summaryrefslogtreecommitdiffstats
path: root/contrib/gcc/cfganal.c
diff options
context:
space:
mode:
authorobrien <obrien@FreeBSD.org>2002-02-01 18:16:02 +0000
committerobrien <obrien@FreeBSD.org>2002-02-01 18:16:02 +0000
commitc9ab9ae440a8066b2c2b85b157b1fdadcf09916a (patch)
tree086d9d6c8fbd4fc8fe4495059332f66bc0f8d12b /contrib/gcc/cfganal.c
parent2ecfd8bd04b63f335c1ec6295740a4bfd97a4fa6 (diff)
downloadFreeBSD-src-c9ab9ae440a8066b2c2b85b157b1fdadcf09916a.zip
FreeBSD-src-c9ab9ae440a8066b2c2b85b157b1fdadcf09916a.tar.gz
Enlist the FreeBSD-CURRENT users as testers of what is to become Gcc 3.1.0.
These bits are taken from the FSF anoncvs repo on 1-Feb-2002 08:20 PST.
Diffstat (limited to 'contrib/gcc/cfganal.c')
-rw-r--r--contrib/gcc/cfganal.c1160
1 files changed, 1160 insertions, 0 deletions
diff --git a/contrib/gcc/cfganal.c b/contrib/gcc/cfganal.c
new file mode 100644
index 0000000..1c499f4
--- /dev/null
+++ b/contrib/gcc/cfganal.c
@@ -0,0 +1,1160 @@
+/* Control flow graph analysis code for GNU compiler.
+ Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
+ 1999, 2000, 2001 Free Software Foundation, Inc.
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it under
+the terms of the GNU General Public License as published by the Free
+Software Foundation; either version 2, or (at your option) any later
+version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING. If not, write to the Free
+Software Foundation, 59 Temple Place - Suite 330, Boston, MA
+02111-1307, USA. */
+
+/* This file contains various simple utilities to analyze the CFG. */
+#include "config.h"
+#include "system.h"
+#include "rtl.h"
+#include "hard-reg-set.h"
+#include "basic-block.h"
+#include "toplev.h"
+
+#include "obstack.h"
+
+/* Store the data structures necessary for depth-first search. */
+struct depth_first_search_dsS {
+ /* stack for backtracking during the algorithm */
+ basic_block *stack;
+
+ /* number of edges in the stack. That is, positions 0, ..., sp-1
+ have edges. */
+ unsigned int sp;
+
+ /* record of basic blocks already seen by depth-first search */
+ sbitmap visited_blocks;
+};
+typedef struct depth_first_search_dsS *depth_first_search_ds;
+
+static void flow_dfs_compute_reverse_init
+ PARAMS ((depth_first_search_ds));
+static void flow_dfs_compute_reverse_add_bb
+ PARAMS ((depth_first_search_ds, basic_block));
+static basic_block flow_dfs_compute_reverse_execute
+ PARAMS ((depth_first_search_ds));
+static void flow_dfs_compute_reverse_finish
+ PARAMS ((depth_first_search_ds));
+static void remove_fake_successors PARAMS ((basic_block));
+static bool need_fake_edge_p PARAMS ((rtx));
+
+/* Return true if the block has no effect and only forwards control flow to
+ its single destination. */
+
+bool
+forwarder_block_p (bb)
+ basic_block bb;
+{
+ rtx insn;
+
+ if (bb == EXIT_BLOCK_PTR || bb == ENTRY_BLOCK_PTR
+ || !bb->succ || bb->succ->succ_next)
+ return false;
+
+ for (insn = bb->head; insn != bb->end; insn = NEXT_INSN (insn))
+ if (INSN_P (insn) && active_insn_p (insn))
+ return false;
+
+ return (!INSN_P (insn)
+ || (GET_CODE (insn) == JUMP_INSN && simplejump_p (insn))
+ || !active_insn_p (insn));
+}
+
+/* Return nonzero if we can reach target from src by falling through. */
+
+bool
+can_fallthru (src, target)
+ basic_block src, target;
+{
+ rtx insn = src->end;
+ rtx insn2 = target->head;
+
+ if (src->index + 1 == target->index && !active_insn_p (insn2))
+ insn2 = next_active_insn (insn2);
+
+ /* ??? Later we may add code to move jump tables offline. */
+ return next_active_insn (insn) == insn2;
+}
+
+/* Mark the back edges in DFS traversal.
+ Return non-zero if a loop (natural or otherwise) is present.
