summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorscottl <scottl@FreeBSD.org>2002-10-20 08:17:39 +0000
committerscottl <scottl@FreeBSD.org>2002-10-20 08:17:39 +0000
commit710948de69ddeae56bda663219319f6d859aea1f (patch)
tree71c65823ba2e8591de708d5cb2e990a75135ee11
parent63bd46464d6d4587c20c1ca62fb6a6e3be132db9 (diff)
downloadFreeBSD-src-710948de69ddeae56bda663219319f6d859aea1f.zip
FreeBSD-src-710948de69ddeae56bda663219319f6d859aea1f.tar.gz
After much delay and anticipation, welcome RAIDFrame into the FreeBSD
world. This should be considered highly experimental. Approved-by: re
-rw-r--r--etc/MAKEDEV14
-rw-r--r--sbin/raidctl/Makefile14
-rw-r--r--sbin/raidctl/raidctl.81325
-rw-r--r--sbin/raidctl/raidctl.c1110
-rw-r--r--sbin/raidctl/rf_configure.c583
-rw-r--r--share/man/man4/Makefile1
-rw-r--r--share/man/man4/raid.4342
-rw-r--r--sys/conf/NOTES6
-rw-r--r--sys/conf/files60
-rw-r--r--sys/conf/majors2
-rw-r--r--sys/conf/options4
-rw-r--r--sys/dev/raidframe/rf_acctrace.c172
-rw-r--r--sys/dev/raidframe/rf_acctrace.h134
-rw-r--r--sys/dev/raidframe/rf_alloclist.c188
-rw-r--r--sys/dev/raidframe/rf_alloclist.h60
-rw-r--r--sys/dev/raidframe/rf_archs.h75
-rw-r--r--sys/dev/raidframe/rf_aselect.c494
-rw-r--r--sys/dev/raidframe/rf_aselect.h43
-rw-r--r--sys/dev/raidframe/rf_bsd.h152
-rw-r--r--sys/dev/raidframe/rf_callback.c94
-rw-r--r--sys/dev/raidframe/rf_callback.h65
-rw-r--r--sys/dev/raidframe/rf_chaindecluster.c290
-rw-r--r--sys/dev/raidframe/rf_chaindecluster.h68
-rw-r--r--sys/dev/raidframe/rf_configure.h99
-rw-r--r--sys/dev/raidframe/rf_copyback.c431
-rw-r--r--sys/dev/raidframe/rf_copyback.h61
-rw-r--r--sys/dev/raidframe/rf_cvscan.c439
-rw-r--r--sys/dev/raidframe/rf_cvscan.h85
-rw-r--r--sys/dev/raidframe/rf_dag.h239
-rw-r--r--sys/dev/raidframe/rf_dagdegrd.c1130
-rw-r--r--sys/dev/raidframe/rf_dagdegrd.h64
-rw-r--r--sys/dev/raidframe/rf_dagdegwr.c844
-rw-r--r--sys/dev/raidframe/rf_dagdegwr.h55
-rw-r--r--sys/dev/raidframe/rf_dagffrd.c439
-rw-r--r--sys/dev/raidframe/rf_dagffrd.h53
-rw-r--r--sys/dev/raidframe/rf_dagffwr.c2129
-rw-r--r--sys/dev/raidframe/rf_dagffwr.h77
-rw-r--r--sys/dev/raidframe/rf_dagflags.h68
-rw-r--r--sys/dev/raidframe/rf_dagfuncs.c904
-rw-r--r--sys/dev/raidframe/rf_dagfuncs.h90
-rw-r--r--sys/dev/raidframe/rf_dagutils.c1297
-rw-r--r--sys/dev/raidframe/rf_dagutils.h121
-rw-r--r--sys/dev/raidframe/rf_debugMem.c206
-rw-r--r--sys/dev/raidframe/rf_debugMem.h88
-rw-r--r--sys/dev/raidframe/rf_debugprint.c134
-rw-r--r--sys/dev/raidframe/rf_debugprint.h44
-rw-r--r--sys/dev/raidframe/rf_decluster.c745
-rw-r--r--sys/dev/raidframe/rf_decluster.h141
-rw-r--r--sys/dev/raidframe/rf_declusterPQ.c491
-rw-r--r--sys/dev/raidframe/rf_declusterPQ.h52
-rw-r--r--sys/dev/raidframe/rf_desc.h113
-rw-r--r--sys/dev/raidframe/rf_diskqueue.c591
-rw-r--r--sys/dev/raidframe/rf_diskqueue.h208
-rw-r--r--sys/dev/raidframe/rf_disks.c1138
-rw-r--r--sys/dev/raidframe/rf_disks.h108
-rw-r--r--sys/dev/raidframe/rf_driver.c1048
-rw-r--r--sys/dev/raidframe/rf_driver.h79
-rw-r--r--sys/dev/raidframe/rf_engine.c810
-rw-r--r--sys/dev/raidframe/rf_engine.h48
-rw-r--r--sys/dev/raidframe/rf_etimer.h95
-rw-r--r--sys/dev/raidframe/rf_evenodd.c557
-rw-r--r--sys/dev/raidframe/rf_evenodd.h55
-rw-r--r--sys/dev/raidframe/rf_evenodd_dagfuncs.c975
-rw-r--r--sys/dev/raidframe/rf_evenodd_dagfuncs.h79
-rw-r--r--sys/dev/raidframe/rf_evenodd_dags.c189
-rw-r--r--sys/dev/raidframe/rf_evenodd_dags.h64
-rw-r--r--sys/dev/raidframe/rf_fifo.c236
-rw-r--r--sys/dev/raidframe/rf_fifo.h62
-rw-r--r--sys/dev/raidframe/rf_freebsdkintf.c3294
-rw-r--r--sys/dev/raidframe/rf_freelist.h702
-rw-r--r--sys/dev/raidframe/rf_general.h107
-rw-r--r--sys/dev/raidframe/rf_geniq.c163
-rw-r--r--sys/dev/raidframe/rf_hist.h57
-rw-r--r--sys/dev/raidframe/rf_interdecluster.c283
-rw-r--r--sys/dev/raidframe/rf_interdecluster.h60
-rw-r--r--sys/dev/raidframe/rf_invertq.c32
-rw-r--r--sys/dev/raidframe/rf_invertq.h64
-rw-r--r--sys/dev/raidframe/rf_kintf.h82
-rw-r--r--sys/dev/raidframe/rf_layout.c490
-rw-r--r--sys/dev/raidframe/rf_layout.h349
-rw-r--r--sys/dev/raidframe/rf_map.c907
-rw-r--r--sys/dev/raidframe/rf_map.h94
-rw-r--r--sys/dev/raidframe/rf_mcpair.c141
-rw-r--r--sys/dev/raidframe/rf_mcpair.h54
-rw-r--r--sys/dev/raidframe/rf_memchunk.c211
-rw-r--r--sys/dev/raidframe/rf_memchunk.h48
-rw-r--r--sys/dev/raidframe/rf_nwayxor.c449
-rw-r--r--sys/dev/raidframe/rf_nwayxor.h54
-rw-r--r--sys/dev/raidframe/rf_options.c76
-rw-r--r--sys/dev/raidframe/rf_options.h58
-rw-r--r--sys/dev/raidframe/rf_optnames.h105
-rw-r--r--sys/dev/raidframe/rf_paritylog.c869
-rw-r--r--sys/dev/raidframe/rf_paritylog.h181
-rw-r--r--sys/dev/raidframe/rf_paritylogDiskMgr.c701
-rw-r--r--sys/dev/raidframe/rf_paritylogDiskMgr.h42
-rw-r--r--sys/dev/raidframe/rf_paritylogging.c1074
-rw-r--r--sys/dev/raidframe/rf_paritylogging.h70
-rw-r--r--sys/dev/raidframe/rf_parityloggingdags.c673
-rw-r--r--sys/dev/raidframe/rf_parityloggingdags.h59
-rw-r--r--sys/dev/raidframe/rf_parityscan.c443
-rw-r--r--sys/dev/raidframe/rf_parityscan.h67
-rw-r--r--sys/dev/raidframe/rf_pq.c926
-rw-r--r--sys/dev/raidframe/rf_pq.h75
-rw-r--r--sys/dev/raidframe/rf_pqdeg.c217
-rw-r--r--sys/dev/raidframe/rf_pqdeg.h75
-rw-r--r--sys/dev/raidframe/rf_pqdegdags.c430
-rw-r--r--sys/dev/raidframe/rf_pqdegdags.h49
-rw-r--r--sys/dev/raidframe/rf_psstatus.c376
-rw-r--r--sys/dev/raidframe/rf_psstatus.h132
-rw-r--r--sys/dev/raidframe/rf_raid.h299
-rw-r--r--sys/dev/raidframe/rf_raid0.c161
-rw-r--r--sys/dev/raidframe/rf_raid0.h58
-rw-r--r--sys/dev/raidframe/rf_raid1.c689
-rw-r--r--sys/dev/raidframe/rf_raid1.h63
-rw-r--r--sys/dev/raidframe/rf_raid4.c157
-rw-r--r--sys/dev/raidframe/rf_raid4.h57
-rw-r--r--sys/dev/raidframe/rf_raid5.c320
-rw-r--r--sys/dev/raidframe/rf_raid5.h57
-rw-r--r--sys/dev/raidframe/rf_raid5_rotatedspare.c175
-rw-r--r--sys/dev/raidframe/rf_raid5_rotatedspare.h53
-rw-r--r--sys/dev/raidframe/rf_raidframe.h162
-rw-r--r--sys/dev/raidframe/rf_reconbuffer.c466
-rw-r--r--sys/dev/raidframe/rf_reconbuffer.h63
-rw-r--r--sys/dev/raidframe/rf_reconmap.c394
-rw-r--r--sys/dev/raidframe/rf_reconmap.h86
-rw-r--r--sys/dev/raidframe/rf_reconstruct.c1680
-rw-r--r--sys/dev/raidframe/rf_reconstruct.h202
-rw-r--r--sys/dev/raidframe/rf_reconutil.c336
-rw-r--r--sys/dev/raidframe/rf_reconutil.h52
-rw-r--r--sys/dev/raidframe/rf_revent.c228
-rw-r--r--sys/dev/raidframe/rf_revent.h52
-rw-r--r--sys/dev/raidframe/rf_shutdown.c102
-rw-r--r--sys/dev/raidframe/rf_shutdown.h67
-rw-r--r--sys/dev/raidframe/rf_sstf.c656
-rw-r--r--sys/dev/raidframe/rf_sstf.h70
-rw-r--r--sys/dev/raidframe/rf_states.c667
-rw-r--r--sys/dev/raidframe/rf_states.h48
-rw-r--r--sys/dev/raidframe/rf_stripelocks.c667
-rw-r--r--sys/dev/raidframe/rf_stripelocks.h130
-rw-r--r--sys/dev/raidframe/rf_strutils.c56
-rw-r--r--sys/dev/raidframe/rf_threadstuff.c221
-rw-r--r--sys/dev/raidframe/rf_threadstuff.h229
-rw-r--r--sys/dev/raidframe/rf_types.h245
-rw-r--r--sys/dev/raidframe/rf_utils.c147
-rw-r--r--sys/dev/raidframe/rf_utils.h70
-rw-r--r--sys/modules/raidframe/Makefile32
-rw-r--r--sys/sys/disklabel.h7
-rw-r--r--sys/sys/kernel.h1
148 files changed, 45834 insertions, 7 deletions
diff --git a/etc/MAKEDEV b/etc/MAKEDEV
index dbc2803..fa9dd8c 100644
--- a/etc/MAKEDEV
+++ b/etc/MAKEDEV
@@ -446,8 +446,12 @@ wt*)
umask 77
;;
+raidctl)
+ mknod raidctl c 201 0 root:operator
+ ;;
+
# Individual slices.
-aacd*s*|ad*s*|ar*s*|afd*s*|amrd*s*|da*s*|fla*s*|idad*s*|md*s*|mlxd*s*|twed*s*|wd*s*|wfd*s*)
+aacd*s*|ad*s*|ar*s*|afd*s*|amrd*s*|da*s*|fla*s*|idad*s*|md*s*|mlxd*s*|twed*s*|wd*s*|wfd*s*|raid*s*)
umask $disk_umask
case $i in
aacd*s*) name=aacd; chr=151;;
@@ -463,9 +467,10 @@ aacd*s*|ad*s*|ar*s*|afd*s*|amrd*s*|da*s*|fla*s*|idad*s*|md*s*|mlxd*s*|twed*s*|wd
twed*s*) name=twed; chr=147;;
wd*s*) name=wd; chr=3;;
wfd*s*) name=wfd; chr=87;;
+ raid*s*) name=raid; chr=200;;
esac
case $i in
- aacd*s*|amrd*s*|idad*s*|mlxd*s*|twed*s*)
+ aacd*s*|amrd*s*|idad*s*|mlxd*s*|twed*s*|raid*s*)
unit=`expr $i : '....\([0-9]*\)s'`
slice=`expr $i : '....[0-9]*s\([0-9]*\)'`
part=`expr $i : '....[0-9]*s[0-9]*\(.*\)'`
@@ -552,7 +557,7 @@ ata)
;;
-aacd*|ad*|ar*|afd*|amrd*|da*|fla*|idad*|md*|mlxd*|twed*|wd*|wfd*)
+aacd*|ad*|ar*|afd*|amrd*|da*|fla*|idad*|md*|mlxd*|twed*|wd*|wfd*|raid*)
umask $disk_umask
case $i in
aacd*) name=aacd; chr=151;;
@@ -568,9 +573,10 @@ aacd*|ad*|ar*|afd*|amrd*|da*|fla*|idad*|md*|mlxd*|twed*|wd*|wfd*)
twed*) name=twed; chr=147;;
wd*) name=wd; chr=3;;
wfd*) name=wfd; chr=87;;
+ raid*) name=raid; chr=200;;
esac
case $i in
- aacd*|amrd*|idad*|mlxd*|twed*)
+ aacd*|amrd*|idad*|mlxd*|twed*|raid*)
unit=`expr $i : '....\(.*\)'`
;;
afd*|fla*|wfd*)
diff --git a/sbin/raidctl/Makefile b/sbin/raidctl/Makefile
new file mode 100644
index 0000000..0705eab
--- /dev/null
+++ b/sbin/raidctl/Makefile
@@ -0,0 +1,14 @@
+# $FreeBSD$
+# $NetBSD: Makefile,v 1.7 2000/05/23 00:46:53 thorpej Exp $
+PROG= raidctl
+SRCS= rf_configure.c raidctl.c
+MAN8= raidctl.8
+
+LOOKHERE = ${.CURDIR}/../../sys
+
+CFLAGS+= -DRF_UTILITY=1 -I${LOOKHERE}
+
+DPADD= ${LIBUTIL}
+LDADD= -lutil
+
+.include <bsd.prog.mk>
diff --git a/sbin/raidctl/raidctl.8 b/sbin/raidctl/raidctl.8
new file mode 100644
index 0000000..9aef14f
--- /dev/null
+++ b/sbin/raidctl/raidctl.8
@@ -0,0 +1,1325 @@
+.\" $FreeBSD$
+.\" $NetBSD: raidctl.8,v 1.21 2000/08/10 15:14:14 oster Exp $
+.\"
+.\" Copyright (c) 1998 The NetBSD Foundation, Inc.
+.\" All rights reserved.
+.\"
+.\" This code is derived from software contributed to The NetBSD Foundation
+.\" by Greg Oster
+.\"
+.\" Redistribution and use in source and binary forms, with or without
+.\" modification, are permitted provided that the following conditions
+.\" are met:
+.\" 1. Redistributions of source code must retain the above copyright
+.\" notice, this list of conditions and the following disclaimer.
+.\" 2. Redistributions in binary form must reproduce the above copyright
+.\" notice, this list of conditions and the following disclaimer in the
+.\" documentation and/or other materials provided with the distribution.
+.\" 3. All advertising materials mentioning features or use of this software
+.\" must display the following acknowledgement:
+.\" This product includes software developed by the NetBSD
+.\" Foundation, Inc. and its contributors.
+.\" 4. Neither the name of The NetBSD Foundation nor the names of its
+.\" contributors may be used to endorse or promote products derived
+.\" from this software without specific prior written permission.
+.\"
+.\" THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
+.\" ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
+.\" TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+.\" PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
+.\" BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+.\" CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+.\" SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+.\" INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+.\" CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+.\" ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+.\" POSSIBILITY OF SUCH DAMAGE.
+.\"
+.\"
+.\" Copyright (c) 1995 Carnegie-Mellon University.
+.\" All rights reserved.
+.\"
+.\" Author: Mark Holland
+.\"
+.\" Permission to use, copy, modify and distribute this software and
+.\" its documentation is hereby granted, provided that both the copyright
+.\" notice and this permission notice appear in all copies of the
+.\" software, derivative works or modified versions, and any portions
+.\" thereof, and that both notices appear in supporting documentation.
+.\"
+.\" CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+.\" CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+.\" FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+.\"
+.\" Carnegie Mellon requests users of this software to return to
+.\"
+.\" Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+.\" School of Computer Science
+.\" Carnegie Mellon University
+.\" Pittsburgh PA 15213-3890
+.\"
+.\" any improvements or extensions that they make and grant Carnegie the
+.\" rights to redistribute these changes.
+.\"
+.Dd November 6, 1998
+.Dt RAIDCTL 8
+.Os FreeBSD
+.Sh NAME
+.Nm raidctl
+.Nd configuration utility for the RAIDframe disk driver
+.Sh SYNOPSIS
+.Nm
+.Op Fl v
+.Fl a Ar component Ar dev
+.Nm
+.Op Fl v
+.Fl A Op yes | no | root
+.Ar dev
+.Nm
+.Op Fl v
+.Fl B Ar dev
+.Nm
+.Op Fl v
+.Fl c Ar config_file
+.Nm
+.Op Fl v
+.Fl C Ar config_file
+.Nm
+.Op Fl v
+.Fl f Ar component Ar dev
+.Nm
+.Op Fl v
+.Fl F Ar component Ar dev
+.Nm
+.Op Fl v
+.Fl g Ar component Ar dev
+.Nm
+.Op Fl v
+.Fl i Ar dev
+.Nm
+.Op Fl v
+.Fl I Ar serial_number Ar dev
+.Nm
+.Op Fl v
+.Fl p Ar dev
+.Nm
+.Op Fl v
+.Fl P Ar dev
+.Nm
+.Op Fl v
+.Fl r Ar component Ar dev
+.Nm
+.Op Fl v
+.Fl R Ar component Ar dev
+.Nm
+.Op Fl v
+.Fl s Ar dev
+.Nm
+.Op Fl v
+.Fl S Ar dev
+.Nm
+.Op Fl v
+.Fl u Ar dev
+.Sh DESCRIPTION
+.Nm
+is the user-land control program for
+.Xr raid 4 ,
+the RAIDframe disk device.
+.Nm
+is primarily used to dynamically configure and unconfigure RAIDframe disk
+devices. For more information about the RAIDframe disk device, see
+.Xr raid 4 .
+.Pp
+This document assumes the reader has at least rudimentary knowledge of
+RAID and RAID concepts.
+.Pp
+The command-line options for
+.Nm
+are as follows:
+.Bl -tag -width indent
+.It Fl a Ar component Ar dev
+Add
+.Ar component
+as a hot spare for the device
+.Ar dev .
+.It Fl A Ic yes Ar dev
+Make the RAID set auto-configurable. The RAID set will be
+automatically configured at boot
+.Ar before
+the root filesystem is
+mounted. Note that all components of the set must be of type RAID in the
+disklabel.
+.It Fl A Ic no Ar dev
+Turn off auto-configuration for the RAID set.
+.It Fl A Ic root Ar dev
+Make the RAID set auto-configurable, and also mark the set as being
+eligible to be the root partition. A RAID set configured this way
+will
+.Ar override
+the use of the boot disk as the root device. All components of the
+set must be of type RAID in the disklabel. Note that the kernel being
+booted must currently reside on a non-RAID set.
+.It Fl B Ar dev
+Initiate a copyback of reconstructed data from a spare disk to
+its original disk. This is performed after a component has failed,
+and the failed drive has been reconstructed onto a spare drive.
+.It Fl c Ar config_file
+Configure a RAIDframe device
+according to the configuration given in
+.Ar config_file .
+A description of the contents of
+.Ar config_file
+is given later.
+.It Fl C Ar config_file
+As for
+.Ar -c ,
+but forces the configuration to take place. This is required the
+first time a RAID set is configured.
+.It Fl f Ar component Ar dev
+This marks the specified
+.Ar component
+as having failed, but does not initiate a reconstruction of that
+component.
+.It Fl F Ar component Ar dev
+Fails the specified
+.Ar component
+of the device, and immediately begin a reconstruction of the failed
+disk onto an available hot spare. This is one of the mechanisms used to start
+the reconstruction process if a component does have a hardware failure.
+.It Fl g Ar component Ar dev
+Get the component label for the specified component.
+.It Fl i Ar dev
+Initialize the RAID device. In particular, (re-write) the parity on
+the selected device. This
+.Ar MUST
+be done for
+.Ar all
+RAID sets before the RAID device is labeled and before
+filesystems are created on the RAID device.
+.It Fl I Ar serial_number Ar dev
+Initialize the component labels on each component of the device.
+.Ar serial_number
+is used as one of the keys in determining whether a
+particular set of components belong to the same RAID set. While not
+strictly enforced, different serial numbers should be used for
+different RAID sets. This step
+.Ar MUST
+be performed when a new RAID set is created.
+.It Fl p Ar dev
+Check the status of the parity on the RAID set. Displays a status
+message, and returns successfully if the parity is up-to-date.
+.It Fl P Ar dev
+Check the status of the parity on the RAID set, and initialize
+(re-write) the parity if the parity is not known to be up-to-date.
+This is normally used after a system crash (and before a
+.Xr fsck 8 )
+to ensure the integrity of the parity.
+.It Fl r Ar component Ar dev
+Remove the spare disk specified by
+.Ar component
+from the set of available spare components.
+.It Fl R Ar component Ar dev
+Fails the specified
+.Ar component ,
+if necessary, and immediately begins a reconstruction back to
+.Ar component .
+This is useful for reconstructing back onto a component after
+it has been replaced following a failure.
+.It Fl s Ar dev
+Display the status of the RAIDframe device for each of the components
+and spares.
+.It Fl S Ar dev
+Check the status of parity re-writing, component reconstruction, and
+component copyback. The output indicates the amount of progress
+achieved in each of these areas.
+.It Fl u Ar dev
+Unconfigure the RAIDframe device.
+.It Fl v
+Be more verbose. For operations such as reconstructions, parity
+re-writing, and copybacks, provide a progress indicator.
+.El
+.Pp
+The device used by
+.Nm
+is specified by
+.Ar dev .
+.Ar dev
+may be either the full name of the device, e.g. /dev/rraid0d,
+for the i386 architecture, and /dev/rraid0c
+for all others, or just simply raid0 (for /dev/rraid0d).
+.Pp
+The format of the configuration file is complex, and
+only an abbreviated treatment is given here. In the configuration
+files, a
+.Sq #
+indicates the beginning of a comment.
+.Pp
+There are 4 required sections of a configuration file, and 2
+optional sections. Each section begins with a
+.Sq START ,
+followed by
+the section name, and the configuration parameters associated with that
+section. The first section is the
+.Sq array
+section, and it specifies
+the number of rows, columns, and spare disks in the RAID set. For
+example:
+.Bd -unfilled -offset indent
+START array
+1 3 0
+.Ed
+.Pp
+indicates an array with 1 row, 3 columns, and 0 spare disks. Note
+that although multi-dimensional arrays may be specified, they are
+.Ar NOT
+supported in the driver.
+.Pp
+The second section, the
+.Sq disks
+section, specifies the actual
+components of the device. For example:
+.Bd -unfilled -offset indent
+START disks
+/dev/da0s1e
+/dev/da1s1e
+/dev/da2s1e
+.Ed
+.Pp
+specifies the three component disks to be used in the RAID device. If
+any of the specified drives cannot be found when the RAID device is
+configured, then they will be marked as
+.Sq failed ,
+and the system will
+operate in degraded mode. Note that it is
+.Ar imperative
+that the order of the components in the configuration file does not
+change between configurations of a RAID device. Changing the order
+of the components will result in data loss if the set is configured
+with the
+.Fl C
+option. In normal circumstances, the RAID set will not configure if
+only
+.Fl c
+is specified, and the components are out-of-order.
+.Pp
+The next section, which is the
+.Sq spare
+section, is optional, and, if
+present, specifies the devices to be used as
+.Sq hot spares
+-- devices
+which are on-line, but are not actively used by the RAID driver unless
+one of the main components fail. A simple
+.Sq spare
+section might be:
+.Bd -unfilled -offset indent
+START spare
+/dev/da3s1e
+.Ed
+.Pp
+for a configuration with a single spare component. If no spare drives
+are to be used in the configuration, then the
+.Sq spare
+section may be omitted.
+.Pp
+The next section is the
+.Sq layout
+section. This section describes the
+general layout parameters for the RAID device, and provides such
+information as sectors per stripe unit, stripe units per parity unit,
+stripe units per reconstruction unit, and the parity configuration to
+use. This section might look like:
+.Bd -unfilled -offset indent
+START layout
+# sectPerSU SUsPerParityUnit SUsPerReconUnit RAID_level
+32 1 1 5
+.Ed
+.Pp
+The sectors per stripe unit specifies, in blocks, the interleave
+factor; i.e. the number of contiguous sectors to be written to each
+component for a single stripe. Appropriate selection of this value
+(32 in this example) is the subject of much research in RAID
+architectures. The stripe units per parity unit and
+stripe units per reconstruction unit are normally each set to 1.
+While certain values above 1 are permitted, a discussion of valid
+values and the consequences of using anything other than 1 are outside
+the scope of this document. The last value in this section (5 in this
+example) indicates the parity configuration desired. Valid entries
+include:
+.Bl -tag -width inde
+.It 0
+RAID level 0. No parity, only simple striping.
+.It 1
+RAID level 1. Mirroring. The parity is the mirror.
+.It 4
+RAID level 4. Striping across components, with parity stored on the
+last component.
+.It 5
+RAID level 5. Striping across components, parity distributed across
+all components.
+.El
+.Pp
+There are other valid entries here, including those for Even-Odd
+parity, RAID level 5 with rotated sparing, Chained declustering,
+and Interleaved declustering, but as of this writing the code for
+those parity operations has not been tested with
+.Fx .
+.Pp
+The next required section is the
+.Sq queue
+section. This is most often
+specified as:
+.Bd -unfilled -offset indent
+START queue
+fifo 100
+.Ed
+.Pp
+where the queuing method is specified as fifo (first-in, first-out),
+and the size of the per-component queue is limited to 100 requests.
+Other queuing methods may also be specified, but a discussion of them
+is beyond the scope of this document.
+.Pp
+The final section, the
+.Sq debug
+section, is optional. For more details
+on this the reader is referred to the RAIDframe documentation
+discussed in the
+.Sx HISTORY
+section.
+
+See
+.Sx EXAMPLES
+for a more complete configuration file example.
+
+.Sh EXAMPLES
+
+It is highly recommended that before using the RAID driver for real
+filesystems that the system administrator(s) become quite familiar
+with the use of
+.Nm ,
+and that they understand how the component reconstruction process
+works. The examples in this section will focus on configuring a
+number of different RAID sets of varying degrees of redundancy.
+By working through these examples, administrators should be able to
+develop a good feel for how to configure a RAID set, and how to
+initiate reconstruction of failed components.
+.Pp
+In the following examples
+.Sq raid0
+will be used to denote the RAID device. Depending on the
+architecture,
+.Sq /dev/rraid0c
+or
+.Sq /dev/rraid0d
+may be used in place of
+.Sq raid0 .
+.Pp
+.Ss Initialization and Configuration
+The initial step in configuring a RAID set is to identify the components
+that will be used in the RAID set. All components should be the same
+size. Each component should have a disklabel type of
+.Dv FS_RAID ,
+and a typical disklabel entry for a RAID component
+might look like:
+.Bd -unfilled -offset indent
+f: 1800000 200495 RAID # (Cyl. 405*- 4041*)
+.Ed
+.Pp
+While
+.Dv FS_BSDFFS
+will also work as the component type, the type
+.Dv FS_RAID
+is preferred for RAIDframe use, as it is required for features such as
+auto-configuration. As part of the initial configuration of each RAID
+set, each component will be given a
+.Sq component label .
+A
+.Sq component label
+contains important information about the component, including a
+user-specified serial number, the row and column of that component in
+the RAID set, the redundancy level of the RAID set, a 'modification
+counter', and whether the parity information (if any) on that
+component is known to be correct. Component labels are an integral
+part of the RAID set, since they are used to ensure that components
+are configured in the correct order, and used to keep track of other
+vital information about the RAID set. Component labels are also
+required for the auto-detection and auto-configuration of RAID sets at
+boot time. For a component label to be considered valid, that
+particular component label must be in agreement with the other
+component labels in the set. For example, the serial number,
+.Sq modification counter ,
+number of rows and number of columns must all
+be in agreement. If any of these are different, then the component is
+not considered to be part of the set. See
+.Xr raid 4
+for more information about component labels.
+.Pp
+Once the components have been identified, and the disks have
+appropriate labels,
+.Nm
+is then used to configure the
+.Xr raid 4
+device. To configure the device, a configuration
+file which looks something like:
+.Bd -unfilled -offset indent
+START array
+# numRow numCol numSpare
+1 3 1
+
+START disks
+/dev/da1s1e
+/dev/da2s1e
+/dev/da3s1e
+
+START spare
+/dev/da4s1e
+
+START layout
+# sectPerSU SUsPerParityUnit SUsPerReconUnit RAID_level_5
+32 1 1 5
+
+START queue
+fifo 100
+.Ed
+.Pp
+is created in a file. The above configuration file specifies a RAID 5
+set consisting of the components /dev/da1s1e, /dev/da2s1e, and /dev/da3s1e,
+with /dev/da4s1e available as a
+.Sq hot spare
+in case one of
+the three main drives should fail. A RAID 0 set would be specified in
+a similar way:
+.Bd -unfilled -offset indent
+START array
+# numRow numCol numSpare
+1 4 0
+
+START disks
+/dev/da1s10e
+/dev/da1s11e
+/dev/da1s12e
+/dev/da1s13e
+
+START layout
+# sectPerSU SUsPerParityUnit SUsPerReconUnit RAID_level_0
+64 1 1 0
+
+START queue
+fifo 100
+.Ed
+.Pp
+In this case, devices /dev/da1s10e, /dev/da1s11e, /dev/da1s12e, and /dev/da1s13e
+are the components that make up this RAID set. Note that there are no
+hot spares for a RAID 0 set, since there is no way to recover data if
+any of the components fail.
+.Pp
+For a RAID 1 (mirror) set, the following configuration might be used:
+.Bd -unfilled -offset indent
+START array
+# numRow numCol numSpare
+1 2 0
+
+START disks
+/dev/da2s10e
+/dev/da2s11e
+
+START layout
+# sectPerSU SUsPerParityUnit SUsPerReconUnit RAID_level_1
+128 1 1 1
+
+START queue
+fifo 100
+.Ed
+.Pp
+In this case, /dev/da2s10e and /dev/da2s11e are the two components of the
+mirror set. While no hot spares have been specified in this
+configuration, they easily could be, just as they were specified in
+the RAID 5 case above. Note as well that RAID 1 sets are currently
+limited to only 2 components. At present, n-way mirroring is not
+possible.
+.Pp
+The first time a RAID set is configured, the
+.Fl C
+option must be used:
+.Bd -unfilled -offset indent
+raidctl -C raid0.conf
+.Ed
+.Pp
+where
+.Sq raid0.conf
+is the name of the RAID configuration file. The
+.Fl C
+forces the configuration to succeed, even if any of the component
+labels are incorrect. The
+.Fl C
+option should not be used lightly in
+situations other than initial configurations, as if
+the system is refusing to configure a RAID set, there is probably a
+very good reason for it. After the initial configuration is done (and
+appropriate component labels are added with the
+.Fl I
+option) then raid0 can be configured normally with:
+.Bd -unfilled -offset indent
+raidctl -c raid0.conf
+.Ed
+.Pp
+When the RAID set is configured for the first time, it is
+necessary to initialize the component labels, and to initialize the
+parity on the RAID set. Initializing the component labels is done with:
+.Bd -unfilled -offset indent
+raidctl -I 112341 raid0
+.Ed
+.Pp
+where
+.Sq 112341
+is a user-specified serial number for the RAID set. This
+initialization step is
+.Ar required
+for all RAID sets. As well, using different
+serial numbers between RAID sets is
+.Ar strongly encouraged ,
+as using the same serial number for all RAID sets will only serve to
+decrease the usefulness of the component label checking.
+.Pp
+Initializing the RAID set is done via the
+.Fl i
+option. This initialization
+.Ar MUST
+be done for
+.Ar all
+RAID sets, since among other things it verifies that the parity (if
+any) on the RAID set is correct. Since this initialization may be
+quite time-consuming, the
+.Fl v
+option may be also used in conjunction with
+.Fl i :
+.Bd -unfilled -offset indent
+raidctl -iv raid0
+.Ed
+.Pp
+This will give more verbose output on the
+status of the initialization:
+.Bd -unfilled -offset indent
+Initiating re-write of parity
+Parity Re-write status:
+ 10% |**** | ETA: 06:03 /
+.Ed
+.Pp
+The output provides a
+.Sq Percent Complete
+in both a numeric and graphical format, as well as an estimated time
+to completion of the operation.
+.Pp
+Since it is the parity that provides the
+.Sq redundancy
+part of RAID, it is critical that the parity is correct
+as much as possible. If the parity is not correct, then there is no
+guarantee that data will not be lost if a component fails.
+.Pp
+Once the parity is known to be correct,
+it is then safe to perform
+.Xr disklabel 8 ,
+.Xr newfs 8 ,
+or
+.Xr fsck 8
+on the device or its filesystems, and then to mount the filesystems
+for use.
+.Pp
+Under certain circumstances (e.g. the additional component has not
+arrived, or data is being migrated off of a disk destined to become a
+component) it may be desirable to to configure a RAID 1 set with only
+a single component. This can be achieved by configuring the set with
+a physically existing component (as either the first or second
+component) and with a
+.Sq fake
+component. In the following:
+.Bd -unfilled -offset indent
+START array
+# numRow numCol numSpare
+1 2 0
+
+START disks
+/dev/da6s1e
+/dev/da0s1e
+
+START layout
+# sectPerSU SUsPerParityUnit SUsPerReconUnit RAID_level_1
+128 1 1 1
+
+START queue
+fifo 100
+.Ed
+.Pp
+/dev/da0s1e is the real component, and will be the second disk of a RAID 1
+set. The component /dev/da6s1e, which must exist, but have no physical
+device associated with it, is simply used as a placeholder.
+Configuration (using
+.Fl C
+and
+.Fl I Ar 12345
+as above) proceeds normally, but initialization of the RAID set will
+have to wait until all physical components are present. After
+configuration, this set can be used normally, but will be operating
+in degraded mode. Once a second physical component is obtained, it
+can be hot-added, the existing data mirrored, and normal operation
+resumed.
+.Pp
+.Ss Maintenance of the RAID set
+After the parity has been initialized for the first time, the command:
+.Bd -unfilled -offset indent
+raidctl -p raid0
+.Ed
+.Pp
+can be used to check the current status of the parity. To check the
+parity and rebuild it necessary (for example, after an unclean
+shutdown) the command:
+.Bd -unfilled -offset indent
+raidctl -P raid0
+.Ed
+.Pp
+is used. Note that re-writing the parity can be done while
+other operations on the RAID set are taking place (e.g. while doing a
+.Xr fsck 8
+on a filesystem on the RAID set). However: for maximum effectiveness
+of the RAID set, the parity should be known to be correct before any
+data on the set is modified.
+.Pp
+To see how the RAID set is doing, the following command can be used to
+show the RAID set's status:
+.Bd -unfilled -offset indent
+raidctl -s raid0
+.Ed
+.Pp
+The output will look something like:
+.Bd -unfilled -offset indent
+Components:
+ /dev/da1s1e: optimal
+ /dev/da2s1e: optimal
+ /dev/da3s1e: optimal
+Spares:
+ /dev/da4s1e: spare
+Component label for /dev/da1s1e:
+ Row: 0 Column: 0 Num Rows: 1 Num Columns: 3
+ Version: 2 Serial Number: 13432 Mod Counter: 65
+ Clean: No Status: 0
+ sectPerSU: 32 SUsPerPU: 1 SUsPerRU: 1
+ RAID Level: 5 blocksize: 512 numBlocks: 1799936
+ Autoconfig: No
+ Last configured as: raid0
+Component label for /dev/da2s1e:
+ Row: 0 Column: 1 Num Rows: 1 Num Columns: 3
+ Version: 2 Serial Number: 13432 Mod Counter: 65
+ Clean: No Status: 0
+ sectPerSU: 32 SUsPerPU: 1 SUsPerRU: 1
+ RAID Level: 5 blocksize: 512 numBlocks: 1799936
+ Autoconfig: No
+ Last configured as: raid0
+Component label for /dev/da3s1e:
+ Row: 0 Column: 2 Num Rows: 1 Num Columns: 3
+ Version: 2 Serial Number: 13432 Mod Counter: 65
+ Clean: No Status: 0
+ sectPerSU: 32 SUsPerPU: 1 SUsPerRU: 1
+ RAID Level: 5 blocksize: 512 numBlocks: 1799936
+ Autoconfig: No
+ Last configured as: raid0
+Parity status: clean
+Reconstruction is 100% complete.
+Parity Re-write is 100% complete.
+Copyback is 100% complete.
+.Ed
+.Pp
+This indicates that all is well with the RAID set. Of importance here
+are the component lines which read
+.Sq optimal ,
+and the
+.Sq Parity status
+line which indicates that the parity is up-to-date. Note that if
+there are filesystems open on the RAID set, the individual components
+will not be
+.Sq clean
+but the set as a whole can still be clean.
+.Pp
+To check the component label of /dev/da1s1e, the following is used:
+.Bd -unfilled -offset indent
+raidctl -g /dev/da1s1e raid0
+.Ed
+.Pp
+The output of this command will look something like:
+.Bd -unfilled -offset indent
+Component label for /dev/da1s1e:
+ Row: 0 Column: 0 Num Rows: 1 Num Columns: 3
+ Version: 2 Serial Number: 13432 Mod Counter: 65
+ Clean: No Status: 0
+ sectPerSU: 32 SUsPerPU: 1 SUsPerRU: 1
+ RAID Level: 5 blocksize: 512 numBlocks: 1799936
+ Autoconfig: No
+ Last configured as: raid0
+.Ed
+.Pp
+.Ss Dealing with Component Failures
+If for some reason
+(perhaps to test reconstruction) it is necessary to pretend a drive
+has failed, the following will perform that function:
+.Bd -unfilled -offset indent
+raidctl -f /dev/da2s1e raid0
+.Ed
+.Pp
+The system will then be performing all operations in degraded mode,
+where missing data is re-computed from existing data and the parity.
+In this case, obtaining the status of raid0 will return (in part):
+.Bd -unfilled -offset indent
+Components:
+ /dev/da1s1e: optimal
+ /dev/da2s1e: failed
+ /dev/da3s1e: optimal
+Spares:
+ /dev/da4s1e: spare
+.Ed
+.Pp
+Note that with the use of
+.Fl f
+a reconstruction has not been started. To both fail the disk and
+start a reconstruction, the
+.Fl F
+option must be used:
+.Bd -unfilled -offset indent
+raidctl -F /dev/da2s1e raid0
+.Ed
+.Pp
+The
+.Fl f
+option may be used first, and then the
+.Fl F
+option used later, on the same disk, if desired.
+Immediately after the reconstruction is started, the status will report:
+.Bd -unfilled -offset indent
+Components:
+ /dev/da1s1e: optimal
+ /dev/da2s1e: reconstructing
+ /dev/da3s1e: optimal
+Spares:
+ /dev/da4s1e: used_spare
+[...]
+Parity status: clean
+Reconstruction is 10% complete.
+Parity Re-write is 100% complete.
+Copyback is 100% complete.
+.Ed
+.Pp
+This indicates that a reconstruction is in progress. To find out how
+the reconstruction is progressing the
+.Fl S
+option may be used. This will indicate the progress in terms of the
+percentage of the reconstruction that is completed. When the
+reconstruction is finished the
+.Fl s
+option will show:
+.Bd -unfilled -offset indent
+Components:
+ /dev/da1s1e: optimal
+ /dev/da2s1e: spared
+ /dev/da3s1e: optimal
+Spares:
+ /dev/da4s1e: used_spare
+[...]
+Parity status: clean
+Reconstruction is 100% complete.
+Parity Re-write is 100% complete.
+Copyback is 100% complete.
+.Ed
+.Pp
+At this point there are at least two options. First, if /dev/da2s1e is
+known to be good (i.e. the failure was either caused by
+.Fl f
+or
+.Fl F ,
+or the failed disk was replaced), then a copyback of the data can
+be initiated with the
+.Fl B
+option. In this example, this would copy the entire contents of
+/dev/da4s1e to /dev/da2s1e. Once the copyback procedure is complete, the
+status of the device would be (in part):
+.Bd -unfilled -offset indent
+Components:
+ /dev/da1s1e: optimal
+ /dev/da2s1e: optimal
+ /dev/da3s1e: optimal
+Spares:
+ /dev/da4s1e: spare
+.Ed
+.Pp
+and the system is back to normal operation.
+.Pp
+The second option after the reconstruction is to simply use /dev/da4s1e
+in place of /dev/da2s1e in the configuration file. For example, the
+configuration file (in part) might now look like:
+.Bd -unfilled -offset indent
+START array
+1 3 0
+
+START drives
+/dev/da1s1e
+/dev/da4s1e
+/dev/da3s1e
+.Ed
+.Pp
+This can be done as /dev/da4s1e is completely interchangeable with
+/dev/da2s1e at this point. Note that extreme care must be taken when
+changing the order of the drives in a configuration. This is one of
+the few instances where the devices and/or their orderings can be
+changed without loss of data! In general, the ordering of components
+in a configuration file should
+.Ar never
+be changed.
+.Pp
+If a component fails and there are no hot spares
+available on-line, the status of the RAID set might (in part) look like:
+.Bd -unfilled -offset indent
+Components:
+ /dev/da1s1e: optimal
+ /dev/da2s1e: failed
+ /dev/da3s1e: optimal
+No spares.
+.Ed
+.Pp
+In this case there are a number of options. The first option is to add a hot
+spare using:
+.Bd -unfilled -offset indent
+raidctl -a /dev/da4s1e raid0
+.Ed
+.Pp
+After the hot add, the status would then be:
+.Bd -unfilled -offset indent
+Components:
+ /dev/da1s1e: optimal
+ /dev/da2s1e: failed
+ /dev/da3s1e: optimal
+Spares:
+ /dev/da4s1e: spare
+.Ed
+.Pp
+Reconstruction could then take place using
+.Fl F
+as describe above.
+.Pp
+A second option is to rebuild directly onto /dev/da2s1e. Once the disk
+containing /dev/da2s1e has been replaced, one can simply use:
+.Bd -unfilled -offset indent
+raidctl -R /dev/da2s1e raid0
+.Ed
+.Pp
+to rebuild the /dev/da2s1e component. As the rebuilding is in progress,
+the status will be:
+.Bd -unfilled -offset indent
+Components:
+ /dev/da1s1e: optimal
+ /dev/da2s1e: reconstructing
+ /dev/da3s1e: optimal
+No spares.
+.Ed
+.Pp
+and when completed, will be:
+.Bd -unfilled -offset indent
+Components:
+ /dev/da1s1e: optimal
+ /dev/da2s1e: optimal
+ /dev/da3s1e: optimal
+No spares.
+.Ed
+.Pp
+In circumstances where a particular component is completely
+unavailable after a reboot, a special component name will be used to
+indicate the missing component. For example:
+.Bd -unfilled -offset indent
+Components:
+ /dev/da2s1e: optimal
+ component1: failed
+No spares.
+.Ed
+.Pp
+indicates that the second component of this RAID set was not detected
+at all by the auto-configuration code. The name
+.Sq component1
+can be used anywhere a normal component name would be used. For
+example, to add a hot spare to the above set, and rebuild to that hot
+spare, the following could be done:
+.Bd -unfilled -offset indent
+raidctl -a /dev/da3s1e raid0
+raidctl -F component1 raid0
+.Ed
+.Pp
+at which point the data missing from
+.Sq component1
+would be reconstructed onto /dev/da3s1e.
+.Pp
+.Ss RAID on RAID
+RAID sets can be layered to create more complex and much larger RAID
+sets. A RAID 0 set, for example, could be constructed from four RAID
+5 sets. The following configuration file shows such a setup:
+.Bd -unfilled -offset indent
+START array
+# numRow numCol numSpare
+1 4 0
+
+START disks
+/dev/raid1e
+/dev/raid2e
+/dev/raid3e
+/dev/raid4e
+
+START layout
+# sectPerSU SUsPerParityUnit SUsPerReconUnit RAID_level_0
+128 1 1 0
+
+START queue
+fifo 100
+.Ed
+.Pp
+A similar configuration file might be used for a RAID 0 set
+constructed from components on RAID 1 sets. In such a configuration,
+the mirroring provides a high degree of redundancy, while the striping
+provides additional speed benefits.
+.Pp
+.Ss Auto-configuration and Root on RAID
+RAID sets can also be auto-configured at boot. To make a set
+auto-configurable, simply prepare the RAID set as above, and then do
+a:
+.Bd -unfilled -offset indent
+raidctl -A yes raid0
+.Ed
+.Pp
+to turn on auto-configuration for that set. To turn off
+auto-configuration, use:
+.Bd -unfilled -offset indent
+raidctl -A no raid0
+.Ed
+.Pp
+RAID sets which are auto-configurable will be configured before the
+root filesystem is mounted. These RAID sets are thus available for
+use as a root filesystem, or for any other filesystem. A primary
+advantage of using the auto-configuration is that RAID components
+become more independent of the disks they reside on. For example,
+SCSI ID's can change, but auto-configured sets will always be
+configured correctly, even if the SCSI ID's of the component disks
+have become scrambled.
+.Pp
+Having a system's root filesystem (/) on a RAID set is also allowed,
+with the
+.Sq a
+partition of such a RAID set being used for /.
+To use raid0a as the root filesystem, simply use:
+.Bd -unfilled -offset indent
+raidctl -A root raid0
+.Ed
+.Pp
+To return raid0a to be just an auto-configuring set simply use the
+.Fl A Ar yes
+arguments.
+.Pp
+Note that kernels can only be directly read from RAID 1 components on
+alpha and pmax architectures. On those architectures, the
+.Dv FS_RAID
+filesystem is recognized by the bootblocks, and will properly load the
+kernel directly from a RAID 1 component. For other architectures, or
+to support the root filesystem on other RAID sets, some other
+mechanism must be used to get a kernel booting. For example, a small
+partition containing only the secondary boot-blocks and an alternate
+kernel (or two) could be used. Once a kernel is booting however, and
+an auto-configuring RAID set is found that is eligible to be root,
+then that RAID set will be auto-configured and used as the root
+device. If two or more RAID sets claim to be root devices, then the
+user will be prompted to select the root device. At this time, RAID
+0, 1, 4, and 5 sets are all supported as root devices.
+.Pp
+A typical RAID 1 setup with root on RAID might be as follows:
+.Bl -enum
+.It
+wd0a - a small partition, which contains a complete, bootable, basic
+NetBSD installation.
+.It
+wd1a - also contains a complete, bootable, basic NetBSD installation.
+.It
+wd0e and wd1e - a RAID 1 set, raid0, used for the root filesystem.
+.It
+wd0f and wd1f - a RAID 1 set, raid1, which will be used only for
+swap space.
+.It
+wd0g and wd1g - a RAID 1 set, raid2, used for /usr, /home, or other
+data, if desired.
+.It
+wd0h and wd0h - a RAID 1 set, raid3, if desired.
+.El
+.Pp
+RAID sets raid0, raid1, and raid2 are all marked as
+auto-configurable. raid0 is marked as being a root filesystem.
+When new kernels are installed, the kernel is not only copied to /,
+but also to wd0a and wd1a. The kernel on wd0a is required, since that
+is the kernel the system boots from. The kernel on wd1a is also
+required, since that will be the kernel used should wd0 fail. The
+important point here is to have redundant copies of the kernel
+available, in the event that one of the drives fail.
+.Pp
+There is no requirement that the root filesystem be on the same disk
+as the kernel. For example, obtaining the kernel from wd0a, and using
+da0s1e and da1s1e for raid0, and the root filesystem, is fine. It
+.Ar is
+critical, however, that there be multiple kernels available, in the
+event of media failure.
+.Pp
+Multi-layered RAID devices (such as a RAID 0 set made
+up of RAID 1 sets) are
+.Ar not
+supported as root devices or auto-configurable devices at this point.
+(Multi-layered RAID devices
+.Ar are
+supported in general, however, as mentioned earlier.) Note that in
+order to enable component auto-detection and auto-configuration of
+RAID devices, the line:
+.Bd -unfilled -offset indent
+options RAID_AUTOCONFIG
+.Ed
+.Pp
+must be in the kernel configuration file. See
+.Xr raid 4
+for more details.
+.Pp
+.Ss Unconfiguration
+The final operation performed by
+.Nm
+is to unconfigure a
+.Xr raid 4
+device. This is accomplished via a simple:
+.Bd -unfilled -offset indent
+raidctl -u raid0
+.Ed
+.Pp
+at which point the device is ready to be reconfigured.
+.Pp
+.Ss Performance Tuning
+Selection of the various parameter values which result in the best
+performance can be quite tricky, and often requires a bit of
+trial-and-error to get those values most appropriate for a given system.
+A whole range of factors come into play, including:
+.Bl -enum
+.It
+Types of components (e.g. SCSI vs. IDE) and their bandwidth
+.It
+Types of controller cards and their bandwidth
+.It
+Distribution of components among controllers
+.It
+IO bandwidth
+.It
+Filesystem access patterns
+.It
+CPU speed
+.El
+.Pp
+As with most performance tuning, benchmarking under real-life loads
+may be the only way to measure expected performance. Understanding
+some of the underlying technology is also useful in tuning. The goal
+of this section is to provide pointers to those parameters which may
+make significant differences in performance.
+.Pp
+For a RAID 1 set, a SectPerSU value of 64 or 128 is typically
+sufficient. Since data in a RAID 1 set is arranged in a linear
+fashion on each component, selecting an appropriate stripe size is
+somewhat less critical than it is for a RAID 5 set. However: a stripe
+size that is too small will cause large IO's to be broken up into a
+number of smaller ones, hurting performance. At the same time, a
+large stripe size may cause problems with concurrent accesses to
+stripes, which may also affect performance. Thus values in the range
+of 32 to 128 are often the most effective.
+.Pp
+Tuning RAID 5 sets is trickier. In the best case, IO is presented to
+the RAID set one stripe at a time. Since the entire stripe is
+available at the beginning of the IO, the parity of that stripe can
+be calculated before the stripe is written, and then the stripe data
+and parity can be written in parallel. When the amount of data being
+written is less than a full stripe worth, the
+.Sq small write
+problem occurs. Since a
+.Sq small write
+means only a portion of the stripe on the components is going to
+change, the data (and parity) on the components must be updated
+slightly differently. First, the
+.Sq old parity
+and
+.Sq old data
+must be read from the components. Then the new parity is constructed,
+using the new data to be written, and the old data and old parity.
+Finally, the new data and new parity are written. All this extra data
+shuffling results in a serious loss of performance, and is typically 2
+to 4 times slower than a full stripe write (or read). To combat this
+problem in the real world, it may be useful to ensure that stripe
+sizes are small enough that a
+.Sq large IO
+from the system will use exactly one large stripe write. As is seen
+later, there are some filesystem dependencies which may come into play
+here as well.
+.Pp
+Since the size of a
+.Sq large IO
+is often (currently) only 32K or 64K, on a 5-drive RAID 5 set it may
+be desirable to select a SectPerSU value of 16 blocks (8K) or 32
+blocks (16K). Since there are 4 data sectors per stripe, the maximum
+data per stripe is 64 blocks (32K) or 128 blocks (64K). Again,
+empirical measurement will provide the best indicators of which
+values will yeild better performance.
+.Pp
+The parameters used for the filesystem are also critical to good
+performance. For
+.Xr newfs 8 ,
+for example, increasing the block size to 32K or 64K may improve
+performance dramatically. As well, changing the cylinders-per-group
+parameter from 16 to 32 or higher is often not only necessary for
+larger filesystems, but may also have positive performance
+implications.
+.Pp
+.Ss Summary
+Despite the length of this man-page, configuring a RAID set is a
+relatively straight-forward process. All that needs to be done is the
+following steps:
+.Bl -enum
+.It
+Use
+.Xr disklabel 8
+to create the components (of type RAID).
+.It
+Construct a RAID configuration file: e.g.
+.Sq raid0.conf
+.It
+Configure the RAID set with:
+.Bd -unfilled -offset indent
+raidctl -C raid0.conf
+.Ed
+.Pp
+.It
+Initialize the component labels with:
+.Bd -unfilled -offset indent
+raidctl -I 123456 raid0
+.Ed
+.Pp
+.It
+Initialize other important parts of the set with:
+.Bd -unfilled -offset indent
+raidctl -i raid0
+.Ed
+.Pp
+.It
+Get the default label for the RAID set:
+.Bd -unfilled -offset indent
+disklabel raid0 > /tmp/label
+.Ed
+.Pp
+.It
+Edit the label:
+.Bd -unfilled -offset indent
+vi /tmp/label
+.Ed
+.Pp
+.It
+Put the new label on the RAID set:
+.Bd -unfilled -offset indent
+disklabel -R -r raid0 /tmp/label
+.Ed
+.Pp
+.It
+Create the filesystem:
+.Bd -unfilled -offset indent
+newfs /dev/rraid0e
+.Ed
+.Pp
+.It
+Mount the filesystem:
+.Bd -unfilled -offset indent
+mount /dev/raid0e /mnt
+.Ed
+.Pp
+.It
+Use:
+.Bd -unfilled -offset indent
+raidctl -c raid0.conf
+.Ed
+.Pp
+To re-configure the RAID set the next time it is needed, or put
+raid0.conf into /etc where it will automatically be started by
+the /etc/rc scripts.
+.El
+.Pp
+.Sh WARNINGS
+Certain RAID levels (1, 4, 5, 6, and others) can protect against some
+data loss due to component failure. However the loss of two
+components of a RAID 4 or 5 system, or the loss of a single component
+of a RAID 0 system will result in the entire filesystem being lost.
+RAID is
+.Ar NOT
+a substitute for good backup practices.
+.Pp
+Recomputation of parity
+.Ar MUST
+be performed whenever there is a chance that it may have been
+compromised. This includes after system crashes, or before a RAID
+device has been used for the first time. Failure to keep parity
+correct will be catastrophic should a component ever fail -- it is
+better to use RAID 0 and get the additional space and speed, than it
+is to use parity, but not keep the parity correct. At least with RAID
+0 there is no perception of increased data security.
+.Pp
+.Sh FILES
+.Bl -tag -width /dev/XXrXraidX -compact
+.It Pa /dev/{,r}raid*
+.Cm raid
+device special files.
+.El
+.Pp
+.Sh SEE ALSO
+.Xr raid 4 ,
+.Xr ccd 4 ,
+.Xr rc 8
+.Sh BUGS
+Hot-spare removal is currently not available.
+.Sh HISTORY
+RAIDframe is a framework for rapid prototyping of RAID structures
+developed by the folks at the Parallel Data Laboratory at Carnegie
+Mellon University (CMU).
+A more complete description of the internals and functionality of
+RAIDframe is found in the paper "RAIDframe: A Rapid Prototyping Tool
+for RAID Systems", by William V. Courtright II, Garth Gibson, Mark
+Holland, LeAnn Neal Reilly, and Jim Zelenka, and published by the
+Parallel Data Laboratory of Carnegie Mellon University.
+.Pp
+The
+.Nm
+command first appeared as a program in CMU's RAIDframe v1.1 distribution. This
+version of
+.Nm
+is a complete re-write, and first appeared in
+.Fx 4.4 .
+.Sh COPYRIGHT
+.Bd -unfilled
+The RAIDframe Copyright is as follows:
+
+Copyright (c) 1994-1996 Carnegie-Mellon University.
+All rights reserved.
+
+Permission to use, copy, modify and distribute this software and
+its documentation is hereby granted, provided that both the copyright
+notice and this permission notice appear in all copies of the
+software, derivative works or modified versions, and any portions
+thereof, and that both notices appear in supporting documentation.
+
+CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+
+Carnegie Mellon requests users of this software to return to
+
+ Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ School of Computer Science
+ Carnegie Mellon University
+ Pittsburgh PA 15213-3890
+
+any improvements or extensions that they make and grant Carnegie the
+rights to redistribute these changes.
+.Ed
diff --git a/sbin/raidctl/raidctl.c b/sbin/raidctl/raidctl.c
new file mode 100644
index 0000000..4b7d27d
--- /dev/null
+++ b/sbin/raidctl/raidctl.c
@@ -0,0 +1,1110 @@
+/*-
+ * Copyright (c) 2002 Scott Long <scottl@freebsd.org>
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ *
+ * $FreeBSD$
+ */
+
+/* $NetBSD: raidctl.c,v 1.25 2000/10/31 14:18:39 lukem Exp $ */
+/*-
+ * Copyright (c) 1996, 1997, 1998 The NetBSD Foundation, Inc.
+ * All rights reserved.
+ *
+ * This code is derived from software contributed to The NetBSD Foundation
+ * by Greg Oster
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. All advertising materials mentioning features or use of this software
+ * must display the following acknowledgement:
+ * This product includes software developed by the NetBSD
+ * Foundation, Inc. and its contributors.
+ * 4. Neither the name of The NetBSD Foundation nor the names of its
+ * contributors may be used to endorse or promote products derived
+ * from this software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
+ * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
+ * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+ * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
+ * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ * POSSIBILITY OF SUCH DAMAGE.
+ */
+
+/*
+ * This program is a re-write of the original rf_ctrl program
+ * distributed by CMU with RAIDframe 1.1.
+ *
+ * This program is the user-land interface to the RAIDframe kernel
+ * driver in NetBSD.
+ */
+
+#include <sys/param.h>
+#include <sys/ioctl.h>
+#include <sys/stat.h>
+#include <sys/disklabel.h>
+#if defined(__FreeBSD__)
+#include <sys/linker.h>
+#include <sys/module.h>
+#endif
+
+#include <ctype.h>
+#include <err.h>
+#include <errno.h>
+#include <fcntl.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include <unistd.h>
+#ifdef __FreeBSD__
+#include <paths.h>
+#endif
+#if defined(__NetBSD__)
+#include <util.h>
+#endif
+
+#include <dev/raidframe/rf_raidframe.h>
+
+int main(int, char *[]);
+void do_ioctl(int, u_long, void *, const char *);
+static void rf_configure(int, char*, int);
+static const char *device_status(RF_DiskStatus_t);
+static void rf_get_device_status(int);
+static void get_component_number(int, char *, int *, int *);
+static void rf_fail_disk(int, char *, int);
+static void usage(void);
+static void get_component_label(int, char *);
+static void set_component_label(int, char *);
+static void init_component_labels(int, int);
+static void set_autoconfig(int, char *, char *);
+static void add_hot_spare(int, char *);
+static void remove_hot_spare(int, char *);
+static void rebuild_in_place(int, char *);
+static void check_status(int,int);
+static void check_parity(int,int, char *);
+static void do_meter(int, u_long);
+static void get_bar(char *, double, int);
+static void get_time_string(char *, int);
+#if defined(__FreeBSD__)
+static void check_driver(void);
+
+extern char *__progname;
+#define PROGNAME __progname
+
+#define RAIDCTLDEV "/dev/raidctl"
+#elif defined(__NetBSD__)
+#define PROGNAME getprogname()
+#endif
+
+int verbose;
+
+int
+main(argc,argv)
+ int argc;
+ char *argv[];
+{
+ int ch;
+ int num_options;
+ unsigned long action;
+ char config_filename[PATH_MAX];
+ char dev_name[PATH_MAX];
+ char name[PATH_MAX];
+ char component[PATH_MAX];
+ char autoconf[10];
+ int do_recon;
+ int do_rewrite;
+ int is_clean;
+ int serial_number;
+ struct stat st;
+ int fd;
+ int force;
+ int raidID;
+
+ num_options = 0;
+ action = 0;
+ do_recon = 0;
+ do_rewrite = 0;
+ is_clean = 0;
+ force = 0;
+
+ while ((ch = getopt(argc, argv, "a:A:Bc:C:f:F:g:iI:l:r:R:sSpPuv"))
+ != -1)
+ switch(ch) {
+ case 'a':
+ action = RAIDFRAME_ADD_HOT_SPARE;
+ strncpy(component, optarg, PATH_MAX);
+ num_options++;
+ break;
+ case 'A':
+ action = RAIDFRAME_SET_AUTOCONFIG;
+ strncpy(autoconf, optarg, 10);
+ num_options++;
+ break;
+ case 'B':
+ action = RAIDFRAME_COPYBACK;
+ num_options++;
+ break;
+ case 'c':
+ case 'C':
+ strncpy(config_filename,optarg,PATH_MAX);
+ action = RAIDFRAME_CONFIGURE;
+ force = (ch == 'c') ? 0 : 1;
+#if defined(__FreeBSD__)
+ check_driver();
+ fd = open(RAIDCTLDEV, O_RDWR);
+ if (fd < 0) {
+ fprintf(stderr, "%s: unable to open raid "
+ "control device %s\n", PROGNAME,
+ RAIDCTLDEV);
+ fprintf(stderr, "Error: %s\n", strerror(errno));
+ exit(1);
+ }
+ rf_configure(fd, config_filename, force);
+ close(fd);
+ exit(0);
+#elif defined(__NetBSD__)
+ num_options++;
+ break;
+#endif
+ case 'f':
+ action = RAIDFRAME_FAIL_DISK;
+ strncpy(component, optarg, PATH_MAX);
+ do_recon = 0;
+ num_options++;
+ break;
+ case 'F':
+ action = RAIDFRAME_FAIL_DISK;
+ strncpy(component, optarg, PATH_MAX);
+ do_recon = 1;
+ num_options++;
+ break;
+ case 'g':
+ action = RAIDFRAME_GET_COMPONENT_LABEL;
+ strncpy(component, optarg, PATH_MAX);
+ num_options++;
+ break;
+ case 'i':
+ action = RAIDFRAME_REWRITEPARITY;
+ num_options++;
+ break;
+ case 'I':
+ action = RAIDFRAME_INIT_LABELS;
+ serial_number = atoi(optarg);
+ num_options++;
+ break;
+ case 'l':
+ action = RAIDFRAME_SET_COMPONENT_LABEL;
+ strncpy(component, optarg, PATH_MAX);
+ num_options++;
+ break;
+ case 'r':
+ action = RAIDFRAME_REMOVE_HOT_SPARE;
+ strncpy(component, optarg, PATH_MAX);
+ num_options++;
+ break;
+ case 'R':
+ strncpy(component,optarg,PATH_MAX);
+ action = RAIDFRAME_REBUILD_IN_PLACE;
+ num_options++;
+ break;
+ case 's':
+ action = RAIDFRAME_GET_INFO;
+ num_options++;
+ break;
+ case 'S':
+ action = RAIDFRAME_CHECK_RECON_STATUS_EXT;
+ num_options++;
+ break;
+ case 'p':
+ action = RAIDFRAME_CHECK_PARITY;
+ num_options++;
+ break;
+ case 'P':
+ action = RAIDFRAME_CHECK_PARITY;
+ do_rewrite = 1;
+ num_options++;
+ break;
+ case 'u':
+ action = RAIDFRAME_SHUTDOWN;
+ num_options++;
+ break;
+ case 'v':
+ verbose = 1;
+ /* Don't bump num_options, as '-v' is not
+ an option like the others */
+ /* num_options++; */
+ break;
+ default:
+ usage();
+ }
+ argc -= optind;
+ argv += optind;
+
+ if ((num_options > 1) || (argc == NULL))
+ usage();
+
+ strncpy(name,argv[0],PATH_MAX);
+#if defined(__NetBSD__)
+ fd = opendisk(name, O_RDWR, dev_name, sizeof(dev_name), 1);
+#elif defined(__FreeBSD__)
+ check_driver();
+
+ if (name[0] != '/') {
+ char name1[PATH_MAX];
+ snprintf(name1, PATH_MAX, "%s%s", _PATH_DEV, name);
+ strncpy(name, name1, PATH_MAX);
+ }
+ fd = open(name, O_RDWR);
+#endif
+ if (fd == -1) {
+ fprintf(stderr, "%s: unable to open device file: %s\n",
+ PROGNAME, name);
+ exit(1);
+ }
+ if (fstat(fd, &st) != 0) {
+ fprintf(stderr,"%s: stat failure on: %s\n",
+ PROGNAME, dev_name);
+ exit(1);
+ }
+ if (!S_ISBLK(st.st_mode) && !S_ISCHR(st.st_mode)) {
+ fprintf(stderr,"%s: invalid device: %s\n",
+ PROGNAME, dev_name);
+ exit(1);
+ }
+
+ switch(action) {
+ case RAIDFRAME_ADD_HOT_SPARE:
+ add_hot_spare(fd, component);
+ break;
+ case RAIDFRAME_REMOVE_HOT_SPARE:
+ remove_hot_spare(fd, component);
+ break;
+#if defined(__NetBSD__)
+ case RAIDFRAME_CONFIGURE:
+ rf_configure(fd, config_filename, force);
+ break;
+#endif
+ case RAIDFRAME_SET_AUTOCONFIG:
+ set_autoconfig(fd, name, autoconf);
+ break;
+ case RAIDFRAME_COPYBACK:
+ printf("Copyback.\n");
+ do_ioctl(fd, RAIDFRAME_COPYBACK, NULL, "RAIDFRAME_COPYBACK");
+ if (verbose) {
+ sleep(3); /* XXX give the copyback a chance to start */
+ printf("Copyback status:\n");
+ do_meter(fd,RAIDFRAME_CHECK_COPYBACK_STATUS_EXT);
+ }
+ break;
+ case RAIDFRAME_FAIL_DISK:
+ rf_fail_disk(fd, component, do_recon);
+ break;
+ case RAIDFRAME_SET_COMPONENT_LABEL:
+ set_component_label(fd, component);
+ break;
+ case RAIDFRAME_GET_COMPONENT_LABEL:
+ get_component_label(fd, component);
+ break;
+ case RAIDFRAME_INIT_LABELS:
+ init_component_labels(fd, serial_number);
+ break;
+ case RAIDFRAME_REWRITEPARITY:
+ printf("Initiating re-write of parity\n");
+ do_ioctl(fd, RAIDFRAME_REWRITEPARITY, NULL,
+ "RAIDFRAME_REWRITEPARITY");
+ if (verbose) {
+ sleep(3); /* XXX give it time to get started */
+ printf("Parity Re-write status:\n");
+ do_meter(fd, RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT);
+ }
+ break;
+ case RAIDFRAME_CHECK_RECON_STATUS_EXT:
+ check_status(fd,1);
+ break;
+ case RAIDFRAME_GET_INFO:
+ rf_get_device_status(fd);
+ break;
+ case RAIDFRAME_REBUILD_IN_PLACE:
+ rebuild_in_place(fd, component);
+ break;
+ case RAIDFRAME_CHECK_PARITY:
+ check_parity(fd, do_rewrite, dev_name);
+ break;
+ case RAIDFRAME_SHUTDOWN:
+#if defined(__NetBSD__)
+ do_ioctl(fd, RAIDFRAME_SHUTDOWN, NULL, "RAIDFRAME_SHUTDOWN");
+#elif defined(__FreeBSD__)
+ /* Find out the unit number of the raid device */
+ do_ioctl(fd, RAIDFRAME_GET_UNIT, &raidID, "RAIDFRAME_GET_UNIT");
+ close (fd);
+
+ fd = open(RAIDCTLDEV, O_RDWR);
+ if (fd < 0) {
+ fprintf(stderr, "%s: unable to open raid control "
+ "device %s\n", PROGNAME, RAIDCTLDEV);
+ fprintf(stderr, "Error: %s\n", strerror(errno));
+ exit(1);
+ }
+ do_ioctl(fd, RAIDFRAME_SHUTDOWN, &raidID, "RAIDFRAME_SHUTDOWN");
+ close(fd);
+#endif
+ break;
+ default:
+ break;
+ }
+
+ close(fd);
+ exit(0);
+}
+
+void
+do_ioctl(fd, command, arg, ioctl_name)
+ int fd;
+ unsigned long command;
+ void *arg;
+ const char *ioctl_name;
+{
+ if (ioctl(fd, command, arg) < 0) {
+ warn("ioctl (%s) failed", ioctl_name);
+ exit(1);
+ }
+}
+
+
+static void
+rf_configure(fd,config_file,force)
+ int fd;
+ char *config_file;
+ int force;
+{
+ void *generic;
+ RF_Config_t cfg;
+
+ if (rf_MakeConfig( config_file, &cfg ) != 0) {
+ fprintf(stderr,"%s: unable to create RAIDframe %s\n",
+ PROGNAME, "configuration structure\n");
+ exit(1);
+ }
+
+ cfg.force = force;
+
+ /*
+ * Note the extra level of redirection needed here, since
+ * what we really want to pass in is a pointer to the pointer to
+ * the configuration structure.
+ */
+
+ generic = (void *) &cfg;
+ do_ioctl(fd, RAIDFRAME_CONFIGURE, &generic, "RAIDFRAME_CONFIGURE");
+}
+
+static const char *
+device_status(status)
+ RF_DiskStatus_t status;
+{
+
+ switch (status) {
+ case rf_ds_optimal:
+ return ("optimal");
+ break;
+ case rf_ds_failed:
+ return ("failed");
+ break;
+ case rf_ds_reconstructing:
+ return ("reconstructing");
+ break;
+ case rf_ds_dist_spared:
+ return ("dist_spared");
+ break;
+ case rf_ds_spared:
+ return ("spared");
+ break;
+ case rf_ds_spare:
+ return ("spare");
+ break;
+ case rf_ds_used_spare:
+ return ("used_spare");
+ break;
+ default:
+ return ("UNKNOWN");
+ }
+ /* NOTREACHED */
+}
+
+static void
+rf_get_device_status(fd)
+ int fd;
+{
+ RF_DeviceConfig_t device_config;
+ void *cfg_ptr;
+ int is_clean;
+ int i;
+
+ cfg_ptr = &device_config;
+ printf("Address= %p\n", &cfg_ptr);
+ do_ioctl(fd, RAIDFRAME_GET_INFO, &cfg_ptr, "RAIDFRAME_GET_INFO");
+
+ printf("Components:\n");
+ for(i=0; i < device_config.ndevs; i++) {
+ printf("%20s: %s\n", device_config.devs[i].devname,
+ device_status(device_config.devs[i].status));
+ }
+ if (device_config.nspares > 0) {
+ printf("Spares:\n");
+ for(i=0; i < device_config.nspares; i++) {
+ printf("%20s: %s\n",
+ device_config.spares[i].devname,
+ device_status(device_config.spares[i].status));
+ }
+ } else {
+ printf("No spares.\n");
+ }
+ for(i=0; i < device_config.ndevs; i++) {
+ if (device_config.devs[i].status == rf_ds_optimal) {
+ get_component_label(fd, device_config.devs[i].devname);
+ } else {
+ printf("%s status is: %s. Skipping label.\n",
+ device_config.devs[i].devname,
+ device_status(device_config.devs[i].status));
+ }
+ }
+
+ if (device_config.nspares > 0) {
+ for(i=0; i < device_config.nspares; i++) {
+ if ((device_config.spares[i].status ==
+ rf_ds_optimal) ||
+ (device_config.spares[i].status ==
+ rf_ds_used_spare)) {
+ get_component_label(fd,
+ device_config.spares[i].devname);
+ } else {
+ printf("%s status is: %s. Skipping label.\n",
+ device_config.spares[i].devname,
+ device_status(device_config.spares[i].status));
+ }
+ }
+ }
+
+ do_ioctl(fd, RAIDFRAME_CHECK_PARITY, &is_clean,
+ "RAIDFRAME_CHECK_PARITY");
+ if (is_clean) {
+ printf("Parity status: clean\n");
+ } else {
+ printf("Parity status: DIRTY\n");
+ }
+ check_status(fd,0);
+}
+
+static void
+get_component_number(fd, component_name, component_number, num_columns)
+ int fd;
+ char *component_name;
+ int *component_number;
+ int *num_columns;
+{
+ RF_DeviceConfig_t device_config;
+ void *cfg_ptr;
+ int i;
+ int found;
+
+ *component_number = -1;
+
+ /* Assuming a full path spec... */
+ cfg_ptr = &device_config;
+ do_ioctl(fd, RAIDFRAME_GET_INFO, &cfg_ptr, "RAIDFRAME_GET_INFO");
+
+ *num_columns = device_config.cols;
+
+ found = 0;
+ for(i=0; i < device_config.ndevs; i++) {
+ if (strncmp(component_name, device_config.devs[i].devname,
+ PATH_MAX)==0) {
+ found = 1;
+ *component_number = i;
+ }
+ }
+ if (!found) { /* maybe it's a spare? */
+ for(i=0; i < device_config.nspares; i++) {
+ if (strncmp(component_name,
+ device_config.spares[i].devname,
+ PATH_MAX)==0) {
+ found = 1;
+ *component_number = i + device_config.ndevs;
+ /* the way spares are done should
+ really change... */
+ *num_columns = device_config.cols +
+ device_config.nspares;
+ }
+ }
+ }
+
+ if (!found) {
+ fprintf(stderr,"%s: %s is not a component %s", PROGNAME,
+ component_name, "of this device\n");
+ exit(1);
+ }
+}
+
+static void
+rf_fail_disk(fd, component_to_fail, do_recon)
+ int fd;
+ char *component_to_fail;
+ int do_recon;
+{
+ struct rf_recon_req recon_request;
+ int component_num;
+ int num_cols;
+
+ get_component_number(fd, component_to_fail, &component_num, &num_cols);
+
+ recon_request.row = component_num / num_cols;
+ recon_request.col = component_num % num_cols;
+ if (do_recon) {
+ recon_request.flags = RF_FDFLAGS_RECON;
+ } else {
+ recon_request.flags = RF_FDFLAGS_NONE;
+ }
+ do_ioctl(fd, RAIDFRAME_FAIL_DISK, &recon_request,
+ "RAIDFRAME_FAIL_DISK");
+ if (do_recon && verbose) {
+ printf("Reconstruction status:\n");
+ sleep(3); /* XXX give reconstruction a chance to start */
+ do_meter(fd,RAIDFRAME_CHECK_RECON_STATUS_EXT);
+ }
+}
+
+static void
+get_component_label(fd, component)
+ int fd;
+ char *component;
+{
+ RF_ComponentLabel_t component_label;
+ int component_num;
+ int num_cols;
+
+ get_component_number(fd, component, &component_num, &num_cols);
+
+ memset( &component_label, 0, sizeof(RF_ComponentLabel_t));
+ component_label.row = component_num / num_cols;
+ component_label.column = component_num % num_cols;
+
+ do_ioctl( fd, RAIDFRAME_GET_COMPONENT_LABEL, &component_label,
+ "RAIDFRAME_GET_COMPONENT_LABEL");
+
+ printf("Component label for %s:\n",component);
+
+ printf(" Row: %d, Column: %d, Num Rows: %d, Num Columns: %d\n",
+ component_label.row, component_label.column,
+ component_label.num_rows, component_label.num_columns);
+ printf(" Version: %d, Serial Number: %d, Mod Counter: %d\n",
+ component_label.version, component_label.serial_number,
+ component_label.mod_counter);
+ printf(" Clean: %s, Status: %d\n",
+ component_label.clean ? "Yes" : "No",
+ component_label.status );
+ printf(" sectPerSU: %d, SUsPerPU: %d, SUsPerRU: %d\n",
+ component_label.sectPerSU, component_label.SUsPerPU,
+ component_label.SUsPerRU);
+ printf(" Queue size: %d, blocksize: %d, numBlocks: %d\n",
+ component_label.maxOutstanding, component_label.blockSize,
+ component_label.numBlocks);
+ printf(" RAID Level: %c\n", (char) component_label.parityConfig);
+ printf(" Autoconfig: %s\n",
+ component_label.autoconfigure ? "Yes" : "No" );
+ printf(" Root partition: %s\n",
+ component_label.root_partition ? "Yes" : "No" );
+ printf(" Last configured as: raid%d\n", component_label.last_unit );
+}
+
+static void
+set_component_label(fd, component)
+ int fd;
+ char *component;
+{
+ RF_ComponentLabel_t component_label;
+ int component_num;
+ int num_cols;
+
+ get_component_number(fd, component, &component_num, &num_cols);
+
+ /* XXX This is currently here for testing, and future expandability */
+
+ component_label.version = 1;
+ component_label.serial_number = 123456;
+ component_label.mod_counter = 0;
+ component_label.row = component_num / num_cols;
+ component_label.column = component_num % num_cols;
+ component_label.num_rows = 0;
+ component_label.num_columns = 5;
+ component_label.clean = 0;
+ component_label.status = 1;
+
+ do_ioctl( fd, RAIDFRAME_SET_COMPONENT_LABEL, &component_label,
+ "RAIDFRAME_SET_COMPONENT_LABEL");
+}
+
+
+static void
+init_component_labels(fd, serial_number)
+ int fd;
+ int serial_number;
+{
+ RF_ComponentLabel_t component_label;
+
+ component_label.version = 0;
+ component_label.serial_number = serial_number;
+ component_label.mod_counter = 0;
+ component_label.row = 0;
+ component_label.column = 0;
+ component_label.num_rows = 0;
+ component_label.num_columns = 0;
+ component_label.clean = 0;
+ component_label.status = 0;
+
+ do_ioctl( fd, RAIDFRAME_INIT_LABELS, &component_label,
+ "RAIDFRAME_SET_COMPONENT_LABEL");
+}
+
+static void
+set_autoconfig(fd, name, autoconf)
+ int fd;
+ char *name;
+ char *autoconf;
+{
+ int auto_config;
+ int root_config;
+
+ auto_config = 0;
+ root_config = 0;
+
+ if (strncasecmp(autoconf,"root", 4) == 0) {
+ root_config = 1;
+ }
+
+ if ((strncasecmp(autoconf,"yes", 3) == 0) ||
+ root_config == 1) {
+ auto_config = 1;
+ }
+
+ do_ioctl(fd, RAIDFRAME_SET_AUTOCONFIG, &auto_config,
+ "RAIDFRAME_SET_AUTOCONFIG");
+
+ do_ioctl(fd, RAIDFRAME_SET_ROOT, &root_config,
+ "RAIDFRAME_SET_ROOT");
+
+ printf("%s: Autoconfigure: %s\n", name,
+ auto_config ? "Yes" : "No");
+
+ if (root_config == 1) {
+ printf("%s: Root: %s\n", name,
+ auto_config ? "Yes" : "No");
+ }
+}
+
+static void
+add_hot_spare(fd, component)
+ int fd;
+ char *component;
+{
+ RF_SingleComponent_t hot_spare;
+
+ hot_spare.row = 0;
+ hot_spare.column = 0;
+ strncpy(hot_spare.component_name, component,
+ sizeof(hot_spare.component_name));
+
+ do_ioctl( fd, RAIDFRAME_ADD_HOT_SPARE, &hot_spare,
+ "RAIDFRAME_ADD_HOT_SPARE");
+}
+
+static void
+remove_hot_spare(fd, component)
+ int fd;
+ char *component;
+{
+ RF_SingleComponent_t hot_spare;
+ int component_num;
+ int num_cols;
+
+ get_component_number(fd, component, &component_num, &num_cols);
+
+ hot_spare.row = component_num / num_cols;
+ hot_spare.column = component_num % num_cols;
+
+ strncpy(hot_spare.component_name, component,
+ sizeof(hot_spare.component_name));
+
+ do_ioctl( fd, RAIDFRAME_REMOVE_HOT_SPARE, &hot_spare,
+ "RAIDFRAME_REMOVE_HOT_SPARE");
+}
+
+static void
+rebuild_in_place( fd, component )
+ int fd;
+ char *component;
+{
+ RF_SingleComponent_t comp;
+ int component_num;
+ int num_cols;
+
+ get_component_number(fd, component, &component_num, &num_cols);
+
+ comp.row = 0;
+ comp.column = component_num;
+ strncpy(comp.component_name, component, sizeof(comp.component_name));
+
+ do_ioctl( fd, RAIDFRAME_REBUILD_IN_PLACE, &comp,
+ "RAIDFRAME_REBUILD_IN_PLACE");
+
+ if (verbose) {
+ printf("Reconstruction status:\n");
+ sleep(3); /* XXX give reconstruction a chance to start */
+ do_meter(fd,RAIDFRAME_CHECK_RECON_STATUS_EXT);
+ }
+
+}
+
+static void
+check_parity( fd, do_rewrite, dev_name )
+ int fd;
+ int do_rewrite;
+ char *dev_name;
+{
+ int is_clean;
+ int percent_done;
+
+ is_clean = 0;
+ percent_done = 0;
+ do_ioctl(fd, RAIDFRAME_CHECK_PARITY, &is_clean,
+ "RAIDFRAME_CHECK_PARITY");
+ if (is_clean) {
+ printf("%s: Parity status: clean\n",dev_name);
+ } else {
+ printf("%s: Parity status: DIRTY\n",dev_name);
+ if (do_rewrite) {
+ printf("%s: Initiating re-write of parity\n",
+ dev_name);
+ do_ioctl(fd, RAIDFRAME_REWRITEPARITY, NULL,
+ "RAIDFRAME_REWRITEPARITY");
+ sleep(3); /* XXX give it time to
+ get started. */
+ if (verbose) {
+ printf("Parity Re-write status:\n");
+ do_meter(fd, RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT);
+ } else {
+ do_ioctl(fd,
+ RAIDFRAME_CHECK_PARITYREWRITE_STATUS,
+ &percent_done,
+ "RAIDFRAME_CHECK_PARITYREWRITE_STATUS"
+ );
+ while( percent_done < 100 ) {
+ sleep(3); /* wait a bit... */
+ do_ioctl(fd, RAIDFRAME_CHECK_PARITYREWRITE_STATUS,
+ &percent_done, "RAIDFRAME_CHECK_PARITYREWRITE_STATUS");
+ }
+
+ }
+ printf("%s: Parity Re-write complete\n",
+ dev_name);
+ } else {
+ /* parity is wrong, and is not being fixed.
