summaryrefslogtreecommitdiffstats
path: root/contrib/gcc/c-typeck.c
diff options
context:
space:
mode:
authorpeter <peter@FreeBSD.org>1996-09-18 05:35:50 +0000
committerpeter <peter@FreeBSD.org>1996-09-18 05:35:50 +0000
commitd4691e641ba47cb86eef80f5c879e13f9d961724 (patch)
tree5b7ea73fc49c8998d9dc87d3eeff5b96439e6856 /contrib/gcc/c-typeck.c
downloadFreeBSD-src-d4691e641ba47cb86eef80f5c879e13f9d961724.zip
FreeBSD-src-d4691e641ba47cb86eef80f5c879e13f9d961724.tar.gz
Import of unmodified (but trimmed) gcc-2.7.2. The bigger parts of the
non-i386, non-unix, and generatable files have been trimmed, but can easily be added in later if needed. gcc-2.7.2.1 will follow shortly, it's a very small delta to this and it's handy to have both available for reference for such little cost. The freebsd-specific changes will then be committed, and once the dust has settled, the bmakefiles will be committed to use this code.
Diffstat (limited to 'contrib/gcc/c-typeck.c')
-rw-r--r--contrib/gcc/c-typeck.c6602
1 files changed, 6602 insertions, 0 deletions
diff --git a/contrib/gcc/c-typeck.c b/contrib/gcc/c-typeck.c
new file mode 100644
index 0000000..e9d6b2a
--- /dev/null
+++ b/contrib/gcc/c-typeck.c
@@ -0,0 +1,6602 @@
+/* Build expressions with type checking for C compiler.
+ Copyright (C) 1987, 88, 91, 92, 93, 94, 1995 Free Software Foundation, Inc.
+
+This file is part of GNU CC.
+
+GNU CC is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2, or (at your option)
+any later version.
+
+GNU CC is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GNU CC; see the file COPYING. If not, write to
+the Free Software Foundation, 59 Temple Place - Suite 330,
+Boston, MA 02111-1307, USA. */
+
+
+/* This file is part of the C front end.
+ It contains routines to build C expressions given their operands,
+ including computing the types of the result, C-specific error checks,
+ and some optimization.
+
+ There are also routines to build RETURN_STMT nodes and CASE_STMT nodes,
+ and to process initializations in declarations (since they work
+ like a strange sort of assignment). */
+
+#include "config.h"
+#include <stdio.h>
+#include "tree.h"
+#include "c-tree.h"
+#include "flags.h"
+#include "output.h"
+
+/* Nonzero if we've already printed a "missing braces around initializer"
+ message within this initializer. */
+static int missing_braces_mentioned;
+
+extern char *index ();
+extern char *rindex ();
+
+static tree quality_type PROTO((tree, tree));
+static int comp_target_types PROTO((tree, tree));
+static int function_types_compatible_p PROTO((tree, tree));
+static int type_lists_compatible_p PROTO((tree, tree));
+static int self_promoting_type_p PROTO((tree));
+static tree decl_constant_value PROTO((tree));
+static tree lookup_field PROTO((tree, tree, tree *));
+static tree convert_arguments PROTO((tree, tree, tree, tree));
+static tree pointer_int_sum PROTO((enum tree_code, tree, tree));
+static tree pointer_diff PROTO((tree, tree));
+static tree unary_complex_lvalue PROTO((enum tree_code, tree));
+static void pedantic_lvalue_warning PROTO((enum tree_code));
+static tree internal_build_compound_expr PROTO((tree, int));
+static tree convert_for_assignment PROTO((tree, tree, char *, tree,
+ tree, int));
+static void warn_for_assignment PROTO((char *, char *, tree, int));
+static tree valid_compound_expr_initializer PROTO((tree, tree));
+static void push_string PROTO((char *));
+static void push_member_name PROTO((tree));
+static void push_array_bounds PROTO((int));
+static int spelling_length PROTO((void));
+static char *print_spelling PROTO((char *));
+static char *get_spelling PROTO((char *));
+static void warning_init PROTO((char *, char *,
+ char *));
+static tree digest_init PROTO((tree, tree, int, int));
+static void check_init_type_bitfields PROTO((tree));
+static void output_init_element PROTO((tree, tree, tree, int));
+static void output_pending_init_elements PROTO((int));
+
+/* Do `exp = require_complete_type (exp);' to make sure exp
+ does not have an incomplete type. (That includes void types.) */
+
+tree
+require_complete_type (value)
+ tree value;
+{
+ tree type = TREE_TYPE (value);
+
+ /* First, detect a valid value with a complete type. */
+ if (TYPE_SIZE (type) != 0
+ && type != void_type_node)
+ return value;
+
+ incomplete_type_error (value, type);
+ return error_mark_node;
+}
+
+/* Print an error message for invalid use of an incomplete type.
+ VALUE is the expression that was used (or 0 if that isn't known)
+ and TYPE is the type that was invalid. */
+
+void
+incomplete_type_error (value, type)
+ tree value;
+ tree type;
+{
+ char *errmsg;
+
+ /* Avoid duplicate error message. */
+ if (TREE_CODE (type) == ERROR_MARK)
+ return;
+
+ if (value != 0 && (TREE_CODE (value) == VAR_DECL
+ || TREE_CODE (value) == PARM_DECL))
+ error ("`%s' has an incomplete type",
+ IDENTIFIER_POINTER (DECL_NAME (value)));
+ else
+ {
+ retry:
+ /* We must print an error message. Be clever about what it says. */
+
+ switch (TREE_CODE (type))
+ {
+ case RECORD_TYPE:
+ errmsg = "invalid use of undefined type `struct %s'";
+ break;
+
+ case UNION_TYPE:
+ errmsg = "invalid use of undefined type `union %s'";
+ break;
+
+ case ENUMERAL_TYPE:
+ errmsg = "invalid use of undefined type `enum %s'";
+ break;
+
+ case VOID_TYPE:
+ error ("invalid use of void expression");
+ return;
+
+ case ARRAY_TYPE:
+ if (TYPE_DOMAIN (type))
+ {
+ type = TREE_TYPE (type);
+ goto retry;
+ }
+ error ("invalid use of array with unspecified bounds");
+ return;
+
+ default:
+ abort ();
+ }
+
+ if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
+ error (errmsg, IDENTIFIER_POINTER (TYPE_NAME (type)));
+ else
+ /* If this type has a typedef-name, the TYPE_NAME is a TYPE_DECL. */
+ error ("invalid use of incomplete typedef `%s'",
+ IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (type))));
+ }
+}
+
+/* Return a variant of TYPE which has all the type qualifiers of LIKE
+ as well as those of TYPE. */
+
+static tree
+qualify_type (type, like)
+ tree type, like;
+{
+ int constflag = TYPE_READONLY (type) || TYPE_READONLY (like);
+ int volflag = TYPE_VOLATILE (type) || TYPE_VOLATILE (like);
+ return c_build_type_variant (type, constflag, volflag);
+}
+
+/* Return the common type of two types.
+ We assume that comptypes has already been done and returned 1;
+ if that isn't so, this may crash. In particular, we assume that qualifiers
+ match.
+
+ This is the type for the result of most arithmetic operations
+ if the operands have the given two types. */
+
+tree
+common_type (t1, t2)
+ tree t1, t2;
+{
+ register enum tree_code code1;
+ register enum tree_code code2;
+ tree attributes;
+
+ /* Save time if the two types are the same. */
+
+ if (t1 == t2) return t1;
+
+ /* If one type is nonsense, use the other. */
+ if (t1 == error_mark_node)
+ return t2;
+ if (t2 == error_mark_node)
+ return t1;
+
+ /* Merge the attributes */
+
+ { register tree a1, a2;
+ a1 = TYPE_ATTRIBUTES (t1);
+ a2 = TYPE_ATTRIBUTES (t2);
+
+ /* Either one unset? Take the set one. */
+
+ if (!(attributes = a1))
+ attributes = a2;
+
+ /* One that completely contains the other? Take it. */
+
+ else if (a2 && !attribute_list_contained (a1, a2))
+ if (attribute_list_contained (a2, a1))
+ attributes = a2;
+ else
+ {
+ /* Pick the longest list, and hang on the other list. */
+ /* ??? For the moment we punt on the issue of attrs with args. */
+
+ if (list_length (a1) < list_length (a2))
+ attributes = a2, a2 = a1;
+
+ for (; a2; a2 = TREE_CHAIN (a2))
+ if (lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
+ attributes) == NULL_TREE)
+ {
+ a1 = copy_node (a2);
+ TREE_CHAIN (a1) = attributes;
+ attributes = a1;
+ }
+ }
+ }
+
+ /* Treat an enum type as the unsigned integer type of the same width. */
+
+ if (TREE_CODE (t1) == ENUMERAL_TYPE)
+ t1 = type_for_size (TYPE_PRECISION (t1), 1);
+ if (TREE_CODE (t2) == ENUMERAL_TYPE)
+ t2 = type_for_size (TYPE_PRECISION (t2), 1);
+
+ code1 = TREE_CODE (t1);
+ code2 = TREE_CODE (t2);
+
+ /* If one type is complex, form the common type of the non-complex
+ components, then make that complex. Use T1 or T2 if it is the
+ required type. */
+ if (code1 == COMPLEX_TYPE || code2 == COMPLEX_TYPE)
+ {
+ tree subtype1 = code1 == COMPLEX_TYPE ? TREE_TYPE (t1) : t1;
+ tree subtype2 = code2 == COMPLEX_TYPE ? TREE_TYPE (t2) : t2;
+ tree subtype = common_type (subtype1, subtype2);
+
+ if (code1 == COMPLEX_TYPE && TREE_TYPE (t1) == subtype)
+ return build_type_attribute_variant (t1, attributes);
+ else if (code2 == COMPLEX_TYPE && TREE_TYPE (t2) == subtype)
+ return build_type_attribute_variant (t2, attributes);
+ else
+ return build_type_attribute_variant (build_complex_type (subtype),
+ attributes);
+ }
+
+ switch (code1)
+ {
+ case INTEGER_TYPE:
+ case REAL_TYPE:
+ /* If only one is real, use it as the result. */
+
+ if (code1 == REAL_TYPE && code2 != REAL_TYPE)
+ return build_type_attribute_variant (t1, attributes);
+
+ if (code2 == REAL_TYPE && code1 != REAL_TYPE)
+ return build_type_attribute_variant (t2, attributes);
+
+ /* Both real or both integers; use the one with greater precision. */
+
+ if (TYPE_PRECISION (t1) > TYPE_PRECISION (t2))
+ return build_type_attribute_variant (t1, attributes);
+ else if (TYPE_PRECISION (t2) > TYPE_PRECISION (t1))
+ return build_type_attribute_variant (t2, attributes);
+
+ /* Same precision. Prefer longs to ints even when same size. */
+
+ if (TYPE_MAIN_VARIANT (t1) == long_unsigned_type_node
+ || TYPE_MAIN_VARIANT (t2) == long_unsigned_type_node)
+ return build_type_attribute_variant (long_unsigned_type_node,
+ attributes);
+
+ if (TYPE_MAIN_VARIANT (t1) == long_integer_type_node
+ || TYPE_MAIN_VARIANT (t2) == long_integer_type_node)
+ {
+ /* But preserve unsignedness from the other type,
+ since long cannot hold all the values of an unsigned int. */
+ if (TREE_UNSIGNED (t1) || TREE_UNSIGNED (t2))
+ t1 = long_unsigned_type_node;
+ else
+ t1 = long_integer_type_node;
+ return build_type_attribute_variant (t1, attributes);
+ }
+
+ /* Otherwise prefer the unsigned one. */
+
+ if (TREE_UNSIGNED (t1))
+ return build_type_attribute_variant (t1, attributes);
+ else
+ return build_type_attribute_variant (t2, attributes);
+
+ case POINTER_TYPE:
+ /* For two pointers, do this recursively on the target type,
+ and combine the qualifiers of the two types' targets. */
+ /* This code was turned off; I don't know why.
+ But ANSI C specifies doing this with the qualifiers.
+ So I turned it on again. */
+ {
+ tree target = common_type (TYPE_MAIN_VARIANT (TREE_TYPE (t1)),
+ TYPE_MAIN_VARIANT (TREE_TYPE (t2)));
+ int constp
+ = TYPE_READONLY (TREE_TYPE (t1)) || TYPE_READONLY (TREE_TYPE (t2));
+ int volatilep
+ = TYPE_VOLATILE (TREE_TYPE (t1)) || TYPE_VOLATILE (TREE_TYPE (t2));
+ t1 = build_pointer_type (c_build_type_variant (target, constp,
+ volatilep));
+ return build_type_attribute_variant (t1, attributes);
+ }
+#if 0
+ t1 = build_pointer_type (common_type (TREE_TYPE (t1), TREE_TYPE (t2)));
+ return build_type_attribute_variant (t1, attributes);
+#endif
+
+ case ARRAY_TYPE:
+ {
+ tree elt = common_type (TREE_TYPE (t1), TREE_TYPE (t2));
+ /* Save space: see if the result is identical to one of the args. */
+ if (elt == TREE_TYPE (t1) && TYPE_DOMAIN (t1))
+ return build_type_attribute_variant (t1, attributes);
+ if (elt == TREE_TYPE (t2) && TYPE_DOMAIN (t2))
+ return build_type_attribute_variant (t2, attributes);
+ /* Merge the element types, and have a size if either arg has one. */
+ t1 = build_array_type (elt, TYPE_DOMAIN (TYPE_DOMAIN (t1) ? t1 : t2));
+ return build_type_attribute_variant (t1, attributes);
+ }
+
+ case FUNCTION_TYPE:
+ /* Function types: prefer the one that specified arg types.
+ If both do, merge the arg types. Also merge the return types. */
+ {
+ tree valtype = common_type (TREE_TYPE (t1), TREE_TYPE (t2));
+ tree p1 = TYPE_ARG_TYPES (t1);
+ tree p2 = TYPE_ARG_TYPES (t2);
+ int len;
+ tree newargs, n;
+ int i;
+
+ /* Save space: see if the result is identical to one of the args. */
+ if (valtype == TREE_TYPE (t1) && ! TYPE_ARG_TYPES (t2))
+ return build_type_attribute_variant (t1, attributes);
+ if (valtype == TREE_TYPE (t2) && ! TYPE_ARG_TYPES (t1))
+ return build_type_attribute_variant (t2, attributes);
+
+ /* Simple way if one arg fails to specify argument types. */
+ if (TYPE_ARG_TYPES (t1) == 0)
+ {
+ t1 = build_function_type (valtype, TYPE_ARG_TYPES (t2));
+ return build_type_attribute_variant (t1, attributes);
+ }
+ if (TYPE_ARG_TYPES (t2) == 0)
+ {
+ t1 = build_function_type (valtype, TYPE_ARG_TYPES (t1));
+ return build_type_attribute_variant (t1, attributes);
+ }
+
+ /* If both args specify argument types, we must merge the two
+ lists, argument by argument. */
+
+ len = list_length (p1);
+ newargs = 0;
+
+ for (i = 0; i < len; i++)
+ newargs = tree_cons (NULL_TREE, NULL_TREE, newargs);
+
+ n = newargs;
+
+ for (; p1;
+ p1 = TREE_CHAIN (p1), p2 = TREE_CHAIN (p2), n = TREE_CHAIN (n))
+ {
+ /* A null type means arg type is not specified.
+ Take whatever the other function type has. */
+ if (TREE_VALUE (p1) == 0)
+ {
+ TREE_VALUE (n) = TREE_VALUE (p2);
+ goto parm_done;
+ }
+ if (TREE_VALUE (p2) == 0)
+ {
+ TREE_VALUE (n) = TREE_VALUE (p1);
+ goto parm_done;
+ }
+
+ /* Given wait (union {union wait *u; int *i} *)
+ and wait (union wait *),
+ prefer union wait * as type of parm. */
+ if (TREE_CODE (TREE_VALUE (p1)) == UNION_TYPE
+ && TREE_VALUE (p1) != TREE_VALUE (p2))
+ {
+ tree memb;
+ for (memb = TYPE_FIELDS (TREE_VALUE (p1));
+ memb; memb = TREE_CHAIN (memb))
+ if (comptypes (TREE_TYPE (memb), TREE_VALUE (p2)))
+ {
+ TREE_VALUE (n) = TREE_VALUE (p2);
+ if (pedantic)
+ pedwarn ("function types not truly compatible in ANSI C");
+ goto parm_done;
+ }
+ }
+ if (TREE_CODE (TREE_VALUE (p2)) == UNION_TYPE
+ && TREE_VALUE (p2) != TREE_VALUE (p1))
+ {
+ tree memb;
+ for (memb = TYPE_FIELDS (TREE_VALUE (p2));
+ memb; memb = TREE_CHAIN (memb))
+ if (comptypes (TREE_TYPE (memb), TREE_VALUE (p1)))
+ {
+ TREE_VALUE (n) = TREE_VALUE (p1);
+ if (pedantic)
+ pedwarn ("function types not truly compatible in ANSI C");
+ goto parm_done;
+ }
+ }
+ TREE_VALUE (n) = common_type (TREE_VALUE (p1), TREE_VALUE (p2));
+ parm_done: ;
+ }
+
+ t1 = build_function_type (valtype, newargs);
+ /* ... falls through ... */
+ }
+
+ default:
+ return build_type_attribute_variant (t1, attributes);
+ }
+
+}
+
+/* Return 1 if TYPE1 and TYPE2 are compatible types for assignment
+ or various other operations. Return 2 if they are compatible
+ but a warning may be needed if you use them together. */
+
+int
+comptypes (type1, type2)
+ tree type1, type2;
+{
+ register tree t1 = type1;
+ register tree t2 = type2;
+ int attrval, val;
+
+ /* Suppress errors caused by previously reported errors. */
+
+ if (t1 == t2 || TREE_CODE (t1) == ERROR_MARK || TREE_CODE (t2) == ERROR_MARK)
+ return 1;
+
+ /* Treat an enum type as the integer type of the same width and
+ signedness. */
+
+ if (TREE_CODE (t1) == ENUMERAL_TYPE)
+ t1 = type_for_size (TYPE_PRECISION (t1), TREE_UNSIGNED (t1));
+ if (TREE_CODE (t2) == ENUMERAL_TYPE)
+ t2 = type_for_size (TYPE_PRECISION (t2), TREE_UNSIGNED (t2));
+
+ if (t1 == t2)
+ return 1;
+
+ /* Different classes of types can't be compatible. */
+
+ if (TREE_CODE (t1) != TREE_CODE (t2)) return 0;
+
+ /* Qualifiers must match. */
+
+ if (TYPE_READONLY (t1) != TYPE_READONLY (t2))
+ return 0;
+ if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
+ return 0;
+
+ /* Allow for two different type nodes which have essentially the same
+ definition. Note that we already checked for equality of the type
+ type qualifiers (just above). */
+
+ if (TYPE_MAIN_VARIANT (t1) == TYPE_MAIN_VARIANT (t2))
+ return 1;
+
+#ifndef COMP_TYPE_ATTRIBUTES
+#define COMP_TYPE_ATTRIBUTES(t1,t2) 1
+#endif
+
+ /* 1 if no need for warning yet, 2 if warning cause has been seen. */
+ if (! (attrval = COMP_TYPE_ATTRIBUTES (t1, t2)))
+ return 0;
+
+ /* 1 if no need for warning yet, 2 if warning cause has been seen. */
+ val = 0;
+
+ switch (TREE_CODE (t1))
+ {
+ case POINTER_TYPE:
+ val = (TREE_TYPE (t1) == TREE_TYPE (t2)
+ ? 1 : comptypes (TREE_TYPE (t1), TREE_TYPE (t2)));
+ break;
+
+ case FUNCTION_TYPE:
+ val = function_types_compatible_p (t1, t2);
+ break;
+
+ case ARRAY_TYPE:
+ {
+ tree d1 = TYPE_DOMAIN (t1);
+ tree d2 = TYPE_DOMAIN (t2);
+ val = 1;
+
+ /* Target types must match incl. qualifiers. */
+ if (TREE_TYPE (t1) != TREE_TYPE (t2)
+ && 0 == (val = comptypes (TREE_TYPE (t1), TREE_TYPE (t2))))
+ return 0;
+
+ /* Sizes must match unless one is missing or variable. */
+ if (d1 == 0 || d2 == 0 || d1 == d2
+ || TREE_CODE (TYPE_MIN_VALUE (d1)) != INTEGER_CST
+ || TREE_CODE (TYPE_MIN_VALUE (d2)) != INTEGER_CST
+ || TREE_CODE (TYPE_MAX_VALUE (d1)) != INTEGER_CST
+ || TREE_CODE (TYPE_MAX_VALUE (d2)) != INTEGER_CST)
+ break;
+
+ if (! ((TREE_INT_CST_LOW (TYPE_MIN_VALUE (d1))
+ == TREE_INT_CST_LOW (TYPE_MIN_VALUE (d2)))
+ && (TREE_INT_CST_HIGH (TYPE_MIN_VALUE (d1))
+ == TREE_INT_CST_HIGH (TYPE_MIN_VALUE (d2)))
+ && (TREE_INT_CST_LOW (TYPE_MAX_VALUE (d1))
+ == TREE_INT_CST_LOW (TYPE_MAX_VALUE (d2)))
+ && (TREE_INT_CST_HIGH (TYPE_MAX_VALUE (d1))
+ == TREE_INT_CST_HIGH (TYPE_MAX_VALUE (d2)))))
+ val = 0;
+ break;
+ }
+
+ case RECORD_TYPE:
+ if (maybe_objc_comptypes (t1, t2, 0) == 1)
+ val = 1;
+ break;
+ }
+ return attrval == 2 && val == 1 ? 2 : val;
+}
+
+/* Return 1 if TTL and TTR are pointers to types that are equivalent,
+ ignoring their qualifiers. */
+
+static int
+comp_target_types (ttl, ttr)
+ tree ttl, ttr;
+{
+ int val;
+
+ /* Give maybe_objc_comptypes a crack at letting these types through. */
+ if (val = maybe_objc_comptypes (ttl, ttr, 1) >= 0)
+ return val;
+
+ val = comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (ttl)),
+ TYPE_MAIN_VARIANT (TREE_TYPE (ttr)));
+
+ if (val == 2 && pedantic)
+ pedwarn ("types are not quite compatible");
+ return val;
+}
+
+/* Subroutines of `comptypes'. */
+
+/* Return 1 if two function types F1 and F2 are compatible.
+ If either type specifies no argument types,
+ the other must specify a fixed number of self-promoting arg types.
+ Otherwise, if one type specifies only the number of arguments,
+ the other must specify that number of self-promoting arg types.
+ Otherwise, the argument types must match. */
+
+static int
+function_types_compatible_p (f1, f2)
+ tree f1, f2;
+{
+ tree args1, args2;
+ /* 1 if no need for warning yet, 2 if warning cause has been seen. */
+ int val = 1;
+ int val1;
+
+ if (!(TREE_TYPE (f1) == TREE_TYPE (f2)
+ || (val = comptypes (TREE_TYPE (f1), TREE_TYPE (f2)))))
+ return 0;
+
+ args1 = TYPE_ARG_TYPES (f1);
+ args2 = TYPE_ARG_TYPES (f2);
+
+ /* An unspecified parmlist matches any specified parmlist
+ whose argument types don't need default promotions. */
+
+ if (args1 == 0)
+ {
+ if (!self_promoting_args_p (args2))
+ return 0;
+ /* If one of these types comes from a non-prototype fn definition,
+ compare that with the other type's arglist.
+ If they don't match, ask for a warning (but no error). */
+ if (TYPE_ACTUAL_ARG_TYPES (f1)
+ && 1 != type_lists_compatible_p (args2, TYPE_ACTUAL_ARG_TYPES (f1)))
+ val = 2;
+ return val;
+ }
+ if (args2 == 0)
+ {
+ if (!self_promoting_args_p (args1))
+ return 0;
+ if (TYPE_ACTUAL_ARG_TYPES (f2)
+ && 1 != type_lists_compatible_p (args1, TYPE_ACTUAL_ARG_TYPES (f2)))
+ val = 2;
+ return val;
+ }
+
+ /* Both types have argument lists: compare them and propagate results. */
+ val1 = type_lists_compatible_p (args1, args2);
+ return val1 != 1 ? val1 : val;
+}
+
+/* Check two lists of types for compatibility,
+ returning 0 for incompatible, 1 for compatible,
+ or 2 for compatible with warning. */
+
+static int
+type_lists_compatible_p (args1, args2)
+ tree args1, args2;
+{
+ /* 1 if no need for warning yet, 2 if warning cause has been seen. */
+ int val = 1;
+ int newval = 0;
+
+ while (1)
+ {
+ if (args1 == 0 && args2 == 0)
+ return val;
+ /* If one list is shorter than the other,
+ they fail to match. */
+ if (args1 == 0 || args2 == 0)
+ return 0;
+ /* A null pointer instead of a type
+ means there is supposed to be an argument
+ but nothing is specified about what type it has.