+ Inspired by Depth_First_Search_PP described in:
+
+ Advanced Compiler Design and Implementation
+ Steven Muchnick
+ Morgan Kaufmann, 1997
+
+ and heavily borrowed from flow_depth_first_order_compute. */
+
+bool
+mark_dfs_back_edges ()
+{
+ edge *stack;
+ int *pre;
+ int *post;
+ int sp;
+ int prenum = 1;
+ int postnum = 1;
+ sbitmap visited;
+ bool found = false;
+
+ /* Allocate the preorder and postorder number arrays. */
+ pre = (int *) xcalloc (n_basic_blocks, sizeof (int));
+ post = (int *) xcalloc (n_basic_blocks, sizeof (int));
+
+ /* Allocate stack for back-tracking up CFG. */
+ stack = (edge *) xmalloc ((n_basic_blocks + 1) * sizeof (edge));
+ sp = 0;
+
+ /* Allocate bitmap to track nodes that have been visited. */
+ visited = sbitmap_alloc (n_basic_blocks);
+
+ /* None of the nodes in the CFG have been visited yet. */
+ sbitmap_zero (visited);
+
+ /* Push the first edge on to the stack. */
+ stack[sp++] = ENTRY_BLOCK_PTR->succ;
+
+ while (sp)
+ {
+ edge e;
+ basic_block src;
+ basic_block dest;
+
+ /* Look at the edge on the top of the stack. */
+ e = stack[sp - 1];
+ src = e->src;
+ dest = e->dest;
+ e->flags &= ~EDGE_DFS_BACK;
+
+ /* Check if the edge destination has been visited yet. */
+ if (dest != EXIT_BLOCK_PTR && ! TEST_BIT (visited, dest->index))
+ {
+ /* Mark that we have visited the destination. */
+ SET_BIT (visited, dest->index);
+
+ pre[dest->index] = prenum++;
+ if (dest->succ)
+ {
+ /* Since the DEST node has been visited for the first
+ time, check its successors. */
+ stack[sp++] = dest->succ;
+ }
+ else
+ post[dest->index] = postnum++;
+ }
+ else
+ {
+ if (dest != EXIT_BLOCK_PTR && src != ENTRY_BLOCK_PTR
+ && pre[src->index] >= pre[dest->index]
+ && post[dest->index] == 0)
+ e->flags |= EDGE_DFS_BACK, found = true;
+
+ if (! e->succ_next && src != ENTRY_BLOCK_PTR)
+ post[src->index] = postnum++;
+
+ if (e->succ_next)
+ stack[sp - 1] = e->succ_next;
+ else
+ sp--;
+ }
+ }
+
+ free (pre);
+ free (post);
+ free (stack);
+ sbitmap_free (visited);
+
+ return found;
+}
+
+/* Return true if we need to add fake edge to exit.
+ Helper function for the flow_call_edges_add. */
+
+static bool
+need_fake_edge_p (insn)
+ rtx insn;
+{
+ if (!INSN_P (insn))
+ return false;
+
+ if ((GET_CODE (insn) == CALL_INSN
+ && !SIBLING_CALL_P (insn)
+ && !find_reg_note (insn, REG_NORETURN, NULL)
+ && !find_reg_note (insn, REG_ALWAYS_RETURN, NULL)
+ && !CONST_OR_PURE_CALL_P (insn)))
+ return true;
+
+ return ((GET_CODE (PATTERN (insn)) == ASM_OPERANDS
+ && MEM_VOLATILE_P (PATTERN (insn)))
+ || (GET_CODE (PATTERN (insn)) == PARALLEL
+ && asm_noperands (insn) != -1
+ && MEM_VOLATILE_P (XVECEXP (PATTERN (insn), 0, 0)))
+ || GET_CODE (PATTERN (insn)) == ASM_INPUT);
+}
+
+/* Add fake edges to the function exit for any non constant and non noreturn
+ calls, volatile inline assembly in the bitmap of blocks specified by
+ BLOCKS or to the whole CFG if BLOCKS is zero. Return the number of blocks
+ that were split.
+
+ The goal is to expose cases in which entering a basic block does not imply
+ that all subsequent instructions must be executed. */
+
+int
+flow_call_edges_add (blocks)
+ sbitmap blocks;
+{
+ int i;
+ int blocks_split = 0;
+ int bb_num = 0;
+ basic_block *bbs;
+ bool check_last_block = false;
+
+ /* Map bb indices into basic block pointers since split_block
+ will renumber the basic blocks. */
+
+ bbs = xmalloc (n_basic_blocks * sizeof (*bbs));
+
+ if (! blocks)
+ {
+ for (i = 0; i < n_basic_blocks; i++)
+ bbs[bb_num++] = BASIC_BLOCK (i);
+
+ check_last_block = true;
+ }
+ else
+ EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i,
+ {
+ bbs[bb_num++] = BASIC_BLOCK (i);
+ if (i == n_basic_blocks - 1)
+ check_last_block = true;
+ });
+
+ /* In the last basic block, before epilogue generation, there will be
+ a fallthru edge to EXIT. Special care is required if the last insn
+ of the last basic block is a call because make_edge folds duplicate
+ edges, which would result in the fallthru edge also being marked
+ fake, which would result in the fallthru edge being removed by
+ remove_fake_edges, which would result in an invalid CFG.
