summaryrefslogtreecommitdiffstats
path: root/contrib/gcc/combine.c
diff options
context:
space:
mode:
authorpeter <peter@FreeBSD.org>1996-09-18 05:35:50 +0000
committerpeter <peter@FreeBSD.org>1996-09-18 05:35:50 +0000
commitd4691e641ba47cb86eef80f5c879e13f9d961724 (patch)
tree5b7ea73fc49c8998d9dc87d3eeff5b96439e6856 /contrib/gcc/combine.c
downloadFreeBSD-src-d4691e641ba47cb86eef80f5c879e13f9d961724.zip
FreeBSD-src-d4691e641ba47cb86eef80f5c879e13f9d961724.tar.gz
Import of unmodified (but trimmed) gcc-2.7.2. The bigger parts of the
non-i386, non-unix, and generatable files have been trimmed, but can easily be added in later if needed. gcc-2.7.2.1 will follow shortly, it's a very small delta to this and it's handy to have both available for reference for such little cost. The freebsd-specific changes will then be committed, and once the dust has settled, the bmakefiles will be committed to use this code.
Diffstat (limited to 'contrib/gcc/combine.c')
-rw-r--r--contrib/gcc/combine.c11103
1 files changed, 11103 insertions, 0 deletions
diff --git a/contrib/gcc/combine.c b/contrib/gcc/combine.c
new file mode 100644
index 0000000..473adc8
--- /dev/null
+++ b/contrib/gcc/combine.c
@@ -0,0 +1,11103 @@
+/* Optimize by combining instructions for GNU compiler.
+ Copyright (C) 1987, 88, 92, 93, 94, 1995 Free Software Foundation, Inc.
+
+This file is part of GNU CC.
+
+GNU CC is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2, or (at your option)
+any later version.
+
+GNU CC is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GNU CC; see the file COPYING. If not, write to
+the Free Software Foundation, 59 Temple Place - Suite 330,
+Boston, MA 02111-1307, USA. */
+
+
+/* This module is essentially the "combiner" phase of the U. of Arizona
+ Portable Optimizer, but redone to work on our list-structured
+ representation for RTL instead of their string representation.
+
+ The LOG_LINKS of each insn identify the most recent assignment
+ to each REG used in the insn. It is a list of previous insns,
+ each of which contains a SET for a REG that is used in this insn
+ and not used or set in between. LOG_LINKs never cross basic blocks.
+ They were set up by the preceding pass (lifetime analysis).
+
+ We try to combine each pair of insns joined by a logical link.
+ We also try to combine triples of insns A, B and C when
+ C has a link back to B and B has a link back to A.
+
+ LOG_LINKS does not have links for use of the CC0. They don't
+ need to, because the insn that sets the CC0 is always immediately
+ before the insn that tests it. So we always regard a branch
+ insn as having a logical link to the preceding insn. The same is true
+ for an insn explicitly using CC0.
+
+ We check (with use_crosses_set_p) to avoid combining in such a way
+ as to move a computation to a place where its value would be different.
+
+ Combination is done by mathematically substituting the previous
+ insn(s) values for the regs they set into the expressions in
+ the later insns that refer to these regs. If the result is a valid insn
+ for our target machine, according to the machine description,
+ we install it, delete the earlier insns, and update the data flow
+ information (LOG_LINKS and REG_NOTES) for what we did.
+
+ There are a few exceptions where the dataflow information created by
+ flow.c aren't completely updated:
+
+ - reg_live_length is not updated
+ - reg_n_refs is not adjusted in the rare case when a register is
+ no longer required in a computation
+ - there are extremely rare cases (see distribute_regnotes) when a
+ REG_DEAD note is lost
+ - a LOG_LINKS entry that refers to an insn with multiple SETs may be
+ removed because there is no way to know which register it was
+ linking
+
+ To simplify substitution, we combine only when the earlier insn(s)
+ consist of only a single assignment. To simplify updating afterward,
+ we never combine when a subroutine call appears in the middle.
+
+ Since we do not represent assignments to CC0 explicitly except when that
+ is all an insn does, there is no LOG_LINKS entry in an insn that uses
+ the condition code for the insn that set the condition code.
+ Fortunately, these two insns must be consecutive.
+ Therefore, every JUMP_INSN is taken to have an implicit logical link
+ to the preceding insn. This is not quite right, since non-jumps can
+ also use the condition code; but in practice such insns would not
+ combine anyway. */
+
+#include "config.h"
+#ifdef __STDC__
+#include <stdarg.h>
+#else
+#include <varargs.h>
+#endif
+
+/* Must precede rtl.h for FFS. */
+#include <stdio.h>
+
+#include "rtl.h"
+#include "flags.h"
+#include "regs.h"
+#include "hard-reg-set.h"
+#include "expr.h"
+#include "basic-block.h"
+#include "insn-config.h"
+#include "insn-flags.h"
+#include "insn-codes.h"
+#include "insn-attr.h"
+#include "recog.h"
+#include "real.h"
+
+/* It is not safe to use ordinary gen_lowpart in combine.
+ Use gen_lowpart_for_combine instead. See comments there. */
+#define gen_lowpart dont_use_gen_lowpart_you_dummy
+
+/* Number of attempts to combine instructions in this function. */
+
+static int combine_attempts;
+
+/* Number of attempts that got as far as substitution in this function. */
+
+static int combine_merges;
+
+/* Number of instructions combined with added SETs in this function. */
+
+static int combine_extras;
+
+/* Number of instructions combined in this function. */
+
+static int combine_successes;
+
+/* Totals over entire compilation. */
+
+static int total_attempts, total_merges, total_extras, total_successes;
+
+/* Define a default value for REVERSIBLE_CC_MODE.
+ We can never assume that a condition code mode is safe to reverse unless
+ the md tells us so. */
+#ifndef REVERSIBLE_CC_MODE
+#define REVERSIBLE_CC_MODE(MODE) 0
+#endif
+
+/* Vector mapping INSN_UIDs to cuids.
+ The cuids are like uids but increase monotonically always.
+ Combine always uses cuids so that it can compare them.
+ But actually renumbering the uids, which we used to do,
+ proves to be a bad idea because it makes it hard to compare
+ the dumps produced by earlier passes with those from later passes. */
+
+static int *uid_cuid;
+static int max_uid_cuid;
+
+/* Get the cuid of an insn. */
+
+#define INSN_CUID(INSN) (INSN_UID (INSN) > max_uid_cuid \
+ ? (abort(), 0) \
+ : uid_cuid[INSN_UID (INSN)])
+
+/* Maximum register number, which is the size of the tables below. */
+
+static int combine_max_regno;
+
+/* Record last point of death of (hard or pseudo) register n. */
+
+static rtx *reg_last_death;
+
+/* Record last point of modification of (hard or pseudo) register n. */
+
+static rtx *reg_last_set;
+
+/* Record the cuid of the last insn that invalidated memory
+ (anything that writes memory, and subroutine calls, but not pushes). */
+
+static int mem_last_set;
+
+/* Record the cuid of the last CALL_INSN
+ so we can tell whether a potential combination crosses any calls. */
+
+static int last_call_cuid;
+
+/* When `subst' is called, this is the insn that is being modified
+ (by combining in a previous insn). The PATTERN of this insn
+ is still the old pattern partially modified and it should not be
+ looked at, but this may be used to examine the successors of the insn
+ to judge whether a simplification is valid. */
+
+static rtx subst_insn;
+
+/* This is an insn that belongs before subst_insn, but is not currently
+ on the insn chain. */
+
+static rtx subst_prev_insn;
+
+/* This is the lowest CUID that `subst' is currently dealing with.
+ get_last_value will not return a value if the register was set at or
+ after this CUID. If not for this mechanism, we could get confused if
+ I2 or I1 in try_combine were an insn that used the old value of a register
+ to obtain a new value. In that case, we might erroneously get the
+ new value of the register when we wanted the old one. */
+
+static int subst_low_cuid;
+
+/* This contains any hard registers that are used in newpat; reg_dead_at_p
+ must consider all these registers to be always live. */
+
+static HARD_REG_SET newpat_used_regs;
+
+/* This is an insn to which a LOG_LINKS entry has been added. If this
+ insn is the earlier than I2 or I3, combine should rescan starting at
+ that location. */
+
+static rtx added_links_insn;
+
+/* This is the value of undobuf.num_undo when we started processing this
+ substitution. This will prevent gen_rtx_combine from re-used a piece
+ from the previous expression. Doing so can produce circular rtl
+ structures. */
+
+static int previous_num_undos;
+
+/* Basic block number of the block in which we are performing combines. */
+static int this_basic_block;
+
+/* The next group of arrays allows the recording of the last value assigned
+ to (hard or pseudo) register n. We use this information to see if a
+ operation being processed is redundant given a prior operation performed
+ on the register. For example, an `and' with a constant is redundant if
+ all the zero bits are already known to be turned off.
+
+ We use an approach similar to that used by cse, but change it in the
+ following ways:
+
+ (1) We do not want to reinitialize at each label.
+ (2) It is useful, but not critical, to know the actual value assigned
+ to a register. Often just its form is helpful.
+
+ Therefore, we maintain the following arrays:
+
+ reg_last_set_value the last value assigned
+ reg_last_set_label records the value of label_tick when the
+ register was assigned
+ reg_last_set_table_tick records the value of label_tick when a
+ value using the register is assigned
+ reg_last_set_invalid set to non-zero when it is not valid
+ to use the value of this register in some
+ register's value
+
+ To understand the usage of these tables, it is important to understand
+ the distinction between the value in reg_last_set_value being valid
+ and the register being validly contained in some other expression in the
+ table.
+
+ Entry I in reg_last_set_value is valid if it is non-zero, and either
+ reg_n_sets[i] is 1 or reg_last_set_label[i] == label_tick.
+
+ Register I may validly appear in any expression returned for the value
+ of another register if reg_n_sets[i] is 1. It may also appear in the
+ value for register J if reg_last_set_label[i] < reg_last_set_label[j] or
+ reg_last_set_invalid[j] is zero.
+
+ If an expression is found in the table containing a register which may
+ not validly appear in an expression, the register is replaced by
+ something that won't match, (clobber (const_int 0)).
+
+ reg_last_set_invalid[i] is set non-zero when register I is being assigned
+ to and reg_last_set_table_tick[i] == label_tick. */
+
+/* Record last value assigned to (hard or pseudo) register n. */
+
+static rtx *reg_last_set_value;
+
+/* Record the value of label_tick when the value for register n is placed in
+ reg_last_set_value[n]. */
+
+static int *reg_last_set_label;
+
+/* Record the value of label_tick when an expression involving register n
+ is placed in reg_last_set_value. */
+
+static int *reg_last_set_table_tick;
+
+/* Set non-zero if references to register n in expressions should not be
+ used. */
+
+static char *reg_last_set_invalid;
+
+/* Incremented for each label. */
+
+static int label_tick;
+
+/* Some registers that are set more than once and used in more than one
+ basic block are nevertheless always set in similar ways. For example,
+ a QImode register may be loaded from memory in two places on a machine
+ where byte loads zero extend.
+
+ We record in the following array what we know about the nonzero
+ bits of a register, specifically which bits are known to be zero.
+
+ If an entry is zero, it means that we don't know anything special. */
+
+static unsigned HOST_WIDE_INT *reg_nonzero_bits;
+
+/* Mode used to compute significance in reg_nonzero_bits. It is the largest
+ integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
+
+static enum machine_mode nonzero_bits_mode;
+
+/* Nonzero if we know that a register has some leading bits that are always
+ equal to the sign bit. */
+
+static char *reg_sign_bit_copies;
+
+/* Nonzero when reg_nonzero_bits and reg_sign_bit_copies can be safely used.
+ It is zero while computing them and after combine has completed. This
+ former test prevents propagating values based on previously set values,
+ which can be incorrect if a variable is modified in a loop. */
+
+static int nonzero_sign_valid;
+
+/* These arrays are maintained in parallel with reg_last_set_value
+ and are used to store the mode in which the register was last set,
+ the bits that were known to be zero when it was last set, and the
+ number of sign bits copies it was known to have when it was last set. */
+
+static enum machine_mode *reg_last_set_mode;
+static unsigned HOST_WIDE_INT *reg_last_set_nonzero_bits;
+static char *reg_last_set_sign_bit_copies;
+
+/* Record one modification to rtl structure
+ to be undone by storing old_contents into *where.
+ is_int is 1 if the contents are an int. */
+
+struct undo
+{
+ int is_int;
+ union {rtx r; int i;} old_contents;
+ union {rtx *r; int *i;} where;
+};
+
+/* Record a bunch of changes to be undone, up to MAX_UNDO of them.
+ num_undo says how many are currently recorded.
+
+ storage is nonzero if we must undo the allocation of new storage.
+ The value of storage is what to pass to obfree.
+
+ other_insn is nonzero if we have modified some other insn in the process
+ of working on subst_insn. It must be verified too. */
+
+#define MAX_UNDO 50
+
+struct undobuf
+{
+ int num_undo;
+ char *storage;
+ struct undo undo[MAX_UNDO];
+ rtx other_insn;
+};
+
+static struct undobuf undobuf;
+
+/* Substitute NEWVAL, an rtx expression, into INTO, a place in some
+ insn. The substitution can be undone by undo_all. If INTO is already
+ set to NEWVAL, do not record this change. Because computing NEWVAL might
+ also call SUBST, we have to compute it before we put anything into
+ the undo table. */
+
+#define SUBST(INTO, NEWVAL) \
+ do { rtx _new = (NEWVAL); \
+ if (undobuf.num_undo < MAX_UNDO) \
+ { \
+ undobuf.undo[undobuf.num_undo].is_int = 0; \
+ undobuf.undo[undobuf.num_undo].where.r = &INTO; \
+ undobuf.undo[undobuf.num_undo].old_contents.r = INTO; \
+ INTO = _new; \
+ if (undobuf.undo[undobuf.num_undo].old_contents.r != INTO) \
+ undobuf.num_undo++; \
+ } \
+ } while (0)
+
+/* Similar to SUBST, but NEWVAL is an int. INTO will normally be an XINT
+ expression.
+ Note that substitution for the value of a CONST_INT is not safe. */
+
+#define SUBST_INT(INTO, NEWVAL) \
+ do { if (undobuf.num_undo < MAX_UNDO) \
+{ \
+ undobuf.undo[undobuf.num_undo].is_int = 1; \
+ undobuf.undo[undobuf.num_undo].where.i = (int *) &INTO; \
+ undobuf.undo[undobuf.num_undo].old_contents.i = INTO; \
+ INTO = NEWVAL; \
+ if (undobuf.undo[undobuf.num_undo].old_contents.i != INTO) \
+ undobuf.num_undo++; \
+ } \
+ } while (0)
+
+/* Number of times the pseudo being substituted for
+ was found and replaced. */
+
+static int n_occurrences;
+
+static void init_reg_last_arrays PROTO(());
+static void setup_incoming_promotions PROTO(());
+static void set_nonzero_bits_and_sign_copies PROTO((rtx, rtx));
+static int can_combine_p PROTO((rtx, rtx, rtx, rtx, rtx *, rtx *));
+static int combinable_i3pat PROTO((rtx, rtx *, rtx, rtx, int, rtx *));
+static rtx try_combine PROTO((rtx, rtx, rtx));
+static void undo_all PROTO((void));
+static rtx *find_split_point PROTO((rtx *, rtx));
+static rtx subst PROTO((rtx, rtx, rtx, int, int));
+static rtx simplify_rtx PROTO((rtx, enum machine_mode, int, int));
+static rtx simplify_if_then_else PROTO((rtx));
+static rtx simplify_set PROTO((rtx));
+static rtx simplify_logical PROTO((rtx, int));
+static rtx expand_compound_operation PROTO((rtx));
+static rtx expand_field_assignment PROTO((rtx));
+static rtx make_extraction PROTO((enum machine_mode, rtx, int, rtx, int,
+ int, int, int));
+static rtx extract_left_shift PROTO((rtx, int));
+static rtx make_compound_operation PROTO((rtx, enum rtx_code));
+static int get_pos_from_mask PROTO((unsigned HOST_WIDE_INT, int *));
+static rtx force_to_mode PROTO((rtx, enum machine_mode,
+ unsigned HOST_WIDE_INT, rtx, int));
+static rtx if_then_else_cond PROTO((rtx, rtx *, rtx *));
+static rtx known_cond PROTO((rtx, enum rtx_code, rtx, rtx));
+static rtx make_field_assignment PROTO((rtx));
+static rtx apply_distributive_law PROTO((rtx));
+static rtx simplify_and_const_int PROTO((rtx, enum machine_mode, rtx,
+ unsigned HOST_WIDE_INT));
+static unsigned HOST_WIDE_INT nonzero_bits PROTO((rtx, enum machine_mode));
+static int num_sign_bit_copies PROTO((rtx, enum machine_mode));
+static int merge_outer_ops PROTO((enum rtx_code *, HOST_WIDE_INT *,
+ enum rtx_code, HOST_WIDE_INT,
+ enum machine_mode, int *));
+static rtx simplify_shift_const PROTO((rtx, enum rtx_code, enum machine_mode,
+ rtx, int));
+static int recog_for_combine PROTO((rtx *, rtx, rtx *, int *));
+static rtx gen_lowpart_for_combine PROTO((enum machine_mode, rtx));
+static rtx gen_rtx_combine PVPROTO((enum rtx_code code, enum machine_mode mode,
+ ...));
+static rtx gen_binary PROTO((enum rtx_code, enum machine_mode,
+ rtx, rtx));
+static rtx gen_unary PROTO((enum rtx_code, enum machine_mode,
+ enum machine_mode, rtx));
+static enum rtx_code simplify_comparison PROTO((enum rtx_code, rtx *, rtx *));
+static int reversible_comparison_p PROTO((rtx));
+static void update_table_tick PROTO((rtx));
+static void record_value_for_reg PROTO((rtx, rtx, rtx));
+static void record_dead_and_set_regs_1 PROTO((rtx, rtx));
+static void record_dead_and_set_regs PROTO((rtx));
+static int get_last_value_validate PROTO((rtx *, int, int));
+static rtx get_last_value PROTO((rtx));
+static int use_crosses_set_p PROTO((rtx, int));
+static void reg_dead_at_p_1 PROTO((rtx, rtx));
+static int reg_dead_at_p PROTO((rtx, rtx));
+static void move_deaths PROTO((rtx, int, rtx, rtx *));
+static int reg_bitfield_target_p PROTO((rtx, rtx));
+static void distribute_notes PROTO((rtx, rtx, rtx, rtx, rtx, rtx));
+static void distribute_links PROTO((rtx));
+static void mark_used_regs_combine PROTO((rtx));
+
+/* Main entry point for combiner. F is the first insn of the function.
+ NREGS is the first unused pseudo-reg number. */
+
+void
+combine_instructions (f, nregs)
+ rtx f;
+ int nregs;
+{
+ register rtx insn, next, prev;
+ register int i;
+ register rtx links, nextlinks;
+
+ combine_attempts = 0;
+ combine_merges = 0;
+ combine_extras = 0;
+ combine_successes = 0;
+ undobuf.num_undo = previous_num_undos = 0;
+
+ combine_max_regno = nregs;
+
+ reg_nonzero_bits
+ = (unsigned HOST_WIDE_INT *) alloca (nregs * sizeof (HOST_WIDE_INT));
+ reg_sign_bit_copies = (char *) alloca (nregs * sizeof (char));
+
+ bzero ((char *) reg_nonzero_bits, nregs * sizeof (HOST_WIDE_INT));
+ bzero (reg_sign_bit_copies, nregs * sizeof (char));
+
+ reg_last_death = (rtx *) alloca (nregs * sizeof (rtx));
+ reg_last_set = (rtx *) alloca (nregs * sizeof (rtx));
+ reg_last_set_value = (rtx *) alloca (nregs * sizeof (rtx));
+ reg_last_set_table_tick = (int *) alloca (nregs * sizeof (int));
+ reg_last_set_label = (int *) alloca (nregs * sizeof (int));
+ reg_last_set_invalid = (char *) alloca (nregs * sizeof (char));
+ reg_last_set_mode
+ = (enum machine_mode *) alloca (nregs * sizeof (enum machine_mode));
+ reg_last_set_nonzero_bits
+ = (unsigned HOST_WIDE_INT *) alloca (nregs * sizeof (HOST_WIDE_INT));
+ reg_last_set_sign_bit_copies
+ = (char *) alloca (nregs * sizeof (char));
+
+ init_reg_last_arrays ();
+
+ init_recog_no_volatile ();
+
+ /* Compute maximum uid value so uid_cuid can be allocated. */
+
+ for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
+ if (INSN_UID (insn) > i)
+ i = INSN_UID (insn);
+
+ uid_cuid = (int *) alloca ((i + 1) * sizeof (int));
+ max_uid_cuid = i;
+
+ nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
+
+ /* Don't use reg_nonzero_bits when computing it. This can cause problems
+ when, for example, we have j <<= 1 in a loop. */
+
+ nonzero_sign_valid = 0;
+
+ /* Compute the mapping from uids to cuids.
+ Cuids are numbers assigned to insns, like uids,
+ except that cuids increase monotonically through the code.
+
+ Scan all SETs and see if we can deduce anything about what
+ bits are known to be zero for some registers and how many copies
+ of the sign bit are known to exist for those registers.
+
+ Also set any known values so that we can use it while searching
+ for what bits are known to be set. */
+
+ label_tick = 1;
+
+ /* We need to initialize it here, because record_dead_and_set_regs may call
+ get_last_value. */
+ subst_prev_insn = NULL_RTX;
+
+ setup_incoming_promotions ();
+
+ for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
+ {
+ uid_cuid[INSN_UID (insn)] = ++i;
+ subst_low_cuid = i;
+ subst_insn = insn;
+
+ if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
+ {
+ note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies);
+ record_dead_and_set_regs (insn);
+ }
+
+ if (GET_CODE (insn) == CODE_LABEL)
+ label_tick++;
+ }
+
+ nonzero_sign_valid = 1;
+
+ /* Now scan all the insns in forward order. */
+
+ this_basic_block = -1;
+ label_tick = 1;
+ last_call_cuid = 0;
+ mem_last_set = 0;
+ init_reg_last_arrays ();
+ setup_incoming_promotions ();
+
+ for (insn = f; insn; insn = next ? next : NEXT_INSN (insn))
+ {
+ next = 0;
+
+ /* If INSN starts a new basic block, update our basic block number. */
+ if (this_basic_block + 1 < n_basic_blocks
+ && basic_block_head[this_basic_block + 1] == insn)
+ this_basic_block++;
+
+ if (GET_CODE (insn) == CODE_LABEL)
+ label_tick++;
+
+ else if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
+ {
+ /* Try this insn with each insn it links back to. */
+
+ for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
+ if ((next = try_combine (insn, XEXP (links, 0), NULL_RTX)) != 0)
+ goto retry;
+
+ /* Try each sequence of three linked insns ending with this one. */
+
+ for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
+ for (nextlinks = LOG_LINKS (XEXP (links, 0)); nextlinks;
+ nextlinks = XEXP (nextlinks, 1))
+ if ((next = try_combine (insn, XEXP (links, 0),
+ XEXP (nextlinks, 0))) != 0)
+ goto retry;
+
+#ifdef HAVE_cc0
+ /* Try to combine a jump insn that uses CC0
+ with a preceding insn that sets CC0, and maybe with its
+ logical predecessor as well.
+ This is how we make decrement-and-branch insns.
+ We need this special code because data flow connections
+ via CC0 do not get entered in LOG_LINKS. */
+
+ if (GET_CODE (insn) == JUMP_INSN
+ && (prev = prev_nonnote_insn (insn)) != 0
+ && GET_CODE (prev) == INSN
+ && sets_cc0_p (PATTERN (prev)))
+ {
+ if ((next = try_combine (insn, prev, NULL_RTX)) != 0)
+ goto retry;
+
+ for (nextlinks = LOG_LINKS (prev); nextlinks;
+ nextlinks = XEXP (nextlinks, 1))
+ if ((next = try_combine (insn, prev,
+ XEXP (nextlinks, 0))) != 0)
+ goto retry;
+ }
+
+ /* Do the same for an insn that explicitly references CC0. */
+ if (GET_CODE (insn) == INSN
+ && (prev = prev_nonnote_insn (insn)) != 0
+ && GET_CODE (prev) == INSN
+ && sets_cc0_p (PATTERN (prev))
+ && GET_CODE (PATTERN (insn)) == SET
+ && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
+ {
+ if ((next = try_combine (insn, prev, NULL_RTX)) != 0)
+ goto retry;
+
+ for (nextlinks = LOG_LINKS (prev); nextlinks;
+ nextlinks = XEXP (nextlinks, 1))
+ if ((next = try_combine (insn, prev,
+ XEXP (nextlinks, 0))) != 0)
+ goto retry;
+ }
+
+ /* Finally, see if any of the insns that this insn links to
+ explicitly references CC0. If so, try this insn, that insn,
+ and its predecessor if it sets CC0. */
+ for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
+ if (GET_CODE (XEXP (links, 0)) == INSN
+ && GET_CODE (PATTERN (XEXP (links, 0))) == SET
+ && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (XEXP (links, 0))))
+ && (prev = prev_nonnote_insn (XEXP (links, 0))) != 0
+ && GET_CODE (prev) == INSN
+ && sets_cc0_p (PATTERN (prev))
+ && (next = try_combine (insn, XEXP (links, 0), prev)) != 0)
+ goto retry;
+#endif
+
+ /* Try combining an insn with two different insns whose results it
+ uses. */
+ for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
+ for (nextlinks = XEXP (links, 1); nextlinks;
+ nextlinks = XEXP (nextlinks, 1))
+ if ((next = try_combine (insn, XEXP (links, 0),
+ XEXP (nextlinks, 0))) != 0)
+ goto retry;
+
+ if (GET_CODE (insn) != NOTE)
+ record_dead_and_set_regs (insn);
+
+ retry:
+ ;
+ }
+ }
+
+ total_attempts += combine_attempts;
+ total_merges += combine_merges;
+ total_extras += combine_extras;
+ total_successes += combine_successes;
+
+ nonzero_sign_valid = 0;
+}
+
+/* Wipe the reg_last_xxx arrays in preparation for another pass. */
+
+static void
+init_reg_last_arrays ()
+{
+ int nregs = combine_max_regno;
+
+ bzero ((char *) reg_last_death, nregs * sizeof (rtx));
+ bzero ((char *) reg_last_set, nregs * sizeof (rtx));
+ bzero ((char *) reg_last_set_value, nregs * sizeof (rtx));
+ bzero ((char *) reg_last_set_table_tick, nregs * sizeof (int));
+ bzero ((char *) reg_last_set_label, nregs * sizeof (int));
+ bzero (reg_last_set_invalid, nregs * sizeof (char));
+ bzero ((char *) reg_last_set_mode, nregs * sizeof (enum machine_mode));
+ bzero ((char *) reg_last_set_nonzero_bits, nregs * sizeof (HOST_WIDE_INT));
+ bzero (reg_last_set_sign_bit_copies, nregs * sizeof (char));
+}
+
+/* Set up any promoted values for incoming argument registers. */
+
+static void
+setup_incoming_promotions ()
+{
+#ifdef PROMOTE_FUNCTION_ARGS
+ int regno;
+ rtx reg;
+ enum machine_mode mode;
+ int unsignedp;
+ rtx first = get_insns ();
+
+ for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
+ if (FUNCTION_ARG_REGNO_P (regno)
+ && (reg = promoted_input_arg (regno, &mode, &unsignedp)) != 0)
+ record_value_for_reg (reg, first,
+ gen_rtx (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
+ GET_MODE (reg),
+ gen_rtx (CLOBBER, mode, const0_rtx)));
+#endif
+}
+
+/* Called via note_stores. If X is a pseudo that is used in more than
+ one basic block, is narrower that HOST_BITS_PER_WIDE_INT, and is being
+ set, record what bits are known zero. If we are clobbering X,
+ ignore this "set" because the clobbered value won't be used.
+
+ If we are setting only a portion of X and we can't figure out what
+ portion, assume all bits will be used since we don't know what will
+ be happening.
+
+ Similarly, set how many bits of X are known to be copies of the sign bit
+ at all locations in the function. This is the smallest number implied
+ by any set of X. */
+
+static void
+set_nonzero_bits_and_sign_copies (x, set)
+ rtx x;
+ rtx set;
+{
+ int num;
+
+ if (GET_CODE (x) == REG
+ && REGNO (x) >= FIRST_PSEUDO_REGISTER
+ && reg_n_sets[REGNO (x)] > 1
+ && reg_basic_block[REGNO (x)] < 0
+ /* If this register is undefined at the start of the file, we can't
+ say what its contents were. */
+ && ! (basic_block_live_at_start[0][REGNO (x) / REGSET_ELT_BITS]
+ & ((REGSET_ELT_TYPE) 1 << (REGNO (x) % REGSET_ELT_BITS)))
+ && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
+ {
+ if (GET_CODE (set) == CLOBBER)
+ {
+ reg_nonzero_bits[REGNO (x)] = GET_MODE_MASK (GET_MODE (x));
+ reg_sign_bit_copies[REGNO (x)] = 0;
+ return;
+ }
+
+ /* If this is a complex assignment, see if we can convert it into a
+ simple assignment. */
+ set = expand_field_assignment (set);
+
+ /* If this is a simple assignment, or we have a paradoxical SUBREG,
+ set what we know about X. */
+
+ if (SET_DEST (set) == x
+ || (GET_CODE (SET_DEST (set)) == SUBREG
+ && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
+ > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set)))))
+ && SUBREG_REG (SET_DEST (set)) == x))
+ {
+ rtx src = SET_SRC (set);
+
+#ifdef SHORT_IMMEDIATES_SIGN_EXTEND
+ /* If X is narrower than a word and SRC is a non-negative
+ constant that would appear negative in the mode of X,
+ sign-extend it for use in reg_nonzero_bits because some
+ machines (maybe most) will actually do the sign-extension
+ and this is the conservative approach.
+
+ ??? For 2.5, try to tighten up the MD files in this regard
+ instead of this kludge. */
+
+ if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
+ && GET_CODE (src) == CONST_INT
+ && INTVAL (src) > 0
+ && 0 != (INTVAL (src)
+ & ((HOST_WIDE_INT) 1
+ << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
+ src = GEN_INT (INTVAL (src)
+ | ((HOST_WIDE_INT) (-1)
+ << GET_MODE_BITSIZE (GET_MODE (x))));
+#endif
+
+ reg_nonzero_bits[REGNO (x)]
+ |= nonzero_bits (src, nonzero_bits_mode);
+ num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
+ if (reg_sign_bit_copies[REGNO (x)] == 0
+ || reg_sign_bit_copies[REGNO (x)] > num)
+ reg_sign_bit_copies[REGNO (x)] = num;
+ }
+ else
+ {
+ reg_nonzero_bits[REGNO (x)] = GET_MODE_MASK (GET_MODE (x));
+ reg_sign_bit_copies[REGNO (x)] = 0;
+ }
+ }
+}
+
+/* See if INSN can be combined into I3. PRED and SUCC are optionally
+ insns that were previously combined into I3 or that will be combined
+ into the merger of INSN and I3.
+
+ Return 0 if the combination is not allowed for any reason.
+
+ If the combination is allowed, *PDEST will be set to the single
+ destination of INSN and *PSRC to the single source, and this function
+ will return 1. */
+
+static int
+can_combine_p (insn, i3, pred, succ, pdest, psrc)
+ rtx insn;
+ rtx i3;
+ rtx pred, succ;
+ rtx *pdest, *psrc;
+{
+ int i;
+ rtx set = 0, src, dest;
+ rtx p, link;
+ int all_adjacent = (succ ? (next_active_insn (insn) == succ
+ && next_active_insn (succ) == i3)
+ : next_active_insn (insn) == i3);
+
+ /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
+ or a PARALLEL consisting of such a SET and CLOBBERs.
+
+ If INSN has CLOBBER parallel parts, ignore them for our processing.
+ By definition, these happen during the execution of the insn. When it
+ is merged with another insn, all bets are off. If they are, in fact,
+ needed and aren't also supplied in I3, they may be added by
+ recog_for_combine. Otherwise, it won't match.
+
+ We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
+ note.
+
+ Get the source and destination of INSN. If more than one, can't
+ combine. */
+
+ if (GET_CODE (PATTERN (insn)) == SET)
+ set = PATTERN (insn);
+ else if (GET_CODE (PATTERN (insn)) == PARALLEL
+ && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
+ {
+ for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
+ {
+ rtx elt = XVECEXP (PATTERN (insn), 0, i);
+
+ switch (GET_CODE (elt))
+ {
+ /* We can ignore CLOBBERs. */
+ case CLOBBER:
+ break;
+
+ case SET:
+ /* Ignore SETs whose result isn't used but not those that
+ have side-effects. */
+ if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
+ && ! side_effects_p (elt))
+ break;
+
+ /* If we have already found a SET, this is a second one and
+ so we cannot combine with this insn. */
+ if (set)
+ return 0;
+
+ set = elt;
+ break;
+
+ default:
+ /* Anything else means we can't combine. */
+ return 0;
+ }
+ }
+
+ if (set == 0
+ /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
+ so don't do anything with it. */
+ || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
+ return 0;
+ }
+ else
+ return 0;
+
+ if (set == 0)
+ return 0;
+
+ set = expand_field_assignment (set);
+ src = SET_SRC (set), dest = SET_DEST (set);
+
+ /* Don't eliminate a store in the stack pointer. */
+ if (dest == stack_pointer_rtx
+ /* If we couldn't eliminate a field assignment, we can't combine. */
+ || GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == STRICT_LOW_PART
+ /* Don't combine with an insn that sets a register to itself if it has
+ a REG_EQUAL note. This may be part of a REG_NO_CONFLICT sequence. */
+ || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
+ /* Can't merge a function call. */
+ || GET_CODE (src) == CALL
+ /* Don't eliminate a function call argument. */
+ || (GET_CODE (i3) == CALL_INSN
+ && (find_reg_fusage (i3, USE, dest)
+ || (GET_CODE (dest) == REG
+ && REGNO (dest) < FIRST_PSEUDO_REGISTER
+ && global_regs[REGNO (dest)])))
+ /* Don't substitute into an incremented register. */
+ || FIND_REG_INC_NOTE (i3, dest)
+ || (succ && FIND_REG_INC_NOTE (succ, dest))
+ /* Don't combine the end of a libcall into anything. */
+ || find_reg_note (insn, REG_RETVAL, NULL_RTX)
+ /* Make sure that DEST is not used after SUCC but before I3. */
+ || (succ && ! all_adjacent
+ && reg_used_between_p (dest, succ, i3))
+ /* Make sure that the value that is to be substituted for the register
+ does not use any registers whose values alter in between. However,
+ If the insns are adjacent, a use can't cross a set even though we
+ think it might (this can happen for a sequence of insns each setting
+ the same destination; reg_last_set of that register might point to
+ a NOTE). If INSN has a REG_EQUIV note, the register is always
+ equivalent to the memory so the substitution is valid even if there
+ are intervening stores. Also, don't move a volatile asm or
+ UNSPEC_VOLATILE across any other insns. */
+ || (! all_adjacent
+ && (((GET_CODE (src) != MEM
+ || ! find_reg_note (insn, REG_EQUIV, src))
+ && use_crosses_set_p (src, INSN_CUID (insn)))
+ || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
+ || GET_CODE (src) == UNSPEC_VOLATILE))
+ /* If there is a REG_NO_CONFLICT note for DEST in I3 or SUCC, we get
+ better register allocation by not doing the combine. */
+ || find_reg_note (i3, REG_NO_CONFLICT, dest)
+ || (succ && find_reg_note (succ, REG_NO_CONFLICT, dest))
+ /* Don't combine across a CALL_INSN, because that would possibly
+ change whether the life span of some REGs crosses calls or not,
+ and it is a pain to update that information.
+ Exception: if source is a constant, moving it later can't hurt.
+ Accept that special case, because it helps -fforce-addr a lot. */
+ || (INSN_CUID (insn) < last_call_cuid && ! CONSTANT_P (src)))
+ return 0;
+
+ /* DEST must either be a REG or CC0. */
+ if (GET_CODE (dest) == REG)
+ {
+ /* If register alignment is being enforced for multi-word items in all
+ cases except for parameters, it is possible to have a register copy
+ insn referencing a hard register that is not allowed to contain the
+ mode being copied and which would not be valid as an operand of most
+ insns. Eliminate this problem by not combining with such an insn.
+
+ Also, on some machines we don't want to extend the life of a hard
+ register. */
+
+ if (GET_CODE (src) == REG
+ && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
+ && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
+ /* Don't extend the life of a hard register unless it is
+ user variable (if we have few registers) or it can't
+ fit into the desired register (meaning something special
+ is going on). */
+ || (REGNO (src) < FIRST_PSEUDO_REGISTER
+ && (! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src))
+#ifdef SMALL_REGISTER_CLASSES
+ || ! REG_USERVAR_P (src)
+#endif
+ ))))
+ return 0;
+ }
+ else if (GET_CODE (dest) != CC0)
+ return 0;
+
+ /* Don't substitute for a register intended as a clobberable operand.
+ Similarly, don't substitute an expression containing a register that
+ will be clobbered in I3. */
+ if (GET_CODE (PATTERN (i3)) == PARALLEL)
+ for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
+ if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER
+ && (reg_overlap_mentioned_p (XEXP (XVECEXP (PATTERN (i3), 0, i), 0),
+ src)
+ || rtx_equal_p (XEXP (XVECEXP (PATTERN (i3), 0, i), 0), dest)))
+ return 0;
+
+ /* If INSN contains anything volatile, or is an `asm' (whether volatile
+ or not), reject, unless nothing volatile comes between it and I3,
+ with the exception of SUCC. */
+
+ if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
+ for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
+ if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
+ && p != succ && volatile_refs_p (PATTERN (p)))
+ return 0;
+
+ /* If there are any volatile insns between INSN and I3, reject, because
+ they might affect machine state. */
+
+ for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
+ if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
+ && p != succ && volatile_insn_p (PATTERN (p)))
+ return 0;
+
+ /* If INSN or I2 contains an autoincrement or autodecrement,
+ make sure that register is not used between there and I3,
+ and not already used in I3 either.
+ Also insist that I3 not be a jump; if it were one
+ and the incremented register were spilled, we would lose. */
+
+#ifdef AUTO_INC_DEC
+ for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
+ if (REG_NOTE_KIND (link) == REG_INC
+ && (GET_CODE (i3) == JUMP_INSN
+ || reg_used_between_p (XEXP (link, 0), insn, i3)
+ || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
+ return 0;
+#endif
+
+#ifdef HAVE_cc0
+ /* Don't combine an insn that follows a CC0-setting insn.
+ An insn that uses CC0 must not be separated from the one that sets it.
+ We do, however, allow I2 to follow a CC0-setting insn if that insn
+ is passed as I1; in that case it will be deleted also.
+ We also allow combining in this case if all the insns are adjacent
+ because that would leave the two CC0 insns adjacent as well.
+ It would be more logical to test whether CC0 occurs inside I1 or I2,
+ but that would be much slower, and this ought to be equivalent. */
+
+ p = prev_nonnote_insn (insn);
+ if (p && p != pred && GET_CODE (p) == INSN && sets_cc0_p (PATTERN (p))
+ && ! all_adjacent)
+ return 0;
+#endif
+
+ /* If we get here, we have passed all the tests and the combination is
+ to be allowed. */
+
+ *pdest = dest;
+ *psrc = src;
+
+ return 1;
+}
+
+/* LOC is the location within I3 that contains its pattern or the component
+ of a PARALLEL of the pattern. We validate that it is valid for combining.
+
+ One problem is if I3 modifies its output, as opposed to replacing it
+ entirely, we can't allow the output to contain I2DEST or I1DEST as doing
+ so would produce an insn that is not equivalent to the original insns.
+
+ Consider:
+
+ (set (reg:DI 101) (reg:DI 100))
+ (set (subreg:SI (reg:DI 101) 0) <foo>)
+
+ This is NOT equivalent to:
+
+ (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
+ (set (reg:DI 101) (reg:DI 100))])
+
+ Not only does this modify 100 (in which case it might still be valid
+ if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
+
+ We can also run into a problem if I2 sets a register that I1
+ uses and I1 gets directly substituted into I3 (not via I2). In that
+ case, we would be getting the wrong value of I2DEST into I3, so we
+ must reject the combination. This case occurs when I2 and I1 both
+ feed into I3, rather than when I1 feeds into I2, which feeds into I3.
+ If I1_NOT_IN_SRC is non-zero, it means that finding I1 in the source
+ of a SET must prevent combination from occurring.
+
+ On machines where SMALL_REGISTER_CLASSES is defined, we don't combine
+ if the destination of a SET is a hard register that isn't a user
+ variable.
+
+ Before doing the above check, we first try to expand a field assignment
+ into a set of logical operations.
+
+ If PI3_DEST_KILLED is non-zero, it is a pointer to a location in which
+ we place a register that is both set and used within I3. If more than one
+ such register is detected, we fail.
+
+ Return 1 if the combination is valid, zero otherwise. */
+
+static int
+combinable_i3pat (i3, loc, i2dest, i1dest, i1_not_in_src, pi3dest_killed)
+ rtx i3;
+ rtx *loc;
+ rtx i2dest;
+ rtx i1dest;
+ int i1_not_in_src;
+ rtx *pi3dest_killed;
+{
+ rtx x = *loc;
+
+ if (GET_CODE (x) == SET)
+ {
+ rtx set = expand_field_assignment (x);
+ rtx dest = SET_DEST (set);
+ rtx src = SET_SRC (set);
+ rtx inner_dest = dest, inner_src = src;
+
+ SUBST (*loc, set);
+
+ while (GET_CODE (inner_dest) == STRICT_LOW_PART
+ || GET_CODE (inner_dest) == SUBREG
+ || GET_CODE (inner_dest) == ZERO_EXTRACT)
+ inner_dest = XEXP (inner_dest, 0);
+
+ /* We probably don't need this any more now that LIMIT_RELOAD_CLASS
+ was added. */
+#if 0
+ while (GET_CODE (inner_src) == STRICT_LOW_PART
+ || GET_CODE (inner_src) == SUBREG
+ || GET_CODE (inner_src) == ZERO_EXTRACT)
+ inner_src = XEXP (inner_src, 0);
+
+ /* If it is better that two different modes keep two different pseudos,
+ avoid combining them. This avoids producing the following pattern
+ on a 386:
+ (set (subreg:SI (reg/v:QI 21) 0)
+ (lshiftrt:SI (reg/v:SI 20)
+ (const_int 24)))
+ If that were made, reload could not handle the pair of
+ reg 20/21, since it would try to get any GENERAL_REGS
+ but some of them don't handle QImode. */
+
+ if (rtx_equal_p (inner_src, i2dest)
+ && GET_CODE (inner_dest) == REG
+ && ! MODES_TIEABLE_P (GET_MODE (i2dest), GET_MODE (inner_dest)))
+ return 0;
+#endif
+
+ /* Check for the case where I3 modifies its output, as
+ discussed above. */
+ if ((inner_dest != dest
+ && (reg_overlap_mentioned_p (i2dest, inner_dest)
+ || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))))
+ /* This is the same test done in can_combine_p except that we
+ allow a hard register with SMALL_REGISTER_CLASSES if SRC is a
+ CALL operation. */
+ || (GET_CODE (inner_dest) == REG
+ && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
+ && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
+ GET_MODE (inner_dest))
+#ifdef SMALL_REGISTER_CLASSES
+ || (GET_CODE (src) != CALL && ! REG_USERVAR_P (inner_dest))
+#endif
+ ))
+ || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src)))
+ return 0;
+
+ /* If DEST is used in I3, it is being killed in this insn,
+ so record that for later.
+ Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
+ STACK_POINTER_REGNUM, since these are always considered to be
+ live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
+ if (pi3dest_killed && GET_CODE (dest) == REG
+ && reg_referenced_p (dest, PATTERN (i3))
+ && REGNO (dest) != FRAME_POINTER_REGNUM
+#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
+ && REGNO (dest) != HARD_FRAME_POINTER_REGNUM
+#endif
+#if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
+ && (REGNO (dest) != ARG_POINTER_REGNUM
+ || ! fixed_regs [REGNO (dest)])
+#endif
+ && REGNO (dest) != STACK_POINTER_REGNUM)
+ {
+ if (*pi3dest_killed)
+ return 0;
+
+ *pi3dest_killed = dest;
+ }
+ }
+
+ else if (GET_CODE (x) == PARALLEL)
+ {
+ int i;
+
+ for (i = 0; i < XVECLEN (x, 0); i++)
+ if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest,
+ i1_not_in_src, pi3dest_killed))
+ return 0;
+ }
+
+ return 1;
+}
+
+/* Try to combine the insns I1 and I2 into I3.
+ Here I1 and I2 appear earlier than I3.
+ I1 can be zero; then we combine just I2 into I3.
+
+ It we are combining three insns and the resulting insn is not recognized,
+ try splitting it into two insns. If that happens, I2 and I3 are retained
+ and I1 is pseudo-deleted by turning it into a NOTE. Otherwise, I1 and I2
+ are pseudo-deleted.
+
+ Return 0 if the combination does not work. Then nothing is changed.
+ If we did the combination, return the insn at which combine should
+ resume scanning. */
+
+static rtx
+try_combine (i3, i2, i1)
+ register rtx i3, i2, i1;
+{
+ /* New patterns for I3 and I3, respectively. */
+ rtx newpat, newi2pat = 0;
+ /* Indicates need to preserve SET in I1 or I2 in I3 if it is not dead. */
+ int added_sets_1, added_sets_2;
+ /* Total number of SETs to put into I3. */
+ int total_sets;
+ /* Nonzero is I2's body now appears in I3. */
+ int i2_is_used;
+ /* INSN_CODEs for new I3, new I2, and user of condition code. */
+ int insn_code_number, i2_code_number, other_code_number;
+ /* Contains I3 if the destination of I3 is used in its source, which means
+ that the old life of I3 is being killed. If that usage is placed into
+ I2 and not in I3, a REG_DEAD note must be made. */
+ rtx i3dest_killed = 0;
+ /* SET_DEST and SET_SRC of I2 and I1. */
+ rtx i2dest, i2src, i1dest = 0, i1src = 0;
+ /* PATTERN (I2), or a copy of it in certain cases. */
+ rtx i2pat;
+ /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
+ int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
+ int i1_feeds_i3 = 0;
+ /* Notes that must be added to REG_NOTES in I3 and I2. */
+ rtx new_i3_notes, new_i2_notes;
+ /* Notes that we substituted I3 into I2 instead of the normal case. */
+ int i3_subst_into_i2 = 0;
+ /* Notes that I1, I2 or I3 is a MULT operation. */
+ int have_mult = 0;
+ /* Number of clobbers of SCRATCH we had to add. */
+ int i3_scratches = 0, i2_scratches = 0, other_scratches = 0;
+
+ int maxreg;
+ rtx temp;
+ register rtx link;
+ int i;
+
+ /* If any of I1, I2, and I3 isn't really an insn, we can't do anything.
+ This can occur when flow deletes an insn that it has merged into an
+ auto-increment address. We also can't do anything if I3 has a
+ REG_LIBCALL note since we don't want to disrupt the contiguity of a
+ libcall. */
+
+ if (GET_RTX_CLASS (GET_CODE (i3)) != 'i'
+ || GET_RTX_CLASS (GET_CODE (i2)) != 'i'
+ || (i1 && GET_RTX_CLASS (GET_CODE (i1)) != 'i')
+ || find_reg_note (i3, REG_LIBCALL, NULL_RTX))
+ return 0;
+
+ combine_attempts++;
+
+ undobuf.num_undo = previous_num_undos = 0;
+ undobuf.other_insn = 0;
+
+ /* Save the current high-water-mark so we can free storage if we didn't
+ accept this combination. */
+ undobuf.storage = (char *) oballoc (0);
+
+ /* Reset the hard register usage information. */
+ CLEAR_HARD_REG_SET (newpat_used_regs);
+
+ /* If I1 and I2 both feed I3, they can be in any order. To simplify the
+ code below, set I1 to be the earlier of the two insns. */
+ if (i1 && INSN_CUID (i1) > INSN_CUID (i2))
+ temp = i1, i1 = i2, i2 = temp;
+
+ added_links_insn = 0;
+
+ /* First check for one important special-case that the code below will
+ not handle. Namely, the case where I1 is zero, I2 has multiple sets,
+ and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
+ we may be able to replace that destination with the destination of I3.
+ This occurs in the common code where we compute both a quotient and
+ remainder into a structure, in which case we want to do the computation
+ directly into the structure to avoid register-register copies.
+
+ We make very conservative checks below and only try to handle the
+ most common cases of this. For example, we only handle the case
+ where I2 and I3 are adjacent to avoid making difficult register
+ usage tests. */
+
+ if (i1 == 0 && GET_CODE (i3) == INSN && GET_CODE (PATTERN (i3)) == SET
+ && GET_CODE (SET_SRC (PATTERN (i3))) == REG
+ && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
+#ifdef SMALL_REGISTER_CLASSES
+ && (GET_CODE (SET_DEST (PATTERN (i3))) != REG
+ || REGNO (SET_DEST (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
+ || REG_USERVAR_P (SET_DEST (PATTERN (i3))))
+#endif
+ && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
+ && GET_CODE (PATTERN (i2)) == PARALLEL
+ && ! side_effects_p (SET_DEST (PATTERN (i3)))
+ /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
+ below would need to check what is inside (and reg_overlap_mentioned_p
+ doesn't support those codes anyway). Don't allow those destinations;
+ the resulting insn isn't likely to be recognized anyway. */
+ && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
+ && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
+ && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
+ SET_DEST (PATTERN (i3)))
+ && next_real_insn (i2) == i3)
+ {
+ rtx p2 = PATTERN (i2);
+
+ /* Make sure that the destination of I3,
+ which we are going to substitute into one output of I2,
+ is not used within another output of I2. We must avoid making this:
+ (parallel [(set (mem (reg 69)) ...)
+ (set (reg 69) ...)])
+ which is not well-defined as to order of actions.
+ (Besides, reload can't handle output reloads for this.)