+ So match anything that self-promotes. */
+ if (TREE_VALUE (args1) == 0)
+ {
+ if (! self_promoting_type_p (TREE_VALUE (args2)))
+ return 0;
+ }
+ else if (TREE_VALUE (args2) == 0)
+ {
+ if (! self_promoting_type_p (TREE_VALUE (args1)))
+ return 0;
+ }
+ else if (! (newval = comptypes (TREE_VALUE (args1), TREE_VALUE (args2))))
+ {
+ /* Allow wait (union {union wait *u; int *i} *)
+ and wait (union wait *) to be compatible. */
+ if (TREE_CODE (TREE_VALUE (args1)) == UNION_TYPE
+ && (TYPE_NAME (TREE_VALUE (args1)) == 0
+ || TYPE_TRANSPARENT_UNION (TREE_VALUE (args1)))
+ && TREE_CODE (TYPE_SIZE (TREE_VALUE (args1))) == INTEGER_CST
+ && tree_int_cst_equal (TYPE_SIZE (TREE_VALUE (args1)),
+ TYPE_SIZE (TREE_VALUE (args2))))
+ {
+ tree memb;
+ for (memb = TYPE_FIELDS (TREE_VALUE (args1));
+ memb; memb = TREE_CHAIN (memb))
+ if (comptypes (TREE_TYPE (memb), TREE_VALUE (args2)))
+ break;
+ if (memb == 0)
+ return 0;
+ }
+ else if (TREE_CODE (TREE_VALUE (args2)) == UNION_TYPE
+ && (TYPE_NAME (TREE_VALUE (args2)) == 0
+ || TYPE_TRANSPARENT_UNION (TREE_VALUE (args2)))
+ && TREE_CODE (TYPE_SIZE (TREE_VALUE (args2))) == INTEGER_CST
+ && tree_int_cst_equal (TYPE_SIZE (TREE_VALUE (args2)),
+ TYPE_SIZE (TREE_VALUE (args1))))
+ {
+ tree memb;
+ for (memb = TYPE_FIELDS (TREE_VALUE (args2));
+ memb; memb = TREE_CHAIN (memb))
+ if (comptypes (TREE_TYPE (memb), TREE_VALUE (args1)))
+ break;
+ if (memb == 0)
+ return 0;
+ }
+ else
+ return 0;
+ }
+
+ /* comptypes said ok, but record if it said to warn. */
+ if (newval > val)
+ val = newval;
+
+ args1 = TREE_CHAIN (args1);
+ args2 = TREE_CHAIN (args2);
+ }
+}
+
+/* Return 1 if PARMS specifies a fixed number of parameters
+ and none of their types is affected by default promotions. */
+
+int
+self_promoting_args_p (parms)
+ tree parms;
+{
+ register tree t;
+ for (t = parms; t; t = TREE_CHAIN (t))
+ {
+ register tree type = TREE_VALUE (t);
+
+ if (TREE_CHAIN (t) == 0 && type != void_type_node)
+ return 0;
+
+ if (type == 0)
+ return 0;
+
+ if (TYPE_MAIN_VARIANT (type) == float_type_node)
+ return 0;
+
+ if (C_PROMOTING_INTEGER_TYPE_P (type))
+ return 0;
+ }
+ return 1;
+}
+
+/* Return 1 if TYPE is not affected by default promotions. */
+
+static int
+self_promoting_type_p (type)
+ tree type;
+{
+ if (TYPE_MAIN_VARIANT (type) == float_type_node)
+ return 0;
+
+ if (C_PROMOTING_INTEGER_TYPE_P (type))
+ return 0;
+
+ return 1;
+}
+
+/* Return an unsigned type the same as TYPE in other respects. */
+
+tree
+unsigned_type (type)
+ tree type;
+{
+ tree type1 = TYPE_MAIN_VARIANT (type);
+ if (type1 == signed_char_type_node || type1 == char_type_node)
+ return unsigned_char_type_node;
+ if (type1 == integer_type_node)
+ return unsigned_type_node;
+ if (type1 == short_integer_type_node)
+ return short_unsigned_type_node;
+ if (type1 == long_integer_type_node)
+ return long_unsigned_type_node;
+ if (type1 == long_long_integer_type_node)
+ return long_long_unsigned_type_node;
+ if (type1 == intDI_type_node)
+ return unsigned_intDI_type_node;
+ if (type1 == intSI_type_node)
+ return unsigned_intSI_type_node;
+ if (type1 == intHI_type_node)
+ return unsigned_intHI_type_node;
+ if (type1 == intQI_type_node)
+ return unsigned_intQI_type_node;
+ return type;
+}
+
+/* Return a signed type the same as TYPE in other respects. */
+
+tree
+signed_type (type)
+ tree type;
+{
+ tree type1 = TYPE_MAIN_VARIANT (type);
+ if (type1 == unsigned_char_type_node || type1 == char_type_node)
+ return signed_char_type_node;
+ if (type1 == unsigned_type_node)
+ return integer_type_node;
+ if (type1 == short_unsigned_type_node)
+ return short_integer_type_node;
+ if (type1 == long_unsigned_type_node)
+ return long_integer_type_node;
+ if (type1 == long_long_unsigned_type_node)
+ return long_long_integer_type_node;
+ if (type1 == unsigned_intDI_type_node)
+ return intDI_type_node;
+ if (type1 == unsigned_intSI_type_node)
+ return intSI_type_node;
+ if (type1 == unsigned_intHI_type_node)
+ return intHI_type_node;
+ if (type1 == unsigned_intQI_type_node)
+ return intQI_type_node;
+ return type;
+}
+
+/* Return a type the same as TYPE except unsigned or
+ signed according to UNSIGNEDP. */
+
+tree
+signed_or_unsigned_type (unsignedp, type)
+ int unsignedp;
+ tree type;
+{
+ if (! INTEGRAL_TYPE_P (type))
+ return type;
+ if (TYPE_PRECISION (type) == TYPE_PRECISION (signed_char_type_node))
+ return unsignedp ? unsigned_char_type_node : signed_char_type_node;
+ if (TYPE_PRECISION (type) == TYPE_PRECISION (integer_type_node))
+ return unsignedp ? unsigned_type_node : integer_type_node;
+ if (TYPE_PRECISION (type) == TYPE_PRECISION (short_integer_type_node))
+ return unsignedp ? short_unsigned_type_node : short_integer_type_node;
+ if (TYPE_PRECISION (type) == TYPE_PRECISION (long_integer_type_node))
+ return unsignedp ? long_unsigned_type_node : long_integer_type_node;
+ if (TYPE_PRECISION (type) == TYPE_PRECISION (long_long_integer_type_node))
+ return (unsignedp ? long_long_unsigned_type_node
+ : long_long_integer_type_node);
+ return type;
+}
+
+/* Compute the value of the `sizeof' operator. */
+
+tree
+c_sizeof (type)
+ tree type;
+{
+ enum tree_code code = TREE_CODE (type);
+ tree t;
+
+ if (code == FUNCTION_TYPE)
+ {
+ if (pedantic || warn_pointer_arith)
+ pedwarn ("sizeof applied to a function type");
+ return size_int (1);
+ }
+ if (code == VOID_TYPE)
+ {
+ if (pedantic || warn_pointer_arith)
+ pedwarn ("sizeof applied to a void type");
+ return size_int (1);
+ }
+ if (code == ERROR_MARK)
+ return size_int (1);
+ if (TYPE_SIZE (type) == 0)
+ {
+ error ("sizeof applied to an incomplete type");
+ return size_int (0);
+ }
+
+ /* Convert in case a char is more than one unit. */
+ t = size_binop (CEIL_DIV_EXPR, TYPE_SIZE (type),
+ size_int (TYPE_PRECISION (char_type_node)));
+ /* size_binop does not put the constant in range, so do it now. */
+ if (TREE_CODE (t) == INTEGER_CST && force_fit_type (t, 0))
+ TREE_CONSTANT_OVERFLOW (t) = TREE_OVERFLOW (t) = 1;
+ return t;
+}
+
+tree
+c_sizeof_nowarn (type)
+ tree type;
+{
+ enum tree_code code = TREE_CODE (type);
+ tree t;
+
+ if (code == FUNCTION_TYPE
+ || code == VOID_TYPE
+ || code == ERROR_MARK)
+ return size_int (1);
+ if (TYPE_SIZE (type) == 0)
+ return size_int (0);
+
+ /* Convert in case a char is more than one unit. */
+ t = size_binop (CEIL_DIV_EXPR, TYPE_SIZE (type),
+ size_int (TYPE_PRECISION (char_type_node)));
+ force_fit_type (t, 0);
+ return t;
+}
+
+/* Compute the size to increment a pointer by. */
+
+tree
+c_size_in_bytes (type)
+ tree type;
+{
+ enum tree_code code = TREE_CODE (type);
+ tree t;
+
+ if (code == FUNCTION_TYPE)
+ return size_int (1);
+ if (code == VOID_TYPE)
+ return size_int (1);
+ if (code == ERROR_MARK)
+ return size_int (1);
+ if (TYPE_SIZE (type) == 0)
+ {
+ error ("arithmetic on pointer to an incomplete type");
+ return size_int (1);
+ }
+
+ /* Convert in case a char is more than one unit. */
+ t = size_binop (CEIL_DIV_EXPR, TYPE_SIZE (type),
+ size_int (BITS_PER_UNIT));
+ force_fit_type (t, 0);
+ return t;
+}
+
+/* Implement the __alignof keyword: Return the minimum required
+ alignment of TYPE, measured in bytes. */
+
+tree
+c_alignof (type)
+ tree type;
+{
+ enum tree_code code = TREE_CODE (type);
+
+ if (code == FUNCTION_TYPE)
+ return size_int (FUNCTION_BOUNDARY / BITS_PER_UNIT);
+
+ if (code == VOID_TYPE || code == ERROR_MARK)
+ return size_int (1);
+
+ return size_int (TYPE_ALIGN (type) / BITS_PER_UNIT);
+}
+
+/* Implement the __alignof keyword: Return the minimum required
+ alignment of EXPR, measured in bytes. For VAR_DECL's and
+ FIELD_DECL's return DECL_ALIGN (which can be set from an
+ "aligned" __attribute__ specification). */
+
+tree
+c_alignof_expr (expr)
+ tree expr;
+{
+ if (TREE_CODE (expr) == VAR_DECL)
+ return size_int (DECL_ALIGN (expr) / BITS_PER_UNIT);
+
+ if (TREE_CODE (expr) == COMPONENT_REF
+ && DECL_BIT_FIELD (TREE_OPERAND (expr, 1)))
+ {
+ error ("`__alignof' applied to a bit-field");
+ return size_int (1);
+ }
+ else if (TREE_CODE (expr) == COMPONENT_REF
+ && TREE_CODE (TREE_OPERAND (expr, 1)) == FIELD_DECL)
+ return size_int (DECL_ALIGN (TREE_OPERAND (expr, 1)) / BITS_PER_UNIT);
+
+ if (TREE_CODE (expr) == INDIRECT_REF)
+ {
+ tree t = TREE_OPERAND (expr, 0);
+ tree best = t;
+ int bestalign = TYPE_ALIGN (TREE_TYPE (TREE_TYPE (t)));
+
+ while (TREE_CODE (t) == NOP_EXPR
+ && TREE_CODE (TREE_TYPE (TREE_OPERAND (t, 0))) == POINTER_TYPE)
+ {
+ int thisalign;
+
+ t = TREE_OPERAND (t, 0);
+ thisalign = TYPE_ALIGN (TREE_TYPE (TREE_TYPE (t)));
+ if (thisalign > bestalign)
+ best = t, bestalign = thisalign;
+ }
+ return c_alignof (TREE_TYPE (TREE_TYPE (best)));
+ }
+ else
+ return c_alignof (TREE_TYPE (expr));
+}
+/* Return either DECL or its known constant value (if it has one). */
+
+static tree
+decl_constant_value (decl)
+ tree decl;
+{
+ if (! TREE_PUBLIC (decl)
+ /* Don't change a variable array bound or initial value to a constant
+ in a place where a variable is invalid. */
+ && current_function_decl != 0
+ && ! pedantic
+ && ! TREE_THIS_VOLATILE (decl)
+ && TREE_READONLY (decl) && ! ITERATOR_P (decl)
+ && DECL_INITIAL (decl) != 0
+ && TREE_CODE (DECL_INITIAL (decl)) != ERROR_MARK
+ /* This is invalid if initial value is not constant.
+ If it has either a function call, a memory reference,
+ or a variable, then re-evaluating it could give different results. */
+ && TREE_CONSTANT (DECL_INITIAL (decl))
+ /* Check for cases where this is sub-optimal, even though valid. */
+ && TREE_CODE (DECL_INITIAL (decl)) != CONSTRUCTOR
+ && DECL_MODE (decl) != BLKmode)
+ return DECL_INITIAL (decl);
+ return decl;
+}
+
+/* Perform default promotions for C data used in expressions.
+ Arrays and functions are converted to pointers;
+ enumeral types or short or char, to int.
+ In addition, manifest constants symbols are replaced by their values. */
+
+tree
+default_conversion (exp)
+ tree exp;
+{
+ register tree type = TREE_TYPE (exp);
+ register enum tree_code code = TREE_CODE (type);
+
+ /* Constants can be used directly unless they're not loadable. */
+ if (TREE_CODE (exp) == CONST_DECL)
+ exp = DECL_INITIAL (exp);
+
+ /* Replace a nonvolatile const static variable with its value unless
+ it is an array, in which case we must be sure that taking the
+ address of the array produces consistent results. */
+ else if (optimize && TREE_CODE (exp) == VAR_DECL && code != ARRAY_TYPE)
+ {
+ exp = decl_constant_value (exp);
+ type = TREE_TYPE (exp);
+ }
+
+ /* Strip NON_LVALUE_EXPRs and no-op conversions, since we aren't using as
+ an lvalue. */
+ /* Do not use STRIP_NOPS here! It will remove conversions from pointer
+ to integer and cause infinite recursion. */
+ while (TREE_CODE (exp) == NON_LVALUE_EXPR
+ || (TREE_CODE (exp) == NOP_EXPR
+ && TREE_TYPE (TREE_OPERAND (exp, 0)) == TREE_TYPE (exp)))
+ exp = TREE_OPERAND (exp, 0);
+
+ /* Normally convert enums to int,
+ but convert wide enums to something wider. */
+ if (code == ENUMERAL_TYPE)
+ {
+ type = type_for_size (MAX (TYPE_PRECISION (type),
+ TYPE_PRECISION (integer_type_node)),
+ ((flag_traditional
+ || TYPE_PRECISION (type) >= TYPE_PRECISION (integer_type_node))
+ && TREE_UNSIGNED (type)));
+ return convert (type, exp);
+ }
+
+ if (C_PROMOTING_INTEGER_TYPE_P (type))
+ {
+ /* Traditionally, unsignedness is preserved in default promotions.
+ Also preserve unsignedness if not really getting any wider. */
+ if (TREE_UNSIGNED (type)
+ && (flag_traditional
+ || TYPE_PRECISION (type) == TYPE_PRECISION (integer_type_node)))
+ return convert (unsigned_type_node, exp);
+ return convert (integer_type_node, exp);
+ }
+ if (flag_traditional && !flag_allow_single_precision
+ && TYPE_MAIN_VARIANT (type) == float_type_node)
+ return convert (double_type_node, exp);
+ if (code == VOID_TYPE)
+ {
+ error ("void value not ignored as it ought to be");
+ return error_mark_node;
+ }
+ if (code == FUNCTION_TYPE)
+ {
+ return build_unary_op (ADDR_EXPR, exp, 0);
+ }
+ if (code == ARRAY_TYPE)
+ {
+ register tree adr;
+ tree restype = TREE_TYPE (type);
+ tree ptrtype;
+ int constp = 0;
+ int volatilep = 0;
+
+ if (TREE_CODE_CLASS (TREE_CODE (exp)) == 'r'
+ || TREE_CODE_CLASS (TREE_CODE (exp)) == 'd')
+ {
+ constp = TREE_READONLY (exp);
+ volatilep = TREE_THIS_VOLATILE (exp);
+ }
+
+ if (TYPE_READONLY (type) || TYPE_VOLATILE (type)
+ || constp || volatilep)
+ restype = c_build_type_variant (restype,
+ TYPE_READONLY (type) || constp,
+ TYPE_VOLATILE (type) || volatilep);
+
+ if (TREE_CODE (exp) == INDIRECT_REF)
+ return convert (TYPE_POINTER_TO (restype),
+ TREE_OPERAND (exp, 0));
+
+ if (TREE_CODE (exp) == COMPOUND_EXPR)
+ {
+ tree op1 = default_conversion (TREE_OPERAND (exp, 1));
+ return build (COMPOUND_EXPR, TREE_TYPE (op1),
+ TREE_OPERAND (exp, 0), op1);
+ }
+
+ if (!lvalue_p (exp)
+ && ! (TREE_CODE (exp) == CONSTRUCTOR && TREE_STATIC (exp)))
+ {
+ error ("invalid use of non-lvalue array");
+ return error_mark_node;
+ }
+
+ ptrtype = build_pointer_type (restype);
+
+ if (TREE_CODE (exp) == VAR_DECL)
+ {
+ /* ??? This is not really quite correct
+ in that the type of the operand of ADDR_EXPR
+ is not the target type of the type of the ADDR_EXPR itself.
+ Question is, can this lossage be avoided? */
+ adr = build1 (ADDR_EXPR, ptrtype, exp);
+ if (mark_addressable (exp) == 0)
+ return error_mark_node;
+ TREE_CONSTANT (adr) = staticp (exp);
+ TREE_SIDE_EFFECTS (adr) = 0; /* Default would be, same as EXP. */
+ return adr;
+ }
+ /* This way is better for a COMPONENT_REF since it can
+ simplify the offset for a component. */
+ adr = build_unary_op (ADDR_EXPR, exp, 1);
+ return convert (ptrtype, adr);
+ }
+ return exp;
+}
+
+/* Look up component name in the structure type definition.
+
+ If this component name is found indirectly within an anonymous union,
+ store in *INDIRECT the component which directly contains
+ that anonymous union. Otherwise, set *INDIRECT to 0. */
+
+static tree
+lookup_field (type, component, indirect)
+ tree type, component;
+ tree *indirect;
+{
+ tree field;
+
+ /* If TYPE_LANG_SPECIFIC is set, then it is a sorted array of pointers
+ to the field elements. Use a binary search on this array to quickly
+ find the element. Otherwise, do a linear search. TYPE_LANG_SPECIFIC
+ will always be set for structures which have many elements. */
+
+ if (TYPE_LANG_SPECIFIC (type))
+ {
+ int bot, top, half;
+ tree *field_array = &TYPE_LANG_SPECIFIC (type)->elts[0];
+
+ field = TYPE_FIELDS (type);
+ bot = 0;
+ top = TYPE_LANG_SPECIFIC (type)->len;
+ while (top - bot > 1)
+ {
+ half = (top - bot + 1) >> 1;
+ field = field_array[bot+half];
+
+ if (DECL_NAME (field) == NULL_TREE)
+ {
+ /* Step through all anon unions in linear fashion. */
+ while (DECL_NAME (field_array[bot]) == NULL_TREE)
+ {
+ tree anon, junk;
+
+ field = field_array[bot++];
+ anon = lookup_field (TREE_TYPE (field), component, &junk);
+ if (anon != NULL_TREE)
+ {
+ *indirect = field;
+ return anon;
+ }
+ }
+
+ /* Entire record is only anon unions. */
+ if (bot > top)
+ return NULL_TREE;
+
+ /* Restart the binary search, with new lower bound. */
+ continue;
+ }
+
+ if (DECL_NAME (field) == component)
+ break;
+ if (DECL_NAME (field) < component)
+ bot += half;
+ else
+ top = bot + half;
+ }
+
+ if (DECL_NAME (field_array[bot]) == component)
+ field = field_array[bot];
+ else if (DECL_NAME (field) != component)
+ field = 0;
+ }
+ else
+ {
+ for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
+ {
+ if (DECL_NAME (field) == NULL_TREE)
+ {
+ tree junk;
+ tree anon = lookup_field (TREE_TYPE (field), component, &junk);
+ if (anon != NULL_TREE)
+ {
+ *indirect = field;
+ return anon;
+ }
+ }
+
+ if (DECL_NAME (field) == component)
+ break;
+ }
+ }
+
+ *indirect = NULL_TREE;
+ return field;
+}
+
+/* Make an expression to refer to the COMPONENT field of
+ structure or union value DATUM. COMPONENT is an IDENTIFIER_NODE. */
+
+tree
+build_component_ref (datum, component)
+ tree datum, component;
+{
+ register tree type = TREE_TYPE (datum);
+ register enum tree_code code = TREE_CODE (type);
+ register tree field = NULL;
+ register tree ref;
+
+ /* If DATUM is a COMPOUND_EXPR or COND_EXPR, move our reference inside it
+ unless we are not to support things not strictly ANSI. */
+ switch (TREE_CODE (datum))
+ {
+ case COMPOUND_EXPR:
+ {
+ tree value = build_component_ref (TREE_OPERAND (datum, 1), component);
+ return build (COMPOUND_EXPR, TREE_TYPE (value),
+ TREE_OPERAND (datum, 0), value);
+ }
+ case COND_EXPR:
+ return build_conditional_expr
+ (TREE_OPERAND (datum, 0),
+ build_component_ref (TREE_OPERAND (datum, 1), component),
+ build_component_ref (TREE_OPERAND (datum, 2), component));
+ }
+
+ /* See if there is a field or component with name COMPONENT. */
+
+ if (code == RECORD_TYPE || code == UNION_TYPE)
+ {
+ tree indirect = 0;
+
+ if (TYPE_SIZE (type) == 0)
+ {
+ incomplete_type_error (NULL_TREE, type);
+ return error_mark_node;
+ }
+
+ field = lookup_field (type, component, &indirect);
+
+ if (!field)
+ {
+ error (code == RECORD_TYPE
+ ? "structure has no member named `%s'"
+ : "union has no member named `%s'",
+ IDENTIFIER_POINTER (component));
+ return error_mark_node;
+ }
+ if (TREE_TYPE (field) == error_mark_node)
+ return error_mark_node;
+
+ /* If FIELD was found buried within an anonymous union,
+ make one COMPONENT_REF to get that anonymous union,
+ then fall thru to make a second COMPONENT_REF to get FIELD. */
+ if (indirect != 0)
+ {
+ ref = build (COMPONENT_REF, TREE_TYPE (indirect), datum, indirect);
+ if (TREE_READONLY (datum) || TREE_READONLY (indirect))
+ TREE_READONLY (ref) = 1;
+ if (TREE_THIS_VOLATILE (datum) || TREE_THIS_VOLATILE (indirect))
+ TREE_THIS_VOLATILE (ref) = 1;
+ datum = ref;
+ }
+
+ ref = build (COMPONENT_REF, TREE_TYPE (field), datum, field);
+
+ if (TREE_READONLY (datum) || TREE_READONLY (field))
+ TREE_READONLY (ref) = 1;
+ if (TREE_THIS_VOLATILE (datum) || TREE_THIS_VOLATILE (field))
+ TREE_THIS_VOLATILE (ref) = 1;
+
+ return ref;
+ }
+ else if (code != ERROR_MARK)
+ error ("request for member `%s' in something not a structure or union",
+ IDENTIFIER_POINTER (component));
+
+ return error_mark_node;
+}
+
+/* Given an expression PTR for a pointer, return an expression
+ for the value pointed to.
+ ERRORSTRING is the name of the operator to appear in error messages. */
+
+tree
+build_indirect_ref (ptr, errorstring)
+ tree ptr;
+ char *errorstring;
+{
+ register tree pointer = default_conversion (ptr);
+ register tree type = TREE_TYPE (pointer);
+
+ if (TREE_CODE (type) == POINTER_TYPE)
+ {
+ if (TREE_CODE (pointer) == ADDR_EXPR
+ && !flag_volatile
+ && (TREE_TYPE (TREE_OPERAND (pointer, 0))
+ == TREE_TYPE (type)))
+ return TREE_OPERAND (pointer, 0);
+ else
+ {
+ tree t = TREE_TYPE (type);
+ register tree ref = build1 (INDIRECT_REF,
+ TYPE_MAIN_VARIANT (t), pointer);
+
+ if (TYPE_SIZE (t) == 0 && TREE_CODE (t) != ARRAY_TYPE)
+ {
+ error ("dereferencing pointer to incomplete type");
+ return error_mark_node;
+ }
+ if (TREE_CODE (t) == VOID_TYPE)
+ warning ("dereferencing `void *' pointer");
+
+ /* We *must* set TREE_READONLY when dereferencing a pointer to const,
+ so that we get the proper error message if the result is used
+ to assign to. Also, &* is supposed to be a no-op.
+ And ANSI C seems to specify that the type of the result
+ should be the const type. */
+ /* A de-reference of a pointer to const is not a const. It is valid
+ to change it via some other pointer. */
+ TREE_READONLY (ref) = TYPE_READONLY (t);
+ TREE_SIDE_EFFECTS (ref)
+ = TYPE_VOLATILE (t) || TREE_SIDE_EFFECTS (pointer) || flag_volatile;
+ TREE_THIS_VOLATILE (ref) = TYPE_VOLATILE (t);
+ return ref;
+ }
+ }
+ else if (TREE_CODE (pointer) != ERROR_MARK)
+ error ("invalid type argument of `%s'", errorstring);
+ return error_mark_node;
+}
+
+/* This handles expressions of the form "a[i]", which denotes
+ an array reference.
+
+ This is logically equivalent in C to *(a+i), but we may do it differently.
+ If A is a variable or a member, we generate a primitive ARRAY_REF.
+ This avoids forcing the array out of registers, and can work on
+ arrays that are not lvalues (for example, members of structures returned
+ by functions). */
+
+tree
+build_array_ref (array, index)
+ tree array, index;
+{
+ if (index == 0)
+ {
+ error ("subscript missing in array reference");
+ return error_mark_node;
+ }
+
+ if (TREE_TYPE (array) == error_mark_node
+ || TREE_TYPE (index) == error_mark_node)
+ return error_mark_node;
+
+ if (TREE_CODE (TREE_TYPE (array)) == ARRAY_TYPE
+ && TREE_CODE (array) != INDIRECT_REF)
+ {
+ tree rval, type;
+
+ /* Subscripting with type char is likely to lose
+ on a machine where chars are signed.
+ So warn on any machine, but optionally.
+ Don't warn for unsigned char since that type is safe.
+ Don't warn for signed char because anyone who uses that
+ must have done so deliberately. */
+ if (warn_char_subscripts
+ && TYPE_MAIN_VARIANT (TREE_TYPE (index)) == char_type_node)
+ warning ("array subscript has type `char'");
+
+ /* Apply default promotions *after* noticing character types. */
+ index = default_conversion (index);
+
+ /* Require integer *after* promotion, for sake of enums. */
+ if (TREE_CODE (TREE_TYPE (index)) != INTEGER_TYPE)
+ {
+ error ("array subscript is not an integer");
+ return error_mark_node;
+ }
+
+ /* An array that is indexed by a non-constant
+ cannot be stored in a register; we must be able to do
+ address arithmetic on its address.
+ Likewise an array of elements of variable size. */
+ if (TREE_CODE (index) != INTEGER_CST
+ || (TYPE_SIZE (TREE_TYPE (TREE_TYPE (array))) != 0
+ && TREE_CODE (TYPE_SIZE (TREE_TYPE (TREE_TYPE (array)))) != INTEGER_CST))
+ {
+ if (mark_addressable (array) == 0)
+ return error_mark_node;
+ }
+ /* An array that is indexed by a constant value which is not within
+ the array bounds cannot be stored in a register either; because we
+ would get a crash in store_bit_field/extract_bit_field when trying
+ to access a non-existent part of the register. */
+ if (TREE_CODE (index) == INTEGER_CST
+ && TYPE_VALUES (TREE_TYPE (array))
+ && ! int_fits_type_p (index, TYPE_VALUES (TREE_TYPE (array))))
+ {
+ if (mark_addressable (array) == 0)
+ return error_mark_node;
+ }
+
+ if (pedantic && !lvalue_p (array))
+ {
+ if (DECL_REGISTER (array))
+ pedwarn ("ANSI C forbids subscripting `register' array");
+ else
+ pedwarn ("ANSI C forbids subscripting non-lvalue array");
+ }
+
+ if (pedantic)
+ {
+ tree foo = array;
+ while (TREE_CODE (foo) == COMPONENT_REF)
+ foo = TREE_OPERAND (foo, 0);
+ if (TREE_CODE (foo) == VAR_DECL && DECL_REGISTER (foo))
+ pedwarn ("ANSI C forbids subscripting non-lvalue array");
+ }
+
+ type = TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (array)));
+ rval = build (ARRAY_REF, type, array, index);
+ /* Array ref is const/volatile if the array elements are
+ or if the array is. */
+ TREE_READONLY (rval)
+ |= (TYPE_READONLY (TREE_TYPE (TREE_TYPE (array)))
+ | TREE_READONLY (array));
+ TREE_SIDE_EFFECTS (rval)
+ |= (TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (array)))
+ | TREE_SIDE_EFFECTS (array));
+ TREE_THIS_VOLATILE (rval)
+ |= (TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (array)))
+ /* This was added by rms on 16 Nov 91.
+ It fixes vol struct foo *a; a->elts[1]
+ in an inline function.
+ Hope it doesn't break something else. */
+ | TREE_THIS_VOLATILE (array));
+ return require_complete_type (fold (rval));
+ }
+
+ {
+ tree ar = default_conversion (array);
+ tree ind = default_conversion (index);
+
+ /* Put the integer in IND to simplify error checking. */
+ if (TREE_CODE (TREE_TYPE (ar)) == INTEGER_TYPE)
+ {
+ tree temp = ar;
+ ar = ind;
+ ind = temp;
+ }
+
+ if (ar == error_mark_node)
+ return ar;
+
+ if (TREE_CODE (TREE_TYPE (ar)) != POINTER_TYPE)
+ {
+ error ("subscripted value is neither array nor pointer");
+ return error_mark_node;
+ }
+ if (TREE_CODE (TREE_TYPE (ind)) != INTEGER_TYPE)
+ {
+ error ("array subscript is not an integer");
+ return error_mark_node;
+ }
+
+ return build_indirect_ref (build_binary_op (PLUS_EXPR, ar, ind, 0),
+ "array indexing");
+ }
+}
+
+/* Build a function call to function FUNCTION with parameters PARAMS.
+ PARAMS is a list--a chain of TREE_LIST nodes--in which the
+ TREE_VALUE of each node is a parameter-expression.
+ FUNCTION's data type may be a function type or a pointer-to-function. */
+
+tree
+build_function_call (function, params)
+ tree function, params;
+{
+ register tree fntype, fundecl = 0;
+ register tree coerced_params;
+ tree name = NULL_TREE, assembler_name = NULL_TREE;
+
+ /* Strip NON_LVALUE_EXPRs, etc., since we aren't using as an lvalue. */
+ STRIP_TYPE_NOPS (function);
+
+ /* Convert anything with function type to a pointer-to-function. */
+ if (TREE_CODE (function) == FUNCTION_DECL)
+ {
+ name = DECL_NAME (function);
+ assembler_name = DECL_ASSEMBLER_NAME (function);
+
+ /* Differs from default_conversion by not setting TREE_ADDRESSABLE
+ (because calling an inline function does not mean the function
+ needs to be separately compiled). */
+ fntype = build_type_variant (TREE_TYPE (function),
+ TREE_READONLY (function),
+ TREE_THIS_VOLATILE (function));
+ fundecl = function;
+ function = build1 (ADDR_EXPR, build_pointer_type (fntype), function);
+ }
+ else
+ function = default_conversion (function);
+
+ fntype = TREE_TYPE (function);
+
+ if (TREE_CODE (fntype) == ERROR_MARK)
+ return error_mark_node;
+
+ if (!(TREE_CODE (fntype) == POINTER_TYPE
+ && TREE_CODE (TREE_TYPE (fntype)) == FUNCTION_TYPE))
+ {
+ error ("called object is not a function");
+ return error_mark_node;
+ }
+
+ /* fntype now gets the type of function pointed to. */
+ fntype = TREE_TYPE (fntype);
+
+ /* Convert the parameters to the types declared in the
+ function prototype, or apply default promotions. */
+
+ coerced_params
+ = convert_arguments (TYPE_ARG_TYPES (fntype), params, name, fundecl);
+
+ /* Check for errors in format strings. */
+
+ if (warn_format && (name || assembler_name))
+ check_function_format (name, assembler_name, coerced_params);
+
+ /* Recognize certain built-in functions so we can make tree-codes
+ other than CALL_EXPR. We do this when it enables fold-const.c
+ to do something useful. */
+
+ if (TREE_CODE (function) == ADDR_EXPR
+ && TREE_CODE (TREE_OPERAND (function, 0)) == FUNCTION_DECL
+ && DECL_BUILT_IN (TREE_OPERAND (function, 0)))
+ switch (DECL_FUNCTION_CODE (TREE_OPERAND (function, 0)))
+ {
+ case BUILT_IN_ABS:
+ case BUILT_IN_LABS:
+ case BUILT_IN_FABS:
+ if (coerced_params == 0)
+ return integer_zero_node;
+ return build_unary_op (ABS_EXPR, TREE_VALUE (coerced_params), 0);
+ }
+
+ {
+ register tree result
+ = build (CALL_EXPR, TREE_TYPE (fntype),
+ function, coerced_params, NULL_TREE);
+
+ TREE_SIDE_EFFECTS (result) = 1;
+ if (TREE_TYPE (result) == void_type_node)
+ return result;
+ return require_complete_type (result);
+ }
+}
+
+/* Convert the argument expressions in the list VALUES
+ to the types in the list TYPELIST. The result is a list of converted
+ argument expressions.
+
+ If TYPELIST is exhausted, or when an element has NULL as its type,
+ perform the default conversions.
+
+ PARMLIST is the chain of parm decls for the function being called.
+ It may be 0, if that info is not available.
+ It is used only for generating error messages.
+
+ NAME is an IDENTIFIER_NODE or 0. It is used only for error messages.
+
+ This is also where warnings about wrong number of args are generated.