+
+ Moreover, we can't elide the outgoing fake edge, since the block
+ profiler needs to take this into account in order to solve the minimal
+ spanning tree in the case that the call doesn't return.
+
+ Handle this by adding a dummy instruction in a new last basic block. */
+ if (check_last_block
+ && need_fake_edge_p (BASIC_BLOCK (n_basic_blocks - 1)->end))
+ {
+ edge e;
+
+ for (e = BASIC_BLOCK (n_basic_blocks - 1)->succ; e; e = e->succ_next)
+ if (e->dest == EXIT_BLOCK_PTR)
+ break;
+
+ insert_insn_on_edge (gen_rtx_USE (VOIDmode, const0_rtx), e);
+ commit_edge_insertions ();
+ }
+
+ /* Now add fake edges to the function exit for any non constant
+ calls since there is no way that we can determine if they will
+ return or not... */
+
+ for (i = 0; i < bb_num; i++)
+ {
+ basic_block bb = bbs[i];
+ rtx insn;
+ rtx prev_insn;
+
+ for (insn = bb->end; ; insn = prev_insn)
+ {
+ prev_insn = PREV_INSN (insn);
+ if (need_fake_edge_p (insn))
+ {
+ edge e;
+
+ /* The above condition should be enough to verify that there is
+ no edge to the exit block in CFG already. Calling make_edge
+ in such case would make us to mark that edge as fake and
+ remove it later. */
+
+#ifdef ENABLE_CHECKING
+ if (insn == bb->end)
+ for (e = bb->succ; e; e = e->succ_next)
+ if (e->dest == EXIT_BLOCK_PTR)
+ abort ();
+#endif
+
+ /* Note that the following may create a new basic block
+ and renumber the existing basic blocks. */
+ e = split_block (bb, insn);
+ if (e)
+ blocks_split++;
+
+ make_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
+ }
+
+ if (insn == bb->head)
+ break;
+ }
+ }
+
+ if (blocks_split)
+ verify_flow_info ();
+
+ free (bbs);
+ return blocks_split;
+}
+
+/* Find unreachable blocks. An unreachable block will have 0 in
+ the reachable bit in block->flags. A non-zero value indicates the
+ block is reachable. */
+
+void
+find_unreachable_blocks ()
+{
+ edge e;
+ int i, n;
+ basic_block *tos, *worklist;
+
+ n = n_basic_blocks;
+ tos = worklist = (basic_block *) xmalloc (sizeof (basic_block) * n);
+
+ /* Clear all the reachability flags. */
+
+ for (i = 0; i < n; ++i)
+ BASIC_BLOCK (i)->flags &= ~BB_REACHABLE;
+
+ /* Add our starting points to the worklist. Almost always there will
+ be only one. It isn't inconceivable that we might one day directly
+ support Fortran alternate entry points. */
+
+ for (e = ENTRY_BLOCK_PTR->succ; e; e = e->succ_next)
+ {
+ *tos++ = e->dest;
+
+ /* Mark the block reachable. */
+ e->dest->flags |= BB_REACHABLE;
+ }
+
+ /* Iterate: find everything reachable from what we've already seen. */
+
+ while (tos != worklist)
+ {
+ basic_block b = *--tos;
+
+ for (e = b->succ; e; e = e->succ_next)
+ if (!(e->dest->flags & BB_REACHABLE))
+ {
+ *tos++ = e->dest;
+ e->dest->flags |= BB_REACHABLE;
+ }
+ }
+
+ free (worklist);
+}
+
+/* Functions to access an edge list with a vector representation.
+ Enough data is kept such that given an index number, the
+ pred and succ that edge represents can be determined, or
+ given a pred and a succ, its index number can be returned.
