACC_FIRST 144 /* First acc register */
+#define ACC_LAST 151 /* Last acc register */
+
+#define ACCG_FIRST 152 /* First accg register */
+#define ACCG_LAST 159 /* Last accg register */
+
+#define AP_FIRST 160 /* fake argument pointer */
+
+#define SPR_FIRST 161
+#define SPR_LAST 162
+#define LR_REGNO (SPR_FIRST)
+#define LCR_REGNO (SPR_FIRST + 1)
+
+#define GPR_P(R) IN_RANGE_P (R, GPR_FIRST, GPR_LAST)
+#define GPR_OR_AP_P(R) (GPR_P (R) || (R) == ARG_POINTER_REGNUM)
+#define FPR_P(R) IN_RANGE_P (R, FPR_FIRST, FPR_LAST)
+#define CC_P(R) IN_RANGE_P (R, CC_FIRST, CC_LAST)
+#define ICC_P(R) IN_RANGE_P (R, ICC_FIRST, ICC_LAST)
+#define FCC_P(R) IN_RANGE_P (R, FCC_FIRST, FCC_LAST)
+#define CR_P(R) IN_RANGE_P (R, CR_FIRST, CR_LAST)
+#define ICR_P(R) IN_RANGE_P (R, ICR_FIRST, ICR_LAST)
+#define FCR_P(R) IN_RANGE_P (R, FCR_FIRST, FCR_LAST)
+#define ACC_P(R) IN_RANGE_P (R, ACC_FIRST, ACC_LAST)
+#define ACCG_P(R) IN_RANGE_P (R, ACCG_FIRST, ACCG_LAST)
+#define SPR_P(R) IN_RANGE_P (R, SPR_FIRST, SPR_LAST)
+
+#define GPR_OR_PSEUDO_P(R) (GPR_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
+#define FPR_OR_PSEUDO_P(R) (FPR_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
+#define GPR_AP_OR_PSEUDO_P(R) (GPR_OR_AP_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
+#define CC_OR_PSEUDO_P(R) (CC_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
+#define ICC_OR_PSEUDO_P(R) (ICC_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
+#define FCC_OR_PSEUDO_P(R) (FCC_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
+#define CR_OR_PSEUDO_P(R) (CR_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
+#define ICR_OR_PSEUDO_P(R) (ICR_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
+#define FCR_OR_PSEUDO_P(R) (FCR_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
+#define ACC_OR_PSEUDO_P(R) (ACC_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
+#define ACCG_OR_PSEUDO_P(R) (ACCG_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
+
+#define MAX_STACK_IMMEDIATE_OFFSET 2047
+
+
+/* Register Basics. */
+
+/* Number of hardware registers known to the compiler. They receive numbers 0
+ through `FIRST_PSEUDO_REGISTER-1'; thus, the first pseudo register's number
+ really is assigned the number `FIRST_PSEUDO_REGISTER'. */
+#define FIRST_PSEUDO_REGISTER (SPR_LAST + 1)
+
+/* The first/last register that can contain the arguments to a function. */
+#define FIRST_ARG_REGNUM (GPR_FIRST + 8)
+#define LAST_ARG_REGNUM (FIRST_ARG_REGNUM + FRV_NUM_ARG_REGS - 1)
+
+/* Registers used by the exception handling functions. These should be
+ registers that are not otherwised used by the calling sequence. */
+#define FIRST_EH_REGNUM 14
+#define LAST_EH_REGNUM 15
+
+/* Scratch registers used in the prologue, epilogue and thunks.
+ OFFSET_REGNO is for loading constant addends that are too big for a
+ single instruction. TEMP_REGNO is used for transferring SPRs to and from
+ the stack, and various other activities. */
+#define OFFSET_REGNO 4
+#define TEMP_REGNO 5
+
+/* Registers used in the prologue. OLD_SP_REGNO is the old stack pointer,
+ which is sometimes used to set up the frame pointer. */
+#define OLD_SP_REGNO 6
+
+/* Registers used in the epilogue. STACKADJ_REGNO stores the exception
+ handler's stack adjustment. */
+#define STACKADJ_REGNO 6
+
+/* Registers used in thunks. JMP_REGNO is used for loading the target
+ address. */
+#define JUMP_REGNO 6
+
+#define EH_RETURN_DATA_REGNO(N) ((N) <= (LAST_EH_REGNUM - FIRST_EH_REGNUM)? \
+ (N) + FIRST_EH_REGNUM : INVALID_REGNUM)
+#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (SImode, STACKADJ_REGNO)
+#define EH_RETURN_HANDLER_RTX RETURN_ADDR_RTX (0, frame_pointer_rtx)
+
+/* An initializer that says which registers are used for fixed purposes all
+ throughout the compiled code and are therefore not available for general
+ allocation. These would include the stack pointer, the frame pointer
+ (except on machines where that can be used as a general register when no
+ frame pointer is needed), the program counter on machines where that is
+ considered one of the addressable registers, and any other numbered register
+ with a standard use.
+
+ This information is expressed as a sequence of numbers, separated by commas
+ and surrounded by braces. The Nth number is 1 if register N is fixed, 0
+ otherwise.
+
+ The table initialized from this macro, and the table initialized by the
+ following one, may be overridden at run time either automatically, by the
+ actions of the macro `CONDITIONAL_REGISTER_USAGE', or by the user with the
+ command options `-ffixed-REG', `-fcall-used-REG' and `-fcall-saved-REG'. */
+
+/* gr0 -- Hard Zero
+ gr1 -- Stack Pointer
+ gr2 -- Frame Pointer
+ gr3 -- Hidden Parameter
+ gr16 -- Small Data reserved
+ gr17 -- Pic reserved
+ gr28 -- OS reserved
+ gr29 -- OS reserved
+ gr30 -- OS reserved
+ gr31 -- OS reserved
+ cr3 -- reserved to reload FCC registers.
+ cr7 -- reserved to reload ICC registers. */
+#define FIXED_REGISTERS \
+{ /* Integer Registers */ \
+ 1, 1, 1, 1, 0, 0, 0, 0, /* 000-007, gr0 - gr7 */ \
+ 0, 0, 0, 0, 0, 0, 0, 0, /* 008-015, gr8 - gr15 */ \
+ 1, 1, 0, 0, 0, 0, 0, 0, /* 016-023, gr16 - gr23 */ \
+ 0, 0, 0, 0, 1, 1, 1, 1, /* 024-031, gr24 - gr31 */ \
+ 0, 0, 0, 0, 0, 0, 0, 0, /* 032-039, gr32 - gr39 */ \
+ 0, 0, 0, 0, 0, 0, 0, 0, /* 040-040, gr48 - gr47 */ \
+ 0, 0, 0, 0, 0, 0, 0, 0, /* 048-055, gr48 - gr55 */ \
+ 0, 0, 0, 0, 0, 0, 0, 0, /* 056-063, gr56 - gr63 */ \
+ /* Float Registers */ \
+ 0, 0, 0, 0, 0, 0, 0, 0, /* 064-071, fr0 - fr7 */ \
+ 0, 0, 0, 0, 0, 0, 0, 0, /* 072-079, fr8 - fr15 */ \
+ 0, 0, 0, 0, 0, 0, 0, 0, /* 080-087, fr16 - fr23 */ \
+ 0, 0, 0, 0, 0, 0, 0, 0, /* 088-095, fr24 - fr31 */ \
+ 0, 0, 0, 0, 0, 0, 0, 0, /* 096-103, fr32 - fr39 */ \
+ 0, 0, 0, 0, 0, 0, 0, 0, /* 104-111, fr48 - fr47 */ \
+ 0, 0, 0, 0, 0, 0, 0, 0, /* 112-119, fr48 - fr55 */ \
+ 0, 0, 0, 0, 0, 0, 0, 0, /* 120-127, fr56 - fr63 */ \
+ /* Condition Code Registers */ \
+ 0, 0, 0, 0, /* 128-131, fcc0 - fcc3 */ \
+ 0, 0, 0, 1, /* 132-135, icc0 - icc3 */ \
+ /* Conditional execution Registers (CCR) */ \
+ 0, 0, 0, 0, 0, 0, 0, 1, /* 136-143, cr0 - cr7 */ \
+ /* Accumulators */ \
+ 1, 1, 1, 1, 1, 1, 1, 1, /* 144-151, acc0 - acc7 */ \
+ 1, 1, 1, 1, 1, 1, 1, 1, /* 152-159, accg0 - accg7 */ \
+ /* Other registers */ \
+ 1, /* 160, AP - fake arg ptr */ \
+ 0, /* 161, LR - Link register*/ \
+ 0, /* 162, LCR - Loop count reg*/ \
+}
+
+/* Like `FIXED_REGISTERS' but has 1 for each register that is clobbered (in
+ general) by function calls as well as for fixed registers. This macro
+ therefore identifies the registers that are not available for general
+ allocation of values that must live across function calls.
+
+ If a register has 0 in `CALL_USED_REGISTERS', the compiler automatically
+ saves it on function entry and restores it on function exit, if the register
+ is used within the function. */
+#define CALL_USED_REGISTERS \
+{ /* Integer Registers */ \
+ 1, 1, 1, 1, 1, 1, 1, 1, /* 000-007, gr0 - gr7 */ \
+ 1, 1, 1, 1, 1, 1, 1, 1, /* 008-015, gr8 - gr15 */ \
+ 1, 1, 0, 0, 0, 0, 0, 0, /* 016-023, gr16 - gr23 */ \
+ 0, 0, 0, 0, 1, 1, 1, 1, /* 024-031, gr24 - gr31 */ \
+ 1, 1, 1, 1, 1, 1, 1, 1, /* 032-039, gr32 - gr39 */ \
+ 1, 1, 1, 1, 1, 1, 1, 1, /* 040-040, gr48 - gr47 */ \
+ 0, 0, 0, 0, 0, 0, 0, 0, /* 048-055, gr48 - gr55 */ \
+ 0, 0, 0, 0, 0, 0, 0, 0, /* 056-063, gr56 - gr63 */ \
+ /* Float Registers */ \
+ 1, 1, 1, 1, 1, 1, 1, 1, /* 064-071, fr0 - fr7 */ \
+ 1, 1, 1, 1, 1, 1, 1, 1, /* 072-079, fr8 - fr15 */ \
+ 0, 0, 0, 0, 0, 0, 0, 0, /* 080-087, fr16 - fr23 */ \
+ 0, 0, 0, 0, 0, 0, 0, 0, /* 088-095, fr24 - fr31 */ \
+ 1, 1, 1, 1, 1, 1, 1, 1, /* 096-103, fr32 - fr39 */ \
+ 1, 1, 1, 1, 1, 1, 1, 1, /* 104-111, fr48 - fr47 */ \
+ 0, 0, 0, 0, 0, 0, 0, 0, /* 112-119, fr48 - fr55 */ \
+ 0, 0, 0, 0, 0, 0, 0, 0, /* 120-127, fr56 - fr63 */ \
+ /* Condition Code Registers */ \
+ 1, 1, 1, 1, /* 128-131, fcc0 - fcc3 */ \
+ 1, 1, 1, 1, /* 132-135, icc0 - icc3 */ \
+ /* Conditional execution Registers (CCR) */ \
+ 1, 1, 1, 1, 1, 1, 1, 1, /* 136-143, cr0 - cr7 */ \
+ /* Accumulators */ \
+ 1, 1, 1, 1, 1, 1, 1, 1, /* 144-151, acc0 - acc7 */ \
+ 1, 1, 1, 1, 1, 1, 1, 1, /* 152-159, accg0 - accg7 */ \
+ /* Other registers */ \
+ 1, /* 160, AP - fake arg ptr */ \
+ 1, /* 161, LR - Link register*/ \
+ 1, /* 162, LCR - Loop count reg */ \
+}
+
+/* Zero or more C statements that may conditionally modify two variables
+ `fixed_regs' and `call_used_regs' (both of type `char []') after they have
+ been initialized from the two preceding macros.
+
+ This is necessary in case the fixed or call-clobbered registers depend on
+ target flags.
+
+ You need not define this macro if it has no work to do.
+
+ If the usage of an entire class of registers depends on the target flags,
+ you may indicate this to GCC by using this macro to modify `fixed_regs' and
+ `call_used_regs' to 1 for each of the registers in the classes which should
+ not be used by GCC. Also define the macro `REG_CLASS_FROM_LETTER' to return
+ `NO_REGS' if it is called with a letter for a class that shouldn't be used.
+
+ (However, if this class is not included in `GENERAL_REGS' and all of the
+ insn patterns whose constraints permit this class are controlled by target
+ switches, then GCC will automatically avoid using these registers when the
+ target switches are opposed to them.) */
+
+#define CONDITIONAL_REGISTER_USAGE frv_conditional_register_usage ()
+
+
+/* Order of allocation of registers. */
+
+/* If defined, an initializer for a vector of integers, containing the numbers
+ of hard registers in the order in which GNU CC should prefer to use them
+ (from most preferred to least).
+
+ If this macro is not defined, registers are used lowest numbered first (all
+ else being equal).
+
+ One use of this macro is on machines where the highest numbered registers
+ must always be saved and the save-multiple-registers instruction supports
+ only sequences of consecutive registers. On such machines, define
+ `REG_ALLOC_ORDER' to be an initializer that lists the highest numbered
+ allocatable register first. */
+
+/* On the FRV, allocate GR16 and GR17 after other saved registers so that we
+ have a better chance of allocating 2 registers at a time and can use the
+ double word load/store instructions in the prologue. */
+#define REG_ALLOC_ORDER \
+{ \
+ /* volatile registers */ \
+ GPR_FIRST + 4, GPR_FIRST + 5, GPR_FIRST + 6, GPR_FIRST + 7, \
+ GPR_FIRST + 8, GPR_FIRST + 9, GPR_FIRST + 10, GPR_FIRST + 11, \
+ GPR_FIRST + 12, GPR_FIRST + 13, GPR_FIRST + 14, GPR_FIRST + 15, \
+ GPR_FIRST + 32, GPR_FIRST + 33, GPR_FIRST + 34, GPR_FIRST + 35, \
+ GPR_FIRST + 36, GPR_FIRST + 37, GPR_FIRST + 38, GPR_FIRST + 39, \
+ GPR_FIRST + 40, GPR_FIRST + 41, GPR_FIRST + 42, GPR_FIRST + 43, \
+ GPR_FIRST + 44, GPR_FIRST + 45, GPR_FIRST + 46, GPR_FIRST + 47, \
+ \
+ FPR_FIRST + 0, FPR_FIRST + 1, FPR_FIRST + 2, FPR_FIRST + 3, \
+ FPR_FIRST + 4, FPR_FIRST + 5, FPR_FIRST + 6, FPR_FIRST + 7, \
+ FPR_FIRST + 8, FPR_FIRST + 9, FPR_FIRST + 10, FPR_FIRST + 11, \
+ FPR_FIRST + 12, FPR_FIRST + 13, FPR_FIRST + 14, FPR_FIRST + 15, \
+ FPR_FIRST + 32, FPR_FIRST + 33, FPR_FIRST + 34, FPR_FIRST + 35, \
+ FPR_FIRST + 36, FPR_FIRST + 37, FPR_FIRST + 38, FPR_FIRST + 39, \
+ FPR_FIRST + 40, FPR_FIRST + 41, FPR_FIRST + 42, FPR_FIRST + 43, \
+ FPR_FIRST + 44, FPR_FIRST + 45, FPR_FIRST + 46, FPR_FIRST + 47, \
+ \
+ ICC_FIRST + 0, ICC_FIRST + 1, ICC_FIRST + 2, ICC_FIRST + 3, \
+ FCC_FIRST + 0, FCC_FIRST + 1, FCC_FIRST + 2, FCC_FIRST + 3, \
+ CR_FIRST + 0, CR_FIRST + 1, CR_FIRST + 2, CR_FIRST + 3, \
+ CR_FIRST + 4, CR_FIRST + 5, CR_FIRST + 6, CR_FIRST + 7, \
+ \
+ /* saved registers */ \
+ GPR_FIRST + 18, GPR_FIRST + 19, \
+ GPR_FIRST + 20, GPR_FIRST + 21, GPR_FIRST + 22, GPR_FIRST + 23, \
+ GPR_FIRST + 24, GPR_FIRST + 25, GPR_FIRST + 26, GPR_FIRST + 27, \
+ GPR_FIRST + 48, GPR_FIRST + 49, GPR_FIRST + 50, GPR_FIRST + 51, \
+ GPR_FIRST + 52, GPR_FIRST + 53, GPR_FIRST + 54, GPR_FIRST + 55, \
+ GPR_FIRST + 56, GPR_FIRST + 57, GPR_FIRST + 58, GPR_FIRST + 59, \
+ GPR_FIRST + 60, GPR_FIRST + 61, GPR_FIRST + 62, GPR_FIRST + 63, \
+ GPR_FIRST + 16, GPR_FIRST + 17, \
+ \
+ FPR_FIRST + 16, FPR_FIRST + 17, FPR_FIRST + 18, FPR_FIRST + 19, \
+ FPR_FIRST + 20, FPR_FIRST + 21, FPR_FIRST + 22, FPR_FIRST + 23, \
+ FPR_FIRST + 24, FPR_FIRST + 25, FPR_FIRST + 26, FPR_FIRST + 27, \
+ FPR_FIRST + 28, FPR_FIRST + 29, FPR_FIRST + 30, FPR_FIRST + 31, \
+ FPR_FIRST + 48, FPR_FIRST + 49, FPR_FIRST + 50, FPR_FIRST + 51, \
+ FPR_FIRST + 52, FPR_FIRST + 53, FPR_FIRST + 54, FPR_FIRST + 55, \
+ FPR_FIRST + 56, FPR_FIRST + 57, FPR_FIRST + 58, FPR_FIRST + 59, \
+ FPR_FIRST + 60, FPR_FIRST + 61, FPR_FIRST + 62, FPR_FIRST + 63, \
+ \
+ /* special or fixed registers */ \
+ GPR_FIRST + 0, GPR_FIRST + 1, GPR_FIRST + 2, GPR_FIRST + 3, \
+ GPR_FIRST + 28, GPR_FIRST + 29, GPR_FIRST + 30, GPR_FIRST + 31, \
+ ACC_FIRST + 0, ACC_FIRST + 1, ACC_FIRST + 2, ACC_FIRST + 3, \
+ ACC_FIRST + 4, ACC_FIRST + 5, ACC_FIRST + 6, ACC_FIRST + 7, \
+ ACCG_FIRST + 0, ACCG_FIRST + 1, ACCG_FIRST + 2, ACCG_FIRST + 3, \
+ ACCG_FIRST + 4, ACCG_FIRST + 5, ACCG_FIRST + 6, ACCG_FIRST + 7, \
+ AP_FIRST, LR_REGNO, LCR_REGNO \
+}
+
+
+/* How Values Fit in Registers. */
+
+/* A C expression for the number of consecutive hard registers, starting at
+ register number REGNO, required to hold a value of mode MODE.
+
+ On a machine where all registers are exactly one word, a suitable definition
+ of this macro is
+
+ #define HARD_REGNO_NREGS(REGNO, MODE) \
+ ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) \
+ / UNITS_PER_WORD)) */
+
+/* On the FRV, make the CC modes take 3 words in the integer registers, so that
+ we can build the appropriate instructions to properly reload the values. */
+#define HARD_REGNO_NREGS(REGNO, MODE) frv_hard_regno_nregs (REGNO, MODE)
+
+/* A C expression that is nonzero if it is permissible to store a value of mode
+ MODE in hard register number REGNO (or in several registers starting with
+ that one). For a machine where all registers are equivalent, a suitable
+ definition is
+
+ #define HARD_REGNO_MODE_OK(REGNO, MODE) 1
+
+ It is not necessary for this macro to check for the numbers of fixed
+ registers, because the allocation mechanism considers them to be always
+ occupied.
+
+ On some machines, double-precision values must be kept in even/odd register
+ pairs. The way to implement that is to define this macro to reject odd
+ register numbers for such modes.
+
+ The minimum requirement for a mode to be OK in a register is that the
+ `movMODE' instruction pattern support moves between the register and any
+ other hard register for which the mode is OK; and that moving a value into
+ the register and back out not alter it.
+
+ Since the same instruction used to move `SImode' will work for all narrower
+ integer modes, it is not necessary on any machine for `HARD_REGNO_MODE_OK'
+ to distinguish between these modes, provided you define patterns `movhi',
+ etc., to take advantage of this. This is useful because of the interaction
+ between `HARD_REGNO_MODE_OK' and `MODES_TIEABLE_P'; it is very desirable for
+ all integer modes to be tieable.
+
+ Many machines have special registers for floating point arithmetic. Often
+ people assume that floating point machine modes are allowed only in floating
+ point registers. This is not true. Any registers that can hold integers
+ can safely *hold* a floating point machine mode, whether or not floating
+ arithmetic can be done on it in those registers. Integer move instructions
+ can be used to move the values.
+
+ On some machines, though, the converse is true: fixed-point machine modes
+ may not go in floating registers. This is true if the floating registers
+ normalize any value stored in them, because storing a non-floating value
+ there would garble it. In this case, `HARD_REGNO_MODE_OK' should reject
+ fixed-point machine modes in floating registers. But if the floating
+ registers do not automatically normalize, if you can store any bit pattern
+ in one and retrieve it unchanged without a trap, then any machine mode may
+ go in a floating register, so you can define this macro to say so.
+
+ The primary significance of special floating registers is rather that they
+ are the registers acceptable in floating point arithmetic instructions.
+ However, this is of no concern to `HARD_REGNO_MODE_OK'. You handle it by
+ writing the proper constraints for those instructions.
+
+ On some machines, the floating registers are especially slow to access, so
+ that it is better to store a value in a stack frame than in such a register
+ if floating point arithmetic is not being done. As long as the floating
+ registers are not in class `GENERAL_REGS', they will not be used unless some
+ pattern's constraint asks for one. */
+#define HARD_REGNO_MODE_OK(REGNO, MODE) frv_hard_regno_mode_ok (REGNO, MODE)
+
+/* A C expression that is nonzero if it is desirable to choose register
+ allocation so as to avoid move instructions between a value of mode MODE1
+ and a value of mode MODE2.
+
+ If `HARD_REGNO_MODE_OK (R, MODE1)' and `HARD_REGNO_MODE_OK (R, MODE2)' are
+ ever different for any R, then `MODES_TIEABLE_P (MODE1, MODE2)' must be
+ zero. */
+#define MODES_TIEABLE_P(MODE1, MODE2) (MODE1 == MODE2)
+
+/* Define this macro if the compiler should avoid copies to/from CCmode
+ registers. You should only define this macro if support fo copying to/from
+ CCmode is incomplete. */
+#define AVOID_CCMODE_COPIES
+
+
+/* Register Classes. */
+
+/* An enumeral type that must be defined with all the register class names as
+ enumeral values. `NO_REGS' must be first. `ALL_REGS' must be the last
+ register class, followed by one more enumeral value, `LIM_REG_CLASSES',
+ which is not a register class but rather tells how many classes there are.
+
+ Each register class has a number, which is the value of casting the class
+ name to type `int'. The number serves as an index in many of the tables
+ described below. */
+enum reg_class
+{
+ NO_REGS,
+ ICC_REGS,
+ FCC_REGS,
+ CC_REGS,
+ ICR_REGS,
+ FCR_REGS,
+ CR_REGS,
+ LCR_REG,
+ LR_REG,
+ SPR_REGS,
+ QUAD_ACC_REGS,
+ EVEN_ACC_REGS,
+ ACC_REGS,
+ ACCG_REGS,
+ QUAD_FPR_REGS,
+ FEVEN_REGS,
+ FPR_REGS,
+ QUAD_REGS,
+ EVEN_REGS,
+ GPR_REGS,
+ ALL_REGS,
+ LIM_REG_CLASSES
+};
+
+#define GENERAL_REGS GPR_REGS
+
+/* The number of distinct register classes, defined as follows:
+
+ #define N_REG_CLASSES (int) LIM_REG_CLASSES */
+#define N_REG_CLASSES ((int) LIM_REG_CLASSES)
+
+/* An initializer containing the names of the register classes as C string
+ constants. These names are used in writing some of the debugging dumps. */
+#define REG_CLASS_NAMES { \
+ "NO_REGS", \
+ "ICC_REGS", \
+ "FCC_REGS", \
+ "CC_REGS", \
+ "ICR_REGS", \
+ "FCR_REGS", \
+ "CR_REGS", \
+ "LCR_REG", \
+ "LR_REG", \
+ "SPR_REGS", \
+ "QUAD_ACC_REGS", \
+ "EVEN_ACC_REGS", \
+ "ACC_REGS", \
+ "ACCG_REGS", \
+ "QUAD_FPR_REGS", \
+ "FEVEN_REGS", \
+ "FPR_REGS", \
+ "QUAD_REGS", \
+ "EVEN_REGS", \
+ "GPR_REGS", \
+ "ALL_REGS" \
+}
+
+/* An initializer containing the contents of the register classes, as integers
+ which are bit masks. The Nth integer specifies the contents of class N.
+ The way the integer MASK is interpreted is that register R is in the class
+ if `MASK & (1 << R)' is 1.
+
+ When the machine has more than 32 registers, an integer does not suffice.
+ Then the integers are replaced by sub-initializers, braced groupings
+ containing several integers. Each sub-initializer must be suitable as an
+ initializer for the type `HARD_REG_SET' which is defined in
+ `hard-reg-set.h'. */
+#define REG_CLASS_CONTENTS \
+{ /* gr0-gr31 gr32-gr63 fr0-fr31 fr32-fr-63 cc/ccr/acc ap/spr */ \
+ { 0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x0}, /* NO_REGS */\
+ { 0x00000000,0x00000000,0x00000000,0x00000000,0x000000f0,0x0}, /* ICC_REGS */\
+ { 0x00000000,0x00000000,0x00000000,0x00000000,0x0000000f,0x0}, /* FCC_REGS */\
+ { 0x00000000,0x00000000,0x00000000,0x00000000,0x000000ff,0x0}, /* CC_REGS */\
+ { 0x00000000,0x00000000,0x00000000,0x00000000,0x0000f000,0x0}, /* ICR_REGS */\
+ { 0x00000000,0x00000000,0x00000000,0x00000000,0x00000f00,0x0}, /* FCR_REGS */\
+ { 0x00000000,0x00000000,0x00000000,0x00000000,0x0000ff00,0x0}, /* CR_REGS */\
+ { 0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x4}, /* LCR_REGS */\
+ { 0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x2}, /* LR_REGS */\
+ { 0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x6}, /* SPR_REGS */\
+ { 0x00000000,0x00000000,0x00000000,0x00000000,0x00ff0000,0x0}, /* QUAD_ACC */\
+ { 0x00000000,0x00000000,0x00000000,0x00000000,0x00ff0000,0x0}, /* EVEN_ACC */\
+ { 0x00000000,0x00000000,0x00000000,0x00000000,0x00ff0000,0x0}, /* ACC_REGS */\
+ { 0x00000000,0x00000000,0x00000000,0x00000000,0xff000000,0x0}, /* ACCG_REGS*/\
+ { 0x00000000,0x00000000,0xffffffff,0xffffffff,0x00000000,0x0}, /* QUAD_FPR */\
+ { 0x00000000,0x00000000,0xffffffff,0xffffffff,0x00000000,0x0}, /* FEVEN_REG*/\
+ { 0x00000000,0x00000000,0xffffffff,0xffffffff,0x00000000,0x0}, /* FPR_REGS */\
+ { 0x0ffffffc,0xffffffff,0x00000000,0x00000000,0x00000000,0x0}, /* QUAD_REGS*/\
+ { 0xfffffffc,0xffffffff,0x00000000,0x00000000,0x00000000,0x0}, /* EVEN_REGS*/\
+ { 0xffffffff,0xffffffff,0x00000000,0x00000000,0x00000000,0x1}, /* GPR_REGS */\
+ { 0xffffffff,0xffffffff,0xffffffff,0xffffffff,0xffffffff,0x7}, /* ALL_REGS */\
+}
+
+/* A C expression whose value is a register class containing hard register
+ REGNO. In general there is more than one such class; choose a class which
+ is "minimal", meaning that no smaller class also contains the register. */
+
+extern enum reg_class regno_reg_class[];
+#define REGNO_REG_CLASS(REGNO) regno_reg_class [REGNO]
+
+/* A macro whose definition is the name of the class to which a valid base
+ register must belong. A base register is one used in an address which is
+ the register value plus a displacement. */
+#define BASE_REG_CLASS GPR_REGS
+
+/* A macro whose definition is the name of the class to which a valid index
+ register must belong. An index register is one used in an address where its
+ value is either multiplied by a scale factor or added to another register
+ (as well as added to a displacement). */
+#define INDEX_REG_CLASS GPR_REGS
+
+/* A C expression which defines the machine-dependent operand constraint
+ letters for register classes. If CHAR is such a letter, the value should be
+ the register class corresponding to it. Otherwise, the value should be
+ `NO_REGS'. The register letter `r', corresponding to class `GENERAL_REGS',
+ will not be passed to this macro; you do not need to handle it.
+
+ The following letters are unavailable, due to being used as
+ constraints:
+ '0'..'9'
+ '<', '>'
+ 'E', 'F', 'G', 'H'
+ 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P'
+ 'Q', 'R', 'S', 'T', 'U'
+ 'V', 'X'
+ 'g', 'i', 'm', 'n', 'o', 'p', 'r', 's' */
+
+extern enum reg_class reg_class_from_letter[];
+#define REG_CLASS_FROM_LETTER(CHAR) reg_class_from_letter [(unsigned char)(CHAR)]
+
+/* A C expression which is nonzero if register number NUM is suitable for use
+ as a base register in operand addresses. It may be either a suitable hard
+ register or a pseudo register that has been allocated such a hard register. */
+#define REGNO_OK_FOR_BASE_P(NUM) \
+ ((NUM) < FIRST_PSEUDO_REGISTER \
+ ? GPR_P (NUM) \
+ : (reg_renumber [NUM] >= 0 && GPR_P (reg_renumber [NUM])))
+
+/* A C expression which is nonzero if register number NUM is suitable for use
+ as an index register in operand addresses. It may be either a suitable hard
+ register or a pseudo register that has been allocated such a hard register.
+
+ The difference between an index register and a base register is that the
+ index register may be scaled. If an address involves the sum of two
+ registers, neither one of them scaled, then either one may be labeled the
+ "base" and the other the "index"; but whichever labeling is used must fit
+ the machine's constraints of which registers may serve in each capacity.
+ The compiler will try both labelings, looking for one that is valid, and
+ will reload one or both registers only if neither labeling works. */
+#define REGNO_OK_FOR_INDEX_P(NUM) \
+ ((NUM) < FIRST_PSEUDO_REGISTER \
+ ? GPR_P (NUM) \
+ : (reg_renumber [NUM] >= 0 && GPR_P (reg_renumber [NUM])))
+
+/* A C expression that places additional restrictions on the register class to
+ use when it is necessary to copy value X into a register in class CLASS.
+ The value is a register class; perhaps CLASS, or perhaps another, smaller
+ class. On many machines, the following definition is safe:
+
+ #define PREFERRED_RELOAD_CLASS(X,CLASS) CLASS
+
+ Sometimes returning a more restrictive class makes better code. For
+ example, on the 68000, when X is an integer constant that is in range for a
+ `moveq' instruction, the value of this macro is always `DATA_REGS' as long
+ as CLASS includes the data registers. Requiring a data register guarantees
+ that a `moveq' will be used.
+
+ If X is a `const_double', by returning `NO_REGS' you can force X into a
+ memory constant. This is useful on certain machines where immediate
+ floating values cannot be loaded into certain kinds of registers.
+
+ This declaration must be present. */
+#define PREFERRED_RELOAD_CLASS(X, CLASS) CLASS
+
+#define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
+ frv_secondary_reload_class (CLASS, MODE, X, TRUE)
+
+#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
+ frv_secondary_reload_class (CLASS, MODE, X, FALSE)
+
+/* A C expression whose value is nonzero if pseudos that have been assigned to
+ registers of class CLASS would likely be spilled because registers of CLASS
+ are needed for spill registers.
+
+ The default value of this macro returns 1 if CLASS has exactly one register
+ and zero otherwise. On most machines, this default should be used. Only
+ define this macro to some other expression if pseudo allocated by
+ `local-alloc.c' end up in memory because their hard registers were needed
+ for spill registers. If this macro returns nonzero for those classes, those
+ pseudos will only be allocated by `global.c', which knows how to reallocate
+ the pseudo to another register. If there would not be another register
+ available for reallocation, you should not change the definition of this
+ macro since the only effect of such a definition would be to slow down
+ register allocation. */
+#define CLASS_LIKELY_SPILLED_P(CLASS) frv_class_likely_spilled_p (CLASS)
+
+/* A C expression for the maximum number of consecutive registers of
+ class CLASS needed to hold a value of mode MODE.
+
+ This is closely related to the macro `HARD_REGNO_NREGS'. In fact, the value
+ of the macro `CLASS_MAX_NREGS (CLASS, MODE)' should be the maximum value of
+ `HARD_REGNO_NREGS (REGNO, MODE)' for all REGNO values in the class CLASS.
+
+ This macro helps control the handling of multiple-word values in
+ the reload pass.
+
+ This declaration is required. */
+#define CLASS_MAX_NREGS(CLASS, MODE) frv_class_max_nregs (CLASS, MODE)
+
+#define ZERO_P(x) (x == CONST0_RTX (GET_MODE (x)))
+
+/* 6 bit signed immediate. */
+#define CONST_OK_FOR_I(VALUE) IN_RANGE_P(VALUE, -32, 31)
+/* 10 bit signed immediate. */
+#define CONST_OK_FOR_J(VALUE) IN_RANGE_P(VALUE, -512, 511)
+/* Unused */
+#define CONST_OK_FOR_K(VALUE) 0
+/* 16 bit signed immediate. */
+#define CONST_OK_FOR_L(VALUE) IN_RANGE_P(VALUE, -32768, 32767)
+/* 16 bit unsigned immediate. */
+#define CONST_OK_FOR_M(VALUE) IN_RANGE_P (VALUE, 0, 65535)
+/* 12 bit signed immediate that is negative. */
+#define CONST_OK_FOR_N(VALUE) IN_RANGE_P(VALUE, -2048, -1)
+/* Zero */
+#define CONST_OK_FOR_O(VALUE) ((VALUE) == 0)
+/* 12 bit signed immediate that is negative. */
+#define CONST_OK_FOR_P(VALUE) IN_RANGE_P(VALUE, 1, 2047)
+
+/* A C expression that defines the machine-dependent operand constraint letters
+ (`I', `J', `K', .. 'P') that specify particular ranges of integer values.
+ If C is one of those letters, the expression should check that VALUE, an
+ integer, is in the appropriate range and return 1 if so, 0 otherwise. If C
+ is not one of those letters, the value should be 0 regardless of VALUE. */
+#define CONST_OK_FOR_LETTER_P(VALUE, C) \
+ ( (C) == 'I' ? CONST_OK_FOR_I (VALUE) \
+ : (C) == 'J' ? CONST_OK_FOR_J (VALUE) \
+ : (C) == 'K' ? CONST_OK_FOR_K (VALUE) \
+ : (C) == 'L' ? CONST_OK_FOR_L (VALUE) \
+ : (C) == 'M' ? CONST_OK_FOR_M (VALUE) \
+ : (C) == 'N' ? CONST_OK_FOR_N (VALUE) \
+ : (C) == 'O' ? CONST_OK_FOR_O (VALUE) \
+ : (C) == 'P' ? CONST_OK_FOR_P (VALUE) \
+ : 0)
+
+
+/* A C expression that defines the machine-dependent operand constraint letters
+ (`G', `H') that specify particular ranges of `const_double' values.
+
+ If C is one of those letters, the expression should check that VALUE, an RTX
+ of code `const_double', is in the appropriate range and return 1 if so, 0
+ otherwise. If C is not one of those letters, the value should be 0
+ regardless of VALUE.
+
+ `const_double' is used for all floating-point constants and for `DImode'
+ fixed-point constants. A given letter can accept either or both kinds of
+ values. It can use `GET_MODE' to distinguish between these kinds. */
+
+#define CONST_DOUBLE_OK_FOR_G(VALUE) \
+ ((GET_MODE (VALUE) == VOIDmode \
+ && CONST_DOUBLE_LOW (VALUE) == 0 \
+ && CONST_DOUBLE_HIGH (VALUE) == 0) \
+ || ((GET_MODE (VALUE) == SFmode \
+ || GET_MODE (VALUE) == DFmode) \
+ && (VALUE) == CONST0_RTX (GET_MODE (VALUE))))
+
+#define CONST_DOUBLE_OK_FOR_H(VALUE) 0
+
+#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
+ ( (C) == 'G' ? CONST_DOUBLE_OK_FOR_G (VALUE) \
+ : (C) == 'H' ? CONST_DOUBLE_OK_FOR_H (VALUE) \
+ : 0)
+
+/* A C expression that defines the optional machine-dependent constraint
+ letters (`Q', `R', `S', `T', `U') that can be used to segregate specific
+ types of operands, usually memory references, for the target machine.
+ Normally this macro will not be defined. If it is required for a particular
+ target machine, it should return 1 if VALUE corresponds to the operand type
+ represented by the constraint letter C. If C is not defined as an extra
+ constraint, the value returned should be 0 regardless of VALUE.
+
+ For example, on the ROMP, load instructions cannot have their output in r0
+ if the memory reference contains a symbolic address. Constraint letter `Q'
+ is defined as representing a memory address that does *not* contain a
+ symbolic address. An alternative is specified with a `Q' constraint on the
+ input and `r' on the output. The next alternative specifies `m' on the
+ input and a register class that does not include r0 on the output. */
+
+/* Small data references */
+#define EXTRA_CONSTRAINT_FOR_Q(VALUE) \
+ (small_data_symbolic_operand (VALUE, GET_MODE (VALUE)))
+
+/* Double word memory ops that take one instruction. */
+#define EXTRA_CONSTRAINT_FOR_R(VALUE) \
+ (dbl_memory_one_insn_operand (VALUE, GET_MODE (VALUE)))
+
+/* SYMBOL_REF */
+#define EXTRA_CONSTRAINT_FOR_S(VALUE) (GET_CODE (VALUE) == SYMBOL_REF)
+
+/* Double word memory ops that take two instructions. */
+#define EXTRA_CONSTRAINT_FOR_T(VALUE) \
+ (dbl_memory_two_insn_operand (VALUE, GET_MODE (VALUE)))
+
+/* Memory operand for conditional execution. */
+#define EXTRA_CONSTRAINT_FOR_U(VALUE) \
+ (condexec_memory_operand (VALUE, GET_MODE (VALUE)))
+
+#define EXTRA_CONSTRAINT(VALUE, C) \
+ ( (C) == 'Q' ? EXTRA_CONSTRAINT_FOR_Q (VALUE) \
+ : (C) == 'R' ? EXTRA_CONSTRAINT_FOR_R (VALUE) \
+ : (C) == 'S' ? EXTRA_CONSTRAINT_FOR_S (VALUE) \
+ : (C) == 'T' ? EXTRA_CONSTRAINT_FOR_T (VALUE) \
+ : (C) == 'U' ? EXTRA_CONSTRAINT_FOR_U (VALUE) \
+ : 0)
+
+
+/* Basic Stack Layout. */
+
+/* Structure to describe information about a saved range of registers */
+
+typedef struct frv_stack_regs {
+ const char * name; /* name of the register ranges */
+ int first; /* first register in the range */
+ int last; /* last register in the range */
+ int size_1word; /* # of bytes to be stored via 1 word stores */
+ int size_2words; /* # of bytes to be stored via 2 word stores */
+ unsigned char field_p; /* true if the registers are a single SPR */
+ unsigned char dword_p; /* true if we can do dword stores */
+ unsigned char special_p; /* true if the regs have a fixed save loc. */
+} frv_stack_regs_t;
+
+/* Register ranges to look into saving. */
+#define STACK_REGS_GPR 0 /* Gprs (normally gr16..gr31, gr48..gr63) */
+#define STACK_REGS_FPR 1 /* Fprs (normally fr16..fr31, fr48..fr63) */
+#define STACK_REGS_LR 2 /* LR register */
+#define STACK_REGS_CC 3 /* CCrs (normally not saved) */
+#define STACK_REGS_LCR 5 /* lcr register */
+#define STACK_REGS_STDARG 6 /* stdarg registers */
+#define STACK_REGS_STRUCT 7 /* structure return (gr3) */
+#define STACK_REGS_FP 8 /* FP register */
+#define STACK_REGS_MAX 9 /* # of register ranges */
+
+/* Values for save_p field. */
+#define REG_SAVE_NO_SAVE 0 /* register not saved */
+#define REG_SAVE_1WORD 1 /* save the register */
+#define REG_SAVE_2WORDS 2 /* save register and register+1 */
+
+/* Structure used to define the frv stack. */
+
+typedef struct frv_stack {
+ int total_size; /* total bytes allocated for stack */
+ int vars_size; /* variable save area size */
+ int parameter_size; /* outgoing parameter size */
+ int stdarg_size; /* size of regs needed to be saved for stdarg */
+ int regs_size; /* size of the saved registers */
+ int regs_size_1word; /* # of bytes to be stored via 1 word stores */
+ int regs_size_2words; /* # of bytes to be stored via 2 word stores */
+ int header_size; /* size of the old FP, struct ret., LR save */
+ int pretend_size; /* size of pretend args */
+ int vars_offset; /* offset to save local variables from new SP*/
+ int regs_offset; /* offset to save registers from new SP */
+ /* register range information */
+ frv_stack_regs_t regs[STACK_REGS_MAX];
+ /* offset to store each register */
+ int reg_offset[FIRST_PSEUDO_REGISTER];
+ /* whether to save register (& reg+1) */
+ unsigned char save_p[FIRST_PSEUDO_REGISTER];
+} frv_stack_t;
+
+/* Define this macro if pushing a word onto the stack moves the stack pointer
+ to a smaller address. */
+#define STACK_GROWS_DOWNWARD 1
+
+/* Define this macro if the addresses of local variable slots are at negative
+ offsets from the frame pointer. */
+#define FRAME_GROWS_DOWNWARD
+
+/* Offset from the frame pointer to the first local variable slot to be
+ allocated.
+
+ If `FRAME_GROWS_DOWNWARD', find the next slot's offset by subtracting the
+ first slot's length from `STARTING_FRAME_OFFSET'. Otherwise, it is found by
+ adding the length of the first slot to the value `STARTING_FRAME_OFFSET'. */
+#define STARTING_FRAME_OFFSET 0
+
+/* Offset from the stack pointer register to the first location at which
+ outgoing arguments are placed. If not specified, the default value of zero
+ is used. This is the proper value for most machines.
+
+ If `ARGS_GROW_DOWNWARD', this is the offset to the location above the first
+ location at which outgoing arguments are placed. */
+#define STACK_POINTER_OFFSET 0
+
+/* Offset from the argument pointer register to the first argument's address.
+ On some machines it may depend on the data type of the function.
+
+ If `ARGS_GROW_DOWNWARD', this is the offset to the location above the first
+ argument's address. */
+#define FIRST_PARM_OFFSET(FUNDECL) 0
+
+/* A C expression whose value is RTL representing the address in a stack frame
+ where the pointer to the caller's frame is stored. Assume that FRAMEADDR is
+ an RTL expression for the address of the stack frame itself.
+
+ If you don't define this macro, the default is to return the value of
+ FRAMEADDR--that is, the stack frame address is also the address of the stack
+ word that points to the previous frame. */
+#define DYNAMIC_CHAIN_ADDRESS(FRAMEADDR) frv_dynamic_chain_address (FRAMEADDR)
+
+/* A C expression whose value is RTL representing the value of the return
+ address for the frame COUNT steps up from the current frame, after the
+ prologue. FRAMEADDR is the frame pointer of the COUNT frame, or the frame
+ pointer of the COUNT - 1 frame if `RETURN_ADDR_IN_PREVIOUS_FRAME' is
+ defined.
+
+ The value of the expression must always be the correct address when COUNT is
+ zero, but may be `NULL_RTX' if there is not way to determine the return
+ address of other frames. */
+#define RETURN_ADDR_RTX(COUNT, FRAMEADDR) frv_return_addr_rtx (COUNT, FRAMEADDR)
+
+/* This function contains machine specific function data. */
+struct machine_function GTY(())
+{
+ /* True if we have created an rtx that relies on the stack frame. */
+ int frame_needed;
+};
+
+#define RETURN_POINTER_REGNUM LR_REGNO
+
+/* A C expression whose value is RTL representing the location of the incoming
+ return address at the beginning of any function, before the prologue. This
+ RTL is either a `REG', indicating that the return value is saved in `REG',
+ or a `MEM' representing a location in the stack.
+
+ You only need to define this macro if you want to support call frame
+ debugging information like that provided by DWARF 2. */
+#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (SImode, RETURN_POINTER_REGNUM)
+
+
+/* Register That Address the Stack Frame. */
+
+/* The register number of the stack pointer register, which must also be a
+ fixed register according to `FIXED_REGISTERS'. On most machines, the
+ hardware determines which register this is. */
+#define STACK_POINTER_REGNUM (GPR_FIRST + 1)
+
+/* The register number of the frame pointer register, which is used to access
+ automatic variables in the stack frame. On some machines, the hardware
+ determines which register this is. On other machines, you can choose any
+ register you wish for this purpose. */
+#define FRAME_POINTER_REGNUM (GPR_FIRST + 2)
+
+/* The register number of the arg pointer register, which is used to access the
+ function's argument list. On some machines, this is the same as the frame
+ pointer register. On some machines, the hardware determines which register
+ this is. On other machines, you can choose any register you wish for this
+ purpose. If this is not the same register as the frame pointer register,
+ then you must mark it as a fixed register according to `FIXED_REGISTERS', or
+ arrange to be able to eliminate it. */
+
+/* On frv this is a fake register that is eliminated in
+ terms of either the frame pointer or stack pointer. */
+#define ARG_POINTER_REGNUM AP_FIRST
+
+/* Register numbers used for passing a function's static chain pointer. If
+ register windows are used, the register number as seen by the called
+ function is `STATIC_CHAIN_INCOMING_REGNUM', while the register number as
+ seen by the calling function is `STATIC_CHAIN_REGNUM'. If these registers
+ are the same, `STATIC_CHAIN_INCOMING_REGNUM' need not be defined.
+
+ The static chain register need not be a fixed register.
+
+ If the static chain is passed in memory, these macros should not be defined;
+ instead, the next two macros should be defined. */
+#define STATIC_CHAIN_REGNUM (GPR_FIRST + 7)
+#define STATIC_CHAIN_INCOMING_REGNUM (GPR_FIRST + 7)
+
+
+/* Eliminating the Frame Pointer and the Arg Pointer. */
+
+/* A C expression which is nonzero if a function must have and use a frame
+ pointer. This expression is evaluated in the reload pass. If its value is
+ nonzero the function will have a frame pointer.
+
+ The expression can in principle examine the current function and decide
+ according to the facts, but on most machines the constant 0 or the constant
+ 1 suffices. Use 0 when the machine allows code to be generated with no
+ frame pointer, and doing so saves some time or space. Use 1 when there is
+ no possible advantage to avoiding a frame pointer.
+
+ In certain cases, the compiler does not know how to produce valid code
+ without a frame pointer. The compiler recognizes those cases and
+ automatically gives the function a frame pointer regardless of what
+ `FRAME_POINTER_REQUIRED' says. You don't need to worry about them.
+
+ In a function that does not require a frame pointer, the frame pointer
+ register can be allocated for ordinary usage, unless you mark it as a fixed
+ register. See `FIXED_REGISTERS' for more information. */
+#define FRAME_POINTER_REQUIRED frv_frame_pointer_required ()
+
+/* If defined, this macro specifies a table of register pairs used to eliminate
+ unneeded registers that point into the stack frame. If it is not defined,
+ the only elimination attempted by the compiler is to replace references to
+ the frame pointer with references to the stack pointer.
+
+ The definition of this macro is a list of structure initializations, each of
+ which specifies an original and replacement register.
+
+ On some machines, the position of the argument pointer is not known until
+ the compilation is completed. In such a case, a separate hard register must
+ be used for the argument pointer. This register can be eliminated by
+ replacing it with either the frame pointer or the argument pointer,
+ depending on whether or not the frame pointer has been eliminated.
+
+ In this case, you might specify:
+ #define ELIMINABLE_REGS \
+ {{ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
+ {ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
+ {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
+
+ Note that the elimination of the argument pointer with the stack pointer is
+ specified first since that is the preferred elimination. */
+
+#define ELIMINABLE_REGS \
+{ \
+ {ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
+ {ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
+ {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM} \
+}
+
+/* A C expression that returns nonzero if the compiler is allowed to try to
+ replace register number FROM with register number TO. This macro need only
+ be defined if `ELIMINABLE_REGS' is defined, and will usually be the constant
+ 1, since most of the cases preventing register elimination are things that
+ the compiler already knows about. */
+
+#define CAN_ELIMINATE(FROM, TO) \
+ ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM \
+ ? ! frame_pointer_needed \
+ : 1)
+
+/* This macro is similar to `INITIAL_FRAME_POINTER_OFFSET'. It specifies the
+ initial difference between the specified pair of registers. This macro must
+ be defined if `ELIMINABLE_REGS' is defined. */
+
+#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
+ (OFFSET) = frv_initial_elimination_offset (FROM, TO)
+
+
+/* Passing Function Arguments on the Stack. */
+
+/* If defined, the maximum amount of space required for outgoing arguments will
+ be computed and placed into the variable
+ `current_function_outgoing_args_size'. No space will be pushed onto the
+ stack for each call; instead, the function prologue should increase the
+ stack frame size by this amount.
+
+ Defining both `PUSH_ROUNDING' and `ACCUMULATE_OUTGOING_ARGS' is not
+ proper. */
+#define ACCUMULATE_OUTGOING_ARGS 1
+
+/* A C expression that should indicate the number of bytes of its own arguments
+ that a function pops on returning, or 0 if the function pops no arguments
+ and the caller must therefore pop them all after the function returns.
+
+ FUNDECL is a C variable whose value is a tree node that describes the
+ function in question. Normally it is a node of type `FUNCTION_DECL' that
+ describes the declaration of the function. From this it is possible to
+ obtain the DECL_ATTRIBUTES of the function.
+
+ FUNTYPE is a C variable whose value is a tree node that describes the
+ function in question. Normally it is a node of type `FUNCTION_TYPE' that
+ describes the data type of the function. From this it is possible to obtain
+ the data types of the value and arguments (if known).
+
+ When a call to a library function is being considered, FUNTYPE will contain
+ an identifier node for the library function. Thus, if you need to
+ distinguish among various library functions, you can do so by their names.
+ Note that "library function" in this context means a function used to
+ perform arithmetic, whose name is known specially in the compiler and was
+ not mentioned in the C code being compiled.
+
+ STACK-SIZE is the number of bytes of arguments passed on the stack. If a
+ variable number of bytes is passed, it is zero, and argument popping will
+ always be the responsibility of the calling function.
+
+ On the VAX, all functions always pop their arguments, so the definition of
+ this macro is STACK-SIZE. On the 68000, using the standard calling
+ convention, no functions pop their arguments, so the value of the macro is
+ always 0 in this case. But an alternative calling convention is available
+ in which functions that take a fixed number of arguments pop them but other
+ functions (such as `printf') pop nothing (the caller pops all). When this
+ convention is in use, FUNTYPE is examined to determine whether a function
+ takes a fixed number of arguments. */
+#define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, STACK_SIZE) 0
+
+
+/* Function Arguments in Registers. */
+
+/* Nonzero if we do not know how to pass TYPE solely in registers.
+ We cannot do so in the following cases:
+
+ - if the type has variable size
+ - if the type is marked as addressable (it is required to be constructed
+ into the stack)
+ - if the type is a structure or union. */
+
+#define MUST_PASS_IN_STACK(MODE,TYPE) \
+ (((MODE) == BLKmode) \
+ || ((TYPE) != 0 \
+ && (TREE_CODE (TYPE_SIZE (TYPE)) != INTEGER_CST \
+ || TREE_CODE (TYPE) == RECORD_TYPE \
+ || TREE_CODE (TYPE) == UNION_TYPE \
+ || TREE_CODE (TYPE) == QUAL_UNION_TYPE \
+ || TREE_ADDRESSABLE (TYPE))))
+
+/* The number of register assigned to holding function arguments. */
+
+#define FRV_NUM_ARG_REGS 6
+
+/* A C expression that controls whether a function argument is passed in a
+ register, and which register.
+
+ The arguments are CUM, of type CUMULATIVE_ARGS, which summarizes (in a way
+ defined by INIT_CUMULATIVE_ARGS and FUNCTION_ARG_ADVANCE) all of the previous
+ arguments so far passed in registers; MODE, the machine mode of the argument;
+ TYPE, the data type of the argument as a tree node or 0 if that is not known
+ (which happens for C support library functions); and NAMED, which is 1 for an
+ ordinary argument and 0 for nameless arguments that correspond to `...' in the
+ called function's prototype.
+
+ The value of the expression should either be a `reg' RTX for the hard
+ register in which to pass the argument, or zero to pass the argument on the
+ stack.
+
+ For machines like the VAX and 68000, where normally all arguments are
+ pushed, zero suffices as a definition.
+
+ The usual way to make the ANSI library `stdarg.h' work on a machine where
+ some arguments are usually passed in registers, is to cause nameless
+ arguments to be passed on the stack instead. This is done by making
+ `FUNCTION_ARG' return 0 whenever NAMED is 0.
+
+ You may use the macro `MUST_PASS_IN_STACK (MODE, TYPE)' in the definition of
+ this macro to determine if this argument is of a type that must be passed in
+ the stack. If `REG_PARM_STACK_SPACE' is not defined and `FUNCTION_ARG'
+ returns nonzero for such an argument, the compiler will abort. If
+ `REG_PARM_STACK_SPACE' is defined, the argument will be computed in the
+ stack and then loaded into a register. */
+#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
+ frv_function_arg (&CUM, MODE, TYPE, NAMED, FALSE)
+
+/* Define this macro if the target machine has "register windows", so that the
+ register in which a function sees an arguments is not necessarily the same
+ as the one in which the caller passed the argument.
+
+ For such machines, `FUNCTION_ARG' computes the register in which the caller
+ passes the value, and `FUNCTION_INCOMING_ARG' should be defined in a similar
+ fashion to tell the function being called where the arguments will arrive.
+
+ If `FUNCTION_INCOMING_ARG' is not defined, `FUNCTION_ARG' serves both
+ purposes. */
+
+#define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
+ frv_function_arg (&CUM, MODE, TYPE, NAMED, TRUE)
+
+/* A C expression for the number of words, at the beginning of an argument,
+ must be put in registers. The value must be zero for arguments that are
+ passed entirely in registers or that are entirely pushed on the stack.
+
+ On some machines, certain arguments must be passed partially in registers
+ and partially in memory. On these machines, typically the first N words of
+ arguments are passed in registers, and the rest on the stack. If a
+ multi-word argument (a `double' or a structure) crosses that boundary, its
+ first few words must be passed in registers and the rest must be pushed.
+ This macro tells the compiler when this occurs, and how many of the words
+ should go in registers.
+
+ `FUNCTION_ARG' for these arguments should return the first register to be
+ used by the caller for this argument; likewise `FUNCTION_INCOMING_ARG', for
+ the called function. */
+#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
+ frv_function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED)
+
+/* extern int frv_function_arg_partial_nregs PARAMS ((CUMULATIVE_ARGS, int, Tree, int)); */
+
+/* A C expression that indicates when an argument must be passed by reference.
+ If nonzero for an argument, a copy of that argument is made in memory and a
+ pointer to the argument is passed instead of the argument itself. The
+ pointer is passed in whatever way is appropriate for passing a pointer to
+ that type.
+
+ On machines where `REG_PARM_STACK_SPACE' is not defined, a suitable
+ definition of this macro might be
+ #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
+ MUST_PASS_IN_STACK (MODE, TYPE) */
+#define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
+ frv_function_arg_pass_by_reference (&CUM, MODE, TYPE, NAMED)
+
+/* If defined, a C expression that indicates when it is the called function's
+ responsibility to make a copy of arguments passed by invisible reference.
+ Normally, the caller makes a copy and passes the address of the copy to the
+ routine being called. When FUNCTION_ARG_CALLEE_COPIES is defined and is
+ nonzero, the caller does not make a copy. Instead, it passes a pointer to
+ the "live" value. The called function must not modify this value. If it
+ can be determined that the value won't be modified, it need not make a copy;
+ otherwise a copy must be made. */
+#define FUNCTION_ARG_CALLEE_COPIES(CUM, MODE, TYPE, NAMED) \
+ frv_function_arg_callee_copies (&CUM, MODE, TYPE, NAMED)
+
+/* If defined, a C expression that indicates when it is more desirable to keep
+ an argument passed by invisible reference as a reference, rather than
+ copying it to a pseudo register. */
+#define FUNCTION_ARG_KEEP_AS_REFERENCE(CUM, MODE, TYPE, NAMED) \
+ frv_function_arg_keep_as_reference (&CUM, MODE, TYPE, NAMED)
+
+/* A C type for declaring a variable that is used as the first argument of
+ `FUNCTION_ARG' and other related values. For some target machines, the type
+ `int' suffices and can hold the number of bytes of argument so far.
+
+ There is no need to record in `CUMULATIVE_ARGS' anything about the arguments
+ that have been passed on the stack. The compiler has other variables to
+ keep track of that. For target machines on which all arguments are passed
+ on the stack, there is no need to store anything in `CUMULATIVE_ARGS';
+ however, the data structure must exist and should not be empty, so use
+ `int'. */
+#define CUMULATIVE_ARGS int
+
+/* A C statement (sans semicolon) for initializing the variable CUM for the
+ state at the beginning of the argument list. The variable has type
+ `CUMULATIVE_ARGS'. The value of FNTYPE is the tree node for the data type
+ of the function which will receive the args, or 0 if the args are to a
+ compiler support library function. The value of INDIRECT is nonzero when
+ processing an indirect call, for example a call through a function pointer.
+ The value of INDIRECT is zero for a call to an explicitly named function, a
+ library function call, or when `INIT_CUMULATIVE_ARGS' is used to find
+ arguments for the function being compiled.
+
+ When processing a call to a compiler support library function, LIBNAME
+ identifies which one. It is a `symbol_ref' rtx which contains the name of
+ the function, as a string. LIBNAME is 0 when an ordinary C function call is
+ being processed. Thus, each time this macro is called, either LIBNAME or
+ FNTYPE is nonzero, but never both of them at once. */
+
+#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT) \
+ frv_init_cumulative_args (&CUM, FNTYPE, LIBNAME, INDIRECT, FALSE)
+
+/* Like `INIT_CUMULATIVE_ARGS' but overrides it for the purposes of finding the
+ arguments for the function being compiled. If this macro is undefined,
+ `INIT_CUMULATIVE_ARGS' is used instead.
+
+ The value passed for LIBNAME is always 0, since library routines with
+ special calling conventions are never compiled with GNU CC. The argument
+ LIBNAME exists for symmetry with `INIT_CUMULATIVE_ARGS'. */
+
+#define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
+ frv_init_cumulative_args (&CUM, FNTYPE, LIBNAME, FALSE, TRUE)
+
+/* A C statement (sans semicolon) to update the summarizer variable CUM to
+ advance past an argument in the argument list. The values MODE, TYPE and
+ NAMED describe that argument. Once this is done, the variable CUM is
+ suitable for analyzing the *following* argument with `FUNCTION_ARG', etc.
+
+ This macro need not do anything if the argument in question was passed on
+ the stack. The compiler knows how to track the amount of stack space used
+ for arguments without any special help. */
+#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
+ frv_function_arg_advance (&CUM, MODE, TYPE, NAMED)
+
+/* If defined, a C expression that gives the alignment boundary, in bits, of an
+ argument with the specified mode and type. If it is not defined,
+ `PARM_BOUNDARY' is used for all arguments. */
+
+#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
+ frv_function_arg_boundary (MODE, TYPE)
+
+/* A C expression that is nonzero if REGNO is the number of a hard register in
+ which function arguments are sometimes passed. This does *not* include
+ implicit arguments such as the static chain and the structure-value address.