+ Exit w/ an error. */
+ exit(1);
+ }
+ }
+}
+
+
+static void
+check_status( fd, meter )
+ int fd;
+ int meter;
+{
+ int recon_percent_done = 0;
+ int parity_percent_done = 0;
+ int copyback_percent_done = 0;
+
+ do_ioctl(fd, RAIDFRAME_CHECK_RECON_STATUS, &recon_percent_done,
+ "RAIDFRAME_CHECK_RECON_STATUS");
+ printf("Reconstruction is %d%% complete.\n", recon_percent_done);
+ do_ioctl(fd, RAIDFRAME_CHECK_PARITYREWRITE_STATUS,
+ &parity_percent_done,
+ "RAIDFRAME_CHECK_PARITYREWRITE_STATUS");
+ printf("Parity Re-write is %d%% complete.\n", parity_percent_done);
+ do_ioctl(fd, RAIDFRAME_CHECK_COPYBACK_STATUS, &copyback_percent_done,
+ "RAIDFRAME_CHECK_COPYBACK_STATUS");
+ printf("Copyback is %d%% complete.\n", copyback_percent_done);
+
+ if (meter) {
+ /* These 3 should be mutually exclusive at this point */
+ if (recon_percent_done < 100) {
+ printf("Reconstruction status:\n");
+ do_meter(fd,RAIDFRAME_CHECK_RECON_STATUS_EXT);
+ } else if (parity_percent_done < 100) {
+ printf("Parity Re-write status:\n");
+ do_meter(fd,RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT);
+ } else if (copyback_percent_done < 100) {
+ printf("Copyback status:\n");
+ do_meter(fd,RAIDFRAME_CHECK_COPYBACK_STATUS_EXT);
+ }
+ }
+}
+
+const char *tbits = "|/-\\";
+
+static void
+do_meter(fd, option)
+ int fd;
+ u_long option;
+{
+ int percent_done;
+ int last_value;
+ int start_value;
+ RF_ProgressInfo_t progressInfo;
+ struct timeval start_time;
+ struct timeval last_time;
+ struct timeval current_time;
+ double elapsed;
+ int elapsed_sec;
+ int elapsed_usec;
+ int simple_eta,last_eta;
+ double rate;
+ int amount;
+ int tbit_value;
+ int wait_for_more_data;
+ char buffer[1024];
+ char bar_buffer[1024];
+ char eta_buffer[1024];
+
+ if (gettimeofday(&start_time,NULL)) {
+ fprintf(stderr,"%s: gettimeofday failed!?!?\n", PROGNAME);
+ exit(errno);
+ }
+ memset(&progressInfo, 0, sizeof(RF_ProgressInfo_t));
+
+ percent_done = 0;
+ do_ioctl(fd, option, &progressInfo, "");
+ last_value = progressInfo.completed;
+ start_value = last_value;
+ last_time = start_time;
+ current_time = start_time;
+
+ wait_for_more_data = 0;
+ tbit_value = 0;
+ while(progressInfo.completed < progressInfo.total) {
+
+ percent_done = (progressInfo.completed * 100) /
+ progressInfo.total;
+
+ get_bar(bar_buffer, percent_done, 40);
+
+ elapsed_sec = current_time.tv_sec - start_time.tv_sec;
+ elapsed_usec = current_time.tv_usec - start_time.tv_usec;
+ if (elapsed_usec < 0) {
+ elapsed_usec-=1000000;
+ elapsed_sec++;
+ }
+
+ elapsed = (double) elapsed_sec +
+ (double) elapsed_usec / 1000000.0;
+
+ amount = progressInfo.completed - start_value;
+
+ if (amount <= 0) { /* we don't do negatives (yet?) */
+ amount = 0;
+ wait_for_more_data = 1;
+ } else {
+ wait_for_more_data = 0;
+ }
+
+ if (elapsed == 0)
+ rate = 0.0;
+ else
+ rate = amount / elapsed;
+
+ if (rate > 0.0) {
+ simple_eta = (int) (((double)progressInfo.total -
+ (double) progressInfo.completed)
+ / rate);
+ } else {
+ simple_eta = -1;
+ }
+
+ if (simple_eta <=0) {
+ simple_eta = last_eta;
+ } else {
+ last_eta = simple_eta;
+ }
+
+ get_time_string(eta_buffer, simple_eta);
+
+ snprintf(buffer,1024,"\r%3d%% |%s| ETA: %s %c",
+ percent_done,bar_buffer,eta_buffer,tbits[tbit_value]);
+
+ write(fileno(stdout),buffer,strlen(buffer));
+ fflush(stdout);
+
+ /* resolution wasn't high enough... wait until we get another
+ timestamp and perhaps more "work" done. */
+
+ if (!wait_for_more_data) {
+ last_time = current_time;
+ last_value = progressInfo.completed;
+ }
+
+ if (++tbit_value>3)
+ tbit_value = 0;
+
+ sleep(2);
+
+ if (gettimeofday(&current_time,NULL)) {
+ fprintf(stderr,"%s: gettimeofday failed!?!?\n",
+ PROGNAME);
+ exit(errno);
+ }
+
+ do_ioctl( fd, option, &progressInfo, "");
+
+
+ }
+ printf("\n");
+}
+/* 40 '*''s per line, then 40 ' ''s line. */
+/* If you've got a screen wider than 160 characters, "tough" */
+
+#define STAR_MIDPOINT 4*40
+const char stars[] = "****************************************"
+ "****************************************"
+ "****************************************"
+ "****************************************"
+ " "
+ " "
+ " "
+ " "
+ " ";
+
+static void
+get_bar(string,percent,max_strlen)
+ char *string;
+ double percent;
+ int max_strlen;
+{
+ int offset;
+
+ if (max_strlen > STAR_MIDPOINT) {
+ max_strlen = STAR_MIDPOINT;
+ }
+ offset = STAR_MIDPOINT -
+ (int)((percent * max_strlen)/ 100);
+ if (offset < 0)
+ offset = 0;
+ snprintf(string,max_strlen,"%s",&stars[offset]);
+}
+
+static void
+get_time_string(string,simple_time)
+ char *string;
+ int simple_time;
+{
+ int minutes, seconds, hours;
+ char hours_buffer[5];
+ char minutes_buffer[5];
+ char seconds_buffer[5];
+
+ if (simple_time >= 0) {
+
+ minutes = (int) simple_time / 60;
+ seconds = ((int)simple_time - 60*minutes);
+ hours = minutes / 60;
+ minutes = minutes - 60*hours;
+
+ if (hours > 0) {
+ snprintf(hours_buffer,5,"%02d:",hours);
+ } else {
+ snprintf(hours_buffer,5," ");
+ }
+
+ snprintf(minutes_buffer,5,"%02d:",minutes);
+ snprintf(seconds_buffer,5,"%02d",seconds);
+ snprintf(string,1024,"%s%s%s",
+ hours_buffer, minutes_buffer, seconds_buffer);
+ } else {
+ snprintf(string,1024," --:--");
+ }
+
+}
+
+static void
+usage()
+{
+ const char *progname = PROGNAME;
+
+ fprintf(stderr, "usage: %s [-v] -a component dev\n", progname);
+ fprintf(stderr, " %s [-v] -A yes | no | root dev\n", progname);
+ fprintf(stderr, " %s [-v] -B dev\n", progname);
+ fprintf(stderr, " %s [-v] -c config_file dev\n", progname);
+ fprintf(stderr, " %s [-v] -C config_file dev\n", progname);
+ fprintf(stderr, " %s [-v] -f component dev\n", progname);
+ fprintf(stderr, " %s [-v] -F component dev\n", progname);
+ fprintf(stderr, " %s [-v] -g component dev\n", progname);
+ fprintf(stderr, " %s [-v] -i dev\n", progname);
+ fprintf(stderr, " %s [-v] -I serial_number dev\n", progname);
+ fprintf(stderr, " %s [-v] -r component dev\n", progname);
+ fprintf(stderr, " %s [-v] -R component dev\n", progname);
+ fprintf(stderr, " %s [-v] -s dev\n", progname);
+ fprintf(stderr, " %s [-v] -S dev\n", progname);
+ fprintf(stderr, " %s [-v] -u dev\n", progname);
+#if 0
+ fprintf(stderr, "usage: %s %s\n", progname,
+ "-a | -f | -F | -g | -r | -R component dev");
+ fprintf(stderr, " %s -B | -i | -s | -S -u dev\n", progname);
+ fprintf(stderr, " %s -c | -C config_file dev\n", progname);
+ fprintf(stderr, " %s -I serial_number dev\n", progname);
+#endif
+ exit(1);
+ /* NOTREACHED */
+}
+
+#if defined(__FreeBSD__)
+static void
+check_driver(void)
+{
+ if (modfind("raidframe") == -1 && kldload("raidframe") == -1) {
+ printf("Error: Cannot load RAIDframe driver.\n");
+ exit(1);
+ }
+}
+#endif
+
diff --git a/sbin/raidctl/rf_configure.c b/sbin/raidctl/rf_configure.c
new file mode 100644
index 0000000..8df7889
--- /dev/null
+++ b/sbin/raidctl/rf_configure.c
@@ -0,0 +1,583 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_configure.c,v 1.13 2001/01/27 19:32:47 oster Exp $ */
+
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Mark Holland
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+/***************************************************************
+ *
+ * rf_configure.c -- code related to configuring the raidframe system
+ *
+ * configuration is complicated by the fact that we want the same
+ * driver to work both in the kernel and at user level. In the
+ * kernel, we can't read the configuration file, so we configure
+ * by running a user-level program that reads the config file,
+ * creates a data structure describing the configuration and
+ * passes it into the kernel via an ioctl. Since we want the config
+ * code to be common between the two versions of the driver, we
+ * configure using the same two-step process when running at
+ * user level. Of course, at user level, the config structure is
+ * passed directly to the config routine, rather than via ioctl.
+ *
+ * This file is not compiled into the kernel, so we have no
+ * need for KERNEL ifdefs.
+ *
+ **************************************************************/
+
+#include <stdio.h>
+#include <stdlib.h>
+#include <errno.h>
+#include <string.h>
+#include <fcntl.h>
+#include <unistd.h>
+#include <sys/types.h>
+#include <sys/stat.h>
+#include <dev/raidframe/rf_raid.h>
+#include <dev/raidframe/rf_raidframe.h>
+#include <dev/raidframe/rf_general.h>
+#include <dev/raidframe/rf_decluster.h>
+#include <dev/raidframe/rf_configure.h>
+
+/*
+ * XXX we include this here so we don't need to drag rf_debugMem.c into
+ * the picture... This is userland, afterall...
+ */
+
+/*
+ * XXX sucky hack to override the defn. of RF_Malloc as given in
+ * rf_debugMem.c... but I *really* don't want (nor need) to link with
+ * that file here in userland.. GO
+ */
+
+#undef RF_Malloc
+#define RF_Malloc(_p_, _size_, _cast_) \
+ { \
+ _p_ = _cast_ malloc((u_long)_size_); \
+ bzero((char *)_p_, _size_); \
+ }
+
+int distSpareYes = 1;
+int distSpareNo = 0;
+
+/* The mapsw[] table below contains all the various RAID types that might
+be supported by the kernel. The actual supported types are found
+in sys/dev/raidframe/rf_layout.c. */
+
+static RF_LayoutSW_t mapsw[] = {
+ /* parity declustering */
+ {'T', "Parity declustering",
+ rf_MakeLayoutSpecificDeclustered, &distSpareNo},
+ /* parity declustering with distributed sparing */
+ {'D', "Distributed sparing parity declustering",
+ rf_MakeLayoutSpecificDeclustered, &distSpareYes},
+ /* declustered P+Q */
+ {'Q', "Declustered P+Q",
+ rf_MakeLayoutSpecificDeclustered, &distSpareNo},
+ /* RAID 5 with rotated sparing */
+ {'R', "RAID Level 5 rotated sparing", rf_MakeLayoutSpecificNULL, NULL},
+ /* Chained Declustering */
+ {'C', "Chained Declustering", rf_MakeLayoutSpecificNULL, NULL},
+ /* Interleaved Declustering */
+ {'I', "Interleaved Declustering", rf_MakeLayoutSpecificNULL, NULL},
+ /* RAID level 0 */
+ {'0', "RAID Level 0", rf_MakeLayoutSpecificNULL, NULL},
+ /* RAID level 1 */
+ {'1', "RAID Level 1", rf_MakeLayoutSpecificNULL, NULL},
+ /* RAID level 4 */
+ {'4', "RAID Level 4", rf_MakeLayoutSpecificNULL, NULL},
+ /* RAID level 5 */
+ {'5', "RAID Level 5", rf_MakeLayoutSpecificNULL, NULL},
+ /* Evenodd */
+ {'E', "EvenOdd", rf_MakeLayoutSpecificNULL, NULL},
+ /* Declustered Evenodd */
+ {'e', "Declustered EvenOdd",
+ rf_MakeLayoutSpecificDeclustered, &distSpareNo},
+ /* parity logging */
+ {'L', "Parity logging", rf_MakeLayoutSpecificNULL, NULL},
+ /* end-of-list marker */
+ {'\0', NULL, NULL, NULL}
+};
+RF_LayoutSW_t *
+rf_GetLayout(RF_ParityConfig_t parityConfig)
+{
+ RF_LayoutSW_t *p;
+
+ /* look up the specific layout */
+ for (p = &mapsw[0]; p->parityConfig; p++)
+ if (p->parityConfig == parityConfig)
+ break;
+ if (!p->parityConfig)
+ return (NULL);
+ RF_ASSERT(p->parityConfig == parityConfig);
+ return (p);
+}
+
+static int rf_search_file_for_start_of(const char *string, char *buf,
+ int len, FILE * fp);
+static int rf_get_next_nonblank_line(char *buf, int len, FILE * fp,
+ const char *errmsg);
+
+/*
+ * called from user level to read the configuration file and create
+ * a configuration control structure. This is used in the user-level
+ * version of the driver, and in the user-level program that configures
+ * the system via ioctl.
+ */
+int
+rf_MakeConfig(configname, cfgPtr)
+ char *configname;
+ RF_Config_t *cfgPtr;
+{
+ int numscanned, val, r, c, retcode, aa, bb, cc;
+ char buf[256], buf1[256], *cp;
+ RF_LayoutSW_t *lp;
+ FILE *fp;
+
+ bzero((char *) cfgPtr, sizeof(RF_Config_t));
+
+ fp = fopen(configname, "r");
+ if (!fp) {
+ RF_ERRORMSG1("Can't open config file %s\n", configname);
+ return (-1);
+ }
+ rewind(fp);
+ if (rf_search_file_for_start_of("array", buf, 256, fp)) {
+ RF_ERRORMSG1("Unable to find start of \"array\" params in config file %s\n", configname);
+ retcode = -1;
+ goto out;
+ }
+ rf_get_next_nonblank_line(buf, 256, fp, "Config file error (\"array\" section): unable to get numRow and numCol\n");
+
+ /*
+ * wackiness with aa, bb, cc to get around size problems on
+ * different platforms
+ */
+ numscanned = sscanf(buf, "%d %d %d", &aa, &bb, &cc);
+ if (numscanned != 3) {
+ RF_ERRORMSG("Config file error (\"array\" section): unable to get numRow, numCol, numSpare\n");
+ retcode = -1;
+ goto out;
+ }
+ cfgPtr->numRow = (RF_RowCol_t) aa;
+ cfgPtr->numCol = (RF_RowCol_t) bb;
+ cfgPtr->numSpare = (RF_RowCol_t) cc;
+
+ /* debug section is optional */
+ for (c = 0; c < RF_MAXDBGV; c++)
+ cfgPtr->debugVars[c][0] = '\0';
+ rewind(fp);
+ if (!rf_search_file_for_start_of("debug", buf, 256, fp)) {
+ for (c = 0; c < RF_MAXDBGV; c++) {
+ if (rf_get_next_nonblank_line(buf, 256, fp, NULL))
+ break;
+ cp = rf_find_non_white(buf);
+ if (!strncmp(cp, "START", strlen("START")))
+ break;
+ (void) strcpy(&cfgPtr->debugVars[c][0], cp);
+ }
+ }
+ rewind(fp);
+ strcpy(cfgPtr->diskQueueType, "fifo");
+ cfgPtr->maxOutstandingDiskReqs = 1;
+ /* scan the file for the block related to disk queues */
+ if (rf_search_file_for_start_of("queue", buf, 256, fp)) {
+ RF_ERRORMSG2("[No disk queue discipline specified in config file %s. Using %s.]\n", configname, cfgPtr->diskQueueType);
+ } else {
+ if (rf_get_next_nonblank_line(buf, 256, fp, NULL)) {
+ RF_ERRORMSG2("[No disk queue discipline specified in config file %s. Using %s.]\n", configname, cfgPtr->diskQueueType);
+ }
+ }
+
+ /* the queue specifier line contains two entries: 1st char of first
+ * word specifies queue to be used 2nd word specifies max num reqs
+ * that can be outstanding on the disk itself (typically 1) */
+ if (sscanf(buf, "%s %d", buf1, &val) != 2) {
+ RF_ERRORMSG1("Can't determine queue type and/or max outstanding reqs from line: %s", buf);
+ RF_ERRORMSG2("Using %s-%d\n", cfgPtr->diskQueueType, cfgPtr->maxOutstandingDiskReqs);
+ } else {
+ char *ch;
+ bcopy(buf1, cfgPtr->diskQueueType,
+ RF_MIN(sizeof(cfgPtr->diskQueueType), strlen(buf1) + 1));
+ for (ch = buf1; *ch; ch++) {
+ if (*ch == ' ') {
+ *ch = '\0';
+ break;
+ }
+ }
+ cfgPtr->maxOutstandingDiskReqs = val;
+ }
+
+ rewind(fp);
+
+ if (rf_search_file_for_start_of("disks", buf, 256, fp)) {
+ RF_ERRORMSG1("Can't find \"disks\" section in config file %s\n", configname);
+ retcode = -1;
+ goto out;
+ }
+ for (r = 0; r < cfgPtr->numRow; r++) {
+ for (c = 0; c < cfgPtr->numCol; c++) {
+ int devfd;
+ char bfr[256], *bfr1;
+ if (rf_get_next_nonblank_line(&bfr[0], 256, fp, NULL)) {
+ RF_ERRORMSG2("Config file error: unable to get device file for disk at row %d col %d\n", r, c);
+ retcode = -1;
+ goto out;
+ }
+ /* Get rid of the newline at the end of the string */
+ if ((bfr1 = strchr(&bfr[0], '\n')) != NULL)
+ *bfr1 = NULL;
+ /* Make sure the device exists */
+ if ((devfd = open(&bfr[0], O_RDWR)) < 0) {
+ RF_ERRORMSG2(
+ "Config file error: device %s, %s\n",
+ &bfr[0], strerror(errno));
+ retcode = -1;
+ goto out;
+ }
+ close(devfd);
+ strncpy(&cfgPtr->devnames[r][c][0], &bfr[0], 50);
+ }
+ }
+
+ /* "spare" section is optional */
+ rewind(fp);
+ if (rf_search_file_for_start_of("spare", buf, 256, fp))
+ cfgPtr->numSpare = 0;
+ for (c = 0; c < cfgPtr->numSpare; c++) {
+ if (rf_get_next_nonblank_line(&cfgPtr->spare_names[c][0],
+ 256, fp, NULL)) {
+ RF_ERRORMSG1("Config file error: unable to get device file for spare disk %d\n", c);
+ retcode = -1;
+ goto out;
+ }
+ }
+
+ /* scan the file for the block related to layout */
+ rewind(fp);
+ if (rf_search_file_for_start_of("layout", buf, 256, fp)) {
+ RF_ERRORMSG1("Can't find \"layout\" section in configuration file %s\n", configname);
+ retcode = -1;
+ goto out;
+ }
+ if (rf_get_next_nonblank_line(buf, 256, fp, NULL)) {
+ RF_ERRORMSG("Config file error (\"layout\" section): unable to find common layout param line\n");
+ retcode = -1;
+ goto out;
+ }
+ c = sscanf(buf, "%d %d %d %c", &aa, &bb, &cc, &cfgPtr->parityConfig);
+ cfgPtr->sectPerSU = (RF_SectorNum_t) aa;
+ cfgPtr->SUsPerPU = (RF_StripeNum_t) bb;
+ cfgPtr->SUsPerRU = (RF_StripeNum_t) cc;
+ if (c != 4) {
+ RF_ERRORMSG("Unable to scan common layout line\n");
+ retcode = -1;
+ goto out;
+ }
+ lp = rf_GetLayout(cfgPtr->parityConfig);
+ if (lp == NULL) {
+ RF_ERRORMSG1("Unknown parity config '%c'\n",
+ cfgPtr->parityConfig);
+ retcode = -1;
+ goto out;
+ }
+
+ retcode = lp->MakeLayoutSpecific(fp, cfgPtr, lp->makeLayoutSpecificArg);
+out:
+ fclose(fp);
+ if (retcode < 0)
+ retcode = errno = EINVAL;
+ else
+ errno = retcode;
+ return (retcode);
+}
+
+
+/* used in architectures such as RAID0 where there is no layout-specific
+ * information to be passed into the configuration code.
+ */
+int
+rf_MakeLayoutSpecificNULL(fp, cfgPtr, ignored)
+ FILE *fp;
+ RF_Config_t *cfgPtr;
+ void *ignored;
+{
+ cfgPtr->layoutSpecificSize = 0;
+ cfgPtr->layoutSpecific = NULL;
+ return (0);
+}
+
+int
+rf_MakeLayoutSpecificDeclustered(configfp, cfgPtr, arg)
+ FILE *configfp;
+ RF_Config_t *cfgPtr;
+ void *arg;
+{
+ int b, v, k, r, lambda, norotate, i, val, distSpare;
+ char *cfgBuf, *bdfile, *p, *smname;
+ char buf[256], smbuf[256];
+ FILE *fp;
+
+ distSpare = *((int *) arg);
+
+ /* get the block design file name */
+ if (rf_get_next_nonblank_line(buf, 256, configfp,
+ "Can't find block design file name in config file\n"))
+ return (EINVAL);
+ bdfile = rf_find_non_white(buf);
+ if (bdfile[strlen(bdfile) - 1] == '\n') {
+ /* strip newline char */
+ bdfile[strlen(bdfile) - 1] = '\0';
+ }
+ /* open bd file, check validity of configuration */
+ if ((fp = fopen(bdfile, "r")) == NULL) {
+ RF_ERRORMSG1("RAID: config error: Can't open layout table file %s\n", bdfile);
+ return (EINVAL);
+ }
+ if (fgets(buf, 256, fp) == NULL) {
+ RF_ERRORMSG1("RAID: config error: Can't read layout from layout table file %s\n", bdfile);
+ return (EINVAL);
+ }
+ i = sscanf(buf, "%u %u %u %u %u %u", &b, &v, &k, &r, &lambda, &norotate);
+ if (i == 5)
+ norotate = 0; /* no-rotate flag is optional */
+ else if (i != 6) {
+ RF_ERRORMSG("Unable to parse header line in block design file\n");
+ return (EINVAL);
+ }
+ /* set the sparemap directory. In the in-kernel version, there's a
+ * daemon that's responsible for finding the sparemaps */
+ if (distSpare) {
+ if (rf_get_next_nonblank_line(smbuf, 256, configfp,
+ "Can't find sparemap file name in config file\n"))
+ return (EINVAL);
+ smname = rf_find_non_white(smbuf);
+ if (smname[strlen(smname) - 1] == '\n') {
+ /* strip newline char */
+ smname[strlen(smname) - 1] = '\0';
+ }
+ } else {
+ smbuf[0] = '\0';
+ smname = smbuf;
+ }
+
+ /* allocate a buffer to hold the configuration info */
+ cfgPtr->layoutSpecificSize = RF_SPAREMAP_NAME_LEN +
+ 6 * sizeof(int) + b * k;
+ /* can't use RF_Malloc here b/c debugMem module not yet init'd */
+ cfgBuf = (char *) malloc(cfgPtr->layoutSpecificSize);
+ cfgPtr->layoutSpecific = (void *) cfgBuf;
+ p = cfgBuf;
+
+ /* install name of sparemap file */
+ for (i = 0; smname[i]; i++)
+ *p++ = smname[i];
+ /* pad with zeros */
+ while (i < RF_SPAREMAP_NAME_LEN) {
+ *p++ = '\0';
+ i++;
+ }
+
+ /*
+ * fill in the buffer with the block design parameters
+ * and then the block design itself
+ */
+ *((int *) p) = b;
+ p += sizeof(int);
+ *((int *) p) = v;
+ p += sizeof(int);
+ *((int *) p) = k;
+ p += sizeof(int);
+ *((int *) p) = r;
+ p += sizeof(int);
+ *((int *) p) = lambda;
+ p += sizeof(int);
+ *((int *) p) = norotate;
+ p += sizeof(int);
+
+ while (fscanf(fp, "%d", &val) == 1)
+ *p++ = (char) val;
+ fclose(fp);
+ if (p - cfgBuf != cfgPtr->layoutSpecificSize) {
+ RF_ERRORMSG2("Size mismatch creating layout specific data: is %d sb %d bytes\n", (int) (p - cfgBuf), (int) (6 * sizeof(int) + b * k));
+ return (EINVAL);
+ }
+ return (0);
+}
+
+/****************************************************************************
+ *
+ * utilities
+ *
+ ***************************************************************************/
+
+/* finds a non-white character in the line */
+char *
+rf_find_non_white(char *p)
+{
+ for (; *p != '\0' && (*p == ' ' || *p == '\t'); p++);
+ return (p);
+}
+
+/* finds a white character in the line */
+char *
+rf_find_white(char *p)
+{
+ for (; *p != '\0' && (*p != ' ' && *p != '\t'); p++);
+ return (p);
+}
+
+/*
+ * searches a file for a line that says "START string", where string is
+ * specified as a parameter
+ */
+static int
+rf_search_file_for_start_of(string, buf, len, fp)
+ const char *string;
+ char *buf;
+ int len;
+ FILE *fp;
+{
+ char *p;
+
+ while (1) {
+ if (fgets(buf, len, fp) == NULL)
+ return (-1);
+ p = rf_find_non_white(buf);
+ if (!strncmp(p, "START", strlen("START"))) {
+ p = rf_find_white(p);
+ p = rf_find_non_white(p);
+ if (!strncmp(p, string, strlen(string)))
+ return (0);
+ }
+ }
+}
+
+/* reads from file fp into buf until it finds an interesting line */
+int
+rf_get_next_nonblank_line(buf, len, fp, errmsg)
+ char *buf;
+ int len;
+ FILE *fp;
+ const char *errmsg;
+{
+ char *p;
+
+ while (fgets(buf, 256, fp) != NULL) {
+ p = rf_find_non_white(buf);
+ if (*p == '\n' || *p == '\0' || *p == '#')
+ continue;
+ return (0);
+ }
+ if (errmsg)
+ RF_ERRORMSG1("%s", errmsg);
+ return (1);
+}
+
+/*
+ * Allocates an array for the spare table, and initializes it from a file.
+ * In the user-level version, this is called when recon is initiated.
+ * When/if I move recon into the kernel, there'll be a daemon that does
+ * an ioctl into raidframe which will block until a spare table is needed.
+ * When it returns, it will read a spare table from the file system,
+ * pass it into the kernel via a different ioctl, and then block again
+ * on the original ioctl.
+ *
+ * This is specific to the declustered layout, but doesn't belong in
+ * rf_decluster.c because it uses stuff that can't be compiled into
+ * the kernel, and it needs to be compiled into the user-level sparemap daemon.
+ *
+ */
+void *
+rf_ReadSpareTable(req, fname)
+ RF_SparetWait_t *req;
+ char *fname;
+{
+ int i, j, numFound, linecount, tableNum, tupleNum,
+ spareDisk, spareBlkOffset;
+ char buf[1024], targString[100], errString[100];
+ RF_SpareTableEntry_t **table;
+ FILE *fp;
+
+ /* allocate and initialize the table */
+ RF_Malloc(table,
+ req->TablesPerSpareRegion * sizeof(RF_SpareTableEntry_t *),
+ (RF_SpareTableEntry_t **));
+ for (i = 0; i < req->TablesPerSpareRegion; i++) {
+ RF_Malloc(table[i],
+ req->BlocksPerTable * sizeof(RF_SpareTableEntry_t),
+ (RF_SpareTableEntry_t *));
+ for (j = 0; j < req->BlocksPerTable; j++)
+ table[i][j].spareDisk =
+ table[i][j].spareBlockOffsetInSUs = -1;
+ }
+
+ /* 2. open sparemap file, sanity check */
+ if ((fp = fopen(fname, "r")) == NULL) {
+ fprintf(stderr,
+ "rf_ReadSpareTable: Can't open sparemap file %s\n", fname);
+ return (NULL);
+ }
+ if (rf_get_next_nonblank_line(buf, 1024, fp,
+ "Invalid sparemap file: can't find header line\n"))
+ return (NULL);
+ if (buf[strlen(buf) - 1] == '\n')
+ buf[strlen(buf) - 1] = '\0';
+
+ sprintf(targString, "fdisk %d\n", req->fcol);
+ sprintf(errString,
+ "Invalid sparemap file: can't find \"fdisk %d\" line\n",
+ req->fcol);
+ while (1) {
+ rf_get_next_nonblank_line(buf, 1024, fp, errString);
+ if (!strncmp(buf, targString, strlen(targString)))
+ break;
+ }
+
+ /* no more blank lines or comments allowed now */
+ linecount = req->TablesPerSpareRegion * req->TableDepthInPUs;
+ for (i = 0; i < linecount; i++) {
+ numFound = fscanf(fp, " %d %d %d %d", &tableNum, &tupleNum,
+ &spareDisk, &spareBlkOffset);
+ if (numFound != 4) {
+ fprintf(stderr, "Sparemap file prematurely exhausted after %d of %d lines\n", i, linecount);
+ return (NULL);
+ }
+ RF_ASSERT(tableNum >= 0 &&
+ tableNum < req->TablesPerSpareRegion);
+ RF_ASSERT(tupleNum >= 0 && tupleNum < req->BlocksPerTable);
+ RF_ASSERT(spareDisk >= 0 && spareDisk < req->C);
+ RF_ASSERT(spareBlkOffset >= 0 && spareBlkOffset <
+ req->SpareSpaceDepthPerRegionInSUs / req->SUsPerPU);
+
+ table[tableNum][tupleNum].spareDisk = spareDisk;
+ table[tableNum][tupleNum].spareBlockOffsetInSUs =
+ spareBlkOffset * req->SUsPerPU;
+ }
+
+ fclose(fp);
+ return ((void *) table);
+}
diff --git a/share/man/man4/Makefile b/share/man/man4/Makefile
index 94d54f4..cf80fb8 100644
--- a/share/man/man4/Makefile
+++ b/share/man/man4/Makefile
@@ -146,6 +146,7 @@ MAN= aac.4 \
pt.4 \
pty.4 \
puc.4 \
+ raid.4 \
random.4 \
rl.4 \
route.4 \
diff --git a/share/man/man4/raid.4 b/share/man/man4/raid.4
new file mode 100644
index 0000000..54c8b77
--- /dev/null
+++ b/share/man/man4/raid.4
@@ -0,0 +1,342 @@
+.\" $FreeBSD$
+.\" $NetBSD: raid.4,v 1.16 2000/11/02 03:34:08 oster Exp $
+.\"
+.\" Copyright (c) 1998 The NetBSD Foundation, Inc.
+.\" All rights reserved.
+.\"
+.\" This code is derived from software contributed to The NetBSD Foundation
+.\" by Greg Oster
+.\"
+.\" Redistribution and use in source and binary forms, with or without
+.\" modification, are permitted provided that the following conditions
+.\" are met:
+.\" 1. Redistributions of source code must retain the above copyright
+.\" notice, this list of conditions and the following disclaimer.
+.\" 2. Redistributions in binary form must reproduce the above copyright
+.\" notice, this list of conditions and the following disclaimer in the
+.\" documentation and/or other materials provided with the distribution.
+.\" 3. All advertising materials mentioning features or use of this software
+.\" must display the following acknowledgement:
+.\" This product includes software developed by the NetBSD
+.\" Foundation, Inc. and its contributors.
+.\" 4. Neither the name of The NetBSD Foundation nor the names of its
+.\" contributors may be used to endorse or promote products derived
+.\" from this software without specific prior written permission.
+.\"
+.\" THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
+.\" ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
+.\" TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+.\" PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
+.\" BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+.\" CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+.\" SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+.\" INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+.\" CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+.\" ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+.\" POSSIBILITY OF SUCH DAMAGE.
+.\"
+.\"
+.\" Copyright (c) 1995 Carnegie-Mellon University.
+.\" All rights reserved.
+.\"
+.\" Author: Mark Holland
+.\"
+.\" Permission to use, copy, modify and distribute this software and
+.\" its documentation is hereby granted, provided that both the copyright
+.\" notice and this permission notice appear in all copies of the
+.\" software, derivative works or modified versions, and any portions
+.\" thereof, and that both notices appear in supporting documentation.
+.\"
+.\" CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+.\" CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+.\" FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+.\"
+.\" Carnegie Mellon requests users of this software to return to
+.\"
+.\" Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+.\" School of Computer Science
+.\" Carnegie Mellon University
+.\" Pittsburgh PA 15213-3890
+.\"
+.\" any improvements or extensions that they make and grant Carnegie the
+.\" rights to redistribute these changes.
+.\"
+.Dd October 20, 2002
+.Dt RAID 4
+.Os
+.Sh NAME
+.Nm raid
+.Nd RAIDframe disk driver
+.Sh SYNOPSIS
+.Cd device raidframe
+.Sh DESCRIPTION
+The
+.Nm
+driver provides RAID 0, 1, 4, and 5 (and more!) capabilities to
+.Fx .
+This
+document assumes that the reader has at least some familiarity with RAID
+and RAID concepts. The reader is also assumed to know how to configure
+disks and pseudo-devices into kernels, how to generate kernels, and how
+to partition disks.
+.Pp
+RAIDframe provides a number of different RAID levels including:
+.Bl -tag -width indent
+.It RAID 0
+provides simple data striping across the components.
+.It RAID 1
+provides mirroring.
+.It RAID 4
+provides data striping across the components, with parity
+stored on a dedicated drive (in this case, the last component).
+.It RAID 5
+provides data striping across the components, with parity
+distributed across all the components.
+.El
+.Pp
+There are a wide variety of other RAID levels supported by RAIDframe,
+including Even-Odd parity, RAID level 5 with rotated sparing, Chained
+declustering, and Interleaved declustering. The reader is referred
+to the RAIDframe documentation mentioned in the
+.Sx HISTORY
+section for more detail on these various RAID configurations.
+.Pp
+Depending on the parity level configured, the device driver can
+support the failure of component drives. The number of failures
+allowed depends on the parity level selected. If the driver is able
+to handle drive failures, and a drive does fail, then the system is
+operating in "degraded mode". In this mode, all missing data must be
+reconstructed from the data and parity present on the other
+components. This results in much slower data accesses, but
+does mean that a failure need not bring the system to a complete halt.
+.Pp
+The RAID driver supports and enforces the use of
+.Sq component labels .
+A
+.Sq component label
+contains important information about the component, including a
+user-specified serial number, the row and column of that component in
+the RAID set, and whether the data (and parity) on the component is
+.Sq clean .
+If the driver determines that the labels are very inconsistent with
+respect to each other (e.g. two or more serial numbers do not match)
+or that the component label is not consistent with it's assigned place
+in the set (e.g. the component label claims the component should be
+the 3rd one a 6-disk set, but the RAID set has it as the 3rd component
+in a 5-disk set) then the device will fail to configure. If the
+driver determines that exactly one component label seems to be
+incorrect, and the RAID set is being configured as a set that supports
+a single failure, then the RAID set will be allowed to configure, but
+the incorrectly labeled component will be marked as
+.Sq failed ,
+and the RAID set will begin operation in degraded mode.
+If all of the components are consistent among themselves, the RAID set
+will configure normally.
+.Pp
+Component labels are also used to support the auto-detection and
+auto-configuration of RAID sets. A RAID set can be flagged as
+auto-configurable, in which case it will be configured automatically
+during the kernel boot process. RAID filesystems which are
+automatically configured are also eligible to be the root filesystem.
+There is currently only limited support (alpha and pmax architectures)
+for booting a kernel directly from a RAID 1 set, and no support for
+booting from any other RAID sets. To use a RAID set as the root
+filesystem, a kernel is usually obtained from a small non-RAID
+partition, after which any auto-configuring RAID set can be used for the
+root filesystem. See
+.Xr raidctl 8
+for more information on auto-configuration of RAID sets.
+.Pp
+The driver supports
+.Sq hot spares ,
+disks which are on-line, but are not
+actively used in an existing filesystem. Should a disk fail, the
+driver is capable of reconstructing the failed disk onto a hot spare
+or back onto a replacement drive.
+If the components are hot swapable, the failed disk can then be
+removed, a new disk put in its place, and a copyback operation
+performed. The copyback operation, as its name indicates, will copy
+the reconstructed data from the hot spare to the previously failed
+(and now replaced) disk. Hot spares can also be hot-added using
+.Xr raidctl 8 .
+.Pp
+If a component cannot be detected when the RAID device is configured,
+that component will be simply marked as 'failed'.
+.Pp
+The user-land utility for doing all
+.Nm
+configuration and other operations
+is
+.Xr raidctl 8 .
+Most importantly,
+.Xr raidctl 8
+must be used with the
+.Fl i
+option to initialize all RAID sets. In particular, this
+initialization includes re-building the parity data. This rebuilding
+of parity data is also required when either a) a new RAID device is
+brought up for the first time or b) after an un-clean shutdown of a
+RAID device. By using the
+.Fl P
+option to
+.Xr raidctl 8 ,
+and performing this on-demand recomputation of all parity
+before doing a
+.Xr fsck 8
+or a
+.Xr newfs 8 ,
+filesystem integrity and parity integrity can be ensured. It bears
+repeating again that parity recomputation is
+.Ar required
+before any filesystems are created or used on the RAID device. If the
+parity is not correct, then missing data cannot be correctly recovered.
+.Pp
+RAID levels may be combined in a hierarchical fashion. For example, a RAID 0
+device can be constructed out of a number of RAID 5 devices (which, in turn,
+may be constructed out of the physical disks, or of other RAID devices).
+.Pp
+It is important that drives be hard-coded at their respective
+addresses (i.e. not left free-floating, where a drive with SCSI ID of
+4 can end up as /dev/da0c) for well-behaved functioning of the RAID
+device. This is true for all types of drives, including IDE, SCSI,
+etc. For IDE drivers, use the option ATAPI_STATIC_ID in your kernel
+config file. For SCSI, you should 'wire down' the devices according to
+their ID. See
+.Xr cam 4
+for examples of this.
+The rationale for fixing the device addresses
+is as follows: Consider a system with three SCSI drives at SCSI ID's
+4, 5, and 6, and which map to components /dev/da0e, /dev/da1e, and
+/dev/da2e of a RAID 5 set. If the drive with SCSI ID 5 fails, and the
+system reboots, the old /dev/da2e will show up as /dev/da1e. The RAID
+driver is able to detect that component positions have changed, and
+will not allow normal configuration. If the device addresses are hard
+coded, however, the RAID driver would detect that the middle component
+is unavailable, and bring the RAID 5 set up in degraded mode. Note
+that the auto-detection and auto-configuration code does not care
+about where the components live. The auto-configuration code will
+correctly configure a device even after any number of the components
+have been re-arranged.
+.Pp
+The first step to using the
+.Nm
+driver is to ensure that it is suitably configured in the kernel. This is
+done by adding a line similar to:
+.Bd -unfilled -offset indent
+pseudo-device raidframe # RAIDframe disk device
+.Ed
+.Pp
+to the kernel configuration file. No count argument is required as the
+driver will automatically create and configure new device units as needed.
+To turn on component auto-detection and auto-configuration of RAID
+sets, simply add:
+.Bd -unfilled -offset indent
+options RAID_AUTOCONFIG
+.Ed
+.Pp
+to the kernel configuration file.
+.Pp
+All component partitions must be of the type
+.Dv FS_BSDFFS
+(e.g. 4.2BSD) or
+.Dv FS_RAID .
+The use of the latter is strongly encouraged, and is required if
+auto-configuration of the RAID set is desired. Since RAIDframe leaves
+room for disklabels, RAID components can be simply raw disks, or
+partitions which use an entire disk.
+.Pp
+A more detailed treatment of actually using a
+.Nm
+device is found in
+.Xr raidctl 8 .
+It is highly recommended that the steps to reconstruct, copyback, and
+re-compute parity are well understood by the system administrator(s)
+.Ar before
+a component failure. Doing the wrong thing when a component fails may
+result in data loss.
+.Pp
+.Sh WARNINGS
+Certain RAID levels (1, 4, 5, 6, and others) can protect against some
+data loss due to component failure. However the loss of two
+components of a RAID 4 or 5 system, or the loss of a single component
+of a RAID 0 system, will result in the entire filesystems on that RAID
+device being lost.
+RAID is
+.Ar NOT
+a substitute for good backup practices.
+.Pp
+Recomputation of parity
+.Ar MUST
+be performed whenever there is a chance that it may have been
+compromised. This includes after system crashes, or before a RAID
+device has been used for the first time. Failure to keep parity
+correct will be catastrophic should a component ever fail -- it is
+better to use RAID 0 and get the additional space and speed, than it
+is to use parity, but not keep the parity correct. At least with RAID
+0 there is no perception of increased data security.
+.Pp
+.Sh FILES
+.Bl -tag -width /dev/XXrXraidX -compact
+.It Pa /dev/raid*
+.Nm
+device special files.
+.El
+.Pp
+.Sh SEE ALSO
+.Xr raidctl 8 ,
+.Xr config 8 ,
+.Xr fsck 8 ,
+.Xr mount 8 ,
+.Xr newfs 8 ,
+.Sh HISTORY
+The
+.Nm
+driver in
+.Fx
+is a port of RAIDframe, a framework for rapid prototyping of RAID
+structures developed by the folks at the Parallel Data Laboratory at
+Carnegie Mellon University (CMU). RAIDframe, as originally distributed
+by CMU, provides a RAID simulator for a number of different
+architectures, and a user-level device driver and a kernel device
+driver for Digital Unix. The
+.Nm
+driver is a kernelized version of RAIDframe v1.1, based on the
+.Nx
+port of RAIDframe by Greg Oster.
+.Pp
+A more complete description of the internals and functionality of
+RAIDframe is found in the paper "RAIDframe: A Rapid Prototyping Tool
+for RAID Systems", by William V. Courtright II, Garth Gibson, Mark
+Holland, LeAnn Neal Reilly, and Jim Zelenka, and published by the
+Parallel Data Laboratory of Carnegie Mellon University.
+The
+.Nm
+driver first appeared in
+.Fx 4.4 .
+.Sh COPYRIGHT
+.Bd -unfilled
+The RAIDframe Copyright is as follows:
+
+Copyright (c) 1994-1996 Carnegie-Mellon University.
+All rights reserved.
+
+Permission to use, copy, modify and distribute this software and
+its documentation is hereby granted, provided that both the copyright
+notice and this permission notice appear in all copies of the
+software, derivative works or modified versions, and any portions
+thereof, and that both notices appear in supporting documentation.
+
+CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+
+Carnegie Mellon requests users of this software to return to
+
+ Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ School of Computer Science
+ Carnegie Mellon University
+ Pittsburgh PA 15213-3890
+
+any improvements or extensions that they make and grant Carnegie the
+rights to redistribute these changes.
+.Ed
diff --git a/sys/conf/NOTES b/sys/conf/NOTES
index 02e1d9f..ea14607 100644
--- a/sys/conf/NOTES
+++ b/sys/conf/NOTES
@@ -979,6 +979,12 @@ device ccd #Concatenated disk driver
device vinum #Vinum concat/mirror/raid driver
options VINUMDEBUG #enable Vinum debugging hooks
+# RAIDframe device. RAID_AUTOCONFIG allows RAIDframe to search all of the
+# disk devices in the system looking for components that it recognizes (already
+# configured once before) and auto-configured them into arrays.
+device raidframe
+options RAID_AUTOCONFIG
+
# Kernel side iconv library
options LIBICONV
diff --git a/sys/conf/files b/sys/conf/files
index c003bc3..d2a8210 100644
--- a/sys/conf/files
+++ b/sys/conf/files
@@ -547,6 +547,66 @@ dev/puc/puc.c optional puc
dev/puc/puc_pci.c optional puc pci
dev/puc/puc_pccard.c optional puc pccard
dev/puc/pucdata.c optional puc pci
+dev/raidframe/rf_acctrace.c optional raidframe
+dev/raidframe/rf_alloclist.c optional raidframe
+dev/raidframe/rf_aselect.c optional raidframe
+dev/raidframe/rf_callback.c optional raidframe
+dev/raidframe/rf_chaindecluster.c optional raidframe
+dev/raidframe/rf_copyback.c optional raidframe
+dev/raidframe/rf_cvscan.c optional raidframe
+dev/raidframe/rf_dagdegrd.c optional raidframe
+dev/raidframe/rf_dagdegwr.c optional raidframe
+dev/raidframe/rf_dagffrd.c optional raidframe
+dev/raidframe/rf_dagffwr.c optional raidframe
+dev/raidframe/rf_dagfuncs.c optional raidframe
+dev/raidframe/rf_dagutils.c optional raidframe
+dev/raidframe/rf_debugMem.c optional raidframe
+dev/raidframe/rf_debugprint.c optional raidframe
+dev/raidframe/rf_decluster.c optional raidframe
+dev/raidframe/rf_declusterPQ.c optional raidframe
+dev/raidframe/rf_diskqueue.c optional raidframe
+dev/raidframe/rf_disks.c optional raidframe
+dev/raidframe/rf_driver.c optional raidframe
+dev/raidframe/rf_engine.c optional raidframe
+dev/raidframe/rf_evenodd.c optional raidframe
+dev/raidframe/rf_evenodd_dagfuncs.c optional raidframe
+dev/raidframe/rf_evenodd_dags.c optional raidframe
+dev/raidframe/rf_fifo.c optional raidframe
+dev/raidframe/rf_freebsdkintf.c optional raidframe
+dev/raidframe/rf_interdecluster.c optional raidframe
+dev/raidframe/rf_invertq.c optional raidframe
+dev/raidframe/rf_layout.c optional raidframe
+dev/raidframe/rf_map.c optional raidframe
+dev/raidframe/rf_mcpair.c optional raidframe
+dev/raidframe/rf_memchunk.c optional raidframe
+dev/raidframe/rf_nwayxor.c optional raidframe
+dev/raidframe/rf_options.c optional raidframe
+dev/raidframe/rf_paritylog.c optional raidframe
+dev/raidframe/rf_paritylogDiskMgr.c optional raidframe
+dev/raidframe/rf_paritylogging.c optional raidframe
+dev/raidframe/rf_parityloggingdags.c optional raidframe
+dev/raidframe/rf_parityscan.c optional raidframe
+dev/raidframe/rf_pq.c optional raidframe
+dev/raidframe/rf_pqdeg.c optional raidframe
+dev/raidframe/rf_pqdegdags.c optional raidframe
+dev/raidframe/rf_psstatus.c optional raidframe
+dev/raidframe/rf_raid0.c optional raidframe
+dev/raidframe/rf_raid1.c optional raidframe
+dev/raidframe/rf_raid4.c optional raidframe
+dev/raidframe/rf_raid5.c optional raidframe
+dev/raidframe/rf_raid5_rotatedspare.c optional raidframe
+dev/raidframe/rf_reconbuffer.c optional raidframe
+dev/raidframe/rf_reconmap.c optional raidframe
+dev/raidframe/rf_reconstruct.c optional raidframe
+dev/raidframe/rf_reconutil.c optional raidframe
+dev/raidframe/rf_revent.c optional raidframe
+dev/raidframe/rf_shutdown.c optional raidframe
+dev/raidframe/rf_sstf.c optional raidframe
+dev/raidframe/rf_states.c optional raidframe
+dev/raidframe/rf_stripelocks.c optional raidframe
+dev/raidframe/rf_strutils.c optional raidframe
+dev/raidframe/rf_threadstuff.c optional raidframe
+dev/raidframe/rf_utils.c optional raidframe
dev/random/harvest.c standard
dev/random/randomdev.c optional random
dev/random/yarrow.c optional random
diff --git a/sys/conf/majors b/sys/conf/majors
index 1703c68..a83fa3d 100644
--- a/sys/conf/majors
+++ b/sys/conf/majors
@@ -193,6 +193,8 @@ chrdev name comments
175 ips IBM/Adaptec ServeRAID (control device)
176 ipsd IBM/Adaptec ServeRAID (disk device)
177 openfirm OpenFirmware control device <tmm>
+178 raidctl RAIDframe (control device)
+179 raid RAIDframe (disk device)
200 ?? entries from 200-252 are reserved for local use
252 ?? entries from 200-252 are reserved for local use
254 internal Used internally by the kernel
diff --git a/sys/conf/options b/sys/conf/options
index 0311849..9305b2a 100644
--- a/sys/conf/options
+++ b/sys/conf/options
@@ -549,6 +549,10 @@ ROOTDEVNAME opt_rootdevname.h
FDC_DEBUG opt_fdc.h
PCFCLOCK_VERBOSE opt_pcfclock.h
PCFCLOCK_MAX_RETRIES opt_pcfclock.h
+
+# RAIDframe options
+RAID_AUTOCONFIG opt_raid.h
+RAID_DEBUG opt_raid.h
TDFX_LINUX opt_tdfx.h
KTR opt_global.h
diff --git a/sys/dev/raidframe/rf_acctrace.c b/sys/dev/raidframe/rf_acctrace.c
new file mode 100644
index 0000000..eaa4b2a
--- /dev/null
+++ b/sys/dev/raidframe/rf_acctrace.c
@@ -0,0 +1,172 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_acctrace.c,v 1.4 1999/08/13 03:41:52 oster Exp $ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Mark Holland
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+/*****************************************************************************
+ *
+ * acctrace.c -- code to support collecting information about each access
+ *
+ *****************************************************************************/
+
+#if defined(__FreeBSD__)
+#include <sys/types.h>
+#include <sys/time.h>
+#endif
+#include <sys/stat.h>
+#if defined(__NetBSD__)
+#include <sys/types.h>
+#endif
+
+#include <dev/raidframe/rf_threadstuff.h>
+#include <dev/raidframe/rf_types.h>
+#include <dev/raidframe/rf_debugMem.h>
+#include <dev/raidframe/rf_acctrace.h>
+#include <dev/raidframe/rf_general.h>
+#include <dev/raidframe/rf_raid.h>
+#include <dev/raidframe/rf_etimer.h>
+#include <dev/raidframe/rf_hist.h>
+#include <dev/raidframe/rf_shutdown.h>
+
+static long numTracesSoFar;
+static int accessTraceBufCount = 0;
+static RF_AccTraceEntry_t *access_tracebuf;
+static long traceCount;
+
+int rf_stopCollectingTraces;
+RF_DECLARE_MUTEX(rf_tracing_mutex)
+ int rf_trace_fd;
+
+ static void rf_ShutdownAccessTrace(void *);
+
+ static void rf_ShutdownAccessTrace(ignored)
+ void *ignored;
+{
+ if (rf_accessTraceBufSize) {
+ if (accessTraceBufCount)
+ rf_FlushAccessTraceBuf();
+ RF_Free(access_tracebuf, rf_accessTraceBufSize * sizeof(RF_AccTraceEntry_t));
+ }
+ rf_mutex_destroy(&rf_tracing_mutex);
+}
+
+int
+rf_ConfigureAccessTrace(listp)
+ RF_ShutdownList_t **listp;
+{
+ int rc;
+
+ numTracesSoFar = accessTraceBufCount = rf_stopCollectingTraces = 0;
+ if (rf_accessTraceBufSize) {
+ RF_Malloc(access_tracebuf, rf_accessTraceBufSize * sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *));
+ accessTraceBufCount = 0;
+ }
+ traceCount = 0;
+ numTracesSoFar = 0;
+ rc = rf_mutex_init(&rf_tracing_mutex, __FUNCTION__);
+ if (rc) {
+ RF_ERRORMSG3("Unable to init mutex file %s line %d rc=%d\n", __FILE__,
+ __LINE__, rc);
+ }
+ rc = rf_ShutdownCreate(listp, rf_ShutdownAccessTrace, NULL);
+ if (rc) {
+ RF_ERRORMSG3("Unable to add to shutdown list file %s line %d rc=%d\n", __FILE__,
+ __LINE__, rc);
+ if (rf_accessTraceBufSize) {
+ RF_Free(access_tracebuf, rf_accessTraceBufSize * sizeof(RF_AccTraceEntry_t));
+ rf_mutex_destroy(&rf_tracing_mutex);
+ }
+ }
+ return (rc);
+}
+/* install a trace record. cause a flush to disk or to the trace collector daemon
+ * if the trace buffer is at least 1/2 full.
+ */
+void
+rf_LogTraceRec(raid, rec)
+ RF_Raid_t *raid;
+ RF_AccTraceEntry_t *rec;
+{
+ RF_AccTotals_t *acc = &raid->acc_totals;
+#if 0
+ RF_Etimer_t timer;
+ int i, n;
+#endif
+
+ if (rf_stopCollectingTraces || ((rf_maxNumTraces >= 0) && (numTracesSoFar >= rf_maxNumTraces)))
+ return;
+
+ /* update AccTotals for this device */
+ if (!raid->keep_acc_totals)
+ return;
+ acc->num_log_ents++;
+ if (rec->reconacc) {
+ acc->recon_start_to_fetch_us += rec->specific.recon.recon_start_to_fetch_us;
+ acc->recon_fetch_to_return_us += rec->specific.recon.recon_fetch_to_return_us;
+ acc->recon_return_to_submit_us += rec->specific.recon.recon_return_to_submit_us;
+ acc->recon_num_phys_ios += rec->num_phys_ios;
+ acc->recon_phys_io_us += rec->phys_io_us;
+ acc->recon_diskwait_us += rec->diskwait_us;
+ acc->recon_reccount++;
+ } else {
+ RF_HIST_ADD(acc->tot_hist, rec->total_us);
+ RF_HIST_ADD(acc->dw_hist, rec->diskwait_us);
+ /* count of physical ios which are too big. often due to
+ * thermal recalibration */
+ /* if bigvals > 0, you should probably ignore this data set */
+ if (rec->diskwait_us > 100000)
+ acc->bigvals++;
+ acc->total_us += rec->total_us;
+ acc->suspend_ovhd_us += rec->specific.user.suspend_ovhd_us;
+ acc->map_us += rec->specific.user.map_us;
+ acc->lock_us += rec->specific.user.lock_us;
+ acc->dag_create_us += rec->specific.user.dag_create_us;
+ acc->dag_retry_us += rec->specific.user.dag_retry_us;
+ acc->exec_us += rec->specific.user.exec_us;
+ acc->cleanup_us += rec->specific.user.cleanup_us;
+ acc->exec_engine_us += rec->specific.user.exec_engine_us;
+ acc->xor_us += rec->xor_us;
+ acc->q_us += rec->q_us;
+ acc->plog_us += rec->plog_us;
+ acc->diskqueue_us += rec->diskqueue_us;
+ acc->diskwait_us += rec->diskwait_us;
+ acc->num_phys_ios += rec->num_phys_ios;
+ acc->phys_io_us = rec->phys_io_us;
+ acc->user_reccount++;
+ }
+}
+
+
+/* assumes the tracing mutex is locked at entry. In order to allow this to be called
+ * from interrupt context, we don't do any copyouts here, but rather just wake trace
+ * buffer collector thread.
+ */
+void
+rf_FlushAccessTraceBuf()
+{
+ accessTraceBufCount = 0;
+}
diff --git a/sys/dev/raidframe/rf_acctrace.h b/sys/dev/raidframe/rf_acctrace.h
new file mode 100644
index 0000000..c211514
--- /dev/null
+++ b/sys/dev/raidframe/rf_acctrace.h
@@ -0,0 +1,134 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_acctrace.h,v 1.3 1999/02/05 00:06:06 oster Exp $ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Mark Holland
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+/*****************************************************************************
+ *
+ * acctrace.h -- header file for acctrace.c
+ *
+ *****************************************************************************/
+
+
+#ifndef _RF__RF_ACCTRACE_H_
+#define _RF__RF_ACCTRACE_H_
+
+#include <dev/raidframe/rf_types.h>
+#include <dev/raidframe/rf_hist.h>
+#include <dev/raidframe/rf_etimer.h>
+
+typedef struct RF_user_acc_stats_s {
+ RF_uint64 suspend_ovhd_us; /* us spent mucking in the
+ * access-suspension code */
+ RF_uint64 map_us; /* us spent mapping the access */
+ RF_uint64 lock_us; /* us spent locking & unlocking stripes,
+ * including time spent blocked */
+ RF_uint64 dag_create_us;/* us spent creating the DAGs */
+ RF_uint64 dag_retry_us; /* _total_ us spent retrying the op -- not
+ * broken down into components */
+ RF_uint64 exec_us; /* us spent in DispatchDAG */
+ RF_uint64 exec_engine_us; /* us spent in engine, not including
+ * blocking time */
+ RF_uint64 cleanup_us; /* us spent tearing down the dag & maps, and
+ * generally cleaning up */
+} RF_user_acc_stats_t;
+
+typedef struct RF_recon_acc_stats_s {
+ RF_uint32 recon_start_to_fetch_us;
+ RF_uint32 recon_fetch_to_return_us;
+ RF_uint32 recon_return_to_submit_us;
+} RF_recon_acc_stats_t;
+
+typedef struct RF_acctrace_entry_s {
+ union {
+ RF_user_acc_stats_t user;
+ RF_recon_acc_stats_t recon;
+ } specific;
+ RF_uint8 reconacc; /* whether this is a tracerec for a user acc
+ * or a recon acc */
+ RF_uint64 xor_us; /* us spent doing XORs */
+ RF_uint64 q_us; /* us spent doing XORs */
+ RF_uint64 plog_us; /* us spent waiting to stuff parity into log */
+ RF_uint64 diskqueue_us; /* _total_ us spent in disk queue(s), incl
+ * concurrent ops */
+ RF_uint64 diskwait_us; /* _total_ us spent waiting actually waiting
+ * on the disk, incl concurrent ops */
+ RF_uint64 total_us; /* total us spent on this access */
+ RF_uint64 num_phys_ios; /* number of physical I/Os invoked */
+ RF_uint64 phys_io_us; /* time of physical I/O */
+ RF_Etimer_t tot_timer; /* a timer used to compute total access time */
+ RF_Etimer_t timer; /* a generic timer val for timing events that
+ * live across procedure boundaries */
+ RF_Etimer_t recon_timer;/* generic timer for recon stuff */
+ RF_uint64 index;
+} RF_AccTraceEntry_t;
+
+typedef struct RF_AccTotals_s {
+ /* user acc stats */
+ RF_uint64 suspend_ovhd_us;
+ RF_uint64 map_us;
+ RF_uint64 lock_us;
+ RF_uint64 dag_create_us;
+ RF_uint64 dag_retry_us;
+ RF_uint64 exec_us;
+ RF_uint64 exec_engine_us;
+ RF_uint64 cleanup_us;
+ RF_uint64 user_reccount;
+ /* recon acc stats */
+ RF_uint64 recon_start_to_fetch_us;
+ RF_uint64 recon_fetch_to_return_us;
+ RF_uint64 recon_return_to_submit_us;
+ RF_uint64 recon_io_overflow_count;
+ RF_uint64 recon_phys_io_us;
+ RF_uint64 recon_num_phys_ios;
+ RF_uint64 recon_diskwait_us;
+ RF_uint64 recon_reccount;
+ /* trace entry stats */
+ RF_uint64 xor_us;
+ RF_uint64 q_us;
+ RF_uint64 plog_us;
+ RF_uint64 diskqueue_us;
+ RF_uint64 diskwait_us;
+ RF_uint64 total_us;
+ RF_uint64 num_log_ents;
+ RF_uint64 phys_io_overflow_count;
+ RF_uint64 num_phys_ios;
+ RF_uint64 phys_io_us;
+ RF_uint64 bigvals;
+ /* histograms */
+ RF_Hist_t dw_hist[RF_HIST_NUM_BUCKETS];
+ RF_Hist_t tot_hist[RF_HIST_NUM_BUCKETS];
+} RF_AccTotals_t;
+#if RF_UTILITY == 0
+RF_DECLARE_EXTERN_MUTEX(rf_tracing_mutex)
+#endif /* RF_UTILITY == 0 */
+
+ int rf_ConfigureAccessTrace(RF_ShutdownList_t ** listp);
+ void rf_LogTraceRec(RF_Raid_t * raid, RF_AccTraceEntry_t * rec);
+ void rf_FlushAccessTraceBuf(void);
+
+#endif /* !_RF__RF_ACCTRACE_H_ */
diff --git a/sys/dev/raidframe/rf_alloclist.c b/sys/dev/raidframe/rf_alloclist.c
new file mode 100644
index 0000000..2f0f63a
--- /dev/null
+++ b/sys/dev/raidframe/rf_alloclist.c
@@ -0,0 +1,188 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_alloclist.c,v 1.4 1999/08/13 03:41:53 oster Exp $ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Mark Holland
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+/****************************************************************************
+ *
+ * Alloclist.c -- code to manipulate allocation lists
+ *
+ * an allocation list is just a list of AllocListElem structures. Each
+ * such structure contains a fixed-size array of pointers. Calling
+ * FreeAList() causes each pointer to be freed.
+ *
+ ***************************************************************************/
+
+#include <dev/raidframe/rf_types.h>
+#include <dev/raidframe/rf_threadstuff.h>
+#include <dev/raidframe/rf_alloclist.h>
+#include <dev/raidframe/rf_debugMem.h>
+#include <dev/raidframe/rf_etimer.h>
+#include <dev/raidframe/rf_general.h>
+#include <dev/raidframe/rf_shutdown.h>
+
+RF_DECLARE_STATIC_MUTEX(alist_mutex)
+ static unsigned int fl_hit_count, fl_miss_count;
+
+ static RF_AllocListElem_t *al_free_list = NULL;
+ static int al_free_list_count;
+
+#define RF_AL_FREELIST_MAX 256
+
+#define DO_FREE(_p,_sz) RF_Free((_p),(_sz))
+
+ static void rf_ShutdownAllocList(void *);
+
+ static void rf_ShutdownAllocList(ignored)
+ void *ignored;
+{
+ RF_AllocListElem_t *p, *pt;
+
+ for (p = al_free_list; p;) {
+ pt = p;
+ p = p->next;
+ DO_FREE(pt, sizeof(*pt));
+ }
+ rf_mutex_destroy(&alist_mutex);
+ /*
+ printf("Alloclist: Free list hit count %lu (%lu %%) miss count %lu (%lu %%)\n",
+ fl_hit_count, (100*fl_hit_count)/(fl_hit_count+fl_miss_count),
+ fl_miss_count, (100*fl_miss_count)/(fl_hit_count+fl_miss_count));
+ */
+}
+
+int
+rf_ConfigureAllocList(listp)
+ RF_ShutdownList_t **listp;
+{
+ int rc;
+
+ rc = rf_mutex_init(&alist_mutex, __FUNCTION__);
+ if (rc) {
+ RF_ERRORMSG3("Unable to init mutex file %s line %d rc=%d\n", __FILE__,
+ __LINE__, rc);
+ return (rc);
+ }
+ al_free_list = NULL;
+ fl_hit_count = fl_miss_count = al_free_list_count = 0;
+ rc = rf_ShutdownCreate(listp, rf_ShutdownAllocList, NULL);
+ if (rc) {
+ RF_ERRORMSG3("Unable to add to shutdown list file %s line %d rc=%d\n",
+ __FILE__, __LINE__, rc);
+ rf_mutex_destroy(&alist_mutex);
+ return (rc);
+ }
+ return (0);
+}
+
+
+/* we expect the lists to have at most one or two elements, so we're willing
+ * to search for the end. If you ever observe the lists growing longer,
+ * increase POINTERS_PER_ALLOC_LIST_ELEMENT.
+ */
+void
+rf_real_AddToAllocList(l, p, size, lockflag)
+ RF_AllocListElem_t *l;
+ void *p;
+ int size;
+ int lockflag;
+{
+ RF_AllocListElem_t *newelem;
+
+ for (; l->next; l = l->next)
+ RF_ASSERT(l->numPointers == RF_POINTERS_PER_ALLOC_LIST_ELEMENT); /* find end of list */
+
+ RF_ASSERT(l->numPointers >= 0 && l->numPointers <= RF_POINTERS_PER_ALLOC_LIST_ELEMENT);
+ if (l->numPointers == RF_POINTERS_PER_ALLOC_LIST_ELEMENT) {
+ newelem = rf_real_MakeAllocList(lockflag);
+ l->next = newelem;
+ l = newelem;
+ }
+ l->pointers[l->numPointers] = p;
+ l->sizes[l->numPointers] = size;
+ l->numPointers++;
+
+}
+
+
+/* we use the debug_mem_mutex here because we need to lock it anyway to call free.
+ * this is probably a bug somewhere else in the code, but when I call malloc/free
+ * outside of any lock I have endless trouble with malloc appearing to return the
+ * same pointer twice. Since we have to lock it anyway, we might as well use it
+ * as the lock around the al_free_list. Note that we can't call Free with the
+ * debug_mem_mutex locked.
+ */
+void
+rf_FreeAllocList(l)
+ RF_AllocListElem_t *l;
+{
+ int i;
+ RF_AllocListElem_t *temp, *p;
+
+ for (p = l; p; p = p->next) {
+ RF_ASSERT(p->numPointers >= 0 && p->numPointers <= RF_POINTERS_PER_ALLOC_LIST_ELEMENT);
+ for (i = 0; i < p->numPointers; i++) {
+ RF_ASSERT(p->pointers[i]);
+ RF_Free(p->pointers[i], p->sizes[i]);
+ }
+ }
+ while (l) {
+ temp = l;
+ l = l->next;
+ if (al_free_list_count > RF_AL_FREELIST_MAX) {
+ DO_FREE(temp, sizeof(*temp));
+ } else {
+ temp->next = al_free_list;
+ al_free_list = temp;
+ al_free_list_count++;
+ }
+ }
+}
+
+RF_AllocListElem_t *
+rf_real_MakeAllocList(lockflag)
+ int lockflag;
+{
+ RF_AllocListElem_t *p;
+
+ if (al_free_list) {
+ fl_hit_count++;
+ p = al_free_list;
+ al_free_list = p->next;
+ al_free_list_count--;
+ } else {
+ fl_miss_count++;
+ RF_Malloc(p, sizeof(RF_AllocListElem_t), (RF_AllocListElem_t *)); /* no allocation locking
+ * in kernel, so this is
+ * fine */
+ }
+ if (p == NULL) {
+ return (NULL);
+ }
+ bzero((char *) p, sizeof(RF_AllocListElem_t));
+ return (p);
+}
diff --git a/sys/dev/raidframe/rf_alloclist.h b/sys/dev/raidframe/rf_alloclist.h
new file mode 100644
index 0000000..c746452
--- /dev/null
+++ b/sys/dev/raidframe/rf_alloclist.h
@@ -0,0 +1,60 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_alloclist.h,v 1.3 1999/02/05 00:06:06 oster Exp $ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Mark Holland
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+/****************************************************************************
+ *
+ * alloclist.h -- header file for alloclist.c
+ *
+ ***************************************************************************/
+
+#ifndef _RF__RF_ALLOCLIST_H_
+#define _RF__RF_ALLOCLIST_H_
+
+#include <dev/raidframe/rf_types.h>
+
+#define RF_POINTERS_PER_ALLOC_LIST_ELEMENT 20
+
+struct RF_AllocListElem_s {
+ void *pointers[RF_POINTERS_PER_ALLOC_LIST_ELEMENT];
+ int sizes[RF_POINTERS_PER_ALLOC_LIST_ELEMENT];
+ int numPointers;
+ RF_AllocListElem_t *next;
+};
+#define rf_MakeAllocList(_ptr_) _ptr_ = rf_real_MakeAllocList(1);
+#define rf_AddToAllocList(_l_,_ptr_,_sz_) rf_real_AddToAllocList((_l_), (_ptr_), (_sz_), 1)
+
+int rf_ConfigureAllocList(RF_ShutdownList_t ** listp);
+
+#if RF_UTILITY == 0
+void rf_real_AddToAllocList(RF_AllocListElem_t * l, void *p, int size, int lockflag);
+void rf_FreeAllocList(RF_AllocListElem_t * l);
+RF_AllocListElem_t *rf_real_MakeAllocList(int lockflag);
+#endif /* RF_UTILITY == 0 */
+
+#endif /* !_RF__RF_ALLOCLIST_H_ */
diff --git a/sys/dev/raidframe/rf_archs.h b/sys/dev/raidframe/rf_archs.h
new file mode 100644
index 0000000..faef157
--- /dev/null
+++ b/sys/dev/raidframe/rf_archs.h
@@ -0,0 +1,75 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_archs.h,v 1.11 2001/01/26 04:43:16 oster Exp $ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Mark Holland
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+/* rf_archs.h -- defines for which architectures you want to
+ * include is some particular build of raidframe. Unfortunately,
+ * it's difficult to exclude declustering, P+Q, and distributed
+ * sparing because the code is intermixed with RAID5 code. This
+ * should be fixed.
+ *
+ * this is really intended only for use in the kernel, where I
+ * am worried about the size of the object module. At user level and
+ * in the simulator, I don't really care that much, so all the
+ * architectures can be compiled together. Note that by itself, turning
+ * off these defines does not affect the size of the executable; you
+ * have to edit the makefile for that.
+ *
+ * comment out any line below to eliminate that architecture.
+ * the list below includes all the modules that can be compiled
+ * out.
+ *
+ */
+
+#ifndef _RF__RF_ARCHS_H_
+#define _RF__RF_ARCHS_H_
+
+#define RF_INCLUDE_EVENODD 1
+
+#define RF_INCLUDE_RAID5_RS 1
+#define RF_INCLUDE_PARITYLOGGING 1
+
+#define RF_INCLUDE_CHAINDECLUSTER 1
+#define RF_INCLUDE_INTERDECLUSTER 1
+
+#define RF_INCLUDE_PARITY_DECLUSTERING 1
+#define RF_INCLUDE_PARITY_DECLUSTERING_DS 1
+
+#define RF_INCLUDE_RAID0 1
+#define RF_INCLUDE_RAID1 1
+#define RF_INCLUDE_RAID4 1
+#define RF_INCLUDE_RAID5 1
+#define RF_INCLUDE_RAID6 0
+#define RF_INCLUDE_DECL_PQ 0
+
+#define RF_MEMORY_REDZONES 0
+#define RF_RECON_STATS 1
+
+#include <dev/raidframe/rf_options.h>
+
+#endif /* !_RF__RF_ARCHS_H_ */
diff --git a/sys/dev/raidframe/rf_aselect.c b/sys/dev/raidframe/rf_aselect.c
new file mode 100644
index 0000000..4fe69e3
--- /dev/null
+++ b/sys/dev/raidframe/rf_aselect.c
@@ -0,0 +1,494 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_aselect.c,v 1.3 1999/02/05 00:06:06 oster Exp $ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Mark Holland, William V. Courtright II
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+/*****************************************************************************
+ *
+ * aselect.c -- algorithm selection code
+ *
+ *****************************************************************************/
+
+#include <dev/raidframe/rf_archs.h>
+#include <dev/raidframe/rf_types.h>
+#include <dev/raidframe/rf_raid.h>
+#include <dev/raidframe/rf_dag.h>
+#include <dev/raidframe/rf_dagutils.h>
+#include <dev/raidframe/rf_dagfuncs.h>
+#include <dev/raidframe/rf_general.h>
+#include <dev/raidframe/rf_desc.h>
+#include <dev/raidframe/rf_map.h>
+
+#if defined(__NetBSD__) || defined(__FreeBSD__) && defined(_KERNEL)
+/* the function below is not used... so don't define it! */
+#else
+static void TransferDagMemory(RF_DagHeader_t *, RF_DagHeader_t *);
+#endif
+
+static int InitHdrNode(RF_DagHeader_t **, RF_Raid_t *, int);
+static void UpdateNodeHdrPtr(RF_DagHeader_t *, RF_DagNode_t *);
+int rf_SelectAlgorithm(RF_RaidAccessDesc_t *, RF_RaidAccessFlags_t);
+
+
+/******************************************************************************
+ *
+ * Create and Initialiaze a dag header and termination node
+ *
+ *****************************************************************************/
+static int
+InitHdrNode(hdr, raidPtr, memChunkEnable)
+ RF_DagHeader_t **hdr;
+ RF_Raid_t *raidPtr;
+ int memChunkEnable;
+{
+ /* create and initialize dag hdr */
+ *hdr = rf_AllocDAGHeader();
+ rf_MakeAllocList((*hdr)->allocList);
+ if ((*hdr)->allocList == NULL) {
+ rf_FreeDAGHeader(*hdr);
+ return (ENOMEM);
+ }
+ (*hdr)->status = rf_enable;
+ (*hdr)->numSuccedents = 0;
+ (*hdr)->raidPtr = raidPtr;
+ (*hdr)->next = NULL;
+ return (0);
+}
+/******************************************************************************
+ *
+ * Transfer allocation list and mem chunks from one dag to another
+ *
+ *****************************************************************************/
+#if defined(__NetBSD__) || defined(__FreeBSD__) && defined(_KERNEL)
+/* the function below is not used... so don't define it! */
+#else
+static void
+TransferDagMemory(daga, dagb)
+ RF_DagHeader_t *daga;
+ RF_DagHeader_t *dagb;
+{
+ RF_AccessStripeMapHeader_t *end;
+ RF_AllocListElem_t *p;
+ int i, memChunksXfrd = 0, xtraChunksXfrd = 0;
+
+ /* transfer allocList from dagb to daga */
+ for (p = dagb->allocList; p; p = p->next) {
+ for (i = 0; i < p->numPointers; i++) {
+ rf_AddToAllocList(daga->allocList, p->pointers[i], p->sizes[i]);
+ p->pointers[i] = NULL;
+ p->sizes[i] = 0;
+ }
+ p->numPointers = 0;
+ }
+
+ /* transfer chunks from dagb to daga */
+ while ((memChunksXfrd + xtraChunksXfrd < dagb->chunkIndex + dagb->xtraChunkIndex) && (daga->chunkIndex < RF_MAXCHUNKS)) {
+ /* stuff chunks into daga's memChunk array */
+ if (memChunksXfrd < dagb->chunkIndex) {
+ daga->memChunk[daga->chunkIndex++] = dagb->memChunk[memChunksXfrd];
+ dagb->memChunk[memChunksXfrd++] = NULL;
+ } else {
+ daga->memChunk[daga->xtraChunkIndex++] = dagb->xtraMemChunk[xtraChunksXfrd];
+ dagb->xtraMemChunk[xtraChunksXfrd++] = NULL;
+ }
+ }
+ /* use escape hatch to hold excess chunks */
+ while (memChunksXfrd + xtraChunksXfrd < dagb->chunkIndex + dagb->xtraChunkIndex) {
+ if (memChunksXfrd < dagb->chunkIndex) {
+ daga->xtraMemChunk[daga->xtraChunkIndex++] = dagb->memChunk[memChunksXfrd];
+ dagb->memChunk[memChunksXfrd++] = NULL;
+ } else {
+ daga->xtraMemChunk[daga->xtraChunkIndex++] = dagb->xtraMemChunk[xtraChunksXfrd];
+ dagb->xtraMemChunk[xtraChunksXfrd++] = NULL;
+ }
+ }
+ RF_ASSERT((memChunksXfrd == dagb->chunkIndex) && (xtraChunksXfrd == dagb->xtraChunkIndex));
+ RF_ASSERT(daga->chunkIndex <= RF_MAXCHUNKS);
+ RF_ASSERT(daga->xtraChunkIndex <= daga->xtraChunkCnt);
+ dagb->chunkIndex = 0;
+ dagb->xtraChunkIndex = 0;
+
+ /* transfer asmList from dagb to daga */
+ if (dagb->asmList) {
+ if (daga->asmList) {
+ end = daga->asmList;
+ while (end->next)
+ end = end->next;
+ end->next = dagb->asmList;
+ } else
+ daga->asmList = dagb->asmList;
+ dagb->asmList = NULL;
+ }
+}
+#endif /* __NetBSD__ */
+
+/*****************************************************************************************
+ *
+ * Ensure that all node->dagHdr fields in a dag are consistent
+ *
+ * IMPORTANT: This routine recursively searches all succedents of the node. If a
+ * succedent is encountered whose dagHdr ptr does not require adjusting, that node's
+ * succedents WILL NOT BE EXAMINED.
+ *
+ ****************************************************************************************/
+static void
+UpdateNodeHdrPtr(hdr, node)
+ RF_DagHeader_t *hdr;
+ RF_DagNode_t *node;
+{
+ int i;
+ RF_ASSERT(hdr != NULL && node != NULL);
+ for (i = 0; i < node->numSuccedents; i++)
+ if (node->succedents[i]->dagHdr != hdr)
+ UpdateNodeHdrPtr(hdr, node->succedents[i]);
+ node->dagHdr = hdr;
+}
+/******************************************************************************
+ *
+ * Create a DAG to do a read or write operation.
+ *
+ * create an array of dagLists, one list per parity stripe.
+ * return the lists in the array desc->dagArray.
+ *
+ * Normally, each list contains one dag for the entire stripe. In some
+ * tricky cases, we break this into multiple dags, either one per stripe
+ * unit or one per block (sector). When this occurs, these dags are returned
+ * as a linked list (dagList) which is executed sequentially (to preserve
+ * atomic parity updates in the stripe).
+ *
+ * dags which operate on independent parity goups (stripes) are returned in
+ * independent dagLists (distinct elements in desc->dagArray) and may be
+ * executed concurrently.
+ *
+ * Finally, if the SelectionFunc fails to create a dag for a block, we punt
+ * and return 1.
+ *
+ * The above process is performed in two phases:
+ * 1) create an array(s) of creation functions (eg stripeFuncs)
+ * 2) create dags and concatenate/merge to form the final dag.