+
+ Both VALUES and the returned value are chains of TREE_LIST nodes
+ with the elements of the list in the TREE_VALUE slots of those nodes. */
+
+static tree
+convert_arguments (typelist, values, name, fundecl)
+ tree typelist, values, name, fundecl;
+{
+ register tree typetail, valtail;
+ register tree result = NULL;
+ int parmnum;
+
+ /* Scan the given expressions and types, producing individual
+ converted arguments and pushing them on RESULT in reverse order. */
+
+ for (valtail = values, typetail = typelist, parmnum = 0;
+ valtail;
+ valtail = TREE_CHAIN (valtail), parmnum++)
+ {
+ register tree type = typetail ? TREE_VALUE (typetail) : 0;
+ register tree val = TREE_VALUE (valtail);
+
+ if (type == void_type_node)
+ {
+ if (name)
+ error ("too many arguments to function `%s'",
+ IDENTIFIER_POINTER (name));
+ else
+ error ("too many arguments to function");
+ break;
+ }
+
+ /* Strip NON_LVALUE_EXPRs since we aren't using as an lvalue. */
+ /* Do not use STRIP_NOPS here! We do not want an enumerator with value 0
+ to convert automatically to a pointer. */
+ if (TREE_CODE (val) == NON_LVALUE_EXPR)
+ val = TREE_OPERAND (val, 0);
+
+ if (TREE_CODE (TREE_TYPE (val)) == ARRAY_TYPE
+ || TREE_CODE (TREE_TYPE (val)) == FUNCTION_TYPE)
+ val = default_conversion (val);
+
+ val = require_complete_type (val);
+
+ if (type != 0)
+ {
+ /* Formal parm type is specified by a function prototype. */
+ tree parmval;
+
+ if (TYPE_SIZE (type) == 0)
+ {
+ error ("type of formal parameter %d is incomplete", parmnum + 1);
+ parmval = val;
+ }
+ else
+ {
+ /* Optionally warn about conversions that
+ differ from the default conversions. */
+ if (warn_conversion)
+ {
+ int formal_prec = TYPE_PRECISION (type);
+
+ if (INTEGRAL_TYPE_P (type)
+ && TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
+ warn_for_assignment ("%s as integer rather than floating due to prototype", (char *) 0, name, parmnum + 1);
+ else if (TREE_CODE (type) == COMPLEX_TYPE
+ && TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
+ warn_for_assignment ("%s as complex rather than floating due to prototype", (char *) 0, name, parmnum + 1);
+ else if (TREE_CODE (type) == REAL_TYPE
+ && INTEGRAL_TYPE_P (TREE_TYPE (val)))
+ warn_for_assignment ("%s as floating rather than integer due to prototype", (char *) 0, name, parmnum + 1);
+ else if (TREE_CODE (type) == REAL_TYPE
+ && TREE_CODE (TREE_TYPE (val)) == COMPLEX_TYPE)
+ warn_for_assignment ("%s as floating rather than complex due to prototype", (char *) 0, name, parmnum + 1);
+ /* ??? At some point, messages should be written about
+ conversions between complex types, but that's too messy
+ to do now. */
+ else if (TREE_CODE (type) == REAL_TYPE
+ && TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
+ {
+ /* Warn if any argument is passed as `float',
+ since without a prototype it would be `double'. */
+ if (formal_prec == TYPE_PRECISION (float_type_node))
+ warn_for_assignment ("%s as `float' rather than `double' due to prototype", (char *) 0, name, parmnum + 1);
+ }
+ /* Detect integer changing in width or signedness. */
+ else if (INTEGRAL_TYPE_P (type)
+ && INTEGRAL_TYPE_P (TREE_TYPE (val)))
+ {
+ tree would_have_been = default_conversion (val);
+ tree type1 = TREE_TYPE (would_have_been);
+
+ if (TREE_CODE (type) == ENUMERAL_TYPE
+ && type == TREE_TYPE (val))
+ /* No warning if function asks for enum
+ and the actual arg is that enum type. */
+ ;
+ else if (formal_prec != TYPE_PRECISION (type1))
+ warn_for_assignment ("%s with different width due to prototype", (char *) 0, name, parmnum + 1);
+ else if (TREE_UNSIGNED (type) == TREE_UNSIGNED (type1))
+ ;
+ /* Don't complain if the formal parameter type
+ is an enum, because we can't tell now whether
+ the value was an enum--even the same enum. */
+ else if (TREE_CODE (type) == ENUMERAL_TYPE)
+ ;
+ else if (TREE_CODE (val) == INTEGER_CST
+ && int_fits_type_p (val, type))
+ /* Change in signedness doesn't matter
+ if a constant value is unaffected. */
+ ;
+ /* Likewise for a constant in a NOP_EXPR. */
+ else if (TREE_CODE (val) == NOP_EXPR
+ && TREE_CODE (TREE_OPERAND (val, 0)) == INTEGER_CST
+ && int_fits_type_p (TREE_OPERAND (val, 0), type))
+ ;
+#if 0 /* We never get such tree structure here. */
+ else if (TREE_CODE (TREE_TYPE (val)) == ENUMERAL_TYPE
+ && int_fits_type_p (TYPE_MIN_VALUE (TREE_TYPE (val)), type)
+ && int_fits_type_p (TYPE_MAX_VALUE (TREE_TYPE (val)), type))
+ /* Change in signedness doesn't matter
+ if an enum value is unaffected. */
+ ;
+#endif
+ /* If the value is extended from a narrower
+ unsigned type, it doesn't matter whether we
+ pass it as signed or unsigned; the value
+ certainly is the same either way. */
+ else if (TYPE_PRECISION (TREE_TYPE (val)) < TYPE_PRECISION (type)
+ && TREE_UNSIGNED (TREE_TYPE (val)))
+ ;
+ else if (TREE_UNSIGNED (type))
+ warn_for_assignment ("%s as unsigned due to prototype", (char *) 0, name, parmnum + 1);
+ else
+ warn_for_assignment ("%s as signed due to prototype", (char *) 0, name, parmnum + 1);
+ }
+ }
+
+ parmval = convert_for_assignment (type, val,
+ (char *)0, /* arg passing */
+ fundecl, name, parmnum + 1);
+
+#ifdef PROMOTE_PROTOTYPES
+ if ((TREE_CODE (type) == INTEGER_TYPE
+ || TREE_CODE (type) == ENUMERAL_TYPE)
+ && (TYPE_PRECISION (type) < TYPE_PRECISION (integer_type_node)))
+ parmval = default_conversion (parmval);
+#endif
+ }
+ result = tree_cons (NULL_TREE, parmval, result);
+ }
+ else if (TREE_CODE (TREE_TYPE (val)) == REAL_TYPE
+ && (TYPE_PRECISION (TREE_TYPE (val))
+ < TYPE_PRECISION (double_type_node)))
+ /* Convert `float' to `double'. */
+ result = tree_cons (NULL_TREE, convert (double_type_node, val), result);
+ else
+ /* Convert `short' and `char' to full-size `int'. */
+ result = tree_cons (NULL_TREE, default_conversion (val), result);
+
+ if (typetail)
+ typetail = TREE_CHAIN (typetail);
+ }
+
+ if (typetail != 0 && TREE_VALUE (typetail) != void_type_node)
+ {
+ if (name)
+ error ("too few arguments to function `%s'",
+ IDENTIFIER_POINTER (name));
+ else
+ error ("too few arguments to function");
+ }
+
+ return nreverse (result);
+}
+
+/* This is the entry point used by the parser
+ for binary operators in the input.
+ In addition to constructing the expression,
+ we check for operands that were written with other binary operators
+ in a way that is likely to confuse the user. */
+
+tree
+parser_build_binary_op (code, arg1, arg2)
+ enum tree_code code;
+ tree arg1, arg2;
+{
+ tree result = build_binary_op (code, arg1, arg2, 1);
+
+ char class;
+ char class1 = TREE_CODE_CLASS (TREE_CODE (arg1));
+ char class2 = TREE_CODE_CLASS (TREE_CODE (arg2));
+ enum tree_code code1 = ERROR_MARK;
+ enum tree_code code2 = ERROR_MARK;
+
+ if (class1 == 'e' || class1 == '1'
+ || class1 == '2' || class1 == '<')
+ code1 = C_EXP_ORIGINAL_CODE (arg1);
+ if (class2 == 'e' || class2 == '1'
+ || class2 == '2' || class2 == '<')
+ code2 = C_EXP_ORIGINAL_CODE (arg2);
+
+ /* Check for cases such as x+y<<z which users are likely
+ to misinterpret. If parens are used, C_EXP_ORIGINAL_CODE
+ is cleared to prevent these warnings. */
+ if (warn_parentheses)
+ {
+ if (code == LSHIFT_EXPR || code == RSHIFT_EXPR)
+ {
+ if (code1 == PLUS_EXPR || code1 == MINUS_EXPR
+ || code2 == PLUS_EXPR || code2 == MINUS_EXPR)
+ warning ("suggest parentheses around + or - inside shift");
+ }
+
+ if (code == TRUTH_ORIF_EXPR)
+ {
+ if (code1 == TRUTH_ANDIF_EXPR
+ || code2 == TRUTH_ANDIF_EXPR)
+ warning ("suggest parentheses around && within ||");
+ }
+
+ if (code == BIT_IOR_EXPR)
+ {
+ if (code1 == BIT_AND_EXPR || code1 == BIT_XOR_EXPR
+ || code1 == PLUS_EXPR || code1 == MINUS_EXPR
+ || code2 == BIT_AND_EXPR || code2 == BIT_XOR_EXPR
+ || code2 == PLUS_EXPR || code2 == MINUS_EXPR)
+ warning ("suggest parentheses around arithmetic in operand of |");
+ /* Check cases like x|y==z */
+ if (TREE_CODE_CLASS (code1) == '<' || TREE_CODE_CLASS (code2) == '<')
+ warning ("suggest parentheses around comparison in operand of |");
+ }
+
+ if (code == BIT_XOR_EXPR)
+ {
+ if (code1 == BIT_AND_EXPR
+ || code1 == PLUS_EXPR || code1 == MINUS_EXPR
+ || code2 == BIT_AND_EXPR
+ || code2 == PLUS_EXPR || code2 == MINUS_EXPR)
+ warning ("suggest parentheses around arithmetic in operand of ^");
+ /* Check cases like x^y==z */
+ if (TREE_CODE_CLASS (code1) == '<' || TREE_CODE_CLASS (code2) == '<')
+ warning ("suggest parentheses around comparison in operand of ^");
+ }
+
+ if (code == BIT_AND_EXPR)
+ {
+ if (code1 == PLUS_EXPR || code1 == MINUS_EXPR
+ || code2 == PLUS_EXPR || code2 == MINUS_EXPR)
+ warning ("suggest parentheses around + or - in operand of &");
+ /* Check cases like x&y==z */
+ if (TREE_CODE_CLASS (code1) == '<' || TREE_CODE_CLASS (code2) == '<')
+ warning ("suggest parentheses around comparison in operand of &");
+ }
+ }
+
+ /* Similarly, check for cases like 1<=i<=10 that are probably errors. */
+ if (TREE_CODE_CLASS (code) == '<' && extra_warnings
+ && (TREE_CODE_CLASS (code1) == '<' || TREE_CODE_CLASS (code2) == '<'))
+ warning ("comparisons like X<=Y<=Z do not have their mathematical meaning");
+
+ unsigned_conversion_warning (result, arg1);
+ unsigned_conversion_warning (result, arg2);
+ overflow_warning (result);
+
+ class = TREE_CODE_CLASS (TREE_CODE (result));
+
+ /* Record the code that was specified in the source,
+ for the sake of warnings about confusing nesting. */
+ if (class == 'e' || class == '1'
+ || class == '2' || class == '<')
+ C_SET_EXP_ORIGINAL_CODE (result, code);
+ else
+ {
+ int flag = TREE_CONSTANT (result);
+ /* We used to use NOP_EXPR rather than NON_LVALUE_EXPR
+ so that convert_for_assignment wouldn't strip it.
+ That way, we got warnings for things like p = (1 - 1).
+ But it turns out we should not get those warnings. */
+ result = build1 (NON_LVALUE_EXPR, TREE_TYPE (result), result);
+ C_SET_EXP_ORIGINAL_CODE (result, code);
+ TREE_CONSTANT (result) = flag;
+ }
+
+ return result;
+}
+
+/* Build a binary-operation expression without default conversions.
+ CODE is the kind of expression to build.
+ This function differs from `build' in several ways:
+ the data type of the result is computed and recorded in it,
+ warnings are generated if arg data types are invalid,
+ special handling for addition and subtraction of pointers is known,
+ and some optimization is done (operations on narrow ints
+ are done in the narrower type when that gives the same result).
+ Constant folding is also done before the result is returned.
+
+ Note that the operands will never have enumeral types, or function
+ or array types, because either they will have the default conversions
+ performed or they have both just been converted to some other type in which
+ the arithmetic is to be done. */
+
+tree
+build_binary_op (code, orig_op0, orig_op1, convert_p)
+ enum tree_code code;
+ tree orig_op0, orig_op1;
+ int convert_p;
+{
+ tree type0, type1;
+ register enum tree_code code0, code1;
+ tree op0, op1;
+
+ /* Expression code to give to the expression when it is built.
+ Normally this is CODE, which is what the caller asked for,
+ but in some special cases we change it. */
+ register enum tree_code resultcode = code;
+
+ /* Data type in which the computation is to be performed.
+ In the simplest cases this is the common type of the arguments. */
+ register tree result_type = NULL;
+
+ /* Nonzero means operands have already been type-converted
+ in whatever way is necessary.
+ Zero means they need to be converted to RESULT_TYPE. */
+ int converted = 0;
+
+ /* Nonzero means create the expression with this type, rather than
+ RESULT_TYPE. */
+ tree build_type = 0;
+
+ /* Nonzero means after finally constructing the expression
+ convert it to this type. */
+ tree final_type = 0;
+
+ /* Nonzero if this is an operation like MIN or MAX which can
+ safely be computed in short if both args are promoted shorts.
+ Also implies COMMON.
+ -1 indicates a bitwise operation; this makes a difference
+ in the exact conditions for when it is safe to do the operation
+ in a narrower mode. */
+ int shorten = 0;
+
+ /* Nonzero if this is a comparison operation;
+ if both args are promoted shorts, compare the original shorts.
+ Also implies COMMON. */
+ int short_compare = 0;
+
+ /* Nonzero if this is a right-shift operation, which can be computed on the
+ original short and then promoted if the operand is a promoted short. */
+ int short_shift = 0;
+
+ /* Nonzero means set RESULT_TYPE to the common type of the args. */
+ int common = 0;
+
+ if (convert_p)
+ {
+ op0 = default_conversion (orig_op0);
+ op1 = default_conversion (orig_op1);
+ }
+ else
+ {
+ op0 = orig_op0;
+ op1 = orig_op1;
+ }
+
+ type0 = TREE_TYPE (op0);
+ type1 = TREE_TYPE (op1);
+
+ /* The expression codes of the data types of the arguments tell us
+ whether the arguments are integers, floating, pointers, etc. */
+ code0 = TREE_CODE (type0);
+ code1 = TREE_CODE (type1);
+
+ /* Strip NON_LVALUE_EXPRs, etc., since we aren't using as an lvalue. */
+ STRIP_TYPE_NOPS (op0);
+ STRIP_TYPE_NOPS (op1);
+
+ /* If an error was already reported for one of the arguments,
+ avoid reporting another error. */
+
+ if (code0 == ERROR_MARK || code1 == ERROR_MARK)
+ return error_mark_node;
+
+ switch (code)
+ {
+ case PLUS_EXPR:
+ /* Handle the pointer + int case. */
+ if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
+ return pointer_int_sum (PLUS_EXPR, op0, op1);
+ else if (code1 == POINTER_TYPE && code0 == INTEGER_TYPE)
+ return pointer_int_sum (PLUS_EXPR, op1, op0);
+ else
+ common = 1;
+ break;
+
+ case MINUS_EXPR:
+ /* Subtraction of two similar pointers.
+ We must subtract them as integers, then divide by object size. */
+ if (code0 == POINTER_TYPE && code1 == POINTER_TYPE
+ && comp_target_types (type0, type1))
+ return pointer_diff (op0, op1);
+ /* Handle pointer minus int. Just like pointer plus int. */
+ else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
+ return pointer_int_sum (MINUS_EXPR, op0, op1);
+ else
+ common = 1;
+ break;
+
+ case MULT_EXPR:
+ common = 1;
+ break;
+
+ case TRUNC_DIV_EXPR:
+ case CEIL_DIV_EXPR:
+ case FLOOR_DIV_EXPR:
+ case ROUND_DIV_EXPR:
+ case EXACT_DIV_EXPR:
+ if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE
+ || code0 == COMPLEX_TYPE)
+ && (code1 == INTEGER_TYPE || code1 == REAL_TYPE
+ || code1 == COMPLEX_TYPE))
+ {
+ if (!(code0 == INTEGER_TYPE && code1 == INTEGER_TYPE))
+ resultcode = RDIV_EXPR;
+ else
+ {
+ /* Although it would be tempting to shorten always here, that
+ loses on some targets, since the modulo instruction is
+ undefined if the quotient can't be represented in the
+ computation mode. We shorten only if unsigned or if
+ dividing by something we know != -1. */
+ shorten = (TREE_UNSIGNED (TREE_TYPE (orig_op0))
+ || (TREE_CODE (op1) == INTEGER_CST
+ && (TREE_INT_CST_LOW (op1) != -1
+ || TREE_INT_CST_HIGH (op1) != -1)));
+ }
+ common = 1;
+ }
+ break;
+
+ case BIT_AND_EXPR:
+ case BIT_ANDTC_EXPR:
+ case BIT_IOR_EXPR:
+ case BIT_XOR_EXPR:
+ if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
+ shorten = -1;
+ /* If one operand is a constant, and the other is a short type
+ that has been converted to an int,
+ really do the work in the short type and then convert the
+ result to int. If we are lucky, the constant will be 0 or 1
+ in the short type, making the entire operation go away. */
+ if (TREE_CODE (op0) == INTEGER_CST
+ && TREE_CODE (op1) == NOP_EXPR
+ && TYPE_PRECISION (type1) > TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op1, 0)))
+ && TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op1, 0))))
+ {
+ final_type = result_type;
+ op1 = TREE_OPERAND (op1, 0);
+ result_type = TREE_TYPE (op1);
+ }
+ if (TREE_CODE (op1) == INTEGER_CST
+ && TREE_CODE (op0) == NOP_EXPR
+ && TYPE_PRECISION (type0) > TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op0, 0)))
+ && TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op0, 0))))
+ {
+ final_type = result_type;
+ op0 = TREE_OPERAND (op0, 0);
+ result_type = TREE_TYPE (op0);
+ }
+ break;
+
+ case TRUNC_MOD_EXPR:
+ case FLOOR_MOD_EXPR:
+ if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
+ {
+ /* Although it would be tempting to shorten always here, that loses
+ on some targets, since the modulo instruction is undefined if the
+ quotient can't be represented in the computation mode. We shorten
+ only if unsigned or if dividing by something we know != -1. */
+ shorten = (TREE_UNSIGNED (TREE_TYPE (orig_op0))
+ || (TREE_CODE (op1) == INTEGER_CST
+ && (TREE_INT_CST_LOW (op1) != -1
+ || TREE_INT_CST_HIGH (op1) != -1)));
+ common = 1;
+ }
+ break;
+
+ case TRUTH_ANDIF_EXPR:
+ case TRUTH_ORIF_EXPR:
+ case TRUTH_AND_EXPR:
+ case TRUTH_OR_EXPR:
+ case TRUTH_XOR_EXPR:
+ if ((code0 == INTEGER_TYPE || code0 == POINTER_TYPE
+ || code0 == REAL_TYPE || code0 == COMPLEX_TYPE)
+ && (code1 == INTEGER_TYPE || code1 == POINTER_TYPE
+ || code1 == REAL_TYPE || code1 == COMPLEX_TYPE))
+ {
+ /* Result of these operations is always an int,
+ but that does not mean the operands should be
+ converted to ints! */
+ result_type = integer_type_node;
+ op0 = truthvalue_conversion (op0);
+ op1 = truthvalue_conversion (op1);
+ converted = 1;
+ }
+ break;
+
+ /* Shift operations: result has same type as first operand;
+ always convert second operand to int.
+ Also set SHORT_SHIFT if shifting rightward. */
+
+ case RSHIFT_EXPR:
+ if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
+ {
+ if (TREE_CODE (op1) == INTEGER_CST)
+ {
+ if (tree_int_cst_sgn (op1) < 0)
+ warning ("right shift count is negative");
+ else
+ {
+ if (TREE_INT_CST_LOW (op1) | TREE_INT_CST_HIGH (op1))
+ short_shift = 1;
+ if (TREE_INT_CST_HIGH (op1) != 0
+ || ((unsigned HOST_WIDE_INT) TREE_INT_CST_LOW (op1)
+ >= TYPE_PRECISION (type0)))
+ warning ("right shift count >= width of type");
+ }
+ }
+ /* Use the type of the value to be shifted.
+ This is what most traditional C compilers do. */
+ result_type = type0;
+ /* Unless traditional, convert the shift-count to an integer,
+ regardless of size of value being shifted. */
+ if (! flag_traditional)
+ {
+ if (TYPE_MAIN_VARIANT (TREE_TYPE (op1)) != integer_type_node)
+ op1 = convert (integer_type_node, op1);
+ /* Avoid converting op1 to result_type later. */
+ converted = 1;
+ }
+ }
+ break;
+
+ case LSHIFT_EXPR:
+ if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
+ {
+ if (TREE_CODE (op1) == INTEGER_CST)
+ {
+ if (tree_int_cst_sgn (op1) < 0)
+ warning ("left shift count is negative");
+ else if (TREE_INT_CST_HIGH (op1) != 0
+ || ((unsigned HOST_WIDE_INT) TREE_INT_CST_LOW (op1)
+ >= TYPE_PRECISION (type0)))
+ warning ("left shift count >= width of type");
+ }
+ /* Use the type of the value to be shifted.
+ This is what most traditional C compilers do. */
+ result_type = type0;
+ /* Unless traditional, convert the shift-count to an integer,
+ regardless of size of value being shifted. */
+ if (! flag_traditional)
+ {
+ if (TYPE_MAIN_VARIANT (TREE_TYPE (op1)) != integer_type_node)
+ op1 = convert (integer_type_node, op1);
+ /* Avoid converting op1 to result_type later. */
+ converted = 1;
+ }
+ }
+ break;
+
+ case RROTATE_EXPR:
+ case LROTATE_EXPR:
+ if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
+ {
+ if (TREE_CODE (op1) == INTEGER_CST)
+ {
+ if (tree_int_cst_sgn (op1) < 0)
+ warning ("shift count is negative");
+ else if (TREE_INT_CST_HIGH (op1) != 0
+ || ((unsigned HOST_WIDE_INT) TREE_INT_CST_LOW (op1)
+ >= TYPE_PRECISION (type0)))
+ warning ("shift count >= width of type");
+ }
+ /* Use the type of the value to be shifted.
+ This is what most traditional C compilers do. */
+ result_type = type0;
+ /* Unless traditional, convert the shift-count to an integer,
+ regardless of size of value being shifted. */
+ if (! flag_traditional)
+ {
+ if (TYPE_MAIN_VARIANT (TREE_TYPE (op1)) != integer_type_node)
+ op1 = convert (integer_type_node, op1);
+ /* Avoid converting op1 to result_type later. */
+ converted = 1;
+ }
+ }
+ break;
+
+ case EQ_EXPR:
+ case NE_EXPR:
+ /* Result of comparison is always int,
+ but don't convert the args to int! */
+ build_type = integer_type_node;
+ if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE
+ || code0 == COMPLEX_TYPE)
+ && (code1 == INTEGER_TYPE || code1 == REAL_TYPE
+ || code1 == COMPLEX_TYPE))
+ short_compare = 1;
+ else if (code0 == POINTER_TYPE && code1 == POINTER_TYPE)
+ {
+ register tree tt0 = TREE_TYPE (type0);
+ register tree tt1 = TREE_TYPE (type1);
+ /* Anything compares with void *. void * compares with anything.
+ Otherwise, the targets must be compatible
+ and both must be object or both incomplete. */
+ if (comp_target_types (type0, type1))
+ result_type = common_type (type0, type1);
+ else if (TYPE_MAIN_VARIANT (tt0) == void_type_node)
+ {
+ /* op0 != orig_op0 detects the case of something
+ whose value is 0 but which isn't a valid null ptr const. */
+ if (pedantic && (!integer_zerop (op0) || op0 != orig_op0)
+ && TREE_CODE (tt1) == FUNCTION_TYPE)
+ pedwarn ("ANSI C forbids comparison of `void *' with function pointer");
+ }
+ else if (TYPE_MAIN_VARIANT (tt1) == void_type_node)
+ {
+ if (pedantic && (!integer_zerop (op1) || op1 != orig_op1)
+ && TREE_CODE (tt0) == FUNCTION_TYPE)
+ pedwarn ("ANSI C forbids comparison of `void *' with function pointer");
+ }
+ else
+ pedwarn ("comparison of distinct pointer types lacks a cast");
+
+ if (result_type == NULL_TREE)
+ result_type = ptr_type_node;
+ }
+ else if (code0 == POINTER_TYPE && TREE_CODE (op1) == INTEGER_CST
+ && integer_zerop (op1))
+ result_type = type0;
+ else if (code1 == POINTER_TYPE && TREE_CODE (op0) == INTEGER_CST
+ && integer_zerop (op0))
+ result_type = type1;
+ else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
+ {
+ result_type = type0;
+ if (! flag_traditional)
+ pedwarn ("comparison between pointer and integer");
+ }
+ else if (code0 == INTEGER_TYPE && code1 == POINTER_TYPE)
+ {
+ result_type = type1;
+ if (! flag_traditional)
+ pedwarn ("comparison between pointer and integer");
+ }
+ break;
+
+ case MAX_EXPR:
+ case MIN_EXPR:
+ if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE)
+ && (code1 == INTEGER_TYPE || code1 == REAL_TYPE))
+ shorten = 1;
+ else if (code0 == POINTER_TYPE && code1 == POINTER_TYPE)
+ {
+ if (comp_target_types (type0, type1))
+ {
+ result_type = common_type (type0, type1);
+ if (pedantic
+ && TREE_CODE (TREE_TYPE (type0)) == FUNCTION_TYPE)
+ pedwarn ("ANSI C forbids ordered comparisons of pointers to functions");
+ }
+ else
+ {
+ result_type = ptr_type_node;
+ pedwarn ("comparison of distinct pointer types lacks a cast");
+ }
+ }
+ break;
+
+ case LE_EXPR:
+ case GE_EXPR:
+ case LT_EXPR:
+ case GT_EXPR:
+ build_type = integer_type_node;
+ if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE)
+ && (code1 == INTEGER_TYPE || code1 == REAL_TYPE))
+ short_compare = 1;
+ else if (code0 == POINTER_TYPE && code1 == POINTER_TYPE)
+ {
+ if (comp_target_types (type0, type1))
+ {
+ result_type = common_type (type0, type1);
+ if ((TYPE_SIZE (TREE_TYPE (type0)) != 0)
+ != (TYPE_SIZE (TREE_TYPE (type1)) != 0))
+ pedwarn ("comparison of complete and incomplete pointers");
+ else if (pedantic
+ && TREE_CODE (TREE_TYPE (type0)) == FUNCTION_TYPE)
+ pedwarn ("ANSI C forbids ordered comparisons of pointers to functions");
+ }
+ else
+ {
+ result_type = ptr_type_node;
+ pedwarn ("comparison of distinct pointer types lacks a cast");
+ }
+ }
+ else if (code0 == POINTER_TYPE && TREE_CODE (op1) == INTEGER_CST
+ && integer_zerop (op1))
+ {
+ result_type = type0;
+ if (pedantic || extra_warnings)
+ pedwarn ("ordered comparison of pointer with integer zero");
+ }
+ else if (code1 == POINTER_TYPE && TREE_CODE (op0) == INTEGER_CST
+ && integer_zerop (op0))
+ {
+ result_type = type1;
+ if (pedantic)
+ pedwarn ("ordered comparison of pointer with integer zero");
+ }
+ else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
+ {
+ result_type = type0;
+ if (! flag_traditional)
+ pedwarn ("comparison between pointer and integer");
+ }
+ else if (code0 == INTEGER_TYPE && code1 == POINTER_TYPE)
+ {
+ result_type = type1;
+ if (! flag_traditional)
+ pedwarn ("comparison between pointer and integer");
+ }
+ break;
+ }
+
+ if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE || code0 == COMPLEX_TYPE)
+ &&
+ (code1 == INTEGER_TYPE || code1 == REAL_TYPE || code1 == COMPLEX_TYPE))
+ {
+ int none_complex = (code0 != COMPLEX_TYPE && code1 != COMPLEX_TYPE);
+
+ if (shorten || common || short_compare)
+ result_type = common_type (type0, type1);
+
+ /* For certain operations (which identify themselves by shorten != 0)
+ if both args were extended from the same smaller type,
+ do the arithmetic in that type and then extend.
+
+ shorten !=0 and !=1 indicates a bitwise operation.
+ For them, this optimization is safe only if
+ both args are zero-extended or both are sign-extended.
+ Otherwise, we might change the result.
+ Eg, (short)-1 | (unsigned short)-1 is (int)-1
+ but calculated in (unsigned short) it would be (unsigned short)-1. */
+
+ if (shorten && none_complex)
+ {
+ int unsigned0, unsigned1;
+ tree arg0 = get_narrower (op0, &unsigned0);
+ tree arg1 = get_narrower (op1, &unsigned1);
+ /* UNS is 1 if the operation to be done is an unsigned one. */
+ int uns = TREE_UNSIGNED (result_type);
+ tree type;
+
+ final_type = result_type;
+
+ /* Handle the case that OP0 (or OP1) does not *contain* a conversion
+ but it *requires* conversion to FINAL_TYPE. */
+
+ if ((TYPE_PRECISION (TREE_TYPE (op0))
+ == TYPE_PRECISION (TREE_TYPE (arg0)))
+ && TREE_TYPE (op0) != final_type)
+ unsigned0 = TREE_UNSIGNED (TREE_TYPE (op0));
+ if ((TYPE_PRECISION (TREE_TYPE (op1))
+ == TYPE_PRECISION (TREE_TYPE (arg1)))
+ && TREE_TYPE (op1) != final_type)
+ unsigned1 = TREE_UNSIGNED (TREE_TYPE (op1));
+
+ /* Now UNSIGNED0 is 1 if ARG0 zero-extends to FINAL_TYPE. */
+
+ /* For bitwise operations, signedness of nominal type
+ does not matter. Consider only how operands were extended. */
+ if (shorten == -1)
+ uns = unsigned0;
+
+ /* Note that in all three cases below we refrain from optimizing
+ an unsigned operation on sign-extended args.
+ That would not be valid. */
+
+ /* Both args variable: if both extended in same way
+ from same width, do it in that width.