+ On many machines, no registers can be used for this purpose since all
+ function arguments are pushed on the stack. */
+#define FUNCTION_ARG_REGNO_P(REGNO) \
+ ((REGNO) >= FIRST_ARG_REGNUM && ((REGNO) <= LAST_ARG_REGNUM))
+
+
+/* How Scalar Function Values are Returned. */
+
+/* The number of the hard register that is used to return a scalar value from a
+ function call. */
+#define RETURN_VALUE_REGNUM (GPR_FIRST + 8)
+
+/* A C expression to create an RTX representing the place where a function
+ returns a value of data type VALTYPE. VALTYPE is a tree node representing a
+ data type. Write `TYPE_MODE (VALTYPE)' to get the machine mode used to
+ represent that type. On many machines, only the mode is relevant.
+ (Actually, on most machines, scalar values are returned in the same place
+ regardless of mode).
+
+ If `PROMOTE_FUNCTION_RETURN' is defined, you must apply the same promotion
+ rules specified in `PROMOTE_MODE' if VALTYPE is a scalar type.
+
+ If the precise function being called is known, FUNC is a tree node
+ (`FUNCTION_DECL') for it; otherwise, FUNC is a null pointer. This makes it
+ possible to use a different value-returning convention for specific
+ functions when all their calls are known.
+
+ `FUNCTION_VALUE' is not used for return vales with aggregate data types,
+ because these are returned in another way. See `STRUCT_VALUE_REGNUM' and
+ related macros, below. */
+#define FUNCTION_VALUE(VALTYPE, FUNC) \
+ gen_rtx (REG, TYPE_MODE (VALTYPE), RETURN_VALUE_REGNUM)
+
+/* A C expression to create an RTX representing the place where a library
+ function returns a value of mode MODE.
+
+ Note that "library function" in this context means a compiler support
+ routine, used to perform arithmetic, whose name is known specially by the
+ compiler and was not mentioned in the C code being compiled.
+
+ The definition of `LIBRARY_VALUE' need not be concerned aggregate data
+ types, because none of the library functions returns such types. */
+#define LIBCALL_VALUE(MODE) gen_rtx (REG, MODE, RETURN_VALUE_REGNUM)
+
+/* A C expression that is nonzero if REGNO is the number of a hard register in
+ which the values of called function may come back.
+
+ A register whose use for returning values is limited to serving as the
+ second of a pair (for a value of type `double', say) need not be recognized
+ by this macro. So for most machines, this definition suffices:
+
+ #define FUNCTION_VALUE_REGNO_P(N) ((N) == RETURN)
+
+ If the machine has register windows, so that the caller and the called
+ function use different registers for the return value, this macro should
+ recognize only the caller's register numbers. */
+#define FUNCTION_VALUE_REGNO_P(REGNO) ((REGNO) == RETURN_VALUE_REGNUM)
+
+
+/* How Large Values are Returned. */
+
+/* If the structure value address is passed in a register, then
+ `STRUCT_VALUE_REGNUM' should be the number of that register. */
+#define STRUCT_VALUE_REGNUM (GPR_FIRST + 3)
+
+
+/* Function Entry and Exit. */
+
+/* Define this macro as a C expression that is nonzero if the return
+ instruction or the function epilogue ignores the value of the stack pointer;
+ in other words, if it is safe to delete an instruction to adjust the stack
+ pointer before a return from the function.
+
+ Note that this macro's value is relevant only for functions for which frame
+ pointers are maintained. It is never safe to delete a final stack
+ adjustment in a function that has no frame pointer, and the compiler knows
+ this regardless of `EXIT_IGNORE_STACK'. */
+#define EXIT_IGNORE_STACK 1
+
+/* Generating Code for Profiling. */
+
+/* A C statement or compound statement to output to FILE some assembler code to
+ call the profiling subroutine `mcount'. Before calling, the assembler code
+ must load the address of a counter variable into a register where `mcount'
+ expects to find the address. The name of this variable is `LP' followed by
+ the number LABELNO, so you would generate the name using `LP%d' in a
+ `fprintf'.
+
+ The details of how the address should be passed to `mcount' are determined
+ by your operating system environment, not by GNU CC. To figure them out,
+ compile a small program for profiling using the system's installed C
+ compiler and look at the assembler code that results.
+
+ This declaration must be present, but it can be an abort if profiling is
+ not implemented. */
+
+#define FUNCTION_PROFILER(FILE, LABELNO) abort ()
+
+
+/* Implementing the Varargs Macros. */
+
+/* If defined, is a C expression that produces the machine-specific code for a
+ call to `__builtin_saveregs'. This code will be moved to the very beginning
+ of the function, before any parameter access are made. The return value of
+ this function should be an RTX that contains the value to use as the return
+ of `__builtin_saveregs'.
+
+ If this macro is not defined, the compiler will output an ordinary call to
+ the library function `__builtin_saveregs'. */
+
+#define EXPAND_BUILTIN_SAVEREGS() frv_expand_builtin_saveregs ()
+
+/* This macro offers an alternative to using `__builtin_saveregs' and defining
+ the macro `EXPAND_BUILTIN_SAVEREGS'. Use it to store the anonymous register
+ arguments into the stack so that all the arguments appear to have been
+ passed consecutively on the stack. Once this is done, you can use the
+ standard implementation of varargs that works for machines that pass all
+ their arguments on the stack.
+
+ The argument ARGS_SO_FAR is the `CUMULATIVE_ARGS' data structure, containing
+ the values that obtain after processing of the named arguments. The
+ arguments MODE and TYPE describe the last named argument--its machine mode
+ and its data type as a tree node.
+
+ The macro implementation should do two things: first, push onto the stack
+ all the argument registers *not* used for the named arguments, and second,
+ store the size of the data thus pushed into the `int'-valued variable whose
+ name is supplied as the argument PRETEND_ARGS_SIZE. The value that you
+ store here will serve as additional offset for setting up the stack frame.
+
+ Because you must generate code to push the anonymous arguments at compile
+ time without knowing their data types, `SETUP_INCOMING_VARARGS' is only
+ useful on machines that have just a single category of argument register and
+ use it uniformly for all data types.
+
+ If the argument SECOND_TIME is nonzero, it means that the arguments of the
+ function are being analyzed for the second time. This happens for an inline
+ function, which is not actually compiled until the end of the source file.
+ The macro `SETUP_INCOMING_VARARGS' should not generate any instructions in
+ this case. */
+#define SETUP_INCOMING_VARARGS(ARGS_SO_FAR, MODE, TYPE, PRETEND_ARGS_SIZE, SECOND_TIME) \
+ frv_setup_incoming_varargs (& ARGS_SO_FAR, (int) MODE, TYPE, \
+ & PRETEND_ARGS_SIZE, SECOND_TIME)
+
+/* Implement the stdarg/varargs va_start macro. STDARG_P is nonzero if this
+ is stdarg.h instead of varargs.h. VALIST is the tree of the va_list
+ variable to initialize. NEXTARG is the machine independent notion of the
+ 'next' argument after the variable arguments. If not defined, a standard
+ implementation will be defined that works for arguments passed on the stack. */
+
+#define EXPAND_BUILTIN_VA_START(VALIST, NEXTARG) \
+ (frv_expand_builtin_va_start(VALIST, NEXTARG))
+
+/* Implement the stdarg/varargs va_arg macro. VALIST is the variable of type
+ va_list as a tree, TYPE is the type passed to va_arg. */
+
+#define EXPAND_BUILTIN_VA_ARG(VALIST, TYPE) \
+ (frv_expand_builtin_va_arg (VALIST, TYPE))
+
+
+/* Trampolines for Nested Functions. */
+
+/* A C expression for the size in bytes of the trampoline, as an integer. */
+#define TRAMPOLINE_SIZE frv_trampoline_size ()
+
+/* Alignment required for trampolines, in bits.
+
+ If you don't define this macro, the value of `BIGGEST_ALIGNMENT' is used for
+ aligning trampolines. */
+#define TRAMPOLINE_ALIGNMENT 32
+
+/* A C statement to initialize the variable parts of a trampoline. ADDR is an
+ RTX for the address of the trampoline; FNADDR is an RTX for the address of
+ the nested function; STATIC_CHAIN is an RTX for the static chain value that
+ should be passed to the function when it is called. */
+#define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, STATIC_CHAIN) \
+ frv_initialize_trampoline (ADDR, FNADDR, STATIC_CHAIN)
+
+/* Define this macro if trampolines need a special subroutine to do their work.
+ The macro should expand to a series of `asm' statements which will be
+ compiled with GNU CC. They go in a library function named
+ `__transfer_from_trampoline'.
+
+ If you need to avoid executing the ordinary prologue code of a compiled C
+ function when you jump to the subroutine, you can do so by placing a special
+ label of your own in the assembler code. Use one `asm' statement to
+ generate an assembler label, and another to make the label global. Then
+ trampolines can use that label to jump directly to your special assembler
+ code. */
+
+#ifdef __FRV_UNDERSCORE__
+#define TRAMPOLINE_TEMPLATE_NAME "___trampoline_template"
+#else
+#define TRAMPOLINE_TEMPLATE_NAME "__trampoline_template"
+#endif
+
+#define TRANSFER_FROM_TRAMPOLINE \
+extern int _write (int, const void *, unsigned); \
+ \
+void \
+__trampoline_setup (addr, size, fnaddr, sc) \
+ short * addr; \
+ int size; \
+ int fnaddr; \
+ int sc; \
+{ \
+ extern short __trampoline_template[]; \
+ short * to = addr; \
+ short * from = &__trampoline_template[0]; \
+ int i; \
+ \
+ if (size < 20) \
+ { \
+ _write (2, "__trampoline_setup bad size\n", \
+ sizeof ("__trampoline_setup bad size\n") - 1); \
+ exit (-1); \
+ } \
+ \
+ to[0] = from[0]; \
+ to[1] = (short)(fnaddr); \
+ to[2] = from[2]; \
+ to[3] = (short)(sc); \
+ to[4] = from[4]; \
+ to[5] = (short)(fnaddr >> 16); \
+ to[6] = from[6]; \
+ to[7] = (short)(sc >> 16); \
+ to[8] = from[8]; \
+ to[9] = from[9]; \
+ \
+ for (i = 0; i < 20; i++) \
+ __asm__ volatile ("dcf @(%0,%1)\n\tici @(%0,%1)" :: "r" (to), "r" (i)); \
+} \
+ \
+__asm__("\n" \
+ "\t.globl " TRAMPOLINE_TEMPLATE_NAME "\n" \
+ "\t.text\n" \
+ TRAMPOLINE_TEMPLATE_NAME ":\n" \
+ "\tsetlos #0, gr6\n" /* jump register */ \
+ "\tsetlos #0, gr7\n" /* static chain */ \
+ "\tsethi #0, gr6\n" \
+ "\tsethi #0, gr7\n" \
+ "\tjmpl @(gr0,gr6)\n");
+
+
+/* Implicit Calls to Library Routines. */
+
+/* A C string constant giving the name of the function to call for the
+ remainder in division of one signed full-word by another. If you do not
+ define this macro, the default name is used, which is `__modsi3', a function
+ defined in `libgcc.a'. */
+#define MODSI3_LIBCALL "__modi"
+
+/* A C string constant giving the name of the function to call for the
+ remainder in division of one unsigned full-word by another. If you do not
+ define this macro, the default name is used, which is `__umodsi3', a
+ function defined in `libgcc.a'. */
+#define UMODSI3_LIBCALL "__umodi"
+
+/* A C string constant giving the name of the function to call for
+ multiplication of one signed double-word by another. If you do not define
+ this macro, the default name is used, which is `__muldi3', a function
+ defined in `libgcc.a'. */
+#define MULDI3_LIBCALL "__mulll"
+
+/* A C string constant giving the name of the function to call for division of
+ one signed double-word by another. If you do not define this macro, the
+ default name is used, which is `__divdi3', a function defined in `libgcc.a'. */
+#define DIVDI3_LIBCALL "__divll"
+
+/* A C string constant giving the name of the function to call for division of
+ one unsigned full-word by another. If you do not define this macro, the
+ default name is used, which is `__udivdi3', a function defined in
+ `libgcc.a'. */
+#define UDIVDI3_LIBCALL "__udivll"
+
+/* A C string constant giving the name of the function to call for the
+ remainder in division of one signed double-word by another. If you do not
+ define this macro, the default name is used, which is `__moddi3', a function
+ defined in `libgcc.a'. */
+#define MODDI3_LIBCALL "__modll"
+
+/* A C string constant giving the name of the function to call for the
+ remainder in division of one unsigned full-word by another. If you do not
+ define this macro, the default name is used, which is `__umoddi3', a
+ function defined in `libgcc.a'. */
+#define UMODDI3_LIBCALL "__umodll"
+
+/* Define this macro as a C statement that declares additional library routines
+ renames existing ones. `init_optabs' calls this macro after initializing all
+ the normal library routines. */
+#define INIT_TARGET_OPTABS \
+ do \
+ { \
+ add_optab->handlers [(int) DImode].libfunc \
+ = init_one_libfunc ("__addll"); \
+ sub_optab->handlers [(int) DImode].libfunc \
+ = init_one_libfunc ("__subll"); \
+ and_optab->handlers [(int) DImode].libfunc \
+ = init_one_libfunc ("__andll"); \
+ ior_optab->handlers [(int) DImode].libfunc \
+ = init_one_libfunc ("__orll"); \
+ xor_optab->handlers [(int) DImode].libfunc \
+ = init_one_libfunc ("__xorll"); \
+ one_cmpl_optab->handlers [(int) DImode].libfunc \
+ = init_one_libfunc ("__notll"); \
+ add_optab->handlers [(int) SFmode].libfunc \
+ = init_one_libfunc ("__addf"); \
+ sub_optab->handlers [(int) SFmode].libfunc \
+ = init_one_libfunc ("__subf"); \
+ smul_optab->handlers [(int) SFmode].libfunc \
+ = init_one_libfunc ("__mulf"); \
+ sdiv_optab->handlers [(int) SFmode].libfunc \
+ = init_one_libfunc ("__divf"); \
+ add_optab->handlers [(int) DFmode].libfunc \
+ = init_one_libfunc ("__addd"); \
+ sub_optab->handlers [(int) DFmode].libfunc \
+ = init_one_libfunc ("__subd"); \
+ smul_optab->handlers [(int) DFmode].libfunc \
+ = init_one_libfunc ("__muld"); \
+ sdiv_optab->handlers [(int) DFmode].libfunc \
+ = init_one_libfunc ("__divd"); \
+ fixsfsi_libfunc = init_one_libfunc ("__ftoi"); \
+ fixunssfsi_libfunc = init_one_libfunc ("__ftoui"); \
+ fixsfdi_libfunc = init_one_libfunc ("__ftoll"); \
+ fixunssfdi_libfunc = init_one_libfunc ("__ftoull"); \
+ fixdfsi_libfunc = init_one_libfunc ("__dtoi"); \
+ fixunsdfsi_libfunc = init_one_libfunc ("__dtoui"); \
+ fixdfdi_libfunc = init_one_libfunc ("__dtoll"); \
+ fixunsdfdi_libfunc = init_one_libfunc ("__dtoull"); \
+ floatsisf_libfunc = init_one_libfunc ("__itof"); \
+ floatdisf_libfunc = init_one_libfunc ("__lltof"); \
+ floatsidf_libfunc = init_one_libfunc ("__itod"); \
+ floatdidf_libfunc = init_one_libfunc ("__lltod"); \
+ extendsfdf2_libfunc = init_one_libfunc ("__ftod"); \
+ truncdfsf2_libfunc = init_one_libfunc ("__dtof"); \
+ } \
+ while (0)
+
+
+/* Addressing Modes. */
+
+/* A C expression that is 1 if the RTX X is a constant which is a valid
+ address. On most machines, this can be defined as `CONSTANT_P (X)', but a
+ few machines are more restrictive in which constant addresses are supported.
+
+ `CONSTANT_P' accepts integer-values expressions whose values are not
+ explicitly known, such as `symbol_ref', `label_ref', and `high' expressions
+ and `const' arithmetic expressions, in addition to `const_int' and
+ `const_double' expressions. */
+#define CONSTANT_ADDRESS_P(X) CONSTANT_P (X)
+
+/* A number, the maximum number of registers that can appear in a valid memory
+ address. Note that it is up to you to specify a value equal to the maximum
+ number that `GO_IF_LEGITIMATE_ADDRESS' would ever accept. */
+#define MAX_REGS_PER_ADDRESS 2
+
+/* A C compound statement with a conditional `goto LABEL;' executed if X (an
+ RTX) is a legitimate memory address on the target machine for a memory
+ operand of mode MODE.
+
+ It usually pays to define several simpler macros to serve as subroutines for
+ this one. Otherwise it may be too complicated to understand.
+
+ This macro must exist in two variants: a strict variant and a non-strict
+ one. The strict variant is used in the reload pass. It must be defined so
+ that any pseudo-register that has not been allocated a hard register is
+ considered a memory reference. In contexts where some kind of register is
+ required, a pseudo-register with no hard register must be rejected.
+
+ The non-strict variant is used in other passes. It must be defined to
+ accept all pseudo-registers in every context where some kind of register is
+ required.
+
+ Compiler source files that want to use the strict variant of this macro
+ define the macro `REG_OK_STRICT'. You should use an `#ifdef REG_OK_STRICT'
+ conditional to define the strict variant in that case and the non-strict
+ variant otherwise.
+
+ Subroutines to check for acceptable registers for various purposes (one for
+ base registers, one for index registers, and so on) are typically among the
+ subroutines used to define `GO_IF_LEGITIMATE_ADDRESS'. Then only these
+ subroutine macros need have two variants; the higher levels of macros may be
+ the same whether strict or not.
+
+ Normally, constant addresses which are the sum of a `symbol_ref' and an
+ integer are stored inside a `const' RTX to mark them as constant.
+ Therefore, there is no need to recognize such sums specifically as
+ legitimate addresses. Normally you would simply recognize any `const' as
+ legitimate.
+
+ Usually `PRINT_OPERAND_ADDRESS' is not prepared to handle constant sums that
+ are not marked with `const'. It assumes that a naked `plus' indicates
+ indexing. If so, then you *must* reject such naked constant sums as
+ illegitimate addresses, so that none of them will be given to
+ `PRINT_OPERAND_ADDRESS'.
+
+ On some machines, whether a symbolic address is legitimate depends on the
+ section that the address refers to. On these machines, define the macro
+ `ENCODE_SECTION_INFO' to store the information into the `symbol_ref', and
+ then check for it here. When you see a `const', you will have to look
+ inside it to find the `symbol_ref' in order to determine the section.
+
+ The best way to modify the name string is by adding text to the beginning,
+ with suitable punctuation to prevent any ambiguity. Allocate the new name
+ in `saveable_obstack'. You will have to modify `ASM_OUTPUT_LABELREF' to
+ remove and decode the added text and output the name accordingly, and define
+ `(* targetm.strip_name_encoding)' to access the original name string.
+
+ You can check the information stored here into the `symbol_ref' in the
+ definitions of the macros `GO_IF_LEGITIMATE_ADDRESS' and
+ `PRINT_OPERAND_ADDRESS'. */
+
+#ifdef REG_OK_STRICT
+#define REG_OK_STRICT_P 1
+#else
+#define REG_OK_STRICT_P 0
+#endif
+
+#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, LABEL) \
+ do \
+ { \
+ if (frv_legitimate_address_p (MODE, X, REG_OK_STRICT_P, FALSE)) \
+ goto LABEL; \
+ } \
+ while (0)
+
+/* A C expression that is nonzero if X (assumed to be a `reg' RTX) is valid for
+ use as a base register. For hard registers, it should always accept those
+ which the hardware permits and reject the others. Whether the macro accepts
+ or rejects pseudo registers must be controlled by `REG_OK_STRICT' as
+ described above. This usually requires two variant definitions, of which
+ `REG_OK_STRICT' controls the one actually used. */
+#ifdef REG_OK_STRICT
+#define REG_OK_FOR_BASE_P(X) GPR_P (REGNO (X))
+#else
+#define REG_OK_FOR_BASE_P(X) GPR_AP_OR_PSEUDO_P (REGNO (X))
+#endif
+
+/* A C expression that is nonzero if X (assumed to be a `reg' RTX) is valid for
+ use as an index register.
+
+ The difference between an index register and a base register is that the
+ index register may be scaled. If an address involves the sum of two
+ registers, neither one of them scaled, then either one may be labeled the
+ "base" and the other the "index"; but whichever labeling is used must fit
+ the machine's constraints of which registers may serve in each capacity.
+ The compiler will try both labelings, looking for one that is valid, and
+ will reload one or both registers only if neither labeling works. */
+#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_BASE_P (X)
+
+/* A C compound statement that attempts to replace X with a valid memory
+ address for an operand of mode MODE. WIN will be a C statement label
+ elsewhere in the code; the macro definition may use
+
+ GO_IF_LEGITIMATE_ADDRESS (MODE, X, WIN);
+
+ to avoid further processing if the address has become legitimate.
+
+ X will always be the result of a call to `break_out_memory_refs', and OLDX
+ will be the operand that was given to that function to produce X.
+
+ The code generated by this macro should not alter the substructure of X. If
+ it transforms X into a more legitimate form, it should assign X (which will
+ always be a C variable) a new value.
+
+ It is not necessary for this macro to come up with a legitimate address.
+ The compiler has standard ways of doing so in all cases. In fact, it is
+ safe for this macro to do nothing. But often a machine-dependent strategy
+ can generate better code. */
+
+/* On the FRV, we use it to convert small data and pic references into using
+ the appropriate pointer in the address. */
+#define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
+ do \
+ { \
+ rtx newx = frv_legitimize_address (X, OLDX, MODE); \
+ \
+ if (newx) \
+ { \
+ (X) = newx; \
+ goto WIN; \
+ } \
+ } \
+ while (0)
+
+/* A C statement or compound statement with a conditional `goto LABEL;'
+ executed if memory address X (an RTX) can have different meanings depending
+ on the machine mode of the memory reference it is used for or if the address
+ is valid for some modes but not others.
+
+ Autoincrement and autodecrement addresses typically have mode-dependent
+ effects because the amount of the increment or decrement is the size of the
+ operand being addressed. Some machines have other mode-dependent addresses.
+ Many RISC machines have no mode-dependent addresses.
+
+ You may assume that ADDR is a valid address for the machine. */
+#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL)
+
+/* A C expression that is nonzero if X is a legitimate constant for an
+ immediate operand on the target machine. You can assume that X satisfies
+ `CONSTANT_P', so you need not check this. In fact, `1' is a suitable
+ definition for this macro on machines where anything `CONSTANT_P' is valid. */
+#define LEGITIMATE_CONSTANT_P(X) frv_legitimate_constant_p (X)
+
+/* The load-and-update commands allow pre-modification in addresses.
+ The index has to be in a register. */
+#define HAVE_PRE_MODIFY_REG 1
+
+
+/* Returns a mode from class `MODE_CC' to be used when comparison operation
+ code OP is applied to rtx X and Y. For example, on the SPARC,
+ `SELECT_CC_MODE' is defined as (see *note Jump Patterns::. for a
+ description of the reason for this definition)
+
+ #define SELECT_CC_MODE(OP,X,Y) \
+ (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
+ ? ((OP == EQ || OP == NE) ? CCFPmode : CCFPEmode) \
+ : ((GET_CODE (X) == PLUS || GET_CODE (X) == MINUS \
+ || GET_CODE (X) == NEG) \
+ ? CC_NOOVmode : CCmode))
+
+ You need not define this macro if `EXTRA_CC_MODES' is not defined. */
+#define SELECT_CC_MODE(OP, X, Y) \
+ (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
+ ? CC_FPmode \
+ : (((OP) == LEU || (OP) == GTU || (OP) == LTU || (OP) == GEU) \
+ ? CC_UNSmode \
+ : CCmode))
+
+/* A C expression whose value is one if it is always safe to reverse a
+ comparison whose mode is MODE. If `SELECT_CC_MODE' can ever return MODE for
+ a floating-point inequality comparison, then `REVERSIBLE_CC_MODE (MODE)'
+ must be zero.
+
+ You need not define this macro if it would always returns zero or if the
+ floating-point format is anything other than `IEEE_FLOAT_FORMAT'. For
+ example, here is the definition used on the SPARC, where floating-point
+ inequality comparisons are always given `CCFPEmode':
+
+ #define REVERSIBLE_CC_MODE(MODE) ((MODE) != CCFPEmode) */
+
+/* On frv, don't consider floating point comparisons to be reversible. In
+ theory, fp equality comparisons can be reversible */
+#define REVERSIBLE_CC_MODE(MODE) ((MODE) == CCmode || (MODE) == CC_UNSmode)
+
+/* Frv CCR_MODE's are not reversible. */
+#define REVERSE_CONDEXEC_PREDICATES_P(x,y) 0
+
+
+/* Describing Relative Costs of Operations. */
+
+/* A part of a C `switch' statement that describes the relative costs of
+ constant RTL expressions. It must contain `case' labels for expression
+ codes `const_int', `const', `symbol_ref', `label_ref' and `const_double'.
+ Each case must ultimately reach a `return' statement to return the relative
+ cost of the use of that kind of constant value in an expression. The cost
+ may depend on the precise value of the constant, which is available for
+ examination in X, and the rtx code of the expression in which it is
+ contained, found in OUTER_CODE.
+
+ CODE is the expression code--redundant, since it can be obtained with
+ `GET_CODE (X)'. */
+#define CONST_COSTS(X, CODE, OUTER_CODE) \
+ case CONST: \
+ case LABEL_REF: \
+ case SYMBOL_REF: \
+ case CONST_DOUBLE: \
+ return COSTS_N_INSNS (2); \
+ \
+ case CONST_INT: \
+ /* Make 12 bit integers really cheap */ \
+ return IN_RANGE_P (INTVAL (X), -2048, 2047) ? 0 : COSTS_N_INSNS (2); \
+
+/* Like `CONST_COSTS' but applies to nonconstant RTL expressions. This can be
+ used, for example, to indicate how costly a multiply instruction is. In
+ writing this macro, you can use the construct `COSTS_N_INSNS (N)' to specify
+ a cost equal to N fast instructions. OUTER_CODE is the code of the
+ expression in which X is contained.
+
+ This macro is optional; do not define it if the default cost assumptions are
+ adequate for the target machine. */
+#define RTX_COSTS(X, CODE, OUTER_CODE) \
+ case PLUS: \
+ case MINUS: \
+ case AND: \
+ case IOR: \
+ case XOR: \
+ case ASHIFT: \
+ case ASHIFTRT: \
+ case LSHIFTRT: \
+ case NOT: \
+ case NEG: \
+ case COMPARE: \
+ if (GET_MODE (X) == SImode) \
+ return COSTS_N_INSNS (1); \
+ else if (GET_MODE (X) == DImode) \
+ return COSTS_N_INSNS (2); \
+ else \
+ return COSTS_N_INSNS (3); /* guess */ \
+ \
+ case MULT: \
+ if (GET_MODE (X) == SImode) \
+ return COSTS_N_INSNS (2); \
+ else \
+ return COSTS_N_INSNS (6); /* guess */ \
+ \
+ case DIV: \
+ case UDIV: \
+ return COSTS_N_INSNS (18);
+
+/* A C expression for the cost of moving data from a register in class FROM to
+ one in class TO. The classes are expressed using the enumeration values
+ such as `GENERAL_REGS'. A value of 4 is the default; other values are
+ interpreted relative to that.
+
+ It is not required that the cost always equal 2 when FROM is the same as TO;
+ on some machines it is expensive to move between registers if they are not
+ general registers.
+
+ If reload sees an insn consisting of a single `set' between two hard
+ registers, and if `REGISTER_MOVE_COST' applied to their classes returns a
+ value of 2, reload does not check to ensure that the constraints of the insn
+ are met. Setting a cost of other than 2 will allow reload to verify that
+ the constraints are met. You should do this if the `movM' pattern's
+ constraints do not allow such copying. */
+#define REGISTER_MOVE_COST(MODE, FROM, TO) frv_register_move_cost (FROM, TO)
+
+/* A C expression for the cost of moving data of mode M between a register and
+ memory. A value of 2 is the default; this cost is relative to those in
+ `REGISTER_MOVE_COST'.
+
+ If moving between registers and memory is more expensive than between two
+ registers, you should define this macro to express the relative cost. */
+#define MEMORY_MOVE_COST(M,C,I) 4
+
+/* A C expression for the cost of a branch instruction. A value of 1 is the
+ default; other values are interpreted relative to that. */
+
+/* Here are additional macros which do not specify precise relative costs, but
+ only that certain actions are more expensive than GNU CC would ordinarily
+ expect. */
+
+/* We used to default the branch cost to 2, but I changed it to 1, to avoid
+ generating SCC instructions and or/and-ing them together, and then doing the
+ branch on the result, which collectively generate much worse code. */
+#ifndef DEFAULT_BRANCH_COST
+#define DEFAULT_BRANCH_COST 1
+#endif
+
+#define BRANCH_COST frv_branch_cost_int
+
+/* Define this macro as a C expression which is nonzero if accessing less than
+ a word of memory (i.e. a `char' or a `short') is no faster than accessing a
+ word of memory, i.e., if such access require more than one instruction or if
+ there is no difference in cost between byte and (aligned) word loads.
+
+ When this macro is not defined, the compiler will access a field by finding
+ the smallest containing object; when it is defined, a fullword load will be
+ used if alignment permits. Unless bytes accesses are faster than word
+ accesses, using word accesses is preferable since it may eliminate
+ subsequent memory access if subsequent accesses occur to other fields in the
+ same word of the structure, but to different bytes. */
+#define SLOW_BYTE_ACCESS 1
+
+/* Define this macro if it is as good or better to call a constant function
+ address than to call an address kept in a register. */
+#define NO_FUNCTION_CSE
+
+/* Define this macro if it is as good or better for a function to call itself
+ with an explicit address than to call an address kept in a register. */
+#define NO_RECURSIVE_FUNCTION_CSE
+
+
+/* Dividing the output into sections. */
+
+/* A C expression whose value is a string containing the assembler operation
+ that should precede instructions and read-only data. Normally `".text"' is
+ right. */
+#define TEXT_SECTION_ASM_OP "\t.text"
+
+/* A C expression whose value is a string containing the assembler operation to
+ identify the following data as writable initialized data. Normally
+ `".data"' is right. */
+#define DATA_SECTION_ASM_OP "\t.data"
+
+/* If defined, a C expression whose value is a string containing the
+ assembler operation to identify the following data as
+ uninitialized global data. If not defined, and neither
+ `ASM_OUTPUT_BSS' nor `ASM_OUTPUT_ALIGNED_BSS' are defined,
+ uninitialized global data will be output in the data section if
+ `-fno-common' is passed, otherwise `ASM_OUTPUT_COMMON' will be
+ used. */
+#define BSS_SECTION_ASM_OP "\t.section .bss,\"aw\""
+
+/* Short Data Support */
+#define SDATA_SECTION_ASM_OP "\t.section .sdata,\"aw\""
+#define SBSS_SECTION_ASM_OP "\t.section .sbss,\"aw\""
+
+/* On svr4, we *do* have support for the .init and .fini sections, and we
+ can put stuff in there to be executed before and after `main'. We let
+ crtstuff.c and other files know this by defining the following symbols.
+ The definitions say how to change sections to the .init and .fini
+ sections. This is the same for all known svr4 assemblers.
+
+ The standard System V.4 macros will work, but they look ugly in the
+ assembly output, so redefine them. */
+
+#undef INIT_SECTION_ASM_OP
+#undef FINI_SECTION_ASM_OP
+#define INIT_SECTION_ASM_OP "\t.section .init,\"ax\""
+#define FINI_SECTION_ASM_OP "\t.section .fini,\"ax\""
+
+/* A C expression whose value is a string containing the assembler operation to
+ switch to the fixup section that records all initialized pointers in a -fpic
+ program so they can be changed program startup time if the program is loaded
+ at a different address than linked for. */
+#define FIXUP_SECTION_ASM_OP "\t.section .rofixup,\"a\""
+
+/* A list of names for sections other than the standard two, which are
+ `in_text' and `in_data'. You need not define this macro
+ on a system with no other sections (that GCC needs to use). */
+#undef EXTRA_SECTIONS
+#define EXTRA_SECTIONS in_sdata, in_sbss, in_const, in_fixup
+
+/* One or more functions to be defined in "varasm.c". These
+ functions should do jobs analogous to those of `text_section' and
+ `data_section', for your additional sections. Do not define this
+ macro if you do not define `EXTRA_SECTIONS'. */
+#undef EXTRA_SECTION_FUNCTIONS
+#define EXTRA_SECTION_FUNCTIONS \
+SDATA_SECTION_FUNCTION \
+SBSS_SECTION_FUNCTION \
+FIXUP_SECTION_FUNCTION
+
+
+#define SDATA_SECTION_FUNCTION \
+void \
+sdata_section () \
+{ \
+ if (in_section != in_sdata) \
+ { \
+ fprintf (asm_out_file, "%s\n", SDATA_SECTION_ASM_OP); \
+ in_section = in_sdata; \
+ } \
+} \
+
+#define SBSS_SECTION_FUNCTION \
+void \
+sbss_section () \
+{ \
+ if (in_section != in_sbss) \
+ { \
+ fprintf (asm_out_file, "%s\n", SBSS_SECTION_ASM_OP); \
+ in_section = in_sbss; \
+ } \
+} \
+
+#define FIXUP_SECTION_FUNCTION \
+void \
+fixup_section () \
+{ \
+ if (in_section != in_fixup) \
+ { \
+ fprintf (asm_out_file, "%s\n", FIXUP_SECTION_ASM_OP); \
+ in_section = in_fixup; \
+ } \
+} \
+
+#define SDATA_FLAG_CHAR '@'
+
+#define SDATA_NAME_P(NAME) (*(NAME) == SDATA_FLAG_CHAR)
+
+/* Position Independent Code. */
+
+/* A C expression that is nonzero if X is a legitimate immediate operand on the
+ target machine when generating position independent code. You can assume
+ that X satisfies `CONSTANT_P', so you need not check this. You can also
+ assume FLAG_PIC is true, so you need not check it either. You need not
+ define this macro if all constants (including `SYMBOL_REF') can be immediate
+ operands when generating position independent code. */
+#define LEGITIMATE_PIC_OPERAND_P(X) \
+ ( GET_CODE (X) == CONST_INT \
+ || GET_CODE (X) == CONST_DOUBLE \
+ || (GET_CODE (X) == HIGH && GET_CODE (XEXP (X, 0)) == CONST_INT) \
+ || GET_CODE (X) == CONSTANT_P_RTX)
+
+
+/* The Overall Framework of an Assembler File. */
+
+/* A C string constant describing how to begin a comment in the target
+ assembler language. The compiler assumes that the comment will end at the
+ end of the line. */
+#define ASM_COMMENT_START ";"
+
+/* A C string constant for text to be output before each `asm' statement or
+ group of consecutive ones. Normally this is `"#APP"', which is a comment
+ that has no effect on most assemblers but tells the GNU assembler that it
+ must check the lines that follow for all valid assembler constructs. */
+#define ASM_APP_ON "#APP\n"
+
+/* A C string constant for text to be output after each `asm' statement or
+ group of consecutive ones. Normally this is `"#NO_APP"', which tells the
+ GNU assembler to resume making the time-saving assumptions that are valid
+ for ordinary compiler output. */
+#define ASM_APP_OFF "#NO_APP\n"
+
+
+/* Output of Data. */
+
+/* This is how to output a label to dwarf/dwarf2. */
+#define ASM_OUTPUT_DWARF_ADDR(STREAM, LABEL) \
+do { \
+ fprintf (STREAM, "\t.picptr\t"); \
+ assemble_name (STREAM, LABEL); \
+} while (0)
+
+/* Whether to emit the gas specific dwarf2 line number support. */
+#define DWARF2_ASM_LINE_DEBUG_INFO (TARGET_DEBUG_LOC)
+
+/* Output of Uninitialized Variables. */
+
+/* A C statement (sans semicolon) to output to the stdio stream STREAM the
+ assembler definition of a local-common-label named NAME whose size is SIZE
+ bytes. The variable ROUNDED is the size rounded up to whatever alignment
+ the caller wants.
+
+ Use the expression `assemble_name (STREAM, NAME)' to output the name itself;
+ before and after that, output the additional assembler syntax for defining
+ the name, and a newline.
+
+ This macro controls how the assembler definitions of uninitialized static
+ variables are output. */
+#undef ASM_OUTPUT_LOCAL
+
+/* Like `ASM_OUTPUT_LOCAL' except takes the required alignment as a separate,
+ explicit argument. If you define this macro, it is used in place of
+ `ASM_OUTPUT_LOCAL', and gives you more flexibility in handling the required
+ alignment of the variable. The alignment is specified as the number of
+ bits.
+
+ Defined in svr4.h. */
+#undef ASM_OUTPUT_ALIGNED_LOCAL
+
+/* This is for final.c, because it is used by ASM_DECLARE_OBJECT_NAME. */
+extern int size_directive_output;
+
+/* Like `ASM_OUTPUT_ALIGNED_LOCAL' except that it takes an additional
+ parameter - the DECL of variable to be output, if there is one.
+ This macro can be called with DECL == NULL_TREE. If you define
+ this macro, it is used in place of `ASM_OUTPUT_LOCAL' and
+ `ASM_OUTPUT_ALIGNED_LOCAL', and gives you more flexibility in
+ handling the destination of the variable. */
+#undef ASM_OUTPUT_ALIGNED_DECL_LOCAL
+#define ASM_OUTPUT_ALIGNED_DECL_LOCAL(STREAM, DECL, NAME, SIZE, ALIGN) \
+do { \
+ if (SDATA_NAME_P (NAME)) \
+ sbss_section (); \
+ else \
+ bss_section (); \
+ ASM_OUTPUT_ALIGN (STREAM, floor_log2 ((ALIGN) / BITS_PER_UNIT)); \
+ ASM_DECLARE_OBJECT_NAME (STREAM, NAME, DECL); \
+ ASM_OUTPUT_SKIP (STREAM, (SIZE) ? (SIZE) : 1); \
+} while (0)
+
+
+/* Output and Generation of Labels. */
+
+/* A C statement (sans semicolon) to output to the stdio stream STREAM the
+ assembler definition of a label named NAME. Use the expression
+ `assemble_name (STREAM, NAME)' to output the name itself; before and after
+ that, output the additional assembler syntax for defining the name, and a
+ newline. */
+#define ASM_OUTPUT_LABEL(STREAM, NAME) \
+do { \
+ assemble_name (STREAM, NAME); \
+ fputs (":\n", STREAM); \
+} while (0)
+
+/* Globalizing directive for a label. */
+#define GLOBAL_ASM_OP "\t.globl "
+
+/* A C statement (sans semicolon) to output to the stdio stream STREAM a
+ reference in assembler syntax to a label named NAME. This should add `_' to
+ the front of the name, if that is customary on your operating system, as it
+ is in most Berkeley Unix systems. This macro is used in `assemble_name'. */
+#undef ASM_OUTPUT_LABELREF
+#define ASM_OUTPUT_LABELREF(STREAM, NAME) \
+do { \
+ const char *_name = (NAME); \
+ while (*_name == '*' || *_name == SDATA_FLAG_CHAR) \
+ _name++; \
+ asm_fprintf (STREAM, "%U%s", _name); \
+} while (0)
+
+/* A C statement to store into the string STRING a label whose name is made
+ from the string PREFIX and the number NUM.
+
+ This string, when output subsequently by `assemble_name', should produce the
+ output that `ASM_OUTPUT_INTERNAL_LABEL' would produce with the same PREFIX
+ and NUM.
+
+ If the string begins with `*', then `assemble_name' will output the rest of
+ the string unchanged. It is often convenient for
+ `ASM_GENERATE_INTERNAL_LABEL' to use `*' in this way. If the string doesn't
+ start with `*', then `ASM_OUTPUT_LABELREF' gets to output the string, and
+ may change it. (Of course, `ASM_OUTPUT_LABELREF' is also part of your
+ machine description, so you should know what it does on your machine.)
+
+ Defined in svr4.h. */
+#undef ASM_GENERATE_INTERNAL_LABEL
+#define ASM_GENERATE_INTERNAL_LABEL(LABEL, PREFIX, NUM) \
+do { \
+ sprintf (LABEL, "*.%s%ld", PREFIX, (long)NUM); \
+} while (0)
+
+/* A C expression to assign to OUTVAR (which is a variable of type `char *') a
+ newly allocated string made from the string NAME and the number NUMBER, with
+ some suitable punctuation added. Use `alloca' to get space for the string.
+
+ The string will be used as an argument to `ASM_OUTPUT_LABELREF' to produce
+ an assembler label for an internal static variable whose name is NAME.
+ Therefore, the string must be such as to result in valid assembler code.
+ The argument NUMBER is different each time this macro is executed; it
+ prevents conflicts between similarly-named internal static variables in
+ different scopes.
+
+ Ideally this string should not be a valid C identifier, to prevent any
+ conflict with the user's own symbols. Most assemblers allow periods or
+ percent signs in assembler symbols; putting at least one of these between
+ the name and the number will suffice. */
+#define ASM_FORMAT_PRIVATE_NAME(OUTVAR, NAME, NUMBER) \
+do { \
+ (OUTVAR) = (char *) alloca (strlen ((NAME)) + 12); \
+ sprintf ((OUTVAR), "%s.%ld", (NAME), (long)(NUMBER)); \
+} while (0)
+
+
+/* Macros Controlling Initialization Routines. */
+
+/* If defined, a C string constant for the assembler operation to identify the
+ following data as initialization code. If not defined, GNU CC will assume
+ such a section does not exist. When you are using special sections for
+ initialization and termination functions, this macro also controls how
+ `crtstuff.c' and `libgcc2.c' arrange to run the initialization functions.
+
+ Defined in svr4.h. */
+#undef INIT_SECTION_ASM_OP
+
+/* If defined, `main' will call `__main' despite the presence of
+ `INIT_SECTION_ASM_OP'. This macro should be defined for systems where the
+ init section is not actually run automatically, but is still useful for
+ collecting the lists of constructors and destructors. */
+#define INVOKE__main
+
+/* Output appropriate code tp call a static constructor. */
+#undef ASM_OUTPUT_CONSTRUCTOR
+#define ASM_OUTPUT_CONSTRUCTOR(STREAM,NAME) \
+do { \
+ ctors_section (); \
+ fprintf (STREAM, "\t.picptr\t"); \
+ assemble_name (STREAM, NAME); \
+ fprintf (STREAM, "\n"); \
+} while (0)
+
+/* Output appropriate code tp call a static destructor. */
+#undef ASM_OUTPUT_DESTRUCTOR
+#define ASM_OUTPUT_DESTRUCTOR(STREAM,NAME) \
+do { \
+ dtors_section (); \
+ fprintf (STREAM, "\t.picptr\t"); \
+ assemble_name (STREAM, NAME); \
+ fprintf (STREAM, "\n"); \
+} while (0)
+
+
+/* Output of Assembler Instructions. */
+
+/* A C initializer containing the assembler's names for the machine registers,
+ each one as a C string constant. This is what translates register numbers
+ in the compiler into assembler language. */
+#define REGISTER_NAMES \
+{ \
+ "gr0", "sp", "fp", "gr3", "gr4", "gr5", "gr6", "gr7", \
+ "gr8", "gr9", "gr10", "gr11", "gr12", "gr13", "gr14", "gr15", \
+ "gr16", "gr17", "gr18", "gr19", "gr20", "gr21", "gr22", "gr23", \
+ "gr24", "gr25", "gr26", "gr27", "gr28", "gr29", "gr30", "gr31", \
+ "gr32", "gr33", "gr34", "gr35", "gr36", "gr37", "gr38", "gr39", \
+ "gr40", "gr41", "gr42", "gr43", "gr44", "gr45", "gr46", "gr47", \
+ "gr48", "gr49", "gr50", "gr51", "gr52", "gr53", "gr54", "gr55", \
+ "gr56", "gr57", "gr58", "gr59", "gr60", "gr61", "gr62", "gr63", \
+ \
+ "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7", \
+ "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15", \
+ "fr16", "fr17", "fr18", "fr19", "fr20", "fr21", "fr22", "fr23", \
+ "fr24", "fr25", "fr26", "fr27", "fr28", "fr29", "fr30", "fr31", \
+ "fr32", "fr33", "fr34", "fr35", "fr36", "fr37", "fr38", "fr39", \
+ "fr40", "fr41", "fr42", "fr43", "fr44", "fr45", "fr46", "fr47", \
+ "fr48", "fr49", "fr50", "fr51", "fr52", "fr53", "fr54", "fr55", \
+ "fr56", "fr57", "fr58", "fr59", "fr60", "fr61", "fr62", "fr63", \
+ \
+ "fcc0", "fcc1", "fcc2", "fcc3", "icc0", "icc1", "icc2", "icc3", \
+ "cc0", "cc1", "cc2", "cc3", "cc4", "cc5", "cc6", "cc7", \
+ "acc0", "acc1", "acc2", "acc3", "acc4", "acc5", "acc6", "acc7", \
+ "accg0","accg1","accg2","accg3","accg4","accg5","accg6","accg7", \
+ "ap", "lr", "lcr" \
+}
+
+/* Define this macro if you are using an unusual assembler that
+ requires different names for the machine instructions.
+
+ The definition is a C statement or statements which output an
+ assembler instruction opcode to the stdio stream STREAM. The
+ macro-operand PTR is a variable of type `char *' which points to
+ the opcode name in its "internal" form--the form that is written
+ in the machine description. The definition should output the
+ opcode name to STREAM, performing any translation you desire, and
+ increment the variable PTR to point at the end of the opcode so
+ that it will not be output twice.
+
+ In fact, your macro definition may process less than the entire
+ opcode name, or more than the opcode name; but if you want to
+ process text that includes `%'-sequences to substitute operands,
+ you must take care of the substitution yourself. Just be sure to
+ increment PTR over whatever text should not be output normally.
+
+ If you need to look at the operand values, they can be found as the
+ elements of `recog_operand'.
+
+ If the macro definition does nothing, the instruction is output in
+ the usual way. */
+
+#define ASM_OUTPUT_OPCODE(STREAM, PTR)\
+ (PTR) = frv_asm_output_opcode (STREAM, PTR)
+
+/* If defined, a C statement to be executed just prior to the output
+ of assembler code for INSN, to modify the extracted operands so
+ they will be output differently.
+
+ Here the argument OPVEC is the vector containing the operands
+ extracted from INSN, and NOPERANDS is the number of elements of
+ the vector which contain meaningful data for this insn. The
+ contents of this vector are what will be used to convert the insn
+ template into assembler code, so you can change the assembler
+ output by changing the contents of the vector.
+
+ This macro is useful when various assembler syntaxes share a single
+ file of instruction patterns; by defining this macro differently,
+ you can cause a large class of instructions to be output
+ differently (such as with rearranged operands). Naturally,
+ variations in assembler syntax affecting individual insn patterns
+ ought to be handled by writing conditional output routines in
+ those patterns.
+
+ If this macro is not defined, it is equivalent to a null statement. */
+
+#define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS)\
+ frv_final_prescan_insn (INSN, OPVEC, NOPERANDS)
+
+
+/* A C compound statement to output to stdio stream STREAM the assembler syntax
+ for an instruction operand X. X is an RTL expression.
+
+ CODE is a value that can be used to specify one of several ways of printing
+ the operand. It is used when identical operands must be printed differently
+ depending on the context. CODE comes from the `%' specification that was
+ used to request printing of the operand. If the specification was just
+ `%DIGIT' then CODE is 0; if the specification was `%LTR DIGIT' then CODE is
+ the ASCII code for LTR.
+
+ If X is a register, this macro should print the register's name. The names
+ can be found in an array `reg_names' whose type is `char *[]'. `reg_names'
+ is initialized from `REGISTER_NAMES'.
+
+ When the machine description has a specification `%PUNCT' (a `%' followed by
+ a punctuation character), this macro is called with a null pointer for X and
+ the punctuation character for CODE. */
+#define PRINT_OPERAND(STREAM, X, CODE) frv_print_operand (STREAM, X, CODE)
+
+/* A C expression which evaluates to true if CODE is a valid punctuation
+ character for use in the `PRINT_OPERAND' macro. If
+ `PRINT_OPERAND_PUNCT_VALID_P' is not defined, it means that no punctuation
+ characters (except for the standard one, `%') are used in this way. */
+/* . == gr0
+ # == hint operand -- always zero for now
+ @ == small data base register (gr16)
+ ~ == pic register (gr17)
+ * == temporary integer CCR register (cr3)
+ & == temporary integer ICC register (icc3) */
+#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
+((CODE) == '.' || (CODE) == '#' || (CODE) == SDATA_FLAG_CHAR || (CODE) == '~' \
+ || (CODE) == '*' || (CODE) == '&')
+
+/* A C compound statement to output to stdio stream STREAM the assembler syntax
+ for an instruction operand that is a memory reference whose address is X. X
+ is an RTL expression.
+
+ On some machines, the syntax for a symbolic address depends on the section
+ that the address refers to. On these machines, define the macro
+ `ENCODE_SECTION_INFO' to store the information into the `symbol_ref', and
+ then check for it here.
+
+ This declaration must be present. */
+#define PRINT_OPERAND_ADDRESS(STREAM, X) frv_print_operand_address (STREAM, X)
+
+/* If defined, C string expressions to be used for the `%R', `%L', `%U', and
+ `%I' options of `asm_fprintf' (see `final.c'). These are useful when a
+ single `md' file must support multiple assembler formats. In that case, the
+ various `tm.h' files can define these macros differently.
+
+ USER_LABEL_PREFIX is defined in svr4.h. */
+#undef USER_LABEL_PREFIX
+#define USER_LABEL_PREFIX ""
+#define REGISTER_PREFIX ""
+#define LOCAL_LABEL_PREFIX "."
+#define IMMEDIATE_PREFIX "#"
+
+
+/* Output of dispatch tables. */
+
+/* This macro should be provided on machines where the addresses in a dispatch
+ table are relative to the table's own address.
+
+ The definition should be a C statement to output to the stdio stream STREAM
+ an assembler pseudo-instruction to generate a difference between two labels.
+ VALUE and REL are the numbers of two internal labels. The definitions of
+ these labels are output using `ASM_OUTPUT_INTERNAL_LABEL', and they must be
+ printed in the same way here. For example,
+
+ fprintf (STREAM, "\t.word L%d-L%d\n", VALUE, REL) */
+#define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
+fprintf (STREAM, "\t.word .L%d-.L%d\n", VALUE, REL)
+
+/* This macro should be provided on machines where the addresses in a dispatch
+ table are absolute.
+
+ The definition should be a C statement to output to the stdio stream STREAM
+ an assembler pseudo-instruction to generate a reference to a label. VALUE
+ is the number of an internal label whose definition is output using
+ `ASM_OUTPUT_INTERNAL_LABEL'. For example,
+
+ fprintf (STREAM, "\t.word L%d\n", VALUE) */
+#define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
+fprintf (STREAM, "\t.word .L%d\n", VALUE)
+
+/* Define this if the label before a jump-table needs to be output specially.
+ The first three arguments are the same as for `ASM_OUTPUT_INTERNAL_LABEL';
+ the fourth argument is the jump-table which follows (a `jump_insn'
+ containing an `addr_vec' or `addr_diff_vec').
+
+ This feature is used on system V to output a `swbeg' statement for the
+ table.
+
+ If this macro is not defined, these labels are output with
+ `ASM_OUTPUT_INTERNAL_LABEL'.
+
+ Defined in svr4.h. */
+/* When generating embedded PIC or mips16 code we want to put the jump
+ table in the .text section. In all other cases, we want to put the
+ jump table in the .rdata section. Unfortunately, we can't use
+ JUMP_TABLES_IN_TEXT_SECTION, because it is not conditional.
+ Instead, we use ASM_OUTPUT_CASE_LABEL to switch back to the .text
+ section if appropriate. */
+
+#undef ASM_OUTPUT_CASE_LABEL
+#define ASM_OUTPUT_CASE_LABEL(STREAM, PREFIX, NUM, TABLE) \
+do { \
+ if (flag_pic) \
+ function_section (current_function_decl); \
+ ASM_OUTPUT_INTERNAL_LABEL (STREAM, PREFIX, NUM); \
+} while (0)
+
+/* Define this to determine whether case statement labels are relative to
+ the start of the case statement or not. */
+
+#define CASE_VECTOR_PC_RELATIVE (flag_pic)
+
+
+/* Assembler Commands for Exception Regions. */
+
+/* Define this macro to 0 if your target supports DWARF 2 frame unwind
+ information, but it does not yet work with exception handling. Otherwise,
+ if your target supports this information (if it defines
+ `INCOMING_RETURN_ADDR_RTX' and either `UNALIGNED_INT_ASM_OP' or
+ `OBJECT_FORMAT_ELF'), GCC will provide a default definition of 1.
+
+ If this macro is defined to 1, the DWARF 2 unwinder will be the default
+ exception handling mechanism; otherwise, setjmp/longjmp will be used by
+ default.
+
+ If this macro is defined to anything, the DWARF 2 unwinder will be used
+ instead of inline unwinders and __unwind_function in the non-setjmp case. */
+#define DWARF2_UNWIND_INFO 1
+
+#define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LR_REGNO)
+
+/* Assembler Commands for Alignment. */
+
+/* A C statement to output to the stdio stream STREAM an assembler instruction
+ to advance the location counter by NBYTES bytes. Those bytes should be zero
+ when loaded. NBYTES will be a C expression of type `int'.
+
+ Defined in svr4.h. */
+#undef ASM_OUTPUT_SKIP
+#define ASM_OUTPUT_SKIP(STREAM, NBYTES) \
+ fprintf (STREAM, "\t.zero\t%u\n", (NBYTES))
+
+/* A C statement to output to the stdio stream STREAM an assembler command to
+ advance the location counter to a multiple of 2 to the POWER bytes. POWER
+ will be a C expression of type `int'. */
+#define ASM_OUTPUT_ALIGN(STREAM, POWER) \
+ fprintf ((STREAM), "\t.p2align %d\n", (POWER))
+
+
+/* Macros Affecting all Debug Formats. */
+
+/* A C expression that returns the DBX register number for the compiler
+ register number REGNO. In simple cases, the value of this expression may be
+ REGNO itself. But sometimes there are some registers that the compiler
+ knows about and DBX does not, or vice versa. In such cases, some register
+ may need to have one number in the compiler and another for DBX.
+
+ If two registers have consecutive numbers inside GNU CC, and they can be
+ used as a pair to hold a multiword value, then they *must* have consecutive
+ numbers after renumbering with `DBX_REGISTER_NUMBER'. Otherwise, debuggers
+ will be unable to access such a pair, because they expect register pairs to
+ be consecutive in their own numbering scheme.
+
+ If you find yourself defining `DBX_REGISTER_NUMBER' in way that does not
+ preserve register pairs, then what you must do instead is redefine the
+ actual register numbering scheme.
+
+ This declaration is required. */
+#define DBX_REGISTER_NUMBER(REGNO) (REGNO)
+
+/* A C expression that returns the type of debugging output GNU CC produces
+ when the user specifies `-g' or `-ggdb'. Define this if you have arranged
+ for GNU CC to support more than one format of debugging output. Currently,
+ the allowable values are `DBX_DEBUG', `SDB_DEBUG', `DWARF_DEBUG',
+ `DWARF2_DEBUG', and `XCOFF_DEBUG'.
+
+ The value of this macro only affects the default debugging output; the user
+ can always get a specific type of output by using `-gstabs', `-gcoff',
+ `-gdwarf-1', `-gdwarf-2', or `-gxcoff'.
+
+ Defined in svr4.h. */
+#undef PREFERRED_DEBUGGING_TYPE
+#define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
+
+/* Miscellaneous Parameters. */
+
+/* Define this if you have defined special-purpose predicates in the file
+ `MACHINE.c'. This macro is called within an initializer of an array of
+ structures. The first field in the structure is the name of a predicate and
+ the second field is an array of rtl codes. For each predicate, list all rtl
+ codes that can be in expressions matched by the predicate. The list should
+ have a trailing comma. Here is an example of two entries in the list for a
+ typical RISC machine:
+
+ #define PREDICATE_CODES \
+ {"gen_reg_rtx_operand", {SUBREG, REG}}, \
+ {"reg_or_short_cint_operand", {SUBREG, REG, CONST_INT}},
+
+ Defining this macro does not affect the generated code (however, incorrect
+ definitions that omit an rtl code that may be matched by the predicate can
+ cause the compiler to malfunction). Instead, it allows the table built by
+ `genrecog' to be more compact and efficient, thus speeding up the compiler.
+ The most important predicates to include in the list specified by this macro
+ are thoses used in the most insn patterns. */
+#define PREDICATE_CODES \
+ { "integer_register_operand", { REG, SUBREG }}, \
+ { "frv_load_operand", { REG, SUBREG, MEM }}, \
+ { "gpr_no_subreg_operand", { REG }}, \
+ { "gpr_or_fpr_operand", { REG, SUBREG }}, \
+ { "gpr_or_int12_operand", { REG, SUBREG, CONST_INT }}, \
+ { "gpr_fpr_or_int12_operand", { REG, SUBREG, CONST_INT }}, \
+ { "gpr_or_int10_operand", { REG, SUBREG, CONST_INT }}, \
+ { "gpr_or_int_operand", { REG, SUBREG, CONST_INT }}, \
+ { "move_source_operand", { REG, SUBREG, CONST_INT, MEM, \
+ CONST_DOUBLE, CONST, \
+ SYMBOL_REF, LABEL_REF }}, \
+ { "move_destination_operand", { REG, SUBREG, MEM }}, \
+ { "condexec_source_operand", { REG, SUBREG, CONST_INT, MEM, \
+ CONST_DOUBLE }}, \
+ { "condexec_dest_operand", { REG, SUBREG, MEM }}, \
+ { "reg_or_0_operand", { REG, SUBREG, CONST_INT }}, \
+ { "lr_operand", { REG }}, \
+ { "gpr_or_memory_operand", { REG, SUBREG, MEM }}, \
+ { "fpr_or_memory_operand", { REG, SUBREG, MEM }}, \
+ { "int12_operand", { CONST_INT }}, \
+ { "int_2word_operand", { CONST_INT, CONST_DOUBLE, \
+ SYMBOL_REF, LABEL_REF, CONST }}, \
+ { "pic_register_operand", { REG }}, \
+ { "pic_symbolic_operand", { SYMBOL_REF, LABEL_REF, CONST }}, \
+ { "small_data_register_operand", { REG }}, \
+ { "small_data_symbolic_operand", { SYMBOL_REF, CONST }}, \
+ { "icc_operand", { REG }}, \
+ { "fcc_operand", { REG }}, \
+ { "cc_operand", { REG }}, \
+ { "icr_operand", { REG }}, \
+ { "fcr_operand", { REG }}, \
+ { "cr_operand", { REG }}, \
+ { "fpr_operand", { REG, SUBREG }}, \
+ { "even_reg_operand", { REG, SUBREG }}, \
+ { "odd_reg_operand", { REG, SUBREG }}, \
+ { "even_gpr_operand", { REG, SUBREG }}, \
+ { "odd_gpr_operand", { REG, SUBREG }}, \
+ { "quad_fpr_operand", { REG, SUBREG }}, \
+ { "even_fpr_operand", { REG, SUBREG }}, \
+ { "odd_fpr_operand", { REG, SUBREG }}, \
+ { "dbl_memory_one_insn_operand", { MEM }}, \
+ { "dbl_memory_two_insn_operand", { MEM }}, \
+ { "call_operand", { REG, SUBREG, PLUS, CONST_INT, \
+ SYMBOL_REF, LABEL_REF, CONST }}, \
+ { "upper_int16_operand", { CONST_INT }}, \
+ { "uint16_operand", { CONST_INT }}, \
+ { "relational_operator", { EQ, NE, LE, LT, GE, GT, \
+ LEU, LTU, GEU, GTU }}, \
+ { "signed_relational_operator", { EQ, NE, LE, LT, GE, GT }}, \
+ { "unsigned_relational_operator", { LEU, LTU, GEU, GTU }}, \
+ { "float_relational_operator", { EQ, NE, LE, LT, GE, GT }}, \
+ { "ccr_eqne_operator", { EQ, NE }}, \
+ { "minmax_operator", { SMIN, SMAX, UMIN, UMAX }}, \
+ { "condexec_si_binary_operator", { PLUS, MINUS, AND, IOR, XOR, \
+ ASHIFT, ASHIFTRT, LSHIFTRT }}, \
+ { "condexec_si_divide_operator", { DIV, UDIV }}, \
+ { "condexec_si_unary_operator", { NOT, NEG }}, \
+ { "condexec_sf_binary_operator", { PLUS, MINUS, MULT, DIV }}, \
+ { "condexec_sf_unary_operator", { ABS, NEG, SQRT }}, \
+ { "intop_compare_operator", { PLUS, MINUS, AND, IOR, XOR, \
+ ASHIFT, ASHIFTRT, LSHIFTRT }}, \
+ { "condexec_intop_cmp_operator", { PLUS, MINUS, AND, IOR, XOR, \
+ ASHIFT, ASHIFTRT, LSHIFTRT }}, \
+ { "fpr_or_int6_operand", { REG, SUBREG, CONST_INT }}, \
+ { "int6_operand", { CONST_INT }}, \
+ { "int5_operand", { CONST_INT }}, \
+ { "uint5_operand", { CONST_INT }}, \
+ { "uint4_operand", { CONST_INT }}, \
+ { "uint1_operand", { CONST_INT }}, \
+ { "acc_operand", { REG, SUBREG }}, \
+ { "even_acc_operand", { REG, SUBREG }}, \
+ { "quad_acc_operand", { REG, SUBREG }}, \
+ { "accg_operand", { REG, SUBREG }},
+
+/* An alias for a machine mode name. This is the machine mode that elements of
+ a jump-table should have. */
+#define CASE_VECTOR_MODE SImode
+
+/* Define this macro if operations between registers with integral mode smaller
+ than a word are always performed on the entire register. Most RISC machines
+ have this property and most CISC machines do not. */
+#define WORD_REGISTER_OPERATIONS
+
+/* Define this macro to be a C expression indicating when insns that read
+ memory in MODE, an integral mode narrower than a word, set the bits outside
+ of MODE to be either the sign-extension or the zero-extension of the data
+ read. Return `SIGN_EXTEND' for values of MODE for which the insn
+ sign-extends, `ZERO_EXTEND' for which it zero-extends, and `NIL' for other
+ modes.