+
+ The problem can also happen if the dest of I3 is a memory ref,
+ if another dest in I2 is an indirect memory ref. */
+ for (i = 0; i < XVECLEN (p2, 0); i++)
+ if (GET_CODE (XVECEXP (p2, 0, i)) == SET
+ && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
+ SET_DEST (XVECEXP (p2, 0, i))))
+ break;
+
+ if (i == XVECLEN (p2, 0))
+ for (i = 0; i < XVECLEN (p2, 0); i++)
+ if (SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
+ {
+ combine_merges++;
+
+ subst_insn = i3;
+ subst_low_cuid = INSN_CUID (i2);
+
+ added_sets_2 = added_sets_1 = 0;
+ i2dest = SET_SRC (PATTERN (i3));
+
+ /* Replace the dest in I2 with our dest and make the resulting
+ insn the new pattern for I3. Then skip to where we
+ validate the pattern. Everything was set up above. */
+ SUBST (SET_DEST (XVECEXP (p2, 0, i)),
+ SET_DEST (PATTERN (i3)));
+
+ newpat = p2;
+ i3_subst_into_i2 = 1;
+ goto validate_replacement;
+ }
+ }
+
+#ifndef HAVE_cc0
+ /* If we have no I1 and I2 looks like:
+ (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
+ (set Y OP)])
+ make up a dummy I1 that is
+ (set Y OP)
+ and change I2 to be
+ (set (reg:CC X) (compare:CC Y (const_int 0)))
+
+ (We can ignore any trailing CLOBBERs.)
+
+ This undoes a previous combination and allows us to match a branch-and-
+ decrement insn. */
+
+ if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
+ && XVECLEN (PATTERN (i2), 0) >= 2
+ && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
+ && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
+ == MODE_CC)
+ && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
+ && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
+ && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
+ && GET_CODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 1))) == REG
+ && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
+ SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
+ {
+ for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
+ if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
+ break;
+
+ if (i == 1)
+ {
+ /* We make I1 with the same INSN_UID as I2. This gives it
+ the same INSN_CUID for value tracking. Our fake I1 will
+ never appear in the insn stream so giving it the same INSN_UID
+ as I2 will not cause a problem. */
+
+ subst_prev_insn = i1
+ = gen_rtx (INSN, VOIDmode, INSN_UID (i2), 0, i2,
+ XVECEXP (PATTERN (i2), 0, 1), -1, 0, 0);
+
+ SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
+ SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
+ SET_DEST (PATTERN (i1)));
+ }
+ }
+#endif
+
+ /* Verify that I2 and I1 are valid for combining. */
+ if (! can_combine_p (i2, i3, i1, NULL_RTX, &i2dest, &i2src)
+ || (i1 && ! can_combine_p (i1, i3, NULL_RTX, i2, &i1dest, &i1src)))
+ {
+ undo_all ();
+ return 0;
+ }
+
+ /* Record whether I2DEST is used in I2SRC and similarly for the other
+ cases. Knowing this will help in register status updating below. */
+ i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
+ i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
+ i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
+
+ /* See if I1 directly feeds into I3. It does if I1DEST is not used
+ in I2SRC. */
+ i1_feeds_i3 = i1 && ! reg_overlap_mentioned_p (i1dest, i2src);
+
+ /* Ensure that I3's pattern can be the destination of combines. */
+ if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest,
+ i1 && i2dest_in_i1src && i1_feeds_i3,
+ &i3dest_killed))
+ {
+ undo_all ();
+ return 0;
+ }
+
+ /* See if any of the insns is a MULT operation. Unless one is, we will
+ reject a combination that is, since it must be slower. Be conservative
+ here. */
+ if (GET_CODE (i2src) == MULT
+ || (i1 != 0 && GET_CODE (i1src) == MULT)
+ || (GET_CODE (PATTERN (i3)) == SET
+ && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
+ have_mult = 1;
+
+ /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
+ We used to do this EXCEPT in one case: I3 has a post-inc in an
+ output operand. However, that exception can give rise to insns like
+ mov r3,(r3)+
+ which is a famous insn on the PDP-11 where the value of r3 used as the
+ source was model-dependent. Avoid this sort of thing. */
+
+#if 0
+ if (!(GET_CODE (PATTERN (i3)) == SET
+ && GET_CODE (SET_SRC (PATTERN (i3))) == REG
+ && GET_CODE (SET_DEST (PATTERN (i3))) == MEM
+ && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
+ || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
+ /* It's not the exception. */
+#endif
+#ifdef AUTO_INC_DEC
+ for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
+ if (REG_NOTE_KIND (link) == REG_INC
+ && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
+ || (i1 != 0
+ && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
+ {
+ undo_all ();
+ return 0;
+ }
+#endif
+
+ /* See if the SETs in I1 or I2 need to be kept around in the merged
+ instruction: whenever the value set there is still needed past I3.
+ For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
+
+ For the SET in I1, we have two cases: If I1 and I2 independently
+ feed into I3, the set in I1 needs to be kept around if I1DEST dies
+ or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
+ in I1 needs to be kept around unless I1DEST dies or is set in either
+ I2 or I3. We can distinguish these cases by seeing if I2SRC mentions
+ I1DEST. If so, we know I1 feeds into I2. */
+
+ added_sets_2 = ! dead_or_set_p (i3, i2dest);
+
+ added_sets_1
+ = i1 && ! (i1_feeds_i3 ? dead_or_set_p (i3, i1dest)
+ : (dead_or_set_p (i3, i1dest) || dead_or_set_p (i2, i1dest)));
+
+ /* If the set in I2 needs to be kept around, we must make a copy of
+ PATTERN (I2), so that when we substitute I1SRC for I1DEST in
+ PATTERN (I2), we are only substituting for the original I1DEST, not into
+ an already-substituted copy. This also prevents making self-referential
+ rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
+ I2DEST. */
+
+ i2pat = (GET_CODE (PATTERN (i2)) == PARALLEL
+ ? gen_rtx (SET, VOIDmode, i2dest, i2src)
+ : PATTERN (i2));
+
+ if (added_sets_2)
+ i2pat = copy_rtx (i2pat);
+
+ combine_merges++;
+
+ /* Substitute in the latest insn for the regs set by the earlier ones. */
+
+ maxreg = max_reg_num ();
+
+ subst_insn = i3;
+
+ /* It is possible that the source of I2 or I1 may be performing an
+ unneeded operation, such as a ZERO_EXTEND of something that is known
+ to have the high part zero. Handle that case by letting subst look at
+ the innermost one of them.
+
+ Another way to do this would be to have a function that tries to
+ simplify a single insn instead of merging two or more insns. We don't
+ do this because of the potential of infinite loops and because
+ of the potential extra memory required. However, doing it the way
+ we are is a bit of a kludge and doesn't catch all cases.
+
+ But only do this if -fexpensive-optimizations since it slows things down
+ and doesn't usually win. */
+
+ if (flag_expensive_optimizations)
+ {
+ /* Pass pc_rtx so no substitutions are done, just simplifications.
+ The cases that we are interested in here do not involve the few
+ cases were is_replaced is checked. */
+ if (i1)
+ {
+ subst_low_cuid = INSN_CUID (i1);
+ i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0);
+ }
+ else
+ {
+ subst_low_cuid = INSN_CUID (i2);
+ i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0);
+ }
+
+ previous_num_undos = undobuf.num_undo;
+ }
+
+#ifndef HAVE_cc0
+ /* Many machines that don't use CC0 have insns that can both perform an
+ arithmetic operation and set the condition code. These operations will
+ be represented as a PARALLEL with the first element of the vector
+ being a COMPARE of an arithmetic operation with the constant zero.
+ The second element of the vector will set some pseudo to the result
+ of the same arithmetic operation. If we simplify the COMPARE, we won't
+ match such a pattern and so will generate an extra insn. Here we test
+ for this case, where both the comparison and the operation result are
+ needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
+ I2SRC. Later we will make the PARALLEL that contains I2. */
+
+ if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
+ && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
+ && XEXP (SET_SRC (PATTERN (i3)), 1) == const0_rtx
+ && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
+ {
+ rtx *cc_use;
+ enum machine_mode compare_mode;
+
+ newpat = PATTERN (i3);
+ SUBST (XEXP (SET_SRC (newpat), 0), i2src);
+
+ i2_is_used = 1;
+
+#ifdef EXTRA_CC_MODES
+ /* See if a COMPARE with the operand we substituted in should be done
+ with the mode that is currently being used. If not, do the same
+ processing we do in `subst' for a SET; namely, if the destination
+ is used only once, try to replace it with a register of the proper
+ mode and also replace the COMPARE. */
+ if (undobuf.other_insn == 0
+ && (cc_use = find_single_use (SET_DEST (newpat), i3,
+ &undobuf.other_insn))
+ && ((compare_mode = SELECT_CC_MODE (GET_CODE (*cc_use),
+ i2src, const0_rtx))
+ != GET_MODE (SET_DEST (newpat))))
+ {
+ int regno = REGNO (SET_DEST (newpat));
+ rtx new_dest = gen_rtx (REG, compare_mode, regno);
+
+ if (regno < FIRST_PSEUDO_REGISTER
+ || (reg_n_sets[regno] == 1 && ! added_sets_2
+ && ! REG_USERVAR_P (SET_DEST (newpat))))
+ {
+ if (regno >= FIRST_PSEUDO_REGISTER)
+ SUBST (regno_reg_rtx[regno], new_dest);
+
+ SUBST (SET_DEST (newpat), new_dest);
+ SUBST (XEXP (*cc_use, 0), new_dest);
+ SUBST (SET_SRC (newpat),
+ gen_rtx_combine (COMPARE, compare_mode,
+ i2src, const0_rtx));
+ }
+ else
+ undobuf.other_insn = 0;
+ }
+#endif
+ }
+ else
+#endif
+ {
+ n_occurrences = 0; /* `subst' counts here */
+
+ /* If I1 feeds into I2 (not into I3) and I1DEST is in I1SRC, we
+ need to make a unique copy of I2SRC each time we substitute it
+ to avoid self-referential rtl. */
+
+ subst_low_cuid = INSN_CUID (i2);
+ newpat = subst (PATTERN (i3), i2dest, i2src, 0,
+ ! i1_feeds_i3 && i1dest_in_i1src);
+ previous_num_undos = undobuf.num_undo;
+
+ /* Record whether i2's body now appears within i3's body. */
+ i2_is_used = n_occurrences;
+ }
+
+ /* If we already got a failure, don't try to do more. Otherwise,
+ try to substitute in I1 if we have it. */
+
+ if (i1 && GET_CODE (newpat) != CLOBBER)
+ {
+ /* Before we can do this substitution, we must redo the test done
+ above (see detailed comments there) that ensures that I1DEST
+ isn't mentioned in any SETs in NEWPAT that are field assignments. */
+
+ if (! combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX,
+ 0, NULL_PTR))
+ {
+ undo_all ();
+ return 0;
+ }
+
+ n_occurrences = 0;
+ subst_low_cuid = INSN_CUID (i1);
+ newpat = subst (newpat, i1dest, i1src, 0, 0);
+ previous_num_undos = undobuf.num_undo;
+ }
+
+ /* Fail if an autoincrement side-effect has been duplicated. Be careful
+ to count all the ways that I2SRC and I1SRC can be used. */
+ if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
+ && i2_is_used + added_sets_2 > 1)
+ || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
+ && (n_occurrences + added_sets_1 + (added_sets_2 && ! i1_feeds_i3)
+ > 1))
+ /* Fail if we tried to make a new register (we used to abort, but there's
+ really no reason to). */
+ || max_reg_num () != maxreg
+ /* Fail if we couldn't do something and have a CLOBBER. */
+ || GET_CODE (newpat) == CLOBBER
+ /* Fail if this new pattern is a MULT and we didn't have one before
+ at the outer level. */
+ || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
+ && ! have_mult))
+ {
+ undo_all ();
+ return 0;
+ }
+
+ /* If the actions of the earlier insns must be kept
+ in addition to substituting them into the latest one,
+ we must make a new PARALLEL for the latest insn
+ to hold additional the SETs. */
+
+ if (added_sets_1 || added_sets_2)
+ {
+ combine_extras++;
+
+ if (GET_CODE (newpat) == PARALLEL)
+ {
+ rtvec old = XVEC (newpat, 0);
+ total_sets = XVECLEN (newpat, 0) + added_sets_1 + added_sets_2;
+ newpat = gen_rtx (PARALLEL, VOIDmode, rtvec_alloc (total_sets));
+ bcopy ((char *) &old->elem[0], (char *) &XVECEXP (newpat, 0, 0),
+ sizeof (old->elem[0]) * old->num_elem);
+ }
+ else
+ {
+ rtx old = newpat;
+ total_sets = 1 + added_sets_1 + added_sets_2;
+ newpat = gen_rtx (PARALLEL, VOIDmode, rtvec_alloc (total_sets));
+ XVECEXP (newpat, 0, 0) = old;
+ }
+
+ if (added_sets_1)
+ XVECEXP (newpat, 0, --total_sets)
+ = (GET_CODE (PATTERN (i1)) == PARALLEL
+ ? gen_rtx (SET, VOIDmode, i1dest, i1src) : PATTERN (i1));
+
+ if (added_sets_2)
+ {
+ /* If there is no I1, use I2's body as is. We used to also not do
+ the subst call below if I2 was substituted into I3,
+ but that could lose a simplification. */
+ if (i1 == 0)
+ XVECEXP (newpat, 0, --total_sets) = i2pat;
+ else
+ /* See comment where i2pat is assigned. */
+ XVECEXP (newpat, 0, --total_sets)
+ = subst (i2pat, i1dest, i1src, 0, 0);
+ }
+ }
+
+ /* We come here when we are replacing a destination in I2 with the
+ destination of I3. */
+ validate_replacement:
+
+ /* Note which hard regs this insn has as inputs. */
+ mark_used_regs_combine (newpat);
+
+ /* Is the result of combination a valid instruction? */
+ insn_code_number
+ = recog_for_combine (&newpat, i3, &new_i3_notes, &i3_scratches);
+
+ /* If the result isn't valid, see if it is a PARALLEL of two SETs where
+ the second SET's destination is a register that is unused. In that case,
+ we just need the first SET. This can occur when simplifying a divmod
+ insn. We *must* test for this case here because the code below that
+ splits two independent SETs doesn't handle this case correctly when it
+ updates the register status. Also check the case where the first
+ SET's destination is unused. That would not cause incorrect code, but
+ does cause an unneeded insn to remain. */
+
+ if (insn_code_number < 0 && GET_CODE (newpat) == PARALLEL
+ && XVECLEN (newpat, 0) == 2
+ && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
+ && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
+ && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == REG
+ && find_reg_note (i3, REG_UNUSED, SET_DEST (XVECEXP (newpat, 0, 1)))
+ && ! side_effects_p (SET_SRC (XVECEXP (newpat, 0, 1)))
+ && asm_noperands (newpat) < 0)
+ {
+ newpat = XVECEXP (newpat, 0, 0);
+ insn_code_number
+ = recog_for_combine (&newpat, i3, &new_i3_notes, &i3_scratches);
+ }
+
+ else if (insn_code_number < 0 && GET_CODE (newpat) == PARALLEL
+ && XVECLEN (newpat, 0) == 2
+ && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
+ && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
+ && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) == REG
+ && find_reg_note (i3, REG_UNUSED, SET_DEST (XVECEXP (newpat, 0, 0)))
+ && ! side_effects_p (SET_SRC (XVECEXP (newpat, 0, 0)))
+ && asm_noperands (newpat) < 0)
+ {
+ newpat = XVECEXP (newpat, 0, 1);
+ insn_code_number
+ = recog_for_combine (&newpat, i3, &new_i3_notes, &i3_scratches);
+ }
+
+ /* If we were combining three insns and the result is a simple SET
+ with no ASM_OPERANDS that wasn't recognized, try to split it into two
+ insns. There are two ways to do this. It can be split using a
+ machine-specific method (like when you have an addition of a large
+ constant) or by combine in the function find_split_point. */
+
+ if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
+ && asm_noperands (newpat) < 0)
+ {
+ rtx m_split, *split;
+ rtx ni2dest = i2dest;
+
+ /* See if the MD file can split NEWPAT. If it can't, see if letting it
+ use I2DEST as a scratch register will help. In the latter case,
+ convert I2DEST to the mode of the source of NEWPAT if we can. */
+
+ m_split = split_insns (newpat, i3);
+
+ /* We can only use I2DEST as a scratch reg if it doesn't overlap any
+ inputs of NEWPAT. */
+
+ /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
+ possible to try that as a scratch reg. This would require adding
+ more code to make it work though. */
+
+ if (m_split == 0 && ! reg_overlap_mentioned_p (ni2dest, newpat))
+ {
+ /* If I2DEST is a hard register or the only use of a pseudo,
+ we can change its mode. */
+ if (GET_MODE (SET_DEST (newpat)) != GET_MODE (i2dest)
+ && GET_MODE (SET_DEST (newpat)) != VOIDmode
+ && GET_CODE (i2dest) == REG
+ && (REGNO (i2dest) < FIRST_PSEUDO_REGISTER
+ || (reg_n_sets[REGNO (i2dest)] == 1 && ! added_sets_2
+ && ! REG_USERVAR_P (i2dest))))
+ ni2dest = gen_rtx (REG, GET_MODE (SET_DEST (newpat)),
+ REGNO (i2dest));
+
+ m_split = split_insns (gen_rtx (PARALLEL, VOIDmode,
+ gen_rtvec (2, newpat,
+ gen_rtx (CLOBBER,
+ VOIDmode,
+ ni2dest))),
+ i3);
+ }
+
+ if (m_split && GET_CODE (m_split) == SEQUENCE
+ && XVECLEN (m_split, 0) == 2
+ && (next_real_insn (i2) == i3
+ || ! use_crosses_set_p (PATTERN (XVECEXP (m_split, 0, 0)),
+ INSN_CUID (i2))))
+ {
+ rtx i2set, i3set;
+ rtx newi3pat = PATTERN (XVECEXP (m_split, 0, 1));
+ newi2pat = PATTERN (XVECEXP (m_split, 0, 0));
+
+ i3set = single_set (XVECEXP (m_split, 0, 1));
+ i2set = single_set (XVECEXP (m_split, 0, 0));
+
+ /* In case we changed the mode of I2DEST, replace it in the
+ pseudo-register table here. We can't do it above in case this
+ code doesn't get executed and we do a split the other way. */
+
+ if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
+ SUBST (regno_reg_rtx[REGNO (i2dest)], ni2dest);
+
+ i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes,
+ &i2_scratches);
+
+ /* If I2 or I3 has multiple SETs, we won't know how to track
+ register status, so don't use these insns. */
+
+ if (i2_code_number >= 0 && i2set && i3set)
+ insn_code_number = recog_for_combine (&newi3pat, i3, &new_i3_notes,
+ &i3_scratches);
+ if (insn_code_number >= 0)
+ newpat = newi3pat;
+
+ /* It is possible that both insns now set the destination of I3.
+ If so, we must show an extra use of it. */
+
+ if (insn_code_number >= 0 && GET_CODE (SET_DEST (i3set)) == REG
+ && GET_CODE (SET_DEST (i2set)) == REG
+ && REGNO (SET_DEST (i3set)) == REGNO (SET_DEST (i2set)))
+ reg_n_sets[REGNO (SET_DEST (i2set))]++;
+ }
+
+ /* If we can split it and use I2DEST, go ahead and see if that
+ helps things be recognized. Verify that none of the registers
+ are set between I2 and I3. */
+ if (insn_code_number < 0 && (split = find_split_point (&newpat, i3)) != 0
+#ifdef HAVE_cc0
+ && GET_CODE (i2dest) == REG
+#endif
+ /* We need I2DEST in the proper mode. If it is a hard register
+ or the only use of a pseudo, we can change its mode. */
+ && (GET_MODE (*split) == GET_MODE (i2dest)
+ || GET_MODE (*split) == VOIDmode
+ || REGNO (i2dest) < FIRST_PSEUDO_REGISTER
+ || (reg_n_sets[REGNO (i2dest)] == 1 && ! added_sets_2
+ && ! REG_USERVAR_P (i2dest)))
+ && (next_real_insn (i2) == i3
+ || ! use_crosses_set_p (*split, INSN_CUID (i2)))
+ /* We can't overwrite I2DEST if its value is still used by
+ NEWPAT. */
+ && ! reg_referenced_p (i2dest, newpat))
+ {
+ rtx newdest = i2dest;
+ enum rtx_code split_code = GET_CODE (*split);
+ enum machine_mode split_mode = GET_MODE (*split);
+
+ /* Get NEWDEST as a register in the proper mode. We have already
+ validated that we can do this. */
+ if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
+ {
+ newdest = gen_rtx (REG, split_mode, REGNO (i2dest));
+
+ if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
+ SUBST (regno_reg_rtx[REGNO (i2dest)], newdest);
+ }
+
+ /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
+ an ASHIFT. This can occur if it was inside a PLUS and hence
+ appeared to be a memory address. This is a kludge. */
+ if (split_code == MULT
+ && GET_CODE (XEXP (*split, 1)) == CONST_INT
+ && (i = exact_log2 (INTVAL (XEXP (*split, 1)))) >= 0)
+ {
+ SUBST (*split, gen_rtx_combine (ASHIFT, split_mode,
+ XEXP (*split, 0), GEN_INT (i)));
+ /* Update split_code because we may not have a multiply
+ anymore. */
+ split_code = GET_CODE (*split);
+ }
+
+#ifdef INSN_SCHEDULING
+ /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
+ be written as a ZERO_EXTEND. */
+ if (split_code == SUBREG && GET_CODE (SUBREG_REG (*split)) == MEM)
+ SUBST (*split, gen_rtx_combine (ZERO_EXTEND, split_mode,
+ XEXP (*split, 0)));
+#endif
+
+ newi2pat = gen_rtx_combine (SET, VOIDmode, newdest, *split);
+ SUBST (*split, newdest);
+ i2_code_number
+ = recog_for_combine (&newi2pat, i2, &new_i2_notes, &i2_scratches);
+
+ /* If the split point was a MULT and we didn't have one before,
+ don't use one now. */
+ if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
+ insn_code_number
+ = recog_for_combine (&newpat, i3, &new_i3_notes, &i3_scratches);
+ }
+ }
+
+ /* Check for a case where we loaded from memory in a narrow mode and
+ then sign extended it, but we need both registers. In that case,
+ we have a PARALLEL with both loads from the same memory location.
+ We can split this into a load from memory followed by a register-register
+ copy. This saves at least one insn, more if register allocation can
+ eliminate the copy.
+
+ We cannot do this if the destination of the second assignment is
+ a register that we have already assumed is zero-extended. Similarly
+ for a SUBREG of such a register. */
+
+ else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
+ && GET_CODE (newpat) == PARALLEL
+ && XVECLEN (newpat, 0) == 2
+ && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
+ && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
+ && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
+ && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
+ XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
+ && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
+ INSN_CUID (i2))
+ && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
+ && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
+ && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
+ (GET_CODE (temp) == REG
+ && reg_nonzero_bits[REGNO (temp)] != 0
+ && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
+ && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
+ && (reg_nonzero_bits[REGNO (temp)]
+ != GET_MODE_MASK (word_mode))))
+ && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
+ && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
+ (GET_CODE (temp) == REG
+ && reg_nonzero_bits[REGNO (temp)] != 0
+ && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
+ && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
+ && (reg_nonzero_bits[REGNO (temp)]
+ != GET_MODE_MASK (word_mode)))))
+ && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
+ SET_SRC (XVECEXP (newpat, 0, 1)))
+ && ! find_reg_note (i3, REG_UNUSED,
+ SET_DEST (XVECEXP (newpat, 0, 0))))
+ {
+ rtx ni2dest;
+
+ newi2pat = XVECEXP (newpat, 0, 0);
+ ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
+ newpat = XVECEXP (newpat, 0, 1);
+ SUBST (SET_SRC (newpat),
+ gen_lowpart_for_combine (GET_MODE (SET_SRC (newpat)), ni2dest));
+ i2_code_number
+ = recog_for_combine (&newi2pat, i2, &new_i2_notes, &i2_scratches);
+
+ if (i2_code_number >= 0)
+ insn_code_number
+ = recog_for_combine (&newpat, i3, &new_i3_notes, &i3_scratches);
+
+ if (insn_code_number >= 0)
+ {
+ rtx insn;
+ rtx link;
+
+ /* If we will be able to accept this, we have made a change to the
+ destination of I3. This can invalidate a LOG_LINKS pointing
+ to I3. No other part of combine.c makes such a transformation.
+
+ The new I3 will have a destination that was previously the
+ destination of I1 or I2 and which was used in i2 or I3. Call
+ distribute_links to make a LOG_LINK from the next use of
+ that destination. */
+
+ PATTERN (i3) = newpat;
+ distribute_links (gen_rtx (INSN_LIST, VOIDmode, i3, NULL_RTX));
+
+ /* I3 now uses what used to be its destination and which is
+ now I2's destination. That means we need a LOG_LINK from
+ I3 to I2. But we used to have one, so we still will.
+
+ However, some later insn might be using I2's dest and have
+ a LOG_LINK pointing at I3. We must remove this link.
+ The simplest way to remove the link is to point it at I1,
+ which we know will be a NOTE. */
+
+ for (insn = NEXT_INSN (i3);
+ insn && (this_basic_block == n_basic_blocks - 1
+ || insn != basic_block_head[this_basic_block + 1]);
+ insn = NEXT_INSN (insn))
+ {
+ if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
+ && reg_referenced_p (ni2dest, PATTERN (insn)))
+ {
+ for (link = LOG_LINKS (insn); link;
+ link = XEXP (link, 1))
+ if (XEXP (link, 0) == i3)
+ XEXP (link, 0) = i1;
+
+ break;
+ }
+ }
+ }
+ }
+
+ /* Similarly, check for a case where we have a PARALLEL of two independent
+ SETs but we started with three insns. In this case, we can do the sets
+ as two separate insns. This case occurs when some SET allows two
+ other insns to combine, but the destination of that SET is still live. */
+
+ else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
+ && GET_CODE (newpat) == PARALLEL
+ && XVECLEN (newpat, 0) == 2
+ && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
+ && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
+ && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
+ && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
+ && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
+ && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
+ && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
+ INSN_CUID (i2))
+ /* Don't pass sets with (USE (MEM ...)) dests to the following. */
+ && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != USE
+ && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != USE
+ && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
+ XVECEXP (newpat, 0, 0))
+ && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
+ XVECEXP (newpat, 0, 1)))
+ {
+ newi2pat = XVECEXP (newpat, 0, 1);
+ newpat = XVECEXP (newpat, 0, 0);
+
+ i2_code_number
+ = recog_for_combine (&newi2pat, i2, &new_i2_notes, &i2_scratches);
+
+ if (i2_code_number >= 0)
+ insn_code_number
+ = recog_for_combine (&newpat, i3, &new_i3_notes, &i3_scratches);
+ }
+
+ /* If it still isn't recognized, fail and change things back the way they
+ were. */
+ if ((insn_code_number < 0
+ /* Is the result a reasonable ASM_OPERANDS? */
+ && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
+ {
+ undo_all ();
+ return 0;
+ }
+
+ /* If we had to change another insn, make sure it is valid also. */
+ if (undobuf.other_insn)
+ {
+ rtx other_pat = PATTERN (undobuf.other_insn);
+ rtx new_other_notes;
+ rtx note, next;
+
+ CLEAR_HARD_REG_SET (newpat_used_regs);
+
+ other_code_number
+ = recog_for_combine (&other_pat, undobuf.other_insn,
+ &new_other_notes, &other_scratches);
+
+ if (other_code_number < 0 && ! check_asm_operands (other_pat))
+ {
+ undo_all ();
+ return 0;
+ }
+
+ PATTERN (undobuf.other_insn) = other_pat;
+
+ /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
+ are still valid. Then add any non-duplicate notes added by
+ recog_for_combine. */
+ for (note = REG_NOTES (undobuf.other_insn); note; note = next)
+ {
+ next = XEXP (note, 1);
+
+ if (REG_NOTE_KIND (note) == REG_UNUSED
+ && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
+ {
+ if (GET_CODE (XEXP (note, 0)) == REG)
+ reg_n_deaths[REGNO (XEXP (note, 0))]--;
+
+ remove_note (undobuf.other_insn, note);
+ }
+ }
+
+ for (note = new_other_notes; note; note = XEXP (note, 1))
+ if (GET_CODE (XEXP (note, 0)) == REG)
+ reg_n_deaths[REGNO (XEXP (note, 0))]++;
+
+ distribute_notes (new_other_notes, undobuf.other_insn,
+ undobuf.other_insn, NULL_RTX, NULL_RTX, NULL_RTX);
+ }
+
+ /* We now know that we can do this combination. Merge the insns and
+ update the status of registers and LOG_LINKS. */
+
+ {
+ rtx i3notes, i2notes, i1notes = 0;
+ rtx i3links, i2links, i1links = 0;
+ rtx midnotes = 0;
+ register int regno;
+ /* Compute which registers we expect to eliminate. */
+ rtx elim_i2 = (newi2pat || i2dest_in_i2src || i2dest_in_i1src
+ ? 0 : i2dest);
+ rtx elim_i1 = i1 == 0 || i1dest_in_i1src ? 0 : i1dest;
+
+ /* Get the old REG_NOTES and LOG_LINKS from all our insns and
+ clear them. */
+ i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
+ i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
+ if (i1)
+ i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
+
+ /* Ensure that we do not have something that should not be shared but
+ occurs multiple times in the new insns. Check this by first
+ resetting all the `used' flags and then copying anything is shared. */
+
+ reset_used_flags (i3notes);
+ reset_used_flags (i2notes);
+ reset_used_flags (i1notes);
+ reset_used_flags (newpat);
+ reset_used_flags (newi2pat);
+ if (undobuf.other_insn)
+ reset_used_flags (PATTERN (undobuf.other_insn));
+
+ i3notes = copy_rtx_if_shared (i3notes);
+ i2notes = copy_rtx_if_shared (i2notes);
+ i1notes = copy_rtx_if_shared (i1notes);
+ newpat = copy_rtx_if_shared (newpat);
+ newi2pat = copy_rtx_if_shared (newi2pat);
+ if (undobuf.other_insn)
+ reset_used_flags (PATTERN (undobuf.other_insn));
+
+ INSN_CODE (i3) = insn_code_number;
+ PATTERN (i3) = newpat;
+ if (undobuf.other_insn)
+ INSN_CODE (undobuf.other_insn) = other_code_number;
+
+ /* We had one special case above where I2 had more than one set and
+ we replaced a destination of one of those sets with the destination
+ of I3. In that case, we have to update LOG_LINKS of insns later
+ in this basic block. Note that this (expensive) case is rare.
+
+ Also, in this case, we must pretend that all REG_NOTEs for I2
+ actually came from I3, so that REG_UNUSED notes from I2 will be
+ properly handled. */
+
+ if (i3_subst_into_i2)
+ {
+ for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
+ if (GET_CODE (SET_DEST (XVECEXP (PATTERN (i2), 0, i))) == REG
+ && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
+ && ! find_reg_note (i2, REG_UNUSED,
+ SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
+ for (temp = NEXT_INSN (i2);
+ temp && (this_basic_block == n_basic_blocks - 1
+ || basic_block_head[this_basic_block] != temp);
+ temp = NEXT_INSN (temp))
+ if (temp != i3 && GET_RTX_CLASS (GET_CODE (temp)) == 'i')
+ for (link = LOG_LINKS (temp); link; link = XEXP (link, 1))
+ if (XEXP (link, 0) == i2)
+ XEXP (link, 0) = i3;
+
+ if (i3notes)
+ {
+ rtx link = i3notes;
+ while (XEXP (link, 1))
+ link = XEXP (link, 1);
+ XEXP (link, 1) = i2notes;
+ }
+ else
+ i3notes = i2notes;
+ i2notes = 0;
+ }
+
+ LOG_LINKS (i3) = 0;
+ REG_NOTES (i3) = 0;
+ LOG_LINKS (i2) = 0;
+ REG_NOTES (i2) = 0;
+
+ if (newi2pat)
+ {
+ INSN_CODE (i2) = i2_code_number;
+ PATTERN (i2) = newi2pat;
+ }
+ else
+ {
+ PUT_CODE (i2, NOTE);
+ NOTE_LINE_NUMBER (i2) = NOTE_INSN_DELETED;
+ NOTE_SOURCE_FILE (i2) = 0;
+ }
+
+ if (i1)
+ {
+ LOG_LINKS (i1) = 0;
+ REG_NOTES (i1) = 0;
+ PUT_CODE (i1, NOTE);
+ NOTE_LINE_NUMBER (i1) = NOTE_INSN_DELETED;
+ NOTE_SOURCE_FILE (i1) = 0;
+ }
+
+ /* Get death notes for everything that is now used in either I3 or
+ I2 and used to die in a previous insn. */
+
+ move_deaths (newpat, i1 ? INSN_CUID (i1) : INSN_CUID (i2), i3, &midnotes);
+ if (newi2pat)
+ move_deaths (newi2pat, INSN_CUID (i1), i2, &midnotes);
+
+ /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
+ if (i3notes)
+ distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX,
+ elim_i2, elim_i1);
+ if (i2notes)
+ distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX,
+ elim_i2, elim_i1);
+ if (i1notes)
+ distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX,
+ elim_i2, elim_i1);
+ if (midnotes)
+ distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
+ elim_i2, elim_i1);
+
+ /* Distribute any notes added to I2 or I3 by recog_for_combine. We
+ know these are REG_UNUSED and want them to go to the desired insn,
+ so we always pass it as i3. We have not counted the notes in
+ reg_n_deaths yet, so we need to do so now. */
+
+ if (newi2pat && new_i2_notes)
+ {
+ for (temp = new_i2_notes; temp; temp = XEXP (temp, 1))
+ if (GET_CODE (XEXP (temp, 0)) == REG)
+ reg_n_deaths[REGNO (XEXP (temp, 0))]++;
+
+ distribute_notes (new_i2_notes, i2, i2, NULL_RTX, NULL_RTX, NULL_RTX);
+ }
+
+ if (new_i3_notes)
+ {
+ for (temp = new_i3_notes; temp; temp = XEXP (temp, 1))
+ if (GET_CODE (XEXP (temp, 0)) == REG)
+ reg_n_deaths[REGNO (XEXP (temp, 0))]++;
+
+ distribute_notes (new_i3_notes, i3, i3, NULL_RTX, NULL_RTX, NULL_RTX);
+ }
+
+ /* If I3DEST was used in I3SRC, it really died in I3. We may need to
+ put a REG_DEAD note for it somewhere. Similarly for I2 and I1.
+ Show an additional death due to the REG_DEAD note we make here. If
+ we discard it in distribute_notes, we will decrement it again. */
+
+ if (i3dest_killed)
+ {
+ if (GET_CODE (i3dest_killed) == REG)
+ reg_n_deaths[REGNO (i3dest_killed)]++;
+
+ distribute_notes (gen_rtx (EXPR_LIST, REG_DEAD, i3dest_killed,
+ NULL_RTX),
+ NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
+ NULL_RTX, NULL_RTX);
+ }
+
+ /* For I2 and I1, we have to be careful. If NEWI2PAT exists and sets
+ I2DEST or I1DEST, the death must be somewhere before I2, not I3. If
+ we passed I3 in that case, it might delete I2. */
+
+ if (i2dest_in_i2src)
+ {
+ if (GET_CODE (i2dest) == REG)
+ reg_n_deaths[REGNO (i2dest)]++;
+
+ if (newi2pat && reg_set_p (i2dest, newi2pat))
+ distribute_notes (gen_rtx (EXPR_LIST, REG_DEAD, i2dest, NULL_RTX),
+ NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
+ else
+ distribute_notes (gen_rtx (EXPR_LIST, REG_DEAD, i2dest, NULL_RTX),
+ NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
+ NULL_RTX, NULL_RTX);
+ }
+
+ if (i1dest_in_i1src)
+ {
+ if (GET_CODE (i1dest) == REG)
+ reg_n_deaths[REGNO (i1dest)]++;
+
+ if (newi2pat && reg_set_p (i1dest, newi2pat))
+ distribute_notes (gen_rtx (EXPR_LIST, REG_DEAD, i1dest, NULL_RTX),
+ NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
+ else
+ distribute_notes (gen_rtx (EXPR_LIST, REG_DEAD, i1dest, NULL_RTX),
+ NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
+ NULL_RTX, NULL_RTX);
+ }
+
+ distribute_links (i3links);
+ distribute_links (i2links);
+ distribute_links (i1links);
+
+ if (GET_CODE (i2dest) == REG)
+ {
+ rtx link;
+ rtx i2_insn = 0, i2_val = 0, set;
+
+ /* The insn that used to set this register doesn't exist, and
+ this life of the register may not exist either. See if one of
+ I3's links points to an insn that sets I2DEST. If it does,
+ that is now the last known value for I2DEST. If we don't update
+ this and I2 set the register to a value that depended on its old
+ contents, we will get confused. If this insn is used, thing
+ will be set correctly in combine_instructions. */
+
+ for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
+ if ((set = single_set (XEXP (link, 0))) != 0
+ && rtx_equal_p (i2dest, SET_DEST (set)))
+ i2_insn = XEXP (link, 0), i2_val = SET_SRC (set);
+
+ record_value_for_reg (i2dest, i2_insn, i2_val);
+
+ /* If the reg formerly set in I2 died only once and that was in I3,
+ zero its use count so it won't make `reload' do any work. */
+ if (! added_sets_2 && newi2pat == 0 && ! i2dest_in_i2src)
+ {
+ regno = REGNO (i2dest);
+ reg_n_sets[regno]--;
+ if (reg_n_sets[regno] == 0
+ && ! (basic_block_live_at_start[0][regno / REGSET_ELT_BITS]
+ & ((REGSET_ELT_TYPE) 1 << (regno % REGSET_ELT_BITS))))
+ reg_n_refs[regno] = 0;
+ }
+ }
+
+ if (i1 && GET_CODE (i1dest) == REG)
+ {
+ rtx link;
+ rtx i1_insn = 0, i1_val = 0, set;
+
+ for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
+ if ((set = single_set (XEXP (link, 0))) != 0
+ && rtx_equal_p (i1dest, SET_DEST (set)))
+ i1_insn = XEXP (link, 0), i1_val = SET_SRC (set);
+
+ record_value_for_reg (i1dest, i1_insn, i1_val);
+
+ regno = REGNO (i1dest);
+ if (! added_sets_1 && ! i1dest_in_i1src)
+ {
+ reg_n_sets[regno]--;
+ if (reg_n_sets[regno] == 0
+ && ! (basic_block_live_at_start[0][regno / REGSET_ELT_BITS]
+ & ((REGSET_ELT_TYPE) 1 << (regno % REGSET_ELT_BITS))))
+ reg_n_refs[regno] = 0;
+ }
+ }
+
+ /* Update reg_nonzero_bits et al for any changes that may have been made
+ to this insn. */
+
+ note_stores (newpat, set_nonzero_bits_and_sign_copies);
+ if (newi2pat)
+ note_stores (newi2pat, set_nonzero_bits_and_sign_copies);
+
+ /* If we added any (clobber (scratch)), add them to the max for a
+ block. This is a very pessimistic calculation, since we might
+ have had them already and this might not be the worst block, but
+ it's not worth doing any better. */
+ max_scratch += i3_scratches + i2_scratches + other_scratches;
+
+ /* If I3 is now an unconditional jump, ensure that it has a
+ BARRIER following it since it may have initially been a
+ conditional jump. It may also be the last nonnote insn. */
+
+ if ((GET_CODE (newpat) == RETURN || simplejump_p (i3))
+ && ((temp = next_nonnote_insn (i3)) == NULL_RTX
+ || GET_CODE (temp) != BARRIER))
+ emit_barrier_after (i3);
+ }
+
+ combine_successes++;
+
+ /* Clear this here, so that subsequent get_last_value calls are not
+ affected. */
+ subst_prev_insn = NULL_RTX;
+
+ if (added_links_insn
+ && (newi2pat == 0 || INSN_CUID (added_links_insn) < INSN_CUID (i2))
+ && INSN_CUID (added_links_insn) < INSN_CUID (i3))
+ return added_links_insn;
+ else
+ return newi2pat ? i2 : i3;
+}
+
+/* Undo all the modifications recorded in undobuf. */
+
+static void
+undo_all ()
+{
+ register int i;
+ if (undobuf.num_undo > MAX_UNDO)
+ undobuf.num_undo = MAX_UNDO;
+ for (i = undobuf.num_undo - 1; i >= 0; i--)
+ {
+ if (undobuf.undo[i].is_int)
+ *undobuf.undo[i].where.i = undobuf.undo[i].old_contents.i;
+ else
+ *undobuf.undo[i].where.r = undobuf.undo[i].old_contents.r;
+
+ }
+
+ obfree (undobuf.storage);
+ undobuf.num_undo = 0;
+
+ /* Clear this here, so that subsequent get_last_value calls are not
+ affected. */
+ subst_prev_insn = NULL_RTX;
+}
+
+/* Find the innermost point within the rtx at LOC, possibly LOC itself,
+ where we have an arithmetic expression and return that point. LOC will
+ be inside INSN.
+
+ try_combine will call this function to see if an insn can be split into
+ two insns. */
+
+static rtx *
+find_split_point (loc, insn)
+ rtx *loc;
+ rtx insn;
+{
+ rtx x = *loc;
+ enum rtx_code code = GET_CODE (x);
+ rtx *split;
+ int len = 0, pos, unsignedp;
+ rtx inner;
+
+ /* First special-case some codes. */
+ switch (code)
+ {
+ case SUBREG:
+#ifdef INSN_SCHEDULING
+ /* If we are making a paradoxical SUBREG invalid, it becomes a split
+ point. */
+ if (GET_CODE (SUBREG_REG (x)) == MEM)
+ return loc;
+#endif
+ return find_split_point (&SUBREG_REG (x), insn);
+
+ case MEM:
+#ifdef HAVE_lo_sum
+ /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
+ using LO_SUM and HIGH. */
+ if (GET_CODE (XEXP (x, 0)) == CONST
+ || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
+ {
+ SUBST (XEXP (x, 0),
+ gen_rtx_combine (LO_SUM, Pmode,
+ gen_rtx_combine (HIGH, Pmode, XEXP (x, 0)),
+ XEXP (x, 0)));
+ return &XEXP (XEXP (x, 0), 0);
+ }
+#endif
+
+ /* If we have a PLUS whose second operand is a constant and the
+ address is not valid, perhaps will can split it up using
+ the machine-specific way to split large constants. We use
+ the first pseudo-reg (one of the virtual regs) as a placeholder;
+ it will not remain in the result. */
+ if (GET_CODE (XEXP (x, 0)) == PLUS
+ && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
+ && ! memory_address_p (GET_MODE (x), XEXP (x, 0)))
+ {
+ rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
+ rtx seq = split_insns (gen_rtx (SET, VOIDmode, reg, XEXP (x, 0)),
+ subst_insn);
+
+ /* This should have produced two insns, each of which sets our
+ placeholder. If the source of the second is a valid address,
+ we can make put both sources together and make a split point
+ in the middle. */
+
+ if (seq && XVECLEN (seq, 0) == 2
+ && GET_CODE (XVECEXP (seq, 0, 0)) == INSN
+ && GET_CODE (PATTERN (XVECEXP (seq, 0, 0))) == SET
+ && SET_DEST (PATTERN (XVECEXP (seq, 0, 0))) == reg
+ && ! reg_mentioned_p (reg,
+ SET_SRC (PATTERN (XVECEXP (seq, 0, 0))))
+ && GET_CODE (XVECEXP (seq, 0, 1)) == INSN
+ && GET_CODE (PATTERN (XVECEXP (seq, 0, 1))) == SET
+ && SET_DEST (PATTERN (XVECEXP (seq, 0, 1))) == reg
+ && memory_address_p (GET_MODE (x),
+ SET_SRC (PATTERN (XVECEXP (seq, 0, 1)))))
+ {
+ rtx src1 = SET_SRC (PATTERN (XVECEXP (seq, 0, 0)));
+ rtx src2 = SET_SRC (PATTERN (XVECEXP (seq, 0, 1)));
+
+ /* Replace the placeholder in SRC2 with SRC1. If we can
+ find where in SRC2 it was placed, that can become our
+ split point and we can replace this address with SRC2.
+ Just try two obvious places. */
+
+ src2 = replace_rtx (src2, reg, src1);
+ split = 0;
+ if (XEXP (src2, 0) == src1)
+ split = &XEXP (src2, 0);
+ else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
+ && XEXP (XEXP (src2, 0), 0) == src1)
+ split = &XEXP (XEXP (src2, 0), 0);
+
+ if (split)
+ {
+ SUBST (XEXP (x, 0), src2);
+ return split;
+ }
+ }
+
+ /* If that didn't work, perhaps the first operand is complex and
+ needs to be computed separately, so make a split point there.
+ This will occur on machines that just support REG + CONST
+ and have a constant moved through some previous computation. */
+
+ else if (GET_RTX_CLASS (GET_CODE (XEXP (XEXP (x, 0), 0))) != 'o'
+ && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
+ && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (XEXP (x, 0), 0))))
+ == 'o')))
+ return &XEXP (XEXP (x, 0), 0);
+ }
+ break;
+
+ case SET:
+#ifdef HAVE_cc0
+ /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
+ ZERO_EXTRACT, the most likely reason why this doesn't match is that
+ we need to put the operand into a register. So split at that
+ point. */
+
+ if (SET_DEST (x) == cc0_rtx
+ && GET_CODE (SET_SRC (x)) != COMPARE
+ && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
+ && GET_RTX_CLASS (GET_CODE (SET_SRC (x))) != 'o'
+ && ! (GET_CODE (SET_SRC (x)) == SUBREG
+ && GET_RTX_CLASS (GET_CODE (SUBREG_REG (SET_SRC (x)))) == 'o'))
+ return &SET_SRC (x);
+#endif
+
+ /* See if we can split SET_SRC as it stands. */
+ split = find_split_point (&SET_SRC (x), insn);
+ if (split && split != &SET_SRC (x))
+ return split;
+
+ /* See if this is a bitfield assignment with everything constant. If
+ so, this is an IOR of an AND, so split it into that. */
+ if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
+ && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
+ <= HOST_BITS_PER_WIDE_INT)
+ && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT
+ && GET_CODE (XEXP (SET_DEST (x), 2)) == CONST_INT
+ && GET_CODE (SET_SRC (x)) == CONST_INT
+ && ((INTVAL (XEXP (SET_DEST (x), 1))
+ + INTVAL (XEXP (SET_DEST (x), 2)))
+ <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0))))
+ && ! side_effects_p (XEXP (SET_DEST (x), 0)))
+ {
+ int pos = INTVAL (XEXP (SET_DEST (x), 2));
+ int len = INTVAL (XEXP (SET_DEST (x), 1));
+ int src = INTVAL (SET_SRC (x));
+ rtx dest = XEXP (SET_DEST (x), 0);
+ enum machine_mode mode = GET_MODE (dest);
+ unsigned HOST_WIDE_INT mask = ((HOST_WIDE_INT) 1 << len) - 1;
+
+ if (BITS_BIG_ENDIAN)
+ pos = GET_MODE_BITSIZE (mode) - len - pos;
+
+ if (src == mask)
+ SUBST (SET_SRC (x),
+ gen_binary (IOR, mode, dest, GEN_INT (src << pos)));
+ else
+ SUBST (SET_SRC (x),
+ gen_binary (IOR, mode,
+ gen_binary (AND, mode, dest,
+ GEN_INT (~ (mask << pos)
+ & GET_MODE_MASK (mode))),
+ GEN_INT (src << pos)));
+
+ SUBST (SET_DEST (x), dest);
+
+ split = find_split_point (&SET_SRC (x), insn);
+ if (split && split != &SET_SRC (x))
+ return split;
+ }
+
+ /* Otherwise, see if this is an operation that we can split into two.
+ If so, try to split that. */
+ code = GET_CODE (SET_SRC (x));
+
+ switch (code)
+ {
+ case AND:
+ /* If we are AND'ing with a large constant that is only a single
+ bit and the result is only being used in a context where we
+ need to know if it is zero or non-zero, replace it with a bit
+ extraction. This will avoid the large constant, which might
+ have taken more than one insn to make. If the constant were
+ not a valid argument to the AND but took only one insn to make,
+ this is no worse, but if it took more than one insn, it will
+ be better. */
+
+ if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
+ && GET_CODE (XEXP (SET_SRC (x), 0)) == REG
+ && (pos = exact_log2 (INTVAL (XEXP (SET_SRC (x), 1)))) >= 7
+ && GET_CODE (SET_DEST (x)) == REG
+ && (split = find_single_use (SET_DEST (x), insn, NULL_PTR)) != 0
+ && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
+ && XEXP (*split, 0) == SET_DEST (x)
+ && XEXP (*split, 1) == const0_rtx)
+ {
+ SUBST (SET_SRC (x),
+ make_extraction (GET_MODE (SET_DEST (x)),
+ XEXP (SET_SRC (x), 0),
+ pos, NULL_RTX, 1, 1, 0, 0));
+ return find_split_point (loc, insn);
+ }
+ break;
+
+ case SIGN_EXTEND:
+ inner = XEXP (SET_SRC (x), 0);
+ pos = 0;
+ len = GET_MODE_BITSIZE (GET_MODE (inner));
+ unsignedp = 0;
+ break;
+
+ case SIGN_EXTRACT:
+ case ZERO_EXTRACT:
+ if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
+ && GET_CODE (XEXP (SET_SRC (x), 2)) == CONST_INT)
+ {
+ inner = XEXP (SET_SRC (x), 0);
+ len = INTVAL (XEXP (SET_SRC (x), 1));
+ pos = INTVAL (XEXP (SET_SRC (x), 2));
+
+ if (BITS_BIG_ENDIAN)
+ pos = GET_MODE_BITSIZE (GET_MODE (inner)) - len - pos;
+ unsignedp = (code == ZERO_EXTRACT);
+ }
+ break;
+ }
+
+ if (len && pos >= 0 && pos + len <= GET_MODE_BITSIZE (GET_MODE (inner)))
+ {
+ enum machine_mode mode = GET_MODE (SET_SRC (x));
+
+ /* For unsigned, we have a choice of a shift followed by an
+ AND or two shifts. Use two shifts for field sizes where the
+ constant might be too large. We assume here that we can
+ always at least get 8-bit constants in an AND insn, which is
+ true for every current RISC. */
+
+ if (unsignedp && len <= 8)
+ {
+ SUBST (SET_SRC (x),
+ gen_rtx_combine
+ (AND, mode,
+ gen_rtx_combine (LSHIFTRT, mode,
+ gen_lowpart_for_combine (mode, inner),
+ GEN_INT (pos)),
+ GEN_INT (((HOST_WIDE_INT) 1 << len) - 1)));
+
+ split = find_split_point (&SET_SRC (x), insn);
+ if (split && split != &SET_SRC (x))
+ return split;
+ }
+ else
+ {
+ SUBST (SET_SRC (x),
+ gen_rtx_combine
+ (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
+ gen_rtx_combine (ASHIFT, mode,
+ gen_lowpart_for_combine (mode, inner),
+ GEN_INT (GET_MODE_BITSIZE (mode)
+ - len - pos)),
+ GEN_INT (GET_MODE_BITSIZE (mode) - len)));
+
+ split = find_split_point (&SET_SRC (x), insn);
+ if (split && split != &SET_SRC (x))
+ return split;
+ }
+ }
+
+ /* See if this is a simple operation with a constant as the second
+ operand. It might be that this constant is out of range and hence
+ could be used as a split point. */
+ if ((GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '2'
+ || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == 'c'
+ || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '<')
+ && CONSTANT_P (XEXP (SET_SRC (x), 1))
+ && (GET_RTX_CLASS (GET_CODE (XEXP (SET_SRC (x), 0))) == 'o'
+ || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
+ && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (SET_SRC (x), 0))))
+ == 'o'))))
+ return &XEXP (SET_SRC (x), 1);
+
+ /* Finally, see if this is a simple operation with its first operand
+ not in a register. The operation might require this operand in a
+ register, so return it as a split point. We can always do this
+ because if the first operand were another operation, we would have
+ already found it as a split point. */
+ if ((GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '2'
+ || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == 'c'
+ || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '<'
+ || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '1')
+ && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
+ return &XEXP (SET_SRC (x), 0);
+
+ return 0;
+
+ case AND:
+ case IOR:
+ /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
+ it is better to write this as (not (ior A B)) so we can split it.