+ *
+ * Because dag's are basic blocks (single entry, single exit, unconditional
+ * control flow, we can add the following optimizations (future work):
+ * first-pass optimizer to allow max concurrency (need all data dependencies)
+ * second-pass optimizer to eliminate common subexpressions (need true
+ * data dependencies)
+ * third-pass optimizer to eliminate dead code (need true data dependencies)
+ *****************************************************************************/
+
+#define MAXNSTRIPES 5
+
+int
+rf_SelectAlgorithm(desc, flags)
+ RF_RaidAccessDesc_t *desc;
+ RF_RaidAccessFlags_t flags;
+{
+ RF_AccessStripeMapHeader_t *asm_h = desc->asmap;
+ RF_IoType_t type = desc->type;
+ RF_Raid_t *raidPtr = desc->raidPtr;
+ void *bp = desc->bp;
+
+ RF_AccessStripeMap_t *asmap = asm_h->stripeMap;
+ RF_AccessStripeMap_t *asm_p;
+ RF_DagHeader_t *dag_h = NULL, *tempdag_h, *lastdag_h;
+ int i, j, k;
+ RF_VoidFuncPtr *stripeFuncs, normalStripeFuncs[MAXNSTRIPES];
+ RF_AccessStripeMap_t *asm_up, *asm_bp;
+ RF_AccessStripeMapHeader_t ***asmh_u, *endASMList;
+ RF_AccessStripeMapHeader_t ***asmh_b;
+ RF_VoidFuncPtr **stripeUnitFuncs, uFunc;
+ RF_VoidFuncPtr **blockFuncs, bFunc;
+ int numStripesBailed = 0, cantCreateDAGs = RF_FALSE;
+ int numStripeUnitsBailed = 0;
+ int stripeNum, numUnitDags = 0, stripeUnitNum, numBlockDags = 0;
+ RF_StripeNum_t numStripeUnits;
+ RF_SectorNum_t numBlocks;
+ RF_RaidAddr_t address;
+ int length;
+ RF_PhysDiskAddr_t *physPtr;
+ caddr_t buffer;
+
+ lastdag_h = NULL;
+ asmh_u = asmh_b = NULL;
+ stripeUnitFuncs = NULL;
+ blockFuncs = NULL;
+
+ /* get an array of dag-function creation pointers, try to avoid
+ * calling malloc */
+ if (asm_h->numStripes <= MAXNSTRIPES)
+ stripeFuncs = normalStripeFuncs;
+ else
+ RF_Calloc(stripeFuncs, asm_h->numStripes, sizeof(RF_VoidFuncPtr), (RF_VoidFuncPtr *));
+
+ /* walk through the asm list once collecting information */
+ /* attempt to find a single creation function for each stripe */
+ desc->numStripes = 0;
+ for (i = 0, asm_p = asmap; asm_p; asm_p = asm_p->next, i++) {
+ desc->numStripes++;
+ (raidPtr->Layout.map->SelectionFunc) (raidPtr, type, asm_p, &stripeFuncs[i]);
+ /* check to see if we found a creation func for this stripe */
+ if (stripeFuncs[i] == (RF_VoidFuncPtr) NULL) {
+ /* could not find creation function for entire stripe
+ * so, let's see if we can find one for each stripe
+ * unit in the stripe */
+
+ if (numStripesBailed == 0) {
+ /* one stripe map header for each stripe we
+ * bail on */
+ RF_Malloc(asmh_u, sizeof(RF_AccessStripeMapHeader_t **) * asm_h->numStripes, (RF_AccessStripeMapHeader_t ***));
+ /* create an array of ptrs to arrays of
+ * stripeFuncs */
+ RF_Calloc(stripeUnitFuncs, asm_h->numStripes, sizeof(RF_VoidFuncPtr), (RF_VoidFuncPtr **));
+ }
+ /* create an array of creation funcs (called
+ * stripeFuncs) for this stripe */
+ numStripeUnits = asm_p->numStripeUnitsAccessed;
+ RF_Calloc(stripeUnitFuncs[numStripesBailed], numStripeUnits, sizeof(RF_VoidFuncPtr), (RF_VoidFuncPtr *));
+ RF_Malloc(asmh_u[numStripesBailed], numStripeUnits * sizeof(RF_AccessStripeMapHeader_t *), (RF_AccessStripeMapHeader_t **));
+
+ /* lookup array of stripeUnitFuncs for this stripe */
+ for (j = 0, physPtr = asm_p->physInfo; physPtr; physPtr = physPtr->next, j++) {
+ /* remap for series of single stripe-unit
+ * accesses */
+ address = physPtr->raidAddress;
+ length = physPtr->numSector;
+ buffer = physPtr->bufPtr;
+
+ asmh_u[numStripesBailed][j] = rf_MapAccess(raidPtr, address, length, buffer, RF_DONT_REMAP);
+ asm_up = asmh_u[numStripesBailed][j]->stripeMap;
+
+ /* get the creation func for this stripe unit */
+ (raidPtr->Layout.map->SelectionFunc) (raidPtr, type, asm_up, &(stripeUnitFuncs[numStripesBailed][j]));
+
+ /* check to see if we found a creation func
+ * for this stripe unit */
+ if (stripeUnitFuncs[numStripesBailed][j] == (RF_VoidFuncPtr) NULL) {
+ /* could not find creation function
+ * for stripe unit so, let's see if we
+ * can find one for each block in the
+ * stripe unit */
+ if (numStripeUnitsBailed == 0) {
+ /* one stripe map header for
+ * each stripe unit we bail on */
+ RF_Malloc(asmh_b, sizeof(RF_AccessStripeMapHeader_t **) * asm_h->numStripes * raidPtr->Layout.numDataCol, (RF_AccessStripeMapHeader_t ***));
+ /* create an array of ptrs to
+ * arrays of blockFuncs */
+ RF_Calloc(blockFuncs, asm_h->numStripes * raidPtr->Layout.numDataCol, sizeof(RF_VoidFuncPtr), (RF_VoidFuncPtr **));
+ }
+ /* create an array of creation funcs
+ * (called blockFuncs) for this stripe
+ * unit */
+ numBlocks = physPtr->numSector;
+ numBlockDags += numBlocks;
+ RF_Calloc(blockFuncs[numStripeUnitsBailed], numBlocks, sizeof(RF_VoidFuncPtr), (RF_VoidFuncPtr *));
+ RF_Malloc(asmh_b[numStripeUnitsBailed], numBlocks * sizeof(RF_AccessStripeMapHeader_t *), (RF_AccessStripeMapHeader_t **));
+
+ /* lookup array of blockFuncs for this
+ * stripe unit */
+ for (k = 0; k < numBlocks; k++) {
+ /* remap for series of single
+ * stripe-unit accesses */
+ address = physPtr->raidAddress + k;
+ length = 1;
+ buffer = physPtr->bufPtr + (k * (1 << raidPtr->logBytesPerSector));
+
+ asmh_b[numStripeUnitsBailed][k] = rf_MapAccess(raidPtr, address, length, buffer, RF_DONT_REMAP);
+ asm_bp = asmh_b[numStripeUnitsBailed][k]->stripeMap;
+
+ /* get the creation func for
+ * this stripe unit */
+ (raidPtr->Layout.map->SelectionFunc) (raidPtr, type, asm_bp, &(blockFuncs[numStripeUnitsBailed][k]));
+
+ /* check to see if we found a
+ * creation func for this
+ * stripe unit */
+ if (blockFuncs[numStripeUnitsBailed][k] == NULL)
+ cantCreateDAGs = RF_TRUE;
+ }
+ numStripeUnitsBailed++;
+ } else {
+ numUnitDags++;
+ }
+ }
+ RF_ASSERT(j == numStripeUnits);
+ numStripesBailed++;
+ }
+ }
+
+ if (cantCreateDAGs) {
+ /* free memory and punt */
+ if (asm_h->numStripes > MAXNSTRIPES)
+ RF_Free(stripeFuncs, asm_h->numStripes * sizeof(RF_VoidFuncPtr));
+ if (numStripesBailed > 0) {
+ stripeNum = 0;
+ for (i = 0, asm_p = asmap; asm_p; asm_p = asm_p->next, i++)
+ if (stripeFuncs[i] == NULL) {
+ numStripeUnits = asm_p->numStripeUnitsAccessed;
+ for (j = 0; j < numStripeUnits; j++)
+ rf_FreeAccessStripeMap(asmh_u[stripeNum][j]);
+ RF_Free(asmh_u[stripeNum], numStripeUnits * sizeof(RF_AccessStripeMapHeader_t *));
+ RF_Free(stripeUnitFuncs[stripeNum], numStripeUnits * sizeof(RF_VoidFuncPtr));
+ stripeNum++;
+ }
+ RF_ASSERT(stripeNum == numStripesBailed);
+ RF_Free(stripeUnitFuncs, asm_h->numStripes * sizeof(RF_VoidFuncPtr));
+ RF_Free(asmh_u, asm_h->numStripes * sizeof(RF_AccessStripeMapHeader_t **));
+ }
+ return (1);
+ } else {
+ /* begin dag creation */
+ stripeNum = 0;
+ stripeUnitNum = 0;
+
+ /* create an array of dagLists and fill them in */
+ RF_CallocAndAdd(desc->dagArray, desc->numStripes, sizeof(RF_DagList_t), (RF_DagList_t *), desc->cleanupList);
+
+ for (i = 0, asm_p = asmap; asm_p; asm_p = asm_p->next, i++) {
+ /* grab dag header for this stripe */
+ dag_h = NULL;
+ desc->dagArray[i].desc = desc;
+
+ if (stripeFuncs[i] == (RF_VoidFuncPtr) NULL) {
+ /* use bailout functions for this stripe */
+ for (j = 0, physPtr = asm_p->physInfo; physPtr; physPtr = physPtr->next, j++) {
+ uFunc = stripeUnitFuncs[stripeNum][j];
+ if (uFunc == (RF_VoidFuncPtr) NULL) {
+ /* use bailout functions for
+ * this stripe unit */
+ for (k = 0; k < physPtr->numSector; k++) {
+ /* create a dag for
+ * this block */
+ InitHdrNode(&tempdag_h, raidPtr, rf_useMemChunks);
+ desc->dagArray[i].numDags++;
+ if (dag_h == NULL) {
+ dag_h = tempdag_h;
+ } else {
+ lastdag_h->next = tempdag_h;
+ }
+ lastdag_h = tempdag_h;
+
+ bFunc = blockFuncs[stripeUnitNum][k];
+ RF_ASSERT(bFunc);
+ asm_bp = asmh_b[stripeUnitNum][k]->stripeMap;
+ (*bFunc) (raidPtr, asm_bp, tempdag_h, bp, flags, tempdag_h->allocList);
+ }
+ stripeUnitNum++;
+ } else {
+ /* create a dag for this unit */
+ InitHdrNode(&tempdag_h, raidPtr, rf_useMemChunks);
+ desc->dagArray[i].numDags++;
+ if (dag_h == NULL) {
+ dag_h = tempdag_h;
+ } else {
+ lastdag_h->next = tempdag_h;
+ }
+ lastdag_h = tempdag_h;
+
+ asm_up = asmh_u[stripeNum][j]->stripeMap;
+ (*uFunc) (raidPtr, asm_up, tempdag_h, bp, flags, tempdag_h->allocList);
+ }
+ }
+ RF_ASSERT(j == asm_p->numStripeUnitsAccessed);
+ /* merge linked bailout dag to existing dag
+ * collection */
+ stripeNum++;
+ } else {
+ /* Create a dag for this parity stripe */
+ InitHdrNode(&tempdag_h, raidPtr, rf_useMemChunks);
+ desc->dagArray[i].numDags++;
+ if (dag_h == NULL) {
+ dag_h = tempdag_h;
+ } else {
+ lastdag_h->next = tempdag_h;
+ }
+ lastdag_h = tempdag_h;
+
+ (stripeFuncs[i]) (raidPtr, asm_p, tempdag_h, bp, flags, tempdag_h->allocList);
+ }
+ desc->dagArray[i].dags = dag_h;
+ }
+ RF_ASSERT(i == desc->numStripes);
+
+ /* free memory */
+ if (asm_h->numStripes > MAXNSTRIPES)
+ RF_Free(stripeFuncs, asm_h->numStripes * sizeof(RF_VoidFuncPtr));
+ if ((numStripesBailed > 0) || (numStripeUnitsBailed > 0)) {
+ stripeNum = 0;
+ stripeUnitNum = 0;
+ if (dag_h->asmList) {
+ endASMList = dag_h->asmList;
+ while (endASMList->next)
+ endASMList = endASMList->next;
+ } else
+ endASMList = NULL;
+ /* walk through io, stripe by stripe */
+ for (i = 0, asm_p = asmap; asm_p; asm_p = asm_p->next, i++)
+ if (stripeFuncs[i] == NULL) {
+ numStripeUnits = asm_p->numStripeUnitsAccessed;
+ /* walk through stripe, stripe unit by
+ * stripe unit */
+ for (j = 0, physPtr = asm_p->physInfo; physPtr; physPtr = physPtr->next, j++) {
+ if (stripeUnitFuncs[stripeNum][j] == NULL) {
+ numBlocks = physPtr->numSector;
+ /* walk through stripe
+ * unit, block by
+ * block */
+ for (k = 0; k < numBlocks; k++)
+ if (dag_h->asmList == NULL) {
+ dag_h->asmList = asmh_b[stripeUnitNum][k];
+ endASMList = dag_h->asmList;
+ } else {
+ endASMList->next = asmh_b[stripeUnitNum][k];
+ endASMList = endASMList->next;
+ }
+ RF_Free(asmh_b[stripeUnitNum], numBlocks * sizeof(RF_AccessStripeMapHeader_t *));
+ RF_Free(blockFuncs[stripeUnitNum], numBlocks * sizeof(RF_VoidFuncPtr));
+ stripeUnitNum++;
+ }
+ if (dag_h->asmList == NULL) {
+ dag_h->asmList = asmh_u[stripeNum][j];
+ endASMList = dag_h->asmList;
+ } else {
+ endASMList->next = asmh_u[stripeNum][j];
+ endASMList = endASMList->next;
+ }
+ }
+ RF_Free(asmh_u[stripeNum], numStripeUnits * sizeof(RF_AccessStripeMapHeader_t *));
+ RF_Free(stripeUnitFuncs[stripeNum], numStripeUnits * sizeof(RF_VoidFuncPtr));
+ stripeNum++;
+ }
+ RF_ASSERT(stripeNum == numStripesBailed);
+ RF_Free(stripeUnitFuncs, asm_h->numStripes * sizeof(RF_VoidFuncPtr));
+ RF_Free(asmh_u, asm_h->numStripes * sizeof(RF_AccessStripeMapHeader_t **));
+ if (numStripeUnitsBailed > 0) {
+ RF_ASSERT(stripeUnitNum == numStripeUnitsBailed);
+ RF_Free(blockFuncs, raidPtr->Layout.numDataCol * asm_h->numStripes * sizeof(RF_VoidFuncPtr));
+ RF_Free(asmh_b, raidPtr->Layout.numDataCol * asm_h->numStripes * sizeof(RF_AccessStripeMapHeader_t **));
+ }
+ }
+ return (0);
+ }
+}
diff --git a/sys/dev/raidframe/rf_aselect.h b/sys/dev/raidframe/rf_aselect.h
new file mode 100644
index 0000000..de9cd76
--- /dev/null
+++ b/sys/dev/raidframe/rf_aselect.h
@@ -0,0 +1,43 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_aselect.h,v 1.3 1999/02/05 00:06:06 oster Exp $ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Mark Holland, William V. Courtright II
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+/*****************************************************************************
+ *
+ * aselect.h -- header file for algorithm selection code
+ *
+ *****************************************************************************/
+
+#ifndef _RF__RF_ASELECT_H_
+#define _RF__RF_ASELECT_H_
+
+#include <dev/raidframe/rf_desc.h>
+
+int rf_SelectAlgorithm(RF_RaidAccessDesc_t * desc, RF_RaidAccessFlags_t flags);
+
+#endif /* !_RF__RF_ASELECT_H_ */
diff --git a/sys/dev/raidframe/rf_bsd.h b/sys/dev/raidframe/rf_bsd.h
new file mode 100644
index 0000000..14c10f5
--- /dev/null
+++ b/sys/dev/raidframe/rf_bsd.h
@@ -0,0 +1,152 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_netbsd.h,v 1.12 2000/05/28 22:53:49 oster Exp $ */
+
+/*-
+ * Copyright (c) 1996, 1997, 1998 The NetBSD Foundation, Inc.
+ * All rights reserved.
+ *
+ * This code is derived from software contributed to The NetBSD Foundation
+ * by Greg Oster; Jason R. Thorpe.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. All advertising materials mentioning features or use of this software
+ * must display the following acknowledgement:
+ * This product includes software developed by the NetBSD
+ * Foundation, Inc. and its contributors.
+ * 4. Neither the name of The NetBSD Foundation nor the names of its
+ * contributors may be used to endorse or promote products derived
+ * from this software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
+ * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
+ * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+ * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
+ * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ * POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#ifndef _RF__RF_BSD_H_
+#define _RF__RF_BSD_H_
+
+#ifdef _KERNEL
+#include <sys/fcntl.h>
+#include <sys/systm.h>
+#include <sys/namei.h>
+#include <sys/vnode.h>
+#include "opt_raid.h"
+
+#ifdef RAID_DEBUG
+#define rf_printf(lvl, fmt, args...) \
+ do { \
+ if (lvl <= RAID_DEBUG) printf(fmt, ##args); \
+ } while(0)
+
+#else /* DEBUG */
+#define rf_printf(lvl, fmt, args...) { }
+#endif /* DEBUG */
+#endif /* _KERNEL */
+
+/* The per-component label information that the user can set */
+typedef struct RF_ComponentInfo_s {
+ int row; /* the row number of this component */
+ int column; /* the column number of this component */
+ int serial_number; /* a user-specified serial number for this
+ RAID set */
+} RF_ComponentInfo_t;
+
+/* The per-component label information */
+typedef struct RF_ComponentLabel_s {
+ int version; /* The version of this label. */
+ int serial_number; /* a user-specified serial number for this
+ RAID set */
+ int mod_counter; /* modification counter. Changed (usually
+ by incrementing) every time the label
+ is changed */
+ int row; /* the row number of this component */
+ int column; /* the column number of this component */
+ int num_rows; /* number of rows in this RAID set */
+ int num_columns; /* number of columns in this RAID set */
+ int clean; /* 1 when clean, 0 when dirty */
+ int status; /* rf_ds_optimal, rf_ds_dist_spared, whatever. */
+ /* stuff that will be in version 2 of the label */
+ int sectPerSU; /* Sectors per Stripe Unit */
+ int SUsPerPU; /* Stripe Units per Parity Units */
+ int SUsPerRU; /* Stripe Units per Reconstruction Units */
+ int parityConfig; /* '0' == RAID0, '1' == RAID1, etc. */
+ int maxOutstanding; /* maxOutstanding disk requests */
+ int blockSize; /* size of component block.
+ (disklabel->d_secsize) */
+ int numBlocks; /* number of blocks on this component. May
+ be smaller than the partition size. */
+ int partitionSize; /* number of blocks on this *partition*.
+ Must exactly match the partition size
+ from the disklabel. */
+ int future_use[33]; /* Future expansion */
+ int autoconfigure; /* automatically configure this RAID set.
+ 0 == no, 1 == yes */
+ int root_partition; /* Use this set as /
+ 0 == no, 1 == yes*/
+ int last_unit; /* last unit number (e.g. 0 for /dev/raid0)
+ of this component. Used for autoconfigure
+ only. */
+ int config_order; /* 0 .. n. The order in which the component
+ should be auto-configured. E.g. 0 is will
+ done first, (and would become raid0).
+ This may be in conflict with last_unit!!?! */
+ /* Not currently used. */
+ int future_use2[44]; /* More future expansion */
+} RF_ComponentLabel_t;
+
+typedef struct RF_SingleComponent_s {
+ int row;
+ int column;
+ char component_name[50]; /* name of the component */
+} RF_SingleComponent_t;
+
+#ifdef _KERNEL
+
+struct raidcinfo {
+ struct vnode *ci_vp; /* component device's vnode */
+ dev_t ci_dev; /* component device's dev_t */
+ RF_ComponentLabel_t ci_label; /* components RAIDframe label */
+#if 0
+ size_t ci_size; /* size */
+ char *ci_path; /* path to component */
+ size_t ci_pathlen; /* length of component path */
+#endif
+};
+
+
+
+/* XXX probably belongs in a different .h file. */
+typedef struct RF_AutoConfig_s {
+ char devname[56]; /* the name of this component */
+ int flag; /* a general-purpose flag */
+ dev_t dev; /* the device for this component */
+ struct vnode *vp; /* Mr. Vnode Pointer */
+ RF_ComponentLabel_t *clabel; /* the label */
+ struct RF_AutoConfig_s *next; /* the next autoconfig structure
+ in this set. */
+} RF_AutoConfig_t;
+
+typedef struct RF_ConfigSet_s {
+ struct RF_AutoConfig_s *ac; /* all of the autoconfig structures for
+ this config set. */
+ int rootable; /* Set to 1 if this set can be root */
+ struct RF_ConfigSet_s *next;
+} RF_ConfigSet_t;
+
+#endif /* _KERNEL */
+#endif /* _RF__RF_BSD_H_ */
diff --git a/sys/dev/raidframe/rf_callback.c b/sys/dev/raidframe/rf_callback.c
new file mode 100644
index 0000000..4b79d8b
--- /dev/null
+++ b/sys/dev/raidframe/rf_callback.c
@@ -0,0 +1,94 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_callback.c,v 1.3 1999/02/05 00:06:06 oster Exp $ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Jim Zelenka
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+/*****************************************************************************************
+ *
+ * callback.c -- code to manipulate callback descriptor
+ *
+ ****************************************************************************************/
+
+
+#include <dev/raidframe/rf_types.h>
+#include <dev/raidframe/rf_threadstuff.h>
+#include <dev/raidframe/rf_callback.h>
+#include <dev/raidframe/rf_debugMem.h>
+#include <dev/raidframe/rf_freelist.h>
+#include <dev/raidframe/rf_shutdown.h>
+
+static RF_FreeList_t *rf_callback_freelist;
+
+#define RF_MAX_FREE_CALLBACK 64
+#define RF_CALLBACK_INC 4
+#define RF_CALLBACK_INITIAL 4
+
+static void rf_ShutdownCallback(void *);
+static void
+rf_ShutdownCallback(ignored)
+ void *ignored;
+{
+ RF_FREELIST_DESTROY(rf_callback_freelist, next, (RF_CallbackDesc_t *));
+}
+
+int
+rf_ConfigureCallback(listp)
+ RF_ShutdownList_t **listp;
+{
+ int rc;
+
+ RF_FREELIST_CREATE(rf_callback_freelist, RF_MAX_FREE_CALLBACK,
+ RF_CALLBACK_INC, sizeof(RF_CallbackDesc_t));
+ if (rf_callback_freelist == NULL)
+ return (ENOMEM);
+ rc = rf_ShutdownCreate(listp, rf_ShutdownCallback, NULL);
+ if (rc) {
+ RF_ERRORMSG3("Unable to add to shutdown list file %s line %d rc=%d\n", __FILE__,
+ __LINE__, rc);
+ rf_ShutdownCallback(NULL);
+ return (rc);
+ }
+ RF_FREELIST_PRIME(rf_callback_freelist, RF_CALLBACK_INITIAL, next,
+ (RF_CallbackDesc_t *));
+ return (0);
+}
+
+RF_CallbackDesc_t *
+rf_AllocCallbackDesc()
+{
+ RF_CallbackDesc_t *p;
+
+ RF_FREELIST_GET(rf_callback_freelist, p, next, (RF_CallbackDesc_t *));
+ return (p);
+}
+
+void
+rf_FreeCallbackDesc(p)
+ RF_CallbackDesc_t *p;
+{
+ RF_FREELIST_FREE(rf_callback_freelist, p, next);
+}
diff --git a/sys/dev/raidframe/rf_callback.h b/sys/dev/raidframe/rf_callback.h
new file mode 100644
index 0000000..feda31d
--- /dev/null
+++ b/sys/dev/raidframe/rf_callback.h
@@ -0,0 +1,65 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_callback.h,v 1.3 1999/02/05 00:06:06 oster Exp $ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Mark Holland
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+/*****************************************************************************************
+ *
+ * callback.h -- header file for callback.c
+ *
+ * the reconstruction code must manage concurrent I/Os on multiple drives.
+ * it sometimes needs to suspend operation on a particular drive until some
+ * condition occurs. we can't block the thread, of course, or we wouldn't
+ * be able to manage our other outstanding I/Os. Instead we just suspend
+ * new activity on the indicated disk, and create a callback descriptor and
+ * put it someplace where it will get invoked when the condition that's
+ * stalling us has cleared. When the descriptor is invoked, it will call
+ * a function that will restart operation on the indicated disk.
+ *
+ ****************************************************************************************/
+
+#ifndef _RF__RF_CALLBACK_H_
+#define _RF__RF_CALLBACK_H_
+
+#include <dev/raidframe/rf_types.h>
+
+struct RF_CallbackDesc_s {
+ void (*callbackFunc) (RF_CBParam_t); /* function to call */
+ RF_CBParam_t callbackArg; /* args to give to function, or just
+ * info about this callback */
+ RF_CBParam_t callbackArg2;
+ RF_RowCol_t row; /* disk row and column IDs to give to the
+ * callback func */
+ RF_RowCol_t col;
+ RF_CallbackDesc_t *next;/* next entry in list */
+};
+
+int rf_ConfigureCallback(RF_ShutdownList_t ** listp);
+RF_CallbackDesc_t *rf_AllocCallbackDesc(void);
+void rf_FreeCallbackDesc(RF_CallbackDesc_t * p);
+
+#endif /* !_RF__RF_CALLBACK_H_ */
diff --git a/sys/dev/raidframe/rf_chaindecluster.c b/sys/dev/raidframe/rf_chaindecluster.c
new file mode 100644
index 0000000..ff12bb5
--- /dev/null
+++ b/sys/dev/raidframe/rf_chaindecluster.c
@@ -0,0 +1,290 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_chaindecluster.c,v 1.6 2001/01/26 04:27:16 oster Exp $ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Khalil Amiri
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+/******************************************************************************
+ *
+ * rf_chaindecluster.c -- implements chained declustering
+ *
+ *****************************************************************************/
+
+#include <dev/raidframe/rf_archs.h>
+
+#if (RF_INCLUDE_CHAINDECLUSTER > 0)
+
+#include <dev/raidframe/rf_types.h>
+#include <dev/raidframe/rf_raid.h>
+#include <dev/raidframe/rf_chaindecluster.h>
+#include <dev/raidframe/rf_dag.h>
+#include <dev/raidframe/rf_dagutils.h>
+#include <dev/raidframe/rf_dagffrd.h>
+#include <dev/raidframe/rf_dagffwr.h>
+#include <dev/raidframe/rf_dagdegrd.h>
+#include <dev/raidframe/rf_dagfuncs.h>
+#include <dev/raidframe/rf_general.h>
+#include <dev/raidframe/rf_utils.h>
+
+typedef struct RF_ChaindeclusterConfigInfo_s {
+ RF_RowCol_t **stripeIdentifier; /* filled in at config time and used
+ * by IdentifyStripe */
+ RF_StripeCount_t numSparingRegions;
+ RF_StripeCount_t stripeUnitsPerSparingRegion;
+ RF_SectorNum_t mirrorStripeOffset;
+} RF_ChaindeclusterConfigInfo_t;
+
+int
+rf_ConfigureChainDecluster(
+ RF_ShutdownList_t ** listp,
+ RF_Raid_t * raidPtr,
+ RF_Config_t * cfgPtr)
+{
+ RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
+ RF_StripeCount_t num_used_stripeUnitsPerDisk;
+ RF_ChaindeclusterConfigInfo_t *info;
+ RF_RowCol_t i;
+
+ /* create a Chained Declustering configuration structure */
+ RF_MallocAndAdd(info, sizeof(RF_ChaindeclusterConfigInfo_t), (RF_ChaindeclusterConfigInfo_t *), raidPtr->cleanupList);
+ if (info == NULL)
+ return (ENOMEM);
+ layoutPtr->layoutSpecificInfo = (void *) info;
+
+ /* fill in the config structure. */
+ info->stripeIdentifier = rf_make_2d_array(raidPtr->numCol, 2, raidPtr->cleanupList);
+ if (info->stripeIdentifier == NULL)
+ return (ENOMEM);
+ for (i = 0; i < raidPtr->numCol; i++) {
+ info->stripeIdentifier[i][0] = i % raidPtr->numCol;
+ info->stripeIdentifier[i][1] = (i + 1) % raidPtr->numCol;
+ }
+
+ RF_ASSERT(raidPtr->numRow == 1);
+
+ /* fill in the remaining layout parameters */
+ num_used_stripeUnitsPerDisk = layoutPtr->stripeUnitsPerDisk - (layoutPtr->stripeUnitsPerDisk %
+ (2 * raidPtr->numCol - 2));
+ info->numSparingRegions = num_used_stripeUnitsPerDisk / (2 * raidPtr->numCol - 2);
+ info->stripeUnitsPerSparingRegion = raidPtr->numCol * (raidPtr->numCol - 1);
+ info->mirrorStripeOffset = info->numSparingRegions * (raidPtr->numCol - 1);
+ layoutPtr->numStripe = info->numSparingRegions * info->stripeUnitsPerSparingRegion;
+ layoutPtr->bytesPerStripeUnit = layoutPtr->sectorsPerStripeUnit << raidPtr->logBytesPerSector;
+ layoutPtr->numDataCol = 1;
+ layoutPtr->dataSectorsPerStripe = layoutPtr->numDataCol * layoutPtr->sectorsPerStripeUnit;
+ layoutPtr->numParityCol = 1;
+
+ layoutPtr->dataStripeUnitsPerDisk = num_used_stripeUnitsPerDisk;
+
+ raidPtr->sectorsPerDisk =
+ num_used_stripeUnitsPerDisk * layoutPtr->sectorsPerStripeUnit;
+
+ raidPtr->totalSectors =
+ (layoutPtr->numStripe) * layoutPtr->sectorsPerStripeUnit;
+
+ layoutPtr->stripeUnitsPerDisk = raidPtr->sectorsPerDisk / layoutPtr->sectorsPerStripeUnit;
+
+ return (0);
+}
+
+RF_ReconUnitCount_t
+rf_GetNumSpareRUsChainDecluster(raidPtr)
+ RF_Raid_t *raidPtr;
+{
+ RF_ChaindeclusterConfigInfo_t *info = (RF_ChaindeclusterConfigInfo_t *) raidPtr->Layout.layoutSpecificInfo;
+
+ /*
+ * The layout uses two stripe units per disk as spare within each
+ * sparing region.
+ */
+ return (2 * info->numSparingRegions);
+}
+
+
+/* Maps to the primary copy of the data, i.e. the first mirror pair */
+void
+rf_MapSectorChainDecluster(
+ RF_Raid_t * raidPtr,
+ RF_RaidAddr_t raidSector,
+ RF_RowCol_t * row,
+ RF_RowCol_t * col,
+ RF_SectorNum_t * diskSector,
+ int remap)
+{
+ RF_ChaindeclusterConfigInfo_t *info = (RF_ChaindeclusterConfigInfo_t *) raidPtr->Layout.layoutSpecificInfo;
+ RF_StripeNum_t SUID = raidSector / raidPtr->Layout.sectorsPerStripeUnit;
+ RF_SectorNum_t index_within_region, index_within_disk;
+ RF_StripeNum_t sparing_region_id;
+ int col_before_remap;
+
+ *row = 0;
+ sparing_region_id = SUID / info->stripeUnitsPerSparingRegion;
+ index_within_region = SUID % info->stripeUnitsPerSparingRegion;
+ index_within_disk = index_within_region / raidPtr->numCol;
+ col_before_remap = SUID % raidPtr->numCol;
+
+ if (!remap) {
+ *col = col_before_remap;
+ *diskSector = (index_within_disk + ((raidPtr->numCol - 1) * sparing_region_id)) *
+ raidPtr->Layout.sectorsPerStripeUnit;
+ *diskSector += (raidSector % raidPtr->Layout.sectorsPerStripeUnit);
+ } else {
+ /* remap sector to spare space... */
+ *diskSector = sparing_region_id * (raidPtr->numCol + 1) * raidPtr->Layout.sectorsPerStripeUnit;
+ *diskSector += (raidPtr->numCol - 1) * raidPtr->Layout.sectorsPerStripeUnit;
+ *diskSector += (raidSector % raidPtr->Layout.sectorsPerStripeUnit);
+ index_within_disk = index_within_region / raidPtr->numCol;
+ if (index_within_disk < col_before_remap)
+ *col = index_within_disk;
+ else
+ if (index_within_disk == raidPtr->numCol - 2) {
+ *col = (col_before_remap + raidPtr->numCol - 1) % raidPtr->numCol;
+ *diskSector += raidPtr->Layout.sectorsPerStripeUnit;
+ } else
+ *col = (index_within_disk + 2) % raidPtr->numCol;
+ }
+
+}
+
+
+
+/* Maps to the second copy of the mirror pair, which is chain declustered. The second copy is contained
+ in the next disk (mod numCol) after the disk containing the primary copy.
+ The offset into the disk is one-half disk down */
+void
+rf_MapParityChainDecluster(
+ RF_Raid_t * raidPtr,
+ RF_RaidAddr_t raidSector,
+ RF_RowCol_t * row,
+ RF_RowCol_t * col,
+ RF_SectorNum_t * diskSector,
+ int remap)
+{
+ RF_ChaindeclusterConfigInfo_t *info = (RF_ChaindeclusterConfigInfo_t *) raidPtr->Layout.layoutSpecificInfo;
+ RF_StripeNum_t SUID = raidSector / raidPtr->Layout.sectorsPerStripeUnit;
+ RF_SectorNum_t index_within_region, index_within_disk;
+ RF_StripeNum_t sparing_region_id;
+ int col_before_remap;
+
+ *row = 0;
+ if (!remap) {
+ *col = SUID % raidPtr->numCol;
+ *col = (*col + 1) % raidPtr->numCol;
+ *diskSector = info->mirrorStripeOffset * raidPtr->Layout.sectorsPerStripeUnit;
+ *diskSector += (SUID / raidPtr->numCol) * raidPtr->Layout.sectorsPerStripeUnit;
+ *diskSector += (raidSector % raidPtr->Layout.sectorsPerStripeUnit);
+ } else {
+ /* remap parity to spare space ... */
+ sparing_region_id = SUID / info->stripeUnitsPerSparingRegion;
+ index_within_region = SUID % info->stripeUnitsPerSparingRegion;
+ index_within_disk = index_within_region / raidPtr->numCol;
+ *diskSector = sparing_region_id * (raidPtr->numCol + 1) * raidPtr->Layout.sectorsPerStripeUnit;
+ *diskSector += (raidPtr->numCol) * raidPtr->Layout.sectorsPerStripeUnit;
+ *diskSector += (raidSector % raidPtr->Layout.sectorsPerStripeUnit);
+ col_before_remap = SUID % raidPtr->numCol;
+ if (index_within_disk < col_before_remap)
+ *col = index_within_disk;
+ else
+ if (index_within_disk == raidPtr->numCol - 2) {
+ *col = (col_before_remap + 2) % raidPtr->numCol;
+ *diskSector -= raidPtr->Layout.sectorsPerStripeUnit;
+ } else
+ *col = (index_within_disk + 2) % raidPtr->numCol;
+ }
+
+}
+
+void
+rf_IdentifyStripeChainDecluster(
+ RF_Raid_t * raidPtr,
+ RF_RaidAddr_t addr,
+ RF_RowCol_t ** diskids,
+ RF_RowCol_t * outRow)
+{
+ RF_ChaindeclusterConfigInfo_t *info = (RF_ChaindeclusterConfigInfo_t *) raidPtr->Layout.layoutSpecificInfo;
+ RF_StripeNum_t SUID;
+ RF_RowCol_t col;
+
+ SUID = addr / raidPtr->Layout.sectorsPerStripeUnit;
+ col = SUID % raidPtr->numCol;
+ *outRow = 0;
+ *diskids = info->stripeIdentifier[col];
+}
+
+void
+rf_MapSIDToPSIDChainDecluster(
+ RF_RaidLayout_t * layoutPtr,
+ RF_StripeNum_t stripeID,
+ RF_StripeNum_t * psID,
+ RF_ReconUnitNum_t * which_ru)
+{
+ *which_ru = 0;
+ *psID = stripeID;
+}
+/******************************************************************************
+ * select a graph to perform a single-stripe access
+ *
+ * Parameters: raidPtr - description of the physical array
+ * type - type of operation (read or write) requested
+ * asmap - logical & physical addresses for this access
+ * createFunc - function to use to create the graph (return value)
+ *****************************************************************************/
+
+void
+rf_RAIDCDagSelect(
+ RF_Raid_t * raidPtr,
+ RF_IoType_t type,
+ RF_AccessStripeMap_t * asmap,
+ RF_VoidFuncPtr * createFunc)
+#if 0
+ void (**createFunc) (RF_Raid_t *, RF_AccessStripeMap_t *,
+ RF_DagHeader_t *, void *, RF_RaidAccessFlags_t,
+ RF_AllocListElem_t *)
+#endif
+{
+ RF_ASSERT(RF_IO_IS_R_OR_W(type));
+ RF_ASSERT(raidPtr->numRow == 1);
+
+ if (asmap->numDataFailed + asmap->numParityFailed > 1) {
+ RF_ERRORMSG("Multiple disks failed in a single group! Aborting I/O operation.\n");
+ *createFunc = NULL;
+ return;
+ }
+ *createFunc = (type == RF_IO_TYPE_READ) ? (RF_VoidFuncPtr) rf_CreateFaultFreeReadDAG : (RF_VoidFuncPtr) rf_CreateRaidOneWriteDAG;
+
+ if (type == RF_IO_TYPE_READ) {
+ if ((raidPtr->status[0] == rf_rs_degraded) || (raidPtr->status[0] == rf_rs_reconstructing))
+ *createFunc = (RF_VoidFuncPtr) rf_CreateRaidCDegradedReadDAG; /* array status is
+ * degraded, implement
+ * workload shifting */
+ else
+ *createFunc = (RF_VoidFuncPtr) rf_CreateMirrorPartitionReadDAG; /* array status not
+ * degraded, so use
+ * mirror partition dag */
+ } else
+ *createFunc = (RF_VoidFuncPtr) rf_CreateRaidOneWriteDAG;
+}
+#endif /* (RF_INCLUDE_CHAINDECLUSTER > 0) */
diff --git a/sys/dev/raidframe/rf_chaindecluster.h b/sys/dev/raidframe/rf_chaindecluster.h
new file mode 100644
index 0000000..6030289
--- /dev/null
+++ b/sys/dev/raidframe/rf_chaindecluster.h
@@ -0,0 +1,68 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_chaindecluster.h,v 1.4 2001/01/26 04:14:14 oster Exp $ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Khalil Amiri
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+/* rf_chaindecluster.h
+ * header file for Chained Declustering
+ */
+
+
+#ifndef _RF__RF_CHAINDECLUSTER_H_
+#define _RF__RF_CHAINDECLUSTER_H_
+
+int
+rf_ConfigureChainDecluster(RF_ShutdownList_t ** listp, RF_Raid_t * raidPtr,
+ RF_Config_t * cfgPtr);
+RF_ReconUnitCount_t rf_GetNumSpareRUsChainDecluster(RF_Raid_t * raidPtr);
+void
+rf_MapSectorChainDecluster(RF_Raid_t * raidPtr, RF_RaidAddr_t raidSector,
+ RF_RowCol_t * row, RF_RowCol_t * col, RF_SectorNum_t * diskSector, int remap);
+void
+rf_MapParityChainDecluster(RF_Raid_t * raidPtr, RF_RaidAddr_t raidSector,
+ RF_RowCol_t * row, RF_RowCol_t * col, RF_SectorNum_t * diskSector, int remap);
+void
+rf_IdentifyStripeChainDecluster(RF_Raid_t * raidPtr, RF_RaidAddr_t addr,
+ RF_RowCol_t ** diskids, RF_RowCol_t * outRow);
+void
+rf_MapSIDToPSIDChainDecluster(RF_RaidLayout_t * layoutPtr,
+ RF_StripeNum_t stripeID, RF_StripeNum_t * psID,
+ RF_ReconUnitNum_t * which_ru);
+void
+rf_RAIDCDagSelect(RF_Raid_t * raidPtr, RF_IoType_t type,
+ RF_AccessStripeMap_t * asmap,
+ RF_VoidFuncPtr *);
+#if 0
+void (**createFunc) (RF_Raid_t *,
+ RF_AccessStripeMap_t *,
+ RF_DagHeader_t *,
+ void *,
+ RF_RaidAccessFlags_t,
+ RF_AllocListElem_t *);
+#endif
+
+#endif /* !_RF__RF_CHAINDECLUSTER_H_ */
diff --git a/sys/dev/raidframe/rf_configure.h b/sys/dev/raidframe/rf_configure.h
new file mode 100644
index 0000000..c51b8a3
--- /dev/null
+++ b/sys/dev/raidframe/rf_configure.h
@@ -0,0 +1,99 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_configure.h,v 1.4 1999/03/02 03:18:49 oster Exp $ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Mark Holland
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+/********************************
+ *
+ * rf_configure.h
+ *
+ * header file for raidframe configuration in the kernel version only.
+ * configuration is invoked via ioctl rather than at boot time
+ *
+ *******************************/
+
+
+#ifndef _RF__RF_CONFIGURE_H_
+#define _RF__RF_CONFIGURE_H_
+
+#include <dev/raidframe/rf_archs.h>
+#include <dev/raidframe/rf_types.h>
+
+#include <sys/param.h>
+#include <sys/proc.h>
+
+#if defined(__NetBSD__)
+#include <sys/ioctl.h>
+#elif defined(__FreeBSD__)
+#include <sys/ioccom.h>
+#include <sys/filio.h>
+#endif
+
+/* the raidframe configuration, passed down through an ioctl.
+ * the driver can be reconfigured (with total loss of data) at any time,
+ * but it must be shut down first.
+ */
+struct RF_Config_s {
+ RF_RowCol_t numRow, numCol, numSpare; /* number of rows, columns,
+ * and spare disks */
+ dev_t devs[RF_MAXROW][RF_MAXCOL]; /* device numbers for disks
+ * comprising array */
+ char devnames[RF_MAXROW][RF_MAXCOL][50]; /* device names */
+ dev_t spare_devs[RF_MAXSPARE]; /* device numbers for spare
+ * disks */
+ char spare_names[RF_MAXSPARE][50]; /* device names */
+ RF_SectorNum_t sectPerSU; /* sectors per stripe unit */
+ RF_StripeNum_t SUsPerPU;/* stripe units per parity unit */
+ RF_StripeNum_t SUsPerRU;/* stripe units per reconstruction unit */
+ RF_ParityConfig_t parityConfig; /* identifies the RAID architecture to
+ * be used */
+ RF_DiskQueueType_t diskQueueType; /* 'f' = fifo, 'c' = cvscan,
+ * not used in kernel */
+ char maxOutstandingDiskReqs; /* # concurrent reqs to be sent to a
+ * disk. not used in kernel. */
+ char debugVars[RF_MAXDBGV][50]; /* space for specifying debug
+ * variables & their values */
+ unsigned int layoutSpecificSize; /* size in bytes of
+ * layout-specific info */
+ void *layoutSpecific; /* a pointer to a layout-specific structure to
+ * be copied in */
+ int force; /* if !0, ignore many fatal
+ configuration conditions */
+ /*
+ "force" is used to override cases where the component labels would
+ indicate that configuration should not proceed without user
+ intervention
+ */
+};
+#ifndef _KERNEL
+int rf_MakeConfig(char *configname, RF_Config_t * cfgPtr);
+int rf_MakeLayoutSpecificNULL(FILE * fp, RF_Config_t * cfgPtr, void *arg);
+int rf_MakeLayoutSpecificDeclustered(FILE * configfp, RF_Config_t * cfgPtr, void *arg);
+void *rf_ReadSpareTable(RF_SparetWait_t * req, char *fname);
+#endif /* !_KERNEL */
+
+#endif /* !_RF__RF_CONFIGURE_H_ */
diff --git a/sys/dev/raidframe/rf_copyback.c b/sys/dev/raidframe/rf_copyback.c
new file mode 100644
index 0000000..0e9a84d
--- /dev/null
+++ b/sys/dev/raidframe/rf_copyback.c
@@ -0,0 +1,431 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_copyback.c,v 1.15 2001/01/26 02:16:24 oster Exp $ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Mark Holland
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+/*****************************************************************************************
+ *
+ * copyback.c -- code to copy reconstructed data back from spare space to
+ * the replaced disk.
+ *
+ * the code operates using callbacks on the I/Os to continue with the next
+ * unit to be copied back. We do this because a simple loop containing blocking I/Os
+ * will not work in the simulator.
+ *
+ ****************************************************************************************/
+
+#include <dev/raidframe/rf_types.h>
+
+#if defined(__FreeBSD__)
+#include <sys/types.h>
+#include <sys/systm.h>
+#if __FreeBSD_version > 500005
+#include <sys/bio.h>
+#endif
+#endif
+
+#include <sys/time.h>
+#include <sys/buf.h>
+#include <dev/raidframe/rf_raid.h>
+#include <dev/raidframe/rf_mcpair.h>
+#include <dev/raidframe/rf_acctrace.h>
+#include <dev/raidframe/rf_etimer.h>
+#include <dev/raidframe/rf_general.h>
+#include <dev/raidframe/rf_utils.h>
+#include <dev/raidframe/rf_copyback.h>
+#include <dev/raidframe/rf_decluster.h>
+#include <dev/raidframe/rf_driver.h>
+#include <dev/raidframe/rf_shutdown.h>
+#include <dev/raidframe/rf_kintf.h>
+
+#define RF_COPYBACK_DATA 0
+#define RF_COPYBACK_PARITY 1
+
+int rf_copyback_in_progress;
+
+static int rf_CopybackReadDoneProc(RF_CopybackDesc_t * desc, int status);
+static int rf_CopybackWriteDoneProc(RF_CopybackDesc_t * desc, int status);
+static void rf_CopybackOne(RF_CopybackDesc_t * desc, int typ,
+ RF_RaidAddr_t addr, RF_RowCol_t testRow,
+ RF_RowCol_t testCol,
+ RF_SectorNum_t testOffs);
+static void rf_CopybackComplete(RF_CopybackDesc_t * desc, int status);
+
+int
+rf_ConfigureCopyback(listp)
+ RF_ShutdownList_t **listp;
+{
+ rf_copyback_in_progress = 0;
+ return (0);
+}
+#include <sys/types.h>
+#include <sys/param.h>
+#include <sys/systm.h>
+#include <sys/proc.h>
+#if defined(__NetBSD__)
+#include <sys/ioctl.h>
+#elif defined(__FreeBSD__)
+#include <sys/ioccom.h>
+#include <sys/filio.h>
+#endif
+#include <sys/fcntl.h>
+#include <sys/vnode.h>
+
+/* do a complete copyback */
+void
+rf_CopybackReconstructedData(raidPtr)
+ RF_Raid_t *raidPtr;
+{
+ RF_ComponentLabel_t *c_label;
+ int done, retcode;
+ RF_CopybackDesc_t *desc;
+ RF_RowCol_t frow, fcol;
+ RF_RaidDisk_t *badDisk;
+ struct vnode *vp;
+ char *databuf;
+ int ac;
+
+ RF_Malloc(c_label, sizeof(RF_ComponentLabel_t), (RF_ComponentLabel_t *));
+ if (c_label == NULL) {
+ printf("rf_CopybackReconstructedData: Out of memory?\n");
+ return;
+ }
+
+ done = 0;
+ fcol = 0;
+ for (frow = 0; frow < raidPtr->numRow; frow++) {
+ for (fcol = 0; fcol < raidPtr->numCol; fcol++) {
+ if (raidPtr->Disks[frow][fcol].status == rf_ds_dist_spared
+ || raidPtr->Disks[frow][fcol].status == rf_ds_spared) {
+ done = 1;
+ break;
+ }
+ }
+ if (done)
+ break;
+ }
+
+ if (frow == raidPtr->numRow) {
+ printf("COPYBACK: no disks need copyback\n");
+ return;
+ }
+ badDisk = &raidPtr->Disks[frow][fcol];
+
+ /* This device may have been opened successfully the first time. Close
+ * it before trying to open it again.. */
+
+ if (raidPtr->raid_cinfo[frow][fcol].ci_vp != NULL) {
+ printf("Closed the open device: %s\n",
+ raidPtr->Disks[frow][fcol].devname);
+ vp = raidPtr->raid_cinfo[frow][fcol].ci_vp;
+ ac = raidPtr->Disks[frow][fcol].auto_configured;
+ rf_close_component(raidPtr, vp, ac);
+ raidPtr->raid_cinfo[frow][fcol].ci_vp = NULL;
+
+ }
+ /* note that this disk was *not* auto_configured (any longer) */
+ raidPtr->Disks[frow][fcol].auto_configured = 0;
+
+ printf("About to (re-)open the device: %s\n",
+ raidPtr->Disks[frow][fcol].devname);
+
+ retcode = raid_getcomponentsize(raidPtr, frow, fcol);
+
+ if (retcode) {
+ printf("COPYBACK: raidlookup on device: %s failed: %d!\n",
+ raidPtr->Disks[frow][fcol].devname, retcode);
+
+ /* XXX the component isn't responding properly... must be
+ * still dead :-( */
+ return;
+
+ }
+#if 0
+ /* This is the way it was done before the CAM stuff was removed */
+
+ if (rf_extract_ids(badDisk->devname, &bus, &targ, &lun)) {
+ printf("COPYBACK: unable to extract bus, target, lun from devname %s\n",
+ badDisk->devname);
+ return;
+ }
+ /* TUR the disk that's marked as bad to be sure that it's actually
+ * alive */
+ rf_SCSI_AllocTUR(&tur_op);
+ retcode = rf_SCSI_DoTUR(tur_op, bus, targ, lun, badDisk->dev);
+ rf_SCSI_FreeDiskOp(tur_op, 0);
+#endif
+
+ if (retcode) {
+ printf("COPYBACK: target disk failed TUR\n");
+ return;
+ }
+ /* get a buffer to hold one SU */
+ RF_Malloc(databuf, rf_RaidAddressToByte(raidPtr, raidPtr->Layout.sectorsPerStripeUnit), (char *));
+
+ /* create a descriptor */
+ RF_Malloc(desc, sizeof(*desc), (RF_CopybackDesc_t *));
+ desc->raidPtr = raidPtr;
+ desc->status = 0;
+ desc->frow = frow;
+ desc->fcol = fcol;
+ desc->spRow = badDisk->spareRow;
+ desc->spCol = badDisk->spareCol;
+ desc->stripeAddr = 0;
+ desc->sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
+ desc->sectPerStripe = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.numDataCol;
+ desc->databuf = databuf;
+ desc->mcpair = rf_AllocMCPair();
+
+ printf("COPYBACK: Quiescing the array\n");
+ /* quiesce the array, since we don't want to code support for user
+ * accs here */
+ rf_SuspendNewRequestsAndWait(raidPtr);
+
+ /* adjust state of the array and of the disks */
+ RF_LOCK_MUTEX(raidPtr->mutex);
+ raidPtr->Disks[desc->frow][desc->fcol].status = rf_ds_optimal;
+ raidPtr->status[desc->frow] = rf_rs_optimal;
+ rf_copyback_in_progress = 1; /* debug only */
+ RF_UNLOCK_MUTEX(raidPtr->mutex);
+
+ printf("COPYBACK: Beginning\n");
+ RF_GETTIME(desc->starttime);
+ rf_ContinueCopyback(desc);
+
+ /* Data has been restored. Fix up the component label. */
+ /* Don't actually need the read here.. */
+ raidread_component_label( raidPtr->raid_cinfo[frow][fcol].ci_dev,
+ raidPtr->raid_cinfo[frow][fcol].ci_vp,
+ c_label);
+
+ raid_init_component_label( raidPtr, c_label );
+
+ c_label->row = frow;
+ c_label->column = fcol;
+ c_label->partitionSize = raidPtr->Disks[frow][fcol].partitionSize;
+
+ raidwrite_component_label( raidPtr->raid_cinfo[frow][fcol].ci_dev,
+ raidPtr->raid_cinfo[frow][fcol].ci_vp,
+ c_label);
+ RF_Free(c_label, sizeof(RF_ComponentLabel_t));
+}
+
+
+/*
+ * invoked via callback after a copyback I/O has completed to
+ * continue on with the next one
+ */
+void
+rf_ContinueCopyback(desc)
+ RF_CopybackDesc_t *desc;
+{
+ RF_SectorNum_t testOffs, stripeAddr;
+ RF_Raid_t *raidPtr = desc->raidPtr;
+ RF_RaidAddr_t addr;
+ RF_RowCol_t testRow, testCol;
+ int old_pctg, new_pctg, done;
+ struct timeval t, diff;
+
+ old_pctg = (-1);
+ while (1) {
+ stripeAddr = desc->stripeAddr;
+ desc->raidPtr->copyback_stripes_done = stripeAddr
+ / desc->sectPerStripe;
+ if (rf_prReconSched) {
+ old_pctg = 100 * desc->stripeAddr / raidPtr->totalSectors;
+ }
+ desc->stripeAddr += desc->sectPerStripe;
+ if (rf_prReconSched) {
+ new_pctg = 100 * desc->stripeAddr / raidPtr->totalSectors;
+ if (new_pctg != old_pctg) {
+ RF_GETTIME(t);
+ RF_TIMEVAL_DIFF(&desc->starttime, &t, &diff);
+ printf("%d %d.%06d\n", new_pctg, (int) diff.tv_sec, (int) diff.tv_usec);
+ }
+ }
+ if (stripeAddr >= raidPtr->totalSectors) {
+ rf_CopybackComplete(desc, 0);
+ return;
+ }
+ /* walk through the current stripe, su-by-su */
+ for (done = 0, addr = stripeAddr; addr < stripeAddr + desc->sectPerStripe; addr += desc->sectPerSU) {
+
+ /* map the SU, disallowing remap to spare space */
+ (raidPtr->Layout.map->MapSector) (raidPtr, addr, &testRow, &testCol, &testOffs, RF_DONT_REMAP);
+
+ if (testRow == desc->frow && testCol == desc->fcol) {
+ rf_CopybackOne(desc, RF_COPYBACK_DATA, addr, testRow, testCol, testOffs);
+ done = 1;
+ break;
+ }
+ }
+
+ if (!done) {
+ /* we didn't find the failed disk in the data part.
+ * check parity. */
+
+ /* map the parity for this stripe, disallowing remap
+ * to spare space */
+ (raidPtr->Layout.map->MapParity) (raidPtr, stripeAddr, &testRow, &testCol, &testOffs, RF_DONT_REMAP);
+
+ if (testRow == desc->frow && testCol == desc->fcol) {
+ rf_CopybackOne(desc, RF_COPYBACK_PARITY, stripeAddr, testRow, testCol, testOffs);
+ }
+ }
+ /* check to see if the last read/write pair failed */
+ if (desc->status) {
+ rf_CopybackComplete(desc, 1);
+ return;
+ }
+ /* we didn't find any units to copy back in this stripe.
+ * Continue with the next one */
+ }
+}
+
+
+/* copyback one unit */
+static void
+rf_CopybackOne(desc, typ, addr, testRow, testCol, testOffs)
+ RF_CopybackDesc_t *desc;
+ int typ;
+ RF_RaidAddr_t addr;
+ RF_RowCol_t testRow;
+ RF_RowCol_t testCol;
+ RF_SectorNum_t testOffs;
+{
+ RF_SectorCount_t sectPerSU = desc->sectPerSU;
+ RF_Raid_t *raidPtr = desc->raidPtr;
+ RF_RowCol_t spRow = desc->spRow;
+ RF_RowCol_t spCol = desc->spCol;
+ RF_SectorNum_t spOffs;
+
+ /* find the spare spare location for this SU */
+ if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
+ if (typ == RF_COPYBACK_DATA)
+ raidPtr->Layout.map->MapSector(raidPtr, addr, &spRow, &spCol, &spOffs, RF_REMAP);
+ else
+ raidPtr->Layout.map->MapParity(raidPtr, addr, &spRow, &spCol, &spOffs, RF_REMAP);
+ } else {
+ spOffs = testOffs;
+ }
+
+ /* create reqs to read the old location & write the new */
+ desc->readreq = rf_CreateDiskQueueData(RF_IO_TYPE_READ, spOffs,
+ sectPerSU, desc->databuf, 0L, 0,
+ (int (*) (void *, int)) rf_CopybackReadDoneProc, desc,
+ NULL, NULL, (void *) raidPtr, RF_DISKQUEUE_DATA_FLAGS_NONE, NULL);
+ desc->writereq = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, testOffs,
+ sectPerSU, desc->databuf, 0L, 0,
+ (int (*) (void *, int)) rf_CopybackWriteDoneProc, desc,
+ NULL, NULL, (void *) raidPtr, RF_DISKQUEUE_DATA_FLAGS_NONE, NULL);
+ desc->frow = testRow;
+ desc->fcol = testCol;
+
+ /* enqueue the read. the write will go out as part of the callback on
+ * the read. at user-level & in the kernel, wait for the read-write
+ * pair to complete. in the simulator, just return, since everything
+ * will happen as callbacks */
+
+ RF_LOCK_MUTEX(desc->mcpair->mutex);
+ desc->mcpair->flag = 0;
+
+ rf_DiskIOEnqueue(&raidPtr->Queues[spRow][spCol], desc->readreq, RF_IO_NORMAL_PRIORITY);
+
+ while (!desc->mcpair->flag) {
+ RF_WAIT_MCPAIR(desc->mcpair);
+ }
+ RF_UNLOCK_MUTEX(desc->mcpair->mutex);
+ rf_FreeDiskQueueData(desc->readreq);
+ rf_FreeDiskQueueData(desc->writereq);
+
+}
+
+
+/* called at interrupt context when the read has completed. just send out the write */
+static int
+rf_CopybackReadDoneProc(desc, status)
+ RF_CopybackDesc_t *desc;
+ int status;
+{
+ if (status) { /* invoke the callback with bad status */
+ printf("COPYBACK: copyback read failed. Aborting.\n");
+ (desc->writereq->CompleteFunc) (desc, -100);
+ } else {
+ rf_DiskIOEnqueue(&(desc->raidPtr->Queues[desc->frow][desc->fcol]), desc->writereq, RF_IO_NORMAL_PRIORITY);
+ }
+ return (0);
+}
+/* called at interrupt context when the write has completed.
+ * at user level & in the kernel, wake up the copyback thread.
+ * in the simulator, invoke the next copyback directly.
+ * can't free diskqueuedata structs in the kernel b/c we're at interrupt context.
+ */
+static int
+rf_CopybackWriteDoneProc(desc, status)
+ RF_CopybackDesc_t *desc;
+ int status;
+{
+ if (status && status != -100) {
+ printf("COPYBACK: copyback write failed. Aborting.\n");
+ }
+ desc->status = status;
+ rf_MCPairWakeupFunc(desc->mcpair);
+ return (0);
+}
+/* invoked when the copyback has completed */
+static void
+rf_CopybackComplete(desc, status)
+ RF_CopybackDesc_t *desc;
+ int status;
+{
+ RF_Raid_t *raidPtr = desc->raidPtr;
+ struct timeval t, diff;
+
+ if (!status) {
+ RF_LOCK_MUTEX(raidPtr->mutex);
+ if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
+ RF_ASSERT(raidPtr->Layout.map->parityConfig == 'D');
+ rf_FreeSpareTable(raidPtr);
+ } else {
+ raidPtr->Disks[desc->spRow][desc->spCol].status = rf_ds_spare;
+ }
+ RF_UNLOCK_MUTEX(raidPtr->mutex);
+
+ RF_GETTIME(t);
+ RF_TIMEVAL_DIFF(&desc->starttime, &t, &diff);
+ printf("Copyback time was %d.%06d seconds\n",
+ (int) diff.tv_sec, (int) diff.tv_usec);
+ } else
+ printf("COPYBACK: Failure.\n");
+
+ RF_Free(desc->databuf, rf_RaidAddressToByte(raidPtr, desc->sectPerSU));
+ rf_FreeMCPair(desc->mcpair);
+ RF_Free(desc, sizeof(*desc));
+
+ rf_copyback_in_progress = 0;
+ rf_ResumeNewRequests(raidPtr);
+}
diff --git a/sys/dev/raidframe/rf_copyback.h b/sys/dev/raidframe/rf_copyback.h
new file mode 100644
index 0000000..67da842
--- /dev/null
+++ b/sys/dev/raidframe/rf_copyback.h
@@ -0,0 +1,61 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_copyback.h,v 1.3 1999/02/05 00:06:06 oster Exp $ */
+/*
+ * rf_copyback.h
+ */
+/*
+ * Copyright (c) 1996 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Jim Zelenka
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+#ifndef _RF__RF_COPYBACK_H_
+#define _RF__RF_COPYBACK_H_
+
+#include <dev/raidframe/rf_types.h>
+
+typedef struct RF_CopybackDesc_s {
+ RF_Raid_t *raidPtr;
+ RF_RowCol_t frow;
+ RF_RowCol_t fcol;
+ RF_RowCol_t spRow;
+ RF_RowCol_t spCol;
+ int status;
+ RF_StripeNum_t stripeAddr;
+ RF_SectorCount_t sectPerSU;
+ RF_SectorCount_t sectPerStripe;
+ char *databuf;
+ RF_DiskQueueData_t *readreq;
+ RF_DiskQueueData_t *writereq;
+ struct timeval starttime;
+ RF_MCPair_t *mcpair;
+} RF_CopybackDesc_t;
+
+extern int rf_copyback_in_progress;
+
+int rf_ConfigureCopyback(RF_ShutdownList_t ** listp);
+void rf_CopybackReconstructedData(RF_Raid_t * raidPtr);
+void rf_ContinueCopyback(RF_CopybackDesc_t * desc);
+
+#endif /* !_RF__RF_COPYBACK_H_ */
diff --git a/sys/dev/raidframe/rf_cvscan.c b/sys/dev/raidframe/rf_cvscan.c
new file mode 100644
index 0000000..f52f938
--- /dev/null
+++ b/sys/dev/raidframe/rf_cvscan.c
@@ -0,0 +1,439 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_cvscan.c,v 1.5 1999/08/13 03:41:53 oster Exp $ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Mark Holland
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+/*******************************************************************************
+ *
+ * cvscan.c -- prioritized cvscan disk queueing code.
+ *
+ * Nov 9, 1994, adapted from raidSim version (MCH)
+ *
+ ******************************************************************************/
+
+#include <dev/raidframe/rf_types.h>
+#include <dev/raidframe/rf_alloclist.h>
+#include <dev/raidframe/rf_stripelocks.h>
+#include <dev/raidframe/rf_layout.h>
+#include <dev/raidframe/rf_diskqueue.h>
+#include <dev/raidframe/rf_cvscan.h>
+#include <dev/raidframe/rf_debugMem.h>
+#include <dev/raidframe/rf_general.h>
+
+#define DO_CHECK_STATE(_hdr_) CheckCvscanState((_hdr_), __FILE__, __LINE__)
+
+#define pri_ok(p) ( ((p) == RF_IO_NORMAL_PRIORITY) || ((p) == RF_IO_LOW_PRIORITY))
+
+static void
+CheckCvscanState(RF_CvscanHeader_t * hdr, char *file, int line)
+{
+ long i, key;
+ RF_DiskQueueData_t *tmp;
+
+ if (hdr->left != (RF_DiskQueueData_t *) NULL)
+ RF_ASSERT(hdr->left->sectorOffset < hdr->cur_block);
+ for (key = hdr->cur_block, i = 0, tmp = hdr->left;
+ tmp != (RF_DiskQueueData_t *) NULL;
+ key = tmp->sectorOffset, i++, tmp = tmp->next)
+ RF_ASSERT(tmp->sectorOffset <= key
+ && tmp->priority == hdr->nxt_priority && pri_ok(tmp->priority));
+ RF_ASSERT(i == hdr->left_cnt);
+
+ for (key = hdr->cur_block, i = 0, tmp = hdr->right;
+ tmp != (RF_DiskQueueData_t *) NULL;
+ key = tmp->sectorOffset, i++, tmp = tmp->next) {
+ RF_ASSERT(key <= tmp->sectorOffset);
+ RF_ASSERT(tmp->priority == hdr->nxt_priority);
+ RF_ASSERT(pri_ok(tmp->priority));
+ }
+ RF_ASSERT(i == hdr->right_cnt);
+
+ for (key = hdr->nxt_priority - 1, tmp = hdr->burner;
+ tmp != (RF_DiskQueueData_t *) NULL;
+ key = tmp->priority, tmp = tmp->next) {
+ RF_ASSERT(tmp);
+ RF_ASSERT(hdr);
+ RF_ASSERT(pri_ok(tmp->priority));
+ RF_ASSERT(key >= tmp->priority);
+ RF_ASSERT(tmp->priority < hdr->nxt_priority);
+ }
+}
+
+
+
+static void
+PriorityInsert(RF_DiskQueueData_t ** list_ptr, RF_DiskQueueData_t * req)
+{
+ /* * insert block pointed to by req in to list whose first * entry is
+ * pointed to by the pointer that list_ptr points to * ie., list_ptr
+ * is a grandparent of the first entry */
+
+ for (; (*list_ptr) != (RF_DiskQueueData_t *) NULL &&
+ (*list_ptr)->priority > req->priority;
+ list_ptr = &((*list_ptr)->next)) {
+ }
+ req->next = (*list_ptr);
+ (*list_ptr) = req;
+}
+
+
+
+static void
+ReqInsert(RF_DiskQueueData_t ** list_ptr, RF_DiskQueueData_t * req, RF_CvscanArmDir_t order)
+{
+ /* * insert block pointed to by req in to list whose first * entry is
+ * pointed to by the pointer that list_ptr points to * ie., list_ptr
+ * is a grandparent of the first entry */
+
+ for (; (*list_ptr) != (RF_DiskQueueData_t *) NULL &&
+
+ ((order == rf_cvscan_RIGHT && (*list_ptr)->sectorOffset <= req->sectorOffset)
+ || (order == rf_cvscan_LEFT && (*list_ptr)->sectorOffset > req->sectorOffset));
+ list_ptr = &((*list_ptr)->next)) {
+ }
+ req->next = (*list_ptr);
+ (*list_ptr) = req;
+}
+
+
+
+static RF_DiskQueueData_t *
+ReqDequeue(RF_DiskQueueData_t ** list_ptr)
+{
+ RF_DiskQueueData_t *ret = (*list_ptr);
+ if ((*list_ptr) != (RF_DiskQueueData_t *) NULL) {
+ (*list_ptr) = (*list_ptr)->next;
+ }
+ return (ret);
+}
+
+
+
+static void
+ReBalance(RF_CvscanHeader_t * hdr)
+{
+ /* DO_CHECK_STATE(hdr); */
+ while (hdr->right != (RF_DiskQueueData_t *) NULL
+ && hdr->right->sectorOffset < hdr->cur_block) {
+ hdr->right_cnt--;
+ hdr->left_cnt++;
+ ReqInsert(&hdr->left, ReqDequeue(&hdr->right), rf_cvscan_LEFT);
+ }
+ /* DO_CHECK_STATE(hdr); */
+}
+
+
+
+static void
+Transfer(RF_DiskQueueData_t ** to_list_ptr, RF_DiskQueueData_t ** from_list_ptr)
+{
+ RF_DiskQueueData_t *gp;
+ for (gp = (*from_list_ptr); gp != (RF_DiskQueueData_t *) NULL;) {
+ RF_DiskQueueData_t *p = gp->next;
+ PriorityInsert(to_list_ptr, gp);
+ gp = p;
+ }
+ (*from_list_ptr) = (RF_DiskQueueData_t *) NULL;
+}
+
+
+
+static void
+RealEnqueue(RF_CvscanHeader_t * hdr, RF_DiskQueueData_t * req)
+{
+ RF_ASSERT(req->priority == RF_IO_NORMAL_PRIORITY || req->priority == RF_IO_LOW_PRIORITY);
+
+ DO_CHECK_STATE(hdr);
+ if (hdr->left_cnt == 0 && hdr->right_cnt == 0) {
+ hdr->nxt_priority = req->priority;
+ }
+ if (req->priority > hdr->nxt_priority) {
+ /*
+ ** dump all other outstanding requests on the back burner
+ */
+ Transfer(&hdr->burner, &hdr->left);
+ Transfer(&hdr->burner, &hdr->right);
+ hdr->left_cnt = 0;
+ hdr->right_cnt = 0;
+ hdr->nxt_priority = req->priority;
+ }
+ if (req->priority < hdr->nxt_priority) {
+ /*
+ ** yet another low priority task!
+ */
+ PriorityInsert(&hdr->burner, req);
+ } else {
+ if (req->sectorOffset < hdr->cur_block) {
+ /* this request is to the left of the current arms */
+ ReqInsert(&hdr->left, req, rf_cvscan_LEFT);
+ hdr->left_cnt++;
+ } else {
+ /* this request is to the right of the current arms */
+ ReqInsert(&hdr->right, req, rf_cvscan_RIGHT);
+ hdr->right_cnt++;
+ }
+ }
+ DO_CHECK_STATE(hdr);
+}
+
+
+
+void
+rf_CvscanEnqueue(void *q_in, RF_DiskQueueData_t * elem, int priority)
+{
+ RF_CvscanHeader_t *hdr = (RF_CvscanHeader_t *) q_in;
+ RealEnqueue(hdr, elem /* req */ );
+}
+
+
+
+RF_DiskQueueData_t *
+rf_CvscanDequeue(void *q_in)
+{
+ RF_CvscanHeader_t *hdr = (RF_CvscanHeader_t *) q_in;
+ long range, i, sum_dist_left, sum_dist_right;
+ RF_DiskQueueData_t *ret;
+ RF_DiskQueueData_t *tmp;
+
+ DO_CHECK_STATE(hdr);
+
+ if (hdr->left_cnt == 0 && hdr->right_cnt == 0)
+ return ((RF_DiskQueueData_t *) NULL);
+
+ range = RF_MIN(hdr->range_for_avg, RF_MIN(hdr->left_cnt, hdr->right_cnt));
+ for (i = 0, tmp = hdr->left, sum_dist_left =
+ ((hdr->direction == rf_cvscan_RIGHT) ? range * hdr->change_penalty : 0);
+ tmp != (RF_DiskQueueData_t *) NULL && i < range;
+ tmp = tmp->next, i++) {
+ sum_dist_left += hdr->cur_block - tmp->sectorOffset;
+ }
+ for (i = 0, tmp = hdr->right, sum_dist_right =
+ ((hdr->direction == rf_cvscan_LEFT) ? range * hdr->change_penalty : 0);
+ tmp != (RF_DiskQueueData_t *) NULL && i < range;
+ tmp = tmp->next, i++) {
+ sum_dist_right += tmp->sectorOffset - hdr->cur_block;
+ }
+
+ if (hdr->right_cnt == 0 || sum_dist_left < sum_dist_right) {
+ hdr->direction = rf_cvscan_LEFT;
+ hdr->cur_block = hdr->left->sectorOffset + hdr->left->numSector;
+ hdr->left_cnt = RF_MAX(hdr->left_cnt - 1, 0);
+ tmp = hdr->left;
+ ret = (ReqDequeue(&hdr->left)) /*->parent*/ ;
+ } else {
+ hdr->direction = rf_cvscan_RIGHT;
+ hdr->cur_block = hdr->right->sectorOffset + hdr->right->numSector;
+ hdr->right_cnt = RF_MAX(hdr->right_cnt - 1, 0);
+ tmp = hdr->right;
+ ret = (ReqDequeue(&hdr->right)) /*->parent*/ ;
+ }
+ ReBalance(hdr);
+
+ if (hdr->left_cnt == 0 && hdr->right_cnt == 0
+ && hdr->burner != (RF_DiskQueueData_t *) NULL) {
+ /*
+ ** restore low priority requests for next dequeue
+ */
+ RF_DiskQueueData_t *burner = hdr->burner;
+ hdr->nxt_priority = burner->priority;
+ while (burner != (RF_DiskQueueData_t *) NULL
+ && burner->priority == hdr->nxt_priority) {
+ RF_DiskQueueData_t *next = burner->next;
+ RealEnqueue(hdr, burner);
+ burner = next;
+ }
+ hdr->burner = burner;
+ }
+ DO_CHECK_STATE(hdr);
+ return (ret);
+}
+
+
+
+RF_DiskQueueData_t *
+rf_CvscanPeek(void *q_in)
+{
+ RF_CvscanHeader_t *hdr = (RF_CvscanHeader_t *) q_in;
+ long range, i, sum_dist_left, sum_dist_right;
+ RF_DiskQueueData_t *tmp, *headElement;
+
+ DO_CHECK_STATE(hdr);
+
+ if (hdr->left_cnt == 0 && hdr->right_cnt == 0)
+ headElement = NULL;
+ else {
+ range = RF_MIN(hdr->range_for_avg, RF_MIN(hdr->left_cnt, hdr->right_cnt));
+ for (i = 0, tmp = hdr->left, sum_dist_left =
+ ((hdr->direction == rf_cvscan_RIGHT) ? range * hdr->change_penalty : 0);
+ tmp != (RF_DiskQueueData_t *) NULL && i < range;
+ tmp = tmp->next, i++) {
+ sum_dist_left += hdr->cur_block - tmp->sectorOffset;
+ }
+ for (i = 0, tmp = hdr->right, sum_dist_right =
+ ((hdr->direction == rf_cvscan_LEFT) ? range * hdr->change_penalty : 0);
+ tmp != (RF_DiskQueueData_t *) NULL && i < range;
+ tmp = tmp->next, i++) {
+ sum_dist_right += tmp->sectorOffset - hdr->cur_block;
+ }
+
+ if (hdr->right_cnt == 0 || sum_dist_left < sum_dist_right)
+ headElement = hdr->left;
+ else
+ headElement = hdr->right;
+ }
+ return (headElement);
+}
+
+
+
+/*
+** CVSCAN( 1, 0 ) is Shortest Seek Time First (SSTF)
+** lowest average response time
+** CVSCAN( 1, infinity ) is SCAN
+** lowest response time standard deviation
+*/
+
+
+int
+rf_CvscanConfigure()
+{
+ return (0);
+}
+
+
+
+void *
+rf_CvscanCreate(RF_SectorCount_t sectPerDisk,
+ RF_AllocListElem_t * clList,
+ RF_ShutdownList_t ** listp)
+{
+ RF_CvscanHeader_t *hdr;
+ long range = 2; /* Currently no mechanism to change these */
+ long penalty = sectPerDisk / 5;
+
+ RF_MallocAndAdd(hdr, sizeof(RF_CvscanHeader_t), (RF_CvscanHeader_t *), clList);
+ bzero((char *) hdr, sizeof(RF_CvscanHeader_t));
+ hdr->range_for_avg = RF_MAX(range, 1);
+ hdr->change_penalty = RF_MAX(penalty, 0);
+ hdr->direction = rf_cvscan_RIGHT;
+ hdr->cur_block = 0;
+ hdr->left_cnt = hdr->right_cnt = 0;
+ hdr->left = hdr->right = (RF_DiskQueueData_t *) NULL;
+ hdr->burner = (RF_DiskQueueData_t *) NULL;
+ DO_CHECK_STATE(hdr);
+
+ return ((void *) hdr);
+}
+
+
+#if defined(__NetBSD__) || defined(__FreeBSD__) && defined(_KERNEL)
+/* PrintCvscanQueue is not used, so we ignore it... */
+#else
+static void
+PrintCvscanQueue(RF_CvscanHeader_t * hdr)
+{
+ RF_DiskQueueData_t *tmp;
+
+ printf("CVSCAN(%d,%d) at %d going %s\n",
+ (int) hdr->range_for_avg,
+ (int) hdr->change_penalty,
+ (int) hdr->cur_block,
+ (hdr->direction == rf_cvscan_LEFT) ? "LEFT" : "RIGHT");
+ printf("\tLeft(%d): ", hdr->left_cnt);
+ for (tmp = hdr->left; tmp != (RF_DiskQueueData_t *) NULL; tmp = tmp->next)
+ printf("(%d,%ld,%d) ",
+ (int) tmp->sectorOffset,
+ (long) (tmp->sectorOffset + tmp->numSector),
+ tmp->priority);
+ printf("\n");
+ printf("\tRight(%d): ", hdr->right_cnt);
+ for (tmp = hdr->right; tmp != (RF_DiskQueueData_t *) NULL; tmp = tmp->next)
+ printf("(%d,%ld,%d) ",
+ (int) tmp->sectorOffset,
+ (long) (tmp->sectorOffset + tmp->numSector),
+ tmp->priority);
+ printf("\n");
+ printf("\tBurner: ");
+ for (tmp = hdr->burner; tmp != (RF_DiskQueueData_t *) NULL; tmp = tmp->next)
+ printf("(%d,%ld,%d) ",
+ (int) tmp->sectorOffset,
+ (long) (tmp->sectorOffset + tmp->numSector),
+ tmp->priority);
+ printf("\n");
+}
+#endif
+
+
+/* promotes reconstruction accesses for the given stripeID to normal priority.
+ * returns 1 if an access was found and zero otherwise. Normally, we should
+ * only have one or zero entries in the burner queue, so execution time should
+ * be short.
+ */
+int
+rf_CvscanPromote(void *q_in, RF_StripeNum_t parityStripeID, RF_ReconUnitNum_t which_ru)
+{
+ RF_CvscanHeader_t *hdr = (RF_CvscanHeader_t *) q_in;
+ RF_DiskQueueData_t *trailer = NULL, *tmp = hdr->burner, *tlist = NULL;
+ int retval = 0;
+
+ DO_CHECK_STATE(hdr);
+ while (tmp) { /* handle entries at the front of the list */
+ if (tmp->parityStripeID == parityStripeID && tmp->which_ru == which_ru) {
+ hdr->burner = tmp->next;
+ tmp->priority = RF_IO_NORMAL_PRIORITY;
+ tmp->next = tlist;
+ tlist = tmp;
+ tmp = hdr->burner;
+ } else
+ break;
+ }
+ if (tmp) {
+ trailer = tmp;
+ tmp = tmp->next;
+ }
+ while (tmp) { /* handle entries on the rest of the list */
+ if (tmp->parityStripeID == parityStripeID && tmp->which_ru == which_ru) {
+ trailer->next = tmp->next;
+ tmp->priority = RF_IO_NORMAL_PRIORITY;
+ tmp->next = tlist;
+ tlist = tmp; /* insert on a temp queue */
+ tmp = trailer->next;
+ } else {
+ trailer = tmp;
+ tmp = tmp->next;
+ }
+ }
+ while (tlist) {
+ retval++;
+ tmp = tlist->next;
+ RealEnqueue(hdr, tlist);
+ tlist = tmp;
+ }
+ RF_ASSERT(retval == 0 || retval == 1);
+ DO_CHECK_STATE((RF_CvscanHeader_t *) q_in);
+ return (retval);
+}
diff --git a/sys/dev/raidframe/rf_cvscan.h b/sys/dev/raidframe/rf_cvscan.h
new file mode 100644
index 0000000..7f536a8
--- /dev/null
+++ b/sys/dev/raidframe/rf_cvscan.h
@@ -0,0 +1,85 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_cvscan.h,v 1.3 1999/02/05 00:06:07 oster Exp $ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Mark Holland
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+/*
+** Disk scheduling by CVSCAN( N, r )
+**
+** Given a set of requests, partition them into one set on each
+** side of the current arm position. The trick is to pick which
+** side you are going to service next; once a side is picked you will
+** service the closest request.
+** Let there be n1 requests on one side and n2 requests on the other
+** side. If one of n1 or n2 is zero, select the other side.
+** If both n1 and n2 are nonzero, select a "range" for examination
+** that is N' = min( n1, n2, N ). Average the distance from the
+** current position to the nearest N' requests on each side giving
+** d1 and d2.
+** Suppose the last decision was to move toward set 2, then the
+** current direction is toward set 2, and you will only switch to set
+** 1 if d1+R < d2 where R is r*(total number of cylinders), r in [0,1].
+**
+** I extend this by applying only to the set of requests that all
+** share the same, highest priority level.
+*/
+
+#ifndef _RF__RF_CVSCAN_H_
+#define _RF__RF_CVSCAN_H_
+
+#include <dev/raidframe/rf_diskqueue.h>
+
+typedef enum RF_CvscanArmDir_e {
+ rf_cvscan_LEFT,
+ rf_cvscan_RIGHT
+} RF_CvscanArmDir_t;
+
+typedef struct RF_CvscanHeader_s {
+ long range_for_avg; /* CVSCAN param N */
+ long change_penalty; /* CVSCAN param R */
+ RF_CvscanArmDir_t direction;
+ RF_SectorNum_t cur_block;
+ int nxt_priority;
+ RF_DiskQueueData_t *left;
+ int left_cnt;
+ RF_DiskQueueData_t *right;
+ int right_cnt;
+ RF_DiskQueueData_t *burner;
+} RF_CvscanHeader_t;
+
+int rf_CvscanConfigure(void);
+void *
+rf_CvscanCreate(RF_SectorCount_t sect_per_disk,
+ RF_AllocListElem_t * cl_list, RF_ShutdownList_t ** listp);
+void rf_CvscanEnqueue(void *qptr, RF_DiskQueueData_t * req, int priority);
+RF_DiskQueueData_t *rf_CvscanDequeue(void *qptr);
+RF_DiskQueueData_t *rf_CvscanPeek(void *qptr);
+int
+rf_CvscanPromote(void *qptr, RF_StripeNum_t parityStripeID,
+ RF_ReconUnitNum_t which_ru);
+
+#endif /* !_RF__RF_CVSCAN_H_ */
diff --git a/sys/dev/raidframe/rf_dag.h b/sys/dev/raidframe/rf_dag.h
new file mode 100644
index 0000000..15cd4a8
--- /dev/null
+++ b/sys/dev/raidframe/rf_dag.h
@@ -0,0 +1,239 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_dag.h,v 1.3 1999/02/05 00:06:07 oster Exp $ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: William V. Courtright II, Mark Holland
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+/****************************************************************************
+ * *
+ * dag.h -- header file for DAG-related data structures *
+ * *
+ ****************************************************************************/
+
+#ifndef _RF__RF_DAG_H_
+#define _RF__RF_DAG_H_
+
+#include <dev/raidframe/rf_types.h>
+#include <dev/raidframe/rf_threadstuff.h>
+#include <dev/raidframe/rf_alloclist.h>
+#include <dev/raidframe/rf_stripelocks.h>
+#include <dev/raidframe/rf_layout.h>
+#include <dev/raidframe/rf_dagflags.h>
+#include <dev/raidframe/rf_acctrace.h>
+#include <dev/raidframe/rf_memchunk.h>
+
+#define RF_THREAD_CONTEXT 0 /* we were invoked from thread context */
+#define RF_INTR_CONTEXT 1 /* we were invoked from interrupt context */
+#define RF_MAX_ANTECEDENTS 20 /* max num of antecedents a node may posses */
+
+#if defined(__FreeBSD__) && __FreeBSD_version > 500005
+#include <sys/bio.h>
+#endif
+#include <sys/buf.h>
+
+struct RF_PropHeader_s { /* structure for propagation of results */
+ int resultNum; /* bind result # resultNum */
+ int paramNum; /* to parameter # paramNum */
+ RF_PropHeader_t *next; /* linked list for multiple results/params */
+};
+
+typedef enum RF_NodeStatus_e {
+ rf_bwd1, /* node is ready for undo logging (backward
+ * error recovery only) */
+ rf_bwd2, /* node has completed undo logging (backward
+ * error recovery only) */
+ rf_wait, /* node is waiting to be executed */
+ rf_fired, /* node is currently executing its do function */
+ rf_good, /* node successfully completed execution of
+ * its do function */
+ rf_bad, /* node failed to successfully execute its do
+ * function */
+ rf_skipped, /* not used anymore, used to imply a node was
+ * not executed */
+ rf_recover, /* node is currently executing its undo
+ * function */
+ rf_panic, /* node failed to successfully execute its
+ * undo function */
+ rf_undone /* node successfully executed its undo
+ * function */
+} RF_NodeStatus_t;
+/*
+ * These were used to control skipping a node.
+ * Now, these are only used as comments.