+
+ This macro is not called with MODE non-integral or with a width greater than
+ or equal to `BITS_PER_WORD', so you may return any value in this case. Do
+ not define this macro if it would always return `NIL'. On machines where
+ this macro is defined, you will normally define it as the constant
+ `SIGN_EXTEND' or `ZERO_EXTEND'. */
+#define LOAD_EXTEND_OP(MODE) SIGN_EXTEND
+
+/* Define if loading short immediate values into registers sign extends. */
+#define SHORT_IMMEDIATES_SIGN_EXTEND
+
+/* The maximum number of bytes that a single instruction can move quickly from
+ memory to memory. */
+#define MOVE_MAX 8
+
+/* A C expression which is nonzero if on this machine it is safe to "convert"
+ an integer of INPREC bits to one of OUTPREC bits (where OUTPREC is smaller
+ than INPREC) by merely operating on it as if it had only OUTPREC bits.
+
+ On many machines, this expression can be 1.
+
+ When `TRULY_NOOP_TRUNCATION' returns 1 for a pair of sizes for modes for
+ which `MODES_TIEABLE_P' is 0, suboptimal code can result. If this is the
+ case, making `TRULY_NOOP_TRUNCATION' return 0 in such cases may improve
+ things. */
+#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
+
+/* An alias for the machine mode for pointers. On most machines, define this
+ to be the integer mode corresponding to the width of a hardware pointer;
+ `SImode' on 32-bit machine or `DImode' on 64-bit machines. On some machines
+ you must define this to be one of the partial integer modes, such as
+ `PSImode'.
+
+ The width of `Pmode' must be at least as large as the value of
+ `POINTER_SIZE'. If it is not equal, you must define the macro
+ `POINTERS_EXTEND_UNSIGNED' to specify how pointers are extended to `Pmode'. */
+#define Pmode SImode
+
+/* An alias for the machine mode used for memory references to functions being
+ called, in `call' RTL expressions. On most machines this should be
+ `QImode'. */
+#define FUNCTION_MODE QImode
+
+/* Define this macro to handle System V style pragmas: #pragma pack and
+ #pragma weak. Note, #pragma weak will only be supported if SUPPORT_WEAK is
+ defined.
+
+ Defined in svr4.h. */
+#define HANDLE_SYSV_PRAGMA 1
+
+/* A C expression for the maximum number of instructions to execute via
+ conditional execution instructions instead of a branch. A value of
+ BRANCH_COST+1 is the default if the machine does not use
+ cc0, and 1 if it does use cc0. */
+#define MAX_CONDITIONAL_EXECUTE frv_condexec_insns
+
+/* Default value of MAX_CONDITIONAL_EXECUTE if no -mcond-exec-insns= */
+#define DEFAULT_CONDEXEC_INSNS 8
+
+/* A C expression to modify the code described by the conditional if
+ information CE_INFO, possibly updating the tests in TRUE_EXPR, and
+ FALSE_EXPR for converting if-then and if-then-else code to conditional
+ instructions. Set either TRUE_EXPR or FALSE_EXPR to a null pointer if the
+ tests cannot be converted. */
+#define IFCVT_MODIFY_TESTS(CE_INFO, TRUE_EXPR, FALSE_EXPR) \
+frv_ifcvt_modify_tests (CE_INFO, &TRUE_EXPR, &FALSE_EXPR)
+
+/* A C expression to modify the code described by the conditional if
+ information CE_INFO, for the basic block BB, possibly updating the tests in
+ TRUE_EXPR, and FALSE_EXPR for converting the && and || parts of if-then or
+ if-then-else code to conditional instructions. OLD_TRUE and OLD_FALSE are
+ the previous tests. Set either TRUE_EXPR or FALSE_EXPR to a null pointer if
+ the tests cannot be converted. */
+#define IFCVT_MODIFY_MULTIPLE_TESTS(CE_INFO, BB, TRUE_EXPR, FALSE_EXPR) \
+frv_ifcvt_modify_multiple_tests (CE_INFO, BB, &TRUE_EXPR, &FALSE_EXPR)
+
+/* A C expression to modify the code described by the conditional if
+ information CE_INFO with the new PATTERN in INSN. If PATTERN is a null
+ pointer after the IFCVT_MODIFY_INSN macro executes, it is assumed that that
+ insn cannot be converted to be executed conditionally. */
+#define IFCVT_MODIFY_INSN(CE_INFO, PATTERN, INSN) \
+(PATTERN) = frv_ifcvt_modify_insn (CE_INFO, PATTERN, INSN)
+
+/* A C expression to perform any final machine dependent modifications in
+ converting code to conditional execution in the code described by the
+ conditional if information CE_INFO. */
+#define IFCVT_MODIFY_FINAL(CE_INFO) frv_ifcvt_modify_final (CE_INFO)
+
+/* A C expression to cancel any machine dependent modifications in converting
+ code to conditional execution in the code described by the conditional if
+ information CE_INFO. */
+#define IFCVT_MODIFY_CANCEL(CE_INFO) frv_ifcvt_modify_cancel (CE_INFO)
+
+/* Initialize the extra fields provided by IFCVT_EXTRA_FIELDS. */
+#define IFCVT_INIT_EXTRA_FIELDS(CE_INFO) frv_ifcvt_init_extra_fields (CE_INFO)
+
+/* Indicate how many instructions can be issued at the same time. */
+#define ISSUE_RATE \
+(! TARGET_PACK ? 1 \
+ : (frv_cpu_type == FRV_CPU_GENERIC \
+ || frv_cpu_type == FRV_CPU_FR500 \
+ || frv_cpu_type == FRV_CPU_TOMCAT) ? 4 \
+ : frv_cpu_type == FRV_CPU_FR400 ? 2 : 1)
+
+/* Set and clear whether this insn begins a VLIW insn. */
+#define CLEAR_VLIW_START(INSN) PUT_MODE (INSN, VOIDmode)
+#define SET_VLIW_START(INSN) PUT_MODE (INSN, TImode)
+
+/* The definition of the following macro results in that the 2nd jump
+ optimization (after the 2nd insn scheduling) is minimal. It is
+ necessary to define when start cycle marks of insns (TImode is used
+ for this) is used for VLIW insn packing. Some jump optimizations
+ make such marks invalid. These marks are corrected for some
+ (minimal) optimizations. ??? Probably the macro is temporary.
+ Final solution could making the 2nd jump optimizations before the
+ 2nd instruction scheduling or corrections of the marks for all jump
+ optimizations. Although some jump optimizations are actually
+ deoptimizations for VLIW (super-scalar) processors. */
+
+#define MINIMAL_SECOND_JUMP_OPTIMIZATION
+
+/* Return true if parallel operations are expected to be emitted via the
+ packing flag. */
+#define PACKING_FLAG_USED_P() \
+(optimize && flag_schedule_insns_after_reload && ISSUE_RATE > 1)
+
+/* If the following macro is defined and nonzero and deterministic
+ finite state automata are used for pipeline hazard recognition, the
+ code making resource-constrained software pipelining is on. */
+#define RCSP_SOFTWARE_PIPELINING 1
+
+/* If the following macro is defined and nonzero and deterministic
+ finite state automata are used for pipeline hazard recognition, we
+ will try to exchange insns in queue ready to improve the schedule.
+ The more macro value, the more tries will be made. */
+#define FIRST_CYCLE_MULTIPASS_SCHEDULING 1
+
+/* The following macro is used only when value of
+ FIRST_CYCLE_MULTIPASS_SCHEDULING is nonzero. The more macro value,
+ the more tries will be made to choose better schedule. If the
+ macro value is zero or negative there will be no multi-pass
+ scheduling. */
+#define FIRST_CYCLE_MULTIPASS_SCHEDULING_LOOKAHEAD frv_sched_lookahead
+
+/* Return true if a function is ok to be called as a sibcall. */
+#define FUNCTION_OK_FOR_SIBCALL(DECL) 0
+
+enum frv_builtins
+{
+ FRV_BUILTIN_MAND,
+ FRV_BUILTIN_MOR,
+ FRV_BUILTIN_MXOR,
+ FRV_BUILTIN_MNOT,
+ FRV_BUILTIN_MAVEH,
+ FRV_BUILTIN_MSATHS,
+ FRV_BUILTIN_MSATHU,
+ FRV_BUILTIN_MADDHSS,
+ FRV_BUILTIN_MADDHUS,
+ FRV_BUILTIN_MSUBHSS,
+ FRV_BUILTIN_MSUBHUS,
+ FRV_BUILTIN_MPACKH,
+ FRV_BUILTIN_MQADDHSS,
+ FRV_BUILTIN_MQADDHUS,
+ FRV_BUILTIN_MQSUBHSS,
+ FRV_BUILTIN_MQSUBHUS,
+ FRV_BUILTIN_MUNPACKH,
+ FRV_BUILTIN_MDPACKH,
+ FRV_BUILTIN_MBTOH,
+ FRV_BUILTIN_MHTOB,
+ FRV_BUILTIN_MCOP1,
+ FRV_BUILTIN_MCOP2,
+ FRV_BUILTIN_MROTLI,
+ FRV_BUILTIN_MROTRI,
+ FRV_BUILTIN_MWCUT,
+ FRV_BUILTIN_MSLLHI,
+ FRV_BUILTIN_MSRLHI,
+ FRV_BUILTIN_MSRAHI,
+ FRV_BUILTIN_MEXPDHW,
+ FRV_BUILTIN_MEXPDHD,
+ FRV_BUILTIN_MMULHS,
+ FRV_BUILTIN_MMULHU,
+ FRV_BUILTIN_MMULXHS,
+ FRV_BUILTIN_MMULXHU,
+ FRV_BUILTIN_MMACHS,
+ FRV_BUILTIN_MMACHU,
+ FRV_BUILTIN_MMRDHS,
+ FRV_BUILTIN_MMRDHU,
+ FRV_BUILTIN_MQMULHS,
+ FRV_BUILTIN_MQMULHU,
+ FRV_BUILTIN_MQMULXHU,
+ FRV_BUILTIN_MQMULXHS,
+ FRV_BUILTIN_MQMACHS,
+ FRV_BUILTIN_MQMACHU,
+ FRV_BUILTIN_MCPXRS,
+ FRV_BUILTIN_MCPXRU,
+ FRV_BUILTIN_MCPXIS,
+ FRV_BUILTIN_MCPXIU,
+ FRV_BUILTIN_MQCPXRS,
+ FRV_BUILTIN_MQCPXRU,
+ FRV_BUILTIN_MQCPXIS,
+ FRV_BUILTIN_MQCPXIU,
+ FRV_BUILTIN_MCUT,
+ FRV_BUILTIN_MCUTSS,
+ FRV_BUILTIN_MWTACC,
+ FRV_BUILTIN_MWTACCG,
+ FRV_BUILTIN_MRDACC,
+ FRV_BUILTIN_MRDACCG,
+ FRV_BUILTIN_MTRAP,
+ FRV_BUILTIN_MCLRACC,
+ FRV_BUILTIN_MCLRACCA,
+ FRV_BUILTIN_MDUNPACKH,
+ FRV_BUILTIN_MBTOHE,
+ FRV_BUILTIN_MQXMACHS,
+ FRV_BUILTIN_MQXMACXHS,
+ FRV_BUILTIN_MQMACXHS,
+ FRV_BUILTIN_MADDACCS,
+ FRV_BUILTIN_MSUBACCS,
+ FRV_BUILTIN_MASACCS,
+ FRV_BUILTIN_MDADDACCS,
+ FRV_BUILTIN_MDSUBACCS,
+ FRV_BUILTIN_MDASACCS,
+ FRV_BUILTIN_MABSHS,
+ FRV_BUILTIN_MDROTLI,
+ FRV_BUILTIN_MCPLHI,
+ FRV_BUILTIN_MCPLI,
+ FRV_BUILTIN_MDCUTSSI,
+ FRV_BUILTIN_MQSATHS,
+ FRV_BUILTIN_MHSETLOS,
+ FRV_BUILTIN_MHSETLOH,
+ FRV_BUILTIN_MHSETHIS,
+ FRV_BUILTIN_MHSETHIH,
+ FRV_BUILTIN_MHDSETS,
+ FRV_BUILTIN_MHDSETH
+};
+
+/* Enable prototypes on the call rtl functions. */
+#define MD_CALL_PROTOTYPES 1
+
+extern GTY(()) rtx frv_compare_op0; /* operand save for */
+extern GTY(()) rtx frv_compare_op1; /* comparison generation */
+
+#endif /* __FRV_H__ */
diff --git a/contrib/gcc/config/frv/frv.md b/contrib/gcc/config/frv/frv.md
new file mode 100644
index 0000000..a5e82ee
--- /dev/null
+++ b/contrib/gcc/config/frv/frv.md
@@ -0,0 +1,7441 @@
+;; Frv Machine Description
+;; Copyright (C) 1999, 2000, 2001 Free Software Foundation, Inc.
+;; Contributed by Red Hat, Inc.
+
+;; This file is part of GNU CC.
+
+;; GNU CC is free software; you can redistribute it and/or modify
+;; it under the terms of the GNU General Public License as published by
+;; the Free Software Foundation; either version 2, or (at your option)
+;; any later version.
+
+;; GNU CC is distributed in the hope that it will be useful,
+;; but WITHOUT ANY WARRANTY; without even the implied warranty of
+;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+;; GNU General Public License for more details.
+
+;; You should have received a copy of the GNU General Public License
+;; along with GNU CC; see the file COPYING. If not, write to
+;; the Free Software Foundation, 59 Temple Place - Suite 330,
+;; Boston, MA 02111-1307, USA.
+
+;;- See file "rtl.def" for documentation on define_insn, match_*, et. al.
+
+
+;; ::::::::::::::::::::
+;; ::
+;; :: Unspec's used
+;; ::
+;; ::::::::::::::::::::
+
+(define_constants
+ [(UNSPEC_BLOCKAGE 0)
+ (UNSPEC_CC_TO_GPR 1)
+ (UNSPEC_GPR_TO_CC 2)
+ (UNSPEC_PIC_PROLOGUE 3)
+ (UNSPEC_CR_LOGIC 4)
+ (UNSPEC_STACK_ADJUST 5)
+ (UNSPEC_EH_RETURN_EPILOGUE 6)])
+
+
+
+;; ::::::::::::::::::::
+;; ::
+;; :: Constraints
+;; ::
+;; ::::::::::::::::::::
+
+;; Standard Constraints
+;;
+;; `m' A memory operand is allowed, with any kind of address that the
+;; machine supports in general.
+;;
+;; `o' A memory operand is allowed, but only if the address is
+;; "offsettable". This means that adding a small integer (actually, the
+;; width in bytes of the operand, as determined by its machine mode) may be
+;; added to the address and the result is also a valid memory address.
+;;
+;; `V' A memory operand that is not offsettable. In other words,
+;; anything that would fit the `m' constraint but not the `o' constraint.
+;;
+;; `<' A memory operand with autodecrement addressing (either
+;; predecrement or postdecrement) is allowed.
+;;
+;; `>' A memory operand with autoincrement addressing (either
+;; preincrement or postincrement) is allowed.
+;;
+;; `r' A register operand is allowed provided that it is in a general
+;; register.
+;;
+;; `d', `a', `f', ...
+;; Other letters can be defined in machine-dependent fashion to stand for
+;; particular classes of registers. `d', `a' and `f' are defined on the
+;; 68000/68020 to stand for data, address and floating point registers.
+;;
+;; `i' An immediate integer operand (one with constant value) is allowed.
+;; This includes symbolic constants whose values will be known only at
+;; assembly time.
+;;
+;; `n' An immediate integer operand with a known numeric value is allowed.
+;; Many systems cannot support assembly-time constants for operands less
+;; than a word wide. Constraints for these operands should use `n' rather
+;; than `i'.
+;;
+;; 'I' First machine-dependent integer constant (6 bit signed ints).
+;; 'J' Second machine-dependent integer constant (10 bit signed ints).
+;; 'K' Third machine-dependent integer constant (-2048).
+;; 'L' Fourth machine-dependent integer constant (16 bit signed ints).
+;; 'M' Fifth machine-dependent integer constant (16 bit unsigned ints).
+;; 'N' Sixth machine-dependent integer constant (-2047..-1).
+;; 'O' Seventh machine-dependent integer constant (zero).
+;; 'P' Eighth machine-dependent integer constant (1..2047).
+;;
+;; Other letters in the range `I' through `P' may be defined in a
+;; machine-dependent fashion to permit immediate integer operands with
+;; explicit integer values in specified ranges. For example, on the 68000,
+;; `I' is defined to stand for the range of values 1 to 8. This is the
+;; range permitted as a shift count in the shift instructions.
+;;
+;; `E' An immediate floating operand (expression code `const_double') is
+;; allowed, but only if the target floating point format is the same as
+;; that of the host machine (on which the compiler is running).
+;;
+;; `F' An immediate floating operand (expression code `const_double') is
+;; allowed.
+;;
+;; 'G' First machine-dependent const_double.
+;; 'H' Second machine-dependent const_double.
+;;
+;; `s' An immediate integer operand whose value is not an explicit
+;; integer is allowed.
+;;
+;; This might appear strange; if an insn allows a constant operand with a
+;; value not known at compile time, it certainly must allow any known
+;; value. So why use `s' instead of `i'? Sometimes it allows better code
+;; to be generated.
+;;
+;; For example, on the 68000 in a fullword instruction it is possible to
+;; use an immediate operand; but if the immediate value is between -128 and
+;; 127, better code results from loading the value into a register and
+;; using the register. This is because the load into the register can be
+;; done with a `moveq' instruction. We arrange for this to happen by
+;; defining the letter `K' to mean "any integer outside the range -128 to
+;; 127", and then specifying `Ks' in the operand constraints.
+;;
+;; `g' Any register, memory or immediate integer operand is allowed,
+;; except for registers that are not general registers.
+;;
+;; `X' Any operand whatsoever is allowed, even if it does not satisfy
+;; `general_operand'. This is normally used in the constraint of a
+;; `match_scratch' when certain alternatives will not actually require a
+;; scratch register.
+;;
+;; `0' Match operand 0.
+;; `1' Match operand 1.
+;; `2' Match operand 2.
+;; `3' Match operand 3.
+;; `4' Match operand 4.
+;; `5' Match operand 5.
+;; `6' Match operand 6.
+;; `7' Match operand 7.
+;; `8' Match operand 8.
+;; `9' Match operand 9.
+;;
+;; An operand that matches the specified operand number is allowed. If a
+;; digit is used together with letters within the same alternative, the
+;; digit should come last.
+;;
+;; This is called a "matching constraint" and what it really means is that
+;; the assembler has only a single operand that fills two roles considered
+;; separate in the RTL insn. For example, an add insn has two input
+;; operands and one output operand in the RTL, but on most CISC machines an
+;; add instruction really has only two operands, one of them an
+;; input-output operand:
+;;
+;; addl #35,r12
+;;
+;; Matching constraints are used in these circumstances. More precisely,
+;; the two operands that match must include one input-only operand and one
+;; output-only operand. Moreover, the digit must be a smaller number than
+;; the number of the operand that uses it in the constraint.
+;;
+;; For operands to match in a particular case usually means that they are
+;; identical-looking RTL expressions. But in a few special cases specific
+;; kinds of dissimilarity are allowed. For example, `*x' as an input
+;; operand will match `*x++' as an output operand. For proper results in
+;; such cases, the output template should always use the output-operand's
+;; number when printing the operand.
+;;
+;; `p' An operand that is a valid memory address is allowed. This is for
+;; "load address" and "push address" instructions.
+;;
+;; `p' in the constraint must be accompanied by `address_operand' as the
+;; predicate in the `match_operand'. This predicate interprets the mode
+;; specified in the `match_operand' as the mode of the memory reference for
+;; which the address would be valid.
+;;
+;; `Q` First non constant, non register machine-dependent insns
+;; `R` Second non constant, non register machine-dependent insns
+;; `S` Third non constant, non register machine-dependent insns
+;; `T` Fourth non constant, non register machine-dependent insns
+;; `U` Fifth non constant, non register machine-dependent insns
+;;
+;; Letters in the range `Q' through `U' may be defined in a
+;; machine-dependent fashion to stand for arbitrary operand types. The
+;; machine description macro `EXTRA_CONSTRAINT' is passed the operand as
+;; its first argument and the constraint letter as its second operand.
+;;
+;; A typical use for this would be to distinguish certain types of memory
+;; references that affect other insn operands.
+;;
+;; Do not define these constraint letters to accept register references
+;; (`reg'); the reload pass does not expect this and would not handle it
+;; properly.
+
+;; Multiple Alternative Constraints
+;; `?' Disparage slightly the alternative that the `?' appears in, as a
+;; choice when no alternative applies exactly. The compiler regards this
+;; alternative as one unit more costly for each `?' that appears in it.
+;;
+;; `!' Disparage severely the alternative that the `!' appears in. This
+;; alternative can still be used if it fits without reloading, but if
+;; reloading is needed, some other alternative will be used.
+
+;; Constraint modifiers
+;; `=' Means that this operand is write-only for this instruction: the
+;; previous value is discarded and replaced by output data.
+;;
+;; `+' Means that this operand is both read and written by the
+;; instruction.
+;;
+;; When the compiler fixes up the operands to satisfy the constraints, it
+;; needs to know which operands are inputs to the instruction and which are
+;; outputs from it. `=' identifies an output; `+' identifies an operand
+;; that is both input and output; all other operands are assumed to be
+;; input only.
+;;
+;; `&' Means (in a particular alternative) that this operand is written
+;; before the instruction is finished using the input operands. Therefore,
+;; this operand may not lie in a register that is used as an input operand
+;; or as part of any memory address.
+;;
+;; `&' applies only to the alternative in which it is written. In
+;; constraints with multiple alternatives, sometimes one alternative
+;; requires `&' while others do not.
+;;
+;; `&' does not obviate the need to write `='.
+;;
+;; `%' Declares the instruction to be commutative for this operand and the
+;; following operand. This means that the compiler may interchange the two
+;; operands if that is the cheapest way to make all operands fit the
+;; constraints. This is often used in patterns for addition instructions
+;; that really have only two operands: the result must go in one of the
+;; arguments.
+;;
+;; `#' Says that all following characters, up to the next comma, are to be
+;; ignored as a constraint. They are significant only for choosing
+;; register preferences.
+;;
+;; `*' Says that the following character should be ignored when choosing
+;; register preferences. `*' has no effect on the meaning of the
+;; constraint as a constraint, and no effect on reloading.
+
+
+;; ::::::::::::::::::::
+;; ::
+;; :: Attributes
+;; ::
+;; ::::::::::::::::::::
+
+;; The `define_attr' expression is used to define each attribute required by
+;; the target machine. It looks like:
+;;
+;; (define_attr NAME LIST-OF-VALUES DEFAULT)
+
+;; NAME is a string specifying the name of the attribute being defined.
+
+;; LIST-OF-VALUES is either a string that specifies a comma-separated list of
+;; values that can be assigned to the attribute, or a null string to indicate
+;; that the attribute takes numeric values.
+
+;; DEFAULT is an attribute expression that gives the value of this attribute
+;; for insns that match patterns whose definition does not include an explicit
+;; value for this attribute.
+
+;; For each defined attribute, a number of definitions are written to the
+;; `insn-attr.h' file. For cases where an explicit set of values is specified
+;; for an attribute, the following are defined:
+
+;; * A `#define' is written for the symbol `HAVE_ATTR_NAME'.
+;;
+;; * An enumeral class is defined for `attr_NAME' with elements of the
+;; form `UPPER-NAME_UPPER-VALUE' where the attribute name and value are first
+;; converted to upper case.
+;;
+;; * A function `get_attr_NAME' is defined that is passed an insn and
+;; returns the attribute value for that insn.
+
+;; For example, if the following is present in the `md' file:
+;;
+;; (define_attr "type" "branch,fp,load,store,arith" ...)
+;;
+;; the following lines will be written to the file `insn-attr.h'.
+;;
+;; #define HAVE_ATTR_type
+;; enum attr_type {TYPE_BRANCH, TYPE_FP, TYPE_LOAD, TYPE_STORE, TYPE_ARITH};
+;; extern enum attr_type get_attr_type ();
+
+;; If the attribute takes numeric values, no `enum' type will be defined and
+;; the function to obtain the attribute's value will return `int'.
+
+(define_attr "length" "" (const_int 4))
+
+;; Processor type -- this attribute must exactly match the processor_type
+;; enumeration in frv-protos.h.
+
+(define_attr "cpu" "generic,fr500,fr400,fr300,simple,tomcat"
+ (const (symbol_ref "frv_cpu_type")))
+
+;; Attribute is "yes" for branches and jumps that span too great a distance
+;; to be implemented in the most natural way. Such instructions will use
+;; a call instruction in some way.
+
+(define_attr "far_jump" "yes,no" (const_string "no"))
+
+;; Instruction type
+
+;; The table below summarises the types of media instruction and their
+;; scheduling classification. Headings are:
+
+;; Type: the name of the define_attr type
+;; Conditions: "yes" if conditional variants are available
+;; FR500: Fujitsu's categorisation for the FR500
+;; FR400: Fujitsu's categorisation for the FR400 (but see below).
+
+;; On the FR400, media instructions are divided into 2 broad categories.
+;; Category 1 instructions can execute in either the M0 or M1 unit and can
+;; execute in parallel with other category 1 instructions. Category 2
+;; instructions must use the M0 unit, and therefore cannot run in parallel
+;; with other media instructions.
+
+;; The FR400 documentation also divides media instructions into one of seven
+;; categories (m1 to m7). m1 to m4 contain both Category 1 and Category 2
+;; instructions, so we use a combination of the categories here.
+
+;; Type Conditional FR500 FR400
+;; ---- ---------- ----- -----
+;; mlogic yes m1 m1:1
+;; mrdacc no m2 m4:1
+;; mwtacc no m3 m5:1
+;; maveh no m1 m1:1
+;; msath no m1 m1:1
+;; maddh yes m1 m1:1
+;; mqaddh yes m1 m1:2
+;; mpackh no m2 m3:1
+;; munpackh no m2 m3:2
+;; mdpackh no m5 m3:2
+;; mbhconv yes m2 m3:2
+;; mrot no m2 m3:1
+;; mshift no m2 m3:1
+;; mexpdhw yes m2 m3:1
+;; mexpdhd yes m2 m3:2
+;; mwcut no m2 m3:2
+;; mmulh yes m4 m2:1
+;; mmulxh no m4 m2:1
+;; mmach yes m4 m2:1
+;; mmrdh no m4 m2:1
+;; mqmulh yes m4 m2:2
+;; mqmulxh no m4 m2:2
+;; mqmach yes m4 m2:2
+;; mcpx yes m4 m2:1
+;; mqcpx yes m4 m2:2
+;; mcut no m2 m4:1
+;; mclracc no m3 m4:1
+;; mclracca no m6 m4:2
+;; mdunpackh no m2 n/a
+;; mbhconve no m2 n/a
+;; maddacc no n/a m2:1
+;; mdaddacc no n/a m2:2
+;; mabsh no n/a m1:1
+;; mdrot no n/a m3:2
+;; mcpl no n/a m3:2
+;; mdcut no n/a m4:2
+;; mqsath no n/a m1:2
+;; mset no n/a m1:1
+
+(define_attr "type"
+ "int,sethi,setlo,mul,div,gload,gstore,fload,fstore,movfg,movgf,branch,jump,jumpl,call,spr,trap,fsconv,fsadd,fsmul,fmas,fsdiv,sqrt_single,fdconv,fdadd,fdmul,fddiv,sqrt_double,mlogic,maveh,msath,maddh,mqaddh,mpackh,munpackh,mdpackh,mbhconv,mrot,mshift,mexpdhw,mexpdhd,mwcut,mmulh,mmulxh,mmach,mmrdh,mqmulh,mqmulxh,mqmach,mcpx,mqcpx,mcut,mclracc,mclracca,mdunpackh,mbhconve,mrdacc,mwtacc,maddacc,mdaddacc,mabsh,mdrot,mcpl,mdcut,mqsath,mset,m7,ccr,multi,unknown"
+ (const_string "unknown"))
+
+
+
+/* This is description of pipeline hazards based on DFA. The
+ following constructions can be used for this:
+
+ o define_cpu_unit string [string]) describes a cpu functional unit
+ (separated by comma).
+
+ 1st operand: Names of cpu function units.
+ 2nd operand: Name of automaton (see comments for
+ DEFINE_AUTOMATON).
+
+ All define_reservations and define_cpu_units should have unique
+ names which can not be "nothing".
+
+ o (exclusion_set string string) means that each CPU function unit
+ in the first string can not be reserved simultaneously with each
+ unit whose name is in the second string and vise versa. CPU
+ units in the string are separated by commas. For example, it is
+ useful for description CPU with fully pipelined floating point
+ functional unit which can execute simultaneously only single
+ floating point insns or only double floating point insns.
+
+ o (presence_set string string) means that each CPU function unit in
+ the first string can not be reserved unless at least one of units
+ whose names are in the second string is reserved. This is an
+ asymmetric relation. CPU units in the string are separated by
+ commas. For example, it is useful for description that slot1 is
+ reserved after slot0 reservation for a VLIW processor.
+
+ o (absence_set string string) means that each CPU function unit in
+ the first string can not be reserved only if each unit whose name
+ is in the second string is not reserved. This is an asymmetric
+ relation (actually exclusion set is analogous to this one but it
+ is symmetric). CPU units in the string are separated by commas.
+ For example, it is useful for description that slot0 can not be
+ reserved after slot1 or slot2 reservation for a VLIW processor.
+
+ o (define_bypass number out_insn_names in_insn_names) names bypass with
+ given latency (the first number) from insns given by the first
+ string (see define_insn_reservation) into insns given by the
+ second string. Insn names in the strings are separated by
+ commas.
+
+ o (define_automaton string) describes names of an automaton
+ generated and used for pipeline hazards recognition. The names
+ are separated by comma. Actually it is possibly to generate the
+ single automaton but unfortunately it can be very large. If we
+ use more one automata, the summary size of the automata usually
+ is less than the single one. The automaton name is used in
+ define_cpu_unit. All automata should have unique names.
+
+ o (define_reservation string string) names reservation (the first
+ string) of cpu functional units (the 2nd string). Sometimes unit
+ reservations for different insns contain common parts. In such
+ case, you describe common part and use one its name (the 1st
+ parameter) in regular expression in define_insn_reservation. All
+ define_reservations, define results and define_cpu_units should
+ have unique names which can not be "nothing".
+
+ o (define_insn_reservation name default_latency condition regexpr)
+ describes reservation of cpu functional units (the 3nd operand)
+ for instruction which is selected by the condition (the 2nd
+ parameter). The first parameter is used for output of debugging
+ information. The reservations are described by a regular
+ expression according the following syntax:
+
+ regexp = regexp "," oneof
+ | oneof
+
+ oneof = oneof "|" allof
+ | allof
+
+ allof = allof "+" repeat
+ | repeat
+
+ repeat = element "*" number
+ | element
+
+ element = cpu_function_name
+ | reservation_name
+ | result_name
+ | "nothing"
+ | "(" regexp ")"
+
+ 1. "," is used for describing start of the next cycle in
+ reservation.
+
+ 2. "|" is used for describing the reservation described by the
+ first regular expression *or* the reservation described by
+ the second regular expression *or* etc.
+
+ 3. "+" is used for describing the reservation described by the
+ first regular expression *and* the reservation described by
+ the second regular expression *and* etc.
+
+ 4. "*" is used for convinience and simply means sequence in
+ which the regular expression are repeated NUMBER times with
+ cycle advancing (see ",").
+
+ 5. cpu function unit name which means reservation.
+
+ 6. reservation name -- see define_reservation.
+
+ 7. string "nothing" means no units reservation.
+
+*/
+
+(define_automaton "nodiv, idiv, div")
+
+;; An FR500 packet can contain a single control instruction or a sequence
+;; of up to four operations matching the regular expression:
+
+;; (I FM? I? FM? | FM? FM?) B? B?
+
+;; where I denotes an integer operation, FM a floating-point or media
+;; operation, and B a branch operation. There are two units for each type
+;; of instruction: I0 and I1, FM0 and FM1, and B0 and B1. Units are
+;; allocated left-to-right: the first integer instruction uses I0, the
+;; second uses I1, and so on.
+
+;; The FR400 is similar to the FR500 except that it allows only 2 operations
+;; per packet and has only one branch unit. We can use the FR500 conflict
+;; description for the FR400, but need to define different cpu_units
+;; later.
+
+;; Slot/unit combinations available on the FR400 and above:
+(define_cpu_unit "sl0_i0, sl0_fm0, sl0_b0, sl0_c" "nodiv")
+(define_cpu_unit "sl1_fm0, sl1_i1, sl1_fm1, sl1_b0" "nodiv")
+
+;; These are available on the FR500 and above:
+(define_cpu_unit "sl1_b1" "nodiv")
+(define_cpu_unit "sl2_i1, sl2_fm1, sl2_b0, sl2_b1" "nodiv")
+(define_cpu_unit "sl3_fm1, sl3_b0, sl3_b1" "nodiv")
+
+;; The following describes conlicts by slots
+;; slot0
+(exclusion_set "sl0_i0" "sl0_fm0,sl0_b0,sl0_c")
+(exclusion_set "sl0_fm0" "sl0_b0,sl0_c")
+(exclusion_set "sl0_b0" "sl0_c")
+
+;; slot1
+(exclusion_set "sl1_fm0" "sl1_i1,sl1_fm1,sl1_b0,sl1_b1")
+(exclusion_set "sl1_i1" "sl1_fm1,sl1_b0,sl1_b1")
+(exclusion_set "sl1_fm1" "sl1_b0,sl1_b1")
+(exclusion_set "sl1_b0" "sl1_b1")
+
+;; slot2
+(exclusion_set "sl2_i1" "sl2_fm1,sl2_b0,sl2_b1")
+(exclusion_set "sl2_fm1" "sl2_b0,sl2_b1")
+(exclusion_set "sl2_b0" "sl2_b1")
+
+;; slot3
+(exclusion_set "sl3_fm1" "sl3_b0,sl3_b1")
+(exclusion_set "sl3_b0" "sl3_b1")
+
+;; The following describes conlicts by units
+;; fm0
+(exclusion_set "sl0_fm0" "sl1_fm0")
+
+;; b0
+(exclusion_set "sl0_b0" "sl1_b0,sl2_b0,sl3_b0")
+(exclusion_set "sl1_b0" "sl2_b0,sl3_b0")
+(exclusion_set "sl2_b0" "sl3_b0")
+
+;; i1
+(exclusion_set "sl1_i1" "sl2_i1")
+
+;; fm1
+(exclusion_set "sl1_fm1" "sl2_fm1,sl3_fm1")
+(exclusion_set "sl2_fm1" "sl3_fm1")
+
+;; b1
+(exclusion_set "sl1_b1" "sl2_b1,sl3_b1")
+(exclusion_set "sl2_b1" "sl3_b1")
+
+;; The following describes remaining combinations of conflicts
+;; slot0
+(exclusion_set "sl0_i0" "sl1_fm1,sl1_b1")
+(exclusion_set "sl0_fm0" "sl1_i1,sl1_b1,sl2_i1,sl2_fm1,sl3_fm1,sl3_b0")
+(exclusion_set "sl0_b0" "sl1_fm0,sl1_i1,sl1_fm1,sl2_i1,sl2_fm1,sl2_b1,\
+ sl3_fm1,sl3_b1")
+(exclusion_set "sl0_c" "sl1_fm0,sl1_i1,sl1_fm1,sl1_b0,sl1_b1,sl2_i1,sl2_fm1,\
+ sl2_b0,sl2_b1,sl3_fm1,sl3_b0,sl3_b1")
+
+
+;; slot1
+(exclusion_set "sl1_fm0" "sl2_b1")
+(exclusion_set "sl1_i1" "sl2_fm1,sl2_b1,sl3_fm1,sl3_b0")
+(exclusion_set "sl1_fm1" "sl2_i1,sl2_b1,sl3_b0")
+(exclusion_set "sl1_b0" "sl2_i1,sl2_fm1,sl3_fm1,sl3_b1")
+(exclusion_set "sl1_b1" "sl2_i1,sl2_fm1,sl2_b0,sl3_fm1,sl3_b0")
+
+;; slot2
+(exclusion_set "sl2_i1" "sl3_b1")
+(exclusion_set "sl2_fm1" "sl3_b1")
+(exclusion_set "sl2_b0" "sl3_fm1")
+(exclusion_set "sl2_b1" "sl3_fm1,sl3_b0")
+
+;; slot3
+(exclusion_set "sl1_fm0" "sl2_i1,sl2_fm1,sl2_b0,sl2_b1,sl3_fm1,sl3_b0,sl3_b1")
+(exclusion_set "sl3_fm1" "sl2_i1,sl2_fm1,sl2_b0,sl2_b1,sl3_b0,sl3_b1")
+
+;; ::::::::::::::::::::
+;; ::
+;; :: Generic/FR500 scheduler description
+;; ::
+;; ::::::::::::::::::::
+
+;; Define reservation in order to describe only in terms of units.
+
+(define_reservation "i0" "sl0_i0")
+(define_reservation "f0" "sl0_fm0|sl1_fm0")
+(define_reservation "m0" "f0")
+(define_reservation "b0" "sl0_b0|sl1_b0|sl2_b0|sl3_b0")
+(define_reservation "c" "sl0_c")
+(define_reservation "i1" "sl1_i1|sl2_i1")
+(define_reservation "f1" "sl1_fm1|sl2_fm1|sl3_fm1")
+(define_reservation "m1" "f1")
+(define_reservation "b1" "sl1_b1|sl2_b1|sl3_b1")
+
+;; Integer insns
+;; It is not possibly to issue load & store in one VLIW insn.
+(define_cpu_unit "idiv1" "idiv")
+(define_cpu_unit "idiv2" "idiv")
+(define_cpu_unit "l0" "nodiv")
+(define_cpu_unit "l1" "nodiv")
+(define_cpu_unit "s0" "nodiv")
+
+(exclusion_set "l1,l0" "s0")
+
+;; We set the default_latency of sethi to be 0 to allow sethi and setlo to be
+;; combined in the same VLIW instruction as allowed by the architecture. This
+;; assumes the only use of sethi is always followed by a setlo of the same
+;; register.
+(define_insn_reservation "i1_sethi" 0
+ (and (eq_attr "cpu" "generic,fr500,tomcat")
+ (eq_attr "type" "sethi"))
+ "i0|i1")
+
+(define_insn_reservation "i1_setlo" 1
+ (and (eq_attr "cpu" "generic,fr500,tomcat")
+ (eq_attr "type" "setlo"))
+ "i0|i1")
+
+(define_insn_reservation "i1_int" 1
+ (and (eq_attr "cpu" "generic,fr500,tomcat")
+ (eq_attr "type" "int"))
+ "i0|i1")
+
+(define_insn_reservation "i1_mul" 3
+ (and (eq_attr "cpu" "generic,fr500,tomcat")
+ (eq_attr "type" "mul"))
+ "i0|i1")
+
+(define_insn_reservation "i1_div" 19
+ (and (eq_attr "cpu" "generic,fr500,tomcat")
+ (eq_attr "type" "div"))
+ "(i0|i1),(idiv1*18|idiv2*18)")
+
+(define_insn_reservation "i2_gload" 4
+ (and (eq_attr "cpu" "generic,fr500,tomcat")
+ (eq_attr "type" "gload"))
+ "(i0|i1)+(l0|l1)")
+
+(define_insn_reservation "i2_fload" 4
+ (and (eq_attr "cpu" "generic,fr500,tomcat")
+ (eq_attr "type" "fload"))
+ "(i0|i1)+(l0|l1)")
+
+(define_insn_reservation "i3_gstore" 0
+ (and (eq_attr "cpu" "generic,fr500,tomcat")
+ (eq_attr "type" "gstore"))
+ "i0+s0")
+
+(define_insn_reservation "i3_fstore" 0
+ (and (eq_attr "cpu" "generic,fr500,tomcat")
+ (eq_attr "type" "fstore"))
+ "i0+s0")
+
+(define_insn_reservation "i4_move_gf" 3
+ (and (eq_attr "cpu" "generic,fr500,tomcat")
+ (eq_attr "type" "movgf"))
+ "i0")
+
+(define_insn_reservation "i4_move_fg" 3
+ (and (eq_attr "cpu" "generic,fr500,tomcat")
+ (eq_attr "type" "movfg"))
+ "i0")
+
+(define_insn_reservation "i5" 0
+ (and (eq_attr "cpu" "generic,fr500,tomcat")
+ (eq_attr "type" "jumpl"))
+ "i0")
+
+;; Clear/commit is not generated now:
+(define_insn_reservation "i6" 0 (const_int 0) "i0|i1")
+
+;;
+;; Branch-instructions
+;;
+(define_insn_reservation "b1/b3" 0
+ (and (eq_attr "cpu" "generic,fr500,tomcat")
+ (eq_attr "type" "jump,branch,ccr"))
+ "b0|b1")
+
+;; The following insn is not generated now.
+
+(define_insn_reservation "b2" 0 (const_int 0) "b0")
+
+(define_insn_reservation "b4" 0
+ (and (eq_attr "cpu" "generic,fr500,tomcat")
+ (eq_attr "type" "call"))
+ "b0")
+
+;; The following insns are not generated now.
+(define_insn_reservation "b5" 0 (const_int 0) "b0|b1")
+(define_insn_reservation "b6" 0 (const_int 0) "b0|b1")
+
+;; Control insns
+(define_insn_reservation "trap" 0
+ (and (eq_attr "cpu" "generic,fr500,tomcat")
+ (eq_attr "type" "trap"))
+ "c")
+
+(define_insn_reservation "control" 0
+ (and (eq_attr "cpu" "generic,fr500,tomcat")
+ (eq_attr "type" "spr"))
+ "c")
+
+;; Floating point insns
+(define_cpu_unit "add0" "nodiv")
+(define_cpu_unit "add1" "nodiv")
+(define_cpu_unit "mul0" "nodiv")
+(define_cpu_unit "mul1" "nodiv")
+(define_cpu_unit "div1" "div")
+(define_cpu_unit "div2" "div")
+(define_cpu_unit "root" "div")
+
+(define_bypass 4 "f1" "m1,m2,m3,m4,m5,m6,m7")
+(define_insn_reservation "f1" 3
+ (and (eq_attr "cpu" "generic,fr500,tomcat")
+ (eq_attr "type" "fsconv,fdconv"))
+ "(f0|f1)")
+
+(define_bypass 4 "f2" "m1,m2,m3,m4,m5,m6,m7")
+(define_insn_reservation "f2" 3
+ (and (eq_attr "cpu" "generic,fr500,tomcat")
+ (eq_attr "type" "fsadd,fdadd"))
+ "(f0|f1)+(add0|add1)")
+
+(define_bypass 4 "f3" "m1,m2,m3,m4,m5,m6,m7")
+(define_insn_reservation "f3" 3
+ (and (eq_attr "cpu" "generic,fr500,tomcat")
+ (eq_attr "type" "fsmul,fdmul"))
+ "(f0|f1)+(mul0|mul1)")
+
+(define_bypass 11 "f4_div" "m1,m2,m3,m4,m5,m6,m7")
+(define_insn_reservation "f4_div" 10
+ (and (eq_attr "cpu" "generic,fr500,tomcat")
+ (eq_attr "type" "fsdiv,fddiv"))
+ "(f0|f1),(div1*9|div2*9)")
+
+(define_bypass 16 "f4_root" "m1,m2,m3,m4,m5,m6,m7")
+(define_insn_reservation "f4_root" 15
+ (and (eq_attr "cpu" "generic,fr500,tomcat")
+ (eq_attr "type" "sqrt_single,sqrt_double"))
+ "(f0|f1)+root*15")
+
+(define_bypass 4 "f5" "m1,m2,m3,m4,m5,m6,m7")
+(define_insn_reservation "f5" 3
+ (and (eq_attr "cpu" "generic,fr500,tomcat")
+ (eq_attr "type" "fmas"))
+ "(f0|f1)+(add0|add1)+(mul0|mul1)")
+
+;; The following insns are not generated by gcc now:
+(define_insn_reservation "f6" 0 (const_int 0) "(f0|f1)+add0+add1")
+(define_insn_reservation "f7" 0 (const_int 0) "(f0|f1)+mul0+mul1")
+
+;; Media insns. Now they are all not generated now.
+(define_cpu_unit "m1_0" "nodiv")
+(define_cpu_unit "m1_1" "nodiv")
+(define_cpu_unit "m2_0" "nodiv")
+(define_cpu_unit "m2_1" "nodiv")
+(define_cpu_unit "m3_0" "nodiv")
+(define_cpu_unit "m3_1" "nodiv")
+(define_cpu_unit "m4_0" "nodiv")
+(define_cpu_unit "m4_1" "nodiv")
+(define_cpu_unit "m5" "nodiv")
+(define_cpu_unit "m6" "nodiv")
+(define_cpu_unit "m7" "nodiv")
+
+(exclusion_set "m5,m6,m7" "m2_0,m2_1,m3_0,m3_1")
+(exclusion_set "m5" "m6,m7")
+(exclusion_set "m6" "m4_0,m4_1,m7")
+(exclusion_set "m7" "m1_0,m1_1,add0,add1,mul0,mul1")
+
+(define_bypass 2 "m1" "m1,m2,m3,m4,m5,m6,m7")
+(define_bypass 4 "m1" "f1,f2,f3,f4_div,f4_root,f5,f6,f7")
+(define_insn_reservation "m1" 3
+ (and (eq_attr "cpu" "generic,fr500,tomcat")
+ (eq_attr "type" "mlogic,maveh,msath,maddh,mqaddh"))
+ "(m0|m1)+(m1_0|m1_1)")
+
+(define_bypass 2 "m2" "m1,m2,m3,m4,m5,m6,m7")
+(define_bypass 4 "m2" "f1,f2,f3,f4_div,f4_root,f5,f6,f7")
+(define_insn_reservation "m2" 3
+ (and (eq_attr "cpu" "generic,fr500,tomcat")
+ (eq_attr "type" "mrdacc,mpackh,munpackh,mbhconv,mrot,mshift,mexpdhw,mexpdhd,mwcut,mcut,mdunpackh,mbhconve"))
+ "(m0|m1)+(m2_0|m2_1)")
+
+(define_bypass 1 "m3" "m4")
+(define_insn_reservation "m3" 2
+ (and (eq_attr "cpu" "generic,fr500,tomcat")
+ (eq_attr "type" "mclracc,mwtacc"))
+ "(m0|m1)+(m3_0|m3_1)")
+
+(define_bypass 1 "m4" "m4")
+(define_insn_reservation "m4" 2
+ (and (eq_attr "cpu" "generic,fr500,tomcat")
+ (eq_attr "type" "mmulh,mmulxh,mmach,mmrdh,mqmulh,mqmulxh,mqmach,mcpx,mqcpx"))
+ "(m0|m1)+(m4_0|m4_1)")
+
+(define_bypass 2 "m5" "m1,m2,m3,m4,m5,m6,m7")
+(define_bypass 4 "m5" "f1,f2,f3,f4_div,f4_root,f5,f6,f7")
+(define_insn_reservation "m5" 3
+ (and (eq_attr "cpu" "generic,fr500,tomcat")
+ (eq_attr "type" "mdpackh"))
+ "(m0|m1)+m5")
+
+(define_bypass 1 "m6" "m4")
+(define_insn_reservation "m6" 2
+ (and (eq_attr "cpu" "generic,fr500,tomcat")
+ (eq_attr "type" "mclracca"))
+ "(m0|m1)+m6")
+
+(define_bypass 2 "m7" "m1,m2,m3,m4,m5,m6,m7")
+(define_bypass 4 "m7" "f1,f2,f3,f4_div,f4_root,f5,f6,f7")
+
+(define_insn_reservation "m7" 3
+ (and (eq_attr "cpu" "generic,fr500,tomcat")
+ (eq_attr "type" "m7"))
+ "(m0|m1)+m7")
+
+;; Unknown & multi insns starts on new cycle and the next insn starts
+;; on new cycle. To describe this we consider as a control insn.
+(define_insn_reservation "unknown" 1
+ (and (eq_attr "cpu" "generic,fr500,tomcat")
+ (eq_attr "type" "unknown,multi"))
+ "c")
+
+;; ::::::::::::::::::::
+;; ::
+;; :: FR400 scheduler description
+;; ::
+;; ::::::::::::::::::::
+
+;; Category 2 media instructions use both media units, but can be packed
+;; with non-media instructions. Use fr400_m1unit to claim the M1 unit
+;; without claiming a slot.
+
+(define_cpu_unit "fr400_m1unit" "nodiv")
+
+(define_reservation "fr400_i0" "sl0_i0")
+(define_reservation "fr400_i1" "sl1_i1")
+(define_reservation "fr400_m0" "sl0_fm0|sl1_fm0")
+(define_reservation "fr400_m1" "sl1_fm1")
+(define_reservation "fr400_meither" "fr400_m0|(fr400_m1+fr400_m1unit)")
+(define_reservation "fr400_mboth" "fr400_m0+fr400_m1unit")
+(define_reservation "fr400_b" "sl0_b0|sl1_b0")
+(define_reservation "fr400_c" "sl0_c")
+
+;; Name Class Units Latency
+;; ==== ===== ===== =======
+;; int I1 I0/I1 1
+;; sethi I1 I0/I1 0 -- does not interfere with setlo
+;; setlo I1 I0/I1 1
+;; mul I1 I0 3 (*)
+;; div I1 I0 20 (*)
+;; gload I2 I0 4 (*)
+;; fload I2 I0 4 -- only 3 if read by a media insn
+;; gstore I3 I0 0 -- provides no result
+;; fstore I3 I0 0 -- provides no result
+;; movfg I4 I0 3 (*)
+;; movgf I4 I0 3 (*)
+;; jumpl I5 I0 0 -- provides no result
+;;
+;; (*) The results of these instructions can be read one cycle earlier
+;; than indicated. The penalty given is for instructions with write-after-
+;; write dependencies.
+
+;; The FR400 can only do loads and stores in I0, so we there's no danger
+;; of memory unit collision in the same packet. There's only one divide
+;; unit too.
+
+(define_insn_reservation "fr400_i1_int" 1
+ (and (eq_attr "cpu" "fr400")
+ (eq_attr "type" "int"))
+ "fr400_i0|fr400_i1")
+
+(define_insn_reservation "fr400_i1_sethi" 0
+ (and (eq_attr "cpu" "fr400")
+ (eq_attr "type" "sethi"))
+ "fr400_i0|fr400_i1")
+
+(define_insn_reservation "fr400_i1_setlo" 1
+ (and (eq_attr "cpu" "fr400")
+ (eq_attr "type" "setlo"))
+ "fr400_i0|fr400_i1")
+
+(define_insn_reservation "fr400_i1_mul" 3
+ (and (eq_attr "cpu" "fr400")
+ (eq_attr "type" "mul"))
+ "fr400_i0")
+
+(define_insn_reservation "fr400_i1_div" 20
+ (and (eq_attr "cpu" "fr400")
+ (eq_attr "type" "div"))
+ "fr400_i0+idiv1*19")
+
+(define_insn_reservation "fr400_i2_gload" 4
+ (and (eq_attr "cpu" "fr400")
+ (eq_attr "type" "gload"))
+ "fr400_i0")
+
+(define_insn_reservation "fr400_i2_fload" 4
+ (and (eq_attr "cpu" "fr400")
+ (eq_attr "type" "fload"))
+ "fr400_i0")
+
+(define_insn_reservation "fr400_i3_gstore" 0
+ (and (eq_attr "cpu" "fr400")
+ (eq_attr "type" "gstore"))
+ "fr400_i0")
+
+(define_insn_reservation "fr400_i3_fstore" 0
+ (and (eq_attr "cpu" "fr400")
+ (eq_attr "type" "fstore"))
+ "fr400_i0")
+
+(define_insn_reservation "fr400_i4_movfg" 3
+ (and (eq_attr "cpu" "fr400")
+ (eq_attr "type" "movfg"))
+ "fr400_i0")
+
+(define_insn_reservation "fr400_i4_movgf" 3
+ (and (eq_attr "cpu" "fr400")
+ (eq_attr "type" "movgf"))
+ "fr400_i0")
+
+(define_insn_reservation "fr400_i5_jumpl" 0
+ (and (eq_attr "cpu" "fr400")
+ (eq_attr "type" "jumpl"))
+ "fr400_i0")
+
+;; The bypass between FPR loads and media instructions, described above.
+
+(define_bypass 3
+ "fr400_i2_fload"
+ "fr400_m1_1,fr400_m1_2,\
+ fr400_m2_1,fr400_m2_2,\
+ fr400_m3_1,fr400_m3_2,\
+ fr400_m4_1,fr400_m4_2,\
+ fr400_m5")
+
+;; The branch instructions all use the B unit and produce no result.
+
+(define_insn_reservation "fr400_b" 0
+ (and (eq_attr "cpu" "fr400")
+ (eq_attr "type" "jump,branch,ccr,call"))
+ "fr400_b")
+
+;; Control instructions use the C unit, which excludes all the others.
+
+(define_insn_reservation "fr400_c" 0
+ (and (eq_attr "cpu" "fr400")
+ (eq_attr "type" "spr,trap"))
+ "fr400_c")
+
+;; Unknown instructions use the C unit, since it requires single-operation
+;; packets.
+
+(define_insn_reservation "fr400_unknown" 1
+ (and (eq_attr "cpu" "fr400")
+ (eq_attr "type" "unknown,multi"))
+ "fr400_c")
+
+;; FP->FP moves are marked as "fsconv" instructions in the define_insns
+;; below, but are implemented on the FR400 using "mlogic" instructions.
+;; It's easier to class "fsconv" as a "m1:1" instruction than provide
+;; separate define_insns for the FR400.
+
+;; M1 instructions store their results in FPRs. Any instruction can read
+;; the result in the following cycle, so no penalty occurs.
+
+(define_insn_reservation "fr400_m1_1" 1
+ (and (eq_attr "cpu" "fr400")
+ (eq_attr "type" "fsconv,mlogic,maveh,msath,maddh,mabsh,mset"))
+ "fr400_meither")
+
+(define_insn_reservation "fr400_m1_2" 1
+ (and (eq_attr "cpu" "fr400")
+ (eq_attr "type" "mqaddh,mqsath"))
+ "fr400_mboth")
+
+;; M2 instructions store their results in accumulators, which are read
+;; by M2 or M4 media commands. M2 instructions can read the results in
+;; the following cycle, but M4 instructions must wait a cycle more.
+
+(define_bypass 1
+ "fr400_m2_1,fr400_m2_2"
+ "fr400_m2_1,fr400_m2_2")
+
+(define_insn_reservation "fr400_m2_1" 2
+ (and (eq_attr "cpu" "fr400")
+ (eq_attr "type" "mmulh,mmulxh,mmach,mmrdh,mcpx,maddacc"))
+ "fr400_meither")
+
+(define_insn_reservation "fr400_m2_2" 2
+ (and (eq_attr "cpu" "fr400")
+ (eq_attr "type" "mqmulh,mqmulxh,mqmach,mqcpx,mdaddacc"))
+ "fr400_mboth")
+
+;; For our purposes, there seems to be little real difference between
+;; M1 and M3 instructions. Keep them separate anyway in case the distinction
+;; is needed later.
+
+(define_insn_reservation "fr400_m3_1" 1
+ (and (eq_attr "cpu" "fr400")
+ (eq_attr "type" "mpackh,mrot,mshift,mexpdhw"))
+ "fr400_meither")
+
+(define_insn_reservation "fr400_m3_2" 1
+ (and (eq_attr "cpu" "fr400")
+ (eq_attr "type" "munpackh,mdpackh,mbhconv,mexpdhd,mwcut,mdrot,mcpl"))
+ "fr400_mboth")
+
+;; M4 instructions write to accumulators or FPRs. MOVFG and STF
+;; instructions can read an FPR result in the following cycle, but
+;; M-unit instructions must wait a cycle more for either kind of result.
+
+(define_bypass 1
+ "fr400_m4_1,fr400_m4_2"
+ "fr400_i3_fstore,fr400_i4_movfg")
+
+(define_insn_reservation "fr400_m4_1" 2
+ (and (eq_attr "cpu" "fr400")
+ (eq_attr "type" "mrdacc,mcut,mclracc"))
+ "fr400_meither")
+
+(define_insn_reservation "fr400_m4_2" 2
+ (and (eq_attr "cpu" "fr400")
+ (eq_attr "type" "mclracca,mdcut"))
+ "fr400_mboth")
+
+;; M5 instructions always incur a 1-cycle penalty.
+
+(define_insn_reservation "fr400_m5" 2
+ (and (eq_attr "cpu" "fr400")
+ (eq_attr "type" "mwtacc"))
+ "fr400_mboth")
+
+;; ::::::::::::::::::::
+;; ::
+;; :: Simple/FR300 scheduler description
+;; ::
+;; ::::::::::::::::::::
+
+;; Fr300 or simple processor. To describe it as 1 insn issue
+;; processor, we use control unit.
+
+(define_insn_reservation "fr300_lat1" 1
+ (and (eq_attr "cpu" "fr300,simple")
+ (eq_attr "type" "!gload,fload,movfg,movgf"))
+ "c")
+
+(define_insn_reservation "fr300_lat2" 2
+ (and (eq_attr "cpu" "fr300,simple")
+ (eq_attr "type" "gload,fload,movfg,movgf"))
+ "c")
+
+
+;; ::::::::::::::::::::
+;; ::
+;; :: Delay Slots
+;; ::
+;; ::::::::::::::::::::
+
+;; The insn attribute mechanism can be used to specify the requirements for
+;; delay slots, if any, on a target machine. An instruction is said to require
+;; a "delay slot" if some instructions that are physically after the
+;; instruction are executed as if they were located before it. Classic
+;; examples are branch and call instructions, which often execute the following
+;; instruction before the branch or call is performed.
+
+;; On some machines, conditional branch instructions can optionally "annul"
+;; instructions in the delay slot. This means that the instruction will not be
+;; executed for certain branch outcomes. Both instructions that annul if the
+;; branch is true and instructions that annul if the branch is false are
+;; supported.
+
+;; Delay slot scheduling differs from instruction scheduling in that
+;; determining whether an instruction needs a delay slot is dependent only
+;; on the type of instruction being generated, not on data flow between the
+;; instructions. See the next section for a discussion of data-dependent
+;; instruction scheduling.