+ Similarly for IOR. */
+ if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
+ {
+ SUBST (*loc,
+ gen_rtx_combine (NOT, GET_MODE (x),
+ gen_rtx_combine (code == IOR ? AND : IOR,
+ GET_MODE (x),
+ XEXP (XEXP (x, 0), 0),
+ XEXP (XEXP (x, 1), 0))));
+ return find_split_point (loc, insn);
+ }
+
+ /* Many RISC machines have a large set of logical insns. If the
+ second operand is a NOT, put it first so we will try to split the
+ other operand first. */
+ if (GET_CODE (XEXP (x, 1)) == NOT)
+ {
+ rtx tem = XEXP (x, 0);
+ SUBST (XEXP (x, 0), XEXP (x, 1));
+ SUBST (XEXP (x, 1), tem);
+ }
+ break;
+ }
+
+ /* Otherwise, select our actions depending on our rtx class. */
+ switch (GET_RTX_CLASS (code))
+ {
+ case 'b': /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
+ case '3':
+ split = find_split_point (&XEXP (x, 2), insn);
+ if (split)
+ return split;
+ /* ... fall through ... */
+ case '2':
+ case 'c':
+ case '<':
+ split = find_split_point (&XEXP (x, 1), insn);
+ if (split)
+ return split;
+ /* ... fall through ... */
+ case '1':
+ /* Some machines have (and (shift ...) ...) insns. If X is not
+ an AND, but XEXP (X, 0) is, use it as our split point. */
+ if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
+ return &XEXP (x, 0);
+
+ split = find_split_point (&XEXP (x, 0), insn);
+ if (split)
+ return split;
+ return loc;
+ }
+
+ /* Otherwise, we don't have a split point. */
+ return 0;
+}
+
+/* Throughout X, replace FROM with TO, and return the result.
+ The result is TO if X is FROM;
+ otherwise the result is X, but its contents may have been modified.
+ If they were modified, a record was made in undobuf so that
+ undo_all will (among other things) return X to its original state.
+
+ If the number of changes necessary is too much to record to undo,
+ the excess changes are not made, so the result is invalid.
+ The changes already made can still be undone.
+ undobuf.num_undo is incremented for such changes, so by testing that
+ the caller can tell whether the result is valid.
+
+ `n_occurrences' is incremented each time FROM is replaced.
+
+ IN_DEST is non-zero if we are processing the SET_DEST of a SET.
+
+ UNIQUE_COPY is non-zero if each substitution must be unique. We do this
+ by copying if `n_occurrences' is non-zero. */
+
+static rtx
+subst (x, from, to, in_dest, unique_copy)
+ register rtx x, from, to;
+ int in_dest;
+ int unique_copy;
+{
+ register enum rtx_code code = GET_CODE (x);
+ enum machine_mode op0_mode = VOIDmode;
+ register char *fmt;
+ register int len, i;
+ rtx new;
+
+/* Two expressions are equal if they are identical copies of a shared
+ RTX or if they are both registers with the same register number
+ and mode. */
+
+#define COMBINE_RTX_EQUAL_P(X,Y) \
+ ((X) == (Y) \
+ || (GET_CODE (X) == REG && GET_CODE (Y) == REG \
+ && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
+
+ if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
+ {
+ n_occurrences++;
+ return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
+ }
+
+ /* If X and FROM are the same register but different modes, they will
+ not have been seen as equal above. However, flow.c will make a
+ LOG_LINKS entry for that case. If we do nothing, we will try to
+ rerecognize our original insn and, when it succeeds, we will
+ delete the feeding insn, which is incorrect.
+
+ So force this insn not to match in this (rare) case. */
+ if (! in_dest && code == REG && GET_CODE (from) == REG
+ && REGNO (x) == REGNO (from))
+ return gen_rtx (CLOBBER, GET_MODE (x), const0_rtx);
+
+ /* If this is an object, we are done unless it is a MEM or LO_SUM, both
+ of which may contain things that can be combined. */
+ if (code != MEM && code != LO_SUM && GET_RTX_CLASS (code) == 'o')
+ return x;
+
+ /* It is possible to have a subexpression appear twice in the insn.
+ Suppose that FROM is a register that appears within TO.
+ Then, after that subexpression has been scanned once by `subst',
+ the second time it is scanned, TO may be found. If we were
+ to scan TO here, we would find FROM within it and create a
+ self-referent rtl structure which is completely wrong. */
+ if (COMBINE_RTX_EQUAL_P (x, to))
+ return to;
+
+ len = GET_RTX_LENGTH (code);
+ fmt = GET_RTX_FORMAT (code);
+
+ /* We don't need to process a SET_DEST that is a register, CC0, or PC, so
+ set up to skip this common case. All other cases where we want to
+ suppress replacing something inside a SET_SRC are handled via the
+ IN_DEST operand. */
+ if (code == SET
+ && (GET_CODE (SET_DEST (x)) == REG
+ || GET_CODE (SET_DEST (x)) == CC0
+ || GET_CODE (SET_DEST (x)) == PC))
+ fmt = "ie";
+
+ /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a constant. */
+ if (fmt[0] == 'e')
+ op0_mode = GET_MODE (XEXP (x, 0));
+
+ for (i = 0; i < len; i++)
+ {
+ if (fmt[i] == 'E')
+ {
+ register int j;
+ for (j = XVECLEN (x, i) - 1; j >= 0; j--)
+ {
+ if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
+ {
+ new = (unique_copy && n_occurrences ? copy_rtx (to) : to);
+ n_occurrences++;
+ }
+ else
+ {
+ new = subst (XVECEXP (x, i, j), from, to, 0, unique_copy);
+
+ /* If this substitution failed, this whole thing fails. */
+ if (GET_CODE (new) == CLOBBER && XEXP (new, 0) == const0_rtx)
+ return new;
+ }
+
+ SUBST (XVECEXP (x, i, j), new);
+ }
+ }
+ else if (fmt[i] == 'e')
+ {
+ if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
+ {
+ /* In general, don't install a subreg involving two modes not
+ tieable. It can worsen register allocation, and can even
+ make invalid reload insns, since the reg inside may need to
+ be copied from in the outside mode, and that may be invalid
+ if it is an fp reg copied in integer mode.
+
+ We allow two exceptions to this: It is valid if it is inside
+ another SUBREG and the mode of that SUBREG and the mode of
+ the inside of TO is tieable and it is valid if X is a SET
+ that copies FROM to CC0. */
+ if (GET_CODE (to) == SUBREG
+ && ! MODES_TIEABLE_P (GET_MODE (to),
+ GET_MODE (SUBREG_REG (to)))
+ && ! (code == SUBREG
+ && MODES_TIEABLE_P (GET_MODE (x),
+ GET_MODE (SUBREG_REG (to))))
+#ifdef HAVE_cc0
+ && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
+#endif
+ )
+ return gen_rtx (CLOBBER, VOIDmode, const0_rtx);
+
+ new = (unique_copy && n_occurrences ? copy_rtx (to) : to);
+ n_occurrences++;
+ }
+ else
+ /* If we are in a SET_DEST, suppress most cases unless we
+ have gone inside a MEM, in which case we want to
+ simplify the address. We assume here that things that
+ are actually part of the destination have their inner
+ parts in the first expression. This is true for SUBREG,
+ STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
+ things aside from REG and MEM that should appear in a
+ SET_DEST. */
+ new = subst (XEXP (x, i), from, to,
+ (((in_dest
+ && (code == SUBREG || code == STRICT_LOW_PART
+ || code == ZERO_EXTRACT))
+ || code == SET)
+ && i == 0), unique_copy);
+
+ /* If we found that we will have to reject this combination,
+ indicate that by returning the CLOBBER ourselves, rather than
+ an expression containing it. This will speed things up as
+ well as prevent accidents where two CLOBBERs are considered
+ to be equal, thus producing an incorrect simplification. */
+
+ if (GET_CODE (new) == CLOBBER && XEXP (new, 0) == const0_rtx)
+ return new;
+
+ SUBST (XEXP (x, i), new);
+ }
+ }
+
+ /* Try to simplify X. If the simplification changed the code, it is likely
+ that further simplification will help, so loop, but limit the number
+ of repetitions that will be performed. */
+
+ for (i = 0; i < 4; i++)
+ {
+ /* If X is sufficiently simple, don't bother trying to do anything
+ with it. */
+ if (code != CONST_INT && code != REG && code != CLOBBER)
+ x = simplify_rtx (x, op0_mode, i == 3, in_dest);
+
+ if (GET_CODE (x) == code)
+ break;
+
+ code = GET_CODE (x);
+
+ /* We no longer know the original mode of operand 0 since we
+ have changed the form of X) */
+ op0_mode = VOIDmode;
+ }
+
+ return x;
+}
+
+/* Simplify X, a piece of RTL. We just operate on the expression at the
+ outer level; call `subst' to simplify recursively. Return the new
+ expression.
+
+ OP0_MODE is the original mode of XEXP (x, 0); LAST is nonzero if this
+ will be the iteration even if an expression with a code different from
+ X is returned; IN_DEST is nonzero if we are inside a SET_DEST. */
+
+static rtx
+simplify_rtx (x, op0_mode, last, in_dest)
+ rtx x;
+ enum machine_mode op0_mode;
+ int last;
+ int in_dest;
+{
+ enum rtx_code code = GET_CODE (x);
+ enum machine_mode mode = GET_MODE (x);
+ rtx temp;
+ int i;
+
+ /* If this is a commutative operation, put a constant last and a complex
+ expression first. We don't need to do this for comparisons here. */
+ if (GET_RTX_CLASS (code) == 'c'
+ && ((CONSTANT_P (XEXP (x, 0)) && GET_CODE (XEXP (x, 1)) != CONST_INT)
+ || (GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == 'o'
+ && GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) != 'o')
+ || (GET_CODE (XEXP (x, 0)) == SUBREG
+ && GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0)))) == 'o'
+ && GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) != 'o')))
+ {
+ temp = XEXP (x, 0);
+ SUBST (XEXP (x, 0), XEXP (x, 1));
+ SUBST (XEXP (x, 1), temp);
+ }
+
+ /* If this is a PLUS, MINUS, or MULT, and the first operand is the
+ sign extension of a PLUS with a constant, reverse the order of the sign
+ extension and the addition. Note that this not the same as the original
+ code, but overflow is undefined for signed values. Also note that the
+ PLUS will have been partially moved "inside" the sign-extension, so that
+ the first operand of X will really look like:
+ (ashiftrt (plus (ashift A C4) C5) C4).
+ We convert this to
+ (plus (ashiftrt (ashift A C4) C2) C4)
+ and replace the first operand of X with that expression. Later parts
+ of this function may simplify the expression further.
+
+ For example, if we start with (mult (sign_extend (plus A C1)) C2),
+ we swap the SIGN_EXTEND and PLUS. Later code will apply the
+ distributive law to produce (plus (mult (sign_extend X) C1) C3).
+
+ We do this to simplify address expressions. */
+
+ if ((code == PLUS || code == MINUS || code == MULT)
+ && GET_CODE (XEXP (x, 0)) == ASHIFTRT
+ && GET_CODE (XEXP (XEXP (x, 0), 0)) == PLUS
+ && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == ASHIFT
+ && GET_CODE (XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1)) == CONST_INT
+ && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
+ && XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1) == XEXP (XEXP (x, 0), 1)
+ && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
+ && (temp = simplify_binary_operation (ASHIFTRT, mode,
+ XEXP (XEXP (XEXP (x, 0), 0), 1),
+ XEXP (XEXP (x, 0), 1))) != 0)
+ {
+ rtx new
+ = simplify_shift_const (NULL_RTX, ASHIFT, mode,
+ XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 0),
+ INTVAL (XEXP (XEXP (x, 0), 1)));
+
+ new = simplify_shift_const (NULL_RTX, ASHIFTRT, mode, new,
+ INTVAL (XEXP (XEXP (x, 0), 1)));
+
+ SUBST (XEXP (x, 0), gen_binary (PLUS, mode, new, temp));
+ }
+
+ /* If this is a simple operation applied to an IF_THEN_ELSE, try
+ applying it to the arms of the IF_THEN_ELSE. This often simplifies
+ things. Check for cases where both arms are testing the same
+ condition.
+
+ Don't do anything if all operands are very simple. */
+
+ if (((GET_RTX_CLASS (code) == '2' || GET_RTX_CLASS (code) == 'c'
+ || GET_RTX_CLASS (code) == '<')
+ && ((GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) != 'o'
+ && ! (GET_CODE (XEXP (x, 0)) == SUBREG
+ && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0))))
+ == 'o')))
+ || (GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) != 'o'
+ && ! (GET_CODE (XEXP (x, 1)) == SUBREG
+ && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 1))))
+ == 'o')))))
+ || (GET_RTX_CLASS (code) == '1'
+ && ((GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) != 'o'
+ && ! (GET_CODE (XEXP (x, 0)) == SUBREG
+ && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0))))
+ == 'o'))))))
+ {
+ rtx cond, true, false;
+
+ cond = if_then_else_cond (x, &true, &false);
+ if (cond != 0)
+ {
+ rtx cop1 = const0_rtx;
+ enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
+
+ if (cond_code == NE && GET_RTX_CLASS (GET_CODE (cond)) == '<')
+ return x;
+
+ /* Simplify the alternative arms; this may collapse the true and
+ false arms to store-flag values. */
+ true = subst (true, pc_rtx, pc_rtx, 0, 0);
+ false = subst (false, pc_rtx, pc_rtx, 0, 0);
+
+ /* Restarting if we generate a store-flag expression will cause
+ us to loop. Just drop through in this case. */
+
+ /* If the result values are STORE_FLAG_VALUE and zero, we can
+ just make the comparison operation. */
+ if (true == const_true_rtx && false == const0_rtx)
+ x = gen_binary (cond_code, mode, cond, cop1);
+ else if (true == const0_rtx && false == const_true_rtx)
+ x = gen_binary (reverse_condition (cond_code), mode, cond, cop1);
+
+ /* Likewise, we can make the negate of a comparison operation
+ if the result values are - STORE_FLAG_VALUE and zero. */
+ else if (GET_CODE (true) == CONST_INT
+ && INTVAL (true) == - STORE_FLAG_VALUE
+ && false == const0_rtx)
+ x = gen_unary (NEG, mode, mode,
+ gen_binary (cond_code, mode, cond, cop1));
+ else if (GET_CODE (false) == CONST_INT
+ && INTVAL (false) == - STORE_FLAG_VALUE
+ && true == const0_rtx)
+ x = gen_unary (NEG, mode, mode,
+ gen_binary (reverse_condition (cond_code),
+ mode, cond, cop1));
+ else
+ return gen_rtx (IF_THEN_ELSE, mode,
+ gen_binary (cond_code, VOIDmode, cond, cop1),
+ true, false);
+
+ code = GET_CODE (x);
+ op0_mode = VOIDmode;
+ }
+ }
+
+ /* Try to fold this expression in case we have constants that weren't
+ present before. */
+ temp = 0;
+ switch (GET_RTX_CLASS (code))
+ {
+ case '1':
+ temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
+ break;
+ case '<':
+ temp = simplify_relational_operation (code, op0_mode,
+ XEXP (x, 0), XEXP (x, 1));
+#ifdef FLOAT_STORE_FLAG_VALUE
+ if (temp != 0 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
+ temp = ((temp == const0_rtx) ? CONST0_RTX (GET_MODE (x))
+ : immed_real_const_1 (FLOAT_STORE_FLAG_VALUE, GET_MODE (x)));
+#endif
+ break;
+ case 'c':
+ case '2':
+ temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
+ break;
+ case 'b':
+ case '3':
+ temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
+ XEXP (x, 1), XEXP (x, 2));
+ break;
+ }
+
+ if (temp)
+ x = temp, code = GET_CODE (temp);
+
+ /* First see if we can apply the inverse distributive law. */
+ if (code == PLUS || code == MINUS
+ || code == AND || code == IOR || code == XOR)
+ {
+ x = apply_distributive_law (x);
+ code = GET_CODE (x);
+ }
+
+ /* If CODE is an associative operation not otherwise handled, see if we
+ can associate some operands. This can win if they are constants or
+ if they are logically related (i.e. (a & b) & a. */
+ if ((code == PLUS || code == MINUS
+ || code == MULT || code == AND || code == IOR || code == XOR
+ || code == DIV || code == UDIV
+ || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
+ && INTEGRAL_MODE_P (mode))
+ {
+ if (GET_CODE (XEXP (x, 0)) == code)
+ {
+ rtx other = XEXP (XEXP (x, 0), 0);
+ rtx inner_op0 = XEXP (XEXP (x, 0), 1);
+ rtx inner_op1 = XEXP (x, 1);
+ rtx inner;
+
+ /* Make sure we pass the constant operand if any as the second
+ one if this is a commutative operation. */
+ if (CONSTANT_P (inner_op0) && GET_RTX_CLASS (code) == 'c')
+ {
+ rtx tem = inner_op0;
+ inner_op0 = inner_op1;
+ inner_op1 = tem;
+ }
+ inner = simplify_binary_operation (code == MINUS ? PLUS
+ : code == DIV ? MULT
+ : code == UDIV ? MULT
+ : code,
+ mode, inner_op0, inner_op1);
+
+ /* For commutative operations, try the other pair if that one
+ didn't simplify. */
+ if (inner == 0 && GET_RTX_CLASS (code) == 'c')
+ {
+ other = XEXP (XEXP (x, 0), 1);
+ inner = simplify_binary_operation (code, mode,
+ XEXP (XEXP (x, 0), 0),
+ XEXP (x, 1));
+ }
+
+ if (inner)
+ return gen_binary (code, mode, other, inner);
+ }
+ }
+
+ /* A little bit of algebraic simplification here. */
+ switch (code)
+ {
+ case MEM:
+ /* Ensure that our address has any ASHIFTs converted to MULT in case
+ address-recognizing predicates are called later. */
+ temp = make_compound_operation (XEXP (x, 0), MEM);
+ SUBST (XEXP (x, 0), temp);
+ break;
+
+ case SUBREG:
+ /* (subreg:A (mem:B X) N) becomes a modified MEM unless the SUBREG
+ is paradoxical. If we can't do that safely, then it becomes
+ something nonsensical so that this combination won't take place. */
+
+ if (GET_CODE (SUBREG_REG (x)) == MEM
+ && (GET_MODE_SIZE (mode)
+ <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
+ {
+ rtx inner = SUBREG_REG (x);
+ int endian_offset = 0;
+ /* Don't change the mode of the MEM
+ if that would change the meaning of the address. */
+ if (MEM_VOLATILE_P (SUBREG_REG (x))
+ || mode_dependent_address_p (XEXP (inner, 0)))
+ return gen_rtx (CLOBBER, mode, const0_rtx);
+
+ if (BYTES_BIG_ENDIAN)
+ {
+ if (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
+ endian_offset += UNITS_PER_WORD - GET_MODE_SIZE (mode);
+ if (GET_MODE_SIZE (GET_MODE (inner)) < UNITS_PER_WORD)
+ endian_offset -= (UNITS_PER_WORD
+ - GET_MODE_SIZE (GET_MODE (inner)));
+ }
+ /* Note if the plus_constant doesn't make a valid address
+ then this combination won't be accepted. */
+ x = gen_rtx (MEM, mode,
+ plus_constant (XEXP (inner, 0),
+ (SUBREG_WORD (x) * UNITS_PER_WORD
+ + endian_offset)));
+ MEM_VOLATILE_P (x) = MEM_VOLATILE_P (inner);
+ RTX_UNCHANGING_P (x) = RTX_UNCHANGING_P (inner);
+ MEM_IN_STRUCT_P (x) = MEM_IN_STRUCT_P (inner);
+ return x;
+ }
+
+ /* If we are in a SET_DEST, these other cases can't apply. */
+ if (in_dest)
+ return x;
+
+ /* Changing mode twice with SUBREG => just change it once,
+ or not at all if changing back to starting mode. */
+ if (GET_CODE (SUBREG_REG (x)) == SUBREG)
+ {
+ if (mode == GET_MODE (SUBREG_REG (SUBREG_REG (x)))
+ && SUBREG_WORD (x) == 0 && SUBREG_WORD (SUBREG_REG (x)) == 0)
+ return SUBREG_REG (SUBREG_REG (x));
+
+ SUBST_INT (SUBREG_WORD (x),
+ SUBREG_WORD (x) + SUBREG_WORD (SUBREG_REG (x)));
+ SUBST (SUBREG_REG (x), SUBREG_REG (SUBREG_REG (x)));
+ }
+
+ /* SUBREG of a hard register => just change the register number
+ and/or mode. If the hard register is not valid in that mode,
+ suppress this combination. If the hard register is the stack,
+ frame, or argument pointer, leave this as a SUBREG. */
+
+ if (GET_CODE (SUBREG_REG (x)) == REG
+ && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER
+ && REGNO (SUBREG_REG (x)) != FRAME_POINTER_REGNUM
+#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
+ && REGNO (SUBREG_REG (x)) != HARD_FRAME_POINTER_REGNUM
+#endif
+#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
+ && REGNO (SUBREG_REG (x)) != ARG_POINTER_REGNUM
+#endif
+ && REGNO (SUBREG_REG (x)) != STACK_POINTER_REGNUM)
+ {
+ if (HARD_REGNO_MODE_OK (REGNO (SUBREG_REG (x)) + SUBREG_WORD (x),
+ mode))
+ return gen_rtx (REG, mode,
+ REGNO (SUBREG_REG (x)) + SUBREG_WORD (x));
+ else
+ return gen_rtx (CLOBBER, mode, const0_rtx);
+ }
+
+ /* For a constant, try to pick up the part we want. Handle a full
+ word and low-order part. Only do this if we are narrowing
+ the constant; if it is being widened, we have no idea what
+ the extra bits will have been set to. */
+
+ if (CONSTANT_P (SUBREG_REG (x)) && op0_mode != VOIDmode
+ && GET_MODE_SIZE (mode) == UNITS_PER_WORD
+ && GET_MODE_SIZE (op0_mode) < UNITS_PER_WORD
+ && GET_MODE_CLASS (mode) == MODE_INT)
+ {
+ temp = operand_subword (SUBREG_REG (x), SUBREG_WORD (x),
+ 0, op0_mode);
+ if (temp)
+ return temp;
+ }
+
+ /* If we want a subreg of a constant, at offset 0,
+ take the low bits. On a little-endian machine, that's
+ always valid. On a big-endian machine, it's valid
+ only if the constant's mode fits in one word. */
+ if (CONSTANT_P (SUBREG_REG (x)) && subreg_lowpart_p (x)
+ && GET_MODE_SIZE (mode) < GET_MODE_SIZE (op0_mode)
+ && (! WORDS_BIG_ENDIAN
+ || GET_MODE_BITSIZE (op0_mode) <= BITS_PER_WORD))
+ return gen_lowpart_for_combine (mode, SUBREG_REG (x));
+
+ /* A paradoxical SUBREG of a VOIDmode constant is the same constant,
+ since we are saying that the high bits don't matter. */
+ if (CONSTANT_P (SUBREG_REG (x)) && GET_MODE (SUBREG_REG (x)) == VOIDmode
+ && GET_MODE_SIZE (mode) > GET_MODE_SIZE (op0_mode))
+ return SUBREG_REG (x);
+
+ /* Note that we cannot do any narrowing for non-constants since
+ we might have been counting on using the fact that some bits were
+ zero. We now do this in the SET. */
+
+ break;
+
+ case NOT:
+ /* (not (plus X -1)) can become (neg X). */
+ if (GET_CODE (XEXP (x, 0)) == PLUS
+ && XEXP (XEXP (x, 0), 1) == constm1_rtx)
+ return gen_rtx_combine (NEG, mode, XEXP (XEXP (x, 0), 0));
+
+ /* Similarly, (not (neg X)) is (plus X -1). */
+ if (GET_CODE (XEXP (x, 0)) == NEG)
+ return gen_rtx_combine (PLUS, mode, XEXP (XEXP (x, 0), 0),
+ constm1_rtx);
+
+ /* (not (xor X C)) for C constant is (xor X D) with D = ~ C. */
+ if (GET_CODE (XEXP (x, 0)) == XOR
+ && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
+ && (temp = simplify_unary_operation (NOT, mode,
+ XEXP (XEXP (x, 0), 1),
+ mode)) != 0)
+ return gen_binary (XOR, mode, XEXP (XEXP (x, 0), 0), temp);
+
+ /* (not (ashift 1 X)) is (rotate ~1 X). We used to do this for operands
+ other than 1, but that is not valid. We could do a similar
+ simplification for (not (lshiftrt C X)) where C is just the sign bit,
+ but this doesn't seem common enough to bother with. */
+ if (GET_CODE (XEXP (x, 0)) == ASHIFT
+ && XEXP (XEXP (x, 0), 0) == const1_rtx)
+ return gen_rtx (ROTATE, mode, gen_unary (NOT, mode, mode, const1_rtx),
+ XEXP (XEXP (x, 0), 1));
+
+ if (GET_CODE (XEXP (x, 0)) == SUBREG
+ && subreg_lowpart_p (XEXP (x, 0))
+ && (GET_MODE_SIZE (GET_MODE (XEXP (x, 0)))
+ < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (x, 0)))))
+ && GET_CODE (SUBREG_REG (XEXP (x, 0))) == ASHIFT
+ && XEXP (SUBREG_REG (XEXP (x, 0)), 0) == const1_rtx)
+ {
+ enum machine_mode inner_mode = GET_MODE (SUBREG_REG (XEXP (x, 0)));
+
+ x = gen_rtx (ROTATE, inner_mode,
+ gen_unary (NOT, inner_mode, inner_mode, const1_rtx),
+ XEXP (SUBREG_REG (XEXP (x, 0)), 1));
+ return gen_lowpart_for_combine (mode, x);
+ }
+
+#if STORE_FLAG_VALUE == -1
+ /* (not (comparison foo bar)) can be done by reversing the comparison
+ code if valid. */
+ if (GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
+ && reversible_comparison_p (XEXP (x, 0)))
+ return gen_rtx_combine (reverse_condition (GET_CODE (XEXP (x, 0))),
+ mode, XEXP (XEXP (x, 0), 0),
+ XEXP (XEXP (x, 0), 1));
+
+ /* (ashiftrt foo C) where C is the number of bits in FOO minus 1
+ is (lt foo (const_int 0)), so we can perform the above
+ simplification. */
+
+ if (XEXP (x, 1) == const1_rtx
+ && GET_CODE (XEXP (x, 0)) == ASHIFTRT
+ && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
+ && INTVAL (XEXP (XEXP (x, 0), 1)) == GET_MODE_BITSIZE (mode) - 1)
+ return gen_rtx_combine (GE, mode, XEXP (XEXP (x, 0), 0), const0_rtx);
+#endif
+
+ /* Apply De Morgan's laws to reduce number of patterns for machines
+ with negating logical insns (and-not, nand, etc.). If result has
+ only one NOT, put it first, since that is how the patterns are
+ coded. */
+
+ if (GET_CODE (XEXP (x, 0)) == IOR || GET_CODE (XEXP (x, 0)) == AND)
+ {
+ rtx in1 = XEXP (XEXP (x, 0), 0), in2 = XEXP (XEXP (x, 0), 1);
+
+ if (GET_CODE (in1) == NOT)
+ in1 = XEXP (in1, 0);
+ else
+ in1 = gen_rtx_combine (NOT, GET_MODE (in1), in1);
+
+ if (GET_CODE (in2) == NOT)
+ in2 = XEXP (in2, 0);
+ else if (GET_CODE (in2) == CONST_INT
+ && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
+ in2 = GEN_INT (GET_MODE_MASK (mode) & ~ INTVAL (in2));
+ else
+ in2 = gen_rtx_combine (NOT, GET_MODE (in2), in2);
+
+ if (GET_CODE (in2) == NOT)
+ {
+ rtx tem = in2;
+ in2 = in1; in1 = tem;
+ }
+
+ return gen_rtx_combine (GET_CODE (XEXP (x, 0)) == IOR ? AND : IOR,
+ mode, in1, in2);
+ }
+ break;
+
+ case NEG:
+ /* (neg (plus X 1)) can become (not X). */
+ if (GET_CODE (XEXP (x, 0)) == PLUS
+ && XEXP (XEXP (x, 0), 1) == const1_rtx)
+ return gen_rtx_combine (NOT, mode, XEXP (XEXP (x, 0), 0));
+
+ /* Similarly, (neg (not X)) is (plus X 1). */
+ if (GET_CODE (XEXP (x, 0)) == NOT)
+ return plus_constant (XEXP (XEXP (x, 0), 0), 1);
+
+ /* (neg (minus X Y)) can become (minus Y X). */
+ if (GET_CODE (XEXP (x, 0)) == MINUS
+ && (! FLOAT_MODE_P (mode)
+ /* x-y != -(y-x) with IEEE floating point. */
+ || TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
+ || flag_fast_math))
+ return gen_binary (MINUS, mode, XEXP (XEXP (x, 0), 1),
+ XEXP (XEXP (x, 0), 0));
+
+ /* (neg (xor A 1)) is (plus A -1) if A is known to be either 0 or 1. */
+ if (GET_CODE (XEXP (x, 0)) == XOR && XEXP (XEXP (x, 0), 1) == const1_rtx
+ && nonzero_bits (XEXP (XEXP (x, 0), 0), mode) == 1)
+ return gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0), constm1_rtx);
+
+ /* NEG commutes with ASHIFT since it is multiplication. Only do this
+ if we can then eliminate the NEG (e.g.,
+ if the operand is a constant). */
+
+ if (GET_CODE (XEXP (x, 0)) == ASHIFT)
+ {
+ temp = simplify_unary_operation (NEG, mode,
+ XEXP (XEXP (x, 0), 0), mode);
+ if (temp)
+ {
+ SUBST (XEXP (XEXP (x, 0), 0), temp);
+ return XEXP (x, 0);
+ }
+ }
+
+ temp = expand_compound_operation (XEXP (x, 0));
+
+ /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
+ replaced by (lshiftrt X C). This will convert
+ (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
+
+ if (GET_CODE (temp) == ASHIFTRT
+ && GET_CODE (XEXP (temp, 1)) == CONST_INT
+ && INTVAL (XEXP (temp, 1)) == GET_MODE_BITSIZE (mode) - 1)
+ return simplify_shift_const (temp, LSHIFTRT, mode, XEXP (temp, 0),
+ INTVAL (XEXP (temp, 1)));
+
+ /* If X has only a single bit that might be nonzero, say, bit I, convert
+ (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
+ MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
+ (sign_extract X 1 Y). But only do this if TEMP isn't a register
+ or a SUBREG of one since we'd be making the expression more
+ complex if it was just a register. */
+
+ if (GET_CODE (temp) != REG
+ && ! (GET_CODE (temp) == SUBREG
+ && GET_CODE (SUBREG_REG (temp)) == REG)
+ && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
+ {
+ rtx temp1 = simplify_shift_const
+ (NULL_RTX, ASHIFTRT, mode,
+ simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
+ GET_MODE_BITSIZE (mode) - 1 - i),
+ GET_MODE_BITSIZE (mode) - 1 - i);
+
+ /* If all we did was surround TEMP with the two shifts, we
+ haven't improved anything, so don't use it. Otherwise,
+ we are better off with TEMP1. */
+ if (GET_CODE (temp1) != ASHIFTRT
+ || GET_CODE (XEXP (temp1, 0)) != ASHIFT
+ || XEXP (XEXP (temp1, 0), 0) != temp)
+ return temp1;
+ }
+ break;
+
+ case TRUNCATE:
+ if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
+ SUBST (XEXP (x, 0),
+ force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
+ GET_MODE_MASK (mode), NULL_RTX, 0));
+ break;
+
+ case FLOAT_TRUNCATE:
+ /* (float_truncate:SF (float_extend:DF foo:SF)) = foo:SF. */
+ if (GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND
+ && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
+ return XEXP (XEXP (x, 0), 0);
+
+ /* (float_truncate:SF (OP:DF (float_extend:DF foo:sf))) is
+ (OP:SF foo:SF) if OP is NEG or ABS. */
+ if ((GET_CODE (XEXP (x, 0)) == ABS
+ || GET_CODE (XEXP (x, 0)) == NEG)
+ && GET_CODE (XEXP (XEXP (x, 0), 0)) == FLOAT_EXTEND
+ && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
+ return gen_unary (GET_CODE (XEXP (x, 0)), mode, mode,
+ XEXP (XEXP (XEXP (x, 0), 0), 0));
+
+ /* (float_truncate:SF (subreg:DF (float_truncate:SF X) 0))
+ is (float_truncate:SF x). */
+ if (GET_CODE (XEXP (x, 0)) == SUBREG
+ && subreg_lowpart_p (XEXP (x, 0))
+ && GET_CODE (SUBREG_REG (XEXP (x, 0))) == FLOAT_TRUNCATE)
+ return SUBREG_REG (XEXP (x, 0));
+ break;
+
+#ifdef HAVE_cc0
+ case COMPARE:
+ /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
+ using cc0, in which case we want to leave it as a COMPARE
+ so we can distinguish it from a register-register-copy. */
+ if (XEXP (x, 1) == const0_rtx)
+ return XEXP (x, 0);
+
+ /* In IEEE floating point, x-0 is not the same as x. */
+ if ((TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
+ || ! FLOAT_MODE_P (GET_MODE (XEXP (x, 0)))
+ || flag_fast_math)
+ && XEXP (x, 1) == CONST0_RTX (GET_MODE (XEXP (x, 0))))
+ return XEXP (x, 0);
+ break;
+#endif
+
+ case CONST:
+ /* (const (const X)) can become (const X). Do it this way rather than
+ returning the inner CONST since CONST can be shared with a
+ REG_EQUAL note. */
+ if (GET_CODE (XEXP (x, 0)) == CONST)
+ SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
+ break;
+
+#ifdef HAVE_lo_sum
+ case LO_SUM:
+ /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
+ can add in an offset. find_split_point will split this address up
+ again if it doesn't match. */
+ if (GET_CODE (XEXP (x, 0)) == HIGH
+ && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
+ return XEXP (x, 1);
+ break;
+#endif
+
+ case PLUS:
+ /* If we have (plus (plus (A const) B)), associate it so that CONST is
+ outermost. That's because that's the way indexed addresses are
+ supposed to appear. This code used to check many more cases, but
+ they are now checked elsewhere. */
+ if (GET_CODE (XEXP (x, 0)) == PLUS
+ && CONSTANT_ADDRESS_P (XEXP (XEXP (x, 0), 1)))
+ return gen_binary (PLUS, mode,
+ gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0),
+ XEXP (x, 1)),
+ XEXP (XEXP (x, 0), 1));
+
+ /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
+ when c is (const_int (pow2 + 1) / 2) is a sign extension of a
+ bit-field and can be replaced by either a sign_extend or a
+ sign_extract. The `and' may be a zero_extend. */
+ if (GET_CODE (XEXP (x, 0)) == XOR
+ && GET_CODE (XEXP (x, 1)) == CONST_INT
+ && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
+ && INTVAL (XEXP (x, 1)) == - INTVAL (XEXP (XEXP (x, 0), 1))
+ && (i = exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
+ && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
+ && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
+ && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
+ && (INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
+ == ((HOST_WIDE_INT) 1 << (i + 1)) - 1))
+ || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
+ && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
+ == i + 1))))
+ return simplify_shift_const
+ (NULL_RTX, ASHIFTRT, mode,
+ simplify_shift_const (NULL_RTX, ASHIFT, mode,
+ XEXP (XEXP (XEXP (x, 0), 0), 0),
+ GET_MODE_BITSIZE (mode) - (i + 1)),
+ GET_MODE_BITSIZE (mode) - (i + 1));
+
+ /* (plus (comparison A B) C) can become (neg (rev-comp A B)) if
+ C is 1 and STORE_FLAG_VALUE is -1 or if C is -1 and STORE_FLAG_VALUE
+ is 1. This produces better code than the alternative immediately
+ below. */
+ if (GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
+ && reversible_comparison_p (XEXP (x, 0))
+ && ((STORE_FLAG_VALUE == -1 && XEXP (x, 1) == const1_rtx)
+ || (STORE_FLAG_VALUE == 1 && XEXP (x, 1) == constm1_rtx)))
+ return
+ gen_unary (NEG, mode, mode,
+ gen_binary (reverse_condition (GET_CODE (XEXP (x, 0))),
+ mode, XEXP (XEXP (x, 0), 0),
+ XEXP (XEXP (x, 0), 1)));
+
+ /* If only the low-order bit of X is possibly nonzero, (plus x -1)
+ can become (ashiftrt (ashift (xor x 1) C) C) where C is
+ the bitsize of the mode - 1. This allows simplification of
+ "a = (b & 8) == 0;" */
+ if (XEXP (x, 1) == constm1_rtx
+ && GET_CODE (XEXP (x, 0)) != REG
+ && ! (GET_CODE (XEXP (x,0)) == SUBREG
+ && GET_CODE (SUBREG_REG (XEXP (x, 0))) == REG)
+ && nonzero_bits (XEXP (x, 0), mode) == 1)
+ return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
+ simplify_shift_const (NULL_RTX, ASHIFT, mode,
+ gen_rtx_combine (XOR, mode,
+ XEXP (x, 0), const1_rtx),
+ GET_MODE_BITSIZE (mode) - 1),
+ GET_MODE_BITSIZE (mode) - 1);
+
+ /* If we are adding two things that have no bits in common, convert
+ the addition into an IOR. This will often be further simplified,
+ for example in cases like ((a & 1) + (a & 2)), which can
+ become a & 3. */
+
+ if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
+ && (nonzero_bits (XEXP (x, 0), mode)
+ & nonzero_bits (XEXP (x, 1), mode)) == 0)
+ return gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
+ break;
+
+ case MINUS:
+#if STORE_FLAG_VALUE == 1
+ /* (minus 1 (comparison foo bar)) can be done by reversing the comparison
+ code if valid. */
+ if (XEXP (x, 0) == const1_rtx
+ && GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) == '<'
+ && reversible_comparison_p (XEXP (x, 1)))
+ return gen_binary (reverse_condition (GET_CODE (XEXP (x, 1))),
+ mode, XEXP (XEXP (x, 1), 0),
+ XEXP (XEXP (x, 1), 1));
+#endif
+
+ /* (minus <foo> (and <foo> (const_int -pow2))) becomes
+ (and <foo> (const_int pow2-1)) */
+ if (GET_CODE (XEXP (x, 1)) == AND
+ && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
+ && exact_log2 (- INTVAL (XEXP (XEXP (x, 1), 1))) >= 0
+ && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
+ return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
+ - INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
+
+ /* Canonicalize (minus A (plus B C)) to (minus (minus A B) C) for
+ integers. */
+ if (GET_CODE (XEXP (x, 1)) == PLUS && INTEGRAL_MODE_P (mode))
+ return gen_binary (MINUS, mode,
+ gen_binary (MINUS, mode, XEXP (x, 0),
+ XEXP (XEXP (x, 1), 0)),
+ XEXP (XEXP (x, 1), 1));
+ break;
+
+ case MULT:
+ /* If we have (mult (plus A B) C), apply the distributive law and then
+ the inverse distributive law to see if things simplify. This
+ occurs mostly in addresses, often when unrolling loops. */
+
+ if (GET_CODE (XEXP (x, 0)) == PLUS)
+ {
+ x = apply_distributive_law
+ (gen_binary (PLUS, mode,
+ gen_binary (MULT, mode,
+ XEXP (XEXP (x, 0), 0), XEXP (x, 1)),
+ gen_binary (MULT, mode,
+ XEXP (XEXP (x, 0), 1), XEXP (x, 1))));
+
+ if (GET_CODE (x) != MULT)
+ return x;
+ }
+ break;
+
+ case UDIV:
+ /* If this is a divide by a power of two, treat it as a shift if
+ its first operand is a shift. */
+ if (GET_CODE (XEXP (x, 1)) == CONST_INT
+ && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0
+ && (GET_CODE (XEXP (x, 0)) == ASHIFT
+ || GET_CODE (XEXP (x, 0)) == LSHIFTRT
+ || GET_CODE (XEXP (x, 0)) == ASHIFTRT
+ || GET_CODE (XEXP (x, 0)) == ROTATE
+ || GET_CODE (XEXP (x, 0)) == ROTATERT))
+ return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
+ break;
+
+ case EQ: case NE:
+ case GT: case GTU: case GE: case GEU:
+ case LT: case LTU: case LE: case LEU:
+ /* If the first operand is a condition code, we can't do anything
+ with it. */
+ if (GET_CODE (XEXP (x, 0)) == COMPARE
+ || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
+#ifdef HAVE_cc0
+ && XEXP (x, 0) != cc0_rtx
+#endif
+ ))
+ {
+ rtx op0 = XEXP (x, 0);
+ rtx op1 = XEXP (x, 1);
+ enum rtx_code new_code;
+
+ if (GET_CODE (op0) == COMPARE)
+ op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
+
+ /* Simplify our comparison, if possible. */
+ new_code = simplify_comparison (code, &op0, &op1);
+
+#if STORE_FLAG_VALUE == 1
+ /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
+ if only the low-order bit is possibly nonzero in X (such as when
+ X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
+ (xor X 1) or (minus 1 X); we use the former. Finally, if X is
+ known to be either 0 or -1, NE becomes a NEG and EQ becomes
+ (plus X 1).
+
+ Remove any ZERO_EXTRACT we made when thinking this was a
+ comparison. It may now be simpler to use, e.g., an AND. If a
+ ZERO_EXTRACT is indeed appropriate, it will be placed back by
+ the call to make_compound_operation in the SET case. */
+
+ if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
+ && op1 == const0_rtx
+ && nonzero_bits (op0, mode) == 1)
+ return gen_lowpart_for_combine (mode,
+ expand_compound_operation (op0));
+
+ else if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
+ && op1 == const0_rtx
+ && (num_sign_bit_copies (op0, mode)
+ == GET_MODE_BITSIZE (mode)))
+ {
+ op0 = expand_compound_operation (op0);
+ return gen_unary (NEG, mode, mode,
+ gen_lowpart_for_combine (mode, op0));
+ }
+
+ else if (new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
+ && op1 == const0_rtx
+ && nonzero_bits (op0, mode) == 1)
+ {
+ op0 = expand_compound_operation (op0);
+ return gen_binary (XOR, mode,
+ gen_lowpart_for_combine (mode, op0),
+ const1_rtx);
+ }
+
+ else if (new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
+ && op1 == const0_rtx
+ && (num_sign_bit_copies (op0, mode)
+ == GET_MODE_BITSIZE (mode)))
+ {
+ op0 = expand_compound_operation (op0);
+ return plus_constant (gen_lowpart_for_combine (mode, op0), 1);
+ }
+#endif
+
+#if STORE_FLAG_VALUE == -1
+ /* If STORE_FLAG_VALUE is -1, we have cases similar to
+ those above. */
+ if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
+ && op1 == const0_rtx
+ && (num_sign_bit_copies (op0, mode)
+ == GET_MODE_BITSIZE (mode)))
+ return gen_lowpart_for_combine (mode,
+ expand_compound_operation (op0));
+
+ else if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
+ && op1 == const0_rtx
+ && nonzero_bits (op0, mode) == 1)
+ {
+ op0 = expand_compound_operation (op0);
+ return gen_unary (NEG, mode, mode,
+ gen_lowpart_for_combine (mode, op0));
+ }
+
+ else if (new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
+ && op1 == const0_rtx
+ && (num_sign_bit_copies (op0, mode)
+ == GET_MODE_BITSIZE (mode)))
+ {
+ op0 = expand_compound_operation (op0);
+ return gen_unary (NOT, mode, mode,
+ gen_lowpart_for_combine (mode, op0));
+ }
+
+ /* If X is 0/1, (eq X 0) is X-1. */
+ else if (new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
+ && op1 == const0_rtx
+ && nonzero_bits (op0, mode) == 1)
+ {
+ op0 = expand_compound_operation (op0);
+ return plus_constant (gen_lowpart_for_combine (mode, op0), -1);
+ }
+#endif
+
+ /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
+ one bit that might be nonzero, we can convert (ne x 0) to
+ (ashift x c) where C puts the bit in the sign bit. Remove any
+ AND with STORE_FLAG_VALUE when we are done, since we are only
+ going to test the sign bit. */
+ if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
+ && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
+ && (STORE_FLAG_VALUE
+ == (HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
+ && op1 == const0_rtx
+ && mode == GET_MODE (op0)
+ && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
+ {
+ x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
+ expand_compound_operation (op0),
+ GET_MODE_BITSIZE (mode) - 1 - i);
+ if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
+ return XEXP (x, 0);
+ else
+ return x;
+ }
+
+ /* If the code changed, return a whole new comparison. */
+ if (new_code != code)
+ return gen_rtx_combine (new_code, mode, op0, op1);
+
+ /* Otherwise, keep this operation, but maybe change its operands.