+ */
+typedef enum RF_AntecedentType_e {
+ rf_trueData,
+ rf_antiData,
+ rf_outputData,
+ rf_control
+} RF_AntecedentType_t;
+#define RF_DAG_PTRCACHESIZE 40
+#define RF_DAG_PARAMCACHESIZE 12
+
+typedef RF_uint8 RF_DagNodeFlags_t;
+
+struct RF_DagNode_s {
+ RF_NodeStatus_t status; /* current status of this node */
+ int (*doFunc) (RF_DagNode_t *); /* normal function */
+ int (*undoFunc) (RF_DagNode_t *); /* func to remove effect of
+ * doFunc */
+ int (*wakeFunc) (RF_DagNode_t *, int status); /* func called when the
+ * node completes an I/O */
+ int numParams; /* number of parameters required by *funcPtr */
+ int numResults; /* number of results produced by *funcPtr */
+ int numAntecedents; /* number of antecedents */
+ int numAntDone; /* number of antecedents which have finished */
+ int numSuccedents; /* number of succedents */
+ int numSuccFired; /* incremented when a succedent is fired
+ * during forward execution */
+ int numSuccDone; /* incremented when a succedent finishes
+ * during rollBackward */
+ int commitNode; /* boolean flag - if true, this is a commit
+ * node */
+ RF_DagNode_t **succedents; /* succedents, array size
+ * numSuccedents */
+ RF_DagNode_t **antecedents; /* antecedents, array size
+ * numAntecedents */
+ RF_AntecedentType_t antType[RF_MAX_ANTECEDENTS]; /* type of each
+ * antecedent */
+ void **results; /* array of results produced by *funcPtr */
+ RF_DagParam_t *params; /* array of parameters required by *funcPtr */
+ RF_PropHeader_t **propList; /* propagation list, size
+ * numSuccedents */
+ RF_DagHeader_t *dagHdr; /* ptr to head of dag containing this node */
+ void *dagFuncData; /* dag execution func uses this for whatever
+ * it wants */
+ RF_DagNode_t *next;
+ int nodeNum; /* used by PrintDAG for debug only */
+ int visited; /* used to avoid re-visiting nodes on DAG
+ * walks */
+ /* ANY CODE THAT USES THIS FIELD MUST MAINTAIN THE PROPERTY THAT AFTER
+ * IT FINISHES, ALL VISITED FLAGS IN THE DAG ARE IDENTICAL */
+ char *name; /* debug only */
+ RF_DagNodeFlags_t flags;/* see below */
+ RF_DagNode_t *dag_ptrs[RF_DAG_PTRCACHESIZE]; /* cache for performance */
+ RF_DagParam_t dag_params[RF_DAG_PARAMCACHESIZE]; /* cache for performance */
+};
+/*
+ * Bit values for flags field of RF_DagNode_t
+ */
+#define RF_DAGNODE_FLAG_NONE 0x00
+#define RF_DAGNODE_FLAG_YIELD 0x01 /* in the kernel, yield the processor
+ * before firing this node */
+
+/* enable - DAG ready for normal execution, no errors encountered
+ * rollForward - DAG encountered an error after commit point, rolling forward
+ * rollBackward - DAG encountered an error prior to commit point, rolling backward
+ */
+typedef enum RF_DagStatus_e {
+ rf_enable,
+ rf_rollForward,
+ rf_rollBackward
+} RF_DagStatus_t;
+#define RF_MAX_HDR_SUCC 1
+
+#define RF_MAXCHUNKS 10
+
+struct RF_DagHeader_s {
+ RF_DagStatus_t status; /* status of this DAG */
+ int numSuccedents; /* DAG may be a tree, i.e. may have > 1 root */
+ int numCommitNodes; /* number of commit nodes in graph */
+ int numCommits; /* number of commit nodes which have been
+ * fired */
+ RF_DagNode_t *succedents[RF_MAX_HDR_SUCC]; /* array of succedents,
+ * size numSuccedents */
+ RF_DagHeader_t *next; /* ptr to allow a list of dags */
+ RF_AllocListElem_t *allocList; /* ptr to list of ptrs to be freed
+ * prior to freeing DAG */
+ RF_AccessStripeMapHeader_t *asmList; /* list of access stripe maps
+ * to be freed */
+ int nodeNum; /* used by PrintDAG for debug only */
+ int numNodesCompleted;
+ RF_AccTraceEntry_t *tracerec; /* perf mon only */
+
+ void (*cbFunc) (void *); /* function to call when the dag
+ * completes */
+ void *cbArg; /* argument for cbFunc */
+ char *creator; /* name of function used to create this dag */
+
+ RF_Raid_t *raidPtr; /* the descriptor for the RAID device this DAG
+ * is for */
+ void *bp; /* the bp for this I/O passed down from the
+ * file system. ignored outside kernel */
+
+ RF_ChunkDesc_t *memChunk[RF_MAXCHUNKS]; /* experimental- Chunks of
+ * memory to be retained upon
+ * DAG free for re-use */
+ int chunkIndex; /* the idea is to avoid calls to alloc and
+ * free */
+
+ RF_ChunkDesc_t **xtraMemChunk; /* escape hatch which allows
+ * SelectAlgorithm to merge memChunks
+ * from several dags */
+ int xtraChunkIndex; /* number of ptrs to valid chunks */
+ int xtraChunkCnt; /* number of ptrs to chunks allocated */
+
+};
+
+struct RF_DagList_s {
+ /* common info for a list of dags which will be fired sequentially */
+ int numDags; /* number of dags in the list */
+ int numDagsFired; /* number of dags in list which have initiated
+ * execution */
+ int numDagsDone; /* number of dags in list which have completed
+ * execution */
+ RF_DagHeader_t *dags; /* list of dags */
+ RF_RaidAccessDesc_t *desc; /* ptr to descriptor for this access */
+ RF_AccTraceEntry_t tracerec; /* perf mon info for dags (not user
+ * info) */
+};
+/* resets a node so that it can be fired again */
+#define RF_ResetNode(_n_) { \
+ (_n_)->status = rf_wait; \
+ (_n_)->numAntDone = 0; \
+ (_n_)->numSuccFired = 0; \
+ (_n_)->numSuccDone = 0; \
+ (_n_)->next = NULL; \
+}
+
+#define RF_ResetDagHeader(_h_) { \
+ (_h_)->numNodesCompleted = 0; \
+ (_h_)->numCommits = 0; \
+ (_h_)->status = rf_enable; \
+}
+
+/* convience macro for declaring a create dag function */
+
+#define RF_CREATE_DAG_FUNC_DECL(_name_) \
+void _name_ ( \
+ RF_Raid_t *raidPtr, \
+ RF_AccessStripeMap_t *asmap, \
+ RF_DagHeader_t *dag_h, \
+ void *bp, \
+ RF_RaidAccessFlags_t flags, \
+ RF_AllocListElem_t *allocList)
+
+#endif /* !_RF__RF_DAG_H_ */
diff --git a/sys/dev/raidframe/rf_dagdegrd.c b/sys/dev/raidframe/rf_dagdegrd.c
new file mode 100644
index 0000000..8e4c15a
--- /dev/null
+++ b/sys/dev/raidframe/rf_dagdegrd.c
@@ -0,0 +1,1130 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_dagdegrd.c,v 1.7 2001/01/26 14:06:16 oster Exp $ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Mark Holland, Daniel Stodolsky, William V. Courtright II
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+/*
+ * rf_dagdegrd.c
+ *
+ * code for creating degraded read DAGs
+ */
+
+#include <dev/raidframe/rf_archs.h>
+#include <dev/raidframe/rf_types.h>
+#include <dev/raidframe/rf_raid.h>
+#include <dev/raidframe/rf_dag.h>
+#include <dev/raidframe/rf_dagutils.h>
+#include <dev/raidframe/rf_dagfuncs.h>
+#include <dev/raidframe/rf_debugMem.h>
+#include <dev/raidframe/rf_memchunk.h>
+#include <dev/raidframe/rf_general.h>
+#include <dev/raidframe/rf_dagdegrd.h>
+
+
+/******************************************************************************
+ *
+ * General comments on DAG creation:
+ *
+ * All DAGs in this file use roll-away error recovery. Each DAG has a single
+ * commit node, usually called "Cmt." If an error occurs before the Cmt node
+ * is reached, the execution engine will halt forward execution and work
+ * backward through the graph, executing the undo functions. Assuming that
+ * each node in the graph prior to the Cmt node are undoable and atomic - or -
+ * does not make changes to permanent state, the graph will fail atomically.
+ * If an error occurs after the Cmt node executes, the engine will roll-forward
+ * through the graph, blindly executing nodes until it reaches the end.
+ * If a graph reaches the end, it is assumed to have completed successfully.
+ *
+ * A graph has only 1 Cmt node.
+ *
+ */
+
+
+/******************************************************************************
+ *
+ * The following wrappers map the standard DAG creation interface to the
+ * DAG creation routines. Additionally, these wrappers enable experimentation
+ * with new DAG structures by providing an extra level of indirection, allowing
+ * the DAG creation routines to be replaced at this single point.
+ */
+
+void
+rf_CreateRaidFiveDegradedReadDAG(
+ RF_Raid_t * raidPtr,
+ RF_AccessStripeMap_t * asmap,
+ RF_DagHeader_t * dag_h,
+ void *bp,
+ RF_RaidAccessFlags_t flags,
+ RF_AllocListElem_t * allocList)
+{
+ rf_CreateDegradedReadDAG(raidPtr, asmap, dag_h, bp, flags, allocList,
+ &rf_xorRecoveryFuncs);
+}
+
+
+/******************************************************************************
+ *
+ * DAG creation code begins here
+ */
+
+
+/******************************************************************************
+ * Create a degraded read DAG for RAID level 1
+ *
+ * Hdr -> Nil -> R(p/s)d -> Commit -> Trm
+ *
+ * The "Rd" node reads data from the surviving disk in the mirror pair
+ * Rpd - read of primary copy
+ * Rsd - read of secondary copy
+ *
+ * Parameters: raidPtr - description of the physical array
+ * asmap - logical & physical addresses for this access
+ * bp - buffer ptr (for holding write data)
+ * flags - general flags (e.g. disk locking)
+ * allocList - list of memory allocated in DAG creation
+ *****************************************************************************/
+
+void
+rf_CreateRaidOneDegradedReadDAG(
+ RF_Raid_t * raidPtr,
+ RF_AccessStripeMap_t * asmap,
+ RF_DagHeader_t * dag_h,
+ void *bp,
+ RF_RaidAccessFlags_t flags,
+ RF_AllocListElem_t * allocList)
+{
+ RF_DagNode_t *nodes, *rdNode, *blockNode, *commitNode, *termNode;
+ RF_StripeNum_t parityStripeID;
+ RF_ReconUnitNum_t which_ru;
+ RF_PhysDiskAddr_t *pda;
+ int useMirror, i;
+
+ useMirror = 0;
+ parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout),
+ asmap->raidAddress, &which_ru);
+ if (rf_dagDebug) {
+ printf("[Creating RAID level 1 degraded read DAG]\n");
+ }
+ dag_h->creator = "RaidOneDegradedReadDAG";
+ /* alloc the Wnd nodes and the Wmir node */
+ if (asmap->numDataFailed == 0)
+ useMirror = RF_FALSE;
+ else
+ useMirror = RF_TRUE;
+
+ /* total number of nodes = 1 + (block + commit + terminator) */
+ RF_CallocAndAdd(nodes, 4, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
+ i = 0;
+ rdNode = &nodes[i];
+ i++;
+ blockNode = &nodes[i];
+ i++;
+ commitNode = &nodes[i];
+ i++;
+ termNode = &nodes[i];
+ i++;
+
+ /* this dag can not commit until the commit node is reached. errors
+ * prior to the commit point imply the dag has failed and must be
+ * retried */
+ dag_h->numCommitNodes = 1;
+ dag_h->numCommits = 0;
+ dag_h->numSuccedents = 1;
+
+ /* initialize the block, commit, and terminator nodes */
+ rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
+ NULL, 1, 0, 0, 0, dag_h, "Nil", allocList);
+ rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
+ NULL, 1, 1, 0, 0, dag_h, "Cmt", allocList);
+ rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
+ NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
+
+ pda = asmap->physInfo;
+ RF_ASSERT(pda != NULL);
+ /* parityInfo must describe entire parity unit */
+ RF_ASSERT(asmap->parityInfo->next == NULL);
+
+ /* initialize the data node */
+ if (!useMirror) {
+ /* read primary copy of data */
+ rf_InitNode(rdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
+ rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rpd", allocList);
+ rdNode->params[0].p = pda;
+ rdNode->params[1].p = pda->bufPtr;
+ rdNode->params[2].v = parityStripeID;
+ rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
+ } else {
+ /* read secondary copy of data */
+ rf_InitNode(rdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
+ rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rsd", allocList);
+ rdNode->params[0].p = asmap->parityInfo;
+ rdNode->params[1].p = pda->bufPtr;
+ rdNode->params[2].v = parityStripeID;
+ rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
+ }
+
+ /* connect header to block node */
+ RF_ASSERT(dag_h->numSuccedents == 1);
+ RF_ASSERT(blockNode->numAntecedents == 0);
+ dag_h->succedents[0] = blockNode;
+
+ /* connect block node to rdnode */
+ RF_ASSERT(blockNode->numSuccedents == 1);
+ RF_ASSERT(rdNode->numAntecedents == 1);
+ blockNode->succedents[0] = rdNode;
+ rdNode->antecedents[0] = blockNode;
+ rdNode->antType[0] = rf_control;
+
+ /* connect rdnode to commit node */
+ RF_ASSERT(rdNode->numSuccedents == 1);
+ RF_ASSERT(commitNode->numAntecedents == 1);
+ rdNode->succedents[0] = commitNode;
+ commitNode->antecedents[0] = rdNode;
+ commitNode->antType[0] = rf_control;
+
+ /* connect commit node to terminator */
+ RF_ASSERT(commitNode->numSuccedents == 1);
+ RF_ASSERT(termNode->numAntecedents == 1);
+ RF_ASSERT(termNode->numSuccedents == 0);
+ commitNode->succedents[0] = termNode;
+ termNode->antecedents[0] = commitNode;
+ termNode->antType[0] = rf_control;
+}
+
+
+
+/******************************************************************************
+ *
+ * creates a DAG to perform a degraded-mode read of data within one stripe.
+ * This DAG is as follows:
+ *
+ * Hdr -> Block -> Rud -> Xor -> Cmt -> T
+ * -> Rrd ->
+ * -> Rp -->
+ *
+ * Each R node is a successor of the L node
+ * One successor arc from each R node goes to C, and the other to X
+ * There is one Rud for each chunk of surviving user data requested by the
+ * user, and one Rrd for each chunk of surviving user data _not_ being read by
+ * the user
+ * R = read, ud = user data, rd = recovery (surviving) data, p = parity
+ * X = XOR, C = Commit, T = terminate
+ *
+ * The block node guarantees a single source node.
+ *
+ * Note: The target buffer for the XOR node is set to the actual user buffer
+ * where the failed data is supposed to end up. This buffer is zero'd by the
+ * code here. Thus, if you create a degraded read dag, use it, and then
+ * re-use, you have to be sure to zero the target buffer prior to the re-use.
+ *
+ * The recfunc argument at the end specifies the name and function used for
+ * the redundancy
+ * recovery function.
+ *
+ *****************************************************************************/
+
+void
+rf_CreateDegradedReadDAG(
+ RF_Raid_t * raidPtr,
+ RF_AccessStripeMap_t * asmap,
+ RF_DagHeader_t * dag_h,
+ void *bp,
+ RF_RaidAccessFlags_t flags,
+ RF_AllocListElem_t * allocList,
+ RF_RedFuncs_t * recFunc)
+{
+ RF_DagNode_t *nodes, *rudNodes, *rrdNodes, *xorNode, *blockNode;
+ RF_DagNode_t *commitNode, *rpNode, *termNode;
+ int nNodes, nRrdNodes, nRudNodes, nXorBufs, i;
+ int j, paramNum;
+ RF_SectorCount_t sectorsPerSU;
+ RF_ReconUnitNum_t which_ru;
+ char *overlappingPDAs;/* a temporary array of flags */
+ RF_AccessStripeMapHeader_t *new_asm_h[2];
+ RF_PhysDiskAddr_t *pda, *parityPDA;
+ RF_StripeNum_t parityStripeID;
+ RF_PhysDiskAddr_t *failedPDA;
+ RF_RaidLayout_t *layoutPtr;
+ char *rpBuf;
+
+ layoutPtr = &(raidPtr->Layout);
+ /* failedPDA points to the pda within the asm that targets the failed
+ * disk */
+ failedPDA = asmap->failedPDAs[0];
+ parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr,
+ asmap->raidAddress, &which_ru);
+ sectorsPerSU = layoutPtr->sectorsPerStripeUnit;
+
+ if (rf_dagDebug) {
+ printf("[Creating degraded read DAG]\n");
+ }
+ RF_ASSERT(asmap->numDataFailed == 1);
+ dag_h->creator = "DegradedReadDAG";
+
+ /*
+ * generate two ASMs identifying the surviving data we need
+ * in order to recover the lost data
+ */
+
+ /* overlappingPDAs array must be zero'd */
+ RF_Calloc(overlappingPDAs, asmap->numStripeUnitsAccessed, sizeof(char), (char *));
+ rf_GenerateFailedAccessASMs(raidPtr, asmap, failedPDA, dag_h, new_asm_h, &nXorBufs,
+ &rpBuf, overlappingPDAs, allocList);
+
+ /*
+ * create all the nodes at once
+ *
+ * -1 because no access is generated for the failed pda
+ */
+ nRudNodes = asmap->numStripeUnitsAccessed - 1;
+ nRrdNodes = ((new_asm_h[0]) ? new_asm_h[0]->stripeMap->numStripeUnitsAccessed : 0) +
+ ((new_asm_h[1]) ? new_asm_h[1]->stripeMap->numStripeUnitsAccessed : 0);
+ nNodes = 5 + nRudNodes + nRrdNodes; /* lock, unlock, xor, Rp, Rud,
+ * Rrd */
+ RF_CallocAndAdd(nodes, nNodes, sizeof(RF_DagNode_t), (RF_DagNode_t *),
+ allocList);
+ i = 0;
+ blockNode = &nodes[i];
+ i++;
+ commitNode = &nodes[i];
+ i++;
+ xorNode = &nodes[i];
+ i++;
+ rpNode = &nodes[i];
+ i++;
+ termNode = &nodes[i];
+ i++;
+ rudNodes = &nodes[i];
+ i += nRudNodes;
+ rrdNodes = &nodes[i];
+ i += nRrdNodes;
+ RF_ASSERT(i == nNodes);
+
+ /* initialize nodes */
+ dag_h->numCommitNodes = 1;
+ dag_h->numCommits = 0;
+ /* this dag can not commit until the commit node is reached errors
+ * prior to the commit point imply the dag has failed */
+ dag_h->numSuccedents = 1;
+
+ rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
+ NULL, nRudNodes + nRrdNodes + 1, 0, 0, 0, dag_h, "Nil", allocList);
+ rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
+ NULL, 1, 1, 0, 0, dag_h, "Cmt", allocList);
+ rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
+ NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
+ rf_InitNode(xorNode, rf_wait, RF_FALSE, recFunc->simple, rf_NullNodeUndoFunc,
+ NULL, 1, nRudNodes + nRrdNodes + 1, 2 * nXorBufs + 2, 1, dag_h,
+ recFunc->SimpleName, allocList);
+
+ /* fill in the Rud nodes */
+ for (pda = asmap->physInfo, i = 0; i < nRudNodes; i++, pda = pda->next) {
+ if (pda == failedPDA) {
+ i--;
+ continue;
+ }
+ rf_InitNode(&rudNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc,
+ rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h,
+ "Rud", allocList);
+ RF_ASSERT(pda);
+ rudNodes[i].params[0].p = pda;
+ rudNodes[i].params[1].p = pda->bufPtr;
+ rudNodes[i].params[2].v = parityStripeID;
+ rudNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
+ }
+
+ /* fill in the Rrd nodes */
+ i = 0;
+ if (new_asm_h[0]) {
+ for (pda = new_asm_h[0]->stripeMap->physInfo;
+ i < new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
+ i++, pda = pda->next) {
+ rf_InitNode(&rrdNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc,
+ rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0,
+ dag_h, "Rrd", allocList);
+ RF_ASSERT(pda);
+ rrdNodes[i].params[0].p = pda;
+ rrdNodes[i].params[1].p = pda->bufPtr;
+ rrdNodes[i].params[2].v = parityStripeID;
+ rrdNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
+ }
+ }
+ if (new_asm_h[1]) {
+ for (j = 0, pda = new_asm_h[1]->stripeMap->physInfo;
+ j < new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
+ j++, pda = pda->next) {
+ rf_InitNode(&rrdNodes[i + j], rf_wait, RF_FALSE, rf_DiskReadFunc,
+ rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0,
+ dag_h, "Rrd", allocList);
+ RF_ASSERT(pda);
+ rrdNodes[i + j].params[0].p = pda;
+ rrdNodes[i + j].params[1].p = pda->bufPtr;
+ rrdNodes[i + j].params[2].v = parityStripeID;
+ rrdNodes[i + j].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
+ }
+ }
+ /* make a PDA for the parity unit */
+ RF_MallocAndAdd(parityPDA, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
+ parityPDA->row = asmap->parityInfo->row;
+ parityPDA->col = asmap->parityInfo->col;
+ parityPDA->startSector = ((asmap->parityInfo->startSector / sectorsPerSU)
+ * sectorsPerSU) + (failedPDA->startSector % sectorsPerSU);
+ parityPDA->numSector = failedPDA->numSector;
+
+ /* initialize the Rp node */
+ rf_InitNode(rpNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
+ rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rp ", allocList);
+ rpNode->params[0].p = parityPDA;
+ rpNode->params[1].p = rpBuf;
+ rpNode->params[2].v = parityStripeID;
+ rpNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
+
+ /*
+ * the last and nastiest step is to assign all
+ * the parameters of the Xor node
+ */
+ paramNum = 0;
+ for (i = 0; i < nRrdNodes; i++) {
+ /* all the Rrd nodes need to be xored together */
+ xorNode->params[paramNum++] = rrdNodes[i].params[0];
+ xorNode->params[paramNum++] = rrdNodes[i].params[1];
+ }
+ for (i = 0; i < nRudNodes; i++) {
+ /* any Rud nodes that overlap the failed access need to be
+ * xored in */
+ if (overlappingPDAs[i]) {
+ RF_MallocAndAdd(pda, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
+ bcopy((char *) rudNodes[i].params[0].p, (char *) pda, sizeof(RF_PhysDiskAddr_t));
+ rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_DOBUFFER, 0);
+ xorNode->params[paramNum++].p = pda;
+ xorNode->params[paramNum++].p = pda->bufPtr;
+ }
+ }
+ RF_Free(overlappingPDAs, asmap->numStripeUnitsAccessed * sizeof(char));
+
+ /* install parity pda as last set of params to be xor'd */
+ xorNode->params[paramNum++].p = parityPDA;
+ xorNode->params[paramNum++].p = rpBuf;
+
+ /*
+ * the last 2 params to the recovery xor node are
+ * the failed PDA and the raidPtr
+ */
+ xorNode->params[paramNum++].p = failedPDA;
+ xorNode->params[paramNum++].p = raidPtr;
+ RF_ASSERT(paramNum == 2 * nXorBufs + 2);
+
+ /*
+ * The xor node uses results[0] as the target buffer.
+ * Set pointer and zero the buffer. In the kernel, this
+ * may be a user buffer in which case we have to remap it.
+ */
+ xorNode->results[0] = failedPDA->bufPtr;
+ RF_BZERO(bp, failedPDA->bufPtr, rf_RaidAddressToByte(raidPtr,
+ failedPDA->numSector));
+
+ /* connect nodes to form graph */
+ /* connect the header to the block node */
+ RF_ASSERT(dag_h->numSuccedents == 1);
+ RF_ASSERT(blockNode->numAntecedents == 0);
+ dag_h->succedents[0] = blockNode;
+
+ /* connect the block node to the read nodes */
+ RF_ASSERT(blockNode->numSuccedents == (1 + nRrdNodes + nRudNodes));
+ RF_ASSERT(rpNode->numAntecedents == 1);
+ blockNode->succedents[0] = rpNode;
+ rpNode->antecedents[0] = blockNode;
+ rpNode->antType[0] = rf_control;
+ for (i = 0; i < nRrdNodes; i++) {
+ RF_ASSERT(rrdNodes[i].numSuccedents == 1);
+ blockNode->succedents[1 + i] = &rrdNodes[i];
+ rrdNodes[i].antecedents[0] = blockNode;
+ rrdNodes[i].antType[0] = rf_control;
+ }
+ for (i = 0; i < nRudNodes; i++) {
+ RF_ASSERT(rudNodes[i].numSuccedents == 1);
+ blockNode->succedents[1 + nRrdNodes + i] = &rudNodes[i];
+ rudNodes[i].antecedents[0] = blockNode;
+ rudNodes[i].antType[0] = rf_control;
+ }
+
+ /* connect the read nodes to the xor node */
+ RF_ASSERT(xorNode->numAntecedents == (1 + nRrdNodes + nRudNodes));
+ RF_ASSERT(rpNode->numSuccedents == 1);
+ rpNode->succedents[0] = xorNode;
+ xorNode->antecedents[0] = rpNode;
+ xorNode->antType[0] = rf_trueData;
+ for (i = 0; i < nRrdNodes; i++) {
+ RF_ASSERT(rrdNodes[i].numSuccedents == 1);
+ rrdNodes[i].succedents[0] = xorNode;
+ xorNode->antecedents[1 + i] = &rrdNodes[i];
+ xorNode->antType[1 + i] = rf_trueData;
+ }
+ for (i = 0; i < nRudNodes; i++) {
+ RF_ASSERT(rudNodes[i].numSuccedents == 1);
+ rudNodes[i].succedents[0] = xorNode;
+ xorNode->antecedents[1 + nRrdNodes + i] = &rudNodes[i];
+ xorNode->antType[1 + nRrdNodes + i] = rf_trueData;
+ }
+
+ /* connect the xor node to the commit node */
+ RF_ASSERT(xorNode->numSuccedents == 1);
+ RF_ASSERT(commitNode->numAntecedents == 1);
+ xorNode->succedents[0] = commitNode;
+ commitNode->antecedents[0] = xorNode;
+ commitNode->antType[0] = rf_control;
+
+ /* connect the termNode to the commit node */
+ RF_ASSERT(commitNode->numSuccedents == 1);
+ RF_ASSERT(termNode->numAntecedents == 1);
+ RF_ASSERT(termNode->numSuccedents == 0);
+ commitNode->succedents[0] = termNode;
+ termNode->antType[0] = rf_control;
+ termNode->antecedents[0] = commitNode;
+}
+
+#if (RF_INCLUDE_CHAINDECLUSTER > 0)
+/******************************************************************************
+ * Create a degraded read DAG for Chained Declustering
+ *
+ * Hdr -> Nil -> R(p/s)d -> Cmt -> Trm
+ *
+ * The "Rd" node reads data from the surviving disk in the mirror pair
+ * Rpd - read of primary copy
+ * Rsd - read of secondary copy
+ *
+ * Parameters: raidPtr - description of the physical array
+ * asmap - logical & physical addresses for this access
+ * bp - buffer ptr (for holding write data)
+ * flags - general flags (e.g. disk locking)
+ * allocList - list of memory allocated in DAG creation
+ *****************************************************************************/
+
+void
+rf_CreateRaidCDegradedReadDAG(
+ RF_Raid_t * raidPtr,
+ RF_AccessStripeMap_t * asmap,
+ RF_DagHeader_t * dag_h,
+ void *bp,
+ RF_RaidAccessFlags_t flags,
+ RF_AllocListElem_t * allocList)
+{
+ RF_DagNode_t *nodes, *rdNode, *blockNode, *commitNode, *termNode;
+ RF_StripeNum_t parityStripeID;
+ int useMirror, i, shiftable;
+ RF_ReconUnitNum_t which_ru;
+ RF_PhysDiskAddr_t *pda;
+
+ if ((asmap->numDataFailed + asmap->numParityFailed) == 0) {
+ shiftable = RF_TRUE;
+ } else {
+ shiftable = RF_FALSE;
+ }
+ useMirror = 0;
+ parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout),
+ asmap->raidAddress, &which_ru);
+
+ if (rf_dagDebug) {
+ printf("[Creating RAID C degraded read DAG]\n");
+ }
+ dag_h->creator = "RaidCDegradedReadDAG";
+ /* alloc the Wnd nodes and the Wmir node */
+ if (asmap->numDataFailed == 0)
+ useMirror = RF_FALSE;
+ else
+ useMirror = RF_TRUE;
+
+ /* total number of nodes = 1 + (block + commit + terminator) */
+ RF_CallocAndAdd(nodes, 4, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
+ i = 0;
+ rdNode = &nodes[i];
+ i++;
+ blockNode = &nodes[i];
+ i++;
+ commitNode = &nodes[i];
+ i++;
+ termNode = &nodes[i];
+ i++;
+
+ /*
+ * This dag can not commit until the commit node is reached.
+ * Errors prior to the commit point imply the dag has failed
+ * and must be retried.
+ */
+ dag_h->numCommitNodes = 1;
+ dag_h->numCommits = 0;
+ dag_h->numSuccedents = 1;
+
+ /* initialize the block, commit, and terminator nodes */
+ rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
+ NULL, 1, 0, 0, 0, dag_h, "Nil", allocList);
+ rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
+ NULL, 1, 1, 0, 0, dag_h, "Cmt", allocList);
+ rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
+ NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
+
+ pda = asmap->physInfo;
+ RF_ASSERT(pda != NULL);
+ /* parityInfo must describe entire parity unit */
+ RF_ASSERT(asmap->parityInfo->next == NULL);
+
+ /* initialize the data node */
+ if (!useMirror) {
+ rf_InitNode(rdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
+ rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rpd", allocList);
+ if (shiftable && rf_compute_workload_shift(raidPtr, pda)) {
+ /* shift this read to the next disk in line */
+ rdNode->params[0].p = asmap->parityInfo;
+ rdNode->params[1].p = pda->bufPtr;
+ rdNode->params[2].v = parityStripeID;
+ rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
+ } else {
+ /* read primary copy */
+ rdNode->params[0].p = pda;
+ rdNode->params[1].p = pda->bufPtr;
+ rdNode->params[2].v = parityStripeID;
+ rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
+ }
+ } else {
+ /* read secondary copy of data */
+ rf_InitNode(rdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
+ rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rsd", allocList);
+ rdNode->params[0].p = asmap->parityInfo;
+ rdNode->params[1].p = pda->bufPtr;
+ rdNode->params[2].v = parityStripeID;
+ rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
+ }
+
+ /* connect header to block node */
+ RF_ASSERT(dag_h->numSuccedents == 1);
+ RF_ASSERT(blockNode->numAntecedents == 0);
+ dag_h->succedents[0] = blockNode;
+
+ /* connect block node to rdnode */
+ RF_ASSERT(blockNode->numSuccedents == 1);
+ RF_ASSERT(rdNode->numAntecedents == 1);
+ blockNode->succedents[0] = rdNode;
+ rdNode->antecedents[0] = blockNode;
+ rdNode->antType[0] = rf_control;
+
+ /* connect rdnode to commit node */
+ RF_ASSERT(rdNode->numSuccedents == 1);
+ RF_ASSERT(commitNode->numAntecedents == 1);
+ rdNode->succedents[0] = commitNode;
+ commitNode->antecedents[0] = rdNode;
+ commitNode->antType[0] = rf_control;
+
+ /* connect commit node to terminator */
+ RF_ASSERT(commitNode->numSuccedents == 1);
+ RF_ASSERT(termNode->numAntecedents == 1);
+ RF_ASSERT(termNode->numSuccedents == 0);
+ commitNode->succedents[0] = termNode;
+ termNode->antecedents[0] = commitNode;
+ termNode->antType[0] = rf_control;
+}
+#endif /* (RF_INCLUDE_CHAINDECLUSTER > 0) */
+
+#if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0) || (RF_INCLUDE_EVENODD > 0)
+/*
+ * XXX move this elsewhere?
+ */
+void
+rf_DD_GenerateFailedAccessASMs(
+ RF_Raid_t * raidPtr,
+ RF_AccessStripeMap_t * asmap,
+ RF_PhysDiskAddr_t ** pdap,
+ int *nNodep,
+ RF_PhysDiskAddr_t ** pqpdap,
+ int *nPQNodep,
+ RF_AllocListElem_t * allocList)
+{
+ RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
+ int PDAPerDisk, i;
+ RF_SectorCount_t secPerSU = layoutPtr->sectorsPerStripeUnit;
+ int numDataCol = layoutPtr->numDataCol;
+ int state;
+ RF_SectorNum_t suoff, suend;
+ unsigned firstDataCol, napdas, count;
+ RF_SectorNum_t fone_start, fone_end, ftwo_start = 0, ftwo_end = 0;
+ RF_PhysDiskAddr_t *fone = asmap->failedPDAs[0], *ftwo = asmap->failedPDAs[1];
+ RF_PhysDiskAddr_t *pda_p;
+ RF_PhysDiskAddr_t *phys_p;
+ RF_RaidAddr_t sosAddr;
+
+ /* determine how many pda's we will have to generate per unaccess
+ * stripe. If there is only one failed data unit, it is one; if two,
+ * possibly two, depending wether they overlap. */
+
+ fone_start = rf_StripeUnitOffset(layoutPtr, fone->startSector);
+ fone_end = fone_start + fone->numSector;
+
+#define CONS_PDA(if,start,num) \
+ pda_p->row = asmap->if->row; pda_p->col = asmap->if->col; \
+ pda_p->startSector = ((asmap->if->startSector / secPerSU) * secPerSU) + start; \
+ pda_p->numSector = num; \
+ pda_p->next = NULL; \
+ RF_MallocAndAdd(pda_p->bufPtr,rf_RaidAddressToByte(raidPtr,num),(char *), allocList)
+
+ if (asmap->numDataFailed == 1) {
+ PDAPerDisk = 1;
+ state = 1;
+ RF_MallocAndAdd(*pqpdap, 2 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
+ pda_p = *pqpdap;
+ /* build p */
+ CONS_PDA(parityInfo, fone_start, fone->numSector);
+ pda_p->type = RF_PDA_TYPE_PARITY;
+ pda_p++;
+ /* build q */
+ CONS_PDA(qInfo, fone_start, fone->numSector);
+ pda_p->type = RF_PDA_TYPE_Q;
+ } else {
+ ftwo_start = rf_StripeUnitOffset(layoutPtr, ftwo->startSector);
+ ftwo_end = ftwo_start + ftwo->numSector;
+ if (fone->numSector + ftwo->numSector > secPerSU) {
+ PDAPerDisk = 1;
+ state = 2;
+ RF_MallocAndAdd(*pqpdap, 2 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
+ pda_p = *pqpdap;
+ CONS_PDA(parityInfo, 0, secPerSU);
+ pda_p->type = RF_PDA_TYPE_PARITY;
+ pda_p++;
+ CONS_PDA(qInfo, 0, secPerSU);
+ pda_p->type = RF_PDA_TYPE_Q;
+ } else {
+ PDAPerDisk = 2;
+ state = 3;
+ /* four of them, fone, then ftwo */
+ RF_MallocAndAdd(*pqpdap, 4 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
+ pda_p = *pqpdap;
+ CONS_PDA(parityInfo, fone_start, fone->numSector);
+ pda_p->type = RF_PDA_TYPE_PARITY;
+ pda_p++;
+ CONS_PDA(qInfo, fone_start, fone->numSector);
+ pda_p->type = RF_PDA_TYPE_Q;
+ pda_p++;
+ CONS_PDA(parityInfo, ftwo_start, ftwo->numSector);
+ pda_p->type = RF_PDA_TYPE_PARITY;
+ pda_p++;
+ CONS_PDA(qInfo, ftwo_start, ftwo->numSector);
+ pda_p->type = RF_PDA_TYPE_Q;
+ }
+ }
+ /* figure out number of nonaccessed pda */
+ napdas = PDAPerDisk * (numDataCol - asmap->numStripeUnitsAccessed - (ftwo == NULL ? 1 : 0));
+ *nPQNodep = PDAPerDisk;
+
+ /* sweep over the over accessed pda's, figuring out the number of
+ * additional pda's to generate. Of course, skip the failed ones */
+
+ count = 0;
+ for (pda_p = asmap->physInfo; pda_p; pda_p = pda_p->next) {
+ if ((pda_p == fone) || (pda_p == ftwo))
+ continue;
+ suoff = rf_StripeUnitOffset(layoutPtr, pda_p->startSector);
+ suend = suoff + pda_p->numSector;
+ switch (state) {
+ case 1: /* one failed PDA to overlap */
+ /* if a PDA doesn't contain the failed unit, it can
+ * only miss the start or end, not both */
+ if ((suoff > fone_start) || (suend < fone_end))
+ count++;
+ break;
+ case 2: /* whole stripe */
+ if (suoff) /* leak at begining */
+ count++;
+ if (suend < numDataCol) /* leak at end */
+ count++;
+ break;
+ case 3: /* two disjoint units */
+ if ((suoff > fone_start) || (suend < fone_end))
+ count++;
+ if ((suoff > ftwo_start) || (suend < ftwo_end))
+ count++;
+ break;
+ default:
+ RF_PANIC();
+ }
+ }
+
+ napdas += count;
+ *nNodep = napdas;
+ if (napdas == 0)
+ return; /* short circuit */
+
+ /* allocate up our list of pda's */
+
+ RF_CallocAndAdd(pda_p, napdas, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
+ *pdap = pda_p;
+
+ /* linkem together */
+ for (i = 0; i < (napdas - 1); i++)
+ pda_p[i].next = pda_p + (i + 1);
+
+ /* march through the one's up to the first accessed disk */
+ firstDataCol = rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), asmap->physInfo->raidAddress) % numDataCol;
+ sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
+ for (i = 0; i < firstDataCol; i++) {
+ if ((pda_p - (*pdap)) == napdas)
+ continue;
+ pda_p->type = RF_PDA_TYPE_DATA;
+ pda_p->raidAddress = sosAddr + (i * secPerSU);
+ (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
+ /* skip over dead disks */
+ if (RF_DEAD_DISK(raidPtr->Disks[pda_p->row][pda_p->col].status))
+ continue;
+ switch (state) {
+ case 1: /* fone */
+ pda_p->numSector = fone->numSector;
+ pda_p->raidAddress += fone_start;
+ pda_p->startSector += fone_start;
+ RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
+ break;
+ case 2: /* full stripe */
+ pda_p->numSector = secPerSU;
+ RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, secPerSU), (char *), allocList);
+ break;
+ case 3: /* two slabs */
+ pda_p->numSector = fone->numSector;
+ pda_p->raidAddress += fone_start;
+ pda_p->startSector += fone_start;
+ RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
+ pda_p++;
+ pda_p->type = RF_PDA_TYPE_DATA;
+ pda_p->raidAddress = sosAddr + (i * secPerSU);
+ (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
+ pda_p->numSector = ftwo->numSector;
+ pda_p->raidAddress += ftwo_start;
+ pda_p->startSector += ftwo_start;
+ RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
+ break;
+ default:
+ RF_PANIC();
+ }
+ pda_p++;
+ }
+
+ /* march through the touched stripe units */
+ for (phys_p = asmap->physInfo; phys_p; phys_p = phys_p->next, i++) {
+ if ((phys_p == asmap->failedPDAs[0]) || (phys_p == asmap->failedPDAs[1]))
+ continue;
+ suoff = rf_StripeUnitOffset(layoutPtr, phys_p->startSector);
+ suend = suoff + phys_p->numSector;
+ switch (state) {
+ case 1: /* single buffer */
+ if (suoff > fone_start) {
+ RF_ASSERT(suend >= fone_end);
+ /* The data read starts after the mapped
+ * access, snip off the begining */
+ pda_p->numSector = suoff - fone_start;
+ pda_p->raidAddress = sosAddr + (i * secPerSU) + fone_start;
+ (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
+ RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
+ pda_p++;
+ }
+ if (suend < fone_end) {
+ RF_ASSERT(suoff <= fone_start);
+ /* The data read stops before the end of the
+ * failed access, extend */
+ pda_p->numSector = fone_end - suend;
+ pda_p->raidAddress = sosAddr + (i * secPerSU) + suend; /* off by one? */
+ (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
+ RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
+ pda_p++;
+ }
+ break;
+ case 2: /* whole stripe unit */
+ RF_ASSERT((suoff == 0) || (suend == secPerSU));
+ if (suend < secPerSU) { /* short read, snip from end
+ * on */
+ pda_p->numSector = secPerSU - suend;
+ pda_p->raidAddress = sosAddr + (i * secPerSU) + suend; /* off by one? */
+ (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
+ RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
+ pda_p++;
+ } else
+ if (suoff > 0) { /* short at front */
+ pda_p->numSector = suoff;
+ pda_p->raidAddress = sosAddr + (i * secPerSU);
+ (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
+ RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
+ pda_p++;
+ }
+ break;
+ case 3: /* two nonoverlapping failures */
+ if ((suoff > fone_start) || (suend < fone_end)) {
+ if (suoff > fone_start) {
+ RF_ASSERT(suend >= fone_end);
+ /* The data read starts after the
+ * mapped access, snip off the
+ * begining */
+ pda_p->numSector = suoff - fone_start;
+ pda_p->raidAddress = sosAddr + (i * secPerSU) + fone_start;
+ (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
+ RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
+ pda_p++;
+ }
+ if (suend < fone_end) {
+ RF_ASSERT(suoff <= fone_start);
+ /* The data read stops before the end
+ * of the failed access, extend */
+ pda_p->numSector = fone_end - suend;
+ pda_p->raidAddress = sosAddr + (i * secPerSU) + suend; /* off by one? */
+ (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
+ RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
+ pda_p++;
+ }
+ }
+ if ((suoff > ftwo_start) || (suend < ftwo_end)) {
+ if (suoff > ftwo_start) {
+ RF_ASSERT(suend >= ftwo_end);
+ /* The data read starts after the
+ * mapped access, snip off the
+ * begining */
+ pda_p->numSector = suoff - ftwo_start;
+ pda_p->raidAddress = sosAddr + (i * secPerSU) + ftwo_start;
+ (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
+ RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
+ pda_p++;
+ }
+ if (suend < ftwo_end) {
+ RF_ASSERT(suoff <= ftwo_start);
+ /* The data read stops before the end
+ * of the failed access, extend */
+ pda_p->numSector = ftwo_end - suend;
+ pda_p->raidAddress = sosAddr + (i * secPerSU) + suend; /* off by one? */
+ (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
+ RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
+ pda_p++;
+ }
+ }
+ break;
+ default:
+ RF_PANIC();
+ }
+ }
+
+ /* after the last accessed disk */
+ for (; i < numDataCol; i++) {
+ if ((pda_p - (*pdap)) == napdas)
+ continue;
+ pda_p->type = RF_PDA_TYPE_DATA;
+ pda_p->raidAddress = sosAddr + (i * secPerSU);
+ (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
+ /* skip over dead disks */
+ if (RF_DEAD_DISK(raidPtr->Disks[pda_p->row][pda_p->col].status))
+ continue;
+ switch (state) {
+ case 1: /* fone */
+ pda_p->numSector = fone->numSector;
+ pda_p->raidAddress += fone_start;
+ pda_p->startSector += fone_start;
+ RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
+ break;
+ case 2: /* full stripe */
+ pda_p->numSector = secPerSU;
+ RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, secPerSU), (char *), allocList);
+ break;
+ case 3: /* two slabs */
+ pda_p->numSector = fone->numSector;
+ pda_p->raidAddress += fone_start;
+ pda_p->startSector += fone_start;
+ RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
+ pda_p++;
+ pda_p->type = RF_PDA_TYPE_DATA;
+ pda_p->raidAddress = sosAddr + (i * secPerSU);
+ (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
+ pda_p->numSector = ftwo->numSector;
+ pda_p->raidAddress += ftwo_start;
+ pda_p->startSector += ftwo_start;
+ RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
+ break;
+ default:
+ RF_PANIC();
+ }
+ pda_p++;
+ }
+
+ RF_ASSERT(pda_p - *pdap == napdas);
+ return;
+}
+#define INIT_DISK_NODE(node,name) \
+rf_InitNode(node, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 2,1,4,0, dag_h, name, allocList); \
+(node)->succedents[0] = unblockNode; \
+(node)->succedents[1] = recoveryNode; \
+(node)->antecedents[0] = blockNode; \
+(node)->antType[0] = rf_control
+
+#define DISK_NODE_PARAMS(_node_,_p_) \
+ (_node_).params[0].p = _p_ ; \
+ (_node_).params[1].p = (_p_)->bufPtr; \
+ (_node_).params[2].v = parityStripeID; \
+ (_node_).params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru)
+
+void
+rf_DoubleDegRead(
+ RF_Raid_t * raidPtr,
+ RF_AccessStripeMap_t * asmap,
+ RF_DagHeader_t * dag_h,
+ void *bp,
+ RF_RaidAccessFlags_t flags,
+ RF_AllocListElem_t * allocList,
+ char *redundantReadNodeName,
+ char *recoveryNodeName,
+ int (*recovFunc) (RF_DagNode_t *))
+{
+ RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
+ RF_DagNode_t *nodes, *rudNodes, *rrdNodes, *recoveryNode, *blockNode,
+ *unblockNode, *rpNodes, *rqNodes, *termNode;
+ RF_PhysDiskAddr_t *pda, *pqPDAs;
+ RF_PhysDiskAddr_t *npdas;
+ int nNodes, nRrdNodes, nRudNodes, i;
+ RF_ReconUnitNum_t which_ru;
+ int nReadNodes, nPQNodes;
+ RF_PhysDiskAddr_t *failedPDA = asmap->failedPDAs[0];
+ RF_PhysDiskAddr_t *failedPDAtwo = asmap->failedPDAs[1];
+ RF_StripeNum_t parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr, asmap->raidAddress, &which_ru);
+
+ if (rf_dagDebug)
+ printf("[Creating Double Degraded Read DAG]\n");
+ rf_DD_GenerateFailedAccessASMs(raidPtr, asmap, &npdas, &nRrdNodes, &pqPDAs, &nPQNodes, allocList);
+
+ nRudNodes = asmap->numStripeUnitsAccessed - (asmap->numDataFailed);
+ nReadNodes = nRrdNodes + nRudNodes + 2 * nPQNodes;
+ nNodes = 4 /* block, unblock, recovery, term */ + nReadNodes;
+
+ RF_CallocAndAdd(nodes, nNodes, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
+ i = 0;
+ blockNode = &nodes[i];
+ i += 1;
+ unblockNode = &nodes[i];
+ i += 1;
+ recoveryNode = &nodes[i];
+ i += 1;
+ termNode = &nodes[i];
+ i += 1;
+ rudNodes = &nodes[i];
+ i += nRudNodes;
+ rrdNodes = &nodes[i];
+ i += nRrdNodes;
+ rpNodes = &nodes[i];
+ i += nPQNodes;
+ rqNodes = &nodes[i];
+ i += nPQNodes;
+ RF_ASSERT(i == nNodes);
+
+ dag_h->numSuccedents = 1;
+ dag_h->succedents[0] = blockNode;
+ dag_h->creator = "DoubleDegRead";
+ dag_h->numCommits = 0;
+ dag_h->numCommitNodes = 1; /* unblock */
+
+ rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 2, 0, 0, dag_h, "Trm", allocList);
+ termNode->antecedents[0] = unblockNode;
+ termNode->antType[0] = rf_control;
+ termNode->antecedents[1] = recoveryNode;
+ termNode->antType[1] = rf_control;
+
+ /* init the block and unblock nodes */
+ /* The block node has all nodes except itself, unblock and recovery as
+ * successors. Similarly for predecessors of the unblock. */
+ rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nReadNodes, 0, 0, 0, dag_h, "Nil", allocList);
+ rf_InitNode(unblockNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nReadNodes, 0, 0, dag_h, "Nil", allocList);
+
+ for (i = 0; i < nReadNodes; i++) {
+ blockNode->succedents[i] = rudNodes + i;
+ unblockNode->antecedents[i] = rudNodes + i;
+ unblockNode->antType[i] = rf_control;
+ }
+ unblockNode->succedents[0] = termNode;
+
+ /* The recovery node has all the reads as predecessors, and the term
+ * node as successors. It gets a pda as a param from each of the read
+ * nodes plus the raidPtr. For each failed unit is has a result pda. */
+ rf_InitNode(recoveryNode, rf_wait, RF_FALSE, recovFunc, rf_NullNodeUndoFunc, NULL,
+ 1, /* succesors */
+ nReadNodes, /* preds */
+ nReadNodes + 2, /* params */
+ asmap->numDataFailed, /* results */
+ dag_h, recoveryNodeName, allocList);
+
+ recoveryNode->succedents[0] = termNode;
+ for (i = 0; i < nReadNodes; i++) {
+ recoveryNode->antecedents[i] = rudNodes + i;
+ recoveryNode->antType[i] = rf_trueData;
+ }
+
+ /* build the read nodes, then come back and fill in recovery params
+ * and results */
+ pda = asmap->physInfo;
+ for (i = 0; i < nRudNodes; pda = pda->next) {
+ if ((pda == failedPDA) || (pda == failedPDAtwo))
+ continue;
+ INIT_DISK_NODE(rudNodes + i, "Rud");
+ RF_ASSERT(pda);
+ DISK_NODE_PARAMS(rudNodes[i], pda);
+ i++;
+ }
+
+ pda = npdas;
+ for (i = 0; i < nRrdNodes; i++, pda = pda->next) {
+ INIT_DISK_NODE(rrdNodes + i, "Rrd");
+ RF_ASSERT(pda);
+ DISK_NODE_PARAMS(rrdNodes[i], pda);
+ }
+
+ /* redundancy pdas */
+ pda = pqPDAs;
+ INIT_DISK_NODE(rpNodes, "Rp");
+ RF_ASSERT(pda);
+ DISK_NODE_PARAMS(rpNodes[0], pda);
+ pda++;
+ INIT_DISK_NODE(rqNodes, redundantReadNodeName);
+ RF_ASSERT(pda);
+ DISK_NODE_PARAMS(rqNodes[0], pda);
+ if (nPQNodes == 2) {
+ pda++;
+ INIT_DISK_NODE(rpNodes + 1, "Rp");
+ RF_ASSERT(pda);
+ DISK_NODE_PARAMS(rpNodes[1], pda);
+ pda++;
+ INIT_DISK_NODE(rqNodes + 1, redundantReadNodeName);
+ RF_ASSERT(pda);
+ DISK_NODE_PARAMS(rqNodes[1], pda);
+ }
+ /* fill in recovery node params */
+ for (i = 0; i < nReadNodes; i++)
+ recoveryNode->params[i] = rudNodes[i].params[0]; /* pda */
+ recoveryNode->params[i++].p = (void *) raidPtr;
+ recoveryNode->params[i++].p = (void *) asmap;
+ recoveryNode->results[0] = failedPDA;
+ if (asmap->numDataFailed == 2)
+ recoveryNode->results[1] = failedPDAtwo;
+
+ /* zero fill the target data buffers? */
+}
+
+#endif /* (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0) || (RF_INCLUDE_EVENODD > 0) */
diff --git a/sys/dev/raidframe/rf_dagdegrd.h b/sys/dev/raidframe/rf_dagdegrd.h
new file mode 100644
index 0000000..2e899d8
--- /dev/null
+++ b/sys/dev/raidframe/rf_dagdegrd.h
@@ -0,0 +1,64 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_dagdegrd.h,v 1.3 1999/02/05 00:06:07 oster Exp $ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Mark Holland, Daniel Stodolsky, William V. Courtright II
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+#ifndef _RF__RF_DAGDEGRD_H_
+#define _RF__RF_DAGDEGRD_H_
+
+#include <dev/raidframe/rf_types.h>
+
+/* degraded read DAG creation routines */
+void
+rf_CreateRaidFiveDegradedReadDAG(RF_Raid_t * raidPtr,
+ RF_AccessStripeMap_t * asmap, RF_DagHeader_t * dag_h, void *bp,
+ RF_RaidAccessFlags_t flags, RF_AllocListElem_t * allocList);
+void
+rf_CreateRaidOneDegradedReadDAG(RF_Raid_t * raidPtr,
+ RF_AccessStripeMap_t * asmap, RF_DagHeader_t * dag_h, void *bp,
+ RF_RaidAccessFlags_t flags, RF_AllocListElem_t * allocList);
+void
+rf_CreateDegradedReadDAG(RF_Raid_t * raidPtr,
+ RF_AccessStripeMap_t * asmap, RF_DagHeader_t * dag_h, void *bp,
+ RF_RaidAccessFlags_t flags, RF_AllocListElem_t * allocList,
+ RF_RedFuncs_t * recFunc);
+void
+rf_CreateRaidCDegradedReadDAG(RF_Raid_t * raidPtr,
+ RF_AccessStripeMap_t * asmap, RF_DagHeader_t * dag_h, void *bp,
+ RF_RaidAccessFlags_t flags, RF_AllocListElem_t * allocList);
+void
+rf_DD_GenerateFailedAccessASMs(RF_Raid_t * raidPtr,
+ RF_AccessStripeMap_t * asmap, RF_PhysDiskAddr_t ** pdap,
+ int *nNodep, RF_PhysDiskAddr_t ** pqpdap, int *nPQNodep,
+ RF_AllocListElem_t * allocList);
+void
+rf_DoubleDegRead(RF_Raid_t * raidPtr, RF_AccessStripeMap_t * asmap,
+ RF_DagHeader_t * dag_h, void *bp, RF_RaidAccessFlags_t flags,
+ RF_AllocListElem_t * allocList, char *redundantReadNodeName,
+ char *recoveryNodeName, int (*recovFunc) (RF_DagNode_t *));
+
+#endif /* !_RF__RF_DAGDEGRD_H_ */
diff --git a/sys/dev/raidframe/rf_dagdegwr.c b/sys/dev/raidframe/rf_dagdegwr.c
new file mode 100644
index 0000000..68d1899
--- /dev/null
+++ b/sys/dev/raidframe/rf_dagdegwr.c
@@ -0,0 +1,844 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_dagdegwr.c,v 1.6 2001/01/26 04:05:08 oster Exp $ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Mark Holland, Daniel Stodolsky, William V. Courtright II
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+/*
+ * rf_dagdegwr.c
+ *
+ * code for creating degraded write DAGs
+ *
+ */
+
+#include <dev/raidframe/rf_types.h>
+#include <dev/raidframe/rf_raid.h>
+#include <dev/raidframe/rf_dag.h>
+#include <dev/raidframe/rf_dagutils.h>
+#include <dev/raidframe/rf_dagfuncs.h>
+#include <dev/raidframe/rf_debugMem.h>
+#include <dev/raidframe/rf_memchunk.h>
+#include <dev/raidframe/rf_general.h>
+#include <dev/raidframe/rf_dagdegwr.h>
+
+
+/******************************************************************************
+ *
+ * General comments on DAG creation:
+ *
+ * All DAGs in this file use roll-away error recovery. Each DAG has a single
+ * commit node, usually called "Cmt." If an error occurs before the Cmt node
+ * is reached, the execution engine will halt forward execution and work
+ * backward through the graph, executing the undo functions. Assuming that
+ * each node in the graph prior to the Cmt node are undoable and atomic - or -
+ * does not make changes to permanent state, the graph will fail atomically.
+ * If an error occurs after the Cmt node executes, the engine will roll-forward
+ * through the graph, blindly executing nodes until it reaches the end.
+ * If a graph reaches the end, it is assumed to have completed successfully.
+ *
+ * A graph has only 1 Cmt node.
+ *
+ */
+
+
+/******************************************************************************
+ *
+ * The following wrappers map the standard DAG creation interface to the
+ * DAG creation routines. Additionally, these wrappers enable experimentation
+ * with new DAG structures by providing an extra level of indirection, allowing
+ * the DAG creation routines to be replaced at this single point.
+ */
+
+static
+RF_CREATE_DAG_FUNC_DECL(rf_CreateSimpleDegradedWriteDAG)
+{
+ rf_CommonCreateSimpleDegradedWriteDAG(raidPtr, asmap, dag_h, bp,
+ flags, allocList, 1, rf_RecoveryXorFunc, RF_TRUE);
+}
+
+void
+rf_CreateDegradedWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList)
+ RF_Raid_t *raidPtr;
+ RF_AccessStripeMap_t *asmap;
+ RF_DagHeader_t *dag_h;
+ void *bp;
+ RF_RaidAccessFlags_t flags;
+ RF_AllocListElem_t *allocList;
+{
+ RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
+ RF_PhysDiskAddr_t *failedPDA = asmap->failedPDAs[0];
+
+ RF_ASSERT(asmap->numDataFailed == 1);
+ dag_h->creator = "DegradedWriteDAG";
+
+ /* if the access writes only a portion of the failed unit, and also
+ * writes some portion of at least one surviving unit, we create two
+ * DAGs, one for the failed component and one for the non-failed
+ * component, and do them sequentially. Note that the fact that we're
+ * accessing only a portion of the failed unit indicates that the
+ * access either starts or ends in the failed unit, and hence we need
+ * create only two dags. This is inefficient in that the same data or
+ * parity can get read and written twice using this structure. I need
+ * to fix this to do the access all at once. */
+ RF_ASSERT(!(asmap->numStripeUnitsAccessed != 1 && failedPDA->numSector != layoutPtr->sectorsPerStripeUnit));
+ rf_CreateSimpleDegradedWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList);
+}
+
+
+
+/******************************************************************************
+ *
+ * DAG creation code begins here
+ */
+
+
+
+/******************************************************************************
+ *
+ * CommonCreateSimpleDegradedWriteDAG -- creates a DAG to do a degraded-mode
+ * write, which is as follows
+ *
+ * / {Wnq} --\
+ * hdr -> blockNode -> Rod -> Xor -> Cmt -> Wnp ----> unblock -> term
+ * \ {Rod} / \ Wnd ---/
+ * \ {Wnd} -/
+ *
+ * commit nodes: Xor, Wnd
+ *
+ * IMPORTANT:
+ * This DAG generator does not work for double-degraded archs since it does not
+ * generate Q
+ *
+ * This dag is essentially identical to the large-write dag, except that the
+ * write to the failed data unit is suppressed.
+ *
+ * IMPORTANT: this dag does not work in the case where the access writes only
+ * a portion of the failed unit, and also writes some portion of at least one
+ * surviving SU. this case is handled in CreateDegradedWriteDAG above.
+ *
+ * The block & unblock nodes are leftovers from a previous version. They
+ * do nothing, but I haven't deleted them because it would be a tremendous
+ * effort to put them back in.
+ *
+ * This dag is used whenever a one of the data units in a write has failed.
+ * If it is the parity unit that failed, the nonredundant write dag (below)
+ * is used.
+ *****************************************************************************/
+
+void
+rf_CommonCreateSimpleDegradedWriteDAG(raidPtr, asmap, dag_h, bp, flags,
+ allocList, nfaults, redFunc, allowBufferRecycle)
+ RF_Raid_t *raidPtr;
+ RF_AccessStripeMap_t *asmap;
+ RF_DagHeader_t *dag_h;
+ void *bp;
+ RF_RaidAccessFlags_t flags;
+ RF_AllocListElem_t *allocList;
+ int nfaults;
+ int (*redFunc) (RF_DagNode_t *);
+ int allowBufferRecycle;
+{
+ int nNodes, nRrdNodes, nWndNodes, nXorBufs, i, j, paramNum,
+ rdnodesFaked;
+ RF_DagNode_t *blockNode, *unblockNode, *wnpNode, *wnqNode, *termNode;
+ RF_DagNode_t *nodes, *wndNodes, *rrdNodes, *xorNode, *commitNode;
+ RF_SectorCount_t sectorsPerSU;
+ RF_ReconUnitNum_t which_ru;
+ char *xorTargetBuf = NULL; /* the target buffer for the XOR
+ * operation */
+ char *overlappingPDAs;/* a temporary array of flags */
+ RF_AccessStripeMapHeader_t *new_asm_h[2];
+ RF_PhysDiskAddr_t *pda, *parityPDA;
+ RF_StripeNum_t parityStripeID;
+ RF_PhysDiskAddr_t *failedPDA;
+ RF_RaidLayout_t *layoutPtr;
+
+ layoutPtr = &(raidPtr->Layout);
+ parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr, asmap->raidAddress,
+ &which_ru);
+ sectorsPerSU = layoutPtr->sectorsPerStripeUnit;
+ /* failedPDA points to the pda within the asm that targets the failed
+ * disk */
+ failedPDA = asmap->failedPDAs[0];
+
+ if (rf_dagDebug)
+ printf("[Creating degraded-write DAG]\n");
+
+ RF_ASSERT(asmap->numDataFailed == 1);
+ dag_h->creator = "SimpleDegradedWriteDAG";
+
+ /*
+ * Generate two ASMs identifying the surviving data
+ * we need in order to recover the lost data.
+ */
+ /* overlappingPDAs array must be zero'd */
+ RF_Calloc(overlappingPDAs, asmap->numStripeUnitsAccessed, sizeof(char), (char *));
+ rf_GenerateFailedAccessASMs(raidPtr, asmap, failedPDA, dag_h, new_asm_h,
+ &nXorBufs, NULL, overlappingPDAs, allocList);
+
+ /* create all the nodes at once */
+ nWndNodes = asmap->numStripeUnitsAccessed - 1; /* no access is
+ * generated for the
+ * failed pda */
+
+ nRrdNodes = ((new_asm_h[0]) ? new_asm_h[0]->stripeMap->numStripeUnitsAccessed : 0) +
+ ((new_asm_h[1]) ? new_asm_h[1]->stripeMap->numStripeUnitsAccessed : 0);
+ /*
+ * XXX
+ *
+ * There's a bug with a complete stripe overwrite- that means 0 reads
+ * of old data, and the rest of the DAG generation code doesn't like
+ * that. A release is coming, and I don't wanna risk breaking a critical
+ * DAG generator, so here's what I'm gonna do- if there's no read nodes,
+ * I'm gonna fake there being a read node, and I'm gonna swap in a
+ * no-op node in its place (to make all the link-up code happy).
+ * This should be fixed at some point. --jimz
+ */
+ if (nRrdNodes == 0) {
+ nRrdNodes = 1;
+ rdnodesFaked = 1;
+ } else {
+ rdnodesFaked = 0;
+ }
+ /* lock, unlock, xor, Wnd, Rrd, W(nfaults) */
+ nNodes = 5 + nfaults + nWndNodes + nRrdNodes;
+ RF_CallocAndAdd(nodes, nNodes, sizeof(RF_DagNode_t),
+ (RF_DagNode_t *), allocList);
+ i = 0;
+ blockNode = &nodes[i];
+ i += 1;
+ commitNode = &nodes[i];
+ i += 1;
+ unblockNode = &nodes[i];
+ i += 1;
+ termNode = &nodes[i];
+ i += 1;
+ xorNode = &nodes[i];
+ i += 1;
+ wnpNode = &nodes[i];
+ i += 1;
+ wndNodes = &nodes[i];
+ i += nWndNodes;
+ rrdNodes = &nodes[i];
+ i += nRrdNodes;
+ if (nfaults == 2) {
+ wnqNode = &nodes[i];
+ i += 1;
+ } else {
+ wnqNode = NULL;
+ }
+ RF_ASSERT(i == nNodes);
+
+ /* this dag can not commit until all rrd and xor Nodes have completed */
+ dag_h->numCommitNodes = 1;
+ dag_h->numCommits = 0;
+ dag_h->numSuccedents = 1;
+
+ RF_ASSERT(nRrdNodes > 0);
+ rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
+ NULL, nRrdNodes, 0, 0, 0, dag_h, "Nil", allocList);
+ rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
+ NULL, nWndNodes + nfaults, 1, 0, 0, dag_h, "Cmt", allocList);
+ rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
+ NULL, 1, nWndNodes + nfaults, 0, 0, dag_h, "Nil", allocList);
+ rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
+ NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
+ rf_InitNode(xorNode, rf_wait, RF_FALSE, redFunc, rf_NullNodeUndoFunc, NULL, 1,
+ nRrdNodes, 2 * nXorBufs + 2, nfaults, dag_h, "Xrc", allocList);
+
+ /*
+ * Fill in the Rrd nodes. If any of the rrd buffers are the same size as
+ * the failed buffer, save a pointer to it so we can use it as the target
+ * of the XOR. The pdas in the rrd nodes have been range-restricted, so if
+ * a buffer is the same size as the failed buffer, it must also be at the
+ * same alignment within the SU.
+ */
+ i = 0;
+ if (new_asm_h[0]) {
+ for (i = 0, pda = new_asm_h[0]->stripeMap->physInfo;
+ i < new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
+ i++, pda = pda->next) {
+ rf_InitNode(&rrdNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
+ rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rrd", allocList);
+ RF_ASSERT(pda);
+ rrdNodes[i].params[0].p = pda;
+ rrdNodes[i].params[1].p = pda->bufPtr;
+ rrdNodes[i].params[2].v = parityStripeID;
+ rrdNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
+ }
+ }
+ /* i now equals the number of stripe units accessed in new_asm_h[0] */
+ if (new_asm_h[1]) {
+ for (j = 0, pda = new_asm_h[1]->stripeMap->physInfo;
+ j < new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
+ j++, pda = pda->next) {
+ rf_InitNode(&rrdNodes[i + j], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
+ rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rrd", allocList);
+ RF_ASSERT(pda);
+ rrdNodes[i + j].params[0].p = pda;
+ rrdNodes[i + j].params[1].p = pda->bufPtr;
+ rrdNodes[i + j].params[2].v = parityStripeID;
+ rrdNodes[i + j].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
+ if (allowBufferRecycle && (pda->numSector == failedPDA->numSector))
+ xorTargetBuf = pda->bufPtr;
+ }
+ }
+ if (rdnodesFaked) {
+ /*
+ * This is where we'll init that fake noop read node
+ * (XXX should the wakeup func be different?)
+ */
+ rf_InitNode(&rrdNodes[0], rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
+ NULL, 1, 1, 0, 0, dag_h, "RrN", allocList);
+ }
+ /*
+ * Make a PDA for the parity unit. The parity PDA should start at
+ * the same offset into the SU as the failed PDA.
+ */
+ /* Danner comment: I don't think this copy is really necessary. We are
+ * in one of two cases here. (1) The entire failed unit is written.
+ * Then asmap->parityInfo will describe the entire parity. (2) We are
+ * only writing a subset of the failed unit and nothing else. Then the
+ * asmap->parityInfo describes the failed unit and the copy can also
+ * be avoided. */
+
+ RF_MallocAndAdd(parityPDA, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
+ parityPDA->row = asmap->parityInfo->row;
+ parityPDA->col = asmap->parityInfo->col;
+ parityPDA->startSector = ((asmap->parityInfo->startSector / sectorsPerSU)
+ * sectorsPerSU) + (failedPDA->startSector % sectorsPerSU);
+ parityPDA->numSector = failedPDA->numSector;
+
+ if (!xorTargetBuf) {
+ RF_CallocAndAdd(xorTargetBuf, 1,
+ rf_RaidAddressToByte(raidPtr, failedPDA->numSector), (char *), allocList);
+ }
+ /* init the Wnp node */
+ rf_InitNode(wnpNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
+ rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnp", allocList);
+ wnpNode->params[0].p = parityPDA;
+ wnpNode->params[1].p = xorTargetBuf;
+ wnpNode->params[2].v = parityStripeID;
+ wnpNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
+
+ /* fill in the Wnq Node */
+ if (nfaults == 2) {
+ {
+ RF_MallocAndAdd(parityPDA, sizeof(RF_PhysDiskAddr_t),
+ (RF_PhysDiskAddr_t *), allocList);
+ parityPDA->row = asmap->qInfo->row;
+ parityPDA->col = asmap->qInfo->col;
+ parityPDA->startSector = ((asmap->qInfo->startSector / sectorsPerSU)
+ * sectorsPerSU) + (failedPDA->startSector % sectorsPerSU);
+ parityPDA->numSector = failedPDA->numSector;
+
+ rf_InitNode(wnqNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
+ rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnq", allocList);
+ wnqNode->params[0].p = parityPDA;
+ RF_CallocAndAdd(xorNode->results[1], 1,
+ rf_RaidAddressToByte(raidPtr, failedPDA->numSector), (char *), allocList);
+ wnqNode->params[1].p = xorNode->results[1];
+ wnqNode->params[2].v = parityStripeID;
+ wnqNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
+ }
+ }
+ /* fill in the Wnd nodes */
+ for (pda = asmap->physInfo, i = 0; i < nWndNodes; i++, pda = pda->next) {
+ if (pda == failedPDA) {
+ i--;
+ continue;
+ }
+ rf_InitNode(&wndNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
+ rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnd", allocList);
+ RF_ASSERT(pda);
+ wndNodes[i].params[0].p = pda;
+ wndNodes[i].params[1].p = pda->bufPtr;
+ wndNodes[i].params[2].v = parityStripeID;
+ wndNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
+ }
+
+ /* fill in the results of the xor node */
+ xorNode->results[0] = xorTargetBuf;
+
+ /* fill in the params of the xor node */
+
+ paramNum = 0;
+ if (rdnodesFaked == 0) {
+ for (i = 0; i < nRrdNodes; i++) {
+ /* all the Rrd nodes need to be xored together */
+ xorNode->params[paramNum++] = rrdNodes[i].params[0];
+ xorNode->params[paramNum++] = rrdNodes[i].params[1];
+ }
+ }
+ for (i = 0; i < nWndNodes; i++) {
+ /* any Wnd nodes that overlap the failed access need to be
+ * xored in */
+ if (overlappingPDAs[i]) {
+ RF_MallocAndAdd(pda, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
+ bcopy((char *) wndNodes[i].params[0].p, (char *) pda, sizeof(RF_PhysDiskAddr_t));
+ rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_DOBUFFER, 0);
+ xorNode->params[paramNum++].p = pda;
+ xorNode->params[paramNum++].p = pda->bufPtr;
+ }
+ }
+ RF_Free(overlappingPDAs, asmap->numStripeUnitsAccessed * sizeof(char));
+
+ /*
+ * Install the failed PDA into the xor param list so that the
+ * new data gets xor'd in.
+ */
+ xorNode->params[paramNum++].p = failedPDA;
+ xorNode->params[paramNum++].p = failedPDA->bufPtr;
+
+ /*
+ * The last 2 params to the recovery xor node are always the failed
+ * PDA and the raidPtr. install the failedPDA even though we have just
+ * done so above. This allows us to use the same XOR function for both
+ * degraded reads and degraded writes.
+ */
+ xorNode->params[paramNum++].p = failedPDA;
+ xorNode->params[paramNum++].p = raidPtr;
+ RF_ASSERT(paramNum == 2 * nXorBufs + 2);
+
+ /*
+ * Code to link nodes begins here
+ */
+
+ /* link header to block node */
+ RF_ASSERT(blockNode->numAntecedents == 0);
+ dag_h->succedents[0] = blockNode;
+
+ /* link block node to rd nodes */
+ RF_ASSERT(blockNode->numSuccedents == nRrdNodes);
+ for (i = 0; i < nRrdNodes; i++) {
+ RF_ASSERT(rrdNodes[i].numAntecedents == 1);
+ blockNode->succedents[i] = &rrdNodes[i];
+ rrdNodes[i].antecedents[0] = blockNode;
+ rrdNodes[i].antType[0] = rf_control;
+ }
+
+ /* link read nodes to xor node */
+ RF_ASSERT(xorNode->numAntecedents == nRrdNodes);
+ for (i = 0; i < nRrdNodes; i++) {
+ RF_ASSERT(rrdNodes[i].numSuccedents == 1);
+ rrdNodes[i].succedents[0] = xorNode;
+ xorNode->antecedents[i] = &rrdNodes[i];
+ xorNode->antType[i] = rf_trueData;
+ }
+
+ /* link xor node to commit node */
+ RF_ASSERT(xorNode->numSuccedents == 1);
+ RF_ASSERT(commitNode->numAntecedents == 1);
+ xorNode->succedents[0] = commitNode;
+ commitNode->antecedents[0] = xorNode;
+ commitNode->antType[0] = rf_control;
+
+ /* link commit node to wnd nodes */
+ RF_ASSERT(commitNode->numSuccedents == nfaults + nWndNodes);
+ for (i = 0; i < nWndNodes; i++) {
+ RF_ASSERT(wndNodes[i].numAntecedents == 1);
+ commitNode->succedents[i] = &wndNodes[i];
+ wndNodes[i].antecedents[0] = commitNode;
+ wndNodes[i].antType[0] = rf_control;
+ }
+
+ /* link the commit node to wnp, wnq nodes */
+ RF_ASSERT(wnpNode->numAntecedents == 1);
+ commitNode->succedents[nWndNodes] = wnpNode;
+ wnpNode->antecedents[0] = commitNode;
+ wnpNode->antType[0] = rf_control;
+ if (nfaults == 2) {
+ RF_ASSERT(wnqNode->numAntecedents == 1);
+ commitNode->succedents[nWndNodes + 1] = wnqNode;
+ wnqNode->antecedents[0] = commitNode;
+ wnqNode->antType[0] = rf_control;
+ }
+ /* link write new data nodes to unblock node */
+ RF_ASSERT(unblockNode->numAntecedents == (nWndNodes + nfaults));
+ for (i = 0; i < nWndNodes; i++) {
+ RF_ASSERT(wndNodes[i].numSuccedents == 1);
+ wndNodes[i].succedents[0] = unblockNode;
+ unblockNode->antecedents[i] = &wndNodes[i];
+ unblockNode->antType[i] = rf_control;
+ }
+
+ /* link write new parity node to unblock node */
+ RF_ASSERT(wnpNode->numSuccedents == 1);
+ wnpNode->succedents[0] = unblockNode;
+ unblockNode->antecedents[nWndNodes] = wnpNode;
+ unblockNode->antType[nWndNodes] = rf_control;
+
+ /* link write new q node to unblock node */
+ if (nfaults == 2) {
+ RF_ASSERT(wnqNode->numSuccedents == 1);
+ wnqNode->succedents[0] = unblockNode;
+ unblockNode->antecedents[nWndNodes + 1] = wnqNode;
+ unblockNode->antType[nWndNodes + 1] = rf_control;
+ }
+ /* link unblock node to term node */
+ RF_ASSERT(unblockNode->numSuccedents == 1);
+ RF_ASSERT(termNode->numAntecedents == 1);
+ RF_ASSERT(termNode->numSuccedents == 0);
+ unblockNode->succedents[0] = termNode;
+ termNode->antecedents[0] = unblockNode;
+ termNode->antType[0] = rf_control;
+}
+#define CONS_PDA(if,start,num) \
+ pda_p->row = asmap->if->row; pda_p->col = asmap->if->col; \
+ pda_p->startSector = ((asmap->if->startSector / secPerSU) * secPerSU) + start; \
+ pda_p->numSector = num; \
+ pda_p->next = NULL; \
+ RF_MallocAndAdd(pda_p->bufPtr,rf_RaidAddressToByte(raidPtr,num),(char *), allocList)
+#if (RF_INCLUDE_PQ > 0) || (RF_INCLUDE_EVENODD > 0)
+void
+rf_WriteGenerateFailedAccessASMs(
+ RF_Raid_t * raidPtr,
+ RF_AccessStripeMap_t * asmap,
+ RF_PhysDiskAddr_t ** pdap,
+ int *nNodep,
+ RF_PhysDiskAddr_t ** pqpdap,
+ int *nPQNodep,
+ RF_AllocListElem_t * allocList)
+{
+ RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
+ int PDAPerDisk, i;
+ RF_SectorCount_t secPerSU = layoutPtr->sectorsPerStripeUnit;
+ int numDataCol = layoutPtr->numDataCol;
+ int state;
+ unsigned napdas;
+ RF_SectorNum_t fone_start, fone_end, ftwo_start = 0, ftwo_end;
+ RF_PhysDiskAddr_t *fone = asmap->failedPDAs[0], *ftwo = asmap->failedPDAs[1];
+ RF_PhysDiskAddr_t *pda_p;
+ RF_RaidAddr_t sosAddr;
+
+ /* determine how many pda's we will have to generate per unaccess
+ * stripe. If there is only one failed data unit, it is one; if two,
+ * possibly two, depending wether they overlap. */
+
+ fone_start = rf_StripeUnitOffset(layoutPtr, fone->startSector);
+ fone_end = fone_start + fone->numSector;
+
+ if (asmap->numDataFailed == 1) {
+ PDAPerDisk = 1;
+ state = 1;
+ RF_MallocAndAdd(*pqpdap, 2 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
+ pda_p = *pqpdap;
+ /* build p */
+ CONS_PDA(parityInfo, fone_start, fone->numSector);
+ pda_p->type = RF_PDA_TYPE_PARITY;
+ pda_p++;
+ /* build q */
+ CONS_PDA(qInfo, fone_start, fone->numSector);
+ pda_p->type = RF_PDA_TYPE_Q;
+ } else {
+ ftwo_start = rf_StripeUnitOffset(layoutPtr, ftwo->startSector);
+ ftwo_end = ftwo_start + ftwo->numSector;
+ if (fone->numSector + ftwo->numSector > secPerSU) {
+ PDAPerDisk = 1;
+ state = 2;
+ RF_MallocAndAdd(*pqpdap, 2 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
+ pda_p = *pqpdap;
+ CONS_PDA(parityInfo, 0, secPerSU);
+ pda_p->type = RF_PDA_TYPE_PARITY;
+ pda_p++;
+ CONS_PDA(qInfo, 0, secPerSU);
+ pda_p->type = RF_PDA_TYPE_Q;
+ } else {
+ PDAPerDisk = 2;
+ state = 3;
+ /* four of them, fone, then ftwo */
+ RF_MallocAndAdd(*pqpdap, 4 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
+ pda_p = *pqpdap;
+ CONS_PDA(parityInfo, fone_start, fone->numSector);
+ pda_p->type = RF_PDA_TYPE_PARITY;
+ pda_p++;
+ CONS_PDA(qInfo, fone_start, fone->numSector);
+ pda_p->type = RF_PDA_TYPE_Q;
+ pda_p++;
+ CONS_PDA(parityInfo, ftwo_start, ftwo->numSector);
+ pda_p->type = RF_PDA_TYPE_PARITY;
+ pda_p++;
+ CONS_PDA(qInfo, ftwo_start, ftwo->numSector);
+ pda_p->type = RF_PDA_TYPE_Q;
+ }
+ }
+ /* figure out number of nonaccessed pda */
+ napdas = PDAPerDisk * (numDataCol - 2);
+ *nPQNodep = PDAPerDisk;
+
+ *nNodep = napdas;
+ if (napdas == 0)
+ return; /* short circuit */
+
+ /* allocate up our list of pda's */
+
+ RF_CallocAndAdd(pda_p, napdas, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
+ *pdap = pda_p;
+
+ /* linkem together */
+ for (i = 0; i < (napdas - 1); i++)
+ pda_p[i].next = pda_p + (i + 1);
+
+ sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
+ for (i = 0; i < numDataCol; i++) {
+ if ((pda_p - (*pdap)) == napdas)
+ continue;
+ pda_p->type = RF_PDA_TYPE_DATA;
+ pda_p->raidAddress = sosAddr + (i * secPerSU);
+ (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
+ /* skip over dead disks */
+ if (RF_DEAD_DISK(raidPtr->Disks[pda_p->row][pda_p->col].status))
+ continue;
+ switch (state) {
+ case 1: /* fone */
+ pda_p->numSector = fone->numSector;
+ pda_p->raidAddress += fone_start;
+ pda_p->startSector += fone_start;
+ RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
+ break;
+ case 2: /* full stripe */
+ pda_p->numSector = secPerSU;
+ RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, secPerSU), (char *), allocList);
+ break;
+ case 3: /* two slabs */
+ pda_p->numSector = fone->numSector;
+ pda_p->raidAddress += fone_start;
+ pda_p->startSector += fone_start;
+ RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
+ pda_p++;
+ pda_p->type = RF_PDA_TYPE_DATA;
+ pda_p->raidAddress = sosAddr + (i * secPerSU);
+ (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
+ pda_p->numSector = ftwo->numSector;
+ pda_p->raidAddress += ftwo_start;
+ pda_p->startSector += ftwo_start;
+ RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
+ break;
+ default:
+ RF_PANIC();
+ }
+ pda_p++;
+ }
+
+ RF_ASSERT(pda_p - *pdap == napdas);
+ return;
+}
+#define DISK_NODE_PDA(node) ((node)->params[0].p)
+
+#define DISK_NODE_PARAMS(_node_,_p_) \
+ (_node_).params[0].p = _p_ ; \
+ (_node_).params[1].p = (_p_)->bufPtr; \
+ (_node_).params[2].v = parityStripeID; \
+ (_node_).params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru)
+
+void
+rf_DoubleDegSmallWrite(
+ RF_Raid_t * raidPtr,
+ RF_AccessStripeMap_t * asmap,
+ RF_DagHeader_t * dag_h,
+ void *bp,
+ RF_RaidAccessFlags_t flags,
+ RF_AllocListElem_t * allocList,
+ char *redundantReadNodeName,
+ char *redundantWriteNodeName,
+ char *recoveryNodeName,
+ int (*recovFunc) (RF_DagNode_t *))
+{
+ RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
+ RF_DagNode_t *nodes, *wudNodes, *rrdNodes, *recoveryNode, *blockNode,
+ *unblockNode, *rpNodes, *rqNodes, *wpNodes, *wqNodes, *termNode;
+ RF_PhysDiskAddr_t *pda, *pqPDAs;
+ RF_PhysDiskAddr_t *npdas;
+ int nWriteNodes, nNodes, nReadNodes, nRrdNodes, nWudNodes, i;
+ RF_ReconUnitNum_t which_ru;
+ int nPQNodes;
+ RF_StripeNum_t parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr, asmap->raidAddress, &which_ru);
+
+ /* simple small write case - First part looks like a reconstruct-read
+ * of the failed data units. Then a write of all data units not
+ * failed. */
+
+
+ /* Hdr | ------Block- / / \ Rrd Rrd ... Rrd Rp Rq \ \
+ * / -------PQ----- / \ \ Wud Wp WQ \ | /
+ * --Unblock- | T
+ *
+ * Rrd = read recovery data (potentially none) Wud = write user data
+ * (not incl. failed disks) Wp = Write P (could be two) Wq = Write Q
+ * (could be two)
+ *
+ */
+
+ rf_WriteGenerateFailedAccessASMs(raidPtr, asmap, &npdas, &nRrdNodes, &pqPDAs, &nPQNodes, allocList);
+
+ RF_ASSERT(asmap->numDataFailed == 1);
+
+ nWudNodes = asmap->numStripeUnitsAccessed - (asmap->numDataFailed);
+ nReadNodes = nRrdNodes + 2 * nPQNodes;
+ nWriteNodes = nWudNodes + 2 * nPQNodes;
+ nNodes = 4 + nReadNodes + nWriteNodes;
+
+ RF_CallocAndAdd(nodes, nNodes, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
+ blockNode = nodes;
+ unblockNode = blockNode + 1;
+ termNode = unblockNode + 1;
+ recoveryNode = termNode + 1;
+ rrdNodes = recoveryNode + 1;
+ rpNodes = rrdNodes + nRrdNodes;
+ rqNodes = rpNodes + nPQNodes;
+ wudNodes = rqNodes + nPQNodes;
+ wpNodes = wudNodes + nWudNodes;
+ wqNodes = wpNodes + nPQNodes;
+
+ dag_h->creator = "PQ_DDSimpleSmallWrite";
+ dag_h->numSuccedents = 1;
+ dag_h->succedents[0] = blockNode;
+ rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
+ termNode->antecedents[0] = unblockNode;
+ termNode->antType[0] = rf_control;
+
+ /* init the block and unblock nodes */
+ /* The block node has all the read nodes as successors */
+ rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nReadNodes, 0, 0, 0, dag_h, "Nil", allocList);
+ for (i = 0; i < nReadNodes; i++)
+ blockNode->succedents[i] = rrdNodes + i;
+
+ /* The unblock node has all the writes as successors */
+ rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nWriteNodes, 0, 0, dag_h, "Nil", allocList);
+ for (i = 0; i < nWriteNodes; i++) {
+ unblockNode->antecedents[i] = wudNodes + i;
+ unblockNode->antType[i] = rf_control;
+ }
+ unblockNode->succedents[0] = termNode;
+
+#define INIT_READ_NODE(node,name) \
+ rf_InitNode(node, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, name, allocList); \
+ (node)->succedents[0] = recoveryNode; \
+ (node)->antecedents[0] = blockNode; \
+ (node)->antType[0] = rf_control;
+
+ /* build the read nodes */
+ pda = npdas;
+ for (i = 0; i < nRrdNodes; i++, pda = pda->next) {
+ INIT_READ_NODE(rrdNodes + i, "rrd");
+ DISK_NODE_PARAMS(rrdNodes[i], pda);
+ }
+
+ /* read redundancy pdas */
+ pda = pqPDAs;
+ INIT_READ_NODE(rpNodes, "Rp");
+ RF_ASSERT(pda);
+ DISK_NODE_PARAMS(rpNodes[0], pda);
+ pda++;
+ INIT_READ_NODE(rqNodes, redundantReadNodeName);
+ RF_ASSERT(pda);
+ DISK_NODE_PARAMS(rqNodes[0], pda);
+ if (nPQNodes == 2) {
+ pda++;
+ INIT_READ_NODE(rpNodes + 1, "Rp");
+ RF_ASSERT(pda);
+ DISK_NODE_PARAMS(rpNodes[1], pda);
+ pda++;
+ INIT_READ_NODE(rqNodes + 1, redundantReadNodeName);
+ RF_ASSERT(pda);
+ DISK_NODE_PARAMS(rqNodes[1], pda);
+ }
+ /* the recovery node has all reads as precedessors and all writes as
+ * successors. It generates a result for every write P or write Q
+ * node. As parameters, it takes a pda per read and a pda per stripe
+ * of user data written. It also takes as the last params the raidPtr
+ * and asm. For results, it takes PDA for P & Q. */
+
+
+ rf_InitNode(recoveryNode, rf_wait, RF_FALSE, recovFunc, rf_NullNodeUndoFunc, NULL,
+ nWriteNodes, /* succesors */
+ nReadNodes, /* preds */
+ nReadNodes + nWudNodes + 3, /* params */
+ 2 * nPQNodes, /* results */
+ dag_h, recoveryNodeName, allocList);
+
+
+
+ for (i = 0; i < nReadNodes; i++) {
+ recoveryNode->antecedents[i] = rrdNodes + i;
+ recoveryNode->antType[i] = rf_control;
+ recoveryNode->params[i].p = DISK_NODE_PDA(rrdNodes + i);
+ }
+ for (i = 0; i < nWudNodes; i++) {
+ recoveryNode->succedents[i] = wudNodes + i;
+ }
+ recoveryNode->params[nReadNodes + nWudNodes].p = asmap->failedPDAs[0];
+ recoveryNode->params[nReadNodes + nWudNodes + 1].p = raidPtr;
+ recoveryNode->params[nReadNodes + nWudNodes + 2].p = asmap;
+
+ for (; i < nWriteNodes; i++)
+ recoveryNode->succedents[i] = wudNodes + i;
+
+ pda = pqPDAs;
+ recoveryNode->results[0] = pda;
+ pda++;
+ recoveryNode->results[1] = pda;
+ if (nPQNodes == 2) {
+ pda++;
+ recoveryNode->results[2] = pda;
+ pda++;
+ recoveryNode->results[3] = pda;
+ }
+ /* fill writes */
+#define INIT_WRITE_NODE(node,name) \
+ rf_InitNode(node, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, name, allocList); \
+ (node)->succedents[0] = unblockNode; \
+ (node)->antecedents[0] = recoveryNode; \
+ (node)->antType[0] = rf_control;
+
+ pda = asmap->physInfo;
+ for (i = 0; i < nWudNodes; i++) {
+ INIT_WRITE_NODE(wudNodes + i, "Wd");
+ DISK_NODE_PARAMS(wudNodes[i], pda);
+ recoveryNode->params[nReadNodes + i].p = DISK_NODE_PDA(wudNodes + i);
+ pda = pda->next;
+ }
+ /* write redundancy pdas */
+ pda = pqPDAs;
+ INIT_WRITE_NODE(wpNodes, "Wp");
+ RF_ASSERT(pda);
+ DISK_NODE_PARAMS(wpNodes[0], pda);
+ pda++;
+ INIT_WRITE_NODE(wqNodes, "Wq");
+ RF_ASSERT(pda);
+ DISK_NODE_PARAMS(wqNodes[0], pda);
+ if (nPQNodes == 2) {
+ pda++;
+ INIT_WRITE_NODE(wpNodes + 1, "Wp");
+ RF_ASSERT(pda);
+ DISK_NODE_PARAMS(wpNodes[1], pda);
+ pda++;
+ INIT_WRITE_NODE(wqNodes + 1, "Wq");
+ RF_ASSERT(pda);
+ DISK_NODE_PARAMS(wqNodes[1], pda);
+ }
+}
+#endif /* (RF_INCLUDE_PQ > 0) || (RF_INCLUDE_EVENODD > 0) */
diff --git a/sys/dev/raidframe/rf_dagdegwr.h b/sys/dev/raidframe/rf_dagdegwr.h
new file mode 100644
index 0000000..1e4b5e2
--- /dev/null
+++ b/sys/dev/raidframe/rf_dagdegwr.h
@@ -0,0 +1,55 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_dagdegwr.h,v 1.4 1999/08/15 02:36:03 oster Exp $ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Mark Holland, Daniel Stodolsky, William V. Courtright II
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+
+#ifndef _RF__RF_DAGDEGWR_H_
+#define _RF__RF_DAGDEGWR_H_
+
+/* degraded write DAG creation routines */
+void rf_CreateDegradedWriteDAG(RF_Raid_t * raidPtr,
+ RF_AccessStripeMap_t * asmap, RF_DagHeader_t * dag_h, void *bp,
+ RF_RaidAccessFlags_t flags, RF_AllocListElem_t * allocList);
+
+void rf_CommonCreateSimpleDegradedWriteDAG(RF_Raid_t * raidPtr,
+ RF_AccessStripeMap_t * asmap, RF_DagHeader_t * dag_h, void *bp,
+ RF_RaidAccessFlags_t flags, RF_AllocListElem_t * allocList,
+ int nfaults, int (*redFunc) (RF_DagNode_t *), int allowBufferRecycle);
+
+void rf_WriteGenerateFailedAccessASMs(RF_Raid_t * raidPtr,
+ RF_AccessStripeMap_t * asmap, RF_PhysDiskAddr_t ** pdap,
+ int *nNodep, RF_PhysDiskAddr_t ** pqpdap,
+ int *nPQNodep, RF_AllocListElem_t * allocList);
+
+void rf_DoubleDegSmallWrite(RF_Raid_t * raidPtr, RF_AccessStripeMap_t * asmap,
+ RF_DagHeader_t * dag_h, void *bp, RF_RaidAccessFlags_t flags,
+ RF_AllocListElem_t * allocList, char *redundantReadNodeName,
+ char *redundantWriteNodeName, char *recoveryNodeName,
+ int (*recovFunc) (RF_DagNode_t *));
+
+#endif /* !_RF__RF_DAGDEGWR_H_ */
diff --git a/sys/dev/raidframe/rf_dagffrd.c b/sys/dev/raidframe/rf_dagffrd.c
new file mode 100644
index 0000000..51f3f9f
--- /dev/null
+++ b/sys/dev/raidframe/rf_dagffrd.c
@@ -0,0 +1,439 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_dagffrd.c,v 1.4 2000/01/07 03:40:58 oster Exp $ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Mark Holland, Daniel Stodolsky, William V. Courtright II
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+/*
+ * rf_dagffrd.c
+ *
+ * code for creating fault-free read DAGs
+ *
+ */
+
+#include <dev/raidframe/rf_types.h>
+#include <dev/raidframe/rf_raid.h>
+#include <dev/raidframe/rf_dag.h>
+#include <dev/raidframe/rf_dagutils.h>
+#include <dev/raidframe/rf_dagfuncs.h>
+#include <dev/raidframe/rf_debugMem.h>
+#include <dev/raidframe/rf_memchunk.h>
+#include <dev/raidframe/rf_general.h>
+#include <dev/raidframe/rf_dagffrd.h>
+
+/******************************************************************************
+ *
+ * General comments on DAG creation:
+ *
+ * All DAGs in this file use roll-away error recovery. Each DAG has a single
+ * commit node, usually called "Cmt." If an error occurs before the Cmt node
+ * is reached, the execution engine will halt forward execution and work
+ * backward through the graph, executing the undo functions. Assuming that
+ * each node in the graph prior to the Cmt node are undoable and atomic - or -
+ * does not make changes to permanent state, the graph will fail atomically.