+
+;; The requirement of an insn needing one or more delay slots is indicated via
+;; the `define_delay' expression. It has the following form:
+;;
+;; (define_delay TEST
+;; [DELAY-1 ANNUL-TRUE-1 ANNUL-FALSE-1
+;; DELAY-2 ANNUL-TRUE-2 ANNUL-FALSE-2
+;; ...])
+
+;; TEST is an attribute test that indicates whether this `define_delay' applies
+;; to a particular insn. If so, the number of required delay slots is
+;; determined by the length of the vector specified as the second argument. An
+;; insn placed in delay slot N must satisfy attribute test DELAY-N.
+;; ANNUL-TRUE-N is an attribute test that specifies which insns may be annulled
+;; if the branch is true. Similarly, ANNUL-FALSE-N specifies which insns in
+;; the delay slot may be annulled if the branch is false. If annulling is not
+;; supported for that delay slot, `(nil)' should be coded.
+
+;; For example, in the common case where branch and call insns require a single
+;; delay slot, which may contain any insn other than a branch or call, the
+;; following would be placed in the `md' file:
+
+;; (define_delay (eq_attr "type" "branch,call")
+;; [(eq_attr "type" "!branch,call") (nil) (nil)])
+
+;; Multiple `define_delay' expressions may be specified. In this case, each
+;; such expression specifies different delay slot requirements and there must
+;; be no insn for which tests in two `define_delay' expressions are both true.
+
+;; For example, if we have a machine that requires one delay slot for branches
+;; but two for calls, no delay slot can contain a branch or call insn, and any
+;; valid insn in the delay slot for the branch can be annulled if the branch is
+;; true, we might represent this as follows:
+
+;; (define_delay (eq_attr "type" "branch")
+;; [(eq_attr "type" "!branch,call")
+;; (eq_attr "type" "!branch,call")
+;; (nil)])
+;;
+;; (define_delay (eq_attr "type" "call")
+;; [(eq_attr "type" "!branch,call") (nil) (nil)
+;; (eq_attr "type" "!branch,call") (nil) (nil)])
+
+;; Note - it is the backend's responsibility to fill any unfilled delay slots
+;; at assembler generation time. This is usually done by adding a special print
+;; operand to the delayed insrtuction, and then in the PRINT_OPERAND function
+;; calling dbr_sequence_length() to determine how many delay slots were filled.
+;; For example:
+;;
+;; --------------<machine>.md-----------------
+;; (define_insn "call"
+;; [(call (match_operand 0 "memory_operand" "m")
+;; (match_operand 1 "" ""))]
+;; ""
+;; "call_delayed %0,%1,%2%#"
+;; [(set_attr "length" "4")
+;; (set_attr "type" "call")])
+;;
+;; -------------<machine>.h-------------------
+;; #define PRINT_OPERAND_PUNCT_VALID_P(CODE) (CODE == '#')
+;;
+;; ------------<machine>.c------------------
+;; void
+;; machine_print_operand (file, x, code)
+;; FILE * file;
+;; rtx x;
+;; int code;
+;; {
+;; switch (code)
+;; {
+;; case '#':
+;; if (dbr_sequence_length () == 0)
+;; fputs ("\n\tnop", file);
+;; return;
+
+;; ::::::::::::::::::::
+;; ::
+;; :: Notes on Patterns
+;; ::
+;; ::::::::::::::::::::
+
+;; If you need to construct a sequence of assembler instructions in order
+;; to implement a pattern be sure to escape any backslashes and double quotes
+;; that you use, eg:
+;;
+;; (define_insn "an example"
+;; [(some rtl)]
+;; ""
+;; "*
+;; { static char buffer [100];
+;; sprintf (buffer, \"insn \\t %d\", REGNO (operands[1]));
+;; return buffer;
+;; }"
+;; )
+;;
+;; Also if there is more than one instruction, they can be separated by \\;
+;; which is a space saving synonym for \\n\\t:
+;;
+;; (define_insn "another example"
+;; [(some rtl)]
+;; ""
+;; "*
+;; { static char buffer [100];
+;; sprintf (buffer, \"insn1 \\t %d\\;insn2 \\t %%1\",
+;; REGNO (operands[1]));
+;; return buffer;
+;; }"
+;; )
+;;
+
+
+;; ::::::::::::::::::::
+;; ::
+;; :: Moves
+;; ::
+;; ::::::::::::::::::::
+
+;; Wrap moves in define_expand to prevent memory->memory moves from being
+;; generated at the RTL level, which generates better code for most machines
+;; which can't do mem->mem moves.
+
+;; If operand 0 is a `subreg' with mode M of a register whose own mode is wider
+;; than M, the effect of this instruction is to store the specified value in
+;; the part of the register that corresponds to mode M. The effect on the rest
+;; of the register is undefined.
+
+;; This class of patterns is special in several ways. First of all, each of
+;; these names *must* be defined, because there is no other way to copy a datum
+;; from one place to another.
+
+;; Second, these patterns are not used solely in the RTL generation pass. Even
+;; the reload pass can generate move insns to copy values from stack slots into
+;; temporary registers. When it does so, one of the operands is a hard
+;; register and the other is an operand that can need to be reloaded into a
+;; register.
+
+;; Therefore, when given such a pair of operands, the pattern must
+;; generate RTL which needs no reloading and needs no temporary
+;; registers--no registers other than the operands. For example, if
+;; you support the pattern with a `define_expand', then in such a
+;; case the `define_expand' mustn't call `force_reg' or any other such
+;; function which might generate new pseudo registers.
+
+;; This requirement exists even for subword modes on a RISC machine
+;; where fetching those modes from memory normally requires several
+;; insns and some temporary registers. Look in `spur.md' to see how
+;; the requirement can be satisfied.
+
+;; During reload a memory reference with an invalid address may be passed as an
+;; operand. Such an address will be replaced with a valid address later in the
+;; reload pass. In this case, nothing may be done with the address except to
+;; use it as it stands. If it is copied, it will not be replaced with a valid
+;; address. No attempt should be made to make such an address into a valid
+;; address and no routine (such as `change_address') that will do so may be
+;; called. Note that `general_operand' will fail when applied to such an
+;; address.
+;;
+;; The global variable `reload_in_progress' (which must be explicitly declared
+;; if required) can be used to determine whether such special handling is
+;; required.
+;;
+;; The variety of operands that have reloads depends on the rest of
+;; the machine description, but typically on a RISC machine these can
+;; only be pseudo registers that did not get hard registers, while on
+;; other machines explicit memory references will get optional
+;; reloads.
+;;
+;; If a scratch register is required to move an object to or from memory, it
+;; can be allocated using `gen_reg_rtx' prior to reload. But this is
+;; impossible during and after reload. If there are cases needing scratch
+;; registers after reload, you must define `SECONDARY_INPUT_RELOAD_CLASS' and
+;; perhaps also `SECONDARY_OUTPUT_RELOAD_CLASS' to detect them, and provide
+;; patterns `reload_inM' or `reload_outM' to handle them.
+
+;; The constraints on a `moveM' must permit moving any hard register to any
+;; other hard register provided that `HARD_REGNO_MODE_OK' permits mode M in
+;; both registers and `REGISTER_MOVE_COST' applied to their classes returns a
+;; value of 2.
+
+;; It is obligatory to support floating point `moveM' instructions
+;; into and out of any registers that can hold fixed point values,
+;; because unions and structures (which have modes `SImode' or
+;; `DImode') can be in those registers and they may have floating
+;; point members.
+
+;; There may also be a need to support fixed point `moveM' instructions in and
+;; out of floating point registers. Unfortunately, I have forgotten why this
+;; was so, and I don't know whether it is still true. If `HARD_REGNO_MODE_OK'
+;; rejects fixed point values in floating point registers, then the constraints
+;; of the fixed point `moveM' instructions must be designed to avoid ever
+;; trying to reload into a floating point register.
+
+(define_expand "movqi"
+ [(set (match_operand:QI 0 "general_operand" "")
+ (match_operand:QI 1 "general_operand" ""))]
+ ""
+ "
+{
+ if (!reload_in_progress
+ && !reload_completed
+ && !register_operand (operands[0], QImode)
+ && !reg_or_0_operand (operands[1], QImode))
+ operands[1] = copy_to_mode_reg (QImode, operands[1]);
+}")
+
+(define_insn "*movqi_load"
+ [(set (match_operand:QI 0 "register_operand" "=d,f")
+ (match_operand:QI 1 "frv_load_operand" "m,m"))]
+ ""
+ "* return output_move_single (operands, insn);"
+ [(set_attr "length" "4")
+ (set_attr "type" "gload,fload")])
+
+(define_insn "*movqi_internal"
+ [(set (match_operand:QI 0 "move_destination_operand" "=d,d,m,m,?f,?f,?d,?m,f")
+ (match_operand:QI 1 "move_source_operand" "L,d,d,O, d, f, f, f,GO"))]
+ "register_operand(operands[0], QImode) || reg_or_0_operand (operands[1], QImode)"
+ "* return output_move_single (operands, insn);"
+ [(set_attr "length" "4")
+ (set_attr "type" "int,int,gstore,gstore,movgf,fsconv,movfg,fstore,movgf")])
+
+(define_expand "movhi"
+ [(set (match_operand:HI 0 "general_operand" "")
+ (match_operand:HI 1 "general_operand" ""))]
+ ""
+ "
+{
+ if (!reload_in_progress
+ && !reload_completed
+ && !register_operand (operands[0], HImode)
+ && !reg_or_0_operand (operands[1], HImode))
+ operands[1] = copy_to_mode_reg (HImode, operands[1]);
+}")
+
+(define_insn "*movhi_load"
+ [(set (match_operand:HI 0 "register_operand" "=d,f")
+ (match_operand:HI 1 "frv_load_operand" "m,m"))]
+ ""
+ "* return output_move_single (operands, insn);"
+ [(set_attr "length" "4")
+ (set_attr "type" "gload,fload")])
+
+(define_insn "*movhi_internal"
+ [(set (match_operand:HI 0 "move_destination_operand" "=d,d,d,m,m,?f,?f,?d,?m,f")
+ (match_operand:HI 1 "move_source_operand" "L,i,d,d,O, d, f, f, f,GO"))]
+ "register_operand(operands[0], HImode) || reg_or_0_operand (operands[1], HImode)"
+ "* return output_move_single (operands, insn);"
+ [(set_attr "length" "4,8,4,4,4,4,4,4,4,4")
+ (set_attr "type" "int,multi,int,gstore,gstore,movgf,fsconv,movfg,fstore,movgf")])
+
+;; Split 2 word load of constants into sethi/setlo instructions
+(define_split
+ [(set (match_operand:HI 0 "integer_register_operand" "")
+ (match_operand:HI 1 "int_2word_operand" ""))]
+ "reload_completed"
+ [(set (match_dup 0)
+ (high:HI (match_dup 1)))
+ (set (match_dup 0)
+ (lo_sum:HI (match_dup 0)
+ (match_dup 1)))]
+ "")
+
+(define_insn "movhi_high"
+ [(set (match_operand:HI 0 "integer_register_operand" "=d")
+ (high:HI (match_operand:HI 1 "int_2word_operand" "i")))]
+ ""
+ "sethi #hi(%1), %0"
+ [(set_attr "type" "sethi")
+ (set_attr "length" "4")])
+
+(define_insn "movhi_lo_sum"
+ [(set (match_operand:HI 0 "integer_register_operand" "+d")
+ (lo_sum:HI (match_dup 0)
+ (match_operand:HI 1 "int_2word_operand" "i")))]
+ ""
+ "setlo #lo(%1), %0"
+ [(set_attr "type" "setlo")
+ (set_attr "length" "4")])
+
+(define_expand "movsi"
+ [(set (match_operand:SI 0 "move_destination_operand" "")
+ (match_operand:SI 1 "move_source_operand" ""))]
+ ""
+ "
+{
+ if (frv_emit_movsi (operands[0], operands[1]))
+ DONE;
+}")
+
+;; Note - it is best to only have one movsi pattern and to handle
+;; all the various contingencies by the use of alternatives. This
+;; allows reload the greatest amount of flexability (since reload will
+;; only choose amoungst alternatives for a selected insn, it will not
+;; replace the insn with another one).
+
+;; Unfortunately, we do have to separate out load-type moves from the rest,
+;; and only allow memory source operands in the former. If we do memory and
+;; constant loads in a single pattern, reload will be tempted to force
+;; constants into memory when the destination is a floating-point register.
+;; That may make a function use a PIC pointer when it didn't before, and we
+;; cannot change PIC usage (and hence stack layout) so late in the game.
+;; The resulting sequences for loading cosntants into FPRs are preferable
+;; even when we're not generating PIC code.
+
+(define_insn "*movsi_load"
+ [(set (match_operand:SI 0 "register_operand" "=d,f")
+ (match_operand:SI 1 "frv_load_operand" "m,m"))]
+ ""
+ "* return output_move_single (operands, insn);"
+ [(set_attr "length" "4")
+ (set_attr "type" "gload,fload")])
+
+(define_insn "*movsi_internal"
+ [(set (match_operand:SI 0 "move_destination_operand" "=d,d,d,m,m,z,d,d,f,f,m,?f,?z")
+ (match_operand:SI 1 "move_source_operand" "LQ,i,d,d,O,d,z,f,d,f,f,GO,GO"))]
+ "register_operand (operands[0], SImode) || reg_or_0_operand (operands[1], SImode)"
+ "* return output_move_single (operands, insn);"
+ [(set_attr "length" "4,8,4,4,4,4,4,4,4,4,4,4,4")
+ (set_attr "type" "int,multi,int,gstore,gstore,spr,spr,movfg,movgf,fsconv,fstore,movgf,spr")])
+
+(define_insn "*movsi_lda_sdata"
+ [(set (match_operand:SI 0 "integer_register_operand" "=d")
+ (plus:SI (match_operand:SI 1 "small_data_register_operand" "d")
+ (match_operand:SI 2 "small_data_symbolic_operand" "Q")))]
+ ""
+ "addi %1, #gprel12(%2), %0"
+ [(set_attr "type" "int")
+ (set_attr "length" "4")])
+
+;; Split 2 word load of constants into sethi/setlo instructions
+(define_split
+ [(set (match_operand:SI 0 "integer_register_operand" "")
+ (match_operand:SI 1 "int_2word_operand" ""))]
+ "reload_completed"
+ [(set (match_dup 0)
+ (high:SI (match_dup 1)))
+ (set (match_dup 0)
+ (lo_sum:SI (match_dup 0)
+ (match_dup 1)))]
+ "")
+
+(define_insn "movsi_high"
+ [(set (match_operand:SI 0 "integer_register_operand" "=d")
+ (high:SI (match_operand:SI 1 "int_2word_operand" "i")))]
+ ""
+ "sethi #hi(%1), %0"
+ [(set_attr "type" "sethi")
+ (set_attr "length" "4")])
+
+(define_insn "movsi_lo_sum"
+ [(set (match_operand:SI 0 "integer_register_operand" "+d")
+ (lo_sum:SI (match_dup 0)
+ (match_operand:SI 1 "int_2word_operand" "i")))]
+ ""
+ "setlo #lo(%1), %0"
+ [(set_attr "type" "setlo")
+ (set_attr "length" "4")])
+
+;; Split loads of addresses with PIC specified into 3 separate instructions
+(define_insn_and_split "*movsi_pic"
+ [(set (match_operand:SI 0 "integer_register_operand" "=d")
+ (plus:SI (match_operand:SI 1 "pic_register_operand" "d")
+ (match_operand:SI 2 "pic_symbolic_operand" "")))]
+ ""
+ "#"
+ "reload_completed"
+ [(set (match_dup 0)
+ (high:SI (match_dup 2)))
+ (set (match_dup 0)
+ (lo_sum:SI (match_dup 0)
+ (match_dup 2)))
+ (set (match_dup 0)
+ (plus:SI (match_dup 0) (match_dup 1)))]
+
+ ""
+ [(set_attr "type" "multi")
+ (set_attr "length" "12")])
+
+(define_insn "movsi_high_pic"
+ [(set (match_operand:SI 0 "integer_register_operand" "=d")
+ (high:SI (match_operand:SI 1 "pic_symbolic_operand" "")))]
+ ""
+ "sethi #gprelhi(%1), %0"
+ [(set_attr "type" "sethi")
+ (set_attr "length" "4")])
+
+(define_insn "movsi_lo_sum_pic"
+ [(set (match_operand:SI 0 "integer_register_operand" "+d")
+ (lo_sum:SI (match_dup 0)
+ (match_operand:SI 1 "pic_symbolic_operand" "")))]
+ ""
+ "setlo #gprello(%1), %0"
+ [(set_attr "type" "setlo")
+ (set_attr "length" "4")])
+
+(define_expand "movdi"
+ [(set (match_operand:DI 0 "nonimmediate_operand" "")
+ (match_operand:DI 1 "general_operand" ""))]
+ ""
+ "
+{
+ if (!reload_in_progress
+ && !reload_completed
+ && !register_operand (operands[0], DImode)
+ && !reg_or_0_operand (operands[1], DImode))
+ operands[1] = copy_to_mode_reg (DImode, operands[1]);
+}")
+
+(define_insn "*movdi_double"
+ [(set (match_operand:DI 0 "move_destination_operand" "=e,?h,??d,??f,R,?R,??m,??m,e,?h,??d,??f,?e,??d,?h,??f,R,m,e,??d,e,??d,?h,??f")
+ (match_operand:DI 1 "move_source_operand" " e,h,d,f,e,h,d,f,R,R,m,m,h,f,e,d,GO,GO,GO,GO,nF,nF,GO,GO"))]
+ "TARGET_DOUBLE
+ && (register_operand (operands[0], DImode)
+ || reg_or_0_operand (operands[1], DImode))"
+ "* return output_move_double (operands, insn);"
+ [(set_attr "length" "8,4,8,8,4,4,8,8,4,4,8,8,4,8,4,8,4,8,8,8,16,16,8,8")
+ (set_attr "type" "multi,fdconv,multi,multi,gstore,fstore,gstore,fstore,gload,fload,gload,fload,movfg,movfg,movgf,movgf,gstore,gstore,multi,multi,multi,multi,movgf,movgf")])
+
+(define_insn "*movdi_nodouble"
+ [(set (match_operand:DI 0 "move_destination_operand" "=e,?h,??d,??f,R,?R,??m,??m,e,?h,??d,??f,?e,??d,?h,??f,R,m,e,??d,e,??d,?h,??f")
+ (match_operand:DI 1 "move_source_operand" " e,h,d,f,e,h,d,f,R,R,m,m,h,f,e,d,GO,GO,GO,GO,nF,nF,GO,GO"))]
+ "!TARGET_DOUBLE
+ && (register_operand (operands[0], DImode)
+ || reg_or_0_operand (operands[1], DImode))"
+ "* return output_move_double (operands, insn);"
+ [(set_attr "length" "8,8,8,8,4,4,8,8,4,4,8,8,8,8,8,8,4,8,8,8,16,16,8,8")
+ (set_attr "type" "multi,multi,multi,multi,gstore,fstore,gstore,fstore,gload,fload,gload,fload,movfg,movfg,movgf,movgf,gstore,gstore,multi,multi,multi,multi,movgf,movgf")])
+
+(define_split
+ [(set (match_operand:DI 0 "register_operand" "")
+ (match_operand:DI 1 "dbl_memory_two_insn_operand" ""))]
+ "reload_completed"
+ [(const_int 0)]
+ "frv_split_double_load (operands[0], operands[1]);")
+
+(define_split
+ [(set (match_operand:DI 0 "odd_reg_operand" "")
+ (match_operand:DI 1 "memory_operand" ""))]
+ "reload_completed"
+ [(const_int 0)]
+ "frv_split_double_load (operands[0], operands[1]);")
+
+(define_split
+ [(set (match_operand:DI 0 "dbl_memory_two_insn_operand" "")
+ (match_operand:DI 1 "reg_or_0_operand" ""))]
+ "reload_completed"
+ [(const_int 0)]
+ "frv_split_double_store (operands[0], operands[1]);")
+
+(define_split
+ [(set (match_operand:DI 0 "memory_operand" "")
+ (match_operand:DI 1 "odd_reg_operand" ""))]
+ "reload_completed"
+ [(const_int 0)]
+ "frv_split_double_store (operands[0], operands[1]);")
+
+(define_split
+ [(set (match_operand:DI 0 "register_operand" "")
+ (match_operand:DI 1 "register_operand" ""))]
+ "reload_completed
+ && (odd_reg_operand (operands[0], DImode)
+ || odd_reg_operand (operands[1], DImode)
+ || (integer_register_operand (operands[0], DImode)
+ && integer_register_operand (operands[1], DImode))
+ || (!TARGET_DOUBLE
+ && fpr_operand (operands[0], DImode)
+ && fpr_operand (operands[1], DImode)))"
+ [(set (match_dup 2) (match_dup 4))
+ (set (match_dup 3) (match_dup 5))]
+ "
+{
+ rtx op0 = operands[0];
+ rtx op0_low = gen_lowpart (SImode, op0);
+ rtx op0_high = gen_highpart (SImode, op0);
+ rtx op1 = operands[1];
+ rtx op1_low = gen_lowpart (SImode, op1);
+ rtx op1_high = gen_highpart (SImode, op1);
+
+ /* We normally copy the low-numbered register first. However, if the first
+ register operand 0 is the same as the second register of operand 1, we
+ must copy in the opposite order. */
+
+ if (REGNO (op0_high) == REGNO (op1_low))
+ {
+ operands[2] = op0_low;
+ operands[3] = op0_high;
+ operands[4] = op1_low;
+ operands[5] = op1_high;
+ }
+ else
+ {
+ operands[2] = op0_high;
+ operands[3] = op0_low;
+ operands[4] = op1_high;
+ operands[5] = op1_low;
+ }
+}")
+
+(define_split
+ [(set (match_operand:DI 0 "register_operand" "")
+ (match_operand:DI 1 "const_int_operand" ""))]
+ "reload_completed"
+ [(set (match_dup 2) (match_dup 4))
+ (set (match_dup 3) (match_dup 1))]
+ "
+{
+ rtx op0 = operands[0];
+ rtx op1 = operands[1];
+
+ operands[2] = gen_highpart (SImode, op0);
+ operands[3] = gen_lowpart (SImode, op0);
+ operands[4] = GEN_INT ((INTVAL (op1) < 0) ? -1 : 0);
+}")
+
+(define_split
+ [(set (match_operand:DI 0 "register_operand" "")
+ (match_operand:DI 1 "const_double_operand" ""))]
+ "reload_completed"
+ [(set (match_dup 2) (match_dup 4))
+ (set (match_dup 3) (match_dup 5))]
+ "
+{
+ rtx op0 = operands[0];
+ rtx op1 = operands[1];
+
+ operands[2] = gen_highpart (SImode, op0);
+ operands[3] = gen_lowpart (SImode, op0);
+ operands[4] = GEN_INT (CONST_DOUBLE_HIGH (op1));
+ operands[5] = GEN_INT (CONST_DOUBLE_LOW (op1));
+}")
+
+;; Floating Point Moves
+;;
+;; Note - Patterns for SF mode moves are compulsory, but
+;; patterns for DF are optional, as GCC can synthesize them.
+
+(define_expand "movsf"
+ [(set (match_operand:SF 0 "general_operand" "")
+ (match_operand:SF 1 "general_operand" ""))]
+ ""
+ "
+{
+ if (!reload_in_progress
+ && !reload_completed
+ && !register_operand (operands[0], SFmode)
+ && !reg_or_0_operand (operands[1], SFmode))
+ operands[1] = copy_to_mode_reg (SFmode, operands[1]);
+}")
+
+(define_split
+ [(set (match_operand:SF 0 "integer_register_operand" "")
+ (match_operand:SF 1 "int_2word_operand" ""))]
+ "reload_completed"
+ [(set (match_dup 0)
+ (high:SF (match_dup 1)))
+ (set (match_dup 0)
+ (lo_sum:SF (match_dup 0)
+ (match_dup 1)))]
+ "")
+
+(define_insn "*movsf_load_has_fprs"
+ [(set (match_operand:SF 0 "register_operand" "=f,d")
+ (match_operand:SF 1 "frv_load_operand" "m,m"))]
+ "TARGET_HAS_FPRS"
+ "* return output_move_single (operands, insn);"
+ [(set_attr "length" "4")
+ (set_attr "type" "fload,gload")])
+
+(define_insn "*movsf_internal_has_fprs"
+ [(set (match_operand:SF 0 "move_destination_operand" "=f,f,m,m,?f,?d,?d,m,?d")
+ (match_operand:SF 1 "move_source_operand" "f,OG,f,OG,d,f,d,d,F"))]
+ "TARGET_HAS_FPRS
+ && (register_operand (operands[0], SFmode) || reg_or_0_operand (operands[1], SFmode))"
+ "* return output_move_single (operands, insn);"
+ [(set_attr "length" "4,4,4,4,4,4,4,4,8")
+ (set_attr "type" "fsconv,movgf,fstore,gstore,movgf,movfg,int,gstore,multi")])
+
+;; If we don't support the double instructions, prefer gprs over fprs, since it
+;; will all be emulated
+(define_insn "*movsf_internal_no_fprs"
+ [(set (match_operand:SF 0 "move_destination_operand" "=d,d,m,d,d")
+ (match_operand:SF 1 "move_source_operand" " d,OG,dOG,m,F"))]
+ "!TARGET_HAS_FPRS
+ && (register_operand (operands[0], SFmode) || reg_or_0_operand (operands[1], SFmode))"
+ "* return output_move_single (operands, insn);"
+ [(set_attr "length" "4,4,4,4,8")
+ (set_attr "type" "int,int,gstore,gload,multi")])
+
+(define_insn "movsf_high"
+ [(set (match_operand:SF 0 "integer_register_operand" "=d")
+ (high:SF (match_operand:SF 1 "int_2word_operand" "i")))]
+ ""
+ "sethi #hi(%1), %0"
+ [(set_attr "type" "sethi")
+ (set_attr "length" "4")])
+
+(define_insn "movsf_lo_sum"
+ [(set (match_operand:SF 0 "integer_register_operand" "+d")
+ (lo_sum:SF (match_dup 0)
+ (match_operand:SF 1 "int_2word_operand" "i")))]
+ ""
+ "setlo #lo(%1), %0"
+ [(set_attr "type" "setlo")
+ (set_attr "length" "4")])
+
+(define_expand "movdf"
+ [(set (match_operand:DF 0 "nonimmediate_operand" "")
+ (match_operand:DF 1 "general_operand" ""))]
+ ""
+ "
+{
+ if (!reload_in_progress
+ && !reload_completed
+ && !register_operand (operands[0], DFmode)
+ && !reg_or_0_operand (operands[1], DFmode))
+ operands[1] = copy_to_mode_reg (DFmode, operands[1]);
+}")
+
+(define_insn "*movdf_double"
+ [(set (match_operand:DF 0 "move_destination_operand" "=h,?e,??f,??d,R,?R,??m,??m,h,?e,??f,??d,?h,??f,?e,??d,R,m,h,??f,e,??d")
+ (match_operand:DF 1 "move_source_operand" " h,e,f,d,h,e,f,d,R,R,m,m,e,d,h,f,GO,GO,GO,GO,GO,GO"))]
+ "TARGET_DOUBLE
+ && (register_operand (operands[0], DFmode)
+ || reg_or_0_operand (operands[1], DFmode))"
+ "* return output_move_double (operands, insn);"
+ [(set_attr "length" "4,8,8,8,4,4,8,8,4,4,8,8,4,8,4,8,4,8,8,8,8,8")
+ (set_attr "type" "fdconv,multi,multi,multi,fstore,gstore,fstore,gstore,fload,gload,fload,gload,movgf,movgf,movfg,movfg,gstore,gstore,movgf,movgf,multi,multi")])
+
+;; If we don't support the double instructions, prefer gprs over fprs, since it
+;; will all be emulated
+(define_insn "*movdf_nodouble"
+ [(set (match_operand:DF 0 "move_destination_operand" "=e,?h,??d,??f,R,?R,??m,??m,e,?h,??d,??f,?e,??d,?h,??f,R,m,e,??d,e,??d,?h,??f")
+ (match_operand:DF 1 "move_source_operand" " e,h,d,f,e,h,d,f,R,R,m,m,h,f,e,d,GO,GO,GO,GO,nF,nF,GO,GO"))]
+ "!TARGET_DOUBLE
+ && (register_operand (operands[0], DFmode)
+ || reg_or_0_operand (operands[1], DFmode))"
+ "* return output_move_double (operands, insn);"
+ [(set_attr "length" "8,8,8,8,4,4,8,8,4,4,8,8,8,8,8,8,4,8,8,8,16,16,8,8")
+ (set_attr "type" "multi,multi,multi,multi,gstore,fstore,gstore,fstore,gload,fload,gload,fload,movfg,movfg,movgf,movgf,gstore,gstore,multi,multi,multi,multi,movgf,movgf")])
+
+(define_split
+ [(set (match_operand:DF 0 "register_operand" "")
+ (match_operand:DF 1 "dbl_memory_two_insn_operand" ""))]
+ "reload_completed"
+ [(const_int 0)]
+ "frv_split_double_load (operands[0], operands[1]);")
+
+(define_split
+ [(set (match_operand:DF 0 "odd_reg_operand" "")
+ (match_operand:DF 1 "memory_operand" ""))]
+ "reload_completed"
+ [(const_int 0)]
+ "frv_split_double_load (operands[0], operands[1]);")
+
+(define_split
+ [(set (match_operand:DF 0 "dbl_memory_two_insn_operand" "")
+ (match_operand:DF 1 "reg_or_0_operand" ""))]
+ "reload_completed"
+ [(const_int 0)]
+ "frv_split_double_store (operands[0], operands[1]);")
+
+(define_split
+ [(set (match_operand:DF 0 "memory_operand" "")
+ (match_operand:DF 1 "odd_reg_operand" ""))]
+ "reload_completed"
+ [(const_int 0)]
+ "frv_split_double_store (operands[0], operands[1]);")
+
+(define_split
+ [(set (match_operand:DF 0 "register_operand" "")
+ (match_operand:DF 1 "register_operand" ""))]
+ "reload_completed
+ && (odd_reg_operand (operands[0], DFmode)
+ || odd_reg_operand (operands[1], DFmode)
+ || (integer_register_operand (operands[0], DFmode)
+ && integer_register_operand (operands[1], DFmode))
+ || (!TARGET_DOUBLE
+ && fpr_operand (operands[0], DFmode)
+ && fpr_operand (operands[1], DFmode)))"
+ [(set (match_dup 2) (match_dup 4))
+ (set (match_dup 3) (match_dup 5))]
+ "
+{
+ rtx op0 = operands[0];
+ rtx op0_low = gen_lowpart (SImode, op0);
+ rtx op0_high = gen_highpart (SImode, op0);
+ rtx op1 = operands[1];
+ rtx op1_low = gen_lowpart (SImode, op1);
+ rtx op1_high = gen_highpart (SImode, op1);
+
+ /* We normally copy the low-numbered register first. However, if the first
+ register operand 0 is the same as the second register of operand 1, we
+ must copy in the opposite order. */
+
+ if (REGNO (op0_high) == REGNO (op1_low))
+ {
+ operands[2] = op0_low;
+ operands[3] = op0_high;
+ operands[4] = op1_low;
+ operands[5] = op1_high;
+ }
+ else
+ {
+ operands[2] = op0_high;
+ operands[3] = op0_low;
+ operands[4] = op1_high;
+ operands[5] = op1_low;
+ }
+}")
+
+(define_split
+ [(set (match_operand:DF 0 "register_operand" "")
+ (match_operand:DF 1 "const_int_operand" ""))]
+ "reload_completed"
+ [(set (match_dup 2) (match_dup 4))
+ (set (match_dup 3) (match_dup 1))]
+ "
+{
+ rtx op0 = operands[0];
+ rtx op1 = operands[1];
+
+ operands[2] = gen_highpart (SImode, op0);
+ operands[3] = gen_lowpart (SImode, op0);
+ operands[4] = GEN_INT ((INTVAL (op1) < 0) ? -1 : 0);
+}")
+
+(define_split
+ [(set (match_operand:DF 0 "register_operand" "")
+ (match_operand:DF 1 "const_double_operand" ""))]
+ "reload_completed"
+ [(set (match_dup 2) (match_dup 4))
+ (set (match_dup 3) (match_dup 5))]
+ "
+{
+ rtx op0 = operands[0];
+ rtx op1 = operands[1];
+ REAL_VALUE_TYPE rv;
+ long l[2];
+
+ REAL_VALUE_FROM_CONST_DOUBLE (rv, op1);
+ REAL_VALUE_TO_TARGET_DOUBLE (rv, l);
+
+ operands[2] = gen_highpart (SImode, op0);
+ operands[3] = gen_lowpart (SImode, op0);
+ operands[4] = GEN_INT (l[0]);
+ operands[5] = GEN_INT (l[1]);
+}")
+
+;; String/block move insn.
+;; Argument 0 is the destination
+;; Argument 1 is the source
+;; Argument 2 is the length
+;; Argument 3 is the alignment
+
+(define_expand "movstrsi"
+ [(parallel [(set (match_operand:BLK 0 "" "")
+ (match_operand:BLK 1 "" ""))
+ (use (match_operand:SI 2 "" ""))
+ (use (match_operand:SI 3 "" ""))])]
+ ""
+ "
+{
+ if (frv_expand_block_move (operands))
+ DONE;
+ else
+ FAIL;
+}")
+
+;; String/block clear insn.
+;; Argument 0 is the destination
+;; Argument 1 is the length
+;; Argument 2 is the alignment
+
+(define_expand "clrstrsi"
+ [(parallel [(set (match_operand:BLK 0 "" "")
+ (const_int 0))
+ (use (match_operand:SI 1 "" ""))
+ (use (match_operand:SI 2 "" ""))])]
+ ""
+ "
+{
+ if (frv_expand_block_clear (operands))
+ DONE;
+ else
+ FAIL;
+}")
+
+
+;; ::::::::::::::::::::
+;; ::
+;; :: Reload CC registers
+;; ::
+;; ::::::::::::::::::::
+
+;; Use as a define_expand so that cse/gcse/combine can't accidentally
+;; create movcc insns.
+
+(define_expand "movcc"
+ [(parallel [(set (match_operand:CC 0 "move_destination_operand" "")
+ (match_operand:CC 1 "move_source_operand" ""))
+ (clobber (match_dup 2))])]
+ ""
+ "
+{
+ if (! reload_in_progress && ! reload_completed)
+ FAIL;
+
+ operands[2] = gen_rtx_REG (CC_CCRmode, ICR_TEMP);
+}")
+
+(define_insn "*internal_movcc"
+ [(set (match_operand:CC 0 "move_destination_operand" "=t,d,d,m,d")
+ (match_operand:CC 1 "move_source_operand" "d,d,m,d,t"))
+ (clobber (match_scratch:CC_CCR 2 "=X,X,X,X,&v"))]
+ "reload_in_progress || reload_completed"
+ "@
+ cmpi %1, #0, %0
+ mov %1, %0
+ ld%I1%U1 %M1, %0
+ st%I0%U0 %1, %M0
+ #"
+ [(set_attr "length" "4,4,4,4,20")
+ (set_attr "type" "int,int,gload,gstore,multi")])
+
+;; To move an ICC value to a GPR for a signed comparison, we create a value
+;; that when compared to 0, sets the N and Z flags appropriately (we don't care
+;; about the V and C flags, since these comparisons are signed).
+
+(define_split
+ [(set (match_operand:CC 0 "integer_register_operand" "")
+ (match_operand:CC 1 "icc_operand" ""))
+ (clobber (match_operand:CC_CCR 2 "icr_operand" ""))]
+ "reload_in_progress || reload_completed"
+ [(match_dup 3)]
+ "
+{
+ rtx dest = simplify_gen_subreg (SImode, operands[0], CCmode, 0);
+ rtx icc = operands[1];
+ rtx icr = operands[2];
+
+ start_sequence ();
+
+ emit_insn (gen_rtx_SET (VOIDmode, icr,
+ gen_rtx_LT (CC_CCRmode, icc, const0_rtx)));
+
+ emit_insn (gen_movsi (dest, const1_rtx));
+
+ emit_insn (gen_rtx_COND_EXEC (VOIDmode,
+ gen_rtx_NE (CC_CCRmode, icr, const0_rtx),
+ gen_rtx_SET (VOIDmode, dest,
+ gen_rtx_NEG (SImode, dest))));
+
+ emit_insn (gen_rtx_SET (VOIDmode, icr,
+ gen_rtx_EQ (CC_CCRmode, icc, const0_rtx)));
+
+ emit_insn (gen_rtx_COND_EXEC (VOIDmode,
+ gen_rtx_NE (CC_CCRmode, icr, const0_rtx),
+ gen_rtx_SET (VOIDmode, dest, const0_rtx)));
+
+ operands[3] = get_insns ();
+ end_sequence ();
+}")
+
+(define_expand "reload_incc"
+ [(parallel [(set (match_operand:CC 2 "integer_register_operand" "=&d")
+ (match_operand:CC 1 "memory_operand" "m"))
+ (clobber (match_scratch:CC_CCR 3 ""))])
+ (parallel [(set (match_operand:CC 0 "icc_operand" "=t")
+ (match_dup 2))
+ (clobber (match_scratch:CC_CCR 4 ""))])]
+ ""
+ "")
+
+(define_expand "reload_outcc"
+ [(parallel [(set (match_operand:CC 2 "integer_register_operand" "=&d")
+ (match_operand:CC 1 "icc_operand" "t"))
+ (clobber (match_dup 3))])
+ (parallel [(set (match_operand:CC 0 "memory_operand" "=m")
+ (match_dup 2))
+ (clobber (match_scratch:CC_CCR 4 ""))])]
+ ""
+ "operands[3] = gen_rtx_REG (CC_CCRmode, ICR_TEMP);")
+
+;; Reload CC_UNSmode for unsigned integer comparisons
+;; Use define_expand so that cse/gcse/combine can't create movcc_uns insns
+
+(define_expand "movcc_uns"
+ [(parallel [(set (match_operand:CC_UNS 0 "move_destination_operand" "")
+ (match_operand:CC_UNS 1 "move_source_operand" ""))
+ (clobber (match_dup 2))])]
+ ""
+ "
+{
+ if (! reload_in_progress && ! reload_completed)
+ FAIL;
+ operands[2] = gen_rtx_REG (CC_CCRmode, ICR_TEMP);
+}")
+
+(define_insn "*internal_movcc_uns"
+ [(set (match_operand:CC_UNS 0 "move_destination_operand" "=t,d,d,m,d")
+ (match_operand:CC_UNS 1 "move_source_operand" "d,d,m,d,t"))
+ (clobber (match_scratch:CC_CCR 2 "=X,X,X,X,&v"))]
+ "reload_in_progress || reload_completed"
+ "@
+ cmpi %1, #1, %0
+ mov %1, %0
+ ld%I1%U1 %M1, %0
+ st%I0%U0 %1, %M0
+ #"
+ [(set_attr "length" "4,4,4,4,20")
+ (set_attr "type" "int,int,gload,gstore,multi")])
+
+;; To move an ICC value to a GPR for an unsigned comparison, we create a value
+;; that when compared to 1, sets the Z, V, and C flags appropriately (we don't
+;; care about the N flag, since these comparisons are unsigned).
+
+(define_split
+ [(set (match_operand:CC_UNS 0 "integer_register_operand" "")
+ (match_operand:CC_UNS 1 "icc_operand" ""))
+ (clobber (match_operand:CC_CCR 2 "icr_operand" ""))]
+ "reload_in_progress || reload_completed"
+ [(match_dup 3)]
+ "
+{
+ rtx dest = simplify_gen_subreg (SImode, operands[0], CC_UNSmode, 0);
+ rtx icc = operands[1];
+ rtx icr = operands[2];
+
+ start_sequence ();
+
+ emit_insn (gen_rtx_SET (VOIDmode, icr,
+ gen_rtx_GTU (CC_CCRmode, icc, const0_rtx)));
+
+ emit_insn (gen_movsi (dest, const1_rtx));
+
+ emit_insn (gen_rtx_COND_EXEC (VOIDmode,
+ gen_rtx_NE (CC_CCRmode, icr, const0_rtx),
+ gen_addsi3 (dest, dest, dest)));
+
+ emit_insn (gen_rtx_SET (VOIDmode, icr,
+ gen_rtx_LTU (CC_CCRmode, icc, const0_rtx)));
+
+ emit_insn (gen_rtx_COND_EXEC (VOIDmode,
+ gen_rtx_NE (CC_CCRmode, icr, const0_rtx),
+ gen_rtx_SET (VOIDmode, dest, const0_rtx)));
+
+ operands[3] = get_insns ();
+ end_sequence ();
+}")
+
+(define_expand "reload_incc_uns"
+ [(parallel [(set (match_operand:CC_UNS 2 "integer_register_operand" "=&d")
+ (match_operand:CC_UNS 1 "memory_operand" "m"))
+ (clobber (match_scratch:CC_CCR 3 ""))])
+ (parallel [(set (match_operand:CC_UNS 0 "icc_operand" "=t")
+ (match_dup 2))
+ (clobber (match_scratch:CC_CCR 4 ""))])]
+ ""
+ "")
+
+(define_expand "reload_outcc_uns"
+ [(parallel [(set (match_operand:CC_UNS 2 "integer_register_operand" "=&d")
+ (match_operand:CC_UNS 1 "icc_operand" "t"))
+ (clobber (match_dup 3))])
+ (parallel [(set (match_operand:CC_UNS 0 "memory_operand" "=m")
+ (match_dup 2))
+ (clobber (match_scratch:CC_CCR 4 ""))])]
+ ""
+ "operands[3] = gen_rtx_REG (CC_CCRmode, ICR_TEMP);")
+
+;; Reload CC_FPmode for floating point comparisons
+;; We use a define_expand here so that cse/gcse/combine can't accidentally
+;; create movcc insns. If this was a named define_insn, we would not be able
+;; to make it conditional on reload.
+
+(define_expand "movcc_fp"
+ [(set (match_operand:CC_FP 0 "move_destination_operand" "")
+ (match_operand:CC_FP 1 "move_source_operand" ""))]
+ "TARGET_HAS_FPRS"
+ "
+{
+ if (! reload_in_progress && ! reload_completed)
+ FAIL;
+}")
+
+(define_insn "*movcc_fp_internal"
+ [(set (match_operand:CC_FP 0 "move_destination_operand" "=d,d,d,m")
+ (match_operand:CC_FP 1 "move_source_operand" "u,d,m,d"))]
+ "TARGET_HAS_FPRS && (reload_in_progress || reload_completed)"
+ "@
+ #
+ mov %1, %0
+ ld%I1%U1 %M1, %0
+ st%I0%U0 %1, %M0"
+ [(set_attr "length" "12,4,4,4")
+ (set_attr "type" "multi,int,gload,gstore")])
+
+
+(define_expand "reload_incc_fp"
+ [(match_operand:CC_FP 0 "fcc_operand" "=u")
+ (match_operand:CC_FP 1 "memory_operand" "m")
+ (match_operand:TI 2 "integer_register_operand" "=&d")]
+ "TARGET_HAS_FPRS"
+ "
+{
+ rtx cc_op2 = simplify_gen_subreg (CC_FPmode, operands[2], TImode, 0);
+ rtx int_op2 = simplify_gen_subreg (SImode, operands[2], TImode, 0);
+ rtx temp1 = simplify_gen_subreg (SImode, operands[2], TImode, 4);
+ rtx temp2 = simplify_gen_subreg (SImode, operands[2], TImode, 8);
+ int shift = CC_SHIFT_RIGHT (REGNO (operands[0]));
+ HOST_WIDE_INT mask;
+
+ emit_insn (gen_movcc_fp (cc_op2, operands[1]));
+ if (shift)
+ emit_insn (gen_ashlsi3 (int_op2, int_op2, GEN_INT (shift)));
+
+ mask = ~ ((HOST_WIDE_INT)CC_MASK << shift);
+ emit_insn (gen_movsi (temp1, GEN_INT (mask)));
+ emit_insn (gen_update_fcc (operands[0], int_op2, temp1, temp2));
+ DONE;
+}")
+
+(define_expand "reload_outcc_fp"
+ [(set (match_operand:CC_FP 2 "integer_register_operand" "=&d")
+ (match_operand:CC_FP 1 "fcc_operand" "u"))
+ (set (match_operand:CC_FP 0 "memory_operand" "=m")
+ (match_dup 2))]
+ "TARGET_HAS_FPRS"
+ "")
+
+;; Convert a FCC value to gpr
+(define_insn "read_fcc"
+ [(set (match_operand:SI 0 "integer_register_operand" "=d")
+ (unspec:SI [(match_operand:CC_FP 1 "fcc_operand" "u")]
+ UNSPEC_CC_TO_GPR))]
+ "TARGET_HAS_FPRS"
+ "movsg ccr, %0"
+ [(set_attr "type" "spr")
+ (set_attr "length" "4")])
+
+(define_split
+ [(set (match_operand:CC_FP 0 "integer_register_operand" "")
+ (match_operand:CC_FP 1 "fcc_operand" ""))]
+ "reload_completed && TARGET_HAS_FPRS"
+ [(match_dup 2)]
+ "
+{
+ rtx int_op0 = simplify_gen_subreg (SImode, operands[0], CC_FPmode, 0);
+ int shift = CC_SHIFT_RIGHT (REGNO (operands[1]));
+
+ start_sequence ();
+
+ emit_insn (gen_read_fcc (int_op0, operands[1]));
+ if (shift)
+ emit_insn (gen_lshrsi3 (int_op0, int_op0, GEN_INT (shift)));
+
+ emit_insn (gen_andsi3 (int_op0, int_op0, GEN_INT (CC_MASK)));
+
+ operands[2] = get_insns ();
+ end_sequence ();
+}")
+
+;; Move a gpr value to FCC.
+;; Operand0 = FCC
+;; Operand1 = reloaded value shifted appropriately
+;; Operand2 = mask to eliminate current register
+;; Operand3 = temporary to load/store ccr
+(define_insn "update_fcc"
+ [(set (match_operand:CC_FP 0 "fcc_operand" "=u")
+ (unspec:CC_FP [(match_operand:SI 1 "integer_register_operand" "d")
+ (match_operand:SI 2 "integer_register_operand" "d")]
+ UNSPEC_GPR_TO_CC))
+ (clobber (match_operand:SI 3 "integer_register_operand" "=&d"))]
+ "TARGET_HAS_FPRS"
+ "movsg ccr, %3\;and %2, %3, %3\;or %1, %3, %3\;movgs %3, ccr"
+ [(set_attr "type" "multi")
+ (set_attr "length" "16")])
+
+;; Reload CC_CCRmode for conditional execution registers
+(define_insn "movcc_ccr"
+ [(set (match_operand:CC_CCR 0 "move_destination_operand" "=d,d,d,m,v,?w,C,d")
+ (match_operand:CC_CCR 1 "move_source_operand" "C,d,m,d,n,n,C,L"))]
+ ""
+ "@
+ #
+ mov %1, %0
+ ld%I1%U1 %M1, %0
+ st%I0%U0 %1, %M0
+ #
+ #
+ orcr %1, %1, %0
+ setlos #%1, %0"
+ [(set_attr "length" "8,4,4,4,8,12,4,4")
+ (set_attr "type" "multi,int,gload,gstore,multi,multi,ccr,int")])
+
+(define_expand "reload_incc_ccr"
+ [(match_operand:CC_CCR 0 "cr_operand" "=C")
+ (match_operand:CC_CCR 1 "memory_operand" "m")
+ (match_operand:CC_CCR 2 "integer_register_operand" "=&d")]
+ ""
+ "
+{
+ rtx icc = gen_rtx_REG (CCmode, ICC_TEMP);
+ rtx int_op2 = simplify_gen_subreg (SImode, operands[2], CC_CCRmode, 0);
+ rtx icr = (ICR_P (REGNO (operands[0]))
+ ? operands[0] : gen_rtx_REG (CC_CCRmode, ICR_TEMP));
+
+ emit_insn (gen_movcc_ccr (operands[2], operands[1]));
+ emit_insn (gen_cmpsi_cc (icc, int_op2, const0_rtx));
+ emit_insn (gen_movcc_ccr (icr, gen_rtx_NE (CC_CCRmode, icc, const0_rtx)));
+
+ if (! ICR_P (REGNO (operands[0])))
+ emit_insn (gen_movcc_ccr (operands[0], icr));
+
+ DONE;
+}")
+
+(define_expand "reload_outcc_ccr"
+ [(set (match_operand:CC_CCR 2 "integer_register_operand" "=&d")
+ (match_operand:CC_CCR 1 "cr_operand" "C"))
+ (set (match_operand:CC_CCR 0 "memory_operand" "=m")
+ (match_dup 2))]
+ ""
+ "")
+
+(define_split
+ [(set (match_operand:CC_CCR 0 "integer_register_operand" "")
+ (match_operand:CC_CCR 1 "cr_operand" ""))]
+ "reload_completed"
+ [(match_dup 2)]
+ "
+{
+ rtx int_op0 = simplify_gen_subreg (SImode, operands[0], CC_CCRmode, 0);
+
+ start_sequence ();
+ emit_move_insn (operands[0], const1_rtx);
+ emit_insn (gen_rtx_COND_EXEC (VOIDmode,
+ gen_rtx_EQ (CC_CCRmode,
+ operands[1],
+ const0_rtx),
+ gen_rtx_SET (VOIDmode, int_op0,
+ const0_rtx)));
+
+ operands[2] = get_insns ();
+ end_sequence ();
+}")
+
+(define_split
+ [(set (match_operand:CC_CCR 0 "cr_operand" "")
+ (match_operand:CC_CCR 1 "const_int_operand" ""))]
+ "reload_completed"
+ [(match_dup 2)]
+ "
+{
+ rtx icc = gen_rtx_REG (CCmode, ICC_TEMP);
+ rtx r0 = gen_rtx_REG (SImode, GPR_FIRST);
+ rtx icr = (ICR_P (REGNO (operands[0]))
+ ? operands[0] : gen_rtx_REG (CC_CCRmode, ICR_TEMP));
+
+ start_sequence ();
+
+ emit_insn (gen_cmpsi_cc (icc, r0, const0_rtx));
+
+ emit_insn (gen_movcc_ccr (icr,
+ gen_rtx_fmt_ee (((INTVAL (operands[1]) == 0)
+ ? EQ : NE), CC_CCRmode,
+ r0, const0_rtx)));
+
+ if (! ICR_P (REGNO (operands[0])))
+ emit_insn (gen_movcc_ccr (operands[0], icr));
+
+ operands[2] = get_insns ();
+ end_sequence ();
+}")
+
+
+;; ::::::::::::::::::::
+;; ::
+;; :: Conversions
+;; ::
+;; ::::::::::::::::::::
+
+;; Signed conversions from a smaller integer to a larger integer
+;;
+;; These operations are optional. If they are not
+;; present GCC will synthesize them for itself
+;; Even though frv does not provide these instructions, we define them
+;; to allow load + sign extend to be collapsed together
+(define_insn "extendqihi2"
+ [(set (match_operand:HI 0 "integer_register_operand" "=d,d")
+ (sign_extend:HI (match_operand:QI 1 "gpr_or_memory_operand" "d,m")))]
+ ""
+ "@
+ #
+ ldsb%I1%U1 %M1,%0"
+ [(set_attr "length" "8,4")
+ (set_attr "type" "multi,gload")])
+
+(define_split
+ [(set (match_operand:HI 0 "integer_register_operand" "")
+ (sign_extend:HI (match_operand:QI 1 "integer_register_operand" "")))]
+ "reload_completed"
+ [(match_dup 2)
+ (match_dup 3)]
+ "
+{
+ rtx op0 = gen_lowpart (SImode, operands[0]);
+ rtx op1 = gen_lowpart (SImode, operands[1]);
+ rtx shift = GEN_INT (24);
+
+ operands[2] = gen_ashlsi3 (op0, op1, shift);
+ operands[3] = gen_ashrsi3 (op0, op0, shift);
+}")
+
+(define_insn "extendqisi2"
+ [(set (match_operand:SI 0 "integer_register_operand" "=d,d")
+ (sign_extend:SI (match_operand:QI 1 "gpr_or_memory_operand" "d,m")))]
+ ""
+ "@
+ #
+ ldsb%I1%U1 %M1,%0"
+ [(set_attr "length" "8,4")
+ (set_attr "type" "multi,gload")])
+
+(define_split
+ [(set (match_operand:SI 0 "integer_register_operand" "")
+ (sign_extend:SI (match_operand:QI 1 "integer_register_operand" "")))]
+ "reload_completed"
+ [(match_dup 2)
+ (match_dup 3)]
+ "
+{
+ rtx op0 = gen_lowpart (SImode, operands[0]);
+ rtx op1 = gen_lowpart (SImode, operands[1]);
+ rtx shift = GEN_INT (24);
+
+ operands[2] = gen_ashlsi3 (op0, op1, shift);
+ operands[3] = gen_ashrsi3 (op0, op0, shift);
+}")
+
+;;(define_insn "extendqidi2"
+;; [(set (match_operand:DI 0 "register_operand" "=r")
+;; (sign_extend:DI (match_operand:QI 1 "general_operand" "g")))]
+;; ""
+;; "extendqihi2 %0,%1"
+;; [(set_attr "length" "4")])
+
+(define_insn "extendhisi2"
+ [(set (match_operand:SI 0 "integer_register_operand" "=d,d")
+ (sign_extend:SI (match_operand:HI 1 "gpr_or_memory_operand" "d,m")))]
+ ""
+ "@
+ #
+ ldsh%I1%U1 %M1,%0"
+ [(set_attr "length" "8,4")
+ (set_attr "type" "multi,gload")])
+
+(define_split
+ [(set (match_operand:SI 0 "integer_register_operand" "")
+ (sign_extend:SI (match_operand:HI 1 "integer_register_operand" "")))]
+ "reload_completed"
+ [(match_dup 2)
+ (match_dup 3)]
+ "
+{
+ rtx op0 = gen_lowpart (SImode, operands[0]);
+ rtx op1 = gen_lowpart (SImode, operands[1]);
+ rtx shift = GEN_INT (16);
+
+ operands[2] = gen_ashlsi3 (op0, op1, shift);
+ operands[3] = gen_ashrsi3 (op0, op0, shift);
+}")
+
+;;(define_insn "extendhidi2"
+;; [(set (match_operand:DI 0 "register_operand" "=r")
+;; (sign_extend:DI (match_operand:HI 1 "general_operand" "g")))]
+;; ""
+;; "extendhihi2 %0,%1"
+;; [(set_attr "length" "4")])
+;;
+;;(define_insn "extendsidi2"
+;; [(set (match_operand:DI 0 "register_operand" "=r")
+;; (sign_extend:DI (match_operand:SI 1 "general_operand" "g")))]
+;; ""
+;; "extendsidi2 %0,%1"
+;; [(set_attr "length" "4")])
+
+;; Unsigned conversions from a smaller integer to a larger integer
+(define_insn "zero_extendqihi2"
+ [(set (match_operand:HI 0 "integer_register_operand" "=d,d,d")
+ (zero_extend:HI
+ (match_operand:QI 1 "gpr_or_memory_operand" "d,L,m")))]
+ ""
+ "@
+ andi %1,#0xff,%0
+ setlos %1,%0
+ ldub%I1%U1 %M1,%0"
+ [(set_attr "length" "4")
+ (set_attr "type" "int,int,gload")])
+
+(define_insn "zero_extendqisi2"
+ [(set (match_operand:SI 0 "integer_register_operand" "=d,d,d")
+ (zero_extend:SI
+ (match_operand:QI 1 "gpr_or_memory_operand" "d,L,m")))]
+ ""
+ "@
+ andi %1,#0xff,%0
+ setlos %1,%0
+ ldub%I1%U1 %M1,%0"
+ [(set_attr "length" "4")
+ (set_attr "type" "int,int,gload")])
+
+;;(define_insn "zero_extendqidi2"
+;; [(set (match_operand:DI 0 "register_operand" "=r")
+;; (zero_extend:DI (match_operand:QI 1 "general_operand" "g")))]
+;; ""
+;; "zero_extendqihi2 %0,%1"
+;; [(set_attr "length" "4")])
+
+;; Do not set the type for the sethi to "sethi", since the scheduler will think
+;; the sethi takes 0 cycles as part of allowing sethi/setlo to be in the same
+;; VLIW instruction.
+(define_insn "zero_extendhisi2"
+ [(set (match_operand:SI 0 "integer_register_operand" "=d,d")
+ (zero_extend:SI (match_operand:HI 1 "gpr_or_memory_operand" "0,m")))]
+ ""
+ "@
+ sethi #hi(#0),%0
+ lduh%I1%U1 %M1,%0"
+ [(set_attr "length" "4")
+ (set_attr "type" "int,gload")])
+
+;;(define_insn "zero_extendhidi2"
+;; [(set (match_operand:DI 0 "register_operand" "=r")
+;; (zero_extend:DI (match_operand:HI 1 "general_operand" "g")))]
+;; ""
+;; "zero_extendhihi2 %0,%1"
+;; [(set_attr "length" "4")])
+;;
+;;(define_insn "zero_extendsidi2"
+;; [(set (match_operand:DI 0 "register_operand" "=r")
+;; (zero_extend:DI (match_operand:SI 1 "general_operand" "g")))]
+;; ""
+;; "zero_extendsidi2 %0,%1"
+;; [(set_attr "length" "4")])
+;;
+;;;; Convert between floating point types of different sizes.
+;;
+;;(define_insn "extendsfdf2"
+;; [(set (match_operand:DF 0 "register_operand" "=r")
+;; (float_extend:DF (match_operand:SF 1 "register_operand" "r")))]
+;; ""
+;; "extendsfdf2 %0,%1"
+;; [(set_attr "length" "4")])
+;;
+;;(define_insn "truncdfsf2"
+;; [(set (match_operand:SF 0 "register_operand" "=r")
+;; (float_truncate:SF (match_operand:DF 1 "register_operand" "r")))]
+;; ""
+;; "truncdfsf2 %0,%1"
+;; [(set_attr "length" "4")])
+
+;;;; Convert between signed integer types and floating point.
+(define_insn "floatsisf2"
+ [(set (match_operand:SF 0 "fpr_operand" "=f")
+ (float:SF (match_operand:SI 1 "fpr_operand" "f")))]
+ "TARGET_HARD_FLOAT"
+ "fitos %1,%0"
+ [(set_attr "length" "4")
+ (set_attr "type" "fsconv")])
+
+(define_insn "floatsidf2"
+ [(set (match_operand:DF 0 "fpr_operand" "=h")
+ (float:DF (match_operand:SI 1 "fpr_operand" "f")))]
+ "TARGET_HARD_FLOAT && TARGET_DOUBLE"
+ "fitod %1,%0"
+ [(set_attr "length" "4")
+ (set_attr "type" "fdconv")])
+
+;;(define_insn "floatdisf2"
+;; [(set (match_operand:SF 0 "register_operand" "=r")
+;; (float:SF (match_operand:DI 1 "register_operand" "r")))]
+;; ""
+;; "floatdisf2 %0,%1"
+;; [(set_attr "length" "4")])
+;;
+;;(define_insn "floatdidf2"
+;; [(set (match_operand:DF 0 "register_operand" "=r")
+;; (float:DF (match_operand:DI 1 "register_operand" "r")))]
+;; ""
+;; "floatdidf2 %0,%1"
+;; [(set_attr "length" "4")])
+
+(define_insn "fix_truncsfsi2"
+ [(set (match_operand:SI 0 "fpr_operand" "=f")
+ (fix:SI (match_operand:SF 1 "fpr_operand" "f")))]
+ "TARGET_HARD_FLOAT"
+ "fstoi %1,%0"
+ [(set_attr "length" "4")
+ (set_attr "type" "fsconv")])
+
+(define_insn "fix_truncdfsi2"
+ [(set (match_operand:SI 0 "fpr_operand" "=f")
+ (fix:SI (match_operand:DF 1 "fpr_operand" "h")))]
+ "TARGET_HARD_FLOAT && TARGET_DOUBLE"
+ "fdtoi %1,%0"
+ [(set_attr "length" "4")
+ (set_attr "type" "fdconv")])
+
+;;(define_insn "fix_truncsfdi2"
+;; [(set (match_operand:DI 0 "register_operand" "=r")
+;; (fix:DI (match_operand:SF 1 "register_operand" "r")))]
+;; ""
+;; "fix_truncsfdi2 %0,%1"
+;; [(set_attr "length" "4")])
+;;
+;;(define_insn "fix_truncdfdi2"
+;; [(set (match_operand:DI 0 "register_operand" "=r")
+;; (fix:DI (match_operand:DF 1 "register_operand" "r")))]
+;; ""
+;; "fix_truncdfdi2 %0,%1"
+;; [(set_attr "length" "4")])
+;;
+;;;; Convert between unsigned integer types and floating point.