+ This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
+ SUBST (XEXP (x, 0), op0);
+ SUBST (XEXP (x, 1), op1);
+ }
+ break;
+
+ case IF_THEN_ELSE:
+ return simplify_if_then_else (x);
+
+ case ZERO_EXTRACT:
+ case SIGN_EXTRACT:
+ case ZERO_EXTEND:
+ case SIGN_EXTEND:
+ /* If we are processing SET_DEST, we are done. */
+ if (in_dest)
+ return x;
+
+ return expand_compound_operation (x);
+
+ case SET:
+ return simplify_set (x);
+
+ case AND:
+ case IOR:
+ case XOR:
+ return simplify_logical (x, last);
+
+ case ABS:
+ /* (abs (neg <foo>)) -> (abs <foo>) */
+ if (GET_CODE (XEXP (x, 0)) == NEG)
+ SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
+
+ /* If operand is something known to be positive, ignore the ABS. */
+ if (GET_CODE (XEXP (x, 0)) == FFS || GET_CODE (XEXP (x, 0)) == ABS
+ || ((GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
+ <= HOST_BITS_PER_WIDE_INT)
+ && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
+ & ((HOST_WIDE_INT) 1
+ << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1)))
+ == 0)))
+ return XEXP (x, 0);
+
+
+ /* If operand is known to be only -1 or 0, convert ABS to NEG. */
+ if (num_sign_bit_copies (XEXP (x, 0), mode) == GET_MODE_BITSIZE (mode))
+ return gen_rtx_combine (NEG, mode, XEXP (x, 0));
+
+ break;
+
+ case FFS:
+ /* (ffs (*_extend <X>)) = (ffs <X>) */
+ if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
+ || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
+ SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
+ break;
+
+ case FLOAT:
+ /* (float (sign_extend <X>)) = (float <X>). */
+ if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
+ SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
+ break;
+
+ case ASHIFT:
+ case LSHIFTRT:
+ case ASHIFTRT:
+ case ROTATE:
+ case ROTATERT:
+ /* If this is a shift by a constant amount, simplify it. */
+ if (GET_CODE (XEXP (x, 1)) == CONST_INT)
+ return simplify_shift_const (x, code, mode, XEXP (x, 0),
+ INTVAL (XEXP (x, 1)));
+
+#ifdef SHIFT_COUNT_TRUNCATED
+ else if (SHIFT_COUNT_TRUNCATED && GET_CODE (XEXP (x, 1)) != REG)
+ SUBST (XEXP (x, 1),
+ force_to_mode (XEXP (x, 1), GET_MODE (x),
+ ((HOST_WIDE_INT) 1
+ << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
+ - 1,
+ NULL_RTX, 0));
+#endif
+
+ break;
+ }
+
+ return x;
+}
+
+/* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
+
+static rtx
+simplify_if_then_else (x)
+ rtx x;
+{
+ enum machine_mode mode = GET_MODE (x);
+ rtx cond = XEXP (x, 0);
+ rtx true = XEXP (x, 1);
+ rtx false = XEXP (x, 2);
+ enum rtx_code true_code = GET_CODE (cond);
+ int comparison_p = GET_RTX_CLASS (true_code) == '<';
+ rtx temp;
+ int i;
+
+ /* Simplify storing of the truth value. */
+ if (comparison_p && true == const_true_rtx && false == const0_rtx)
+ return gen_binary (true_code, mode, XEXP (cond, 0), XEXP (cond, 1));
+
+ /* Also when the truth value has to be reversed. */
+ if (comparison_p && reversible_comparison_p (cond)
+ && true == const0_rtx && false == const_true_rtx)
+ return gen_binary (reverse_condition (true_code),
+ mode, XEXP (cond, 0), XEXP (cond, 1));
+
+ /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
+ in it is being compared against certain values. Get the true and false
+ comparisons and see if that says anything about the value of each arm. */
+
+ if (comparison_p && reversible_comparison_p (cond)
+ && GET_CODE (XEXP (cond, 0)) == REG)
+ {
+ HOST_WIDE_INT nzb;
+ rtx from = XEXP (cond, 0);
+ enum rtx_code false_code = reverse_condition (true_code);
+ rtx true_val = XEXP (cond, 1);
+ rtx false_val = true_val;
+ int swapped = 0;
+
+ /* If FALSE_CODE is EQ, swap the codes and arms. */
+
+ if (false_code == EQ)
+ {
+ swapped = 1, true_code = EQ, false_code = NE;
+ temp = true, true = false, false = temp;
+ }
+
+ /* If we are comparing against zero and the expression being tested has
+ only a single bit that might be nonzero, that is its value when it is
+ not equal to zero. Similarly if it is known to be -1 or 0. */
+
+ if (true_code == EQ && true_val == const0_rtx
+ && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
+ false_code = EQ, false_val = GEN_INT (nzb);
+ else if (true_code == EQ && true_val == const0_rtx
+ && (num_sign_bit_copies (from, GET_MODE (from))
+ == GET_MODE_BITSIZE (GET_MODE (from))))
+ false_code = EQ, false_val = constm1_rtx;
+
+ /* Now simplify an arm if we know the value of the register in the
+ branch and it is used in the arm. Be careful due to the potential
+ of locally-shared RTL. */
+
+ if (reg_mentioned_p (from, true))
+ true = subst (known_cond (copy_rtx (true), true_code, from, true_val),
+ pc_rtx, pc_rtx, 0, 0);
+ if (reg_mentioned_p (from, false))
+ false = subst (known_cond (copy_rtx (false), false_code,
+ from, false_val),
+ pc_rtx, pc_rtx, 0, 0);
+
+ SUBST (XEXP (x, 1), swapped ? false : true);
+ SUBST (XEXP (x, 2), swapped ? true : false);
+
+ true = XEXP (x, 1), false = XEXP (x, 2), true_code = GET_CODE (cond);
+ }
+
+ /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
+ reversed, do so to avoid needing two sets of patterns for
+ subtract-and-branch insns. Similarly if we have a constant in the true
+ arm, the false arm is the same as the first operand of the comparison, or
+ the false arm is more complicated than the true arm. */
+
+ if (comparison_p && reversible_comparison_p (cond)
+ && (true == pc_rtx
+ || (CONSTANT_P (true)
+ && GET_CODE (false) != CONST_INT && false != pc_rtx)
+ || true == const0_rtx
+ || (GET_RTX_CLASS (GET_CODE (true)) == 'o'
+ && GET_RTX_CLASS (GET_CODE (false)) != 'o')
+ || (GET_CODE (true) == SUBREG
+ && GET_RTX_CLASS (GET_CODE (SUBREG_REG (true))) == 'o'
+ && GET_RTX_CLASS (GET_CODE (false)) != 'o')
+ || reg_mentioned_p (true, false)
+ || rtx_equal_p (false, XEXP (cond, 0))))
+ {
+ true_code = reverse_condition (true_code);
+ SUBST (XEXP (x, 0),
+ gen_binary (true_code, GET_MODE (cond), XEXP (cond, 0),
+ XEXP (cond, 1)));
+
+ SUBST (XEXP (x, 1), false);
+ SUBST (XEXP (x, 2), true);
+
+ temp = true, true = false, false = temp, cond = XEXP (x, 0);
+ }
+
+ /* If the two arms are identical, we don't need the comparison. */
+
+ if (rtx_equal_p (true, false) && ! side_effects_p (cond))
+ return true;
+
+ /* Look for cases where we have (abs x) or (neg (abs X)). */
+
+ if (GET_MODE_CLASS (mode) == MODE_INT
+ && GET_CODE (false) == NEG
+ && rtx_equal_p (true, XEXP (false, 0))
+ && comparison_p
+ && rtx_equal_p (true, XEXP (cond, 0))
+ && ! side_effects_p (true))
+ switch (true_code)
+ {
+ case GT:
+ case GE:
+ return gen_unary (ABS, mode, mode, true);
+ case LT:
+ case LE:
+ return gen_unary (NEG, mode, mode, gen_unary (ABS, mode, mode, true));
+ }
+
+ /* Look for MIN or MAX. */
+
+ if ((! FLOAT_MODE_P (mode) || flag_fast_math)
+ && comparison_p
+ && rtx_equal_p (XEXP (cond, 0), true)
+ && rtx_equal_p (XEXP (cond, 1), false)
+ && ! side_effects_p (cond))
+ switch (true_code)
+ {
+ case GE:
+ case GT:
+ return gen_binary (SMAX, mode, true, false);
+ case LE:
+ case LT:
+ return gen_binary (SMIN, mode, true, false);
+ case GEU:
+ case GTU:
+ return gen_binary (UMAX, mode, true, false);
+ case LEU:
+ case LTU:
+ return gen_binary (UMIN, mode, true, false);
+ }
+
+#if STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1
+
+ /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
+ second operand is zero, this can be done as (OP Z (mult COND C2)) where
+ C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
+ SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
+ We can do this kind of thing in some cases when STORE_FLAG_VALUE is
+ neither of the above, but it isn't worth checking for. */
+
+ if (comparison_p && mode != VOIDmode && ! side_effects_p (x))
+ {
+ rtx t = make_compound_operation (true, SET);
+ rtx f = make_compound_operation (false, SET);
+ rtx cond_op0 = XEXP (cond, 0);
+ rtx cond_op1 = XEXP (cond, 1);
+ enum rtx_code op, extend_op = NIL;
+ enum machine_mode m = mode;
+ rtx z = 0, c1;
+
+ if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
+ || GET_CODE (t) == IOR || GET_CODE (t) == XOR
+ || GET_CODE (t) == ASHIFT
+ || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
+ && rtx_equal_p (XEXP (t, 0), f))
+ c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
+
+ /* If an identity-zero op is commutative, check whether there
+ would be a match if we swapped the operands. */
+ else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
+ || GET_CODE (t) == XOR)
+ && rtx_equal_p (XEXP (t, 1), f))
+ c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
+ else if (GET_CODE (t) == SIGN_EXTEND
+ && (GET_CODE (XEXP (t, 0)) == PLUS
+ || GET_CODE (XEXP (t, 0)) == MINUS
+ || GET_CODE (XEXP (t, 0)) == IOR
+ || GET_CODE (XEXP (t, 0)) == XOR
+ || GET_CODE (XEXP (t, 0)) == ASHIFT
+ || GET_CODE (XEXP (t, 0)) == LSHIFTRT
+ || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
+ && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
+ && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
+ && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
+ && (num_sign_bit_copies (f, GET_MODE (f))
+ > (GET_MODE_BITSIZE (mode)
+ - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 0))))))
+ {
+ c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
+ extend_op = SIGN_EXTEND;
+ m = GET_MODE (XEXP (t, 0));
+ }
+ else if (GET_CODE (t) == SIGN_EXTEND
+ && (GET_CODE (XEXP (t, 0)) == PLUS
+ || GET_CODE (XEXP (t, 0)) == IOR
+ || GET_CODE (XEXP (t, 0)) == XOR)
+ && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
+ && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
+ && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
+ && (num_sign_bit_copies (f, GET_MODE (f))
+ > (GET_MODE_BITSIZE (mode)
+ - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 1))))))
+ {
+ c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
+ extend_op = SIGN_EXTEND;
+ m = GET_MODE (XEXP (t, 0));
+ }
+ else if (GET_CODE (t) == ZERO_EXTEND
+ && (GET_CODE (XEXP (t, 0)) == PLUS
+ || GET_CODE (XEXP (t, 0)) == MINUS
+ || GET_CODE (XEXP (t, 0)) == IOR
+ || GET_CODE (XEXP (t, 0)) == XOR
+ || GET_CODE (XEXP (t, 0)) == ASHIFT
+ || GET_CODE (XEXP (t, 0)) == LSHIFTRT
+ || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
+ && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
+ && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
+ && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
+ && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
+ && ((nonzero_bits (f, GET_MODE (f))
+ & ~ GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
+ == 0))
+ {
+ c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
+ extend_op = ZERO_EXTEND;
+ m = GET_MODE (XEXP (t, 0));
+ }
+ else if (GET_CODE (t) == ZERO_EXTEND
+ && (GET_CODE (XEXP (t, 0)) == PLUS
+ || GET_CODE (XEXP (t, 0)) == IOR
+ || GET_CODE (XEXP (t, 0)) == XOR)
+ && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
+ && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
+ && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
+ && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
+ && ((nonzero_bits (f, GET_MODE (f))
+ & ~ GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
+ == 0))
+ {
+ c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
+ extend_op = ZERO_EXTEND;
+ m = GET_MODE (XEXP (t, 0));
+ }
+
+ if (z)
+ {
+ temp = subst (gen_binary (true_code, m, cond_op0, cond_op1),
+ pc_rtx, pc_rtx, 0, 0);
+ temp = gen_binary (MULT, m, temp,
+ gen_binary (MULT, m, c1, const_true_rtx));
+ temp = subst (temp, pc_rtx, pc_rtx, 0, 0);
+ temp = gen_binary (op, m, gen_lowpart_for_combine (m, z), temp);
+
+ if (extend_op != NIL)
+ temp = gen_unary (extend_op, mode, m, temp);
+
+ return temp;
+ }
+ }
+#endif
+
+ /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
+ 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
+ negation of a single bit, we can convert this operation to a shift. We
+ can actually do this more generally, but it doesn't seem worth it. */
+
+ if (true_code == NE && XEXP (cond, 1) == const0_rtx
+ && false == const0_rtx && GET_CODE (true) == CONST_INT
+ && ((1 == nonzero_bits (XEXP (cond, 0), mode)
+ && (i = exact_log2 (INTVAL (true))) >= 0)
+ || ((num_sign_bit_copies (XEXP (cond, 0), mode)
+ == GET_MODE_BITSIZE (mode))
+ && (i = exact_log2 (- INTVAL (true))) >= 0)))
+ return
+ simplify_shift_const (NULL_RTX, ASHIFT, mode,
+ gen_lowpart_for_combine (mode, XEXP (cond, 0)), i);
+
+ return x;
+}
+
+/* Simplify X, a SET expression. Return the new expression. */
+
+static rtx
+simplify_set (x)
+ rtx x;
+{
+ rtx src = SET_SRC (x);
+ rtx dest = SET_DEST (x);
+ enum machine_mode mode
+ = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
+ rtx other_insn;
+ rtx *cc_use;
+
+ /* (set (pc) (return)) gets written as (return). */
+ if (GET_CODE (dest) == PC && GET_CODE (src) == RETURN)
+ return src;
+
+ /* Now that we know for sure which bits of SRC we are using, see if we can
+ simplify the expression for the object knowing that we only need the
+ low-order bits. */
+
+ if (GET_MODE_CLASS (mode) == MODE_INT)
+ src = force_to_mode (src, mode, GET_MODE_MASK (mode), NULL_RTX, 0);
+
+ /* If we are setting CC0 or if the source is a COMPARE, look for the use of
+ the comparison result and try to simplify it unless we already have used
+ undobuf.other_insn. */
+ if ((GET_CODE (src) == COMPARE
+#ifdef HAVE_cc0
+ || dest == cc0_rtx
+#endif
+ )
+ && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
+ && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
+ && GET_RTX_CLASS (GET_CODE (*cc_use)) == '<'
+ && rtx_equal_p (XEXP (*cc_use, 0), dest))
+ {
+ enum rtx_code old_code = GET_CODE (*cc_use);
+ enum rtx_code new_code;
+ rtx op0, op1;
+ int other_changed = 0;
+ enum machine_mode compare_mode = GET_MODE (dest);
+
+ if (GET_CODE (src) == COMPARE)
+ op0 = XEXP (src, 0), op1 = XEXP (src, 1);
+ else
+ op0 = src, op1 = const0_rtx;
+
+ /* Simplify our comparison, if possible. */
+ new_code = simplify_comparison (old_code, &op0, &op1);
+
+#ifdef EXTRA_CC_MODES
+ /* If this machine has CC modes other than CCmode, check to see if we
+ need to use a different CC mode here. */
+ compare_mode = SELECT_CC_MODE (new_code, op0, op1);
+#endif /* EXTRA_CC_MODES */
+
+#if !defined (HAVE_cc0) && defined (EXTRA_CC_MODES)
+ /* If the mode changed, we have to change SET_DEST, the mode in the
+ compare, and the mode in the place SET_DEST is used. If SET_DEST is
+ a hard register, just build new versions with the proper mode. If it
+ is a pseudo, we lose unless it is only time we set the pseudo, in
+ which case we can safely change its mode. */
+ if (compare_mode != GET_MODE (dest))
+ {
+ int regno = REGNO (dest);
+ rtx new_dest = gen_rtx (REG, compare_mode, regno);
+
+ if (regno < FIRST_PSEUDO_REGISTER
+ || (reg_n_sets[regno] == 1 && ! REG_USERVAR_P (dest)))
+ {
+ if (regno >= FIRST_PSEUDO_REGISTER)
+ SUBST (regno_reg_rtx[regno], new_dest);
+
+ SUBST (SET_DEST (x), new_dest);
+ SUBST (XEXP (*cc_use, 0), new_dest);
+ other_changed = 1;
+
+ dest = new_dest;
+ }
+ }
+#endif
+
+ /* If the code changed, we have to build a new comparison in
+ undobuf.other_insn. */
+ if (new_code != old_code)
+ {
+ unsigned HOST_WIDE_INT mask;
+
+ SUBST (*cc_use, gen_rtx_combine (new_code, GET_MODE (*cc_use),
+ dest, const0_rtx));
+
+ /* If the only change we made was to change an EQ into an NE or
+ vice versa, OP0 has only one bit that might be nonzero, and OP1
+ is zero, check if changing the user of the condition code will
+ produce a valid insn. If it won't, we can keep the original code
+ in that insn by surrounding our operation with an XOR. */
+
+ if (((old_code == NE && new_code == EQ)
+ || (old_code == EQ && new_code == NE))
+ && ! other_changed && op1 == const0_rtx
+ && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
+ && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
+ {
+ rtx pat = PATTERN (other_insn), note = 0;
+ int scratches;
+
+ if ((recog_for_combine (&pat, other_insn, &note, &scratches) < 0
+ && ! check_asm_operands (pat)))
+ {
+ PUT_CODE (*cc_use, old_code);
+ other_insn = 0;
+
+ op0 = gen_binary (XOR, GET_MODE (op0), op0, GEN_INT (mask));
+ }
+ }
+
+ other_changed = 1;
+ }
+
+ if (other_changed)
+ undobuf.other_insn = other_insn;
+
+#ifdef HAVE_cc0
+ /* If we are now comparing against zero, change our source if
+ needed. If we do not use cc0, we always have a COMPARE. */
+ if (op1 == const0_rtx && dest == cc0_rtx)
+ {
+ SUBST (SET_SRC (x), op0);
+ src = op0;
+ }
+ else
+#endif
+
+ /* Otherwise, if we didn't previously have a COMPARE in the
+ correct mode, we need one. */
+ if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
+ {
+ SUBST (SET_SRC (x),
+ gen_rtx_combine (COMPARE, compare_mode, op0, op1));
+ src = SET_SRC (x);
+ }
+ else
+ {
+ /* Otherwise, update the COMPARE if needed. */
+ SUBST (XEXP (src, 0), op0);
+ SUBST (XEXP (src, 1), op1);
+ }
+ }
+ else
+ {
+ /* Get SET_SRC in a form where we have placed back any
+ compound expressions. Then do the checks below. */
+ src = make_compound_operation (src, SET);
+ SUBST (SET_SRC (x), src);
+ }
+
+ /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
+ and X being a REG or (subreg (reg)), we may be able to convert this to
+ (set (subreg:m2 x) (op)).
+
+ We can always do this if M1 is narrower than M2 because that means that
+ we only care about the low bits of the result.
+
+ However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
+ perform a narrower operation that requested since the high-order bits will
+ be undefined. On machine where it is defined, this transformation is safe
+ as long as M1 and M2 have the same number of words. */
+
+ if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
+ && GET_RTX_CLASS (GET_CODE (SUBREG_REG (src))) != 'o'
+ && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
+ / UNITS_PER_WORD)
+ == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
+ + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
+#ifndef WORD_REGISTER_OPERATIONS
+ && (GET_MODE_SIZE (GET_MODE (src))
+ < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
+#endif
+#ifdef CLASS_CANNOT_CHANGE_SIZE
+ && ! (GET_CODE (dest) == REG && REGNO (dest) < FIRST_PSEUDO_REGISTER
+ && (TEST_HARD_REG_BIT
+ (reg_class_contents[(int) CLASS_CANNOT_CHANGE_SIZE],
+ REGNO (dest)))
+ && (GET_MODE_SIZE (GET_MODE (src))
+ != GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))))
+#endif
+ && (GET_CODE (dest) == REG
+ || (GET_CODE (dest) == SUBREG
+ && GET_CODE (SUBREG_REG (dest)) == REG)))
+ {
+ SUBST (SET_DEST (x),
+ gen_lowpart_for_combine (GET_MODE (SUBREG_REG (src)),
+ dest));
+ SUBST (SET_SRC (x), SUBREG_REG (src));
+
+ src = SET_SRC (x), dest = SET_DEST (x);
+ }
+
+#ifdef LOAD_EXTEND_OP
+ /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
+ would require a paradoxical subreg. Replace the subreg with a
+ zero_extend to avoid the reload that would otherwise be required. */
+
+ if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
+ && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != NIL
+ && SUBREG_WORD (src) == 0
+ && (GET_MODE_SIZE (GET_MODE (src))
+ > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
+ && GET_CODE (SUBREG_REG (src)) == MEM)
+ {
+ SUBST (SET_SRC (x),
+ gen_rtx_combine (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
+ GET_MODE (src), XEXP (src, 0)));
+
+ src = SET_SRC (x);
+ }
+#endif
+
+ /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
+ are comparing an item known to be 0 or -1 against 0, use a logical
+ operation instead. Check for one of the arms being an IOR of the other
+ arm with some value. We compute three terms to be IOR'ed together. In
+ practice, at most two will be nonzero. Then we do the IOR's. */
+
+ if (GET_CODE (dest) != PC
+ && GET_CODE (src) == IF_THEN_ELSE
+ && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
+ && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
+ && XEXP (XEXP (src, 0), 1) == const0_rtx
+ && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
+#ifdef HAVE_conditional_move
+ && ! can_conditionally_move_p (GET_MODE (src))
+#endif
+ && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
+ GET_MODE (XEXP (XEXP (src, 0), 0)))
+ == GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src, 0), 0))))
+ && ! side_effects_p (src))
+ {
+ rtx true = (GET_CODE (XEXP (src, 0)) == NE
+ ? XEXP (src, 1) : XEXP (src, 2));
+ rtx false = (GET_CODE (XEXP (src, 0)) == NE
+ ? XEXP (src, 2) : XEXP (src, 1));
+ rtx term1 = const0_rtx, term2, term3;
+
+ if (GET_CODE (true) == IOR && rtx_equal_p (XEXP (true, 0), false))
+ term1 = false, true = XEXP (true, 1), false = const0_rtx;
+ else if (GET_CODE (true) == IOR
+ && rtx_equal_p (XEXP (true, 1), false))
+ term1 = false, true = XEXP (true, 0), false = const0_rtx;
+ else if (GET_CODE (false) == IOR
+ && rtx_equal_p (XEXP (false, 0), true))
+ term1 = true, false = XEXP (false, 1), true = const0_rtx;
+ else if (GET_CODE (false) == IOR
+ && rtx_equal_p (XEXP (false, 1), true))
+ term1 = true, false = XEXP (false, 0), true = const0_rtx;
+
+ term2 = gen_binary (AND, GET_MODE (src), XEXP (XEXP (src, 0), 0), true);
+ term3 = gen_binary (AND, GET_MODE (src),
+ gen_unary (NOT, GET_MODE (src), GET_MODE (src),
+ XEXP (XEXP (src, 0), 0)),
+ false);
+
+ SUBST (SET_SRC (x),
+ gen_binary (IOR, GET_MODE (src),
+ gen_binary (IOR, GET_MODE (src), term1, term2),
+ term3));
+
+ src = SET_SRC (x);
+ }
+
+ /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
+ whole thing fail. */
+ if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
+ return src;
+ else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
+ return dest;
+ else
+ /* Convert this into a field assignment operation, if possible. */
+ return make_field_assignment (x);
+}
+
+/* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
+ result. LAST is nonzero if this is the last retry. */
+
+static rtx
+simplify_logical (x, last)
+ rtx x;
+ int last;
+{
+ enum machine_mode mode = GET_MODE (x);
+ rtx op0 = XEXP (x, 0);
+ rtx op1 = XEXP (x, 1);
+
+ switch (GET_CODE (x))
+ {
+ case AND:
+ /* Convert (A ^ B) & A to A & (~ B) since the latter is often a single
+ insn (and may simplify more). */
+ if (GET_CODE (op0) == XOR
+ && rtx_equal_p (XEXP (op0, 0), op1)
+ && ! side_effects_p (op1))
+ x = gen_binary (AND, mode,
+ gen_unary (NOT, mode, mode, XEXP (op0, 1)), op1);
+
+ if (GET_CODE (op0) == XOR
+ && rtx_equal_p (XEXP (op0, 1), op1)
+ && ! side_effects_p (op1))
+ x = gen_binary (AND, mode,
+ gen_unary (NOT, mode, mode, XEXP (op0, 0)), op1);
+
+ /* Similarly for (~ (A ^ B)) & A. */
+ if (GET_CODE (op0) == NOT
+ && GET_CODE (XEXP (op0, 0)) == XOR
+ && rtx_equal_p (XEXP (XEXP (op0, 0), 0), op1)
+ && ! side_effects_p (op1))
+ x = gen_binary (AND, mode, XEXP (XEXP (op0, 0), 1), op1);
+
+ if (GET_CODE (op0) == NOT
+ && GET_CODE (XEXP (op0, 0)) == XOR
+ && rtx_equal_p (XEXP (XEXP (op0, 0), 1), op1)
+ && ! side_effects_p (op1))
+ x = gen_binary (AND, mode, XEXP (XEXP (op0, 0), 0), op1);
+
+ if (GET_CODE (op1) == CONST_INT)
+ {
+ x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
+
+ /* If we have (ior (and (X C1) C2)) and the next restart would be
+ the last, simplify this by making C1 as small as possible
+ and then exit. */
+ if (last
+ && GET_CODE (x) == IOR && GET_CODE (op0) == AND
+ && GET_CODE (XEXP (op0, 1)) == CONST_INT
+ && GET_CODE (op1) == CONST_INT)
+ return gen_binary (IOR, mode,
+ gen_binary (AND, mode, XEXP (op0, 0),
+ GEN_INT (INTVAL (XEXP (op0, 1))
+ & ~ INTVAL (op1))), op1);
+
+ if (GET_CODE (x) != AND)
+ return x;
+
+ if (GET_RTX_CLASS (GET_CODE (x)) == 'c'
+ || GET_RTX_CLASS (GET_CODE (x)) == '2')
+ op0 = XEXP (x, 0), op1 = XEXP (x, 1);
+ }
+
+ /* Convert (A | B) & A to A. */
+ if (GET_CODE (op0) == IOR
+ && (rtx_equal_p (XEXP (op0, 0), op1)
+ || rtx_equal_p (XEXP (op0, 1), op1))
+ && ! side_effects_p (XEXP (op0, 0))
+ && ! side_effects_p (XEXP (op0, 1)))
+ return op1;
+
+ /* In the following group of tests (and those in case IOR below),
+ we start with some combination of logical operations and apply
+ the distributive law followed by the inverse distributive law.
+ Most of the time, this results in no change. However, if some of
+ the operands are the same or inverses of each other, simplifications
+ will result.
+
+ For example, (and (ior A B) (not B)) can occur as the result of
+ expanding a bit field assignment. When we apply the distributive
+ law to this, we get (ior (and (A (not B))) (and (B (not B)))),
+ which then simplifies to (and (A (not B))).
+
+ If we have (and (ior A B) C), apply the distributive law and then
+ the inverse distributive law to see if things simplify. */
+
+ if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
+ {
+ x = apply_distributive_law
+ (gen_binary (GET_CODE (op0), mode,
+ gen_binary (AND, mode, XEXP (op0, 0), op1),
+ gen_binary (AND, mode, XEXP (op0, 1), op1)));
+ if (GET_CODE (x) != AND)
+ return x;
+ }
+
+ if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
+ return apply_distributive_law
+ (gen_binary (GET_CODE (op1), mode,
+ gen_binary (AND, mode, XEXP (op1, 0), op0),
+ gen_binary (AND, mode, XEXP (op1, 1), op0)));
+
+ /* Similarly, taking advantage of the fact that
+ (and (not A) (xor B C)) == (xor (ior A B) (ior A C)) */
+
+ if (GET_CODE (op0) == NOT && GET_CODE (op1) == XOR)
+ return apply_distributive_law
+ (gen_binary (XOR, mode,
+ gen_binary (IOR, mode, XEXP (op0, 0), XEXP (op1, 0)),
+ gen_binary (IOR, mode, XEXP (op0, 0), XEXP (op1, 1))));
+
+ else if (GET_CODE (op1) == NOT && GET_CODE (op0) == XOR)
+ return apply_distributive_law
+ (gen_binary (XOR, mode,
+ gen_binary (IOR, mode, XEXP (op1, 0), XEXP (op0, 0)),
+ gen_binary (IOR, mode, XEXP (op1, 0), XEXP (op0, 1))));
+ break;
+
+ case IOR:
+ /* (ior A C) is C if all bits of A that might be nonzero are on in C. */
+ if (GET_CODE (op1) == CONST_INT
+ && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
+ && (nonzero_bits (op0, mode) & ~ INTVAL (op1)) == 0)
+ return op1;
+
+ /* Convert (A & B) | A to A. */
+ if (GET_CODE (op0) == AND
+ && (rtx_equal_p (XEXP (op0, 0), op1)
+ || rtx_equal_p (XEXP (op0, 1), op1))
+ && ! side_effects_p (XEXP (op0, 0))
+ && ! side_effects_p (XEXP (op0, 1)))
+ return op1;
+
+ /* If we have (ior (and A B) C), apply the distributive law and then
+ the inverse distributive law to see if things simplify. */
+
+ if (GET_CODE (op0) == AND)
+ {
+ x = apply_distributive_law
+ (gen_binary (AND, mode,
+ gen_binary (IOR, mode, XEXP (op0, 0), op1),
+ gen_binary (IOR, mode, XEXP (op0, 1), op1)));
+
+ if (GET_CODE (x) != IOR)
+ return x;
+ }
+
+ if (GET_CODE (op1) == AND)
+ {
+ x = apply_distributive_law
+ (gen_binary (AND, mode,
+ gen_binary (IOR, mode, XEXP (op1, 0), op0),
+ gen_binary (IOR, mode, XEXP (op1, 1), op0)));
+
+ if (GET_CODE (x) != IOR)
+ return x;
+ }
+
+ /* Convert (ior (ashift A CX) (lshiftrt A CY)) where CX+CY equals the
+ mode size to (rotate A CX). */
+
+ if (((GET_CODE (op0) == ASHIFT && GET_CODE (op1) == LSHIFTRT)
+ || (GET_CODE (op1) == ASHIFT && GET_CODE (op0) == LSHIFTRT))
+ && rtx_equal_p (XEXP (op0, 0), XEXP (op1, 0))
+ && GET_CODE (XEXP (op0, 1)) == CONST_INT
+ && GET_CODE (XEXP (op1, 1)) == CONST_INT
+ && (INTVAL (XEXP (op0, 1)) + INTVAL (XEXP (op1, 1))
+ == GET_MODE_BITSIZE (mode)))
+ return gen_rtx (ROTATE, mode, XEXP (op0, 0),
+ (GET_CODE (op0) == ASHIFT
+ ? XEXP (op0, 1) : XEXP (op1, 1)));
+
+ /* If OP0 is (ashiftrt (plus ...) C), it might actually be
+ a (sign_extend (plus ...)). If so, OP1 is a CONST_INT, and the PLUS
+ does not affect any of the bits in OP1, it can really be done
+ as a PLUS and we can associate. We do this by seeing if OP1
+ can be safely shifted left C bits. */
+ if (GET_CODE (op1) == CONST_INT && GET_CODE (op0) == ASHIFTRT
+ && GET_CODE (XEXP (op0, 0)) == PLUS
+ && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
+ && GET_CODE (XEXP (op0, 1)) == CONST_INT
+ && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT)
+ {
+ int count = INTVAL (XEXP (op0, 1));
+ HOST_WIDE_INT mask = INTVAL (op1) << count;
+
+ if (mask >> count == INTVAL (op1)
+ && (mask & nonzero_bits (XEXP (op0, 0), mode)) == 0)
+ {
+ SUBST (XEXP (XEXP (op0, 0), 1),
+ GEN_INT (INTVAL (XEXP (XEXP (op0, 0), 1)) | mask));
+ return op0;
+ }
+ }
+ break;
+
+ case XOR:
+ /* Convert (XOR (NOT x) (NOT y)) to (XOR x y).
+ Also convert (XOR (NOT x) y) to (NOT (XOR x y)), similarly for
+ (NOT y). */
+ {
+ int num_negated = 0;
+
+ if (GET_CODE (op0) == NOT)
+ num_negated++, op0 = XEXP (op0, 0);
+ if (GET_CODE (op1) == NOT)
+ num_negated++, op1 = XEXP (op1, 0);
+
+ if (num_negated == 2)
+ {
+ SUBST (XEXP (x, 0), op0);
+ SUBST (XEXP (x, 1), op1);
+ }
+ else if (num_negated == 1)
+ return gen_unary (NOT, mode, mode, gen_binary (XOR, mode, op0, op1));
+ }
+
+ /* Convert (xor (and A B) B) to (and (not A) B). The latter may
+ correspond to a machine insn or result in further simplifications
+ if B is a constant. */
+
+ if (GET_CODE (op0) == AND
+ && rtx_equal_p (XEXP (op0, 1), op1)
+ && ! side_effects_p (op1))
+ return gen_binary (AND, mode,
+ gen_unary (NOT, mode, mode, XEXP (op0, 0)),
+ op1);
+
+ else if (GET_CODE (op0) == AND
+ && rtx_equal_p (XEXP (op0, 0), op1)
+ && ! side_effects_p (op1))
+ return gen_binary (AND, mode,
+ gen_unary (NOT, mode, mode, XEXP (op0, 1)),
+ op1);
+
+#if STORE_FLAG_VALUE == 1
+ /* (xor (comparison foo bar) (const_int 1)) can become the reversed
+ comparison. */
+ if (op1 == const1_rtx
+ && GET_RTX_CLASS (GET_CODE (op0)) == '<'
+ && reversible_comparison_p (op0))
+ return gen_rtx_combine (reverse_condition (GET_CODE (op0)),
+ mode, XEXP (op0, 0), XEXP (op0, 1));
+
+ /* (lshiftrt foo C) where C is the number of bits in FOO minus 1
+ is (lt foo (const_int 0)), so we can perform the above
+ simplification. */
+
+ if (op1 == const1_rtx
+ && GET_CODE (op0) == LSHIFTRT
+ && GET_CODE (XEXP (op0, 1)) == CONST_INT
+ && INTVAL (XEXP (op0, 1)) == GET_MODE_BITSIZE (mode) - 1)
+ return gen_rtx_combine (GE, mode, XEXP (op0, 0), const0_rtx);
+#endif
+
+ /* (xor (comparison foo bar) (const_int sign-bit))
+ when STORE_FLAG_VALUE is the sign bit. */
+ if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
+ && (STORE_FLAG_VALUE
+ == (HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
+ && op1 == const_true_rtx
+ && GET_RTX_CLASS (GET_CODE (op0)) == '<'
+ && reversible_comparison_p (op0))
+ return gen_rtx_combine (reverse_condition (GET_CODE (op0)),
+ mode, XEXP (op0, 0), XEXP (op0, 1));
+ break;
+ }
+
+ return x;
+}
+
+/* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
+ operations" because they can be replaced with two more basic operations.
+ ZERO_EXTEND is also considered "compound" because it can be replaced with
+ an AND operation, which is simpler, though only one operation.
+
+ The function expand_compound_operation is called with an rtx expression
+ and will convert it to the appropriate shifts and AND operations,
+ simplifying at each stage.
+
+ The function make_compound_operation is called to convert an expression
+ consisting of shifts and ANDs into the equivalent compound expression.
+ It is the inverse of this function, loosely speaking. */
+
+static rtx
+expand_compound_operation (x)
+ rtx x;
+{
+ int pos = 0, len;
+ int unsignedp = 0;
+ int modewidth;
+ rtx tem;
+
+ switch (GET_CODE (x))
+ {
+ case ZERO_EXTEND:
+ unsignedp = 1;
+ case SIGN_EXTEND:
+ /* We can't necessarily use a const_int for a multiword mode;
+ it depends on implicitly extending the value.
+ Since we don't know the right way to extend it,
+ we can't tell whether the implicit way is right.
+
+ Even for a mode that is no wider than a const_int,
+ we can't win, because we need to sign extend one of its bits through
+ the rest of it, and we don't know which bit. */
+ if (GET_CODE (XEXP (x, 0)) == CONST_INT)
+ return x;
+
+ /* Return if (subreg:MODE FROM 0) is not a safe replacement for
+ (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
+ because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
+ reloaded. If not for that, MEM's would very rarely be safe.
+
+ Reject MODEs bigger than a word, because we might not be able
+ to reference a two-register group starting with an arbitrary register
+ (and currently gen_lowpart might crash for a SUBREG). */
+
+ if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
+ return x;
+
+ len = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)));
+ /* If the inner object has VOIDmode (the only way this can happen
+ is if it is a ASM_OPERANDS), we can't do anything since we don't
+ know how much masking to do. */
+ if (len == 0)
+ return x;
+
+ break;
+
+ case ZERO_EXTRACT:
+ unsignedp = 1;
+ case SIGN_EXTRACT:
+ /* If the operand is a CLOBBER, just return it. */
+ if (GET_CODE (XEXP (x, 0)) == CLOBBER)
+ return XEXP (x, 0);
+
+ if (GET_CODE (XEXP (x, 1)) != CONST_INT
+ || GET_CODE (XEXP (x, 2)) != CONST_INT
+ || GET_MODE (XEXP (x, 0)) == VOIDmode)
+ return x;
+
+ len = INTVAL (XEXP (x, 1));
+ pos = INTVAL (XEXP (x, 2));
+
+ /* If this goes outside the object being extracted, replace the object
+ with a (use (mem ...)) construct that only combine understands
+ and is used only for this purpose. */
+ if (len + pos > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
+ SUBST (XEXP (x, 0), gen_rtx (USE, GET_MODE (x), XEXP (x, 0)));
+
+ if (BITS_BIG_ENDIAN)
+ pos = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - len - pos;
+
+ break;
+
+ default:
+ return x;
+ }
+
+ /* If we reach here, we want to return a pair of shifts. The inner
+ shift is a left shift of BITSIZE - POS - LEN bits. The outer
+ shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
+ logical depending on the value of UNSIGNEDP.
+
+ If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
+ converted into an AND of a shift.
+
+ We must check for the case where the left shift would have a negative
+ count. This can happen in a case like (x >> 31) & 255 on machines
+ that can't shift by a constant. On those machines, we would first
+ combine the shift with the AND to produce a variable-position
+ extraction. Then the constant of 31 would be substituted in to produce
+ a such a position. */
+
+ modewidth = GET_MODE_BITSIZE (GET_MODE (x));
+ if (modewidth >= pos - len)
+ tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
+ GET_MODE (x),
+ simplify_shift_const (NULL_RTX, ASHIFT,
+ GET_MODE (x),
+ XEXP (x, 0),
+ modewidth - pos - len),
+ modewidth - len);
+
+ else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
+ tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
+ simplify_shift_const (NULL_RTX, LSHIFTRT,
+ GET_MODE (x),
+ XEXP (x, 0), pos),
+ ((HOST_WIDE_INT) 1 << len) - 1);
+ else
+ /* Any other cases we can't handle. */
+ return x;
+
+
+ /* If we couldn't do this for some reason, return the original
+ expression. */
+ if (GET_CODE (tem) == CLOBBER)
+ return x;
+
+ return tem;
+}
+
+/* X is a SET which contains an assignment of one object into
+ a part of another (such as a bit-field assignment, STRICT_LOW_PART,
+ or certain SUBREGS). If possible, convert it into a series of
+ logical operations.
+
+ We half-heartedly support variable positions, but do not at all
+ support variable lengths. */
+
+static rtx
+expand_field_assignment (x)
+ rtx x;
+{
+ rtx inner;
+ rtx pos; /* Always counts from low bit. */
+ int len;
+ rtx mask;
+ enum machine_mode compute_mode;
+
+ /* Loop until we find something we can't simplify. */
+ while (1)
+ {
+ if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
+ && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
+ {
+ inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
+ len = GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)));
+ pos = const0_rtx;
+ }
+ else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
+ && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT)
+ {
+ inner = XEXP (SET_DEST (x), 0);
+ len = INTVAL (XEXP (SET_DEST (x), 1));
+ pos = XEXP (SET_DEST (x), 2);
+
+ /* If the position is constant and spans the width of INNER,
+ surround INNER with a USE to indicate this. */
+ if (GET_CODE (pos) == CONST_INT
+ && INTVAL (pos) + len > GET_MODE_BITSIZE (GET_MODE (inner)))
+ inner = gen_rtx (USE, GET_MODE (SET_DEST (x)), inner);
+
+ if (BITS_BIG_ENDIAN)
+ {
+ if (GET_CODE (pos) == CONST_INT)
+ pos = GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner)) - len
+ - INTVAL (pos));
+ else if (GET_CODE (pos) == MINUS
+ && GET_CODE (XEXP (pos, 1)) == CONST_INT
+ && (INTVAL (XEXP (pos, 1))
+ == GET_MODE_BITSIZE (GET_MODE (inner)) - len))
+ /* If position is ADJUST - X, new position is X. */
+ pos = XEXP (pos, 0);
+ else
+ pos = gen_binary (MINUS, GET_MODE (pos),
+ GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner))
+ - len),
+ pos);
+ }
+ }
+
+ /* A SUBREG between two modes that occupy the same numbers of words
+ can be done by moving the SUBREG to the source. */
+ else if (GET_CODE (SET_DEST (x)) == SUBREG
+ && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
+ + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
+ == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
+ + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
+ {
+ x = gen_rtx (SET, VOIDmode, SUBREG_REG (SET_DEST (x)),
+ gen_lowpart_for_combine (GET_MODE (SUBREG_REG (SET_DEST (x))),
+ SET_SRC (x)));
+ continue;
+ }
+ else
+ break;
+
+ while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
+ inner = SUBREG_REG (inner);
+
+ compute_mode = GET_MODE (inner);
+
+ /* Compute a mask of LEN bits, if we can do this on the host machine. */
+ if (len < HOST_BITS_PER_WIDE_INT)
+ mask = GEN_INT (((HOST_WIDE_INT) 1 << len) - 1);
+ else
+ break;
+
+ /* Now compute the equivalent expression. Make a copy of INNER
+ for the SET_DEST in case it is a MEM into which we will substitute;
+ we don't want shared RTL in that case. */
+ x = gen_rtx (SET, VOIDmode, copy_rtx (inner),
+ gen_binary (IOR, compute_mode,
+ gen_binary (AND, compute_mode,
+ gen_unary (NOT, compute_mode,
+ compute_mode,
+ gen_binary (ASHIFT,
+ compute_mode,
+ mask, pos)),
+ inner),
+ gen_binary (ASHIFT, compute_mode,
+ gen_binary (AND, compute_mode,
+ gen_lowpart_for_combine
+ (compute_mode,
+ SET_SRC (x)),
+ mask),
+ pos)));
+ }
+
+ return x;
+}
+
+/* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
+ it is an RTX that represents a variable starting position; otherwise,
+ POS is the (constant) starting bit position (counted from the LSB).
+
+ INNER may be a USE. This will occur when we started with a bitfield
+ that went outside the boundary of the object in memory, which is
+ allowed on most machines. To isolate this case, we produce a USE
+ whose mode is wide enough and surround the MEM with it. The only
+ code that understands the USE is this routine. If it is not removed,
+ it will cause the resulting insn not to match.
+
+ UNSIGNEDP is non-zero for an unsigned reference and zero for a
+ signed reference.
+
+ IN_DEST is non-zero if this is a reference in the destination of a
+ SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If non-zero,
+ a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
+ be used.
+
+ IN_COMPARE is non-zero if we are in a COMPARE. This means that a
+ ZERO_EXTRACT should be built even for bits starting at bit 0.
+
+ MODE is the desired mode of the result (if IN_DEST == 0). */
+
+static rtx
+make_extraction (mode, inner, pos, pos_rtx, len,
+ unsignedp, in_dest, in_compare)
+ enum machine_mode mode;
+ rtx inner;
+ int pos;
+ rtx pos_rtx;
+ int len;
+ int unsignedp;
+ int in_dest, in_compare;
+{
+ /* This mode describes the size of the storage area
+ to fetch the overall value from. Within that, we
+ ignore the POS lowest bits, etc. */
+ enum machine_mode is_mode = GET_MODE (inner);
+ enum machine_mode inner_mode;
+ enum machine_mode wanted_mem_mode = byte_mode;
+ enum machine_mode pos_mode = word_mode;
+ enum machine_mode extraction_mode = word_mode;
+ enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
+ int spans_byte = 0;
+ rtx new = 0;
+ rtx orig_pos_rtx = pos_rtx;
+ int orig_pos;
+
+ /* Get some information about INNER and get the innermost object. */
+ if (GET_CODE (inner) == USE)
+ /* (use:SI (mem:QI foo)) stands for (mem:SI foo). */
+ /* We don't need to adjust the position because we set up the USE
+ to pretend that it was a full-word object. */
+ spans_byte = 1, inner = XEXP (inner, 0);
+ else if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
+ {
+ /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
+ consider just the QI as the memory to extract from.
+ The subreg adds or removes high bits; its mode is
+ irrelevant to the meaning of this extraction,
+ since POS and LEN count from the lsb. */
+ if (GET_CODE (SUBREG_REG (inner)) == MEM)
+ is_mode = GET_MODE (SUBREG_REG (inner));
+ inner = SUBREG_REG (inner);
+ }
+
+ inner_mode = GET_MODE (inner);
+
+ if (pos_rtx && GET_CODE (pos_rtx) == CONST_INT)
+ pos = INTVAL (pos_rtx), pos_rtx = 0;
+
+ /* See if this can be done without an extraction. We never can if the
+ width of the field is not the same as that of some integer mode. For
+ registers, we can only avoid the extraction if the position is at the
+ low-order bit and this is either not in the destination or we have the
+ appropriate STRICT_LOW_PART operation available.
+
+ For MEM, we can avoid an extract if the field starts on an appropriate
+ boundary and we can change the mode of the memory reference. However,
+ we cannot directly access the MEM if we have a USE and the underlying
+ MEM is not TMODE. This combination means that MEM was being used in a
+ context where bits outside its mode were being referenced; that is only
+ valid in bit-field insns. */
+
+ if (tmode != BLKmode
+ && ! (spans_byte && inner_mode != tmode)
+ && ((pos_rtx == 0 && pos == 0 && GET_CODE (inner) != MEM
+ && (! in_dest
+ || (GET_CODE (inner) == REG
+ && (movstrict_optab->handlers[(int) tmode].insn_code
+ != CODE_FOR_nothing))))
+ || (GET_CODE (inner) == MEM && pos_rtx == 0
+ && (pos
+ % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
+ : BITS_PER_UNIT)) == 0
+ /* We can't do this if we are widening INNER_MODE (it
+ may not be aligned, for one thing). */
+ && GET_MODE_BITSIZE (inner_mode) >= GET_MODE_BITSIZE (tmode)
+ && (inner_mode == tmode
+ || (! mode_dependent_address_p (XEXP (inner, 0))
+ && ! MEM_VOLATILE_P (inner))))))
+ {
+ /* If INNER is a MEM, make a new MEM that encompasses just the desired
+ field. If the original and current mode are the same, we need not
+ adjust the offset. Otherwise, we do if bytes big endian.
+
+ If INNER is not a MEM, get a piece consisting of the just the field
+ of interest (in this case POS must be 0). */
+
+ if (GET_CODE (inner) == MEM)
+ {
+ int offset;
+ /* POS counts from lsb, but make OFFSET count in memory order. */
+ if (BYTES_BIG_ENDIAN)
+ offset = (GET_MODE_BITSIZE (is_mode) - len - pos) / BITS_PER_UNIT;
+ else
+ offset = pos / BITS_PER_UNIT;
+
+ new = gen_rtx (MEM, tmode, plus_constant (XEXP (inner, 0), offset));
+ RTX_UNCHANGING_P (new) = RTX_UNCHANGING_P (inner);
+ MEM_VOLATILE_P (new) = MEM_VOLATILE_P (inner);
+ MEM_IN_STRUCT_P (new) = MEM_IN_STRUCT_P (inner);
+ }
+ else if (GET_CODE (inner) == REG)
+ {
+ /* We can't call gen_lowpart_for_combine here since we always want
+ a SUBREG and it would sometimes return a new hard register. */
+ if (tmode != inner_mode)
+ new = gen_rtx (SUBREG, tmode, inner,
+ (WORDS_BIG_ENDIAN
+ && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD
+ ? ((GET_MODE_SIZE (inner_mode)
+ - GET_MODE_SIZE (tmode))
+ / UNITS_PER_WORD)
+ : 0));
+ else
+ new = inner;
+ }
+ else
+ new = force_to_mode (inner, tmode,
+ len >= HOST_BITS_PER_WIDE_INT
+ ? GET_MODE_MASK (tmode)
+ : ((HOST_WIDE_INT) 1 << len) - 1,
+ NULL_RTX, 0);
+
+ /* If this extraction is going into the destination of a SET,
+ make a STRICT_LOW_PART unless we made a MEM. */
+
+ if (in_dest)
+ return (GET_CODE (new) == MEM ? new
+ : (GET_CODE (new) != SUBREG
+ ? gen_rtx (CLOBBER, tmode, const0_rtx)
+ : gen_rtx_combine (STRICT_LOW_PART, VOIDmode, new)));
+
+ /* Otherwise, sign- or zero-extend unless we already are in the
+ proper mode. */
+
+ return (mode == tmode ? new
+ : gen_rtx_combine (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
+ mode, new));
+ }
+
+ /* Unless this is a COMPARE or we have a funny memory reference,
+ don't do anything with zero-extending field extracts starting at
+ the low-order bit since they are simple AND operations. */
+ if (pos_rtx == 0 && pos == 0 && ! in_dest
+ && ! in_compare && ! spans_byte && unsignedp)
+ return 0;
+
+ /* Unless we are allowed to span bytes, reject this if we would be
+ spanning bytes or if the position is not a constant and the length
+ is not 1. In all other cases, we would only be going outside
+ out object in cases when an original shift would have been
+ undefined. */
+ if (! spans_byte
+ && ((pos_rtx == 0 && pos + len > GET_MODE_BITSIZE (is_mode))
+ || (pos_rtx != 0 && len != 1)))
+ return 0;
+
+ /* Get the mode to use should INNER be a MEM, the mode for the position,
+ and the mode for the result. */
+#ifdef HAVE_insv
+ if (in_dest)
+ {
+ wanted_mem_mode = insn_operand_mode[(int) CODE_FOR_insv][0];
+ pos_mode = insn_operand_mode[(int) CODE_FOR_insv][2];
+ extraction_mode = insn_operand_mode[(int) CODE_FOR_insv][3];
+ }
+#endif
+
+#ifdef HAVE_extzv
+ if (! in_dest && unsignedp)
+ {
+ wanted_mem_mode = insn_operand_mode[(int) CODE_FOR_extzv][1];
+ pos_mode = insn_operand_mode[(int) CODE_FOR_extzv][3];
+ extraction_mode = insn_operand_mode[(int) CODE_FOR_extzv][0];
+ }
+#endif
+
+#ifdef HAVE_extv
+ if (! in_dest && ! unsignedp)
+ {
+ wanted_mem_mode = insn_operand_mode[(int) CODE_FOR_extv][1];
+ pos_mode = insn_operand_mode[(int) CODE_FOR_extv][3];
+ extraction_mode = insn_operand_mode[(int) CODE_FOR_extv][0];
+ }
+#endif
+
+ /* Never narrow an object, since that might not be safe. */
+
+ if (mode != VOIDmode
+ && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
+ extraction_mode = mode;
+
+ if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
+ && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
+ pos_mode = GET_MODE (pos_rtx);
+
+ /* If this is not from memory or we have to change the mode of memory and
+ cannot, the desired mode is EXTRACTION_MODE. */
+ if (GET_CODE (inner) != MEM
+ || (inner_mode != wanted_mem_mode
+ && (mode_dependent_address_p (XEXP (inner, 0))
+ || MEM_VOLATILE_P (inner))))
+ wanted_mem_mode = extraction_mode;
+
+ orig_pos = pos;
+
+ if (BITS_BIG_ENDIAN)
+ {
+ /* If position is constant, compute new position. Otherwise,
+ build subtraction. */
+ if (pos_rtx == 0)
+ pos = (MAX (GET_MODE_BITSIZE (is_mode),
+ GET_MODE_BITSIZE (wanted_mem_mode))
+ - len - pos);
+ else
+ pos_rtx
+ = gen_rtx_combine (MINUS, GET_MODE (pos_rtx),
+ GEN_INT (MAX (GET_MODE_BITSIZE (is_mode),
+ GET_MODE_BITSIZE (wanted_mem_mode))
+ - len),
+ pos_rtx);
+ }
+
+ /* If INNER has a wider mode, make it smaller. If this is a constant
+ extract, try to adjust the byte to point to the byte containing
+ the value. */
+ if (wanted_mem_mode != VOIDmode
+ && GET_MODE_SIZE (wanted_mem_mode) < GET_MODE_SIZE (is_mode)
+ && ((GET_CODE (inner) == MEM
+ && (inner_mode == wanted_mem_mode
+ || (! mode_dependent_address_p (XEXP (inner, 0))
+ && ! MEM_VOLATILE_P (inner))))))
+ {
+ int offset = 0;
+
+ /* The computations below will be correct if the machine is big
+ endian in both bits and bytes or little endian in bits and bytes.