+ Do it unsigned if args were zero-extended. */
+ if ((TYPE_PRECISION (TREE_TYPE (arg0))
+ < TYPE_PRECISION (result_type))
+ && (TYPE_PRECISION (TREE_TYPE (arg1))
+ == TYPE_PRECISION (TREE_TYPE (arg0)))
+ && unsigned0 == unsigned1
+ && (unsigned0 || !uns))
+ result_type
+ = signed_or_unsigned_type (unsigned0,
+ common_type (TREE_TYPE (arg0), TREE_TYPE (arg1)));
+ else if (TREE_CODE (arg0) == INTEGER_CST
+ && (unsigned1 || !uns)
+ && (TYPE_PRECISION (TREE_TYPE (arg1))
+ < TYPE_PRECISION (result_type))
+ && (type = signed_or_unsigned_type (unsigned1,
+ TREE_TYPE (arg1)),
+ int_fits_type_p (arg0, type)))
+ result_type = type;
+ else if (TREE_CODE (arg1) == INTEGER_CST
+ && (unsigned0 || !uns)
+ && (TYPE_PRECISION (TREE_TYPE (arg0))
+ < TYPE_PRECISION (result_type))
+ && (type = signed_or_unsigned_type (unsigned0,
+ TREE_TYPE (arg0)),
+ int_fits_type_p (arg1, type)))
+ result_type = type;
+ }
+
+ /* Shifts can be shortened if shifting right. */
+
+ if (short_shift)
+ {
+ int unsigned_arg;
+ tree arg0 = get_narrower (op0, &unsigned_arg);
+
+ final_type = result_type;
+
+ if (arg0 == op0 && final_type == TREE_TYPE (op0))
+ unsigned_arg = TREE_UNSIGNED (TREE_TYPE (op0));
+
+ if (TYPE_PRECISION (TREE_TYPE (arg0)) < TYPE_PRECISION (result_type)
+ /* We can shorten only if the shift count is less than the
+ number of bits in the smaller type size. */
+ && TREE_INT_CST_HIGH (op1) == 0
+ && TYPE_PRECISION (TREE_TYPE (arg0)) > TREE_INT_CST_LOW (op1)
+ /* If arg is sign-extended and then unsigned-shifted,
+ we can simulate this with a signed shift in arg's type
+ only if the extended result is at least twice as wide
+ as the arg. Otherwise, the shift could use up all the
+ ones made by sign-extension and bring in zeros.
+ We can't optimize that case at all, but in most machines
+ it never happens because available widths are 2**N. */
+ && (!TREE_UNSIGNED (final_type)
+ || unsigned_arg
+ || 2 * TYPE_PRECISION (TREE_TYPE (arg0)) <= TYPE_PRECISION (result_type)))
+ {
+ /* Do an unsigned shift if the operand was zero-extended. */
+ result_type
+ = signed_or_unsigned_type (unsigned_arg,
+ TREE_TYPE (arg0));
+ /* Convert value-to-be-shifted to that type. */
+ if (TREE_TYPE (op0) != result_type)
+ op0 = convert (result_type, op0);
+ converted = 1;
+ }
+ }
+
+ /* Comparison operations are shortened too but differently.
+ They identify themselves by setting short_compare = 1. */
+
+ if (short_compare)
+ {
+ /* Don't write &op0, etc., because that would prevent op0
+ from being kept in a register.
+ Instead, make copies of the our local variables and
+ pass the copies by reference, then copy them back afterward. */
+ tree xop0 = op0, xop1 = op1, xresult_type = result_type;
+ enum tree_code xresultcode = resultcode;
+ tree val
+ = shorten_compare (&xop0, &xop1, &xresult_type, &xresultcode);
+ if (val != 0)
+ return val;
+ op0 = xop0, op1 = xop1;
+ converted = 1;
+ resultcode = xresultcode;
+
+ if (extra_warnings)
+ {
+ int op0_signed = ! TREE_UNSIGNED (TREE_TYPE (orig_op0));
+ int op1_signed = ! TREE_UNSIGNED (TREE_TYPE (orig_op1));
+
+ int unsignedp0, unsignedp1;
+ tree primop0 = get_narrower (op0, &unsignedp0);
+ tree primop1 = get_narrower (op1, &unsignedp1);
+
+ /* Avoid spurious warnings for comparison with enumerators. */
+
+ xop0 = orig_op0;
+ xop1 = orig_op1;
+ STRIP_TYPE_NOPS (xop0);
+ STRIP_TYPE_NOPS (xop1);
+
+ /* Give warnings for comparisons between signed and unsigned
+ quantities that may fail. */
+ /* Do the checking based on the original operand trees, so that
+ casts will be considered, but default promotions won't be. */
+
+ /* Do not warn if the comparison is being done in a signed type,
+ since the signed type will only be chosen if it can represent
+ all the values of the unsigned type. */
+ if (! TREE_UNSIGNED (result_type))
+ /* OK */;
+ /* Do not warn if both operands are unsigned. */
+ else if (op0_signed == op1_signed)
+ /* OK */;
+ /* Do not warn if the signed quantity is an unsuffixed
+ integer literal (or some static constant expression
+ involving such literals) and it is non-negative. */
+ else if ((op0_signed && TREE_CODE (xop0) == INTEGER_CST
+ && tree_int_cst_sgn (xop0) >= 0)
+ || (op1_signed && TREE_CODE (xop1) == INTEGER_CST
+ && tree_int_cst_sgn (xop1) >= 0))
+ /* OK */;
+ /* Do not warn if the comparison is an equality operation,
+ the unsigned quantity is an integral constant and it does
+ not use the most significant bit of result_type. */
+ else if ((resultcode == EQ_EXPR || resultcode == NE_EXPR)
+ && ((op0_signed && TREE_CODE (xop1) == INTEGER_CST
+ && int_fits_type_p (xop1, signed_type (result_type))
+ || (op1_signed && TREE_CODE (xop0) == INTEGER_CST
+ && int_fits_type_p (xop0, signed_type (result_type))))))
+ /* OK */;
+ else
+ warning ("comparison between signed and unsigned");
+
+ /* Warn if two unsigned values are being compared in a size
+ larger than their original size, and one (and only one) is the
+ result of a `~' operator. This comparison will always fail.
+
+ Also warn if one operand is a constant, and the constant
+ does not have all bits set that are set in the ~ operand
+ when it is extended. */
+
+ if ((TREE_CODE (primop0) == BIT_NOT_EXPR)
+ != (TREE_CODE (primop1) == BIT_NOT_EXPR))
+ {
+ if (TREE_CODE (primop0) == BIT_NOT_EXPR)
+ primop0 = get_narrower (TREE_OPERAND (primop0, 0),
+ &unsignedp0);
+ else
+ primop1 = get_narrower (TREE_OPERAND (primop1, 0),
+ &unsignedp1);
+
+ if (TREE_CODE (primop0) == INTEGER_CST
+ || TREE_CODE (primop1) == INTEGER_CST)
+ {
+ tree primop;
+ long constant, mask;
+ int unsignedp, bits;
+
+ if (TREE_CODE (primop0) == INTEGER_CST)
+ {
+ primop = primop1;
+ unsignedp = unsignedp1;
+ constant = TREE_INT_CST_LOW (primop0);
+ }
+ else
+ {
+ primop = primop0;
+ unsignedp = unsignedp0;
+ constant = TREE_INT_CST_LOW (primop1);
+ }
+
+ bits = TYPE_PRECISION (TREE_TYPE (primop));
+ if (bits < TYPE_PRECISION (result_type)
+ && bits < HOST_BITS_PER_LONG && unsignedp)
+ {
+ mask = (~0L) << bits;
+ if ((mask & constant) != mask)
+ warning ("comparison of promoted ~unsigned with constant");
+ }
+ }
+ else if (unsignedp0 && unsignedp1
+ && (TYPE_PRECISION (TREE_TYPE (primop0))
+ < TYPE_PRECISION (result_type))
+ && (TYPE_PRECISION (TREE_TYPE (primop1))
+ < TYPE_PRECISION (result_type)))
+ warning ("comparison of promoted ~unsigned with unsigned");
+ }
+ }
+ }
+ }
+
+ /* At this point, RESULT_TYPE must be nonzero to avoid an error message.
+ If CONVERTED is zero, both args will be converted to type RESULT_TYPE.
+ Then the expression will be built.
+ It will be given type FINAL_TYPE if that is nonzero;
+ otherwise, it will be given type RESULT_TYPE. */
+
+ if (!result_type)
+ {
+ binary_op_error (code);
+ return error_mark_node;
+ }
+
+ if (! converted)
+ {
+ if (TREE_TYPE (op0) != result_type)
+ op0 = convert (result_type, op0);
+ if (TREE_TYPE (op1) != result_type)
+ op1 = convert (result_type, op1);
+ }
+
+ if (build_type == NULL_TREE)
+ build_type = result_type;
+
+ {
+ register tree result = build (resultcode, build_type, op0, op1);
+ register tree folded;
+
+ folded = fold (result);
+ if (folded == result)
+ TREE_CONSTANT (folded) = TREE_CONSTANT (op0) & TREE_CONSTANT (op1);
+ if (final_type != 0)
+ return convert (final_type, folded);
+ return folded;
+ }
+}
+
+/* Return a tree for the sum or difference (RESULTCODE says which)
+ of pointer PTROP and integer INTOP. */
+
+static tree
+pointer_int_sum (resultcode, ptrop, intop)
+ enum tree_code resultcode;
+ register tree ptrop, intop;
+{
+ tree size_exp;
+
+ register tree result;
+ register tree folded;
+
+ /* The result is a pointer of the same type that is being added. */
+
+ register tree result_type = TREE_TYPE (ptrop);
+
+ if (TREE_CODE (TREE_TYPE (result_type)) == VOID_TYPE)
+ {
+ if (pedantic || warn_pointer_arith)
+ pedwarn ("pointer of type `void *' used in arithmetic");
+ size_exp = integer_one_node;
+ }
+ else if (TREE_CODE (TREE_TYPE (result_type)) == FUNCTION_TYPE)
+ {
+ if (pedantic || warn_pointer_arith)
+ pedwarn ("pointer to a function used in arithmetic");
+ size_exp = integer_one_node;
+ }
+ else
+ size_exp = c_size_in_bytes (TREE_TYPE (result_type));
+
+ /* If what we are about to multiply by the size of the elements
+ contains a constant term, apply distributive law
+ and multiply that constant term separately.
+ This helps produce common subexpressions. */
+
+ if ((TREE_CODE (intop) == PLUS_EXPR || TREE_CODE (intop) == MINUS_EXPR)
+ && ! TREE_CONSTANT (intop)
+ && TREE_CONSTANT (TREE_OPERAND (intop, 1))
+ && TREE_CONSTANT (size_exp)
+ /* If the constant comes from pointer subtraction,
+ skip this optimization--it would cause an error. */
+ && TREE_CODE (TREE_TYPE (TREE_OPERAND (intop, 0))) == INTEGER_TYPE
+ /* If the constant is unsigned, and smaller than the pointer size,
+ then we must skip this optimization. This is because it could cause
+ an overflow error if the constant is negative but INTOP is not. */
+ && (! TREE_UNSIGNED (TREE_TYPE (intop))
+ || (TYPE_PRECISION (TREE_TYPE (intop))
+ == TYPE_PRECISION (TREE_TYPE (ptrop)))))
+ {
+ enum tree_code subcode = resultcode;
+ tree int_type = TREE_TYPE (intop);
+ if (TREE_CODE (intop) == MINUS_EXPR)
+ subcode = (subcode == PLUS_EXPR ? MINUS_EXPR : PLUS_EXPR);
+ /* Convert both subexpression types to the type of intop,
+ because weird cases involving pointer arithmetic
+ can result in a sum or difference with different type args. */
+ ptrop = build_binary_op (subcode, ptrop,
+ convert (int_type, TREE_OPERAND (intop, 1)), 1);
+ intop = convert (int_type, TREE_OPERAND (intop, 0));
+ }
+
+ /* Convert the integer argument to a type the same size as a pointer
+ so the multiply won't overflow spuriously. */
+
+ if (TYPE_PRECISION (TREE_TYPE (intop)) != POINTER_SIZE)
+ intop = convert (type_for_size (POINTER_SIZE, 0), intop);
+
+ /* Replace the integer argument with a suitable product by the object size.
+ Do this multiplication as signed, then convert to the appropriate
+ pointer type (actually unsigned integral). */
+
+ intop = convert (result_type,
+ build_binary_op (MULT_EXPR, intop,
+ convert (TREE_TYPE (intop), size_exp), 1));
+
+ /* Create the sum or difference. */
+
+ result = build (resultcode, result_type, ptrop, intop);
+
+ folded = fold (result);
+ if (folded == result)
+ TREE_CONSTANT (folded) = TREE_CONSTANT (ptrop) & TREE_CONSTANT (intop);
+ return folded;
+}
+
+/* Return a tree for the difference of pointers OP0 and OP1.
+ The resulting tree has type int. */
+
+static tree
+pointer_diff (op0, op1)
+ register tree op0, op1;
+{
+ register tree result, folded;
+ tree restype = ptrdiff_type_node;
+
+ tree target_type = TREE_TYPE (TREE_TYPE (op0));
+
+ if (pedantic || warn_pointer_arith)
+ {
+ if (TREE_CODE (target_type) == VOID_TYPE)
+ pedwarn ("pointer of type `void *' used in subtraction");
+ if (TREE_CODE (target_type) == FUNCTION_TYPE)
+ pedwarn ("pointer to a function used in subtraction");
+ }
+
+ /* First do the subtraction as integers;
+ then drop through to build the divide operator. */
+
+ op0 = build_binary_op (MINUS_EXPR, convert (restype, op0),
+ convert (restype, op1), 1);
+ /* This generates an error if op1 is pointer to incomplete type. */
+ if (TYPE_SIZE (TREE_TYPE (TREE_TYPE (op1))) == 0)
+ error ("arithmetic on pointer to an incomplete type");
+
+ /* This generates an error if op0 is pointer to incomplete type. */
+ op1 = c_size_in_bytes (target_type);
+
+ /* Divide by the size, in easiest possible way. */
+
+ result = build (EXACT_DIV_EXPR, restype, op0, convert (restype, op1));
+
+ folded = fold (result);
+ if (folded == result)
+ TREE_CONSTANT (folded) = TREE_CONSTANT (op0) & TREE_CONSTANT (op1);
+ return folded;
+}
+
+/* Construct and perhaps optimize a tree representation
+ for a unary operation. CODE, a tree_code, specifies the operation
+ and XARG is the operand. NOCONVERT nonzero suppresses
+ the default promotions (such as from short to int). */
+
+tree
+build_unary_op (code, xarg, noconvert)
+ enum tree_code code;
+ tree xarg;
+ int noconvert;
+{
+ /* No default_conversion here. It causes trouble for ADDR_EXPR. */
+ register tree arg = xarg;
+ register tree argtype = 0;
+ register enum tree_code typecode = TREE_CODE (TREE_TYPE (arg));
+ char *errstring = NULL;
+ tree val;
+
+ if (typecode == ERROR_MARK)
+ return error_mark_node;
+ if (typecode == ENUMERAL_TYPE)
+ typecode = INTEGER_TYPE;
+
+ switch (code)
+ {
+ case CONVERT_EXPR:
+ /* This is used for unary plus, because a CONVERT_EXPR
+ is enough to prevent anybody from looking inside for
+ associativity, but won't generate any code. */
+ if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
+ || typecode == COMPLEX_TYPE))
+ errstring = "wrong type argument to unary plus";
+ else if (!noconvert)
+ arg = default_conversion (arg);
+ break;
+
+ case NEGATE_EXPR:
+ if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
+ || typecode == COMPLEX_TYPE))
+ errstring = "wrong type argument to unary minus";
+ else if (!noconvert)
+ arg = default_conversion (arg);
+ break;
+
+ case BIT_NOT_EXPR:
+ if (typecode == COMPLEX_TYPE)
+ {
+ code = CONJ_EXPR;
+ if (!noconvert)
+ arg = default_conversion (arg);
+ }
+ else if (typecode != INTEGER_TYPE)
+ errstring = "wrong type argument to bit-complement";
+ else if (!noconvert)
+ arg = default_conversion (arg);
+ break;
+
+ case ABS_EXPR:
+ if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
+ || typecode == COMPLEX_TYPE))
+ errstring = "wrong type argument to abs";
+ else if (!noconvert)
+ arg = default_conversion (arg);
+ break;
+
+ case CONJ_EXPR:
+ /* Conjugating a real value is a no-op, but allow it anyway. */
+ if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
+ || typecode == COMPLEX_TYPE))
+ errstring = "wrong type argument to conjugation";
+ else if (!noconvert)
+ arg = default_conversion (arg);
+ break;
+
+ case TRUTH_NOT_EXPR:
+ if (typecode != INTEGER_TYPE
+ && typecode != REAL_TYPE && typecode != POINTER_TYPE
+ && typecode != COMPLEX_TYPE
+ /* These will convert to a pointer. */
+ && typecode != ARRAY_TYPE && typecode != FUNCTION_TYPE)
+ {
+ errstring = "wrong type argument to unary exclamation mark";
+ break;
+ }
+ arg = truthvalue_conversion (arg);
+ return invert_truthvalue (arg);
+
+ case NOP_EXPR:
+ break;
+
+ case REALPART_EXPR:
+ if (TREE_CODE (arg) == COMPLEX_CST)
+ return TREE_REALPART (arg);
+ else if (TREE_CODE (TREE_TYPE (arg)) == COMPLEX_TYPE)
+ return fold (build1 (REALPART_EXPR, TREE_TYPE (TREE_TYPE (arg)), arg));
+ else
+ return arg;
+
+ case IMAGPART_EXPR:
+ if (TREE_CODE (arg) == COMPLEX_CST)
+ return TREE_IMAGPART (arg);
+ else if (TREE_CODE (TREE_TYPE (arg)) == COMPLEX_TYPE)
+ return fold (build1 (IMAGPART_EXPR, TREE_TYPE (TREE_TYPE (arg)), arg));
+ else
+ return convert (TREE_TYPE (arg), integer_zero_node);
+
+ case PREINCREMENT_EXPR:
+ case POSTINCREMENT_EXPR:
+ case PREDECREMENT_EXPR:
+ case POSTDECREMENT_EXPR:
+ /* Handle complex lvalues (when permitted)
+ by reduction to simpler cases. */
+
+ val = unary_complex_lvalue (code, arg);
+ if (val != 0)
+ return val;
+
+ /* Increment or decrement the real part of the value,
+ and don't change the imaginary part. */
+ if (typecode == COMPLEX_TYPE)
+ {
+ tree real, imag;
+
+ arg = stabilize_reference (arg);
+ real = build_unary_op (REALPART_EXPR, arg, 1);
+ imag = build_unary_op (IMAGPART_EXPR, arg, 1);
+ return build (COMPLEX_EXPR, TREE_TYPE (arg),
+ build_unary_op (code, real, 1), imag);
+ }
+
+ /* Report invalid types. */
+
+ if (typecode != POINTER_TYPE
+ && typecode != INTEGER_TYPE && typecode != REAL_TYPE)
+ {
+ if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
+ errstring ="wrong type argument to increment";
+ else
+ errstring ="wrong type argument to decrement";
+ break;
+ }
+
+ {
+ register tree inc;
+ tree result_type = TREE_TYPE (arg);
+
+ arg = get_unwidened (arg, 0);
+ argtype = TREE_TYPE (arg);
+
+ /* Compute the increment. */
+
+ if (typecode == POINTER_TYPE)
+ {
+ /* If pointer target is an undefined struct,
+ we just cannot know how to do the arithmetic. */
+ if (TYPE_SIZE (TREE_TYPE (result_type)) == 0)
+ error ("%s of pointer to unknown structure",
+ ((code == PREINCREMENT_EXPR
+ || code == POSTINCREMENT_EXPR)
+ ? "increment" : "decrement"));
+ else if ((pedantic || warn_pointer_arith)
+ && (TREE_CODE (TREE_TYPE (result_type)) == FUNCTION_TYPE
+ || TREE_CODE (TREE_TYPE (result_type)) == VOID_TYPE))
+ pedwarn ("wrong type argument to %s",
+ ((code == PREINCREMENT_EXPR
+ || code == POSTINCREMENT_EXPR)
+ ? "increment" : "decrement"));
+ inc = c_size_in_bytes (TREE_TYPE (result_type));
+ }
+ else
+ inc = integer_one_node;
+
+ inc = convert (argtype, inc);
+
+ /* Handle incrementing a cast-expression. */
+
+ while (1)
+ switch (TREE_CODE (arg))
+ {
+ case NOP_EXPR:
+ case CONVERT_EXPR:
+ case FLOAT_EXPR:
+ case FIX_TRUNC_EXPR:
+ case FIX_FLOOR_EXPR:
+ case FIX_ROUND_EXPR:
+ case FIX_CEIL_EXPR:
+ pedantic_lvalue_warning (CONVERT_EXPR);
+ /* If the real type has the same machine representation
+ as the type it is cast to, we can make better output
+ by adding directly to the inside of the cast. */
+ if ((TREE_CODE (TREE_TYPE (arg))
+ == TREE_CODE (TREE_TYPE (TREE_OPERAND (arg, 0))))
+ && (TYPE_MODE (TREE_TYPE (arg))
+ == TYPE_MODE (TREE_TYPE (TREE_OPERAND (arg, 0)))))
+ arg = TREE_OPERAND (arg, 0);
+ else
+ {
+ tree incremented, modify, value;
+ arg = stabilize_reference (arg);
+ if (code == PREINCREMENT_EXPR || code == PREDECREMENT_EXPR)
+ value = arg;
+ else
+ value = save_expr (arg);
+ incremented = build (((code == PREINCREMENT_EXPR
+ || code == POSTINCREMENT_EXPR)
+ ? PLUS_EXPR : MINUS_EXPR),
+ argtype, value, inc);
+ TREE_SIDE_EFFECTS (incremented) = 1;
+ modify = build_modify_expr (arg, NOP_EXPR, incremented);
+ value = build (COMPOUND_EXPR, TREE_TYPE (arg), modify, value);
+ TREE_USED (value) = 1;
+ return value;
+ }
+ break;
+
+ default:
+ goto give_up;
+ }
+ give_up:
+
+ /* Complain about anything else that is not a true lvalue. */
+ if (!lvalue_or_else (arg, ((code == PREINCREMENT_EXPR
+ || code == POSTINCREMENT_EXPR)
+ ? "increment" : "decrement")))
+ return error_mark_node;
+
+ /* Report a read-only lvalue. */
+ if (TREE_READONLY (arg))
+ readonly_warning (arg,
+ ((code == PREINCREMENT_EXPR
+ || code == POSTINCREMENT_EXPR)
+ ? "increment" : "decrement"));
+
+ val = build (code, TREE_TYPE (arg), arg, inc);
+ TREE_SIDE_EFFECTS (val) = 1;
+ val = convert (result_type, val);
+ if (TREE_CODE (val) != code)
+ TREE_NO_UNUSED_WARNING (val) = 1;
+ return val;
+ }
+
+ case ADDR_EXPR:
+ /* Note that this operation never does default_conversion
+ regardless of NOCONVERT. */
+
+ /* Let &* cancel out to simplify resulting code. */
+ if (TREE_CODE (arg) == INDIRECT_REF)
+ {
+ /* Don't let this be an lvalue. */
+ if (lvalue_p (TREE_OPERAND (arg, 0)))
+ return non_lvalue (TREE_OPERAND (arg, 0));
+ return TREE_OPERAND (arg, 0);
+ }
+
+ /* For &x[y], return x+y */
+ if (TREE_CODE (arg) == ARRAY_REF)
+ {
+ if (mark_addressable (TREE_OPERAND (arg, 0)) == 0)
+ return error_mark_node;
+ return build_binary_op (PLUS_EXPR, TREE_OPERAND (arg, 0),
+ TREE_OPERAND (arg, 1), 1);
+ }
+
+ /* Handle complex lvalues (when permitted)
+ by reduction to simpler cases. */
+ val = unary_complex_lvalue (code, arg);
+ if (val != 0)
+ return val;
+
+#if 0 /* Turned off because inconsistent;
+ float f; *&(int)f = 3.4 stores in int format
+ whereas (int)f = 3.4 stores in float format. */
+ /* Address of a cast is just a cast of the address
+ of the operand of the cast. */
+ switch (TREE_CODE (arg))
+ {
+ case NOP_EXPR:
+ case CONVERT_EXPR:
+ case FLOAT_EXPR:
+ case FIX_TRUNC_EXPR:
+ case FIX_FLOOR_EXPR:
+ case FIX_ROUND_EXPR:
+ case FIX_CEIL_EXPR:
+ if (pedantic)
+ pedwarn ("ANSI C forbids the address of a cast expression");
+ return convert (build_pointer_type (TREE_TYPE (arg)),
+ build_unary_op (ADDR_EXPR, TREE_OPERAND (arg, 0),
+ 0));
+ }
+#endif
+
+ /* Allow the address of a constructor if all the elements
+ are constant. */
+ if (TREE_CODE (arg) == CONSTRUCTOR && TREE_CONSTANT (arg))
+ ;
+ /* Anything not already handled and not a true memory reference
+ is an error. */
+ else if (typecode != FUNCTION_TYPE && !lvalue_or_else (arg, "unary `&'"))
+ return error_mark_node;
+
+ /* Ordinary case; arg is a COMPONENT_REF or a decl. */
+ argtype = TREE_TYPE (arg);
+ /* If the lvalue is const or volatile,
+ merge that into the type that the address will point to. */
+ if (TREE_CODE_CLASS (TREE_CODE (arg)) == 'd'
+ || TREE_CODE_CLASS (TREE_CODE (arg)) == 'r')
+ {
+ if (TREE_READONLY (arg) || TREE_THIS_VOLATILE (arg))
+ argtype = c_build_type_variant (argtype,
+ TREE_READONLY (arg),
+ TREE_THIS_VOLATILE (arg));
+ }
+
+ argtype = build_pointer_type (argtype);
+
+ if (mark_addressable (arg) == 0)
+ return error_mark_node;
+
+ {
+ tree addr;
+
+ if (TREE_CODE (arg) == COMPONENT_REF)
+ {
+ tree field = TREE_OPERAND (arg, 1);
+
+ addr = build_unary_op (ADDR_EXPR, TREE_OPERAND (arg, 0), 0);
+
+ if (DECL_BIT_FIELD (field))
+ {
+ error ("attempt to take address of bit-field structure member `%s'",
+ IDENTIFIER_POINTER (DECL_NAME (field)));
+ return error_mark_node;
+ }
+
+ addr = convert (argtype, addr);
+
+ if (! integer_zerop (DECL_FIELD_BITPOS (field)))
+ {
+ tree offset
+ = size_binop (EASY_DIV_EXPR, DECL_FIELD_BITPOS (field),
+ size_int (BITS_PER_UNIT));
+ int flag = TREE_CONSTANT (addr);
+ addr = fold (build (PLUS_EXPR, argtype,
+ addr, convert (argtype, offset)));
+ TREE_CONSTANT (addr) = flag;
+ }
+ }
+ else
+ addr = build1 (code, argtype, arg);
+
+ /* Address of a static or external variable or
+ file-scope function counts as a constant. */
+ if (staticp (arg)
+ && ! (TREE_CODE (arg) == FUNCTION_DECL
+ && DECL_CONTEXT (arg) != 0))
+ TREE_CONSTANT (addr) = 1;
+ return addr;
+ }
+ }
+
+ if (!errstring)
+ {
+ if (argtype == 0)
+ argtype = TREE_TYPE (arg);
+ return fold (build1 (code, argtype, arg));
+ }
+
+ error (errstring);
+ return error_mark_node;
+}
+
+#if 0
+/* If CONVERSIONS is a conversion expression or a nested sequence of such,
+ convert ARG with the same conversions in the same order
+ and return the result. */
+
+static tree
+convert_sequence (conversions, arg)
+ tree conversions;
+ tree arg;
+{
+ switch (TREE_CODE (conversions))
+ {
+ case NOP_EXPR:
+ case CONVERT_EXPR:
+ case FLOAT_EXPR:
+ case FIX_TRUNC_EXPR:
+ case FIX_FLOOR_EXPR:
+ case FIX_ROUND_EXPR:
+ case FIX_CEIL_EXPR:
+ return convert (TREE_TYPE (conversions),
+ convert_sequence (TREE_OPERAND (conversions, 0),
+ arg));
+
+ default:
+ return arg;
+ }
+}
+#endif /* 0 */
+
+/* Return nonzero if REF is an lvalue valid for this language.
+ Lvalues can be assigned, unless their type has TYPE_READONLY.
+ Lvalues can have their address taken, unless they have DECL_REGISTER. */
+
+int
+lvalue_p (ref)
+ tree ref;
+{
+ register enum tree_code code = TREE_CODE (ref);
+
+ switch (code)
+ {
+ case REALPART_EXPR:
+ case IMAGPART_EXPR:
+ case COMPONENT_REF:
+ return lvalue_p (TREE_OPERAND (ref, 0));
+
+ case STRING_CST:
+ return 1;
+
+ case INDIRECT_REF:
+ case ARRAY_REF:
+ case VAR_DECL:
+ case PARM_DECL:
+ case RESULT_DECL:
+ case ERROR_MARK:
+ if (TREE_CODE (TREE_TYPE (ref)) != FUNCTION_TYPE
+ && TREE_CODE (TREE_TYPE (ref)) != METHOD_TYPE)
+ return 1;
+ break;
+ }
+ return 0;
+}
+
+/* Return nonzero if REF is an lvalue valid for this language;
+ otherwise, print an error message and return zero. */
+
+int
+lvalue_or_else (ref, string)
+ tree ref;
+ char *string;
+{
+ int win = lvalue_p (ref);
+ if (! win)
+ error ("invalid lvalue in %s", string);
+ return win;
+}
+
+/* Apply unary lvalue-demanding operator CODE to the expression ARG
+ for certain kinds of expressions which are not really lvalues
+ but which we can accept as lvalues.