+;;
+;;(define_insn "floatunssisf2"
+;; [(set (match_operand:SF 0 "register_operand" "=r")
+;; (unsigned_float:SF (match_operand:SI 1 "register_operand" "r")))]
+;; ""
+;; "floatunssisf2 %0,%1"
+;; [(set_attr "length" "4")])
+;;
+;;(define_insn "floatunssidf2"
+;; [(set (match_operand:DF 0 "register_operand" "=r")
+;; (unsigned_float:DF (match_operand:SI 1 "register_operand" "r")))]
+;; ""
+;; "floatunssidf2 %0,%1"
+;; [(set_attr "length" "4")])
+;;
+;;(define_insn "floatunsdisf2"
+;; [(set (match_operand:SF 0 "register_operand" "=r")
+;; (unsigned_float:SF (match_operand:DI 1 "register_operand" "r")))]
+;; ""
+;; "floatunsdisf2 %0,%1"
+;; [(set_attr "length" "4")])
+;;
+;;(define_insn "floatunsdidf2"
+;; [(set (match_operand:DF 0 "register_operand" "=r")
+;; (unsigned_float:DF (match_operand:DI 1 "register_operand" "r")))]
+;; ""
+;; "floatunsdidf2 %0,%1"
+;; [(set_attr "length" "4")])
+;;
+;;(define_insn "fixuns_truncsfsi2"
+;; [(set (match_operand:SI 0 "register_operand" "=r")
+;; (unsigned_fix:SI (match_operand:SF 1 "register_operand" "r")))]
+;; ""
+;; "fixuns_truncsfsi2 %0,%1"
+;; [(set_attr "length" "4")])
+;;
+;;(define_insn "fixuns_truncdfsi2"
+;; [(set (match_operand:SI 0 "register_operand" "=r")
+;; (unsigned_fix:SI (match_operand:DF 1 "register_operand" "r")))]
+;; ""
+;; "fixuns_truncdfsi2 %0,%1"
+;; [(set_attr "length" "4")])
+;;
+;;(define_insn "fixuns_truncsfdi2"
+;; [(set (match_operand:DI 0 "register_operand" "=r")
+;; (unsigned_fix:DI (match_operand:SF 1 "register_operand" "r")))]
+;; ""
+;; "fixuns_truncsfdi2 %0,%1"
+;; [(set_attr "length" "4")])
+;;
+;;(define_insn "fixuns_truncdfdi2"
+;; [(set (match_operand:DI 0 "register_operand" "=r")
+;; (unsigned_fix:DI (match_operand:DF 1 "register_operand" "r")))]
+;; ""
+;; "fixuns_truncdfdi2 %0,%1"
+;; [(set_attr "length" "4")])
+
+
+;; ::::::::::::::::::::
+;; ::
+;; :: 32 bit Integer arithmetic
+;; ::
+;; ::::::::::::::::::::
+
+;; Addition
+(define_insn "addsi3"
+ [(set (match_operand:SI 0 "integer_register_operand" "=d")
+ (plus:SI (match_operand:SI 1 "integer_register_operand" "%d")
+ (match_operand:SI 2 "gpr_or_int12_operand" "dNOP")))]
+ ""
+ "add%I2 %1,%2,%0"
+ [(set_attr "length" "4")
+ (set_attr "type" "int")])
+
+;; Subtraction. No need to worry about constants, since the compiler
+;; canonicalizes them into addsi3's. We prevent SUBREG's here to work around a
+;; combine bug, that combines the 32x32->upper 32 bit multiply that uses a
+;; SUBREG with a minus that shows up in modulus by constants.
+(define_insn "subsi3"
+ [(set (match_operand:SI 0 "integer_register_operand" "=d")
+ (minus:SI (match_operand:SI 1 "gpr_no_subreg_operand" "d")
+ (match_operand:SI 2 "gpr_no_subreg_operand" "d")))]
+ ""
+ "sub %1,%2,%0"
+ [(set_attr "length" "4")
+ (set_attr "type" "int")])
+
+;; Signed multiplication producing 64 bit results from 32 bit inputs
+;; Note, frv doesn't have a 32x32->32 bit multiply, but the compiler
+;; will do the 32x32->64 bit multiply and use the bottom word.
+(define_expand "mulsidi3"
+ [(set (match_operand:DI 0 "integer_register_operand" "")
+ (mult:DI (sign_extend:DI (match_operand:SI 1 "integer_register_operand" ""))
+ (sign_extend:DI (match_operand:SI 2 "gpr_or_int12_operand" ""))))]
+ ""
+ "
+{
+ if (GET_CODE (operands[2]) == CONST_INT)
+ {
+ emit_insn (gen_mulsidi3_const (operands[0], operands[1], operands[2]));
+ DONE;
+ }
+}")
+
+(define_insn "*mulsidi3_reg"
+ [(set (match_operand:DI 0 "even_gpr_operand" "=e")
+ (mult:DI (sign_extend:DI (match_operand:SI 1 "integer_register_operand" "%d"))
+ (sign_extend:DI (match_operand:SI 2 "integer_register_operand" "d"))))]
+ ""
+ "smul %1,%2,%0"
+ [(set_attr "length" "4")
+ (set_attr "type" "mul")])
+
+(define_insn "mulsidi3_const"
+ [(set (match_operand:DI 0 "even_gpr_operand" "=e")
+ (mult:DI (sign_extend:DI (match_operand:SI 1 "integer_register_operand" "d"))
+ (match_operand:SI 2 "int12_operand" "NOP")))]
+ ""
+ "smuli %1,%2,%0"
+ [(set_attr "length" "4")
+ (set_attr "type" "mul")])
+
+;; Unsigned multiplication producing 64 bit results from 32 bit inputs
+(define_expand "umulsidi3"
+ [(set (match_operand:DI 0 "even_gpr_operand" "")
+ (mult:DI (zero_extend:DI (match_operand:SI 1 "integer_register_operand" ""))
+ (zero_extend:DI (match_operand:SI 2 "gpr_or_int12_operand" ""))))]
+ ""
+ "
+{
+ if (GET_CODE (operands[2]) == CONST_INT)
+ {
+ emit_insn (gen_umulsidi3_const (operands[0], operands[1], operands[2]));
+ DONE;
+ }
+}")
+
+(define_insn "*mulsidi3_reg"
+ [(set (match_operand:DI 0 "even_gpr_operand" "=e")
+ (mult:DI (zero_extend:DI (match_operand:SI 1 "integer_register_operand" "%d"))
+ (zero_extend:DI (match_operand:SI 2 "integer_register_operand" "d"))))]
+ ""
+ "umul %1,%2,%0"
+ [(set_attr "length" "4")
+ (set_attr "type" "mul")])
+
+(define_insn "umulsidi3_const"
+ [(set (match_operand:DI 0 "even_gpr_operand" "=e")
+ (mult:DI (zero_extend:DI (match_operand:SI 1 "integer_register_operand" "d"))
+ (match_operand:SI 2 "int12_operand" "NOP")))]
+ ""
+ "umuli %1,%2,%0"
+ [(set_attr "length" "4")
+ (set_attr "type" "mul")])
+
+;; Signed Division
+(define_insn "divsi3"
+ [(set (match_operand:SI 0 "register_operand" "=d,d")
+ (div:SI (match_operand:SI 1 "register_operand" "d,d")
+ (match_operand:SI 2 "gpr_or_int12_operand" "d,NOP")))]
+ ""
+ "sdiv%I2 %1,%2,%0"
+ [(set_attr "length" "4")
+ (set_attr "type" "div")])
+
+;; Unsigned Division
+(define_insn "udivsi3"
+ [(set (match_operand:SI 0 "register_operand" "=d,d")
+ (udiv:SI (match_operand:SI 1 "register_operand" "d,d")
+ (match_operand:SI 2 "gpr_or_int12_operand" "d,NOP")))]
+ ""
+ "udiv%I2 %1,%2,%0"
+ [(set_attr "length" "4")
+ (set_attr "type" "div")])
+
+;; Negation
+(define_insn "negsi2"
+ [(set (match_operand:SI 0 "integer_register_operand" "=d")
+ (neg:SI (match_operand:SI 1 "integer_register_operand" "d")))]
+ ""
+ "sub %.,%1,%0"
+ [(set_attr "length" "4")
+ (set_attr "type" "int")])
+
+;; Find first one bit
+;; (define_insn "ffssi2"
+;; [(set (match_operand:SI 0 "register_operand" "=r")
+;; (ffs:SI (match_operand:SI 1 "register_operand" "r")))]
+;; ""
+;; "ffssi2 %0,%1"
+;; [(set_attr "length" "4")])
+
+
+;; ::::::::::::::::::::
+;; ::
+;; :: 64 bit Integer arithmetic
+;; ::
+;; ::::::::::::::::::::
+
+;; Addition
+(define_expand "adddi3"
+ [(parallel [(set (match_operand:DI 0 "integer_register_operand" "")
+ (plus:DI (match_operand:DI 1 "integer_register_operand" "")
+ (match_operand:DI 2 "gpr_or_int10_operand" "")))
+ (clobber (match_scratch:CC 3 ""))])]
+ ""
+ "
+{
+ if (GET_CODE (operands[2]) == CONST_INT
+ && INTVAL (operands[2]) == -2048
+ && !no_new_pseudos)
+ operands[2] = force_reg (DImode, operands[2]);
+}")
+
+(define_insn_and_split "*adddi3_internal"
+ [(set (match_operand:DI 0 "integer_register_operand" "=&e,e,e,&e,e,&e,e")
+ (plus:DI (match_operand:DI 1 "integer_register_operand" "%e,0,e,e,0,e,0")
+ (match_operand:DI 2 "gpr_or_int10_operand" "e,e,0,N,N,OP,OP")))
+ (clobber (match_scratch:CC 3 "=t,t,t,t,t,t,t"))]
+ "GET_CODE (operands[2]) != CONST_INT || INTVAL (operands[2]) != -2048"
+ "#"
+ "reload_completed"
+ [(match_dup 4)
+ (match_dup 5)]
+ "
+{
+ rtx op0_high = gen_highpart (SImode, operands[0]);
+ rtx op1_high = gen_highpart (SImode, operands[1]);
+ rtx op0_low = gen_lowpart (SImode, operands[0]);
+ rtx op1_low = gen_lowpart (SImode, operands[1]);
+ rtx op2 = operands[2];
+ rtx op3 = operands[3];
+
+ if (GET_CODE (op2) != CONST_INT)
+ {
+ rtx op2_high = gen_highpart (SImode, operands[2]);
+ rtx op2_low = gen_lowpart (SImode, operands[2]);
+ operands[4] = gen_adddi3_lower (op0_low, op1_low, op2_low, op3);
+ operands[5] = gen_adddi3_upper (op0_high, op1_high, op2_high, op3);
+ }
+ else if (INTVAL (op2) >= 0)
+ {
+ operands[4] = gen_adddi3_lower (op0_low, op1_low, op2, op3);
+ operands[5] = gen_adddi3_upper (op0_high, op1_high, const0_rtx, op3);
+ }
+ else
+ {
+ operands[4] = gen_subdi3_lower (op0_low, op1_low,
+ GEN_INT (- INTVAL (op2)), op3);
+ operands[5] = gen_subdi3_upper (op0_high, op1_high, const0_rtx, op3);
+ }
+}"
+ [(set_attr "length" "8")
+ (set_attr "type" "multi")])
+
+;; Subtraction No need to worry about constants, since the compiler
+;; canonicalizes them into adddi3's.
+(define_expand "subdi3"
+ [(parallel [(set (match_operand:DI 0 "integer_register_operand" "")
+ (minus:DI (match_operand:DI 1 "integer_register_operand" "")
+ (match_operand:DI 2 "integer_register_operand" "")))
+ (clobber (match_dup 3))])]
+ ""
+ "
+{
+ operands[3] = gen_reg_rtx (CCmode);
+}")
+
+(define_insn_and_split "*subdi3_internal"
+ [(set (match_operand:DI 0 "integer_register_operand" "=&e,e,e")
+ (minus:DI (match_operand:DI 1 "integer_register_operand" "e,0,e")
+ (match_operand:DI 2 "integer_register_operand" "e,e,0")))
+ (clobber (match_operand:CC 3 "icc_operand" "=t,t,t"))]
+ ""
+ "#"
+ "reload_completed"
+ [(match_dup 4)
+ (match_dup 5)]
+ "
+{
+ rtx op0_high = gen_highpart (SImode, operands[0]);
+ rtx op1_high = gen_highpart (SImode, operands[1]);
+ rtx op2_high = gen_highpart (SImode, operands[2]);
+ rtx op0_low = gen_lowpart (SImode, operands[0]);
+ rtx op1_low = gen_lowpart (SImode, operands[1]);
+ rtx op2_low = gen_lowpart (SImode, operands[2]);
+ rtx op3 = operands[3];
+
+ operands[4] = gen_subdi3_lower (op0_low, op1_low, op2_low, op3);
+ operands[5] = gen_subdi3_upper (op0_high, op1_high, op2_high, op3);
+}"
+ [(set_attr "length" "8")
+ (set_attr "type" "multi")])
+
+;; Patterns for addsi3/subdi3 after spliting
+(define_insn "adddi3_lower"
+ [(set (match_operand:SI 0 "integer_register_operand" "=d")
+ (plus:SI (match_operand:SI 1 "integer_register_operand" "d")
+ (match_operand:SI 2 "gpr_or_int10_operand" "dOP")))
+ (set (match_operand:CC 3 "icc_operand" "=t")
+ (compare:CC (plus:SI (match_dup 1)
+ (match_dup 2))
+ (const_int 0)))]
+ "GET_CODE (operands[2]) != CONST_INT || INTVAL (operands[2]) >= 0"
+ "add%I2cc %1,%2,%0,%3"
+ [(set_attr "length" "4")
+ (set_attr "type" "int")])
+
+(define_insn "adddi3_upper"
+ [(set (match_operand:SI 0 "integer_register_operand" "=d,d")
+ (plus:SI (match_operand:SI 1 "integer_register_operand" "d,d")
+ (plus:SI (match_operand:SI 2 "reg_or_0_operand" "d,O")
+ (match_operand:CC 3 "icc_operand" "t,t"))))]
+ ""
+ "@
+ addx %1,%2,%0,%3
+ addx %1,%.,%0,%3"
+ [(set_attr "length" "4")
+ (set_attr "type" "int")])
+
+(define_insn "subdi3_lower"
+ [(set (match_operand:SI 0 "integer_register_operand" "=d")
+ (minus:SI (match_operand:SI 1 "integer_register_operand" "d")
+ (match_operand:SI 2 "gpr_or_int10_operand" "dOP")))
+ (set (match_operand:CC 3 "icc_operand" "=t")
+ (compare:CC (plus:SI (match_dup 1)
+ (match_dup 2))
+ (const_int 0)))]
+ "GET_CODE (operands[2]) != CONST_INT || INTVAL (operands[2]) >= 0"
+ "sub%I2cc %1,%2,%0,%3"
+ [(set_attr "length" "4")
+ (set_attr "type" "int")])
+
+(define_insn "subdi3_upper"
+ [(set (match_operand:SI 0 "integer_register_operand" "=d,d")
+ (minus:SI (match_operand:SI 1 "integer_register_operand" "d,d")
+ (minus:SI (match_operand:SI 2 "reg_or_0_operand" "d,O")
+ (match_operand:CC 3 "icc_operand" "t,t"))))]
+ ""
+ "@
+ subx %1,%2,%0,%3
+ subx %1,%.,%0,%3"
+ [(set_attr "length" "4")
+ (set_attr "type" "int")])
+
+;; Multiplication (same size)
+;; (define_insn "muldi3"
+;; [(set (match_operand:DI 0 "register_operand" "=r")
+;; (mult:DI (match_operand:DI 1 "register_operand" "%r")
+;; (match_operand:DI 2 "nonmemory_operand" "ri")))]
+;; ""
+;; "muldi3 %0,%1,%2"
+;; [(set_attr "length" "4")])
+
+;; Signed Division
+;; (define_insn "divdi3"
+;; [(set (match_operand:DI 0 "register_operand" "=r")
+;; (div:DI (match_operand:DI 1 "register_operand" "r")
+;; (match_operand:DI 2 "nonmemory_operand" "ri")))]
+;; ""
+;; "divdi3 %0,%1,%2"
+;; [(set_attr "length" "4")])
+
+;; Undsgned Division
+;; (define_insn "udivdi3"
+;; [(set (match_operand:DI 0 "register_operand" "=r")
+;; (udiv:DI (match_operand:DI 1 "register_operand" "r")
+;; (match_operand:DI 2 "nonmemory_operand" "ri")))]
+;; ""
+;; "udivdi3 %0,%1,%2"
+;; [(set_attr "length" "4")])
+
+;; Negation
+;; (define_insn "negdi2"
+;; [(set (match_operand:DI 0 "register_operand" "=r")
+;; (neg:DI (match_operand:DI 1 "register_operand" "r")))]
+;; ""
+;; "negdi2 %0,%1"
+;; [(set_attr "length" "4")])
+
+;; Find first one bit
+;; (define_insn "ffsdi2"
+;; [(set (match_operand:DI 0 "register_operand" "=r")
+;; (ffs:DI (match_operand:DI 1 "register_operand" "r")))]
+;; ""
+;; "ffsdi2 %0,%1"
+;; [(set_attr "length" "4")])
+
+
+;; ::::::::::::::::::::
+;; ::
+;; :: 32 bit floating point arithmetic
+;; ::
+;; ::::::::::::::::::::
+
+;; Addition
+(define_insn "addsf3"
+ [(set (match_operand:SF 0 "fpr_operand" "=f")
+ (plus:SF (match_operand:SF 1 "fpr_operand" "%f")
+ (match_operand:SF 2 "fpr_operand" "f")))]
+ "TARGET_HARD_FLOAT"
+ "fadds %1,%2,%0"
+ [(set_attr "length" "4")
+ (set_attr "type" "fsadd")])
+
+;; Subtraction
+(define_insn "subsf3"
+ [(set (match_operand:SF 0 "fpr_operand" "=f")
+ (minus:SF (match_operand:SF 1 "fpr_operand" "f")
+ (match_operand:SF 2 "fpr_operand" "f")))]
+ "TARGET_HARD_FLOAT"
+ "fsubs %1,%2,%0"
+ [(set_attr "length" "4")
+ (set_attr "type" "fsadd")])
+
+;; Multiplication
+(define_insn "mulsf3"
+ [(set (match_operand:SF 0 "fpr_operand" "=f")
+ (mult:SF (match_operand:SF 1 "fpr_operand" "%f")
+ (match_operand:SF 2 "fpr_operand" "f")))]
+ "TARGET_HARD_FLOAT"
+ "fmuls %1,%2,%0"
+ [(set_attr "length" "4")
+ (set_attr "type" "fsmul")])
+
+;; Multiplication with addition/subtraction
+(define_insn "*muladdsf4"
+ [(set (match_operand:SF 0 "fpr_operand" "=f")
+ (plus:SF (mult:SF (match_operand:SF 1 "fpr_operand" "%f")
+ (match_operand:SF 2 "fpr_operand" "f"))
+ (match_operand:SF 3 "fpr_operand" "0")))]
+ "TARGET_HARD_FLOAT && TARGET_MULADD"
+ "fmadds %1,%2,%0"
+ [(set_attr "length" "4")
+ (set_attr "type" "fmas")])
+
+(define_insn "*mulsubsf4"
+ [(set (match_operand:SF 0 "fpr_operand" "=f")
+ (minus:SF (mult:SF (match_operand:SF 1 "fpr_operand" "%f")
+ (match_operand:SF 2 "fpr_operand" "f"))
+ (match_operand:SF 3 "fpr_operand" "0")))]
+ "TARGET_HARD_FLOAT && TARGET_MULADD"
+ "fmsubs %1,%2,%0"
+ [(set_attr "length" "4")
+ (set_attr "type" "fmas")])
+
+;; Division
+(define_insn "divsf3"
+ [(set (match_operand:SF 0 "fpr_operand" "=f")
+ (div:SF (match_operand:SF 1 "fpr_operand" "f")
+ (match_operand:SF 2 "fpr_operand" "f")))]
+ "TARGET_HARD_FLOAT"
+ "fdivs %1,%2,%0"
+ [(set_attr "length" "4")
+ (set_attr "type" "fsdiv")])
+
+;; Negation
+(define_insn "negsf2"
+ [(set (match_operand:SF 0 "fpr_operand" "=f")
+ (neg:SF (match_operand:SF 1 "fpr_operand" "f")))]
+ "TARGET_HARD_FLOAT"
+ "fnegs %1,%0"
+ [(set_attr "length" "4")
+ (set_attr "type" "fsconv")])
+
+;; Absolute value
+(define_insn "abssf2"
+ [(set (match_operand:SF 0 "fpr_operand" "=f")
+ (abs:SF (match_operand:SF 1 "fpr_operand" "f")))]
+ "TARGET_HARD_FLOAT"
+ "fabss %1,%0"
+ [(set_attr "length" "4")
+ (set_attr "type" "fsconv")])
+
+;; Square root
+(define_insn "sqrtsf2"
+ [(set (match_operand:SF 0 "fpr_operand" "=f")
+ (sqrt:SF (match_operand:SF 1 "fpr_operand" "f")))]
+ "TARGET_HARD_FLOAT"
+ "fsqrts %1,%0"
+ [(set_attr "length" "4")
+ (set_attr "type" "sqrt_single")])
+
+
+;; ::::::::::::::::::::
+;; ::
+;; :: 64 bit floating point arithmetic
+;; ::
+;; ::::::::::::::::::::
+
+;; Addition
+(define_insn "adddf3"
+ [(set (match_operand:DF 0 "even_fpr_operand" "=h")
+ (plus:DF (match_operand:DF 1 "fpr_operand" "%h")
+ (match_operand:DF 2 "fpr_operand" "h")))]
+ "TARGET_HARD_FLOAT && TARGET_DOUBLE"
+ "faddd %1,%2,%0"
+ [(set_attr "length" "4")
+ (set_attr "type" "fdadd")])
+
+;; Subtraction
+(define_insn "subdf3"
+ [(set (match_operand:DF 0 "even_fpr_operand" "=h")
+ (minus:DF (match_operand:DF 1 "fpr_operand" "h")
+ (match_operand:DF 2 "fpr_operand" "h")))]
+ "TARGET_HARD_FLOAT && TARGET_DOUBLE"
+ "fsubd %1,%2,%0"
+ [(set_attr "length" "4")
+ (set_attr "type" "fdadd")])
+
+;; Multiplication
+(define_insn "muldf3"
+ [(set (match_operand:DF 0 "even_fpr_operand" "=h")
+ (mult:DF (match_operand:DF 1 "fpr_operand" "%h")
+ (match_operand:DF 2 "fpr_operand" "h")))]
+ "TARGET_HARD_FLOAT && TARGET_DOUBLE"
+ "fmuld %1,%2,%0"
+ [(set_attr "length" "4")
+ (set_attr "type" "fdmul")])
+
+;; Multiplication with addition/subtraction
+(define_insn "*muladddf4"
+ [(set (match_operand:DF 0 "fpr_operand" "=f")
+ (plus:DF (mult:DF (match_operand:DF 1 "fpr_operand" "%f")
+ (match_operand:DF 2 "fpr_operand" "f"))
+ (match_operand:DF 3 "fpr_operand" "0")))]
+ "TARGET_HARD_FLOAT && TARGET_DOUBLE && TARGET_MULADD"
+ "fmaddd %1,%2,%0"
+ [(set_attr "length" "4")
+ (set_attr "type" "fmas")])
+
+(define_insn "*mulsubdf4"
+ [(set (match_operand:DF 0 "fpr_operand" "=f")
+ (minus:DF (mult:DF (match_operand:DF 1 "fpr_operand" "%f")
+ (match_operand:DF 2 "fpr_operand" "f"))
+ (match_operand:DF 3 "fpr_operand" "0")))]
+ "TARGET_HARD_FLOAT && TARGET_DOUBLE && TARGET_MULADD"
+ "fmsubd %1,%2,%0"
+ [(set_attr "length" "4")
+ (set_attr "type" "fmas")])
+
+;; Division
+(define_insn "divdf3"
+ [(set (match_operand:DF 0 "even_fpr_operand" "=h")
+ (div:DF (match_operand:DF 1 "fpr_operand" "h")
+ (match_operand:DF 2 "fpr_operand" "h")))]
+ "TARGET_HARD_FLOAT && TARGET_DOUBLE"
+ "fdivd %1,%2,%0"
+ [(set_attr "length" "4")
+ (set_attr "type" "fddiv")])
+
+;; Negation
+(define_insn "negdf2"
+ [(set (match_operand:DF 0 "even_fpr_operand" "=h")
+ (neg:DF (match_operand:DF 1 "fpr_operand" "h")))]
+ "TARGET_HARD_FLOAT && TARGET_DOUBLE"
+ "fnegd %1,%0"
+ [(set_attr "length" "4")
+ (set_attr "type" "fdconv")])
+
+;; Absolute value
+(define_insn "absdf2"
+ [(set (match_operand:DF 0 "even_fpr_operand" "=h")
+ (abs:DF (match_operand:DF 1 "fpr_operand" "h")))]
+ "TARGET_HARD_FLOAT && TARGET_DOUBLE"
+ "fabsd %1,%0"
+ [(set_attr "length" "4")
+ (set_attr "type" "fdconv")])
+
+;; Square root
+(define_insn "sqrtdf2"
+ [(set (match_operand:DF 0 "even_fpr_operand" "=h")
+ (sqrt:DF (match_operand:DF 1 "fpr_operand" "h")))]
+ "TARGET_HARD_FLOAT && TARGET_DOUBLE"
+ "fsqrtd %1,%0"
+ [(set_attr "length" "4")
+ (set_attr "type" "sqrt_double")])
+
+
+;; ::::::::::::::::::::
+;; ::
+;; :: 32 bit Integer Shifts and Rotates
+;; ::
+;; ::::::::::::::::::::
+
+;; Arithmetic Shift Left
+(define_insn "ashlsi3"
+ [(set (match_operand:SI 0 "integer_register_operand" "=d,d")
+ (ashift:SI (match_operand:SI 1 "integer_register_operand" "d,d")
+ (match_operand:SI 2 "gpr_or_int12_operand" "d,NOP")))]
+ ""
+ "sll%I2 %1,%2,%0"
+ [(set_attr "length" "4")
+ (set_attr "type" "int")])
+
+;; Arithmetic Shift Right
+(define_insn "ashrsi3"
+ [(set (match_operand:SI 0 "integer_register_operand" "=d,d")
+ (ashiftrt:SI (match_operand:SI 1 "integer_register_operand" "d,d")
+ (match_operand:SI 2 "gpr_or_int12_operand" "d,NOP")))]
+ ""
+ "sra%I2 %1, %2, %0"
+ [(set_attr "length" "4")
+ (set_attr "type" "int")])
+
+;; Logical Shift Right
+(define_insn "lshrsi3"
+ [(set (match_operand:SI 0 "integer_register_operand" "=d,d")
+ (lshiftrt:SI (match_operand:SI 1 "integer_register_operand" "d,d")
+ (match_operand:SI 2 "gpr_or_int12_operand" "d,NOP")))]
+ ""
+ "srl%I2 %1, %2, %0"
+ [(set_attr "length" "4")
+ (set_attr "type" "int")])
+
+;; Rotate Left
+;; (define_insn "rotlsi3"
+;; [(set (match_operand:SI 0 "register_operand" "=r")
+;; (rotate:SI (match_operand:SI 1 "register_operand" "r")
+;; (match_operand:SI 2 "nonmemory_operand" "ri")))]
+;; ""
+;; "rotlsi3 %0,%1,%2"
+;; [(set_attr "length" "4")])
+
+;; Rotate Right
+;; (define_insn "rotrsi3"
+;; [(set (match_operand:SI 0 "register_operand" "=r")
+;; (rotatert:SI (match_operand:SI 1 "register_operand" "r")
+;; (match_operand:SI 2 "nonmemory_operand" "ri")))]
+;; ""
+;; "rotrsi3 %0,%1,%2"
+;; [(set_attr "length" "4")])
+
+
+;; ::::::::::::::::::::
+;; ::
+;; :: 64 bit Integer Shifts and Rotates
+;; ::
+;; ::::::::::::::::::::
+
+;; Arithmetic Shift Left
+;; (define_insn "ashldi3"
+;; [(set (match_operand:DI 0 "register_operand" "=r")
+;; (ashift:DI (match_operand:DI 1 "register_operand" "r")
+;; (match_operand:SI 2 "nonmemory_operand" "ri")))]
+;; ""
+;; "ashldi3 %0,%1,%2"
+;; [(set_attr "length" "4")])
+
+;; Arithmetic Shift Right
+;; (define_insn "ashrdi3"
+;; [(set (match_operand:DI 0 "register_operand" "=r")
+;; (ashiftrt:DI (match_operand:DI 1 "register_operand" "r")
+;; (match_operand:SI 2 "nonmemory_operand" "ri")))]
+;; ""
+;; "ashrdi3 %0,%1,%2"
+;; [(set_attr "length" "4")])
+
+;; Logical Shift Right
+;; (define_insn "lshrdi3"
+;; [(set (match_operand:DI 0 "register_operand" "=r")
+;; (lshiftrt:DI (match_operand:DI 1 "register_operand" "r")
+;; (match_operand:SI 2 "nonmemory_operand" "ri")))]
+;; ""
+;; "lshrdi3 %0,%1,%2"
+;; [(set_attr "length" "4")])
+
+;; Rotate Left
+;; (define_insn "rotldi3"
+;; [(set (match_operand:DI 0 "register_operand" "=r")
+;; (rotate:DI (match_operand:DI 1 "register_operand" "r")
+;; (match_operand:SI 2 "nonmemory_operand" "ri")))]
+;; ""
+;; "rotldi3 %0,%1,%2"
+;; [(set_attr "length" "4")])
+
+;; Rotate Right
+;; (define_insn "rotrdi3"
+;; [(set (match_operand:DI 0 "register_operand" "=r")
+;; (rotatert:DI (match_operand:DI 1 "register_operand" "r")
+;; (match_operand:SI 2 "nonmemory_operand" "ri")))]
+;; ""
+;; "rotrdi3 %0,%1,%2"
+;; [(set_attr "length" "4")])
+
+
+;; ::::::::::::::::::::
+;; ::
+;; :: 32 Bit Integer Logical operations
+;; ::
+;; ::::::::::::::::::::
+
+;; Logical AND, 32 bit integers
+(define_insn "andsi3_media"
+ [(set (match_operand:SI 0 "gpr_or_fpr_operand" "=d,f")
+ (and:SI (match_operand:SI 1 "gpr_or_fpr_operand" "%d,f")
+ (match_operand:SI 2 "gpr_fpr_or_int12_operand" "dNOP,f")))]
+ "TARGET_MEDIA"
+ "@
+ and%I2 %1, %2, %0
+ mand %1, %2, %0"
+ [(set_attr "length" "4")
+ (set_attr "type" "int,mlogic")])
+
+(define_insn "andsi3_nomedia"
+ [(set (match_operand:SI 0 "integer_register_operand" "=d")
+ (and:SI (match_operand:SI 1 "integer_register_operand" "%d")
+ (match_operand:SI 2 "gpr_or_int12_operand" "dNOP")))]
+ "!TARGET_MEDIA"
+ "and%I2 %1, %2, %0"
+ [(set_attr "length" "4")
+ (set_attr "type" "int")])
+
+(define_expand "andsi3"
+ [(set (match_operand:SI 0 "gpr_or_fpr_operand" "")
+ (and:SI (match_operand:SI 1 "gpr_or_fpr_operand" "")
+ (match_operand:SI 2 "gpr_fpr_or_int12_operand" "")))]
+ ""
+ "")
+
+;; Inclusive OR, 32 bit integers
+(define_insn "iorsi3_media"
+ [(set (match_operand:SI 0 "gpr_or_fpr_operand" "=d,f")
+ (ior:SI (match_operand:SI 1 "gpr_or_fpr_operand" "%d,f")
+ (match_operand:SI 2 "gpr_fpr_or_int12_operand" "dNOP,f")))]
+ "TARGET_MEDIA"
+ "@
+ or%I2 %1, %2, %0
+ mor %1, %2, %0"
+ [(set_attr "length" "4")
+ (set_attr "type" "int,mlogic")])
+
+(define_insn "iorsi3_nomedia"
+ [(set (match_operand:SI 0 "integer_register_operand" "=d")
+ (ior:SI (match_operand:SI 1 "integer_register_operand" "%d")
+ (match_operand:SI 2 "gpr_or_int12_operand" "dNOP")))]
+ "!TARGET_MEDIA"
+ "or%I2 %1, %2, %0"
+ [(set_attr "length" "4")
+ (set_attr "type" "int")])
+
+(define_expand "iorsi3"
+ [(set (match_operand:SI 0 "gpr_or_fpr_operand" "")
+ (ior:SI (match_operand:SI 1 "gpr_or_fpr_operand" "")
+ (match_operand:SI 2 "gpr_fpr_or_int12_operand" "")))]
+ ""
+ "")
+
+;; Exclusive OR, 32 bit integers
+(define_insn "xorsi3_media"
+ [(set (match_operand:SI 0 "gpr_or_fpr_operand" "=d,f")
+ (xor:SI (match_operand:SI 1 "gpr_or_fpr_operand" "%d,f")
+ (match_operand:SI 2 "gpr_fpr_or_int12_operand" "dNOP,f")))]
+ "TARGET_MEDIA"
+ "@
+ xor%I2 %1, %2, %0
+ mxor %1, %2, %0"
+ [(set_attr "length" "4")
+ (set_attr "type" "int,mlogic")])
+
+(define_insn "xorsi3_nomedia"
+ [(set (match_operand:SI 0 "integer_register_operand" "=d")
+ (xor:SI (match_operand:SI 1 "integer_register_operand" "%d")
+ (match_operand:SI 2 "gpr_or_int12_operand" "dNOP")))]
+ "!TARGET_MEDIA"
+ "xor%I2 %1, %2, %0"
+ [(set_attr "length" "4")
+ (set_attr "type" "int")])
+
+(define_expand "xorsi3"
+ [(set (match_operand:SI 0 "gpr_or_fpr_operand" "")
+ (xor:SI (match_operand:SI 1 "gpr_or_fpr_operand" "")
+ (match_operand:SI 2 "gpr_fpr_or_int12_operand" "")))]
+ ""
+ "")
+
+;; One's complement, 32 bit integers
+(define_insn "one_cmplsi2_media"
+ [(set (match_operand:SI 0 "gpr_or_fpr_operand" "=d,f")
+ (not:SI (match_operand:SI 1 "gpr_or_fpr_operand" "d,f")))]
+ "TARGET_MEDIA"
+ "@
+ not %1, %0
+ mnot %1, %0"
+ [(set_attr "length" "4")
+ (set_attr "type" "int,mlogic")])
+
+(define_insn "one_cmplsi2_nomedia"
+ [(set (match_operand:SI 0 "integer_register_operand" "=d")
+ (not:SI (match_operand:SI 1 "integer_register_operand" "d")))]
+ "!TARGET_MEDIA"
+ "not %1,%0"
+ [(set_attr "length" "4")
+ (set_attr "type" "int")])
+
+(define_expand "one_cmplsi2"
+ [(set (match_operand:SI 0 "gpr_or_fpr_operand" "")
+ (not:SI (match_operand:SI 1 "gpr_or_fpr_operand" "")))]
+ ""
+ "")
+
+
+;; ::::::::::::::::::::
+;; ::
+;; :: 64 Bit Integer Logical operations
+;; ::
+;; ::::::::::::::::::::
+
+;; Logical AND, 64 bit integers
+;; (define_insn "anddi3"
+;; [(set (match_operand:DI 0 "register_operand" "=r")
+;; (and:DI (match_operand:DI 1 "register_operand" "%r")
+;; (match_operand:DI 2 "nonmemory_operand" "ri")))]
+;; ""
+;; "anddi3 %0,%1,%2"
+;; [(set_attr "length" "4")])
+
+;; Includive OR, 64 bit integers
+;; (define_insn "iordi3"
+;; [(set (match_operand:DI 0 "register_operand" "=r")
+;; (ior:DI (match_operand:DI 1 "register_operand" "%r")
+;; (match_operand:DI 2 "nonmemory_operand" "ri")))]
+;; ""
+;; "iordi3 %0,%1,%2"
+;; [(set_attr "length" "4")])
+
+;; Excludive OR, 64 bit integers
+;; (define_insn "xordi3"
+;; [(set (match_operand:DI 0 "register_operand" "=r")
+;; (xor:DI (match_operand:DI 1 "register_operand" "%r")
+;; (match_operand:DI 2 "nonmemory_operand" "ri")))]
+;; ""
+;; "xordi3 %0,%1,%2"
+;; [(set_attr "length" "4")])
+
+;; One's complement, 64 bit integers
+;; (define_insn "one_cmpldi2"
+;; [(set (match_operand:DI 0 "register_operand" "=r")
+;; (not:DI (match_operand:DI 1 "register_operand" "r")))]
+;; ""
+;; "notdi3 %0,%1"
+;; [(set_attr "length" "4")])
+
+
+;; ::::::::::::::::::::
+;; ::
+;; :: Combination of integer operation with comparison
+;; ::
+;; ::::::::::::::::::::
+
+(define_insn "*combo_intop_compare1"
+ [(set (match_operand:CC 0 "icc_operand" "=t")
+ (compare:CC (match_operator:SI 1 "intop_compare_operator"
+ [(match_operand:SI 2 "integer_register_operand" "d")
+ (match_operand:SI 3 "gpr_or_int10_operand" "dJ")])
+ (const_int 0)))]
+ ""
+ "%O1%I3cc %2, %3, %., %0"
+ [(set_attr "type" "int")
+ (set_attr "length" "4")])
+
+(define_insn "*combo_intop_compare2"
+ [(set (match_operand:CC_UNS 0 "icc_operand" "=t")
+ (compare:CC_UNS (match_operator:SI 1 "intop_compare_operator"
+ [(match_operand:SI 2 "integer_register_operand" "d")
+ (match_operand:SI 3 "gpr_or_int10_operand" "dJ")])
+ (const_int 0)))]
+ ""
+ "%O1%I3cc %2, %3, %., %0"
+ [(set_attr "type" "int")
+ (set_attr "length" "4")])
+
+(define_insn "*combo_intop_compare3"
+ [(set (match_operand:CC 0 "icc_operand" "=t")
+ (compare:CC (match_operator:SI 1 "intop_compare_operator"
+ [(match_operand:SI 2 "integer_register_operand" "d")
+ (match_operand:SI 3 "gpr_or_int10_operand" "dJ")])
+ (const_int 0)))
+ (set (match_operand:SI 4 "integer_register_operand" "=d")
+ (match_operator:SI 5 "intop_compare_operator"
+ [(match_dup 2)
+ (match_dup 3)]))]
+ "GET_CODE (operands[1]) == GET_CODE (operands[5])"
+ "%O1%I3cc %2, %3, %4, %0"
+ [(set_attr "type" "int")
+ (set_attr "length" "4")])
+
+(define_insn "*combo_intop_compare4"
+ [(set (match_operand:CC_UNS 0 "icc_operand" "=t")
+ (compare:CC_UNS (match_operator:SI 1 "intop_compare_operator"
+ [(match_operand:SI 2 "integer_register_operand" "d")
+ (match_operand:SI 3 "gpr_or_int10_operand" "dJ")])
+ (const_int 0)))
+ (set (match_operand:SI 4 "integer_register_operand" "=d")
+ (match_operator:SI 5 "intop_compare_operator"
+ [(match_dup 2)
+ (match_dup 3)]))]
+ "GET_CODE (operands[1]) == GET_CODE (operands[5])"
+ "%O1%I3cc %2, %3, %4, %0"
+ [(set_attr "type" "int")
+ (set_attr "length" "4")])
+
+
+;; ::::::::::::::::::::
+;; ::
+;; :: Comparisons
+;; ::
+;; ::::::::::::::::::::
+
+;; Note, we store the operands in the comparison insns, and use them later
+;; when generating the branch or scc operation.
+
+;; First the routines called by the machine independent part of the compiler
+(define_expand "cmpsi"
+ [(set (cc0)
+ (compare (match_operand:SI 0 "integer_register_operand" "")
+ (match_operand:SI 1 "gpr_or_int10_operand" "")))]
+ ""
+ "
+{
+ frv_compare_op0 = operands[0];
+ frv_compare_op1 = operands[1];
+ DONE;
+}")
+
+;(define_expand "cmpdi"
+; [(set (cc0)
+; (compare (match_operand:DI 0 "register_operand" "")
+; (match_operand:DI 1 "nonmemory_operand" "")))]
+; ""
+; "
+;{
+; frv_compare_op0 = operands[0];
+; frv_compare_op1 = operands[1];
+; DONE;
+;}")
+
+(define_expand "cmpsf"
+ [(set (cc0)
+ (compare (match_operand:SF 0 "fpr_operand" "")
+ (match_operand:SF 1 "fpr_operand" "")))]
+ "TARGET_HARD_FLOAT"
+ "
+{
+ frv_compare_op0 = operands[0];
+ frv_compare_op1 = operands[1];
+ DONE;
+}")
+
+(define_expand "cmpdf"
+ [(set (cc0)
+ (compare (match_operand:DF 0 "fpr_operand" "")
+ (match_operand:DF 1 "fpr_operand" "")))]
+ "TARGET_HARD_FLOAT && TARGET_DOUBLE"
+ "
+{
+ frv_compare_op0 = operands[0];
+ frv_compare_op1 = operands[1];
+ DONE;
+}")
+
+;; Now, the actual comparisons, generated by the branch and/or scc operations
+
+(define_insn "cmpsi_cc"
+ [(set (match_operand:CC 0 "icc_operand" "=t,t")
+ (compare:CC (match_operand:SI 1 "integer_register_operand" "d,d")
+ (match_operand:SI 2 "gpr_or_int10_operand" "d,J")))]
+ ""
+ "cmp%I2 %1,%2,%0"
+ [(set_attr "length" "4")
+ (set_attr "type" "int")])
+
+(define_insn "*cmpsi_cc_uns"
+ [(set (match_operand:CC_UNS 0 "icc_operand" "=t,t")
+ (compare:CC_UNS (match_operand:SI 1 "integer_register_operand" "d,d")
+ (match_operand:SI 2 "gpr_or_int10_operand" "d,J")))]
+ ""
+ "cmp%I2 %1,%2,%0"
+ [(set_attr "length" "4")
+ (set_attr "type" "int")])
+
+(define_insn "*cmpsf_cc_fp"
+ [(set (match_operand:CC_FP 0 "fcc_operand" "=u")
+ (compare:CC_FP (match_operand:SF 1 "fpr_operand" "f")
+ (match_operand:SF 2 "fpr_operand" "f")))]
+ "TARGET_HARD_FLOAT"
+ "fcmps %1,%2,%0"
+ [(set_attr "length" "4")
+ (set_attr "type" "fsadd")])
+
+(define_insn "*cmpdf_cc_fp"
+ [(set (match_operand:CC_FP 0 "fcc_operand" "=u")
+ (compare:CC_FP (match_operand:DF 1 "even_fpr_operand" "h")
+ (match_operand:DF 2 "even_fpr_operand" "h")))]
+ "TARGET_HARD_FLOAT && TARGET_DOUBLE"
+ "fcmpd %1,%2,%0"
+ [(set_attr "length" "4")
+ (set_attr "type" "fdadd")])
+
+
+;; ::::::::::::::::::::
+;; ::
+;; :: Branches
+;; ::
+;; ::::::::::::::::::::
+
+;; Define_expands called by the machine independent part of the compiler
+;; to allocate a new comparison register. Each of these named patterns
+;; must be present, and they cannot be amalgamated into one pattern.
+;;
+;; If a fixed condition code register is being used, (as opposed to, say,
+;; using cc0), then the expands should look like this:
+;;
+;; (define_expand "<name_of_test>"
+;; [(set (reg:CC <number_of_CC_register>)
+;; (compare:CC (match_dup 1)
+;; (match_dup 2)))
+;; (set (pc)
+;; (if_then_else (eq:CC (reg:CC <number_of_CC_register>)
+;; (const_int 0))
+;; (label_ref (match_operand 0 "" ""))
+;; (pc)))]
+;; ""
+;; "{
+;; operands[1] = frv_compare_op0;
+;; operands[2] = frv_compare_op1;
+;; }"
+;; )
+
+(define_expand "beq"
+ [(use (match_operand 0 "" ""))]
+ ""
+ "
+{
+ if (! frv_emit_cond_branch (EQ, operands[0]))
+ FAIL;
+
+ DONE;
+}")
+
+(define_expand "bne"
+ [(use (match_operand 0 "" ""))]
+ ""
+ "
+{
+ if (! frv_emit_cond_branch (NE, operands[0]))
+ FAIL;
+
+ DONE;
+}")
+
+(define_expand "blt"
+ [(use (match_operand 0 "" ""))]
+ ""
+ "
+{
+ if (! frv_emit_cond_branch (LT, operands[0]))
+ FAIL;
+
+ DONE;
+}")
+
+(define_expand "ble"
+ [(use (match_operand 0 "" ""))]
+ ""
+ "
+{
+ if (! frv_emit_cond_branch (LE, operands[0]))
+ FAIL;
+
+ DONE;
+}")
+
+(define_expand "bgt"
+ [(use (match_operand 0 "" ""))]
+ ""
+ "
+{
+ if (! frv_emit_cond_branch (GT, operands[0]))
+ FAIL;
+
+ DONE;
+}")
+
+(define_expand "bge"
+ [(use (match_operand 0 "" ""))]
+ ""
+ "
+{
+ if (! frv_emit_cond_branch (GE, operands[0]))
+ FAIL;
+
+ DONE;
+}")
+
+(define_expand "bltu"
+ [(use (match_operand 0 "" ""))]
+ ""
+ "
+{
+ if (! frv_emit_cond_branch (LTU, operands[0]))
+ FAIL;
+
+ DONE;
+}")
+
+(define_expand "bleu"
+ [(use (match_operand 0 "" ""))]
+ ""
+ "
+{
+ if (! frv_emit_cond_branch (LEU, operands[0]))
+ FAIL;
+
+ DONE;
+}")
+
+(define_expand "bgtu"
+ [(use (match_operand 0 "" ""))]
+ ""
+ "
+{
+ if (! frv_emit_cond_branch (GTU, operands[0]))
+ FAIL;
+
+ DONE;
+}")
+
+(define_expand "bgeu"
+ [(use (match_operand 0 "" ""))]
+ ""
+ "
+{
+ if (! frv_emit_cond_branch (GEU, operands[0]))
+ FAIL;
+
+ DONE;
+}")
+
+;; Actual branches. We must allow for the (label_ref) and the (pc) to be
+;; swapped. If they are swapped, it reverses the sense of the branch.
+;;
+;; Note - unlike the define expands above, these patterns can be amalgamated
+;; into one pattern for branch-if-true and one for branch-if-false. This does
+;; require an operand operator to select the correct branch mnemonic.
+;;
+;; If a fixed condition code register is being used, (as opposed to, say,
+;; using cc0), then the expands could look like this:
+;;
+;; (define_insn "*branch_true"
+;; [(set (pc)
+;; (if_then_else (match_operator:CC 0 "comparison_operator"
+;; [(reg:CC <number_of_CC_register>)
+;; (const_int 0)])
+;; (label_ref (match_operand 1 "" ""))
+;; (pc)))]
+;; ""
+;; "b%B0 %1"
+;; [(set_attr "length" "4")]
+;; )
+;;
+;; In the above example the %B is a directive to frv_print_operand()
+;; to decode and print the correct branch mnemonic.
+
+(define_insn "*branch_signed_true"
+ [(set (pc)
+ (if_then_else (match_operator:CC 0 "signed_relational_operator"
+ [(match_operand 1 "icc_operand" "t")
+ (const_int 0)])
+ (label_ref (match_operand 2 "" ""))
+ (pc)))]
+ ""
+ "*
+{
+ if (get_attr_length (insn) == 4)
+ return \"b%c0 %1,%#,%l2\";
+ else
+ return \"b%C0 %1,%#,1f\;call %l2\\n1:\";
+}"
+ [(set (attr "length")
+ (if_then_else
+ (and (ge (minus (match_dup 2) (pc)) (const_int -32768))
+ (le (minus (match_dup 2) (pc)) (const_int 32764)))
+ (const_int 4)
+ (const_int 8)))
+ (set (attr "far_jump")
+ (if_then_else
+ (eq_attr "length" "4")
+ (const_string "no")
+ (const_string "yes")))
+ (set (attr "type")
+ (if_then_else
+ (eq_attr "length" "4")
+ (const_string "branch")
+ (const_string "multi")))])
+
+(define_insn "*branch_signed_false"
+ [(set (pc)
+ (if_then_else (match_operator:CC 0 "signed_relational_operator"
+ [(match_operand 1 "icc_operand" "t")
+ (const_int 0)])
+ (pc)
+ (label_ref (match_operand 2 "" ""))))]
+ ""
+ "*
+{
+ if (get_attr_length (insn) == 4)
+ return \"b%C0 %1,%#,%l2\";
+ else
+ return \"b%c0 %1,%#,1f\;call %l2\\n1:\";
+}"
+ [(set (attr "length")
+ (if_then_else
+ (and (ge (minus (match_dup 2) (pc)) (const_int -32768))
+ (le (minus (match_dup 2) (pc)) (const_int 32764)))
+ (const_int 4)
+ (const_int 8)))
+ (set (attr "far_jump")
+ (if_then_else
+ (eq_attr "length" "4")
+ (const_string "no")
+ (const_string "yes")))
+ (set (attr "type")
+ (if_then_else
+ (eq_attr "length" "4")
+ (const_string "branch")
+ (const_string "multi")))])
+
+(define_insn "*branch_unsigned_true"
+ [(set (pc)
+ (if_then_else (match_operator:CC_UNS 0 "unsigned_relational_operator"
+ [(match_operand 1 "icc_operand" "t")
+ (const_int 0)])
+ (label_ref (match_operand 2 "" ""))
+ (pc)))]
+ ""
+ "*
+{
+ if (get_attr_length (insn) == 4)
+ return \"b%c0 %1,%#,%l2\";
+ else
+ return \"b%C0 %1,%#,1f\;call %l2\\n1:\";
+}"
+ [(set (attr "length")
+ (if_then_else
+ (and (ge (minus (match_dup 2) (pc)) (const_int -32768))
+ (le (minus (match_dup 2) (pc)) (const_int 32764)))
+ (const_int 4)
+ (const_int 8)))
+ (set (attr "far_jump")
+ (if_then_else
+ (eq_attr "length" "4")
+ (const_string "no")
+ (const_string "yes")))
+ (set (attr "type")
+ (if_then_else
+ (eq_attr "length" "4")
+ (const_string "branch")
+ (const_string "multi")))])
+
+(define_insn "*branch_unsigned_false"
+ [(set (pc)
+ (if_then_else (match_operator:CC_UNS 0 "unsigned_relational_operator"
+ [(match_operand 1 "icc_operand" "t")
+ (const_int 0)])
+ (pc)
+ (label_ref (match_operand 2 "" ""))))]
+ ""
+ "*
+{
+ if (get_attr_length (insn) == 4)
+ return \"b%C0 %1,%#,%l2\";
+ else
+ return \"b%c0 %1,%#,1f\;call %l2\\n1:\";
+}"
+ [(set (attr "length")
+ (if_then_else
+ (and (ge (minus (match_dup 2) (pc)) (const_int -32768))
+ (le (minus (match_dup 2) (pc)) (const_int 32764)))
+ (const_int 4)
+ (const_int 8)))
+ (set (attr "far_jump")
+ (if_then_else
+ (eq_attr "length" "4")
+ (const_string "no")
+ (const_string "yes")))
+ (set (attr "type")
+ (if_then_else
+ (eq_attr "length" "4")
+ (const_string "branch")
+ (const_string "multi")))])
+
+(define_insn "*branch_fp_true"
+ [(set (pc)
+ (if_then_else (match_operator:CC_FP 0 "float_relational_operator"
+ [(match_operand 1 "fcc_operand" "u")
+ (const_int 0)])
+ (label_ref (match_operand 2 "" ""))
+ (pc)))]
+ ""
+ "*
+{
+ if (get_attr_length (insn) == 4)
+ return \"fb%f0 %1,%#,%l2\";
+ else
+ return \"fb%F0 %1,%#,1f\;call %l2\\n1:\";
+}"
+ [(set (attr "length")
+ (if_then_else
+ (and (ge (minus (match_dup 2) (pc)) (const_int -32768))
+ (le (minus (match_dup 2) (pc)) (const_int 32764)))
+ (const_int 4)
+ (const_int 8)))
+ (set (attr "far_jump")
+ (if_then_else
+ (eq_attr "length" "4")
+ (const_string "no")
+ (const_string "yes")))
+ (set (attr "type")
+ (if_then_else
+ (eq_attr "length" "4")
+ (const_string "branch")
+ (const_string "multi")))])
+
+(define_insn "*branch_fp_false"
+ [(set (pc)
+ (if_then_else (match_operator:CC_FP 0 "float_relational_operator"
+ [(match_operand 1 "fcc_operand" "u")
+ (const_int 0)])
+ (pc)
+ (label_ref (match_operand 2 "" ""))))]
+ ""
+ "*
+{
+ if (get_attr_length (insn) == 4)
+ return \"fb%F0 %1,%#,%l2\";
+ else
+ return \"fb%f0 %1,%#,1f\;call %l2\\n1:\";
+}"
+ [(set (attr "length")
+ (if_then_else
+ (and (ge (minus (match_dup 2) (pc)) (const_int -32768))
+ (le (minus (match_dup 2) (pc)) (const_int 32764)))
+ (const_int 4)
+ (const_int 8)))
+ (set (attr "far_jump")
+ (if_then_else
+ (eq_attr "length" "4")
+ (const_string "no")
+ (const_string "yes")))
+ (set (attr "type")
+ (if_then_else
+ (eq_attr "length" "4")
+ (const_string "branch")
+ (const_string "multi")))])
+
+
+;; ::::::::::::::::::::
+;; ::
+;; :: Set flag operations
+;; ::
+;; ::::::::::::::::::::
+
+;; Define_expands called by the machine independent part of the compiler
+;; to allocate a new comparison register
+
+(define_expand "seq"
+ [(match_operand:SI 0 "integer_register_operand" "")]
+ "TARGET_SCC"
+ "
+{
+ if (! frv_emit_scc (EQ, operands[0]))
+ FAIL;
+
+ DONE;
+}")
+
+(define_expand "sne"
+ [(match_operand:SI 0 "integer_register_operand" "")]
+ "TARGET_SCC"
+ "
+{
+ if (! frv_emit_scc (NE, operands[0]))
+ FAIL;
+
+ DONE;
+}")
+
+(define_expand "slt"
+ [(match_operand:SI 0 "integer_register_operand" "")]
+ "TARGET_SCC"
+ "
+{
+ if (! frv_emit_scc (LT, operands[0]))
+ FAIL;
+
+ DONE;
+}")
+
+(define_expand "sle"
+ [(match_operand:SI 0 "integer_register_operand" "")]
+ "TARGET_SCC"
+ "
+{
+ if (! frv_emit_scc (LE, operands[0]))
+ FAIL;
+
+ DONE;
+}")
+
+(define_expand "sgt"
+ [(match_operand:SI 0 "integer_register_operand" "")]
+ "TARGET_SCC"
+ "
+{
+ if (! frv_emit_scc (GT, operands[0]))
+ FAIL;
+
+ DONE;
+}")
+
+(define_expand "sge"
+ [(match_operand:SI 0 "integer_register_operand" "")]
+ "TARGET_SCC"
+ "
+{
+ if (! frv_emit_scc (GE, operands[0]))
+ FAIL;
+
+ DONE;
+}")
+
+(define_expand "sltu"
+ [(match_operand:SI 0 "integer_register_operand" "")]
+ "TARGET_SCC"
+ "
+{
+ if (! frv_emit_scc (LTU, operands[0]))
+ FAIL;
+
+ DONE;
+}")
+
+(define_expand "sleu"
+ [(match_operand:SI 0 "integer_register_operand" "")]
+ "TARGET_SCC"
+ "
+{
+ if (! frv_emit_scc (LEU, operands[0]))
+ FAIL;
+
+ DONE;
+}")
+
+(define_expand "sgtu"
+ [(match_operand:SI 0 "integer_register_operand" "")]
+ "TARGET_SCC"
+ "
+{
+ if (! frv_emit_scc (GTU, operands[0]))
+ FAIL;
+
+ DONE;
+}")
+
+(define_expand "sgeu"
+ [(match_operand:SI 0 "integer_register_operand" "")]
+ "TARGET_SCC"
+ "
+{
+ if (! frv_emit_scc (GEU, operands[0]))
+ FAIL;
+
+ DONE;
+}")
+
+(define_insn "*scc_signed"
+ [(set (match_operand:SI 0 "integer_register_operand" "=d")
+ (match_operator:SI 1 "signed_relational_operator"
+ [(match_operand:CC 2 "icc_operand" "t")
+ (const_int 0)]))
+ (clobber (match_operand:CC_CCR 3 "icr_operand" "=v"))]
+ ""
+ "#"
+ [(set_attr "length" "12")
+ (set_attr "type" "multi")])
+
+(define_insn "*scc_unsigned"
+ [(set (match_operand:SI 0 "integer_register_operand" "=d")
+ (match_operator:SI 1 "unsigned_relational_operator"
+ [(match_operand:CC_UNS 2 "icc_operand" "t")
+ (const_int 0)]))
+ (clobber (match_operand:CC_CCR 3 "icr_operand" "=v"))]
+ ""
+ "#"
+ [(set_attr "length" "12")
+ (set_attr "type" "multi")])
+
+(define_insn "*scc_float"
+ [(set (match_operand:SI 0 "integer_register_operand" "=d")
+ (match_operator:SI 1 "float_relational_operator"
+ [(match_operand:CC_FP 2 "fcc_operand" "u")
+ (const_int 0)]))
+ (clobber (match_operand:CC_CCR 3 "fcr_operand" "=w"))]
+ ""
+ "#"
+ [(set_attr "length" "12")
+ (set_attr "type" "multi")])
+
+;; XXX -- add reload_completed to the splits, because register allocation
+;; currently isn't ready to see cond_exec packets.