+ This allows algorithms which consume a lot of memory to
+ represent the normally full matrix of edge (pred,succ) with a
+ single indexed vector, edge (EDGE_INDEX (pred, succ)), with no
+ wasted space in the client code due to sparse flow graphs. */
+
+/* This functions initializes the edge list. Basically the entire
+ flowgraph is processed, and all edges are assigned a number,
+ and the data structure is filled in. */
+
+struct edge_list *
+create_edge_list ()
+{
+ struct edge_list *elist;
+ edge e;
+ int num_edges;
+ int x;
+ int block_count;
+
+ block_count = n_basic_blocks + 2; /* Include the entry and exit blocks. */
+
+ num_edges = 0;
+
+ /* Determine the number of edges in the flow graph by counting successor
+ edges on each basic block. */
+ for (x = 0; x < n_basic_blocks; x++)
+ {
+ basic_block bb = BASIC_BLOCK (x);
+
+ for (e = bb->succ; e; e = e->succ_next)
+ num_edges++;
+ }
+
+ /* Don't forget successors of the entry block. */
+ for (e = ENTRY_BLOCK_PTR->succ; e; e = e->succ_next)
+ num_edges++;
+
+ elist = (struct edge_list *) xmalloc (sizeof (struct edge_list));
+ elist->num_blocks = block_count;
+ elist->num_edges = num_edges;
+ elist->index_to_edge = (edge *) xmalloc (sizeof (edge) * num_edges);
+
+ num_edges = 0;
+
+ /* Follow successors of the entry block, and register these edges. */
+ for (e = ENTRY_BLOCK_PTR->succ; e; e = e->succ_next)
+ elist->index_to_edge[num_edges++] = e;
+
+ for (x = 0; x < n_basic_blocks; x++)
+ {
+ basic_block bb = BASIC_BLOCK (x);
+
+ /* Follow all successors of blocks, and register these edges. */
+ for (e = bb->succ; e; e = e->succ_next)
+ elist->index_to_edge[num_edges++] = e;
+ }
+
+ return elist;
+}
+
+/* This function free's memory associated with an edge list. */
+
+void
+free_edge_list (elist)
+ struct edge_list *elist;
+{
+ if (elist)
+ {
+ free (elist->index_to_edge);
+ free (elist);
+ }
+}
+
+/* This function provides debug output showing an edge list. */
+
+void
+print_edge_list (f, elist)
+ FILE *f;
+ struct edge_list *elist;
+{
+ int x;
+
+ fprintf (f, "Compressed edge list, %d BBs + entry & exit, and %d edges\n",
+ elist->num_blocks - 2, elist->num_edges);
+
+ for (x = 0; x < elist->num_edges; x++)
+ {
+ fprintf (f, " %-4d - edge(", x);
+ if (INDEX_EDGE_PRED_BB (elist, x) == ENTRY_BLOCK_PTR)
+ fprintf (f, "entry,");
+ else
+ fprintf (f, "%d,", INDEX_EDGE_PRED_BB (elist, x)->index);
+
+ if (INDEX_EDGE_SUCC_BB (elist, x) == EXIT_BLOCK_PTR)
+ fprintf (f, "exit)\n");
+ else
+ fprintf (f, "%d)\n", INDEX_EDGE_SUCC_BB (elist, x)->index);
+ }
+}
+
+/* This function provides an internal consistency check of an edge list,
+ verifying that all edges are present, and that there are no
+ extra edges. */
+
+void
+verify_edge_list (f, elist)
+ FILE *f;
+ struct edge_list *elist;
+{
+ int x, pred, succ, index;
+ edge e;
+
+ for (x = 0; x < n_basic_blocks; x++)
+ {
+ basic_block bb = BASIC_BLOCK (x);
+
+ for (e = bb->succ; e; e = e->succ_next)
+ {
+ pred = e->src->index;
+ succ = e->dest->index;
+ index = EDGE_INDEX (elist, e->src, e->dest);
+ if (index == EDGE_INDEX_NO_EDGE)
+ {
+ fprintf (f, "*p* No index for edge from %d to %d\n", pred, succ);
+ continue;
+ }
+
+ if (INDEX_EDGE_PRED_BB (elist, index)->index != pred)
+ fprintf (f, "*p* Pred for index %d should be %d not %d\n",
+ index, pred, INDEX_EDGE_PRED_BB (elist, index)->index);
+ if (INDEX_EDGE_SUCC_BB (elist, index)->index != succ)
+ fprintf (f, "*p* Succ for index %d should be %d not %d\n",
+ index, succ, INDEX_EDGE_SUCC_BB (elist, index)->index);
+ }
+ }
+
+ for (e = ENTRY_BLOCK_PTR->succ; e; e = e->succ_next)
+ {
+ pred = e->src->index;
+ succ = e->dest->index;
+ index = EDGE_INDEX (elist, e->src, e->dest);
+ if (index == EDGE_INDEX_NO_EDGE)
+ {
+ fprintf (f, "*p* No index for edge from %d to %d\n", pred, succ);
+ continue;
+ }
+
+ if (INDEX_EDGE_PRED_BB (elist, index)->index != pred)
+ fprintf (f, "*p* Pred for index %d should be %d not %d\n",
+ index, pred, INDEX_EDGE_PRED_BB (elist, index)->index);