+ * If an error occurs after the Cmt node executes, the engine will roll-forward
+ * through the graph, blindly executing nodes until it reaches the end.
+ * If a graph reaches the end, it is assumed to have completed successfully.
+ *
+ * A graph has only 1 Cmt node.
+ *
+ */
+
+
+/******************************************************************************
+ *
+ * The following wrappers map the standard DAG creation interface to the
+ * DAG creation routines. Additionally, these wrappers enable experimentation
+ * with new DAG structures by providing an extra level of indirection, allowing
+ * the DAG creation routines to be replaced at this single point.
+ */
+
+void
+rf_CreateFaultFreeReadDAG(
+ RF_Raid_t * raidPtr,
+ RF_AccessStripeMap_t * asmap,
+ RF_DagHeader_t * dag_h,
+ void *bp,
+ RF_RaidAccessFlags_t flags,
+ RF_AllocListElem_t * allocList)
+{
+ rf_CreateNonredundantDAG(raidPtr, asmap, dag_h, bp, flags, allocList,
+ RF_IO_TYPE_READ);
+}
+
+
+/******************************************************************************
+ *
+ * DAG creation code begins here
+ */
+
+/******************************************************************************
+ *
+ * creates a DAG to perform a nonredundant read or write of data within one
+ * stripe.
+ * For reads, this DAG is as follows:
+ *
+ * /---- read ----\
+ * Header -- Block ---- read ---- Commit -- Terminate
+ * \---- read ----/
+ *
+ * For writes, this DAG is as follows:
+ *
+ * /---- write ----\
+ * Header -- Commit ---- write ---- Block -- Terminate
+ * \---- write ----/
+ *
+ * There is one disk node per stripe unit accessed, and all disk nodes are in
+ * parallel.
+ *
+ * Tricky point here: The first disk node (read or write) is created
+ * normally. Subsequent disk nodes are created by copying the first one,
+ * and modifying a few params. The "succedents" and "antecedents" fields are
+ * _not_ re-created in each node, but rather left pointing to the same array
+ * that was malloc'd when the first node was created. Thus, it's essential
+ * that when this DAG is freed, the succedents and antecedents fields be freed
+ * in ONLY ONE of the read nodes. This does not apply to the "params" field
+ * because it is recreated for each READ node.
+ *
+ * Note that normal-priority accesses do not need to be tagged with their
+ * parity stripe ID, because they will never be promoted. Hence, I've
+ * commented-out the code to do this, and marked it with UNNEEDED.
+ *
+ *****************************************************************************/
+
+void
+rf_CreateNonredundantDAG(
+ RF_Raid_t * raidPtr,
+ RF_AccessStripeMap_t * asmap,
+ RF_DagHeader_t * dag_h,
+ void *bp,
+ RF_RaidAccessFlags_t flags,
+ RF_AllocListElem_t * allocList,
+ RF_IoType_t type)
+{
+ RF_DagNode_t *nodes, *diskNodes, *blockNode, *commitNode, *termNode;
+ RF_PhysDiskAddr_t *pda = asmap->physInfo;
+ int (*doFunc) (RF_DagNode_t *), (*undoFunc) (RF_DagNode_t *);
+ int i, n, totalNumNodes;
+ char *name;
+
+ n = asmap->numStripeUnitsAccessed;
+ dag_h->creator = "NonredundantDAG";
+
+ RF_ASSERT(RF_IO_IS_R_OR_W(type));
+ switch (type) {
+ case RF_IO_TYPE_READ:
+ doFunc = rf_DiskReadFunc;
+ undoFunc = rf_DiskReadUndoFunc;
+ name = "R ";
+ if (rf_dagDebug)
+ printf("[Creating non-redundant read DAG]\n");
+ break;
+ case RF_IO_TYPE_WRITE:
+ doFunc = rf_DiskWriteFunc;
+ undoFunc = rf_DiskWriteUndoFunc;
+ name = "W ";
+ if (rf_dagDebug)
+ printf("[Creating non-redundant write DAG]\n");
+ break;
+ default:
+ RF_PANIC();
+ }
+
+ /*
+ * For reads, the dag can not commit until the block node is reached.
+ * for writes, the dag commits immediately.
+ */
+ dag_h->numCommitNodes = 1;
+ dag_h->numCommits = 0;
+ dag_h->numSuccedents = 1;
+
+ /*
+ * Node count:
+ * 1 block node
+ * n data reads (or writes)
+ * 1 commit node
+ * 1 terminator node
+ */
+ RF_ASSERT(n > 0);
+ totalNumNodes = n + 3;
+ RF_CallocAndAdd(nodes, totalNumNodes, sizeof(RF_DagNode_t),
+ (RF_DagNode_t *), allocList);
+ i = 0;
+ diskNodes = &nodes[i];
+ i += n;
+ blockNode = &nodes[i];
+ i += 1;
+ commitNode = &nodes[i];
+ i += 1;
+ termNode = &nodes[i];
+ i += 1;
+ RF_ASSERT(i == totalNumNodes);
+
+ /* initialize nodes */
+ switch (type) {
+ case RF_IO_TYPE_READ:
+ rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
+ NULL, n, 0, 0, 0, dag_h, "Nil", allocList);
+ rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
+ NULL, 1, n, 0, 0, dag_h, "Cmt", allocList);
+ rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
+ NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
+ break;
+ case RF_IO_TYPE_WRITE:
+ rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
+ NULL, 1, 0, 0, 0, dag_h, "Nil", allocList);
+ rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
+ NULL, n, 1, 0, 0, dag_h, "Cmt", allocList);
+ rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
+ NULL, 0, n, 0, 0, dag_h, "Trm", allocList);
+ break;
+ default:
+ RF_PANIC();
+ }
+
+ for (i = 0; i < n; i++) {
+ RF_ASSERT(pda != NULL);
+ rf_InitNode(&diskNodes[i], rf_wait, RF_FALSE, doFunc, undoFunc, rf_GenericWakeupFunc,
+ 1, 1, 4, 0, dag_h, name, allocList);
+ diskNodes[i].params[0].p = pda;
+ diskNodes[i].params[1].p = pda->bufPtr;
+ /* parity stripe id is not necessary */
+ diskNodes[i].params[2].v = 0;
+ diskNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, 0);
+ pda = pda->next;
+ }
+
+ /*
+ * Connect nodes.
+ */
+
+ /* connect hdr to block node */
+ RF_ASSERT(blockNode->numAntecedents == 0);
+ dag_h->succedents[0] = blockNode;
+
+ if (type == RF_IO_TYPE_READ) {
+ /* connecting a nonredundant read DAG */
+ RF_ASSERT(blockNode->numSuccedents == n);
+ RF_ASSERT(commitNode->numAntecedents == n);
+ for (i = 0; i < n; i++) {
+ /* connect block node to each read node */
+ RF_ASSERT(diskNodes[i].numAntecedents == 1);
+ blockNode->succedents[i] = &diskNodes[i];
+ diskNodes[i].antecedents[0] = blockNode;
+ diskNodes[i].antType[0] = rf_control;
+
+ /* connect each read node to the commit node */
+ RF_ASSERT(diskNodes[i].numSuccedents == 1);
+ diskNodes[i].succedents[0] = commitNode;
+ commitNode->antecedents[i] = &diskNodes[i];
+ commitNode->antType[i] = rf_control;
+ }
+ /* connect the commit node to the term node */
+ RF_ASSERT(commitNode->numSuccedents == 1);
+ RF_ASSERT(termNode->numAntecedents == 1);
+ RF_ASSERT(termNode->numSuccedents == 0);
+ commitNode->succedents[0] = termNode;
+ termNode->antecedents[0] = commitNode;
+ termNode->antType[0] = rf_control;
+ } else {
+ /* connecting a nonredundant write DAG */
+ /* connect the block node to the commit node */
+ RF_ASSERT(blockNode->numSuccedents == 1);
+ RF_ASSERT(commitNode->numAntecedents == 1);
+ blockNode->succedents[0] = commitNode;
+ commitNode->antecedents[0] = blockNode;
+ commitNode->antType[0] = rf_control;
+
+ RF_ASSERT(commitNode->numSuccedents == n);
+ RF_ASSERT(termNode->numAntecedents == n);
+ RF_ASSERT(termNode->numSuccedents == 0);
+ for (i = 0; i < n; i++) {
+ /* connect the commit node to each write node */
+ RF_ASSERT(diskNodes[i].numAntecedents == 1);
+ commitNode->succedents[i] = &diskNodes[i];
+ diskNodes[i].antecedents[0] = commitNode;
+ diskNodes[i].antType[0] = rf_control;
+
+ /* connect each write node to the term node */
+ RF_ASSERT(diskNodes[i].numSuccedents == 1);
+ diskNodes[i].succedents[0] = termNode;
+ termNode->antecedents[i] = &diskNodes[i];
+ termNode->antType[i] = rf_control;
+ }
+ }
+}
+/******************************************************************************
+ * Create a fault-free read DAG for RAID level 1
+ *
+ * Hdr -> Nil -> Rmir -> Cmt -> Trm
+ *
+ * The "Rmir" node schedules a read from the disk in the mirror pair with the
+ * shortest disk queue. the proper queue is selected at Rmir execution. this
+ * deferred mapping is unlike other archs in RAIDframe which generally fix
+ * mapping at DAG creation time.
+ *
+ * Parameters: raidPtr - description of the physical array
+ * asmap - logical & physical addresses for this access
+ * bp - buffer ptr (for holding read data)
+ * flags - general flags (e.g. disk locking)
+ * allocList - list of memory allocated in DAG creation
+ *****************************************************************************/
+
+static void
+CreateMirrorReadDAG(
+ RF_Raid_t * raidPtr,
+ RF_AccessStripeMap_t * asmap,
+ RF_DagHeader_t * dag_h,
+ void *bp,
+ RF_RaidAccessFlags_t flags,
+ RF_AllocListElem_t * allocList,
+ int (*readfunc) (RF_DagNode_t * node))
+{
+ RF_DagNode_t *readNodes, *nodes, *blockNode, *commitNode, *termNode;
+ RF_PhysDiskAddr_t *data_pda = asmap->physInfo;
+ RF_PhysDiskAddr_t *parity_pda = asmap->parityInfo;
+ int i, n, totalNumNodes;
+
+ n = asmap->numStripeUnitsAccessed;
+ dag_h->creator = "RaidOneReadDAG";
+ if (rf_dagDebug) {
+ printf("[Creating RAID level 1 read DAG]\n");
+ }
+ /*
+ * This dag can not commit until the commit node is reached
+ * errors prior to the commit point imply the dag has failed.
+ */
+ dag_h->numCommitNodes = 1;
+ dag_h->numCommits = 0;
+ dag_h->numSuccedents = 1;
+
+ /*
+ * Node count:
+ * n data reads
+ * 1 block node
+ * 1 commit node
+ * 1 terminator node
+ */
+ RF_ASSERT(n > 0);
+ totalNumNodes = n + 3;
+ RF_CallocAndAdd(nodes, totalNumNodes, sizeof(RF_DagNode_t),
+ (RF_DagNode_t *), allocList);
+ i = 0;
+ readNodes = &nodes[i];
+ i += n;
+ blockNode = &nodes[i];
+ i += 1;
+ commitNode = &nodes[i];
+ i += 1;
+ termNode = &nodes[i];
+ i += 1;
+ RF_ASSERT(i == totalNumNodes);
+
+ /* initialize nodes */
+ rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc,
+ rf_NullNodeUndoFunc, NULL, n, 0, 0, 0, dag_h, "Nil", allocList);
+ rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc,
+ rf_NullNodeUndoFunc, NULL, 1, n, 0, 0, dag_h, "Cmt", allocList);
+ rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc,
+ rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
+
+ for (i = 0; i < n; i++) {
+ RF_ASSERT(data_pda != NULL);
+ RF_ASSERT(parity_pda != NULL);
+ rf_InitNode(&readNodes[i], rf_wait, RF_FALSE, readfunc,
+ rf_DiskReadMirrorUndoFunc, rf_GenericWakeupFunc, 1, 1, 5, 0, dag_h,
+ "Rmir", allocList);
+ readNodes[i].params[0].p = data_pda;
+ readNodes[i].params[1].p = data_pda->bufPtr;
+ /* parity stripe id is not necessary */
+ readNodes[i].params[2].p = 0;
+ readNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, 0);
+ readNodes[i].params[4].p = parity_pda;
+ data_pda = data_pda->next;
+ parity_pda = parity_pda->next;
+ }
+
+ /*
+ * Connect nodes
+ */
+
+ /* connect hdr to block node */
+ RF_ASSERT(blockNode->numAntecedents == 0);
+ dag_h->succedents[0] = blockNode;
+
+ /* connect block node to read nodes */
+ RF_ASSERT(blockNode->numSuccedents == n);
+ for (i = 0; i < n; i++) {
+ RF_ASSERT(readNodes[i].numAntecedents == 1);
+ blockNode->succedents[i] = &readNodes[i];
+ readNodes[i].antecedents[0] = blockNode;
+ readNodes[i].antType[0] = rf_control;
+ }
+
+ /* connect read nodes to commit node */
+ RF_ASSERT(commitNode->numAntecedents == n);
+ for (i = 0; i < n; i++) {
+ RF_ASSERT(readNodes[i].numSuccedents == 1);
+ readNodes[i].succedents[0] = commitNode;
+ commitNode->antecedents[i] = &readNodes[i];
+ commitNode->antType[i] = rf_control;
+ }
+
+ /* connect commit node to term node */
+ RF_ASSERT(commitNode->numSuccedents == 1);
+ RF_ASSERT(termNode->numAntecedents == 1);
+ RF_ASSERT(termNode->numSuccedents == 0);
+ commitNode->succedents[0] = termNode;
+ termNode->antecedents[0] = commitNode;
+ termNode->antType[0] = rf_control;
+}
+
+void
+rf_CreateMirrorIdleReadDAG(
+ RF_Raid_t * raidPtr,
+ RF_AccessStripeMap_t * asmap,
+ RF_DagHeader_t * dag_h,
+ void *bp,
+ RF_RaidAccessFlags_t flags,
+ RF_AllocListElem_t * allocList)
+{
+ CreateMirrorReadDAG(raidPtr, asmap, dag_h, bp, flags, allocList,
+ rf_DiskReadMirrorIdleFunc);
+}
+
+void
+rf_CreateMirrorPartitionReadDAG(
+ RF_Raid_t * raidPtr,
+ RF_AccessStripeMap_t * asmap,
+ RF_DagHeader_t * dag_h,
+ void *bp,
+ RF_RaidAccessFlags_t flags,
+ RF_AllocListElem_t * allocList)
+{
+ CreateMirrorReadDAG(raidPtr, asmap, dag_h, bp, flags, allocList,
+ rf_DiskReadMirrorPartitionFunc);
+}
diff --git a/sys/dev/raidframe/rf_dagffrd.h b/sys/dev/raidframe/rf_dagffrd.h
new file mode 100644
index 0000000..6862a8d
--- /dev/null
+++ b/sys/dev/raidframe/rf_dagffrd.h
@@ -0,0 +1,53 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_dagffrd.h,v 1.3 1999/02/05 00:06:07 oster Exp $ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Mark Holland, Daniel Stodolsky, William V. Courtright II
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+#ifndef _RF__RF_DAGFFRD_H_
+#define _RF__RF_DAGFFRD_H_
+
+#include <dev/raidframe/rf_types.h>
+
+/* fault-free read DAG creation routines */
+void
+rf_CreateFaultFreeReadDAG(RF_Raid_t * raidPtr, RF_AccessStripeMap_t * asmap,
+ RF_DagHeader_t * dag_h, void *bp, RF_RaidAccessFlags_t flags,
+ RF_AllocListElem_t * allocList);
+void
+rf_CreateNonredundantDAG(RF_Raid_t * raidPtr, RF_AccessStripeMap_t * asmap,
+ RF_DagHeader_t * dag_h, void *bp, RF_RaidAccessFlags_t flags,
+ RF_AllocListElem_t * allocList, RF_IoType_t type);
+void
+rf_CreateMirrorIdleReadDAG(RF_Raid_t * raidPtr,
+ RF_AccessStripeMap_t * asmap, RF_DagHeader_t * dag_h, void *bp,
+ RF_RaidAccessFlags_t flags, RF_AllocListElem_t * allocList);
+void
+rf_CreateMirrorPartitionReadDAG(RF_Raid_t * raidPtr,
+ RF_AccessStripeMap_t * asmap, RF_DagHeader_t * dag_h, void *bp,
+ RF_RaidAccessFlags_t flags, RF_AllocListElem_t * allocList);
+
+#endif /* !_RF__RF_DAGFFRD_H_ */
diff --git a/sys/dev/raidframe/rf_dagffwr.c b/sys/dev/raidframe/rf_dagffwr.c
new file mode 100644
index 0000000..7520cba
--- /dev/null
+++ b/sys/dev/raidframe/rf_dagffwr.c
@@ -0,0 +1,2129 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_dagffwr.c,v 1.5 2000/01/07 03:40:58 oster Exp $ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Mark Holland, Daniel Stodolsky, William V. Courtright II
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+/*
+ * rf_dagff.c
+ *
+ * code for creating fault-free DAGs
+ *
+ */
+
+#include <dev/raidframe/rf_types.h>
+#include <dev/raidframe/rf_raid.h>
+#include <dev/raidframe/rf_dag.h>
+#include <dev/raidframe/rf_dagutils.h>
+#include <dev/raidframe/rf_dagfuncs.h>
+#include <dev/raidframe/rf_debugMem.h>
+#include <dev/raidframe/rf_dagffrd.h>
+#include <dev/raidframe/rf_memchunk.h>
+#include <dev/raidframe/rf_general.h>
+#include <dev/raidframe/rf_dagffwr.h>
+
+/******************************************************************************
+ *
+ * General comments on DAG creation:
+ *
+ * All DAGs in this file use roll-away error recovery. Each DAG has a single
+ * commit node, usually called "Cmt." If an error occurs before the Cmt node
+ * is reached, the execution engine will halt forward execution and work
+ * backward through the graph, executing the undo functions. Assuming that
+ * each node in the graph prior to the Cmt node are undoable and atomic - or -
+ * does not make changes to permanent state, the graph will fail atomically.
+ * If an error occurs after the Cmt node executes, the engine will roll-forward
+ * through the graph, blindly executing nodes until it reaches the end.
+ * If a graph reaches the end, it is assumed to have completed successfully.
+ *
+ * A graph has only 1 Cmt node.
+ *
+ */
+
+
+/******************************************************************************
+ *
+ * The following wrappers map the standard DAG creation interface to the
+ * DAG creation routines. Additionally, these wrappers enable experimentation
+ * with new DAG structures by providing an extra level of indirection, allowing
+ * the DAG creation routines to be replaced at this single point.
+ */
+
+
+void
+rf_CreateNonRedundantWriteDAG(
+ RF_Raid_t * raidPtr,
+ RF_AccessStripeMap_t * asmap,
+ RF_DagHeader_t * dag_h,
+ void *bp,
+ RF_RaidAccessFlags_t flags,
+ RF_AllocListElem_t * allocList,
+ RF_IoType_t type)
+{
+ rf_CreateNonredundantDAG(raidPtr, asmap, dag_h, bp, flags, allocList,
+ RF_IO_TYPE_WRITE);
+}
+
+void
+rf_CreateRAID0WriteDAG(
+ RF_Raid_t * raidPtr,
+ RF_AccessStripeMap_t * asmap,
+ RF_DagHeader_t * dag_h,
+ void *bp,
+ RF_RaidAccessFlags_t flags,
+ RF_AllocListElem_t * allocList,
+ RF_IoType_t type)
+{
+ rf_CreateNonredundantDAG(raidPtr, asmap, dag_h, bp, flags, allocList,
+ RF_IO_TYPE_WRITE);
+}
+
+void
+rf_CreateSmallWriteDAG(
+ RF_Raid_t * raidPtr,
+ RF_AccessStripeMap_t * asmap,
+ RF_DagHeader_t * dag_h,
+ void *bp,
+ RF_RaidAccessFlags_t flags,
+ RF_AllocListElem_t * allocList)
+{
+ /* "normal" rollaway */
+ rf_CommonCreateSmallWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList,
+ &rf_xorFuncs, NULL);
+}
+
+void
+rf_CreateLargeWriteDAG(
+ RF_Raid_t * raidPtr,
+ RF_AccessStripeMap_t * asmap,
+ RF_DagHeader_t * dag_h,
+ void *bp,
+ RF_RaidAccessFlags_t flags,
+ RF_AllocListElem_t * allocList)
+{
+ /* "normal" rollaway */
+ rf_CommonCreateLargeWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList,
+ 1, rf_RegularXorFunc, RF_TRUE);
+}
+
+
+/******************************************************************************
+ *
+ * DAG creation code begins here
+ */
+
+
+/******************************************************************************
+ *
+ * creates a DAG to perform a large-write operation:
+ *
+ * / Rod \ / Wnd \
+ * H -- block- Rod - Xor - Cmt - Wnd --- T
+ * \ Rod / \ Wnp /
+ * \[Wnq]/
+ *
+ * The XOR node also does the Q calculation in the P+Q architecture.
+ * All nodes are before the commit node (Cmt) are assumed to be atomic and
+ * undoable - or - they make no changes to permanent state.
+ *
+ * Rod = read old data
+ * Cmt = commit node
+ * Wnp = write new parity
+ * Wnd = write new data
+ * Wnq = write new "q"
+ * [] denotes optional segments in the graph
+ *
+ * Parameters: raidPtr - description of the physical array
+ * asmap - logical & physical addresses for this access
+ * bp - buffer ptr (holds write data)
+ * flags - general flags (e.g. disk locking)
+ * allocList - list of memory allocated in DAG creation
+ * nfaults - number of faults array can tolerate
+ * (equal to # redundancy units in stripe)
+ * redfuncs - list of redundancy generating functions
+ *
+ *****************************************************************************/
+
+void
+rf_CommonCreateLargeWriteDAG(
+ RF_Raid_t * raidPtr,
+ RF_AccessStripeMap_t * asmap,
+ RF_DagHeader_t * dag_h,
+ void *bp,
+ RF_RaidAccessFlags_t flags,
+ RF_AllocListElem_t * allocList,
+ int nfaults,
+ int (*redFunc) (RF_DagNode_t *),
+ int allowBufferRecycle)
+{
+ RF_DagNode_t *nodes, *wndNodes, *rodNodes, *xorNode, *wnpNode;
+ RF_DagNode_t *wnqNode, *blockNode, *commitNode, *termNode;
+ int nWndNodes, nRodNodes, i, nodeNum, asmNum;
+ RF_AccessStripeMapHeader_t *new_asm_h[2];
+ RF_StripeNum_t parityStripeID;
+ char *sosBuffer, *eosBuffer;
+ RF_ReconUnitNum_t which_ru;
+ RF_RaidLayout_t *layoutPtr;
+ RF_PhysDiskAddr_t *pda;
+
+ layoutPtr = &(raidPtr->Layout);
+ parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr, asmap->raidAddress,
+ &which_ru);
+
+ if (rf_dagDebug) {
+ printf("[Creating large-write DAG]\n");
+ }
+ dag_h->creator = "LargeWriteDAG";
+
+ dag_h->numCommitNodes = 1;
+ dag_h->numCommits = 0;
+ dag_h->numSuccedents = 1;
+
+ /* alloc the nodes: Wnd, xor, commit, block, term, and Wnp */
+ nWndNodes = asmap->numStripeUnitsAccessed;
+ RF_CallocAndAdd(nodes, nWndNodes + 4 + nfaults, sizeof(RF_DagNode_t),
+ (RF_DagNode_t *), allocList);
+ i = 0;
+ wndNodes = &nodes[i];
+ i += nWndNodes;
+ xorNode = &nodes[i];
+ i += 1;
+ wnpNode = &nodes[i];
+ i += 1;
+ blockNode = &nodes[i];
+ i += 1;
+ commitNode = &nodes[i];
+ i += 1;
+ termNode = &nodes[i];
+ i += 1;
+ if (nfaults == 2) {
+ wnqNode = &nodes[i];
+ i += 1;
+ } else {
+ wnqNode = NULL;
+ }
+ rf_MapUnaccessedPortionOfStripe(raidPtr, layoutPtr, asmap, dag_h, new_asm_h,
+ &nRodNodes, &sosBuffer, &eosBuffer, allocList);
+ if (nRodNodes > 0) {
+ RF_CallocAndAdd(rodNodes, nRodNodes, sizeof(RF_DagNode_t),
+ (RF_DagNode_t *), allocList);
+ } else {
+ rodNodes = NULL;
+ }
+
+ /* begin node initialization */
+ if (nRodNodes > 0) {
+ rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
+ NULL, nRodNodes, 0, 0, 0, dag_h, "Nil", allocList);
+ } else {
+ rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
+ NULL, 1, 0, 0, 0, dag_h, "Nil", allocList);
+ }
+
+ rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL,
+ nWndNodes + nfaults, 1, 0, 0, dag_h, "Cmt", allocList);
+ rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL,
+ 0, nWndNodes + nfaults, 0, 0, dag_h, "Trm", allocList);
+
+ /* initialize the Rod nodes */
+ for (nodeNum = asmNum = 0; asmNum < 2; asmNum++) {
+ if (new_asm_h[asmNum]) {
+ pda = new_asm_h[asmNum]->stripeMap->physInfo;
+ while (pda) {
+ rf_InitNode(&rodNodes[nodeNum], rf_wait, RF_FALSE, rf_DiskReadFunc,
+ rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h,
+ "Rod", allocList);
+ rodNodes[nodeNum].params[0].p = pda;
+ rodNodes[nodeNum].params[1].p = pda->bufPtr;
+ rodNodes[nodeNum].params[2].v = parityStripeID;
+ rodNodes[nodeNum].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
+ 0, 0, which_ru);
+ nodeNum++;
+ pda = pda->next;
+ }
+ }
+ }
+ RF_ASSERT(nodeNum == nRodNodes);
+
+ /* initialize the wnd nodes */
+ pda = asmap->physInfo;
+ for (i = 0; i < nWndNodes; i++) {
+ rf_InitNode(&wndNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
+ rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnd", allocList);
+ RF_ASSERT(pda != NULL);
+ wndNodes[i].params[0].p = pda;
+ wndNodes[i].params[1].p = pda->bufPtr;
+ wndNodes[i].params[2].v = parityStripeID;
+ wndNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
+ pda = pda->next;
+ }
+
+ /* initialize the redundancy node */
+ if (nRodNodes > 0) {
+ rf_InitNode(xorNode, rf_wait, RF_FALSE, redFunc, rf_NullNodeUndoFunc, NULL, 1,
+ nRodNodes, 2 * (nWndNodes + nRodNodes) + 1, nfaults, dag_h,
+ "Xr ", allocList);
+ } else {
+ rf_InitNode(xorNode, rf_wait, RF_FALSE, redFunc, rf_NullNodeUndoFunc, NULL, 1,
+ 1, 2 * (nWndNodes + nRodNodes) + 1, nfaults, dag_h, "Xr ", allocList);
+ }
+ xorNode->flags |= RF_DAGNODE_FLAG_YIELD;
+ for (i = 0; i < nWndNodes; i++) {
+ xorNode->params[2 * i + 0] = wndNodes[i].params[0]; /* pda */
+ xorNode->params[2 * i + 1] = wndNodes[i].params[1]; /* buf ptr */
+ }
+ for (i = 0; i < nRodNodes; i++) {
+ xorNode->params[2 * (nWndNodes + i) + 0] = rodNodes[i].params[0]; /* pda */
+ xorNode->params[2 * (nWndNodes + i) + 1] = rodNodes[i].params[1]; /* buf ptr */
+ }
+ /* xor node needs to get at RAID information */
+ xorNode->params[2 * (nWndNodes + nRodNodes)].p = raidPtr;
+
+ /*
+ * Look for an Rod node that reads a complete SU. If none, alloc a buffer
+ * to receive the parity info. Note that we can't use a new data buffer
+ * because it will not have gotten written when the xor occurs.
+ */
+ if (allowBufferRecycle) {
+ for (i = 0; i < nRodNodes; i++) {
+ if (((RF_PhysDiskAddr_t *) rodNodes[i].params[0].p)->numSector == raidPtr->Layout.sectorsPerStripeUnit)
+ break;
+ }
+ }
+ if ((!allowBufferRecycle) || (i == nRodNodes)) {
+ RF_CallocAndAdd(xorNode->results[0], 1,
+ rf_RaidAddressToByte(raidPtr, raidPtr->Layout.sectorsPerStripeUnit),
+ (void *), allocList);
+ } else {
+ xorNode->results[0] = rodNodes[i].params[1].p;
+ }
+
+ /* initialize the Wnp node */
+ rf_InitNode(wnpNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
+ rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnp", allocList);
+ wnpNode->params[0].p = asmap->parityInfo;
+ wnpNode->params[1].p = xorNode->results[0];
+ wnpNode->params[2].v = parityStripeID;
+ wnpNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
+ /* parityInfo must describe entire parity unit */
+ RF_ASSERT(asmap->parityInfo->next == NULL);
+
+ if (nfaults == 2) {
+ /*
+ * We never try to recycle a buffer for the Q calcuation
+ * in addition to the parity. This would cause two buffers
+ * to get smashed during the P and Q calculation, guaranteeing
+ * one would be wrong.
+ */
+ RF_CallocAndAdd(xorNode->results[1], 1,
+ rf_RaidAddressToByte(raidPtr, raidPtr->Layout.sectorsPerStripeUnit),
+ (void *), allocList);
+ rf_InitNode(wnqNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
+ rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnq", allocList);
+ wnqNode->params[0].p = asmap->qInfo;
+ wnqNode->params[1].p = xorNode->results[1];
+ wnqNode->params[2].v = parityStripeID;
+ wnqNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
+ /* parityInfo must describe entire parity unit */
+ RF_ASSERT(asmap->parityInfo->next == NULL);
+ }
+ /*
+ * Connect nodes to form graph.
+ */
+
+ /* connect dag header to block node */
+ RF_ASSERT(blockNode->numAntecedents == 0);
+ dag_h->succedents[0] = blockNode;
+
+ if (nRodNodes > 0) {
+ /* connect the block node to the Rod nodes */
+ RF_ASSERT(blockNode->numSuccedents == nRodNodes);
+ RF_ASSERT(xorNode->numAntecedents == nRodNodes);
+ for (i = 0; i < nRodNodes; i++) {
+ RF_ASSERT(rodNodes[i].numAntecedents == 1);
+ blockNode->succedents[i] = &rodNodes[i];
+ rodNodes[i].antecedents[0] = blockNode;
+ rodNodes[i].antType[0] = rf_control;
+
+ /* connect the Rod nodes to the Xor node */
+ RF_ASSERT(rodNodes[i].numSuccedents == 1);
+ rodNodes[i].succedents[0] = xorNode;
+ xorNode->antecedents[i] = &rodNodes[i];
+ xorNode->antType[i] = rf_trueData;
+ }
+ } else {
+ /* connect the block node to the Xor node */
+ RF_ASSERT(blockNode->numSuccedents == 1);
+ RF_ASSERT(xorNode->numAntecedents == 1);
+ blockNode->succedents[0] = xorNode;
+ xorNode->antecedents[0] = blockNode;
+ xorNode->antType[0] = rf_control;
+ }
+
+ /* connect the xor node to the commit node */
+ RF_ASSERT(xorNode->numSuccedents == 1);
+ RF_ASSERT(commitNode->numAntecedents == 1);
+ xorNode->succedents[0] = commitNode;
+ commitNode->antecedents[0] = xorNode;
+ commitNode->antType[0] = rf_control;
+
+ /* connect the commit node to the write nodes */
+ RF_ASSERT(commitNode->numSuccedents == nWndNodes + nfaults);
+ for (i = 0; i < nWndNodes; i++) {
+ RF_ASSERT(wndNodes->numAntecedents == 1);
+ commitNode->succedents[i] = &wndNodes[i];
+ wndNodes[i].antecedents[0] = commitNode;
+ wndNodes[i].antType[0] = rf_control;
+ }
+ RF_ASSERT(wnpNode->numAntecedents == 1);
+ commitNode->succedents[nWndNodes] = wnpNode;
+ wnpNode->antecedents[0] = commitNode;
+ wnpNode->antType[0] = rf_trueData;
+ if (nfaults == 2) {
+ RF_ASSERT(wnqNode->numAntecedents == 1);
+ commitNode->succedents[nWndNodes + 1] = wnqNode;
+ wnqNode->antecedents[0] = commitNode;
+ wnqNode->antType[0] = rf_trueData;
+ }
+ /* connect the write nodes to the term node */
+ RF_ASSERT(termNode->numAntecedents == nWndNodes + nfaults);
+ RF_ASSERT(termNode->numSuccedents == 0);
+ for (i = 0; i < nWndNodes; i++) {
+ RF_ASSERT(wndNodes->numSuccedents == 1);
+ wndNodes[i].succedents[0] = termNode;
+ termNode->antecedents[i] = &wndNodes[i];
+ termNode->antType[i] = rf_control;
+ }
+ RF_ASSERT(wnpNode->numSuccedents == 1);
+ wnpNode->succedents[0] = termNode;
+ termNode->antecedents[nWndNodes] = wnpNode;
+ termNode->antType[nWndNodes] = rf_control;
+ if (nfaults == 2) {
+ RF_ASSERT(wnqNode->numSuccedents == 1);
+ wnqNode->succedents[0] = termNode;
+ termNode->antecedents[nWndNodes + 1] = wnqNode;
+ termNode->antType[nWndNodes + 1] = rf_control;
+ }
+}
+/******************************************************************************
+ *
+ * creates a DAG to perform a small-write operation (either raid 5 or pq),
+ * which is as follows:
+ *
+ * Hdr -> Nil -> Rop -> Xor -> Cmt ----> Wnp [Unp] --> Trm
+ * \- Rod X / \----> Wnd [Und]-/
+ * [\- Rod X / \---> Wnd [Und]-/]
+ * [\- Roq -> Q / \--> Wnq [Unq]-/]
+ *
+ * Rop = read old parity
+ * Rod = read old data
+ * Roq = read old "q"
+ * Cmt = commit node
+ * Und = unlock data disk
+ * Unp = unlock parity disk
+ * Unq = unlock q disk
+ * Wnp = write new parity
+ * Wnd = write new data
+ * Wnq = write new "q"
+ * [ ] denotes optional segments in the graph
+ *
+ * Parameters: raidPtr - description of the physical array
+ * asmap - logical & physical addresses for this access
+ * bp - buffer ptr (holds write data)
+ * flags - general flags (e.g. disk locking)
+ * allocList - list of memory allocated in DAG creation
+ * pfuncs - list of parity generating functions
+ * qfuncs - list of q generating functions
+ *
+ * A null qfuncs indicates single fault tolerant
+ *****************************************************************************/
+
+void
+rf_CommonCreateSmallWriteDAG(
+ RF_Raid_t * raidPtr,
+ RF_AccessStripeMap_t * asmap,
+ RF_DagHeader_t * dag_h,
+ void *bp,
+ RF_RaidAccessFlags_t flags,
+ RF_AllocListElem_t * allocList,
+ RF_RedFuncs_t * pfuncs,
+ RF_RedFuncs_t * qfuncs)
+{
+ RF_DagNode_t *readDataNodes, *readParityNodes, *readQNodes, *termNode;
+ RF_DagNode_t *unlockDataNodes, *unlockParityNodes, *unlockQNodes;
+ RF_DagNode_t *xorNodes, *qNodes, *blockNode, *commitNode, *nodes;
+ RF_DagNode_t *writeDataNodes, *writeParityNodes, *writeQNodes;
+ int i, j, nNodes, totalNumNodes, lu_flag;
+ RF_ReconUnitNum_t which_ru;
+ int (*func) (RF_DagNode_t *), (*undoFunc) (RF_DagNode_t *);
+ int (*qfunc) (RF_DagNode_t *);
+ int numDataNodes, numParityNodes;
+ RF_StripeNum_t parityStripeID;
+ RF_PhysDiskAddr_t *pda;
+ char *name, *qname;
+ long nfaults;
+
+ nfaults = qfuncs ? 2 : 1;
+ lu_flag = (rf_enableAtomicRMW) ? 1 : 0; /* lock/unlock flag */
+
+ parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout),
+ asmap->raidAddress, &which_ru);
+ pda = asmap->physInfo;
+ numDataNodes = asmap->numStripeUnitsAccessed;
+ numParityNodes = (asmap->parityInfo->next) ? 2 : 1;
+
+ if (rf_dagDebug) {
+ printf("[Creating small-write DAG]\n");
+ }
+ RF_ASSERT(numDataNodes > 0);
+ dag_h->creator = "SmallWriteDAG";
+
+ dag_h->numCommitNodes = 1;
+ dag_h->numCommits = 0;
+ dag_h->numSuccedents = 1;
+
+ /*
+ * DAG creation occurs in four steps:
+ * 1. count the number of nodes in the DAG
+ * 2. create the nodes
+ * 3. initialize the nodes
+ * 4. connect the nodes
+ */
+
+ /*
+ * Step 1. compute number of nodes in the graph
+ */
+
+ /* number of nodes: a read and write for each data unit a redundancy
+ * computation node for each parity node (nfaults * nparity) a read
+ * and write for each parity unit a block and commit node (2) a
+ * terminate node if atomic RMW an unlock node for each data unit,
+ * redundancy unit */
+ totalNumNodes = (2 * numDataNodes) + (nfaults * numParityNodes)
+ + (nfaults * 2 * numParityNodes) + 3;
+ if (lu_flag) {
+ totalNumNodes += (numDataNodes + (nfaults * numParityNodes));
+ }
+ /*
+ * Step 2. create the nodes
+ */
+ RF_CallocAndAdd(nodes, totalNumNodes, sizeof(RF_DagNode_t),
+ (RF_DagNode_t *), allocList);
+ i = 0;
+ blockNode = &nodes[i];
+ i += 1;
+ commitNode = &nodes[i];
+ i += 1;
+ readDataNodes = &nodes[i];
+ i += numDataNodes;
+ readParityNodes = &nodes[i];
+ i += numParityNodes;
+ writeDataNodes = &nodes[i];
+ i += numDataNodes;
+ writeParityNodes = &nodes[i];
+ i += numParityNodes;
+ xorNodes = &nodes[i];
+ i += numParityNodes;
+ termNode = &nodes[i];
+ i += 1;
+ if (lu_flag) {
+ unlockDataNodes = &nodes[i];
+ i += numDataNodes;
+ unlockParityNodes = &nodes[i];
+ i += numParityNodes;
+ } else {
+ unlockDataNodes = unlockParityNodes = NULL;
+ }
+ if (nfaults == 2) {
+ readQNodes = &nodes[i];
+ i += numParityNodes;
+ writeQNodes = &nodes[i];
+ i += numParityNodes;
+ qNodes = &nodes[i];
+ i += numParityNodes;
+ if (lu_flag) {
+ unlockQNodes = &nodes[i];
+ i += numParityNodes;
+ } else {
+ unlockQNodes = NULL;
+ }
+ } else {
+ readQNodes = writeQNodes = qNodes = unlockQNodes = NULL;
+ }
+ RF_ASSERT(i == totalNumNodes);
+
+ /*
+ * Step 3. initialize the nodes
+ */
+ /* initialize block node (Nil) */
+ nNodes = numDataNodes + (nfaults * numParityNodes);
+ rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
+ NULL, nNodes, 0, 0, 0, dag_h, "Nil", allocList);
+
+ /* initialize commit node (Cmt) */
+ rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
+ NULL, nNodes, (nfaults * numParityNodes), 0, 0, dag_h, "Cmt", allocList);
+
+ /* initialize terminate node (Trm) */
+ rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
+ NULL, 0, nNodes, 0, 0, dag_h, "Trm", allocList);
+
+ /* initialize nodes which read old data (Rod) */
+ for (i = 0; i < numDataNodes; i++) {
+ rf_InitNode(&readDataNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
+ rf_GenericWakeupFunc, (nfaults * numParityNodes), 1, 4, 0, dag_h,
+ "Rod", allocList);
+ RF_ASSERT(pda != NULL);
+ /* physical disk addr desc */
+ readDataNodes[i].params[0].p = pda;
+ /* buffer to hold old data */
+ readDataNodes[i].params[1].p = rf_AllocBuffer(raidPtr,
+ dag_h, pda, allocList);
+ readDataNodes[i].params[2].v = parityStripeID;
+ readDataNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
+ lu_flag, 0, which_ru);
+ pda = pda->next;
+ for (j = 0; j < readDataNodes[i].numSuccedents; j++) {
+ readDataNodes[i].propList[j] = NULL;
+ }
+ }
+
+ /* initialize nodes which read old parity (Rop) */
+ pda = asmap->parityInfo;
+ i = 0;
+ for (i = 0; i < numParityNodes; i++) {
+ RF_ASSERT(pda != NULL);
+ rf_InitNode(&readParityNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc,
+ rf_DiskReadUndoFunc, rf_GenericWakeupFunc, numParityNodes, 1, 4,
+ 0, dag_h, "Rop", allocList);
+ readParityNodes[i].params[0].p = pda;
+ /* buffer to hold old parity */
+ readParityNodes[i].params[1].p = rf_AllocBuffer(raidPtr,
+ dag_h, pda, allocList);
+ readParityNodes[i].params[2].v = parityStripeID;
+ readParityNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
+ lu_flag, 0, which_ru);
+ pda = pda->next;
+ for (j = 0; j < readParityNodes[i].numSuccedents; j++) {
+ readParityNodes[i].propList[0] = NULL;
+ }
+ }
+
+ /* initialize nodes which read old Q (Roq) */
+ if (nfaults == 2) {
+ pda = asmap->qInfo;
+ for (i = 0; i < numParityNodes; i++) {
+ RF_ASSERT(pda != NULL);
+ rf_InitNode(&readQNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
+ rf_GenericWakeupFunc, numParityNodes, 1, 4, 0, dag_h, "Roq", allocList);
+ readQNodes[i].params[0].p = pda;
+ /* buffer to hold old Q */
+ readQNodes[i].params[1].p = rf_AllocBuffer(raidPtr, dag_h, pda,
+ allocList);
+ readQNodes[i].params[2].v = parityStripeID;
+ readQNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
+ lu_flag, 0, which_ru);
+ pda = pda->next;
+ for (j = 0; j < readQNodes[i].numSuccedents; j++) {
+ readQNodes[i].propList[0] = NULL;
+ }
+ }
+ }
+ /* initialize nodes which write new data (Wnd) */
+ pda = asmap->physInfo;
+ for (i = 0; i < numDataNodes; i++) {
+ RF_ASSERT(pda != NULL);
+ rf_InitNode(&writeDataNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc,
+ rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h,
+ "Wnd", allocList);
+ /* physical disk addr desc */
+ writeDataNodes[i].params[0].p = pda;
+ /* buffer holding new data to be written */
+ writeDataNodes[i].params[1].p = pda->bufPtr;
+ writeDataNodes[i].params[2].v = parityStripeID;
+ writeDataNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
+ 0, 0, which_ru);
+ if (lu_flag) {
+ /* initialize node to unlock the disk queue */
+ rf_InitNode(&unlockDataNodes[i], rf_wait, RF_FALSE, rf_DiskUnlockFunc,
+ rf_DiskUnlockUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h,
+ "Und", allocList);
+ /* physical disk addr desc */
+ unlockDataNodes[i].params[0].p = pda;
+ unlockDataNodes[i].params[1].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
+ 0, lu_flag, which_ru);
+ }
+ pda = pda->next;
+ }
+
+ /*
+ * Initialize nodes which compute new parity and Q.
+ */
+ /*
+ * We use the simple XOR func in the double-XOR case, and when
+ * we're accessing only a portion of one stripe unit. The distinction
+ * between the two is that the regular XOR func assumes that the targbuf
+ * is a full SU in size, and examines the pda associated with the buffer
+ * to decide where within the buffer to XOR the data, whereas
+ * the simple XOR func just XORs the data into the start of the buffer.
+ */
+ if ((numParityNodes == 2) || ((numDataNodes == 1)
+ && (asmap->totalSectorsAccessed < raidPtr->Layout.sectorsPerStripeUnit))) {
+ func = pfuncs->simple;
+ undoFunc = rf_NullNodeUndoFunc;
+ name = pfuncs->SimpleName;
+ if (qfuncs) {
+ qfunc = qfuncs->simple;
+ qname = qfuncs->SimpleName;
+ } else {
+ qfunc = NULL;
+ qname = NULL;
+ }
+ } else {
+ func = pfuncs->regular;
+ undoFunc = rf_NullNodeUndoFunc;
+ name = pfuncs->RegularName;
+ if (qfuncs) {
+ qfunc = qfuncs->regular;
+ qname = qfuncs->RegularName;
+ } else {
+ qfunc = NULL;
+ qname = NULL;
+ }
+ }
+ /*
+ * Initialize the xor nodes: params are {pda,buf}
+ * from {Rod,Wnd,Rop} nodes, and raidPtr
+ */
+ if (numParityNodes == 2) {
+ /* double-xor case */
+ for (i = 0; i < numParityNodes; i++) {
+ /* note: no wakeup func for xor */
+ rf_InitNode(&xorNodes[i], rf_wait, RF_FALSE, func, undoFunc, NULL,
+ 1, (numDataNodes + numParityNodes), 7, 1, dag_h, name, allocList);
+ xorNodes[i].flags |= RF_DAGNODE_FLAG_YIELD;
+ xorNodes[i].params[0] = readDataNodes[i].params[0];
+ xorNodes[i].params[1] = readDataNodes[i].params[1];
+ xorNodes[i].params[2] = readParityNodes[i].params[0];
+ xorNodes[i].params[3] = readParityNodes[i].params[1];
+ xorNodes[i].params[4] = writeDataNodes[i].params[0];
+ xorNodes[i].params[5] = writeDataNodes[i].params[1];
+ xorNodes[i].params[6].p = raidPtr;
+ /* use old parity buf as target buf */
+ xorNodes[i].results[0] = readParityNodes[i].params[1].p;
+ if (nfaults == 2) {
+ /* note: no wakeup func for qor */
+ rf_InitNode(&qNodes[i], rf_wait, RF_FALSE, qfunc, undoFunc, NULL, 1,
+ (numDataNodes + numParityNodes), 7, 1, dag_h, qname, allocList);
+ qNodes[i].params[0] = readDataNodes[i].params[0];
+ qNodes[i].params[1] = readDataNodes[i].params[1];
+ qNodes[i].params[2] = readQNodes[i].params[0];
+ qNodes[i].params[3] = readQNodes[i].params[1];
+ qNodes[i].params[4] = writeDataNodes[i].params[0];
+ qNodes[i].params[5] = writeDataNodes[i].params[1];
+ qNodes[i].params[6].p = raidPtr;
+ /* use old Q buf as target buf */
+ qNodes[i].results[0] = readQNodes[i].params[1].p;
+ }
+ }
+ } else {
+ /* there is only one xor node in this case */
+ rf_InitNode(&xorNodes[0], rf_wait, RF_FALSE, func, undoFunc, NULL, 1,
+ (numDataNodes + numParityNodes),
+ (2 * (numDataNodes + numDataNodes + 1) + 1), 1, dag_h, name, allocList);
+ xorNodes[0].flags |= RF_DAGNODE_FLAG_YIELD;
+ for (i = 0; i < numDataNodes + 1; i++) {
+ /* set up params related to Rod and Rop nodes */
+ xorNodes[0].params[2 * i + 0] = readDataNodes[i].params[0]; /* pda */
+ xorNodes[0].params[2 * i + 1] = readDataNodes[i].params[1]; /* buffer ptr */
+ }
+ for (i = 0; i < numDataNodes; i++) {
+ /* set up params related to Wnd and Wnp nodes */
+ xorNodes[0].params[2 * (numDataNodes + 1 + i) + 0] = /* pda */
+ writeDataNodes[i].params[0];
+ xorNodes[0].params[2 * (numDataNodes + 1 + i) + 1] = /* buffer ptr */
+ writeDataNodes[i].params[1];
+ }
+ /* xor node needs to get at RAID information */
+ xorNodes[0].params[2 * (numDataNodes + numDataNodes + 1)].p = raidPtr;
+ xorNodes[0].results[0] = readParityNodes[0].params[1].p;
+ if (nfaults == 2) {
+ rf_InitNode(&qNodes[0], rf_wait, RF_FALSE, qfunc, undoFunc, NULL, 1,
+ (numDataNodes + numParityNodes),
+ (2 * (numDataNodes + numDataNodes + 1) + 1), 1, dag_h,
+ qname, allocList);
+ for (i = 0; i < numDataNodes; i++) {
+ /* set up params related to Rod */
+ qNodes[0].params[2 * i + 0] = readDataNodes[i].params[0]; /* pda */
+ qNodes[0].params[2 * i + 1] = readDataNodes[i].params[1]; /* buffer ptr */
+ }
+ /* and read old q */
+ qNodes[0].params[2 * numDataNodes + 0] = /* pda */
+ readQNodes[0].params[0];
+ qNodes[0].params[2 * numDataNodes + 1] = /* buffer ptr */
+ readQNodes[0].params[1];
+ for (i = 0; i < numDataNodes; i++) {
+ /* set up params related to Wnd nodes */
+ qNodes[0].params[2 * (numDataNodes + 1 + i) + 0] = /* pda */
+ writeDataNodes[i].params[0];
+ qNodes[0].params[2 * (numDataNodes + 1 + i) + 1] = /* buffer ptr */
+ writeDataNodes[i].params[1];
+ }
+ /* xor node needs to get at RAID information */
+ qNodes[0].params[2 * (numDataNodes + numDataNodes + 1)].p = raidPtr;
+ qNodes[0].results[0] = readQNodes[0].params[1].p;
+ }
+ }
+
+ /* initialize nodes which write new parity (Wnp) */
+ pda = asmap->parityInfo;
+ for (i = 0; i < numParityNodes; i++) {
+ rf_InitNode(&writeParityNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc,
+ rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h,
+ "Wnp", allocList);
+ RF_ASSERT(pda != NULL);
+ writeParityNodes[i].params[0].p = pda; /* param 1 (bufPtr)
+ * filled in by xor node */
+ writeParityNodes[i].params[1].p = xorNodes[i].results[0]; /* buffer pointer for
+ * parity write
+ * operation */
+ writeParityNodes[i].params[2].v = parityStripeID;
+ writeParityNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
+ 0, 0, which_ru);
+ if (lu_flag) {
+ /* initialize node to unlock the disk queue */
+ rf_InitNode(&unlockParityNodes[i], rf_wait, RF_FALSE, rf_DiskUnlockFunc,
+ rf_DiskUnlockUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h,
+ "Unp", allocList);
+ unlockParityNodes[i].params[0].p = pda; /* physical disk addr
+ * desc */
+ unlockParityNodes[i].params[1].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
+ 0, lu_flag, which_ru);
+ }
+ pda = pda->next;
+ }
+
+ /* initialize nodes which write new Q (Wnq) */
+ if (nfaults == 2) {
+ pda = asmap->qInfo;
+ for (i = 0; i < numParityNodes; i++) {
+ rf_InitNode(&writeQNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc,
+ rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h,
+ "Wnq", allocList);
+ RF_ASSERT(pda != NULL);
+ writeQNodes[i].params[0].p = pda; /* param 1 (bufPtr)
+ * filled in by xor node */
+ writeQNodes[i].params[1].p = qNodes[i].results[0]; /* buffer pointer for
+ * parity write
+ * operation */
+ writeQNodes[i].params[2].v = parityStripeID;
+ writeQNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
+ 0, 0, which_ru);
+ if (lu_flag) {
+ /* initialize node to unlock the disk queue */
+ rf_InitNode(&unlockQNodes[i], rf_wait, RF_FALSE, rf_DiskUnlockFunc,
+ rf_DiskUnlockUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h,
+ "Unq", allocList);
+ unlockQNodes[i].params[0].p = pda; /* physical disk addr
+ * desc */
+ unlockQNodes[i].params[1].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
+ 0, lu_flag, which_ru);
+ }
+ pda = pda->next;
+ }
+ }
+ /*
+ * Step 4. connect the nodes.
+ */
+
+ /* connect header to block node */
+ dag_h->succedents[0] = blockNode;
+
+ /* connect block node to read old data nodes */
+ RF_ASSERT(blockNode->numSuccedents == (numDataNodes + (numParityNodes * nfaults)));
+ for (i = 0; i < numDataNodes; i++) {
+ blockNode->succedents[i] = &readDataNodes[i];
+ RF_ASSERT(readDataNodes[i].numAntecedents == 1);
+ readDataNodes[i].antecedents[0] = blockNode;
+ readDataNodes[i].antType[0] = rf_control;
+ }
+
+ /* connect block node to read old parity nodes */
+ for (i = 0; i < numParityNodes; i++) {
+ blockNode->succedents[numDataNodes + i] = &readParityNodes[i];
+ RF_ASSERT(readParityNodes[i].numAntecedents == 1);
+ readParityNodes[i].antecedents[0] = blockNode;
+ readParityNodes[i].antType[0] = rf_control;
+ }
+
+ /* connect block node to read old Q nodes */
+ if (nfaults == 2) {
+ for (i = 0; i < numParityNodes; i++) {
+ blockNode->succedents[numDataNodes + numParityNodes + i] = &readQNodes[i];
+ RF_ASSERT(readQNodes[i].numAntecedents == 1);
+ readQNodes[i].antecedents[0] = blockNode;
+ readQNodes[i].antType[0] = rf_control;
+ }
+ }
+ /* connect read old data nodes to xor nodes */
+ for (i = 0; i < numDataNodes; i++) {
+ RF_ASSERT(readDataNodes[i].numSuccedents == (nfaults * numParityNodes));
+ for (j = 0; j < numParityNodes; j++) {
+ RF_ASSERT(xorNodes[j].numAntecedents == numDataNodes + numParityNodes);
+ readDataNodes[i].succedents[j] = &xorNodes[j];
+ xorNodes[j].antecedents[i] = &readDataNodes[i];
+ xorNodes[j].antType[i] = rf_trueData;
+ }
+ }
+
+ /* connect read old data nodes to q nodes */
+ if (nfaults == 2) {
+ for (i = 0; i < numDataNodes; i++) {
+ for (j = 0; j < numParityNodes; j++) {
+ RF_ASSERT(qNodes[j].numAntecedents == numDataNodes + numParityNodes);
+ readDataNodes[i].succedents[numParityNodes + j] = &qNodes[j];
+ qNodes[j].antecedents[i] = &readDataNodes[i];
+ qNodes[j].antType[i] = rf_trueData;
+ }
+ }
+ }
+ /* connect read old parity nodes to xor nodes */
+ for (i = 0; i < numParityNodes; i++) {
+ RF_ASSERT(readParityNodes[i].numSuccedents == numParityNodes);
+ for (j = 0; j < numParityNodes; j++) {
+ readParityNodes[i].succedents[j] = &xorNodes[j];
+ xorNodes[j].antecedents[numDataNodes + i] = &readParityNodes[i];
+ xorNodes[j].antType[numDataNodes + i] = rf_trueData;
+ }
+ }
+
+ /* connect read old q nodes to q nodes */
+ if (nfaults == 2) {
+ for (i = 0; i < numParityNodes; i++) {
+ RF_ASSERT(readParityNodes[i].numSuccedents == numParityNodes);
+ for (j = 0; j < numParityNodes; j++) {
+ readQNodes[i].succedents[j] = &qNodes[j];
+ qNodes[j].antecedents[numDataNodes + i] = &readQNodes[i];
+ qNodes[j].antType[numDataNodes + i] = rf_trueData;
+ }
+ }
+ }
+ /* connect xor nodes to commit node */
+ RF_ASSERT(commitNode->numAntecedents == (nfaults * numParityNodes));
+ for (i = 0; i < numParityNodes; i++) {
+ RF_ASSERT(xorNodes[i].numSuccedents == 1);
+ xorNodes[i].succedents[0] = commitNode;
+ commitNode->antecedents[i] = &xorNodes[i];
+ commitNode->antType[i] = rf_control;
+ }
+
+ /* connect q nodes to commit node */
+ if (nfaults == 2) {
+ for (i = 0; i < numParityNodes; i++) {
+ RF_ASSERT(qNodes[i].numSuccedents == 1);
+ qNodes[i].succedents[0] = commitNode;
+ commitNode->antecedents[i + numParityNodes] = &qNodes[i];
+ commitNode->antType[i + numParityNodes] = rf_control;
+ }
+ }
+ /* connect commit node to write nodes */
+ RF_ASSERT(commitNode->numSuccedents == (numDataNodes + (nfaults * numParityNodes)));
+ for (i = 0; i < numDataNodes; i++) {
+ RF_ASSERT(writeDataNodes[i].numAntecedents == 1);
+ commitNode->succedents[i] = &writeDataNodes[i];
+ writeDataNodes[i].antecedents[0] = commitNode;
+ writeDataNodes[i].antType[0] = rf_trueData;
+ }
+ for (i = 0; i < numParityNodes; i++) {
+ RF_ASSERT(writeParityNodes[i].numAntecedents == 1);
+ commitNode->succedents[i + numDataNodes] = &writeParityNodes[i];
+ writeParityNodes[i].antecedents[0] = commitNode;
+ writeParityNodes[i].antType[0] = rf_trueData;
+ }
+ if (nfaults == 2) {
+ for (i = 0; i < numParityNodes; i++) {
+ RF_ASSERT(writeQNodes[i].numAntecedents == 1);
+ commitNode->succedents[i + numDataNodes + numParityNodes] = &writeQNodes[i];
+ writeQNodes[i].antecedents[0] = commitNode;
+ writeQNodes[i].antType[0] = rf_trueData;
+ }
+ }
+ RF_ASSERT(termNode->numAntecedents == (numDataNodes + (nfaults * numParityNodes)));
+ RF_ASSERT(termNode->numSuccedents == 0);
+ for (i = 0; i < numDataNodes; i++) {
+ if (lu_flag) {
+ /* connect write new data nodes to unlock nodes */
+ RF_ASSERT(writeDataNodes[i].numSuccedents == 1);
+ RF_ASSERT(unlockDataNodes[i].numAntecedents == 1);
+ writeDataNodes[i].succedents[0] = &unlockDataNodes[i];
+ unlockDataNodes[i].antecedents[0] = &writeDataNodes[i];
+ unlockDataNodes[i].antType[0] = rf_control;
+
+ /* connect unlock nodes to term node */
+ RF_ASSERT(unlockDataNodes[i].numSuccedents == 1);
+ unlockDataNodes[i].succedents[0] = termNode;
+ termNode->antecedents[i] = &unlockDataNodes[i];
+ termNode->antType[i] = rf_control;
+ } else {
+ /* connect write new data nodes to term node */
+ RF_ASSERT(writeDataNodes[i].numSuccedents == 1);
+ RF_ASSERT(termNode->numAntecedents == (numDataNodes + (nfaults * numParityNodes)));
+ writeDataNodes[i].succedents[0] = termNode;
+ termNode->antecedents[i] = &writeDataNodes[i];
+ termNode->antType[i] = rf_control;
+ }
+ }
+
+ for (i = 0; i < numParityNodes; i++) {
+ if (lu_flag) {
+ /* connect write new parity nodes to unlock nodes */
+ RF_ASSERT(writeParityNodes[i].numSuccedents == 1);
+ RF_ASSERT(unlockParityNodes[i].numAntecedents == 1);
+ writeParityNodes[i].succedents[0] = &unlockParityNodes[i];
+ unlockParityNodes[i].antecedents[0] = &writeParityNodes[i];
+ unlockParityNodes[i].antType[0] = rf_control;
+
+ /* connect unlock nodes to term node */
+ RF_ASSERT(unlockParityNodes[i].numSuccedents == 1);
+ unlockParityNodes[i].succedents[0] = termNode;
+ termNode->antecedents[numDataNodes + i] = &unlockParityNodes[i];
+ termNode->antType[numDataNodes + i] = rf_control;
+ } else {
+ RF_ASSERT(writeParityNodes[i].numSuccedents == 1);
+ writeParityNodes[i].succedents[0] = termNode;
+ termNode->antecedents[numDataNodes + i] = &writeParityNodes[i];
+ termNode->antType[numDataNodes + i] = rf_control;
+ }
+ }
+
+ if (nfaults == 2) {
+ for (i = 0; i < numParityNodes; i++) {
+ if (lu_flag) {
+ /* connect write new Q nodes to unlock nodes */
+ RF_ASSERT(writeQNodes[i].numSuccedents == 1);
+ RF_ASSERT(unlockQNodes[i].numAntecedents == 1);
+ writeQNodes[i].succedents[0] = &unlockQNodes[i];
+ unlockQNodes[i].antecedents[0] = &writeQNodes[i];
+ unlockQNodes[i].antType[0] = rf_control;
+
+ /* connect unlock nodes to unblock node */
+ RF_ASSERT(unlockQNodes[i].numSuccedents == 1);
+ unlockQNodes[i].succedents[0] = termNode;
+ termNode->antecedents[numDataNodes + numParityNodes + i] = &unlockQNodes[i];
+ termNode->antType[numDataNodes + numParityNodes + i] = rf_control;
+ } else {
+ RF_ASSERT(writeQNodes[i].numSuccedents == 1);
+ writeQNodes[i].succedents[0] = termNode;
+ termNode->antecedents[numDataNodes + numParityNodes + i] = &writeQNodes[i];
+ termNode->antType[numDataNodes + numParityNodes + i] = rf_control;
+ }
+ }
+ }
+}
+
+
+/******************************************************************************
+ * create a write graph (fault-free or degraded) for RAID level 1
+ *
+ * Hdr -> Commit -> Wpd -> Nil -> Trm
+ * -> Wsd ->
+ *
+ * The "Wpd" node writes data to the primary copy in the mirror pair
+ * The "Wsd" node writes data to the secondary copy in the mirror pair
+ *
+ * Parameters: raidPtr - description of the physical array
+ * asmap - logical & physical addresses for this access
+ * bp - buffer ptr (holds write data)
+ * flags - general flags (e.g. disk locking)
+ * allocList - list of memory allocated in DAG creation
+ *****************************************************************************/
+
+void
+rf_CreateRaidOneWriteDAG(
+ RF_Raid_t * raidPtr,
+ RF_AccessStripeMap_t * asmap,
+ RF_DagHeader_t * dag_h,
+ void *bp,
+ RF_RaidAccessFlags_t flags,
+ RF_AllocListElem_t * allocList)
+{
+ RF_DagNode_t *unblockNode, *termNode, *commitNode;
+ RF_DagNode_t *nodes, *wndNode, *wmirNode;
+ int nWndNodes, nWmirNodes, i;
+ RF_ReconUnitNum_t which_ru;
+ RF_PhysDiskAddr_t *pda, *pdaP;
+ RF_StripeNum_t parityStripeID;
+
+ parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout),
+ asmap->raidAddress, &which_ru);
+ if (rf_dagDebug) {
+ printf("[Creating RAID level 1 write DAG]\n");
+ }
+ dag_h->creator = "RaidOneWriteDAG";
+
+ /* 2 implies access not SU aligned */
+ nWmirNodes = (asmap->parityInfo->next) ? 2 : 1;
+ nWndNodes = (asmap->physInfo->next) ? 2 : 1;
+
+ /* alloc the Wnd nodes and the Wmir node */
+ if (asmap->numDataFailed == 1)
+ nWndNodes--;
+ if (asmap->numParityFailed == 1)
+ nWmirNodes--;
+
+ /* total number of nodes = nWndNodes + nWmirNodes + (commit + unblock
+ * + terminator) */
+ RF_CallocAndAdd(nodes, nWndNodes + nWmirNodes + 3, sizeof(RF_DagNode_t),
+ (RF_DagNode_t *), allocList);
+ i = 0;
+ wndNode = &nodes[i];
+ i += nWndNodes;
+ wmirNode = &nodes[i];
+ i += nWmirNodes;
+ commitNode = &nodes[i];
+ i += 1;
+ unblockNode = &nodes[i];
+ i += 1;
+ termNode = &nodes[i];
+ i += 1;
+ RF_ASSERT(i == (nWndNodes + nWmirNodes + 3));
+
+ /* this dag can commit immediately */
+ dag_h->numCommitNodes = 1;
+ dag_h->numCommits = 0;
+ dag_h->numSuccedents = 1;
+
+ /* initialize the commit, unblock, and term nodes */
+ rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
+ NULL, (nWndNodes + nWmirNodes), 0, 0, 0, dag_h, "Cmt", allocList);
+ rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
+ NULL, 1, (nWndNodes + nWmirNodes), 0, 0, dag_h, "Nil", allocList);
+ rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
+ NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
+
+ /* initialize the wnd nodes */
+ if (nWndNodes > 0) {
+ pda = asmap->physInfo;
+ for (i = 0; i < nWndNodes; i++) {
+ rf_InitNode(&wndNode[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
+ rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wpd", allocList);
+ RF_ASSERT(pda != NULL);
+ wndNode[i].params[0].p = pda;
+ wndNode[i].params[1].p = pda->bufPtr;
+ wndNode[i].params[2].v = parityStripeID;
+ wndNode[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
+ pda = pda->next;
+ }
+ RF_ASSERT(pda == NULL);
+ }
+ /* initialize the mirror nodes */
+ if (nWmirNodes > 0) {
+ pda = asmap->physInfo;
+ pdaP = asmap->parityInfo;
+ for (i = 0; i < nWmirNodes; i++) {
+ rf_InitNode(&wmirNode[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
+ rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wsd", allocList);
+ RF_ASSERT(pda != NULL);
+ wmirNode[i].params[0].p = pdaP;
+ wmirNode[i].params[1].p = pda->bufPtr;
+ wmirNode[i].params[2].v = parityStripeID;
+ wmirNode[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
+ pda = pda->next;
+ pdaP = pdaP->next;
+ }
+ RF_ASSERT(pda == NULL);
+ RF_ASSERT(pdaP == NULL);
+ }
+ /* link the header node to the commit node */
+ RF_ASSERT(dag_h->numSuccedents == 1);
+ RF_ASSERT(commitNode->numAntecedents == 0);
+ dag_h->succedents[0] = commitNode;
+
+ /* link the commit node to the write nodes */
+ RF_ASSERT(commitNode->numSuccedents == (nWndNodes + nWmirNodes));
+ for (i = 0; i < nWndNodes; i++) {
+ RF_ASSERT(wndNode[i].numAntecedents == 1);
+ commitNode->succedents[i] = &wndNode[i];
+ wndNode[i].antecedents[0] = commitNode;
+ wndNode[i].antType[0] = rf_control;
+ }
+ for (i = 0; i < nWmirNodes; i++) {
+ RF_ASSERT(wmirNode[i].numAntecedents == 1);
+ commitNode->succedents[i + nWndNodes] = &wmirNode[i];
+ wmirNode[i].antecedents[0] = commitNode;
+ wmirNode[i].antType[0] = rf_control;
+ }
+
+ /* link the write nodes to the unblock node */
+ RF_ASSERT(unblockNode->numAntecedents == (nWndNodes + nWmirNodes));
+ for (i = 0; i < nWndNodes; i++) {
+ RF_ASSERT(wndNode[i].numSuccedents == 1);
+ wndNode[i].succedents[0] = unblockNode;
+ unblockNode->antecedents[i] = &wndNode[i];
+ unblockNode->antType[i] = rf_control;
+ }
+ for (i = 0; i < nWmirNodes; i++) {
+ RF_ASSERT(wmirNode[i].numSuccedents == 1);
+ wmirNode[i].succedents[0] = unblockNode;
+ unblockNode->antecedents[i + nWndNodes] = &wmirNode[i];
+ unblockNode->antType[i + nWndNodes] = rf_control;
+ }
+
+ /* link the unblock node to the term node */
+ RF_ASSERT(unblockNode->numSuccedents == 1);
+ RF_ASSERT(termNode->numAntecedents == 1);
+ RF_ASSERT(termNode->numSuccedents == 0);
+ unblockNode->succedents[0] = termNode;
+ termNode->antecedents[0] = unblockNode;
+ termNode->antType[0] = rf_control;
+}
+
+
+
+/* DAGs which have no commit points.
+ *
+ * The following DAGs are used in forward and backward error recovery experiments.
+ * They are identical to the DAGs above this comment with the exception that the
+ * the commit points have been removed.