+(define_split
+ [(set (match_operand:SI 0 "integer_register_operand" "")
+ (match_operator:SI 1 "relational_operator"
+ [(match_operand 2 "cc_operand" "")
+ (const_int 0)]))
+ (clobber (match_operand 3 "cr_operand" ""))]
+ "reload_completed"
+ [(match_dup 4)]
+ "operands[4] = frv_split_scc (operands[0], operands[1], operands[2],
+ operands[3], (HOST_WIDE_INT) 1);")
+
+(define_insn "*scc_neg1_signed"
+ [(set (match_operand:SI 0 "integer_register_operand" "=d")
+ (neg:SI (match_operator:SI 1 "signed_relational_operator"
+ [(match_operand:CC 2 "icc_operand" "t")
+ (const_int 0)])))
+ (clobber (match_operand:CC_CCR 3 "icr_operand" "=v"))]
+ ""
+ "#"
+ [(set_attr "length" "12")
+ (set_attr "type" "multi")])
+
+(define_insn "*scc_neg1_unsigned"
+ [(set (match_operand:SI 0 "integer_register_operand" "=d")
+ (neg:SI (match_operator:SI 1 "unsigned_relational_operator"
+ [(match_operand:CC_UNS 2 "icc_operand" "t")
+ (const_int 0)])))
+ (clobber (match_operand:CC_CCR 3 "icr_operand" "=v"))]
+ ""
+ "#"
+ [(set_attr "length" "12")
+ (set_attr "type" "multi")])
+
+(define_insn "*scc_neg1_float"
+ [(set (match_operand:SI 0 "integer_register_operand" "=d")
+ (neg:SI (match_operator:SI 1 "float_relational_operator"
+ [(match_operand:CC_FP 2 "fcc_operand" "u")
+ (const_int 0)])))
+ (clobber (match_operand:CC_CCR 3 "fcr_operand" "=w"))]
+ ""
+ "#"
+ [(set_attr "length" "12")
+ (set_attr "type" "multi")])
+
+(define_split
+ [(set (match_operand:SI 0 "integer_register_operand" "")
+ (neg:SI (match_operator:SI 1 "relational_operator"
+ [(match_operand 2 "cc_operand" "")
+ (const_int 0)])))
+ (clobber (match_operand 3 "cr_operand" ""))]
+ "reload_completed"
+ [(match_dup 4)]
+ "operands[4] = frv_split_scc (operands[0], operands[1], operands[2],
+ operands[3], (HOST_WIDE_INT) -1);")
+
+
+;; ::::::::::::::::::::
+;; ::
+;; :: Conditionally executed instructions
+;; ::
+;; ::::::::::::::::::::
+
+;; Convert ICC/FCC comparison into CCR bits so we can do conditional execution
+(define_insn "*ck_signed"
+ [(set (match_operand:CC_CCR 0 "icr_operand" "=v")
+ (match_operator:CC_CCR 1 "signed_relational_operator"
+ [(match_operand:CC 2 "icc_operand" "t")
+ (const_int 0)]))]
+ ""
+ "ck%c1 %2, %0"
+ [(set_attr "length" "4")
+ (set_attr "type" "ccr")])
+
+(define_insn "*ck_unsigned"
+ [(set (match_operand:CC_CCR 0 "icr_operand" "=v")
+ (match_operator:CC_CCR 1 "unsigned_relational_operator"
+ [(match_operand:CC_UNS 2 "icc_operand" "t")
+ (const_int 0)]))]
+ ""
+ "ck%c1 %2, %0"
+ [(set_attr "length" "4")
+ (set_attr "type" "ccr")])
+
+(define_insn "*fck_float"
+ [(set (match_operand:CC_CCR 0 "fcr_operand" "=w")
+ (match_operator:CC_CCR 1 "float_relational_operator"
+ [(match_operand:CC_FP 2 "fcc_operand" "u")
+ (const_int 0)]))]
+ "TARGET_HAS_FPRS"
+ "fck%c1 %2, %0"
+ [(set_attr "length" "4")
+ (set_attr "type" "ccr")])
+
+;; Conditionally convert ICC/FCC comparison into CCR bits to provide && and ||
+;; tests in conditional execution
+(define_insn "cond_exec_ck"
+ [(set (match_operand:CC_CCR 0 "cr_operand" "=v,w")
+ (if_then_else:CC_CCR (match_operator 1 "ccr_eqne_operator"
+ [(match_operand 2 "cr_operand" "C,C")
+ (const_int 0)])
+ (match_operator 3 "relational_operator"
+ [(match_operand 4 "cc_operand" "t,u")
+ (const_int 0)])
+ (const_int 0)))]
+ ""
+ "@
+ cck%c3 %4, %0, %2, %e1
+ cfck%f3 %4, %0, %2, %e1"
+ [(set_attr "length" "4")
+ (set_attr "type" "ccr")])
+
+;; Conditionally set a register to either 0 or another register
+(define_insn "*cond_exec_movqi"
+ [(cond_exec
+ (match_operator 0 "ccr_eqne_operator"
+ [(match_operand 1 "cr_operand" "C,C,C,C,C,C")
+ (const_int 0)])
+ (set (match_operand:QI 2 "condexec_dest_operand" "=d,d,U,?f,?f,?d")
+ (match_operand:QI 3 "condexec_source_operand" "dO,U,dO,f,d,f")))]
+ "register_operand(operands[2], QImode) || reg_or_0_operand (operands[3], QImode)"
+ "* return output_condmove_single (operands, insn);"
+ [(set_attr "length" "4")
+ (set_attr "type" "int,gload,gstore,fsconv,movgf,movfg")])
+
+(define_insn "*cond_exec_movhi"
+ [(cond_exec
+ (match_operator 0 "ccr_eqne_operator"
+ [(match_operand 1 "cr_operand" "C,C,C,C,C,C")
+ (const_int 0)])
+ (set (match_operand:HI 2 "condexec_dest_operand" "=d,d,U,?f,?f,?d")
+ (match_operand:HI 3 "condexec_source_operand" "dO,U,dO,f,d,f")))]
+ "register_operand(operands[2], HImode) || reg_or_0_operand (operands[3], HImode)"
+ "* return output_condmove_single (operands, insn);"
+ [(set_attr "length" "4")
+ (set_attr "type" "int,gload,gstore,fsconv,movgf,movfg")])
+
+(define_insn "*cond_exec_movsi"
+ [(cond_exec
+ (match_operator 0 "ccr_eqne_operator"
+ [(match_operand 1 "cr_operand" "C,C,C,C,C,C,C,C")
+ (const_int 0)])
+ (set (match_operand:SI 2 "condexec_dest_operand" "=d,d,U,?f,?f,?d,?f,?m")
+ (match_operand:SI 3 "condexec_source_operand" "dO,U,dO,f,d,f,m,f")))]
+ "register_operand(operands[2], SImode) || reg_or_0_operand (operands[3], SImode)"
+ "* return output_condmove_single (operands, insn);"
+ [(set_attr "length" "4")
+ (set_attr "type" "int,gload,gstore,fsconv,movgf,movfg,fload,fstore")])
+
+
+(define_insn "*cond_exec_movsf_has_fprs"
+ [(cond_exec
+ (match_operator 0 "ccr_eqne_operator"
+ [(match_operand 1 "cr_operand" "C,C,C,C,C,C,C,C,C,C")
+ (const_int 0)])
+ (set (match_operand:SF 2 "condexec_dest_operand" "=f,?d,?d,?f,f,f,?d,U,?U,U")
+ (match_operand:SF 3 "condexec_source_operand" "f,d,f,d,G,U,U,f,d,G")))]
+ "TARGET_HAS_FPRS"
+ "* return output_condmove_single (operands, insn);"
+ [(set_attr "length" "4")
+ (set_attr "type" "fsconv,int,movgf,movfg,movgf,fload,gload,fstore,gstore,gstore")])
+
+(define_insn "*cond_exec_movsf_no_fprs"
+ [(cond_exec
+ (match_operator 0 "ccr_eqne_operator"
+ [(match_operand 1 "cr_operand" "C,C,C")
+ (const_int 0)])
+ (set (match_operand:SF 2 "condexec_dest_operand" "=d,d,U")
+ (match_operand:SF 3 "condexec_source_operand" "d,U,dG")))]
+ "! TARGET_HAS_FPRS"
+ "* return output_condmove_single (operands, insn);"
+ [(set_attr "length" "4")
+ (set_attr "type" "int,gload,gstore")])
+
+(define_insn "*cond_exec_si_binary1"
+ [(cond_exec
+ (match_operator 0 "ccr_eqne_operator"
+ [(match_operand 1 "cr_operand" "C")
+ (const_int 0)])
+ (set (match_operand:SI 2 "integer_register_operand" "=d")
+ (match_operator:SI 3 "condexec_si_binary_operator"
+ [(match_operand:SI 4 "integer_register_operand" "d")
+ (match_operand:SI 5 "integer_register_operand" "d")])))]
+ ""
+ "*
+{
+ switch (GET_CODE (operands[3]))
+ {
+ case PLUS: return \"cadd %4, %z5, %2, %1, %e0\";
+ case MINUS: return \"csub %4, %z5, %2, %1, %e0\";
+ case AND: return \"cand %4, %z5, %2, %1, %e0\";
+ case IOR: return \"cor %4, %z5, %2, %1, %e0\";
+ case XOR: return \"cxor %4, %z5, %2, %1, %e0\";
+ case ASHIFT: return \"csll %4, %z5, %2, %1, %e0\";
+ case ASHIFTRT: return \"csra %4, %z5, %2, %1, %e0\";
+ case LSHIFTRT: return \"csrl %4, %z5, %2, %1, %e0\";
+ default: abort ();
+ }
+}"
+ [(set_attr "length" "4")
+ (set_attr "type" "int")])
+
+(define_insn "*cond_exec_si_binary2"
+ [(cond_exec
+ (match_operator 0 "ccr_eqne_operator"
+ [(match_operand 1 "cr_operand" "C")
+ (const_int 0)])
+ (set (match_operand:SI 2 "fpr_operand" "=f")
+ (match_operator:SI 3 "condexec_si_media_operator"
+ [(match_operand:SI 4 "fpr_operand" "f")
+ (match_operand:SI 5 "fpr_operand" "f")])))]
+ "TARGET_MEDIA"
+ "*
+{
+ switch (GET_CODE (operands[3]))
+ {
+ case AND: return \"cmand %4, %5, %2, %1, %e0\";
+ case IOR: return \"cmor %4, %5, %2, %1, %e0\";
+ case XOR: return \"cmxor %4, %5, %2, %1, %e0\";
+ default: abort ();
+ }
+}"
+ [(set_attr "length" "4")
+ (set_attr "type" "mlogic")])
+
+;; Note, flow does not (currently) know how to handle an operation that uses
+;; only part of the hard registers allocated for a multiregister value, such as
+;; DImode in this case if the user is only interested in the lower 32-bits. So
+;; we emit a USE of the entire register after the csmul instruction so it won't
+;; get confused. See frv_ifcvt_modify_insn for more details.
+
+(define_insn "*cond_exec_si_smul"
+ [(cond_exec
+ (match_operator 0 "ccr_eqne_operator"
+ [(match_operand 1 "cr_operand" "C")
+ (const_int 0)])
+ (set (match_operand:DI 2 "even_gpr_operand" "=e")
+ (mult:DI (sign_extend:DI (match_operand:SI 3 "integer_register_operand" "%d"))
+ (sign_extend:DI (match_operand:SI 4 "integer_register_operand" "d")))))]
+ ""
+ "csmul %3, %4, %2, %1, %e0"
+ [(set_attr "length" "4")
+ (set_attr "type" "mul")])
+
+(define_insn "*cond_exec_si_divide"
+ [(cond_exec
+ (match_operator 0 "ccr_eqne_operator"
+ [(match_operand 1 "cr_operand" "C")
+ (const_int 0)])
+ (set (match_operand:SI 2 "integer_register_operand" "=d")
+ (match_operator:SI 3 "condexec_si_divide_operator"
+ [(match_operand:SI 4 "integer_register_operand" "d")
+ (match_operand:SI 5 "integer_register_operand" "d")])))]
+ ""
+ "*
+{
+ switch (GET_CODE (operands[3]))
+ {
+ case DIV: return \"csdiv %4, %z5, %2, %1, %e0\";
+ case UDIV: return \"cudiv %4, %z5, %2, %1, %e0\";
+ default: abort ();
+ }
+}"
+ [(set_attr "length" "4")
+ (set_attr "type" "div")])
+
+(define_insn "*cond_exec_si_unary1"
+ [(cond_exec
+ (match_operator 0 "ccr_eqne_operator"
+ [(match_operand 1 "cr_operand" "C")
+ (const_int 0)])
+ (set (match_operand:SI 2 "integer_register_operand" "=d")
+ (match_operator:SI 3 "condexec_si_unary_operator"
+ [(match_operand:SI 4 "integer_register_operand" "d")])))]
+ ""
+ "*
+{
+ switch (GET_CODE (operands[3]))
+ {
+ case NOT: return \"cnot %4, %2, %1, %e0\";
+ case NEG: return \"csub %., %4, %2, %1, %e0\";
+ default: abort ();
+ }
+}"
+ [(set_attr "length" "4")
+ (set_attr "type" "int")])
+
+(define_insn "*cond_exec_si_unary2"
+ [(cond_exec
+ (match_operator 0 "ccr_eqne_operator"
+ [(match_operand 1 "cr_operand" "C")
+ (const_int 0)])
+ (set (match_operand:SI 2 "fpr_operand" "=f")
+ (not:SI (match_operand:SI 3 "fpr_operand" "f"))))]
+ "TARGET_MEDIA"
+ "cmnot %3, %2, %1, %e0"
+ [(set_attr "length" "4")
+ (set_attr "type" "mlogic")])
+
+(define_insn "*cond_exec_cmpsi_cc"
+ [(cond_exec
+ (match_operator 0 "ccr_eqne_operator"
+ [(match_operand 1 "cr_operand" "C")
+ (const_int 0)])
+ (set (match_operand:CC 2 "icc_operand" "=t")
+ (compare:CC (match_operand:SI 3 "integer_register_operand" "d")
+ (match_operand:SI 4 "reg_or_0_operand" "dO"))))]
+ "reload_completed
+ && REGNO (operands[1]) == REGNO (operands[2]) - ICC_FIRST + ICR_FIRST"
+ "ccmp %3, %z4, %1, %e0"
+ [(set_attr "length" "4")
+ (set_attr "type" "int")])
+
+(define_insn "*cond_exec_cmpsi_cc_uns"
+ [(cond_exec
+ (match_operator 0 "ccr_eqne_operator"
+ [(match_operand 1 "cr_operand" "C")
+ (const_int 0)])
+ (set (match_operand:CC_UNS 2 "icc_operand" "=t")
+ (compare:CC_UNS (match_operand:SI 3 "integer_register_operand" "d")
+ (match_operand:SI 4 "reg_or_0_operand" "dO"))))]
+ "reload_completed
+ && REGNO (operands[1]) == REGNO (operands[2]) - ICC_FIRST + ICR_FIRST"
+ "ccmp %3, %z4, %1, %e0"
+ [(set_attr "length" "4")
+ (set_attr "type" "int")])
+
+(define_insn "*cond_exec_sf_conv"
+ [(cond_exec
+ (match_operator 0 "ccr_eqne_operator"
+ [(match_operand 1 "cr_operand" "C")
+ (const_int 0)])
+ (set (match_operand:SF 2 "fpr_operand" "=f")
+ (match_operator:SF 3 "condexec_sf_conv_operator"
+ [(match_operand:SF 4 "fpr_operand" "f")])))]
+ "TARGET_HARD_FLOAT"
+ "*
+{
+ switch (GET_CODE (operands[3]))
+ {
+ case ABS: return \"cfabss %4, %2, %1, %e0\";
+ case NEG: return \"cfnegs %4, %2, %1, %e0\";
+ default: abort ();
+ }
+}"
+ [(set_attr "length" "4")
+ (set_attr "type" "fsconv")])
+
+(define_insn "*cond_exec_sf_add"
+ [(cond_exec
+ (match_operator 0 "ccr_eqne_operator"
+ [(match_operand 1 "cr_operand" "C")
+ (const_int 0)])
+ (set (match_operand:SF 2 "fpr_operand" "=f")
+ (match_operator:SF 3 "condexec_sf_add_operator"
+ [(match_operand:SF 4 "fpr_operand" "f")
+ (match_operand:SF 5 "fpr_operand" "f")])))]
+ "TARGET_HARD_FLOAT"
+ "*
+{
+ switch (GET_CODE (operands[3]))
+ {
+ case PLUS: return \"cfadds %4, %5, %2, %1, %e0\";
+ case MINUS: return \"cfsubs %4, %5, %2, %1, %e0\";
+ default: abort ();
+ }
+}"
+ [(set_attr "length" "4")
+ (set_attr "type" "fsadd")])
+
+(define_insn "*cond_exec_sf_mul"
+ [(cond_exec
+ (match_operator 0 "ccr_eqne_operator"
+ [(match_operand 1 "cr_operand" "C")
+ (const_int 0)])
+ (set (match_operand:SF 2 "fpr_operand" "=f")
+ (mult:SF (match_operand:SF 3 "fpr_operand" "f")
+ (match_operand:SF 4 "fpr_operand" "f"))))]
+ "TARGET_HARD_FLOAT"
+ "cfmuls %3, %4, %2, %1, %e0"
+ [(set_attr "length" "4")
+ (set_attr "type" "fsmul")])
+
+(define_insn "*cond_exec_sf_div"
+ [(cond_exec
+ (match_operator 0 "ccr_eqne_operator"
+ [(match_operand 1 "cr_operand" "C")
+ (const_int 0)])
+ (set (match_operand:SF 2 "fpr_operand" "=f")
+ (div:SF (match_operand:SF 3 "fpr_operand" "f")
+ (match_operand:SF 4 "fpr_operand" "f"))))]
+ "TARGET_HARD_FLOAT"
+ "cfdivs %3, %4, %2, %1, %e0"
+ [(set_attr "length" "4")
+ (set_attr "type" "fsdiv")])
+
+(define_insn "*cond_exec_sf_sqrt"
+ [(cond_exec
+ (match_operator 0 "ccr_eqne_operator"
+ [(match_operand 1 "cr_operand" "C")
+ (const_int 0)])
+ (set (match_operand:SF 2 "fpr_operand" "=f")
+ (sqrt:SF (match_operand:SF 3 "fpr_operand" "f"))))]
+ "TARGET_HARD_FLOAT"
+ "cfsqrts %3, %2, %1, %e0"
+ [(set_attr "length" "4")
+ (set_attr "type" "fsdiv")])
+
+(define_insn "*cond_exec_cmpsi_cc_fp"
+ [(cond_exec
+ (match_operator 0 "ccr_eqne_operator"
+ [(match_operand 1 "cr_operand" "C")
+ (const_int 0)])
+ (set (match_operand:CC_FP 2 "fcc_operand" "=u")
+ (compare:CC_FP (match_operand:SF 3 "fpr_operand" "f")
+ (match_operand:SF 4 "fpr_operand" "f"))))]
+ "reload_completed && TARGET_HARD_FLOAT
+ && REGNO (operands[1]) == REGNO (operands[2]) - FCC_FIRST + FCR_FIRST"
+ "cfcmps %3, %4, %2, %1, %e0"
+ [(set_attr "length" "4")
+ (set_attr "type" "fsconv")])
+
+
+;; ::::::::::::::::::::
+;; ::
+;; :: Logical operations on CR registers
+;; ::
+;; ::::::::::::::::::::
+
+;; We use UNSPEC to encode andcr/iorcr/etc. rather than the normal RTL
+;; operations, since the RTL operations only have an idea of TRUE and FALSE,
+;; while the CRs have TRUE, FALSE, and UNDEFINED.
+
+(define_expand "andcr"
+ [(set (match_operand:CC_CCR 0 "cr_operand" "")
+ (unspec:CC_CCR [(match_operand:CC_CCR 1 "cr_operand" "")
+ (match_operand:CC_CCR 2 "cr_operand" "")
+ (const_int 0)] UNSPEC_CR_LOGIC))]
+ ""
+ "")
+
+(define_expand "orcr"
+ [(set (match_operand:CC_CCR 0 "cr_operand" "")
+ (unspec:CC_CCR [(match_operand:CC_CCR 1 "cr_operand" "")
+ (match_operand:CC_CCR 2 "cr_operand" "")
+ (const_int 1)] UNSPEC_CR_LOGIC))]
+ ""
+ "")
+
+(define_expand "xorcr"
+ [(set (match_operand:CC_CCR 0 "cr_operand" "")
+ (unspec:CC_CCR [(match_operand:CC_CCR 1 "cr_operand" "")
+ (match_operand:CC_CCR 2 "cr_operand" "")
+ (const_int 2)] UNSPEC_CR_LOGIC))]
+ ""
+ "")
+
+(define_expand "nandcr"
+ [(set (match_operand:CC_CCR 0 "cr_operand" "")
+ (unspec:CC_CCR [(match_operand:CC_CCR 1 "cr_operand" "")
+ (match_operand:CC_CCR 2 "cr_operand" "")
+ (const_int 3)] UNSPEC_CR_LOGIC))]
+ ""
+ "")
+
+(define_expand "norcr"
+ [(set (match_operand:CC_CCR 0 "cr_operand" "")
+ (unspec:CC_CCR [(match_operand:CC_CCR 1 "cr_operand" "")
+ (match_operand:CC_CCR 2 "cr_operand" "")
+ (const_int 4)] UNSPEC_CR_LOGIC))]
+ ""
+ "")
+
+(define_expand "andncr"
+ [(set (match_operand:CC_CCR 0 "cr_operand" "")
+ (unspec:CC_CCR [(match_operand:CC_CCR 1 "cr_operand" "")
+ (match_operand:CC_CCR 2 "cr_operand" "")
+ (const_int 5)] UNSPEC_CR_LOGIC))]
+ ""
+ "")
+
+(define_expand "orncr"
+ [(set (match_operand:CC_CCR 0 "cr_operand" "")
+ (unspec:CC_CCR [(match_operand:CC_CCR 1 "cr_operand" "")
+ (match_operand:CC_CCR 2 "cr_operand" "")
+ (const_int 6)] UNSPEC_CR_LOGIC))]
+ ""
+ "")
+
+(define_expand "nandncr"
+ [(set (match_operand:CC_CCR 0 "cr_operand" "")
+ (unspec:CC_CCR [(match_operand:CC_CCR 1 "cr_operand" "")
+ (match_operand:CC_CCR 2 "cr_operand" "")
+ (const_int 7)] UNSPEC_CR_LOGIC))]
+ ""
+ "")
+
+(define_expand "norncr"
+ [(set (match_operand:CC_CCR 0 "cr_operand" "")
+ (unspec:CC_CCR [(match_operand:CC_CCR 1 "cr_operand" "")
+ (match_operand:CC_CCR 2 "cr_operand" "")
+ (const_int 8)] UNSPEC_CR_LOGIC))]
+ ""
+ "")
+
+(define_expand "notcr"
+ [(set (match_operand:CC_CCR 0 "cr_operand" "")
+ (unspec:CC_CCR [(match_operand:CC_CCR 1 "cr_operand" "")
+ (match_dup 1)
+ (const_int 9)] UNSPEC_CR_LOGIC))]
+ ""
+ "")
+
+(define_insn "*logical_cr"
+ [(set (match_operand:CC_CCR 0 "cr_operand" "=C")
+ (unspec:CC_CCR [(match_operand:CC_CCR 1 "cr_operand" "C")
+ (match_operand:CC_CCR 2 "cr_operand" "C")
+ (match_operand:SI 3 "const_int_operand" "n")]
+ UNSPEC_CR_LOGIC))]
+ ""
+ "*
+{
+ switch (INTVAL (operands[3]))
+ {
+ default: break;
+ case 0: return \"andcr %1, %2, %0\";
+ case 1: return \"orcr %1, %2, %0\";
+ case 2: return \"xorcr %1, %2, %0\";
+ case 3: return \"nandcr %1, %2, %0\";
+ case 4: return \"norcr %1, %2, %0\";
+ case 5: return \"andncr %1, %2, %0\";
+ case 6: return \"orncr %1, %2, %0\";
+ case 7: return \"nandncr %1, %2, %0\";
+ case 8: return \"norncr %1, %2, %0\";
+ case 9: return \"notcr %1, %0\";
+ }
+
+ fatal_insn (\"logical_cr\", insn);
+}"
+ [(set_attr "length" "4")
+ (set_attr "type" "ccr")])
+
+
+;; ::::::::::::::::::::
+;; ::
+;; :: Conditional move instructions
+;; ::
+;; ::::::::::::::::::::
+
+
+;; - conditional moves based on floating-point comparisons require
+;; TARGET_HARD_FLOAT, because an FPU is required to do the comparison.
+
+;; - conditional moves between FPRs based on integer comparisons
+;; require TARGET_HAS_FPRS.
+
+(define_expand "movqicc"
+ [(set (match_operand:QI 0 "integer_register_operand" "")
+ (if_then_else:QI (match_operand 1 "" "")
+ (match_operand:QI 2 "gpr_or_int_operand" "")
+ (match_operand:QI 3 "gpr_or_int_operand" "")))]
+ "TARGET_COND_MOVE"
+ "
+{
+ if (!frv_emit_cond_move (operands[0], operands[1], operands[2], operands[3]))
+ FAIL;
+
+ DONE;
+}")
+
+(define_insn "*movqicc_internal1_signed"
+ [(set (match_operand:QI 0 "integer_register_operand" "=d,d,d")
+ (if_then_else:QI (match_operator:CC 1 "signed_relational_operator"
+ [(match_operand:CC 2 "icc_operand" "t,t,t")
+ (const_int 0)])
+ (match_operand:QI 3 "reg_or_0_operand" "0,dO,dO")
+ (match_operand:QI 4 "reg_or_0_operand" "dO,0,dO")))
+ (clobber (match_operand:CC_CCR 5 "icr_operand" "=v,v,v"))]
+ ""
+ "#"
+ [(set_attr "length" "8,8,12")
+ (set_attr "type" "multi")])
+
+(define_insn "*movqicc_internal1_unsigned"
+ [(set (match_operand:QI 0 "integer_register_operand" "=d,d,d")
+ (if_then_else:QI (match_operator:CC_UNS 1 "unsigned_relational_operator"
+ [(match_operand:CC_UNS 2 "icc_operand" "t,t,t")
+ (const_int 0)])
+ (match_operand:QI 3 "reg_or_0_operand" "0,dO,dO")
+ (match_operand:QI 4 "reg_or_0_operand" "dO,0,dO")))
+ (clobber (match_operand:CC_CCR 5 "icr_operand" "=v,v,v"))]
+ ""
+ "#"
+ [(set_attr "length" "8,8,12")
+ (set_attr "type" "multi")])
+
+(define_insn "*movqicc_internal1_float"
+ [(set (match_operand:QI 0 "integer_register_operand" "=d,d,d")
+ (if_then_else:QI (match_operator:CC_FP 1 "float_relational_operator"
+ [(match_operand:CC_FP 2 "fcc_operand" "u,u,u")
+ (const_int 0)])
+ (match_operand:QI 3 "reg_or_0_operand" "0,dO,dO")
+ (match_operand:QI 4 "reg_or_0_operand" "dO,0,dO")))
+ (clobber (match_operand:CC_CCR 5 "fcr_operand" "=w,w,w"))]
+ "TARGET_HARD_FLOAT"
+ "#"
+ [(set_attr "length" "8,8,12")
+ (set_attr "type" "multi")])
+
+(define_insn "*movqicc_internal2_signed"
+ [(set (match_operand:QI 0 "integer_register_operand" "=d,d,d,d,d")
+ (if_then_else:QI (match_operator:CC 1 "signed_relational_operator"
+ [(match_operand:CC 2 "icc_operand" "t,t,t,t,t")
+ (const_int 0)])
+ (match_operand:QI 3 "const_int_operand" "O,O,L,n,n")
+ (match_operand:QI 4 "const_int_operand" "L,n,O,O,n")))
+ (clobber (match_operand:CC_CCR 5 "icr_operand" "=v,v,v,v,v"))]
+ "(INTVAL (operands[3]) == 0
+ || INTVAL (operands[4]) == 0
+ || (IN_RANGE_P (INTVAL (operands[3]), -2048, 2047)
+ && IN_RANGE_P (INTVAL (operands[4]) - INTVAL (operands[3]), -2048, 2047)))"
+ "#"
+ [(set_attr "length" "8,12,8,12,12")
+ (set_attr "type" "multi")])
+
+(define_insn "*movqicc_internal2_unsigned"
+ [(set (match_operand:QI 0 "integer_register_operand" "=d,d,d,d,d")
+ (if_then_else:QI (match_operator:CC_UNS 1 "unsigned_relational_operator"
+ [(match_operand:CC_UNS 2 "icc_operand" "t,t,t,t,t")
+ (const_int 0)])
+ (match_operand:QI 3 "const_int_operand" "O,O,L,n,n")
+ (match_operand:QI 4 "const_int_operand" "L,n,O,O,n")))
+ (clobber (match_operand:CC_CCR 5 "icr_operand" "=v,v,v,v,v"))]
+ "(INTVAL (operands[3]) == 0
+ || INTVAL (operands[4]) == 0
+ || (IN_RANGE_P (INTVAL (operands[3]), -2048, 2047)
+ && IN_RANGE_P (INTVAL (operands[4]) - INTVAL (operands[3]), -2048, 2047)))"
+ "#"
+ [(set_attr "length" "8,12,8,12,12")
+ (set_attr "type" "multi")])
+
+(define_insn "*movqicc_internal2_float"
+ [(set (match_operand:QI 0 "integer_register_operand" "=d,d,d,d,d")
+ (if_then_else:QI (match_operator:CC_FP 1 "float_relational_operator"
+ [(match_operand:CC_FP 2 "fcc_operand" "u,u,u,u,u")
+ (const_int 0)])
+ (match_operand:QI 3 "const_int_operand" "O,O,L,n,n")
+ (match_operand:QI 4 "const_int_operand" "L,n,O,O,n")))
+ (clobber (match_operand:CC_CCR 5 "fcr_operand" "=w,w,w,w,w"))]
+ "TARGET_HARD_FLOAT
+ && (INTVAL (operands[3]) == 0
+ || INTVAL (operands[4]) == 0
+ || (IN_RANGE_P (INTVAL (operands[3]), -2048, 2047)
+ && IN_RANGE_P (INTVAL (operands[4]) - INTVAL (operands[3]), -2048, 2047)))"
+ "#"
+ [(set_attr "length" "8,12,8,12,12")
+ (set_attr "type" "multi")])
+
+(define_split
+ [(set (match_operand:QI 0 "integer_register_operand" "")
+ (if_then_else:QI (match_operator 1 "relational_operator"
+ [(match_operand 2 "cc_operand" "")
+ (const_int 0)])
+ (match_operand:QI 3 "gpr_or_int_operand" "")
+ (match_operand:QI 4 "gpr_or_int_operand" "")))
+ (clobber (match_operand:CC_CCR 5 "cr_operand" ""))]
+ "reload_completed"
+ [(match_dup 6)]
+ "operands[6] = frv_split_cond_move (operands);")
+
+(define_expand "movhicc"
+ [(set (match_operand:HI 0 "integer_register_operand" "")
+ (if_then_else:HI (match_operand 1 "" "")
+ (match_operand:HI 2 "gpr_or_int_operand" "")
+ (match_operand:HI 3 "gpr_or_int_operand" "")))]
+ "TARGET_COND_MOVE"
+ "
+{
+ if (!frv_emit_cond_move (operands[0], operands[1], operands[2], operands[3]))
+ FAIL;
+
+ DONE;
+}")
+
+(define_insn "*movhicc_internal1_signed"
+ [(set (match_operand:HI 0 "integer_register_operand" "=d,d,d")
+ (if_then_else:HI (match_operator:CC 1 "signed_relational_operator"
+ [(match_operand:CC 2 "icc_operand" "t,t,t")
+ (const_int 0)])
+ (match_operand:HI 3 "reg_or_0_operand" "0,dO,dO")
+ (match_operand:HI 4 "reg_or_0_operand" "dO,0,dO")))
+ (clobber (match_operand:CC_CCR 5 "icr_operand" "=v,v,v"))]
+ ""
+ "#"
+ [(set_attr "length" "8,8,12")
+ (set_attr "type" "multi")])
+
+(define_insn "*movhicc_internal1_unsigned"
+ [(set (match_operand:HI 0 "integer_register_operand" "=d,d,d")
+ (if_then_else:HI (match_operator:CC_UNS 1 "unsigned_relational_operator"
+ [(match_operand:CC_UNS 2 "icc_operand" "t,t,t")
+ (const_int 0)])
+ (match_operand:HI 3 "reg_or_0_operand" "0,dO,dO")
+ (match_operand:HI 4 "reg_or_0_operand" "dO,0,dO")))
+ (clobber (match_operand:CC_CCR 5 "icr_operand" "=v,v,v"))]
+ ""
+ "#"
+ [(set_attr "length" "8,8,12")
+ (set_attr "type" "multi")])
+
+(define_insn "*movhicc_internal1_float"
+ [(set (match_operand:HI 0 "integer_register_operand" "=d,d,d")
+ (if_then_else:HI (match_operator:CC_FP 1 "float_relational_operator"
+ [(match_operand:CC_FP 2 "fcc_operand" "u,u,u")
+ (const_int 0)])
+ (match_operand:HI 3 "reg_or_0_operand" "0,dO,dO")
+ (match_operand:HI 4 "reg_or_0_operand" "dO,0,dO")))
+ (clobber (match_operand:CC_CCR 5 "fcr_operand" "=w,w,w"))]
+ "TARGET_HARD_FLOAT"
+ "#"
+ [(set_attr "length" "8,8,12")
+ (set_attr "type" "multi")])
+
+(define_insn "*movhicc_internal2_signed"
+ [(set (match_operand:HI 0 "integer_register_operand" "=d,d,d,d,d")
+ (if_then_else:HI (match_operator:CC 1 "signed_relational_operator"
+ [(match_operand:CC 2 "icc_operand" "t,t,t,t,t")
+ (const_int 0)])
+ (match_operand:HI 3 "const_int_operand" "O,O,L,n,n")
+ (match_operand:HI 4 "const_int_operand" "L,n,O,O,n")))
+ (clobber (match_operand:CC_CCR 5 "icr_operand" "=v,v,v,v,v"))]
+ "(INTVAL (operands[3]) == 0
+ || INTVAL (operands[4]) == 0
+ || (IN_RANGE_P (INTVAL (operands[3]), -2048, 2047)
+ && IN_RANGE_P (INTVAL (operands[4]) - INTVAL (operands[3]), -2048, 2047)))"
+ "#"
+ [(set_attr "length" "8,12,8,12,12")
+ (set_attr "type" "multi")])
+
+(define_insn "*movhicc_internal2_unsigned"
+ [(set (match_operand:HI 0 "integer_register_operand" "=d,d,d,d,d")
+ (if_then_else:HI (match_operator:CC_UNS 1 "unsigned_relational_operator"
+ [(match_operand:CC_UNS 2 "icc_operand" "t,t,t,t,t")
+ (const_int 0)])
+ (match_operand:HI 3 "const_int_operand" "O,O,L,n,n")
+ (match_operand:HI 4 "const_int_operand" "L,n,O,O,n")))
+ (clobber (match_operand:CC_CCR 5 "icr_operand" "=v,v,v,v,v"))]
+ "(INTVAL (operands[3]) == 0
+ || INTVAL (operands[4]) == 0
+ || (IN_RANGE_P (INTVAL (operands[3]), -2048, 2047)
+ && IN_RANGE_P (INTVAL (operands[4]) - INTVAL (operands[3]), -2048, 2047)))"
+ "#"
+ [(set_attr "length" "8,12,8,12,12")
+ (set_attr "type" "multi")])
+
+(define_insn "*movhicc_internal2_float"
+ [(set (match_operand:HI 0 "integer_register_operand" "=d,d,d,d,d")
+ (if_then_else:HI (match_operator:CC_FP 1 "float_relational_operator"
+ [(match_operand:CC_FP 2 "fcc_operand" "u,u,u,u,u")
+ (const_int 0)])
+ (match_operand:HI 3 "const_int_operand" "O,O,L,n,n")
+ (match_operand:HI 4 "const_int_operand" "L,n,O,O,n")))
+ (clobber (match_operand:CC_CCR 5 "fcr_operand" "=w,w,w,w,w"))]
+ "TARGET_HARD_FLOAT
+ && (INTVAL (operands[3]) == 0
+ || INTVAL (operands[4]) == 0
+ || (IN_RANGE_P (INTVAL (operands[3]), -2048, 2047)
+ && IN_RANGE_P (INTVAL (operands[4]) - INTVAL (operands[3]), -2048, 2047)))"
+ "#"
+ [(set_attr "length" "8,12,8,12,12")
+ (set_attr "type" "multi")])
+
+(define_split
+ [(set (match_operand:HI 0 "integer_register_operand" "")
+ (if_then_else:HI (match_operator 1 "relational_operator"
+ [(match_operand 2 "cc_operand" "")
+ (const_int 0)])
+ (match_operand:HI 3 "gpr_or_int_operand" "")
+ (match_operand:HI 4 "gpr_or_int_operand" "")))
+ (clobber (match_operand:CC_CCR 5 "cr_operand" ""))]
+ "reload_completed"
+ [(match_dup 6)]
+ "operands[6] = frv_split_cond_move (operands);")
+
+(define_expand "movsicc"
+ [(set (match_operand:SI 0 "integer_register_operand" "")
+ (if_then_else:SI (match_operand 1 "" "")
+ (match_operand:SI 2 "gpr_or_int_operand" "")
+ (match_operand:SI 3 "gpr_or_int_operand" "")))]
+ "TARGET_COND_MOVE"
+ "
+{
+ if (!frv_emit_cond_move (operands[0], operands[1], operands[2], operands[3]))
+ FAIL;
+
+ DONE;
+}")
+
+(define_insn "*movsicc_internal1_signed"
+ [(set (match_operand:SI 0 "integer_register_operand" "=d,d,d")
+ (if_then_else:SI (match_operator:CC 1 "signed_relational_operator"
+ [(match_operand:CC 2 "icc_operand" "t,t,t")
+ (const_int 0)])
+ (match_operand:SI 3 "reg_or_0_operand" "0,dO,dO")
+ (match_operand:SI 4 "reg_or_0_operand" "dO,0,dO")))
+ (clobber (match_operand:CC_CCR 5 "icr_operand" "=v,v,v"))]
+ ""
+ "#"
+ [(set_attr "length" "8,8,12")
+ (set_attr "type" "multi")])
+
+(define_insn "*movsicc_internal1_unsigned"
+ [(set (match_operand:SI 0 "integer_register_operand" "=d,d,d")
+ (if_then_else:SI (match_operator:CC_UNS 1 "unsigned_relational_operator"
+ [(match_operand:CC_UNS 2 "icc_operand" "t,t,t")
+ (const_int 0)])
+ (match_operand:SI 3 "reg_or_0_operand" "0,dO,dO")
+ (match_operand:SI 4 "reg_or_0_operand" "dO,0,dO")))
+ (clobber (match_operand:CC_CCR 5 "icr_operand" "=v,v,v"))]
+ ""
+ "#"
+ [(set_attr "length" "8,8,12")
+ (set_attr "type" "multi")])
+
+(define_insn "*movsicc_internal1_float"
+ [(set (match_operand:SI 0 "integer_register_operand" "=d,d,d")
+ (if_then_else:SI (match_operator:CC_FP 1 "float_relational_operator"
+ [(match_operand:CC_FP 2 "fcc_operand" "u,u,u")
+ (const_int 0)])
+ (match_operand:SI 3 "reg_or_0_operand" "0,dO,dO")
+ (match_operand:SI 4 "reg_or_0_operand" "dO,0,dO")))
+ (clobber (match_operand:CC_CCR 5 "fcr_operand" "=w,w,w"))]
+ "TARGET_HARD_FLOAT"
+ "#"
+ [(set_attr "length" "8,8,12")
+ (set_attr "type" "multi")])
+
+(define_insn "*movsicc_internal2_signed"
+ [(set (match_operand:SI 0 "integer_register_operand" "=d,d,d,d,d")
+ (if_then_else:SI (match_operator:CC 1 "signed_relational_operator"
+ [(match_operand:CC 2 "icc_operand" "t,t,t,t,t")
+ (const_int 0)])
+ (match_operand:SI 3 "const_int_operand" "O,O,L,n,n")
+ (match_operand:SI 4 "const_int_operand" "L,n,O,O,n")))
+ (clobber (match_operand:CC_CCR 5 "icr_operand" "=v,v,v,v,v"))]
+ "(INTVAL (operands[3]) == 0
+ || INTVAL (operands[4]) == 0
+ || (IN_RANGE_P (INTVAL (operands[3]), -2048, 2047)
+ && IN_RANGE_P (INTVAL (operands[4]) - INTVAL (operands[3]), -2048, 2047)))"
+ "#"
+ [(set_attr "length" "8,12,8,12,12")
+ (set_attr "type" "multi")])
+
+(define_insn "*movsicc_internal2_unsigned"
+ [(set (match_operand:SI 0 "integer_register_operand" "=d,d,d,d,d")
+ (if_then_else:SI (match_operator:CC_UNS 1 "unsigned_relational_operator"
+ [(match_operand:CC_UNS 2 "icc_operand" "t,t,t,t,t")
+ (const_int 0)])
+ (match_operand:SI 3 "const_int_operand" "O,O,L,n,n")
+ (match_operand:SI 4 "const_int_operand" "L,n,O,O,n")))
+ (clobber (match_operand:CC_CCR 5 "icr_operand" "=v,v,v,v,v"))]
+ "(INTVAL (operands[3]) == 0
+ || INTVAL (operands[4]) == 0
+ || (IN_RANGE_P (INTVAL (operands[3]), -2048, 2047)
+ && IN_RANGE_P (INTVAL (operands[4]) - INTVAL (operands[3]), -2048, 2047)))"
+ "#"
+ [(set_attr "length" "8,12,8,12,12")
+ (set_attr "type" "multi")])
+
+(define_insn "*movsicc_internal2_float"
+ [(set (match_operand:SI 0 "integer_register_operand" "=d,d,d,d,d")
+ (if_then_else:SI (match_operator:CC_FP 1 "float_relational_operator"
+ [(match_operand:CC_FP 2 "fcc_operand" "u,u,u,u,u")
+ (const_int 0)])
+ (match_operand:SI 3 "const_int_operand" "O,O,L,n,n")
+ (match_operand:SI 4 "const_int_operand" "L,n,O,O,n")))
+ (clobber (match_operand:CC_CCR 5 "fcr_operand" "=w,w,w,w,w"))]
+ "TARGET_HARD_FLOAT
+ && (INTVAL (operands[3]) == 0
+ || INTVAL (operands[4]) == 0
+ || (IN_RANGE_P (INTVAL (operands[3]), -2048, 2047)
+ && IN_RANGE_P (INTVAL (operands[4]) - INTVAL (operands[3]), -2048, 2047)))"
+ "#"
+ [(set_attr "length" "8,12,8,12,12")
+ (set_attr "type" "multi")])
+
+(define_split
+ [(set (match_operand:SI 0 "integer_register_operand" "")
+ (if_then_else:SI (match_operator 1 "relational_operator"
+ [(match_operand 2 "cc_operand" "")
+ (const_int 0)])
+ (match_operand:SI 3 "gpr_or_int_operand" "")
+ (match_operand:SI 4 "gpr_or_int_operand" "")))
+ (clobber (match_operand:CC_CCR 5 "cr_operand" ""))]
+ "reload_completed"
+ [(match_dup 6)]
+ "operands[6] = frv_split_cond_move (operands);")
+
+(define_expand "movsfcc"
+ [(set (match_operand:SF 0 "register_operand" "")
+ (if_then_else:SF (match_operand 1 "" "")
+ (match_operand:SF 2 "register_operand" "")
+ (match_operand:SF 3 "register_operand" "")))]
+ "TARGET_COND_MOVE"
+ "
+{
+ if (!frv_emit_cond_move (operands[0], operands[1], operands[2], operands[3]))
+ FAIL;
+
+ DONE;
+}")
+
+(define_insn "*movsfcc_has_fprs_signed"
+ [(set (match_operand:SF 0 "register_operand" "=f,f,f,?f,?f,?d")
+ (if_then_else:SF (match_operator:CC 1 "signed_relational_operator"
+ [(match_operand:CC 2 "icc_operand" "t,t,t,t,t,t")
+ (const_int 0)])
+ (match_operand:SF 3 "register_operand" "0,f,f,f,d,fd")
+ (match_operand:SF 4 "register_operand" "f,0,f,d,fd,fd")))
+ (clobber (match_operand:CC_CCR 5 "icr_operand" "=v,v,v,v,v,v"))]
+ "TARGET_HAS_FPRS"
+ "#"
+ [(set_attr "length" "8,8,12,12,12,12")
+ (set_attr "type" "multi")])
+
+(define_insn "*movsfcc_has_fprs_unsigned"
+ [(set (match_operand:SF 0 "register_operand" "=f,f,f,?f,?f,?d")
+ (if_then_else:SF (match_operator:CC_UNS 1 "unsigned_relational_operator"
+ [(match_operand:CC_UNS 2 "icc_operand" "t,t,t,t,t,t")
+ (const_int 0)])
+ (match_operand:SF 3 "register_operand" "0,f,f,f,d,fd")
+ (match_operand:SF 4 "register_operand" "f,0,f,d,fd,fd")))
+ (clobber (match_operand:CC_CCR 5 "icr_operand" "=v,v,v,v,v,v"))]
+ "TARGET_HAS_FPRS"
+ "#"
+ [(set_attr "length" "8,8,12,12,12,12")
+ (set_attr "type" "multi")])
+
+(define_insn "*movsfcc_hardfloat_float"
+ [(set (match_operand:SF 0 "register_operand" "=f,f,f,?f,?f,?d")
+ (if_then_else:SF (match_operator:CC_FP 1 "float_relational_operator"
+ [(match_operand:CC_FP 2 "fcc_operand" "u,u,u,u,u,u")
+ (const_int 0)])
+ (match_operand:SF 3 "register_operand" "0,f,f,f,d,fd")
+ (match_operand:SF 4 "register_operand" "f,0,f,d,fd,fd")))
+ (clobber (match_operand:CC_CCR 5 "fcr_operand" "=w,w,w,w,w,w"))]
+ "TARGET_HARD_FLOAT"
+ "#"
+ [(set_attr "length" "8,8,12,12,12,12")
+ (set_attr "type" "multi")])
+
+(define_insn "*movsfcc_no_fprs_signed"
+ [(set (match_operand:SF 0 "integer_register_operand" "=d,d,d")
+ (if_then_else:SF (match_operator:CC 1 "signed_relational_operator"
+ [(match_operand:CC 2 "icc_operand" "t,t,t")
+ (const_int 0)])
+ (match_operand:SF 3 "integer_register_operand" "0,d,d")
+ (match_operand:SF 4 "integer_register_operand" "d,0,d")))
+ (clobber (match_operand:CC_CCR 5 "icr_operand" "=v,v,v"))]
+ "! TARGET_HAS_FPRS"
+ "#"
+ [(set_attr "length" "8,8,12")
+ (set_attr "type" "multi")])
+
+(define_insn "*movsfcc_no_fprs_unsigned"
+ [(set (match_operand:SF 0 "integer_register_operand" "=d,d,d")
+ (if_then_else:SF (match_operator:CC_UNS 1 "unsigned_relational_operator"
+ [(match_operand:CC_UNS 2 "icc_operand" "t,t,t")
+ (const_int 0)])
+ (match_operand:SF 3 "integer_register_operand" "0,d,d")
+ (match_operand:SF 4 "integer_register_operand" "d,0,d")))
+ (clobber (match_operand:CC_CCR 5 "icr_operand" "=v,v,v"))]
+ "! TARGET_HAS_FPRS"
+ "#"
+ [(set_attr "length" "8,8,12")
+ (set_attr "type" "multi")])
+
+(define_split
+ [(set (match_operand:SF 0 "register_operand" "")
+ (if_then_else:SF (match_operator 1 "relational_operator"
+ [(match_operand 2 "cc_operand" "")
+ (const_int 0)])
+ (match_operand:SF 3 "register_operand" "")
+ (match_operand:SF 4 "register_operand" "")))
+ (clobber (match_operand:CC_CCR 5 "cr_operand" ""))]
+ "reload_completed"
+ [(match_dup 6)]
+ "operands[6] = frv_split_cond_move (operands);")
+
+
+;; ::::::::::::::::::::
+;; ::
+;; :: Minimum, maximum, and integer absolute value
+;; ::
+;; ::::::::::::::::::::
+
+;; These 'instructions' are provided to give the compiler a slightly better
+;; nudge at register allocation, then it would if it constructed the
+;; instructions from basic building blocks (since it indicates it prefers one
+;; of the operands to be the same as the destination. It also helps the
+;; earlier passes of the compiler, by not breaking things into small basic
+;; blocks.
+
+(define_expand "abssi2"
+ [(parallel [(set (match_operand:SI 0 "integer_register_operand" "")
+ (abs:SI (match_operand:SI 1 "integer_register_operand" "")))
+ (clobber (match_dup 2))
+ (clobber (match_dup 3))])]
+ "TARGET_COND_MOVE"
+ "
+{
+ operands[2] = gen_reg_rtx (CCmode);
+ operands[3] = gen_reg_rtx (CC_CCRmode);
+}")
+
+(define_insn_and_split "*abssi2_internal"
+ [(set (match_operand:SI 0 "integer_register_operand" "=d,d")
+ (abs:SI (match_operand:SI 1 "integer_register_operand" "0,d")))
+ (clobber (match_operand:CC 2 "icc_operand" "=t,t"))
+ (clobber (match_operand:CC_CCR 3 "icr_operand" "=v,v"))]
+ "TARGET_COND_MOVE"
+ "#"
+ "reload_completed"
+ [(match_dup 4)]
+ "operands[4] = frv_split_abs (operands);"
+ [(set_attr "length" "12,16")
+ (set_attr "type" "multi")])
+
+(define_expand "sminsi3"
+ [(parallel [(set (match_operand:SI 0 "integer_register_operand" "")
+ (smin:SI (match_operand:SI 1 "integer_register_operand" "")
+ (match_operand:SI 2 "gpr_or_int10_operand" "")))
+ (clobber (match_dup 3))
+ (clobber (match_dup 4))])]
+ "TARGET_COND_MOVE"
+ "
+{
+ operands[3] = gen_reg_rtx (CCmode);
+ operands[4] = gen_reg_rtx (CC_CCRmode);
+}")
+
+(define_expand "smaxsi3"
+ [(parallel [(set (match_operand:SI 0 "integer_register_operand" "")
+ (smax:SI (match_operand:SI 1 "integer_register_operand" "")
+ (match_operand:SI 2 "gpr_or_int10_operand" "")))
+ (clobber (match_dup 3))
+ (clobber (match_dup 4))])]
+ "TARGET_COND_MOVE"
+ "
+{
+ operands[3] = gen_reg_rtx (CCmode);
+ operands[4] = gen_reg_rtx (CC_CCRmode);
+}")
+
+(define_insn_and_split "*minmax_si_signed"
+ [(set (match_operand:SI 0 "integer_register_operand" "=d,d,&d")
+ (match_operator:SI 1 "minmax_operator"
+ [(match_operand:SI 2 "integer_register_operand" "%0,dO,d")
+ (match_operand:SI 3 "gpr_or_int10_operand" "dO,0,dJ")]))
+ (clobber (match_operand:CC 4 "icc_operand" "=t,t,t"))
+ (clobber (match_operand:CC_CCR 5 "icr_operand" "=v,v,v"))]
+ "TARGET_COND_MOVE"
+ "#"
+ "reload_completed"
+ [(match_dup 6)]
+ "operands[6] = frv_split_minmax (operands);"
+ [(set_attr "length" "12,12,16")
+ (set_attr "type" "multi")])
+
+(define_expand "uminsi3"
+ [(parallel [(set (match_operand:SI 0 "integer_register_operand" "")
+ (umin:SI (match_operand:SI 1 "integer_register_operand" "")
+ (match_operand:SI 2 "gpr_or_int10_operand" "")))
+ (clobber (match_dup 3))
+ (clobber (match_dup 4))])]
+ "TARGET_COND_MOVE"
+ "
+{
+ operands[3] = gen_reg_rtx (CC_UNSmode);
+ operands[4] = gen_reg_rtx (CC_CCRmode);
+}")
+
+(define_expand "umaxsi3"
+ [(parallel [(set (match_operand:SI 0 "integer_register_operand" "")
+ (umax:SI (match_operand:SI 1 "integer_register_operand" "")
+ (match_operand:SI 2 "gpr_or_int10_operand" "")))
+ (clobber (match_dup 3))
+ (clobber (match_dup 4))])]
+ "TARGET_COND_MOVE"
+ "
+{
+ operands[3] = gen_reg_rtx (CC_UNSmode);
+ operands[4] = gen_reg_rtx (CC_CCRmode);
+}")
+
+(define_insn_and_split "*minmax_si_unsigned"
+ [(set (match_operand:SI 0 "integer_register_operand" "=d,d,&d")
+ (match_operator:SI 1 "minmax_operator"
+ [(match_operand:SI 2 "integer_register_operand" "%0,dO,d")
+ (match_operand:SI 3 "gpr_or_int10_operand" "dO,0,dJ")]))
+ (clobber (match_operand:CC_UNS 4 "icc_operand" "=t,t,t"))
+ (clobber (match_operand:CC_CCR 5 "icr_operand" "=v,v,v"))]
+ "TARGET_COND_MOVE"
+ "#"
+ "reload_completed"
+ [(match_dup 6)]
+ "operands[6] = frv_split_minmax (operands);"
+ [(set_attr "length" "12,12,16")
+ (set_attr "type" "multi")])
+
+(define_expand "sminsf3"
+ [(parallel [(set (match_operand:SF 0 "fpr_operand" "")
+ (smin:SF (match_operand:SF 1 "fpr_operand" "")
+ (match_operand:SF 2 "fpr_operand" "")))
+ (clobber (match_dup 3))
+ (clobber (match_dup 4))])]
+ "TARGET_COND_MOVE && TARGET_HARD_FLOAT"
+ "
+{
+ operands[3] = gen_reg_rtx (CC_FPmode);
+ operands[4] = gen_reg_rtx (CC_CCRmode);
+}")
+
+(define_expand "smaxsf3"
+ [(parallel [(set (match_operand:SF 0 "fpr_operand" "")
+ (smax:SF (match_operand:SF 1 "fpr_operand" "")
+ (match_operand:SF 2 "fpr_operand" "")))
+ (clobber (match_dup 3))
+ (clobber (match_dup 4))])]
+ "TARGET_COND_MOVE && TARGET_HARD_FLOAT"
+ "
+{
+ operands[3] = gen_reg_rtx (CC_FPmode);
+ operands[4] = gen_reg_rtx (CC_CCRmode);
+}")
+
+(define_insn_and_split "*minmax_sf"
+ [(set (match_operand:SF 0 "fpr_operand" "=f,f,f")
+ (match_operator:SF 1 "minmax_operator"
+ [(match_operand:SF 2 "fpr_operand" "%0,f,f")
+ (match_operand:SF 3 "fpr_operand" "f,0,f")]))
+ (clobber (match_operand:CC_FP 4 "fcc_operand" "=u,u,u"))
+ (clobber (match_operand:CC_CCR 5 "fcr_operand" "=w,w,w"))]
+ "TARGET_COND_MOVE && TARGET_HARD_FLOAT"
+ "#"
+ "reload_completed"
+ [(match_dup 6)]
+ "operands[6] = frv_split_minmax (operands);"
+ [(set_attr "length" "12,12,16")
+ (set_attr "type" "multi")])
+
+(define_expand "smindf3"
+ [(parallel [(set (match_operand:DF 0 "fpr_operand" "")
+ (smin:DF (match_operand:DF 1 "fpr_operand" "")
+ (match_operand:DF 2 "fpr_operand" "")))
+ (clobber (match_dup 3))
+ (clobber (match_dup 4))])]
+ "TARGET_COND_MOVE && TARGET_HARD_FLOAT && TARGET_DOUBLE"
+ "
+{
+ operands[3] = gen_reg_rtx (CC_FPmode);
+ operands[4] = gen_reg_rtx (CC_CCRmode);
+}")
+
+(define_expand "smaxdf3"
+ [(parallel [(set (match_operand:DF 0 "fpr_operand" "")
+ (smax:DF (match_operand:DF 1 "fpr_operand" "")
+ (match_operand:DF 2 "fpr_operand" "")))
+ (clobber (match_dup 3))
+ (clobber (match_dup 4))])]
+ "TARGET_COND_MOVE && TARGET_HARD_FLOAT && TARGET_DOUBLE"
+ "
+{
+ operands[3] = gen_reg_rtx (CC_FPmode);
+ operands[4] = gen_reg_rtx (CC_CCRmode);
+}")
+
+(define_insn_and_split "*minmax_df"
+ [(set (match_operand:DF 0 "fpr_operand" "=f,f,f")
+ (match_operator:DF 1 "minmax_operator"
+ [(match_operand:DF 2 "fpr_operand" "%0,f,f")
+ (match_operand:DF 3 "fpr_operand" "f,0,f")]))
+ (clobber (match_operand:CC_FP 4 "fcc_operand" "=u,u,u"))
+ (clobber (match_operand:CC_CCR 5 "fcr_operand" "=w,w,w"))]
+ "TARGET_COND_MOVE && TARGET_HARD_FLOAT && TARGET_DOUBLE"
+ "#"
+ "reload_completed"
+ [(match_dup 6)]
+ "operands[6] = frv_split_minmax (operands);"
+ [(set_attr "length" "12,12,16")
+ (set_attr "type" "multi")])
+
+
+;; ::::::::::::::::::::
+;; ::
+;; :: Call and branch instructions
+;; ::
+;; ::::::::::::::::::::
+
+;; Subroutine call instruction returning no value. Operand 0 is the function
+;; to call; operand 1 is the number of bytes of arguments pushed (in mode
+;; `SImode', except it is normally a `const_int'); operand 2 is the number of
+;; registers used as operands.
+
+;; On most machines, operand 2 is not actually stored into the RTL pattern. It
+;; is supplied for the sake of some RISC machines which need to put this
+;; information into the assembler code; they can put it in the RTL instead of
+;; operand 1.
+
+(define_expand "call"
+ [(use (match_operand:QI 0 "" ""))
+ (use (match_operand 1 "" ""))
+ (use (match_operand 2 "" ""))
+ (use (match_operand 3 "" ""))]
+ ""
+ "
+{
+ rtx lr = gen_rtx_REG (Pmode, LR_REGNO);
+ rtx addr;
+
+ if (GET_CODE (operands[0]) != MEM)
+ abort ();
+
+ addr = XEXP (operands[0], 0);
+ if (! call_operand (addr, Pmode))
+ addr = force_reg (Pmode, addr);
+
+ if (! operands[2])
+ operands[2] = const0_rtx;
+
+ emit_call_insn (gen_call_internal (addr, operands[1], operands[2], lr));
+ DONE;
+}")
+
+(define_insn "call_internal"
+ [(call (mem:QI (match_operand:SI 0 "call_operand" "S,dNOP"))
+ (match_operand 1 "" ""))
+ (use (match_operand 2 "" ""))
+ (clobber (match_operand:SI 3 "lr_operand" "=l,l"))]
+ ""
+ "@
+ call %0
+ call%i0l %M0"
+ [(set_attr "length" "4")
+ (set_attr "type" "call,jumpl")])
+
+;; Subroutine call instruction returning a value. Operand 0 is the hard
+;; register in which the value is returned. There are three more operands, the
+;; same as the three operands of the `call' instruction (but with numbers
+;; increased by one).
+
+;; Subroutines that return `BLKmode' objects use the `call' insn.
+
+(define_expand "call_value"
+ [(use (match_operand 0 "" ""))
+ (use (match_operand:QI 1 "" ""))
+ (use (match_operand 2 "" ""))
+ (use (match_operand 3 "" ""))
+ (use (match_operand 4 "" ""))]
+ ""
+ "
+{
+ rtx lr = gen_rtx_REG (Pmode, LR_REGNO);
+ rtx addr;
+
+ if (GET_CODE (operands[1]) != MEM)
+ abort ();
+
+ addr = XEXP (operands[1], 0);
+ if (! call_operand (addr, Pmode))
+ addr = force_reg (Pmode, addr);
+
+ if (! operands[3])
+ operands[3] = const0_rtx;
+
+ emit_call_insn (gen_call_value_internal (operands[0], addr, operands[2],
+ operands[3], lr));
+ DONE;
+}")
+
+(define_insn "call_value_internal"
+ [(set (match_operand 0 "register_operand" "=d,d")
+ (call (mem:QI (match_operand:SI 1 "call_operand" "S,dNOP"))
+ (match_operand 2 "" "")))
+ (use (match_operand 3 "" ""))
+ (clobber (match_operand:SI 4 "lr_operand" "=l,l"))]
+ ""
+ "@
+ call %1
+ call%i1l %M1"
+ [(set_attr "length" "4")
+ (set_attr "type" "call,jumpl")])
+
+;; return instruction generated instead of jmp to epilog
+(define_expand "return"
+ [(parallel [(return)
+ (use (match_dup 0))
+ (use (const_int 1))])]
+ "direct_return_p ()"
+ "
+{
+ operands[0] = gen_rtx_REG (Pmode, LR_REGNO);
+}")
+
+;; return instruction generated by the epilogue
+(define_expand "epilogue_return"
+ [(parallel [(return)
+ (use (match_operand:SI 0 "register_operand" ""))
+ (use (const_int 0))])]
+ ""
+ "")
+
+(define_insn "*return_internal"
+ [(return)
+ (use (match_operand:SI 0 "register_operand" "l,d"))
+ (use (match_operand:SI 1 "immediate_operand" "n,n"))]
+ ""
+ "@
+ ret
+ jmpl @(%0,%.)"