+ if (INDEX_EDGE_SUCC_BB (elist, index)->index != succ)
+ fprintf (f, "*p* Succ for index %d should be %d not %d\n",
+ index, succ, INDEX_EDGE_SUCC_BB (elist, index)->index);
+ }
+
+ /* We've verified that all the edges are in the list, no lets make sure
+ there are no spurious edges in the list. */
+
+ for (pred = 0; pred < n_basic_blocks; pred++)
+ for (succ = 0; succ < n_basic_blocks; succ++)
+ {
+ basic_block p = BASIC_BLOCK (pred);
+ basic_block s = BASIC_BLOCK (succ);
+ int found_edge = 0;
+
+ for (e = p->succ; e; e = e->succ_next)
+ if (e->dest == s)
+ {
+ found_edge = 1;
+ break;
+ }
+
+ for (e = s->pred; e; e = e->pred_next)
+ if (e->src == p)
+ {
+ found_edge = 1;
+ break;
+ }
+
+ if (EDGE_INDEX (elist, BASIC_BLOCK (pred), BASIC_BLOCK (succ))
+ == EDGE_INDEX_NO_EDGE && found_edge != 0)
+ fprintf (f, "*** Edge (%d, %d) appears to not have an index\n",
+ pred, succ);
+ if (EDGE_INDEX (elist, BASIC_BLOCK (pred), BASIC_BLOCK (succ))
+ != EDGE_INDEX_NO_EDGE && found_edge == 0)
+ fprintf (f, "*** Edge (%d, %d) has index %d, but there is no edge\n",
+ pred, succ, EDGE_INDEX (elist, BASIC_BLOCK (pred),
+ BASIC_BLOCK (succ)));
+ }
+
+ for (succ = 0; succ < n_basic_blocks; succ++)
+ {
+ basic_block p = ENTRY_BLOCK_PTR;
+ basic_block s = BASIC_BLOCK (succ);
+ int found_edge = 0;
+
+ for (e = p->succ; e; e = e->succ_next)
+ if (e->dest == s)
+ {
+ found_edge = 1;
+ break;
+ }
+
+ for (e = s->pred; e; e = e->pred_next)
+ if (e->src == p)
+ {
+ found_edge = 1;
+ break;
+ }
+
+ if (EDGE_INDEX (elist, ENTRY_BLOCK_PTR, BASIC_BLOCK (succ))
+ == EDGE_INDEX_NO_EDGE && found_edge != 0)
+ fprintf (f, "*** Edge (entry, %d) appears to not have an index\n",
+ succ);
+ if (EDGE_INDEX (elist, ENTRY_BLOCK_PTR, BASIC_BLOCK (succ))
+ != EDGE_INDEX_NO_EDGE && found_edge == 0)
+ fprintf (f, "*** Edge (entry, %d) has index %d, but no edge exists\n",
+ succ, EDGE_INDEX (elist, ENTRY_BLOCK_PTR,
+ BASIC_BLOCK (succ)));
+ }
+
+ for (pred = 0; pred < n_basic_blocks; pred++)
+ {
+ basic_block p = BASIC_BLOCK (pred);
+ basic_block s = EXIT_BLOCK_PTR;
+ int found_edge = 0;
+
+ for (e = p->succ; e; e = e->succ_next)
+ if (e->dest == s)
+ {
+ found_edge = 1;
+ break;
+ }
+
+ for (e = s->pred; e; e = e->pred_next)
+ if (e->src == p)
+ {
+ found_edge = 1;
+ break;
+ }
+
+ if (EDGE_INDEX (elist, BASIC_BLOCK (pred), EXIT_BLOCK_PTR)
+ == EDGE_INDEX_NO_EDGE && found_edge != 0)
+ fprintf (f, "*** Edge (%d, exit) appears to not have an index\n",
+ pred);
+ if (EDGE_INDEX (elist, BASIC_BLOCK (pred), EXIT_BLOCK_PTR)
+ != EDGE_INDEX_NO_EDGE && found_edge == 0)
+ fprintf (f, "*** Edge (%d, exit) has index %d, but no edge exists\n",
+ pred, EDGE_INDEX (elist, BASIC_BLOCK (pred),
+ EXIT_BLOCK_PTR));
+ }
+}
+
+/* This routine will determine what, if any, edge there is between
+ a specified predecessor and successor. */
+
+int
+find_edge_index (edge_list, pred, succ)
+ struct edge_list *edge_list;
+ basic_block pred, succ;
+{
+ int x;
+
+ for (x = 0; x < NUM_EDGES (edge_list); x++)
+ if (INDEX_EDGE_PRED_BB (edge_list, x) == pred
+ && INDEX_EDGE_SUCC_BB (edge_list, x) == succ)
+ return x;
+
+ return (EDGE_INDEX_NO_EDGE);
+}
+
+/* Dump the list of basic blocks in the bitmap NODES. */
+
+void
+flow_nodes_print (str, nodes, file)
+ const char *str;
+ const sbitmap nodes;
+ FILE *file;
+{
+ int node;
+
+ if (! nodes)
+ return;
+
+ fprintf (file, "%s { ", str);
+ EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, node, {fprintf (file, "%d ", node);});
+ fputs ("}\n", file);
+}
+
+/* Dump the list of edges in the array EDGE_LIST. */
+
+void
+flow_edge_list_print (str, edge_list, num_edges, file)
+ const char *str;
+ const edge *edge_list;
+ int num_edges;
+ FILE *file;
+{
+ int i;
+
+ if (! edge_list)
+ return;
+
+ fprintf (file, "%s { ", str);
+ for (i = 0; i < num_edges; i++)
+ fprintf (file, "%d->%d ", edge_list[i]->src->index,
+ edge_list[i]->dest->index);
+
+ fputs ("}\n", file);
+}
+
+
+/* This routine will remove any fake successor edges for a basic block.