+
+ If ARG is not a kind of expression we can handle, return zero. */
+
+static tree
+unary_complex_lvalue (code, arg)
+ enum tree_code code;
+ tree arg;
+{
+ /* Handle (a, b) used as an "lvalue". */
+ if (TREE_CODE (arg) == COMPOUND_EXPR)
+ {
+ tree real_result = build_unary_op (code, TREE_OPERAND (arg, 1), 0);
+ pedantic_lvalue_warning (COMPOUND_EXPR);
+ return build (COMPOUND_EXPR, TREE_TYPE (real_result),
+ TREE_OPERAND (arg, 0), real_result);
+ }
+
+ /* Handle (a ? b : c) used as an "lvalue". */
+ if (TREE_CODE (arg) == COND_EXPR)
+ {
+ pedantic_lvalue_warning (COND_EXPR);
+ return (build_conditional_expr
+ (TREE_OPERAND (arg, 0),
+ build_unary_op (code, TREE_OPERAND (arg, 1), 0),
+ build_unary_op (code, TREE_OPERAND (arg, 2), 0)));
+ }
+
+ return 0;
+}
+
+/* If pedantic, warn about improper lvalue. CODE is either COND_EXPR
+ COMPOUND_EXPR, or CONVERT_EXPR (for casts). */
+
+static void
+pedantic_lvalue_warning (code)
+ enum tree_code code;
+{
+ if (pedantic)
+ pedwarn ("ANSI C forbids use of %s expressions as lvalues",
+ code == COND_EXPR ? "conditional"
+ : code == COMPOUND_EXPR ? "compound" : "cast");
+}
+
+/* Warn about storing in something that is `const'. */
+
+void
+readonly_warning (arg, string)
+ tree arg;
+ char *string;
+{
+ char buf[80];
+ strcpy (buf, string);
+
+ /* Forbid assignments to iterators. */
+ if (TREE_CODE (arg) == VAR_DECL && ITERATOR_P (arg))
+ {
+ strcat (buf, " of iterator `%s'");
+ pedwarn (buf, IDENTIFIER_POINTER (DECL_NAME (arg)));
+ }
+
+ if (TREE_CODE (arg) == COMPONENT_REF)
+ {
+ if (TYPE_READONLY (TREE_TYPE (TREE_OPERAND (arg, 0))))
+ readonly_warning (TREE_OPERAND (arg, 0), string);
+ else
+ {
+ strcat (buf, " of read-only member `%s'");
+ pedwarn (buf, IDENTIFIER_POINTER (DECL_NAME (TREE_OPERAND (arg, 1))));
+ }
+ }
+ else if (TREE_CODE (arg) == VAR_DECL)
+ {
+ strcat (buf, " of read-only variable `%s'");
+ pedwarn (buf, IDENTIFIER_POINTER (DECL_NAME (arg)));
+ }
+ else
+ {
+ pedwarn ("%s of read-only location", buf);
+ }
+}
+
+/* Mark EXP saying that we need to be able to take the
+ address of it; it should not be allocated in a register.
+ Value is 1 if successful. */
+
+int
+mark_addressable (exp)
+ tree exp;
+{
+ register tree x = exp;
+ while (1)
+ switch (TREE_CODE (x))
+ {
+ case ADDR_EXPR:
+ case COMPONENT_REF:
+ case ARRAY_REF:
+ case REALPART_EXPR:
+ case IMAGPART_EXPR:
+ x = TREE_OPERAND (x, 0);
+ break;
+
+ case CONSTRUCTOR:
+ TREE_ADDRESSABLE (x) = 1;
+ return 1;
+
+ case VAR_DECL:
+ case CONST_DECL:
+ case PARM_DECL:
+ case RESULT_DECL:
+ if (DECL_REGISTER (x) && !TREE_ADDRESSABLE (x)
+ && DECL_NONLOCAL (x))
+ {
+ if (TREE_PUBLIC (x))
+ {
+ error ("global register variable `%s' used in nested function",
+ IDENTIFIER_POINTER (DECL_NAME (x)));
+ return 0;
+ }
+ pedwarn ("register variable `%s' used in nested function",
+ IDENTIFIER_POINTER (DECL_NAME (x)));
+ }
+ else if (DECL_REGISTER (x) && !TREE_ADDRESSABLE (x))
+ {
+ if (TREE_PUBLIC (x))
+ {
+ error ("address of global register variable `%s' requested",
+ IDENTIFIER_POINTER (DECL_NAME (x)));
+ return 0;
+ }
+
+ /* If we are making this addressable due to its having
+ volatile components, give a different error message. Also
+ handle the case of an unnamed parameter by not trying
+ to give the name. */
+
+ else if (C_TYPE_FIELDS_VOLATILE (TREE_TYPE (x)))
+ {
+ error ("cannot put object with volatile field into register");
+ return 0;
+ }
+
+ pedwarn ("address of register variable `%s' requested",
+ IDENTIFIER_POINTER (DECL_NAME (x)));
+ }
+ put_var_into_stack (x);
+
+ /* drops in */
+ case FUNCTION_DECL:
+ TREE_ADDRESSABLE (x) = 1;
+#if 0 /* poplevel deals with this now. */
+ if (DECL_CONTEXT (x) == 0)
+ TREE_ADDRESSABLE (DECL_ASSEMBLER_NAME (x)) = 1;
+#endif
+
+ default:
+ return 1;
+ }
+}
+
+/* Build and return a conditional expression IFEXP ? OP1 : OP2. */
+
+tree
+build_conditional_expr (ifexp, op1, op2)
+ tree ifexp, op1, op2;
+{
+ register tree type1;
+ register tree type2;
+ register enum tree_code code1;
+ register enum tree_code code2;
+ register tree result_type = NULL;
+ tree orig_op1 = op1, orig_op2 = op2;
+
+ /* If second operand is omitted, it is the same as the first one;
+ make sure it is calculated only once. */
+ if (op1 == 0)
+ {
+ if (pedantic)
+ pedwarn ("ANSI C forbids omitting the middle term of a ?: expression");
+ ifexp = op1 = save_expr (ifexp);
+ }
+
+ ifexp = truthvalue_conversion (default_conversion (ifexp));
+
+#if 0 /* Produces wrong result if within sizeof. */
+ /* Don't promote the operands separately if they promote
+ the same way. Return the unpromoted type and let the combined
+ value get promoted if necessary. */
+
+ if (TREE_TYPE (op1) == TREE_TYPE (op2)
+ && TREE_CODE (TREE_TYPE (op1)) != ARRAY_TYPE
+ && TREE_CODE (TREE_TYPE (op1)) != ENUMERAL_TYPE
+ && TREE_CODE (TREE_TYPE (op1)) != FUNCTION_TYPE)
+ {
+ if (TREE_CODE (ifexp) == INTEGER_CST)
+ return pedantic_non_lvalue (integer_zerop (ifexp) ? op2 : op1);
+
+ return fold (build (COND_EXPR, TREE_TYPE (op1), ifexp, op1, op2));
+ }
+#endif
+
+ /* Promote both alternatives. */
+
+ if (TREE_CODE (TREE_TYPE (op1)) != VOID_TYPE)
+ op1 = default_conversion (op1);
+ if (TREE_CODE (TREE_TYPE (op2)) != VOID_TYPE)
+ op2 = default_conversion (op2);
+
+ if (TREE_CODE (ifexp) == ERROR_MARK
+ || TREE_CODE (TREE_TYPE (op1)) == ERROR_MARK
+ || TREE_CODE (TREE_TYPE (op2)) == ERROR_MARK)
+ return error_mark_node;
+
+ type1 = TREE_TYPE (op1);
+ code1 = TREE_CODE (type1);
+ type2 = TREE_TYPE (op2);
+ code2 = TREE_CODE (type2);
+
+ /* Quickly detect the usual case where op1 and op2 have the same type
+ after promotion. */
+ if (TYPE_MAIN_VARIANT (type1) == TYPE_MAIN_VARIANT (type2))
+ {
+ if (type1 == type2)
+ result_type = type1;
+ else
+ result_type = TYPE_MAIN_VARIANT (type1);
+ }
+ else if ((code1 == INTEGER_TYPE || code1 == REAL_TYPE)
+ && (code2 == INTEGER_TYPE || code2 == REAL_TYPE))
+ {
+ result_type = common_type (type1, type2);
+ }
+ else if (code1 == VOID_TYPE || code2 == VOID_TYPE)
+ {
+ if (pedantic && (code1 != VOID_TYPE || code2 != VOID_TYPE))
+ pedwarn ("ANSI C forbids conditional expr with only one void side");
+ result_type = void_type_node;
+ }
+ else if (code1 == POINTER_TYPE && code2 == POINTER_TYPE)
+ {
+ if (comp_target_types (type1, type2))
+ result_type = common_type (type1, type2);
+ else if (integer_zerop (op1) && TREE_TYPE (type1) == void_type_node
+ && TREE_CODE (orig_op1) != NOP_EXPR)
+ result_type = qualify_type (type2, type1);
+ else if (integer_zerop (op2) && TREE_TYPE (type2) == void_type_node
+ && TREE_CODE (orig_op2) != NOP_EXPR)
+ result_type = qualify_type (type1, type2);
+ else if (TYPE_MAIN_VARIANT (TREE_TYPE (type1)) == void_type_node)
+ {
+ if (pedantic && TREE_CODE (TREE_TYPE (type2)) == FUNCTION_TYPE)
+ pedwarn ("ANSI C forbids conditional expr between `void *' and function pointer");
+ result_type = qualify_type (type1, type2);
+ }
+ else if (TYPE_MAIN_VARIANT (TREE_TYPE (type2)) == void_type_node)
+ {
+ if (pedantic && TREE_CODE (TREE_TYPE (type1)) == FUNCTION_TYPE)
+ pedwarn ("ANSI C forbids conditional expr between `void *' and function pointer");
+ result_type = qualify_type (type2, type1);
+ }
+ else
+ {
+ pedwarn ("pointer type mismatch in conditional expression");
+ result_type = build_pointer_type (void_type_node);
+ }
+ }
+ else if (code1 == POINTER_TYPE && code2 == INTEGER_TYPE)
+ {
+ if (! integer_zerop (op2))
+ pedwarn ("pointer/integer type mismatch in conditional expression");
+ else
+ {
+ op2 = null_pointer_node;
+#if 0 /* The spec seems to say this is permitted. */
+ if (pedantic && TREE_CODE (type1) == FUNCTION_TYPE)
+ pedwarn ("ANSI C forbids conditional expr between 0 and function pointer");
+#endif
+ }
+ result_type = type1;
+ }
+ else if (code2 == POINTER_TYPE && code1 == INTEGER_TYPE)
+ {
+ if (!integer_zerop (op1))
+ pedwarn ("pointer/integer type mismatch in conditional expression");
+ else
+ {
+ op1 = null_pointer_node;
+#if 0 /* The spec seems to say this is permitted. */
+ if (pedantic && TREE_CODE (type2) == FUNCTION_TYPE)
+ pedwarn ("ANSI C forbids conditional expr between 0 and function pointer");
+#endif
+ }
+ result_type = type2;
+ }
+
+ if (!result_type)
+ {
+ if (flag_cond_mismatch)
+ result_type = void_type_node;
+ else
+ {
+ error ("type mismatch in conditional expression");
+ return error_mark_node;
+ }
+ }
+
+ /* Merge const and volatile flags of the incoming types. */
+ result_type
+ = build_type_variant (result_type,
+ TREE_READONLY (op1) || TREE_READONLY (op2),
+ TREE_THIS_VOLATILE (op1) || TREE_THIS_VOLATILE (op2));
+
+ if (result_type != TREE_TYPE (op1))
+ op1 = convert_and_check (result_type, op1);
+ if (result_type != TREE_TYPE (op2))
+ op2 = convert_and_check (result_type, op2);
+
+#if 0
+ if (code1 == RECORD_TYPE || code1 == UNION_TYPE)
+ {
+ result_type = TREE_TYPE (op1);
+ if (TREE_CONSTANT (ifexp))
+ return pedantic_non_lvalue (integer_zerop (ifexp) ? op2 : op1);
+
+ if (TYPE_MODE (result_type) == BLKmode)
+ {
+ register tree tempvar
+ = build_decl (VAR_DECL, NULL_TREE, result_type);
+ register tree xop1 = build_modify_expr (tempvar, op1);
+ register tree xop2 = build_modify_expr (tempvar, op2);
+ register tree result = fold (build (COND_EXPR, result_type,
+ ifexp, xop1, xop2));
+
+ layout_decl (tempvar, TYPE_ALIGN (result_type));
+ /* No way to handle variable-sized objects here.
+ I fear that the entire handling of BLKmode conditional exprs
+ needs to be redone. */
+ if (TREE_CODE (DECL_SIZE (tempvar)) != INTEGER_CST)
+ abort ();
+ DECL_RTL (tempvar)
+ = assign_stack_local (DECL_MODE (tempvar),
+ (TREE_INT_CST_LOW (DECL_SIZE (tempvar))
+ + BITS_PER_UNIT - 1)
+ / BITS_PER_UNIT,
+ 0);
+
+ TREE_SIDE_EFFECTS (result)
+ = TREE_SIDE_EFFECTS (ifexp) | TREE_SIDE_EFFECTS (op1)
+ | TREE_SIDE_EFFECTS (op2);
+ return build (COMPOUND_EXPR, result_type, result, tempvar);
+ }
+ }
+#endif /* 0 */
+
+ if (TREE_CODE (ifexp) == INTEGER_CST)
+ return pedantic_non_lvalue (integer_zerop (ifexp) ? op2 : op1);
+
+ return fold (build (COND_EXPR, result_type, ifexp, op1, op2));
+}
+
+/* Given a list of expressions, return a compound expression
+ that performs them all and returns the value of the last of them. */
+
+tree
+build_compound_expr (list)
+ tree list;
+{
+ return internal_build_compound_expr (list, TRUE);
+}
+
+static tree
+internal_build_compound_expr (list, first_p)
+ tree list;
+ int first_p;
+{
+ register tree rest;
+
+ if (TREE_CHAIN (list) == 0)
+ {
+#if 0 /* If something inside inhibited lvalueness, we should not override. */
+ /* Consider (x, y+0), which is not an lvalue since y+0 is not. */
+
+ /* Strip NON_LVALUE_EXPRs since we aren't using as an lvalue. */
+ if (TREE_CODE (list) == NON_LVALUE_EXPR)
+ list = TREE_OPERAND (list, 0);
+#endif
+
+ /* Don't let (0, 0) be null pointer constant. */
+ if (!first_p && integer_zerop (TREE_VALUE (list)))
+ return non_lvalue (TREE_VALUE (list));
+ return TREE_VALUE (list);
+ }
+
+ if (TREE_CHAIN (list) != 0 && TREE_CHAIN (TREE_CHAIN (list)) == 0)
+ {
+ /* Convert arrays to pointers when there really is a comma operator. */
+ if (TREE_CODE (TREE_TYPE (TREE_VALUE (TREE_CHAIN (list)))) == ARRAY_TYPE)
+ TREE_VALUE (TREE_CHAIN (list))
+ = default_conversion (TREE_VALUE (TREE_CHAIN (list)));
+ }
+
+ rest = internal_build_compound_expr (TREE_CHAIN (list), FALSE);
+
+ if (! TREE_SIDE_EFFECTS (TREE_VALUE (list)))
+ {
+ /* The left-hand operand of a comma expression is like an expression
+ statement: with -W or -Wunused, we should warn if it doesn't have
+ any side-effects, unless it was explicitly cast to (void). */
+ if ((extra_warnings || warn_unused)
+ && ! (TREE_CODE (TREE_VALUE (list)) == CONVERT_EXPR
+ && TREE_TYPE (TREE_VALUE (list)) == void_type_node))
+ warning ("left-hand operand of comma expression has no effect");
+
+ /* When pedantic, a compound expression can be neither an lvalue
+ nor an integer constant expression. */
+ if (! pedantic)
+ return rest;
+ }
+
+ /* With -Wunused, we should also warn if the left-hand operand does have
+ side-effects, but computes a value which is not used. For example, in
+ `foo() + bar(), baz()' the result of the `+' operator is not used,
+ so we should issue a warning. */
+ else if (warn_unused)
+ warn_if_unused_value (TREE_VALUE (list));
+
+ return build (COMPOUND_EXPR, TREE_TYPE (rest), TREE_VALUE (list), rest);
+}
+
+/* Build an expression representing a cast to type TYPE of expression EXPR. */
+
+tree
+build_c_cast (type, expr)
+ register tree type;
+ tree expr;
+{
+ register tree value = expr;
+
+ if (type == error_mark_node || expr == error_mark_node)
+ return error_mark_node;
+ type = TYPE_MAIN_VARIANT (type);
+
+#if 0
+ /* Strip NON_LVALUE_EXPRs since we aren't using as an lvalue. */
+ if (TREE_CODE (value) == NON_LVALUE_EXPR)
+ value = TREE_OPERAND (value, 0);
+#endif
+
+ if (TREE_CODE (type) == ARRAY_TYPE)
+ {
+ error ("cast specifies array type");
+ return error_mark_node;
+ }
+
+ if (TREE_CODE (type) == FUNCTION_TYPE)
+ {
+ error ("cast specifies function type");
+ return error_mark_node;
+ }
+
+ if (type == TREE_TYPE (value))
+ {
+ if (pedantic)
+ {
+ if (TREE_CODE (type) == RECORD_TYPE
+ || TREE_CODE (type) == UNION_TYPE)
+ pedwarn ("ANSI C forbids casting nonscalar to the same type");
+ }
+ }
+ else if (TREE_CODE (type) == UNION_TYPE)
+ {
+ tree field;
+ if (TREE_CODE (TREE_TYPE (value)) == ARRAY_TYPE
+ || TREE_CODE (TREE_TYPE (value)) == FUNCTION_TYPE)
+ value = default_conversion (value);
+
+ for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
+ if (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (field)),
+ TYPE_MAIN_VARIANT (TREE_TYPE (value))))
+ break;
+
+ if (field)
+ {
+ char *name;
+ tree t;
+
+ if (pedantic)
+ pedwarn ("ANSI C forbids casts to union type");
+ if (TYPE_NAME (type) != 0)
+ {
+ if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
+ name = IDENTIFIER_POINTER (TYPE_NAME (type));
+ else
+ name = IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (type)));
+ }
+ else
+ name = "";
+ t = digest_init (type, build (CONSTRUCTOR, type, NULL_TREE,
+ build_tree_list (field, value)),
+ 0, 0);
+ TREE_CONSTANT (t) = TREE_CONSTANT (value);
+ return t;
+ }
+ error ("cast to union type from type not present in union");
+ return error_mark_node;
+ }
+ else
+ {
+ tree otype, ovalue;
+
+ /* If casting to void, avoid the error that would come
+ from default_conversion in the case of a non-lvalue array. */
+ if (type == void_type_node)
+ return build1 (CONVERT_EXPR, type, value);
+
+ /* Convert functions and arrays to pointers,
+ but don't convert any other types. */
+ if (TREE_CODE (TREE_TYPE (value)) == FUNCTION_TYPE
+ || TREE_CODE (TREE_TYPE (value)) == ARRAY_TYPE)
+ value = default_conversion (value);
+ otype = TREE_TYPE (value);
+
+ /* Optionally warn about potentially worrisome casts. */
+
+ if (warn_cast_qual
+ && TREE_CODE (type) == POINTER_TYPE
+ && TREE_CODE (otype) == POINTER_TYPE)
+ {
+ if (TYPE_VOLATILE (TREE_TYPE (otype))
+ && ! TYPE_VOLATILE (TREE_TYPE (type)))
+ pedwarn ("cast discards `volatile' from pointer target type");
+ if (TYPE_READONLY (TREE_TYPE (otype))
+ && ! TYPE_READONLY (TREE_TYPE (type)))
+ pedwarn ("cast discards `const' from pointer target type");
+ }
+
+ /* Warn about possible alignment problems. */
+ if (STRICT_ALIGNMENT && warn_cast_align
+ && TREE_CODE (type) == POINTER_TYPE
+ && TREE_CODE (otype) == POINTER_TYPE
+ && TREE_CODE (TREE_TYPE (otype)) != VOID_TYPE
+ && TREE_CODE (TREE_TYPE (otype)) != FUNCTION_TYPE
+ && TYPE_ALIGN (TREE_TYPE (type)) > TYPE_ALIGN (TREE_TYPE (otype)))
+ warning ("cast increases required alignment of target type");
+
+ if (TREE_CODE (type) == INTEGER_TYPE
+ && TREE_CODE (otype) == POINTER_TYPE
+ && TYPE_PRECISION (type) != TYPE_PRECISION (otype)
+ && !TREE_CONSTANT (value))
+ warning ("cast from pointer to integer of different size");
+
+ if (warn_bad_function_cast
+ && TREE_CODE (value) == CALL_EXPR
+ && TREE_CODE (type) != TREE_CODE (otype))
+ warning ("cast does not match function type");
+
+ if (TREE_CODE (type) == POINTER_TYPE
+ && TREE_CODE (otype) == INTEGER_TYPE
+ && TYPE_PRECISION (type) != TYPE_PRECISION (otype)
+#if 0
+ /* Don't warn about converting 0 to pointer,
+ provided the 0 was explicit--not cast or made by folding. */
+ && !(TREE_CODE (value) == INTEGER_CST && integer_zerop (value))
+#endif
+ /* Don't warn about converting any constant. */
+ && !TREE_CONSTANT (value))
+ warning ("cast to pointer from integer of different size");
+
+ ovalue = value;
+ value = convert (type, value);
+
+ /* Ignore any integer overflow caused by the cast. */
+ if (TREE_CODE (value) == INTEGER_CST)
+ {
+ TREE_OVERFLOW (value) = TREE_OVERFLOW (ovalue);
+ TREE_CONSTANT_OVERFLOW (value) = TREE_CONSTANT_OVERFLOW (ovalue);
+ }
+ }
+
+ /* Pedantically, don't ley (void *) (FOO *) 0 be a null pointer constant. */
+ if (pedantic && TREE_CODE (value) == INTEGER_CST
+ && TREE_CODE (expr) == INTEGER_CST
+ && TREE_CODE (TREE_TYPE (expr)) != INTEGER_TYPE)
+ value = non_lvalue (value);
+
+ /* If pedantic, don't let a cast be an lvalue. */
+ if (value == expr && pedantic)
+ value = non_lvalue (value);
+
+ return value;
+}
+
+/* Build an assignment expression of lvalue LHS from value RHS.
+ MODIFYCODE is the code for a binary operator that we use
+ to combine the old value of LHS with RHS to get the new value.
+ Or else MODIFYCODE is NOP_EXPR meaning do a simple assignment. */
+
+tree
+build_modify_expr (lhs, modifycode, rhs)
+ tree lhs, rhs;
+ enum tree_code modifycode;
+{
+ register tree result;
+ tree newrhs;
+ tree lhstype = TREE_TYPE (lhs);
+ tree olhstype = lhstype;
+
+ /* Types that aren't fully specified cannot be used in assignments. */
+ lhs = require_complete_type (lhs);
+
+ /* Avoid duplicate error messages from operands that had errors. */
+ if (TREE_CODE (lhs) == ERROR_MARK || TREE_CODE (rhs) == ERROR_MARK)
+ return error_mark_node;
+
+ /* Strip NON_LVALUE_EXPRs since we aren't using as an lvalue. */
+ /* Do not use STRIP_NOPS here. We do not want an enumerator
+ whose value is 0 to count as a null pointer constant. */
+ if (TREE_CODE (rhs) == NON_LVALUE_EXPR)
+ rhs = TREE_OPERAND (rhs, 0);
+
+ newrhs = rhs;
+
+ /* Handle control structure constructs used as "lvalues". */
+
+ switch (TREE_CODE (lhs))
+ {
+ /* Handle (a, b) used as an "lvalue". */
+ case COMPOUND_EXPR:
+ pedantic_lvalue_warning (COMPOUND_EXPR);
+ newrhs = build_modify_expr (TREE_OPERAND (lhs, 1),
+ modifycode, rhs);
+ if (TREE_CODE (newrhs) == ERROR_MARK)
+ return error_mark_node;
+ return build (COMPOUND_EXPR, lhstype,
+ TREE_OPERAND (lhs, 0), newrhs);
+
+ /* Handle (a ? b : c) used as an "lvalue". */
+ case COND_EXPR:
+ pedantic_lvalue_warning (COND_EXPR);
+ rhs = save_expr (rhs);
+ {
+ /* Produce (a ? (b = rhs) : (c = rhs))
+ except that the RHS goes through a save-expr
+ so the code to compute it is only emitted once. */
+ tree cond
+ = build_conditional_expr (TREE_OPERAND (lhs, 0),
+ build_modify_expr (TREE_OPERAND (lhs, 1),
+ modifycode, rhs),
+ build_modify_expr (TREE_OPERAND (lhs, 2),
+ modifycode, rhs));
+ if (TREE_CODE (cond) == ERROR_MARK)
+ return cond;
+ /* Make sure the code to compute the rhs comes out
+ before the split. */
+ return build (COMPOUND_EXPR, TREE_TYPE (lhs),
+ /* But cast it to void to avoid an "unused" error. */
+ convert (void_type_node, rhs), cond);
+ }
+ }
+
+ /* If a binary op has been requested, combine the old LHS value with the RHS
+ producing the value we should actually store into the LHS. */
+
+ if (modifycode != NOP_EXPR)
+ {
+ lhs = stabilize_reference (lhs);
+ newrhs = build_binary_op (modifycode, lhs, rhs, 1);
+ }
+
+ /* Handle a cast used as an "lvalue".
+ We have already performed any binary operator using the value as cast.
+ Now convert the result to the cast type of the lhs,
+ and then true type of the lhs and store it there;
+ then convert result back to the cast type to be the value
+ of the assignment. */
+
+ switch (TREE_CODE (lhs))
+ {
+ case NOP_EXPR:
+ case CONVERT_EXPR:
+ case FLOAT_EXPR:
+ case FIX_TRUNC_EXPR:
+ case FIX_FLOOR_EXPR:
+ case FIX_ROUND_EXPR:
+ case FIX_CEIL_EXPR:
+ if (TREE_CODE (TREE_TYPE (newrhs)) == ARRAY_TYPE
+ || TREE_CODE (TREE_TYPE (newrhs)) == FUNCTION_TYPE)
+ newrhs = default_conversion (newrhs);
+ {
+ tree inner_lhs = TREE_OPERAND (lhs, 0);
+ tree result;
+ result = build_modify_expr (inner_lhs, NOP_EXPR,
+ convert (TREE_TYPE (inner_lhs),
+ convert (lhstype, newrhs)));
+ if (TREE_CODE (result) == ERROR_MARK)
+ return result;
+ pedantic_lvalue_warning (CONVERT_EXPR);
+ return convert (TREE_TYPE (lhs), result);
+ }
+ }
+
+ /* Now we have handled acceptable kinds of LHS that are not truly lvalues.
+ Reject anything strange now. */
+
+ if (!lvalue_or_else (lhs, "assignment"))
+ return error_mark_node;
+
+ /* Warn about storing in something that is `const'. */
+
+ if (TREE_READONLY (lhs) || TYPE_READONLY (lhstype)
+ || ((TREE_CODE (lhstype) == RECORD_TYPE
+ || TREE_CODE (lhstype) == UNION_TYPE)
+ && C_TYPE_FIELDS_READONLY (lhstype)))
+ readonly_warning (lhs, "assignment");
+
+ /* If storing into a structure or union member,
+ it has probably been given type `int'.
+ Compute the type that would go with
+ the actual amount of storage the member occupies. */
+
+ if (TREE_CODE (lhs) == COMPONENT_REF
+ && (TREE_CODE (lhstype) == INTEGER_TYPE
+ || TREE_CODE (lhstype) == REAL_TYPE
+ || TREE_CODE (lhstype) == ENUMERAL_TYPE))
+ lhstype = TREE_TYPE (get_unwidened (lhs, 0));
+
+ /* If storing in a field that is in actuality a short or narrower than one,
+ we must store in the field in its actual type. */
+
+ if (lhstype != TREE_TYPE (lhs))
+ {
+ lhs = copy_node (lhs);
+ TREE_TYPE (lhs) = lhstype;
+ }
+
+ /* Convert new value to destination type. */
+
+ newrhs = convert_for_assignment (lhstype, newrhs, "assignment",
+ NULL_TREE, NULL_TREE, 0);
+ if (TREE_CODE (newrhs) == ERROR_MARK)
+ return error_mark_node;
+
+ result = build (MODIFY_EXPR, lhstype, lhs, newrhs);
+ TREE_SIDE_EFFECTS (result) = 1;
+
+ /* If we got the LHS in a different type for storing in,
+ convert the result back to the nominal type of LHS
+ so that the value we return always has the same type
+ as the LHS argument. */
+
+ if (olhstype == TREE_TYPE (result))
+ return result;
+ return convert_for_assignment (olhstype, result, "assignment",
+ NULL_TREE, NULL_TREE, 0);
+}
+
+/* Convert value RHS to type TYPE as preparation for an assignment
+ to an lvalue of type TYPE.
+ The real work of conversion is done by `convert'.
+ The purpose of this function is to generate error messages
+ for assignments that are not allowed in C.
+ ERRTYPE is a string to use in error messages:
+ "assignment", "return", etc. If it is null, this is parameter passing
+ for a function call (and different error messages are output). Otherwise,
+ it may be a name stored in the spelling stack and interpreted by
+ get_spelling.
+
+ FUNNAME is the name of the function being called,
+ as an IDENTIFIER_NODE, or null.
+ PARMNUM is the number of the argument, for printing in error messages. */
+
+static tree
+convert_for_assignment (type, rhs, errtype, fundecl, funname, parmnum)
+ tree type, rhs;
+ char *errtype;
+ tree fundecl, funname;
+ int parmnum;
+{
+ register enum tree_code codel = TREE_CODE (type);
+ register tree rhstype;
+ register enum tree_code coder;
+
+ /* Strip NON_LVALUE_EXPRs since we aren't using as an lvalue. */
+ /* Do not use STRIP_NOPS here. We do not want an enumerator
+ whose value is 0 to count as a null pointer constant. */
+ if (TREE_CODE (rhs) == NON_LVALUE_EXPR)
+ rhs = TREE_OPERAND (rhs, 0);
+
+ if (TREE_CODE (TREE_TYPE (rhs)) == ARRAY_TYPE
+ || TREE_CODE (TREE_TYPE (rhs)) == FUNCTION_TYPE)
+ rhs = default_conversion (rhs);
+ else if (optimize && TREE_CODE (rhs) == VAR_DECL)
+ rhs = decl_constant_value (rhs);
+
+ rhstype = TREE_TYPE (rhs);
+ coder = TREE_CODE (rhstype);
+
+ if (coder == ERROR_MARK)
+ return error_mark_node;
+
+ if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (rhstype))
+ {
+ overflow_warning (rhs);
+ /* Check for Objective-C protocols. This will issue a warning if
+ there are protocol violations. No need to use the return value. */
+ maybe_objc_comptypes (type, rhstype, 0);
+ return rhs;
+ }
+
+ if (coder == VOID_TYPE)
+ {
+ error ("void value not ignored as it ought to be");
+ return error_mark_node;
+ }
+ /* Arithmetic types all interconvert, and enum is treated like int. */
+ if ((codel == INTEGER_TYPE || codel == REAL_TYPE || codel == ENUMERAL_TYPE
+ || codel == COMPLEX_TYPE)
+ && (coder == INTEGER_TYPE || coder == REAL_TYPE || coder == ENUMERAL_TYPE
+ || coder == COMPLEX_TYPE))
+ return convert_and_check (type, rhs);
+
+ /* Conversion to a union from its member types. */
+ else if (codel == UNION_TYPE)
+ {
+ tree memb_types;
+
+ for (memb_types = TYPE_FIELDS (type); memb_types;
+ memb_types = TREE_CHAIN (memb_types))
+ {
+ if (comptypes (TREE_TYPE (memb_types), TREE_TYPE (rhs)))
+ {
+ if (pedantic
+ && !(fundecl != 0 && DECL_IN_SYSTEM_HEADER (fundecl)))
+ pedwarn ("ANSI C prohibits argument conversion to union type");
+ return build1 (NOP_EXPR, type, rhs);
+ }
+
+ else if (coder == POINTER_TYPE
+ && TREE_CODE (TREE_TYPE (memb_types)) == POINTER_TYPE)
+ {
+ tree memb_type = TREE_TYPE (memb_types);
+ register tree ttl = TREE_TYPE (memb_type);
+ register tree ttr = TREE_TYPE (rhstype);
+
+ /* Any non-function converts to a [const][volatile] void *
+ and vice versa; otherwise, targets must be the same.