+ [(set_attr "length" "4")
+ (set_attr "type" "jump,jumpl")])
+
+;; A version of addsi3 for deallocating stack space at the end of the
+;; epilogue. The addition is done in parallel with an (unspec_volatile),
+;; which represents the clobbering of the deallocated space.
+(define_insn "stack_adjust"
+ [(set (match_operand:SI 0 "register_operand" "=d")
+ (plus:SI (match_operand:SI 1 "register_operand" "d")
+ (match_operand:SI 2 "general_operand" "dNOP")))
+ (unspec_volatile [(const_int 0)] UNSPEC_STACK_ADJUST)]
+ ""
+ "add%I2 %1,%2,%0"
+ [(set_attr "length" "4")
+ (set_attr "type" "int")])
+
+;; Normal unconditional jump
+
+;; Use the "call" instruction for long branches, but prefer to use "bra" for
+;; short ones since it does not force us to save the link register.
+
+;; This define_insn uses the branch-shortening code to decide which
+;; instruction it emits. Since the main branch-shortening interface is
+;; through get_attr_length(), the two alternatives must be given different
+;; lengths. Here we pretend that the far jump is 8 rather than 4 bytes
+;; long, though both alternatives are really the same size.
+(define_insn "jump"
+ [(set (pc) (label_ref (match_operand 0 "" "")))]
+ ""
+ "*
+{
+ if (get_attr_length (insn) == 4)
+ return \"bra %l0\";
+ else
+ return \"call %l0\";
+}"
+ [(set (attr "length")
+ (if_then_else
+ (and (ge (minus (match_dup 0) (pc)) (const_int -32768))
+ (le (minus (match_dup 0) (pc)) (const_int 32764)))
+ (const_int 4)
+ (const_int 8)))
+ (set (attr "far_jump")
+ (if_then_else
+ (eq_attr "length" "4")
+ (const_string "no")
+ (const_string "yes")))
+ (set (attr "type")
+ (if_then_else
+ (eq_attr "length" "4")
+ (const_string "jump")
+ (const_string "call")))])
+
+;; Indirect jump through a register
+(define_insn "indirect_jump"
+ [(set (pc) (match_operand:SI 0 "register_operand" "d,l"))]
+ ""
+ "@
+ jmpl @(%0,%.)
+ bralr"
+ [(set_attr "length" "4")
+ (set_attr "type" "jumpl,branch")])
+
+;; Instruction to jump to a variable address. This is a low-level capability
+;; which can be used to implement a dispatch table when there is no `casesi'
+;; pattern. Either the 'casesi' pattern or the 'tablejump' pattern, or both,
+;; MUST be present in this file.
+
+;; This pattern requires two operands: the address or offset, and a label which
+;; should immediately precede the jump table. If the macro
+;; `CASE_VECTOR_PC_RELATIVE' is defined then the first operand is an offset
+;; which counts from the address of the table; otherwise, it is an absolute
+;; address to jump to. In either case, the first operand has mode `Pmode'.
+
+;; The `tablejump' insn is always the last insn before the jump table it uses.
+;; Its assembler code normally has no need to use the second operand, but you
+;; should incorporate it in the RTL pattern so that the jump optimizer will not
+;; delete the table as unreachable code.
+
+(define_expand "tablejump"
+ [(parallel [(set (pc) (match_operand:SI 0 "address_operand" "p"))
+ (use (label_ref (match_operand 1 "" "")))])]
+ "!flag_pic"
+ "")
+
+(define_insn "tablejump_insn"
+ [(set (pc) (match_operand:SI 0 "address_operand" "p"))
+ (use (label_ref (match_operand 1 "" "")))]
+ ""
+ "jmp%I0l %M0"
+ [(set_attr "length" "4")
+ (set_attr "type" "jumpl")])
+
+;; Implement switch statements when generating PIC code. Switches are
+;; implemented by `tablejump' when not using -fpic.
+
+;; Emit code here to do the range checking and make the index zero based.
+;; operand 0 is the index
+;; operand 1 is the lower bound
+;; operand 2 is the range of indices (highest - lowest + 1)
+;; operand 3 is the label that precedes the table itself
+;; operand 4 is the fall through label
+
+(define_expand "casesi"
+ [(use (match_operand:SI 0 "integer_register_operand" ""))
+ (use (match_operand:SI 1 "const_int_operand" ""))
+ (use (match_operand:SI 2 "const_int_operand" ""))
+ (use (match_operand 3 "" ""))
+ (use (match_operand 4 "" ""))]
+ "flag_pic"
+ "
+{
+ rtx indx;
+ rtx scale;
+ rtx low = operands[1];
+ rtx range = operands[2];
+ rtx table = operands[3];
+ rtx treg;
+ rtx fail = operands[4];
+ rtx mem;
+ rtx reg2;
+ rtx reg3;
+
+ if (GET_CODE (operands[1]) != CONST_INT)
+ abort ();
+
+ if (GET_CODE (operands[2]) != CONST_INT)
+ abort ();
+
+ /* If we can't generate an immediate instruction, promote to register */
+ if (! IN_RANGE_P (INTVAL (range), -2048, 2047))
+ range = force_reg (SImode, range);
+
+ /* If low bound is 0, we don't have to subtract it. */
+ if (INTVAL (operands[1]) == 0)
+ indx = operands[0];
+ else
+ {
+ indx = gen_reg_rtx (SImode);
+ if (IN_RANGE_P (INTVAL (low), -2047, 2048))
+ emit_insn (gen_addsi3 (indx, operands[0], GEN_INT (- INTVAL (low))));
+ else
+ emit_insn (gen_subsi3 (indx, operands[0], force_reg (SImode, low)));
+ }
+
+ /* Do an unsigned comparison (in the proper mode) between the index
+ expression and the value which represents the length of the range.
+ Since we just finished subtracting the lower bound of the range
+ from the index expression, this comparison allows us to simultaneously
+ check that the original index expression value is both greater than
+ or equal to the minimum value of the range and less than or equal to
+ the maximum value of the range. */
+
+ emit_cmp_and_jump_insns (indx, range, GTU, NULL_RTX, SImode, 1, fail);
+
+ /* Move the table address to a register */
+ treg = gen_reg_rtx (Pmode);
+ emit_insn (gen_movsi (treg, gen_rtx_LABEL_REF (VOIDmode, table)));
+
+ /* scale index-low by wordsize */
+ scale = gen_reg_rtx (SImode);
+ emit_insn (gen_ashlsi3 (scale, indx, GEN_INT (2)));
+
+ /* Load the address, add the start of the table back in,
+ and jump to it. */
+ mem = gen_rtx_MEM (SImode, gen_rtx_PLUS (Pmode, scale, treg));
+ reg2 = gen_reg_rtx (SImode);
+ reg3 = gen_reg_rtx (SImode);
+ emit_insn (gen_movsi (reg2, mem));
+ emit_insn (gen_addsi3 (reg3, reg2, treg));
+ emit_jump_insn (gen_tablejump_insn (reg3, table));
+ DONE;
+}")
+
+
+;; ::::::::::::::::::::
+;; ::
+;; :: Prologue and Epilogue instructions
+;; ::
+;; ::::::::::::::::::::
+
+;; Called after register allocation to add any instructions needed for the
+;; prologue. Using a prologue insn is favored compared to putting all of the
+;; instructions in the FUNCTION_PROLOGUE macro, since it allows the scheduler
+;; to intermix instructions with the saves of the caller saved registers. In
+;; some cases, it might be necessary to emit a barrier instruction as the last
+;; insn to prevent such scheduling.
+(define_expand "prologue"
+ [(const_int 1)]
+ ""
+ "
+{
+ frv_expand_prologue ();
+ DONE;
+}")
+
+;; Called after register allocation to add any instructions needed for the
+;; epilogue. Using an epilogue insn is favored compared to putting all of the
+;; instructions in the FUNCTION_EPILOGUE macro, since it allows the scheduler
+;; to intermix instructions with the restires of the caller saved registers.
+;; In some cases, it might be necessary to emit a barrier instruction as the
+;; first insn to prevent such scheduling.
+(define_expand "epilogue"
+ [(const_int 2)]
+ ""
+ "
+{
+ frv_expand_epilogue (FALSE);
+ DONE;
+}")
+
+;; This pattern, if defined, emits RTL for exit from a function without the final
+;; branch back to the calling function. This pattern will be emitted before any
+;; sibling call (aka tail call) sites.
+;;
+;; The sibcall_epilogue pattern must not clobber any arguments used for
+;; parameter passing or any stack slots for arguments passed to the current
+;; function.
+(define_expand "sibcall_epilogue"
+ [(const_int 3)]
+ ""
+ "
+{
+ frv_expand_epilogue (TRUE);
+ DONE;
+}")
+
+;; Set up the pic register to hold the address of the pic table
+(define_insn "pic_prologue"
+ [(set (match_operand:SI 0 "integer_register_operand" "=d")
+ (unspec_volatile:SI [(const_int 0)] UNSPEC_PIC_PROLOGUE))
+ (clobber (match_operand:SI 1 "lr_operand" "=l"))
+ (clobber (match_operand:SI 2 "integer_register_operand" "=d"))]
+ ""
+ "*
+{
+ static int frv_pic_labelno = 0;
+
+ operands[3] = GEN_INT (frv_pic_labelno++);
+ return \"call %P3\\n%P3:\;movsg %1, %0\;sethi #gprelhi(%P3), %2\;setlo #gprello(%P3), %2\;sub %0,%2,%0\";
+}"
+ [(set_attr "length" "16")
+ (set_attr "type" "multi")])
+
+;; ::::::::::::::::::::
+;; ::
+;; :: Miscellaneous instructions
+;; ::
+;; ::::::::::::::::::::
+
+;; No operation, needed in case the user uses -g but not -O.
+(define_insn "nop"
+ [(const_int 0)]
+ ""
+ "nop"
+ [(set_attr "length" "4")
+ (set_attr "type" "int")])
+
+;; Pseudo instruction that prevents the scheduler from moving code above this
+;; point. Note, type unknown is used to make sure the VLIW instructions are
+;; not continued past this point.
+(define_insn "blockage"
+ [(unspec_volatile [(const_int 0)] UNSPEC_BLOCKAGE)]
+ ""
+ "# blockage"
+ [(set_attr "length" "0")
+ (set_attr "type" "unknown")])
+
+;; ::::::::::::::::::::
+;; ::
+;; :: Media instructions
+;; ::
+;; ::::::::::::::::::::
+
+;; Unimplemented instructions:
+;; - MCMPSH, MCMPUH
+
+(define_constants
+ [(UNSPEC_MLOGIC 100)
+ (UNSPEC_MNOT 101)
+ (UNSPEC_MAVEH 102)
+ (UNSPEC_MSATH 103)
+ (UNSPEC_MADDH 104)
+ (UNSPEC_MQADDH 105)
+ (UNSPEC_MPACKH 106)
+ (UNSPEC_MUNPACKH 107)
+ (UNSPEC_MDPACKH 108)
+ (UNSPEC_MBTOH 109)
+ (UNSPEC_MHTOB 110)
+ (UNSPEC_MROT 111)
+ (UNSPEC_MSHIFT 112)
+ (UNSPEC_MEXPDHW 113)
+ (UNSPEC_MEXPDHD 114)
+ (UNSPEC_MWCUT 115)
+ (UNSPEC_MMULH 116)
+ (UNSPEC_MMULXH 117)
+ (UNSPEC_MMACH 118)
+ (UNSPEC_MMRDH 119)
+ (UNSPEC_MQMULH 120)
+ (UNSPEC_MQMULXH 121)
+ (UNSPEC_MQMACH 122)
+ (UNSPEC_MCPX 123)
+ (UNSPEC_MQCPX 124)
+ (UNSPEC_MCUT 125)
+ (UNSPEC_MRDACC 126)
+ (UNSPEC_MRDACCG 127)
+ (UNSPEC_MWTACC 128)
+ (UNSPEC_MWTACCG 129)
+ (UNSPEC_MTRAP 130)
+ (UNSPEC_MCLRACC 131)
+ (UNSPEC_MCLRACCA 132)
+ (UNSPEC_MCOP1 133)
+ (UNSPEC_MCOP2 134)
+ (UNSPEC_MDUNPACKH 135)
+ (UNSPEC_MDUNPACKH_INTERNAL 136)
+ (UNSPEC_MBTOHE 137)
+ (UNSPEC_MBTOHE_INTERNAL 138)
+ (UNSPEC_MBTOHE 137)
+ (UNSPEC_MBTOHE_INTERNAL 138)
+ (UNSPEC_MQMACH2 139)
+ (UNSPEC_MADDACC 140)
+ (UNSPEC_MDADDACC 141)
+ (UNSPEC_MABSHS 142)
+ (UNSPEC_MDROTLI 143)
+ (UNSPEC_MCPLHI 144)
+ (UNSPEC_MCPLI 145)
+ (UNSPEC_MDCUTSSI 146)
+ (UNSPEC_MQSATHS 147)
+ (UNSPEC_MHSETLOS 148)
+ (UNSPEC_MHSETLOH 149)
+ (UNSPEC_MHSETHIS 150)
+ (UNSPEC_MHSETHIH 151)
+ (UNSPEC_MHDSETS 152)
+ (UNSPEC_MHDSETH 153)
+])
+
+;; Logic operations: type "mlogic"
+
+(define_expand "mand"
+ [(set (match_operand:SI 0 "fpr_operand" "")
+ (unspec:SI [(match_operand:SI 1 "fpr_operand" "")
+ (match_operand:SI 2 "fpr_operand" "")
+ (match_dup 3)]
+ UNSPEC_MLOGIC))]
+ "TARGET_MEDIA"
+ "operands[3] = GEN_INT (FRV_BUILTIN_MAND);")
+
+(define_expand "mor"
+ [(set (match_operand:SI 0 "fpr_operand" "")
+ (unspec:SI [(match_operand:SI 1 "fpr_operand" "")
+ (match_operand:SI 2 "fpr_operand" "")
+ (match_dup 3)]
+ UNSPEC_MLOGIC))]
+ "TARGET_MEDIA"
+ "operands[3] = GEN_INT (FRV_BUILTIN_MOR);")
+
+(define_expand "mxor"
+ [(set (match_operand:SI 0 "fpr_operand" "")
+ (unspec:SI [(match_operand:SI 1 "fpr_operand" "")
+ (match_operand:SI 2 "fpr_operand" "")
+ (match_dup 3)]
+ UNSPEC_MLOGIC))]
+ "TARGET_MEDIA"
+ "operands[3] = GEN_INT (FRV_BUILTIN_MXOR);")
+
+(define_insn "*mlogic"
+ [(set (match_operand:SI 0 "fpr_operand" "=f")
+ (unspec:SI [(match_operand:SI 1 "fpr_operand" "f")
+ (match_operand:SI 2 "fpr_operand" "f")
+ (match_operand:SI 3 "const_int_operand" "n")]
+ UNSPEC_MLOGIC))]
+ "TARGET_MEDIA"
+ "*
+{
+ switch (INTVAL (operands[3]))
+ {
+ default: break;
+ case FRV_BUILTIN_MAND: return \"mand %1, %2, %0\";
+ case FRV_BUILTIN_MOR: return \"mor %1, %2, %0\";
+ case FRV_BUILTIN_MXOR: return \"mxor %1, %2, %0\";
+ }
+
+ fatal_insn (\"Bad media insn, mlogic\", insn);
+}"
+ [(set_attr "length" "4")
+ (set_attr "type" "mlogic")])
+
+(define_insn "*cond_exec_mlogic"
+ [(cond_exec
+ (match_operator 0 "ccr_eqne_operator"
+ [(match_operand 1 "cr_operand" "C")
+ (const_int 0)])
+ (set (match_operand:SI 2 "fpr_operand" "=f")
+ (unspec:SI [(match_operand:SI 3 "fpr_operand" "f")
+ (match_operand:SI 4 "fpr_operand" "f")
+ (match_operand:SI 5 "const_int_operand" "n")]
+ UNSPEC_MLOGIC)))]
+ "TARGET_MEDIA"
+ "*
+{
+ switch (INTVAL (operands[5]))
+ {
+ default: break;
+ case FRV_BUILTIN_MAND: return \"cmand %3, %4, %2, %1, %e0\";
+ case FRV_BUILTIN_MOR: return \"cmor %3, %4, %2, %1, %e0\";
+ case FRV_BUILTIN_MXOR: return \"cmxor %3, %4, %2, %1, %e0\";
+ }
+
+ fatal_insn (\"Bad media insn, cond_exec_mlogic\", insn);
+}"
+ [(set_attr "length" "4")
+ (set_attr "type" "mlogic")])
+
+;; Logical not: type "mlogic"
+
+(define_insn "mnot"
+ [(set (match_operand:SI 0 "fpr_operand" "=f")
+ (unspec:SI [(match_operand:SI 1 "fpr_operand" "f")] UNSPEC_MNOT))]
+ "TARGET_MEDIA"
+ "mnot %1, %0"
+ [(set_attr "length" "4")
+ (set_attr "type" "mlogic")])
+
+(define_insn "*cond_exec_mnot"
+ [(cond_exec
+ (match_operator 0 "ccr_eqne_operator"
+ [(match_operand 1 "cr_operand" "C")
+ (const_int 0)])
+ (set (match_operand:SI 2 "fpr_operand" "=f")
+ (unspec:SI [(match_operand:SI 3 "fpr_operand" "f")] UNSPEC_MNOT)))]
+ "TARGET_MEDIA"
+ "cmnot %3, %2, %1, %e0"
+ [(set_attr "length" "4")
+ (set_attr "type" "mlogic")])
+
+;; Dual average (halfword): type "maveh"
+
+(define_insn "maveh"
+ [(set (match_operand:SI 0 "fpr_operand" "=f")
+ (unspec:SI [(match_operand:SI 1 "fpr_operand" "f")
+ (match_operand:SI 2 "fpr_operand" "f")]
+ UNSPEC_MAVEH))]
+ "TARGET_MEDIA"
+ "maveh %1, %2, %0"
+ [(set_attr "length" "4")
+ (set_attr "type" "maveh")])
+
+;; Dual saturation (halfword): type "msath"
+
+(define_expand "msaths"
+ [(set (match_operand:SI 0 "fpr_operand" "=f")
+ (unspec:SI [(match_operand:SI 1 "fpr_operand" "f")
+ (match_operand:SI 2 "fpr_operand" "f")
+ (match_dup 3)]
+ UNSPEC_MSATH))]
+ "TARGET_MEDIA"
+ "operands[3] = GEN_INT (FRV_BUILTIN_MSATHS);")
+
+(define_expand "msathu"
+ [(set (match_operand:SI 0 "fpr_operand" "=f")
+ (unspec:SI [(match_operand:SI 1 "fpr_operand" "f")
+ (match_operand:SI 2 "fpr_operand" "f")
+ (match_dup 3)]
+ UNSPEC_MSATH))]
+ "TARGET_MEDIA"
+ "operands[3] = GEN_INT (FRV_BUILTIN_MSATHU);")
+
+(define_insn "*msath"
+ [(set (match_operand:SI 0 "fpr_operand" "=f")
+ (unspec:SI [(match_operand:SI 1 "fpr_operand" "f")
+ (match_operand:SI 2 "fpr_operand" "f")
+ (match_operand:SI 3 "const_int_operand" "n")]
+ UNSPEC_MSATH))]
+ "TARGET_MEDIA"
+ "*
+{
+ switch (INTVAL (operands[3]))
+ {
+ default: break;
+ case FRV_BUILTIN_MSATHS: return \"msaths %1, %2, %0\";
+ case FRV_BUILTIN_MSATHU: return \"msathu %1, %2, %0\";
+ }
+
+ fatal_insn (\"Bad media insn, msath\", insn);
+}"
+ [(set_attr "length" "4")
+ (set_attr "type" "msath")])
+
+;; Dual addition/subtraction with saturation (halfword): type "maddh"
+
+(define_expand "maddhss"
+ [(set (match_operand:SI 0 "fpr_operand" "=f")
+ (unspec:SI [(match_operand:SI 1 "fpr_operand" "f")
+ (match_operand:SI 2 "fpr_operand" "f")
+ (match_dup 3)]
+ UNSPEC_MADDH))]
+ "TARGET_MEDIA"
+ "operands[3] = GEN_INT (FRV_BUILTIN_MADDHSS);")
+
+(define_expand "maddhus"
+ [(set (match_operand:SI 0 "fpr_operand" "=f")
+ (unspec:SI [(match_operand:SI 1 "fpr_operand" "f")
+ (match_operand:SI 2 "fpr_operand" "f")
+ (match_dup 3)]
+ UNSPEC_MADDH))]
+ "TARGET_MEDIA"
+ "operands[3] = GEN_INT (FRV_BUILTIN_MADDHUS);")
+
+(define_expand "msubhss"
+ [(set (match_operand:SI 0 "fpr_operand" "=f")
+ (unspec:SI [(match_operand:SI 1 "fpr_operand" "f")
+ (match_operand:SI 2 "fpr_operand" "f")
+ (match_dup 3)]
+ UNSPEC_MADDH))]
+ "TARGET_MEDIA"
+ "operands[3] = GEN_INT (FRV_BUILTIN_MSUBHSS);")
+
+(define_expand "msubhus"
+ [(set (match_operand:SI 0 "fpr_operand" "=f")
+ (unspec:SI [(match_operand:SI 1 "fpr_operand" "f")
+ (match_operand:SI 2 "fpr_operand" "f")
+ (match_dup 3)]
+ UNSPEC_MADDH))]
+ "TARGET_MEDIA"
+ "operands[3] = GEN_INT (FRV_BUILTIN_MSUBHUS);")
+
+(define_insn "*maddh"
+ [(set (match_operand:SI 0 "fpr_operand" "=f")
+ (unspec:SI [(match_operand:SI 1 "fpr_operand" "f")
+ (match_operand:SI 2 "fpr_operand" "f")
+ (match_operand:SI 3 "const_int_operand" "n")]
+ UNSPEC_MADDH))]
+ "TARGET_MEDIA"
+ "*
+{
+ switch (INTVAL (operands[3]))
+ {
+ default: break;
+ case FRV_BUILTIN_MADDHSS: return \"maddhss %1, %2, %0\";
+ case FRV_BUILTIN_MADDHUS: return \"maddhus %1, %2, %0\";
+ case FRV_BUILTIN_MSUBHSS: return \"msubhss %1, %2, %0\";
+ case FRV_BUILTIN_MSUBHUS: return \"msubhus %1, %2, %0\";
+ }
+
+ fatal_insn (\"Bad media insn, maddh\", insn);
+}"
+ [(set_attr "length" "4")
+ (set_attr "type" "maddh")])
+
+(define_insn "*cond_exec_maddh"
+ [(cond_exec
+ (match_operator 0 "ccr_eqne_operator"
+ [(match_operand 1 "cr_operand" "C")
+ (const_int 0)])
+ (set (match_operand:SI 2 "fpr_operand" "=f")
+ (unspec:SI [(match_operand:SI 3 "fpr_operand" "f")
+ (match_operand:SI 4 "fpr_operand" "f")
+ (match_operand:SI 5 "const_int_operand" "n")]
+ UNSPEC_MADDH)))]
+ "TARGET_MEDIA"
+ "*
+{
+ switch (INTVAL (operands[5]))
+ {
+ default: break;
+ case FRV_BUILTIN_MADDHSS: return \"cmaddhss %3, %4, %2, %1, %e0\";
+ case FRV_BUILTIN_MADDHUS: return \"cmaddhus %3, %4, %2, %1, %e0\";
+ case FRV_BUILTIN_MSUBHSS: return \"cmsubhss %3, %4, %2, %1, %e0\";
+ case FRV_BUILTIN_MSUBHUS: return \"cmsubhus %3, %4, %2, %1, %e0\";
+ }
+
+ fatal_insn (\"Bad media insn, cond_exec_maddh\", insn);
+}"
+ [(set_attr "length" "4")
+ (set_attr "type" "maddh")])
+
+;; Quad addition/subtraction with saturation (halfword): type "mqaddh"
+
+(define_expand "mqaddhss"
+ [(set (match_operand:DI 0 "even_fpr_operand" "=h")
+ (unspec:DI [(match_operand:DI 1 "even_fpr_operand" "h")
+ (match_operand:DI 2 "even_fpr_operand" "h")
+ (match_dup 3)]
+ UNSPEC_MQADDH))]
+ "TARGET_MEDIA"
+ "operands[3] = GEN_INT (FRV_BUILTIN_MQADDHSS);")
+
+(define_expand "mqaddhus"
+ [(set (match_operand:DI 0 "even_fpr_operand" "=h")
+ (unspec:DI [(match_operand:DI 1 "even_fpr_operand" "h")
+ (match_operand:DI 2 "even_fpr_operand" "h")
+ (match_dup 3)]
+ UNSPEC_MQADDH))]
+ "TARGET_MEDIA"
+ "operands[3] = GEN_INT (FRV_BUILTIN_MQADDHUS);")
+
+(define_expand "mqsubhss"
+ [(set (match_operand:DI 0 "even_fpr_operand" "=h")
+ (unspec:DI [(match_operand:DI 1 "even_fpr_operand" "h")
+ (match_operand:DI 2 "even_fpr_operand" "h")
+ (match_dup 3)]
+ UNSPEC_MQADDH))]
+ "TARGET_MEDIA"
+ "operands[3] = GEN_INT (FRV_BUILTIN_MQSUBHSS);")
+
+(define_expand "mqsubhus"
+ [(set (match_operand:DI 0 "even_fpr_operand" "=h")
+ (unspec:DI [(match_operand:DI 1 "even_fpr_operand" "h")
+ (match_operand:DI 2 "even_fpr_operand" "h")
+ (match_dup 3)]
+ UNSPEC_MQADDH))]
+ "TARGET_MEDIA"
+ "operands[3] = GEN_INT (FRV_BUILTIN_MQSUBHUS);")
+
+(define_insn "*mqaddh"
+ [(set (match_operand:DI 0 "even_fpr_operand" "=h")
+ (unspec:DI [(match_operand:DI 1 "even_fpr_operand" "h")
+ (match_operand:DI 2 "even_fpr_operand" "h")
+ (match_operand:SI 3 "const_int_operand" "n")]
+ UNSPEC_MQADDH))]
+ "TARGET_MEDIA"
+ "*
+{
+ switch (INTVAL (operands[3]))
+ {
+ default: break;
+ case FRV_BUILTIN_MQADDHSS: return \"mqaddhss %1, %2, %0\";
+ case FRV_BUILTIN_MQADDHUS: return \"mqaddhus %1, %2, %0\";
+ case FRV_BUILTIN_MQSUBHSS: return \"mqsubhss %1, %2, %0\";
+ case FRV_BUILTIN_MQSUBHUS: return \"mqsubhus %1, %2, %0\";
+ }
+
+ fatal_insn (\"Bad media insn, mqaddh\", insn);
+}"
+ [(set_attr "length" "4")
+ (set_attr "type" "mqaddh")])
+
+(define_insn "*cond_exec_mqaddh"
+ [(cond_exec
+ (match_operator 0 "ccr_eqne_operator"
+ [(match_operand 1 "cr_operand" "C")
+ (const_int 0)])
+ (set (match_operand:DI 2 "even_fpr_operand" "=h")
+ (unspec:DI [(match_operand:DI 3 "even_fpr_operand" "h")
+ (match_operand:DI 4 "even_fpr_operand" "h")
+ (match_operand:SI 5 "const_int_operand" "n")]
+ UNSPEC_MQADDH)))]
+ "TARGET_MEDIA"
+ "*
+{
+ switch (INTVAL (operands[5]))
+ {
+ default: break;
+ case FRV_BUILTIN_MQADDHSS: return \"cmqaddhss %3, %4, %2, %1, %e0\";
+ case FRV_BUILTIN_MQADDHUS: return \"cmqaddhus %3, %4, %2, %1, %e0\";
+ case FRV_BUILTIN_MQSUBHSS: return \"cmqsubhss %3, %4, %2, %1, %e0\";
+ case FRV_BUILTIN_MQSUBHUS: return \"cmqsubhus %3, %4, %2, %1, %e0\";
+ }
+
+ fatal_insn (\"Bad media insn, cond_exec_mqaddh\", insn);
+}"
+ [(set_attr "length" "4")
+ (set_attr "type" "mqaddh")])
+
+;; Pack halfword: type "mpackh"
+
+(define_insn "mpackh"
+ [(set (match_operand:SI 0 "fpr_operand" "=f")
+ (unspec:SI [(match_operand:HI 1 "fpr_operand" "f")
+ (match_operand:HI 2 "fpr_operand" "f")]
+ UNSPEC_MPACKH))]
+ "TARGET_MEDIA"
+ "mpackh %1, %2, %0"
+ [(set_attr "length" "4")
+ (set_attr "type" "mpackh")])
+
+;; Unpack halfword: type "mpackh"
+
+(define_insn "munpackh"
+ [(set (match_operand:DI 0 "even_fpr_operand" "=h")
+ (unspec:DI [(match_operand:SI 1 "fpr_operand" "f")]
+ UNSPEC_MUNPACKH))]
+ "TARGET_MEDIA"
+ "munpackh %1, %0"
+ [(set_attr "length" "4")
+ (set_attr "type" "munpackh")])
+
+;; Dual pack halfword: type "mdpackh"
+
+(define_insn "mdpackh"
+ [(set (match_operand:DI 0 "even_fpr_operand" "=h")
+ (unspec:DI [(match_operand:DI 1 "even_fpr_operand" "h")
+ (match_operand:DI 2 "even_fpr_operand" "h")]
+ UNSPEC_MDPACKH))]
+ "TARGET_MEDIA"
+ "mdpackh %1, %2, %0"
+ [(set_attr "length" "4")
+ (set_attr "type" "mdpackh")])
+
+;; Byte-halfword conversion: type "mbhconv"
+
+(define_insn "mbtoh"
+ [(set (match_operand:DI 0 "even_fpr_operand" "=h")
+ (unspec:DI [(match_operand:SI 1 "fpr_operand" "f")]
+ UNSPEC_MBTOH))]
+ "TARGET_MEDIA"
+ "mbtoh %1, %0"
+ [(set_attr "length" "4")
+ (set_attr "type" "mbhconv")])
+
+(define_insn "*cond_exec_mbtoh"
+ [(cond_exec
+ (match_operator 0 "ccr_eqne_operator"
+ [(match_operand 1 "cr_operand" "C")
+ (const_int 0)])
+ (set (match_operand:DI 2 "even_fpr_operand" "=h")
+ (unspec:DI [(match_operand:SI 3 "fpr_operand" "f")]
+ UNSPEC_MBTOH)))]
+ "TARGET_MEDIA"
+ "cmbtoh %3, %2, %1, %e0"
+ [(set_attr "length" "4")
+ (set_attr "type" "mbhconv")])
+
+(define_insn "mhtob"
+ [(set (match_operand:SI 0 "fpr_operand" "=f")
+ (unspec:SI [(match_operand:DI 1 "even_fpr_operand" "h")]
+ UNSPEC_MHTOB))]
+ "TARGET_MEDIA"
+ "mhtob %1, %0"
+ [(set_attr "length" "4")
+ (set_attr "type" "mbhconv")])
+
+(define_insn "*cond_exec_mhtob"
+ [(cond_exec
+ (match_operator 0 "ccr_eqne_operator"
+ [(match_operand 1 "cr_operand" "C")
+ (const_int 0)])
+ (set (match_operand:SI 2 "fpr_operand" "=f")
+ (unspec:SI [(match_operand:DI 3 "even_fpr_operand" "h")]
+ UNSPEC_MHTOB)))]
+ "TARGET_MEDIA"
+ "cmhtob %3, %2, %1, %e0"
+ [(set_attr "length" "4")
+ (set_attr "type" "mbhconv")])
+
+;; Rotate: type "mrot"
+
+(define_expand "mrotli"
+ [(set (match_operand:SI 0 "fpr_operand" "")
+ (unspec:SI [(match_operand:SI 1 "fpr_operand" "")
+ (match_operand:SI 2 "uint5_operand" "")
+ (match_dup 3)]
+ UNSPEC_MROT))]
+ "TARGET_MEDIA"
+ "operands[3] = GEN_INT (FRV_BUILTIN_MROTLI);")
+
+(define_expand "mrotri"
+ [(set (match_operand:SI 0 "fpr_operand" "")
+ (unspec:SI [(match_operand:SI 1 "fpr_operand" "")
+ (match_operand:SI 2 "uint5_operand" "")
+ (match_dup 3)]
+ UNSPEC_MROT))]
+ "TARGET_MEDIA"
+ "operands[3] = GEN_INT (FRV_BUILTIN_MROTRI);")
+
+(define_insn "*mrot"
+ [(set (match_operand:SI 0 "fpr_operand" "=f")
+ (unspec:SI [(match_operand:SI 1 "fpr_operand" "f")
+ (match_operand:SI 2 "uint5_operand" "I")
+ (match_operand:SI 3 "const_int_operand" "n")]
+ UNSPEC_MROT))]
+ "TARGET_MEDIA"
+ "*
+{
+ switch (INTVAL (operands[3]))
+ {
+ default: break;
+ case FRV_BUILTIN_MROTLI: return \"mrotli %1, %2, %0\";
+ case FRV_BUILTIN_MROTRI: return \"mrotri %1, %2, %0\";
+ }
+
+ fatal_insn (\"Bad media insn, mrot\", insn);
+}"
+ [(set_attr "length" "4")
+ (set_attr "type" "mrot")])
+
+;; Dual shift halfword: type "msh"
+
+(define_expand "msllhi"
+ [(set (match_operand:SI 0 "fpr_operand" "")
+ (unspec:SI [(match_operand:SI 1 "fpr_operand" "")
+ (match_operand:SI 2 "uint4_operand" "")
+ (match_dup 3)]
+ UNSPEC_MSHIFT))]
+ "TARGET_MEDIA"
+ "operands[3] = GEN_INT (FRV_BUILTIN_MSLLHI);")
+
+(define_expand "msrlhi"
+ [(set (match_operand:SI 0 "fpr_operand" "")
+ (unspec:SI [(match_operand:SI 1 "fpr_operand" "")
+ (match_operand:SI 2 "uint4_operand" "")
+ (match_dup 3)]
+ UNSPEC_MSHIFT))]
+ "TARGET_MEDIA"
+ "operands[3] = GEN_INT (FRV_BUILTIN_MSRLHI);")
+
+(define_expand "msrahi"
+ [(set (match_operand:SI 0 "fpr_operand" "")
+ (unspec:SI [(match_operand:SI 1 "fpr_operand" "")
+ (match_operand:SI 2 "uint4_operand" "")
+ (match_dup 3)]
+ UNSPEC_MSHIFT))]
+ "TARGET_MEDIA"
+ "operands[3] = GEN_INT (FRV_BUILTIN_MSRAHI);")
+
+(define_insn "*mshift"
+ [(set (match_operand:SI 0 "fpr_operand" "=f")
+ (unspec:SI [(match_operand:SI 1 "fpr_operand" "f")
+ (match_operand:SI 2 "uint4_operand" "I")
+ (match_operand:SI 3 "const_int_operand" "n")]
+ UNSPEC_MSHIFT))]
+ "TARGET_MEDIA"
+ "*
+{
+ switch (INTVAL (operands[3]))
+ {
+ default: break;
+ case FRV_BUILTIN_MSLLHI: return \"msllhi %1, %2, %0\";
+ case FRV_BUILTIN_MSRLHI: return \"msrlhi %1, %2, %0\";
+ case FRV_BUILTIN_MSRAHI: return \"msrahi %1, %2, %0\";
+ }
+
+ fatal_insn (\"Bad media insn, mshift\", insn);
+}"
+ [(set_attr "length" "4")
+ (set_attr "type" "mshift")])
+
+;; Expand halfword to word: type "mexpdhw"
+
+(define_insn "mexpdhw"
+ [(set (match_operand:SI 0 "even_fpr_operand" "=h")
+ (unspec:SI [(match_operand:SI 1 "fpr_operand" "f")
+ (match_operand:SI 2 "uint1_operand" "I")]
+ UNSPEC_MEXPDHW))]
+ "TARGET_MEDIA"
+ "mexpdhw %1, %2, %0"
+ [(set_attr "length" "4")
+ (set_attr "type" "mexpdhw")])
+
+(define_insn "*cond_exec_mexpdhw"
+ [(cond_exec
+ (match_operator 0 "ccr_eqne_operator"
+ [(match_operand 1 "cr_operand" "C")
+ (const_int 0)])
+ (set (match_operand:SI 2 "even_fpr_operand" "=h")
+ (unspec:SI [(match_operand:SI 3 "fpr_operand" "f")
+ (match_operand:SI 4 "uint1_operand" "I")]
+ UNSPEC_MEXPDHW)))]
+ "TARGET_MEDIA"
+ "cmexpdhw %3, %4, %2, %1, %e0"
+ [(set_attr "length" "4")
+ (set_attr "type" "mexpdhw")])
+
+;; Expand halfword to double: type "mexpdhd"
+
+(define_insn "mexpdhd"
+ [(set (match_operand:DI 0 "even_fpr_operand" "=h")
+ (unspec:DI [(match_operand:SI 1 "fpr_operand" "f")
+ (match_operand:SI 2 "uint1_operand" "I")]
+ UNSPEC_MEXPDHD))]
+ "TARGET_MEDIA"
+ "mexpdhd %1, %2, %0"
+ [(set_attr "length" "4")
+ (set_attr "type" "mexpdhd")])
+
+(define_insn "*cond_exec_mexpdhd"
+ [(cond_exec
+ (match_operator 0 "ccr_eqne_operator"
+ [(match_operand 1 "cr_operand" "C")
+ (const_int 0)])
+ (set (match_operand:DI 2 "even_fpr_operand" "=h")
+ (unspec:DI [(match_operand:SI 3 "fpr_operand" "f")
+ (match_operand:SI 4 "uint1_operand" "I")]
+ UNSPEC_MEXPDHD)))]
+ "TARGET_MEDIA"
+ "cmexpdhd %3, %4, %2, %1, %e0"
+ [(set_attr "length" "4")
+ (set_attr "type" "mexpdhd")])
+
+;; FR cut: type "mwcut"
+
+(define_insn "mwcut"
+ [(set (match_operand:SI 0 "fpr_operand" "=f")
+ (unspec:SI [(match_operand:DI 1 "fpr_operand" "f")
+ (match_operand:SI 2 "fpr_or_int6_operand" "fI")]
+ UNSPEC_MWCUT))]
+ "TARGET_MEDIA"
+ "mwcut%i2 %1, %2, %0"
+ [(set_attr "length" "4")
+ (set_attr "type" "mwcut")])
+
+;; Dual multiplication (halfword): type "mmulh"
+
+(define_expand "mmulhs"
+ [(parallel [(set (match_operand:DI 0 "even_acc_operand" "=b")
+ (unspec:DI [(match_operand:SI 1 "fpr_operand" "f")
+ (match_operand:SI 2 "fpr_operand" "f")
+ (match_dup 4)]
+ UNSPEC_MMULH))
+ (set (match_operand:HI 3 "accg_operand" "=B")
+ (unspec:HI [(const_int 0)] UNSPEC_MMULH))])]
+ "TARGET_MEDIA"
+ "operands[4] = GEN_INT (FRV_BUILTIN_MMULHS);")
+
+(define_expand "mmulhu"
+ [(parallel [(set (match_operand:DI 0 "even_acc_operand" "=b")
+ (unspec:DI [(match_operand:SI 1 "fpr_operand" "f")
+ (match_operand:SI 2 "fpr_operand" "f")
+ (match_dup 4)]
+ UNSPEC_MMULH))
+ (set (match_operand:HI 3 "accg_operand" "=B")
+ (unspec:HI [(const_int 0)] UNSPEC_MMULH))])]
+ "TARGET_MEDIA"
+ "operands[4] = GEN_INT (FRV_BUILTIN_MMULHU);")
+
+(define_insn "*mmulh"
+ [(set (match_operand:DI 0 "even_acc_operand" "=b")
+ (unspec:DI [(match_operand:SI 1 "fpr_operand" "f")
+ (match_operand:SI 2 "fpr_operand" "f")
+ (match_operand:SI 3 "const_int_operand" "n")]
+ UNSPEC_MMULH))
+ (set (match_operand:HI 4 "accg_operand" "=B")
+ (unspec:HI [(const_int 0)] UNSPEC_MMULH))]
+ "TARGET_MEDIA"
+ "*
+{
+ switch (INTVAL (operands[3]))
+ {
+ default: break;
+ case FRV_BUILTIN_MMULHS: return \"mmulhs %1, %2, %0\";
+ case FRV_BUILTIN_MMULHU: return \"mmulhu %1, %2, %0\";
+ }
+
+ fatal_insn (\"Bad media insn, mmulh\", insn);
+}"
+ [(set_attr "length" "4")
+ (set_attr "type" "mmulh")])
+
+(define_insn "*cond_exec_mmulh"
+ [(cond_exec
+ (match_operator 0 "ccr_eqne_operator"
+ [(match_operand 1 "cr_operand" "C")
+ (const_int 0)])
+ (parallel [(set (match_operand:DI 2 "even_acc_operand" "=b")
+ (unspec:DI [(match_operand:SI 3 "fpr_operand" "f")
+ (match_operand:SI 4 "fpr_operand" "f")
+ (match_operand:SI 5 "const_int_operand" "n")]
+ UNSPEC_MMULH))
+ (set (match_operand:HI 6 "accg_operand" "=B")
+ (unspec:HI [(const_int 0)] UNSPEC_MMULH))]))]
+ "TARGET_MEDIA"
+ "*
+{
+ switch (INTVAL (operands[5]))
+ {
+ default: break;
+ case FRV_BUILTIN_MMULHS: return \"cmmulhs %3, %4, %2, %1, %e0\";
+ case FRV_BUILTIN_MMULHU: return \"cmmulhu %3, %4, %2, %1, %e0\";
+ }
+
+ fatal_insn (\"Bad media insn, cond_exec_mmulh\", insn);
+}"
+ [(set_attr "length" "4")
+ (set_attr "type" "mmulh")])
+
+;; Dual cross multiplication (halfword): type "mmulxh"
+
+(define_expand "mmulxhs"
+ [(parallel [(set (match_operand:DI 0 "even_acc_operand" "=b")
+ (unspec:DI [(match_operand:SI 1 "fpr_operand" "f")
+ (match_operand:SI 2 "fpr_operand" "f")
+ (match_dup 4)]
+ UNSPEC_MMULXH))
+ (set (match_operand:HI 3 "accg_operand" "=B")
+ (unspec:HI [(const_int 0)] UNSPEC_MMULXH))])]
+ "TARGET_MEDIA"
+ "operands[4] = GEN_INT (FRV_BUILTIN_MMULXHS);")
+
+(define_expand "mmulxhu"
+ [(parallel [(set (match_operand:DI 0 "even_acc_operand" "=b")
+ (unspec:DI [(match_operand:SI 1 "fpr_operand" "f")
+ (match_operand:SI 2 "fpr_operand" "f")
+ (match_dup 4)]
+ UNSPEC_MMULXH))
+ (set (match_operand:HI 3 "accg_operand" "=B")
+ (unspec:HI [(const_int 0)] UNSPEC_MMULXH))])]
+ "TARGET_MEDIA"
+ "operands[4] = GEN_INT (FRV_BUILTIN_MMULXHU);")
+
+(define_insn "*mmulxh"
+ [(set (match_operand:DI 0 "even_acc_operand" "=b")
+ (unspec:DI [(match_operand:SI 1 "fpr_operand" "f")
+ (match_operand:SI 2 "fpr_operand" "f")
+ (match_operand:SI 3 "const_int_operand" "n")]
+ UNSPEC_MMULXH))
+ (set (match_operand:HI 4 "accg_operand" "=B")
+ (unspec:HI [(const_int 0)] UNSPEC_MMULXH))]
+ "TARGET_MEDIA"
+ "*
+{
+ switch (INTVAL (operands[3]))
+ {
+ default: break;
+ case FRV_BUILTIN_MMULXHS: return \"mmulxhs %1, %2, %0\";
+ case FRV_BUILTIN_MMULXHU: return \"mmulxhu %1, %2, %0\";
+ }
+
+ fatal_insn (\"Bad media insn, mmulxh\", insn);
+}"
+ [(set_attr "length" "4")
+ (set_attr "type" "mmulxh")])
+
+;; Dual product-sum (halfword): type "mmach"
+
+(define_expand "mmachs"
+ [(parallel [(set (match_operand:DI 0 "even_acc_operand" "+b")
+ (unspec:DI [(match_dup 0)
+ (match_operand:SI 1 "fpr_operand" "f")
+ (match_operand:SI 2 "fpr_operand" "f")
+ (match_operand:HI 3 "accg_operand" "+B")
+ (match_dup 4)]
+ UNSPEC_MMACH))
+ (set (match_dup 3)
+ (unspec:HI [(const_int 0)] UNSPEC_MMACH))])]
+ "TARGET_MEDIA"
+ "operands[4] = GEN_INT (FRV_BUILTIN_MMACHS);")
+
+(define_expand "mmachu"
+ [(parallel [(set (match_operand:DI 0 "even_acc_operand" "+b")
+ (unspec:DI [(match_dup 0)
+ (match_operand:SI 1 "fpr_operand" "f")
+ (match_operand:SI 2 "fpr_operand" "f")
+ (match_operand:HI 3 "accg_operand" "+B")
+ (match_dup 4)]
+ UNSPEC_MMACH))
+ (set (match_dup 3)
+ (unspec:HI [(const_int 0)] UNSPEC_MMACH))])]
+ "TARGET_MEDIA"
+ "operands[4] = GEN_INT (FRV_BUILTIN_MMACHU);")
+
+(define_insn "*mmach"
+ [(set (match_operand:DI 0 "even_acc_operand" "+b")
+ (unspec:DI [(match_dup 0)
+ (match_operand:SI 1 "fpr_operand" "f")
+ (match_operand:SI 2 "fpr_operand" "f")
+ (match_operand:HI 3 "accg_operand" "+B")
+ (match_operand:SI 4 "const_int_operand" "n")]
+ UNSPEC_MMACH))
+ (set (match_dup 3) (unspec:HI [(const_int 0)] UNSPEC_MMACH))]
+ "TARGET_MEDIA"
+ "*
+{
+ switch (INTVAL (operands[4]))
+ {
+ default: break;
+ case FRV_BUILTIN_MMACHS: return \"mmachs %1, %2, %0\";
+ case FRV_BUILTIN_MMACHU: return \"mmachu %1, %2, %0\";
+ }
+
+ fatal_insn (\"Bad media insn, mmach\", insn);
+}"
+ [(set_attr "length" "4")
+ (set_attr "type" "mmach")])
+
+(define_insn "*cond_exec_mmach"
+ [(cond_exec
+ (match_operator 0 "ccr_eqne_operator"
+ [(match_operand 1 "cr_operand" "C")
+ (const_int 0)])
+ (parallel [(set (match_operand:DI 2 "even_acc_operand" "+b")
+ (unspec:DI [(match_dup 2)
+ (match_operand:SI 3 "fpr_operand" "f")
+ (match_operand:SI 4 "fpr_operand" "f")
+ (match_operand:HI 5 "accg_operand" "+B")
+ (match_operand:SI 6 "const_int_operand" "n")]
+ UNSPEC_MMACH))
+ (set (match_dup 5)
+ (unspec:HI [(const_int 0)] UNSPEC_MMACH))]))]
+ "TARGET_MEDIA"
+ "*
+{
+ switch (INTVAL (operands[6]))
+ {
+ default: break;
+ case FRV_BUILTIN_MMACHS: return \"cmmachs %3, %4, %2, %1, %e0\";
+ case FRV_BUILTIN_MMACHU: return \"cmmachu %3, %4, %2, %1, %e0\";
+ }
+
+ fatal_insn (\"Bad media insn, cond_exec_mmach\", insn);
+}"
+ [(set_attr "length" "4")
+ (set_attr "type" "mmach")])
+
+;; Dual product-difference: type "mmrdh"
+
+(define_expand "mmrdhs"
+ [(parallel [(set (match_operand:DI 0 "even_acc_operand" "+b")
+ (unspec:DI [(match_dup 0)
+ (match_operand:SI 1 "fpr_operand" "f")
+ (match_operand:SI 2 "fpr_operand" "f")
+ (match_operand:HI 3 "accg_operand" "+B")
+ (match_dup 4)]
+ UNSPEC_MMRDH))
+ (set (match_dup 3)
+ (unspec:HI [(const_int 0)] UNSPEC_MMRDH))])]
+ "TARGET_MEDIA"
+ "operands[4] = GEN_INT (FRV_BUILTIN_MMRDHS);")
+
+(define_expand "mmrdhu"
+ [(parallel [(set (match_operand:DI 0 "even_acc_operand" "+b")
+ (unspec:DI [(match_dup 0)
+ (match_operand:SI 1 "fpr_operand" "f")
+ (match_operand:SI 2 "fpr_operand" "f")
+ (match_operand:HI 3 "accg_operand" "+B")
+ (match_dup 4)]
+ UNSPEC_MMRDH))
+ (set (match_dup 3)
+ (unspec:HI [(const_int 0)] UNSPEC_MMRDH))])]
+ "TARGET_MEDIA"
+ "operands[4] = GEN_INT (FRV_BUILTIN_MMRDHU);")
+
+(define_insn "*mmrdh"
+ [(set (match_operand:DI 0 "even_acc_operand" "+b")
+ (unspec:DI [(match_dup 0)
+ (match_operand:SI 1 "fpr_operand" "f")
+ (match_operand:SI 2 "fpr_operand" "f")
+ (match_operand:HI 3 "accg_operand" "+B")
+ (match_operand:SI 4 "const_int_operand" "n")]
+ UNSPEC_MMRDH))
+ (set (match_dup 3)
+ (unspec:HI [(const_int 0)] UNSPEC_MMRDH))]
+ "TARGET_MEDIA"
+ "*
+{
+ switch (INTVAL (operands[4]))
+ {
+ default: break;
+ case FRV_BUILTIN_MMRDHS: return \"mmrdhs %1, %2, %0\";
+ case FRV_BUILTIN_MMRDHU: return \"mmrdhu %1, %2, %0\";
+ }
+
+ fatal_insn (\"Bad media insn, mrdh\", insn);
+}"
+ [(set_attr "length" "4")
+ (set_attr "type" "mmrdh")])
+
+;; Quad multiply (halfword): type "mqmulh"
+
+(define_expand "mqmulhs"
+ [(parallel [(set (match_operand:V4SI 0 "quad_acc_operand" "=A")
+ (unspec:V4SI [(match_operand:DI 1 "even_fpr_operand" "h")
+ (match_operand:DI 2 "even_fpr_operand" "h")
+ (match_dup 4)]
+ UNSPEC_MQMULH))
+ (set (match_operand:V4QI 3 "accg_operand" "=B")
+ (unspec:V4QI [(const_int 0)] UNSPEC_MQMULH))])]
+ "TARGET_MEDIA"
+ "operands[4] = GEN_INT (FRV_BUILTIN_MQMULHS);")
+
+(define_expand "mqmulhu"
+ [(parallel [(set (match_operand:V4SI 0 "quad_acc_operand" "=A")
+ (unspec:V4SI [(match_operand:DI 1 "even_fpr_operand" "h")
+ (match_operand:DI 2 "even_fpr_operand" "h")
+ (match_dup 4)]
+ UNSPEC_MQMULH))
+ (set (match_operand:V4QI 3 "accg_operand" "=B")
+ (unspec:V4QI [(const_int 0)] UNSPEC_MQMULH))])]
+ "TARGET_MEDIA"
+ "operands[4] = GEN_INT (FRV_BUILTIN_MQMULHU);")
+
+(define_insn "*mqmulh"
+ [(set (match_operand:V4SI 0 "quad_acc_operand" "=A")
+ (unspec:V4SI [(match_operand:DI 1 "even_fpr_operand" "h")
+ (match_operand:DI 2 "even_fpr_operand" "h")
+ (match_operand:SI 3 "const_int_operand" "n")]
+ UNSPEC_MQMULH))
+ (set (match_operand:V4QI 4 "accg_operand" "=B")
+ (unspec:V4QI [(const_int 0)] UNSPEC_MQMULH))]
+ "TARGET_MEDIA"
+ "*
+{
+ switch (INTVAL (operands[3]))
+ {
+ default: break;
+ case FRV_BUILTIN_MQMULHS: return \"mqmulhs %1, %2, %0\";
+ case FRV_BUILTIN_MQMULHU: return \"mqmulhu %1, %2, %0\";
+ }
+
+ fatal_insn (\"Bad media insn, mqmulh\", insn);
+}"
+ [(set_attr "length" "4")
+ (set_attr "type" "mqmulh")])
+
+(define_insn "*cond_exec_mqmulh"
+ [(cond_exec
+ (match_operator 0 "ccr_eqne_operator"
+ [(match_operand 1 "cr_operand" "C")
+ (const_int 0)])
+ (parallel [(set (match_operand:V4SI 2 "quad_acc_operand" "=A")
+ (unspec:V4SI [(match_operand:DI 3 "even_fpr_operand" "h")
+ (match_operand:DI 4 "even_fpr_operand" "h")
+ (match_operand:SI 5 "const_int_operand" "n")]
+ UNSPEC_MQMULH))
+ (set (match_operand:V4QI 6 "accg_operand" "=B")
+ (unspec:V4QI [(const_int 0)] UNSPEC_MQMULH))]))]
+ "TARGET_MEDIA"
+ "*
+{
+ switch (INTVAL (operands[5]))
+ {
+ default: break;
+ case FRV_BUILTIN_MQMULHS: return \"cmqmulhs %3, %4, %2, %1, %e0\";
+ case FRV_BUILTIN_MQMULHU: return \"cmqmulhu %3, %4, %2, %1, %e0\";
+ }
+
+ fatal_insn (\"Bad media insn, cond_exec_mqmulh\", insn);
+}"
+ [(set_attr "length" "4")
+ (set_attr "type" "mqmulh")])
+
+;; Quad cross multiply (halfword): type "mqmulxh"
+
+(define_expand "mqmulxhs"
+ [(parallel [(set (match_operand:V4SI 0 "quad_acc_operand" "=A")
+ (unspec:V4SI [(match_operand:DI 1 "even_fpr_operand" "h")
+ (match_operand:DI 2 "even_fpr_operand" "h")
+ (match_dup 4)]
+ UNSPEC_MQMULXH))
+ (set (match_operand:V4QI 3 "accg_operand" "=B")
+ (unspec:V4QI [(const_int 0)] UNSPEC_MQMULXH))])]
+ "TARGET_MEDIA"
+ "operands[4] = GEN_INT (FRV_BUILTIN_MQMULXHS);")
+
+(define_expand "mqmulxhu"
+ [(parallel [(set (match_operand:V4SI 0 "quad_acc_operand" "=A")
+ (unspec:V4SI [(match_operand:DI 1 "even_fpr_operand" "h")
+ (match_operand:DI 2 "even_fpr_operand" "h")
+ (match_dup 4)]
+ UNSPEC_MQMULXH))
+ (set (match_operand:V4QI 3 "accg_operand" "=B")
+ (unspec:V4QI [(const_int 0)] UNSPEC_MQMULXH))])]
+ "TARGET_MEDIA"
+ "operands[4] = GEN_INT (FRV_BUILTIN_MQMULXHU);")
+
+(define_insn "*mqmulxh"
+ [(set (match_operand:V4SI 0 "quad_acc_operand" "=A")
+ (unspec:V4SI [(match_operand:DI 1 "even_fpr_operand" "h")
+ (match_operand:DI 2 "even_fpr_operand" "h")
+ (match_operand:SI 3 "const_int_operand" "n")]
+ UNSPEC_MQMULXH))
+ (set (match_operand:V4QI 4 "accg_operand" "=B")
+ (unspec:V4QI [(const_int 0)] UNSPEC_MQMULXH))]
+ "TARGET_MEDIA"
+ "*
+{
+ switch (INTVAL (operands[3]))
+ {
+ default: break;
+ case FRV_BUILTIN_MQMULXHS: return \"mqmulxhs %1, %2, %0\";
+ case FRV_BUILTIN_MQMULXHU: return \"mqmulxhu %1, %2, %0\";
+ }
+
+ fatal_insn (\"Bad media insn, mqmulxh\", insn);
+}"
+ [(set_attr "length" "4")
+ (set_attr "type" "mqmulxh")])
+
+;; Quad product-sum (halfword): type "mqmach"
+
+(define_expand "mqmachs"
+ [(parallel [(set (match_operand:V4SI 0 "even_acc_operand" "+A")
+ (unspec:V4SI [(match_dup 0)
+ (match_operand:DI 1 "even_fpr_operand" "h")
+ (match_operand:DI 2 "even_fpr_operand" "h")
+ (match_operand:V4QI 3 "accg_operand" "+B")
+ (match_dup 4)]
+ UNSPEC_MQMACH))
+ (set (match_dup 3)
+ (unspec:V4QI [(const_int 0)] UNSPEC_MQMACH))])]
+ "TARGET_MEDIA"
+ "operands[4] = GEN_INT (FRV_BUILTIN_MQMACHS);")
+
+(define_expand "mqmachu"
+ [(parallel [(set (match_operand:V4SI 0 "even_acc_operand" "+A")
+ (unspec:V4SI [(match_dup 0)
+ (match_operand:DI 1 "even_fpr_operand" "h")
+ (match_operand:DI 2 "even_fpr_operand" "h")
+ (match_operand:V4QI 3 "accg_operand" "+B")
+ (match_dup 4)]
+ UNSPEC_MQMACH))
+ (set (match_dup 3)
+ (unspec:V4QI [(const_int 0)] UNSPEC_MQMACH))])]
+ "TARGET_MEDIA"
+ "operands[4] = GEN_INT (FRV_BUILTIN_MQMACHU);")
+
+(define_insn "*mqmach"
+ [(set (match_operand:V4SI 0 "even_acc_operand" "+A")
+ (unspec:V4SI [(match_dup 0)
+ (match_operand:DI 1 "even_fpr_operand" "h")
+ (match_operand:DI 2 "even_fpr_operand" "h")
+ (match_operand:V4QI 3 "accg_operand" "+B")
+ (match_operand:SI 4 "const_int_operand" "n")]
+ UNSPEC_MQMACH))
+ (set (match_dup 3)
+ (unspec:V4QI [(const_int 0)] UNSPEC_MQMACH))]
+ "TARGET_MEDIA"
+ "*
+{
+ switch (INTVAL (operands[4]))
+ {
+ default: break;
+ case FRV_BUILTIN_MQMACHS: return \"mqmachs %1, %2, %0\";
+ case FRV_BUILTIN_MQMACHU: return \"mqmachu %1, %2, %0\";
+ }
+
+ fatal_insn (\"Bad media insn, mqmach\", insn);
+}"
+ [(set_attr "length" "4")
+ (set_attr "type" "mqmach")])
+
+(define_insn "*cond_exec_mqmach"
+ [(cond_exec
+ (match_operator 0 "ccr_eqne_operator"
+ [(match_operand 1 "cr_operand" "C")
+ (const_int 0)])
+ (parallel [(set (match_operand:V4SI 2 "even_acc_operand" "+A")
+ (unspec:V4SI [(match_dup 2)
+ (match_operand:DI 3 "even_fpr_operand" "h")
+ (match_operand:DI 4 "even_fpr_operand" "h")
+ (match_operand:V4QI 5 "accg_operand" "+B")
+ (match_operand:SI 6 "const_int_operand" "n")]
+ UNSPEC_MQMACH))
+ (set (match_dup 5)
+ (unspec:V4QI [(const_int 0)] UNSPEC_MQMACH))]))]
+ "TARGET_MEDIA"
+ "*
+{
+ switch (INTVAL (operands[6]))
+ {
+ default: break;
+ case FRV_BUILTIN_MQMACHS: return \"cmqmachs %3, %4, %2, %1, %e0\";
+ case FRV_BUILTIN_MQMACHU: return \"cmqmachu %3, %4, %2, %1, %e0\";
+ }
+
+ fatal_insn (\"Bad media insn, cond_exec_mqmach\", insn);
+}"
+ [(set_attr "length" "4")
+ (set_attr "type" "mqmach")])
+
+;; Dual complex number product-sum (halfword)
+
+(define_expand "mcpxrs"
+ [(parallel [(set (match_operand:SI 0 "acc_operand" "=a")
+ (unspec:SI [(match_operand:SI 1 "fpr_operand" "f")
+ (match_operand:SI 2 "fpr_operand" "f")
+ (match_dup 4)]
+ UNSPEC_MCPX))
+ (set (match_operand:QI 3 "accg_operand" "=B")
+ (unspec:QI [(const_int 0)] UNSPEC_MCPX))])]
+ "TARGET_MEDIA"
+ "operands[4] = GEN_INT (FRV_BUILTIN_MCPXRS);")
+
+(define_expand "mcpxru"
+ [(parallel [(set (match_operand:SI 0 "acc_operand" "=a")
+ (unspec:SI [(match_operand:SI 1 "fpr_operand" "f")
+ (match_operand:SI 2 "fpr_operand" "f")
+ (match_dup 4)]
+ UNSPEC_MCPX))
+ (set (match_operand:QI 3 "accg_operand" "=B")
+ (unspec:QI [(const_int 0)] UNSPEC_MCPX))])]
+ "TARGET_MEDIA"
+ "operands[4] = GEN_INT (FRV_BUILTIN_MCPXRU);")
+
+(define_expand "mcpxis"
+ [(parallel [(set (match_operand:SI 0 "acc_operand" "=a")
+ (unspec:SI [(match_operand:SI 1 "fpr_operand" "f")
+ (match_operand:SI 2 "fpr_operand" "f")
+ (match_dup 4)]
+ UNSPEC_MCPX))
+ (set (match_operand:QI 3 "accg_operand" "=B")
+ (unspec:QI [(const_int 0)] UNSPEC_MCPX))])]
+ "TARGET_MEDIA"
+ "operands[4] = GEN_INT (FRV_BUILTIN_MCPXIS);")
+
+(define_expand "mcpxiu"
+ [(parallel [(set (match_operand:SI 0 "acc_operand" "=a")
+ (unspec:SI [(match_operand:SI 1 "fpr_operand" "f")
+ (match_operand:SI 2 "fpr_operand" "f")
+ (match_dup 4)]
+ UNSPEC_MCPX))
+ (set (match_operand:QI 3 "accg_operand" "=B")
+ (unspec:QI [(const_int 0)] UNSPEC_MCPX))])]
+ "TARGET_MEDIA"
+ "operands[4] = GEN_INT (FRV_BUILTIN_MCPXIU);")
+
+(define_insn "*mcpx"
+ [(parallel [(set (match_operand:SI 0 "acc_operand" "=a")
+ (unspec:SI [(match_operand:SI 1 "fpr_operand" "f")
+ (match_operand:SI 2 "fpr_operand" "f")
+ (match_operand:SI 3 "const_int_operand" "n")]
+ UNSPEC_MCPX))
+ (set (match_operand:QI 4 "accg_operand" "=B")
+ (unspec:QI [(const_int 0)] UNSPEC_MCPX))])]
+ "TARGET_MEDIA"
+ "*
+{
+ switch (INTVAL (operands[3]))
+ {
+ default: break;
+ case FRV_BUILTIN_MCPXRS: return \"mcpxrs %1, %2, %0\";
+ case FRV_BUILTIN_MCPXRU: return \"mcpxru %1, %2, %0\";
+ case FRV_BUILTIN_MCPXIS: return \"mcpxis %1, %2, %0\";
+ case FRV_BUILTIN_MCPXIU: return \"mcpxiu %1, %2, %0\";
+ }
+
+ fatal_insn (\"Bad media insn, mcpx\", insn);
+}"
+ [(set_attr "length" "4")
+ (set_attr "type" "mcpx")])
+
+(define_insn "*cond_exec_mcpx"
+ [(cond_exec
+ (match_operator 0 "ccr_eqne_operator"
+ [(match_operand 1 "cr_operand" "C")
+ (const_int 0)])
+ (parallel [(set (match_operand:SI 2 "acc_operand" "=a")
+ (unspec:SI [(match_operand:SI 3 "fpr_operand" "f")
+ (match_operand:SI 4 "fpr_operand" "f")
+ (match_operand:SI 5 "const_int_operand" "n")]
+ UNSPEC_MCPX))
+ (set (match_operand:QI 6 "accg_operand" "=B")
+ (unspec:QI [(const_int 0)] UNSPEC_MCPX))]))]
+ "TARGET_MEDIA"
+ "*
+{
+ switch (INTVAL (operands[5]))
+ {
+ default: break;
+ case FRV_BUILTIN_MCPXRS: return \"cmcpxrs %3, %4, %2, %1, %e0\";
+ case FRV_BUILTIN_MCPXRU: return \"cmcpxru %3, %4, %2, %1, %e0\";
+ case FRV_BUILTIN_MCPXIS: return \"cmcpxis %3, %4, %2, %1, %e0\";
+ case FRV_BUILTIN_MCPXIU: return \"cmcpxiu %3, %4, %2, %1, %e0\";
+ }
+
+ fatal_insn (\"Bad media insn, cond_exec_mcpx\", insn);
+}"
+ [(set_attr "length" "4")
+ (set_attr "type" "mcpx")])
+
+;; Quad complex number product-sum (halfword): type "mqcpx"
+
+(define_expand "mqcpxrs"
+ [(parallel [(set (match_operand:DI 0 "even_acc_operand" "=b")
+ (unspec:DI [(match_operand:DI 1 "fpr_operand" "f")
+ (match_operand:DI 2 "fpr_operand" "f")
+ (match_dup 4)]
+ UNSPEC_MQCPX))
+ (set (match_operand:HI 3 "accg_operand" "=B")
+ (unspec:HI [(const_int 0)] UNSPEC_MQCPX))])]
+ "TARGET_MEDIA"
+ "operands[4] = GEN_INT (FRV_BUILTIN_MQCPXRS);")
+
+(define_expand "mqcpxru"
+ [(parallel [(set (match_operand:DI 0 "even_acc_operand" "=b")
+ (unspec:DI [(match_operand:DI 1 "fpr_operand" "f")
+ (match_operand:DI 2 "fpr_operand" "f")
+ (match_dup 4)]
+ UNSPEC_MQCPX))
+ (set (match_operand:HI 3 "accg_operand" "=B")
+ (unspec:HI [(const_int 0)] UNSPEC_MQCPX))])]
+ "TARGET_MEDIA"
+ "operands[4] = GEN_INT (FRV_BUILTIN_MQCPXRU);")
+
+(define_expand "mqcpxis"
+ [(parallel [(set (match_operand:DI 0 "even_acc_operand" "=b")
+ (unspec:DI [(match_operand:DI 1 "fpr_operand" "f")
+ (match_operand:DI 2 "fpr_operand" "f")
+ (match_dup 4)]
+ UNSPEC_MQCPX))
+ (set (match_operand:HI 3 "accg_operand" "=B")
+ (unspec:HI [(const_int 0)] UNSPEC_MQCPX))])]
+ "TARGET_MEDIA"
+ "operands[4] = GEN_INT (FRV_BUILTIN_MQCPXIS);")
+
+(define_expand "mqcpxiu"
+ [(parallel [(set (match_operand:DI 0 "even_acc_operand" "=b")
+ (unspec:DI [(match_operand:DI 1 "fpr_operand" "f")
+ (match_operand:DI 2 "fpr_operand" "f")
+ (match_dup 4)]
+ UNSPEC_MQCPX))
+ (set (match_operand:HI 3 "accg_operand" "=B")
+ (unspec:HI [(const_int 0)] UNSPEC_MQCPX))])]
+ "TARGET_MEDIA"
+ "operands[4] = GEN_INT (FRV_BUILTIN_MQCPXIU);")
+
+(define_insn "*mqcpx"
+ [(set (match_operand:DI 0 "even_acc_operand" "=b")
+ (unspec:DI [(match_operand:DI 1 "fpr_operand" "f")
+ (match_operand:DI 2 "fpr_operand" "f")
+ (match_operand:SI 3 "const_int_operand" "n")]
+ UNSPEC_MQCPX))
+ (set (match_operand:HI 4 "accg_operand" "=B")
+ (unspec:HI [(const_int 0)] UNSPEC_MQCPX))]
+ "TARGET_MEDIA"
+ "*
+{
+ switch (INTVAL (operands[3]))
+ {
+ default: break;
+ case FRV_BUILTIN_MQCPXRS: return \"mqcpxrs %1, %2, %0\";
+ case FRV_BUILTIN_MQCPXRU: return \"mqcpxru %1, %2, %0\";
+ case FRV_BUILTIN_MQCPXIS: return \"mqcpxis %1, %2, %0\";
+ case FRV_BUILTIN_MQCPXIU: return \"mqcpxiu %1, %2, %0\";
+ }
+
+ fatal_insn (\"Bad media insn, mqcpx\", insn);
+}"
+ [(set_attr "length" "4")
+ (set_attr "type" "mqcpx")])
+
+;; Cut: type "mcut"
+
+(define_expand "mcut"
+ [(set (match_operand:SI 0 "fpr_operand" "=f")
+ (unspec:SI [(match_operand:SI 1 "acc_operand" "a")
+ (match_operand:SI 2 "fpr_or_int6_operand" "fI")
+ (match_operand:QI 3 "accg_operand" "B")
+ (match_dup 4)]
+ UNSPEC_MCUT))]
+ "TARGET_MEDIA"
+ "operands[4] = GEN_INT (FRV_BUILTIN_MCUT);")
+
+(define_expand "mcutss"
+ [(set (match_operand:SI 0 "fpr_operand" "=f")
+ (unspec:SI [(match_operand:SI 1 "acc_operand" "a")
+ (match_operand:SI 2 "fpr_or_int6_operand" "fI")
+ (match_operand:QI 3 "accg_operand" "B")
+ (match_dup 4)]
+ UNSPEC_MCUT))]
+ "TARGET_MEDIA"
+ "operands[4] = GEN_INT (FRV_BUILTIN_MCUTSS);")
+
+(define_insn "*mcut"
+ [(set (match_operand:SI 0 "fpr_operand" "=f")
+ (unspec:SI [(match_operand:SI 1 "acc_operand" "a")
+ (match_operand:SI 2 "fpr_or_int6_operand" "fI")
+ (match_operand:QI 3 "accg_operand" "B")
+ (match_operand:SI 4 "const_int_operand" "n")]
+ UNSPEC_MCUT))]
+ "TARGET_MEDIA"
+ "*
+{
+ switch (INTVAL (operands[4]))
+ {
+ default: break;
+ case FRV_BUILTIN_MCUT: return \"mcut%i2 %1, %2, %0\";
+ case FRV_BUILTIN_MCUTSS: return \"mcutss%i2 %1, %2, %0\";
+ }
+
+ fatal_insn (\"Bad media insn, mcut\", insn);
+}"
+ [(set_attr "length" "4")
+ (set_attr "type" "mcut")])
+
+;; Accumulator read: type "mrdacc"
+
+(define_insn "mrdacc"
+ [(set (match_operand:SI 0 "fpr_operand" "=f")
+ (unspec:SI [(match_operand:SI 1 "acc_operand" "a")] UNSPEC_MRDACC))]
+ "TARGET_MEDIA"
+ "mrdacc %1, %0"
+ [(set_attr "length" "4")
+ (set_attr "type" "mrdacc")])
+
+(define_insn "mrdaccg"
+ [(set (match_operand:SI 0 "fpr_operand" "=f")
+ (unspec:SI [(match_operand:QI 1 "accg_operand" "B")] UNSPEC_MRDACCG))]
+ "TARGET_MEDIA"
+ "mrdaccg %1, %0"
+ [(set_attr "length" "4")
+ (set_attr "type" "mrdacc")])
+
+;; Accumulator write: type "mwtacc"
+
+(define_insn "mwtacc"
+ [(set (match_operand:SI 0 "acc_operand" "=a")
+ (unspec:SI [(match_operand:SI 1 "fpr_operand" "f")] UNSPEC_MWTACC))]
+ "TARGET_MEDIA"
+ "mwtacc %1, %0"
+ [(set_attr "length" "4")
+ (set_attr "type" "mwtacc")])
+
+(define_insn "mwtaccg"
+ [(set (match_operand:QI 0 "accg_operand" "=B")
+ (unspec:QI [(match_operand:SI 1 "fpr_operand" "f")] UNSPEC_MWTACCG))]
+ "TARGET_MEDIA"
+ "mwtaccg %1, %0"
+ [(set_attr "length" "4")
+ (set_attr "type" "mwtacc")])
+
+;; Trap: This one executes on the control unit, not the media units.