+ When the edge is removed, it is also removed from whatever predecessor
+ list it is in. */
+
+static void
+remove_fake_successors (bb)
+ basic_block bb;
+{
+ edge e;
+
+ for (e = bb->succ; e;)
+ {
+ edge tmp = e;
+
+ e = e->succ_next;
+ if ((tmp->flags & EDGE_FAKE) == EDGE_FAKE)
+ remove_edge (tmp);
+ }
+}
+
+/* This routine will remove all fake edges from the flow graph. If
+ we remove all fake successors, it will automatically remove all
+ fake predecessors. */
+
+void
+remove_fake_edges ()
+{
+ int x;
+
+ for (x = 0; x < n_basic_blocks; x++)
+ remove_fake_successors (BASIC_BLOCK (x));
+
+ /* We've handled all successors except the entry block's. */
+ remove_fake_successors (ENTRY_BLOCK_PTR);
+}
+
+/* This function will add a fake edge between any block which has no
+ successors, and the exit block. Some data flow equations require these
+ edges to exist. */
+
+void
+add_noreturn_fake_exit_edges ()
+{
+ int x;
+
+ for (x = 0; x < n_basic_blocks; x++)
+ if (BASIC_BLOCK (x)->succ == NULL)
+ make_single_succ_edge (BASIC_BLOCK (x), EXIT_BLOCK_PTR, EDGE_FAKE);
+}
+
+/* This function adds a fake edge between any infinite loops to the
+ exit block. Some optimizations require a path from each node to
+ the exit node.
+
+ See also Morgan, Figure 3.10, pp. 82-83.
+
+ The current implementation is ugly, not attempting to minimize the
+ number of inserted fake edges. To reduce the number of fake edges
+ to insert, add fake edges from _innermost_ loops containing only
+ nodes not reachable from the exit block. */
+
+void
+connect_infinite_loops_to_exit ()
+{
+ basic_block unvisited_block;
+ struct depth_first_search_dsS dfs_ds;
+
+ /* Perform depth-first search in the reverse graph to find nodes
+ reachable from the exit block. */
+ flow_dfs_compute_reverse_init (&dfs_ds);
+ flow_dfs_compute_reverse_add_bb (&dfs_ds, EXIT_BLOCK_PTR);
+
+ /* Repeatedly add fake edges, updating the unreachable nodes. */
+ while (1)
+ {
+ unvisited_block = flow_dfs_compute_reverse_execute (&dfs_ds);
+ if (!unvisited_block)
+ break;
+
+ make_edge (unvisited_block, EXIT_BLOCK_PTR, EDGE_FAKE);
+ flow_dfs_compute_reverse_add_bb (&dfs_ds, unvisited_block);
+ }
+
+ flow_dfs_compute_reverse_finish (&dfs_ds);
+ return;
+}
+
+/* Compute reverse top sort order */
+
+void
+flow_reverse_top_sort_order_compute (rts_order)
+ int *rts_order;
+{
+ edge *stack;
+ int sp;
+ int postnum = 0;
+ sbitmap visited;
+
+ /* Allocate stack for back-tracking up CFG. */
+ stack = (edge *) xmalloc ((n_basic_blocks + 1) * sizeof (edge));
+ sp = 0;
+
+ /* Allocate bitmap to track nodes that have been visited. */
+ visited = sbitmap_alloc (n_basic_blocks);
+
+ /* None of the nodes in the CFG have been visited yet. */
+ sbitmap_zero (visited);
+
+ /* Push the first edge on to the stack. */
+ stack[sp++] = ENTRY_BLOCK_PTR->succ;
+
+ while (sp)
+ {
+ edge e;
+ basic_block src;
+ basic_block dest;
+
+ /* Look at the edge on the top of the stack. */
+ e = stack[sp - 1];
+ src = e->src;
+ dest = e->dest;
+
+ /* Check if the edge destination has been visited yet. */
+ if (dest != EXIT_BLOCK_PTR && ! TEST_BIT (visited, dest->index))
+ {
+ /* Mark that we have visited the destination. */
+ SET_BIT (visited, dest->index);
+
+ if (dest->succ)
+ /* Since the DEST node has been visited for the first
+ time, check its successors. */
+ stack[sp++] = dest->succ;
+ else
+ rts_order[postnum++] = dest->index;
+ }
+ else
+ {
+ if (! e->succ_next && src != ENTRY_BLOCK_PTR)
+ rts_order[postnum++] = src->index;
+
+ if (e->succ_next)
+ stack[sp - 1] = e->succ_next;
+ else
+ sp--;
+ }
+ }
+
+ free (stack);
+ sbitmap_free (visited);
+}
+
+/* Compute the depth first search order and store in the array
+ DFS_ORDER if non-zero, marking the nodes visited in VISITED. If
+ RC_ORDER is non-zero, return the reverse completion number for each
+ node. Returns the number of nodes visited. A depth first search
+ tries to get as far away from the starting point as quickly as
+ possible. */
+
+int
+flow_depth_first_order_compute (dfs_order, rc_order)
+ int *dfs_order;
+ int *rc_order;
+{
+ edge *stack;
+ int sp;
+ int dfsnum = 0;
+ int rcnum = n_basic_blocks - 1;
+ sbitmap visited;
+
+ /* Allocate stack for back-tracking up CFG. */
+ stack = (edge *) xmalloc ((n_basic_blocks + 1) * sizeof (edge));
+ sp = 0;
+
+ /* Allocate bitmap to track nodes that have been visited. */
+ visited = sbitmap_alloc (n_basic_blocks);
+