+ If it is mixed, we must adjust. */
+
+ /* If bytes are big endian and we had a paradoxical SUBREG, we must
+ adjust OFFSET to compensate. */
+ if (BYTES_BIG_ENDIAN
+ && ! spans_byte
+ && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
+ offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
+
+ /* If this is a constant position, we can move to the desired byte. */
+ if (pos_rtx == 0)
+ {
+ offset += pos / BITS_PER_UNIT;
+ pos %= GET_MODE_BITSIZE (wanted_mem_mode);
+ }
+
+ if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
+ && ! spans_byte
+ && is_mode != wanted_mem_mode)
+ offset = (GET_MODE_SIZE (is_mode)
+ - GET_MODE_SIZE (wanted_mem_mode) - offset);
+
+ if (offset != 0 || inner_mode != wanted_mem_mode)
+ {
+ rtx newmem = gen_rtx (MEM, wanted_mem_mode,
+ plus_constant (XEXP (inner, 0), offset));
+ RTX_UNCHANGING_P (newmem) = RTX_UNCHANGING_P (inner);
+ MEM_VOLATILE_P (newmem) = MEM_VOLATILE_P (inner);
+ MEM_IN_STRUCT_P (newmem) = MEM_IN_STRUCT_P (inner);
+ inner = newmem;
+ }
+ }
+
+ /* If INNER is not memory, we can always get it into the proper mode. */
+ else if (GET_CODE (inner) != MEM)
+ inner = force_to_mode (inner, extraction_mode,
+ pos_rtx || len + orig_pos >= HOST_BITS_PER_WIDE_INT
+ ? GET_MODE_MASK (extraction_mode)
+ : (((HOST_WIDE_INT) 1 << len) - 1) << orig_pos,
+ NULL_RTX, 0);
+
+ /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
+ have to zero extend. Otherwise, we can just use a SUBREG. */
+ if (pos_rtx != 0
+ && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
+ pos_rtx = gen_rtx_combine (ZERO_EXTEND, pos_mode, pos_rtx);
+ else if (pos_rtx != 0
+ && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
+ pos_rtx = gen_lowpart_for_combine (pos_mode, pos_rtx);
+
+ /* Make POS_RTX unless we already have it and it is correct. If we don't
+ have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
+ be a CONST_INT. */
+ if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
+ pos_rtx = orig_pos_rtx;
+
+ else if (pos_rtx == 0)
+ pos_rtx = GEN_INT (pos);
+
+ /* Make the required operation. See if we can use existing rtx. */
+ new = gen_rtx_combine (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
+ extraction_mode, inner, GEN_INT (len), pos_rtx);
+ if (! in_dest)
+ new = gen_lowpart_for_combine (mode, new);
+
+ return new;
+}
+
+/* See if X contains an ASHIFT of COUNT or more bits that can be commuted
+ with any other operations in X. Return X without that shift if so. */
+
+static rtx
+extract_left_shift (x, count)
+ rtx x;
+ int count;
+{
+ enum rtx_code code = GET_CODE (x);
+ enum machine_mode mode = GET_MODE (x);
+ rtx tem;
+
+ switch (code)
+ {
+ case ASHIFT:
+ /* This is the shift itself. If it is wide enough, we will return
+ either the value being shifted if the shift count is equal to
+ COUNT or a shift for the difference. */
+ if (GET_CODE (XEXP (x, 1)) == CONST_INT
+ && INTVAL (XEXP (x, 1)) >= count)
+ return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
+ INTVAL (XEXP (x, 1)) - count);
+ break;
+
+ case NEG: case NOT:
+ if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
+ return gen_unary (code, mode, mode, tem);
+
+ break;
+
+ case PLUS: case IOR: case XOR: case AND:
+ /* If we can safely shift this constant and we find the inner shift,
+ make a new operation. */
+ if (GET_CODE (XEXP (x,1)) == CONST_INT
+ && (INTVAL (XEXP (x, 1)) & (((HOST_WIDE_INT) 1 << count)) - 1) == 0
+ && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
+ return gen_binary (code, mode, tem,
+ GEN_INT (INTVAL (XEXP (x, 1)) >> count));
+
+ break;
+ }
+
+ return 0;
+}
+
+/* Look at the expression rooted at X. Look for expressions
+ equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
+ Form these expressions.
+
+ Return the new rtx, usually just X.
+
+ Also, for machines like the Vax that don't have logical shift insns,
+ try to convert logical to arithmetic shift operations in cases where
+ they are equivalent. This undoes the canonicalizations to logical
+ shifts done elsewhere.
+
+ We try, as much as possible, to re-use rtl expressions to save memory.
+
+ IN_CODE says what kind of expression we are processing. Normally, it is
+ SET. In a memory address (inside a MEM, PLUS or minus, the latter two
+ being kludges), it is MEM. When processing the arguments of a comparison
+ or a COMPARE against zero, it is COMPARE. */
+
+static rtx
+make_compound_operation (x, in_code)
+ rtx x;
+ enum rtx_code in_code;
+{
+ enum rtx_code code = GET_CODE (x);
+ enum machine_mode mode = GET_MODE (x);
+ int mode_width = GET_MODE_BITSIZE (mode);
+ rtx rhs, lhs;
+ enum rtx_code next_code;
+ int i;
+ rtx new = 0;
+ rtx tem;
+ char *fmt;
+
+ /* Select the code to be used in recursive calls. Once we are inside an
+ address, we stay there. If we have a comparison, set to COMPARE,
+ but once inside, go back to our default of SET. */
+
+ next_code = (code == MEM || code == PLUS || code == MINUS ? MEM
+ : ((code == COMPARE || GET_RTX_CLASS (code) == '<')
+ && XEXP (x, 1) == const0_rtx) ? COMPARE
+ : in_code == COMPARE ? SET : in_code);
+
+ /* Process depending on the code of this operation. If NEW is set
+ non-zero, it will be returned. */
+
+ switch (code)
+ {
+ case ASHIFT:
+ /* Convert shifts by constants into multiplications if inside
+ an address. */
+ if (in_code == MEM && GET_CODE (XEXP (x, 1)) == CONST_INT
+ && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
+ && INTVAL (XEXP (x, 1)) >= 0)
+ {
+ new = make_compound_operation (XEXP (x, 0), next_code);
+ new = gen_rtx_combine (MULT, mode, new,
+ GEN_INT ((HOST_WIDE_INT) 1
+ << INTVAL (XEXP (x, 1))));
+ }
+ break;
+
+ case AND:
+ /* If the second operand is not a constant, we can't do anything
+ with it. */
+ if (GET_CODE (XEXP (x, 1)) != CONST_INT)
+ break;
+
+ /* If the constant is a power of two minus one and the first operand
+ is a logical right shift, make an extraction. */
+ if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
+ && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
+ {
+ new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
+ new = make_extraction (mode, new, 0, XEXP (XEXP (x, 0), 1), i, 1,
+ 0, in_code == COMPARE);
+ }
+
+ /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
+ else if (GET_CODE (XEXP (x, 0)) == SUBREG
+ && subreg_lowpart_p (XEXP (x, 0))
+ && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
+ && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
+ {
+ new = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
+ next_code);
+ new = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new, 0,
+ XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
+ 0, in_code == COMPARE);
+ }
+ /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
+ else if ((GET_CODE (XEXP (x, 0)) == XOR
+ || GET_CODE (XEXP (x, 0)) == IOR)
+ && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
+ && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
+ && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
+ {
+ /* Apply the distributive law, and then try to make extractions. */
+ new = gen_rtx_combine (GET_CODE (XEXP (x, 0)), mode,
+ gen_rtx (AND, mode, XEXP (XEXP (x, 0), 0),
+ XEXP (x, 1)),
+ gen_rtx (AND, mode, XEXP (XEXP (x, 0), 1),
+ XEXP (x, 1)));
+ new = make_compound_operation (new, in_code);
+ }
+
+ /* If we are have (and (rotate X C) M) and C is larger than the number
+ of bits in M, this is an extraction. */
+
+ else if (GET_CODE (XEXP (x, 0)) == ROTATE
+ && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
+ && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0
+ && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
+ {
+ new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
+ new = make_extraction (mode, new,
+ (GET_MODE_BITSIZE (mode)
+ - INTVAL (XEXP (XEXP (x, 0), 1))),
+ NULL_RTX, i, 1, 0, in_code == COMPARE);
+ }
+
+ /* On machines without logical shifts, if the operand of the AND is
+ a logical shift and our mask turns off all the propagated sign
+ bits, we can replace the logical shift with an arithmetic shift. */
+ else if (ashr_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing
+ && (lshr_optab->handlers[(int) mode].insn_code
+ == CODE_FOR_nothing)
+ && GET_CODE (XEXP (x, 0)) == LSHIFTRT
+ && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
+ && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
+ && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
+ && mode_width <= HOST_BITS_PER_WIDE_INT)
+ {
+ unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
+
+ mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
+ if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
+ SUBST (XEXP (x, 0),
+ gen_rtx_combine (ASHIFTRT, mode,
+ make_compound_operation (XEXP (XEXP (x, 0), 0),
+ next_code),
+ XEXP (XEXP (x, 0), 1)));
+ }
+
+ /* If the constant is one less than a power of two, this might be
+ representable by an extraction even if no shift is present.
+ If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
+ we are in a COMPARE. */
+ else if ((i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
+ new = make_extraction (mode,
+ make_compound_operation (XEXP (x, 0),
+ next_code),
+ 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
+
+ /* If we are in a comparison and this is an AND with a power of two,
+ convert this into the appropriate bit extract. */
+ else if (in_code == COMPARE
+ && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
+ new = make_extraction (mode,
+ make_compound_operation (XEXP (x, 0),
+ next_code),
+ i, NULL_RTX, 1, 1, 0, 1);
+
+ break;
+
+ case LSHIFTRT:
+ /* If the sign bit is known to be zero, replace this with an
+ arithmetic shift. */
+ if (ashr_optab->handlers[(int) mode].insn_code == CODE_FOR_nothing
+ && lshr_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing
+ && mode_width <= HOST_BITS_PER_WIDE_INT
+ && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
+ {
+ new = gen_rtx_combine (ASHIFTRT, mode,
+ make_compound_operation (XEXP (x, 0),
+ next_code),
+ XEXP (x, 1));
+ break;
+ }
+
+ /* ... fall through ... */
+
+ case ASHIFTRT:
+ lhs = XEXP (x, 0);
+ rhs = XEXP (x, 1);
+
+ /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
+ this is a SIGN_EXTRACT. */
+ if (GET_CODE (rhs) == CONST_INT
+ && GET_CODE (lhs) == ASHIFT
+ && GET_CODE (XEXP (lhs, 1)) == CONST_INT
+ && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1)))
+ {
+ new = make_compound_operation (XEXP (lhs, 0), next_code);
+ new = make_extraction (mode, new,
+ INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
+ NULL_RTX, mode_width - INTVAL (rhs),
+ code == LSHIFTRT, 0, in_code == COMPARE);
+ }
+
+ /* See if we have operations between an ASHIFTRT and an ASHIFT.
+ If so, try to merge the shifts into a SIGN_EXTEND. We could
+ also do this for some cases of SIGN_EXTRACT, but it doesn't
+ seem worth the effort; the case checked for occurs on Alpha. */
+
+ if (GET_RTX_CLASS (GET_CODE (lhs)) != 'o'
+ && ! (GET_CODE (lhs) == SUBREG
+ && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (lhs))) == 'o'))
+ && GET_CODE (rhs) == CONST_INT
+ && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
+ && (new = extract_left_shift (lhs, INTVAL (rhs))) != 0)
+ new = make_extraction (mode, make_compound_operation (new, next_code),
+ 0, NULL_RTX, mode_width - INTVAL (rhs),
+ code == LSHIFTRT, 0, in_code == COMPARE);
+
+ break;
+
+ case SUBREG:
+ /* Call ourselves recursively on the inner expression. If we are
+ narrowing the object and it has a different RTL code from
+ what it originally did, do this SUBREG as a force_to_mode. */
+
+ tem = make_compound_operation (SUBREG_REG (x), in_code);
+ if (GET_CODE (tem) != GET_CODE (SUBREG_REG (x))
+ && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (tem))
+ && subreg_lowpart_p (x))
+ {
+ rtx newer = force_to_mode (tem, mode,
+ GET_MODE_MASK (mode), NULL_RTX, 0);
+
+ /* If we have something other than a SUBREG, we might have
+ done an expansion, so rerun outselves. */
+ if (GET_CODE (newer) != SUBREG)
+ newer = make_compound_operation (newer, in_code);
+
+ return newer;
+ }
+ }
+
+ if (new)
+ {
+ x = gen_lowpart_for_combine (mode, new);
+ code = GET_CODE (x);
+ }
+
+ /* Now recursively process each operand of this operation. */
+ fmt = GET_RTX_FORMAT (code);
+ for (i = 0; i < GET_RTX_LENGTH (code); i++)
+ if (fmt[i] == 'e')
+ {
+ new = make_compound_operation (XEXP (x, i), next_code);
+ SUBST (XEXP (x, i), new);
+ }
+
+ return x;
+}
+
+/* Given M see if it is a value that would select a field of bits
+ within an item, but not the entire word. Return -1 if not.
+ Otherwise, return the starting position of the field, where 0 is the
+ low-order bit.
+
+ *PLEN is set to the length of the field. */
+
+static int
+get_pos_from_mask (m, plen)
+ unsigned HOST_WIDE_INT m;
+ int *plen;
+{
+ /* Get the bit number of the first 1 bit from the right, -1 if none. */
+ int pos = exact_log2 (m & - m);
+
+ if (pos < 0)
+ return -1;
+
+ /* Now shift off the low-order zero bits and see if we have a power of
+ two minus 1. */
+ *plen = exact_log2 ((m >> pos) + 1);
+
+ if (*plen <= 0)
+ return -1;
+
+ return pos;
+}
+
+/* See if X can be simplified knowing that we will only refer to it in
+ MODE and will only refer to those bits that are nonzero in MASK.
+ If other bits are being computed or if masking operations are done
+ that select a superset of the bits in MASK, they can sometimes be
+ ignored.
+
+ Return a possibly simplified expression, but always convert X to
+ MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
+
+ Also, if REG is non-zero and X is a register equal in value to REG,
+ replace X with REG.
+
+ If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
+ are all off in X. This is used when X will be complemented, by either
+ NOT, NEG, or XOR. */
+
+static rtx
+force_to_mode (x, mode, mask, reg, just_select)
+ rtx x;
+ enum machine_mode mode;
+ unsigned HOST_WIDE_INT mask;
+ rtx reg;
+ int just_select;
+{
+ enum rtx_code code = GET_CODE (x);
+ int next_select = just_select || code == XOR || code == NOT || code == NEG;
+ enum machine_mode op_mode;
+ unsigned HOST_WIDE_INT fuller_mask, nonzero;
+ rtx op0, op1, temp;
+
+ /* If this is a CALL, don't do anything. Some of the code below
+ will do the wrong thing since the mode of a CALL is VOIDmode. */
+ if (code == CALL)
+ return x;
+
+ /* We want to perform the operation is its present mode unless we know
+ that the operation is valid in MODE, in which case we do the operation
+ in MODE. */
+ op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
+ && code_to_optab[(int) code] != 0
+ && (code_to_optab[(int) code]->handlers[(int) mode].insn_code
+ != CODE_FOR_nothing))
+ ? mode : GET_MODE (x));
+
+ /* It is not valid to do a right-shift in a narrower mode
+ than the one it came in with. */
+ if ((code == LSHIFTRT || code == ASHIFTRT)
+ && GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (GET_MODE (x)))
+ op_mode = GET_MODE (x);
+
+ /* Truncate MASK to fit OP_MODE. */
+ if (op_mode)
+ mask &= GET_MODE_MASK (op_mode);
+
+ /* When we have an arithmetic operation, or a shift whose count we
+ do not know, we need to assume that all bit the up to the highest-order
+ bit in MASK will be needed. This is how we form such a mask. */
+ if (op_mode)
+ fuller_mask = (GET_MODE_BITSIZE (op_mode) >= HOST_BITS_PER_WIDE_INT
+ ? GET_MODE_MASK (op_mode)
+ : ((HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1)) - 1);
+ else
+ fuller_mask = ~ (HOST_WIDE_INT) 0;
+
+ /* Determine what bits of X are guaranteed to be (non)zero. */
+ nonzero = nonzero_bits (x, mode);
+
+ /* If none of the bits in X are needed, return a zero. */
+ if (! just_select && (nonzero & mask) == 0)
+ return const0_rtx;
+
+ /* If X is a CONST_INT, return a new one. Do this here since the
+ test below will fail. */
+ if (GET_CODE (x) == CONST_INT)
+ {
+ HOST_WIDE_INT cval = INTVAL (x) & mask;
+ int width = GET_MODE_BITSIZE (mode);
+
+ /* If MODE is narrower that HOST_WIDE_INT and CVAL is a negative
+ number, sign extend it. */
+ if (width > 0 && width < HOST_BITS_PER_WIDE_INT
+ && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
+ cval |= (HOST_WIDE_INT) -1 << width;
+
+ return GEN_INT (cval);
+ }
+
+ /* If X is narrower than MODE and we want all the bits in X's mode, just
+ get X in the proper mode. */
+ if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
+ && (GET_MODE_MASK (GET_MODE (x)) & ~ mask) == 0)
+ return gen_lowpart_for_combine (mode, x);
+
+ /* If we aren't changing the mode, X is not a SUBREG, and all zero bits in
+ MASK are already known to be zero in X, we need not do anything. */
+ if (GET_MODE (x) == mode && code != SUBREG && (~ mask & nonzero) == 0)
+ return x;
+
+ switch (code)
+ {
+ case CLOBBER:
+ /* If X is a (clobber (const_int)), return it since we know we are
+ generating something that won't match. */
+ return x;
+
+ case USE:
+ /* X is a (use (mem ..)) that was made from a bit-field extraction that
+ spanned the boundary of the MEM. If we are now masking so it is
+ within that boundary, we don't need the USE any more. */
+ if (! BITS_BIG_ENDIAN
+ && (mask & ~ GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
+ return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
+ break;
+
+ case SIGN_EXTEND:
+ case ZERO_EXTEND:
+ case ZERO_EXTRACT:
+ case SIGN_EXTRACT:
+ x = expand_compound_operation (x);
+ if (GET_CODE (x) != code)
+ return force_to_mode (x, mode, mask, reg, next_select);
+ break;
+
+ case REG:
+ if (reg != 0 && (rtx_equal_p (get_last_value (reg), x)
+ || rtx_equal_p (reg, get_last_value (x))))
+ x = reg;
+ break;
+
+ case SUBREG:
+ if (subreg_lowpart_p (x)
+ /* We can ignore the effect of this SUBREG if it narrows the mode or
+ if the constant masks to zero all the bits the mode doesn't
+ have. */
+ && ((GET_MODE_SIZE (GET_MODE (x))
+ < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
+ || (0 == (mask
+ & GET_MODE_MASK (GET_MODE (x))
+ & ~ GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
+ return force_to_mode (SUBREG_REG (x), mode, mask, reg, next_select);
+ break;
+
+ case AND:
+ /* If this is an AND with a constant, convert it into an AND
+ whose constant is the AND of that constant with MASK. If it
+ remains an AND of MASK, delete it since it is redundant. */
+
+ if (GET_CODE (XEXP (x, 1)) == CONST_INT)
+ {
+ x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
+ mask & INTVAL (XEXP (x, 1)));
+
+ /* If X is still an AND, see if it is an AND with a mask that
+ is just some low-order bits. If so, and it is MASK, we don't
+ need it. */
+
+ if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
+ && INTVAL (XEXP (x, 1)) == mask)
+ x = XEXP (x, 0);
+
+ /* If it remains an AND, try making another AND with the bits
+ in the mode mask that aren't in MASK turned on. If the
+ constant in the AND is wide enough, this might make a
+ cheaper constant. */
+
+ if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
+ && GET_MODE_MASK (GET_MODE (x)) != mask
+ && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
+ {
+ HOST_WIDE_INT cval = (INTVAL (XEXP (x, 1))
+ | (GET_MODE_MASK (GET_MODE (x)) & ~ mask));
+ int width = GET_MODE_BITSIZE (GET_MODE (x));
+ rtx y;
+
+ /* If MODE is narrower that HOST_WIDE_INT and CVAL is a negative
+ number, sign extend it. */
+ if (width > 0 && width < HOST_BITS_PER_WIDE_INT
+ && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
+ cval |= (HOST_WIDE_INT) -1 << width;
+
+ y = gen_binary (AND, GET_MODE (x), XEXP (x, 0), GEN_INT (cval));
+ if (rtx_cost (y, SET) < rtx_cost (x, SET))
+ x = y;
+ }
+
+ break;
+ }
+
+ goto binop;
+
+ case PLUS:
+ /* In (and (plus FOO C1) M), if M is a mask that just turns off
+ low-order bits (as in an alignment operation) and FOO is already
+ aligned to that boundary, mask C1 to that boundary as well.
+ This may eliminate that PLUS and, later, the AND. */
+
+ {
+ int width = GET_MODE_BITSIZE (mode);
+ unsigned HOST_WIDE_INT smask = mask;
+
+ /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
+ number, sign extend it. */
+
+ if (width < HOST_BITS_PER_WIDE_INT
+ && (smask & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
+ smask |= (HOST_WIDE_INT) -1 << width;
+
+ if (GET_CODE (XEXP (x, 1)) == CONST_INT
+ && exact_log2 (- smask) >= 0
+ && (nonzero_bits (XEXP (x, 0), mode) & ~ mask) == 0
+ && (INTVAL (XEXP (x, 1)) & ~ mask) != 0)
+ return force_to_mode (plus_constant (XEXP (x, 0),
+ INTVAL (XEXP (x, 1)) & mask),
+ mode, mask, reg, next_select);
+ }
+
+ /* ... fall through ... */
+
+ case MINUS:
+ case MULT:
+ /* For PLUS, MINUS and MULT, we need any bits less significant than the
+ most significant bit in MASK since carries from those bits will
+ affect the bits we are interested in. */
+ mask = fuller_mask;
+ goto binop;
+
+ case IOR:
+ case XOR:
+ /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
+ LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
+ operation which may be a bitfield extraction. Ensure that the
+ constant we form is not wider than the mode of X. */
+
+ if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
+ && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
+ && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
+ && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
+ && GET_CODE (XEXP (x, 1)) == CONST_INT
+ && ((INTVAL (XEXP (XEXP (x, 0), 1))
+ + floor_log2 (INTVAL (XEXP (x, 1))))
+ < GET_MODE_BITSIZE (GET_MODE (x)))
+ && (INTVAL (XEXP (x, 1))
+ & ~ nonzero_bits (XEXP (x, 0), GET_MODE (x)) == 0))
+ {
+ temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
+ << INTVAL (XEXP (XEXP (x, 0), 1)));
+ temp = gen_binary (GET_CODE (x), GET_MODE (x),
+ XEXP (XEXP (x, 0), 0), temp);
+ x = gen_binary (LSHIFTRT, GET_MODE (x), temp, XEXP (x, 1));
+ return force_to_mode (x, mode, mask, reg, next_select);
+ }
+
+ binop:
+ /* For most binary operations, just propagate into the operation and
+ change the mode if we have an operation of that mode. */
+
+ op0 = gen_lowpart_for_combine (op_mode,
+ force_to_mode (XEXP (x, 0), mode, mask,
+ reg, next_select));
+ op1 = gen_lowpart_for_combine (op_mode,
+ force_to_mode (XEXP (x, 1), mode, mask,
+ reg, next_select));
+
+ /* If OP1 is a CONST_INT and X is an IOR or XOR, clear bits outside
+ MASK since OP1 might have been sign-extended but we never want
+ to turn on extra bits, since combine might have previously relied
+ on them being off. */
+ if (GET_CODE (op1) == CONST_INT && (code == IOR || code == XOR)
+ && (INTVAL (op1) & mask) != 0)
+ op1 = GEN_INT (INTVAL (op1) & mask);
+
+ if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
+ x = gen_binary (code, op_mode, op0, op1);
+ break;
+
+ case ASHIFT:
+ /* For left shifts, do the same, but just for the first operand.
+ However, we cannot do anything with shifts where we cannot
+ guarantee that the counts are smaller than the size of the mode
+ because such a count will have a different meaning in a
+ wider mode. */
+
+ if (! (GET_CODE (XEXP (x, 1)) == CONST_INT
+ && INTVAL (XEXP (x, 1)) >= 0
+ && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode))
+ && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
+ && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
+ < (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode))))
+ break;
+
+ /* If the shift count is a constant and we can do arithmetic in
+ the mode of the shift, refine which bits we need. Otherwise, use the
+ conservative form of the mask. */
+ if (GET_CODE (XEXP (x, 1)) == CONST_INT
+ && INTVAL (XEXP (x, 1)) >= 0
+ && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (op_mode)
+ && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
+ mask >>= INTVAL (XEXP (x, 1));
+ else
+ mask = fuller_mask;
+
+ op0 = gen_lowpart_for_combine (op_mode,
+ force_to_mode (XEXP (x, 0), op_mode,
+ mask, reg, next_select));
+
+ if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
+ x = gen_binary (code, op_mode, op0, XEXP (x, 1));
+ break;
+
+ case LSHIFTRT:
+ /* Here we can only do something if the shift count is a constant,
+ this shift constant is valid for the host, and we can do arithmetic
+ in OP_MODE. */
+
+ if (GET_CODE (XEXP (x, 1)) == CONST_INT
+ && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
+ && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
+ {
+ rtx inner = XEXP (x, 0);
+
+ /* Select the mask of the bits we need for the shift operand. */
+ mask <<= INTVAL (XEXP (x, 1));
+
+ /* We can only change the mode of the shift if we can do arithmetic
+ in the mode of the shift and MASK is no wider than the width of
+ OP_MODE. */
+ if (GET_MODE_BITSIZE (op_mode) > HOST_BITS_PER_WIDE_INT
+ || (mask & ~ GET_MODE_MASK (op_mode)) != 0)
+ op_mode = GET_MODE (x);
+
+ inner = force_to_mode (inner, op_mode, mask, reg, next_select);
+
+ if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
+ x = gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
+ }
+
+ /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
+ shift and AND produces only copies of the sign bit (C2 is one less
+ than a power of two), we can do this with just a shift. */
+
+ if (GET_CODE (x) == LSHIFTRT
+ && GET_CODE (XEXP (x, 1)) == CONST_INT
+ && ((INTVAL (XEXP (x, 1))
+ + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
+ >= GET_MODE_BITSIZE (GET_MODE (x)))
+ && exact_log2 (mask + 1) >= 0
+ && (num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
+ >= exact_log2 (mask + 1)))
+ x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
+ GEN_INT (GET_MODE_BITSIZE (GET_MODE (x))
+ - exact_log2 (mask + 1)));
+ break;
+
+ case ASHIFTRT:
+ /* If we are just looking for the sign bit, we don't need this shift at
+ all, even if it has a variable count. */
+ if (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
+ && (mask == ((HOST_WIDE_INT) 1
+ << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
+ return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
+
+ /* If this is a shift by a constant, get a mask that contains those bits
+ that are not copies of the sign bit. We then have two cases: If
+ MASK only includes those bits, this can be a logical shift, which may
+ allow simplifications. If MASK is a single-bit field not within
+ those bits, we are requesting a copy of the sign bit and hence can
+ shift the sign bit to the appropriate location. */
+
+ if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0
+ && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
+ {
+ int i = -1;
+
+ /* If the considered data is wider then HOST_WIDE_INT, we can't
+ represent a mask for all its bits in a single scalar.
+ But we only care about the lower bits, so calculate these. */
+
+ if (GET_MODE_BITSIZE (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
+ {
+ nonzero = ~(HOST_WIDE_INT)0;
+
+ /* GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
+ is the number of bits a full-width mask would have set.
+ We need only shift if these are fewer than nonzero can
+ hold. If not, we must keep all bits set in nonzero. */
+
+ if (GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
+ < HOST_BITS_PER_WIDE_INT)
+ nonzero >>= INTVAL (XEXP (x, 1))
+ + HOST_BITS_PER_WIDE_INT
+ - GET_MODE_BITSIZE (GET_MODE (x)) ;
+ }
+ else
+ {
+ nonzero = GET_MODE_MASK (GET_MODE (x));
+ nonzero >>= INTVAL (XEXP (x, 1));
+ }
+
+ if ((mask & ~ nonzero) == 0
+ || (i = exact_log2 (mask)) >= 0)
+ {
+ x = simplify_shift_const
+ (x, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
+ i < 0 ? INTVAL (XEXP (x, 1))
+ : GET_MODE_BITSIZE (GET_MODE (x)) - 1 - i);
+
+ if (GET_CODE (x) != ASHIFTRT)
+ return force_to_mode (x, mode, mask, reg, next_select);
+ }
+ }
+
+ /* If MASK is 1, convert this to a LSHIFTRT. This can be done
+ even if the shift count isn't a constant. */
+ if (mask == 1)
+ x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0), XEXP (x, 1));
+
+ /* If this is a sign-extension operation that just affects bits
+ we don't care about, remove it. Be sure the call above returned
+ something that is still a shift. */
+
+ if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
+ && GET_CODE (XEXP (x, 1)) == CONST_INT
+ && INTVAL (XEXP (x, 1)) >= 0
+ && (INTVAL (XEXP (x, 1))
+ <= GET_MODE_BITSIZE (GET_MODE (x)) - (floor_log2 (mask) + 1))
+ && GET_CODE (XEXP (x, 0)) == ASHIFT
+ && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
+ && INTVAL (XEXP (XEXP (x, 0), 1)) == INTVAL (XEXP (x, 1)))
+ return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
+ reg, next_select);
+
+ break;
+
+ case ROTATE:
+ case ROTATERT:
+ /* If the shift count is constant and we can do computations
+ in the mode of X, compute where the bits we care about are.
+ Otherwise, we can't do anything. Don't change the mode of
+ the shift or propagate MODE into the shift, though. */
+ if (GET_CODE (XEXP (x, 1)) == CONST_INT
+ && INTVAL (XEXP (x, 1)) >= 0)
+ {
+ temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
+ GET_MODE (x), GEN_INT (mask),
+ XEXP (x, 1));
+ if (temp && GET_CODE(temp) == CONST_INT)
+ SUBST (XEXP (x, 0),
+ force_to_mode (XEXP (x, 0), GET_MODE (x),
+ INTVAL (temp), reg, next_select));
+ }
+ break;
+
+ case NEG:
+ /* If we just want the low-order bit, the NEG isn't needed since it
+ won't change the low-order bit. */
+ if (mask == 1)
+ return force_to_mode (XEXP (x, 0), mode, mask, reg, just_select);
+
+ /* We need any bits less significant than the most significant bit in
+ MASK since carries from those bits will affect the bits we are
+ interested in. */
+ mask = fuller_mask;
+ goto unop;
+
+ case NOT:
+ /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
+ same as the XOR case above. Ensure that the constant we form is not
+ wider than the mode of X. */
+
+ if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
+ && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
+ && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
+ && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
+ < GET_MODE_BITSIZE (GET_MODE (x)))
+ && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
+ {
+ temp = GEN_INT (mask << INTVAL (XEXP (XEXP (x, 0), 1)));
+ temp = gen_binary (XOR, GET_MODE (x), XEXP (XEXP (x, 0), 0), temp);
+ x = gen_binary (LSHIFTRT, GET_MODE (x), temp, XEXP (XEXP (x, 0), 1));
+
+ return force_to_mode (x, mode, mask, reg, next_select);
+ }
+
+ unop:
+ op0 = gen_lowpart_for_combine (op_mode,
+ force_to_mode (XEXP (x, 0), mode, mask,
+ reg, next_select));
+ if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
+ x = gen_unary (code, op_mode, op_mode, op0);
+ break;
+
+ case NE:
+ /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
+ in STORE_FLAG_VALUE and FOO has no bits that might be nonzero not
+ in CONST. */
+ if ((mask & ~ STORE_FLAG_VALUE) == 0 && XEXP (x, 0) == const0_rtx
+ && (nonzero_bits (XEXP (x, 0), mode) & ~ mask) == 0)
+ return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
+
+ break;
+
+ case IF_THEN_ELSE:
+ /* We have no way of knowing if the IF_THEN_ELSE can itself be
+ written in a narrower mode. We play it safe and do not do so. */
+
+ SUBST (XEXP (x, 1),
+ gen_lowpart_for_combine (GET_MODE (x),
+ force_to_mode (XEXP (x, 1), mode,
+ mask, reg, next_select)));
+ SUBST (XEXP (x, 2),
+ gen_lowpart_for_combine (GET_MODE (x),
+ force_to_mode (XEXP (x, 2), mode,
+ mask, reg,next_select)));
+ break;
+ }
+
+ /* Ensure we return a value of the proper mode. */
+ return gen_lowpart_for_combine (mode, x);
+}
+
+/* Return nonzero if X is an expression that has one of two values depending on
+ whether some other value is zero or nonzero. In that case, we return the
+ value that is being tested, *PTRUE is set to the value if the rtx being
+ returned has a nonzero value, and *PFALSE is set to the other alternative.
+
+ If we return zero, we set *PTRUE and *PFALSE to X. */
+
+static rtx
+if_then_else_cond (x, ptrue, pfalse)
+ rtx x;
+ rtx *ptrue, *pfalse;
+{
+ enum machine_mode mode = GET_MODE (x);
+ enum rtx_code code = GET_CODE (x);
+ int size = GET_MODE_BITSIZE (mode);
+ rtx cond0, cond1, true0, true1, false0, false1;
+ unsigned HOST_WIDE_INT nz;
+
+ /* If this is a unary operation whose operand has one of two values, apply
+ our opcode to compute those values. */
+ if (GET_RTX_CLASS (code) == '1'
+ && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
+ {
+ *ptrue = gen_unary (code, mode, GET_MODE (XEXP (x, 0)), true0);
+ *pfalse = gen_unary (code, mode, GET_MODE (XEXP (x, 0)), false0);
+ return cond0;
+ }
+
+ /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
+ make can't possibly match and would suppress other optimizations. */
+ else if (code == COMPARE)
+ ;
+
+ /* If this is a binary operation, see if either side has only one of two
+ values. If either one does or if both do and they are conditional on
+ the same value, compute the new true and false values. */
+ else if (GET_RTX_CLASS (code) == 'c' || GET_RTX_CLASS (code) == '2'
+ || GET_RTX_CLASS (code) == '<')
+ {
+ cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
+ cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
+
+ if ((cond0 != 0 || cond1 != 0)
+ && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
+ {
+ *ptrue = gen_binary (code, mode, true0, true1);
+ *pfalse = gen_binary (code, mode, false0, false1);
+ return cond0 ? cond0 : cond1;
+ }
+
+#if STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1
+
+ /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
+ operands is zero when the other is non-zero, and vice-versa. */
+
+ if ((code == PLUS || code == IOR || code == XOR || code == MINUS
+ || code == UMAX)
+ && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
+ {
+ rtx op0 = XEXP (XEXP (x, 0), 1);
+ rtx op1 = XEXP (XEXP (x, 1), 1);
+
+ cond0 = XEXP (XEXP (x, 0), 0);
+ cond1 = XEXP (XEXP (x, 1), 0);
+
+ if (GET_RTX_CLASS (GET_CODE (cond0)) == '<'
+ && GET_RTX_CLASS (GET_CODE (cond1)) == '<'
+ && reversible_comparison_p (cond1)
+ && ((GET_CODE (cond0) == reverse_condition (GET_CODE (cond1))
+ && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
+ && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
+ || ((swap_condition (GET_CODE (cond0))
+ == reverse_condition (GET_CODE (cond1)))
+ && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
+ && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
+ && ! side_effects_p (x))
+ {
+ *ptrue = gen_binary (MULT, mode, op0, const_true_rtx);
+ *pfalse = gen_binary (MULT, mode,
+ (code == MINUS
+ ? gen_unary (NEG, mode, mode, op1) : op1),
+ const_true_rtx);
+ return cond0;
+ }
+ }
+
+ /* Similarly for MULT, AND and UMIN, execpt that for these the result
+ is always zero. */
+ if ((code == MULT || code == AND || code == UMIN)
+ && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
+ {
+ cond0 = XEXP (XEXP (x, 0), 0);
+ cond1 = XEXP (XEXP (x, 1), 0);
+
+ if (GET_RTX_CLASS (GET_CODE (cond0)) == '<'
+ && GET_RTX_CLASS (GET_CODE (cond1)) == '<'
+ && reversible_comparison_p (cond1)
+ && ((GET_CODE (cond0) == reverse_condition (GET_CODE (cond1))
+ && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
+ && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
+ || ((swap_condition (GET_CODE (cond0))
+ == reverse_condition (GET_CODE (cond1)))
+ && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
+ && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
+ && ! side_effects_p (x))
+ {
+ *ptrue = *pfalse = const0_rtx;
+ return cond0;
+ }
+ }
+#endif
+ }
+
+ else if (code == IF_THEN_ELSE)
+ {
+ /* If we have IF_THEN_ELSE already, extract the condition and
+ canonicalize it if it is NE or EQ. */
+ cond0 = XEXP (x, 0);
+ *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
+ if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
+ return XEXP (cond0, 0);
+ else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
+ {
+ *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
+ return XEXP (cond0, 0);
+ }
+ else
+ return cond0;
+ }
+
+ /* If X is a normal SUBREG with both inner and outer modes integral,
+ we can narrow both the true and false values of the inner expression,
+ if there is a condition. */
+ else if (code == SUBREG && GET_MODE_CLASS (mode) == MODE_INT
+ && GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_INT
+ && GET_MODE_SIZE (mode) <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))
+ && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
+ &true0, &false0)))
+ {
+ *ptrue = force_to_mode (true0, mode, GET_MODE_MASK (mode), NULL_RTX, 0);
+ *pfalse
+ = force_to_mode (false0, mode, GET_MODE_MASK (mode), NULL_RTX, 0);
+
+ return cond0;
+ }
+
+ /* If X is a constant, this isn't special and will cause confusions
+ if we treat it as such. Likewise if it is equivalent to a constant. */
+ else if (CONSTANT_P (x)
+ || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
+ ;
+
+ /* If X is known to be either 0 or -1, those are the true and
+ false values when testing X. */
+ else if (num_sign_bit_copies (x, mode) == size)
+ {
+ *ptrue = constm1_rtx, *pfalse = const0_rtx;
+ return x;
+ }
+
+ /* Likewise for 0 or a single bit. */
+ else if (exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
+ {
+ *ptrue = GEN_INT (nz), *pfalse = const0_rtx;
+ return x;
+ }
+
+ /* Otherwise fail; show no condition with true and false values the same. */
+ *ptrue = *pfalse = x;
+ return 0;
+}
+
+/* Return the value of expression X given the fact that condition COND
+ is known to be true when applied to REG as its first operand and VAL
+ as its second. X is known to not be shared and so can be modified in
+ place.
+
+ We only handle the simplest cases, and specifically those cases that
+ arise with IF_THEN_ELSE expressions. */
+
+static rtx
+known_cond (x, cond, reg, val)
+ rtx x;
+ enum rtx_code cond;
+ rtx reg, val;
+{
+ enum rtx_code code = GET_CODE (x);
+ rtx temp;
+ char *fmt;
+ int i, j;
+
+ if (side_effects_p (x))
+ return x;
+
+ if (cond == EQ && rtx_equal_p (x, reg))
+ return val;
+
+ /* If X is (abs REG) and we know something about REG's relationship
+ with zero, we may be able to simplify this. */
+
+ if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
+ switch (cond)
+ {
+ case GE: case GT: case EQ:
+ return XEXP (x, 0);
+ case LT: case LE:
+ return gen_unary (NEG, GET_MODE (XEXP (x, 0)), GET_MODE (XEXP (x, 0)),
+ XEXP (x, 0));
+ }
+
+ /* The only other cases we handle are MIN, MAX, and comparisons if the
+ operands are the same as REG and VAL. */
+
+ else if (GET_RTX_CLASS (code) == '<' || GET_RTX_CLASS (code) == 'c')
+ {
+ if (rtx_equal_p (XEXP (x, 0), val))
+ cond = swap_condition (cond), temp = val, val = reg, reg = temp;
+
+ if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
+ {
+ if (GET_RTX_CLASS (code) == '<')
+ return (comparison_dominates_p (cond, code) ? const_true_rtx
+ : (comparison_dominates_p (cond,
+ reverse_condition (code))
+ ? const0_rtx : x));
+
+ else if (code == SMAX || code == SMIN
+ || code == UMIN || code == UMAX)
+ {
+ int unsignedp = (code == UMIN || code == UMAX);
+
+ if (code == SMAX || code == UMAX)
+ cond = reverse_condition (cond);
+
+ switch (cond)
+ {
+ case GE: case GT:
+ return unsignedp ? x : XEXP (x, 1);
+ case LE: case LT:
+ return unsignedp ? x : XEXP (x, 0);
+ case GEU: case GTU:
+ return unsignedp ? XEXP (x, 1) : x;
+ case LEU: case LTU:
+ return unsignedp ? XEXP (x, 0) : x;
+ }
+ }
+ }
+ }
+
+ fmt = GET_RTX_FORMAT (code);
+ for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
+ {
+ if (fmt[i] == 'e')
+ SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
+ else if (fmt[i] == 'E')
+ for (j = XVECLEN (x, i) - 1; j >= 0; j--)
+ SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
+ cond, reg, val));
+ }
+
+ return x;
+}
+
+/* See if X, a SET operation, can be rewritten as a bit-field assignment.
+ Return that assignment if so.
+
+ We only handle the most common cases. */
+
+static rtx
+make_field_assignment (x)
+ rtx x;
+{
+ rtx dest = SET_DEST (x);
+ rtx src = SET_SRC (x);
+ rtx assign;
+ HOST_WIDE_INT c1;
+ int pos, len;
+ rtx other;
+ enum machine_mode mode;
+
+ /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
+ a clear of a one-bit field. We will have changed it to
+ (and (rotate (const_int -2) POS) DEST), so check for that. Also check
+ for a SUBREG. */
+
+ if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
+ && GET_CODE (XEXP (XEXP (src, 0), 0)) == CONST_INT
+ && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
+ && (rtx_equal_p (dest, XEXP (src, 1))
+ || rtx_equal_p (dest, get_last_value (XEXP (src, 1)))
+ || rtx_equal_p (get_last_value (dest), XEXP (src, 1))))
+ {
+ assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
+ 1, 1, 1, 0);
+ return gen_rtx (SET, VOIDmode, assign, const0_rtx);
+ }
+
+ else if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
+ && subreg_lowpart_p (XEXP (src, 0))
+ && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
+ < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
+ && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
+ && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
+ && (rtx_equal_p (dest, XEXP (src, 1))
+ || rtx_equal_p (dest, get_last_value (XEXP (src, 1)))
+ || rtx_equal_p (get_last_value (dest), XEXP (src, 1))))
+ {
+ assign = make_extraction (VOIDmode, dest, 0,
+ XEXP (SUBREG_REG (XEXP (src, 0)), 1),
+ 1, 1, 1, 0);
+ return gen_rtx (SET, VOIDmode, assign, const0_rtx);
+ }
+
+ /* If SRC is (ior (ashift (const_int 1) POS DEST)), this is a set of a
+ one-bit field. */
+ else if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
+ && XEXP (XEXP (src, 0), 0) == const1_rtx
+ && (rtx_equal_p (dest, XEXP (src, 1))
+ || rtx_equal_p (dest, get_last_value (XEXP (src, 1)))
+ || rtx_equal_p (get_last_value (dest), XEXP (src, 1))))
+ {
+ assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
+ 1, 1, 1, 0);
+ return gen_rtx (SET, VOIDmode, assign, const1_rtx);
+ }
+
+ /* The other case we handle is assignments into a constant-position
+ field. They look like (ior (and DEST C1) OTHER). If C1 represents
+ a mask that has all one bits except for a group of zero bits and
+ OTHER is known to have zeros where C1 has ones, this is such an
+ assignment. Compute the position and length from C1. Shift OTHER
+ to the appropriate position, force it to the required mode, and
+ make the extraction. Check for the AND in both operands. */
+
+ if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == AND
+ && GET_CODE (XEXP (XEXP (src, 0), 1)) == CONST_INT
+ && (rtx_equal_p (XEXP (XEXP (src, 0), 0), dest)
+ || rtx_equal_p (XEXP (XEXP (src, 0), 0), get_last_value (dest))
+ || rtx_equal_p (get_last_value (XEXP (XEXP (src, 0), 1)), dest)))
+ c1 = INTVAL (XEXP (XEXP (src, 0), 1)), other = XEXP (src, 1);
+ else if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 1)) == AND
+ && GET_CODE (XEXP (XEXP (src, 1), 1)) == CONST_INT
+ && (rtx_equal_p (XEXP (XEXP (src, 1), 0), dest)
+ || rtx_equal_p (XEXP (XEXP (src, 1), 0), get_last_value (dest))
+ || rtx_equal_p (get_last_value (XEXP (XEXP (src, 1), 0)),
+ dest)))
+ c1 = INTVAL (XEXP (XEXP (src, 1), 1)), other = XEXP (src, 0);
+ else
+ return x;
+
+ pos = get_pos_from_mask (c1 ^ GET_MODE_MASK (GET_MODE (dest)), &len);
+ if (pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (dest))
+ || (GET_MODE_BITSIZE (GET_MODE (other)) <= HOST_BITS_PER_WIDE_INT
+ && (c1 & nonzero_bits (other, GET_MODE (other))) != 0))
+ return x;
+
+ assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
+
+ /* The mode to use for the source is the mode of the assignment, or of
+ what is inside a possible STRICT_LOW_PART. */
+ mode = (GET_CODE (assign) == STRICT_LOW_PART
+ ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
+
+ /* Shift OTHER right POS places and make it the source, restricting it
+ to the proper length and mode. */
+
+ src = force_to_mode (simplify_shift_const (NULL_RTX, LSHIFTRT,
+ GET_MODE (src), other, pos),
+ mode,
+ GET_MODE_BITSIZE (mode) >= HOST_BITS_PER_WIDE_INT
+ ? GET_MODE_MASK (mode)
+ : ((HOST_WIDE_INT) 1 << len) - 1,
+ dest, 0);
+
+ return gen_rtx_combine (SET, VOIDmode, assign, src);
+}
+
+/* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
+ if so. */
+
+static rtx
+apply_distributive_law (x)
+ rtx x;
+{
+ enum rtx_code code = GET_CODE (x);
+ rtx lhs, rhs, other;
+ rtx tem;
+ enum rtx_code inner_code;
+
+ /* Distributivity is not true for floating point.
+ It can change the value. So don't do it.
+ -- rms and moshier@world.std.com. */
+ if (FLOAT_MODE_P (GET_MODE (x)))
+ return x;
+
+ /* The outer operation can only be one of the following: */
+ if (code != IOR && code != AND && code != XOR
+ && code != PLUS && code != MINUS)
+ return x;
+
+ lhs = XEXP (x, 0), rhs = XEXP (x, 1);
+
+ /* If either operand is a primitive we can't do anything, so get out fast. */
+ if (GET_RTX_CLASS (GET_CODE (lhs)) == 'o'
+ || GET_RTX_CLASS (GET_CODE (rhs)) == 'o')
+ return x;
+
+ lhs = expand_compound_operation (lhs);
+ rhs = expand_compound_operation (rhs);
+ inner_code = GET_CODE (lhs);
+ if (inner_code != GET_CODE (rhs))
+ return x;
+
+ /* See if the inner and outer operations distribute. */
+ switch (inner_code)
+ {
+ case LSHIFTRT:
+ case ASHIFTRT:
+ case AND:
+ case IOR:
+ /* These all distribute except over PLUS. */
+ if (code == PLUS || code == MINUS)
+ return x;
+ break;
+
+ case MULT:
+ if (code != PLUS && code != MINUS)
+ return x;
+ break;
+
+ case ASHIFT:
+ /* This is also a multiply, so it distributes over everything. */
+ break;
+
+ case SUBREG:
+ /* Non-paradoxical SUBREGs distributes over all operations, provided
+ the inner modes and word numbers are the same, this is an extraction
+ of a low-order part, we don't convert an fp operation to int or
+ vice versa, and we would not be converting a single-word
+ operation into a multi-word operation. The latter test is not
+ required, but it prevents generating unneeded multi-word operations.
+ Some of the previous tests are redundant given the latter test, but
+ are retained because they are required for correctness.
+
+ We produce the result slightly differently in this case. */
+
+ if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs))
+ || SUBREG_WORD (lhs) != SUBREG_WORD (rhs)
+ || ! subreg_lowpart_p (lhs)
+ || (GET_MODE_CLASS (GET_MODE (lhs))
+ != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs))))
+ || (GET_MODE_SIZE (GET_MODE (lhs))
+ > GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))))
+ || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))) > UNITS_PER_WORD)
+ return x;
+
+ tem = gen_binary (code, GET_MODE (SUBREG_REG (lhs)),
+ SUBREG_REG (lhs), SUBREG_REG (rhs));
+ return gen_lowpart_for_combine (GET_MODE (x), tem);
+
+ default:
+ return x;
+ }
+
+ /* Set LHS and RHS to the inner operands (A and B in the example
+ above) and set OTHER to the common operand (C in the example).
+ These is only one way to do this unless the inner operation is
+ commutative. */
+ if (GET_RTX_CLASS (inner_code) == 'c'
+ && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
+ other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
+ else if (GET_RTX_CLASS (inner_code) == 'c'
+ && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
+ other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
+ else if (GET_RTX_CLASS (inner_code) == 'c'
+ && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
+ other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
+ else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
+ other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
+ else
+ return x;
+
+ /* Form the new inner operation, seeing if it simplifies first. */
+ tem = gen_binary (code, GET_MODE (x), lhs, rhs);
+
+ /* There is one exception to the general way of distributing:
+ (a ^ b) | (a ^ c) -> (~a) & (b ^ c) */
+ if (code == XOR && inner_code == IOR)
+ {
+ inner_code = AND;
+ other = gen_unary (NOT, GET_MODE (x), GET_MODE (x), other);
+ }
+
+ /* We may be able to continuing distributing the result, so call
+ ourselves recursively on the inner operation before forming the
+ outer operation, which we return. */
+ return gen_binary (inner_code, GET_MODE (x),
+ apply_distributive_law (tem), other);
+}
+
+/* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
+ in MODE.