+
+(define_insn "mtrap"
+ [(unspec_volatile [(const_int 0)] UNSPEC_MTRAP)]
+ "TARGET_MEDIA"
+ "mtrap"
+ [(set_attr "length" "4")
+ (set_attr "type" "trap")])
+
+;; Clear single accumulator: type "mclracc"
+
+(define_insn "mclracc_internal"
+ [(set (match_operand:SI 0 "acc_operand" "=a")
+ (unspec:SI [(const_int 0)] UNSPEC_MCLRACC))
+ (set (match_operand:QI 1 "accg_operand" "=B")
+ (unspec:QI [(const_int 0)] UNSPEC_MCLRACC))]
+ "TARGET_MEDIA"
+ "mclracc %0,#0"
+ [(set_attr "length" "4")
+ (set_attr "type" "mclracc")])
+
+(define_expand "mclracc"
+ [(parallel [(set (match_operand:SI 0 "acc_operand" "=a")
+ (unspec:SI [(const_int 0)] UNSPEC_MCLRACC))
+ (set (match_dup 1)
+ (unspec:QI [(const_int 0)] UNSPEC_MCLRACC))])]
+ "TARGET_MEDIA"
+ "
+{
+ if (GET_CODE (operands[0]) != REG || !ACC_P (REGNO (operands[0])))
+ FAIL;
+
+ operands[1] = frv_matching_accg_for_acc (operands[0]);
+}")
+
+;; Clear all accumulators: type "mclracca"
+
+(define_insn "mclracca8_internal"
+ [(set (match_operand:V4SI 0 "quad_acc_operand" "=b")
+ (unspec:V4SI [(const_int 0)] UNSPEC_MCLRACCA))
+ (set (match_operand:V4SI 1 "quad_acc_operand" "=b")
+ (unspec:V4SI [(const_int 0)] UNSPEC_MCLRACCA))
+ (set (match_operand:V4QI 2 "accg_operand" "=B")
+ (unspec:V4QI [(const_int 0)] UNSPEC_MCLRACCA))
+ (set (match_operand:V4QI 3 "accg_operand" "=B")
+ (unspec:V4QI [(const_int 0)] UNSPEC_MCLRACCA))]
+ "TARGET_MEDIA && TARGET_ACC_8"
+ "mclracc acc0,#1"
+ [(set_attr "length" "4")
+ (set_attr "type" "mclracca")])
+
+(define_insn "mclracca4_internal"
+ [(set (match_operand:V4SI 0 "quad_acc_operand" "=b")
+ (unspec:V4SI [(const_int 0)] UNSPEC_MCLRACCA))
+ (set (match_operand:V4QI 1 "accg_operand" "=B")
+ (unspec:V4QI [(const_int 0)] UNSPEC_MCLRACCA))]
+ "TARGET_MEDIA && TARGET_ACC_4"
+ "mclracc acc0,#1"
+ [(set_attr "length" "4")
+ (set_attr "type" "mclracca")])
+
+(define_expand "mclracca8"
+ [(parallel [(set (match_dup 0) (unspec:V4SI [(const_int 0)] UNSPEC_MCLRACCA))
+ (set (match_dup 1) (unspec:V4SI [(const_int 0)] UNSPEC_MCLRACCA))
+ (set (match_dup 2) (unspec:V4QI [(const_int 0)] UNSPEC_MCLRACCA))
+ (set (match_dup 3) (unspec:V4QI [(const_int 0)] UNSPEC_MCLRACCA))])]
+ "TARGET_MEDIA && TARGET_ACC_8"
+ "
+{
+ operands[0] = gen_rtx_REG (V4SImode, ACC_FIRST);
+ operands[1] = gen_rtx_REG (V4SImode, ACC_FIRST + 4);
+ operands[2] = gen_rtx_REG (V4QImode, ACCG_FIRST);
+ operands[3] = gen_rtx_REG (V4QImode, ACCG_FIRST + 4);
+}")
+
+(define_expand "mclracca4"
+ [(parallel [(set (match_dup 0) (unspec:V4SI [(const_int 0)] UNSPEC_MCLRACCA))
+ (set (match_dup 1) (unspec:V4QI [(const_int 0)] UNSPEC_MCLRACCA))])]
+ "TARGET_MEDIA && TARGET_ACC_4"
+ "
+{
+ operands[0] = gen_rtx_REG (V4SImode, ACC_FIRST);
+ operands[1] = gen_rtx_REG (V4QImode, ACCG_FIRST);
+}")
+
+(define_insn "mcop1"
+ [(set (match_operand:SI 0 "fpr_operand" "=f")
+ (unspec:SI [(match_operand:SI 1 "fpr_operand" "f")
+ (match_operand:SI 2 "fpr_operand" "f")] UNSPEC_MCOP1))]
+ "TARGET_MEDIA_REV1"
+ "mcop1 %1, %2, %0"
+ [(set_attr "length" "4")
+;; What is the class of the insn ???
+ (set_attr "type" "multi")])
+
+(define_insn "mcop2"
+ [(set (match_operand:SI 0 "fpr_operand" "=f")
+ (unspec:SI [(match_operand:SI 1 "fpr_operand" "f")
+ (match_operand:SI 2 "fpr_operand" "f")] UNSPEC_MCOP2))]
+ "TARGET_MEDIA_REV1"
+ "mcop2 %1, %2, %0"
+ [(set_attr "length" "4")
+;; What is the class of the insn ???
+ (set_attr "type" "multi")])
+
+(define_insn "*mdunpackh_internal"
+ [(set (match_operand:V4SI 0 "quad_fpr_operand" "=x")
+ (unspec:V4SI [(match_operand:DI 1 "even_fpr_operand" "h")]
+ UNSPEC_MDUNPACKH_INTERNAL))]
+ "TARGET_MEDIA_REV1"
+ "mdunpackh %1, %0"
+ [(set_attr "length" "4")
+ (set_attr "type" "mdunpackh")])
+
+(define_insn_and_split "mdunpackh"
+ [(set (match_operand:V4SI 0 "memory_operand" "=o")
+ (unspec:V4SI [(match_operand:DI 1 "even_fpr_operand" "h")]
+ UNSPEC_MDUNPACKH))
+ (clobber (match_scratch:V4SI 2 "=x"))]
+ "TARGET_MEDIA_REV1"
+ "#"
+ "reload_completed"
+ [(set (match_dup 2)
+ (unspec:V4SI [(match_dup 1)] UNSPEC_MDUNPACKH_INTERNAL))
+ (set (match_dup 3)
+ (match_dup 4))
+ (set (match_dup 5)
+ (match_dup 6))]
+ "
+{
+ operands[3] = change_address (operands[0], DImode, NULL_RTX);
+ operands[4] = gen_rtx_REG (DImode, REGNO (operands[2]));
+ operands[5] = frv_index_memory (operands[0], DImode, 1);
+ operands[6] = gen_rtx_REG (DImode, REGNO (operands[2])+2);
+}"
+ [(set_attr "length" "20")
+ (set_attr "type" "multi")])
+
+(define_insn "*mbtohe_internal"
+ [(set (match_operand:V4SI 0 "quad_fpr_operand" "=x")
+ (unspec:V4SI [(match_operand:SI 1 "fpr_operand" "f")]
+ UNSPEC_MBTOHE_INTERNAL))]
+ "TARGET_MEDIA_REV1"
+ "mbtohe %1, %0"
+ [(set_attr "length" "4")
+ (set_attr "type" "mbhconve")])
+
+(define_insn_and_split "mbtohe"
+ [(set (match_operand:V4SI 0 "memory_operand" "=o")
+ (unspec:V4SI [(match_operand:SI 1 "fpr_operand" "f")]
+ UNSPEC_MBTOHE))
+ (clobber (match_scratch:V4SI 2 "=x"))]
+ "TARGET_MEDIA_REV1"
+ "#"
+ "reload_completed"
+ [(set (match_dup 2)
+ (unspec:V4SI [(match_dup 1)] UNSPEC_MBTOHE_INTERNAL))
+ (set (match_dup 3)
+ (match_dup 4))
+ (set (match_dup 5)
+ (match_dup 6))]
+ "
+{
+ operands[3] = change_address (operands[0], DImode, NULL_RTX);
+ operands[4] = gen_rtx_REG (DImode, REGNO (operands[2]));
+ operands[5] = frv_index_memory (operands[0], DImode, 1);
+ operands[6] = gen_rtx_REG (DImode, REGNO (operands[2])+2);
+}"
+ [(set_attr "length" "20")
+ (set_attr "type" "multi")])
+
+;; Quad product-sum (halfword) instructions only found on the FR400.
+;; type "mqmach"
+
+(define_expand "mqxmachs"
+ [(parallel [(set (match_operand:V4SI 0 "quad_acc_operand" "")
+ (unspec:V4SI [(match_dup 0)
+ (match_operand:DI 1 "even_fpr_operand" "")
+ (match_operand:DI 2 "even_fpr_operand" "")
+ (match_operand:V4QI 3 "accg_operand" "")
+ (match_dup 4)]
+ UNSPEC_MQMACH2))
+ (set (match_dup 3)
+ (unspec:V4QI [(const_int 0)] UNSPEC_MQMACH2))])]
+ "TARGET_MEDIA_REV2"
+ "operands[4] = GEN_INT (FRV_BUILTIN_MQXMACHS);")
+
+(define_expand "mqxmacxhs"
+ [(parallel [(set (match_operand:V4SI 0 "quad_acc_operand" "")
+ (unspec:V4SI [(match_dup 0)
+ (match_operand:DI 1 "even_fpr_operand" "")
+ (match_operand:DI 2 "even_fpr_operand" "")
+ (match_operand:V4QI 3 "accg_operand" "")
+ (match_dup 4)]
+ UNSPEC_MQMACH2))
+ (set (match_dup 3)
+ (unspec:V4QI [(const_int 0)] UNSPEC_MQMACH2))])]
+ "TARGET_MEDIA_REV2"
+ "operands[4] = GEN_INT (FRV_BUILTIN_MQXMACXHS);")
+
+(define_expand "mqmacxhs"
+ [(parallel [(set (match_operand:V4SI 0 "quad_acc_operand" "")
+ (unspec:V4SI [(match_dup 0)
+ (match_operand:DI 1 "even_fpr_operand" "")
+ (match_operand:DI 2 "even_fpr_operand" "")
+ (match_operand:V4QI 3 "accg_operand" "")
+ (match_dup 4)]
+ UNSPEC_MQMACH2))
+ (set (match_dup 3)
+ (unspec:V4QI [(const_int 0)] UNSPEC_MQMACH2))])]
+ "TARGET_MEDIA_REV2"
+ "operands[4] = GEN_INT (FRV_BUILTIN_MQMACXHS);")
+
+(define_insn "*mqmach2"
+ [(set (match_operand:V4SI 0 "quad_acc_operand" "+A")
+ (unspec:V4SI [(match_dup 0)
+ (match_operand:DI 1 "even_fpr_operand" "h")
+ (match_operand:DI 2 "even_fpr_operand" "h")
+ (match_operand:V4QI 3 "accg_operand" "+B")
+ (match_operand:SI 4 "const_int_operand" "n")]
+ UNSPEC_MQMACH2))
+ (set (match_dup 3)
+ (unspec:V4QI [(const_int 0)] UNSPEC_MQMACH2))]
+ "TARGET_MEDIA_REV2"
+ "*
+{
+ switch (INTVAL (operands[4]))
+ {
+ default: break;
+ case FRV_BUILTIN_MQXMACHS: return \"mqxmachs %1, %2, %0\";
+ case FRV_BUILTIN_MQXMACXHS: return \"mqxmacxhs %1, %2, %0\";
+ case FRV_BUILTIN_MQMACXHS: return \"mqmacxhs %1, %2, %0\";
+ }
+
+ fatal_insn (\"Bad media insn, mqmach2\", insn);
+}"
+ [(set_attr "length" "4")
+ (set_attr "type" "mqmach")])
+
+;; Accumulator addition/subtraction: type "maddacc"
+
+(define_expand "maddaccs"
+ [(parallel [(set (match_operand:DI 0 "even_acc_operand" "")
+ (unspec:DI [(match_dup 0)
+ (match_operand:DI 1 "even_acc_operand" "")]
+ UNSPEC_MADDACC))
+ (set (match_operand:HI 2 "accg_operand" "")
+ (unspec:HI [(match_dup 2)
+ (match_operand:HI 3 "accg_operand" "")
+ (match_dup 4)]
+ UNSPEC_MADDACC))])]
+ "TARGET_MEDIA_REV2"
+ "operands[4] = GEN_INT (FRV_BUILTIN_MADDACCS);")
+
+(define_expand "msubaccs"
+ [(parallel [(set (match_operand:DI 0 "even_acc_operand" "")
+ (unspec:DI [(match_dup 0)
+ (match_operand:DI 1 "even_acc_operand" "")]
+ UNSPEC_MADDACC))
+ (set (match_operand:HI 2 "accg_operand" "")
+ (unspec:HI [(match_dup 2)
+ (match_operand:HI 3 "accg_operand" "")
+ (match_dup 4)]
+ UNSPEC_MADDACC))])]
+ "TARGET_MEDIA_REV2"
+ "operands[4] = GEN_INT (FRV_BUILTIN_MSUBACCS);")
+
+(define_expand "masaccs"
+ [(parallel [(set (match_operand:DI 0 "even_acc_operand" "")
+ (unspec:DI [(match_dup 0)
+ (match_operand:DI 1 "even_acc_operand" "")]
+ UNSPEC_MADDACC))
+ (set (match_operand:HI 2 "accg_operand" "")
+ (unspec:HI [(match_dup 2)
+ (match_operand:HI 3 "accg_operand" "")
+ (match_dup 4)]
+ UNSPEC_MADDACC))])]
+ "TARGET_MEDIA_REV2"
+ "operands[4] = GEN_INT (FRV_BUILTIN_MASACCS);")
+
+(define_insn "*maddacc"
+ [(set (match_operand:DI 0 "even_acc_operand" "+b")
+ (unspec:DI [(match_dup 0)
+ (match_operand:DI 1 "even_acc_operand" "b")]
+ UNSPEC_MADDACC))
+ (set (match_operand:HI 2 "accg_operand" "+B")
+ (unspec:HI [(match_dup 2)
+ (match_operand:HI 3 "accg_operand" "B")
+ (match_operand:SI 4 "const_int_operand" "n")]
+ UNSPEC_MADDACC))]
+ "TARGET_MEDIA_REV2"
+ "*
+{
+ switch (INTVAL (operands[4]))
+ {
+ default: break;
+ case FRV_BUILTIN_MADDACCS: return \"maddaccs %1, %0\";
+ case FRV_BUILTIN_MSUBACCS: return \"msubaccs %1, %0\";
+ case FRV_BUILTIN_MASACCS: return \"masaccs %1, %0\";
+ }
+
+ fatal_insn (\"Bad media insn, maddacc\", insn);
+}"
+ [(set_attr "length" "4")
+ (set_attr "type" "maddacc")])
+
+;; Dual accumulator addition/subtraction: type "mdaddacc"
+
+(define_expand "mdaddaccs"
+ [(parallel [(set (match_operand:V4SI 0 "quad_acc_operand" "")
+ (unspec:V4SI [(match_dup 0)
+ (match_operand:V4SI 1 "quad_acc_operand" "")]
+ UNSPEC_MDADDACC))
+ (set (match_operand:V4QI 2 "accg_operand" "")
+ (unspec:V4QI [(match_dup 2)
+ (match_operand:V4QI 3 "accg_operand" "")
+ (match_dup 4)]
+ UNSPEC_MDADDACC))])]
+ "TARGET_MEDIA_REV2"
+ "operands[4] = GEN_INT (FRV_BUILTIN_MDADDACCS);")
+
+(define_expand "mdsubaccs"
+ [(parallel [(set (match_operand:V4SI 0 "quad_acc_operand" "")
+ (unspec:V4SI [(match_dup 0)
+ (match_operand:V4SI 1 "quad_acc_operand" "")]
+ UNSPEC_MDADDACC))
+ (set (match_operand:V4QI 2 "accg_operand" "")
+ (unspec:V4QI [(match_dup 2)
+ (match_operand:V4QI 3 "accg_operand" "")
+ (match_dup 4)]
+ UNSPEC_MDADDACC))])]
+ "TARGET_MEDIA_REV2"
+ "operands[4] = GEN_INT (FRV_BUILTIN_MDSUBACCS);")
+
+(define_expand "mdasaccs"
+ [(parallel [(set (match_operand:V4SI 0 "quad_acc_operand" "")
+ (unspec:V4SI [(match_dup 0)
+ (match_operand:V4SI 1 "quad_acc_operand" "")]
+ UNSPEC_MDADDACC))
+ (set (match_operand:V4QI 2 "accg_operand" "")
+ (unspec:V4QI [(match_dup 2)
+ (match_operand:V4QI 3 "accg_operand" "")
+ (match_dup 4)]
+ UNSPEC_MDADDACC))])]
+ "TARGET_MEDIA_REV2"
+ "operands[4] = GEN_INT (FRV_BUILTIN_MDASACCS);")
+
+(define_insn "*mdaddacc"
+ [(set (match_operand:V4SI 0 "quad_acc_operand" "+A")
+ (unspec:V4SI [(match_dup 0)
+ (match_operand:V4SI 1 "quad_acc_operand" "A")]
+ UNSPEC_MDADDACC))
+ (set (match_operand:V4QI 2 "accg_operand" "+B")
+ (unspec:V4QI [(match_dup 2)
+ (match_operand:V4QI 3 "accg_operand" "B")
+ (match_operand:SI 4 "const_int_operand" "n")]
+ UNSPEC_MDADDACC))]
+ "TARGET_MEDIA_REV2"
+ "*
+{
+ switch (INTVAL (operands[4]))
+ {
+ default: break;
+ case FRV_BUILTIN_MDADDACCS: return \"mdaddaccs %1, %0\";
+ case FRV_BUILTIN_MDSUBACCS: return \"mdsubaccs %1, %0\";
+ case FRV_BUILTIN_MDASACCS: return \"mdasaccs %1, %0\";
+ }
+
+ fatal_insn (\"Bad media insn, mdaddacc\", insn);
+}"
+ [(set_attr "length" "4")
+ (set_attr "type" "mdaddacc")])
+
+;; Dual absolute (halfword): type "mabsh"
+
+(define_insn "mabshs"
+ [(set (match_operand:SI 0 "fpr_operand" "=f")
+ (unspec:SI [(match_operand:SI 1 "fpr_operand" "f")] UNSPEC_MABSHS))]
+ "TARGET_MEDIA_REV2"
+ "mabshs %1, %0"
+ [(set_attr "length" "4")
+ (set_attr "type" "mabsh")])
+
+;; Dual rotate: type "mdrot"
+
+(define_insn "mdrotli"
+ [(set (match_operand:DI 0 "even_fpr_operand" "=h")
+ (unspec:DI [(match_operand:DI 1 "even_fpr_operand" "h")
+ (match_operand:SI 2 "uint5_operand" "I")]
+ UNSPEC_MDROTLI))]
+ "TARGET_MEDIA_REV2"
+ "mdrotli %1, %2, %0"
+ [(set_attr "length" "4")
+ (set_attr "type" "mdrot")])
+
+;; Dual coupling (concatenation): type "mcpl"
+
+(define_insn "mcplhi"
+ [(set (match_operand:SI 0 "fpr_operand" "=f")
+ (unspec:SI [(match_operand:DI 1 "fpr_operand" "h")
+ (match_operand:SI 2 "uint4_operand" "I")]
+ UNSPEC_MCPLHI))]
+ "TARGET_MEDIA_REV2"
+ "mcplhi %1, %2, %0"
+ [(set_attr "length" "4")
+ (set_attr "type" "mcpl")])
+
+(define_insn "mcpli"
+ [(set (match_operand:SI 0 "fpr_operand" "=f")
+ (unspec:SI [(match_operand:DI 1 "fpr_operand" "h")
+ (match_operand:SI 2 "uint5_operand" "I")]
+ UNSPEC_MCPLI))]
+ "TARGET_MEDIA_REV2"
+ "mcpli %1, %2, %0"
+ [(set_attr "length" "4")
+ (set_attr "type" "mcpl")])
+
+;; Dual cut: type "mdcut"
+
+(define_insn "mdcutssi"
+ [(set (match_operand:DI 0 "even_fpr_operand" "=h")
+ (unspec:DI [(match_operand:DI 1 "even_acc_operand" "b")
+ (match_operand:SI 2 "int6_operand" "I")
+ (match_operand:HI 3 "accg_operand" "B")]
+ UNSPEC_MDCUTSSI))]
+ "TARGET_MEDIA_REV2"
+ "mdcutssi %1, %2, %0"
+ [(set_attr "length" "4")
+ (set_attr "type" "mdcut")])
+
+;; Quad saturate (halfword): type "mqsath"
+
+(define_insn "mqsaths"
+ [(set (match_operand:DI 0 "even_fpr_operand" "=h")
+ (unspec:DI [(match_operand:DI 1 "even_fpr_operand" "h")
+ (match_operand:DI 2 "even_fpr_operand" "h")]
+ UNSPEC_MQSATHS))]
+ "TARGET_MEDIA_REV2"
+ "mqsaths %1, %2, %0"
+ [(set_attr "length" "4")
+ (set_attr "type" "mqsath")])
+
+;; Set hi/lo instrctions: type "mset"
+
+(define_insn "mhsetlos"
+ [(set (match_operand:SI 0 "fpr_operand" "=f")
+ (unspec:SI [(match_operand:SI 1 "fpr_operand" "0")
+ (match_operand:SI 2 "int12_operand" "NOP")]
+ UNSPEC_MHSETLOS))]
+ "TARGET_MEDIA_REV2"
+ "mhsetlos %2, %0"
+ [(set_attr "length" "4")
+ (set_attr "type" "mset")])
+
+(define_insn "mhsetloh"
+ [(set (match_operand:SI 0 "fpr_operand" "=f")
+ (unspec:SI [(match_operand:SI 1 "fpr_operand" "0")
+ (match_operand:SI 2 "int5_operand" "I")]
+ UNSPEC_MHSETLOH))]
+ "TARGET_MEDIA_REV2"
+ "mhsetloh %2, %0"
+ [(set_attr "length" "4")
+ (set_attr "type" "mset")])
+
+(define_insn "mhsethis"
+ [(set (match_operand:SI 0 "fpr_operand" "=f")
+ (unspec:SI [(match_operand:SI 1 "fpr_operand" "0")
+ (match_operand:SI 2 "int12_operand" "NOP")]
+ UNSPEC_MHSETHIS))]
+ "TARGET_MEDIA_REV2"
+ "mhsethis %2, %0"
+ [(set_attr "length" "4")
+ (set_attr "type" "mset")])
+
+(define_insn "mhsethih"
+ [(set (match_operand:SI 0 "fpr_operand" "=f")
+ (unspec:SI [(match_operand:SI 1 "fpr_operand" "0")
+ (match_operand:SI 2 "int5_operand" "I")]
+ UNSPEC_MHSETHIH))]
+ "TARGET_MEDIA_REV2"
+ "mhsethih %2, %0"
+ [(set_attr "length" "4")
+ (set_attr "type" "mset")])
+
+(define_insn "mhdsets"
+ [(set (match_operand:SI 0 "fpr_operand" "=f")
+ (unspec:SI [(match_operand:SI 1 "int12_operand" "NOP")]
+ UNSPEC_MHDSETS))]
+ "TARGET_MEDIA_REV2"
+ "mhdsets %1, %0"
+ [(set_attr "length" "4")
+ (set_attr "type" "mset")])
+
+(define_insn "mhdseth"
+ [(set (match_operand:SI 0 "fpr_operand" "=f")
+ (unspec:SI [(match_operand:SI 1 "fpr_operand" "0")
+ (match_operand:SI 2 "int5_operand" "I")]
+ UNSPEC_MHDSETH))]
+ "TARGET_MEDIA_REV2"
+ "mhdseth %2, %0"
+ [(set_attr "length" "4")
+ (set_attr "type" "mset")])
diff --git a/contrib/gcc/config/frv/frvbegin.c b/contrib/gcc/config/frv/frvbegin.c
new file mode 100644
index 0000000..a5f5b1f
--- /dev/null
+++ b/contrib/gcc/config/frv/frvbegin.c
@@ -0,0 +1,150 @@
+/* Frv initialization file linked before all user modules
+ Copyright (C) 1999, 2000 Free Software Foundation, Inc.
+ Contributed by Red Hat, Inc.
+
+ This file is part of GNU CC.
+
+ GNU CC is free software ; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation * either version 2, or (at your option)
+ any later version.
+
+ GNU CC is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY ; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with GNU CC; see the file COPYING. If not, write to
+ the Free Software Foundation, 59 Temple Place - Suite 330,
+ Boston, MA 02111-1307, USA.
+
+ This file was originally taken from the file crtstuff.c in the
+ main compiler directory, and simplified. */
+
+#include "defaults.h"
+#include <stddef.h>
+#include "unwind-dw2-fde.h"
+#include "gbl-ctors.h"
+
+/* Declare a pointer to void function type. */
+#define STATIC static
+
+#ifdef __FRV_UNDERSCORE__
+#define UNDERSCORE "_"
+#else
+#define UNDERSCORE ""
+#endif
+
+#define INIT_SECTION_NEG_ONE(SECTION, FLAGS, NAME) \
+__asm__ (".section " SECTION "," FLAGS "\n\t" \
+ ".globl " UNDERSCORE NAME "\n\t" \
+ ".type " UNDERSCORE NAME ",@object\n\t" \
+ ".p2align 2\n" \
+ UNDERSCORE NAME ":\n\t" \
+ ".word -1\n\t" \
+ ".previous")
+
+#define INIT_SECTION(SECTION, FLAGS, NAME) \
+__asm__ (".section " SECTION "," FLAGS "\n\t" \
+ ".globl " UNDERSCORE NAME "\n\t" \
+ ".type " UNDERSCORE NAME ",@object\n\t" \
+ ".p2align 2\n" \
+ UNDERSCORE NAME ":\n\t" \
+ ".previous")
+
+/* Beginning of .ctor/.dtor sections that provides a list of constructors and
+ destructors to run. */
+
+INIT_SECTION_NEG_ONE (".ctors", "\"aw\"", "__CTOR_LIST__");
+INIT_SECTION_NEG_ONE (".dtors", "\"aw\"", "__DTOR_LIST__");
+
+/* Beginning of .eh_frame section that provides all of the exception handling
+ tables. */
+
+INIT_SECTION (".eh_frame", "\"aw\"", "__EH_FRAME_BEGIN__");
+
+/* Beginning of .rofixup section that provides a list of pointers that we
+ need to adjust. */
+
+INIT_SECTION (".rofixup", "\"a\"", "__ROFIXUP_LIST__");
+
+extern void __frv_register_eh(void) __attribute__((__constructor__));
+extern void __frv_deregister_eh(void) __attribute__((__destructor__));
+
+extern func_ptr __EH_FRAME_BEGIN__[];
+
+/* Register the exeception handling table as the first constructor */
+void
+__frv_register_eh (void)
+{
+ static struct object object;
+ if (__register_frame_info)
+ __register_frame_info (__EH_FRAME_BEGIN__, &object);
+}
+
+/* Note, do not declare __{,de}register_frame_info weak as it seems
+ to interfere with the pic support. */
+
+/* Unregister the exeception handling table as a deconstructor */
+void
+__frv_deregister_eh (void)
+{
+ static int completed = 0;
+
+ if (completed)
+ return;
+
+ if (__deregister_frame_info)
+ __deregister_frame_info (__EH_FRAME_BEGIN__);
+
+ completed = 1;
+}
+
+/* Run the global destructors */
+void
+__do_global_dtors ()
+{
+ static func_ptr *p = __DTOR_LIST__ + 1;
+ while (*p)
+ {
+ p++;
+ (*(p-1)) ();
+ }
+}
+
+/* Run the global constructors */
+void
+__do_global_ctors ()
+{
+ unsigned long nptrs = (unsigned long) __CTOR_LIST__[0];
+ unsigned i;
+
+ if (nptrs == (unsigned long)-1)
+ for (nptrs = 0; __CTOR_LIST__[nptrs + 1] != 0; nptrs++);
+
+ for (i = nptrs; i >= 1; i--)
+ __CTOR_LIST__[i] ();
+
+ atexit (__do_global_dtors);
+}
+
+/* Subroutine called automatically by `main'.
+ Compiling a global function named `main'
+ produces an automatic call to this function at the beginning.
+
+ For many systems, this routine calls __do_global_ctors.
+ For systems which support a .init section we use the .init section
+ to run __do_global_ctors, so we need not do anything here. */
+
+void
+__main ()
+{
+ /* Support recursive calls to `main': run initializers just once. */
+ static int initialized;
+ if (! initialized)
+ {
+ initialized = 1;
+ __do_global_ctors ();
+ }
+}
diff --git a/contrib/gcc/config/frv/frvend.c b/contrib/gcc/config/frv/frvend.c
new file mode 100644
index 0000000..f1635cc
--- /dev/null
+++ b/contrib/gcc/config/frv/frvend.c
@@ -0,0 +1,63 @@
+/* Frv initialization file linked after all user modules
+ Copyright (C) 1999, 2000 Free Software Foundation, Inc.
+ Contributed by Red Hat, Inc.
+
+ This file is part of GNU CC.
+
+ GNU CC is free software ; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation * either version 2, or (at your option)
+ any later version.
+
+ GNU CC is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY ; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with GNU CC; see the file COPYING. If not, write to
+ the Free Software Foundation, 59 Temple Place - Suite 330,
+ Boston, MA 02111-1307, USA. */
+
+#include "defaults.h"
+#include <stddef.h>
+#include "unwind-dw2-fde.h"
+
+#ifdef __FRV_UNDERSCORE__
+#define UNDERSCORE "_"
+#else
+#define UNDERSCORE ""
+#endif
+
+#define FINI_SECTION_ZERO(SECTION, FLAGS, NAME) \
+__asm__ (".section " SECTION "," FLAGS "\n\t" \
+ ".globl " UNDERSCORE NAME "\n\t" \
+ ".type " UNDERSCORE NAME ",@object\n\t" \
+ ".p2align 2\n" \
+ UNDERSCORE NAME ":\n\t" \
+ ".word 0\n\t" \
+ ".previous")
+
+#define FINI_SECTION(SECTION, FLAGS, NAME) \
+__asm__ (".section " SECTION "," FLAGS "\n\t" \
+ ".globl " UNDERSCORE NAME "\n\t" \
+ ".type " UNDERSCORE NAME ",@object\n\t" \
+ ".p2align 2\n" \
+ UNDERSCORE NAME ":\n\t" \
+ ".previous")
+
+/* End of .ctor/.dtor sections that provides a list of constructors and
+ destructors to run. */
+
+FINI_SECTION_ZERO (".ctors", "\"aw\"", "__CTOR_END__");
+FINI_SECTION_ZERO (".dtors", "\"aw\"", "__DTOR_END__");
+
+/* End of .eh_frame section that provides all of the exception handling
+ tables. */
+
+FINI_SECTION_ZERO (".eh_frame", "\"aw\"", "__FRAME_END__");
+
+/* End of .rofixup section that provides a list of pointers that we
+ need to adjust. */
+
+FINI_SECTION (".rofixup", "\"a\"", "__ROFIXUP_END__");
diff --git a/contrib/gcc/config/frv/lib1funcs.asm b/contrib/gcc/config/frv/lib1funcs.asm
new file mode 100644
index 0000000..18a8142
--- /dev/null
+++ b/contrib/gcc/config/frv/lib1funcs.asm
@@ -0,0 +1,275 @@
+/* Library functions.
+ Copyright (C) 2000 Free Software Foundation, Inc.
+ Contributed by Red Hat, Inc.
+
+ This file is part of GNU CC.
+
+ GNU CC is free software ; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation * either version 2, or (at your option)
+ any later version.
+
+ GNU CC is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY ; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with GNU CC; see the file COPYING. If not, write to
+ the Free Software Foundation, 59 Temple Place - Suite 330,
+ Boston, MA 02111-1307, USA. */
+
+#include <frv-asm.h>
+
+
+#ifdef L_cmpll
+/* icc0 = __cmpll (long long a, long long b) */
+
+ .file "_cmpll.s"
+ .globl EXT(__cmpll)
+ .type EXT(__cmpll),@function
+ .text
+ .p2align 4
+EXT(__cmpll):
+ cmp gr8, gr10, icc0
+ ckeq icc0, cc4
+ P(ccmp) gr9, gr11, cc4, 1
+ ret
+.Lend:
+ .size EXT(__cmpll),.Lend-EXT(__cmpll)
+#endif /* L_cmpll */
+
+#ifdef L_cmpf
+/* icc0 = __cmpf (float a, float b) */
+/* Note, because this function returns the result in ICC0, it means it can't
+ handle NaNs. */
+
+ .file "_cmpf.s"
+ .globl EXT(__cmpf)
+ .type EXT(__cmpf),@function
+ .text
+ .p2align 4
+EXT(__cmpf):
+#ifdef __FRV_HARD_FLOAT__ /* floating point instructions available */
+ movgf gr8, fr0
+ P(movgf) gr9, fr1
+ setlos #1, gr8
+ fcmps fr0, fr1, fcc0
+ P(fcklt) fcc0, cc0
+ fckeq fcc0, cc1
+ csub gr0, gr8, gr8, cc0, 1
+ cmov gr0, gr8, cc1, 1
+ cmpi gr8, 0, icc0
+ ret
+#else /* no floating point instructions available */
+ movsg lr, gr4
+ addi sp, #-16, sp
+ sti gr4, @(sp, 8)
+ st fp, @(sp, gr0)
+ mov sp, fp
+ call EXT(__cmpsf2)
+ cmpi gr8, #0, icc0
+ ldi @(sp, 8), gr4
+ movgs gr4, lr
+ ld @(sp,gr0), fp
+ addi sp, #16, sp
+ ret
+#endif
+.Lend:
+ .size EXT(__cmpf),.Lend-EXT(__cmpf)
+#endif
+
+#ifdef L_cmpd
+/* icc0 = __cmpd (double a, double b) */
+/* Note, because this function returns the result in ICC0, it means it can't
+ handle NaNs. */
+
+ .file "_cmpd.s"
+ .globl EXT(__cmpd)
+ .type EXT(__cmpd),@function
+ .text
+ .p2align 4
+EXT(__cmpd):
+ movsg lr, gr4
+ addi sp, #-16, sp
+ sti gr4, @(sp, 8)
+ st fp, @(sp, gr0)
+ mov sp, fp
+ call EXT(__cmpdf2)
+ cmpi gr8, #0, icc0
+ ldi @(sp, 8), gr4
+ movgs gr4, lr
+ ld @(sp,gr0), fp
+ addi sp, #16, sp
+ ret
+.Lend:
+ .size EXT(__cmpd),.Lend-EXT(__cmpd)
+#endif
+
+#ifdef L_addll
+/* gr8,gr9 = __addll (long long a, long long b) */
+/* Note, gcc will never call this function, but it is present in case an
+ ABI program calls it. */
+
+ .file "_addll.s"
+ .globl EXT(__addll)
+ .type EXT(__addll),@function
+ .text
+ .p2align
+EXT(__addll):
+ addcc gr9, gr11, gr9, icc0
+ addx gr8, gr10, gr8, icc0
+ ret
+.Lend:
+ .size EXT(__addll),.Lend-EXT(__addll)
+#endif
+
+#ifdef L_subll
+/* gr8,gr9 = __subll (long long a, long long b) */
+/* Note, gcc will never call this function, but it is present in case an
+ ABI program calls it. */
+
+ .file "_subll.s"
+ .globl EXT(__subll)
+ .type EXT(__subll),@function
+ .text
+ .p2align 4
+EXT(__subll):
+ subcc gr9, gr11, gr9, icc0
+ subx gr8, gr10, gr8, icc0
+ ret
+.Lend:
+ .size EXT(__subll),.Lend-EXT(__subll)
+#endif
+
+#ifdef L_andll
+/* gr8,gr9 = __andll (long long a, long long b) */
+/* Note, gcc will never call this function, but it is present in case an
+ ABI program calls it. */
+
+ .file "_andll.s"
+ .globl EXT(__andll)
+ .type EXT(__andll),@function
+ .text
+ .p2align 4
+EXT(__andll):
+ P(and) gr9, gr11, gr9
+ P2(and) gr8, gr10, gr8
+ ret
+.Lend:
+ .size EXT(__andll),.Lend-EXT(__andll)
+#endif
+
+#ifdef L_orll
+/* gr8,gr9 = __orll (long long a, long long b) */
+/* Note, gcc will never call this function, but it is present in case an
+ ABI program calls it. */
+
+ .file "_orll.s"
+ .globl EXT(__orll)
+ .type EXT(__orll),@function
+ .text
+ .p2align 4
+EXT(__orll):
+ P(or) gr9, gr11, gr9
+ P2(or) gr8, gr10, gr8
+ ret
+.Lend:
+ .size EXT(__orll),.Lend-EXT(__orll)
+#endif
+
+#ifdef L_xorll
+/* gr8,gr9 = __xorll (long long a, long long b) */
+/* Note, gcc will never call this function, but it is present in case an
+ ABI program calls it. */
+
+ .file "_xorll.s"
+ .globl EXT(__xorll)
+ .type EXT(__xorll),@function
+ .text
+ .p2align 4
+EXT(__xorll):
+ P(xor) gr9, gr11, gr9
+ P2(xor) gr8, gr10, gr8
+ ret
+.Lend:
+ .size EXT(__xorll),.Lend-EXT(__xorll)
+#endif
+
+#ifdef L_notll
+/* gr8,gr9 = __notll (long long a) */
+/* Note, gcc will never call this function, but it is present in case an
+ ABI program calls it. */
+
+ .file "_notll.s"
+ .globl EXT(__notll)
+ .type EXT(__notll),@function
+ .text
+ .p2align 4
+EXT(__notll):
+ P(not) gr9, gr9
+ P2(not) gr8, gr8
+ ret
+.Lend:
+ .size EXT(__notll),.Lend-EXT(__notll)
+#endif
+
+#ifdef L_cmov
+/* (void) __cmov (char *dest, const char *src, size_t len) */
+/*
+ * void __cmov (char *dest, const char *src, size_t len)
+ * {
+ * size_t i;
+ *
+ * if (dest < src || dest > src+len)
+ * {
+ * for (i = 0; i < len; i++)
+ * dest[i] = src[i];
+ * }
+ * else
+ * {
+ * while (len-- > 0)
+ * dest[len] = src[len];
+ * }
+ * }
+ */
+
+ .file "_cmov.s"
+ .globl EXT(__cmov)
+ .type EXT(__cmov),@function
+ .text
+ .p2align 4
+EXT(__cmov):
+ P(cmp) gr8, gr9, icc0
+ add gr9, gr10, gr4
+ P(cmp) gr8, gr4, icc1
+ bc icc0, 0, .Lfwd
+ bls icc1, 0, .Lback
+.Lfwd:
+ /* move bytes in a forward direction */
+ P(setlos) #0, gr5
+ cmp gr0, gr10, icc0
+ P(subi) gr9, #1, gr9
+ P2(subi) gr8, #1, gr8
+ bnc icc0, 0, .Lret
+.Lfloop:
+ /* forward byte move loop */
+ addi gr5, #1, gr5
+ P(ldsb) @(gr9, gr5), gr4
+ cmp gr5, gr10, icc0
+ P(stb) gr4, @(gr8, gr5)
+ bc icc0, 0, .Lfloop
+ ret
+.Lbloop:
+ /* backward byte move loop body */
+ ldsb @(gr9,gr10),gr4
+ stb gr4,@(gr8,gr10)
+.Lback:
+ P(cmpi) gr10, #0, icc0
+ addi gr10, #-1, gr10
+ bne icc0, 0, .Lbloop
+.Lret:
+ ret
+.Lend:
+ .size EXT(__cmov),.Lend-EXT(__cmov)
+#endif
diff --git a/contrib/gcc/config/frv/modi.c b/contrib/gcc/config/frv/modi.c
new file mode 100644
index 0000000..d5a91fc
--- /dev/null
+++ b/contrib/gcc/config/frv/modi.c
@@ -0,0 +1,4 @@
+int __modi (int a, int b)
+{
+ return a % b;
+}
diff --git a/contrib/gcc/config/frv/t-frv b/contrib/gcc/config/frv/t-frv
new file mode 100644
index 0000000..a92f63b
--- /dev/null
+++ b/contrib/gcc/config/frv/t-frv
@@ -0,0 +1,93 @@
+# Name of assembly file containing libgcc1 functions.
+# This entry must be present, but it can be empty if the target does
+# not need any assembler functions to support its code generation.
+#
+# Alternatively if assembler functions *are* needed then define the
+# entries below:
+CROSS_LIBGCC1 = libgcc1-asm.a
+LIB1ASMSRC = frv/lib1funcs.asm
+LIB1ASMFUNCS = _cmpll _cmpf _cmpd _addll _subll _andll _orll _xorll _notll _cmov
+LIB2FUNCS_EXTRA = cmovh.c cmovw.c cmovd.c modi.c umodi.c uitof.c uitod.c ulltof.c ulltod.c
+
+# We want fine grained libraries, so use the new code to build the
+# floating point emulation libraries.
+FPBIT = fp-bit.c
+DPBIT = dp-bit.c
+
+# If any special flags are necessary when building libgcc2 put them here.
+TARGET_LIBGCC2_CFLAGS =
+
+fp-bit.c: $(srcdir)/config/fp-bit.c
+ echo '#define FLOAT' > fp-bit.c
+ echo '#include "frv/frv-abi.h"' >> fp-bit.c
+ cat $(srcdir)/config/fp-bit.c >> fp-bit.c
+
+dp-bit.c: $(srcdir)/config/fp-bit.c
+ echo '#include "frv/frv-abi.h"' > dp-bit.c
+ cat $(srcdir)/config/fp-bit.c >> dp-bit.c
+
+cmovh.c: $(srcdir)/config/frv/cmovh.c
+ $(LN_S) $(srcdir)/config/frv/cmovh.c .
+
+cmovw.c: $(srcdir)/config/frv/cmovw.c
+ $(LN_S) $(srcdir)/config/frv/cmovw.c .
+
+cmovd.c: $(srcdir)/config/frv/cmovd.c
+ $(LN_S) $(srcdir)/config/frv/cmovd.c .
+
+modi.c: $(srcdir)/config/frv/modi.c
+ $(LN_S) $(srcdir)/config/frv/modi.c .
+
+umodi.c: $(srcdir)/config/frv/umodi.c
+ $(LN_S) $(srcdir)/config/frv/umodi.c .
+
+uitof.c: $(srcdir)/config/frv/uitof.c
+ $(LN_S) $(srcdir)/config/frv/uitof.c .
+
+uitod.c: $(srcdir)/config/frv/uitod.c
+ $(LN_S) $(srcdir)/config/frv/uitod.c .
+
+ulltof.c: $(srcdir)/config/frv/ulltof.c
+ $(LN_S) $(srcdir)/config/frv/ulltof.c .
+
+ulltod.c: $(srcdir)/config/frv/ulltod.c
+ $(LN_S) $(srcdir)/config/frv/ulltod.c .
+
+# Build frvbegin.o and frvend.o
+EXTRA_MULTILIB_PARTS=frvbegin.o frvend.o
+
+# Compile two additional files that are linked with every program
+# linked using GCC on systems using COFF or ELF, for the sake of C++
+# constructors.
+
+FRVSTUFF_CFLAGS = $(TARGET_LIBGCC2_CFLAGS)
+
+$(T)frvbegin$(objext): $(srcdir)/config/frv/frvbegin.c $(GCC_PASSES) \
+ $(CONFIG_H) defaults.h unwind-dw2-fde.h gbl-ctors.h
+ $(GCC_FOR_TARGET) $(GCC_CFLAGS) $(INCLUDES) $(MULTILIB_CFLAGS) $(FRVSTUFF_CFLAGS) \
+ -c $(srcdir)/config/frv/frvbegin.c -o $(T)frvbegin$(objext)
+
+$(T)frvend$(objext): $(srcdir)/config/frv/frvend.c $(GCC_PASSES) \
+ $(CONFIG_H) defaults.h unwind-dw2-fde.h gbl-ctors.h
+ $(GCC_FOR_TARGET) $(GCC_CFLAGS) $(INCLUDES) $(MULTILIB_CFLAGS) $(FRVSTUFF_CFLAGS) \
+ -c $(srcdir)/config/frv/frvend.c -o $(T)frvend$(objext)
+
+# Enable the following if multilibs are needed.
+# See gcc/genmultilib, gcc/gcc.texi and gcc/tm.texi for a
+# description of the options and their values.
+#
+#MULTILIB_OPTIONS = mcpu=fr500/mcpu=tomcat/mcpu=simple/mcpu=frv msoft-float mdword/mno-dword
+#MULTILIB_DIRNAMES = fr500 tomcat simple frv nof dw no-dw
+#MULTILIB_MATCHES = mcpu?simple=mcpu?fr300 mno-double=mcpu?fr500 mcpu?frv=mdouble
+#MULTILIB_EXCEPTIONS = *mcpu=simple/*msoft-float* *mcpu=frv/*msoft-float*
+#MULTILIB_EXTRA_OPTS = mlibrary-pic
+
+MULTILIB_OPTIONS = mcpu=frv/mcpu=fr400/mcpu=simple mno-pack mlibrary-pic
+MULTILIB_DIRNAMES = frv fr400 simple unpacked pic
+MULTILIB_MATCHES = mcpu?simple=mcpu?fr300 mlibrary-pic=fpic mlibrary-pic=fPIC
+MULTILIB_EXCEPTIONS = mcpu=frv/mno-pack* mcpu=simple/mno-pack*
+
+LIBGCC = stmp-multilib
+INSTALL_LIBGCC = install-multilib
+
+EXTRA_HEADERS = $(srcdir)/config/frv/frv-asm.h $(srcdir)/config/frv/media.h
diff --git a/contrib/gcc/config/frv/uitod.c b/contrib/gcc/config/frv/uitod.c
new file mode 100644
index 0000000..14290ab
--- /dev/null
+++ b/contrib/gcc/config/frv/uitod.c
@@ -0,0 +1,4 @@
+double __uitod (unsigned int a)
+{
+ return a;
+}
diff --git a/contrib/gcc/config/frv/uitof.c b/contrib/gcc/config/frv/uitof.c
new file mode 100644
index 0000000..059bc7c
--- /dev/null
+++ b/contrib/gcc/config/frv/uitof.c
@@ -0,0 +1,4 @@
+float __uitof (unsigned int a)
+{
+ return a;
+}
diff --git a/contrib/gcc/config/frv/ulltod.c b/contrib/gcc/config/frv/ulltod.c
new file mode 100644
index 0000000..e6bee12
--- /dev/null
+++ b/contrib/gcc/config/frv/ulltod.c
@@ -0,0 +1,4 @@
+double __ulltod (unsigned long long a)
+{
+ return a;
+}
diff --git a/contrib/gcc/config/frv/ulltof.c b/contrib/gcc/config/frv/ulltof.c
new file mode 100644
index 0000000..29cdfd4
--- /dev/null
+++ b/contrib/gcc/config/frv/ulltof.c
@@ -0,0 +1,4 @@
+float __ulltof (unsigned long long a)
+{
+ return a;
+}
diff --git a/contrib/gcc/config/frv/umodi.c b/contrib/gcc/config/frv/umodi.c
new file mode 100644
index 0000000..4ffe5ad
--- /dev/null
+++ b/contrib/gcc/config/frv/umodi.c
@@ -0,0 +1,4 @@
+unsigned int __umodi (unsigned int a, unsigned int b)
+{
+ return a % b;
+}
OpenPOWER on IntegriCloud