+ /* None of the nodes in the CFG have been visited yet. */
+ sbitmap_zero (visited);
+
+ /* Push the first edge on to the stack. */
+ stack[sp++] = ENTRY_BLOCK_PTR->succ;
+
+ while (sp)
+ {
+ edge e;
+ basic_block src;
+ basic_block dest;
+
+ /* Look at the edge on the top of the stack. */
+ e = stack[sp - 1];
+ src = e->src;
+ dest = e->dest;
+
+ /* Check if the edge destination has been visited yet. */
+ if (dest != EXIT_BLOCK_PTR && ! TEST_BIT (visited, dest->index))
+ {
+ /* Mark that we have visited the destination. */
+ SET_BIT (visited, dest->index);
+
+ if (dfs_order)
+ dfs_order[dfsnum] = dest->index;
+
+ dfsnum++;
+
+ if (dest->succ)
+ /* Since the DEST node has been visited for the first
+ time, check its successors. */
+ stack[sp++] = dest->succ;
+ else if (rc_order)
+ /* There are no successors for the DEST node so assign
+ its reverse completion number. */
+ rc_order[rcnum--] = dest->index;
+ }
+ else
+ {
+ if (! e->succ_next && src != ENTRY_BLOCK_PTR
+ && rc_order)
+ /* There are no more successors for the SRC node
+ so assign its reverse completion number. */
+ rc_order[rcnum--] = src->index;
+
+ if (e->succ_next)
+ stack[sp - 1] = e->succ_next;
+ else
+ sp--;
+ }
+ }
+
+ free (stack);
+ sbitmap_free (visited);
+
+ /* The number of nodes visited should not be greater than
+ n_basic_blocks. */
+ if (dfsnum > n_basic_blocks)
+ abort ();
+
+ /* There are some nodes left in the CFG that are unreachable. */
+ if (dfsnum < n_basic_blocks)
+ abort ();
+
+ return dfsnum;
+}
+
+struct dfst_node
+{
+ unsigned nnodes;
+ struct dfst_node **node;
+ struct dfst_node *up;
+};
+
+/* Compute a preorder transversal ordering such that a sub-tree which
+ is the source of a cross edge appears before the sub-tree which is
+ the destination of the cross edge. This allows for easy detection
+ of all the entry blocks for a loop.
+
+ The ordering is compute by:
+
+ 1) Generating a depth first spanning tree.
+
+ 2) Walking the resulting tree from right to left. */
+
+void
+flow_preorder_transversal_compute (pot_order)
+ int *pot_order;
+{
+ edge e;
+ edge *stack;
+ int i;
+ int max_successors;
+ int sp;
+ sbitmap visited;
+ struct dfst_node *node;
+ struct dfst_node *dfst;
+
+ /* Allocate stack for back-tracking up CFG. */
+ stack = (edge *) xmalloc ((n_basic_blocks + 1) * sizeof (edge));
+ sp = 0;
+
+ /* Allocate the tree. */
+ dfst = (struct dfst_node *) xcalloc (n_basic_blocks,
+ sizeof (struct dfst_node));
+
+ for (i = 0; i < n_basic_blocks; i++)
+ {
+ max_successors = 0;
+ for (e = BASIC_BLOCK (i)->succ; e; e = e->succ_next)
+ max_successors++;
+
+ dfst[i].node
+ = (max_successors
+ ? (struct dfst_node **) xcalloc (max_successors,
+ sizeof (struct dfst_node *))
+ : NULL);
+ }
+
+ /* Allocate bitmap to track nodes that have been visited. */
+ visited = sbitmap_alloc (n_basic_blocks);
+
+ /* None of the nodes in the CFG have been visited yet. */
+ sbitmap_zero (visited);
+
+ /* Push the first edge on to the stack. */
+ stack[sp++] = ENTRY_BLOCK_PTR->succ;
+
+ while (sp)
+ {
+ basic_block src;
+ basic_block dest;
+
+ /* Look at the edge on the top of the stack. */
+ e = stack[sp - 1];
+ src = e->src;
+ dest = e->dest;
+
+ /* Check if the edge destination has been visited yet. */
+ if (dest != EXIT_BLOCK_PTR && ! TEST_BIT (visited, dest->index))
+ {
+ /* Mark that we have visited the destination. */
+ SET_BIT (visited, dest->index);
+
+ /* Add the destination to the preorder tree. */
+ if (src != ENTRY_BLOCK_PTR)
+ {
+ dfst[src->index].node[dfst[src->index].nnodes++]
+ = &dfst[dest->index];
+ dfst[dest->index].up = &dfst[src->index];
+ }
+
+ if (dest->succ)
+ /* Since the DEST node has been visited for the first
+ time, check its successors. */
+ stack[sp++] = dest->succ;
+ }
+
+ else if (e->succ_next)
+ stack[sp - 1] = e->succ_next;
+ else
+ sp--;
+ }
+
+ free (stack);
+ sbitmap_free (visited);
+
+ /* Record the preorder transversal order by
+ walking the tree from right to left. */
+
+ i = 0;
+ node = &dfst[0];
+ pot_order[i++] = 0;
+
+ while (node)
+ {
+ if (node->nnodes)
+ {
+ node = node->node[--node->nnodes];
+ pot_order[i++] = node - dfst;
+ }
+ else
+ node = node->up;
+ }
+
+ /* Free the tree. */
+
+ for (i = 0; i < n_basic_blocks; i++)
+ if (dfst[i].node)
+ free (dfst[i].node);
+
+ free (dfst);
+}
+
+/* Compute the depth first search order on the _reverse_ graph and
+ store in the array DFS_ORDER, marking the nodes visited in VISITED.