+
+ Return an equivalent form, if different from X. Otherwise, return X. If
+ X is zero, we are to always construct the equivalent form. */
+
+static rtx
+simplify_and_const_int (x, mode, varop, constop)
+ rtx x;
+ enum machine_mode mode;
+ rtx varop;
+ unsigned HOST_WIDE_INT constop;
+{
+ unsigned HOST_WIDE_INT nonzero;
+ int width = GET_MODE_BITSIZE (mode);
+ int i;
+
+ /* Simplify VAROP knowing that we will be only looking at some of the
+ bits in it. */
+ varop = force_to_mode (varop, mode, constop, NULL_RTX, 0);
+
+ /* If VAROP is a CLOBBER, we will fail so return it; if it is a
+ CONST_INT, we are done. */
+ if (GET_CODE (varop) == CLOBBER || GET_CODE (varop) == CONST_INT)
+ return varop;
+
+ /* See what bits may be nonzero in VAROP. Unlike the general case of
+ a call to nonzero_bits, here we don't care about bits outside
+ MODE. */
+
+ nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
+
+ /* If this would be an entire word for the target, but is not for
+ the host, then sign-extend on the host so that the number will look
+ the same way on the host that it would on the target.
+
+ For example, when building a 64 bit alpha hosted 32 bit sparc
+ targeted compiler, then we want the 32 bit unsigned value -1 to be
+ represented as a 64 bit value -1, and not as 0x00000000ffffffff.
+ The later confuses the sparc backend. */
+
+ if (BITS_PER_WORD < HOST_BITS_PER_WIDE_INT && BITS_PER_WORD == width
+ && (nonzero & ((HOST_WIDE_INT) 1 << (width - 1))))
+ nonzero |= ((HOST_WIDE_INT) (-1) << width);
+
+ /* Turn off all bits in the constant that are known to already be zero.
+ Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
+ which is tested below. */
+
+ constop &= nonzero;
+
+ /* If we don't have any bits left, return zero. */
+ if (constop == 0)
+ return const0_rtx;
+
+ /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
+ a power of two, we can replace this with a ASHIFT. */
+ if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
+ && (i = exact_log2 (constop)) >= 0)
+ return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
+
+ /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
+ or XOR, then try to apply the distributive law. This may eliminate
+ operations if either branch can be simplified because of the AND.
+ It may also make some cases more complex, but those cases probably
+ won't match a pattern either with or without this. */
+
+ if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
+ return
+ gen_lowpart_for_combine
+ (mode,
+ apply_distributive_law
+ (gen_binary (GET_CODE (varop), GET_MODE (varop),
+ simplify_and_const_int (NULL_RTX, GET_MODE (varop),
+ XEXP (varop, 0), constop),
+ simplify_and_const_int (NULL_RTX, GET_MODE (varop),
+ XEXP (varop, 1), constop))));
+
+ /* Get VAROP in MODE. Try to get a SUBREG if not. Don't make a new SUBREG
+ if we already had one (just check for the simplest cases). */
+ if (x && GET_CODE (XEXP (x, 0)) == SUBREG
+ && GET_MODE (XEXP (x, 0)) == mode
+ && SUBREG_REG (XEXP (x, 0)) == varop)
+ varop = XEXP (x, 0);
+ else
+ varop = gen_lowpart_for_combine (mode, varop);
+
+ /* If we can't make the SUBREG, try to return what we were given. */
+ if (GET_CODE (varop) == CLOBBER)
+ return x ? x : varop;
+
+ /* If we are only masking insignificant bits, return VAROP. */
+ if (constop == nonzero)
+ x = varop;
+
+ /* Otherwise, return an AND. See how much, if any, of X we can use. */
+ else if (x == 0 || GET_CODE (x) != AND || GET_MODE (x) != mode)
+ x = gen_binary (AND, mode, varop, GEN_INT (constop));
+
+ else
+ {
+ if (GET_CODE (XEXP (x, 1)) != CONST_INT
+ || INTVAL (XEXP (x, 1)) != constop)
+ SUBST (XEXP (x, 1), GEN_INT (constop));
+
+ SUBST (XEXP (x, 0), varop);
+ }
+
+ return x;
+}
+
+/* Given an expression, X, compute which bits in X can be non-zero.
+ We don't care about bits outside of those defined in MODE.
+
+ For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
+ a shift, AND, or zero_extract, we can do better. */
+
+static unsigned HOST_WIDE_INT
+nonzero_bits (x, mode)
+ rtx x;
+ enum machine_mode mode;
+{
+ unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
+ unsigned HOST_WIDE_INT inner_nz;
+ enum rtx_code code;
+ int mode_width = GET_MODE_BITSIZE (mode);
+ rtx tem;
+
+ /* For floating-point values, assume all bits are needed. */
+ if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode))
+ return nonzero;
+
+ /* If X is wider than MODE, use its mode instead. */
+ if (GET_MODE_BITSIZE (GET_MODE (x)) > mode_width)
+ {
+ mode = GET_MODE (x);
+ nonzero = GET_MODE_MASK (mode);
+ mode_width = GET_MODE_BITSIZE (mode);
+ }
+
+ if (mode_width > HOST_BITS_PER_WIDE_INT)
+ /* Our only callers in this case look for single bit values. So
+ just return the mode mask. Those tests will then be false. */
+ return nonzero;
+
+#ifndef WORD_REGISTER_OPERATIONS
+ /* If MODE is wider than X, but both are a single word for both the host
+ and target machines, we can compute this from which bits of the
+ object might be nonzero in its own mode, taking into account the fact
+ that on many CISC machines, accessing an object in a wider mode
+ causes the high-order bits to become undefined. So they are
+ not known to be zero. */
+
+ if (GET_MODE (x) != VOIDmode && GET_MODE (x) != mode
+ && GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD
+ && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
+ && GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (GET_MODE (x)))
+ {
+ nonzero &= nonzero_bits (x, GET_MODE (x));
+ nonzero |= GET_MODE_MASK (mode) & ~ GET_MODE_MASK (GET_MODE (x));
+ return nonzero;
+ }
+#endif
+
+ code = GET_CODE (x);
+ switch (code)
+ {
+ case REG:
+#ifdef POINTERS_EXTEND_UNSIGNED
+ /* If pointers extend unsigned and this is a pointer in Pmode, say that
+ all the bits above ptr_mode are known to be zero. */
+ if (POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
+ && REGNO_POINTER_FLAG (REGNO (x)))
+ nonzero &= GET_MODE_MASK (ptr_mode);
+#endif
+
+#ifdef STACK_BOUNDARY
+ /* If this is the stack pointer, we may know something about its
+ alignment. If PUSH_ROUNDING is defined, it is possible for the
+ stack to be momentarily aligned only to that amount, so we pick
+ the least alignment. */
+
+ if (x == stack_pointer_rtx)
+ {
+ int sp_alignment = STACK_BOUNDARY / BITS_PER_UNIT;
+
+#ifdef PUSH_ROUNDING
+ sp_alignment = MIN (PUSH_ROUNDING (1), sp_alignment);
+#endif
+
+ /* We must return here, otherwise we may get a worse result from
+ one of the choices below. There is nothing useful below as
+ far as the stack pointer is concerned. */
+ return nonzero &= ~ (sp_alignment - 1);
+ }
+#endif
+
+ /* If X is a register whose nonzero bits value is current, use it.
+ Otherwise, if X is a register whose value we can find, use that
+ value. Otherwise, use the previously-computed global nonzero bits
+ for this register. */
+
+ if (reg_last_set_value[REGNO (x)] != 0
+ && reg_last_set_mode[REGNO (x)] == mode
+ && (reg_n_sets[REGNO (x)] == 1
+ || reg_last_set_label[REGNO (x)] == label_tick)
+ && INSN_CUID (reg_last_set[REGNO (x)]) < subst_low_cuid)
+ return reg_last_set_nonzero_bits[REGNO (x)];
+
+ tem = get_last_value (x);
+
+ if (tem)
+ {
+#ifdef SHORT_IMMEDIATES_SIGN_EXTEND
+ /* If X is narrower than MODE and TEM is a non-negative
+ constant that would appear negative in the mode of X,
+ sign-extend it for use in reg_nonzero_bits because some
+ machines (maybe most) will actually do the sign-extension
+ and this is the conservative approach.
+
+ ??? For 2.5, try to tighten up the MD files in this regard
+ instead of this kludge. */
+
+ if (GET_MODE_BITSIZE (GET_MODE (x)) < mode_width
+ && GET_CODE (tem) == CONST_INT
+ && INTVAL (tem) > 0
+ && 0 != (INTVAL (tem)
+ & ((HOST_WIDE_INT) 1
+ << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
+ tem = GEN_INT (INTVAL (tem)
+ | ((HOST_WIDE_INT) (-1)
+ << GET_MODE_BITSIZE (GET_MODE (x))));
+#endif
+ return nonzero_bits (tem, mode);
+ }
+ else if (nonzero_sign_valid && reg_nonzero_bits[REGNO (x)])
+ return reg_nonzero_bits[REGNO (x)] & nonzero;
+ else
+ return nonzero;
+
+ case CONST_INT:
+#ifdef SHORT_IMMEDIATES_SIGN_EXTEND
+ /* If X is negative in MODE, sign-extend the value. */
+ if (INTVAL (x) > 0 && mode_width < BITS_PER_WORD
+ && 0 != (INTVAL (x) & ((HOST_WIDE_INT) 1 << (mode_width - 1))))
+ return (INTVAL (x) | ((HOST_WIDE_INT) (-1) << mode_width));
+#endif
+
+ return INTVAL (x);
+
+ case MEM:
+#ifdef LOAD_EXTEND_OP
+ /* In many, if not most, RISC machines, reading a byte from memory
+ zeros the rest of the register. Noticing that fact saves a lot
+ of extra zero-extends. */
+ if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
+ nonzero &= GET_MODE_MASK (GET_MODE (x));
+#endif
+ break;
+
+ case EQ: case NE:
+ case GT: case GTU:
+ case LT: case LTU:
+ case GE: case GEU:
+ case LE: case LEU:
+
+ /* If this produces an integer result, we know which bits are set.
+ Code here used to clear bits outside the mode of X, but that is
+ now done above. */
+
+ if (GET_MODE_CLASS (mode) == MODE_INT
+ && mode_width <= HOST_BITS_PER_WIDE_INT)
+ nonzero = STORE_FLAG_VALUE;
+ break;
+
+ case NEG:
+ if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
+ == GET_MODE_BITSIZE (GET_MODE (x)))
+ nonzero = 1;
+
+ if (GET_MODE_SIZE (GET_MODE (x)) < mode_width)
+ nonzero |= (GET_MODE_MASK (mode) & ~ GET_MODE_MASK (GET_MODE (x)));
+ break;
+
+ case ABS:
+ if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
+ == GET_MODE_BITSIZE (GET_MODE (x)))
+ nonzero = 1;
+ break;
+
+ case TRUNCATE:
+ nonzero &= (nonzero_bits (XEXP (x, 0), mode) & GET_MODE_MASK (mode));
+ break;
+
+ case ZERO_EXTEND:
+ nonzero &= nonzero_bits (XEXP (x, 0), mode);
+ if (GET_MODE (XEXP (x, 0)) != VOIDmode)
+ nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
+ break;
+
+ case SIGN_EXTEND:
+ /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
+ Otherwise, show all the bits in the outer mode but not the inner
+ may be non-zero. */
+ inner_nz = nonzero_bits (XEXP (x, 0), mode);
+ if (GET_MODE (XEXP (x, 0)) != VOIDmode)
+ {
+ inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
+ if (inner_nz &
+ (((HOST_WIDE_INT) 1
+ << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1))))
+ inner_nz |= (GET_MODE_MASK (mode)
+ & ~ GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
+ }
+
+ nonzero &= inner_nz;
+ break;
+
+ case AND:
+ nonzero &= (nonzero_bits (XEXP (x, 0), mode)
+ & nonzero_bits (XEXP (x, 1), mode));
+ break;
+
+ case XOR: case IOR:
+ case UMIN: case UMAX: case SMIN: case SMAX:
+ nonzero &= (nonzero_bits (XEXP (x, 0), mode)
+ | nonzero_bits (XEXP (x, 1), mode));
+ break;
+
+ case PLUS: case MINUS:
+ case MULT:
+ case DIV: case UDIV:
+ case MOD: case UMOD:
+ /* We can apply the rules of arithmetic to compute the number of
+ high- and low-order zero bits of these operations. We start by
+ computing the width (position of the highest-order non-zero bit)
+ and the number of low-order zero bits for each value. */
+ {
+ unsigned HOST_WIDE_INT nz0 = nonzero_bits (XEXP (x, 0), mode);
+ unsigned HOST_WIDE_INT nz1 = nonzero_bits (XEXP (x, 1), mode);
+ int width0 = floor_log2 (nz0) + 1;
+ int width1 = floor_log2 (nz1) + 1;
+ int low0 = floor_log2 (nz0 & -nz0);
+ int low1 = floor_log2 (nz1 & -nz1);
+ HOST_WIDE_INT op0_maybe_minusp
+ = (nz0 & ((HOST_WIDE_INT) 1 << (mode_width - 1)));
+ HOST_WIDE_INT op1_maybe_minusp
+ = (nz1 & ((HOST_WIDE_INT) 1 << (mode_width - 1)));
+ int result_width = mode_width;
+ int result_low = 0;
+
+ switch (code)
+ {
+ case PLUS:
+ result_width = MAX (width0, width1) + 1;
+ result_low = MIN (low0, low1);
+ break;
+ case MINUS:
+ result_low = MIN (low0, low1);
+ break;
+ case MULT:
+ result_width = width0 + width1;
+ result_low = low0 + low1;
+ break;
+ case DIV:
+ if (! op0_maybe_minusp && ! op1_maybe_minusp)
+ result_width = width0;
+ break;
+ case UDIV:
+ result_width = width0;
+ break;
+ case MOD:
+ if (! op0_maybe_minusp && ! op1_maybe_minusp)
+ result_width = MIN (width0, width1);
+ result_low = MIN (low0, low1);
+ break;
+ case UMOD:
+ result_width = MIN (width0, width1);
+ result_low = MIN (low0, low1);
+ break;
+ }
+
+ if (result_width < mode_width)
+ nonzero &= ((HOST_WIDE_INT) 1 << result_width) - 1;
+
+ if (result_low > 0)
+ nonzero &= ~ (((HOST_WIDE_INT) 1 << result_low) - 1);
+ }
+ break;
+
+ case ZERO_EXTRACT:
+ if (GET_CODE (XEXP (x, 1)) == CONST_INT
+ && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
+ nonzero &= ((HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
+ break;
+
+ case SUBREG:
+ /* If this is a SUBREG formed for a promoted variable that has
+ been zero-extended, we know that at least the high-order bits
+ are zero, though others might be too. */
+
+ if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x))
+ nonzero = (GET_MODE_MASK (GET_MODE (x))
+ & nonzero_bits (SUBREG_REG (x), GET_MODE (x)));
+
+ /* If the inner mode is a single word for both the host and target
+ machines, we can compute this from which bits of the inner
+ object might be nonzero. */
+ if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) <= BITS_PER_WORD
+ && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
+ <= HOST_BITS_PER_WIDE_INT))
+ {
+ nonzero &= nonzero_bits (SUBREG_REG (x), mode);
+
+#ifndef WORD_REGISTER_OPERATIONS
+ /* On many CISC machines, accessing an object in a wider mode
+ causes the high-order bits to become undefined. So they are
+ not known to be zero. */
+ if (GET_MODE_SIZE (GET_MODE (x))
+ > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
+ nonzero |= (GET_MODE_MASK (GET_MODE (x))
+ & ~ GET_MODE_MASK (GET_MODE (SUBREG_REG (x))));
+#endif
+ }
+ break;
+
+ case ASHIFTRT:
+ case LSHIFTRT:
+ case ASHIFT:
+ case ROTATE:
+ /* The nonzero bits are in two classes: any bits within MODE
+ that aren't in GET_MODE (x) are always significant. The rest of the
+ nonzero bits are those that are significant in the operand of
+ the shift when shifted the appropriate number of bits. This
+ shows that high-order bits are cleared by the right shift and
+ low-order bits by left shifts. */
+ if (GET_CODE (XEXP (x, 1)) == CONST_INT
+ && INTVAL (XEXP (x, 1)) >= 0
+ && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
+ {
+ enum machine_mode inner_mode = GET_MODE (x);
+ int width = GET_MODE_BITSIZE (inner_mode);
+ int count = INTVAL (XEXP (x, 1));
+ unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
+ unsigned HOST_WIDE_INT op_nonzero = nonzero_bits (XEXP (x, 0), mode);
+ unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
+ unsigned HOST_WIDE_INT outer = 0;
+
+ if (mode_width > width)
+ outer = (op_nonzero & nonzero & ~ mode_mask);
+
+ if (code == LSHIFTRT)
+ inner >>= count;
+ else if (code == ASHIFTRT)
+ {
+ inner >>= count;
+
+ /* If the sign bit may have been nonzero before the shift, we
+ need to mark all the places it could have been copied to
+ by the shift as possibly nonzero. */
+ if (inner & ((HOST_WIDE_INT) 1 << (width - 1 - count)))
+ inner |= (((HOST_WIDE_INT) 1 << count) - 1) << (width - count);
+ }
+ else if (code == ASHIFT)
+ inner <<= count;
+ else
+ inner = ((inner << (count % width)
+ | (inner >> (width - (count % width)))) & mode_mask);
+
+ nonzero &= (outer | inner);
+ }
+ break;
+
+ case FFS:
+ /* This is at most the number of bits in the mode. */
+ nonzero = ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width) + 1)) - 1;
+ break;
+
+ case IF_THEN_ELSE:
+ nonzero &= (nonzero_bits (XEXP (x, 1), mode)
+ | nonzero_bits (XEXP (x, 2), mode));
+ break;
+ }
+
+ return nonzero;
+}
+
+/* Return the number of bits at the high-order end of X that are known to
+ be equal to the sign bit. X will be used in mode MODE; if MODE is
+ VOIDmode, X will be used in its own mode. The returned value will always
+ be between 1 and the number of bits in MODE. */
+
+static int
+num_sign_bit_copies (x, mode)
+ rtx x;
+ enum machine_mode mode;
+{
+ enum rtx_code code = GET_CODE (x);
+ int bitwidth;
+ int num0, num1, result;
+ unsigned HOST_WIDE_INT nonzero;
+ rtx tem;
+
+ /* If we weren't given a mode, use the mode of X. If the mode is still
+ VOIDmode, we don't know anything. Likewise if one of the modes is
+ floating-point. */
+
+ if (mode == VOIDmode)
+ mode = GET_MODE (x);
+
+ if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x)))
+ return 1;
+
+ bitwidth = GET_MODE_BITSIZE (mode);
+
+ /* For a smaller object, just ignore the high bits. */
+ if (bitwidth < GET_MODE_BITSIZE (GET_MODE (x)))
+ return MAX (1, (num_sign_bit_copies (x, GET_MODE (x))
+ - (GET_MODE_BITSIZE (GET_MODE (x)) - bitwidth)));
+
+#ifndef WORD_REGISTER_OPERATIONS
+ /* If this machine does not do all register operations on the entire
+ register and MODE is wider than the mode of X, we can say nothing
+ at all about the high-order bits. */
+ if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_BITSIZE (GET_MODE (x)))
+ return 1;
+#endif
+
+ switch (code)
+ {
+ case REG:
+
+#ifdef POINTERS_EXTEND_UNSIGNED
+ /* If pointers extend signed and this is a pointer in Pmode, say that
+ all the bits above ptr_mode are known to be sign bit copies. */
+ if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode && mode == Pmode
+ && REGNO_POINTER_FLAG (REGNO (x)))
+ return GET_MODE_BITSIZE (Pmode) - GET_MODE_BITSIZE (ptr_mode) + 1;
+#endif
+
+ if (reg_last_set_value[REGNO (x)] != 0
+ && reg_last_set_mode[REGNO (x)] == mode
+ && (reg_n_sets[REGNO (x)] == 1
+ || reg_last_set_label[REGNO (x)] == label_tick)
+ && INSN_CUID (reg_last_set[REGNO (x)]) < subst_low_cuid)
+ return reg_last_set_sign_bit_copies[REGNO (x)];
+
+ tem = get_last_value (x);
+ if (tem != 0)
+ return num_sign_bit_copies (tem, mode);
+
+ if (nonzero_sign_valid && reg_sign_bit_copies[REGNO (x)] != 0)
+ return reg_sign_bit_copies[REGNO (x)];
+ break;
+
+ case MEM:
+#ifdef LOAD_EXTEND_OP
+ /* Some RISC machines sign-extend all loads of smaller than a word. */
+ if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
+ return MAX (1, bitwidth - GET_MODE_BITSIZE (GET_MODE (x)) + 1);
+#endif
+ break;
+
+ case CONST_INT:
+ /* If the constant is negative, take its 1's complement and remask.
+ Then see how many zero bits we have. */
+ nonzero = INTVAL (x) & GET_MODE_MASK (mode);
+ if (bitwidth <= HOST_BITS_PER_WIDE_INT
+ && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
+ nonzero = (~ nonzero) & GET_MODE_MASK (mode);
+
+ return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
+
+ case SUBREG:
+ /* If this is a SUBREG for a promoted object that is sign-extended
+ and we are looking at it in a wider mode, we know that at least the
+ high-order bits are known to be sign bit copies. */
+
+ if (SUBREG_PROMOTED_VAR_P (x) && ! SUBREG_PROMOTED_UNSIGNED_P (x))
+ return MAX (bitwidth - GET_MODE_BITSIZE (GET_MODE (x)) + 1,
+ num_sign_bit_copies (SUBREG_REG (x), mode));
+
+ /* For a smaller object, just ignore the high bits. */
+ if (bitwidth <= GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))))
+ {
+ num0 = num_sign_bit_copies (SUBREG_REG (x), VOIDmode);
+ return MAX (1, (num0
+ - (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
+ - bitwidth)));
+ }
+
+#ifdef WORD_REGISTER_OPERATIONS
+#ifdef LOAD_EXTEND_OP
+ /* For paradoxical SUBREGs on machines where all register operations
+ affect the entire register, just look inside. Note that we are
+ passing MODE to the recursive call, so the number of sign bit copies
+ will remain relative to that mode, not the inner mode. */
+
+ /* This works only if loads sign extend. Otherwise, if we get a
+ reload for the inner part, it may be loaded from the stack, and
+ then we lose all sign bit copies that existed before the store
+ to the stack. */
+
+ if ((GET_MODE_SIZE (GET_MODE (x))
+ > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
+ && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND)
+ return num_sign_bit_copies (SUBREG_REG (x), mode);
+#endif
+#endif
+ break;
+
+ case SIGN_EXTRACT:
+ if (GET_CODE (XEXP (x, 1)) == CONST_INT)
+ return MAX (1, bitwidth - INTVAL (XEXP (x, 1)));
+ break;
+
+ case SIGN_EXTEND:
+ return (bitwidth - GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
+ + num_sign_bit_copies (XEXP (x, 0), VOIDmode));
+
+ case TRUNCATE:
+ /* For a smaller object, just ignore the high bits. */
+ num0 = num_sign_bit_copies (XEXP (x, 0), VOIDmode);
+ return MAX (1, (num0 - (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
+ - bitwidth)));
+
+ case NOT:
+ return num_sign_bit_copies (XEXP (x, 0), mode);
+
+ case ROTATE: case ROTATERT:
+ /* If we are rotating left by a number of bits less than the number
+ of sign bit copies, we can just subtract that amount from the
+ number. */
+ if (GET_CODE (XEXP (x, 1)) == CONST_INT
+ && INTVAL (XEXP (x, 1)) >= 0 && INTVAL (XEXP (x, 1)) < bitwidth)
+ {
+ num0 = num_sign_bit_copies (XEXP (x, 0), mode);
+ return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
+ : bitwidth - INTVAL (XEXP (x, 1))));
+ }
+ break;
+
+ case NEG:
+ /* In general, this subtracts one sign bit copy. But if the value
+ is known to be positive, the number of sign bit copies is the
+ same as that of the input. Finally, if the input has just one bit
+ that might be nonzero, all the bits are copies of the sign bit. */
+ nonzero = nonzero_bits (XEXP (x, 0), mode);
+ if (nonzero == 1)
+ return bitwidth;
+
+ num0 = num_sign_bit_copies (XEXP (x, 0), mode);
+ if (num0 > 1
+ && bitwidth <= HOST_BITS_PER_WIDE_INT
+ && (((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
+ num0--;
+
+ return num0;
+
+ case IOR: case AND: case XOR:
+ case SMIN: case SMAX: case UMIN: case UMAX:
+ /* Logical operations will preserve the number of sign-bit copies.
+ MIN and MAX operations always return one of the operands. */
+ num0 = num_sign_bit_copies (XEXP (x, 0), mode);
+ num1 = num_sign_bit_copies (XEXP (x, 1), mode);
+ return MIN (num0, num1);
+
+ case PLUS: case MINUS:
+ /* For addition and subtraction, we can have a 1-bit carry. However,
+ if we are subtracting 1 from a positive number, there will not
+ be such a carry. Furthermore, if the positive number is known to
+ be 0 or 1, we know the result is either -1 or 0. */
+
+ if (code == PLUS && XEXP (x, 1) == constm1_rtx
+ && bitwidth <= HOST_BITS_PER_WIDE_INT)
+ {
+ nonzero = nonzero_bits (XEXP (x, 0), mode);
+ if ((((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
+ return (nonzero == 1 || nonzero == 0 ? bitwidth
+ : bitwidth - floor_log2 (nonzero) - 1);
+ }
+
+ num0 = num_sign_bit_copies (XEXP (x, 0), mode);
+ num1 = num_sign_bit_copies (XEXP (x, 1), mode);
+ return MAX (1, MIN (num0, num1) - 1);
+
+ case MULT:
+ /* The number of bits of the product is the sum of the number of
+ bits of both terms. However, unless one of the terms if known
+ to be positive, we must allow for an additional bit since negating
+ a negative number can remove one sign bit copy. */
+
+ num0 = num_sign_bit_copies (XEXP (x, 0), mode);
+ num1 = num_sign_bit_copies (XEXP (x, 1), mode);
+
+ result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
+ if (result > 0
+ && bitwidth <= HOST_BITS_PER_WIDE_INT
+ && ((nonzero_bits (XEXP (x, 0), mode)
+ & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
+ && (nonzero_bits (XEXP (x, 1), mode)
+ & ((HOST_WIDE_INT) 1 << (bitwidth - 1)) != 0))
+ result--;
+
+ return MAX (1, result);
+
+ case UDIV:
+ /* The result must be <= the first operand. */
+ return num_sign_bit_copies (XEXP (x, 0), mode);
+
+ case UMOD:
+ /* The result must be <= the scond operand. */
+ return num_sign_bit_copies (XEXP (x, 1), mode);
+
+ case DIV:
+ /* Similar to unsigned division, except that we have to worry about
+ the case where the divisor is negative, in which case we have
+ to add 1. */
+ result = num_sign_bit_copies (XEXP (x, 0), mode);
+ if (result > 1
+ && bitwidth <= HOST_BITS_PER_WIDE_INT
+ && (nonzero_bits (XEXP (x, 1), mode)
+ & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
+ result --;
+
+ return result;
+
+ case MOD:
+ result = num_sign_bit_copies (XEXP (x, 1), mode);
+ if (result > 1
+ && bitwidth <= HOST_BITS_PER_WIDE_INT
+ && (nonzero_bits (XEXP (x, 1), mode)
+ & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
+ result --;
+
+ return result;
+
+ case ASHIFTRT:
+ /* Shifts by a constant add to the number of bits equal to the
+ sign bit. */
+ num0 = num_sign_bit_copies (XEXP (x, 0), mode);
+ if (GET_CODE (XEXP (x, 1)) == CONST_INT
+ && INTVAL (XEXP (x, 1)) > 0)
+ num0 = MIN (bitwidth, num0 + INTVAL (XEXP (x, 1)));
+
+ return num0;
+
+ case ASHIFT:
+ /* Left shifts destroy copies. */
+ if (GET_CODE (XEXP (x, 1)) != CONST_INT
+ || INTVAL (XEXP (x, 1)) < 0
+ || INTVAL (XEXP (x, 1)) >= bitwidth)
+ return 1;
+
+ num0 = num_sign_bit_copies (XEXP (x, 0), mode);
+ return MAX (1, num0 - INTVAL (XEXP (x, 1)));
+
+ case IF_THEN_ELSE:
+ num0 = num_sign_bit_copies (XEXP (x, 1), mode);
+ num1 = num_sign_bit_copies (XEXP (x, 2), mode);
+ return MIN (num0, num1);
+
+#if STORE_FLAG_VALUE == -1
+ case EQ: case NE: case GE: case GT: case LE: case LT:
+ case GEU: case GTU: case LEU: case LTU:
+ return bitwidth;
+#endif
+ }
+
+ /* If we haven't been able to figure it out by one of the above rules,
+ see if some of the high-order bits are known to be zero. If so,
+ count those bits and return one less than that amount. If we can't
+ safely compute the mask for this mode, always return BITWIDTH. */
+
+ if (bitwidth > HOST_BITS_PER_WIDE_INT)
+ return 1;
+
+ nonzero = nonzero_bits (x, mode);
+ return (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))
+ ? 1 : bitwidth - floor_log2 (nonzero) - 1);
+}
+
+/* Return the number of "extended" bits there are in X, when interpreted
+ as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
+ unsigned quantities, this is the number of high-order zero bits.
+ For signed quantities, this is the number of copies of the sign bit
+ minus 1. In both case, this function returns the number of "spare"
+ bits. For example, if two quantities for which this function returns
+ at least 1 are added, the addition is known not to overflow.
+
+ This function will always return 0 unless called during combine, which
+ implies that it must be called from a define_split. */
+
+int
+extended_count (x, mode, unsignedp)
+ rtx x;
+ enum machine_mode mode;
+ int unsignedp;
+{
+ if (nonzero_sign_valid == 0)
+ return 0;
+
+ return (unsignedp
+ ? (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
+ && (GET_MODE_BITSIZE (mode) - 1
+ - floor_log2 (nonzero_bits (x, mode))))
+ : num_sign_bit_copies (x, mode) - 1);
+}
+
+/* This function is called from `simplify_shift_const' to merge two
+ outer operations. Specifically, we have already found that we need
+ to perform operation *POP0 with constant *PCONST0 at the outermost
+ position. We would now like to also perform OP1 with constant CONST1
+ (with *POP0 being done last).
+
+ Return 1 if we can do the operation and update *POP0 and *PCONST0 with
+ the resulting operation. *PCOMP_P is set to 1 if we would need to
+ complement the innermost operand, otherwise it is unchanged.
+
+ MODE is the mode in which the operation will be done. No bits outside
+ the width of this mode matter. It is assumed that the width of this mode
+ is smaller than or equal to HOST_BITS_PER_WIDE_INT.
+
+ If *POP0 or OP1 are NIL, it means no operation is required. Only NEG, PLUS,
+ IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
+ result is simply *PCONST0.
+
+ If the resulting operation cannot be expressed as one operation, we
+ return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
+
+static int
+merge_outer_ops (pop0, pconst0, op1, const1, mode, pcomp_p)
+ enum rtx_code *pop0;
+ HOST_WIDE_INT *pconst0;
+ enum rtx_code op1;
+ HOST_WIDE_INT const1;
+ enum machine_mode mode;
+ int *pcomp_p;
+{
+ enum rtx_code op0 = *pop0;
+ HOST_WIDE_INT const0 = *pconst0;
+ int width = GET_MODE_BITSIZE (mode);
+
+ const0 &= GET_MODE_MASK (mode);
+ const1 &= GET_MODE_MASK (mode);
+
+ /* If OP0 is an AND, clear unimportant bits in CONST1. */
+ if (op0 == AND)
+ const1 &= const0;
+
+ /* If OP0 or OP1 is NIL, this is easy. Similarly if they are the same or
+ if OP0 is SET. */
+
+ if (op1 == NIL || op0 == SET)
+ return 1;
+
+ else if (op0 == NIL)
+ op0 = op1, const0 = const1;
+
+ else if (op0 == op1)
+ {
+ switch (op0)
+ {
+ case AND:
+ const0 &= const1;
+ break;
+ case IOR:
+ const0 |= const1;
+ break;
+ case XOR:
+ const0 ^= const1;
+ break;
+ case PLUS:
+ const0 += const1;
+ break;
+ case NEG:
+ op0 = NIL;
+ break;
+ }
+ }
+
+ /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
+ else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
+ return 0;
+
+ /* If the two constants aren't the same, we can't do anything. The
+ remaining six cases can all be done. */
+ else if (const0 != const1)
+ return 0;
+
+ else
+ switch (op0)
+ {
+ case IOR:
+ if (op1 == AND)
+ /* (a & b) | b == b */
+ op0 = SET;
+ else /* op1 == XOR */
+ /* (a ^ b) | b == a | b */
+ ;
+ break;
+
+ case XOR:
+ if (op1 == AND)
+ /* (a & b) ^ b == (~a) & b */
+ op0 = AND, *pcomp_p = 1;
+ else /* op1 == IOR */
+ /* (a | b) ^ b == a & ~b */
+ op0 = AND, *pconst0 = ~ const0;
+ break;
+
+ case AND:
+ if (op1 == IOR)
+ /* (a | b) & b == b */
+ op0 = SET;
+ else /* op1 == XOR */
+ /* (a ^ b) & b) == (~a) & b */
+ *pcomp_p = 1;
+ break;
+ }
+
+ /* Check for NO-OP cases. */
+ const0 &= GET_MODE_MASK (mode);
+ if (const0 == 0
+ && (op0 == IOR || op0 == XOR || op0 == PLUS))
+ op0 = NIL;
+ else if (const0 == 0 && op0 == AND)
+ op0 = SET;
+ else if (const0 == GET_MODE_MASK (mode) && op0 == AND)
+ op0 = NIL;
+
+ /* If this would be an entire word for the target, but is not for
+ the host, then sign-extend on the host so that the number will look
+ the same way on the host that it would on the target.
+
+ For example, when building a 64 bit alpha hosted 32 bit sparc
+ targeted compiler, then we want the 32 bit unsigned value -1 to be
+ represented as a 64 bit value -1, and not as 0x00000000ffffffff.
+ The later confuses the sparc backend. */
+
+ if (BITS_PER_WORD < HOST_BITS_PER_WIDE_INT && BITS_PER_WORD == width
+ && (const0 & ((HOST_WIDE_INT) 1 << (width - 1))))
+ const0 |= ((HOST_WIDE_INT) (-1) << width);
+
+ *pop0 = op0;
+ *pconst0 = const0;
+
+ return 1;
+}
+
+/* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
+ The result of the shift is RESULT_MODE. X, if non-zero, is an expression
+ that we started with.
+
+ The shift is normally computed in the widest mode we find in VAROP, as
+ long as it isn't a different number of words than RESULT_MODE. Exceptions
+ are ASHIFTRT and ROTATE, which are always done in their original mode, */
+
+static rtx
+simplify_shift_const (x, code, result_mode, varop, count)
+ rtx x;
+ enum rtx_code code;
+ enum machine_mode result_mode;
+ rtx varop;
+ int count;
+{
+ enum rtx_code orig_code = code;
+ int orig_count = count;
+ enum machine_mode mode = result_mode;
+ enum machine_mode shift_mode, tmode;
+ int mode_words
+ = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
+ /* We form (outer_op (code varop count) (outer_const)). */
+ enum rtx_code outer_op = NIL;
+ HOST_WIDE_INT outer_const = 0;
+ rtx const_rtx;
+ int complement_p = 0;
+ rtx new;
+
+ /* If we were given an invalid count, don't do anything except exactly
+ what was requested. */
+
+ if (count < 0 || count > GET_MODE_BITSIZE (mode))
+ {
+ if (x)
+ return x;
+
+ return gen_rtx (code, mode, varop, GEN_INT (count));
+ }
+
+ /* Unless one of the branches of the `if' in this loop does a `continue',
+ we will `break' the loop after the `if'. */
+
+ while (count != 0)
+ {
+ /* If we have an operand of (clobber (const_int 0)), just return that
+ value. */
+ if (GET_CODE (varop) == CLOBBER)
+ return varop;
+
+ /* If we discovered we had to complement VAROP, leave. Making a NOT
+ here would cause an infinite loop. */
+ if (complement_p)
+ break;
+
+ /* Convert ROTATERT to ROTATE. */
+ if (code == ROTATERT)
+ code = ROTATE, count = GET_MODE_BITSIZE (result_mode) - count;
+
+ /* We need to determine what mode we will do the shift in. If the
+ shift is a right shift or a ROTATE, we must always do it in the mode
+ it was originally done in. Otherwise, we can do it in MODE, the
+ widest mode encountered. */
+ shift_mode
+ = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
+ ? result_mode : mode);
+
+ /* Handle cases where the count is greater than the size of the mode
+ minus 1. For ASHIFT, use the size minus one as the count (this can
+ occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
+ take the count modulo the size. For other shifts, the result is
+ zero.
+
+ Since these shifts are being produced by the compiler by combining
+ multiple operations, each of which are defined, we know what the
+ result is supposed to be. */
+
+ if (count > GET_MODE_BITSIZE (shift_mode) - 1)
+ {
+ if (code == ASHIFTRT)
+ count = GET_MODE_BITSIZE (shift_mode) - 1;
+ else if (code == ROTATE || code == ROTATERT)
+ count %= GET_MODE_BITSIZE (shift_mode);
+ else
+ {
+ /* We can't simply return zero because there may be an
+ outer op. */
+ varop = const0_rtx;
+ count = 0;
+ break;
+ }
+ }
+
+ /* Negative counts are invalid and should not have been made (a
+ programmer-specified negative count should have been handled
+ above). */
+ else if (count < 0)
+ abort ();
+
+ /* An arithmetic right shift of a quantity known to be -1 or 0
+ is a no-op. */
+ if (code == ASHIFTRT
+ && (num_sign_bit_copies (varop, shift_mode)
+ == GET_MODE_BITSIZE (shift_mode)))
+ {
+ count = 0;
+ break;
+ }
+
+ /* If we are doing an arithmetic right shift and discarding all but
+ the sign bit copies, this is equivalent to doing a shift by the
+ bitsize minus one. Convert it into that shift because it will often
+ allow other simplifications. */
+
+ if (code == ASHIFTRT
+ && (count + num_sign_bit_copies (varop, shift_mode)
+ >= GET_MODE_BITSIZE (shift_mode)))
+ count = GET_MODE_BITSIZE (shift_mode) - 1;
+
+ /* We simplify the tests below and elsewhere by converting
+ ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
+ `make_compound_operation' will convert it to a ASHIFTRT for
+ those machines (such as Vax) that don't have a LSHIFTRT. */
+ if (GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
+ && code == ASHIFTRT
+ && ((nonzero_bits (varop, shift_mode)
+ & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (shift_mode) - 1)))
+ == 0))
+ code = LSHIFTRT;
+
+ switch (GET_CODE (varop))
+ {
+ case SIGN_EXTEND:
+ case ZERO_EXTEND:
+ case SIGN_EXTRACT:
+ case ZERO_EXTRACT:
+ new = expand_compound_operation (varop);
+ if (new != varop)
+ {
+ varop = new;
+ continue;
+ }
+ break;
+
+ case MEM:
+ /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
+ minus the width of a smaller mode, we can do this with a
+ SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
+ if ((code == ASHIFTRT || code == LSHIFTRT)
+ && ! mode_dependent_address_p (XEXP (varop, 0))
+ && ! MEM_VOLATILE_P (varop)
+ && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
+ MODE_INT, 1)) != BLKmode)
+ {
+ if (BYTES_BIG_ENDIAN)
+ new = gen_rtx (MEM, tmode, XEXP (varop, 0));
+ else
+ new = gen_rtx (MEM, tmode,
+ plus_constant (XEXP (varop, 0),
+ count / BITS_PER_UNIT));
+ RTX_UNCHANGING_P (new) = RTX_UNCHANGING_P (varop);
+ MEM_VOLATILE_P (new) = MEM_VOLATILE_P (varop);
+ MEM_IN_STRUCT_P (new) = MEM_IN_STRUCT_P (varop);
+ varop = gen_rtx_combine (code == ASHIFTRT ? SIGN_EXTEND
+ : ZERO_EXTEND, mode, new);
+ count = 0;
+ continue;
+ }
+ break;
+
+ case USE:
+ /* Similar to the case above, except that we can only do this if
+ the resulting mode is the same as that of the underlying
+ MEM and adjust the address depending on the *bits* endianness
+ because of the way that bit-field extract insns are defined. */
+ if ((code == ASHIFTRT || code == LSHIFTRT)
+ && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
+ MODE_INT, 1)) != BLKmode
+ && tmode == GET_MODE (XEXP (varop, 0)))
+ {
+ if (BITS_BIG_ENDIAN)
+ new = XEXP (varop, 0);
+ else
+ {
+ new = copy_rtx (XEXP (varop, 0));
+ SUBST (XEXP (new, 0),
+ plus_constant (XEXP (new, 0),
+ count / BITS_PER_UNIT));
+ }
+
+ varop = gen_rtx_combine (code == ASHIFTRT ? SIGN_EXTEND
+ : ZERO_EXTEND, mode, new);
+ count = 0;
+ continue;
+ }
+ break;
+
+ case SUBREG:
+ /* If VAROP is a SUBREG, strip it as long as the inner operand has
+ the same number of words as what we've seen so far. Then store
+ the widest mode in MODE. */
+ if (subreg_lowpart_p (varop)
+ && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
+ > GET_MODE_SIZE (GET_MODE (varop)))
+ && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
+ + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
+ == mode_words))
+ {
+ varop = SUBREG_REG (varop);
+ if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
+ mode = GET_MODE (varop);
+ continue;
+ }
+ break;
+
+ case MULT:
+ /* Some machines use MULT instead of ASHIFT because MULT
+ is cheaper. But it is still better on those machines to
+ merge two shifts into one. */
+ if (GET_CODE (XEXP (varop, 1)) == CONST_INT
+ && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
+ {
+ varop = gen_binary (ASHIFT, GET_MODE (varop), XEXP (varop, 0),
+ GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));;
+ continue;
+ }
+ break;
+
+ case UDIV:
+ /* Similar, for when divides are cheaper. */
+ if (GET_CODE (XEXP (varop, 1)) == CONST_INT
+ && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
+ {
+ varop = gen_binary (LSHIFTRT, GET_MODE (varop), XEXP (varop, 0),
+ GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));
+ continue;
+ }
+ break;
+
+ case ASHIFTRT:
+ /* If we are extracting just the sign bit of an arithmetic right
+ shift, that shift is not needed. */
+ if (code == LSHIFTRT && count == GET_MODE_BITSIZE (result_mode) - 1)
+ {
+ varop = XEXP (varop, 0);
+ continue;
+ }
+
+ /* ... fall through ... */
+
+ case LSHIFTRT:
+ case ASHIFT:
+ case ROTATE:
+ /* Here we have two nested shifts. The result is usually the
+ AND of a new shift with a mask. We compute the result below. */
+ if (GET_CODE (XEXP (varop, 1)) == CONST_INT
+ && INTVAL (XEXP (varop, 1)) >= 0
+ && INTVAL (XEXP (varop, 1)) < GET_MODE_BITSIZE (GET_MODE (varop))
+ && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
+ && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
+ {
+ enum rtx_code first_code = GET_CODE (varop);
+ int first_count = INTVAL (XEXP (varop, 1));
+ unsigned HOST_WIDE_INT mask;
+ rtx mask_rtx;
+
+ /* We have one common special case. We can't do any merging if
+ the inner code is an ASHIFTRT of a smaller mode. However, if
+ we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
+ with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
+ we can convert it to
+ (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
+ This simplifies certain SIGN_EXTEND operations. */
+ if (code == ASHIFT && first_code == ASHIFTRT
+ && (GET_MODE_BITSIZE (result_mode)
+ - GET_MODE_BITSIZE (GET_MODE (varop))) == count)
+ {
+ /* C3 has the low-order C1 bits zero. */
+
+ mask = (GET_MODE_MASK (mode)
+ & ~ (((HOST_WIDE_INT) 1 << first_count) - 1));
+
+ varop = simplify_and_const_int (NULL_RTX, result_mode,
+ XEXP (varop, 0), mask);
+ varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
+ varop, count);
+ count = first_count;
+ code = ASHIFTRT;
+ continue;
+ }
+
+ /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
+ than C1 high-order bits equal to the sign bit, we can convert
+ this to either an ASHIFT or a ASHIFTRT depending on the
+ two counts.
+
+ We cannot do this if VAROP's mode is not SHIFT_MODE. */
+
+ if (code == ASHIFTRT && first_code == ASHIFT
+ && GET_MODE (varop) == shift_mode
+ && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
+ > first_count))
+ {
+ count -= first_count;
+ if (count < 0)
+ count = - count, code = ASHIFT;
+ varop = XEXP (varop, 0);
+ continue;
+ }
+
+ /* There are some cases we can't do. If CODE is ASHIFTRT,
+ we can only do this if FIRST_CODE is also ASHIFTRT.
+
+ We can't do the case when CODE is ROTATE and FIRST_CODE is
+ ASHIFTRT.
+
+ If the mode of this shift is not the mode of the outer shift,
+ we can't do this if either shift is a right shift or ROTATE.
+
+ Finally, we can't do any of these if the mode is too wide
+ unless the codes are the same.
+
+ Handle the case where the shift codes are the same
+ first. */
+
+ if (code == first_code)
+ {
+ if (GET_MODE (varop) != result_mode
+ && (code == ASHIFTRT || code == LSHIFTRT
+ || code == ROTATE))
+ break;
+
+ count += first_count;
+ varop = XEXP (varop, 0);
+ continue;
+ }
+
+ if (code == ASHIFTRT
+ || (code == ROTATE && first_code == ASHIFTRT)
+ || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
+ || (GET_MODE (varop) != result_mode
+ && (first_code == ASHIFTRT || first_code == LSHIFTRT
+ || first_code == ROTATE
+ || code == ROTATE)))
+ break;
+
+ /* To compute the mask to apply after the shift, shift the
+ nonzero bits of the inner shift the same way the
+ outer shift will. */
+
+ mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
+
+ mask_rtx
+ = simplify_binary_operation (code, result_mode, mask_rtx,
+ GEN_INT (count));
+
+ /* Give up if we can't compute an outer operation to use. */
+ if (mask_rtx == 0
+ || GET_CODE (mask_rtx) != CONST_INT
+ || ! merge_outer_ops (&outer_op, &outer_const, AND,
+ INTVAL (mask_rtx),
+ result_mode, &complement_p))
+ break;
+
+ /* If the shifts are in the same direction, we add the
+ counts. Otherwise, we subtract them. */
+ if ((code == ASHIFTRT || code == LSHIFTRT)
+ == (first_code == ASHIFTRT || first_code == LSHIFTRT))
+ count += first_count;
+ else
+ count -= first_count;
+
+ /* If COUNT is positive, the new shift is usually CODE,
+ except for the two exceptions below, in which case it is
+ FIRST_CODE. If the count is negative, FIRST_CODE should
+ always be used */
+ if (count > 0
+ && ((first_code == ROTATE && code == ASHIFT)
+ || (first_code == ASHIFTRT && code == LSHIFTRT)))
+ code = first_code;
+ else if (count < 0)
+ code = first_code, count = - count;
+
+ varop = XEXP (varop, 0);
+ continue;
+ }
+
+ /* If we have (A << B << C) for any shift, we can convert this to
+ (A << C << B). This wins if A is a constant. Only try this if
+ B is not a constant. */
+
+ else if (GET_CODE (varop) == code
+ && GET_CODE (XEXP (varop, 1)) != CONST_INT
+ && 0 != (new
+ = simplify_binary_operation (code, mode,
+ XEXP (varop, 0),
+ GEN_INT (count))))
+ {
+ varop = gen_rtx_combine (code, mode, new, XEXP (varop, 1));
+ count = 0;
+ continue;
+ }
+ break;
+
+ case NOT:
+ /* Make this fit the case below. */
+ varop = gen_rtx_combine (XOR, mode, XEXP (varop, 0),
+ GEN_INT (GET_MODE_MASK (mode)));
+ continue;
+
+ case IOR:
+ case AND:
+ case XOR:
+ /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
+ with C the size of VAROP - 1 and the shift is logical if
+ STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
+ we have an (le X 0) operation. If we have an arithmetic shift
+ and STORE_FLAG_VALUE is 1 or we have a logical shift with
+ STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
+
+ if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
+ && XEXP (XEXP (varop, 0), 1) == constm1_rtx
+ && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
+ && (code == LSHIFTRT || code == ASHIFTRT)
+ && count == GET_MODE_BITSIZE (GET_MODE (varop)) - 1
+ && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
+ {
+ count = 0;
+ varop = gen_rtx_combine (LE, GET_MODE (varop), XEXP (varop, 1),
+ const0_rtx);
+
+ if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
+ varop = gen_rtx_combine (NEG, GET_MODE (varop), varop);
+
+ continue;
+ }
+
+ /* If we have (shift (logical)), move the logical to the outside
+ to allow it to possibly combine with another logical and the
+ shift to combine with another shift. This also canonicalizes to
+ what a ZERO_EXTRACT looks like. Also, some machines have
+ (and (shift)) insns. */
+
+ if (GET_CODE (XEXP (varop, 1)) == CONST_INT
+ && (new = simplify_binary_operation (code, result_mode,
+ XEXP (varop, 1),
+ GEN_INT (count))) != 0
+ && GET_CODE(new) == CONST_INT
+ && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
+ INTVAL (new), result_mode, &complement_p))
+ {
+ varop = XEXP (varop, 0);
+ continue;
+ }
+
+ /* If we can't do that, try to simplify the shift in each arm of the
+ logical expression, make a new logical expression, and apply
+ the inverse distributive law. */
+ {
+ rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
+ XEXP (varop, 0), count);
+ rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
+ XEXP (varop, 1), count);
+
+ varop = gen_binary (GET_CODE (varop), shift_mode, lhs, rhs);
+ varop = apply_distributive_law (varop);
+
+ count = 0;
+ }
+ break;
+
+ case EQ:
+ /* convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
+ says that the sign bit can be tested, FOO has mode MODE, C is
+ GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit
+ that may be nonzero. */
+ if (code == LSHIFTRT
+ && XEXP (varop, 1) == const0_rtx
+ && GET_MODE (XEXP (varop, 0)) == result_mode
+ && count == GET_MODE_BITSIZE (result_mode) - 1
+ && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
+ && ((STORE_FLAG_VALUE
+ & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (result_mode) - 1))))
+ && nonzero_bits (XEXP (varop, 0), result_mode) == 1
+ && merge_outer_ops (&outer_op, &outer_const, XOR,
+ (HOST_WIDE_INT) 1, result_mode,
+ &complement_p))
+ {
+ varop = XEXP (varop, 0);
+ count = 0;
+ continue;
+ }
+ break;
+
+ case NEG:
+ /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
+ than the number of bits in the mode is equivalent to A. */
+ if (code == LSHIFTRT && count == GET_MODE_BITSIZE (result_mode) - 1
+ && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
+ {
+ varop = XEXP (varop, 0);
+ count = 0;
+ continue;
+ }
+
+ /* NEG commutes with ASHIFT since it is multiplication. Move the
+ NEG outside to allow shifts to combine. */
+ if (code == ASHIFT
+ && merge_outer_ops (&outer_op, &outer_const, NEG,
+ (HOST_WIDE_INT) 0, result_mode,
+ &complement_p))
+ {
+ varop = XEXP (varop, 0);
+ continue;
+ }
+ break;
+
+ case PLUS:
+ /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
+ is one less than the number of bits in the mode is
+ equivalent to (xor A 1). */
+ if (code == LSHIFTRT && count == GET_MODE_BITSIZE (result_mode) - 1
+ && XEXP (varop, 1) == constm1_rtx
+ && nonzero_bits (XEXP (varop, 0), result_mode) == 1
+ && merge_outer_ops (&outer_op, &outer_const, XOR,
+ (HOST_WIDE_INT) 1, result_mode,
+ &complement_p))
+ {
+ count = 0;
+ varop = XEXP (varop, 0);
+ continue;
+ }
+
+ /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
+ that might be nonzero in BAR are those being shifted out and those
+ bits are known zero in FOO, we can replace the PLUS with FOO.