+ */
+
+
+
+void
+rf_CommonCreateLargeWriteDAGFwd(
+ RF_Raid_t * raidPtr,
+ RF_AccessStripeMap_t * asmap,
+ RF_DagHeader_t * dag_h,
+ void *bp,
+ RF_RaidAccessFlags_t flags,
+ RF_AllocListElem_t * allocList,
+ int nfaults,
+ int (*redFunc) (RF_DagNode_t *),
+ int allowBufferRecycle)
+{
+ RF_DagNode_t *nodes, *wndNodes, *rodNodes, *xorNode, *wnpNode;
+ RF_DagNode_t *wnqNode, *blockNode, *syncNode, *termNode;
+ int nWndNodes, nRodNodes, i, nodeNum, asmNum;
+ RF_AccessStripeMapHeader_t *new_asm_h[2];
+ RF_StripeNum_t parityStripeID;
+ char *sosBuffer, *eosBuffer;
+ RF_ReconUnitNum_t which_ru;
+ RF_RaidLayout_t *layoutPtr;
+ RF_PhysDiskAddr_t *pda;
+
+ layoutPtr = &(raidPtr->Layout);
+ parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout), asmap->raidAddress, &which_ru);
+
+ if (rf_dagDebug)
+ printf("[Creating large-write DAG]\n");
+ dag_h->creator = "LargeWriteDAGFwd";
+
+ dag_h->numCommitNodes = 0;
+ dag_h->numCommits = 0;
+ dag_h->numSuccedents = 1;
+
+ /* alloc the nodes: Wnd, xor, commit, block, term, and Wnp */
+ nWndNodes = asmap->numStripeUnitsAccessed;
+ RF_CallocAndAdd(nodes, nWndNodes + 4 + nfaults, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
+ i = 0;
+ wndNodes = &nodes[i];
+ i += nWndNodes;
+ xorNode = &nodes[i];
+ i += 1;
+ wnpNode = &nodes[i];
+ i += 1;
+ blockNode = &nodes[i];
+ i += 1;
+ syncNode = &nodes[i];
+ i += 1;
+ termNode = &nodes[i];
+ i += 1;
+ if (nfaults == 2) {
+ wnqNode = &nodes[i];
+ i += 1;
+ } else {
+ wnqNode = NULL;
+ }
+ rf_MapUnaccessedPortionOfStripe(raidPtr, layoutPtr, asmap, dag_h, new_asm_h, &nRodNodes, &sosBuffer, &eosBuffer, allocList);
+ if (nRodNodes > 0) {
+ RF_CallocAndAdd(rodNodes, nRodNodes, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
+ } else {
+ rodNodes = NULL;
+ }
+
+ /* begin node initialization */
+ if (nRodNodes > 0) {
+ rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nRodNodes, 0, 0, 0, dag_h, "Nil", allocList);
+ rf_InitNode(syncNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nWndNodes + 1, nRodNodes, 0, 0, dag_h, "Nil", allocList);
+ } else {
+ rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, 0, 0, 0, dag_h, "Nil", allocList);
+ rf_InitNode(syncNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nWndNodes + 1, 1, 0, 0, dag_h, "Nil", allocList);
+ }
+
+ rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, nWndNodes + nfaults, 0, 0, dag_h, "Trm", allocList);
+
+ /* initialize the Rod nodes */
+ for (nodeNum = asmNum = 0; asmNum < 2; asmNum++) {
+ if (new_asm_h[asmNum]) {
+ pda = new_asm_h[asmNum]->stripeMap->physInfo;
+ while (pda) {
+ rf_InitNode(&rodNodes[nodeNum], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rod", allocList);
+ rodNodes[nodeNum].params[0].p = pda;
+ rodNodes[nodeNum].params[1].p = pda->bufPtr;
+ rodNodes[nodeNum].params[2].v = parityStripeID;
+ rodNodes[nodeNum].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
+ nodeNum++;
+ pda = pda->next;
+ }
+ }
+ }
+ RF_ASSERT(nodeNum == nRodNodes);
+
+ /* initialize the wnd nodes */
+ pda = asmap->physInfo;
+ for (i = 0; i < nWndNodes; i++) {
+ rf_InitNode(&wndNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnd", allocList);
+ RF_ASSERT(pda != NULL);
+ wndNodes[i].params[0].p = pda;
+ wndNodes[i].params[1].p = pda->bufPtr;
+ wndNodes[i].params[2].v = parityStripeID;
+ wndNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
+ pda = pda->next;
+ }
+
+ /* initialize the redundancy node */
+ rf_InitNode(xorNode, rf_wait, RF_FALSE, redFunc, rf_NullNodeUndoFunc, NULL, 1, nfaults, 2 * (nWndNodes + nRodNodes) + 1, nfaults, dag_h, "Xr ", allocList);
+ xorNode->flags |= RF_DAGNODE_FLAG_YIELD;
+ for (i = 0; i < nWndNodes; i++) {
+ xorNode->params[2 * i + 0] = wndNodes[i].params[0]; /* pda */
+ xorNode->params[2 * i + 1] = wndNodes[i].params[1]; /* buf ptr */
+ }
+ for (i = 0; i < nRodNodes; i++) {
+ xorNode->params[2 * (nWndNodes + i) + 0] = rodNodes[i].params[0]; /* pda */
+ xorNode->params[2 * (nWndNodes + i) + 1] = rodNodes[i].params[1]; /* buf ptr */
+ }
+ xorNode->params[2 * (nWndNodes + nRodNodes)].p = raidPtr; /* xor node needs to get
+ * at RAID information */
+
+ /* look for an Rod node that reads a complete SU. If none, alloc a
+ * buffer to receive the parity info. Note that we can't use a new
+ * data buffer because it will not have gotten written when the xor
+ * occurs. */
+ if (allowBufferRecycle) {
+ for (i = 0; i < nRodNodes; i++)
+ if (((RF_PhysDiskAddr_t *) rodNodes[i].params[0].p)->numSector == raidPtr->Layout.sectorsPerStripeUnit)
+ break;
+ }
+ if ((!allowBufferRecycle) || (i == nRodNodes)) {
+ RF_CallocAndAdd(xorNode->results[0], 1, rf_RaidAddressToByte(raidPtr, raidPtr->Layout.sectorsPerStripeUnit), (void *), allocList);
+ } else
+ xorNode->results[0] = rodNodes[i].params[1].p;
+
+ /* initialize the Wnp node */
+ rf_InitNode(wnpNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnp", allocList);
+ wnpNode->params[0].p = asmap->parityInfo;
+ wnpNode->params[1].p = xorNode->results[0];
+ wnpNode->params[2].v = parityStripeID;
+ wnpNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
+ RF_ASSERT(asmap->parityInfo->next == NULL); /* parityInfo must
+ * describe entire
+ * parity unit */
+
+ if (nfaults == 2) {
+ /* we never try to recycle a buffer for the Q calcuation in
+ * addition to the parity. This would cause two buffers to get
+ * smashed during the P and Q calculation, guaranteeing one
+ * would be wrong. */
+ RF_CallocAndAdd(xorNode->results[1], 1, rf_RaidAddressToByte(raidPtr, raidPtr->Layout.sectorsPerStripeUnit), (void *), allocList);
+ rf_InitNode(wnqNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnq", allocList);
+ wnqNode->params[0].p = asmap->qInfo;
+ wnqNode->params[1].p = xorNode->results[1];
+ wnqNode->params[2].v = parityStripeID;
+ wnqNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
+ RF_ASSERT(asmap->parityInfo->next == NULL); /* parityInfo must
+ * describe entire
+ * parity unit */
+ }
+ /* connect nodes to form graph */
+
+ /* connect dag header to block node */
+ RF_ASSERT(blockNode->numAntecedents == 0);
+ dag_h->succedents[0] = blockNode;
+
+ if (nRodNodes > 0) {
+ /* connect the block node to the Rod nodes */
+ RF_ASSERT(blockNode->numSuccedents == nRodNodes);
+ RF_ASSERT(syncNode->numAntecedents == nRodNodes);
+ for (i = 0; i < nRodNodes; i++) {
+ RF_ASSERT(rodNodes[i].numAntecedents == 1);
+ blockNode->succedents[i] = &rodNodes[i];
+ rodNodes[i].antecedents[0] = blockNode;
+ rodNodes[i].antType[0] = rf_control;
+
+ /* connect the Rod nodes to the Nil node */
+ RF_ASSERT(rodNodes[i].numSuccedents == 1);
+ rodNodes[i].succedents[0] = syncNode;
+ syncNode->antecedents[i] = &rodNodes[i];
+ syncNode->antType[i] = rf_trueData;
+ }
+ } else {
+ /* connect the block node to the Nil node */
+ RF_ASSERT(blockNode->numSuccedents == 1);
+ RF_ASSERT(syncNode->numAntecedents == 1);
+ blockNode->succedents[0] = syncNode;
+ syncNode->antecedents[0] = blockNode;
+ syncNode->antType[0] = rf_control;
+ }
+
+ /* connect the sync node to the Wnd nodes */
+ RF_ASSERT(syncNode->numSuccedents == (1 + nWndNodes));
+ for (i = 0; i < nWndNodes; i++) {
+ RF_ASSERT(wndNodes->numAntecedents == 1);
+ syncNode->succedents[i] = &wndNodes[i];
+ wndNodes[i].antecedents[0] = syncNode;
+ wndNodes[i].antType[0] = rf_control;
+ }
+
+ /* connect the sync node to the Xor node */
+ RF_ASSERT(xorNode->numAntecedents == 1);
+ syncNode->succedents[nWndNodes] = xorNode;
+ xorNode->antecedents[0] = syncNode;
+ xorNode->antType[0] = rf_control;
+
+ /* connect the xor node to the write parity node */
+ RF_ASSERT(xorNode->numSuccedents == nfaults);
+ RF_ASSERT(wnpNode->numAntecedents == 1);
+ xorNode->succedents[0] = wnpNode;
+ wnpNode->antecedents[0] = xorNode;
+ wnpNode->antType[0] = rf_trueData;
+ if (nfaults == 2) {
+ RF_ASSERT(wnqNode->numAntecedents == 1);
+ xorNode->succedents[1] = wnqNode;
+ wnqNode->antecedents[0] = xorNode;
+ wnqNode->antType[0] = rf_trueData;
+ }
+ /* connect the write nodes to the term node */
+ RF_ASSERT(termNode->numAntecedents == nWndNodes + nfaults);
+ RF_ASSERT(termNode->numSuccedents == 0);
+ for (i = 0; i < nWndNodes; i++) {
+ RF_ASSERT(wndNodes->numSuccedents == 1);
+ wndNodes[i].succedents[0] = termNode;
+ termNode->antecedents[i] = &wndNodes[i];
+ termNode->antType[i] = rf_control;
+ }
+ RF_ASSERT(wnpNode->numSuccedents == 1);
+ wnpNode->succedents[0] = termNode;
+ termNode->antecedents[nWndNodes] = wnpNode;
+ termNode->antType[nWndNodes] = rf_control;
+ if (nfaults == 2) {
+ RF_ASSERT(wnqNode->numSuccedents == 1);
+ wnqNode->succedents[0] = termNode;
+ termNode->antecedents[nWndNodes + 1] = wnqNode;
+ termNode->antType[nWndNodes + 1] = rf_control;
+ }
+}
+
+
+/******************************************************************************
+ *
+ * creates a DAG to perform a small-write operation (either raid 5 or pq),
+ * which is as follows:
+ *
+ * Hdr -> Nil -> Rop - Xor - Wnp [Unp] -- Trm
+ * \- Rod X- Wnd [Und] -------/
+ * [\- Rod X- Wnd [Und] ------/]
+ * [\- Roq - Q --> Wnq [Unq]-/]
+ *
+ * Rop = read old parity
+ * Rod = read old data
+ * Roq = read old "q"
+ * Cmt = commit node
+ * Und = unlock data disk
+ * Unp = unlock parity disk
+ * Unq = unlock q disk
+ * Wnp = write new parity
+ * Wnd = write new data
+ * Wnq = write new "q"
+ * [ ] denotes optional segments in the graph
+ *
+ * Parameters: raidPtr - description of the physical array
+ * asmap - logical & physical addresses for this access
+ * bp - buffer ptr (holds write data)
+ * flags - general flags (e.g. disk locking)
+ * allocList - list of memory allocated in DAG creation
+ * pfuncs - list of parity generating functions
+ * qfuncs - list of q generating functions
+ *
+ * A null qfuncs indicates single fault tolerant
+ *****************************************************************************/
+
+void
+rf_CommonCreateSmallWriteDAGFwd(
+ RF_Raid_t * raidPtr,
+ RF_AccessStripeMap_t * asmap,
+ RF_DagHeader_t * dag_h,
+ void *bp,
+ RF_RaidAccessFlags_t flags,
+ RF_AllocListElem_t * allocList,
+ RF_RedFuncs_t * pfuncs,
+ RF_RedFuncs_t * qfuncs)
+{
+ RF_DagNode_t *readDataNodes, *readParityNodes, *readQNodes, *termNode;
+ RF_DagNode_t *unlockDataNodes, *unlockParityNodes, *unlockQNodes;
+ RF_DagNode_t *xorNodes, *qNodes, *blockNode, *nodes;
+ RF_DagNode_t *writeDataNodes, *writeParityNodes, *writeQNodes;
+ int i, j, nNodes, totalNumNodes, lu_flag;
+ RF_ReconUnitNum_t which_ru;
+ int (*func) (RF_DagNode_t *), (*undoFunc) (RF_DagNode_t *);
+ int (*qfunc) (RF_DagNode_t *);
+ int numDataNodes, numParityNodes;
+ RF_StripeNum_t parityStripeID;
+ RF_PhysDiskAddr_t *pda;
+ char *name, *qname;
+ long nfaults;
+
+ nfaults = qfuncs ? 2 : 1;
+ lu_flag = (rf_enableAtomicRMW) ? 1 : 0; /* lock/unlock flag */
+
+ parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout), asmap->raidAddress, &which_ru);
+ pda = asmap->physInfo;
+ numDataNodes = asmap->numStripeUnitsAccessed;
+ numParityNodes = (asmap->parityInfo->next) ? 2 : 1;
+
+ if (rf_dagDebug)
+ printf("[Creating small-write DAG]\n");
+ RF_ASSERT(numDataNodes > 0);
+ dag_h->creator = "SmallWriteDAGFwd";
+
+ dag_h->numCommitNodes = 0;
+ dag_h->numCommits = 0;
+ dag_h->numSuccedents = 1;
+
+ qfunc = NULL;
+ qname = NULL;
+
+ /* DAG creation occurs in four steps: 1. count the number of nodes in
+ * the DAG 2. create the nodes 3. initialize the nodes 4. connect the
+ * nodes */
+
+ /* Step 1. compute number of nodes in the graph */
+
+ /* number of nodes: a read and write for each data unit a redundancy
+ * computation node for each parity node (nfaults * nparity) a read
+ * and write for each parity unit a block node a terminate node if
+ * atomic RMW an unlock node for each data unit, redundancy unit */
+ totalNumNodes = (2 * numDataNodes) + (nfaults * numParityNodes) + (nfaults * 2 * numParityNodes) + 2;
+ if (lu_flag)
+ totalNumNodes += (numDataNodes + (nfaults * numParityNodes));
+
+
+ /* Step 2. create the nodes */
+ RF_CallocAndAdd(nodes, totalNumNodes, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
+ i = 0;
+ blockNode = &nodes[i];
+ i += 1;
+ readDataNodes = &nodes[i];
+ i += numDataNodes;
+ readParityNodes = &nodes[i];
+ i += numParityNodes;
+ writeDataNodes = &nodes[i];
+ i += numDataNodes;
+ writeParityNodes = &nodes[i];
+ i += numParityNodes;
+ xorNodes = &nodes[i];
+ i += numParityNodes;
+ termNode = &nodes[i];
+ i += 1;
+ if (lu_flag) {
+ unlockDataNodes = &nodes[i];
+ i += numDataNodes;
+ unlockParityNodes = &nodes[i];
+ i += numParityNodes;
+ } else {
+ unlockDataNodes = unlockParityNodes = NULL;
+ }
+ if (nfaults == 2) {
+ readQNodes = &nodes[i];
+ i += numParityNodes;
+ writeQNodes = &nodes[i];
+ i += numParityNodes;
+ qNodes = &nodes[i];
+ i += numParityNodes;
+ if (lu_flag) {
+ unlockQNodes = &nodes[i];
+ i += numParityNodes;
+ } else {
+ unlockQNodes = NULL;
+ }
+ } else {
+ readQNodes = writeQNodes = qNodes = unlockQNodes = NULL;
+ }
+ RF_ASSERT(i == totalNumNodes);
+
+ /* Step 3. initialize the nodes */
+ /* initialize block node (Nil) */
+ nNodes = numDataNodes + (nfaults * numParityNodes);
+ rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nNodes, 0, 0, 0, dag_h, "Nil", allocList);
+
+ /* initialize terminate node (Trm) */
+ rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, nNodes, 0, 0, dag_h, "Trm", allocList);
+
+ /* initialize nodes which read old data (Rod) */
+ for (i = 0; i < numDataNodes; i++) {
+ rf_InitNode(&readDataNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, (numParityNodes * nfaults) + 1, 1, 4, 0, dag_h, "Rod", allocList);
+ RF_ASSERT(pda != NULL);
+ readDataNodes[i].params[0].p = pda; /* physical disk addr
+ * desc */
+ readDataNodes[i].params[1].p = rf_AllocBuffer(raidPtr, dag_h, pda, allocList); /* buffer to hold old
+ * data */
+ readDataNodes[i].params[2].v = parityStripeID;
+ readDataNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, lu_flag, 0, which_ru);
+ pda = pda->next;
+ for (j = 0; j < readDataNodes[i].numSuccedents; j++)
+ readDataNodes[i].propList[j] = NULL;
+ }
+
+ /* initialize nodes which read old parity (Rop) */
+ pda = asmap->parityInfo;
+ i = 0;
+ for (i = 0; i < numParityNodes; i++) {
+ RF_ASSERT(pda != NULL);
+ rf_InitNode(&readParityNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, numParityNodes, 1, 4, 0, dag_h, "Rop", allocList);
+ readParityNodes[i].params[0].p = pda;
+ readParityNodes[i].params[1].p = rf_AllocBuffer(raidPtr, dag_h, pda, allocList); /* buffer to hold old
+ * parity */
+ readParityNodes[i].params[2].v = parityStripeID;
+ readParityNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, lu_flag, 0, which_ru);
+ for (j = 0; j < readParityNodes[i].numSuccedents; j++)
+ readParityNodes[i].propList[0] = NULL;
+ pda = pda->next;
+ }
+
+ /* initialize nodes which read old Q (Roq) */
+ if (nfaults == 2) {
+ pda = asmap->qInfo;
+ for (i = 0; i < numParityNodes; i++) {
+ RF_ASSERT(pda != NULL);
+ rf_InitNode(&readQNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, numParityNodes, 1, 4, 0, dag_h, "Roq", allocList);
+ readQNodes[i].params[0].p = pda;
+ readQNodes[i].params[1].p = rf_AllocBuffer(raidPtr, dag_h, pda, allocList); /* buffer to hold old Q */
+ readQNodes[i].params[2].v = parityStripeID;
+ readQNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, lu_flag, 0, which_ru);
+ for (j = 0; j < readQNodes[i].numSuccedents; j++)
+ readQNodes[i].propList[0] = NULL;
+ pda = pda->next;
+ }
+ }
+ /* initialize nodes which write new data (Wnd) */
+ pda = asmap->physInfo;
+ for (i = 0; i < numDataNodes; i++) {
+ RF_ASSERT(pda != NULL);
+ rf_InitNode(&writeDataNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnd", allocList);
+ writeDataNodes[i].params[0].p = pda; /* physical disk addr
+ * desc */
+ writeDataNodes[i].params[1].p = pda->bufPtr; /* buffer holding new
+ * data to be written */
+ writeDataNodes[i].params[2].v = parityStripeID;
+ writeDataNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
+
+ if (lu_flag) {
+ /* initialize node to unlock the disk queue */
+ rf_InitNode(&unlockDataNodes[i], rf_wait, RF_FALSE, rf_DiskUnlockFunc, rf_DiskUnlockUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h, "Und", allocList);
+ unlockDataNodes[i].params[0].p = pda; /* physical disk addr
+ * desc */
+ unlockDataNodes[i].params[1].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, lu_flag, which_ru);
+ }
+ pda = pda->next;
+ }
+
+
+ /* initialize nodes which compute new parity and Q */
+ /* we use the simple XOR func in the double-XOR case, and when we're
+ * accessing only a portion of one stripe unit. the distinction
+ * between the two is that the regular XOR func assumes that the
+ * targbuf is a full SU in size, and examines the pda associated with
+ * the buffer to decide where within the buffer to XOR the data,
+ * whereas the simple XOR func just XORs the data into the start of
+ * the buffer. */
+ if ((numParityNodes == 2) || ((numDataNodes == 1) && (asmap->totalSectorsAccessed < raidPtr->Layout.sectorsPerStripeUnit))) {
+ func = pfuncs->simple;
+ undoFunc = rf_NullNodeUndoFunc;
+ name = pfuncs->SimpleName;
+ if (qfuncs) {
+ qfunc = qfuncs->simple;
+ qname = qfuncs->SimpleName;
+ }
+ } else {
+ func = pfuncs->regular;
+ undoFunc = rf_NullNodeUndoFunc;
+ name = pfuncs->RegularName;
+ if (qfuncs) {
+ qfunc = qfuncs->regular;
+ qname = qfuncs->RegularName;
+ }
+ }
+ /* initialize the xor nodes: params are {pda,buf} from {Rod,Wnd,Rop}
+ * nodes, and raidPtr */
+ if (numParityNodes == 2) { /* double-xor case */
+ for (i = 0; i < numParityNodes; i++) {
+ rf_InitNode(&xorNodes[i], rf_wait, RF_FALSE, func, undoFunc, NULL, numParityNodes, numParityNodes + numDataNodes, 7, 1, dag_h, name, allocList); /* no wakeup func for
+ * xor */
+ xorNodes[i].flags |= RF_DAGNODE_FLAG_YIELD;
+ xorNodes[i].params[0] = readDataNodes[i].params[0];
+ xorNodes[i].params[1] = readDataNodes[i].params[1];
+ xorNodes[i].params[2] = readParityNodes[i].params[0];
+ xorNodes[i].params[3] = readParityNodes[i].params[1];
+ xorNodes[i].params[4] = writeDataNodes[i].params[0];
+ xorNodes[i].params[5] = writeDataNodes[i].params[1];
+ xorNodes[i].params[6].p = raidPtr;
+ xorNodes[i].results[0] = readParityNodes[i].params[1].p; /* use old parity buf as
+ * target buf */
+ if (nfaults == 2) {
+ rf_InitNode(&qNodes[i], rf_wait, RF_FALSE, qfunc, undoFunc, NULL, numParityNodes, numParityNodes + numDataNodes, 7, 1, dag_h, qname, allocList); /* no wakeup func for
+ * xor */
+ qNodes[i].params[0] = readDataNodes[i].params[0];
+ qNodes[i].params[1] = readDataNodes[i].params[1];
+ qNodes[i].params[2] = readQNodes[i].params[0];
+ qNodes[i].params[3] = readQNodes[i].params[1];
+ qNodes[i].params[4] = writeDataNodes[i].params[0];
+ qNodes[i].params[5] = writeDataNodes[i].params[1];
+ qNodes[i].params[6].p = raidPtr;
+ qNodes[i].results[0] = readQNodes[i].params[1].p; /* use old Q buf as
+ * target buf */
+ }
+ }
+ } else {
+ /* there is only one xor node in this case */
+ rf_InitNode(&xorNodes[0], rf_wait, RF_FALSE, func, undoFunc, NULL, numParityNodes, numParityNodes + numDataNodes, (2 * (numDataNodes + numDataNodes + 1) + 1), 1, dag_h, name, allocList);
+ xorNodes[0].flags |= RF_DAGNODE_FLAG_YIELD;
+ for (i = 0; i < numDataNodes + 1; i++) {
+ /* set up params related to Rod and Rop nodes */
+ xorNodes[0].params[2 * i + 0] = readDataNodes[i].params[0]; /* pda */
+ xorNodes[0].params[2 * i + 1] = readDataNodes[i].params[1]; /* buffer pointer */
+ }
+ for (i = 0; i < numDataNodes; i++) {
+ /* set up params related to Wnd and Wnp nodes */
+ xorNodes[0].params[2 * (numDataNodes + 1 + i) + 0] = writeDataNodes[i].params[0]; /* pda */
+ xorNodes[0].params[2 * (numDataNodes + 1 + i) + 1] = writeDataNodes[i].params[1]; /* buffer pointer */
+ }
+ xorNodes[0].params[2 * (numDataNodes + numDataNodes + 1)].p = raidPtr; /* xor node needs to get
+ * at RAID information */
+ xorNodes[0].results[0] = readParityNodes[0].params[1].p;
+ if (nfaults == 2) {
+ rf_InitNode(&qNodes[0], rf_wait, RF_FALSE, qfunc, undoFunc, NULL, numParityNodes, numParityNodes + numDataNodes, (2 * (numDataNodes + numDataNodes + 1) + 1), 1, dag_h, qname, allocList);
+ for (i = 0; i < numDataNodes; i++) {
+ /* set up params related to Rod */
+ qNodes[0].params[2 * i + 0] = readDataNodes[i].params[0]; /* pda */
+ qNodes[0].params[2 * i + 1] = readDataNodes[i].params[1]; /* buffer pointer */
+ }
+ /* and read old q */
+ qNodes[0].params[2 * numDataNodes + 0] = readQNodes[0].params[0]; /* pda */
+ qNodes[0].params[2 * numDataNodes + 1] = readQNodes[0].params[1]; /* buffer pointer */
+ for (i = 0; i < numDataNodes; i++) {
+ /* set up params related to Wnd nodes */
+ qNodes[0].params[2 * (numDataNodes + 1 + i) + 0] = writeDataNodes[i].params[0]; /* pda */
+ qNodes[0].params[2 * (numDataNodes + 1 + i) + 1] = writeDataNodes[i].params[1]; /* buffer pointer */
+ }
+ qNodes[0].params[2 * (numDataNodes + numDataNodes + 1)].p = raidPtr; /* xor node needs to get
+ * at RAID information */
+ qNodes[0].results[0] = readQNodes[0].params[1].p;
+ }
+ }
+
+ /* initialize nodes which write new parity (Wnp) */
+ pda = asmap->parityInfo;
+ for (i = 0; i < numParityNodes; i++) {
+ rf_InitNode(&writeParityNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, numParityNodes, 4, 0, dag_h, "Wnp", allocList);
+ RF_ASSERT(pda != NULL);
+ writeParityNodes[i].params[0].p = pda; /* param 1 (bufPtr)
+ * filled in by xor node */
+ writeParityNodes[i].params[1].p = xorNodes[i].results[0]; /* buffer pointer for
+ * parity write
+ * operation */
+ writeParityNodes[i].params[2].v = parityStripeID;
+ writeParityNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
+
+ if (lu_flag) {
+ /* initialize node to unlock the disk queue */
+ rf_InitNode(&unlockParityNodes[i], rf_wait, RF_FALSE, rf_DiskUnlockFunc, rf_DiskUnlockUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h, "Unp", allocList);
+ unlockParityNodes[i].params[0].p = pda; /* physical disk addr
+ * desc */
+ unlockParityNodes[i].params[1].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, lu_flag, which_ru);
+ }
+ pda = pda->next;
+ }
+
+ /* initialize nodes which write new Q (Wnq) */
+ if (nfaults == 2) {
+ pda = asmap->qInfo;
+ for (i = 0; i < numParityNodes; i++) {
+ rf_InitNode(&writeQNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, numParityNodes, 4, 0, dag_h, "Wnq", allocList);
+ RF_ASSERT(pda != NULL);
+ writeQNodes[i].params[0].p = pda; /* param 1 (bufPtr)
+ * filled in by xor node */
+ writeQNodes[i].params[1].p = qNodes[i].results[0]; /* buffer pointer for
+ * parity write
+ * operation */
+ writeQNodes[i].params[2].v = parityStripeID;
+ writeQNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
+
+ if (lu_flag) {
+ /* initialize node to unlock the disk queue */
+ rf_InitNode(&unlockQNodes[i], rf_wait, RF_FALSE, rf_DiskUnlockFunc, rf_DiskUnlockUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h, "Unq", allocList);
+ unlockQNodes[i].params[0].p = pda; /* physical disk addr
+ * desc */
+ unlockQNodes[i].params[1].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, lu_flag, which_ru);
+ }
+ pda = pda->next;
+ }
+ }
+ /* Step 4. connect the nodes */
+
+ /* connect header to block node */
+ dag_h->succedents[0] = blockNode;
+
+ /* connect block node to read old data nodes */
+ RF_ASSERT(blockNode->numSuccedents == (numDataNodes + (numParityNodes * nfaults)));
+ for (i = 0; i < numDataNodes; i++) {
+ blockNode->succedents[i] = &readDataNodes[i];
+ RF_ASSERT(readDataNodes[i].numAntecedents == 1);
+ readDataNodes[i].antecedents[0] = blockNode;
+ readDataNodes[i].antType[0] = rf_control;
+ }
+
+ /* connect block node to read old parity nodes */
+ for (i = 0; i < numParityNodes; i++) {
+ blockNode->succedents[numDataNodes + i] = &readParityNodes[i];
+ RF_ASSERT(readParityNodes[i].numAntecedents == 1);
+ readParityNodes[i].antecedents[0] = blockNode;
+ readParityNodes[i].antType[0] = rf_control;
+ }
+
+ /* connect block node to read old Q nodes */
+ if (nfaults == 2)
+ for (i = 0; i < numParityNodes; i++) {
+ blockNode->succedents[numDataNodes + numParityNodes + i] = &readQNodes[i];
+ RF_ASSERT(readQNodes[i].numAntecedents == 1);
+ readQNodes[i].antecedents[0] = blockNode;
+ readQNodes[i].antType[0] = rf_control;
+ }
+
+ /* connect read old data nodes to write new data nodes */
+ for (i = 0; i < numDataNodes; i++) {
+ RF_ASSERT(readDataNodes[i].numSuccedents == ((nfaults * numParityNodes) + 1));
+ RF_ASSERT(writeDataNodes[i].numAntecedents == 1);
+ readDataNodes[i].succedents[0] = &writeDataNodes[i];
+ writeDataNodes[i].antecedents[0] = &readDataNodes[i];
+ writeDataNodes[i].antType[0] = rf_antiData;
+ }
+
+ /* connect read old data nodes to xor nodes */
+ for (i = 0; i < numDataNodes; i++) {
+ for (j = 0; j < numParityNodes; j++) {
+ RF_ASSERT(xorNodes[j].numAntecedents == numDataNodes + numParityNodes);
+ readDataNodes[i].succedents[1 + j] = &xorNodes[j];
+ xorNodes[j].antecedents[i] = &readDataNodes[i];
+ xorNodes[j].antType[i] = rf_trueData;
+ }
+ }
+
+ /* connect read old data nodes to q nodes */
+ if (nfaults == 2)
+ for (i = 0; i < numDataNodes; i++)
+ for (j = 0; j < numParityNodes; j++) {
+ RF_ASSERT(qNodes[j].numAntecedents == numDataNodes + numParityNodes);
+ readDataNodes[i].succedents[1 + numParityNodes + j] = &qNodes[j];
+ qNodes[j].antecedents[i] = &readDataNodes[i];
+ qNodes[j].antType[i] = rf_trueData;
+ }
+
+ /* connect read old parity nodes to xor nodes */
+ for (i = 0; i < numParityNodes; i++) {
+ for (j = 0; j < numParityNodes; j++) {
+ RF_ASSERT(readParityNodes[i].numSuccedents == numParityNodes);
+ readParityNodes[i].succedents[j] = &xorNodes[j];
+ xorNodes[j].antecedents[numDataNodes + i] = &readParityNodes[i];
+ xorNodes[j].antType[numDataNodes + i] = rf_trueData;
+ }
+ }
+
+ /* connect read old q nodes to q nodes */
+ if (nfaults == 2)
+ for (i = 0; i < numParityNodes; i++) {
+ for (j = 0; j < numParityNodes; j++) {
+ RF_ASSERT(readQNodes[i].numSuccedents == numParityNodes);
+ readQNodes[i].succedents[j] = &qNodes[j];
+ qNodes[j].antecedents[numDataNodes + i] = &readQNodes[i];
+ qNodes[j].antType[numDataNodes + i] = rf_trueData;
+ }
+ }
+
+ /* connect xor nodes to the write new parity nodes */
+ for (i = 0; i < numParityNodes; i++) {
+ RF_ASSERT(writeParityNodes[i].numAntecedents == numParityNodes);
+ for (j = 0; j < numParityNodes; j++) {
+ RF_ASSERT(xorNodes[j].numSuccedents == numParityNodes);
+ xorNodes[i].succedents[j] = &writeParityNodes[j];
+ writeParityNodes[j].antecedents[i] = &xorNodes[i];
+ writeParityNodes[j].antType[i] = rf_trueData;
+ }
+ }
+
+ /* connect q nodes to the write new q nodes */
+ if (nfaults == 2)
+ for (i = 0; i < numParityNodes; i++) {
+ RF_ASSERT(writeQNodes[i].numAntecedents == numParityNodes);
+ for (j = 0; j < numParityNodes; j++) {
+ RF_ASSERT(qNodes[j].numSuccedents == 1);
+ qNodes[i].succedents[j] = &writeQNodes[j];
+ writeQNodes[j].antecedents[i] = &qNodes[i];
+ writeQNodes[j].antType[i] = rf_trueData;
+ }
+ }
+
+ RF_ASSERT(termNode->numAntecedents == (numDataNodes + (nfaults * numParityNodes)));
+ RF_ASSERT(termNode->numSuccedents == 0);
+ for (i = 0; i < numDataNodes; i++) {
+ if (lu_flag) {
+ /* connect write new data nodes to unlock nodes */
+ RF_ASSERT(writeDataNodes[i].numSuccedents == 1);
+ RF_ASSERT(unlockDataNodes[i].numAntecedents == 1);
+ writeDataNodes[i].succedents[0] = &unlockDataNodes[i];
+ unlockDataNodes[i].antecedents[0] = &writeDataNodes[i];
+ unlockDataNodes[i].antType[0] = rf_control;
+
+ /* connect unlock nodes to term node */
+ RF_ASSERT(unlockDataNodes[i].numSuccedents == 1);
+ unlockDataNodes[i].succedents[0] = termNode;
+ termNode->antecedents[i] = &unlockDataNodes[i];
+ termNode->antType[i] = rf_control;
+ } else {
+ /* connect write new data nodes to term node */
+ RF_ASSERT(writeDataNodes[i].numSuccedents == 1);
+ RF_ASSERT(termNode->numAntecedents == (numDataNodes + (nfaults * numParityNodes)));
+ writeDataNodes[i].succedents[0] = termNode;
+ termNode->antecedents[i] = &writeDataNodes[i];
+ termNode->antType[i] = rf_control;
+ }
+ }
+
+ for (i = 0; i < numParityNodes; i++) {
+ if (lu_flag) {
+ /* connect write new parity nodes to unlock nodes */
+ RF_ASSERT(writeParityNodes[i].numSuccedents == 1);
+ RF_ASSERT(unlockParityNodes[i].numAntecedents == 1);
+ writeParityNodes[i].succedents[0] = &unlockParityNodes[i];
+ unlockParityNodes[i].antecedents[0] = &writeParityNodes[i];
+ unlockParityNodes[i].antType[0] = rf_control;
+
+ /* connect unlock nodes to term node */
+ RF_ASSERT(unlockParityNodes[i].numSuccedents == 1);
+ unlockParityNodes[i].succedents[0] = termNode;
+ termNode->antecedents[numDataNodes + i] = &unlockParityNodes[i];
+ termNode->antType[numDataNodes + i] = rf_control;
+ } else {
+ RF_ASSERT(writeParityNodes[i].numSuccedents == 1);
+ writeParityNodes[i].succedents[0] = termNode;
+ termNode->antecedents[numDataNodes + i] = &writeParityNodes[i];
+ termNode->antType[numDataNodes + i] = rf_control;
+ }
+ }
+
+ if (nfaults == 2)
+ for (i = 0; i < numParityNodes; i++) {
+ if (lu_flag) {
+ /* connect write new Q nodes to unlock nodes */
+ RF_ASSERT(writeQNodes[i].numSuccedents == 1);
+ RF_ASSERT(unlockQNodes[i].numAntecedents == 1);
+ writeQNodes[i].succedents[0] = &unlockQNodes[i];
+ unlockQNodes[i].antecedents[0] = &writeQNodes[i];
+ unlockQNodes[i].antType[0] = rf_control;
+
+ /* connect unlock nodes to unblock node */
+ RF_ASSERT(unlockQNodes[i].numSuccedents == 1);
+ unlockQNodes[i].succedents[0] = termNode;
+ termNode->antecedents[numDataNodes + numParityNodes + i] = &unlockQNodes[i];
+ termNode->antType[numDataNodes + numParityNodes + i] = rf_control;
+ } else {
+ RF_ASSERT(writeQNodes[i].numSuccedents == 1);
+ writeQNodes[i].succedents[0] = termNode;
+ termNode->antecedents[numDataNodes + numParityNodes + i] = &writeQNodes[i];
+ termNode->antType[numDataNodes + numParityNodes + i] = rf_control;
+ }
+ }
+}
+
+
+
+/******************************************************************************
+ * create a write graph (fault-free or degraded) for RAID level 1
+ *
+ * Hdr Nil -> Wpd -> Nil -> Trm
+ * Nil -> Wsd ->
+ *
+ * The "Wpd" node writes data to the primary copy in the mirror pair
+ * The "Wsd" node writes data to the secondary copy in the mirror pair
+ *
+ * Parameters: raidPtr - description of the physical array
+ * asmap - logical & physical addresses for this access
+ * bp - buffer ptr (holds write data)
+ * flags - general flags (e.g. disk locking)
+ * allocList - list of memory allocated in DAG creation
+ *****************************************************************************/
+
+void
+rf_CreateRaidOneWriteDAGFwd(
+ RF_Raid_t * raidPtr,
+ RF_AccessStripeMap_t * asmap,
+ RF_DagHeader_t * dag_h,
+ void *bp,
+ RF_RaidAccessFlags_t flags,
+ RF_AllocListElem_t * allocList)
+{
+ RF_DagNode_t *blockNode, *unblockNode, *termNode;
+ RF_DagNode_t *nodes, *wndNode, *wmirNode;
+ int nWndNodes, nWmirNodes, i;
+ RF_ReconUnitNum_t which_ru;
+ RF_PhysDiskAddr_t *pda, *pdaP;
+ RF_StripeNum_t parityStripeID;
+
+ parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout),
+ asmap->raidAddress, &which_ru);
+ if (rf_dagDebug) {
+ printf("[Creating RAID level 1 write DAG]\n");
+ }
+ nWmirNodes = (asmap->parityInfo->next) ? 2 : 1; /* 2 implies access not
+ * SU aligned */
+ nWndNodes = (asmap->physInfo->next) ? 2 : 1;
+
+ /* alloc the Wnd nodes and the Wmir node */
+ if (asmap->numDataFailed == 1)
+ nWndNodes--;
+ if (asmap->numParityFailed == 1)
+ nWmirNodes--;
+
+ /* total number of nodes = nWndNodes + nWmirNodes + (block + unblock +
+ * terminator) */
+ RF_CallocAndAdd(nodes, nWndNodes + nWmirNodes + 3, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
+ i = 0;
+ wndNode = &nodes[i];
+ i += nWndNodes;
+ wmirNode = &nodes[i];
+ i += nWmirNodes;
+ blockNode = &nodes[i];
+ i += 1;
+ unblockNode = &nodes[i];
+ i += 1;
+ termNode = &nodes[i];
+ i += 1;
+ RF_ASSERT(i == (nWndNodes + nWmirNodes + 3));
+
+ /* this dag can commit immediately */
+ dag_h->numCommitNodes = 0;
+ dag_h->numCommits = 0;
+ dag_h->numSuccedents = 1;
+
+ /* initialize the unblock and term nodes */
+ rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, (nWndNodes + nWmirNodes), 0, 0, 0, dag_h, "Nil", allocList);
+ rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, (nWndNodes + nWmirNodes), 0, 0, dag_h, "Nil", allocList);
+ rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
+
+ /* initialize the wnd nodes */
+ if (nWndNodes > 0) {
+ pda = asmap->physInfo;
+ for (i = 0; i < nWndNodes; i++) {
+ rf_InitNode(&wndNode[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wpd", allocList);
+ RF_ASSERT(pda != NULL);
+ wndNode[i].params[0].p = pda;
+ wndNode[i].params[1].p = pda->bufPtr;
+ wndNode[i].params[2].v = parityStripeID;
+ wndNode[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
+ pda = pda->next;
+ }
+ RF_ASSERT(pda == NULL);
+ }
+ /* initialize the mirror nodes */
+ if (nWmirNodes > 0) {
+ pda = asmap->physInfo;
+ pdaP = asmap->parityInfo;
+ for (i = 0; i < nWmirNodes; i++) {
+ rf_InitNode(&wmirNode[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wsd", allocList);
+ RF_ASSERT(pda != NULL);
+ wmirNode[i].params[0].p = pdaP;
+ wmirNode[i].params[1].p = pda->bufPtr;
+ wmirNode[i].params[2].v = parityStripeID;
+ wmirNode[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
+ pda = pda->next;
+ pdaP = pdaP->next;
+ }
+ RF_ASSERT(pda == NULL);
+ RF_ASSERT(pdaP == NULL);
+ }
+ /* link the header node to the block node */
+ RF_ASSERT(dag_h->numSuccedents == 1);
+ RF_ASSERT(blockNode->numAntecedents == 0);
+ dag_h->succedents[0] = blockNode;
+
+ /* link the block node to the write nodes */
+ RF_ASSERT(blockNode->numSuccedents == (nWndNodes + nWmirNodes));
+ for (i = 0; i < nWndNodes; i++) {
+ RF_ASSERT(wndNode[i].numAntecedents == 1);
+ blockNode->succedents[i] = &wndNode[i];
+ wndNode[i].antecedents[0] = blockNode;
+ wndNode[i].antType[0] = rf_control;
+ }
+ for (i = 0; i < nWmirNodes; i++) {
+ RF_ASSERT(wmirNode[i].numAntecedents == 1);
+ blockNode->succedents[i + nWndNodes] = &wmirNode[i];
+ wmirNode[i].antecedents[0] = blockNode;
+ wmirNode[i].antType[0] = rf_control;
+ }
+
+ /* link the write nodes to the unblock node */
+ RF_ASSERT(unblockNode->numAntecedents == (nWndNodes + nWmirNodes));
+ for (i = 0; i < nWndNodes; i++) {
+ RF_ASSERT(wndNode[i].numSuccedents == 1);
+ wndNode[i].succedents[0] = unblockNode;
+ unblockNode->antecedents[i] = &wndNode[i];
+ unblockNode->antType[i] = rf_control;
+ }
+ for (i = 0; i < nWmirNodes; i++) {
+ RF_ASSERT(wmirNode[i].numSuccedents == 1);
+ wmirNode[i].succedents[0] = unblockNode;
+ unblockNode->antecedents[i + nWndNodes] = &wmirNode[i];
+ unblockNode->antType[i + nWndNodes] = rf_control;
+ }
+
+ /* link the unblock node to the term node */
+ RF_ASSERT(unblockNode->numSuccedents == 1);
+ RF_ASSERT(termNode->numAntecedents == 1);
+ RF_ASSERT(termNode->numSuccedents == 0);
+ unblockNode->succedents[0] = termNode;
+ termNode->antecedents[0] = unblockNode;
+ termNode->antType[0] = rf_control;
+
+ return;
+}
diff --git a/sys/dev/raidframe/rf_dagffwr.h b/sys/dev/raidframe/rf_dagffwr.h
new file mode 100644
index 0000000..f65875e
--- /dev/null
+++ b/sys/dev/raidframe/rf_dagffwr.h
@@ -0,0 +1,77 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_dagffwr.h,v 1.3 1999/02/05 00:06:08 oster Exp $ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Mark Holland, Daniel Stodolsky, William V. Courtright II
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+#ifndef _RF__RF_DAGFFWR_H_
+#define _RF__RF_DAGFFWR_H_
+
+#include <dev/raidframe/rf_types.h>
+
+/* fault-free write DAG creation routines */
+void
+rf_CreateNonRedundantWriteDAG(RF_Raid_t * raidPtr,
+ RF_AccessStripeMap_t * asmap, RF_DagHeader_t * dag_h, void *bp,
+ RF_RaidAccessFlags_t flags, RF_AllocListElem_t * allocList,
+ RF_IoType_t type);
+void
+rf_CreateRAID0WriteDAG(RF_Raid_t * raidPtr, RF_AccessStripeMap_t * asmap,
+ RF_DagHeader_t * dag_h, void *bp, RF_RaidAccessFlags_t flags,
+ RF_AllocListElem_t * allocList, RF_IoType_t type);
+void
+rf_CreateSmallWriteDAG(RF_Raid_t * raidPtr, RF_AccessStripeMap_t * asmap,
+ RF_DagHeader_t * dag_h, void *bp, RF_RaidAccessFlags_t flags,
+ RF_AllocListElem_t * allocList);
+void
+rf_CreateLargeWriteDAG(RF_Raid_t * raidPtr, RF_AccessStripeMap_t * asmap,
+ RF_DagHeader_t * dag_h, void *bp, RF_RaidAccessFlags_t flags,
+ RF_AllocListElem_t * allocList);
+void
+rf_CommonCreateLargeWriteDAG(RF_Raid_t * raidPtr,
+ RF_AccessStripeMap_t * asmap, RF_DagHeader_t * dag_h, void *bp,
+ RF_RaidAccessFlags_t flags, RF_AllocListElem_t * allocList, int nfaults,
+ int (*redFunc) (RF_DagNode_t *), int allowBufferRecycle);
+ void rf_CommonCreateLargeWriteDAGFwd(RF_Raid_t * raidPtr,
+ RF_AccessStripeMap_t * asmap, RF_DagHeader_t * dag_h, void *bp,
+ RF_RaidAccessFlags_t flags, RF_AllocListElem_t * allocList, int nfaults,
+ int (*redFunc) (RF_DagNode_t *), int allowBufferRecycle);
+ void rf_CommonCreateSmallWriteDAG(RF_Raid_t * raidPtr,
+ RF_AccessStripeMap_t * asmap, RF_DagHeader_t * dag_h, void *bp,
+ RF_RaidAccessFlags_t flags, RF_AllocListElem_t * allocList,
+ RF_RedFuncs_t * pfuncs, RF_RedFuncs_t * qfuncs);
+ void rf_CommonCreateSmallWriteDAGFwd(RF_Raid_t * raidPtr,
+ RF_AccessStripeMap_t * asmap, RF_DagHeader_t * dag_h, void *bp,
+ RF_RaidAccessFlags_t flags, RF_AllocListElem_t * allocList,
+ RF_RedFuncs_t * pfuncs, RF_RedFuncs_t * qfuncs);
+ void rf_CreateRaidOneWriteDAG(RF_Raid_t * raidPtr, RF_AccessStripeMap_t * asmap,
+ RF_DagHeader_t * dag_h, void *bp, RF_RaidAccessFlags_t flags,
+ RF_AllocListElem_t * allocList);
+ void rf_CreateRaidOneWriteDAGFwd(RF_Raid_t * raidPtr,
+ RF_AccessStripeMap_t * asmap, RF_DagHeader_t * dag_h, void *bp,
+ RF_RaidAccessFlags_t flags, RF_AllocListElem_t * allocList);
+
+#endif /* !_RF__RF_DAGFFWR_H_ */
diff --git a/sys/dev/raidframe/rf_dagflags.h b/sys/dev/raidframe/rf_dagflags.h
new file mode 100644
index 0000000..b0777bd
--- /dev/null
+++ b/sys/dev/raidframe/rf_dagflags.h
@@ -0,0 +1,68 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_dagflags.h,v 1.3 1999/02/05 00:06:08 oster Exp $ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Mark Holland
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+/**************************************************************************************
+ *
+ * dagflags.h -- flags that can be given to DoAccess
+ * I pulled these out of dag.h because routines that call DoAccess may need these flags,
+ * but certainly do not need the declarations related to the DAG data structures.
+ *
+ **************************************************************************************/
+
+
+#ifndef _RF__RF_DAGFLAGS_H_
+#define _RF__RF_DAGFLAGS_H_
+
+/*
+ * Bitmasks for the "flags" parameter (RF_RaidAccessFlags_t) used
+ * by DoAccess, SelectAlgorithm, and the DAG creation routines.
+ *
+ * If USE_DAG or USE_ASM is specified, neither the DAG nor the ASM
+ * will be modified, which means that you can't SUPRESS if you
+ * specify USE_DAG.
+ */
+
+#define RF_DAG_FLAGS_NONE 0 /* no flags */
+#define RF_DAG_SUPPRESS_LOCKS (1<<0) /* supress all stripe locks in
+ * the DAG */
+#define RF_DAG_RETURN_ASM (1<<1) /* create an ASM and return it
+ * instead of freeing it */
+#define RF_DAG_RETURN_DAG (1<<2) /* create a DAG and return it
+ * instead of freeing it */
+#define RF_DAG_NONBLOCKING_IO (1<<3) /* cause DoAccess to be
+ * non-blocking */
+#define RF_DAG_ACCESS_COMPLETE (1<<4) /* the access is complete */
+#define RF_DAG_DISPATCH_RETURNED (1<<5) /* used to handle the case
+ * where the dag invokes no
+ * I/O */
+#define RF_DAG_TEST_ACCESS (1<<6) /* this access came through
+ * rf_ioctl instead of
+ * rf_strategy */
+
+#endif /* !_RF__RF_DAGFLAGS_H_ */
diff --git a/sys/dev/raidframe/rf_dagfuncs.c b/sys/dev/raidframe/rf_dagfuncs.c
new file mode 100644
index 0000000..09ee274
--- /dev/null
+++ b/sys/dev/raidframe/rf_dagfuncs.c
@@ -0,0 +1,904 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_dagfuncs.c,v 1.7 2001/02/03 12:51:10 mrg Exp $ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Mark Holland, William V. Courtright II
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+/*
+ * dagfuncs.c -- DAG node execution routines
+ *
+ * Rules:
+ * 1. Every DAG execution function must eventually cause node->status to
+ * get set to "good" or "bad", and "FinishNode" to be called. In the
+ * case of nodes that complete immediately (xor, NullNodeFunc, etc),
+ * the node execution function can do these two things directly. In
+ * the case of nodes that have to wait for some event (a disk read to
+ * complete, a lock to be released, etc) to occur before they can
+ * complete, this is typically achieved by having whatever module
+ * is doing the operation call GenericWakeupFunc upon completion.
+ * 2. DAG execution functions should check the status in the DAG header
+ * and NOP out their operations if the status is not "enable". However,
+ * execution functions that release resources must be sure to release
+ * them even when they NOP out the function that would use them.
+ * Functions that acquire resources should go ahead and acquire them
+ * even when they NOP, so that a downstream release node will not have
+ * to check to find out whether or not the acquire was suppressed.
+ */
+
+#include <sys/param.h>
+#if defined(__NetBSD__)
+#include <sys/ioctl.h>
+#elif defined(__FreeBSD__)
+#include <sys/ioccom.h>
+#include <sys/filio.h>
+#endif
+
+#include <dev/raidframe/rf_archs.h>
+#include <dev/raidframe/rf_raid.h>
+#include <dev/raidframe/rf_dag.h>
+#include <dev/raidframe/rf_layout.h>
+#include <dev/raidframe/rf_etimer.h>
+#include <dev/raidframe/rf_acctrace.h>
+#include <dev/raidframe/rf_diskqueue.h>
+#include <dev/raidframe/rf_dagfuncs.h>
+#include <dev/raidframe/rf_general.h>
+#include <dev/raidframe/rf_engine.h>
+#include <dev/raidframe/rf_dagutils.h>
+
+#include <dev/raidframe/rf_kintf.h>
+
+#if RF_INCLUDE_PARITYLOGGING > 0
+#include <dev/raidframe/rf_paritylog.h>
+#endif /* RF_INCLUDE_PARITYLOGGING > 0 */
+
+int (*rf_DiskReadFunc) (RF_DagNode_t *);
+int (*rf_DiskWriteFunc) (RF_DagNode_t *);
+int (*rf_DiskReadUndoFunc) (RF_DagNode_t *);
+int (*rf_DiskWriteUndoFunc) (RF_DagNode_t *);
+int (*rf_DiskUnlockFunc) (RF_DagNode_t *);
+int (*rf_DiskUnlockUndoFunc) (RF_DagNode_t *);
+int (*rf_RegularXorUndoFunc) (RF_DagNode_t *);
+int (*rf_SimpleXorUndoFunc) (RF_DagNode_t *);
+int (*rf_RecoveryXorUndoFunc) (RF_DagNode_t *);
+
+/*****************************************************************************************
+ * main (only) configuration routine for this module
+ ****************************************************************************************/
+int
+rf_ConfigureDAGFuncs(listp)
+ RF_ShutdownList_t **listp;
+{
+ RF_ASSERT(((sizeof(long) == 8) && RF_LONGSHIFT == 3) || ((sizeof(long) == 4) && RF_LONGSHIFT == 2));
+ rf_DiskReadFunc = rf_DiskReadFuncForThreads;
+ rf_DiskReadUndoFunc = rf_DiskUndoFunc;
+ rf_DiskWriteFunc = rf_DiskWriteFuncForThreads;
+ rf_DiskWriteUndoFunc = rf_DiskUndoFunc;
+ rf_DiskUnlockFunc = rf_DiskUnlockFuncForThreads;
+ rf_DiskUnlockUndoFunc = rf_NullNodeUndoFunc;
+ rf_RegularXorUndoFunc = rf_NullNodeUndoFunc;
+ rf_SimpleXorUndoFunc = rf_NullNodeUndoFunc;
+ rf_RecoveryXorUndoFunc = rf_NullNodeUndoFunc;
+ return (0);
+}
+
+
+
+/*****************************************************************************************
+ * the execution function associated with a terminate node
+ ****************************************************************************************/
+int
+rf_TerminateFunc(node)
+ RF_DagNode_t *node;
+{
+ RF_ASSERT(node->dagHdr->numCommits == node->dagHdr->numCommitNodes);
+ node->status = rf_good;
+ return (rf_FinishNode(node, RF_THREAD_CONTEXT));
+}
+
+int
+rf_TerminateUndoFunc(node)
+ RF_DagNode_t *node;
+{
+ return (0);
+}
+
+
+/*****************************************************************************************
+ * execution functions associated with a mirror node
+ *
+ * parameters:
+ *
+ * 0 - physical disk addres of data
+ * 1 - buffer for holding read data
+ * 2 - parity stripe ID
+ * 3 - flags
+ * 4 - physical disk address of mirror (parity)
+ *
+ ****************************************************************************************/
+
+int
+rf_DiskReadMirrorIdleFunc(node)
+ RF_DagNode_t *node;
+{
+ /* select the mirror copy with the shortest queue and fill in node
+ * parameters with physical disk address */
+
+ rf_SelectMirrorDiskIdle(node);
+ return (rf_DiskReadFunc(node));
+}
+
+int
+rf_DiskReadMirrorPartitionFunc(node)
+ RF_DagNode_t *node;
+{
+ /* select the mirror copy with the shortest queue and fill in node
+ * parameters with physical disk address */
+
+ rf_SelectMirrorDiskPartition(node);
+ return (rf_DiskReadFunc(node));
+}
+
+int
+rf_DiskReadMirrorUndoFunc(node)
+ RF_DagNode_t *node;
+{
+ return (0);
+}
+
+
+
+#if RF_INCLUDE_PARITYLOGGING > 0
+/*****************************************************************************************
+ * the execution function associated with a parity log update node
+ ****************************************************************************************/
+int
+rf_ParityLogUpdateFunc(node)
+ RF_DagNode_t *node;
+{
+ RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
+ caddr_t buf = (caddr_t) node->params[1].p;
+ RF_ParityLogData_t *logData;
+ RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
+ RF_Etimer_t timer;
+
+ if (node->dagHdr->status == rf_enable) {
+ RF_ETIMER_START(timer);
+ logData = rf_CreateParityLogData(RF_UPDATE, pda, buf,
+ (RF_Raid_t *) (node->dagHdr->raidPtr),
+ node->wakeFunc, (void *) node,
+ node->dagHdr->tracerec, timer);
+ if (logData)
+ rf_ParityLogAppend(logData, RF_FALSE, NULL, RF_FALSE);
+ else {
+ RF_ETIMER_STOP(timer);
+ RF_ETIMER_EVAL(timer);
+ tracerec->plog_us += RF_ETIMER_VAL_US(timer);
+ (node->wakeFunc) (node, ENOMEM);
+ }
+ }
+ return (0);
+}
+
+
+/*****************************************************************************************
+ * the execution function associated with a parity log overwrite node
+ ****************************************************************************************/
+int
+rf_ParityLogOverwriteFunc(node)
+ RF_DagNode_t *node;
+{
+ RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
+ caddr_t buf = (caddr_t) node->params[1].p;
+ RF_ParityLogData_t *logData;
+ RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
+ RF_Etimer_t timer;
+
+ if (node->dagHdr->status == rf_enable) {
+ RF_ETIMER_START(timer);
+ logData = rf_CreateParityLogData(RF_OVERWRITE, pda, buf, (RF_Raid_t *) (node->dagHdr->raidPtr),
+ node->wakeFunc, (void *) node, node->dagHdr->tracerec, timer);
+ if (logData)
+ rf_ParityLogAppend(logData, RF_FALSE, NULL, RF_FALSE);
+ else {
+ RF_ETIMER_STOP(timer);
+ RF_ETIMER_EVAL(timer);
+ tracerec->plog_us += RF_ETIMER_VAL_US(timer);
+ (node->wakeFunc) (node, ENOMEM);
+ }
+ }
+ return (0);
+}
+#else /* RF_INCLUDE_PARITYLOGGING > 0 */
+
+int
+rf_ParityLogUpdateFunc(node)
+ RF_DagNode_t *node;
+{
+ return (0);
+}
+int
+rf_ParityLogOverwriteFunc(node)
+ RF_DagNode_t *node;
+{
+ return (0);
+}
+#endif /* RF_INCLUDE_PARITYLOGGING > 0 */
+
+int
+rf_ParityLogUpdateUndoFunc(node)
+ RF_DagNode_t *node;
+{
+ return (0);
+}
+
+int
+rf_ParityLogOverwriteUndoFunc(node)
+ RF_DagNode_t *node;
+{
+ return (0);
+}
+/*****************************************************************************************
+ * the execution function associated with a NOP node
+ ****************************************************************************************/
+int
+rf_NullNodeFunc(node)
+ RF_DagNode_t *node;
+{
+ node->status = rf_good;
+ return (rf_FinishNode(node, RF_THREAD_CONTEXT));
+}
+
+int
+rf_NullNodeUndoFunc(node)
+ RF_DagNode_t *node;
+{
+ node->status = rf_undone;
+ return (rf_FinishNode(node, RF_THREAD_CONTEXT));
+}
+
+
+/*****************************************************************************************
+ * the execution function associated with a disk-read node
+ ****************************************************************************************/
+int
+rf_DiskReadFuncForThreads(node)
+ RF_DagNode_t *node;
+{
+ RF_DiskQueueData_t *req;
+ RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
+ caddr_t buf = (caddr_t) node->params[1].p;
+ RF_StripeNum_t parityStripeID = (RF_StripeNum_t) node->params[2].v;
+ unsigned priority = RF_EXTRACT_PRIORITY(node->params[3].v);
+ unsigned lock = RF_EXTRACT_LOCK_FLAG(node->params[3].v);
+ unsigned unlock = RF_EXTRACT_UNLOCK_FLAG(node->params[3].v);
+ unsigned which_ru = RF_EXTRACT_RU(node->params[3].v);
+ RF_DiskQueueDataFlags_t flags = 0;
+ RF_IoType_t iotype = (node->dagHdr->status == rf_enable) ? RF_IO_TYPE_READ : RF_IO_TYPE_NOP;
+ RF_DiskQueue_t **dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
+ void *b_proc = NULL;
+
+#if defined(__NetBSD__)
+ if (node->dagHdr->bp)
+ b_proc = (void *) ((RF_Buf_t) node->dagHdr->bp)->b_proc;
+#endif
+
+ RF_ASSERT(!(lock && unlock));
+ flags |= (lock) ? RF_LOCK_DISK_QUEUE : 0;
+ flags |= (unlock) ? RF_UNLOCK_DISK_QUEUE : 0;
+
+ req = rf_CreateDiskQueueData(iotype, pda->startSector, pda->numSector,
+ buf, parityStripeID, which_ru,
+ (int (*) (void *, int)) node->wakeFunc,
+ node, NULL, node->dagHdr->tracerec,
+ (void *) (node->dagHdr->raidPtr), flags, b_proc);
+ if (!req) {
+ (node->wakeFunc) (node, ENOMEM);
+ } else {
+ node->dagFuncData = (void *) req;
+ rf_DiskIOEnqueue(&(dqs[pda->row][pda->col]), req, priority);
+ }
+ return (0);
+}
+
+
+/*****************************************************************************************
+ * the execution function associated with a disk-write node
+ ****************************************************************************************/
+int
+rf_DiskWriteFuncForThreads(node)
+ RF_DagNode_t *node;
+{
+ RF_DiskQueueData_t *req;
+ RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
+ caddr_t buf = (caddr_t) node->params[1].p;
+ RF_StripeNum_t parityStripeID = (RF_StripeNum_t) node->params[2].v;
+ unsigned priority = RF_EXTRACT_PRIORITY(node->params[3].v);
+ unsigned lock = RF_EXTRACT_LOCK_FLAG(node->params[3].v);
+ unsigned unlock = RF_EXTRACT_UNLOCK_FLAG(node->params[3].v);
+ unsigned which_ru = RF_EXTRACT_RU(node->params[3].v);
+ RF_DiskQueueDataFlags_t flags = 0;
+ RF_IoType_t iotype = (node->dagHdr->status == rf_enable) ? RF_IO_TYPE_WRITE : RF_IO_TYPE_NOP;
+ RF_DiskQueue_t **dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
+ void *b_proc = NULL;
+
+#if defined(__NetBSD__)
+ if (node->dagHdr->bp)
+ b_proc = (void *) ((RF_Buf_t) node->dagHdr->bp)->b_proc;
+#endif
+
+ /* normal processing (rollaway or forward recovery) begins here */
+ RF_ASSERT(!(lock && unlock));
+ flags |= (lock) ? RF_LOCK_DISK_QUEUE : 0;
+ flags |= (unlock) ? RF_UNLOCK_DISK_QUEUE : 0;
+ req = rf_CreateDiskQueueData(iotype, pda->startSector, pda->numSector,
+ buf, parityStripeID, which_ru,
+ (int (*) (void *, int)) node->wakeFunc,
+ (void *) node, NULL,
+ node->dagHdr->tracerec,
+ (void *) (node->dagHdr->raidPtr),
+ flags, b_proc);
+
+ if (!req) {
+ (node->wakeFunc) (node, ENOMEM);
+ } else {
+ node->dagFuncData = (void *) req;
+ rf_DiskIOEnqueue(&(dqs[pda->row][pda->col]), req, priority);
+ }
+
+ return (0);
+}
+/*****************************************************************************************
+ * the undo function for disk nodes
+ * Note: this is not a proper undo of a write node, only locks are released.
+ * old data is not restored to disk!
+ ****************************************************************************************/
+int
+rf_DiskUndoFunc(node)
+ RF_DagNode_t *node;
+{
+ RF_DiskQueueData_t *req;
+ RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
+ RF_DiskQueue_t **dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
+
+ req = rf_CreateDiskQueueData(RF_IO_TYPE_NOP,
+ 0L, 0, NULL, 0L, 0,
+ (int (*) (void *, int)) node->wakeFunc,
+ (void *) node,
+ NULL, node->dagHdr->tracerec,
+ (void *) (node->dagHdr->raidPtr),
+ RF_UNLOCK_DISK_QUEUE, NULL);
+ if (!req)
+ (node->wakeFunc) (node, ENOMEM);
+ else {
+ node->dagFuncData = (void *) req;
+ rf_DiskIOEnqueue(&(dqs[pda->row][pda->col]), req, RF_IO_NORMAL_PRIORITY);
+ }
+
+ return (0);
+}
+/*****************************************************************************************
+ * the execution function associated with an "unlock disk queue" node
+ ****************************************************************************************/
+int
+rf_DiskUnlockFuncForThreads(node)
+ RF_DagNode_t *node;
+{
+ RF_DiskQueueData_t *req;
+ RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
+ RF_DiskQueue_t **dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
+
+ req = rf_CreateDiskQueueData(RF_IO_TYPE_NOP,
+ 0L, 0, NULL, 0L, 0,
+ (int (*) (void *, int)) node->wakeFunc,
+ (void *) node,
+ NULL, node->dagHdr->tracerec,
+ (void *) (node->dagHdr->raidPtr),
+ RF_UNLOCK_DISK_QUEUE, NULL);
+ if (!req)
+ (node->wakeFunc) (node, ENOMEM);
+ else {
+ node->dagFuncData = (void *) req;
+ rf_DiskIOEnqueue(&(dqs[pda->row][pda->col]), req, RF_IO_NORMAL_PRIORITY);
+ }
+
+ return (0);
+}
+/*****************************************************************************************
+ * Callback routine for DiskRead and DiskWrite nodes. When the disk op completes,
+ * the routine is called to set the node status and inform the execution engine that
+ * the node has fired.
+ ****************************************************************************************/
+int
+rf_GenericWakeupFunc(node, status)
+ RF_DagNode_t *node;
+ int status;
+{
+ switch (node->status) {
+ case rf_bwd1:
+ node->status = rf_bwd2;
+ if (node->dagFuncData)
+ rf_FreeDiskQueueData((RF_DiskQueueData_t *) node->dagFuncData);
+ return (rf_DiskWriteFuncForThreads(node));
+ break;
+ case rf_fired:
+ if (status)
+ node->status = rf_bad;
+ else
+ node->status = rf_good;
+ break;
+ case rf_recover:
+ /* probably should never reach this case */
+ if (status)
+ node->status = rf_panic;
+ else
+ node->status = rf_undone;
+ break;
+ default:
+ printf("rf_GenericWakeupFunc:");
+ printf("node->status is %d,", node->status);
+ printf("status is %d \n", status);
+ RF_PANIC();
+ break;
+ }
+ if (node->dagFuncData)
+ rf_FreeDiskQueueData((RF_DiskQueueData_t *) node->dagFuncData);
+ return (rf_FinishNode(node, RF_INTR_CONTEXT));
+}
+
+
+/*****************************************************************************************
+ * there are three distinct types of xor nodes
+ * A "regular xor" is used in the fault-free case where the access spans a complete
+ * stripe unit. It assumes that the result buffer is one full stripe unit in size,
+ * and uses the stripe-unit-offset values that it computes from the PDAs to determine
+ * where within the stripe unit to XOR each argument buffer.
+ *
+ * A "simple xor" is used in the fault-free case where the access touches only a portion
+ * of one (or two, in some cases) stripe unit(s). It assumes that all the argument
+ * buffers are of the same size and have the same stripe unit offset.
+ *
+ * A "recovery xor" is used in the degraded-mode case. It's similar to the regular
+ * xor function except that it takes the failed PDA as an additional parameter, and
+ * uses it to determine what portions of the argument buffers need to be xor'd into
+ * the result buffer, and where in the result buffer they should go.
+ ****************************************************************************************/
+
+/* xor the params together and store the result in the result field.
+ * assume the result field points to a buffer that is the size of one SU,
+ * and use the pda params to determine where within the buffer to XOR
+ * the input buffers.
+ */
+int
+rf_RegularXorFunc(node)
+ RF_DagNode_t *node;
+{
+ RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
+ RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
+ RF_Etimer_t timer;
+ int i, retcode;
+
+ retcode = 0;
+ if (node->dagHdr->status == rf_enable) {
+ /* don't do the XOR if the input is the same as the output */
+ RF_ETIMER_START(timer);
+ for (i = 0; i < node->numParams - 1; i += 2)
+ if (node->params[i + 1].p != node->results[0]) {
+ retcode = rf_XorIntoBuffer(raidPtr, (RF_PhysDiskAddr_t *) node->params[i].p,
+ (char *) node->params[i + 1].p, (char *) node->results[0], node->dagHdr->bp);
+ }
+ RF_ETIMER_STOP(timer);
+ RF_ETIMER_EVAL(timer);
+ tracerec->xor_us += RF_ETIMER_VAL_US(timer);
+ }
+ return (rf_GenericWakeupFunc(node, retcode)); /* call wake func
+ * explicitly since no
+ * I/O in this node */
+}
+/* xor the inputs into the result buffer, ignoring placement issues */
+int
+rf_SimpleXorFunc(node)
+ RF_DagNode_t *node;
+{
+ RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
+ int i, retcode = 0;
+ RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
+ RF_Etimer_t timer;
+
+ if (node->dagHdr->status == rf_enable) {
+ RF_ETIMER_START(timer);
+ /* don't do the XOR if the input is the same as the output */
+ for (i = 0; i < node->numParams - 1; i += 2)
+ if (node->params[i + 1].p != node->results[0]) {
+ retcode = rf_bxor((char *)node->params[i + 1].p,
+ (char *)node->results[0],
+ rf_RaidAddressToByte(raidPtr,
+ ((RF_PhysDiskAddr_t *)node->params[i].p)->
+ numSector), (RF_Buf_t)node->dagHdr->bp);
+ }
+ RF_ETIMER_STOP(timer);
+ RF_ETIMER_EVAL(timer);
+ tracerec->xor_us += RF_ETIMER_VAL_US(timer);
+ }
+ return (rf_GenericWakeupFunc(node, retcode)); /* call wake func
+ * explicitly since no
+ * I/O in this node */
+}
+/* this xor is used by the degraded-mode dag functions to recover lost data.
+ * the second-to-last parameter is the PDA for the failed portion of the access.
+ * the code here looks at this PDA and assumes that the xor target buffer is
+ * equal in size to the number of sectors in the failed PDA. It then uses
+ * the other PDAs in the parameter list to determine where within the target
+ * buffer the corresponding data should be xored.
+ */
+int
+rf_RecoveryXorFunc(node)
+ RF_DagNode_t *node;
+{
+ RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
+ RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & raidPtr->Layout;
+ RF_PhysDiskAddr_t *failedPDA = (RF_PhysDiskAddr_t *) node->params[node->numParams - 2].p;
+ int i, retcode = 0;
+ RF_PhysDiskAddr_t *pda;
+ int suoffset, failedSUOffset = rf_StripeUnitOffset(layoutPtr, failedPDA->startSector);
+ char *srcbuf, *destbuf;
+ RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
+ RF_Etimer_t timer;
+
+ if (node->dagHdr->status == rf_enable) {
+ RF_ETIMER_START(timer);
+ for (i = 0; i < node->numParams - 2; i += 2)
+ if (node->params[i + 1].p != node->results[0]) {
+ pda = (RF_PhysDiskAddr_t *) node->params[i].p;
+ srcbuf = (char *) node->params[i + 1].p;
+ suoffset = rf_StripeUnitOffset(layoutPtr, pda->startSector);
+ destbuf = ((char *) node->results[0]) + rf_RaidAddressToByte(raidPtr, suoffset - failedSUOffset);
+ retcode = rf_bxor(srcbuf, destbuf, rf_RaidAddressToByte(raidPtr, pda->numSector), node->dagHdr->bp);
+ }
+ RF_ETIMER_STOP(timer);
+ RF_ETIMER_EVAL(timer);
+ tracerec->xor_us += RF_ETIMER_VAL_US(timer);
+ }
+ return (rf_GenericWakeupFunc(node, retcode));
+}
+/*****************************************************************************************
+ * The next three functions are utilities used by the above xor-execution functions.
+ ****************************************************************************************/
+
+
+/*
+ * this is just a glorified buffer xor. targbuf points to a buffer that is one full stripe unit
+ * in size. srcbuf points to a buffer that may be less than 1 SU, but never more. When the
+ * access described by pda is one SU in size (which by implication means it's SU-aligned),
+ * all that happens is (targbuf) <- (srcbuf ^ targbuf). When the access is less than one
+ * SU in size the XOR occurs on only the portion of targbuf identified in the pda.
+ */
+
+int
+rf_XorIntoBuffer(raidPtr, pda, srcbuf, targbuf, bp)
+ RF_Raid_t *raidPtr;
+ RF_PhysDiskAddr_t *pda;
+ char *srcbuf;
+ char *targbuf;
+ void *bp;
+{
+ char *targptr;
+ int sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
+ int SUOffset = pda->startSector % sectPerSU;
+ int length, retcode = 0;
+
+ RF_ASSERT(pda->numSector <= sectPerSU);
+
+ targptr = targbuf + rf_RaidAddressToByte(raidPtr, SUOffset);
+ length = rf_RaidAddressToByte(raidPtr, pda->numSector);
+ retcode = rf_bxor(srcbuf, targptr, length, bp);
+ return (retcode);
+}
+/* it really should be the case that the buffer pointers (returned by malloc)
+ * are aligned to the natural word size of the machine, so this is the only
+ * case we optimize for. The length should always be a multiple of the sector
+ * size, so there should be no problem with leftover bytes at the end.
+ */
+int
+rf_bxor(src, dest, len, bp)
+ char *src;
+ char *dest;
+ int len;
+ void *bp;
+{
+ unsigned mask = sizeof(long) - 1, retcode = 0;
+
+ if (!(((unsigned long) src) & mask) && !(((unsigned long) dest) & mask) && !(len & mask)) {
+ retcode = rf_longword_bxor((unsigned long *) src, (unsigned long *) dest, len >> RF_LONGSHIFT, bp);
+ } else {
+ RF_ASSERT(0);
+ }
+ return (retcode);
+}
+/* map a user buffer into kernel space, if necessary */
+#define REMAP_VA(_bp,x,y) (y) = (x)
+
+/* When XORing in kernel mode, we need to map each user page to kernel space before we can access it.
+ * We don't want to assume anything about which input buffers are in kernel/user
+ * space, nor about their alignment, so in each loop we compute the maximum number
+ * of bytes that we can xor without crossing any page boundaries, and do only this many
+ * bytes before the next remap.
+ */
+int
+rf_longword_bxor(src, dest, len, bp)
+ unsigned long *src;
+ unsigned long *dest;
+ int len; /* longwords */
+ void *bp;
+{
+ unsigned long *end = src + len;
+ unsigned long d0, d1, d2, d3, s0, s1, s2, s3; /* temps */
+ unsigned long *pg_src, *pg_dest; /* per-page source/dest
+ * pointers */
+ int longs_this_time;/* # longwords to xor in the current iteration */
+
+ REMAP_VA(bp, src, pg_src);
+ REMAP_VA(bp, dest, pg_dest);
+ if (!pg_src || !pg_dest)
+ return (EFAULT);
+
+ while (len >= 4) {
+ longs_this_time = RF_MIN(len, RF_MIN(RF_BLIP(pg_src), RF_BLIP(pg_dest)) >> RF_LONGSHIFT); /* note len in longwords */
+ src += longs_this_time;
+ dest += longs_this_time;
+ len -= longs_this_time;
+ while (longs_this_time >= 4) {
+ d0 = pg_dest[0];
+ d1 = pg_dest[1];
+ d2 = pg_dest[2];
+ d3 = pg_dest[3];
+ s0 = pg_src[0];
+ s1 = pg_src[1];
+ s2 = pg_src[2];
+ s3 = pg_src[3];
+ pg_dest[0] = d0 ^ s0;
+ pg_dest[1] = d1 ^ s1;
+ pg_dest[2] = d2 ^ s2;
+ pg_dest[3] = d3 ^ s3;
+ pg_src += 4;
+ pg_dest += 4;
+ longs_this_time -= 4;
+ }
+ while (longs_this_time > 0) { /* cannot cross any page
+ * boundaries here */
+ *pg_dest++ ^= *pg_src++;
+ longs_this_time--;
+ }
+
+ /* either we're done, or we've reached a page boundary on one
+ * (or possibly both) of the pointers */
+ if (len) {
+ if (RF_PAGE_ALIGNED(src))
+ REMAP_VA(bp, src, pg_src);
+ if (RF_PAGE_ALIGNED(dest))
+ REMAP_VA(bp, dest, pg_dest);
+ if (!pg_src || !pg_dest)
+ return (EFAULT);
+ }
+ }
+ while (src < end) {
+ *pg_dest++ ^= *pg_src++;
+ src++;
+ dest++;
+ len--;
+ if (RF_PAGE_ALIGNED(src))
+ REMAP_VA(bp, src, pg_src);
+ if (RF_PAGE_ALIGNED(dest))
+ REMAP_VA(bp, dest, pg_dest);
+ }
+ RF_ASSERT(len == 0);
+ return (0);
+}
+
+
+/*
+ dst = a ^ b ^ c;
+ a may equal dst
+ see comment above longword_bxor
+*/
+int
+rf_longword_bxor3(dst, a, b, c, len, bp)
+ unsigned long *dst;
+ unsigned long *a;
+ unsigned long *b;
+ unsigned long *c;
+ int len; /* length in longwords */
+ void *bp;
+{
+ unsigned long a0, a1, a2, a3, b0, b1, b2, b3;
+ unsigned long *pg_a, *pg_b, *pg_c, *pg_dst; /* per-page source/dest
+ * pointers */
+ int longs_this_time;/* # longs to xor in the current iteration */
+ char dst_is_a = 0;
+
+ REMAP_VA(bp, a, pg_a);
+ REMAP_VA(bp, b, pg_b);
+ REMAP_VA(bp, c, pg_c);
+ if (a == dst) {
+ pg_dst = pg_a;
+ dst_is_a = 1;
+ } else {
+ REMAP_VA(bp, dst, pg_dst);
+ }
+
+ /* align dest to cache line. Can't cross a pg boundary on dst here. */
+ while ((((unsigned long) pg_dst) & 0x1f)) {
+ *pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
+ dst++;
+ a++;
+ b++;
+ c++;
+ if (RF_PAGE_ALIGNED(a)) {
+ REMAP_VA(bp, a, pg_a);
+ if (!pg_a)
+ return (EFAULT);
+ }
+ if (RF_PAGE_ALIGNED(b)) {
+ REMAP_VA(bp, a, pg_b);
+ if (!pg_b)
+ return (EFAULT);
+ }
+ if (RF_PAGE_ALIGNED(c)) {
+ REMAP_VA(bp, a, pg_c);
+ if (!pg_c)
+ return (EFAULT);
+ }
+ len--;
+ }
+
+ while (len > 4) {
+ longs_this_time = RF_MIN(len, RF_MIN(RF_BLIP(a), RF_MIN(RF_BLIP(b), RF_MIN(RF_BLIP(c), RF_BLIP(dst)))) >> RF_LONGSHIFT);
+ a += longs_this_time;
+ b += longs_this_time;
+ c += longs_this_time;
+ dst += longs_this_time;
+ len -= longs_this_time;
+ while (longs_this_time >= 4) {
+ a0 = pg_a[0];
+ longs_this_time -= 4;
+
+ a1 = pg_a[1];
+ a2 = pg_a[2];
+
+ a3 = pg_a[3];
+ pg_a += 4;
+
+ b0 = pg_b[0];
+ b1 = pg_b[1];
+
+ b2 = pg_b[2];
+ b3 = pg_b[3];
+ /* start dual issue */
+ a0 ^= b0;
+ b0 = pg_c[0];
+
+ pg_b += 4;
+ a1 ^= b1;
+
+ a2 ^= b2;
+ a3 ^= b3;
+
+ b1 = pg_c[1];
+ a0 ^= b0;
+
+ b2 = pg_c[2];
+ a1 ^= b1;
+
+ b3 = pg_c[3];
+ a2 ^= b2;
+
+ pg_dst[0] = a0;
+ a3 ^= b3;
+ pg_dst[1] = a1;
+ pg_c += 4;
+ pg_dst[2] = a2;
+ pg_dst[3] = a3;
+ pg_dst += 4;
+ }
+ while (longs_this_time > 0) { /* cannot cross any page
+ * boundaries here */
+ *pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
+ longs_this_time--;
+ }
+
+ if (len) {
+ if (RF_PAGE_ALIGNED(a)) {
+ REMAP_VA(bp, a, pg_a);
+ if (!pg_a)
+ return (EFAULT);
+ if (dst_is_a)
+ pg_dst = pg_a;
+ }
+ if (RF_PAGE_ALIGNED(b)) {
+ REMAP_VA(bp, b, pg_b);
+ if (!pg_b)
+ return (EFAULT);
+ }
+ if (RF_PAGE_ALIGNED(c)) {
+ REMAP_VA(bp, c, pg_c);
+ if (!pg_c)
+ return (EFAULT);
+ }
+ if (!dst_is_a)
+ if (RF_PAGE_ALIGNED(dst)) {
+ REMAP_VA(bp, dst, pg_dst);
+ if (!pg_dst)
+ return (EFAULT);
+ }
+ }
+ }
+ while (len) {
+ *pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
+ dst++;
+ a++;
+ b++;
+ c++;
+ if (RF_PAGE_ALIGNED(a)) {
+ REMAP_VA(bp, a, pg_a);
+ if (!pg_a)
+ return (EFAULT);
+ if (dst_is_a)
+ pg_dst = pg_a;
+ }
+ if (RF_PAGE_ALIGNED(b)) {
+ REMAP_VA(bp, b, pg_b);
+ if (!pg_b)
+ return (EFAULT);
+ }
+ if (RF_PAGE_ALIGNED(c)) {
+ REMAP_VA(bp, c, pg_c);
+ if (!pg_c)
+ return (EFAULT);
+ }
+ if (!dst_is_a)
+ if (RF_PAGE_ALIGNED(dst)) {
+ REMAP_VA(bp, dst, pg_dst);
+ if (!pg_dst)
+ return (EFAULT);
+ }
+ len--;
+ }
+ return (0);
+}
+
+int
+rf_bxor3(dst, a, b, c, len, bp)
+ unsigned char *dst;
+ unsigned char *a;
+ unsigned char *b;
+ unsigned char *c;
+ unsigned long len;
+ void *bp;
+{
+ RF_ASSERT(((RF_UL(dst) | RF_UL(a) | RF_UL(b) | RF_UL(c) | len) & 0x7) == 0);
+
+ return (rf_longword_bxor3((unsigned long *) dst, (unsigned long *) a,
+ (unsigned long *) b, (unsigned long *) c, len >> RF_LONGSHIFT, bp));
+}
diff --git a/sys/dev/raidframe/rf_dagfuncs.h b/sys/dev/raidframe/rf_dagfuncs.h
new file mode 100644
index 0000000..da7e8b2
--- /dev/null
+++ b/sys/dev/raidframe/rf_dagfuncs.h
@@ -0,0 +1,90 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_dagfuncs.h,v 1.4 2000/03/30 13:39:07 oster Exp $ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Mark Holland, William V. Courtright II, Jim Zelenka
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+/*****************************************************************************************
+ *
+ * dagfuncs.h -- header file for DAG node execution routines
+ *
+ ****************************************************************************************/
+
+#ifndef _RF__RF_DAGFUNCS_H_
+#define _RF__RF_DAGFUNCS_H_
+
+int rf_ConfigureDAGFuncs(RF_ShutdownList_t ** listp);
+int rf_TerminateFunc(RF_DagNode_t * node);
+int rf_TerminateUndoFunc(RF_DagNode_t * node);
+int rf_DiskReadMirrorIdleFunc(RF_DagNode_t * node);
+int rf_DiskReadMirrorPartitionFunc(RF_DagNode_t * node);
+int rf_DiskReadMirrorUndoFunc(RF_DagNode_t * node);
+int rf_ParityLogUpdateFunc(RF_DagNode_t * node);
+int rf_ParityLogOverwriteFunc(RF_DagNode_t * node);
+int rf_ParityLogUpdateUndoFunc(RF_DagNode_t * node);
+int rf_ParityLogOverwriteUndoFunc(RF_DagNode_t * node);
+int rf_NullNodeFunc(RF_DagNode_t * node);
+int rf_NullNodeUndoFunc(RF_DagNode_t * node);
+int rf_DiskReadFuncForThreads(RF_DagNode_t * node);
+int rf_DiskWriteFuncForThreads(RF_DagNode_t * node);
+int rf_DiskUndoFunc(RF_DagNode_t * node);
+int rf_DiskUnlockFuncForThreads(RF_DagNode_t * node);
+int rf_GenericWakeupFunc(RF_DagNode_t * node, int status);
+int rf_RegularXorFunc(RF_DagNode_t * node);
+int rf_SimpleXorFunc(RF_DagNode_t * node);
+int rf_RecoveryXorFunc(RF_DagNode_t * node);
+int
+rf_XorIntoBuffer(RF_Raid_t * raidPtr, RF_PhysDiskAddr_t * pda, char *srcbuf,
+ char *targbuf, void *bp);
+int rf_bxor(char *src, char *dest, int len, void *bp);
+int
+rf_longword_bxor(unsigned long *src, unsigned long *dest, int len, void *bp);
+int
+rf_longword_bxor3(unsigned long *dest, unsigned long *a, unsigned long *b,
+ unsigned long *c, int len, void *bp);
+int
+rf_bxor3(unsigned char *dst, unsigned char *a, unsigned char *b,
+ unsigned char *c, unsigned long len, void *bp);
+
+/* function ptrs defined in ConfigureDAGFuncs() */
+extern int (*rf_DiskReadFunc) (RF_DagNode_t *);
+extern int (*rf_DiskWriteFunc) (RF_DagNode_t *);
+extern int (*rf_DiskReadUndoFunc) (RF_DagNode_t *);
+extern int (*rf_DiskWriteUndoFunc) (RF_DagNode_t *);
+extern int (*rf_DiskUnlockFunc) (RF_DagNode_t *);
+extern int (*rf_DiskUnlockUndoFunc) (RF_DagNode_t *);
+extern int (*rf_SimpleXorUndoFunc) (RF_DagNode_t *);
+extern int (*rf_RegularXorUndoFunc) (RF_DagNode_t *);
+extern int (*rf_RecoveryXorUndoFunc) (RF_DagNode_t *);
+
+/* macros for manipulating the param[3] in a read or write node */
+#define RF_CREATE_PARAM3(pri, lk, unlk, wru) (((RF_uint64)(((wru&0xFFFFFF)<<8)|((lk)?0x10:0)|((unlk)?0x20:0)|((pri)&0xF)) ))
+#define RF_EXTRACT_PRIORITY(_x_) ((((unsigned) ((unsigned long)(_x_))) >> 0) & 0x0F)
+#define RF_EXTRACT_LOCK_FLAG(_x_) ((((unsigned) ((unsigned long)(_x_))) >> 4) & 0x1)
+#define RF_EXTRACT_UNLOCK_FLAG(_x_) ((((unsigned) ((unsigned long)(_x_))) >> 5) & 0x1)
+#define RF_EXTRACT_RU(_x_) ((((unsigned) ((unsigned long)(_x_))) >> 8) & 0xFFFFFF)
+
+#endif /* !_RF__RF_DAGFUNCS_H_ */
diff --git a/sys/dev/raidframe/rf_dagutils.c b/sys/dev/raidframe/rf_dagutils.c
new file mode 100644
index 0000000..dd851a4
--- /dev/null
+++ b/sys/dev/raidframe/rf_dagutils.c
@@ -0,0 +1,1297 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_dagutils.c,v 1.6 1999/12/09 02:26:09 oster Exp $ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Authors: Mark Holland, William V. Courtright II, Jim Zelenka
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+/******************************************************************************
+ *
+ * rf_dagutils.c -- utility routines for manipulating dags
+ *
+ *****************************************************************************/
+
+#include <dev/raidframe/rf_archs.h>
+#include <dev/raidframe/rf_types.h>
+#include <dev/raidframe/rf_threadstuff.h>
+#include <dev/raidframe/rf_raid.h>
+#include <dev/raidframe/rf_dag.h>
+#include <dev/raidframe/rf_dagutils.h>
+#include <dev/raidframe/rf_dagfuncs.h>
+#include <dev/raidframe/rf_general.h>
+#include <dev/raidframe/rf_freelist.h>
+#include <dev/raidframe/rf_map.h>
+#include <dev/raidframe/rf_shutdown.h>
+
+#define SNUM_DIFF(_a_,_b_) (((_a_)>(_b_))?((_a_)-(_b_)):((_b_)-(_a_)))
+
+RF_RedFuncs_t rf_xorFuncs = {
+ rf_RegularXorFunc, "Reg Xr",
+rf_SimpleXorFunc, "Simple Xr"};
+
+RF_RedFuncs_t rf_xorRecoveryFuncs = {
+ rf_RecoveryXorFunc, "Recovery Xr",
+rf_RecoveryXorFunc, "Recovery Xr"};
+
+static void rf_RecurPrintDAG(RF_DagNode_t *, int, int);
+static void rf_PrintDAG(RF_DagHeader_t *);
+static int
+rf_ValidateBranch(RF_DagNode_t *, int *, int *,
+ RF_DagNode_t **, int);
+static void rf_ValidateBranchVisitedBits(RF_DagNode_t *, int, int);
+static void rf_ValidateVisitedBits(RF_DagHeader_t *);
+
+/******************************************************************************
+ *
+ * InitNode - initialize a dag node
+ *
+ * the size of the propList array is always the same as that of the
+ * successors array.