+ Returns the number of nodes visited.
+
+ The computation is split into three pieces:
+
+ flow_dfs_compute_reverse_init () creates the necessary data
+ structures.
+
+ flow_dfs_compute_reverse_add_bb () adds a basic block to the data
+ structures. The block will start the search.
+
+ flow_dfs_compute_reverse_execute () continues (or starts) the
+ search using the block on the top of the stack, stopping when the
+ stack is empty.
+
+ flow_dfs_compute_reverse_finish () destroys the necessary data
+ structures.
+
+ Thus, the user will probably call ..._init(), call ..._add_bb() to
+ add a beginning basic block to the stack, call ..._execute(),
+ possibly add another bb to the stack and again call ..._execute(),
+ ..., and finally call _finish(). */
+
+/* Initialize the data structures used for depth-first search on the
+ reverse graph. If INITIALIZE_STACK is nonzero, the exit block is
+ added to the basic block stack. DATA is the current depth-first
+ search context. If INITIALIZE_STACK is non-zero, there is an
+ element on the stack. */
+
+static void
+flow_dfs_compute_reverse_init (data)
+ depth_first_search_ds data;
+{
+ /* Allocate stack for back-tracking up CFG. */
+ data->stack = (basic_block *) xmalloc ((n_basic_blocks - (INVALID_BLOCK + 1))
+ * sizeof (basic_block));
+ data->sp = 0;
+
+ /* Allocate bitmap to track nodes that have been visited. */
+ data->visited_blocks = sbitmap_alloc (n_basic_blocks - (INVALID_BLOCK + 1));
+
+ /* None of the nodes in the CFG have been visited yet. */
+ sbitmap_zero (data->visited_blocks);
+
+ return;
+}
+
+/* Add the specified basic block to the top of the dfs data
+ structures. When the search continues, it will start at the
+ block. */
+
+static void
+flow_dfs_compute_reverse_add_bb (data, bb)
+ depth_first_search_ds data;
+ basic_block bb;
+{
+ data->stack[data->sp++] = bb;
+ SET_BIT (data->visited_blocks, bb->index - (INVALID_BLOCK + 1));
+}
+
+/* Continue the depth-first search through the reverse graph starting with the
+ block at the stack's top and ending when the stack is empty. Visited nodes
+ are marked. Returns an unvisited basic block, or NULL if there is none
+ available. */
+
+static basic_block
+flow_dfs_compute_reverse_execute (data)
+ depth_first_search_ds data;
+{
+ basic_block bb;
+ edge e;
+ int i;
+
+ while (data->sp > 0)
+ {
+ bb = data->stack[--data->sp];
+
+ /* Perform depth-first search on adjacent vertices. */
+ for (e = bb->pred; e; e = e->pred_next)
+ if (!TEST_BIT (data->visited_blocks,
+ e->src->index - (INVALID_BLOCK + 1)))
+ flow_dfs_compute_reverse_add_bb (data, e->src);
+ }
+
+ /* Determine if there are unvisited basic blocks. */
+ for (i = n_basic_blocks - (INVALID_BLOCK + 1); --i >= 0; )
+ if (!TEST_BIT (data->visited_blocks, i))
+ return BASIC_BLOCK (i + (INVALID_BLOCK + 1));
+
+ return NULL;
+}
+
+/* Destroy the data structures needed for depth-first search on the
+ reverse graph. */
+
+static void
+flow_dfs_compute_reverse_finish (data)
+ depth_first_search_ds data;
+{
+ free (data->stack);
+ sbitmap_free (data->visited_blocks);
+}
OpenPOWER on IntegriCloud