+ Meanwhile, the lhs target must have all the qualifiers of
+ the rhs. */
+ if (TYPE_MAIN_VARIANT (ttl) == void_type_node
+ || TYPE_MAIN_VARIANT (ttr) == void_type_node
+ || comp_target_types (memb_type, rhstype))
+ {
+ /* Const and volatile mean something different for function
+ types, so the usual warnings are not appropriate. */
+ if (TREE_CODE (ttr) != FUNCTION_TYPE
+ || TREE_CODE (ttl) != FUNCTION_TYPE)
+ {
+ if (! TYPE_READONLY (ttl) && TYPE_READONLY (ttr))
+ warn_for_assignment ("%s discards `const' from pointer target type",
+ get_spelling (errtype), funname,
+ parmnum);
+ if (! TYPE_VOLATILE (ttl) && TYPE_VOLATILE (ttr))
+ warn_for_assignment ("%s discards `volatile' from pointer target type",
+ get_spelling (errtype), funname,
+ parmnum);
+ }
+ else
+ {
+ /* Because const and volatile on functions are
+ restrictions that say the function will not do
+ certain things, it is okay to use a const or volatile
+ function where an ordinary one is wanted, but not
+ vice-versa. */
+ if (TYPE_READONLY (ttl) && ! TYPE_READONLY (ttr))
+ warn_for_assignment ("%s makes `const *' function pointer from non-const",
+ get_spelling (errtype), funname,
+ parmnum);
+ if (TYPE_VOLATILE (ttl) && ! TYPE_VOLATILE (ttr))
+ warn_for_assignment ("%s makes `volatile *' function pointer from non-volatile",
+ get_spelling (errtype), funname,
+ parmnum);
+ }
+
+ if (pedantic
+ && !(fundecl != 0 && DECL_IN_SYSTEM_HEADER (fundecl)))
+ pedwarn ("ANSI C prohibits argument conversion to union type");
+ return build1 (NOP_EXPR, type, rhs);
+ }
+ }
+
+ /* Can convert integer zero to any pointer type. */
+ else if (TREE_CODE (TREE_TYPE (memb_types)) == POINTER_TYPE
+ && (integer_zerop (rhs)
+ || (TREE_CODE (rhs) == NOP_EXPR
+ && integer_zerop (TREE_OPERAND (rhs, 0)))))
+ return build1 (NOP_EXPR, type, null_pointer_node);
+ }
+ }
+
+ /* Conversions among pointers */
+ else if (codel == POINTER_TYPE && coder == POINTER_TYPE)
+ {
+ register tree ttl = TREE_TYPE (type);
+ register tree ttr = TREE_TYPE (rhstype);
+
+ /* Any non-function converts to a [const][volatile] void *
+ and vice versa; otherwise, targets must be the same.
+ Meanwhile, the lhs target must have all the qualifiers of the rhs. */
+ if (TYPE_MAIN_VARIANT (ttl) == void_type_node
+ || TYPE_MAIN_VARIANT (ttr) == void_type_node
+ || comp_target_types (type, rhstype)
+ || (unsigned_type (TYPE_MAIN_VARIANT (ttl))
+ == unsigned_type (TYPE_MAIN_VARIANT (ttr))))
+ {
+ if (pedantic
+ && ((TYPE_MAIN_VARIANT (ttl) == void_type_node
+ && TREE_CODE (ttr) == FUNCTION_TYPE)
+ ||
+ (TYPE_MAIN_VARIANT (ttr) == void_type_node
+ /* Check TREE_CODE to catch cases like (void *) (char *) 0
+ which are not ANSI null ptr constants. */
+ && (!integer_zerop (rhs) || TREE_CODE (rhs) == NOP_EXPR)
+ && TREE_CODE (ttl) == FUNCTION_TYPE)))
+ warn_for_assignment ("ANSI forbids %s between function pointer and `void *'",
+ get_spelling (errtype), funname, parmnum);
+ /* Const and volatile mean something different for function types,
+ so the usual warnings are not appropriate. */
+ else if (TREE_CODE (ttr) != FUNCTION_TYPE
+ && TREE_CODE (ttl) != FUNCTION_TYPE)
+ {
+ if (! TYPE_READONLY (ttl) && TYPE_READONLY (ttr))
+ warn_for_assignment ("%s discards `const' from pointer target type",
+ get_spelling (errtype), funname, parmnum);
+ else if (! TYPE_VOLATILE (ttl) && TYPE_VOLATILE (ttr))
+ warn_for_assignment ("%s discards `volatile' from pointer target type",
+ get_spelling (errtype), funname, parmnum);
+ /* If this is not a case of ignoring a mismatch in signedness,
+ no warning. */
+ else if (TYPE_MAIN_VARIANT (ttl) == void_type_node
+ || TYPE_MAIN_VARIANT (ttr) == void_type_node
+ || comp_target_types (type, rhstype))
+ ;
+ /* If there is a mismatch, do warn. */
+ else if (pedantic)
+ warn_for_assignment ("pointer targets in %s differ in signedness",
+ get_spelling (errtype), funname, parmnum);
+ }
+ else if (TREE_CODE (ttl) == FUNCTION_TYPE
+ && TREE_CODE (ttr) == FUNCTION_TYPE)
+ {
+ /* Because const and volatile on functions are restrictions
+ that say the function will not do certain things,
+ it is okay to use a const or volatile function
+ where an ordinary one is wanted, but not vice-versa. */
+ if (TYPE_READONLY (ttl) && ! TYPE_READONLY (ttr))
+ warn_for_assignment ("%s makes `const *' function pointer from non-const",
+ get_spelling (errtype), funname, parmnum);
+ if (TYPE_VOLATILE (ttl) && ! TYPE_VOLATILE (ttr))
+ warn_for_assignment ("%s makes `volatile *' function pointer from non-volatile",
+ get_spelling (errtype), funname, parmnum);
+ }
+ }
+ else
+ warn_for_assignment ("%s from incompatible pointer type",
+ get_spelling (errtype), funname, parmnum);
+ return convert (type, rhs);
+ }
+ else if (codel == POINTER_TYPE && coder == INTEGER_TYPE)
+ {
+ /* An explicit constant 0 can convert to a pointer,
+ or one that results from arithmetic, even including
+ a cast to integer type. */
+ if (! (TREE_CODE (rhs) == INTEGER_CST && integer_zerop (rhs))
+ &&
+ ! (TREE_CODE (rhs) == NOP_EXPR
+ && TREE_CODE (TREE_TYPE (rhs)) == INTEGER_TYPE
+ && TREE_CODE (TREE_OPERAND (rhs, 0)) == INTEGER_CST
+ && integer_zerop (TREE_OPERAND (rhs, 0))))
+ {
+ warn_for_assignment ("%s makes pointer from integer without a cast",
+ get_spelling (errtype), funname, parmnum);
+ return convert (type, rhs);
+ }
+ return null_pointer_node;
+ }
+ else if (codel == INTEGER_TYPE && coder == POINTER_TYPE)
+ {
+ warn_for_assignment ("%s makes integer from pointer without a cast",
+ get_spelling (errtype), funname, parmnum);
+ return convert (type, rhs);
+ }
+
+ if (!errtype)
+ {
+ if (funname)
+ {
+ tree selector = maybe_building_objc_message_expr ();
+
+ if (selector && parmnum > 2)
+ error ("incompatible type for argument %d of `%s'",
+ parmnum - 2, IDENTIFIER_POINTER (selector));
+ else
+ error ("incompatible type for argument %d of `%s'",
+ parmnum, IDENTIFIER_POINTER (funname));
+ }
+ else
+ error ("incompatible type for argument %d of indirect function call",
+ parmnum);
+ }
+ else
+ error ("incompatible types in %s", get_spelling (errtype));
+
+ return error_mark_node;
+}
+
+/* Print a warning using MSG.
+ It gets OPNAME as its one parameter.
+ If OPNAME is null, it is replaced by "passing arg ARGNUM of `FUNCTION'".
+ FUNCTION and ARGNUM are handled specially if we are building an
+ Objective-C selector. */
+
+static void
+warn_for_assignment (msg, opname, function, argnum)
+ char *msg;
+ char *opname;
+ tree function;
+ int argnum;
+{
+ static char argstring[] = "passing arg %d of `%s'";
+ static char argnofun[] = "passing arg %d";
+
+ if (opname == 0)
+ {
+ tree selector = maybe_building_objc_message_expr ();
+
+ if (selector && argnum > 2)
+ {
+ function = selector;
+ argnum -= 2;
+ }
+ if (function)
+ {
+ /* Function name is known; supply it. */
+ opname = (char *) alloca (IDENTIFIER_LENGTH (function)
+ + sizeof (argstring) + 25 /*%d*/ + 1);
+ sprintf (opname, argstring, argnum, IDENTIFIER_POINTER (function));
+ }
+ else
+ {
+ /* Function name unknown (call through ptr); just give arg number. */
+ opname = (char *) alloca (sizeof (argnofun) + 25 /*%d*/ + 1);
+ sprintf (opname, argnofun, argnum);
+ }
+ }
+ pedwarn (msg, opname);
+}
+
+/* Return nonzero if VALUE is a valid constant-valued expression
+ for use in initializing a static variable; one that can be an
+ element of a "constant" initializer.
+
+ Return null_pointer_node if the value is absolute;
+ if it is relocatable, return the variable that determines the relocation.
+ We assume that VALUE has been folded as much as possible;
+ therefore, we do not need to check for such things as
+ arithmetic-combinations of integers. */
+
+tree
+initializer_constant_valid_p (value, endtype)
+ tree value;
+ tree endtype;
+{
+ switch (TREE_CODE (value))
+ {
+ case CONSTRUCTOR:
+ if ((TREE_CODE (TREE_TYPE (value)) == UNION_TYPE
+ || TREE_CODE (TREE_TYPE (value)) == RECORD_TYPE)
+ && TREE_CONSTANT (value))
+ return
+ initializer_constant_valid_p (TREE_VALUE (CONSTRUCTOR_ELTS (value)),
+ endtype);
+
+ return TREE_STATIC (value) ? null_pointer_node : 0;
+
+ case INTEGER_CST:
+ case REAL_CST:
+ case STRING_CST:
+ case COMPLEX_CST:
+ return null_pointer_node;
+
+ case ADDR_EXPR:
+ return TREE_OPERAND (value, 0);
+
+ case NON_LVALUE_EXPR:
+ return initializer_constant_valid_p (TREE_OPERAND (value, 0), endtype);
+
+ case CONVERT_EXPR:
+ case NOP_EXPR:
+ /* Allow conversions between pointer types. */
+ if (TREE_CODE (TREE_TYPE (value)) == POINTER_TYPE
+ && TREE_CODE (TREE_TYPE (TREE_OPERAND (value, 0))) == POINTER_TYPE)
+ return initializer_constant_valid_p (TREE_OPERAND (value, 0), endtype);
+
+ /* Allow conversions between real types. */
+ if (TREE_CODE (TREE_TYPE (value)) == REAL_TYPE
+ && TREE_CODE (TREE_TYPE (TREE_OPERAND (value, 0))) == REAL_TYPE)
+ return initializer_constant_valid_p (TREE_OPERAND (value, 0), endtype);
+
+ /* Allow length-preserving conversions between integer types. */
+ if (TREE_CODE (TREE_TYPE (value)) == INTEGER_TYPE
+ && TREE_CODE (TREE_TYPE (TREE_OPERAND (value, 0))) == INTEGER_TYPE
+ && (TYPE_PRECISION (TREE_TYPE (value))
+ == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (value, 0)))))
+ return initializer_constant_valid_p (TREE_OPERAND (value, 0), endtype);
+
+ /* Allow conversions between other integer types only if
+ explicit value. */
+ if (TREE_CODE (TREE_TYPE (value)) == INTEGER_TYPE
+ && TREE_CODE (TREE_TYPE (TREE_OPERAND (value, 0))) == INTEGER_TYPE)
+ {
+ tree inner = initializer_constant_valid_p (TREE_OPERAND (value, 0),
+ endtype);
+ if (inner == null_pointer_node)
+ return null_pointer_node;
+ return 0;
+ }
+
+ /* Allow (int) &foo provided int is as wide as a pointer. */
+ if (TREE_CODE (TREE_TYPE (value)) == INTEGER_TYPE
+ && TREE_CODE (TREE_TYPE (TREE_OPERAND (value, 0))) == POINTER_TYPE
+ && (TYPE_PRECISION (TREE_TYPE (value))
+ >= TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (value, 0)))))
+ return initializer_constant_valid_p (TREE_OPERAND (value, 0),
+ endtype);
+
+ /* Likewise conversions from int to pointers. */
+ if (TREE_CODE (TREE_TYPE (value)) == POINTER_TYPE
+ && TREE_CODE (TREE_TYPE (TREE_OPERAND (value, 0))) == INTEGER_TYPE
+ && (TYPE_PRECISION (TREE_TYPE (value))
+ <= TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (value, 0)))))
+ return initializer_constant_valid_p (TREE_OPERAND (value, 0),
+ endtype);
+
+ /* Allow conversions to union types if the value inside is okay. */
+ if (TREE_CODE (TREE_TYPE (value)) == UNION_TYPE)
+ return initializer_constant_valid_p (TREE_OPERAND (value, 0),
+ endtype);
+ return 0;
+
+ case PLUS_EXPR:
+ if (TREE_CODE (endtype) == INTEGER_TYPE
+ && TYPE_PRECISION (endtype) < POINTER_SIZE)
+ return 0;
+ {
+ tree valid0 = initializer_constant_valid_p (TREE_OPERAND (value, 0),
+ endtype);
+ tree valid1 = initializer_constant_valid_p (TREE_OPERAND (value, 1),
+ endtype);
+ /* If either term is absolute, use the other terms relocation. */
+ if (valid0 == null_pointer_node)
+ return valid1;
+ if (valid1 == null_pointer_node)
+ return valid0;
+ return 0;
+ }
+
+ case MINUS_EXPR:
+ if (TREE_CODE (endtype) == INTEGER_TYPE
+ && TYPE_PRECISION (endtype) < POINTER_SIZE)
+ return 0;
+ {
+ tree valid0 = initializer_constant_valid_p (TREE_OPERAND (value, 0),
+ endtype);
+ tree valid1 = initializer_constant_valid_p (TREE_OPERAND (value, 1),
+ endtype);
+ /* Win if second argument is absolute. */
+ if (valid1 == null_pointer_node)
+ return valid0;
+ /* Win if both arguments have the same relocation.
+ Then the value is absolute. */
+ if (valid0 == valid1)
+ return null_pointer_node;
+ return 0;
+ }
+ }
+
+ return 0;
+}
+
+/* If VALUE is a compound expr all of whose expressions are constant, then
+ return its value. Otherwise, return error_mark_node.
+
+ This is for handling COMPOUND_EXPRs as initializer elements
+ which is allowed with a warning when -pedantic is specified. */
+
+static tree
+valid_compound_expr_initializer (value, endtype)
+ tree value;
+ tree endtype;
+{
+ if (TREE_CODE (value) == COMPOUND_EXPR)
+ {
+ if (valid_compound_expr_initializer (TREE_OPERAND (value, 0), endtype)
+ == error_mark_node)
+ return error_mark_node;
+ return valid_compound_expr_initializer (TREE_OPERAND (value, 1),
+ endtype);
+ }
+ else if (! TREE_CONSTANT (value)
+ && ! initializer_constant_valid_p (value, endtype))
+ return error_mark_node;
+ else
+ return value;
+}
+
+/* Perform appropriate conversions on the initial value of a variable,
+ store it in the declaration DECL,
+ and print any error messages that are appropriate.
+ If the init is invalid, store an ERROR_MARK. */
+
+void
+store_init_value (decl, init)
+ tree decl, init;
+{
+ register tree value, type;
+
+ /* If variable's type was invalidly declared, just ignore it. */
+
+ type = TREE_TYPE (decl);
+ if (TREE_CODE (type) == ERROR_MARK)
+ return;
+
+ /* Digest the specified initializer into an expression. */
+
+ value = digest_init (type, init, TREE_STATIC (decl),
+ TREE_STATIC (decl) || pedantic);
+
+ /* Store the expression if valid; else report error. */
+
+#if 0
+ /* Note that this is the only place we can detect the error
+ in a case such as struct foo bar = (struct foo) { x, y };
+ where there is one initial value which is a constructor expression. */
+ if (value == error_mark_node)
+ ;
+ else if (TREE_STATIC (decl) && ! TREE_CONSTANT (value))
+ {
+ error ("initializer for static variable is not constant");
+ value = error_mark_node;
+ }
+ else if (TREE_STATIC (decl)
+ && initializer_constant_valid_p (value, TREE_TYPE (value)) == 0)
+ {
+ error ("initializer for static variable uses complicated arithmetic");
+ value = error_mark_node;
+ }
+ else
+ {
+ if (pedantic && TREE_CODE (value) == CONSTRUCTOR)
+ {
+ if (! TREE_CONSTANT (value))
+ pedwarn ("aggregate initializer is not constant");
+ else if (! TREE_STATIC (value))
+ pedwarn ("aggregate initializer uses complicated arithmetic");
+ }
+ }
+#endif
+
+ DECL_INITIAL (decl) = value;
+
+ /* ANSI wants warnings about out-of-range constant initializers. */
+ STRIP_TYPE_NOPS (value);
+ constant_expression_warning (value);
+}
+
+/* Methods for storing and printing names for error messages. */
+
+/* Implement a spelling stack that allows components of a name to be pushed
+ and popped. Each element on the stack is this structure. */
+
+struct spelling
+{
+ int kind;
+ union
+ {
+ int i;
+ char *s;
+ } u;
+};
+
+#define SPELLING_STRING 1
+#define SPELLING_MEMBER 2
+#define SPELLING_BOUNDS 3
+
+static struct spelling *spelling; /* Next stack element (unused). */
+static struct spelling *spelling_base; /* Spelling stack base. */
+static int spelling_size; /* Size of the spelling stack. */
+
+/* Macros to save and restore the spelling stack around push_... functions.
+ Alternative to SAVE_SPELLING_STACK. */
+
+#define SPELLING_DEPTH() (spelling - spelling_base)
+#define RESTORE_SPELLING_DEPTH(depth) (spelling = spelling_base + depth)
+
+/* Save and restore the spelling stack around arbitrary C code. */
+
+#define SAVE_SPELLING_DEPTH(code) \
+{ \
+ int __depth = SPELLING_DEPTH (); \
+ code; \
+ RESTORE_SPELLING_DEPTH (__depth); \
+}
+
+/* Push an element on the spelling stack with type KIND and assign VALUE
+ to MEMBER. */
+
+#define PUSH_SPELLING(KIND, VALUE, MEMBER) \
+{ \
+ int depth = SPELLING_DEPTH (); \
+ \
+ if (depth >= spelling_size) \
+ { \
+ spelling_size += 10; \
+ if (spelling_base == 0) \
+ spelling_base \
+ = (struct spelling *) xmalloc (spelling_size * sizeof (struct spelling)); \
+ else \
+ spelling_base \
+ = (struct spelling *) xrealloc (spelling_base, \
+ spelling_size * sizeof (struct spelling)); \
+ RESTORE_SPELLING_DEPTH (depth); \
+ } \
+ \
+ spelling->kind = (KIND); \
+ spelling->MEMBER = (VALUE); \
+ spelling++; \
+}
+
+/* Push STRING on the stack. Printed literally. */
+
+static void
+push_string (string)
+ char *string;
+{
+ PUSH_SPELLING (SPELLING_STRING, string, u.s);
+}
+
+/* Push a member name on the stack. Printed as '.' STRING. */
+
+static void
+push_member_name (decl)
+ tree decl;
+
+{
+ char *string
+ = DECL_NAME (decl) ? IDENTIFIER_POINTER (DECL_NAME (decl)) : "<anonymous>";
+ PUSH_SPELLING (SPELLING_MEMBER, string, u.s);
+}
+
+/* Push an array bounds on the stack. Printed as [BOUNDS]. */
+
+static void
+push_array_bounds (bounds)
+ int bounds;
+{
+ PUSH_SPELLING (SPELLING_BOUNDS, bounds, u.i);
+}
+
+/* Compute the maximum size in bytes of the printed spelling. */
+
+static int
+spelling_length ()
+{
+ register int size = 0;
+ register struct spelling *p;
+
+ for (p = spelling_base; p < spelling; p++)
+ {
+ if (p->kind == SPELLING_BOUNDS)
+ size += 25;
+ else
+ size += strlen (p->u.s) + 1;
+ }
+
+ return size;
+}
+
+/* Print the spelling to BUFFER and return it. */
+
+static char *
+print_spelling (buffer)
+ register char *buffer;
+{
+ register char *d = buffer;
+ register char *s;
+ register struct spelling *p;
+
+ for (p = spelling_base; p < spelling; p++)
+ if (p->kind == SPELLING_BOUNDS)
+ {
+ sprintf (d, "[%d]", p->u.i);
+ d += strlen (d);
+ }
+ else
+ {
+ if (p->kind == SPELLING_MEMBER)
+ *d++ = '.';
+ for (s = p->u.s; *d = *s++; d++)
+ ;
+ }
+ *d++ = '\0';
+ return buffer;
+}
+
+/* Provide a means to pass component names derived from the spelling stack. */
+
+char initialization_message;
+
+/* Interpret the spelling of the given ERRTYPE message. */
+
+static char *
+get_spelling (errtype)
+ char *errtype;
+{
+ static char *buffer;
+ static int size = -1;
+
+ if (errtype == &initialization_message)
+ {
+ /* Avoid counting chars */
+ static char message[] = "initialization of `%s'";
+ register int needed = sizeof (message) + spelling_length () + 1;
+ char *temp;
+
+ if (size < 0)
+ buffer = (char *) xmalloc (size = needed);
+ if (needed > size)
+ buffer = (char *) xrealloc (buffer, size = needed);
+
+ temp = (char *) alloca (needed);
+ sprintf (buffer, message, print_spelling (temp));
+ return buffer;
+ }
+
+ return errtype;
+}
+
+/* Issue an error message for a bad initializer component.
+ FORMAT describes the message. OFWHAT is the name for the component.
+ LOCAL is a format string for formatting the insertion of the name
+ into the message.
+
+ If OFWHAT is null, the component name is stored on the spelling stack.
+ If the component name is a null string, then LOCAL is omitted entirely. */
+
+void
+error_init (format, local, ofwhat)
+ char *format, *local, *ofwhat;
+{
+ char *buffer;
+
+ if (ofwhat == 0)
+ ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
+ buffer = (char *) alloca (strlen (local) + strlen (ofwhat) + 2);
+
+ if (*ofwhat)
+ sprintf (buffer, local, ofwhat);
+ else
+ buffer[0] = 0;
+
+ error (format, buffer);
+}
+
+/* Issue a pedantic warning for a bad initializer component.
+ FORMAT describes the message. OFWHAT is the name for the component.
+ LOCAL is a format string for formatting the insertion of the name
+ into the message.
+
+ If OFWHAT is null, the component name is stored on the spelling stack.
+ If the component name is a null string, then LOCAL is omitted entirely. */
+
+void
+pedwarn_init (format, local, ofwhat)
+ char *format, *local, *ofwhat;
+{
+ char *buffer;
+
+ if (ofwhat == 0)
+ ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
+ buffer = (char *) alloca (strlen (local) + strlen (ofwhat) + 2);
+
+ if (*ofwhat)
+ sprintf (buffer, local, ofwhat);
+ else
+ buffer[0] = 0;
+
+ pedwarn (format, buffer);
+}
+
+/* Issue a warning for a bad initializer component.
+ FORMAT describes the message. OFWHAT is the name for the component.
+ LOCAL is a format string for formatting the insertion of the name
+ into the message.
+
+ If OFWHAT is null, the component name is stored on the spelling stack.
+ If the component name is a null string, then LOCAL is omitted entirely. */
+
+static void
+warning_init (format, local, ofwhat)
+ char *format, *local, *ofwhat;
+{
+ char *buffer;
+
+ if (ofwhat == 0)
+ ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
+ buffer = (char *) alloca (strlen (local) + strlen (ofwhat) + 2);
+
+ if (*ofwhat)
+ sprintf (buffer, local, ofwhat);
+ else
+ buffer[0] = 0;
+
+ warning (format, buffer);
+}
+
+/* Digest the parser output INIT as an initializer for type TYPE.
+ Return a C expression of type TYPE to represent the initial value.
+
+ The arguments REQUIRE_CONSTANT and CONSTRUCTOR_CONSTANT request errors
+ if non-constant initializers or elements are seen. CONSTRUCTOR_CONSTANT
+ applies only to elements of constructors. */
+
+static tree
+digest_init (type, init, require_constant, constructor_constant)
+ tree type, init;
+ int require_constant, constructor_constant;
+{
+ enum tree_code code = TREE_CODE (type);
+ tree inside_init = init;
+
+ if (init == error_mark_node)
+ return init;
+
+ /* Strip NON_LVALUE_EXPRs since we aren't using as an lvalue. */
+ /* Do not use STRIP_NOPS here. We do not want an enumerator
+ whose value is 0 to count as a null pointer constant. */
+ if (TREE_CODE (init) == NON_LVALUE_EXPR)
+ inside_init = TREE_OPERAND (init, 0);
+
+ /* Initialization of an array of chars from a string constant
+ optionally enclosed in braces. */
+
+ if (code == ARRAY_TYPE)
+ {
+ tree typ1 = TYPE_MAIN_VARIANT (TREE_TYPE (type));
+ if ((typ1 == char_type_node
+ || typ1 == signed_char_type_node
+ || typ1 == unsigned_char_type_node
+ || typ1 == unsigned_wchar_type_node
+ || typ1 == signed_wchar_type_node)
+ && ((inside_init && TREE_CODE (inside_init) == STRING_CST)))
+ {
+ if (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)),
+ TYPE_MAIN_VARIANT (type)))
+ return inside_init;
+
+ if ((TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (inside_init)))
+ != char_type_node)
+ && TYPE_PRECISION (typ1) == TYPE_PRECISION (char_type_node))
+ {
+ error_init ("char-array%s initialized from wide string",
+ " `%s'", NULL);
+ return error_mark_node;
+ }
+ if ((TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (inside_init)))
+ == char_type_node)
+ && TYPE_PRECISION (typ1) != TYPE_PRECISION (char_type_node))
+ {
+ error_init ("int-array%s initialized from non-wide string",
+ " `%s'", NULL);
+ return error_mark_node;
+ }
+
+ TREE_TYPE (inside_init) = type;
+ if (TYPE_DOMAIN (type) != 0
+ && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST)
+ {
+ register int size = TREE_INT_CST_LOW (TYPE_SIZE (type));
+ size = (size + BITS_PER_UNIT - 1) / BITS_PER_UNIT;
+ /* Subtract 1 (or sizeof (wchar_t))
+ because it's ok to ignore the terminating null char
+ that is counted in the length of the constant. */
+ if (size < TREE_STRING_LENGTH (inside_init)
+ - (TYPE_PRECISION (typ1) != TYPE_PRECISION (char_type_node)
+ ? TYPE_PRECISION (wchar_type_node) / BITS_PER_UNIT
+ : 1))
+ pedwarn_init (
+ "initializer-string for array of chars%s is too long",
+ " `%s'", NULL);
+ }
+ return inside_init;
+ }
+ }
+
+ /* Any type can be initialized
+ from an expression of the same type, optionally with braces. */
+
+ if (inside_init && TREE_TYPE (inside_init) != 0
+ && (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)),
+ TYPE_MAIN_VARIANT (type))
+ || (code == ARRAY_TYPE
+ && comptypes (TREE_TYPE (inside_init), type))
+ || (code == POINTER_TYPE
+ && (TREE_CODE (TREE_TYPE (inside_init)) == ARRAY_TYPE
+ || TREE_CODE (TREE_TYPE (inside_init)) == FUNCTION_TYPE)
+ && comptypes (TREE_TYPE (TREE_TYPE (inside_init)),
+ TREE_TYPE (type)))))
+ {
+ if (code == POINTER_TYPE
+ && (TREE_CODE (TREE_TYPE (inside_init)) == ARRAY_TYPE
+ || TREE_CODE (TREE_TYPE (inside_init)) == FUNCTION_TYPE))
+ inside_init = default_conversion (inside_init);
+ else if (code == ARRAY_TYPE && TREE_CODE (inside_init) != STRING_CST
+ && TREE_CODE (inside_init) != CONSTRUCTOR)
+ {
+ error_init ("array%s initialized from non-constant array expression",
+ " `%s'", NULL);
+ return error_mark_node;
+ }
+
+ if (optimize && TREE_CODE (inside_init) == VAR_DECL)
+ inside_init = decl_constant_value (inside_init);
+
+ /* Compound expressions can only occur here if -pedantic or
+ -pedantic-errors is specified. In the later case, we always want
+ an error. In the former case, we simply want a warning. */
+ if (require_constant && pedantic
+ && TREE_CODE (inside_init) == COMPOUND_EXPR)
+ {
+ inside_init
+ = valid_compound_expr_initializer (inside_init,
+ TREE_TYPE (inside_init));
+ if (inside_init == error_mark_node)
+ error_init ("initializer element%s is not constant",
+ " for `%s'", NULL);
+ else
+ pedwarn_init ("initializer element%s is not constant",
+ " for `%s'", NULL);
+ if (flag_pedantic_errors)
+ inside_init = error_mark_node;
+ }
+ else if (require_constant && ! TREE_CONSTANT (inside_init))
+ {
+ error_init ("initializer element%s is not constant",
+ " for `%s'", NULL);
+ inside_init = error_mark_node;
+ }
+ else if (require_constant
+ && initializer_constant_valid_p (inside_init, TREE_TYPE (inside_init)) == 0)
+ {
+ error_init ("initializer element%s is not computable at load time",
+ " for `%s'", NULL);
+ inside_init = error_mark_node;
+ }
+
+ return inside_init;
+ }
+
+ /* Handle scalar types, including conversions. */
+
+ if (code == INTEGER_TYPE || code == REAL_TYPE || code == POINTER_TYPE
+ || code == ENUMERAL_TYPE || code == COMPLEX_TYPE)
+ {
+ /* Note that convert_for_assignment calls default_conversion
+ for arrays and functions. We must not call it in the
+ case where inside_init is a null pointer constant. */
+ inside_init
+ = convert_for_assignment (type, init, "initialization",
+ NULL_TREE, NULL_TREE, 0);
+
+ if (require_constant && ! TREE_CONSTANT (inside_init))
+ {
+ error_init ("initializer element%s is not constant",
+ " for `%s'", NULL);
+ inside_init = error_mark_node;
+ }
+ else if (require_constant
+ && initializer_constant_valid_p (inside_init, TREE_TYPE (inside_init)) == 0)
+ {
+ error_init ("initializer element%s is not computable at load time",
+ " for `%s'", NULL);
+ inside_init = error_mark_node;
+ }
+
+ return inside_init;
+ }
+
+ /* Come here only for records and arrays. */
+
+ if (TYPE_SIZE (type) && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
+ {
+ error_init ("variable-sized object%s may not be initialized",
+ " `%s'", NULL);
+ return error_mark_node;
+ }
+
+ /* Traditionally, you can write struct foo x = 0;
+ and it initializes the first element of x to 0. */
+ if (flag_traditional)
+ {
+ tree top = 0, prev = 0, otype = type;
+ while (TREE_CODE (type) == RECORD_TYPE
+ || TREE_CODE (type) == ARRAY_TYPE
+ || TREE_CODE (type) == QUAL_UNION_TYPE
+ || TREE_CODE (type) == UNION_TYPE)
+ {
+ tree temp = build (CONSTRUCTOR, type, NULL_TREE, NULL_TREE);
+ if (prev == 0)
+ top = temp;
+ else
+ TREE_OPERAND (prev, 1) = build_tree_list (NULL_TREE, temp);
+ prev = temp;
+ if (TREE_CODE (type) == ARRAY_TYPE)
+ type = TREE_TYPE (type);
+ else if (TYPE_FIELDS (type))
+ type = TREE_TYPE (TYPE_FIELDS (type));
+ else
+ {
+ error_init ("invalid initializer%s", " for `%s'", NULL);
+ return error_mark_node;
+ }
+ }
+
+ if (otype != type)
+ {
+ TREE_OPERAND (prev, 1)
+ = build_tree_list (NULL_TREE,
+ digest_init (type, init, require_constant,
+ constructor_constant));
+ return top;
+ }
+ else
+ return error_mark_node;
+ }
+ error_init ("invalid initializer%s", " for `%s'", NULL);
+ return error_mark_node;
+}
+
+/* Handle initializers that use braces. */
+
+/* Type of object we are accumulating a constructor for.