+ Similarly in the other operand order. This code occurs when
+ we are computing the size of a variable-size array. */
+
+ if ((code == ASHIFTRT || code == LSHIFTRT)
+ && count < HOST_BITS_PER_WIDE_INT
+ && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
+ && (nonzero_bits (XEXP (varop, 1), result_mode)
+ & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
+ {
+ varop = XEXP (varop, 0);
+ continue;
+ }
+ else if ((code == ASHIFTRT || code == LSHIFTRT)
+ && count < HOST_BITS_PER_WIDE_INT
+ && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
+ && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
+ >> count)
+ && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
+ & nonzero_bits (XEXP (varop, 1),
+ result_mode)))
+ {
+ varop = XEXP (varop, 1);
+ continue;
+ }
+
+ /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
+ if (code == ASHIFT
+ && GET_CODE (XEXP (varop, 1)) == CONST_INT
+ && (new = simplify_binary_operation (ASHIFT, result_mode,
+ XEXP (varop, 1),
+ GEN_INT (count))) != 0
+ && GET_CODE(new) == CONST_INT
+ && merge_outer_ops (&outer_op, &outer_const, PLUS,
+ INTVAL (new), result_mode, &complement_p))
+ {
+ varop = XEXP (varop, 0);
+ continue;
+ }
+ break;
+
+ case MINUS:
+ /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
+ with C the size of VAROP - 1 and the shift is logical if
+ STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
+ we have a (gt X 0) operation. If the shift is arithmetic with
+ STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
+ we have a (neg (gt X 0)) operation. */
+
+ if (GET_CODE (XEXP (varop, 0)) == ASHIFTRT
+ && count == GET_MODE_BITSIZE (GET_MODE (varop)) - 1
+ && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
+ && (code == LSHIFTRT || code == ASHIFTRT)
+ && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
+ && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
+ && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
+ {
+ count = 0;
+ varop = gen_rtx_combine (GT, GET_MODE (varop), XEXP (varop, 1),
+ const0_rtx);
+
+ if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
+ varop = gen_rtx_combine (NEG, GET_MODE (varop), varop);
+
+ continue;
+ }
+ break;
+ }
+
+ break;
+ }
+
+ /* We need to determine what mode to do the shift in. If the shift is
+ a right shift or ROTATE, we must always do it in the mode it was
+ originally done in. Otherwise, we can do it in MODE, the widest mode
+ encountered. The code we care about is that of the shift that will
+ actually be done, not the shift that was originally requested. */
+ shift_mode
+ = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
+ ? result_mode : mode);
+
+ /* We have now finished analyzing the shift. The result should be
+ a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
+ OUTER_OP is non-NIL, it is an operation that needs to be applied
+ to the result of the shift. OUTER_CONST is the relevant constant,
+ but we must turn off all bits turned off in the shift.
+
+ If we were passed a value for X, see if we can use any pieces of
+ it. If not, make new rtx. */
+
+ if (x && GET_RTX_CLASS (GET_CODE (x)) == '2'
+ && GET_CODE (XEXP (x, 1)) == CONST_INT
+ && INTVAL (XEXP (x, 1)) == count)
+ const_rtx = XEXP (x, 1);
+ else
+ const_rtx = GEN_INT (count);
+
+ if (x && GET_CODE (XEXP (x, 0)) == SUBREG
+ && GET_MODE (XEXP (x, 0)) == shift_mode
+ && SUBREG_REG (XEXP (x, 0)) == varop)
+ varop = XEXP (x, 0);
+ else if (GET_MODE (varop) != shift_mode)
+ varop = gen_lowpart_for_combine (shift_mode, varop);
+
+ /* If we can't make the SUBREG, try to return what we were given. */
+ if (GET_CODE (varop) == CLOBBER)
+ return x ? x : varop;
+
+ new = simplify_binary_operation (code, shift_mode, varop, const_rtx);
+ if (new != 0)
+ x = new;
+ else
+ {
+ if (x == 0 || GET_CODE (x) != code || GET_MODE (x) != shift_mode)
+ x = gen_rtx_combine (code, shift_mode, varop, const_rtx);
+
+ SUBST (XEXP (x, 0), varop);
+ SUBST (XEXP (x, 1), const_rtx);
+ }
+
+ /* If we have an outer operation and we just made a shift, it is
+ possible that we could have simplified the shift were it not
+ for the outer operation. So try to do the simplification
+ recursively. */
+
+ if (outer_op != NIL && GET_CODE (x) == code
+ && GET_CODE (XEXP (x, 1)) == CONST_INT)
+ x = simplify_shift_const (x, code, shift_mode, XEXP (x, 0),
+ INTVAL (XEXP (x, 1)));
+
+ /* If we were doing a LSHIFTRT in a wider mode than it was originally,
+ turn off all the bits that the shift would have turned off. */
+ if (orig_code == LSHIFTRT && result_mode != shift_mode)
+ x = simplify_and_const_int (NULL_RTX, shift_mode, x,
+ GET_MODE_MASK (result_mode) >> orig_count);
+
+ /* Do the remainder of the processing in RESULT_MODE. */
+ x = gen_lowpart_for_combine (result_mode, x);
+
+ /* If COMPLEMENT_P is set, we have to complement X before doing the outer
+ operation. */
+ if (complement_p)
+ x = gen_unary (NOT, result_mode, result_mode, x);
+
+ if (outer_op != NIL)
+ {
+ if (GET_MODE_BITSIZE (result_mode) < HOST_BITS_PER_WIDE_INT)
+ {
+ int width = GET_MODE_BITSIZE (result_mode);
+
+ outer_const &= GET_MODE_MASK (result_mode);
+
+ /* If this would be an entire word for the target, but is not for
+ the host, then sign-extend on the host so that the number will
+ look the same way on the host that it would on the target.
+
+ For example, when building a 64 bit alpha hosted 32 bit sparc
+ targeted compiler, then we want the 32 bit unsigned value -1 to be
+ represented as a 64 bit value -1, and not as 0x00000000ffffffff.
+ The later confuses the sparc backend. */
+
+ if (BITS_PER_WORD < HOST_BITS_PER_WIDE_INT && BITS_PER_WORD == width
+ && (outer_const & ((HOST_WIDE_INT) 1 << (width - 1))))
+ outer_const |= ((HOST_WIDE_INT) (-1) << width);
+ }
+
+ if (outer_op == AND)
+ x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
+ else if (outer_op == SET)
+ /* This means that we have determined that the result is
+ equivalent to a constant. This should be rare. */
+ x = GEN_INT (outer_const);
+ else if (GET_RTX_CLASS (outer_op) == '1')
+ x = gen_unary (outer_op, result_mode, result_mode, x);
+ else
+ x = gen_binary (outer_op, result_mode, x, GEN_INT (outer_const));
+ }
+
+ return x;
+}
+
+/* Like recog, but we receive the address of a pointer to a new pattern.
+ We try to match the rtx that the pointer points to.
+ If that fails, we may try to modify or replace the pattern,
+ storing the replacement into the same pointer object.
+
+ Modifications include deletion or addition of CLOBBERs.
+
+ PNOTES is a pointer to a location where any REG_UNUSED notes added for
+ the CLOBBERs are placed.
+
+ PADDED_SCRATCHES is set to the number of (clobber (scratch)) patterns
+ we had to add.
+
+ The value is the final insn code from the pattern ultimately matched,
+ or -1. */
+
+static int
+recog_for_combine (pnewpat, insn, pnotes, padded_scratches)
+ rtx *pnewpat;
+ rtx insn;
+ rtx *pnotes;
+ int *padded_scratches;
+{
+ register rtx pat = *pnewpat;
+ int insn_code_number;
+ int num_clobbers_to_add = 0;
+ int i;
+ rtx notes = 0;
+
+ *padded_scratches = 0;
+
+ /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
+ we use to indicate that something didn't match. If we find such a
+ thing, force rejection. */
+ if (GET_CODE (pat) == PARALLEL)
+ for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
+ if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
+ && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
+ return -1;
+
+ /* Is the result of combination a valid instruction? */
+ insn_code_number = recog (pat, insn, &num_clobbers_to_add);
+
+ /* If it isn't, there is the possibility that we previously had an insn
+ that clobbered some register as a side effect, but the combined
+ insn doesn't need to do that. So try once more without the clobbers
+ unless this represents an ASM insn. */
+
+ if (insn_code_number < 0 && ! check_asm_operands (pat)
+ && GET_CODE (pat) == PARALLEL)
+ {
+ int pos;
+
+ for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
+ if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
+ {
+ if (i != pos)
+ SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
+ pos++;
+ }
+
+ SUBST_INT (XVECLEN (pat, 0), pos);
+
+ if (pos == 1)
+ pat = XVECEXP (pat, 0, 0);
+
+ insn_code_number = recog (pat, insn, &num_clobbers_to_add);
+ }
+
+ /* If we had any clobbers to add, make a new pattern than contains
+ them. Then check to make sure that all of them are dead. */
+ if (num_clobbers_to_add)
+ {
+ rtx newpat = gen_rtx (PARALLEL, VOIDmode,
+ gen_rtvec (GET_CODE (pat) == PARALLEL
+ ? XVECLEN (pat, 0) + num_clobbers_to_add
+ : num_clobbers_to_add + 1));
+
+ if (GET_CODE (pat) == PARALLEL)
+ for (i = 0; i < XVECLEN (pat, 0); i++)
+ XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
+ else
+ XVECEXP (newpat, 0, 0) = pat;
+
+ add_clobbers (newpat, insn_code_number);
+
+ for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
+ i < XVECLEN (newpat, 0); i++)
+ {
+ if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) == REG
+ && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
+ return -1;
+ else if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) == SCRATCH)
+ (*padded_scratches)++;
+ notes = gen_rtx (EXPR_LIST, REG_UNUSED,
+ XEXP (XVECEXP (newpat, 0, i), 0), notes);
+ }
+ pat = newpat;
+ }
+
+ *pnewpat = pat;
+ *pnotes = notes;
+
+ return insn_code_number;
+}
+
+/* Like gen_lowpart but for use by combine. In combine it is not possible
+ to create any new pseudoregs. However, it is safe to create
+ invalid memory addresses, because combine will try to recognize
+ them and all they will do is make the combine attempt fail.
+
+ If for some reason this cannot do its job, an rtx
+ (clobber (const_int 0)) is returned.
+ An insn containing that will not be recognized. */
+
+#undef gen_lowpart
+
+static rtx
+gen_lowpart_for_combine (mode, x)
+ enum machine_mode mode;
+ register rtx x;
+{
+ rtx result;
+
+ if (GET_MODE (x) == mode)
+ return x;
+
+ /* We can only support MODE being wider than a word if X is a
+ constant integer or has a mode the same size. */
+
+ if (GET_MODE_SIZE (mode) > UNITS_PER_WORD
+ && ! ((GET_MODE (x) == VOIDmode
+ && (GET_CODE (x) == CONST_INT
+ || GET_CODE (x) == CONST_DOUBLE))
+ || GET_MODE_SIZE (GET_MODE (x)) == GET_MODE_SIZE (mode)))
+ return gen_rtx (CLOBBER, GET_MODE (x), const0_rtx);
+
+ /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
+ won't know what to do. So we will strip off the SUBREG here and
+ process normally. */
+ if (GET_CODE (x) == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM)
+ {
+ x = SUBREG_REG (x);
+ if (GET_MODE (x) == mode)
+ return x;
+ }
+
+ result = gen_lowpart_common (mode, x);
+ if (result != 0
+ && GET_CODE (result) == SUBREG
+ && GET_CODE (SUBREG_REG (result)) == REG
+ && REGNO (SUBREG_REG (result)) >= FIRST_PSEUDO_REGISTER
+ && (GET_MODE_SIZE (GET_MODE (result))
+ != GET_MODE_SIZE (GET_MODE (SUBREG_REG (result)))))
+ reg_changes_size[REGNO (SUBREG_REG (result))] = 1;
+
+ if (result)
+ return result;
+
+ if (GET_CODE (x) == MEM)
+ {
+ register int offset = 0;
+ rtx new;
+
+ /* Refuse to work on a volatile memory ref or one with a mode-dependent
+ address. */
+ if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
+ return gen_rtx (CLOBBER, GET_MODE (x), const0_rtx);
+
+ /* If we want to refer to something bigger than the original memref,
+ generate a perverse subreg instead. That will force a reload
+ of the original memref X. */
+ if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode))
+ return gen_rtx (SUBREG, mode, x, 0);
+
+ if (WORDS_BIG_ENDIAN)
+ offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
+ - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
+ if (BYTES_BIG_ENDIAN)
+ {
+ /* Adjust the address so that the address-after-the-data is
+ unchanged. */
+ offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
+ - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
+ }
+ new = gen_rtx (MEM, mode, plus_constant (XEXP (x, 0), offset));
+ RTX_UNCHANGING_P (new) = RTX_UNCHANGING_P (x);
+ MEM_VOLATILE_P (new) = MEM_VOLATILE_P (x);
+ MEM_IN_STRUCT_P (new) = MEM_IN_STRUCT_P (x);
+ return new;
+ }
+
+ /* If X is a comparison operator, rewrite it in a new mode. This
+ probably won't match, but may allow further simplifications. */
+ else if (GET_RTX_CLASS (GET_CODE (x)) == '<')
+ return gen_rtx_combine (GET_CODE (x), mode, XEXP (x, 0), XEXP (x, 1));
+
+ /* If we couldn't simplify X any other way, just enclose it in a
+ SUBREG. Normally, this SUBREG won't match, but some patterns may
+ include an explicit SUBREG or we may simplify it further in combine. */
+ else
+ {
+ int word = 0;
+
+ if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD)
+ word = ((GET_MODE_SIZE (GET_MODE (x))
+ - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD))
+ / UNITS_PER_WORD);
+ return gen_rtx (SUBREG, mode, x, word);
+ }
+}
+
+/* Make an rtx expression. This is a subset of gen_rtx and only supports
+ expressions of 1, 2, or 3 operands, each of which are rtx expressions.
+
+ If the identical expression was previously in the insn (in the undobuf),
+ it will be returned. Only if it is not found will a new expression
+ be made. */
+
+/*VARARGS2*/
+static rtx
+gen_rtx_combine VPROTO((enum rtx_code code, enum machine_mode mode, ...))
+{
+#ifndef __STDC__
+ enum rtx_code code;
+ enum machine_mode mode;
+#endif
+ va_list p;
+ int n_args;
+ rtx args[3];
+ int i, j;
+ char *fmt;
+ rtx rt;
+
+ VA_START (p, mode);
+
+#ifndef __STDC__
+ code = va_arg (p, enum rtx_code);
+ mode = va_arg (p, enum machine_mode);
+#endif
+
+ n_args = GET_RTX_LENGTH (code);
+ fmt = GET_RTX_FORMAT (code);
+
+ if (n_args == 0 || n_args > 3)
+ abort ();
+
+ /* Get each arg and verify that it is supposed to be an expression. */
+ for (j = 0; j < n_args; j++)
+ {
+ if (*fmt++ != 'e')
+ abort ();
+
+ args[j] = va_arg (p, rtx);
+ }
+
+ /* See if this is in undobuf. Be sure we don't use objects that came
+ from another insn; this could produce circular rtl structures. */
+
+ for (i = previous_num_undos; i < undobuf.num_undo; i++)
+ if (!undobuf.undo[i].is_int
+ && GET_CODE (undobuf.undo[i].old_contents.r) == code
+ && GET_MODE (undobuf.undo[i].old_contents.r) == mode)
+ {
+ for (j = 0; j < n_args; j++)
+ if (XEXP (undobuf.undo[i].old_contents.r, j) != args[j])
+ break;
+
+ if (j == n_args)
+ return undobuf.undo[i].old_contents.r;
+ }
+
+ /* Otherwise make a new rtx. We know we have 1, 2, or 3 args.
+ Use rtx_alloc instead of gen_rtx because it's faster on RISC. */
+ rt = rtx_alloc (code);
+ PUT_MODE (rt, mode);
+ XEXP (rt, 0) = args[0];
+ if (n_args > 1)
+ {
+ XEXP (rt, 1) = args[1];
+ if (n_args > 2)
+ XEXP (rt, 2) = args[2];
+ }
+ return rt;
+}
+
+/* These routines make binary and unary operations by first seeing if they
+ fold; if not, a new expression is allocated. */
+
+static rtx
+gen_binary (code, mode, op0, op1)
+ enum rtx_code code;
+ enum machine_mode mode;
+ rtx op0, op1;
+{
+ rtx result;
+ rtx tem;
+
+ if (GET_RTX_CLASS (code) == 'c'
+ && (GET_CODE (op0) == CONST_INT
+ || (CONSTANT_P (op0) && GET_CODE (op1) != CONST_INT)))
+ tem = op0, op0 = op1, op1 = tem;
+
+ if (GET_RTX_CLASS (code) == '<')
+ {
+ enum machine_mode op_mode = GET_MODE (op0);
+
+ /* Strip the COMPARE from (REL_OP (compare X Y) 0) to get
+ just (REL_OP X Y). */
+ if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
+ {
+ op1 = XEXP (op0, 1);
+ op0 = XEXP (op0, 0);
+ op_mode = GET_MODE (op0);
+ }
+
+ if (op_mode == VOIDmode)
+ op_mode = GET_MODE (op1);
+ result = simplify_relational_operation (code, op_mode, op0, op1);
+ }
+ else
+ result = simplify_binary_operation (code, mode, op0, op1);
+
+ if (result)
+ return result;
+
+ /* Put complex operands first and constants second. */
+ if (GET_RTX_CLASS (code) == 'c'
+ && ((CONSTANT_P (op0) && GET_CODE (op1) != CONST_INT)
+ || (GET_RTX_CLASS (GET_CODE (op0)) == 'o'
+ && GET_RTX_CLASS (GET_CODE (op1)) != 'o')
+ || (GET_CODE (op0) == SUBREG
+ && GET_RTX_CLASS (GET_CODE (SUBREG_REG (op0))) == 'o'
+ && GET_RTX_CLASS (GET_CODE (op1)) != 'o')))
+ return gen_rtx_combine (code, mode, op1, op0);
+
+ return gen_rtx_combine (code, mode, op0, op1);
+}
+
+static rtx
+gen_unary (code, mode, op0_mode, op0)
+ enum rtx_code code;
+ enum machine_mode mode, op0_mode;
+ rtx op0;
+{
+ rtx result = simplify_unary_operation (code, mode, op0, op0_mode);
+
+ if (result)
+ return result;
+
+ return gen_rtx_combine (code, mode, op0);
+}
+
+/* Simplify a comparison between *POP0 and *POP1 where CODE is the
+ comparison code that will be tested.
+
+ The result is a possibly different comparison code to use. *POP0 and
+ *POP1 may be updated.
+
+ It is possible that we might detect that a comparison is either always
+ true or always false. However, we do not perform general constant
+ folding in combine, so this knowledge isn't useful. Such tautologies
+ should have been detected earlier. Hence we ignore all such cases. */
+
+static enum rtx_code
+simplify_comparison (code, pop0, pop1)
+ enum rtx_code code;
+ rtx *pop0;
+ rtx *pop1;
+{
+ rtx op0 = *pop0;
+ rtx op1 = *pop1;
+ rtx tem, tem1;
+ int i;
+ enum machine_mode mode, tmode;
+
+ /* Try a few ways of applying the same transformation to both operands. */
+ while (1)
+ {
+#ifndef WORD_REGISTER_OPERATIONS
+ /* The test below this one won't handle SIGN_EXTENDs on these machines,
+ so check specially. */
+ if (code != GTU && code != GEU && code != LTU && code != LEU
+ && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
+ && GET_CODE (XEXP (op0, 0)) == ASHIFT
+ && GET_CODE (XEXP (op1, 0)) == ASHIFT
+ && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
+ && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
+ && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
+ == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
+ && GET_CODE (XEXP (op0, 1)) == CONST_INT
+ && GET_CODE (XEXP (op1, 1)) == CONST_INT
+ && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
+ && GET_CODE (XEXP (XEXP (op1, 0), 1)) == CONST_INT
+ && INTVAL (XEXP (op0, 1)) == INTVAL (XEXP (op1, 1))
+ && INTVAL (XEXP (op0, 1)) == INTVAL (XEXP (XEXP (op0, 0), 1))
+ && INTVAL (XEXP (op0, 1)) == INTVAL (XEXP (XEXP (op1, 0), 1))
+ && (INTVAL (XEXP (op0, 1))
+ == (GET_MODE_BITSIZE (GET_MODE (op0))
+ - (GET_MODE_BITSIZE
+ (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
+ {
+ op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
+ op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
+ }
+#endif
+
+ /* If both operands are the same constant shift, see if we can ignore the
+ shift. We can if the shift is a rotate or if the bits shifted out of
+ this shift are known to be zero for both inputs and if the type of
+ comparison is compatible with the shift. */
+ if (GET_CODE (op0) == GET_CODE (op1)
+ && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
+ && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
+ || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
+ && (code != GT && code != LT && code != GE && code != LE))
+ || (GET_CODE (op0) == ASHIFTRT
+ && (code != GTU && code != LTU
+ && code != GEU && code != GEU)))
+ && GET_CODE (XEXP (op0, 1)) == CONST_INT
+ && INTVAL (XEXP (op0, 1)) >= 0
+ && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
+ && XEXP (op0, 1) == XEXP (op1, 1))
+ {
+ enum machine_mode mode = GET_MODE (op0);
+ unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
+ int shift_count = INTVAL (XEXP (op0, 1));
+
+ if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
+ mask &= (mask >> shift_count) << shift_count;
+ else if (GET_CODE (op0) == ASHIFT)
+ mask = (mask & (mask << shift_count)) >> shift_count;
+
+ if ((nonzero_bits (XEXP (op0, 0), mode) & ~ mask) == 0
+ && (nonzero_bits (XEXP (op1, 0), mode) & ~ mask) == 0)
+ op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
+ else
+ break;
+ }
+
+ /* If both operands are AND's of a paradoxical SUBREG by constant, the
+ SUBREGs are of the same mode, and, in both cases, the AND would
+ be redundant if the comparison was done in the narrower mode,
+ do the comparison in the narrower mode (e.g., we are AND'ing with 1
+ and the operand's possibly nonzero bits are 0xffffff01; in that case
+ if we only care about QImode, we don't need the AND). This case
+ occurs if the output mode of an scc insn is not SImode and
+ STORE_FLAG_VALUE == 1 (e.g., the 386).
+
+ Similarly, check for a case where the AND's are ZERO_EXTEND
+ operations from some narrower mode even though a SUBREG is not
+ present. */
+
+ else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
+ && GET_CODE (XEXP (op0, 1)) == CONST_INT
+ && GET_CODE (XEXP (op1, 1)) == CONST_INT)
+ {
+ rtx inner_op0 = XEXP (op0, 0);
+ rtx inner_op1 = XEXP (op1, 0);
+ HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
+ HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
+ int changed = 0;
+
+ if (GET_CODE (inner_op0) == SUBREG && GET_CODE (inner_op1) == SUBREG
+ && (GET_MODE_SIZE (GET_MODE (inner_op0))
+ > GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0))))
+ && (GET_MODE (SUBREG_REG (inner_op0))
+ == GET_MODE (SUBREG_REG (inner_op1)))
+ && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
+ <= HOST_BITS_PER_WIDE_INT)
+ && (0 == (~c0) & nonzero_bits (SUBREG_REG (inner_op0),
+ GET_MODE (SUBREG_REG (op0))))
+ && (0 == (~c1) & nonzero_bits (SUBREG_REG (inner_op1),
+ GET_MODE (SUBREG_REG (inner_op1)))))
+ {
+ op0 = SUBREG_REG (inner_op0);
+ op1 = SUBREG_REG (inner_op1);
+
+ /* The resulting comparison is always unsigned since we masked
+ off the original sign bit. */
+ code = unsigned_condition (code);
+
+ changed = 1;
+ }
+
+ else if (c0 == c1)
+ for (tmode = GET_CLASS_NARROWEST_MODE
+ (GET_MODE_CLASS (GET_MODE (op0)));
+ tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
+ if (c0 == GET_MODE_MASK (tmode))
+ {
+ op0 = gen_lowpart_for_combine (tmode, inner_op0);
+ op1 = gen_lowpart_for_combine (tmode, inner_op1);
+ code = unsigned_condition (code);
+ changed = 1;
+ break;
+ }
+
+ if (! changed)
+ break;
+ }
+
+ /* If both operands are NOT, we can strip off the outer operation
+ and adjust the comparison code for swapped operands; similarly for
+ NEG, except that this must be an equality comparison. */
+ else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
+ || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
+ && (code == EQ || code == NE)))
+ op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
+
+ else
+ break;
+ }
+
+ /* If the first operand is a constant, swap the operands and adjust the
+ comparison code appropriately. */
+ if (CONSTANT_P (op0))
+ {
+ tem = op0, op0 = op1, op1 = tem;
+ code = swap_condition (code);
+ }
+
+ /* We now enter a loop during which we will try to simplify the comparison.
+ For the most part, we only are concerned with comparisons with zero,
+ but some things may really be comparisons with zero but not start
+ out looking that way. */
+
+ while (GET_CODE (op1) == CONST_INT)
+ {
+ enum machine_mode mode = GET_MODE (op0);
+ int mode_width = GET_MODE_BITSIZE (mode);
+ unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
+ int equality_comparison_p;
+ int sign_bit_comparison_p;
+ int unsigned_comparison_p;
+ HOST_WIDE_INT const_op;
+
+ /* We only want to handle integral modes. This catches VOIDmode,
+ CCmode, and the floating-point modes. An exception is that we
+ can handle VOIDmode if OP0 is a COMPARE or a comparison
+ operation. */
+
+ if (GET_MODE_CLASS (mode) != MODE_INT
+ && ! (mode == VOIDmode
+ && (GET_CODE (op0) == COMPARE
+ || GET_RTX_CLASS (GET_CODE (op0)) == '<')))
+ break;
+
+ /* Get the constant we are comparing against and turn off all bits
+ not on in our mode. */
+ const_op = INTVAL (op1);
+ if (mode_width <= HOST_BITS_PER_WIDE_INT)
+ const_op &= mask;
+
+ /* If we are comparing against a constant power of two and the value
+ being compared can only have that single bit nonzero (e.g., it was
+ `and'ed with that bit), we can replace this with a comparison
+ with zero. */
+ if (const_op
+ && (code == EQ || code == NE || code == GE || code == GEU
+ || code == LT || code == LTU)
+ && mode_width <= HOST_BITS_PER_WIDE_INT
+ && exact_log2 (const_op) >= 0
+ && nonzero_bits (op0, mode) == const_op)
+ {
+ code = (code == EQ || code == GE || code == GEU ? NE : EQ);
+ op1 = const0_rtx, const_op = 0;
+ }
+
+ /* Similarly, if we are comparing a value known to be either -1 or
+ 0 with -1, change it to the opposite comparison against zero. */
+
+ if (const_op == -1
+ && (code == EQ || code == NE || code == GT || code == LE
+ || code == GEU || code == LTU)
+ && num_sign_bit_copies (op0, mode) == mode_width)
+ {
+ code = (code == EQ || code == LE || code == GEU ? NE : EQ);
+ op1 = const0_rtx, const_op = 0;
+ }
+
+ /* Do some canonicalizations based on the comparison code. We prefer
+ comparisons against zero and then prefer equality comparisons.
+ If we can reduce the size of a constant, we will do that too. */
+
+ switch (code)
+ {
+ case LT:
+ /* < C is equivalent to <= (C - 1) */
+ if (const_op > 0)
+ {
+ const_op -= 1;
+ op1 = GEN_INT (const_op);
+ code = LE;
+ /* ... fall through to LE case below. */
+ }
+ else
+ break;
+
+ case LE:
+ /* <= C is equivalent to < (C + 1); we do this for C < 0 */
+ if (const_op < 0)
+ {
+ const_op += 1;
+ op1 = GEN_INT (const_op);
+ code = LT;
+ }
+
+ /* If we are doing a <= 0 comparison on a value known to have
+ a zero sign bit, we can replace this with == 0. */
+ else if (const_op == 0
+ && mode_width <= HOST_BITS_PER_WIDE_INT
+ && (nonzero_bits (op0, mode)
+ & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
+ code = EQ;
+ break;
+
+ case GE:
+ /* >= C is equivalent to > (C - 1). */
+ if (const_op > 0)
+ {
+ const_op -= 1;
+ op1 = GEN_INT (const_op);
+ code = GT;
+ /* ... fall through to GT below. */
+ }
+ else
+ break;
+
+ case GT:
+ /* > C is equivalent to >= (C + 1); we do this for C < 0*/
+ if (const_op < 0)
+ {
+ const_op += 1;
+ op1 = GEN_INT (const_op);
+ code = GE;
+ }
+
+ /* If we are doing a > 0 comparison on a value known to have
+ a zero sign bit, we can replace this with != 0. */
+ else if (const_op == 0
+ && mode_width <= HOST_BITS_PER_WIDE_INT
+ && (nonzero_bits (op0, mode)
+ & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
+ code = NE;
+ break;
+
+ case LTU:
+ /* < C is equivalent to <= (C - 1). */
+ if (const_op > 0)
+ {
+ const_op -= 1;
+ op1 = GEN_INT (const_op);
+ code = LEU;
+ /* ... fall through ... */
+ }
+
+ /* (unsigned) < 0x80000000 is equivalent to >= 0. */
+ else if (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1))
+ {
+ const_op = 0, op1 = const0_rtx;
+ code = GE;
+ break;
+ }
+ else
+ break;
+
+ case LEU:
+ /* unsigned <= 0 is equivalent to == 0 */
+ if (const_op == 0)
+ code = EQ;
+
+ /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
+ else if (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1)
+ {
+ const_op = 0, op1 = const0_rtx;
+ code = GE;
+ }
+ break;
+
+ case GEU:
+ /* >= C is equivalent to < (C - 1). */
+ if (const_op > 1)
+ {
+ const_op -= 1;
+ op1 = GEN_INT (const_op);
+ code = GTU;
+ /* ... fall through ... */
+ }
+
+ /* (unsigned) >= 0x80000000 is equivalent to < 0. */
+ else if (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1))
+ {
+ const_op = 0, op1 = const0_rtx;
+ code = LT;
+ break;
+ }
+ else
+ break;
+
+ case GTU:
+ /* unsigned > 0 is equivalent to != 0 */
+ if (const_op == 0)
+ code = NE;
+
+ /* (unsigned) > 0x7fffffff is equivalent to < 0. */
+ else if (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1)
+ {
+ const_op = 0, op1 = const0_rtx;
+ code = LT;
+ }
+ break;
+ }
+
+ /* Compute some predicates to simplify code below. */
+
+ equality_comparison_p = (code == EQ || code == NE);
+ sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
+ unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
+ || code == LEU);
+
+ /* If this is a sign bit comparison and we can do arithmetic in
+ MODE, say that we will only be needing the sign bit of OP0. */
+ if (sign_bit_comparison_p
+ && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
+ op0 = force_to_mode (op0, mode,
+ ((HOST_WIDE_INT) 1
+ << (GET_MODE_BITSIZE (mode) - 1)),
+ NULL_RTX, 0);
+
+ /* Now try cases based on the opcode of OP0. If none of the cases
+ does a "continue", we exit this loop immediately after the
+ switch. */
+
+ switch (GET_CODE (op0))
+ {
+ case ZERO_EXTRACT:
+ /* If we are extracting a single bit from a variable position in
+ a constant that has only a single bit set and are comparing it
+ with zero, we can convert this into an equality comparison
+ between the position and the location of the single bit. We can't
+ do this if bit endian and we don't have an extzv since we then
+ can't know what mode to use for the endianness adjustment. */
+
+ if (GET_CODE (XEXP (op0, 0)) == CONST_INT
+ && XEXP (op0, 1) == const1_rtx
+ && equality_comparison_p && const_op == 0
+ && (i = exact_log2 (INTVAL (XEXP (op0, 0)))) >= 0
+ && (! BITS_BIG_ENDIAN
+#ifdef HAVE_extzv
+ || HAVE_extzv
+#endif
+ ))
+ {
+#ifdef HAVE_extzv
+ if (BITS_BIG_ENDIAN)
+ i = (GET_MODE_BITSIZE
+ (insn_operand_mode[(int) CODE_FOR_extzv][1]) - 1 - i);
+#endif
+
+ op0 = XEXP (op0, 2);
+ op1 = GEN_INT (i);
+ const_op = i;
+
+ /* Result is nonzero iff shift count is equal to I. */
+ code = reverse_condition (code);
+ continue;
+ }
+
+ /* ... fall through ... */
+
+ case SIGN_EXTRACT:
+ tem = expand_compound_operation (op0);
+ if (tem != op0)
+ {
+ op0 = tem;
+ continue;
+ }
+ break;
+
+ case NOT:
+ /* If testing for equality, we can take the NOT of the constant. */
+ if (equality_comparison_p
+ && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
+ {
+ op0 = XEXP (op0, 0);
+ op1 = tem;
+ continue;
+ }
+
+ /* If just looking at the sign bit, reverse the sense of the
+ comparison. */
+ if (sign_bit_comparison_p)
+ {
+ op0 = XEXP (op0, 0);
+ code = (code == GE ? LT : GE);
+ continue;
+ }
+ break;
+
+ case NEG:
+ /* If testing for equality, we can take the NEG of the constant. */
+ if (equality_comparison_p
+ && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
+ {
+ op0 = XEXP (op0, 0);
+ op1 = tem;
+ continue;
+ }
+
+ /* The remaining cases only apply to comparisons with zero. */
+ if (const_op != 0)
+ break;
+
+ /* When X is ABS or is known positive,
+ (neg X) is < 0 if and only if X != 0. */
+
+ if (sign_bit_comparison_p
+ && (GET_CODE (XEXP (op0, 0)) == ABS
+ || (mode_width <= HOST_BITS_PER_WIDE_INT
+ && (nonzero_bits (XEXP (op0, 0), mode)
+ & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)))
+ {
+ op0 = XEXP (op0, 0);
+ code = (code == LT ? NE : EQ);
+ continue;
+ }
+
+ /* If we have NEG of something whose two high-order bits are the
+ same, we know that "(-a) < 0" is equivalent to "a > 0". */
+ if (num_sign_bit_copies (op0, mode) >= 2)
+ {
+ op0 = XEXP (op0, 0);
+ code = swap_condition (code);
+ continue;
+ }
+ break;
+
+ case ROTATE:
+ /* If we are testing equality and our count is a constant, we
+ can perform the inverse operation on our RHS. */
+ if (equality_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
+ && (tem = simplify_binary_operation (ROTATERT, mode,
+ op1, XEXP (op0, 1))) != 0)
+ {
+ op0 = XEXP (op0, 0);
+ op1 = tem;
+ continue;
+ }
+
+ /* If we are doing a < 0 or >= 0 comparison, it means we are testing
+ a particular bit. Convert it to an AND of a constant of that
+ bit. This will be converted into a ZERO_EXTRACT. */
+ if (const_op == 0 && sign_bit_comparison_p
+ && GET_CODE (XEXP (op0, 1)) == CONST_INT
+ && mode_width <= HOST_BITS_PER_WIDE_INT)
+ {
+ op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
+ ((HOST_WIDE_INT) 1
+ << (mode_width - 1
+ - INTVAL (XEXP (op0, 1)))));
+ code = (code == LT ? NE : EQ);
+ continue;
+ }
+
+ /* ... fall through ... */
+
+ case ABS:
+ /* ABS is ignorable inside an equality comparison with zero. */
+ if (const_op == 0 && equality_comparison_p)
+ {
+ op0 = XEXP (op0, 0);
+ continue;
+ }
+ break;
+
+
+ case SIGN_EXTEND:
+ /* Can simplify (compare (zero/sign_extend FOO) CONST)
+ to (compare FOO CONST) if CONST fits in FOO's mode and we
+ are either testing inequality or have an unsigned comparison
+ with ZERO_EXTEND or a signed comparison with SIGN_EXTEND. */
+ if (! unsigned_comparison_p
+ && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
+ <= HOST_BITS_PER_WIDE_INT)
+ && ((unsigned HOST_WIDE_INT) const_op
+ < (((HOST_WIDE_INT) 1
+ << (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0))) - 1)))))
+ {
+ op0 = XEXP (op0, 0);
+ continue;
+ }
+ break;
+
+ case SUBREG:
+ /* Check for the case where we are comparing A - C1 with C2,
+ both constants are smaller than 1/2 the maximum positive
+ value in MODE, and the comparison is equality or unsigned.
+ In that case, if A is either zero-extended to MODE or has
+ sufficient sign bits so that the high-order bit in MODE
+ is a copy of the sign in the inner mode, we can prove that it is
+ safe to do the operation in the wider mode. This simplifies
+ many range checks. */
+
+ if (mode_width <= HOST_BITS_PER_WIDE_INT
+ && subreg_lowpart_p (op0)
+ && GET_CODE (SUBREG_REG (op0)) == PLUS
+ && GET_CODE (XEXP (SUBREG_REG (op0), 1)) == CONST_INT
+ && INTVAL (XEXP (SUBREG_REG (op0), 1)) < 0
+ && (- INTVAL (XEXP (SUBREG_REG (op0), 1))
+ < GET_MODE_MASK (mode) / 2)
+ && (unsigned HOST_WIDE_INT) const_op < GET_MODE_MASK (mode) / 2
+ && (0 == (nonzero_bits (XEXP (SUBREG_REG (op0), 0),
+ GET_MODE (SUBREG_REG (op0)))
+ & ~ GET_MODE_MASK (mode))
+ || (num_sign_bit_copies (XEXP (SUBREG_REG (op0), 0),
+ GET_MODE (SUBREG_REG (op0)))
+ > (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
+ - GET_MODE_BITSIZE (mode)))))
+ {
+ op0 = SUBREG_REG (op0);
+ continue;
+ }
+
+ /* If the inner mode is narrower and we are extracting the low part,
+ we can treat the SUBREG as if it were a ZERO_EXTEND. */
+ if (subreg_lowpart_p (op0)
+ && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) < mode_width)
+ /* Fall through */ ;
+ else
+ break;
+
+ /* ... fall through ... */
+
+ case ZERO_EXTEND:
+ if ((unsigned_comparison_p || equality_comparison_p)
+ && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
+ <= HOST_BITS_PER_WIDE_INT)
+ && ((unsigned HOST_WIDE_INT) const_op
+ < GET_MODE_MASK (GET_MODE (XEXP (op0, 0)))))
+ {
+ op0 = XEXP (op0, 0);
+ continue;
+ }
+ break;
+
+ case PLUS:
+ /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
+ this for equality comparisons due to pathological cases involving
+ overflows. */
+ if (equality_comparison_p
+ && 0 != (tem = simplify_binary_operation (MINUS, mode,
+ op1, XEXP (op0, 1))))
+ {
+ op0 = XEXP (op0, 0);
+ op1 = tem;
+ continue;
+ }
+
+ /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
+ if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
+ && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
+ {
+ op0 = XEXP (XEXP (op0, 0), 0);
+ code = (code == LT ? EQ : NE);
+ continue;
+ }
+ break;
+
+ case MINUS:
+ /* (eq (minus A B) C) -> (eq A (plus B C)) or
+ (eq B (minus A C)), whichever simplifies. We can only do
+ this for equality comparisons due to pathological cases involving
+ overflows. */
+ if (equality_comparison_p
+ && 0 != (tem = simplify_binary_operation (PLUS, mode,
+ XEXP (op0, 1), op1)))
+ {
+ op0 = XEXP (op0, 0);
+ op1 = tem;
+ continue;
+ }
+
+ if (equality_comparison_p
+ && 0 != (tem = simplify_binary_operation (MINUS, mode,
+ XEXP (op0, 0), op1)))
+ {
+ op0 = XEXP (op0, 1);
+ op1 = tem;
+ continue;
+ }
+
+ /* The sign bit of (minus (ashiftrt X C) X), where C is the number
+ of bits in X minus 1, is one iff X > 0. */
+ if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
+ && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
+ && INTVAL (XEXP (XEXP (op0, 0), 1)) == mode_width - 1
+ && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
+ {
+ op0 = XEXP (op0, 1);
+ code = (code == GE ? LE : GT);
+ continue;
+ }
+ break;
+
+ case XOR:
+ /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
+ if C is zero or B is a constant. */
+ if (equality_comparison_p
+ && 0 != (tem = simplify_binary_operation (XOR, mode,
+ XEXP (op0, 1), op1)))
+ {
+ op0 = XEXP (op0, 0);
+ op1 = tem;
+ continue;
+ }
+ break;
+
+ case EQ: case NE:
+ case LT: case LTU: case LE: case LEU:
+ case GT: case GTU: case GE: case GEU:
+ /* We can't do anything if OP0 is a condition code value, rather
+ than an actual data value. */
+ if (const_op != 0
+#ifdef HAVE_cc0
+ || XEXP (op0, 0) == cc0_rtx
+#endif
+ || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
+ break;
+
+ /* Get the two operands being compared. */
+ if (GET_CODE (XEXP (op0, 0)) == COMPARE)
+ tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
+ else
+ tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
+
+ /* Check for the cases where we simply want the result of the
+ earlier test or the opposite of that result. */
+ if (code == NE
+ || (code == EQ && reversible_comparison_p (op0))
+ || (GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
+ && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
+ && (STORE_FLAG_VALUE
+ & (((HOST_WIDE_INT) 1
+ << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
+ && (code == LT
+ || (code == GE && reversible_comparison_p (op0)))))
+ {
+ code = (code == LT || code == NE
+ ? GET_CODE (op0) : reverse_condition (GET_CODE (op0)));
+ op0 = tem, op1 = tem1;
+ continue;
+ }
+ break;
+
+ case IOR:
+ /* The sign bit of (ior (plus X (const_int -1)) X) is non-zero
+ iff X <= 0. */
+ if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
+ && XEXP (XEXP (op0, 0), 1) == constm1_rtx
+ && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
+ {
+ op0 = XEXP (op0, 1);
+ code = (code == GE ? GT : LE);
+ continue;
+ }
+ break;
+
+ case AND:
+ /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
+ will be converted to a ZERO_EXTRACT later. */
+ if (const_op == 0 && equality_comparison_p
+ && GET_CODE (XEXP (op0, 0)) == ASHIFT
+ && XEXP (XEXP (op0, 0), 0) == const1_rtx)
+ {
+ op0 = simplify_and_const_int
+ (op0, mode, gen_rtx_combine (LSHIFTRT, mode,
+ XEXP (op0, 1),
+ XEXP (XEXP (op0, 0), 1)),
+ (HOST_WIDE_INT) 1);
+ continue;
+ }
+
+ /* If we are comparing (and (lshiftrt X C1) C2) for equality with
+ zero and X is a comparison and C1 and C2 describe only bits set
+ in STORE_FLAG_VALUE, we can compare with X. */
+ if (const_op == 0 && equality_comparison_p
+ && mode_width <= HOST_BITS_PER_WIDE_INT
+ && GET_CODE (XEXP (op0, 1)) == CONST_INT
+ && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
+ && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
+ && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
+ && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
+ {
+ mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
+ << INTVAL (XEXP (XEXP (op0, 0), 1)));
+ if ((~ STORE_FLAG_VALUE & mask) == 0
+ && (GET_RTX_CLASS (GET_CODE (XEXP (XEXP (op0, 0), 0))) == '<'
+ || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
+ && GET_RTX_CLASS (GET_CODE (tem)) == '<')))
+ {
+ op0 = XEXP (XEXP (op0, 0), 0);
+ continue;
+ }
+ }
+
+ /* If we are doing an equality comparison of an AND of a bit equal
+ to the sign bit, replace this with a LT or GE comparison of
+ the underlying value. */
+ if (equality_comparison_p
+ && const_op == 0
+ && GET_CODE (XEXP (op0, 1)) == CONST_INT
+ && mode_width <= HOST_BITS_PER_WIDE_INT
+ && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
+ == (HOST_WIDE_INT) 1 << (mode_width - 1)))
+ {
+ op0 = XEXP (op0, 0);
+ code = (code == EQ ? GE : LT);
+ continue;
+ }
+
+ /* If this AND operation is really a ZERO_EXTEND from a narrower
+ mode, the constant fits within that mode, and this is either an
+ equality or unsigned comparison, try to do this comparison in
+ the narrower mode. */
+ if ((equality_comparison_p || unsigned_comparison_p)
+ && GET_CODE (XEXP (op0, 1)) == CONST_INT
+ && (i = exact_log2 ((INTVAL (XEXP (op0, 1))
+ & GET_MODE_MASK (mode))
+ + 1)) >= 0
+ && const_op >> i == 0
+ && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode)
+ {
+ op0 = gen_lowpart_for_combine (tmode, XEXP (op0, 0));
+ continue;
+ }
+ break;
+
+ case ASHIFT:
+ /* If we have (compare (ashift FOO N) (const_int C)) and
+ the high order N bits of FOO (N+1 if an inequality comparison)
+ are known to be zero, we can do this by comparing FOO with C
+ shifted right N bits so long as the low-order N bits of C are
+ zero. */
+ if (GET_CODE (XEXP (op0, 1)) == CONST_INT
+ && INTVAL (XEXP (op0, 1)) >= 0
+ && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
+ < HOST_BITS_PER_WIDE_INT)
+ && ((const_op
+ & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0)
+ && mode_width <= HOST_BITS_PER_WIDE_INT
+ && (nonzero_bits (XEXP (op0, 0), mode)
+ & ~ (mask >> (INTVAL (XEXP (op0, 1))
+ + ! equality_comparison_p))) == 0)
+ {
+ const_op >>= INTVAL (XEXP (op0, 1));
+ op1 = GEN_INT (const_op);
+ op0 = XEXP (op0, 0);
+ continue;
+ }
+
+ /* If we are doing a sign bit comparison, it means we are testing
+ a particular bit. Convert it to the appropriate AND. */
+ if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
+ && mode_width <= HOST_BITS_PER_WIDE_INT)
+ {
+ op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
+ ((HOST_WIDE_INT) 1
+ << (mode_width - 1
+ - INTVAL (XEXP (op0, 1)))));
+ code = (code == LT ? NE : EQ);
+ continue;
+ }
+
+ /* If this an equality comparison with zero and we are shifting
+ the low bit to the sign bit, we can convert this to an AND of the
+ low-order bit. */
+ if (const_op == 0 && equality_comparison_p
+ && GET_CODE (XEXP (op0, 1)) == CONST_INT
+ && INTVAL (XEXP (op0, 1)) == mode_width - 1)
+ {
+ op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
+ (HOST_WIDE_INT) 1);
+ continue;
+ }
+ break;
+
+ case ASHIFTRT:
+ /* If this is an equality comparison with zero, we can do this
+ as a logical shift, which might be much simpler. */
+ if (equality_comparison_p && const_op == 0
+ && GET_CODE (XEXP (op0, 1)) == CONST_INT)
+ {
+ op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
+ XEXP (op0, 0),
+ INTVAL (XEXP (op0, 1)));
+ continue;
+ }
+
+ /* If OP0 is a sign extension and CODE is not an unsigned comparison,
+ do the comparison in a narrower mode. */
+ if (! unsigned_comparison_p
+ && GET_CODE (XEXP (op0, 1)) == CONST_INT
+ && GET_CODE (XEXP (op0, 0)) == ASHIFT
+ && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
+ && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
+ MODE_INT, 1)) != BLKmode
+ && ((unsigned HOST_WIDE_INT) const_op <= GET_MODE_MASK (tmode)
+ || ((unsigned HOST_WIDE_INT) - const_op
+ <= GET_MODE_MASK (tmode))))
+ {
+ op0 = gen_lowpart_for_combine (tmode, XEXP (XEXP (op0, 0), 0));
+ continue;
+ }
+
+ /* ... fall through ... */
+ case LSHIFTRT:
+ /* If we have (compare (xshiftrt FOO N) (const_int C)) and
+ the low order N bits of FOO are known to be zero, we can do this
+ by comparing FOO with C shifted left N bits so long as no
+ overflow occurs. */
+ if (GET_CODE (XEXP (op0, 1)) == CONST_INT
+ && INTVAL (XEXP (op0, 1)) >= 0
+ && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
+ && mode_width <= HOST_BITS_PER_WIDE_INT
+ && (nonzero_bits (XEXP (op0, 0), mode)
+ & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0
+ && (const_op == 0
+ || (floor_log2 (const_op) + INTVAL (XEXP (op0, 1))
+ < mode_width)))
+ {
+ const_op <<= INTVAL (XEXP (op0, 1));
+ op1 = GEN_INT (const_op);
+ op0 = XEXP (op0, 0);
+ continue;
+ }
+
+ /* If we are using this shift to extract just the sign bit, we
+ can replace this with an LT or GE comparison. */
+ if (const_op == 0
+ && (equality_comparison_p || sign_bit_comparison_p)
+ && GET_CODE (XEXP (op0, 1)) == CONST_INT
+ && INTVAL (XEXP (op0, 1)) == mode_width - 1)
+ {
+ op0 = XEXP (op0, 0);
+ code = (code == NE || code == GT ? LT : GE);
+ continue;
+ }
+ break;
+ }
+
+ break;
+ }
+
+ /* Now make any compound operations involved in this comparison. Then,
+ check for an outmost SUBREG on OP0 that isn't doing anything or is
+ paradoxical. The latter case can only occur when it is known that the
+ "extra" bits will be zero. Therefore, it is safe to remove the SUBREG.