+ *
+ *****************************************************************************/
+void
+rf_InitNode(
+ RF_DagNode_t * node,
+ RF_NodeStatus_t initstatus,
+ int commit,
+ int (*doFunc) (RF_DagNode_t * node),
+ int (*undoFunc) (RF_DagNode_t * node),
+ int (*wakeFunc) (RF_DagNode_t * node, int status),
+ int nSucc,
+ int nAnte,
+ int nParam,
+ int nResult,
+ RF_DagHeader_t * hdr,
+ char *name,
+ RF_AllocListElem_t * alist)
+{
+ void **ptrs;
+ int nptrs;
+
+ if (nAnte > RF_MAX_ANTECEDENTS)
+ RF_PANIC();
+ node->status = initstatus;
+ node->commitNode = commit;
+ node->doFunc = doFunc;
+ node->undoFunc = undoFunc;
+ node->wakeFunc = wakeFunc;
+ node->numParams = nParam;
+ node->numResults = nResult;
+ node->numAntecedents = nAnte;
+ node->numAntDone = 0;
+ node->next = NULL;
+ node->numSuccedents = nSucc;
+ node->name = name;
+ node->dagHdr = hdr;
+ node->visited = 0;
+
+ /* allocate all the pointers with one call to malloc */
+ nptrs = nSucc + nAnte + nResult + nSucc;
+
+ if (nptrs <= RF_DAG_PTRCACHESIZE) {
+ /*
+ * The dag_ptrs field of the node is basically some scribble
+ * space to be used here. We could get rid of it, and always
+ * allocate the range of pointers, but that's expensive. So,
+ * we pick a "common case" size for the pointer cache. Hopefully,
+ * we'll find that:
+ * (1) Generally, nptrs doesn't exceed RF_DAG_PTRCACHESIZE by
+ * only a little bit (least efficient case)
+ * (2) Generally, ntprs isn't a lot less than RF_DAG_PTRCACHESIZE
+ * (wasted memory)
+ */
+ ptrs = (void **) node->dag_ptrs;
+ } else {
+ RF_CallocAndAdd(ptrs, nptrs, sizeof(void *), (void **), alist);
+ }
+ node->succedents = (nSucc) ? (RF_DagNode_t **) ptrs : NULL;
+ node->antecedents = (nAnte) ? (RF_DagNode_t **) (ptrs + nSucc) : NULL;
+ node->results = (nResult) ? (void **) (ptrs + nSucc + nAnte) : NULL;
+ node->propList = (nSucc) ? (RF_PropHeader_t **) (ptrs + nSucc + nAnte + nResult) : NULL;
+
+ if (nParam) {
+ if (nParam <= RF_DAG_PARAMCACHESIZE) {
+ node->params = (RF_DagParam_t *) node->dag_params;
+ } else {
+ RF_CallocAndAdd(node->params, nParam, sizeof(RF_DagParam_t), (RF_DagParam_t *), alist);
+ }
+ } else {
+ node->params = NULL;
+ }
+}
+
+
+
+/******************************************************************************
+ *
+ * allocation and deallocation routines
+ *
+ *****************************************************************************/
+
+void
+rf_FreeDAG(dag_h)
+ RF_DagHeader_t *dag_h;
+{
+ RF_AccessStripeMapHeader_t *asmap, *t_asmap;
+ RF_DagHeader_t *nextDag;
+ int i;
+
+ while (dag_h) {
+ nextDag = dag_h->next;
+ for (i = 0; dag_h->memChunk[i] && i < RF_MAXCHUNKS; i++) {
+ /* release mem chunks */
+ rf_ReleaseMemChunk(dag_h->memChunk[i]);
+ dag_h->memChunk[i] = NULL;
+ }
+
+ RF_ASSERT(i == dag_h->chunkIndex);
+ if (dag_h->xtraChunkCnt > 0) {
+ /* free xtraMemChunks */
+ for (i = 0; dag_h->xtraMemChunk[i] && i < dag_h->xtraChunkIndex; i++) {
+ rf_ReleaseMemChunk(dag_h->xtraMemChunk[i]);
+ dag_h->xtraMemChunk[i] = NULL;
+ }
+ RF_ASSERT(i == dag_h->xtraChunkIndex);
+ /* free ptrs to xtraMemChunks */
+ RF_Free(dag_h->xtraMemChunk, dag_h->xtraChunkCnt * sizeof(RF_ChunkDesc_t *));
+ }
+ rf_FreeAllocList(dag_h->allocList);
+ for (asmap = dag_h->asmList; asmap;) {
+ t_asmap = asmap;
+ asmap = asmap->next;
+ rf_FreeAccessStripeMap(t_asmap);
+ }
+ rf_FreeDAGHeader(dag_h);
+ dag_h = nextDag;
+ }
+}
+
+RF_PropHeader_t *
+rf_MakePropListEntry(
+ RF_DagHeader_t * dag_h,
+ int resultNum,
+ int paramNum,
+ RF_PropHeader_t * next,
+ RF_AllocListElem_t * allocList)
+{
+ RF_PropHeader_t *p;
+
+ RF_CallocAndAdd(p, 1, sizeof(RF_PropHeader_t),
+ (RF_PropHeader_t *), allocList);
+ p->resultNum = resultNum;
+ p->paramNum = paramNum;
+ p->next = next;
+ return (p);
+}
+
+static RF_FreeList_t *rf_dagh_freelist;
+
+#define RF_MAX_FREE_DAGH 128
+#define RF_DAGH_INC 16
+#define RF_DAGH_INITIAL 32
+
+static void rf_ShutdownDAGs(void *);
+static void
+rf_ShutdownDAGs(ignored)
+ void *ignored;
+{
+ RF_FREELIST_DESTROY(rf_dagh_freelist, next, (RF_DagHeader_t *));
+}
+
+int
+rf_ConfigureDAGs(listp)
+ RF_ShutdownList_t **listp;
+{
+ int rc;
+
+ RF_FREELIST_CREATE(rf_dagh_freelist, RF_MAX_FREE_DAGH,
+ RF_DAGH_INC, sizeof(RF_DagHeader_t));
+ if (rf_dagh_freelist == NULL)
+ return (ENOMEM);
+ rc = rf_ShutdownCreate(listp, rf_ShutdownDAGs, NULL);
+ if (rc) {
+ RF_ERRORMSG3("Unable to add to shutdown list file %s line %d rc=%d\n",
+ __FILE__, __LINE__, rc);
+ rf_ShutdownDAGs(NULL);
+ return (rc);
+ }
+ RF_FREELIST_PRIME(rf_dagh_freelist, RF_DAGH_INITIAL, next,
+ (RF_DagHeader_t *));
+ return (0);
+}
+
+RF_DagHeader_t *
+rf_AllocDAGHeader()
+{
+ RF_DagHeader_t *dh;
+
+ RF_FREELIST_GET(rf_dagh_freelist, dh, next, (RF_DagHeader_t *));
+ if (dh) {
+ bzero((char *) dh, sizeof(RF_DagHeader_t));
+ }
+ return (dh);
+}
+
+void
+rf_FreeDAGHeader(RF_DagHeader_t * dh)
+{
+ RF_FREELIST_FREE(rf_dagh_freelist, dh, next);
+}
+/* allocates a buffer big enough to hold the data described by pda */
+void *
+rf_AllocBuffer(
+ RF_Raid_t * raidPtr,
+ RF_DagHeader_t * dag_h,
+ RF_PhysDiskAddr_t * pda,
+ RF_AllocListElem_t * allocList)
+{
+ char *p;
+
+ RF_MallocAndAdd(p, pda->numSector << raidPtr->logBytesPerSector,
+ (char *), allocList);
+ return ((void *) p);
+}
+/******************************************************************************
+ *
+ * debug routines
+ *
+ *****************************************************************************/
+
+char *
+rf_NodeStatusString(RF_DagNode_t * node)
+{
+ switch (node->status) {
+ case rf_wait:return ("wait");
+ case rf_fired:
+ return ("fired");
+ case rf_good:
+ return ("good");
+ case rf_bad:
+ return ("bad");
+ default:
+ return ("?");
+ }
+}
+
+void
+rf_PrintNodeInfoString(RF_DagNode_t * node)
+{
+ RF_PhysDiskAddr_t *pda;
+ int (*df) (RF_DagNode_t *) = node->doFunc;
+ int i, lk, unlk;
+ void *bufPtr;
+
+ if ((df == rf_DiskReadFunc) || (df == rf_DiskWriteFunc)
+ || (df == rf_DiskReadMirrorIdleFunc)
+ || (df == rf_DiskReadMirrorPartitionFunc)) {
+ pda = (RF_PhysDiskAddr_t *) node->params[0].p;
+ bufPtr = (void *) node->params[1].p;
+ lk = RF_EXTRACT_LOCK_FLAG(node->params[3].v);
+ unlk = RF_EXTRACT_UNLOCK_FLAG(node->params[3].v);
+ RF_ASSERT(!(lk && unlk));
+ printf("r %d c %d offs %ld nsect %d buf 0x%lx %s\n", pda->row, pda->col,
+ (long) pda->startSector, (int) pda->numSector, (long) bufPtr,
+ (lk) ? "LOCK" : ((unlk) ? "UNLK" : " "));
+ return;
+ }
+ if (df == rf_DiskUnlockFunc) {
+ pda = (RF_PhysDiskAddr_t *) node->params[0].p;
+ lk = RF_EXTRACT_LOCK_FLAG(node->params[3].v);
+ unlk = RF_EXTRACT_UNLOCK_FLAG(node->params[3].v);
+ RF_ASSERT(!(lk && unlk));
+ printf("r %d c %d %s\n", pda->row, pda->col,
+ (lk) ? "LOCK" : ((unlk) ? "UNLK" : "nop"));
+ return;
+ }
+ if ((df == rf_SimpleXorFunc) || (df == rf_RegularXorFunc)
+ || (df == rf_RecoveryXorFunc)) {
+ printf("result buf 0x%lx\n", (long) node->results[0]);
+ for (i = 0; i < node->numParams - 1; i += 2) {
+ pda = (RF_PhysDiskAddr_t *) node->params[i].p;
+ bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
+ printf(" buf 0x%lx r%d c%d offs %ld nsect %d\n",
+ (long) bufPtr, pda->row, pda->col,
+ (long) pda->startSector, (int) pda->numSector);
+ }
+ return;
+ }
+#if RF_INCLUDE_PARITYLOGGING > 0
+ if (df == rf_ParityLogOverwriteFunc || df == rf_ParityLogUpdateFunc) {
+ for (i = 0; i < node->numParams - 1; i += 2) {
+ pda = (RF_PhysDiskAddr_t *) node->params[i].p;
+ bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
+ printf(" r%d c%d offs %ld nsect %d buf 0x%lx\n",
+ pda->row, pda->col, (long) pda->startSector,
+ (int) pda->numSector, (long) bufPtr);
+ }
+ return;
+ }
+#endif /* RF_INCLUDE_PARITYLOGGING > 0 */
+
+ if ((df == rf_TerminateFunc) || (df == rf_NullNodeFunc)) {
+ printf("\n");
+ return;
+ }
+ printf("?\n");
+}
+
+static void
+rf_RecurPrintDAG(node, depth, unvisited)
+ RF_DagNode_t *node;
+ int depth;
+ int unvisited;
+{
+ char *anttype;
+ int i;
+
+ node->visited = (unvisited) ? 0 : 1;
+ printf("(%d) %d C%d %s: %s,s%d %d/%d,a%d/%d,p%d,r%d S{", depth,
+ node->nodeNum, node->commitNode, node->name, rf_NodeStatusString(node),
+ node->numSuccedents, node->numSuccFired, node->numSuccDone,
+ node->numAntecedents, node->numAntDone, node->numParams, node->numResults);
+ for (i = 0; i < node->numSuccedents; i++) {
+ printf("%d%s", node->succedents[i]->nodeNum,
+ ((i == node->numSuccedents - 1) ? "\0" : " "));
+ }
+ printf("} A{");
+ for (i = 0; i < node->numAntecedents; i++) {
+ switch (node->antType[i]) {
+ case rf_trueData:
+ anttype = "T";
+ break;
+ case rf_antiData:
+ anttype = "A";
+ break;
+ case rf_outputData:
+ anttype = "O";
+ break;
+ case rf_control:
+ anttype = "C";
+ break;
+ default:
+ anttype = "?";
+ break;
+ }
+ printf("%d(%s)%s", node->antecedents[i]->nodeNum, anttype, (i == node->numAntecedents - 1) ? "\0" : " ");
+ }
+ printf("}; ");
+ rf_PrintNodeInfoString(node);
+ for (i = 0; i < node->numSuccedents; i++) {
+ if (node->succedents[i]->visited == unvisited)
+ rf_RecurPrintDAG(node->succedents[i], depth + 1, unvisited);
+ }
+}
+
+static void
+rf_PrintDAG(dag_h)
+ RF_DagHeader_t *dag_h;
+{
+ int unvisited, i;
+ char *status;
+
+ /* set dag status */
+ switch (dag_h->status) {
+ case rf_enable:
+ status = "enable";
+ break;
+ case rf_rollForward:
+ status = "rollForward";
+ break;
+ case rf_rollBackward:
+ status = "rollBackward";
+ break;
+ default:
+ status = "illegal!";
+ break;
+ }
+ /* find out if visited bits are currently set or clear */
+ unvisited = dag_h->succedents[0]->visited;
+
+ printf("DAG type: %s\n", dag_h->creator);
+ printf("format is (depth) num commit type: status,nSucc nSuccFired/nSuccDone,nAnte/nAnteDone,nParam,nResult S{x} A{x(type)}; info\n");
+ printf("(0) %d Hdr: %s, s%d, (commit %d/%d) S{", dag_h->nodeNum,
+ status, dag_h->numSuccedents, dag_h->numCommitNodes, dag_h->numCommits);
+ for (i = 0; i < dag_h->numSuccedents; i++) {
+ printf("%d%s", dag_h->succedents[i]->nodeNum,
+ ((i == dag_h->numSuccedents - 1) ? "\0" : " "));
+ }
+ printf("};\n");
+ for (i = 0; i < dag_h->numSuccedents; i++) {
+ if (dag_h->succedents[i]->visited == unvisited)
+ rf_RecurPrintDAG(dag_h->succedents[i], 1, unvisited);
+ }
+}
+/* assigns node numbers */
+int
+rf_AssignNodeNums(RF_DagHeader_t * dag_h)
+{
+ int unvisited, i, nnum;
+ RF_DagNode_t *node;
+
+ nnum = 0;
+ unvisited = dag_h->succedents[0]->visited;
+
+ dag_h->nodeNum = nnum++;
+ for (i = 0; i < dag_h->numSuccedents; i++) {
+ node = dag_h->succedents[i];
+ if (node->visited == unvisited) {
+ nnum = rf_RecurAssignNodeNums(dag_h->succedents[i], nnum, unvisited);
+ }
+ }
+ return (nnum);
+}
+
+int
+rf_RecurAssignNodeNums(node, num, unvisited)
+ RF_DagNode_t *node;
+ int num;
+ int unvisited;
+{
+ int i;
+
+ node->visited = (unvisited) ? 0 : 1;
+
+ node->nodeNum = num++;
+ for (i = 0; i < node->numSuccedents; i++) {
+ if (node->succedents[i]->visited == unvisited) {
+ num = rf_RecurAssignNodeNums(node->succedents[i], num, unvisited);
+ }
+ }
+ return (num);
+}
+/* set the header pointers in each node to "newptr" */
+void
+rf_ResetDAGHeaderPointers(dag_h, newptr)
+ RF_DagHeader_t *dag_h;
+ RF_DagHeader_t *newptr;
+{
+ int i;
+ for (i = 0; i < dag_h->numSuccedents; i++)
+ if (dag_h->succedents[i]->dagHdr != newptr)
+ rf_RecurResetDAGHeaderPointers(dag_h->succedents[i], newptr);
+}
+
+void
+rf_RecurResetDAGHeaderPointers(node, newptr)
+ RF_DagNode_t *node;
+ RF_DagHeader_t *newptr;
+{
+ int i;
+ node->dagHdr = newptr;
+ for (i = 0; i < node->numSuccedents; i++)
+ if (node->succedents[i]->dagHdr != newptr)
+ rf_RecurResetDAGHeaderPointers(node->succedents[i], newptr);
+}
+
+
+void
+rf_PrintDAGList(RF_DagHeader_t * dag_h)
+{
+ int i = 0;
+
+ for (; dag_h; dag_h = dag_h->next) {
+ rf_AssignNodeNums(dag_h);
+ printf("\n\nDAG %d IN LIST:\n", i++);
+ rf_PrintDAG(dag_h);
+ }
+}
+
+static int
+rf_ValidateBranch(node, scount, acount, nodes, unvisited)
+ RF_DagNode_t *node;
+ int *scount;
+ int *acount;
+ RF_DagNode_t **nodes;
+ int unvisited;
+{
+ int i, retcode = 0;
+
+ /* construct an array of node pointers indexed by node num */
+ node->visited = (unvisited) ? 0 : 1;
+ nodes[node->nodeNum] = node;
+
+ if (node->next != NULL) {
+ printf("INVALID DAG: next pointer in node is not NULL\n");
+ retcode = 1;
+ }
+ if (node->status != rf_wait) {
+ printf("INVALID DAG: Node status is not wait\n");
+ retcode = 1;
+ }
+ if (node->numAntDone != 0) {
+ printf("INVALID DAG: numAntDone is not zero\n");
+ retcode = 1;
+ }
+ if (node->doFunc == rf_TerminateFunc) {
+ if (node->numSuccedents != 0) {
+ printf("INVALID DAG: Terminator node has succedents\n");
+ retcode = 1;
+ }
+ } else {
+ if (node->numSuccedents == 0) {
+ printf("INVALID DAG: Non-terminator node has no succedents\n");
+ retcode = 1;
+ }
+ }
+ for (i = 0; i < node->numSuccedents; i++) {
+ if (!node->succedents[i]) {
+ printf("INVALID DAG: succedent %d of node %s is NULL\n", i, node->name);
+ retcode = 1;
+ }
+ scount[node->succedents[i]->nodeNum]++;
+ }
+ for (i = 0; i < node->numAntecedents; i++) {
+ if (!node->antecedents[i]) {
+ printf("INVALID DAG: antecedent %d of node %s is NULL\n", i, node->name);
+ retcode = 1;
+ }
+ acount[node->antecedents[i]->nodeNum]++;
+ }
+ for (i = 0; i < node->numSuccedents; i++) {
+ if (node->succedents[i]->visited == unvisited) {
+ if (rf_ValidateBranch(node->succedents[i], scount,
+ acount, nodes, unvisited)) {
+ retcode = 1;
+ }
+ }
+ }
+ return (retcode);
+}
+
+static void
+rf_ValidateBranchVisitedBits(node, unvisited, rl)
+ RF_DagNode_t *node;
+ int unvisited;
+ int rl;
+{
+ int i;
+
+ RF_ASSERT(node->visited == unvisited);
+ for (i = 0; i < node->numSuccedents; i++) {
+ if (node->succedents[i] == NULL) {
+ printf("node=%lx node->succedents[%d] is NULL\n", (long) node, i);
+ RF_ASSERT(0);
+ }
+ rf_ValidateBranchVisitedBits(node->succedents[i], unvisited, rl + 1);
+ }
+}
+/* NOTE: never call this on a big dag, because it is exponential
+ * in execution time
+ */
+static void
+rf_ValidateVisitedBits(dag)
+ RF_DagHeader_t *dag;
+{
+ int i, unvisited;
+
+ unvisited = dag->succedents[0]->visited;
+
+ for (i = 0; i < dag->numSuccedents; i++) {
+ if (dag->succedents[i] == NULL) {
+ printf("dag=%lx dag->succedents[%d] is NULL\n", (long) dag, i);
+ RF_ASSERT(0);
+ }
+ rf_ValidateBranchVisitedBits(dag->succedents[i], unvisited, 0);
+ }
+}
+/* validate a DAG. _at entry_ verify that:
+ * -- numNodesCompleted is zero
+ * -- node queue is null
+ * -- dag status is rf_enable
+ * -- next pointer is null on every node
+ * -- all nodes have status wait
+ * -- numAntDone is zero in all nodes
+ * -- terminator node has zero successors
+ * -- no other node besides terminator has zero successors
+ * -- no successor or antecedent pointer in a node is NULL
+ * -- number of times that each node appears as a successor of another node
+ * is equal to the antecedent count on that node
+ * -- number of times that each node appears as an antecedent of another node
+ * is equal to the succedent count on that node
+ * -- what else?
+ */
+int
+rf_ValidateDAG(dag_h)
+ RF_DagHeader_t *dag_h;
+{
+ int i, nodecount;
+ int *scount, *acount;/* per-node successor and antecedent counts */
+ RF_DagNode_t **nodes; /* array of ptrs to nodes in dag */
+ int retcode = 0;
+ int unvisited;
+ int commitNodeCount = 0;
+
+ if (rf_validateVisitedDebug)
+ rf_ValidateVisitedBits(dag_h);
+
+ if (dag_h->numNodesCompleted != 0) {
+ printf("INVALID DAG: num nodes completed is %d, should be 0\n", dag_h->numNodesCompleted);
+ retcode = 1;
+ goto validate_dag_bad;
+ }
+ if (dag_h->status != rf_enable) {
+ printf("INVALID DAG: not enabled\n");
+ retcode = 1;
+ goto validate_dag_bad;
+ }
+ if (dag_h->numCommits != 0) {
+ printf("INVALID DAG: numCommits != 0 (%d)\n", dag_h->numCommits);
+ retcode = 1;
+ goto validate_dag_bad;
+ }
+ if (dag_h->numSuccedents != 1) {
+ /* currently, all dags must have only one succedent */
+ printf("INVALID DAG: numSuccedents !1 (%d)\n", dag_h->numSuccedents);
+ retcode = 1;
+ goto validate_dag_bad;
+ }
+ nodecount = rf_AssignNodeNums(dag_h);
+
+ unvisited = dag_h->succedents[0]->visited;
+
+ RF_Calloc(scount, nodecount, sizeof(int), (int *));
+ RF_Calloc(acount, nodecount, sizeof(int), (int *));
+ RF_Calloc(nodes, nodecount, sizeof(RF_DagNode_t *), (RF_DagNode_t **));
+ for (i = 0; i < dag_h->numSuccedents; i++) {
+ if ((dag_h->succedents[i]->visited == unvisited)
+ && rf_ValidateBranch(dag_h->succedents[i], scount,
+ acount, nodes, unvisited)) {
+ retcode = 1;
+ }
+ }
+ /* start at 1 to skip the header node */
+ for (i = 1; i < nodecount; i++) {
+ if (nodes[i]->commitNode)
+ commitNodeCount++;
+ if (nodes[i]->doFunc == NULL) {
+ printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
+ retcode = 1;
+ goto validate_dag_out;
+ }
+ if (nodes[i]->undoFunc == NULL) {
+ printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
+ retcode = 1;
+ goto validate_dag_out;
+ }
+ if (nodes[i]->numAntecedents != scount[nodes[i]->nodeNum]) {
+ printf("INVALID DAG: node %s has %d antecedents but appears as a succedent %d times\n",
+ nodes[i]->name, nodes[i]->numAntecedents, scount[nodes[i]->nodeNum]);
+ retcode = 1;
+ goto validate_dag_out;
+ }
+ if (nodes[i]->numSuccedents != acount[nodes[i]->nodeNum]) {
+ printf("INVALID DAG: node %s has %d succedents but appears as an antecedent %d times\n",
+ nodes[i]->name, nodes[i]->numSuccedents, acount[nodes[i]->nodeNum]);
+ retcode = 1;
+ goto validate_dag_out;
+ }
+ }
+
+ if (dag_h->numCommitNodes != commitNodeCount) {
+ printf("INVALID DAG: incorrect commit node count. hdr->numCommitNodes (%d) found (%d) commit nodes in graph\n",
+ dag_h->numCommitNodes, commitNodeCount);
+ retcode = 1;
+ goto validate_dag_out;
+ }
+validate_dag_out:
+ RF_Free(scount, nodecount * sizeof(int));
+ RF_Free(acount, nodecount * sizeof(int));
+ RF_Free(nodes, nodecount * sizeof(RF_DagNode_t *));
+ if (retcode)
+ rf_PrintDAGList(dag_h);
+
+ if (rf_validateVisitedDebug)
+ rf_ValidateVisitedBits(dag_h);
+
+ return (retcode);
+
+validate_dag_bad:
+ rf_PrintDAGList(dag_h);
+ return (retcode);
+}
+
+
+/******************************************************************************
+ *
+ * misc construction routines
+ *
+ *****************************************************************************/
+
+void
+rf_redirect_asm(
+ RF_Raid_t * raidPtr,
+ RF_AccessStripeMap_t * asmap)
+{
+ int ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) ? 1 : 0;
+ int row = asmap->physInfo->row;
+ int fcol = raidPtr->reconControl[row]->fcol;
+ int srow = raidPtr->reconControl[row]->spareRow;
+ int scol = raidPtr->reconControl[row]->spareCol;
+ RF_PhysDiskAddr_t *pda;
+
+ RF_ASSERT(raidPtr->status[row] == rf_rs_reconstructing);
+ for (pda = asmap->physInfo; pda; pda = pda->next) {
+ if (pda->col == fcol) {
+ if (rf_dagDebug) {
+ if (!rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap,
+ pda->startSector)) {
+ RF_PANIC();
+ }
+ }
+ /* printf("Remapped data for large write\n"); */
+ if (ds) {
+ raidPtr->Layout.map->MapSector(raidPtr, pda->raidAddress,
+ &pda->row, &pda->col, &pda->startSector, RF_REMAP);
+ } else {
+ pda->row = srow;
+ pda->col = scol;
+ }
+ }
+ }
+ for (pda = asmap->parityInfo; pda; pda = pda->next) {
+ if (pda->col == fcol) {
+ if (rf_dagDebug) {
+ if (!rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, pda->startSector)) {
+ RF_PANIC();
+ }
+ }
+ }
+ if (ds) {
+ (raidPtr->Layout.map->MapParity) (raidPtr, pda->raidAddress, &pda->row, &pda->col, &pda->startSector, RF_REMAP);
+ } else {
+ pda->row = srow;
+ pda->col = scol;
+ }
+ }
+}
+
+
+/* this routine allocates read buffers and generates stripe maps for the
+ * regions of the array from the start of the stripe to the start of the
+ * access, and from the end of the access to the end of the stripe. It also
+ * computes and returns the number of DAG nodes needed to read all this data.
+ * Note that this routine does the wrong thing if the access is fully
+ * contained within one stripe unit, so we RF_ASSERT against this case at the
+ * start.
+ */
+void
+rf_MapUnaccessedPortionOfStripe(
+ RF_Raid_t * raidPtr,
+ RF_RaidLayout_t * layoutPtr,/* in: layout information */
+ RF_AccessStripeMap_t * asmap, /* in: access stripe map */
+ RF_DagHeader_t * dag_h, /* in: header of the dag to create */
+ RF_AccessStripeMapHeader_t ** new_asm_h, /* in: ptr to array of 2
+ * headers, to be filled in */
+ int *nRodNodes, /* out: num nodes to be generated to read
+ * unaccessed data */
+ char **sosBuffer, /* out: pointers to newly allocated buffer */
+ char **eosBuffer,
+ RF_AllocListElem_t * allocList)
+{
+ RF_RaidAddr_t sosRaidAddress, eosRaidAddress;
+ RF_SectorNum_t sosNumSector, eosNumSector;
+
+ RF_ASSERT(asmap->numStripeUnitsAccessed > (layoutPtr->numDataCol / 2));
+ /* generate an access map for the region of the array from start of
+ * stripe to start of access */
+ new_asm_h[0] = new_asm_h[1] = NULL;
+ *nRodNodes = 0;
+ if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->raidAddress)) {
+ sosRaidAddress = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
+ sosNumSector = asmap->raidAddress - sosRaidAddress;
+ RF_MallocAndAdd(*sosBuffer, rf_RaidAddressToByte(raidPtr, sosNumSector), (char *), allocList);
+ new_asm_h[0] = rf_MapAccess(raidPtr, sosRaidAddress, sosNumSector, *sosBuffer, RF_DONT_REMAP);
+ new_asm_h[0]->next = dag_h->asmList;
+ dag_h->asmList = new_asm_h[0];
+ *nRodNodes += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
+
+ RF_ASSERT(new_asm_h[0]->stripeMap->next == NULL);
+ /* we're totally within one stripe here */
+ if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
+ rf_redirect_asm(raidPtr, new_asm_h[0]->stripeMap);
+ }
+ /* generate an access map for the region of the array from end of
+ * access to end of stripe */
+ if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->endRaidAddress)) {
+ eosRaidAddress = asmap->endRaidAddress;
+ eosNumSector = rf_RaidAddressOfNextStripeBoundary(layoutPtr, eosRaidAddress) - eosRaidAddress;
+ RF_MallocAndAdd(*eosBuffer, rf_RaidAddressToByte(raidPtr, eosNumSector), (char *), allocList);
+ new_asm_h[1] = rf_MapAccess(raidPtr, eosRaidAddress, eosNumSector, *eosBuffer, RF_DONT_REMAP);
+ new_asm_h[1]->next = dag_h->asmList;
+ dag_h->asmList = new_asm_h[1];
+ *nRodNodes += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
+
+ RF_ASSERT(new_asm_h[1]->stripeMap->next == NULL);
+ /* we're totally within one stripe here */
+ if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
+ rf_redirect_asm(raidPtr, new_asm_h[1]->stripeMap);
+ }
+}
+
+
+
+/* returns non-zero if the indicated ranges of stripe unit offsets overlap */
+int
+rf_PDAOverlap(
+ RF_RaidLayout_t * layoutPtr,
+ RF_PhysDiskAddr_t * src,
+ RF_PhysDiskAddr_t * dest)
+{
+ RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
+ RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
+ /* use -1 to be sure we stay within SU */
+ RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1);
+ RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1);
+ return ((RF_MAX(soffs, doffs) <= RF_MIN(send, dend)) ? 1 : 0);
+}
+
+
+/* GenerateFailedAccessASMs
+ *
+ * this routine figures out what portion of the stripe needs to be read
+ * to effect the degraded read or write operation. It's primary function
+ * is to identify everything required to recover the data, and then
+ * eliminate anything that is already being accessed by the user.
+ *
+ * The main result is two new ASMs, one for the region from the start of the
+ * stripe to the start of the access, and one for the region from the end of
+ * the access to the end of the stripe. These ASMs describe everything that
+ * needs to be read to effect the degraded access. Other results are:
+ * nXorBufs -- the total number of buffers that need to be XORed together to
+ * recover the lost data,
+ * rpBufPtr -- ptr to a newly-allocated buffer to hold the parity. If NULL
+ * at entry, not allocated.
+ * overlappingPDAs --
+ * describes which of the non-failed PDAs in the user access
+ * overlap data that needs to be read to effect recovery.
+ * overlappingPDAs[i]==1 if and only if, neglecting the failed
+ * PDA, the ith pda in the input asm overlaps data that needs
+ * to be read for recovery.
+ */
+ /* in: asm - ASM for the actual access, one stripe only */
+ /* in: faildPDA - which component of the access has failed */
+ /* in: dag_h - header of the DAG we're going to create */
+ /* out: new_asm_h - the two new ASMs */
+ /* out: nXorBufs - the total number of xor bufs required */
+ /* out: rpBufPtr - a buffer for the parity read */
+void
+rf_GenerateFailedAccessASMs(
+ RF_Raid_t * raidPtr,
+ RF_AccessStripeMap_t * asmap,
+ RF_PhysDiskAddr_t * failedPDA,
+ RF_DagHeader_t * dag_h,
+ RF_AccessStripeMapHeader_t ** new_asm_h,
+ int *nXorBufs,
+ char **rpBufPtr,
+ char *overlappingPDAs,
+ RF_AllocListElem_t * allocList)
+{
+ RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
+
+ /* s=start, e=end, s=stripe, a=access, f=failed, su=stripe unit */
+ RF_RaidAddr_t sosAddr, sosEndAddr, eosStartAddr, eosAddr;
+
+ RF_SectorCount_t numSect[2], numParitySect;
+ RF_PhysDiskAddr_t *pda;
+ char *rdBuf, *bufP;
+ int foundit, i;
+
+ bufP = NULL;
+ foundit = 0;
+ /* first compute the following raid addresses: start of stripe,
+ * (sosAddr) MIN(start of access, start of failed SU), (sosEndAddr)
+ * MAX(end of access, end of failed SU), (eosStartAddr) end of
+ * stripe (i.e. start of next stripe) (eosAddr) */
+ sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
+ sosEndAddr = RF_MIN(asmap->raidAddress, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, failedPDA->raidAddress));
+ eosStartAddr = RF_MAX(asmap->endRaidAddress, rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, failedPDA->raidAddress));
+ eosAddr = rf_RaidAddressOfNextStripeBoundary(layoutPtr, asmap->raidAddress);
+
+ /* now generate access stripe maps for each of the above regions of
+ * the stripe. Use a dummy (NULL) buf ptr for now */
+
+ new_asm_h[0] = (sosAddr != sosEndAddr) ? rf_MapAccess(raidPtr, sosAddr, sosEndAddr - sosAddr, NULL, RF_DONT_REMAP) : NULL;
+ new_asm_h[1] = (eosStartAddr != eosAddr) ? rf_MapAccess(raidPtr, eosStartAddr, eosAddr - eosStartAddr, NULL, RF_DONT_REMAP) : NULL;
+
+ /* walk through the PDAs and range-restrict each SU to the region of
+ * the SU touched on the failed PDA. also compute total data buffer
+ * space requirements in this step. Ignore the parity for now. */
+
+ numSect[0] = numSect[1] = 0;
+ if (new_asm_h[0]) {
+ new_asm_h[0]->next = dag_h->asmList;
+ dag_h->asmList = new_asm_h[0];
+ for (pda = new_asm_h[0]->stripeMap->physInfo; pda; pda = pda->next) {
+ rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0);
+ numSect[0] += pda->numSector;
+ }
+ }
+ if (new_asm_h[1]) {
+ new_asm_h[1]->next = dag_h->asmList;
+ dag_h->asmList = new_asm_h[1];
+ for (pda = new_asm_h[1]->stripeMap->physInfo; pda; pda = pda->next) {
+ rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0);
+ numSect[1] += pda->numSector;
+ }
+ }
+ numParitySect = failedPDA->numSector;
+
+ /* allocate buffer space for the data & parity we have to read to
+ * recover from the failure */
+
+ if (numSect[0] + numSect[1] + ((rpBufPtr) ? numParitySect : 0)) { /* don't allocate parity
+ * buf if not needed */
+ RF_MallocAndAdd(rdBuf, rf_RaidAddressToByte(raidPtr, numSect[0] + numSect[1] + numParitySect), (char *), allocList);
+ bufP = rdBuf;
+ if (rf_degDagDebug)
+ printf("Newly allocated buffer (%d bytes) is 0x%lx\n",
+ (int) rf_RaidAddressToByte(raidPtr, numSect[0] + numSect[1] + numParitySect), (unsigned long) bufP);
+ }
+ /* now walk through the pdas one last time and assign buffer pointers
+ * (ugh!). Again, ignore the parity. also, count nodes to find out
+ * how many bufs need to be xored together */
+ (*nXorBufs) = 1; /* in read case, 1 is for parity. In write
+ * case, 1 is for failed data */
+ if (new_asm_h[0]) {
+ for (pda = new_asm_h[0]->stripeMap->physInfo; pda; pda = pda->next) {
+ pda->bufPtr = bufP;
+ bufP += rf_RaidAddressToByte(raidPtr, pda->numSector);
+ }
+ *nXorBufs += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
+ }
+ if (new_asm_h[1]) {
+ for (pda = new_asm_h[1]->stripeMap->physInfo; pda; pda = pda->next) {
+ pda->bufPtr = bufP;
+ bufP += rf_RaidAddressToByte(raidPtr, pda->numSector);
+ }
+ (*nXorBufs) += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
+ }
+ if (rpBufPtr)
+ *rpBufPtr = bufP; /* the rest of the buffer is for
+ * parity */
+
+ /* the last step is to figure out how many more distinct buffers need
+ * to get xor'd to produce the missing unit. there's one for each
+ * user-data read node that overlaps the portion of the failed unit
+ * being accessed */
+
+ for (foundit = i = 0, pda = asmap->physInfo; pda; i++, pda = pda->next) {
+ if (pda == failedPDA) {
+ i--;
+ foundit = 1;
+ continue;
+ }
+ if (rf_PDAOverlap(layoutPtr, pda, failedPDA)) {
+ overlappingPDAs[i] = 1;
+ (*nXorBufs)++;
+ }
+ }
+ if (!foundit) {
+ RF_ERRORMSG("GenerateFailedAccessASMs: did not find failedPDA in asm list\n");
+ RF_ASSERT(0);
+ }
+ if (rf_degDagDebug) {
+ if (new_asm_h[0]) {
+ printf("First asm:\n");
+ rf_PrintFullAccessStripeMap(new_asm_h[0], 1);
+ }
+ if (new_asm_h[1]) {
+ printf("Second asm:\n");
+ rf_PrintFullAccessStripeMap(new_asm_h[1], 1);
+ }
+ }
+}
+
+
+/* adjusts the offset and number of sectors in the destination pda so that
+ * it covers at most the region of the SU covered by the source PDA. This
+ * is exclusively a restriction: the number of sectors indicated by the
+ * target PDA can only shrink.
+ *
+ * For example: s = sectors within SU indicated by source PDA
+ * d = sectors within SU indicated by dest PDA
+ * r = results, stored in dest PDA
+ *
+ * |--------------- one stripe unit ---------------------|
+ * | sssssssssssssssssssssssssssssssss |
+ * | ddddddddddddddddddddddddddddddddddddddddddddd |
+ * | rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr |
+ *
+ * Another example:
+ *
+ * |--------------- one stripe unit ---------------------|
+ * | sssssssssssssssssssssssssssssssss |
+ * | ddddddddddddddddddddddd |
+ * | rrrrrrrrrrrrrrrr |
+ *
+ */
+void
+rf_RangeRestrictPDA(
+ RF_Raid_t * raidPtr,
+ RF_PhysDiskAddr_t * src,
+ RF_PhysDiskAddr_t * dest,
+ int dobuffer,
+ int doraidaddr)
+{
+ RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
+ RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
+ RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
+ RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1); /* use -1 to be sure we
+ * stay within SU */
+ RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1);
+ RF_SectorNum_t subAddr = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->startSector); /* stripe unit boundary */
+
+ dest->startSector = subAddr + RF_MAX(soffs, doffs);
+ dest->numSector = subAddr + RF_MIN(send, dend) + 1 - dest->startSector;
+
+ if (dobuffer)
+ dest->bufPtr += (soffs > doffs) ? rf_RaidAddressToByte(raidPtr, soffs - doffs) : 0;
+ if (doraidaddr) {
+ dest->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->raidAddress) +
+ rf_StripeUnitOffset(layoutPtr, dest->startSector);
+ }
+}
+/*
+ * Want the highest of these primes to be the largest one
+ * less than the max expected number of columns (won't hurt
+ * to be too small or too large, but won't be optimal, either)
+ * --jimz
+ */
+#define NLOWPRIMES 8
+static int lowprimes[NLOWPRIMES] = {2, 3, 5, 7, 11, 13, 17, 19};
+/*****************************************************************************
+ * compute the workload shift factor. (chained declustering)
+ *
+ * return nonzero if access should shift to secondary, otherwise,
+ * access is to primary
+ *****************************************************************************/
+int
+rf_compute_workload_shift(
+ RF_Raid_t * raidPtr,
+ RF_PhysDiskAddr_t * pda)
+{
+ /*
+ * variables:
+ * d = column of disk containing primary
+ * f = column of failed disk
+ * n = number of disks in array
+ * sd = "shift distance" (number of columns that d is to the right of f)
+ * row = row of array the access is in
+ * v = numerator of redirection ratio
+ * k = denominator of redirection ratio
+ */
+ RF_RowCol_t d, f, sd, row, n;
+ int k, v, ret, i;
+
+ row = pda->row;
+ n = raidPtr->numCol;
+
+ /* assign column of primary copy to d */
+ d = pda->col;
+
+ /* assign column of dead disk to f */
+ for (f = 0; ((!RF_DEAD_DISK(raidPtr->Disks[row][f].status)) && (f < n)); f++);
+
+ RF_ASSERT(f < n);
+ RF_ASSERT(f != d);
+
+ sd = (f > d) ? (n + d - f) : (d - f);
+ RF_ASSERT(sd < n);
+
+ /*
+ * v of every k accesses should be redirected
+ *
+ * v/k := (n-1-sd)/(n-1)
+ */
+ v = (n - 1 - sd);
+ k = (n - 1);
+
+#if 1
+ /*
+ * XXX
+ * Is this worth it?
+ *
+ * Now reduce the fraction, by repeatedly factoring
+ * out primes (just like they teach in elementary school!)
+ */
+ for (i = 0; i < NLOWPRIMES; i++) {
+ if (lowprimes[i] > v)
+ break;
+ while (((v % lowprimes[i]) == 0) && ((k % lowprimes[i]) == 0)) {
+ v /= lowprimes[i];
+ k /= lowprimes[i];
+ }
+ }
+#endif
+
+ raidPtr->hist_diskreq[row][d]++;
+ if (raidPtr->hist_diskreq[row][d] > v) {
+ ret = 0; /* do not redirect */
+ } else {
+ ret = 1; /* redirect */
+ }
+
+#if 0
+ printf("d=%d f=%d sd=%d v=%d k=%d ret=%d h=%d\n", d, f, sd, v, k, ret,
+ raidPtr->hist_diskreq[row][d]);
+#endif
+
+ if (raidPtr->hist_diskreq[row][d] >= k) {
+ /* reset counter */
+ raidPtr->hist_diskreq[row][d] = 0;
+ }
+ return (ret);
+}
+/*
+ * Disk selection routines
+ */
+
+/*
+ * Selects the disk with the shortest queue from a mirror pair.
+ * Both the disk I/Os queued in RAIDframe as well as those at the physical
+ * disk are counted as members of the "queue"
+ */
+void
+rf_SelectMirrorDiskIdle(RF_DagNode_t * node)
+{
+ RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
+ RF_RowCol_t rowData, colData, rowMirror, colMirror;
+ int dataQueueLength, mirrorQueueLength, usemirror;
+ RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
+ RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
+ RF_PhysDiskAddr_t *tmp_pda;
+ RF_RaidDisk_t **disks = raidPtr->Disks;
+ RF_DiskQueue_t **dqs = raidPtr->Queues, *dataQueue, *mirrorQueue;
+
+ /* return the [row col] of the disk with the shortest queue */
+ rowData = data_pda->row;
+ colData = data_pda->col;
+ rowMirror = mirror_pda->row;
+ colMirror = mirror_pda->col;
+ dataQueue = &(dqs[rowData][colData]);
+ mirrorQueue = &(dqs[rowMirror][colMirror]);
+
+#ifdef RF_LOCK_QUEUES_TO_READ_LEN
+ RF_LOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
+#endif /* RF_LOCK_QUEUES_TO_READ_LEN */
+ dataQueueLength = dataQueue->queueLength + dataQueue->numOutstanding;
+#ifdef RF_LOCK_QUEUES_TO_READ_LEN
+ RF_UNLOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
+ RF_LOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
+#endif /* RF_LOCK_QUEUES_TO_READ_LEN */
+ mirrorQueueLength = mirrorQueue->queueLength + mirrorQueue->numOutstanding;
+#ifdef RF_LOCK_QUEUES_TO_READ_LEN
+ RF_UNLOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
+#endif /* RF_LOCK_QUEUES_TO_READ_LEN */
+
+ usemirror = 0;
+ if (RF_DEAD_DISK(disks[rowMirror][colMirror].status)) {
+ usemirror = 0;
+ } else
+ if (RF_DEAD_DISK(disks[rowData][colData].status)) {
+ usemirror = 1;
+ } else
+ if (raidPtr->parity_good == RF_RAID_DIRTY) {
+ /* Trust only the main disk */
+ usemirror = 0;
+ } else
+ if (dataQueueLength < mirrorQueueLength) {
+ usemirror = 0;
+ } else
+ if (mirrorQueueLength < dataQueueLength) {
+ usemirror = 1;
+ } else {
+ /* queues are equal length. attempt
+ * cleverness. */
+ if (SNUM_DIFF(dataQueue->last_deq_sector, data_pda->startSector)
+ <= SNUM_DIFF(mirrorQueue->last_deq_sector, mirror_pda->startSector)) {
+ usemirror = 0;
+ } else {
+ usemirror = 1;
+ }
+ }
+
+ if (usemirror) {
+ /* use mirror (parity) disk, swap params 0 & 4 */
+ tmp_pda = data_pda;
+ node->params[0].p = mirror_pda;
+ node->params[4].p = tmp_pda;
+ } else {
+ /* use data disk, leave param 0 unchanged */
+ }
+ /* printf("dataQueueLength %d, mirrorQueueLength
+ * %d\n",dataQueueLength, mirrorQueueLength); */
+}
+/*
+ * Do simple partitioning. This assumes that
+ * the data and parity disks are laid out identically.
+ */
+void
+rf_SelectMirrorDiskPartition(RF_DagNode_t * node)
+{
+ RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
+ RF_RowCol_t rowData, colData, rowMirror, colMirror;
+ RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
+ RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
+ RF_PhysDiskAddr_t *tmp_pda;
+ RF_RaidDisk_t **disks = raidPtr->Disks;
+ RF_DiskQueue_t **dqs = raidPtr->Queues, *dataQueue, *mirrorQueue;
+ int usemirror;
+
+ /* return the [row col] of the disk with the shortest queue */
+ rowData = data_pda->row;
+ colData = data_pda->col;
+ rowMirror = mirror_pda->row;
+ colMirror = mirror_pda->col;
+ dataQueue = &(dqs[rowData][colData]);
+ mirrorQueue = &(dqs[rowMirror][colMirror]);
+
+ usemirror = 0;
+ if (RF_DEAD_DISK(disks[rowMirror][colMirror].status)) {
+ usemirror = 0;
+ } else
+ if (RF_DEAD_DISK(disks[rowData][colData].status)) {
+ usemirror = 1;
+ } else
+ if (raidPtr->parity_good == RF_RAID_DIRTY) {
+ /* Trust only the main disk */
+ usemirror = 0;
+ } else
+ if (data_pda->startSector <
+ (disks[rowData][colData].numBlocks / 2)) {
+ usemirror = 0;
+ } else {
+ usemirror = 1;
+ }
+
+ if (usemirror) {
+ /* use mirror (parity) disk, swap params 0 & 4 */
+ tmp_pda = data_pda;
+ node->params[0].p = mirror_pda;
+ node->params[4].p = tmp_pda;
+ } else {
+ /* use data disk, leave param 0 unchanged */
+ }
+}
diff --git a/sys/dev/raidframe/rf_dagutils.h b/sys/dev/raidframe/rf_dagutils.h
new file mode 100644
index 0000000..bad2c76
--- /dev/null
+++ b/sys/dev/raidframe/rf_dagutils.h
@@ -0,0 +1,121 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_dagutils.h,v 1.3 1999/02/05 00:06:08 oster Exp $ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Mark Holland, William V. Courtright II
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+/*************************************************************************
+ *
+ * rf_dagutils.h -- header file for utility routines for manipulating DAGs
+ *
+ *************************************************************************/
+
+
+#include <dev/raidframe/rf_types.h>
+#include <dev/raidframe/rf_dagfuncs.h>
+#include <dev/raidframe/rf_general.h>
+
+#ifndef _RF__RF_DAGUTILS_H_
+#define _RF__RF_DAGUTILS_H_
+
+struct RF_RedFuncs_s {
+ int (*regular) (RF_DagNode_t *);
+ char *RegularName;
+ int (*simple) (RF_DagNode_t *);
+ char *SimpleName;
+};
+
+extern RF_RedFuncs_t rf_xorFuncs;
+extern RF_RedFuncs_t rf_xorRecoveryFuncs;
+
+void
+rf_InitNode(RF_DagNode_t * node, RF_NodeStatus_t initstatus,
+ int commit,
+ int (*doFunc) (RF_DagNode_t * node),
+ int (*undoFunc) (RF_DagNode_t * node),
+ int (*wakeFunc) (RF_DagNode_t * node, int status),
+ int nSucc, int nAnte, int nParam, int nResult,
+ RF_DagHeader_t * hdr, char *name, RF_AllocListElem_t * alist);
+
+ void rf_FreeDAG(RF_DagHeader_t * dag_h);
+
+ RF_PropHeader_t *rf_MakePropListEntry(RF_DagHeader_t * dag_h, int resultNum,
+ int paramNum, RF_PropHeader_t * next, RF_AllocListElem_t * allocList);
+
+ int rf_ConfigureDAGs(RF_ShutdownList_t ** listp);
+
+ RF_DagHeader_t *rf_AllocDAGHeader(void);
+
+ void rf_FreeDAGHeader(RF_DagHeader_t * dh);
+
+ void *rf_AllocBuffer(RF_Raid_t * raidPtr, RF_DagHeader_t * dag_h,
+ RF_PhysDiskAddr_t * pda, RF_AllocListElem_t * allocList);
+
+ char *rf_NodeStatusString(RF_DagNode_t * node);
+
+ void rf_PrintNodeInfoString(RF_DagNode_t * node);
+
+ int rf_AssignNodeNums(RF_DagHeader_t * dag_h);
+
+ int rf_RecurAssignNodeNums(RF_DagNode_t * node, int num, int unvisited);
+
+ void rf_ResetDAGHeaderPointers(RF_DagHeader_t * dag_h, RF_DagHeader_t * newptr);
+
+ void rf_RecurResetDAGHeaderPointers(RF_DagNode_t * node, RF_DagHeader_t * newptr);
+
+ void rf_PrintDAGList(RF_DagHeader_t * dag_h);
+
+ int rf_ValidateDAG(RF_DagHeader_t * dag_h);
+
+ void rf_redirect_asm(RF_Raid_t * raidPtr, RF_AccessStripeMap_t * asmap);
+
+ void rf_MapUnaccessedPortionOfStripe(RF_Raid_t * raidPtr,
+ RF_RaidLayout_t * layoutPtr,
+ RF_AccessStripeMap_t * asmap, RF_DagHeader_t * dag_h,
+ RF_AccessStripeMapHeader_t ** new_asm_h, int *nRodNodes, char **sosBuffer,
+ char **eosBuffer, RF_AllocListElem_t * allocList);
+
+ int rf_PDAOverlap(RF_RaidLayout_t * layoutPtr, RF_PhysDiskAddr_t * src,
+ RF_PhysDiskAddr_t * dest);
+
+ void rf_GenerateFailedAccessASMs(RF_Raid_t * raidPtr,
+ RF_AccessStripeMap_t * asmap, RF_PhysDiskAddr_t * failedPDA,
+ RF_DagHeader_t * dag_h, RF_AccessStripeMapHeader_t ** new_asm_h,
+ int *nXorBufs, char **rpBufPtr, char *overlappingPDAs,
+ RF_AllocListElem_t * allocList);
+
+/* flags used by RangeRestrictPDA */
+#define RF_RESTRICT_NOBUFFER 0
+#define RF_RESTRICT_DOBUFFER 1
+
+ void rf_RangeRestrictPDA(RF_Raid_t * raidPtr, RF_PhysDiskAddr_t * src,
+ RF_PhysDiskAddr_t * dest, int dobuffer, int doraidaddr);
+
+ int rf_compute_workload_shift(RF_Raid_t * raidPtr, RF_PhysDiskAddr_t * pda);
+ void rf_SelectMirrorDiskIdle(RF_DagNode_t * node);
+ void rf_SelectMirrorDiskPartition(RF_DagNode_t * node);
+
+#endif /* !_RF__RF_DAGUTILS_H_ */
diff --git a/sys/dev/raidframe/rf_debugMem.c b/sys/dev/raidframe/rf_debugMem.c
new file mode 100644
index 0000000..f754812
--- /dev/null
+++ b/sys/dev/raidframe/rf_debugMem.c
@@ -0,0 +1,206 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_debugMem.c,v 1.7 2000/01/07 03:40:59 oster Exp $ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Daniel Stodolsky, Mark Holland, Jim Zelenka
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+/* debugMem.c: memory usage debugging stuff.
+ * Malloc, Calloc, and Free are #defined everywhere
+ * to do_malloc, do_calloc, and do_free.
+ *
+ * if RF_UTILITY is nonzero, it means were compiling one of the
+ * raidframe utility programs, such as rfctrl or smd. In this
+ * case, we eliminate all references to the threads package
+ * and to the allocation list stuff.
+ */
+
+#include <dev/raidframe/rf_types.h>
+
+#include <dev/raidframe/rf_threadstuff.h>
+#include <dev/raidframe/rf_options.h>
+#include <dev/raidframe/rf_debugMem.h>
+#include <dev/raidframe/rf_general.h>
+
+#if defined(__FreeBSD__)
+#include <sys/kernel.h>
+MALLOC_DEFINE(M_RAIDFRAME, "rfbuf", "Buffers for RAIDframe operation");
+#endif
+
+static long tot_mem_in_use = 0;
+
+/* Hash table of information about memory allocations */
+#define RF_MH_TABLESIZE 1000
+
+struct mh_struct {
+ void *address;
+ int size;
+ int line;
+ char *filen;
+ char allocated;
+ struct mh_struct *next;
+};
+static struct mh_struct *mh_table[RF_MH_TABLESIZE];
+RF_DECLARE_MUTEX(rf_debug_mem_mutex)
+ static int mh_table_initialized = 0;
+
+ static void memory_hash_insert(void *addr, int size, int line, char *filen);
+ static int memory_hash_remove(void *addr, int sz);
+
+void
+rf_record_malloc(p, size, line, filen)
+ void *p;
+ int size, line;
+ char *filen;
+{
+ RF_ASSERT(size != 0);
+
+ /* RF_LOCK_MUTEX(rf_debug_mem_mutex); */
+ memory_hash_insert(p, size, line, filen);
+ tot_mem_in_use += size;
+ /* RF_UNLOCK_MUTEX(rf_debug_mem_mutex); */
+ if ((long) p == rf_memDebugAddress) {
+ printf("Allocate: debug address allocated from line %d file %s\n", line, filen);
+ }
+}
+
+void
+rf_unrecord_malloc(p, sz)
+ void *p;
+ int sz;
+{
+ int size;
+
+ /* RF_LOCK_MUTEX(rf_debug_mem_mutex); */
+ size = memory_hash_remove(p, sz);
+ tot_mem_in_use -= size;
+ /* RF_UNLOCK_MUTEX(rf_debug_mem_mutex); */
+ if ((long) p == rf_memDebugAddress) {
+ printf("Free: Found debug address\n"); /* this is really only a
+ * flag line for gdb */
+ }
+}
+
+void
+rf_print_unfreed()
+{
+ int i, foundone = 0;
+ struct mh_struct *p;
+
+ for (i = 0; i < RF_MH_TABLESIZE; i++) {
+ for (p = mh_table[i]; p; p = p->next)
+ if (p->allocated) {
+ if (!foundone)
+ printf("\n\nThere are unfreed memory locations at program shutdown:\n");
+ foundone = 1;
+ printf("Addr 0x%lx Size %d line %d file %s\n",
+ (long) p->address, p->size, p->line, p->filen);
+ }
+ }
+ if (tot_mem_in_use) {
+ printf("%ld total bytes in use\n", tot_mem_in_use);
+ }
+}
+
+int
+rf_ConfigureDebugMem(listp)
+ RF_ShutdownList_t **listp;
+{
+ int i, rc;
+
+ rc = rf_create_managed_mutex(listp, &rf_debug_mem_mutex);
+ if (rc) {
+ RF_ERRORMSG3("Unable to init mutex file %s line %d rc=%d\n", __FILE__,
+ __LINE__, rc);
+ return (rc);
+ }
+ if (rf_memDebug) {
+ for (i = 0; i < RF_MH_TABLESIZE; i++)
+ mh_table[i] = NULL;
+ mh_table_initialized = 1;
+ }
+ return (0);
+}
+#define HASHADDR(_a_) ( (((unsigned long) _a_)>>3) % RF_MH_TABLESIZE )
+
+static void
+memory_hash_insert(addr, size, line, filen)
+ void *addr;
+ int size, line;
+ char *filen;
+{
+ unsigned long bucket = HASHADDR(addr);
+ struct mh_struct *p;
+
+ RF_ASSERT(mh_table_initialized);
+
+ /* search for this address in the hash table */
+ for (p = mh_table[bucket]; p && (p->address != addr); p = p->next);
+ if (!p) {
+ RF_Malloc(p, sizeof(struct mh_struct), (struct mh_struct *));
+ RF_ASSERT(p);
+ p->next = mh_table[bucket];
+ mh_table[bucket] = p;
+ p->address = addr;
+ p->allocated = 0;
+ }
+ if (p->allocated) {
+ printf("ERROR: reallocated address 0x%lx from line %d, file %s without intervening free\n", (long) addr, line, filen);
+ printf(" last allocated from line %d file %s\n", p->line, p->filen);
+ RF_ASSERT(0);
+ }
+ p->size = size;
+ p->line = line;
+ p->filen = filen;
+ p->allocated = 1;
+}
+
+static int
+memory_hash_remove(addr, sz)
+ void *addr;
+ int sz;
+{
+ unsigned long bucket = HASHADDR(addr);
+ struct mh_struct *p;
+
+ RF_ASSERT(mh_table_initialized);
+ for (p = mh_table[bucket]; p && (p->address != addr); p = p->next);
+ if (!p) {
+ printf("ERROR: freeing never-allocated address 0x%lx\n", (long) addr);
+ RF_PANIC();
+ }
+ if (!p->allocated) {
+ printf("ERROR: freeing unallocated address 0x%lx. Last allocation line %d file %s\n", (long) addr, p->line, p->filen);
+ RF_PANIC();
+ }
+ if (sz > 0 && p->size != sz) { /* you can suppress this error by
+ * using a negative value as the size
+ * to free */
+ printf("ERROR: incorrect size at free for address 0x%lx: is %d should be %d. Alloc at line %d of file %s\n", (unsigned long) addr, sz, p->size, p->line, p->filen);
+ RF_PANIC();
+ }
+ p->allocated = 0;
+ return (p->size);
+}
diff --git a/sys/dev/raidframe/rf_debugMem.h b/sys/dev/raidframe/rf_debugMem.h
new file mode 100644
index 0000000..e6d8c60
--- /dev/null
+++ b/sys/dev/raidframe/rf_debugMem.h
@@ -0,0 +1,88 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_debugMem.h,v 1.7 1999/09/05 01:58:11 oster Exp $ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Daniel Stodolsky, Mark Holland
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+/*
+ * rf_debugMem.h -- memory leak debugging module
+ *
+ * IMPORTANT: if you put the lock/unlock mutex stuff back in here, you
+ * need to take it out of the routines in debugMem.c
+ *
+ */
+
+#ifndef _RF__RF_DEBUGMEM_H_
+#define _RF__RF_DEBUGMEM_H_
+
+#include <dev/raidframe/rf_alloclist.h>
+
+#ifdef _KERNEL
+#include <sys/types.h>
+#include <sys/malloc.h>
+
+#if defined(__FreeBSD__)
+MALLOC_DECLARE(M_RAIDFRAME);
+#endif
+
+#define RF_Malloc(_p_, _size_, _cast_) \
+ { \
+ _p_ = _cast_ malloc((u_long)_size_, M_RAIDFRAME, M_NOWAIT | M_ZERO); \
+ if (_p_ == NULL) panic("out of memory\n"); \
+ if (rf_memDebug) rf_record_malloc(_p_, _size_, __LINE__, __FILE__); \
+ }
+
+#define RF_MallocAndAdd(__p_, __size_, __cast_, __alist_) \
+ { \
+ RF_Malloc(__p_, __size_, __cast_); \
+ if (__alist_) rf_AddToAllocList(__alist_, __p_, __size_); \
+ }
+
+#define RF_Calloc(_p_, _nel_, _elsz_, _cast_) \
+ { \
+ RF_Malloc( _p_, (_nel_) * (_elsz_), _cast_); \
+ }
+
+#define RF_CallocAndAdd(__p,__nel,__elsz,__cast,__alist) \
+ { \
+ RF_Calloc(__p, __nel, __elsz, __cast); \
+ if (__alist) rf_AddToAllocList(__alist, __p, (__nel)*(__elsz)); \
+ }
+
+#define RF_Free(_p_, _sz_) \
+ { \
+ free((void *)(_p_), M_RAIDFRAME); \
+ if (rf_memDebug) rf_unrecord_malloc(_p_, (u_int32_t) (_sz_)); \
+ }
+
+#endif /* _KERNEL */
+
+void rf_record_malloc(void *p, int size, int line, char *filen);
+void rf_unrecord_malloc(void *p, int sz);
+void rf_print_unfreed(void);
+int rf_ConfigureDebugMem(RF_ShutdownList_t ** listp);
+
+#endif /* !_RF__RF_DEBUGMEM_H_ */
diff --git a/sys/dev/raidframe/rf_debugprint.c b/sys/dev/raidframe/rf_debugprint.c
new file mode 100644
index 0000000..6c96023
--- /dev/null
+++ b/sys/dev/raidframe/rf_debugprint.c
@@ -0,0 +1,134 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_debugprint.c,v 1.3 1999/02/05 00:06:08 oster Exp $ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Mark Holland
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+/*
+ * Code to do debug printfs. Calls to rf_debug_printf cause the corresponding
+ * information to be printed to a circular buffer rather than the screen.
+ * The point is to try and minimize the timing variations induced by the
+ * printfs, and to capture only the printf's immediately preceding a failure.
+ */
+
+#include <dev/raidframe/rf_types.h>
+#include <dev/raidframe/rf_threadstuff.h>
+#include <dev/raidframe/rf_debugprint.h>
+#include <dev/raidframe/rf_general.h>
+#include <dev/raidframe/rf_options.h>
+
+#include <sys/param.h>
+
+struct RF_Entry_s {
+ char *cstring;
+ void *a1, *a2, *a3, *a4, *a5, *a6, *a7, *a8;
+};
+/* space for 1k lines */
+#define BUFSHIFT 10
+#define BUFSIZE (1<<BUFSHIFT)
+#define BUFMASK (BUFSIZE-1)
+
+static struct RF_Entry_s rf_debugprint_buf[BUFSIZE];
+static int rf_debugprint_index = 0;
+RF_DECLARE_STATIC_MUTEX(rf_debug_print_mutex)
+ int rf_ConfigureDebugPrint(listp)
+ RF_ShutdownList_t **listp;
+{
+ int rc;
+
+ rc = rf_create_managed_mutex(listp, &rf_debug_print_mutex);
+ if (rc) {
+ RF_ERRORMSG3("Unable to init mutex file %s line %d rc=%d\n", __FILE__,
+ __LINE__, rc);
+ return (rc);
+ }
+ rf_clear_debug_print_buffer();
+ return (0);
+}
+
+void
+rf_clear_debug_print_buffer()
+{
+ int i;
+
+ for (i = 0; i < BUFSIZE; i++)
+ rf_debugprint_buf[i].cstring = NULL;
+ rf_debugprint_index = 0;
+}
+
+void
+rf_debug_printf(s, a1, a2, a3, a4, a5, a6, a7, a8)
+ char *s;
+ void *a1, *a2, *a3, *a4, *a5, *a6, *a7, *a8;
+{
+ int idx;
+
+ if (rf_debugPrintUseBuffer) {
+
+ RF_LOCK_MUTEX(rf_debug_print_mutex);
+ idx = rf_debugprint_index;
+ rf_debugprint_index = (rf_debugprint_index + 1) & BUFMASK;
+ RF_UNLOCK_MUTEX(rf_debug_print_mutex);
+
+ rf_debugprint_buf[idx].cstring = s;
+ rf_debugprint_buf[idx].a1 = a1;
+ rf_debugprint_buf[idx].a2 = a2;
+ rf_debugprint_buf[idx].a3 = a3;
+ rf_debugprint_buf[idx].a4 = a4;
+ rf_debugprint_buf[idx].a5 = a5;
+ rf_debugprint_buf[idx].a6 = a6;
+ rf_debugprint_buf[idx].a7 = a7;
+ rf_debugprint_buf[idx].a8 = a8;
+ } else {
+ printf(s, a1, a2, a3, a4, a5, a6, a7, a8);
+ }
+}
+
+void
+rf_print_debug_buffer()
+{
+ rf_spill_debug_buffer(NULL);
+}
+
+void
+rf_spill_debug_buffer(fname)
+ char *fname;
+{
+ int i;
+
+ if (!rf_debugPrintUseBuffer)
+ return;
+
+ RF_LOCK_MUTEX(rf_debug_print_mutex);
+
+ for (i = rf_debugprint_index + 1; i != rf_debugprint_index; i = (i + 1) & BUFMASK)
+ if (rf_debugprint_buf[i].cstring)
+ printf(rf_debugprint_buf[i].cstring, rf_debugprint_buf[i].a1, rf_debugprint_buf[i].a2, rf_debugprint_buf[i].a3,
+ rf_debugprint_buf[i].a4, rf_debugprint_buf[i].a5, rf_debugprint_buf[i].a6, rf_debugprint_buf[i].a7, rf_debugprint_buf[i].a8);
+ printf(rf_debugprint_buf[i].cstring, rf_debugprint_buf[i].a1, rf_debugprint_buf[i].a2, rf_debugprint_buf[i].a3,
+ rf_debugprint_buf[i].a4, rf_debugprint_buf[i].a5, rf_debugprint_buf[i].a6, rf_debugprint_buf[i].a7, rf_debugprint_buf[i].a8);
+ RF_UNLOCK_MUTEX(rf_debug_print_mutex);
+}
diff --git a/sys/dev/raidframe/rf_debugprint.h b/sys/dev/raidframe/rf_debugprint.h
new file mode 100644
index 0000000..318f620
--- /dev/null
+++ b/sys/dev/raidframe/rf_debugprint.h
@@ -0,0 +1,44 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_debugprint.h,v 1.3 1999/02/05 00:06:08 oster Exp $ */
+/*
+ * rf_debugprint.h
+ */
+/*
+ * Copyright (c) 1996 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Mark Holland
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+#ifndef _RF__RF_DEBUGPRINT_H_
+#define _RF__RF_DEBUGPRINT_H_
+
+int rf_ConfigureDebugPrint(RF_ShutdownList_t ** listp);
+void rf_clear_debug_print_buffer(void);
+void
+rf_debug_printf(char *s, void *a1, void *a2, void *a3, void *a4,
+ void *a5, void *a6, void *a7, void *a8);
+void rf_print_debug_buffer(void);
+void rf_spill_debug_buffer(char *fname);
+
+#endif /* !_RF__RF_DEBUGPRINT_H_ */
diff --git a/sys/dev/raidframe/rf_decluster.c b/sys/dev/raidframe/rf_decluster.c
new file mode 100644
index 0000000..3a02519
--- /dev/null
+++ b/sys/dev/raidframe/rf_decluster.c
@@ -0,0 +1,745 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_decluster.c,v 1.6 2001/01/26 04:40:03 oster Exp $ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Mark Holland
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+/*----------------------------------------------------------------------
+ *
+ * rf_decluster.c -- code related to the declustered layout
+ *
+ * Created 10-21-92 (MCH)
+ *
+ * Nov 93: adding support for distributed sparing. This code is a little
+ * complex: the basic layout used is as follows:
+ * let F = (v-1)/GCD(r,v-1). The spare space for each set of
+ * F consecutive fulltables is grouped together and placed after
+ * that set of tables.
+ * +------------------------------+
+ * | F fulltables |
+ * | Spare Space |
+ * | F fulltables |
+ * | Spare Space |
+ * | ... |
+ * +------------------------------+
+ *
+ *--------------------------------------------------------------------*/
+
+#include <dev/raidframe/rf_archs.h>
+#include <dev/raidframe/rf_types.h>
+#include <dev/raidframe/rf_raid.h>
+#include <dev/raidframe/rf_raidframe.h>
+#include <dev/raidframe/rf_configure.h>
+#include <dev/raidframe/rf_decluster.h>
+#include <dev/raidframe/rf_debugMem.h>
+#include <dev/raidframe/rf_utils.h>
+#include <dev/raidframe/rf_alloclist.h>
+#include <dev/raidframe/rf_general.h>
+#include <dev/raidframe/rf_shutdown.h>
+
+
+extern int rf_copyback_in_progress; /* debug only */
+
+/* found in rf_kintf.c */
+int rf_GetSpareTableFromDaemon(RF_SparetWait_t * req);
+
+#if (RF_INCLUDE_PARITY_DECLUSTERING > 0) || (RF_INCLUDE_PARITY_DECLUSTERING_PQ > 0)
+
+/* configuration code */
+
+int
+rf_ConfigureDeclustered(
+ RF_ShutdownList_t ** listp,
+ RF_Raid_t * raidPtr,
+ RF_Config_t * cfgPtr)
+{
+ RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
+ int b, v, k, r, lambda; /* block design params */
+ int i, j;
+ RF_RowCol_t *first_avail_slot;
+ RF_StripeCount_t complete_FT_count, numCompleteFullTablesPerDisk;
+ RF_DeclusteredConfigInfo_t *info;
+ RF_StripeCount_t PUsPerDisk, spareRegionDepthInPUs, numCompleteSpareRegionsPerDisk,
+ extraPUsPerDisk;
+ RF_StripeCount_t totSparePUsPerDisk;
+ RF_SectorNum_t diskOffsetOfLastFullTableInSUs;
+ RF_SectorCount_t SpareSpaceInSUs;
+ char *cfgBuf = (char *) (cfgPtr->layoutSpecific);
+ RF_StripeNum_t l, SUID;
+
+ SUID = l = 0;
+ numCompleteSpareRegionsPerDisk = 0;
+
+ /* 1. create layout specific structure */
+ RF_MallocAndAdd(info, sizeof(RF_DeclusteredConfigInfo_t), (RF_DeclusteredConfigInfo_t *), raidPtr->cleanupList);
+ if (info == NULL)
+ return (ENOMEM);
+ layoutPtr->layoutSpecificInfo = (void *) info;
+ info->SpareTable = NULL;
+
+ /* 2. extract parameters from the config structure */
+ if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) {
+ (void) bcopy(cfgBuf, info->sparemap_fname, RF_SPAREMAP_NAME_LEN);
+ }
+ cfgBuf += RF_SPAREMAP_NAME_LEN;
+
+ b = *((int *) cfgBuf);
+ cfgBuf += sizeof(int);
+ v = *((int *) cfgBuf);
+ cfgBuf += sizeof(int);
+ k = *((int *) cfgBuf);
+ cfgBuf += sizeof(int);
+ r = *((int *) cfgBuf);
+ cfgBuf += sizeof(int);
+ lambda = *((int *) cfgBuf);
+ cfgBuf += sizeof(int);
+ raidPtr->noRotate = *((int *) cfgBuf);
+ cfgBuf += sizeof(int);
+
+ /* the sparemaps are generated assuming that parity is rotated, so we
+ * issue a warning if both distributed sparing and no-rotate are on at
+ * the same time */
+ if ((layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) && raidPtr->noRotate) {
+ RF_ERRORMSG("Warning: distributed sparing specified without parity rotation.\n");
+ }
+ if (raidPtr->numCol != v) {
+ RF_ERRORMSG2("RAID: config error: table element count (%d) not equal to no. of cols (%d)\n", v, raidPtr->numCol);
+ return (EINVAL);
+ }
+ /* 3. set up the values used in the mapping code */
+ info->BlocksPerTable = b;
+ info->Lambda = lambda;
+ info->NumParityReps = info->groupSize = k;
+ info->SUsPerTable = b * (k - 1) * layoutPtr->SUsPerPU; /* b blks, k-1 SUs each */
+ info->SUsPerFullTable = k * info->SUsPerTable; /* rot k times */
+ info->PUsPerBlock = k - 1;
+ info->SUsPerBlock = info->PUsPerBlock * layoutPtr->SUsPerPU;
+ info->TableDepthInPUs = (b * k) / v;
+ info->FullTableDepthInPUs = info->TableDepthInPUs * k; /* k repetitions */
+
+ /* used only in distributed sparing case */
+ info->FullTablesPerSpareRegion = (v - 1) / rf_gcd(r, v - 1); /* (v-1)/gcd fulltables */
+ info->TablesPerSpareRegion = k * info->FullTablesPerSpareRegion;
+ info->SpareSpaceDepthPerRegionInSUs = (r * info->TablesPerSpareRegion / (v - 1)) * layoutPtr->SUsPerPU;
+
+ /* check to make sure the block design is sufficiently small */
+ if ((raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE)) {
+ if (info->FullTableDepthInPUs * layoutPtr->SUsPerPU + info->SpareSpaceDepthPerRegionInSUs > layoutPtr->stripeUnitsPerDisk) {
+ RF_ERRORMSG3("RAID: config error: Full Table depth (%d) + Spare Space (%d) larger than disk size (%d) (BD too big)\n",
+ (int) info->FullTableDepthInPUs,
+ (int) info->SpareSpaceDepthPerRegionInSUs,
+ (int) layoutPtr->stripeUnitsPerDisk);
+ return (EINVAL);
+ }
+ } else {
+ if (info->TableDepthInPUs * layoutPtr->SUsPerPU > layoutPtr->stripeUnitsPerDisk) {
+ RF_ERRORMSG2("RAID: config error: Table depth (%d) larger than disk size (%d) (BD too big)\n",
+ (int) (info->TableDepthInPUs * layoutPtr->SUsPerPU), \
+ (int) layoutPtr->stripeUnitsPerDisk);
+ return (EINVAL);
+ }
+ }
+
+
+ /* compute the size of each disk, and the number of tables in the last
+ * fulltable (which need not be complete) */
+ if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
+
+ PUsPerDisk = layoutPtr->stripeUnitsPerDisk / layoutPtr->SUsPerPU;
+ spareRegionDepthInPUs = (info->TablesPerSpareRegion * info->TableDepthInPUs +
+ (info->TablesPerSpareRegion * info->TableDepthInPUs) / (v - 1));
+ info->SpareRegionDepthInSUs = spareRegionDepthInPUs * layoutPtr->SUsPerPU;
+
+ numCompleteSpareRegionsPerDisk = PUsPerDisk / spareRegionDepthInPUs;
+ info->NumCompleteSRs = numCompleteSpareRegionsPerDisk;
+ extraPUsPerDisk = PUsPerDisk % spareRegionDepthInPUs;
+
+ /* assume conservatively that we need the full amount of spare
+ * space in one region in order to provide spares for the
+ * partial spare region at the end of the array. We set "i"
+ * to the number of tables in the partial spare region. This
+ * may actually include some fulltables. */
+ extraPUsPerDisk -= (info->SpareSpaceDepthPerRegionInSUs / layoutPtr->SUsPerPU);
+ if (extraPUsPerDisk <= 0)
+ i = 0;
+ else
+ i = extraPUsPerDisk / info->TableDepthInPUs;
+
+ complete_FT_count = raidPtr->numRow * (numCompleteSpareRegionsPerDisk * (info->TablesPerSpareRegion / k) + i / k);
+ info->FullTableLimitSUID = complete_FT_count * info->SUsPerFullTable;
+ info->ExtraTablesPerDisk = i % k;
+
+ /* note that in the last spare region, the spare space is
+ * complete even though data/parity space is not */
+ totSparePUsPerDisk = (numCompleteSpareRegionsPerDisk + 1) * (info->SpareSpaceDepthPerRegionInSUs / layoutPtr->SUsPerPU);
+ info->TotSparePUsPerDisk = totSparePUsPerDisk;
+
+ layoutPtr->stripeUnitsPerDisk =
+ ((complete_FT_count / raidPtr->numRow) * info->FullTableDepthInPUs + /* data & parity space */
+ info->ExtraTablesPerDisk * info->TableDepthInPUs +
+ totSparePUsPerDisk /* spare space */
+ ) * layoutPtr->SUsPerPU;
+ layoutPtr->dataStripeUnitsPerDisk =
+ (complete_FT_count * info->FullTableDepthInPUs + info->ExtraTablesPerDisk * info->TableDepthInPUs)
+ * layoutPtr->SUsPerPU * (k - 1) / k;
+
+ } else {
+ /* non-dist spare case: force each disk to contain an
+ * integral number of tables */
+ layoutPtr->stripeUnitsPerDisk /= (info->TableDepthInPUs * layoutPtr->SUsPerPU);
+ layoutPtr->stripeUnitsPerDisk *= (info->TableDepthInPUs * layoutPtr->SUsPerPU);
+
+ /* compute the number of tables in the last fulltable, which
+ * need not be complete */
+ complete_FT_count =
+ ((layoutPtr->stripeUnitsPerDisk / layoutPtr->SUsPerPU) / info->FullTableDepthInPUs) * raidPtr->numRow;
+
+ info->FullTableLimitSUID = complete_FT_count * info->SUsPerFullTable;
+ info->ExtraTablesPerDisk =
+ ((layoutPtr->stripeUnitsPerDisk / layoutPtr->SUsPerPU) / info->TableDepthInPUs) % k;
+ }
+
+ raidPtr->sectorsPerDisk = layoutPtr->stripeUnitsPerDisk * layoutPtr->sectorsPerStripeUnit;
+
+ /* find the disk offset of the stripe unit where the last fulltable
+ * starts */
+ numCompleteFullTablesPerDisk = complete_FT_count / raidPtr->numRow;
+ diskOffsetOfLastFullTableInSUs = numCompleteFullTablesPerDisk * info->FullTableDepthInPUs * layoutPtr->SUsPerPU;
+ if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
+ SpareSpaceInSUs = numCompleteSpareRegionsPerDisk * info->SpareSpaceDepthPerRegionInSUs;
+ diskOffsetOfLastFullTableInSUs += SpareSpaceInSUs;
+ info->DiskOffsetOfLastSpareSpaceChunkInSUs =
+ diskOffsetOfLastFullTableInSUs + info->ExtraTablesPerDisk * info->TableDepthInPUs * layoutPtr->SUsPerPU;
+ }
+ info->DiskOffsetOfLastFullTableInSUs = diskOffsetOfLastFullTableInSUs;
+ info->numCompleteFullTablesPerDisk = numCompleteFullTablesPerDisk;
+
+ /* 4. create and initialize the lookup tables */
+ info->LayoutTable = rf_make_2d_array(b, k, raidPtr->cleanupList);
+ if (info->LayoutTable == NULL)
+ return (ENOMEM);
+ info->OffsetTable = rf_make_2d_array(b, k, raidPtr->cleanupList);
+ if (info->OffsetTable == NULL)
+ return (ENOMEM);
+ info->BlockTable = rf_make_2d_array(info->TableDepthInPUs * layoutPtr->SUsPerPU, raidPtr->numCol, raidPtr->cleanupList);
+ if (info->BlockTable == NULL)
+ return (ENOMEM);
+
+ first_avail_slot = rf_make_1d_array(v, NULL);
+ if (first_avail_slot == NULL)
+ return (ENOMEM);
+
+ for (i = 0; i < b; i++)
+ for (j = 0; j < k; j++)
+ info->LayoutTable[i][j] = *cfgBuf++;
+
+ /* initialize offset table */
+ for (i = 0; i < b; i++)
+ for (j = 0; j < k; j++) {
+ info->OffsetTable[i][j] = first_avail_slot[info->LayoutTable[i][j]];
+ first_avail_slot[info->LayoutTable[i][j]]++;
+ }
+
+ /* initialize block table */
+ for (SUID = l = 0; l < layoutPtr->SUsPerPU; l++) {
+ for (i = 0; i < b; i++) {
+ for (j = 0; j < k; j++) {
+ info->BlockTable[(info->OffsetTable[i][j] * layoutPtr->SUsPerPU) + l]
+ [info->LayoutTable[i][j]] = SUID;
+ }
+ SUID++;
+ }
+ }
+
+ rf_free_1d_array(first_avail_slot, v);
+
+ /* 5. set up the remaining redundant-but-useful parameters */
+
+ raidPtr->totalSectors = (k * complete_FT_count + raidPtr->numRow * info->ExtraTablesPerDisk) *
+ info->SUsPerTable * layoutPtr->sectorsPerStripeUnit;
+ layoutPtr->numStripe = (raidPtr->totalSectors / layoutPtr->sectorsPerStripeUnit) / (k - 1);
+
+ /* strange evaluation order below to try and minimize overflow
+ * problems */
+
+ layoutPtr->dataSectorsPerStripe = (k - 1) * layoutPtr->sectorsPerStripeUnit;
+ layoutPtr->bytesPerStripeUnit = layoutPtr->sectorsPerStripeUnit << raidPtr->logBytesPerSector;
+ layoutPtr->numDataCol = k - 1;
+ layoutPtr->numParityCol = 1;
+
+ return (0);
+}
+/* declustering with distributed sparing */
+static void rf_ShutdownDeclusteredDS(RF_ThreadArg_t);
+static void
+rf_ShutdownDeclusteredDS(arg)
+ RF_ThreadArg_t arg;
+{
+ RF_DeclusteredConfigInfo_t *info;
+ RF_Raid_t *raidPtr;
+
+ raidPtr = (RF_Raid_t *) arg;
+ info = (RF_DeclusteredConfigInfo_t *) raidPtr->Layout.layoutSpecificInfo;
+ if (info->SpareTable)
+ rf_FreeSpareTable(raidPtr);
+}
+
+int
+rf_ConfigureDeclusteredDS(
+ RF_ShutdownList_t ** listp,
+ RF_Raid_t * raidPtr,
+ RF_Config_t * cfgPtr)
+{
+ int rc;
+
+ rc = rf_ConfigureDeclustered(listp, raidPtr, cfgPtr);
+ if (rc)
+ return (rc);
+ rc = rf_ShutdownCreate(listp, rf_ShutdownDeclusteredDS, raidPtr);
+ if (rc) {
+ RF_ERRORMSG1("Got %d adding shutdown event for DeclusteredDS\n", rc);
+ rf_ShutdownDeclusteredDS(raidPtr);
+ return (rc);
+ }
+ return (0);
+}
+
+void
+rf_MapSectorDeclustered(raidPtr, raidSector, row, col, diskSector, remap)
+ RF_Raid_t *raidPtr;
+ RF_RaidAddr_t raidSector;
+ RF_RowCol_t *row;
+ RF_RowCol_t *col;
+ RF_SectorNum_t *diskSector;
+ int remap;
+{
+ RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
+ RF_DeclusteredConfigInfo_t *info = (RF_DeclusteredConfigInfo_t *) layoutPtr->layoutSpecificInfo;
+ RF_StripeNum_t SUID = raidSector / layoutPtr->sectorsPerStripeUnit;
+ RF_StripeNum_t FullTableID, FullTableOffset, TableID, TableOffset;
+ RF_StripeNum_t BlockID, BlockOffset, RepIndex;
+ RF_StripeCount_t sus_per_fulltable = info->SUsPerFullTable;
+ RF_StripeCount_t fulltable_depth = info->FullTableDepthInPUs * layoutPtr->SUsPerPU;
+ RF_StripeNum_t base_suid = 0, outSU, SpareRegion = 0, SpareSpace = 0;
+
+ rf_decluster_adjust_params(layoutPtr, &SUID, &sus_per_fulltable, &fulltable_depth, &base_suid);
+
+ FullTableID = SUID / sus_per_fulltable; /* fulltable ID within array
+ * (across rows) */
+ if (raidPtr->numRow == 1)
+ *row = 0; /* avoid a mod and a div in the common case */
+ else {
+ *row = FullTableID % raidPtr->numRow;
+ FullTableID /= raidPtr->numRow; /* convert to fulltable ID on
+ * this disk */
+ }
+ if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
+ SpareRegion = FullTableID / info->FullTablesPerSpareRegion;
+ SpareSpace = SpareRegion * info->SpareSpaceDepthPerRegionInSUs;
+ }
+ FullTableOffset = SUID % sus_per_fulltable;
+ TableID = FullTableOffset / info->SUsPerTable;
+ TableOffset = FullTableOffset - TableID * info->SUsPerTable;
+ BlockID = TableOffset / info->PUsPerBlock;
+ BlockOffset = TableOffset - BlockID * info->PUsPerBlock;
+ BlockID %= info->BlocksPerTable;
+ RepIndex = info->PUsPerBlock - TableID;
+ if (!raidPtr->noRotate)
+ BlockOffset += ((BlockOffset >= RepIndex) ? 1 : 0);
+ *col = info->LayoutTable[BlockID][BlockOffset];
+
+ /* remap to distributed spare space if indicated */
+ if (remap) {
+ RF_ASSERT(raidPtr->Disks[*row][*col].status == rf_ds_reconstructing || raidPtr->Disks[*row][*col].status == rf_ds_dist_spared ||
+ (rf_copyback_in_progress && raidPtr->Disks[*row][*col].status == rf_ds_optimal));
+ rf_remap_to_spare_space(layoutPtr, info, *row, FullTableID, TableID, BlockID, (base_suid) ? 1 : 0, SpareRegion, col, &outSU);
+ } else {
+
+ outSU = base_suid;
+ outSU += FullTableID * fulltable_depth; /* offs to strt of FT */
+ outSU += SpareSpace; /* skip rsvd spare space */
+ outSU += TableID * info->TableDepthInPUs * layoutPtr->SUsPerPU; /* offs to strt of tble */
+ outSU += info->OffsetTable[BlockID][BlockOffset] * layoutPtr->SUsPerPU; /* offs to the PU */
+ }
+ outSU += TableOffset / (info->BlocksPerTable * info->PUsPerBlock); /* offs to the SU within
+ * a PU */
+
+ /* convert SUs to sectors, and, if not aligned to SU boundary, add in
+ * offset to sector. */
+ *diskSector = outSU * layoutPtr->sectorsPerStripeUnit + (raidSector % layoutPtr->sectorsPerStripeUnit);
+
+ RF_ASSERT(*col != -1);
+}
+
+
+/* prototyping this inexplicably causes the compile of the layout table (rf_layout.c) to fail */
+void
+rf_MapParityDeclustered(
+ RF_Raid_t * raidPtr,
+ RF_RaidAddr_t raidSector,
+ RF_RowCol_t * row,
+ RF_RowCol_t * col,
+ RF_SectorNum_t * diskSector,
+ int remap)
+{
+ RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
+ RF_DeclusteredConfigInfo_t *info = (RF_DeclusteredConfigInfo_t *) layoutPtr->layoutSpecificInfo;
+ RF_StripeNum_t SUID = raidSector / layoutPtr->sectorsPerStripeUnit;
+ RF_StripeNum_t FullTableID, FullTableOffset, TableID, TableOffset;
+ RF_StripeNum_t BlockID, BlockOffset, RepIndex;
+ RF_StripeCount_t sus_per_fulltable = info->SUsPerFullTable;
+ RF_StripeCount_t fulltable_depth = info->FullTableDepthInPUs * layoutPtr->SUsPerPU;
+ RF_StripeNum_t base_suid = 0, outSU, SpareRegion = 0, SpareSpace = 0;
+
+ rf_decluster_adjust_params(layoutPtr, &SUID, &sus_per_fulltable, &fulltable_depth, &base_suid);
+
+ /* compute row & (possibly) spare space exactly as before */
+ FullTableID = SUID / sus_per_fulltable;
+ if (raidPtr->numRow == 1)
+ *row = 0; /* avoid a mod and a div in the common case */
+ else {
+ *row = FullTableID % raidPtr->numRow;
+ FullTableID /= raidPtr->numRow; /* convert to fulltable ID on
+ * this disk */
+ }
+ if ((raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE)) {
+ SpareRegion = FullTableID / info->FullTablesPerSpareRegion;
+ SpareSpace = SpareRegion * info->SpareSpaceDepthPerRegionInSUs;
+ }
+ /* compute BlockID and RepIndex exactly as before */
+ FullTableOffset = SUID % sus_per_fulltable;
+ TableID = FullTableOffset / info->SUsPerTable;
+ TableOffset = FullTableOffset - TableID * info->SUsPerTable;
+ /* TableOffset = FullTableOffset % info->SUsPerTable; */
+ /* BlockID = (TableOffset / info->PUsPerBlock) %
+ * info->BlocksPerTable; */
+ BlockID = TableOffset / info->PUsPerBlock;
+ /* BlockOffset = TableOffset % info->PUsPerBlock; */
+ BlockOffset = TableOffset - BlockID * info->PUsPerBlock;
+ BlockID %= info->BlocksPerTable;
+
+ /* the parity block is in the position indicated by RepIndex */
+ RepIndex = (raidPtr->noRotate) ? info->PUsPerBlock : info->PUsPerBlock - TableID;
+ *col = info->LayoutTable[BlockID][RepIndex];
+
+ if (remap) {
+ RF_ASSERT(raidPtr->Disks[*row][*col].status == rf_ds_reconstructing || raidPtr->Disks[*row][*col].status == rf_ds_dist_spared ||
+ (rf_copyback_in_progress && raidPtr->Disks[*row][*col].status == rf_ds_optimal));
+ rf_remap_to_spare_space(layoutPtr, info, *row, FullTableID, TableID, BlockID, (base_suid) ? 1 : 0, SpareRegion, col, &outSU);
+ } else {
+
+ /* compute sector as before, except use RepIndex instead of
+ * BlockOffset */
+ outSU = base_suid;
+ outSU += FullTableID * fulltable_depth;
+ outSU += SpareSpace; /* skip rsvd spare space */
+ outSU += TableID * info->TableDepthInPUs * layoutPtr->SUsPerPU;
+ outSU += info->OffsetTable[BlockID][RepIndex] * layoutPtr->SUsPerPU;
+ }
+
+ outSU += TableOffset / (info->BlocksPerTable * info->PUsPerBlock);
+ *diskSector = outSU * layoutPtr->sectorsPerStripeUnit + (raidSector % layoutPtr->sectorsPerStripeUnit);
+
+ RF_ASSERT(*col != -1);
+}
+/* returns an array of ints identifying the disks that comprise the stripe containing the indicated address.