+ This type is always a RECORD_TYPE, UNION_TYPE or ARRAY_TYPE. */
+static tree constructor_type;
+
+/* For a RECORD_TYPE or UNION_TYPE, this is the chain of fields
+ left to fill. */
+static tree constructor_fields;
+
+/* For an ARRAY_TYPE, this is the specified index
+ at which to store the next element we get.
+ This is a special INTEGER_CST node that we modify in place. */
+static tree constructor_index;
+
+/* For an ARRAY_TYPE, this is the end index of the range
+ to initialize with the next element, or NULL in the ordinary case
+ where the element is used just once. */
+static tree constructor_range_end;
+
+/* For an ARRAY_TYPE, this is the maximum index. */
+static tree constructor_max_index;
+
+/* For a RECORD_TYPE, this is the first field not yet written out. */
+static tree constructor_unfilled_fields;
+
+/* For an ARRAY_TYPE, this is the index of the first element
+ not yet written out.
+ This is a special INTEGER_CST node that we modify in place. */
+static tree constructor_unfilled_index;
+
+/* In a RECORD_TYPE, the byte index of the next consecutive field.
+ This is so we can generate gaps between fields, when appropriate.
+ This is a special INTEGER_CST node that we modify in place. */
+static tree constructor_bit_index;
+
+/* If we are saving up the elements rather than allocating them,
+ this is the list of elements so far (in reverse order,
+ most recent first). */
+static tree constructor_elements;
+
+/* 1 if so far this constructor's elements are all compile-time constants. */
+static int constructor_constant;
+
+/* 1 if so far this constructor's elements are all valid address constants. */
+static int constructor_simple;
+
+/* 1 if this constructor is erroneous so far. */
+static int constructor_erroneous;
+
+/* 1 if have called defer_addressed_constants. */
+static int constructor_subconstants_deferred;
+
+/* List of pending elements at this constructor level.
+ These are elements encountered out of order
+ which belong at places we haven't reached yet in actually
+ writing the output. */
+static tree constructor_pending_elts;
+
+/* The SPELLING_DEPTH of this constructor. */
+static int constructor_depth;
+
+/* 0 if implicitly pushing constructor levels is allowed. */
+int constructor_no_implicit = 0; /* 0 for C; 1 for some other languages. */
+
+/* 1 if this constructor level was entered implicitly. */
+static int constructor_implicit;
+
+static int require_constant_value;
+static int require_constant_elements;
+
+/* 1 if it is ok to output this constructor as we read it.
+ 0 means must accumulate a CONSTRUCTOR expression. */
+static int constructor_incremental;
+
+/* DECL node for which an initializer is being read.
+ 0 means we are reading a constructor expression
+ such as (struct foo) {...}. */
+static tree constructor_decl;
+
+/* start_init saves the ASMSPEC arg here for really_start_incremental_init. */
+static char *constructor_asmspec;
+
+/* Nonzero if this is an initializer for a top-level decl. */
+static int constructor_top_level;
+
+/* When we finish reading a constructor expression
+ (constructor_decl is 0), the CONSTRUCTOR goes here. */
+static tree constructor_result;
+
+/* This stack has a level for each implicit or explicit level of
+ structuring in the initializer, including the outermost one. It
+ saves the values of most of the variables above. */
+
+struct constructor_stack
+{
+ struct constructor_stack *next;
+ tree type;
+ tree fields;
+ tree index;
+ tree range_end;
+ tree max_index;
+ tree unfilled_index;
+ tree unfilled_fields;
+ tree bit_index;
+ tree elements;
+ int offset;
+ tree pending_elts;
+ int depth;
+ /* If nonzero, this value should replace the entire
+ constructor at this level. */
+ tree replacement_value;
+ char constant;
+ char simple;
+ char implicit;
+ char incremental;
+ char erroneous;
+ char outer;
+};
+
+struct constructor_stack *constructor_stack;
+
+/* This stack records separate initializers that are nested.
+ Nested initializers can't happen in ANSI C, but GNU C allows them
+ in cases like { ... (struct foo) { ... } ... }. */
+
+struct initializer_stack
+{
+ struct initializer_stack *next;
+ tree decl;
+ char *asmspec;
+ struct constructor_stack *constructor_stack;
+ tree elements;
+ struct spelling *spelling;
+ struct spelling *spelling_base;
+ int spelling_size;
+ char top_level;
+ char incremental;
+ char require_constant_value;
+ char require_constant_elements;
+ char deferred;
+};
+
+struct initializer_stack *initializer_stack;
+
+/* Prepare to parse and output the initializer for variable DECL. */
+
+void
+start_init (decl, asmspec_tree, top_level)
+ tree decl;
+ tree asmspec_tree;
+ int top_level;
+{
+ char *locus;
+ struct initializer_stack *p
+ = (struct initializer_stack *) xmalloc (sizeof (struct initializer_stack));
+ char *asmspec = 0;
+
+ if (asmspec_tree)
+ asmspec = TREE_STRING_POINTER (asmspec_tree);
+
+ p->decl = constructor_decl;
+ p->asmspec = constructor_asmspec;
+ p->incremental = constructor_incremental;
+ p->require_constant_value = require_constant_value;
+ p->require_constant_elements = require_constant_elements;
+ p->constructor_stack = constructor_stack;
+ p->elements = constructor_elements;
+ p->spelling = spelling;
+ p->spelling_base = spelling_base;
+ p->spelling_size = spelling_size;
+ p->deferred = constructor_subconstants_deferred;
+ p->top_level = constructor_top_level;
+ p->next = initializer_stack;
+ initializer_stack = p;
+
+ constructor_decl = decl;
+ constructor_incremental = top_level;
+ constructor_asmspec = asmspec;
+ constructor_subconstants_deferred = 0;
+ constructor_top_level = top_level;
+
+ if (decl != 0)
+ {
+ require_constant_value = TREE_STATIC (decl);
+ require_constant_elements
+ = ((TREE_STATIC (decl) || pedantic)
+ /* For a scalar, you can always use any value to initialize,
+ even within braces. */
+ && (TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE
+ || TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE
+ || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE
+ || TREE_CODE (TREE_TYPE (decl)) == QUAL_UNION_TYPE));
+ locus = IDENTIFIER_POINTER (DECL_NAME (decl));
+ constructor_incremental |= TREE_STATIC (decl);
+ }
+ else
+ {
+ require_constant_value = 0;
+ require_constant_elements = 0;
+ locus = "(anonymous)";
+ }
+
+ constructor_stack = 0;
+
+ missing_braces_mentioned = 0;
+
+ spelling_base = 0;
+ spelling_size = 0;
+ RESTORE_SPELLING_DEPTH (0);
+
+ if (locus)
+ push_string (locus);
+}
+
+void
+finish_init ()
+{
+ struct initializer_stack *p = initializer_stack;
+
+ /* Output subconstants (string constants, usually)
+ that were referenced within this initializer and saved up.
+ Must do this if and only if we called defer_addressed_constants. */
+ if (constructor_subconstants_deferred)
+ output_deferred_addressed_constants ();
+
+ /* Free the whole constructor stack of this initializer. */
+ while (constructor_stack)
+ {
+ struct constructor_stack *q = constructor_stack;
+ constructor_stack = q->next;
+ free (q);
+ }
+
+ /* Pop back to the data of the outer initializer (if any). */
+ constructor_decl = p->decl;
+ constructor_asmspec = p->asmspec;
+ constructor_incremental = p->incremental;
+ require_constant_value = p->require_constant_value;
+ require_constant_elements = p->require_constant_elements;
+ constructor_stack = p->constructor_stack;
+ constructor_elements = p->elements;
+ spelling = p->spelling;
+ spelling_base = p->spelling_base;
+ spelling_size = p->spelling_size;
+ constructor_subconstants_deferred = p->deferred;
+ constructor_top_level = p->top_level;
+ initializer_stack = p->next;
+ free (p);
+}
+
+/* Call here when we see the initializer is surrounded by braces.
+ This is instead of a call to push_init_level;
+ it is matched by a call to pop_init_level.
+
+ TYPE is the type to initialize, for a constructor expression.
+ For an initializer for a decl, TYPE is zero. */
+
+void
+really_start_incremental_init (type)
+ tree type;
+{
+ struct constructor_stack *p
+ = (struct constructor_stack *) xmalloc (sizeof (struct constructor_stack));
+
+ if (type == 0)
+ type = TREE_TYPE (constructor_decl);
+
+ /* Turn off constructor_incremental if type is a struct with bitfields.
+ Do this before the first push, so that the corrected value
+ is available in finish_init. */
+ check_init_type_bitfields (type);
+
+ p->type = constructor_type;
+ p->fields = constructor_fields;
+ p->index = constructor_index;
+ p->range_end = constructor_range_end;
+ p->max_index = constructor_max_index;
+ p->unfilled_index = constructor_unfilled_index;
+ p->unfilled_fields = constructor_unfilled_fields;
+ p->bit_index = constructor_bit_index;
+ p->elements = constructor_elements;
+ p->constant = constructor_constant;
+ p->simple = constructor_simple;
+ p->erroneous = constructor_erroneous;
+ p->pending_elts = constructor_pending_elts;
+ p->depth = constructor_depth;
+ p->replacement_value = 0;
+ p->implicit = 0;
+ p->incremental = constructor_incremental;
+ p->outer = 0;
+ p->next = 0;
+ constructor_stack = p;
+
+ constructor_constant = 1;
+ constructor_simple = 1;
+ constructor_depth = SPELLING_DEPTH ();
+ constructor_elements = 0;
+ constructor_pending_elts = 0;
+ constructor_type = type;
+
+ if (TREE_CODE (constructor_type) == RECORD_TYPE
+ || TREE_CODE (constructor_type) == UNION_TYPE)
+ {
+ constructor_fields = TYPE_FIELDS (constructor_type);
+ /* Skip any nameless bit fields at the beginning. */
+ while (constructor_fields != 0 && DECL_BIT_FIELD (constructor_fields)
+ && DECL_NAME (constructor_fields) == 0)
+ constructor_fields = TREE_CHAIN (constructor_fields);
+ constructor_unfilled_fields = constructor_fields;
+ constructor_bit_index = copy_node (integer_zero_node);
+ }
+ else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
+ {
+ constructor_range_end = 0;
+ if (TYPE_DOMAIN (constructor_type))
+ {
+ constructor_max_index
+ = TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type));
+ constructor_index
+ = copy_node (TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
+ }
+ else
+ constructor_index = copy_node (integer_zero_node);
+ constructor_unfilled_index = copy_node (constructor_index);
+ }
+ else
+ {
+ /* Handle the case of int x = {5}; */
+ constructor_fields = constructor_type;
+ constructor_unfilled_fields = constructor_type;
+ }
+
+ if (constructor_incremental)
+ {
+ int momentary = suspend_momentary ();
+ push_obstacks_nochange ();
+ if (TREE_PERMANENT (constructor_decl))
+ end_temporary_allocation ();
+ make_decl_rtl (constructor_decl, constructor_asmspec,
+ constructor_top_level);
+ assemble_variable (constructor_decl, constructor_top_level, 0, 1);
+ pop_obstacks ();
+ resume_momentary (momentary);
+ }
+
+ if (constructor_incremental)
+ {
+ defer_addressed_constants ();
+ constructor_subconstants_deferred = 1;
+ }
+}
+
+/* Push down into a subobject, for initialization.
+ If this is for an explicit set of braces, IMPLICIT is 0.
+ If it is because the next element belongs at a lower level,
+ IMPLICIT is 1. */
+
+void
+push_init_level (implicit)
+ int implicit;
+{
+ struct constructor_stack *p;
+
+ /* If we've exhausted any levels that didn't have braces,
+ pop them now. */
+ while (constructor_stack->implicit)
+ {
+ if ((TREE_CODE (constructor_type) == RECORD_TYPE
+ || TREE_CODE (constructor_type) == UNION_TYPE)
+ && constructor_fields == 0)
+ process_init_element (pop_init_level (1));
+ else if (TREE_CODE (constructor_type) == ARRAY_TYPE
+ && tree_int_cst_lt (constructor_max_index, constructor_index))
+ process_init_element (pop_init_level (1));
+ else
+ break;
+ }
+
+ /* Structure elements may require alignment. Do this now
+ if necessary for the subaggregate. */
+ if (constructor_incremental && constructor_type != 0
+ && TREE_CODE (constructor_type) == RECORD_TYPE && constructor_fields)
+ {
+ /* Advance to offset of this element. */
+ if (! tree_int_cst_equal (constructor_bit_index,
+ DECL_FIELD_BITPOS (constructor_fields)))
+ {
+ int next = (TREE_INT_CST_LOW
+ (DECL_FIELD_BITPOS (constructor_fields))
+ / BITS_PER_UNIT);
+ int here = (TREE_INT_CST_LOW (constructor_bit_index)
+ / BITS_PER_UNIT);
+
+ assemble_zeros (next - here);
+ }
+ }
+
+ p = (struct constructor_stack *) xmalloc (sizeof (struct constructor_stack));
+ p->type = constructor_type;
+ p->fields = constructor_fields;
+ p->index = constructor_index;
+ p->range_end = constructor_range_end;
+ p->max_index = constructor_max_index;
+ p->unfilled_index = constructor_unfilled_index;
+ p->unfilled_fields = constructor_unfilled_fields;
+ p->bit_index = constructor_bit_index;
+ p->elements = constructor_elements;
+ p->constant = constructor_constant;
+ p->simple = constructor_simple;
+ p->erroneous = constructor_erroneous;
+ p->pending_elts = constructor_pending_elts;
+ p->depth = constructor_depth;
+ p->replacement_value = 0;
+ p->implicit = implicit;
+ p->incremental = constructor_incremental;
+ p->outer = 0;
+ p->next = constructor_stack;
+ constructor_stack = p;
+
+ constructor_constant = 1;
+ constructor_simple = 1;
+ constructor_depth = SPELLING_DEPTH ();
+ constructor_elements = 0;
+ constructor_pending_elts = 0;
+
+ /* Don't die if an entire brace-pair level is superfluous
+ in the containing level. */
+ if (constructor_type == 0)
+ ;
+ else if (TREE_CODE (constructor_type) == RECORD_TYPE
+ || TREE_CODE (constructor_type) == UNION_TYPE)
+ {
+ /* Don't die if there are extra init elts at the end. */
+ if (constructor_fields == 0)
+ constructor_type = 0;
+ else
+ {
+ constructor_type = TREE_TYPE (constructor_fields);
+ push_member_name (constructor_fields);
+ constructor_depth++;
+ if (constructor_fields != constructor_unfilled_fields)
+ constructor_incremental = 0;
+ }
+ }
+ else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
+ {
+ constructor_type = TREE_TYPE (constructor_type);
+ push_array_bounds (TREE_INT_CST_LOW (constructor_index));
+ constructor_depth++;
+ if (! tree_int_cst_equal (constructor_index, constructor_unfilled_index)
+ || constructor_range_end != 0)
+ constructor_incremental = 0;
+ }
+
+ if (constructor_type == 0)
+ {
+ error_init ("extra brace group at end of initializer%s",
+ " for `%s'", NULL);
+ constructor_fields = 0;
+ constructor_unfilled_fields = 0;
+ return;
+ }
+
+ /* Turn off constructor_incremental if type is a struct with bitfields. */
+ check_init_type_bitfields (constructor_type);
+
+ if (implicit && warn_missing_braces && !missing_braces_mentioned)
+ {
+ missing_braces_mentioned = 1;
+ warning_init ("missing braces around initializer%s", " for `%s'", NULL);
+ }
+
+ if (TREE_CODE (constructor_type) == RECORD_TYPE
+ || TREE_CODE (constructor_type) == UNION_TYPE)
+ {
+ constructor_fields = TYPE_FIELDS (constructor_type);
+ /* Skip any nameless bit fields at the beginning. */
+ while (constructor_fields != 0 && DECL_BIT_FIELD (constructor_fields)
+ && DECL_NAME (constructor_fields) == 0)
+ constructor_fields = TREE_CHAIN (constructor_fields);
+ constructor_unfilled_fields = constructor_fields;
+ constructor_bit_index = copy_node (integer_zero_node);
+ }
+ else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
+ {
+ constructor_range_end = 0;
+ if (TYPE_DOMAIN (constructor_type))
+ {
+ constructor_max_index
+ = TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type));
+ constructor_index
+ = copy_node (TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
+ }
+ else
+ constructor_index = copy_node (integer_zero_node);
+ constructor_unfilled_index = copy_node (constructor_index);
+ }
+ else
+ {
+ warning_init ("braces around scalar initializer%s", " for `%s'", NULL);
+ constructor_fields = constructor_type;
+ constructor_unfilled_fields = constructor_type;
+ }
+}
+
+/* Don't read a struct incrementally if it has any bitfields,
+ because the incremental reading code doesn't know how to
+ handle bitfields yet. */
+
+static void
+check_init_type_bitfields (type)
+ tree type;
+{
+ if (TREE_CODE (type) == RECORD_TYPE)
+ {
+ tree tail;
+ for (tail = TYPE_FIELDS (type); tail;
+ tail = TREE_CHAIN (tail))
+ {
+ if (DECL_BIT_FIELD (tail)
+ /* This catches cases like `int foo : 8;'. */
+ || DECL_MODE (tail) != TYPE_MODE (TREE_TYPE (tail)))
+ {
+ constructor_incremental = 0;
+ break;
+ }
+
+ check_init_type_bitfields (TREE_TYPE (tail));
+ }
+ }
+
+ else if (TREE_CODE (type) == ARRAY_TYPE)
+ check_init_type_bitfields (TREE_TYPE (type));
+}
+
+/* At the end of an implicit or explicit brace level,
+ finish up that level of constructor.
+ If we were outputting the elements as they are read, return 0
+ from inner levels (process_init_element ignores that),
+ but return error_mark_node from the outermost level
+ (that's what we want to put in DECL_INITIAL).
+ Otherwise, return a CONSTRUCTOR expression. */
+
+tree
+pop_init_level (implicit)
+ int implicit;
+{
+ struct constructor_stack *p;
+ int size = 0;
+ tree constructor = 0;
+
+ if (implicit == 0)
+ {
+ /* When we come to an explicit close brace,
+ pop any inner levels that didn't have explicit braces. */
+ while (constructor_stack->implicit)
+ process_init_element (pop_init_level (1));
+ }
+
+ p = constructor_stack;
+
+ if (constructor_type != 0)
+ size = int_size_in_bytes (constructor_type);
+
+ /* Now output all pending elements. */
+ output_pending_init_elements (1);
+
+#if 0 /* c-parse.in warns about {}. */
+ /* In ANSI, each brace level must have at least one element. */
+ if (! implicit && pedantic
+ && (TREE_CODE (constructor_type) == ARRAY_TYPE
+ ? integer_zerop (constructor_unfilled_index)
+ : constructor_unfilled_fields == TYPE_FIELDS (constructor_type)))
+ pedwarn_init ("empty braces in initializer%s", " for `%s'", NULL);
+#endif
+
+ /* Pad out the end of the structure. */
+
+ if (p->replacement_value)
+ {
+ /* If this closes a superfluous brace pair,
+ just pass out the element between them. */
+ constructor = p->replacement_value;
+ /* If this is the top level thing within the initializer,
+ and it's for a variable, then since we already called
+ assemble_variable, we must output the value now. */
+ if (p->next == 0 && constructor_decl != 0
+ && constructor_incremental)
+ {
+ constructor = digest_init (constructor_type, constructor,
+ require_constant_value,
+ require_constant_elements);
+
+ /* If initializing an array of unknown size,
+ determine the size now. */
+ if (TREE_CODE (constructor_type) == ARRAY_TYPE
+ && TYPE_DOMAIN (constructor_type) == 0)
+ {
+ int failure;
+ int momentary_p;
+
+ push_obstacks_nochange ();
+ if (TREE_PERMANENT (constructor_type))
+ end_temporary_allocation ();
+
+ momentary_p = suspend_momentary ();
+
+ /* We shouldn't have an incomplete array type within
+ some other type. */
+ if (constructor_stack->next)
+ abort ();
+
+ failure
+ = complete_array_type (constructor_type,
+ constructor, 0);
+ if (failure)
+ abort ();
+
+ size = int_size_in_bytes (constructor_type);
+ resume_momentary (momentary_p);
+ pop_obstacks ();
+ }
+
+ output_constant (constructor, size);
+ }
+ }
+ else if (constructor_type == 0)
+ ;
+ else if (TREE_CODE (constructor_type) != RECORD_TYPE
+ && TREE_CODE (constructor_type) != UNION_TYPE
+ && TREE_CODE (constructor_type) != ARRAY_TYPE
+ && ! constructor_incremental)
+ {
+ /* A nonincremental scalar initializer--just return
+ the element, after verifying there is just one. */
+ if (constructor_elements == 0)
+ {
+ error_init ("empty scalar initializer%s",
+ " for `%s'", NULL);
+ constructor = error_mark_node;
+ }
+ else if (TREE_CHAIN (constructor_elements) != 0)
+ {
+ error_init ("extra elements in scalar initializer%s",
+ " for `%s'", NULL);
+ constructor = TREE_VALUE (constructor_elements);
+ }
+ else
+ constructor = TREE_VALUE (constructor_elements);
+ }
+ else if (! constructor_incremental)
+ {
+ if (constructor_erroneous)
+ constructor = error_mark_node;
+ else
+ {
+ int momentary = suspend_momentary ();
+
+ constructor = build (CONSTRUCTOR, constructor_type, NULL_TREE,
+ nreverse (constructor_elements));
+ if (constructor_constant)
+ TREE_CONSTANT (constructor) = 1;
+ if (constructor_constant && constructor_simple)
+ TREE_STATIC (constructor) = 1;
+
+ resume_momentary (momentary);
+ }
+ }
+ else
+ {
+ tree filled;
+ int momentary = suspend_momentary ();
+
+ if (TREE_CODE (constructor_type) == RECORD_TYPE
+ || TREE_CODE (constructor_type) == UNION_TYPE)
+ {
+ /* Find the offset of the end of that field. */
+ filled = size_binop (CEIL_DIV_EXPR,
+ constructor_bit_index,
+ size_int (BITS_PER_UNIT));
+ }
+ else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
+ {
+ /* If initializing an array of unknown size,
+ determine the size now. */
+ if (TREE_CODE (constructor_type) == ARRAY_TYPE
+ && TYPE_DOMAIN (constructor_type) == 0)
+ {
+ tree maxindex
+ = size_binop (MINUS_EXPR,
+ constructor_unfilled_index,
+ integer_one_node);
+
+ push_obstacks_nochange ();
+ if (TREE_PERMANENT (constructor_type))
+ end_temporary_allocation ();
+ maxindex = copy_node (maxindex);
+ TYPE_DOMAIN (constructor_type) = build_index_type (maxindex);
+ TREE_TYPE (maxindex) = TYPE_DOMAIN (constructor_type);
+
+ /* TYPE_MAX_VALUE is always one less than the number of elements
+ in the array, because we start counting at zero. Therefore,
+ warn only if the value is less than zero. */
+ if (pedantic
+ && (tree_int_cst_sgn (TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type)))
+ < 0))
+ error_with_decl (constructor_decl,
+ "zero or negative array size `%s'");
+ layout_type (constructor_type);
+ size = int_size_in_bytes (constructor_type);
+ pop_obstacks ();
+ }
+
+ filled = size_binop (MULT_EXPR, constructor_unfilled_index,
+ size_in_bytes (TREE_TYPE (constructor_type)));
+ }
+ else
+ filled = 0;
+
+ if (filled != 0)
+ assemble_zeros (size - TREE_INT_CST_LOW (filled));
+
+ resume_momentary (momentary);
+ }
+
+
+ constructor_type = p->type;
+ constructor_fields = p->fields;
+ constructor_index = p->index;
+ constructor_range_end = p->range_end;
+ constructor_max_index = p->max_index;
+ constructor_unfilled_index = p->unfilled_index;
+ constructor_unfilled_fields = p->unfilled_fields;
+ constructor_bit_index = p->bit_index;
+ constructor_elements = p->elements;
+ constructor_constant = p->constant;
+ constructor_simple = p->simple;
+ constructor_erroneous = p->erroneous;
+ constructor_pending_elts = p->pending_elts;
+ constructor_depth = p->depth;
+ constructor_incremental = p->incremental;
+ RESTORE_SPELLING_DEPTH (constructor_depth);
+
+ constructor_stack = p->next;
+ free (p);
+
+ if (constructor == 0)
+ {
+ if (constructor_stack == 0)
+ return error_mark_node;
+ return NULL_TREE;
+ }
+ return constructor;
+}
+
+/* Within an array initializer, specify the next index to be initialized.
+ FIRST is that index. If LAST is nonzero, then initialize a range
+ of indices, running from FIRST through LAST. */
+
+void
+set_init_index (first, last)
+ tree first, last;
+{
+ while ((TREE_CODE (first) == NOP_EXPR
+ || TREE_CODE (first) == CONVERT_EXPR
+ || TREE_CODE (first) == NON_LVALUE_EXPR)
+ && (TYPE_MODE (TREE_TYPE (first))
+ == TYPE_MODE (TREE_TYPE (TREE_OPERAND (first, 0)))))
+ (first) = TREE_OPERAND (first, 0);
+ if (last)
+ while ((TREE_CODE (last) == NOP_EXPR
+ || TREE_CODE (last) == CONVERT_EXPR
+ || TREE_CODE (last) == NON_LVALUE_EXPR)
+ && (TYPE_MODE (TREE_TYPE (last))
+ == TYPE_MODE (TREE_TYPE (TREE_OPERAND (last, 0)))))
+ (last) = TREE_OPERAND (last, 0);
+
+ if (TREE_CODE (first) != INTEGER_CST)
+ error_init ("nonconstant array index in initializer%s", " for `%s'", NULL);
+ else if (last != 0 && TREE_CODE (last) != INTEGER_CST)
+ error_init ("nonconstant array index in initializer%s", " for `%s'", NULL);
+ else if (tree_int_cst_lt (first, constructor_unfilled_index))
+ error_init ("duplicate array index in initializer%s", " for `%s'", NULL);
+ else
+ {
+ TREE_INT_CST_LOW (constructor_index)
+ = TREE_INT_CST_LOW (first);
+ TREE_INT_CST_HIGH (constructor_index)
+ = TREE_INT_CST_HIGH (first);
+
+ if (last != 0 && tree_int_cst_lt (last, first))
+ error_init ("empty index range in initializer%s", " for `%s'", NULL);
+ else
+ {
+ if (pedantic)
+ pedwarn ("ANSI C forbids specifying element to initialize");
+ constructor_range_end = last;
+ }
+ }
+}
+
+/* Within a struct initializer, specify the next field to be initialized. */
+
+void
+set_init_label (fieldname)
+ tree fieldname;
+{
+ tree tail;
+ int passed = 0;
+
+ /* Don't die if an entire brace-pair level is superfluous
+ in the containing level. */
+ if (constructor_type == 0)
+ return;
+
+ for (tail = TYPE_FIELDS (constructor_type); tail;
+ tail = TREE_CHAIN (tail))
+ {
+ if (tail == constructor_unfilled_fields)
+ passed = 1;
+ if (DECL_NAME (tail) == fieldname)
+ break;
+ }
+
+ if (tail == 0)
+ error ("unknown field `%s' specified in initializer",
+ IDENTIFIER_POINTER (fieldname));
+ else if (!passed)
+ error ("field `%s' already initialized",
+ IDENTIFIER_POINTER (fieldname));
+ else
+ {
+ constructor_fields = tail;
+ if (pedantic)
+ pedwarn ("ANSI C forbids specifying structure member to initialize");
+ }
+}
+
+/* "Output" the next constructor element.