+ We can never remove a SUBREG for a non-equality comparison because the
+ sign bit is in a different place in the underlying object. */
+
+ op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
+ op1 = make_compound_operation (op1, SET);
+
+ if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
+ && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
+ && (code == NE || code == EQ)
+ && ((GET_MODE_SIZE (GET_MODE (op0))
+ > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))))
+ {
+ op0 = SUBREG_REG (op0);
+ op1 = gen_lowpart_for_combine (GET_MODE (op0), op1);
+ }
+
+ else if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
+ && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
+ && (code == NE || code == EQ)
+ && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
+ <= HOST_BITS_PER_WIDE_INT)
+ && (nonzero_bits (SUBREG_REG (op0), GET_MODE (SUBREG_REG (op0)))
+ & ~ GET_MODE_MASK (GET_MODE (op0))) == 0
+ && (tem = gen_lowpart_for_combine (GET_MODE (SUBREG_REG (op0)),
+ op1),
+ (nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
+ & ~ GET_MODE_MASK (GET_MODE (op0))) == 0))
+ op0 = SUBREG_REG (op0), op1 = tem;
+
+ /* We now do the opposite procedure: Some machines don't have compare
+ insns in all modes. If OP0's mode is an integer mode smaller than a
+ word and we can't do a compare in that mode, see if there is a larger
+ mode for which we can do the compare. There are a number of cases in
+ which we can use the wider mode. */
+
+ mode = GET_MODE (op0);
+ if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
+ && GET_MODE_SIZE (mode) < UNITS_PER_WORD
+ && cmp_optab->handlers[(int) mode].insn_code == CODE_FOR_nothing)
+ for (tmode = GET_MODE_WIDER_MODE (mode);
+ (tmode != VOIDmode
+ && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT);
+ tmode = GET_MODE_WIDER_MODE (tmode))
+ if (cmp_optab->handlers[(int) tmode].insn_code != CODE_FOR_nothing)
+ {
+ /* If the only nonzero bits in OP0 and OP1 are those in the
+ narrower mode and this is an equality or unsigned comparison,
+ we can use the wider mode. Similarly for sign-extended
+ values, in which case it is true for all comparisons. */
+ if (((code == EQ || code == NE
+ || code == GEU || code == GTU || code == LEU || code == LTU)
+ && (nonzero_bits (op0, tmode) & ~ GET_MODE_MASK (mode)) == 0
+ && (nonzero_bits (op1, tmode) & ~ GET_MODE_MASK (mode)) == 0)
+ || ((num_sign_bit_copies (op0, tmode)
+ > GET_MODE_BITSIZE (tmode) - GET_MODE_BITSIZE (mode))
+ && (num_sign_bit_copies (op1, tmode)
+ > GET_MODE_BITSIZE (tmode) - GET_MODE_BITSIZE (mode))))
+ {
+ op0 = gen_lowpart_for_combine (tmode, op0);
+ op1 = gen_lowpart_for_combine (tmode, op1);
+ break;
+ }
+
+ /* If this is a test for negative, we can make an explicit
+ test of the sign bit. */
+
+ if (op1 == const0_rtx && (code == LT || code == GE)
+ && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
+ {
+ op0 = gen_binary (AND, tmode,
+ gen_lowpart_for_combine (tmode, op0),
+ GEN_INT ((HOST_WIDE_INT) 1
+ << (GET_MODE_BITSIZE (mode) - 1)));
+ code = (code == LT) ? NE : EQ;
+ break;
+ }
+ }
+
+#ifdef CANONICALIZE_COMPARISON
+ /* If this machine only supports a subset of valid comparisons, see if we
+ can convert an unsupported one into a supported one. */
+ CANONICALIZE_COMPARISON (code, op0, op1);
+#endif
+
+ *pop0 = op0;
+ *pop1 = op1;
+
+ return code;
+}
+
+/* Return 1 if we know that X, a comparison operation, is not operating
+ on a floating-point value or is EQ or NE, meaning that we can safely
+ reverse it. */
+
+static int
+reversible_comparison_p (x)
+ rtx x;
+{
+ if (TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
+ || flag_fast_math
+ || GET_CODE (x) == NE || GET_CODE (x) == EQ)
+ return 1;
+
+ switch (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))))
+ {
+ case MODE_INT:
+ case MODE_PARTIAL_INT:
+ case MODE_COMPLEX_INT:
+ return 1;
+
+ case MODE_CC:
+ /* If the mode of the condition codes tells us that this is safe,
+ we need look no further. */
+ if (REVERSIBLE_CC_MODE (GET_MODE (XEXP (x, 0))))
+ return 1;
+
+ /* Otherwise try and find where the condition codes were last set and
+ use that. */
+ x = get_last_value (XEXP (x, 0));
+ return (x && GET_CODE (x) == COMPARE
+ && ! FLOAT_MODE_P (GET_MODE (XEXP (x, 0))));
+ }
+
+ return 0;
+}
+
+/* Utility function for following routine. Called when X is part of a value
+ being stored into reg_last_set_value. Sets reg_last_set_table_tick
+ for each register mentioned. Similar to mention_regs in cse.c */
+
+static void
+update_table_tick (x)
+ rtx x;
+{
+ register enum rtx_code code = GET_CODE (x);
+ register char *fmt = GET_RTX_FORMAT (code);
+ register int i;
+
+ if (code == REG)
+ {
+ int regno = REGNO (x);
+ int endregno = regno + (regno < FIRST_PSEUDO_REGISTER
+ ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
+
+ for (i = regno; i < endregno; i++)
+ reg_last_set_table_tick[i] = label_tick;
+
+ return;
+ }
+
+ for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
+ /* Note that we can't have an "E" in values stored; see
+ get_last_value_validate. */
+ if (fmt[i] == 'e')
+ update_table_tick (XEXP (x, i));
+}
+
+/* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
+ are saying that the register is clobbered and we no longer know its
+ value. If INSN is zero, don't update reg_last_set; this is only permitted
+ with VALUE also zero and is used to invalidate the register. */
+
+static void
+record_value_for_reg (reg, insn, value)
+ rtx reg;
+ rtx insn;
+ rtx value;
+{
+ int regno = REGNO (reg);
+ int endregno = regno + (regno < FIRST_PSEUDO_REGISTER
+ ? HARD_REGNO_NREGS (regno, GET_MODE (reg)) : 1);
+ int i;
+
+ /* If VALUE contains REG and we have a previous value for REG, substitute
+ the previous value. */
+ if (value && insn && reg_overlap_mentioned_p (reg, value))
+ {
+ rtx tem;
+
+ /* Set things up so get_last_value is allowed to see anything set up to
+ our insn. */
+ subst_low_cuid = INSN_CUID (insn);
+ tem = get_last_value (reg);
+
+ if (tem)
+ value = replace_rtx (copy_rtx (value), reg, tem);
+ }
+
+ /* For each register modified, show we don't know its value, that
+ we don't know about its bitwise content, that its value has been
+ updated, and that we don't know the location of the death of the
+ register. */
+ for (i = regno; i < endregno; i ++)
+ {
+ if (insn)
+ reg_last_set[i] = insn;
+ reg_last_set_value[i] = 0;
+ reg_last_set_mode[i] = 0;
+ reg_last_set_nonzero_bits[i] = 0;
+ reg_last_set_sign_bit_copies[i] = 0;
+ reg_last_death[i] = 0;
+ }
+
+ /* Mark registers that are being referenced in this value. */
+ if (value)
+ update_table_tick (value);
+
+ /* Now update the status of each register being set.
+ If someone is using this register in this block, set this register
+ to invalid since we will get confused between the two lives in this
+ basic block. This makes using this register always invalid. In cse, we
+ scan the table to invalidate all entries using this register, but this
+ is too much work for us. */
+
+ for (i = regno; i < endregno; i++)
+ {
+ reg_last_set_label[i] = label_tick;
+ if (value && reg_last_set_table_tick[i] == label_tick)
+ reg_last_set_invalid[i] = 1;
+ else
+ reg_last_set_invalid[i] = 0;
+ }
+
+ /* The value being assigned might refer to X (like in "x++;"). In that
+ case, we must replace it with (clobber (const_int 0)) to prevent
+ infinite loops. */
+ if (value && ! get_last_value_validate (&value,
+ reg_last_set_label[regno], 0))
+ {
+ value = copy_rtx (value);
+ if (! get_last_value_validate (&value, reg_last_set_label[regno], 1))
+ value = 0;
+ }
+
+ /* For the main register being modified, update the value, the mode, the
+ nonzero bits, and the number of sign bit copies. */
+
+ reg_last_set_value[regno] = value;
+
+ if (value)
+ {
+ subst_low_cuid = INSN_CUID (insn);
+ reg_last_set_mode[regno] = GET_MODE (reg);
+ reg_last_set_nonzero_bits[regno] = nonzero_bits (value, GET_MODE (reg));
+ reg_last_set_sign_bit_copies[regno]
+ = num_sign_bit_copies (value, GET_MODE (reg));
+ }
+}
+
+/* Used for communication between the following two routines. */
+static rtx record_dead_insn;
+
+/* Called via note_stores from record_dead_and_set_regs to handle one
+ SET or CLOBBER in an insn. */
+
+static void
+record_dead_and_set_regs_1 (dest, setter)
+ rtx dest, setter;
+{
+ if (GET_CODE (dest) == SUBREG)
+ dest = SUBREG_REG (dest);
+
+ if (GET_CODE (dest) == REG)
+ {
+ /* If we are setting the whole register, we know its value. Otherwise
+ show that we don't know the value. We can handle SUBREG in
+ some cases. */
+ if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
+ record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
+ else if (GET_CODE (setter) == SET
+ && GET_CODE (SET_DEST (setter)) == SUBREG
+ && SUBREG_REG (SET_DEST (setter)) == dest
+ && GET_MODE_BITSIZE (GET_MODE (dest)) <= BITS_PER_WORD
+ && subreg_lowpart_p (SET_DEST (setter)))
+ record_value_for_reg (dest, record_dead_insn,
+ gen_lowpart_for_combine (GET_MODE (dest),
+ SET_SRC (setter)));
+ else
+ record_value_for_reg (dest, record_dead_insn, NULL_RTX);
+ }
+ else if (GET_CODE (dest) == MEM
+ /* Ignore pushes, they clobber nothing. */
+ && ! push_operand (dest, GET_MODE (dest)))
+ mem_last_set = INSN_CUID (record_dead_insn);
+}
+
+/* Update the records of when each REG was most recently set or killed
+ for the things done by INSN. This is the last thing done in processing
+ INSN in the combiner loop.
+
+ We update reg_last_set, reg_last_set_value, reg_last_set_mode,
+ reg_last_set_nonzero_bits, reg_last_set_sign_bit_copies, reg_last_death,
+ and also the similar information mem_last_set (which insn most recently
+ modified memory) and last_call_cuid (which insn was the most recent
+ subroutine call). */
+
+static void
+record_dead_and_set_regs (insn)
+ rtx insn;
+{
+ register rtx link;
+ int i;
+
+ for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
+ {
+ if (REG_NOTE_KIND (link) == REG_DEAD
+ && GET_CODE (XEXP (link, 0)) == REG)
+ {
+ int regno = REGNO (XEXP (link, 0));
+ int endregno
+ = regno + (regno < FIRST_PSEUDO_REGISTER
+ ? HARD_REGNO_NREGS (regno, GET_MODE (XEXP (link, 0)))
+ : 1);
+
+ for (i = regno; i < endregno; i++)
+ reg_last_death[i] = insn;
+ }
+ else if (REG_NOTE_KIND (link) == REG_INC)
+ record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
+ }
+
+ if (GET_CODE (insn) == CALL_INSN)
+ {
+ for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
+ if (call_used_regs[i])
+ {
+ reg_last_set_value[i] = 0;
+ reg_last_set_mode[i] = 0;
+ reg_last_set_nonzero_bits[i] = 0;
+ reg_last_set_sign_bit_copies[i] = 0;
+ reg_last_death[i] = 0;
+ }
+
+ last_call_cuid = mem_last_set = INSN_CUID (insn);
+ }
+
+ record_dead_insn = insn;
+ note_stores (PATTERN (insn), record_dead_and_set_regs_1);
+}
+
+/* Utility routine for the following function. Verify that all the registers
+ mentioned in *LOC are valid when *LOC was part of a value set when
+ label_tick == TICK. Return 0 if some are not.
+
+ If REPLACE is non-zero, replace the invalid reference with
+ (clobber (const_int 0)) and return 1. This replacement is useful because
+ we often can get useful information about the form of a value (e.g., if
+ it was produced by a shift that always produces -1 or 0) even though
+ we don't know exactly what registers it was produced from. */
+
+static int
+get_last_value_validate (loc, tick, replace)
+ rtx *loc;
+ int tick;
+ int replace;
+{
+ rtx x = *loc;
+ char *fmt = GET_RTX_FORMAT (GET_CODE (x));
+ int len = GET_RTX_LENGTH (GET_CODE (x));
+ int i;
+
+ if (GET_CODE (x) == REG)
+ {
+ int regno = REGNO (x);
+ int endregno = regno + (regno < FIRST_PSEUDO_REGISTER
+ ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
+ int j;
+
+ for (j = regno; j < endregno; j++)
+ if (reg_last_set_invalid[j]
+ /* If this is a pseudo-register that was only set once, it is
+ always valid. */
+ || (! (regno >= FIRST_PSEUDO_REGISTER && reg_n_sets[regno] == 1)
+ && reg_last_set_label[j] > tick))
+ {
+ if (replace)
+ *loc = gen_rtx (CLOBBER, GET_MODE (x), const0_rtx);
+ return replace;
+ }
+
+ return 1;
+ }
+
+ for (i = 0; i < len; i++)
+ if ((fmt[i] == 'e'
+ && get_last_value_validate (&XEXP (x, i), tick, replace) == 0)
+ /* Don't bother with these. They shouldn't occur anyway. */
+ || fmt[i] == 'E')
+ return 0;
+
+ /* If we haven't found a reason for it to be invalid, it is valid. */
+ return 1;
+}
+
+/* Get the last value assigned to X, if known. Some registers
+ in the value may be replaced with (clobber (const_int 0)) if their value
+ is known longer known reliably. */
+
+static rtx
+get_last_value (x)
+ rtx x;
+{
+ int regno;
+ rtx value;
+
+ /* If this is a non-paradoxical SUBREG, get the value of its operand and
+ then convert it to the desired mode. If this is a paradoxical SUBREG,
+ we cannot predict what values the "extra" bits might have. */
+ if (GET_CODE (x) == SUBREG
+ && subreg_lowpart_p (x)
+ && (GET_MODE_SIZE (GET_MODE (x))
+ <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
+ && (value = get_last_value (SUBREG_REG (x))) != 0)
+ return gen_lowpart_for_combine (GET_MODE (x), value);
+
+ if (GET_CODE (x) != REG)
+ return 0;
+
+ regno = REGNO (x);
+ value = reg_last_set_value[regno];
+
+ /* If we don't have a value or if it isn't for this basic block, return 0. */
+
+ if (value == 0
+ || (reg_n_sets[regno] != 1
+ && reg_last_set_label[regno] != label_tick))
+ return 0;
+
+ /* If the value was set in a later insn than the ones we are processing,
+ we can't use it even if the register was only set once, but make a quick
+ check to see if the previous insn set it to something. This is commonly
+ the case when the same pseudo is used by repeated insns.
+
+ This does not work if there exists an instruction which is temporarily
+ not on the insn chain. */
+
+ if (INSN_CUID (reg_last_set[regno]) >= subst_low_cuid)
+ {
+ rtx insn, set;
+
+ /* We can not do anything useful in this case, because there is
+ an instruction which is not on the insn chain. */
+ if (subst_prev_insn)
+ return 0;
+
+ /* Skip over USE insns. They are not useful here, and they may have
+ been made by combine, in which case they do not have a INSN_CUID
+ value. We can't use prev_real_insn, because that would incorrectly
+ take us backwards across labels. Skip over BARRIERs also, since
+ they could have been made by combine. If we see one, we must be
+ optimizing dead code, so it doesn't matter what we do. */
+ for (insn = prev_nonnote_insn (subst_insn);
+ insn && ((GET_CODE (insn) == INSN
+ && GET_CODE (PATTERN (insn)) == USE)
+ || GET_CODE (insn) == BARRIER
+ || INSN_CUID (insn) >= subst_low_cuid);
+ insn = prev_nonnote_insn (insn))
+ ;
+
+ if (insn
+ && (set = single_set (insn)) != 0
+ && rtx_equal_p (SET_DEST (set), x))
+ {
+ value = SET_SRC (set);
+
+ /* Make sure that VALUE doesn't reference X. Replace any
+ explicit references with a CLOBBER. If there are any remaining
+ references (rare), don't use the value. */
+
+ if (reg_mentioned_p (x, value))
+ value = replace_rtx (copy_rtx (value), x,
+ gen_rtx (CLOBBER, GET_MODE (x), const0_rtx));
+
+ if (reg_overlap_mentioned_p (x, value))
+ return 0;
+ }
+ else
+ return 0;
+ }
+
+ /* If the value has all its registers valid, return it. */
+ if (get_last_value_validate (&value, reg_last_set_label[regno], 0))
+ return value;
+
+ /* Otherwise, make a copy and replace any invalid register with
+ (clobber (const_int 0)). If that fails for some reason, return 0. */
+
+ value = copy_rtx (value);
+ if (get_last_value_validate (&value, reg_last_set_label[regno], 1))
+ return value;
+
+ return 0;
+}
+
+/* Return nonzero if expression X refers to a REG or to memory
+ that is set in an instruction more recent than FROM_CUID. */
+
+static int
+use_crosses_set_p (x, from_cuid)
+ register rtx x;
+ int from_cuid;
+{
+ register char *fmt;
+ register int i;
+ register enum rtx_code code = GET_CODE (x);
+
+ if (code == REG)
+ {
+ register int regno = REGNO (x);
+ int endreg = regno + (regno < FIRST_PSEUDO_REGISTER
+ ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
+
+#ifdef PUSH_ROUNDING
+ /* Don't allow uses of the stack pointer to be moved,
+ because we don't know whether the move crosses a push insn. */
+ if (regno == STACK_POINTER_REGNUM)
+ return 1;
+#endif
+ for (;regno < endreg; regno++)
+ if (reg_last_set[regno]
+ && INSN_CUID (reg_last_set[regno]) > from_cuid)
+ return 1;
+ return 0;
+ }
+
+ if (code == MEM && mem_last_set > from_cuid)
+ return 1;
+
+ fmt = GET_RTX_FORMAT (code);
+
+ for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
+ {
+ if (fmt[i] == 'E')
+ {
+ register int j;
+ for (j = XVECLEN (x, i) - 1; j >= 0; j--)
+ if (use_crosses_set_p (XVECEXP (x, i, j), from_cuid))
+ return 1;
+ }
+ else if (fmt[i] == 'e'
+ && use_crosses_set_p (XEXP (x, i), from_cuid))
+ return 1;
+ }
+ return 0;
+}
+
+/* Define three variables used for communication between the following
+ routines. */
+
+static int reg_dead_regno, reg_dead_endregno;
+static int reg_dead_flag;
+
+/* Function called via note_stores from reg_dead_at_p.
+
+ If DEST is within [reg_dead_regno, reg_dead_endregno), set
+ reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
+
+static void
+reg_dead_at_p_1 (dest, x)
+ rtx dest;
+ rtx x;
+{
+ int regno, endregno;
+
+ if (GET_CODE (dest) != REG)
+ return;
+
+ regno = REGNO (dest);
+ endregno = regno + (regno < FIRST_PSEUDO_REGISTER
+ ? HARD_REGNO_NREGS (regno, GET_MODE (dest)) : 1);
+
+ if (reg_dead_endregno > regno && reg_dead_regno < endregno)
+ reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
+}
+
+/* Return non-zero if REG is known to be dead at INSN.
+
+ We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
+ referencing REG, it is dead. If we hit a SET referencing REG, it is
+ live. Otherwise, see if it is live or dead at the start of the basic
+ block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
+ must be assumed to be always live. */
+
+static int
+reg_dead_at_p (reg, insn)
+ rtx reg;
+ rtx insn;
+{
+ int block, i;
+
+ /* Set variables for reg_dead_at_p_1. */
+ reg_dead_regno = REGNO (reg);
+ reg_dead_endregno = reg_dead_regno + (reg_dead_regno < FIRST_PSEUDO_REGISTER
+ ? HARD_REGNO_NREGS (reg_dead_regno,
+ GET_MODE (reg))
+ : 1);
+
+ reg_dead_flag = 0;
+
+ /* Check that reg isn't mentioned in NEWPAT_USED_REGS. */
+ if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
+ {
+ for (i = reg_dead_regno; i < reg_dead_endregno; i++)
+ if (TEST_HARD_REG_BIT (newpat_used_regs, i))
+ return 0;
+ }
+
+ /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, label, or
+ beginning of function. */
+ for (; insn && GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != BARRIER;
+ insn = prev_nonnote_insn (insn))
+ {
+ note_stores (PATTERN (insn), reg_dead_at_p_1);
+ if (reg_dead_flag)
+ return reg_dead_flag == 1 ? 1 : 0;
+
+ if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
+ return 1;
+ }
+
+ /* Get the basic block number that we were in. */
+ if (insn == 0)
+ block = 0;
+ else
+ {
+ for (block = 0; block < n_basic_blocks; block++)
+ if (insn == basic_block_head[block])
+ break;
+
+ if (block == n_basic_blocks)
+ return 0;
+ }
+
+ for (i = reg_dead_regno; i < reg_dead_endregno; i++)
+ if (basic_block_live_at_start[block][i / REGSET_ELT_BITS]
+ & ((REGSET_ELT_TYPE) 1 << (i % REGSET_ELT_BITS)))
+ return 0;
+
+ return 1;
+}
+
+/* Note hard registers in X that are used. This code is similar to
+ that in flow.c, but much simpler since we don't care about pseudos. */
+
+static void
+mark_used_regs_combine (x)
+ rtx x;
+{
+ register RTX_CODE code = GET_CODE (x);
+ register int regno;
+ int i;
+
+ switch (code)
+ {
+ case LABEL_REF:
+ case SYMBOL_REF:
+ case CONST_INT:
+ case CONST:
+ case CONST_DOUBLE:
+ case PC:
+ case ADDR_VEC:
+ case ADDR_DIFF_VEC:
+ case ASM_INPUT:
+#ifdef HAVE_cc0
+ /* CC0 must die in the insn after it is set, so we don't need to take
+ special note of it here. */
+ case CC0:
+#endif
+ return;
+
+ case CLOBBER:
+ /* If we are clobbering a MEM, mark any hard registers inside the
+ address as used. */
+ if (GET_CODE (XEXP (x, 0)) == MEM)
+ mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
+ return;
+
+ case REG:
+ regno = REGNO (x);
+ /* A hard reg in a wide mode may really be multiple registers.
+ If so, mark all of them just like the first. */
+ if (regno < FIRST_PSEUDO_REGISTER)
+ {
+ /* None of this applies to the stack, frame or arg pointers */
+ if (regno == STACK_POINTER_REGNUM
+#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
+ || regno == HARD_FRAME_POINTER_REGNUM
+#endif
+#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
+ || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
+#endif
+ || regno == FRAME_POINTER_REGNUM)
+ return;
+
+ i = HARD_REGNO_NREGS (regno, GET_MODE (x));
+ while (i-- > 0)
+ SET_HARD_REG_BIT (newpat_used_regs, regno + i);
+ }
+ return;
+
+ case SET:
+ {
+ /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
+ the address. */
+ register rtx testreg = SET_DEST (x);
+
+ while (GET_CODE (testreg) == SUBREG
+ || GET_CODE (testreg) == ZERO_EXTRACT
+ || GET_CODE (testreg) == SIGN_EXTRACT
+ || GET_CODE (testreg) == STRICT_LOW_PART)
+ testreg = XEXP (testreg, 0);
+
+ if (GET_CODE (testreg) == MEM)
+ mark_used_regs_combine (XEXP (testreg, 0));
+
+ mark_used_regs_combine (SET_SRC (x));
+ return;
+ }
+ }
+
+ /* Recursively scan the operands of this expression. */
+
+ {
+ register char *fmt = GET_RTX_FORMAT (code);
+
+ for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
+ {
+ if (fmt[i] == 'e')
+ mark_used_regs_combine (XEXP (x, i));
+ else if (fmt[i] == 'E')
+ {
+ register int j;
+
+ for (j = 0; j < XVECLEN (x, i); j++)
+ mark_used_regs_combine (XVECEXP (x, i, j));
+ }
+ }
+ }
+}
+
+
+/* Remove register number REGNO from the dead registers list of INSN.
+
+ Return the note used to record the death, if there was one. */
+
+rtx
+remove_death (regno, insn)
+ int regno;
+ rtx insn;
+{
+ register rtx note = find_regno_note (insn, REG_DEAD, regno);
+
+ if (note)
+ {
+ reg_n_deaths[regno]--;
+ remove_note (insn, note);
+ }
+
+ return note;
+}
+
+/* For each register (hardware or pseudo) used within expression X, if its
+ death is in an instruction with cuid between FROM_CUID (inclusive) and
+ TO_INSN (exclusive), put a REG_DEAD note for that register in the
+ list headed by PNOTES.
+
+ This is done when X is being merged by combination into TO_INSN. These
+ notes will then be distributed as needed. */
+
+static void
+move_deaths (x, from_cuid, to_insn, pnotes)
+ rtx x;
+ int from_cuid;
+ rtx to_insn;
+ rtx *pnotes;
+{
+ register char *fmt;
+ register int len, i;
+ register enum rtx_code code = GET_CODE (x);
+
+ if (code == REG)
+ {
+ register int regno = REGNO (x);
+ register rtx where_dead = reg_last_death[regno];
+ register rtx before_dead, after_dead;
+
+ /* WHERE_DEAD could be a USE insn made by combine, so first we
+ make sure that we have insns with valid INSN_CUID values. */
+ before_dead = where_dead;
+ while (before_dead && INSN_UID (before_dead) > max_uid_cuid)
+ before_dead = PREV_INSN (before_dead);
+ after_dead = where_dead;
+ while (after_dead && INSN_UID (after_dead) > max_uid_cuid)
+ after_dead = NEXT_INSN (after_dead);
+
+ if (before_dead && after_dead
+ && INSN_CUID (before_dead) >= from_cuid
+ && (INSN_CUID (after_dead) < INSN_CUID (to_insn)
+ || (where_dead != after_dead
+ && INSN_CUID (after_dead) == INSN_CUID (to_insn))))
+ {
+ rtx note = remove_death (regno, where_dead);
+
+ /* It is possible for the call above to return 0. This can occur
+ when reg_last_death points to I2 or I1 that we combined with.
+ In that case make a new note.
+
+ We must also check for the case where X is a hard register
+ and NOTE is a death note for a range of hard registers
+ including X. In that case, we must put REG_DEAD notes for
+ the remaining registers in place of NOTE. */
+
+ if (note != 0 && regno < FIRST_PSEUDO_REGISTER
+ && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
+ != GET_MODE_SIZE (GET_MODE (x))))
+ {
+ int deadregno = REGNO (XEXP (note, 0));
+ int deadend
+ = (deadregno + HARD_REGNO_NREGS (deadregno,
+ GET_MODE (XEXP (note, 0))));
+ int ourend = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
+ int i;
+
+ for (i = deadregno; i < deadend; i++)
+ if (i < regno || i >= ourend)
+ REG_NOTES (where_dead)
+ = gen_rtx (EXPR_LIST, REG_DEAD,
+ gen_rtx (REG, reg_raw_mode[i], i),
+ REG_NOTES (where_dead));
+ }
+ /* If we didn't find any note, and we have a multi-reg hard
+ register, then to be safe we must check for REG_DEAD notes
+ for each register other than the first. They could have
+ their own REG_DEAD notes lying around. */
+ else if (note == 0 && regno < FIRST_PSEUDO_REGISTER
+ && HARD_REGNO_NREGS (regno, GET_MODE (x)) > 1)
+ {
+ int ourend = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
+ int i;
+ rtx oldnotes = 0;
+
+ for (i = regno + 1; i < ourend; i++)
+ move_deaths (gen_rtx (REG, reg_raw_mode[i], i),
+ from_cuid, to_insn, &oldnotes);
+ }
+
+ if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
+ {
+ XEXP (note, 1) = *pnotes;
+ *pnotes = note;
+ }
+ else
+ *pnotes = gen_rtx (EXPR_LIST, REG_DEAD, x, *pnotes);
+
+ reg_n_deaths[regno]++;
+ }
+
+ return;
+ }
+
+ else if (GET_CODE (x) == SET)
+ {
+ rtx dest = SET_DEST (x);
+
+ move_deaths (SET_SRC (x), from_cuid, to_insn, pnotes);
+
+ /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
+ that accesses one word of a multi-word item, some
+ piece of everything register in the expression is used by
+ this insn, so remove any old death. */
+
+ if (GET_CODE (dest) == ZERO_EXTRACT
+ || GET_CODE (dest) == STRICT_LOW_PART
+ || (GET_CODE (dest) == SUBREG
+ && (((GET_MODE_SIZE (GET_MODE (dest))
+ + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
+ == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
+ + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
+ {
+ move_deaths (dest, from_cuid, to_insn, pnotes);
+ return;
+ }
+
+ /* If this is some other SUBREG, we know it replaces the entire
+ value, so use that as the destination. */
+ if (GET_CODE (dest) == SUBREG)
+ dest = SUBREG_REG (dest);
+
+ /* If this is a MEM, adjust deaths of anything used in the address.
+ For a REG (the only other possibility), the entire value is
+ being replaced so the old value is not used in this insn. */
+
+ if (GET_CODE (dest) == MEM)
+ move_deaths (XEXP (dest, 0), from_cuid, to_insn, pnotes);
+ return;
+ }
+
+ else if (GET_CODE (x) == CLOBBER)
+ return;
+
+ len = GET_RTX_LENGTH (code);
+ fmt = GET_RTX_FORMAT (code);
+
+ for (i = 0; i < len; i++)
+ {
+ if (fmt[i] == 'E')
+ {
+ register int j;
+ for (j = XVECLEN (x, i) - 1; j >= 0; j--)
+ move_deaths (XVECEXP (x, i, j), from_cuid, to_insn, pnotes);
+ }
+ else if (fmt[i] == 'e')
+ move_deaths (XEXP (x, i), from_cuid, to_insn, pnotes);
+ }
+}
+
+/* Return 1 if X is the target of a bit-field assignment in BODY, the
+ pattern of an insn. X must be a REG. */
+
+static int
+reg_bitfield_target_p (x, body)
+ rtx x;
+ rtx body;
+{
+ int i;
+
+ if (GET_CODE (body) == SET)
+ {
+ rtx dest = SET_DEST (body);
+ rtx target;
+ int regno, tregno, endregno, endtregno;
+
+ if (GET_CODE (dest) == ZERO_EXTRACT)
+ target = XEXP (dest, 0);
+ else if (GET_CODE (dest) == STRICT_LOW_PART)
+ target = SUBREG_REG (XEXP (dest, 0));
+ else
+ return 0;
+
+ if (GET_CODE (target) == SUBREG)
+ target = SUBREG_REG (target);
+
+ if (GET_CODE (target) != REG)
+ return 0;
+
+ tregno = REGNO (target), regno = REGNO (x);
+ if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
+ return target == x;
+
+ endtregno = tregno + HARD_REGNO_NREGS (tregno, GET_MODE (target));
+ endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
+
+ return endregno > tregno && regno < endtregno;
+ }
+
+ else if (GET_CODE (body) == PARALLEL)
+ for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
+ if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
+ return 1;
+
+ return 0;
+}
+
+/* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
+ as appropriate. I3 and I2 are the insns resulting from the combination
+ insns including FROM (I2 may be zero).
+
+ ELIM_I2 and ELIM_I1 are either zero or registers that we know will
+ not need REG_DEAD notes because they are being substituted for. This
+ saves searching in the most common cases.
+
+ Each note in the list is either ignored or placed on some insns, depending
+ on the type of note. */
+
+static void
+distribute_notes (notes, from_insn, i3, i2, elim_i2, elim_i1)
+ rtx notes;
+ rtx from_insn;
+ rtx i3, i2;
+ rtx elim_i2, elim_i1;
+{
+ rtx note, next_note;
+ rtx tem;
+
+ for (note = notes; note; note = next_note)
+ {
+ rtx place = 0, place2 = 0;
+
+ /* If this NOTE references a pseudo register, ensure it references
+ the latest copy of that register. */
+ if (XEXP (note, 0) && GET_CODE (XEXP (note, 0)) == REG
+ && REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER)
+ XEXP (note, 0) = regno_reg_rtx[REGNO (XEXP (note, 0))];
+
+ next_note = XEXP (note, 1);
+ switch (REG_NOTE_KIND (note))
+ {
+ case REG_UNUSED:
+ /* Any clobbers for i3 may still exist, and so we must process
+ REG_UNUSED notes from that insn.
+
+ Any clobbers from i2 or i1 can only exist if they were added by
+ recog_for_combine. In that case, recog_for_combine created the
+ necessary REG_UNUSED notes. Trying to keep any original
+ REG_UNUSED notes from these insns can cause incorrect output
+ if it is for the same register as the original i3 dest.
+ In that case, we will notice that the register is set in i3,
+ and then add a REG_UNUSED note for the destination of i3, which
+ is wrong. However, it is possible to have REG_UNUSED notes from
+ i2 or i1 for register which were both used and clobbered, so
+ we keep notes from i2 or i1 if they will turn into REG_DEAD
+ notes. */
+
+ /* If this register is set or clobbered in I3, put the note there
+ unless there is one already. */
+ if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
+ {
+ if (from_insn != i3)
+ break;
+
+ if (! (GET_CODE (XEXP (note, 0)) == REG
+ ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
+ : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
+ place = i3;
+ }
+ /* Otherwise, if this register is used by I3, then this register
+ now dies here, so we must put a REG_DEAD note here unless there
+ is one already. */
+ else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
+ && ! (GET_CODE (XEXP (note, 0)) == REG
+ ? find_regno_note (i3, REG_DEAD, REGNO (XEXP (note, 0)))
+ : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
+ {
+ PUT_REG_NOTE_KIND (note, REG_DEAD);
+ place = i3;
+ }
+ break;
+
+ case REG_EQUAL:
+ case REG_EQUIV:
+ case REG_NONNEG:
+ /* These notes say something about results of an insn. We can
+ only support them if they used to be on I3 in which case they
+ remain on I3. Otherwise they are ignored.
+
+ If the note refers to an expression that is not a constant, we
+ must also ignore the note since we cannot tell whether the
+ equivalence is still true. It might be possible to do
+ slightly better than this (we only have a problem if I2DEST
+ or I1DEST is present in the expression), but it doesn't
+ seem worth the trouble. */
+
+ if (from_insn == i3
+ && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
+ place = i3;
+ break;
+
+ case REG_INC:
+ case REG_NO_CONFLICT:
+ case REG_LABEL:
+ /* These notes say something about how a register is used. They must
+ be present on any use of the register in I2 or I3. */
+ if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
+ place = i3;
+
+ if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
+ {
+ if (place)
+ place2 = i2;
+ else
+ place = i2;
+ }
+ break;
+
+ case REG_WAS_0:
+ /* It is too much trouble to try to see if this note is still
+ correct in all situations. It is better to simply delete it. */
+ break;
+
+ case REG_RETVAL:
+ /* If the insn previously containing this note still exists,
+ put it back where it was. Otherwise move it to the previous
+ insn. Adjust the corresponding REG_LIBCALL note. */
+ if (GET_CODE (from_insn) != NOTE)
+ place = from_insn;
+ else
+ {
+ tem = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
+ place = prev_real_insn (from_insn);
+ if (tem && place)
+ XEXP (tem, 0) = place;
+ }
+ break;
+
+ case REG_LIBCALL:
+ /* This is handled similarly to REG_RETVAL. */
+ if (GET_CODE (from_insn) != NOTE)
+ place = from_insn;
+ else
+ {
+ tem = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
+ place = next_real_insn (from_insn);
+ if (tem && place)
+ XEXP (tem, 0) = place;
+ }
+ break;
+
+ case REG_DEAD:
+ /* If the register is used as an input in I3, it dies there.
+ Similarly for I2, if it is non-zero and adjacent to I3.
+
+ If the register is not used as an input in either I3 or I2
+ and it is not one of the registers we were supposed to eliminate,
+ there are two possibilities. We might have a non-adjacent I2
+ or we might have somehow eliminated an additional register
+ from a computation. For example, we might have had A & B where
+ we discover that B will always be zero. In this case we will
+ eliminate the reference to A.
+
+ In both cases, we must search to see if we can find a previous
+ use of A and put the death note there. */
+
+ if (from_insn
+ && GET_CODE (from_insn) == CALL_INSN
+ && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
+ place = from_insn;
+ else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
+ place = i3;
+ else if (i2 != 0 && next_nonnote_insn (i2) == i3
+ && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
+ place = i2;
+
+ if (XEXP (note, 0) == elim_i2 || XEXP (note, 0) == elim_i1)
+ break;
+
+ /* If the register is used in both I2 and I3 and it dies in I3,
+ we might have added another reference to it. If reg_n_refs
+ was 2, bump it to 3. This has to be correct since the
+ register must have been set somewhere. The reason this is
+ done is because local-alloc.c treats 2 references as a
+ special case. */
+
+ if (place == i3 && i2 != 0 && GET_CODE (XEXP (note, 0)) == REG
+ && reg_n_refs[REGNO (XEXP (note, 0))]== 2
+ && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
+ reg_n_refs[REGNO (XEXP (note, 0))] = 3;
+
+ if (place == 0)
+ {
+ for (tem = prev_nonnote_insn (i3);
+ place == 0 && tem
+ && (GET_CODE (tem) == INSN || GET_CODE (tem) == CALL_INSN);
+ tem = prev_nonnote_insn (tem))
+ {
+ /* If the register is being set at TEM, see if that is all
+ TEM is doing. If so, delete TEM. Otherwise, make this
+ into a REG_UNUSED note instead. */
+ if (reg_set_p (XEXP (note, 0), PATTERN (tem)))
+ {
+ rtx set = single_set (tem);
+
+ /* Verify that it was the set, and not a clobber that
+ modified the register. */
+
+ if (set != 0 && ! side_effects_p (SET_SRC (set))
+ && (rtx_equal_p (XEXP (note, 0), SET_DEST (set))
+ || (GET_CODE (SET_DEST (set)) == SUBREG
+ && rtx_equal_p (XEXP (note, 0),
+ XEXP (SET_DEST (set), 0)))))
+ {
+ /* Move the notes and links of TEM elsewhere.
+ This might delete other dead insns recursively.
+ First set the pattern to something that won't use
+ any register. */
+
+ PATTERN (tem) = pc_rtx;
+
+ distribute_notes (REG_NOTES (tem), tem, tem,
+ NULL_RTX, NULL_RTX, NULL_RTX);
+ distribute_links (LOG_LINKS (tem));
+
+ PUT_CODE (tem, NOTE);
+ NOTE_LINE_NUMBER (tem) = NOTE_INSN_DELETED;
+ NOTE_SOURCE_FILE (tem) = 0;
+ }
+ else
+ {
+ PUT_REG_NOTE_KIND (note, REG_UNUSED);
+
+ /* If there isn't already a REG_UNUSED note, put one
+ here. */
+ if (! find_regno_note (tem, REG_UNUSED,
+ REGNO (XEXP (note, 0))))
+ place = tem;
+ break;
+ }
+ }
+ else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
+ || (GET_CODE (tem) == CALL_INSN
+ && find_reg_fusage (tem, USE, XEXP (note, 0))))
+ {
+ place = tem;
+
+ /* If we are doing a 3->2 combination, and we have a
+ register which formerly died in i3 and was not used
+ by i2, which now no longer dies in i3 and is used in
+ i2 but does not die in i2, and place is between i2
+ and i3, then we may need to move a link from place to
+ i2. */
+ if (i2 && INSN_UID (place) <= max_uid_cuid
+ && INSN_CUID (place) > INSN_CUID (i2)
+ && from_insn && INSN_CUID (from_insn) > INSN_CUID (i2)
+ && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
+ {
+ rtx links = LOG_LINKS (place);
+ LOG_LINKS (place) = 0;
+ distribute_links (links);
+ }
+ break;
+ }
+ }
+
+ /* If we haven't found an insn for the death note and it
+ is still a REG_DEAD note, but we have hit a CODE_LABEL,
+ insert a USE insn for the register at that label and
+ put the death node there. This prevents problems with
+ call-state tracking in caller-save.c. */
+ if (REG_NOTE_KIND (note) == REG_DEAD && place == 0 && tem != 0)
+ {
+ place
+ = emit_insn_after (gen_rtx (USE, VOIDmode, XEXP (note, 0)),
+ tem);
+
+ /* If this insn was emitted between blocks, then update
+ basic_block_head of the current block to include it. */
+ if (basic_block_end[this_basic_block - 1] == tem)
+ basic_block_head[this_basic_block] = place;
+ }
+ }
+
+ /* If the register is set or already dead at PLACE, we needn't do
+ anything with this note if it is still a REG_DEAD note.
+
+ Note that we cannot use just `dead_or_set_p' here since we can
+ convert an assignment to a register into a bit-field assignment.
+ Therefore, we must also omit the note if the register is the
+ target of a bitfield assignment. */
+
+ if (place && REG_NOTE_KIND (note) == REG_DEAD)
+ {
+ int regno = REGNO (XEXP (note, 0));
+
+ if (dead_or_set_p (place, XEXP (note, 0))
+ || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
+ {
+ /* Unless the register previously died in PLACE, clear
+ reg_last_death. [I no longer understand why this is
+ being done.] */
+ if (reg_last_death[regno] != place)
+ reg_last_death[regno] = 0;
+ place = 0;
+ }
+ else
+ reg_last_death[regno] = place;
+
+ /* If this is a death note for a hard reg that is occupying
+ multiple registers, ensure that we are still using all
+ parts of the object. If we find a piece of the object
+ that is unused, we must add a USE for that piece before
+ PLACE and put the appropriate REG_DEAD note on it.
+
+ An alternative would be to put a REG_UNUSED for the pieces
+ on the insn that set the register, but that can't be done if
+ it is not in the same block. It is simpler, though less
+ efficient, to add the USE insns. */
+
+ if (place && regno < FIRST_PSEUDO_REGISTER
+ && HARD_REGNO_NREGS (regno, GET_MODE (XEXP (note, 0))) > 1)
+ {
+ int endregno
+ = regno + HARD_REGNO_NREGS (regno,
+ GET_MODE (XEXP (note, 0)));
+ int all_used = 1;
+ int i;
+
+ for (i = regno; i < endregno; i++)
+ if (! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
+ && ! find_regno_fusage (place, USE, i))
+ {
+ rtx piece = gen_rtx (REG, reg_raw_mode[i], i);
+ rtx p;
+
+ /* See if we already placed a USE note for this
+ register in front of PLACE. */
+ for (p = place;
+ GET_CODE (PREV_INSN (p)) == INSN
+ && GET_CODE (PATTERN (PREV_INSN (p))) == USE;
+ p = PREV_INSN (p))
+ if (rtx_equal_p (piece,
+ XEXP (PATTERN (PREV_INSN (p)), 0)))
+ {
+ p = 0;
+ break;
+ }
+
+ if (p)
+ {
+ rtx use_insn
+ = emit_insn_before (gen_rtx (USE, VOIDmode,
+ piece),
+ p);
+ REG_NOTES (use_insn)
+ = gen_rtx (EXPR_LIST, REG_DEAD, piece,
+ REG_NOTES (use_insn));
+ }
+
+ all_used = 0;
+ }
+
+ /* Check for the case where the register dying partially
+ overlaps the register set by this insn. */
+ if (all_used)
+ for (i = regno; i < endregno; i++)
+ if (dead_or_set_regno_p (place, i))
+ {
+ all_used = 0;
+ break;
+ }
+
+ if (! all_used)
+ {
+ /* Put only REG_DEAD notes for pieces that are
+ still used and that are not already dead or set. */
+
+ for (i = regno; i < endregno; i++)
+ {
+ rtx piece = gen_rtx (REG, reg_raw_mode[i], i);
+
+ if ((reg_referenced_p (piece, PATTERN (place))
+ || (GET_CODE (place) == CALL_INSN
+ && find_reg_fusage (place, USE, piece)))
+ && ! dead_or_set_p (place, piece)
+ && ! reg_bitfield_target_p (piece,
+ PATTERN (place)))
+ REG_NOTES (place) = gen_rtx (EXPR_LIST, REG_DEAD,
+ piece,
+ REG_NOTES (place));
+ }
+
+ place = 0;
+ }
+ }
+ }
+ break;
+
+ default:
+ /* Any other notes should not be present at this point in the
+ compilation. */
+ abort ();
+ }
+
+ if (place)
+ {
+ XEXP (note, 1) = REG_NOTES (place);
+ REG_NOTES (place) = note;
+ }
+ else if ((REG_NOTE_KIND (note) == REG_DEAD
+ || REG_NOTE_KIND (note) == REG_UNUSED)
+ && GET_CODE (XEXP (note, 0)) == REG)
+ reg_n_deaths[REGNO (XEXP (note, 0))]--;
+
+ if (place2)
+ {
+ if ((REG_NOTE_KIND (note) == REG_DEAD
+ || REG_NOTE_KIND (note) == REG_UNUSED)
+ && GET_CODE (XEXP (note, 0)) == REG)
+ reg_n_deaths[REGNO (XEXP (note, 0))]++;
+
+ REG_NOTES (place2) = gen_rtx (GET_CODE (note), REG_NOTE_KIND (note),
+ XEXP (note, 0), REG_NOTES (place2));
+ }
+ }
+}
+
+/* Similarly to above, distribute the LOG_LINKS that used to be present on
+ I3, I2, and I1 to new locations. This is also called in one case to
+ add a link pointing at I3 when I3's destination is changed. */
+
+static void
+distribute_links (links)
+ rtx links;
+{
+ rtx link, next_link;
+
+ for (link = links; link; link = next_link)
+ {
+ rtx place = 0;
+ rtx insn;
+ rtx set, reg;
+
+ next_link = XEXP (link, 1);
+
+ /* If the insn that this link points to is a NOTE or isn't a single
+ set, ignore it. In the latter case, it isn't clear what we
+ can do other than ignore the link, since we can't tell which
+ register it was for. Such links wouldn't be used by combine
+ anyway.
+
+ It is not possible for the destination of the target of the link to
+ have been changed by combine. The only potential of this is if we
+ replace I3, I2, and I1 by I3 and I2. But in that case the
+ destination of I2 also remains unchanged. */
+
+ if (GET_CODE (XEXP (link, 0)) == NOTE
+ || (set = single_set (XEXP (link, 0))) == 0)
+ continue;
+
+ reg = SET_DEST (set);
+ while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
+ || GET_CODE (reg) == SIGN_EXTRACT
+ || GET_CODE (reg) == STRICT_LOW_PART)
+ reg = XEXP (reg, 0);
+
+ /* A LOG_LINK is defined as being placed on the first insn that uses
+ a register and points to the insn that sets the register. Start
+ searching at the next insn after the target of the link and stop
+ when we reach a set of the register or the end of the basic block.
+
+ Note that this correctly handles the link that used to point from
+ I3 to I2. Also note that not much searching is typically done here
+ since most links don't point very far away. */
+
+ for (insn = NEXT_INSN (XEXP (link, 0));
+ (insn && (this_basic_block == n_basic_blocks - 1
+ || basic_block_head[this_basic_block + 1] != insn));
+ insn = NEXT_INSN (insn))
+ if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
+ && reg_overlap_mentioned_p (reg, PATTERN (insn)))
+ {
+ if (reg_referenced_p (reg, PATTERN (insn)))
+ place = insn;
+ break;
+ }
+ else if (GET_CODE (insn) == CALL_INSN
+ && find_reg_fusage (insn, USE, reg))
+ {
+ place = insn;
+ break;
+ }
+
+ /* If we found a place to put the link, place it there unless there
+ is already a link to the same insn as LINK at that point. */
+
+ if (place)
+ {
+ rtx link2;
+
+ for (link2 = LOG_LINKS (place); link2; link2 = XEXP (link2, 1))
+ if (XEXP (link2, 0) == XEXP (link, 0))
+ break;
+
+ if (link2 == 0)
+ {
+ XEXP (link, 1) = LOG_LINKS (place);
+ LOG_LINKS (place) = link;
+
+ /* Set added_links_insn to the earliest insn we added a
+ link to. */
+ if (added_links_insn == 0
+ || INSN_CUID (added_links_insn) > INSN_CUID (place))
+ added_links_insn = place;
+ }
+ }
+ }
+}
+
+void
+dump_combine_stats (file)
+ FILE *file;
+{
+ fprintf
+ (file,
+ ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
+ combine_attempts, combine_merges, combine_extras, combine_successes);
+}
+
+void
+dump_combine_total_stats (file)
+ FILE *file;
+{
+ fprintf
+ (file,
+ "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
+ total_attempts, total_merges, total_extras, total_successes);
+}
OpenPOWER on IntegriCloud