+ At top level, really output it to assembler code now.
+ Otherwise, collect it in a list from which we will make a CONSTRUCTOR.
+ TYPE is the data type that the containing data type wants here.
+ FIELD is the field (a FIELD_DECL) or the index that this element fills.
+
+ PENDING if non-nil means output pending elements that belong
+ right after this element. (PENDING is normally 1;
+ it is 0 while outputting pending elements, to avoid recursion.) */
+
+static void
+output_init_element (value, type, field, pending)
+ tree value, type, field;
+ int pending;
+{
+ int duplicate = 0;
+
+ if (TREE_CODE (TREE_TYPE (value)) == FUNCTION_TYPE
+ || (TREE_CODE (TREE_TYPE (value)) == ARRAY_TYPE
+ && !(TREE_CODE (value) == STRING_CST
+ && TREE_CODE (type) == ARRAY_TYPE
+ && TREE_CODE (TREE_TYPE (type)) == INTEGER_TYPE)
+ && !comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (value)),
+ TYPE_MAIN_VARIANT (type))))
+ value = default_conversion (value);
+
+ if (value == error_mark_node)
+ constructor_erroneous = 1;
+ else if (!TREE_CONSTANT (value))
+ constructor_constant = 0;
+ else if (initializer_constant_valid_p (value, TREE_TYPE (value)) == 0
+ || ((TREE_CODE (constructor_type) == RECORD_TYPE
+ || TREE_CODE (constructor_type) == UNION_TYPE)
+ && DECL_BIT_FIELD (field) && TREE_CODE (value) != INTEGER_CST))
+ constructor_simple = 0;
+
+ if (require_constant_value && ! TREE_CONSTANT (value))
+ {
+ error_init ("initializer element%s is not constant",
+ " for `%s'", NULL);
+ value = error_mark_node;
+ }
+ else if (require_constant_elements
+ && initializer_constant_valid_p (value, TREE_TYPE (value)) == 0)
+ {
+ error_init ("initializer element%s is not computable at load time",
+ " for `%s'", NULL);
+ value = error_mark_node;
+ }
+
+ /* If this element duplicates one on constructor_pending_elts,
+ print a message and ignore it. Don't do this when we're
+ processing elements taken off constructor_pending_elts,
+ because we'd always get spurious errors. */
+ if (pending)
+ {
+ if (TREE_CODE (constructor_type) == RECORD_TYPE
+ || TREE_CODE (constructor_type) == UNION_TYPE)
+ {
+ if (purpose_member (field, constructor_pending_elts))
+ {
+ error_init ("duplicate initializer%s", " for `%s'", NULL);
+ duplicate = 1;
+ }
+ }
+ if (TREE_CODE (constructor_type) == ARRAY_TYPE)
+ {
+ tree tail;
+ for (tail = constructor_pending_elts; tail;
+ tail = TREE_CHAIN (tail))
+ if (TREE_PURPOSE (tail) != 0
+ && TREE_CODE (TREE_PURPOSE (tail)) == INTEGER_CST
+ && tree_int_cst_equal (TREE_PURPOSE (tail), constructor_index))
+ break;
+
+ if (tail != 0)
+ {
+ error_init ("duplicate initializer%s", " for `%s'", NULL);
+ duplicate = 1;
+ }
+ }
+ }
+
+ /* If this element doesn't come next in sequence,
+ put it on constructor_pending_elts. */
+ if (TREE_CODE (constructor_type) == ARRAY_TYPE
+ && !tree_int_cst_equal (field, constructor_unfilled_index))
+ {
+ if (! duplicate)
+ /* The copy_node is needed in case field is actually
+ constructor_index, which is modified in place. */
+ constructor_pending_elts
+ = tree_cons (copy_node (field),
+ digest_init (type, value, require_constant_value,
+ require_constant_elements),
+ constructor_pending_elts);
+ }
+ else if (TREE_CODE (constructor_type) == RECORD_TYPE
+ && field != constructor_unfilled_fields)
+ {
+ /* We do this for records but not for unions. In a union,
+ no matter which field is specified, it can be initialized
+ right away since it starts at the beginning of the union. */
+ if (!duplicate)
+ constructor_pending_elts
+ = tree_cons (field,
+ digest_init (type, value, require_constant_value,
+ require_constant_elements),
+ constructor_pending_elts);
+ }
+ else
+ {
+ /* Otherwise, output this element either to
+ constructor_elements or to the assembler file. */
+
+ if (!duplicate)
+ {
+ if (! constructor_incremental)
+ {
+ if (field && TREE_CODE (field) == INTEGER_CST)
+ field = copy_node (field);
+ constructor_elements
+ = tree_cons (field, digest_init (type, value,
+ require_constant_value,
+ require_constant_elements),
+ constructor_elements);
+ }
+ else
+ {
+ /* Structure elements may require alignment.
+ Do this, if necessary. */
+ if (TREE_CODE (constructor_type) == RECORD_TYPE)
+ {
+ /* Advance to offset of this element. */
+ if (! tree_int_cst_equal (constructor_bit_index,
+ DECL_FIELD_BITPOS (field)))
+ {
+ int next = (TREE_INT_CST_LOW (DECL_FIELD_BITPOS (field))
+ / BITS_PER_UNIT);
+ int here = (TREE_INT_CST_LOW (constructor_bit_index)
+ / BITS_PER_UNIT);
+
+ assemble_zeros (next - here);
+ }
+ }
+ output_constant (digest_init (type, value,
+ require_constant_value,
+ require_constant_elements),
+ int_size_in_bytes (type));
+
+ /* For a record or union,
+ keep track of end position of last field. */
+ if (TREE_CODE (constructor_type) == RECORD_TYPE
+ || TREE_CODE (constructor_type) == UNION_TYPE)
+ {
+ tree temp = size_binop (PLUS_EXPR, DECL_FIELD_BITPOS (field),
+ DECL_SIZE (field));
+ TREE_INT_CST_LOW (constructor_bit_index)
+ = TREE_INT_CST_LOW (temp);
+ TREE_INT_CST_HIGH (constructor_bit_index)
+ = TREE_INT_CST_HIGH (temp);
+ }
+ }
+ }
+
+ /* Advance the variable that indicates sequential elements output. */
+ if (TREE_CODE (constructor_type) == ARRAY_TYPE)
+ {
+ tree tem = size_binop (PLUS_EXPR, constructor_unfilled_index,
+ integer_one_node);
+ TREE_INT_CST_LOW (constructor_unfilled_index)
+ = TREE_INT_CST_LOW (tem);
+ TREE_INT_CST_HIGH (constructor_unfilled_index)
+ = TREE_INT_CST_HIGH (tem);
+ }
+ else if (TREE_CODE (constructor_type) == RECORD_TYPE)
+ constructor_unfilled_fields = TREE_CHAIN (constructor_unfilled_fields);
+ else if (TREE_CODE (constructor_type) == UNION_TYPE)
+ constructor_unfilled_fields = 0;
+
+ /* Now output any pending elements which have become next. */
+ if (pending)
+ output_pending_init_elements (0);
+ }
+}
+
+/* Output any pending elements which have become next.
+ As we output elements, constructor_unfilled_{fields,index}
+ advances, which may cause other elements to become next;
+ if so, they too are output.
+
+ If ALL is 0, we return when there are
+ no more pending elements to output now.
+
+ If ALL is 1, we output space as necessary so that
+ we can output all the pending elements. */
+
+static void
+output_pending_init_elements (all)
+ int all;
+{
+ tree tail;
+ tree next;
+
+ retry:
+
+ /* Look thru the whole pending list.
+ If we find an element that should be output now,
+ output it. Otherwise, set NEXT to the element
+ that comes first among those still pending. */
+
+ next = 0;
+ for (tail = constructor_pending_elts; tail;
+ tail = TREE_CHAIN (tail))
+ {
+ if (TREE_CODE (constructor_type) == ARRAY_TYPE)
+ {
+ if (tree_int_cst_equal (TREE_PURPOSE (tail),
+ constructor_unfilled_index))
+ {
+ output_init_element (TREE_VALUE (tail),
+ TREE_TYPE (constructor_type),
+ constructor_unfilled_index, 0);
+ goto retry;
+ }
+ else if (tree_int_cst_lt (TREE_PURPOSE (tail),
+ constructor_unfilled_index))
+ ;
+ else if (next == 0
+ || tree_int_cst_lt (TREE_PURPOSE (tail), next))
+ next = TREE_PURPOSE (tail);
+ }
+ else if (TREE_CODE (constructor_type) == RECORD_TYPE
+ || TREE_CODE (constructor_type) == UNION_TYPE)
+ {
+ if (TREE_PURPOSE (tail) == constructor_unfilled_fields)
+ {
+ output_init_element (TREE_VALUE (tail),
+ TREE_TYPE (constructor_unfilled_fields),
+ constructor_unfilled_fields,
+ 0);
+ goto retry;
+ }
+ else if (constructor_unfilled_fields == 0
+ || tree_int_cst_lt (DECL_FIELD_BITPOS (TREE_PURPOSE (tail)),
+ DECL_FIELD_BITPOS (constructor_unfilled_fields)))
+ ;
+ else if (next == 0
+ || tree_int_cst_lt (DECL_FIELD_BITPOS (TREE_PURPOSE (tail)),
+ DECL_FIELD_BITPOS (next)))
+ next = TREE_PURPOSE (tail);
+ }
+ }
+
+ /* Ordinarily return, but not if we want to output all
+ and there are elements left. */
+ if (! (all && next != 0))
+ return;
+
+ /* Generate space up to the position of NEXT. */
+ if (constructor_incremental)
+ {
+ tree filled;
+ tree nextpos_tree = size_int (0);
+
+ if (TREE_CODE (constructor_type) == RECORD_TYPE
+ || TREE_CODE (constructor_type) == UNION_TYPE)
+ {
+ /* Find the last field written out, if any. */
+ for (tail = TYPE_FIELDS (constructor_type); tail;
+ tail = TREE_CHAIN (tail))
+ if (TREE_CHAIN (tail) == constructor_unfilled_fields)
+ break;
+
+ if (tail)
+ /* Find the offset of the end of that field. */
+ filled = size_binop (CEIL_DIV_EXPR,
+ size_binop (PLUS_EXPR,
+ DECL_FIELD_BITPOS (tail),
+ DECL_SIZE (tail)),
+ size_int (BITS_PER_UNIT));
+ else
+ filled = size_int (0);
+
+ nextpos_tree = size_binop (CEIL_DIV_EXPR,
+ DECL_FIELD_BITPOS (next),
+ size_int (BITS_PER_UNIT));
+
+ TREE_INT_CST_HIGH (constructor_bit_index)
+ = TREE_INT_CST_HIGH (DECL_FIELD_BITPOS (next));
+ TREE_INT_CST_LOW (constructor_bit_index)
+ = TREE_INT_CST_LOW (DECL_FIELD_BITPOS (next));
+ constructor_unfilled_fields = next;
+ }
+ else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
+ {
+ filled = size_binop (MULT_EXPR, constructor_unfilled_index,
+ size_in_bytes (TREE_TYPE (constructor_type)));
+ nextpos_tree
+ = size_binop (MULT_EXPR, next,
+ size_in_bytes (TREE_TYPE (constructor_type)));
+ TREE_INT_CST_LOW (constructor_unfilled_index)
+ = TREE_INT_CST_LOW (next);
+ TREE_INT_CST_HIGH (constructor_unfilled_index)
+ = TREE_INT_CST_HIGH (next);
+ }
+ else
+ filled = 0;
+
+ if (filled)
+ {
+ int nextpos = TREE_INT_CST_LOW (nextpos_tree);
+
+ assemble_zeros (nextpos - TREE_INT_CST_LOW (filled));
+ }
+ }
+ else
+ {
+ /* If it's not incremental, just skip over the gap,
+ so that after jumping to retry we will output the next
+ successive element. */
+ if (TREE_CODE (constructor_type) == RECORD_TYPE
+ || TREE_CODE (constructor_type) == UNION_TYPE)
+ constructor_unfilled_fields = next;
+ else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
+ {
+ TREE_INT_CST_LOW (constructor_unfilled_index)
+ = TREE_INT_CST_LOW (next);
+ TREE_INT_CST_HIGH (constructor_unfilled_index)
+ = TREE_INT_CST_HIGH (next);
+ }
+ }
+
+ goto retry;
+}
+
+/* Add one non-braced element to the current constructor level.
+ This adjusts the current position within the constructor's type.
+ This may also start or terminate implicit levels
+ to handle a partly-braced initializer.
+
+ Once this has found the correct level for the new element,
+ it calls output_init_element.
+
+ Note: if we are incrementally outputting this constructor,
+ this function may be called with a null argument
+ representing a sub-constructor that was already incrementally output.
+ When that happens, we output nothing, but we do the bookkeeping
+ to skip past that element of the current constructor. */
+
+void
+process_init_element (value)
+ tree value;
+{
+ tree orig_value = value;
+ int string_flag = value != 0 && TREE_CODE (value) == STRING_CST;
+
+ /* Handle superfluous braces around string cst as in
+ char x[] = {"foo"}; */
+ if (string_flag
+ && constructor_type
+ && TREE_CODE (constructor_type) == ARRAY_TYPE
+ && TREE_CODE (TREE_TYPE (constructor_type)) == INTEGER_TYPE
+ && integer_zerop (constructor_unfilled_index))
+ {
+ constructor_stack->replacement_value = value;
+ return;
+ }
+
+ if (constructor_stack->replacement_value != 0)
+ {
+ error_init ("excess elements in struct initializer%s",
+ " after `%s'", NULL_PTR);
+ return;
+ }
+
+ /* Ignore elements of a brace group if it is entirely superfluous
+ and has already been diagnosed. */
+ if (constructor_type == 0)
+ return;
+
+ /* If we've exhausted any levels that didn't have braces,
+ pop them now. */
+ while (constructor_stack->implicit)
+ {
+ if ((TREE_CODE (constructor_type) == RECORD_TYPE
+ || TREE_CODE (constructor_type) == UNION_TYPE)
+ && constructor_fields == 0)
+ process_init_element (pop_init_level (1));
+ else if (TREE_CODE (constructor_type) == ARRAY_TYPE
+ && tree_int_cst_lt (constructor_max_index, constructor_index))
+ process_init_element (pop_init_level (1));
+ else
+ break;
+ }
+
+ while (1)
+ {
+ if (TREE_CODE (constructor_type) == RECORD_TYPE)
+ {
+ tree fieldtype;
+ enum tree_code fieldcode;
+
+ if (constructor_fields == 0)
+ {
+ pedwarn_init ("excess elements in struct initializer%s",
+ " after `%s'", NULL_PTR);
+ break;
+ }
+
+ fieldtype = TREE_TYPE (constructor_fields);
+ if (fieldtype != error_mark_node)
+ fieldtype = TYPE_MAIN_VARIANT (fieldtype);
+ fieldcode = TREE_CODE (fieldtype);
+
+ /* Accept a string constant to initialize a subarray. */
+ if (value != 0
+ && fieldcode == ARRAY_TYPE
+ && TREE_CODE (TREE_TYPE (fieldtype)) == INTEGER_TYPE
+ && string_flag)
+ value = orig_value;
+ /* Otherwise, if we have come to a subaggregate,
+ and we don't have an element of its type, push into it. */
+ else if (value != 0 && !constructor_no_implicit
+ && value != error_mark_node
+ && TYPE_MAIN_VARIANT (TREE_TYPE (value)) != fieldtype
+ && (fieldcode == RECORD_TYPE || fieldcode == ARRAY_TYPE
+ || fieldcode == UNION_TYPE))
+ {
+ push_init_level (1);
+ continue;
+ }
+
+ if (value)
+ {
+ push_member_name (constructor_fields);
+ output_init_element (value, fieldtype, constructor_fields, 1);
+ RESTORE_SPELLING_DEPTH (constructor_depth);
+ }
+ else
+ /* Do the bookkeeping for an element that was
+ directly output as a constructor. */
+ {
+ /* For a record, keep track of end position of last field. */
+ tree temp = size_binop (PLUS_EXPR,
+ DECL_FIELD_BITPOS (constructor_fields),
+ DECL_SIZE (constructor_fields));
+ TREE_INT_CST_LOW (constructor_bit_index)
+ = TREE_INT_CST_LOW (temp);
+ TREE_INT_CST_HIGH (constructor_bit_index)
+ = TREE_INT_CST_HIGH (temp);
+
+ constructor_unfilled_fields = TREE_CHAIN (constructor_fields);
+ }
+
+ constructor_fields = TREE_CHAIN (constructor_fields);
+ /* Skip any nameless bit fields at the beginning. */
+ while (constructor_fields != 0 && DECL_BIT_FIELD (constructor_fields)
+ && DECL_NAME (constructor_fields) == 0)
+ constructor_fields = TREE_CHAIN (constructor_fields);
+ break;
+ }
+ if (TREE_CODE (constructor_type) == UNION_TYPE)
+ {
+ tree fieldtype;
+ enum tree_code fieldcode;
+
+ if (constructor_fields == 0)
+ {
+ pedwarn_init ("excess elements in union initializer%s",
+ " after `%s'", NULL_PTR);
+ break;
+ }
+
+ fieldtype = TREE_TYPE (constructor_fields);
+ if (fieldtype != error_mark_node)
+ fieldtype = TYPE_MAIN_VARIANT (fieldtype);
+ fieldcode = TREE_CODE (fieldtype);
+
+ /* Accept a string constant to initialize a subarray. */
+ if (value != 0
+ && fieldcode == ARRAY_TYPE
+ && TREE_CODE (TREE_TYPE (fieldtype)) == INTEGER_TYPE
+ && string_flag)
+ value = orig_value;
+ /* Otherwise, if we have come to a subaggregate,
+ and we don't have an element of its type, push into it. */
+ else if (value != 0 && !constructor_no_implicit
+ && value != error_mark_node
+ && TYPE_MAIN_VARIANT (TREE_TYPE (value)) != fieldtype
+ && (fieldcode == RECORD_TYPE || fieldcode == ARRAY_TYPE
+ || fieldcode == UNION_TYPE))
+ {
+ push_init_level (1);
+ continue;
+ }
+
+ if (value)
+ {
+ push_member_name (constructor_fields);
+ output_init_element (value, fieldtype, constructor_fields, 1);
+ RESTORE_SPELLING_DEPTH (constructor_depth);
+ }
+ else
+ /* Do the bookkeeping for an element that was
+ directly output as a constructor. */
+ {
+ TREE_INT_CST_LOW (constructor_bit_index)
+ = TREE_INT_CST_LOW (DECL_SIZE (constructor_fields));
+ TREE_INT_CST_HIGH (constructor_bit_index)
+ = TREE_INT_CST_HIGH (DECL_SIZE (constructor_fields));
+
+ constructor_unfilled_fields = TREE_CHAIN (constructor_fields);
+ }
+
+ constructor_fields = 0;
+ break;
+ }
+ if (TREE_CODE (constructor_type) == ARRAY_TYPE)
+ {
+ tree elttype = TYPE_MAIN_VARIANT (TREE_TYPE (constructor_type));
+ enum tree_code eltcode = TREE_CODE (elttype);
+
+ /* Accept a string constant to initialize a subarray. */
+ if (value != 0
+ && eltcode == ARRAY_TYPE
+ && TREE_CODE (TREE_TYPE (elttype)) == INTEGER_TYPE
+ && string_flag)
+ value = orig_value;
+ /* Otherwise, if we have come to a subaggregate,
+ and we don't have an element of its type, push into it. */
+ else if (value != 0 && !constructor_no_implicit
+ && value != error_mark_node
+ && TYPE_MAIN_VARIANT (TREE_TYPE (value)) != elttype
+ && (eltcode == RECORD_TYPE || eltcode == ARRAY_TYPE
+ || eltcode == UNION_TYPE))
+ {
+ push_init_level (1);
+ continue;
+ }
+
+ if (constructor_max_index != 0
+ && tree_int_cst_lt (constructor_max_index, constructor_index))
+ {
+ pedwarn_init ("excess elements in array initializer%s",
+ " after `%s'", NULL_PTR);
+ break;
+ }
+
+ /* In the case of [LO .. HI] = VALUE, only evaluate VALUE once. */
+ if (constructor_range_end)
+ value = save_expr (value);
+
+ /* Now output the actual element.
+ Ordinarily, output once.
+ If there is a range, repeat it till we advance past the range. */
+ do
+ {
+ tree tem;
+
+ if (value)
+ {
+ push_array_bounds (TREE_INT_CST_LOW (constructor_index));
+ output_init_element (value, elttype, constructor_index, 1);
+ RESTORE_SPELLING_DEPTH (constructor_depth);
+ }
+
+ tem = size_binop (PLUS_EXPR, constructor_index,
+ integer_one_node);
+ TREE_INT_CST_LOW (constructor_index)
+ = TREE_INT_CST_LOW (tem);
+ TREE_INT_CST_HIGH (constructor_index)
+ = TREE_INT_CST_HIGH (tem);
+
+ if (!value)
+ /* If we are doing the bookkeeping for an element that was
+ directly output as a constructor,
+ we must update constructor_unfilled_index. */
+ {
+ TREE_INT_CST_LOW (constructor_unfilled_index)
+ = TREE_INT_CST_LOW (constructor_index);
+ TREE_INT_CST_HIGH (constructor_unfilled_index)
+ = TREE_INT_CST_HIGH (constructor_index);
+ }
+ }
+ while (! (constructor_range_end == 0
+ || tree_int_cst_lt (constructor_range_end,
+ constructor_index)));
+
+ break;
+ }
+
+ /* Handle the sole element allowed in a braced initializer
+ for a scalar variable. */
+ if (constructor_fields == 0)
+ {
+ pedwarn_init ("excess elements in scalar initializer%s",
+ " after `%s'", NULL_PTR);
+ break;
+ }
+
+ if (value)
+ output_init_element (value, constructor_type, NULL_TREE, 1);
+ constructor_fields = 0;
+ break;
+ }
+
+ /* If the (lexically) previous elments are not now saved,
+ we can discard the storage for them. */
+ if (constructor_incremental && constructor_pending_elts == 0 && value != 0
+ && constructor_stack == 0)
+ clear_momentary ();
+}
+
+/* Expand an ASM statement with operands, handling output operands
+ that are not variables or INDIRECT_REFS by transforming such
+ cases into cases that expand_asm_operands can handle.
+
+ Arguments are same as for expand_asm_operands. */
+
+void
+c_expand_asm_operands (string, outputs, inputs, clobbers, vol, filename, line)
+ tree string, outputs, inputs, clobbers;
+ int vol;
+ char *filename;
+ int line;
+{
+ int noutputs = list_length (outputs);
+ register int i;
+ /* o[I] is the place that output number I should be written. */
+ register tree *o = (tree *) alloca (noutputs * sizeof (tree));
+ register tree tail;
+
+ if (TREE_CODE (string) == ADDR_EXPR)
+ string = TREE_OPERAND (string, 0);
+ if (TREE_CODE (string) != STRING_CST)
+ {
+ error ("asm template is not a string constant");
+ return;
+ }
+
+ /* Record the contents of OUTPUTS before it is modified. */
+ for (i = 0, tail = outputs; tail; tail = TREE_CHAIN (tail), i++)
+ o[i] = TREE_VALUE (tail);
+
+ /* Perform default conversions on array and function inputs. */
+ /* Don't do this for other types--
+ it would screw up operands expected to be in memory. */
+ for (i = 0, tail = inputs; tail; tail = TREE_CHAIN (tail), i++)
+ if (TREE_CODE (TREE_TYPE (TREE_VALUE (tail))) == ARRAY_TYPE
+ || TREE_CODE (TREE_TYPE (TREE_VALUE (tail))) == FUNCTION_TYPE)
+ TREE_VALUE (tail) = default_conversion (TREE_VALUE (tail));
+
+ /* Generate the ASM_OPERANDS insn;
+ store into the TREE_VALUEs of OUTPUTS some trees for
+ where the values were actually stored. */
+ expand_asm_operands (string, outputs, inputs, clobbers, vol, filename, line);
+
+ /* Copy all the intermediate outputs into the specified outputs. */
+ for (i = 0, tail = outputs; tail; tail = TREE_CHAIN (tail), i++)
+ {
+ if (o[i] != TREE_VALUE (tail))
+ {
+ expand_expr (build_modify_expr (o[i], NOP_EXPR, TREE_VALUE (tail)),
+ 0, VOIDmode, 0);
+ free_temp_slots ();
+ }
+ /* Detect modification of read-only values.
+ (Otherwise done by build_modify_expr.) */
+ else
+ {
+ tree type = TREE_TYPE (o[i]);
+ if (TREE_READONLY (o[i])
+ || TYPE_READONLY (type)
+ || ((TREE_CODE (type) == RECORD_TYPE
+ || TREE_CODE (type) == UNION_TYPE)
+ && C_TYPE_FIELDS_READONLY (type)))
+ readonly_warning (o[i], "modification by `asm'");
+ }
+ }
+
+ /* Those MODIFY_EXPRs could do autoincrements. */
+ emit_queue ();
+}
+
+/* Expand a C `return' statement.
+ RETVAL is the expression for what to return,
+ or a null pointer for `return;' with no value. */
+
+void
+c_expand_return (retval)
+ tree retval;
+{
+ tree valtype = TREE_TYPE (TREE_TYPE (current_function_decl));
+
+ if (TREE_THIS_VOLATILE (current_function_decl))
+ warning ("function declared `noreturn' has a `return' statement");
+
+ if (!retval)
+ {
+ current_function_returns_null = 1;
+ if (warn_return_type && valtype != 0 && TREE_CODE (valtype) != VOID_TYPE)
+ warning ("`return' with no value, in function returning non-void");
+ expand_null_return ();
+ }
+ else if (valtype == 0 || TREE_CODE (valtype) == VOID_TYPE)
+ {
+ current_function_returns_null = 1;
+ if (pedantic || TREE_CODE (TREE_TYPE (retval)) != VOID_TYPE)
+ pedwarn ("`return' with a value, in function returning void");
+ expand_return (retval);
+ }
+ else
+ {
+ tree t = convert_for_assignment (valtype, retval, "return",
+ NULL_TREE, NULL_TREE, 0);
+ tree res = DECL_RESULT (current_function_decl);
+ tree inner;
+
+ if (t == error_mark_node)
+ return;
+
+ inner = t = convert (TREE_TYPE (res), t);
+
+ /* Strip any conversions, additions, and subtractions, and see if
+ we are returning the address of a local variable. Warn if so. */
+ while (1)
+ {
+ switch (TREE_CODE (inner))
+ {
+ case NOP_EXPR: case NON_LVALUE_EXPR: case CONVERT_EXPR:
+ case PLUS_EXPR:
+ inner = TREE_OPERAND (inner, 0);
+ continue;
+
+ case MINUS_EXPR:
+ /* If the second operand of the MINUS_EXPR has a pointer
+ type (or is converted from it), this may be valid, so
+ don't give a warning. */
+ {
+ tree op1 = TREE_OPERAND (inner, 1);
+
+ while (! POINTER_TYPE_P (TREE_TYPE (op1))
+ && (TREE_CODE (op1) == NOP_EXPR
+ || TREE_CODE (op1) == NON_LVALUE_EXPR
+ || TREE_CODE (op1) == CONVERT_EXPR))
+ op1 = TREE_OPERAND (op1, 0);
+
+ if (POINTER_TYPE_P (TREE_TYPE (op1)))
+ break;
+
+ inner = TREE_OPERAND (inner, 0);
+ continue;
+ }
+
+ case ADDR_EXPR:
+ inner = TREE_OPERAND (inner, 0);
+
+ while (TREE_CODE_CLASS (TREE_CODE (inner)) == 'r')
+ inner = TREE_OPERAND (inner, 0);
+
+ if (TREE_CODE (inner) == VAR_DECL
+ && ! DECL_EXTERNAL (inner)
+ && ! TREE_STATIC (inner)
+ && DECL_CONTEXT (inner) == current_function_decl)
+ warning ("function returns address of local variable");
+ break;
+ }
+
+ break;
+ }
+
+ t = build (MODIFY_EXPR, TREE_TYPE (res), res, t);
+ TREE_SIDE_EFFECTS (t) = 1;
+ expand_return (t);
+ current_function_returns_value = 1;
+ }
+}
+
+/* Start a C switch statement, testing expression EXP.
+ Return EXP if it is valid, an error node otherwise. */
+
+tree
+c_expand_start_case (exp)
+ tree exp;
+{
+ register enum tree_code code = TREE_CODE (TREE_TYPE (exp));
+ tree type = TREE_TYPE (exp);
+
+ if (code != INTEGER_TYPE && code != ENUMERAL_TYPE && code != ERROR_MARK)
+ {
+ error ("switch quantity not an integer");
+ exp = error_mark_node;
+ }
+ else
+ {
+ tree index;
+ type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));
+
+ if (warn_traditional
+ && (type == long_integer_type_node
+ || type == long_unsigned_type_node))
+ pedwarn ("`long' switch expression not converted to `int' in ANSI C");
+
+ exp = default_conversion (exp);
+ type = TREE_TYPE (exp);
+ index = get_unwidened (exp, NULL_TREE);
+ /* We can't strip a conversion from a signed type to an unsigned,
+ because if we did, int_fits_type_p would do the wrong thing
+ when checking case values for being in range,
+ and it's too hard to do the right thing. */
+ if (TREE_UNSIGNED (TREE_TYPE (exp))
+ == TREE_UNSIGNED (TREE_TYPE (index)))
+ exp = index;
+ }
+
+ expand_start_case (1, exp, type, "switch statement");
+
+ return exp;
+}
OpenPOWER on IntegriCloud