+ * the caller must _never_ attempt to modify this array.
+ */
+void
+rf_IdentifyStripeDeclustered(
+ RF_Raid_t * raidPtr,
+ RF_RaidAddr_t addr,
+ RF_RowCol_t ** diskids,
+ RF_RowCol_t * outRow)
+{
+ RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
+ RF_DeclusteredConfigInfo_t *info = (RF_DeclusteredConfigInfo_t *) layoutPtr->layoutSpecificInfo;
+ RF_StripeCount_t sus_per_fulltable = info->SUsPerFullTable;
+ RF_StripeCount_t fulltable_depth = info->FullTableDepthInPUs * layoutPtr->SUsPerPU;
+ RF_StripeNum_t base_suid = 0;
+ RF_StripeNum_t SUID = rf_RaidAddressToStripeUnitID(layoutPtr, addr);
+ RF_StripeNum_t stripeID, FullTableID;
+ int tableOffset;
+
+ rf_decluster_adjust_params(layoutPtr, &SUID, &sus_per_fulltable, &fulltable_depth, &base_suid);
+ FullTableID = SUID / sus_per_fulltable; /* fulltable ID within array
+ * (across rows) */
+ *outRow = FullTableID % raidPtr->numRow;
+ stripeID = rf_StripeUnitIDToStripeID(layoutPtr, SUID); /* find stripe offset
+ * into array */
+ tableOffset = (stripeID % info->BlocksPerTable); /* find offset into
+ * block design table */
+ *diskids = info->LayoutTable[tableOffset];
+}
+/* This returns the default head-separation limit, which is measured
+ * in "required units for reconstruction". Each time a disk fetches
+ * a unit, it bumps a counter. The head-sep code prohibits any disk
+ * from getting more than headSepLimit counter values ahead of any
+ * other.
+ *
+ * We assume here that the number of floating recon buffers is already
+ * set. There are r stripes to be reconstructed in each table, and so
+ * if we have a total of B buffers, we can have at most B/r tables
+ * under recon at any one time. In each table, lambda units are required
+ * from each disk, so given B buffers, the head sep limit has to be
+ * (lambda*B)/r units. We subtract one to avoid weird boundary cases.
+ *
+ * for example, suppose were given 50 buffers, r=19, and lambda=4 as in
+ * the 20.5 design. There are 19 stripes/table to be reconstructed, so
+ * we can have 50/19 tables concurrently under reconstruction, which means
+ * we can allow the fastest disk to get 50/19 tables ahead of the slower
+ * disk. There are lambda "required units" for each disk, so the fastest
+ * disk can get 4*50/19 = 10 counter values ahead of the slowest.
+ *
+ * If numBufsToAccumulate is not 1, we need to limit the head sep further
+ * because multiple bufs will be required for each stripe under recon.
+ */
+RF_HeadSepLimit_t
+rf_GetDefaultHeadSepLimitDeclustered(
+ RF_Raid_t * raidPtr)
+{
+ RF_DeclusteredConfigInfo_t *info = (RF_DeclusteredConfigInfo_t *) raidPtr->Layout.layoutSpecificInfo;
+
+ return (info->Lambda * raidPtr->numFloatingReconBufs / info->TableDepthInPUs / rf_numBufsToAccumulate);
+}
+/* returns the default number of recon buffers to use. The value
+ * is somewhat arbitrary...it's intended to be large enough to allow
+ * for a reasonably large head-sep limit, but small enough that you
+ * don't use up all your system memory with buffers.
+ */
+int
+rf_GetDefaultNumFloatingReconBuffersDeclustered(RF_Raid_t * raidPtr)
+{
+ return (100 * rf_numBufsToAccumulate);
+}
+/* sectors in the last fulltable of the array need to be handled
+ * specially since this fulltable can be incomplete. this function
+ * changes the values of certain params to handle this.
+ *
+ * the idea here is that MapSector et. al. figure out which disk the
+ * addressed unit lives on by computing the modulos of the unit number
+ * with the number of units per fulltable, table, etc. In the last
+ * fulltable, there are fewer units per fulltable, so we need to adjust
+ * the number of user data units per fulltable to reflect this.
+ *
+ * so, we (1) convert the fulltable size and depth parameters to
+ * the size of the partial fulltable at the end, (2) compute the
+ * disk sector offset where this fulltable starts, and (3) convert
+ * the users stripe unit number from an offset into the array to
+ * an offset into the last fulltable.
+ */
+void
+rf_decluster_adjust_params(
+ RF_RaidLayout_t * layoutPtr,
+ RF_StripeNum_t * SUID,
+ RF_StripeCount_t * sus_per_fulltable,
+ RF_StripeCount_t * fulltable_depth,
+ RF_StripeNum_t * base_suid)
+{
+ RF_DeclusteredConfigInfo_t *info = (RF_DeclusteredConfigInfo_t *) layoutPtr->layoutSpecificInfo;
+
+ if (*SUID >= info->FullTableLimitSUID) {
+ /* new full table size is size of last full table on disk */
+ *sus_per_fulltable = info->ExtraTablesPerDisk * info->SUsPerTable;
+
+ /* new full table depth is corresponding depth */
+ *fulltable_depth = info->ExtraTablesPerDisk * info->TableDepthInPUs * layoutPtr->SUsPerPU;
+
+ /* set up the new base offset */
+ *base_suid = info->DiskOffsetOfLastFullTableInSUs;
+
+ /* convert users array address to an offset into the last
+ * fulltable */
+ *SUID -= info->FullTableLimitSUID;
+ }
+}
+/*
+ * map a stripe ID to a parity stripe ID.
+ * See comment above RaidAddressToParityStripeID in layout.c.
+ */
+void
+rf_MapSIDToPSIDDeclustered(
+ RF_RaidLayout_t * layoutPtr,
+ RF_StripeNum_t stripeID,
+ RF_StripeNum_t * psID,
+ RF_ReconUnitNum_t * which_ru)
+{
+ RF_DeclusteredConfigInfo_t *info;
+
+ info = (RF_DeclusteredConfigInfo_t *) layoutPtr->layoutSpecificInfo;
+
+ *psID = (stripeID / (layoutPtr->SUsPerPU * info->BlocksPerTable))
+ * info->BlocksPerTable + (stripeID % info->BlocksPerTable);
+ *which_ru = (stripeID % (info->BlocksPerTable * layoutPtr->SUsPerPU))
+ / info->BlocksPerTable;
+ RF_ASSERT((*which_ru) < layoutPtr->SUsPerPU / layoutPtr->SUsPerRU);
+}
+/*
+ * Called from MapSector and MapParity to retarget an access at the spare unit.
+ * Modifies the "col" and "outSU" parameters only.
+ */
+void
+rf_remap_to_spare_space(
+ RF_RaidLayout_t * layoutPtr,
+ RF_DeclusteredConfigInfo_t * info,
+ RF_RowCol_t row,
+ RF_StripeNum_t FullTableID,
+ RF_StripeNum_t TableID,
+ RF_SectorNum_t BlockID,
+ RF_StripeNum_t base_suid,
+ RF_StripeNum_t SpareRegion,
+ RF_RowCol_t * outCol,
+ RF_StripeNum_t * outSU)
+{
+ RF_StripeNum_t ftID, spareTableStartSU, TableInSpareRegion, lastSROffset,
+ which_ft;
+
+ /*
+ * note that FullTableID and hence SpareRegion may have gotten
+ * tweaked by rf_decluster_adjust_params. We detect this by
+ * noticing that base_suid is not 0.
+ */
+ if (base_suid == 0) {
+ ftID = FullTableID;
+ } else {
+ /*
+ * There may be > 1.0 full tables in the last (i.e. partial)
+ * spare region. find out which of these we're in.
+ */
+ lastSROffset = info->NumCompleteSRs * info->SpareRegionDepthInSUs;
+ which_ft = (info->DiskOffsetOfLastFullTableInSUs - lastSROffset) / (info->FullTableDepthInPUs * layoutPtr->SUsPerPU);
+
+ /* compute the actual full table ID */
+ ftID = info->DiskOffsetOfLastFullTableInSUs / (info->FullTableDepthInPUs * layoutPtr->SUsPerPU) + which_ft;
+ SpareRegion = info->NumCompleteSRs;
+ }
+ TableInSpareRegion = (ftID * info->NumParityReps + TableID) % info->TablesPerSpareRegion;
+
+ *outCol = info->SpareTable[TableInSpareRegion][BlockID].spareDisk;
+ RF_ASSERT(*outCol != -1);
+
+ spareTableStartSU = (SpareRegion == info->NumCompleteSRs) ?
+ info->DiskOffsetOfLastFullTableInSUs + info->ExtraTablesPerDisk * info->TableDepthInPUs * layoutPtr->SUsPerPU :
+ (SpareRegion + 1) * info->SpareRegionDepthInSUs - info->SpareSpaceDepthPerRegionInSUs;
+ *outSU = spareTableStartSU + info->SpareTable[TableInSpareRegion][BlockID].spareBlockOffsetInSUs;
+ if (*outSU >= layoutPtr->stripeUnitsPerDisk) {
+ printf("rf_remap_to_spare_space: invalid remapped disk SU offset %ld\n", (long) *outSU);
+ }
+}
+
+#endif /* (RF_INCLUDE_PARITY_DECLUSTERING > 0) || (RF_INCLUDE_PARITY_DECLUSTERING_PQ > 0) */
+
+
+int
+rf_InstallSpareTable(
+ RF_Raid_t * raidPtr,
+ RF_RowCol_t frow,
+ RF_RowCol_t fcol)
+{
+ RF_DeclusteredConfigInfo_t *info = (RF_DeclusteredConfigInfo_t *) raidPtr->Layout.layoutSpecificInfo;
+ RF_SparetWait_t *req;
+ int retcode;
+
+ RF_Malloc(req, sizeof(*req), (RF_SparetWait_t *));
+ req->C = raidPtr->numCol;
+ req->G = raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol;
+ req->fcol = fcol;
+ req->SUsPerPU = raidPtr->Layout.SUsPerPU;
+ req->TablesPerSpareRegion = info->TablesPerSpareRegion;
+ req->BlocksPerTable = info->BlocksPerTable;
+ req->TableDepthInPUs = info->TableDepthInPUs;
+ req->SpareSpaceDepthPerRegionInSUs = info->SpareSpaceDepthPerRegionInSUs;
+
+ retcode = rf_GetSpareTableFromDaemon(req);
+ RF_ASSERT(!retcode); /* XXX -- fix this to recover gracefully --
+ * XXX */
+ return (retcode);
+}
+/*
+ * Invoked via ioctl to install a spare table in the kernel.
+ */
+int
+rf_SetSpareTable(raidPtr, data)
+ RF_Raid_t *raidPtr;
+ void *data;
+{
+ RF_DeclusteredConfigInfo_t *info = (RF_DeclusteredConfigInfo_t *) raidPtr->Layout.layoutSpecificInfo;
+ RF_SpareTableEntry_t **ptrs;
+ int i, retcode;
+
+ /* what we need to copyin is a 2-d array, so first copyin the user
+ * pointers to the rows in the table */
+ RF_Malloc(ptrs, info->TablesPerSpareRegion * sizeof(RF_SpareTableEntry_t *), (RF_SpareTableEntry_t **));
+ retcode = copyin((caddr_t) data, (caddr_t) ptrs, info->TablesPerSpareRegion * sizeof(RF_SpareTableEntry_t *));
+
+ if (retcode)
+ return (retcode);
+
+ /* now allocate kernel space for the row pointers */
+ RF_Malloc(info->SpareTable, info->TablesPerSpareRegion * sizeof(RF_SpareTableEntry_t *), (RF_SpareTableEntry_t **));
+
+ /* now allocate kernel space for each row in the table, and copy it in
+ * from user space */
+ for (i = 0; i < info->TablesPerSpareRegion; i++) {
+ RF_Malloc(info->SpareTable[i], info->BlocksPerTable * sizeof(RF_SpareTableEntry_t), (RF_SpareTableEntry_t *));
+ retcode = copyin(ptrs[i], info->SpareTable[i], info->BlocksPerTable * sizeof(RF_SpareTableEntry_t));
+ if (retcode) {
+ info->SpareTable = NULL; /* blow off the memory
+ * we've allocated */
+ return (retcode);
+ }
+ }
+
+ /* free up the temporary array we used */
+ RF_Free(ptrs, info->TablesPerSpareRegion * sizeof(RF_SpareTableEntry_t *));
+
+ return (0);
+}
+
+RF_ReconUnitCount_t
+rf_GetNumSpareRUsDeclustered(raidPtr)
+ RF_Raid_t *raidPtr;
+{
+ RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
+
+ return (((RF_DeclusteredConfigInfo_t *) layoutPtr->layoutSpecificInfo)->TotSparePUsPerDisk);
+}
+
+void
+rf_FreeSpareTable(raidPtr)
+ RF_Raid_t *raidPtr;
+{
+ long i;
+ RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
+ RF_DeclusteredConfigInfo_t *info = (RF_DeclusteredConfigInfo_t *) layoutPtr->layoutSpecificInfo;
+ RF_SpareTableEntry_t **table = info->SpareTable;
+
+ for (i = 0; i < info->TablesPerSpareRegion; i++) {
+ RF_Free(table[i], info->BlocksPerTable * sizeof(RF_SpareTableEntry_t));
+ }
+ RF_Free(table, info->TablesPerSpareRegion * sizeof(RF_SpareTableEntry_t *));
+ info->SpareTable = (RF_SpareTableEntry_t **) NULL;
+}
diff --git a/sys/dev/raidframe/rf_decluster.h b/sys/dev/raidframe/rf_decluster.h
new file mode 100644
index 0000000..a630298
--- /dev/null
+++ b/sys/dev/raidframe/rf_decluster.h
@@ -0,0 +1,141 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_decluster.h,v 1.3 1999/02/05 00:06:09 oster Exp $ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Mark Holland
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+/*----------------------------------------------------------------------
+ *
+ * decluster.h -- header file for declustered layout code
+ *
+ * Adapted from raidSim version July 1994
+ * Created 10-21-92 (MCH)
+ *
+ *--------------------------------------------------------------------*/
+
+#ifndef _RF__RF_DECLUSTER_H_
+#define _RF__RF_DECLUSTER_H_
+
+#include <dev/raidframe/rf_types.h>
+
+/*
+ * These structures define the tables used to locate the spare unit
+ * associated with a particular data or parity unit, and to perform
+ * the associated inverse mapping.
+ */
+struct RF_SpareTableEntry_s {
+ u_int spareDisk; /* disk to which this block is spared */
+ u_int spareBlockOffsetInSUs; /* offset into spare table for that
+ * disk */
+};
+#define RF_SPAREMAP_NAME_LEN 128
+
+/* this is the layout-specific info structure for the declustered layout.
+ */
+struct RF_DeclusteredConfigInfo_s {
+ RF_StripeCount_t groupSize; /* no. of stripe units per parity
+ * stripe */
+ RF_RowCol_t **LayoutTable; /* the block design table */
+ RF_RowCol_t **OffsetTable; /* the sector offset table */
+ RF_RowCol_t **BlockTable; /* the block membership table */
+ RF_StripeCount_t SUsPerFullTable; /* stripe units per full table */
+ RF_StripeCount_t SUsPerTable; /* stripe units per table */
+ RF_StripeCount_t PUsPerBlock; /* parity units per block */
+ RF_StripeCount_t SUsPerBlock; /* stripe units per block */
+ RF_StripeCount_t BlocksPerTable; /* block design tuples per
+ * table */
+ RF_StripeCount_t NumParityReps; /* tables per full table */
+ RF_StripeCount_t TableDepthInPUs; /* PUs on one disk in 1 table */
+ RF_StripeCount_t FullTableDepthInPUs; /* PUs on one disk in 1
+ * fulltable */
+ RF_StripeCount_t FullTableLimitSUID; /* SU where partial fulltables
+ * start */
+ RF_StripeCount_t ExtraTablesPerDisk; /* # of tables in last
+ * fulltable */
+ RF_SectorNum_t DiskOffsetOfLastFullTableInSUs; /* disk offs of partial
+ * ft, if any */
+ RF_StripeCount_t numCompleteFullTablesPerDisk; /* ft identifier of
+ * partial ft, if any */
+ u_int Lambda; /* the pair count in the block design */
+
+ /* these are used only in the distributed-sparing case */
+ RF_StripeCount_t FullTablesPerSpareRegion; /* # of ft's comprising
+ * 1 spare region */
+ RF_StripeCount_t TablesPerSpareRegion; /* # of tables */
+ RF_SectorCount_t SpareSpaceDepthPerRegionInSUs; /* spare
+ * space/disk/region */
+ RF_SectorCount_t SpareRegionDepthInSUs; /* # of units/disk/region */
+ RF_SectorNum_t DiskOffsetOfLastSpareSpaceChunkInSUs; /* locates sp space
+ * after partial ft */
+ RF_StripeCount_t TotSparePUsPerDisk; /* total number of spare PUs
+ * per disk */
+ RF_StripeCount_t NumCompleteSRs;
+ RF_SpareTableEntry_t **SpareTable; /* remap table for spare space */
+ char sparemap_fname[RF_SPAREMAP_NAME_LEN]; /* where to find
+ * sparemap. not used in
+ * kernel */
+};
+
+int
+rf_ConfigureDeclustered(RF_ShutdownList_t ** listp, RF_Raid_t * raidPtr,
+ RF_Config_t * cfgPtr);
+int
+rf_ConfigureDeclusteredDS(RF_ShutdownList_t ** listp, RF_Raid_t * raidPtr,
+ RF_Config_t * cfgPtr);
+
+void
+rf_MapSectorDeclustered(RF_Raid_t * raidPtr, RF_RaidAddr_t raidSector,
+ RF_RowCol_t * row, RF_RowCol_t * col, RF_SectorNum_t * diskSector, int remap);
+void
+rf_MapParityDeclustered(RF_Raid_t * raidPtr, RF_RaidAddr_t raidSector,
+ RF_RowCol_t * row, RF_RowCol_t * col, RF_SectorNum_t * diskSector, int remap);
+void
+rf_IdentifyStripeDeclustered(RF_Raid_t * raidPtr, RF_RaidAddr_t addr,
+ RF_RowCol_t ** diskids, RF_RowCol_t * outRow);
+void
+rf_MapSIDToPSIDDeclustered(RF_RaidLayout_t * layoutPtr,
+ RF_StripeNum_t stripeID, RF_StripeNum_t * psID,
+ RF_ReconUnitNum_t * which_ru);
+int rf_InstallSpareTable(RF_Raid_t * raidPtr, RF_RowCol_t frow, RF_RowCol_t fcol);
+void rf_FreeSpareTable(RF_Raid_t * raidPtr);
+
+RF_HeadSepLimit_t rf_GetDefaultHeadSepLimitDeclustered(RF_Raid_t * raidPtr);
+int rf_GetDefaultNumFloatingReconBuffersDeclustered(RF_Raid_t * raidPtr);
+
+void
+rf_decluster_adjust_params(RF_RaidLayout_t * layoutPtr,
+ RF_StripeNum_t * SUID, RF_StripeCount_t * sus_per_fulltable,
+ RF_StripeCount_t * fulltable_depth, RF_StripeNum_t * base_suid);
+void
+rf_remap_to_spare_space(
+ RF_RaidLayout_t * layoutPtr,
+ RF_DeclusteredConfigInfo_t * info, RF_RowCol_t row, RF_StripeNum_t FullTableID,
+ RF_StripeNum_t TableID, RF_SectorNum_t BlockID, RF_StripeNum_t base_suid,
+ RF_StripeNum_t SpareRegion, RF_RowCol_t * outCol, RF_StripeNum_t * outSU);
+int rf_SetSpareTable(RF_Raid_t * raidPtr, void *data);
+RF_ReconUnitCount_t rf_GetNumSpareRUsDeclustered(RF_Raid_t * raidPtr);
+
+#endif /* !_RF__RF_DECLUSTER_H_ */
diff --git a/sys/dev/raidframe/rf_declusterPQ.c b/sys/dev/raidframe/rf_declusterPQ.c
new file mode 100644
index 0000000..77a03b8
--- /dev/null
+++ b/sys/dev/raidframe/rf_declusterPQ.c
@@ -0,0 +1,491 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_declusterPQ.c,v 1.5 2001/01/26 14:06:17 oster Exp $ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Authors: Daniel Stodolsky, Mark Holland, Jim Zelenka
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+/*--------------------------------------------------
+ * rf_declusterPQ.c
+ *
+ * mapping code for declustered P & Q or declustered EvenOdd
+ * much code borrowed from rf_decluster.c
+ *
+ *--------------------------------------------------*/
+
+#include <dev/raidframe/rf_archs.h>
+#include <dev/raidframe/rf_types.h>
+#include <dev/raidframe/rf_raid.h>
+#include <dev/raidframe/rf_configure.h>
+#include <dev/raidframe/rf_decluster.h>
+#include <dev/raidframe/rf_declusterPQ.h>
+#include <dev/raidframe/rf_debugMem.h>
+#include <dev/raidframe/rf_utils.h>
+#include <dev/raidframe/rf_alloclist.h>
+#include <dev/raidframe/rf_general.h>
+
+#if (RF_INCLUDE_PARITY_DECLUSTERING_PQ > 0) || (RF_INCLUDE_EVENODD > 0)
+/* configuration code */
+
+int
+rf_ConfigureDeclusteredPQ(
+ RF_ShutdownList_t ** listp,
+ RF_Raid_t * raidPtr,
+ RF_Config_t * cfgPtr)
+{
+ RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
+ int b, v, k, r, lambda; /* block design params */
+ int i, j, l;
+ int *first_avail_slot;
+ int complete_FT_count, SUID;
+ RF_DeclusteredConfigInfo_t *info;
+ int numCompleteFullTablesPerDisk;
+ int PUsPerDisk, spareRegionDepthInPUs, numCompleteSpareRegionsPerDisk = 0,
+ extraPUsPerDisk;
+ int totSparePUsPerDisk;
+ int diskOffsetOfLastFullTableInSUs, SpareSpaceInSUs;
+ char *cfgBuf = (char *) (cfgPtr->layoutSpecific);
+
+ cfgBuf += RF_SPAREMAP_NAME_LEN;
+
+ b = *((int *) cfgBuf);
+ cfgBuf += sizeof(int);
+ v = *((int *) cfgBuf);
+ cfgBuf += sizeof(int);
+ k = *((int *) cfgBuf);
+ cfgBuf += sizeof(int);
+ r = *((int *) cfgBuf);
+ cfgBuf += sizeof(int);
+ lambda = *((int *) cfgBuf);
+ cfgBuf += sizeof(int);
+ raidPtr->noRotate = *((int *) cfgBuf);
+ cfgBuf += sizeof(int);
+
+ if (k <= 2) {
+ printf("RAIDFRAME: k=%d, minimum value 2\n", k);
+ return (EINVAL);
+ }
+ /* 1. create layout specific structure */
+ RF_MallocAndAdd(info, sizeof(RF_DeclusteredConfigInfo_t), (RF_DeclusteredConfigInfo_t *), raidPtr->cleanupList);
+ if (info == NULL)
+ return (ENOMEM);
+ layoutPtr->layoutSpecificInfo = (void *) info;
+
+ /* the sparemaps are generated assuming that parity is rotated, so we
+ * issue a warning if both distributed sparing and no-rotate are on at
+ * the same time */
+ if ((raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) && raidPtr->noRotate) {
+ RF_ERRORMSG("Warning: distributed sparing specified without parity rotation.\n");
+ }
+ if (raidPtr->numCol != v) {
+ RF_ERRORMSG2("RAID: config error: table element count (%d) not equal to no. of cols (%d)\n", v, raidPtr->numCol);
+ return (EINVAL);
+ }
+ /* 3. set up the values used in devRaidMap */
+ info->BlocksPerTable = b;
+ info->NumParityReps = info->groupSize = k;
+ info->PUsPerBlock = k - 2; /* PQ */
+ info->SUsPerTable = b * info->PUsPerBlock * layoutPtr->SUsPerPU; /* b blks, k-1 SUs each */
+ info->SUsPerFullTable = k * info->SUsPerTable; /* rot k times */
+ info->SUsPerBlock = info->PUsPerBlock * layoutPtr->SUsPerPU;
+ info->TableDepthInPUs = (b * k) / v;
+ info->FullTableDepthInPUs = info->TableDepthInPUs * k; /* k repetitions */
+
+ /* used only in distributed sparing case */
+ info->FullTablesPerSpareRegion = (v - 1) / rf_gcd(r, v - 1); /* (v-1)/gcd fulltables */
+ info->TablesPerSpareRegion = k * info->FullTablesPerSpareRegion;
+ info->SpareSpaceDepthPerRegionInSUs = (r * info->TablesPerSpareRegion / (v - 1)) * layoutPtr->SUsPerPU;
+
+ /* check to make sure the block design is sufficiently small */
+ if ((raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE)) {
+ if (info->FullTableDepthInPUs * layoutPtr->SUsPerPU + info->SpareSpaceDepthPerRegionInSUs > layoutPtr->stripeUnitsPerDisk) {
+ RF_ERRORMSG3("RAID: config error: Full Table depth (%d) + Spare Space (%d) larger than disk size (%d) (BD too big)\n",
+ (int) info->FullTableDepthInPUs,
+ (int) info->SpareSpaceDepthPerRegionInSUs,
+ (int) layoutPtr->stripeUnitsPerDisk);
+ return (EINVAL);
+ }
+ } else {
+ if (info->TableDepthInPUs * layoutPtr->SUsPerPU > layoutPtr->stripeUnitsPerDisk) {
+ RF_ERRORMSG2("RAID: config error: Table depth (%d) larger than disk size (%d) (BD too big)\n",
+ (int) (info->TableDepthInPUs * layoutPtr->SUsPerPU),
+ (int) layoutPtr->stripeUnitsPerDisk);
+ return (EINVAL);
+ }
+ }
+
+
+ /* compute the size of each disk, and the number of tables in the last
+ * fulltable (which need not be complete) */
+ if ((raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE)) {
+
+ PUsPerDisk = layoutPtr->stripeUnitsPerDisk / layoutPtr->SUsPerPU;
+ spareRegionDepthInPUs = (info->TablesPerSpareRegion * info->TableDepthInPUs +
+ (info->TablesPerSpareRegion * info->TableDepthInPUs) / (v - 1));
+ info->SpareRegionDepthInSUs = spareRegionDepthInPUs * layoutPtr->SUsPerPU;
+
+ numCompleteSpareRegionsPerDisk = PUsPerDisk / spareRegionDepthInPUs;
+ info->NumCompleteSRs = numCompleteSpareRegionsPerDisk;
+ extraPUsPerDisk = PUsPerDisk % spareRegionDepthInPUs;
+
+ /* assume conservatively that we need the full amount of spare
+ * space in one region in order to provide spares for the
+ * partial spare region at the end of the array. We set "i"
+ * to the number of tables in the partial spare region. This
+ * may actually include some fulltables. */
+ extraPUsPerDisk -= (info->SpareSpaceDepthPerRegionInSUs / layoutPtr->SUsPerPU);
+ if (extraPUsPerDisk <= 0)
+ i = 0;
+ else
+ i = extraPUsPerDisk / info->TableDepthInPUs;
+
+ complete_FT_count = raidPtr->numRow * (numCompleteSpareRegionsPerDisk * (info->TablesPerSpareRegion / k) + i / k);
+ info->FullTableLimitSUID = complete_FT_count * info->SUsPerFullTable;
+ info->ExtraTablesPerDisk = i % k;
+
+ /* note that in the last spare region, the spare space is
+ * complete even though data/parity space is not */
+ totSparePUsPerDisk = (numCompleteSpareRegionsPerDisk + 1) * (info->SpareSpaceDepthPerRegionInSUs / layoutPtr->SUsPerPU);
+ info->TotSparePUsPerDisk = totSparePUsPerDisk;
+
+ layoutPtr->stripeUnitsPerDisk =
+ ((complete_FT_count / raidPtr->numRow) * info->FullTableDepthInPUs + /* data & parity space */
+ info->ExtraTablesPerDisk * info->TableDepthInPUs +
+ totSparePUsPerDisk /* spare space */
+ ) * layoutPtr->SUsPerPU;
+ layoutPtr->dataStripeUnitsPerDisk =
+ (complete_FT_count * info->FullTableDepthInPUs + info->ExtraTablesPerDisk * info->TableDepthInPUs)
+ * layoutPtr->SUsPerPU * (k - 1) / k;
+
+ } else {
+ /* non-dist spare case: force each disk to contain an
+ * integral number of tables */
+ layoutPtr->stripeUnitsPerDisk /= (info->TableDepthInPUs * layoutPtr->SUsPerPU);
+ layoutPtr->stripeUnitsPerDisk *= (info->TableDepthInPUs * layoutPtr->SUsPerPU);
+
+ /* compute the number of tables in the last fulltable, which
+ * need not be complete */
+ complete_FT_count =
+ ((layoutPtr->stripeUnitsPerDisk / layoutPtr->SUsPerPU) / info->FullTableDepthInPUs) * raidPtr->numRow;
+
+ info->FullTableLimitSUID = complete_FT_count * info->SUsPerFullTable;
+ info->ExtraTablesPerDisk =
+ ((layoutPtr->stripeUnitsPerDisk / layoutPtr->SUsPerPU) / info->TableDepthInPUs) % k;
+ }
+
+ raidPtr->sectorsPerDisk = layoutPtr->stripeUnitsPerDisk * layoutPtr->sectorsPerStripeUnit;
+
+ /* find the disk offset of the stripe unit where the last fulltable
+ * starts */
+ numCompleteFullTablesPerDisk = complete_FT_count / raidPtr->numRow;
+ diskOffsetOfLastFullTableInSUs = numCompleteFullTablesPerDisk * info->FullTableDepthInPUs * layoutPtr->SUsPerPU;
+ if ((raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE)) {
+ SpareSpaceInSUs = numCompleteSpareRegionsPerDisk * info->SpareSpaceDepthPerRegionInSUs;
+ diskOffsetOfLastFullTableInSUs += SpareSpaceInSUs;
+ info->DiskOffsetOfLastSpareSpaceChunkInSUs =
+ diskOffsetOfLastFullTableInSUs + info->ExtraTablesPerDisk * info->TableDepthInPUs * layoutPtr->SUsPerPU;
+ }
+ info->DiskOffsetOfLastFullTableInSUs = diskOffsetOfLastFullTableInSUs;
+ info->numCompleteFullTablesPerDisk = numCompleteFullTablesPerDisk;
+
+ /* 4. create and initialize the lookup tables */
+ info->LayoutTable = rf_make_2d_array(b, k, raidPtr->cleanupList);
+ if (info->LayoutTable == NULL)
+ return (ENOMEM);
+ info->OffsetTable = rf_make_2d_array(b, k, raidPtr->cleanupList);
+ if (info->OffsetTable == NULL)
+ return (ENOMEM);
+ info->BlockTable = rf_make_2d_array(info->TableDepthInPUs * layoutPtr->SUsPerPU, raidPtr->numCol, raidPtr->cleanupList);
+ if (info->BlockTable == NULL)
+ return (ENOMEM);
+
+ first_avail_slot = (int *) rf_make_1d_array(v, NULL);
+ if (first_avail_slot == NULL)
+ return (ENOMEM);
+
+ for (i = 0; i < b; i++)
+ for (j = 0; j < k; j++)
+ info->LayoutTable[i][j] = *cfgBuf++;
+
+ /* initialize offset table */
+ for (i = 0; i < b; i++)
+ for (j = 0; j < k; j++) {
+ info->OffsetTable[i][j] = first_avail_slot[info->LayoutTable[i][j]];
+ first_avail_slot[info->LayoutTable[i][j]]++;
+ }
+
+ /* initialize block table */
+ for (SUID = l = 0; l < layoutPtr->SUsPerPU; l++) {
+ for (i = 0; i < b; i++) {
+ for (j = 0; j < k; j++) {
+ info->BlockTable[(info->OffsetTable[i][j] * layoutPtr->SUsPerPU) + l]
+ [info->LayoutTable[i][j]] = SUID;
+ }
+ SUID++;
+ }
+ }
+
+ rf_free_1d_array(first_avail_slot, v);
+
+ /* 5. set up the remaining redundant-but-useful parameters */
+
+ raidPtr->totalSectors = (k * complete_FT_count + raidPtr->numRow * info->ExtraTablesPerDisk) *
+ info->SUsPerTable * layoutPtr->sectorsPerStripeUnit;
+ layoutPtr->numStripe = (raidPtr->totalSectors / layoutPtr->sectorsPerStripeUnit) / (k - 2);
+
+ /* strange evaluation order below to try and minimize overflow
+ * problems */
+
+ layoutPtr->dataSectorsPerStripe = (k - 2) * layoutPtr->sectorsPerStripeUnit;
+ layoutPtr->bytesPerStripeUnit = layoutPtr->sectorsPerStripeUnit << raidPtr->logBytesPerSector;
+ layoutPtr->numDataCol = k - 2;
+ layoutPtr->numParityCol = 2;
+
+ return (0);
+}
+
+int
+rf_GetDefaultNumFloatingReconBuffersPQ(RF_Raid_t * raidPtr)
+{
+ int def_decl;
+
+ def_decl = rf_GetDefaultNumFloatingReconBuffersDeclustered(raidPtr);
+ return (RF_MAX(3 * raidPtr->numCol, def_decl));
+}
+
+void
+rf_MapSectorDeclusteredPQ(
+ RF_Raid_t * raidPtr,
+ RF_RaidAddr_t raidSector,
+ RF_RowCol_t * row,
+ RF_RowCol_t * col,
+ RF_SectorNum_t * diskSector,
+ int remap)
+{
+ RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
+ RF_DeclusteredConfigInfo_t *info = (RF_DeclusteredConfigInfo_t *) layoutPtr->layoutSpecificInfo;
+ RF_StripeNum_t SUID = raidSector / layoutPtr->sectorsPerStripeUnit;
+ RF_StripeNum_t FullTableID, FullTableOffset, TableID, TableOffset;
+ RF_StripeNum_t BlockID, BlockOffset, RepIndex;
+ RF_StripeCount_t sus_per_fulltable = info->SUsPerFullTable;
+ RF_StripeCount_t fulltable_depth = info->FullTableDepthInPUs * layoutPtr->SUsPerPU;
+ RF_StripeNum_t base_suid = 0, outSU, SpareRegion = 0, SpareSpace = 0;
+
+ rf_decluster_adjust_params(layoutPtr, &SUID, &sus_per_fulltable, &fulltable_depth, &base_suid);
+
+ FullTableID = SUID / sus_per_fulltable; /* fulltable ID within array
+ * (across rows) */
+ *row = FullTableID % raidPtr->numRow;
+ FullTableID /= raidPtr->numRow; /* convert to fulltable ID on this
+ * disk */
+ if ((raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE)) {
+ SpareRegion = FullTableID / info->FullTablesPerSpareRegion;
+ SpareSpace = SpareRegion * info->SpareSpaceDepthPerRegionInSUs;
+ }
+ FullTableOffset = SUID % sus_per_fulltable;
+ TableID = FullTableOffset / info->SUsPerTable;
+ TableOffset = FullTableOffset - TableID * info->SUsPerTable;
+ BlockID = TableOffset / info->PUsPerBlock;
+ BlockOffset = TableOffset - BlockID * info->PUsPerBlock;
+ BlockID %= info->BlocksPerTable;
+ RF_ASSERT(BlockOffset < info->groupSize - 2);
+ /*
+ TableIDs go from 0 .. GroupSize-1 inclusive.
+ PUsPerBlock is k-2.
+ We want the tableIDs to rotate from the
+ right, so use GroupSize
+ */
+ RepIndex = info->groupSize - 1 - TableID;
+ RF_ASSERT(RepIndex >= 0);
+ if (!raidPtr->noRotate) {
+ if (TableID == 0)
+ BlockOffset++; /* P on last drive, Q on first */
+ else
+ BlockOffset += ((BlockOffset >= RepIndex) ? 2 : 0); /* skip over PQ */
+ RF_ASSERT(BlockOffset < info->groupSize);
+ *col = info->LayoutTable[BlockID][BlockOffset];
+ }
+ /* remap to distributed spare space if indicated */
+ if (remap) {
+ rf_remap_to_spare_space(layoutPtr, info, *row, FullTableID, TableID, BlockID, (base_suid) ? 1 : 0, SpareRegion, col, &outSU);
+ } else {
+
+ outSU = base_suid;
+ outSU += FullTableID * fulltable_depth; /* offs to strt of FT */
+ outSU += SpareSpace; /* skip rsvd spare space */
+ outSU += TableID * info->TableDepthInPUs * layoutPtr->SUsPerPU; /* offs to strt of tble */
+ outSU += info->OffsetTable[BlockID][BlockOffset] * layoutPtr->SUsPerPU; /* offs to the PU */
+ }
+ outSU += TableOffset / (info->BlocksPerTable * info->PUsPerBlock); /* offs to the SU within
+ * a PU */
+
+ /* convert SUs to sectors, and, if not aligned to SU boundary, add in
+ * offset to sector */
+ *diskSector = outSU * layoutPtr->sectorsPerStripeUnit + (raidSector % layoutPtr->sectorsPerStripeUnit);
+}
+
+
+void
+rf_MapParityDeclusteredPQ(
+ RF_Raid_t * raidPtr,
+ RF_RaidAddr_t raidSector,
+ RF_RowCol_t * row,
+ RF_RowCol_t * col,
+ RF_SectorNum_t * diskSector,
+ int remap)
+{
+ RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
+ RF_DeclusteredConfigInfo_t *info = (RF_DeclusteredConfigInfo_t *) layoutPtr->layoutSpecificInfo;
+ RF_StripeNum_t SUID = raidSector / layoutPtr->sectorsPerStripeUnit;
+ RF_StripeNum_t FullTableID, FullTableOffset, TableID, TableOffset;
+ RF_StripeNum_t BlockID, BlockOffset, RepIndex;
+ RF_StripeCount_t sus_per_fulltable = info->SUsPerFullTable;
+ RF_StripeCount_t fulltable_depth = info->FullTableDepthInPUs * layoutPtr->SUsPerPU;
+ RF_StripeNum_t base_suid = 0, outSU, SpareRegion, SpareSpace = 0;
+
+ rf_decluster_adjust_params(layoutPtr, &SUID, &sus_per_fulltable, &fulltable_depth, &base_suid);
+
+ /* compute row & (possibly) spare space exactly as before */
+ FullTableID = SUID / sus_per_fulltable;
+ *row = FullTableID % raidPtr->numRow;
+ FullTableID /= raidPtr->numRow; /* convert to fulltable ID on this
+ * disk */
+ if ((raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE)) {
+ SpareRegion = FullTableID / info->FullTablesPerSpareRegion;
+ SpareSpace = SpareRegion * info->SpareSpaceDepthPerRegionInSUs;
+ }
+ /* compute BlockID and RepIndex exactly as before */
+ FullTableOffset = SUID % sus_per_fulltable;
+ TableID = FullTableOffset / info->SUsPerTable;
+ TableOffset = FullTableOffset - TableID * info->SUsPerTable;
+ BlockID = TableOffset / info->PUsPerBlock;
+ BlockOffset = TableOffset - BlockID * info->PUsPerBlock;
+ BlockID %= info->BlocksPerTable;
+
+ /* the parity block is in the position indicated by RepIndex */
+ RepIndex = (raidPtr->noRotate) ? info->PUsPerBlock : info->groupSize - 1 - TableID;
+ *col = info->LayoutTable[BlockID][RepIndex];
+
+ if (remap)
+ RF_PANIC();
+
+ /* compute sector as before, except use RepIndex instead of
+ * BlockOffset */
+ outSU = base_suid;
+ outSU += FullTableID * fulltable_depth;
+ outSU += SpareSpace; /* skip rsvd spare space */
+ outSU += TableID * info->TableDepthInPUs * layoutPtr->SUsPerPU;
+ outSU += info->OffsetTable[BlockID][RepIndex] * layoutPtr->SUsPerPU;
+ outSU += TableOffset / (info->BlocksPerTable * info->PUsPerBlock);
+
+ *diskSector = outSU * layoutPtr->sectorsPerStripeUnit + (raidSector % layoutPtr->sectorsPerStripeUnit);
+}
+
+void
+rf_MapQDeclusteredPQ(
+ RF_Raid_t * raidPtr,
+ RF_RaidAddr_t raidSector,
+ RF_RowCol_t * row,
+ RF_RowCol_t * col,
+ RF_SectorNum_t * diskSector,
+ int remap)
+{
+ RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
+ RF_DeclusteredConfigInfo_t *info = (RF_DeclusteredConfigInfo_t *) layoutPtr->layoutSpecificInfo;
+ RF_StripeNum_t SUID = raidSector / layoutPtr->sectorsPerStripeUnit;
+ RF_StripeNum_t FullTableID, FullTableOffset, TableID, TableOffset;
+ RF_StripeNum_t BlockID, BlockOffset, RepIndex, RepIndexQ;
+ RF_StripeCount_t sus_per_fulltable = info->SUsPerFullTable;
+ RF_StripeCount_t fulltable_depth = info->FullTableDepthInPUs * layoutPtr->SUsPerPU;
+ RF_StripeNum_t base_suid = 0, outSU, SpareRegion, SpareSpace = 0;
+
+ rf_decluster_adjust_params(layoutPtr, &SUID, &sus_per_fulltable, &fulltable_depth, &base_suid);
+
+ /* compute row & (possibly) spare space exactly as before */
+ FullTableID = SUID / sus_per_fulltable;
+ *row = FullTableID % raidPtr->numRow;
+ FullTableID /= raidPtr->numRow; /* convert to fulltable ID on this
+ * disk */
+ if ((raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE)) {
+ SpareRegion = FullTableID / info->FullTablesPerSpareRegion;
+ SpareSpace = SpareRegion * info->SpareSpaceDepthPerRegionInSUs;
+ }
+ /* compute BlockID and RepIndex exactly as before */
+ FullTableOffset = SUID % sus_per_fulltable;
+ TableID = FullTableOffset / info->SUsPerTable;
+ TableOffset = FullTableOffset - TableID * info->SUsPerTable;
+ BlockID = TableOffset / info->PUsPerBlock;
+ BlockOffset = TableOffset - BlockID * info->PUsPerBlock;
+ BlockID %= info->BlocksPerTable;
+
+ /* the q block is in the position indicated by RepIndex */
+ RepIndex = (raidPtr->noRotate) ? info->PUsPerBlock : info->groupSize - 1 - TableID;
+ RepIndexQ = ((RepIndex == (info->groupSize - 1)) ? 0 : RepIndex + 1);
+ *col = info->LayoutTable[BlockID][RepIndexQ];
+
+ if (remap)
+ RF_PANIC();
+
+ /* compute sector as before, except use RepIndex instead of
+ * BlockOffset */
+ outSU = base_suid;
+ outSU += FullTableID * fulltable_depth;
+ outSU += SpareSpace; /* skip rsvd spare space */
+ outSU += TableID * info->TableDepthInPUs * layoutPtr->SUsPerPU;
+ outSU += TableOffset / (info->BlocksPerTable * info->PUsPerBlock);
+
+ outSU += info->OffsetTable[BlockID][RepIndexQ] * layoutPtr->SUsPerPU;
+ *diskSector = outSU * layoutPtr->sectorsPerStripeUnit + (raidSector % layoutPtr->sectorsPerStripeUnit);
+}
+/* returns an array of ints identifying the disks that comprise the stripe containing the indicated address.
+ * the caller must _never_ attempt to modify this array.
+ */
+void
+rf_IdentifyStripeDeclusteredPQ(
+ RF_Raid_t * raidPtr,
+ RF_RaidAddr_t addr,
+ RF_RowCol_t ** diskids,
+ RF_RowCol_t * outRow)
+{
+ RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
+ RF_DeclusteredConfigInfo_t *info = (RF_DeclusteredConfigInfo_t *) layoutPtr->layoutSpecificInfo;
+ RF_StripeCount_t sus_per_fulltable = info->SUsPerFullTable;
+ RF_StripeCount_t fulltable_depth = info->FullTableDepthInPUs * layoutPtr->SUsPerPU;
+ RF_StripeNum_t base_suid = 0;
+ RF_StripeNum_t SUID = rf_RaidAddressToStripeUnitID(layoutPtr, addr);
+ RF_StripeNum_t stripeID, FullTableID;
+ int tableOffset;
+
+ rf_decluster_adjust_params(layoutPtr, &SUID, &sus_per_fulltable, &fulltable_depth, &base_suid);
+ FullTableID = SUID / sus_per_fulltable; /* fulltable ID within array
+ * (across rows) */
+ *outRow = FullTableID % raidPtr->numRow;
+ stripeID = rf_StripeUnitIDToStripeID(layoutPtr, SUID); /* find stripe offset
+ * into array */
+ tableOffset = (stripeID % info->BlocksPerTable); /* find offset into
+ * block design table */
+ *diskids = info->LayoutTable[tableOffset];
+}
+#endif /* (RF_INCLUDE_PARITY_DECLUSTERING_PQ > 0) || (RF_INCLUDE_EVENODD > 0) */
diff --git a/sys/dev/raidframe/rf_declusterPQ.h b/sys/dev/raidframe/rf_declusterPQ.h
new file mode 100644
index 0000000..6edef0b
--- /dev/null
+++ b/sys/dev/raidframe/rf_declusterPQ.h
@@ -0,0 +1,52 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_declusterPQ.h,v 1.3 1999/02/05 00:06:09 oster Exp $ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Daniel Stodolsky, Mark Holland
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+#ifndef _RF__RF_DECLUSTERPQ_H_
+#define _RF__RF_DECLUSTERPQ_H_
+
+#include <dev/raidframe/rf_types.h>
+
+int
+rf_ConfigureDeclusteredPQ(RF_ShutdownList_t ** listp, RF_Raid_t * raidPtr,
+ RF_Config_t * cfgPtr);
+int rf_GetDefaultNumFloatingReconBuffersPQ(RF_Raid_t * raidPtr);
+void
+rf_MapSectorDeclusteredPQ(RF_Raid_t * raidPtr, RF_RaidAddr_t raidSector,
+ RF_RowCol_t * row, RF_RowCol_t * col, RF_SectorNum_t * diskSector, int remap);
+void
+rf_MapParityDeclusteredPQ(RF_Raid_t * raidPtr, RF_RaidAddr_t raidSector,
+ RF_RowCol_t * row, RF_RowCol_t * col, RF_SectorNum_t * diskSector, int remap);
+void
+rf_MapQDeclusteredPQ(RF_Raid_t * raidPtr, RF_RaidAddr_t raidSector,
+ RF_RowCol_t * row, RF_RowCol_t * col, RF_SectorNum_t * diskSector, int remap);
+void
+rf_IdentifyStripeDeclusteredPQ(RF_Raid_t * raidPtr, RF_RaidAddr_t addr,
+ RF_RowCol_t ** diskids, RF_RowCol_t * outRow);
+
+#endif /* !_RF__RF_DECLUSTERPQ_H_ */
diff --git a/sys/dev/raidframe/rf_desc.h b/sys/dev/raidframe/rf_desc.h
new file mode 100644
index 0000000..8a6951b
--- /dev/null
+++ b/sys/dev/raidframe/rf_desc.h
@@ -0,0 +1,113 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_desc.h,v 1.5 2000/01/09 00:00:18 oster Exp $ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Mark Holland
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+#ifndef _RF__RF_DESC_H_
+#define _RF__RF_DESC_H_
+
+#include <dev/raidframe/rf_archs.h>
+#include <dev/raidframe/rf_types.h>
+#include <dev/raidframe/rf_etimer.h>
+#include <dev/raidframe/rf_dag.h>
+
+struct RF_RaidReconDesc_s {
+ RF_Raid_t *raidPtr; /* raid device descriptor */
+ RF_RowCol_t row; /* row of failed disk */
+ RF_RowCol_t col; /* col of failed disk */
+ int state; /* how far along the reconstruction operation
+ * has gotten */
+ RF_RaidDisk_t *spareDiskPtr; /* describes target disk for recon
+ * (not used in dist sparing) */
+ int numDisksDone; /* the number of surviving disks that have
+ * completed their work */
+ RF_RowCol_t srow; /* row ID of the spare disk (not used in dist
+ * sparing) */
+ RF_RowCol_t scol; /* col ID of the spare disk (not used in dist
+ * sparing) */
+ /*
+ * Prevent recon from hogging CPU
+ */
+ RF_Etimer_t recon_exec_timer;
+ RF_uint64 reconExecTimerRunning;
+ RF_uint64 reconExecTicks;
+ RF_uint64 maxReconExecTicks;
+
+#if RF_RECON_STATS > 0
+ RF_uint64 hsStallCount; /* head sep stall count */
+ RF_uint64 numReconExecDelays;
+ RF_uint64 numReconEventWaits;
+#endif /* RF_RECON_STATS > 0 */
+ RF_RaidReconDesc_t *next;
+};
+
+struct RF_RaidAccessDesc_s {
+ RF_Raid_t *raidPtr; /* raid device descriptor */
+ RF_IoType_t type; /* read or write */
+ RF_RaidAddr_t raidAddress; /* starting address in raid address
+ * space */
+ RF_SectorCount_t numBlocks; /* number of blocks (sectors) to
+ * transfer */
+ RF_StripeCount_t numStripes; /* number of stripes involved in
+ * access */
+ caddr_t bufPtr; /* pointer to data buffer */
+ RF_RaidAccessFlags_t flags; /* flags controlling operation */
+ int state; /* index into states telling how far along the
+ * RAID operation has gotten */
+ RF_AccessState_t *states; /* array of states to be run */
+ int status; /* pass/fail status of the last operation */
+ RF_DagList_t *dagArray; /* array of dag lists, one list per stripe */
+ RF_AccessStripeMapHeader_t *asmap; /* the asm for this I/O */
+ void *bp; /* buf pointer for this RAID acc. ignored
+ * outside the kernel */
+ RF_DagHeader_t **paramDAG; /* allows the DAG to be returned to
+ * the caller after I/O completion */
+ RF_AccessStripeMapHeader_t **paramASM; /* allows the ASM to be
+ * returned to the caller
+ * after I/O completion */
+ RF_AccTraceEntry_t tracerec; /* perf monitoring information for a
+ * user access (not for dag stats) */
+ void (*callbackFunc) (RF_CBParam_t); /* callback function for this
+ * I/O */
+ void *callbackArg; /* arg to give to callback func */
+
+ RF_AllocListElem_t *cleanupList; /* memory to be freed at the
+ * end of the access */
+
+ RF_RaidAccessDesc_t *next;
+ RF_RaidAccessDesc_t *head;
+
+ int numPending;
+
+ RF_DECLARE_MUTEX(mutex) /* these are used to implement
+ * blocking I/O */
+ RF_DECLARE_COND(cond)
+ int async_flag;
+
+ RF_Etimer_t timer; /* used for timing this access */
+};
+#endif /* !_RF__RF_DESC_H_ */
diff --git a/sys/dev/raidframe/rf_diskqueue.c b/sys/dev/raidframe/rf_diskqueue.c
new file mode 100644
index 0000000..3359ae5
--- /dev/null
+++ b/sys/dev/raidframe/rf_diskqueue.c
@@ -0,0 +1,591 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_diskqueue.c,v 1.13 2000/03/04 04:22:34 oster Exp $ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Mark Holland
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+/****************************************************************************
+ *
+ * rf_diskqueue.c -- higher-level disk queue code
+ *
+ * the routines here are a generic wrapper around the actual queueing
+ * routines. The code here implements thread scheduling, synchronization,
+ * and locking ops (see below) on top of the lower-level queueing code.
+ *
+ * to support atomic RMW, we implement "locking operations". When a
+ * locking op is dispatched to the lower levels of the driver, the
+ * queue is locked, and no further I/Os are dispatched until the queue
+ * receives & completes a corresponding "unlocking operation". This
+ * code relies on the higher layers to guarantee that a locking op
+ * will always be eventually followed by an unlocking op. The model
+ * is that the higher layers are structured so locking and unlocking
+ * ops occur in pairs, i.e. an unlocking op cannot be generated until
+ * after a locking op reports completion. There is no good way to
+ * check to see that an unlocking op "corresponds" to the op that
+ * currently has the queue locked, so we make no such attempt. Since
+ * by definition there can be only one locking op outstanding on a
+ * disk, this should not be a problem.
+ *
+ * In the kernel, we allow multiple I/Os to be concurrently dispatched
+ * to the disk driver. In order to support locking ops in this
+ * environment, when we decide to do a locking op, we stop dispatching
+ * new I/Os and wait until all dispatched I/Os have completed before
+ * dispatching the locking op.
+ *
+ * Unfortunately, the code is different in the 3 different operating
+ * states (user level, kernel, simulator). In the kernel, I/O is
+ * non-blocking, and we have no disk threads to dispatch for us.
+ * Therefore, we have to dispatch new I/Os to the scsi driver at the
+ * time of enqueue, and also at the time of completion. At user
+ * level, I/O is blocking, and so only the disk threads may dispatch
+ * I/Os. Thus at user level, all we can do at enqueue time is enqueue
+ * and wake up the disk thread to do the dispatch.
+ *
+ ****************************************************************************/
+
+#include <dev/raidframe/rf_types.h>
+#include <dev/raidframe/rf_threadstuff.h>
+#include <dev/raidframe/rf_raid.h>
+#include <dev/raidframe/rf_diskqueue.h>
+#include <dev/raidframe/rf_alloclist.h>
+#include <dev/raidframe/rf_acctrace.h>
+#include <dev/raidframe/rf_etimer.h>
+#include <dev/raidframe/rf_configure.h>
+#include <dev/raidframe/rf_general.h>
+#include <dev/raidframe/rf_freelist.h>
+#include <dev/raidframe/rf_debugprint.h>
+#include <dev/raidframe/rf_shutdown.h>
+#include <dev/raidframe/rf_cvscan.h>
+#include <dev/raidframe/rf_sstf.h>
+#include <dev/raidframe/rf_fifo.h>
+#include <dev/raidframe/rf_kintf.h>
+
+static int init_dqd(RF_DiskQueueData_t *);
+static void clean_dqd(RF_DiskQueueData_t *);
+static void rf_ShutdownDiskQueueSystem(void *);
+
+#define Dprintf1(s,a) if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
+#define Dprintf2(s,a,b) if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
+#define Dprintf3(s,a,b,c) if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
+
+/*****************************************************************************
+ *
+ * the disk queue switch defines all the functions used in the
+ * different queueing disciplines queue ID, init routine, enqueue
+ * routine, dequeue routine
+ *
+ ****************************************************************************/
+
+static RF_DiskQueueSW_t diskqueuesw[] = {
+ {"fifo", /* FIFO */
+ rf_FifoCreate,
+ rf_FifoEnqueue,
+ rf_FifoDequeue,
+ rf_FifoPeek,
+ rf_FifoPromote},
+
+ {"cvscan", /* cvscan */
+ rf_CvscanCreate,
+ rf_CvscanEnqueue,
+ rf_CvscanDequeue,
+ rf_CvscanPeek,
+ rf_CvscanPromote},
+
+ {"sstf", /* shortest seek time first */
+ rf_SstfCreate,
+ rf_SstfEnqueue,
+ rf_SstfDequeue,
+ rf_SstfPeek,
+ rf_SstfPromote},
+
+ {"scan", /* SCAN (two-way elevator) */
+ rf_ScanCreate,
+ rf_SstfEnqueue,
+ rf_ScanDequeue,
+ rf_ScanPeek,
+ rf_SstfPromote},
+
+ {"cscan", /* CSCAN (one-way elevator) */
+ rf_CscanCreate,
+ rf_SstfEnqueue,
+ rf_CscanDequeue,
+ rf_CscanPeek,
+ rf_SstfPromote},
+
+};
+#define NUM_DISK_QUEUE_TYPES (sizeof(diskqueuesw)/sizeof(RF_DiskQueueSW_t))
+
+static RF_FreeList_t *rf_dqd_freelist;
+
+#define RF_MAX_FREE_DQD 256
+#define RF_DQD_INC 16
+#define RF_DQD_INITIAL 64
+
+#if defined(__FreeBSD__) && __FreeBSD_version > 500005
+#include <sys/bio.h>
+#endif
+
+#include <sys/buf.h>
+
+static int
+init_dqd(dqd)
+ RF_DiskQueueData_t *dqd;
+{
+
+ dqd->bp = (RF_Buf_t) malloc(sizeof(RF_Buf_t), M_RAIDFRAME, M_NOWAIT);
+ if (dqd->bp == NULL) {
+ return (ENOMEM);
+ }
+ memset(dqd->bp, 0, sizeof(RF_Buf_t)); /* if you don't do it, nobody
+ * else will.. */
+ return (0);
+}
+
+static void
+clean_dqd(dqd)
+ RF_DiskQueueData_t *dqd;
+{
+ free(dqd->bp, M_RAIDFRAME);
+}
+/* configures a single disk queue */
+
+int
+rf_ConfigureDiskQueue(
+ RF_Raid_t * raidPtr,
+ RF_DiskQueue_t * diskqueue,
+ RF_RowCol_t r, /* row & col -- debug only. BZZT not any
+ * more... */
+ RF_RowCol_t c,
+ RF_DiskQueueSW_t * p,
+ RF_SectorCount_t sectPerDisk,
+ dev_t dev,
+ int maxOutstanding,
+ RF_ShutdownList_t ** listp,
+ RF_AllocListElem_t * clList)
+{
+ int rc;
+
+ diskqueue->row = r;
+ diskqueue->col = c;
+ diskqueue->qPtr = p;
+ diskqueue->qHdr = (p->Create) (sectPerDisk, clList, listp);
+ diskqueue->dev = dev;
+ diskqueue->numOutstanding = 0;
+ diskqueue->queueLength = 0;
+ diskqueue->maxOutstanding = maxOutstanding;
+ diskqueue->curPriority = RF_IO_NORMAL_PRIORITY;
+ diskqueue->nextLockingOp = NULL;
+ diskqueue->unlockingOp = NULL;
+ diskqueue->numWaiting = 0;
+ diskqueue->flags = 0;
+ diskqueue->raidPtr = raidPtr;
+ diskqueue->rf_cinfo = &raidPtr->raid_cinfo[r][c];
+ rc = rf_create_managed_mutex(listp, &diskqueue->mutex);
+ if (rc) {
+ RF_ERRORMSG3("Unable to init mutex file %s line %d rc=%d\n", __FILE__,
+ __LINE__, rc);
+ return (rc);
+ }
+ rc = rf_create_managed_cond(listp, &diskqueue->cond);
+ if (rc) {
+ RF_ERRORMSG3("Unable to init cond file %s line %d rc=%d\n", __FILE__,
+ __LINE__, rc);
+ return (rc);
+ }
+ return (0);
+}
+
+static void
+rf_ShutdownDiskQueueSystem(ignored)
+ void *ignored;
+{
+ RF_FREELIST_DESTROY_CLEAN(rf_dqd_freelist, next, (RF_DiskQueueData_t *), clean_dqd);
+}
+
+int
+rf_ConfigureDiskQueueSystem(listp)
+ RF_ShutdownList_t **listp;
+{
+ int rc;
+
+ RF_FREELIST_CREATE(rf_dqd_freelist, RF_MAX_FREE_DQD,
+ RF_DQD_INC, sizeof(RF_DiskQueueData_t));
+ if (rf_dqd_freelist == NULL)
+ return (ENOMEM);
+ rc = rf_ShutdownCreate(listp, rf_ShutdownDiskQueueSystem, NULL);
+ if (rc) {
+ RF_ERRORMSG3("Unable to add to shutdown list file %s line %d rc=%d\n",
+ __FILE__, __LINE__, rc);
+ rf_ShutdownDiskQueueSystem(NULL);
+ return (rc);
+ }
+ RF_FREELIST_PRIME_INIT(rf_dqd_freelist, RF_DQD_INITIAL, next,
+ (RF_DiskQueueData_t *), init_dqd);
+ return (0);
+}
+
+int
+rf_ConfigureDiskQueues(
+ RF_ShutdownList_t ** listp,
+ RF_Raid_t * raidPtr,
+ RF_Config_t * cfgPtr)
+{
+ RF_DiskQueue_t **diskQueues, *spareQueues;
+ RF_DiskQueueSW_t *p;
+ RF_RowCol_t r, c;
+ int rc, i;
+
+ raidPtr->maxQueueDepth = cfgPtr->maxOutstandingDiskReqs;
+
+ for (p = NULL, i = 0; i < NUM_DISK_QUEUE_TYPES; i++) {
+ if (!strcmp(diskqueuesw[i].queueType, cfgPtr->diskQueueType)) {
+ p = &diskqueuesw[i];
+ break;
+ }
+ }
+ if (p == NULL) {
+ RF_ERRORMSG2("Unknown queue type \"%s\". Using %s\n", cfgPtr->diskQueueType, diskqueuesw[0].queueType);
+ p = &diskqueuesw[0];
+ }
+ raidPtr->qType = p;
+ RF_CallocAndAdd(diskQueues, raidPtr->numRow, sizeof(RF_DiskQueue_t *), (RF_DiskQueue_t **), raidPtr->cleanupList);
+ if (diskQueues == NULL) {
+ return (ENOMEM);
+ }
+ raidPtr->Queues = diskQueues;
+ for (r = 0; r < raidPtr->numRow; r++) {
+ RF_CallocAndAdd(diskQueues[r], raidPtr->numCol +
+ ((r == 0) ? RF_MAXSPARE : 0),
+ sizeof(RF_DiskQueue_t), (RF_DiskQueue_t *),
+ raidPtr->cleanupList);
+ if (diskQueues[r] == NULL)
+ return (ENOMEM);
+ for (c = 0; c < raidPtr->numCol; c++) {
+ rc = rf_ConfigureDiskQueue(raidPtr, &diskQueues[r][c],
+ r, c, p,
+ raidPtr->sectorsPerDisk,
+ raidPtr->Disks[r][c].dev,
+ cfgPtr->maxOutstandingDiskReqs,
+ listp, raidPtr->cleanupList);
+ if (rc)
+ return (rc);
+ }
+ }
+
+ spareQueues = &raidPtr->Queues[0][raidPtr->numCol];
+ for (r = 0; r < raidPtr->numSpare; r++) {
+ rc = rf_ConfigureDiskQueue(raidPtr, &spareQueues[r],
+ 0, raidPtr->numCol + r, p,
+ raidPtr->sectorsPerDisk,
+ raidPtr->Disks[0][raidPtr->numCol + r].dev,
+ cfgPtr->maxOutstandingDiskReqs, listp,
+ raidPtr->cleanupList);
+ if (rc)
+ return (rc);
+ }
+ return (0);
+}
+/* Enqueue a disk I/O
+ *
+ * Unfortunately, we have to do things differently in the different
+ * environments (simulator, user-level, kernel).
+ * At user level, all I/O is blocking, so we have 1 or more threads/disk
+ * and the thread that enqueues is different from the thread that dequeues.
+ * In the kernel, I/O is non-blocking and so we'd like to have multiple
+ * I/Os outstanding on the physical disks when possible.
+ *
+ * when any request arrives at a queue, we have two choices:
+ * dispatch it to the lower levels
+ * queue it up
+ *
+ * kernel rules for when to do what:
+ * locking request: queue empty => dispatch and lock queue,
+ * else queue it
+ * unlocking req : always dispatch it
+ * normal req : queue empty => dispatch it & set priority
+ * queue not full & priority is ok => dispatch it
+ * else queue it
+ *
+ * user-level rules:
+ * always enqueue. In the special case of an unlocking op, enqueue
+ * in a special way that will cause the unlocking op to be the next
+ * thing dequeued.
+ *
+ * simulator rules:
+ * Do the same as at user level, with the sleeps and wakeups suppressed.
+ */
+void
+rf_DiskIOEnqueue(queue, req, pri)
+ RF_DiskQueue_t *queue;
+ RF_DiskQueueData_t *req;
+ int pri;
+{
+ RF_ETIMER_START(req->qtime);
+ RF_ASSERT(req->type == RF_IO_TYPE_NOP || req->numSector);
+ req->priority = pri;
+
+ if (rf_queueDebug && (req->numSector == 0)) {
+ printf("Warning: Enqueueing zero-sector access\n");
+ }
+ /*
+ * kernel
+ */
+ RF_LOCK_QUEUE_MUTEX(queue, "DiskIOEnqueue");
+ /* locking request */
+ if (RF_LOCKING_REQ(req)) {
+ if (RF_QUEUE_EMPTY(queue)) {
+ Dprintf3("Dispatching pri %d locking op to r %d c %d (queue empty)\n", pri, queue->row, queue->col);
+ RF_LOCK_QUEUE(queue);
+ rf_DispatchKernelIO(queue, req);
+ } else {
+ queue->queueLength++; /* increment count of number
+ * of requests waiting in this
+ * queue */
+ Dprintf3("Enqueueing pri %d locking op to r %d c %d (queue not empty)\n", pri, queue->row, queue->col);
+ req->queue = (void *) queue;
+ (queue->qPtr->Enqueue) (queue->qHdr, req, pri);
+ }
+ }
+ /* unlocking request */
+ else
+ if (RF_UNLOCKING_REQ(req)) { /* we'll do the actual unlock
+ * when this I/O completes */
+ Dprintf3("Dispatching pri %d unlocking op to r %d c %d\n", pri, queue->row, queue->col);
+ RF_ASSERT(RF_QUEUE_LOCKED(queue));
+ rf_DispatchKernelIO(queue, req);
+ }
+ /* normal request */
+ else
+ if (RF_OK_TO_DISPATCH(queue, req)) {
+ Dprintf3("Dispatching pri %d regular op to r %d c %d (ok to dispatch)\n", pri, queue->row, queue->col);
+ rf_DispatchKernelIO(queue, req);
+ } else {
+ queue->queueLength++; /* increment count of
+ * number of requests
+ * waiting in this queue */
+ Dprintf3("Enqueueing pri %d regular op to r %d c %d (not ok to dispatch)\n", pri, queue->row, queue->col);
+ req->queue = (void *) queue;
+ (queue->qPtr->Enqueue) (queue->qHdr, req, pri);
+ }
+ RF_UNLOCK_QUEUE_MUTEX(queue, "DiskIOEnqueue");
+}
+
+
+/* get the next set of I/Os started, kernel version only */
+void
+rf_DiskIOComplete(queue, req, status)
+ RF_DiskQueue_t *queue;
+ RF_DiskQueueData_t *req;
+ int status;
+{
+ int done = 0;
+
+ RF_LOCK_QUEUE_MUTEX(queue, "DiskIOComplete");
+
+ /* unlock the queue: (1) after an unlocking req completes (2) after a
+ * locking req fails */
+ if (RF_UNLOCKING_REQ(req) || (RF_LOCKING_REQ(req) && status)) {
+ Dprintf2("DiskIOComplete: unlocking queue at r %d c %d\n", queue->row, queue->col);
+ RF_ASSERT(RF_QUEUE_LOCKED(queue) && (queue->unlockingOp == NULL));
+ RF_UNLOCK_QUEUE(queue);
+ }
+ queue->numOutstanding--;
+ RF_ASSERT(queue->numOutstanding >= 0);
+
+ /* dispatch requests to the disk until we find one that we can't. */
+ /* no reason to continue once we've filled up the queue */
+ /* no reason to even start if the queue is locked */
+
+ while (!done && !RF_QUEUE_FULL(queue) && !RF_QUEUE_LOCKED(queue)) {
+ if (queue->nextLockingOp) {
+ req = queue->nextLockingOp;
+ queue->nextLockingOp = NULL;
+ Dprintf3("DiskIOComplete: a pri %d locking req was pending at r %d c %d\n", req->priority, queue->row, queue->col);
+ } else {
+ req = (queue->qPtr->Dequeue) (queue->qHdr);
+ if (req != NULL) {
+ Dprintf3("DiskIOComplete: extracting pri %d req from queue at r %d c %d\n", req->priority, queue->row, queue->col);
+ } else {
+ Dprintf1("DiskIOComplete: no more requests to extract.\n", "");
+ }
+ }
+ if (req) {
+ queue->queueLength--; /* decrement count of number
+ * of requests waiting in this
+ * queue */
+ RF_ASSERT(queue->queueLength >= 0);
+ }
+ if (!req)
+ done = 1;
+ else
+ if (RF_LOCKING_REQ(req)) {
+ if (RF_QUEUE_EMPTY(queue)) { /* dispatch it */
+ Dprintf3("DiskIOComplete: dispatching pri %d locking req to r %d c %d (queue empty)\n", req->priority, queue->row, queue->col);
+ RF_LOCK_QUEUE(queue);
+ rf_DispatchKernelIO(queue, req);
+ done = 1;
+ } else { /* put it aside to wait for
+ * the queue to drain */
+ Dprintf3("DiskIOComplete: postponing pri %d locking req to r %d c %d\n", req->priority, queue->row, queue->col);
+ RF_ASSERT(queue->nextLockingOp == NULL);
+ queue->nextLockingOp = req;
+ done = 1;
+ }
+ } else
+ if (RF_UNLOCKING_REQ(req)) { /* should not happen:
+ * unlocking ops should
+ * not get queued */
+ RF_ASSERT(RF_QUEUE_LOCKED(queue)); /* support it anyway for
+ * the future */
+ Dprintf3("DiskIOComplete: dispatching pri %d unl req to r %d c %d (SHOULD NOT SEE THIS)\n", req->priority, queue->row, queue->col);
+ rf_DispatchKernelIO(queue, req);
+ done = 1;
+ } else
+ if (RF_OK_TO_DISPATCH(queue, req)) {
+ Dprintf3("DiskIOComplete: dispatching pri %d regular req to r %d c %d (ok to dispatch)\n", req->priority, queue->row, queue->col);
+ rf_DispatchKernelIO(queue, req);
+ } else { /* we can't dispatch it,
+ * so just re-enqueue
+ * it. */
+ /* potential trouble here if
+ * disk queues batch reqs */
+ Dprintf3("DiskIOComplete: re-enqueueing pri %d regular req to r %d c %d\n", req->priority, queue->row, queue->col);
+ queue->queueLength++;
+ (queue->qPtr->Enqueue) (queue->qHdr, req, req->priority);
+ done = 1;
+ }
+ }
+
+ RF_UNLOCK_QUEUE_MUTEX(queue, "DiskIOComplete");
+}
+/* promotes accesses tagged with the given parityStripeID from low priority
+ * to normal priority. This promotion is optional, meaning that a queue
+ * need not implement it. If there is no promotion routine associated with
+ * a queue, this routine does nothing and returns -1.
+ */
+int
+rf_DiskIOPromote(queue, parityStripeID, which_ru)
+ RF_DiskQueue_t *queue;
+ RF_StripeNum_t parityStripeID;
+ RF_ReconUnitNum_t which_ru;
+{
+ int retval;
+
+ if (!queue->qPtr->Promote)
+ return (-1);
+ RF_LOCK_QUEUE_MUTEX(queue, "DiskIOPromote");
+ retval = (queue->qPtr->Promote) (queue->qHdr, parityStripeID, which_ru);
+ RF_UNLOCK_QUEUE_MUTEX(queue, "DiskIOPromote");
+ return (retval);
+}
+
+RF_DiskQueueData_t *
+rf_CreateDiskQueueData(
+ RF_IoType_t typ,
+ RF_SectorNum_t ssect,
+ RF_SectorCount_t nsect,
+ caddr_t buf,
+ RF_StripeNum_t parityStripeID,
+ RF_ReconUnitNum_t which_ru,
+ int (*wakeF) (void *, int),
+ void *arg,
+ RF_DiskQueueData_t * next,
+ RF_AccTraceEntry_t * tracerec,
+ void *raidPtr,
+ RF_DiskQueueDataFlags_t flags,
+ void *kb_proc)
+{
+ RF_DiskQueueData_t *p;
+
+ RF_FREELIST_GET_INIT(rf_dqd_freelist, p, next, (RF_DiskQueueData_t *), init_dqd);
+
+ p->sectorOffset = ssect + rf_protectedSectors;
+ p->numSector = nsect;
+ p->type = typ;
+ p->buf = buf;
+ p->parityStripeID = parityStripeID;
+ p->which_ru = which_ru;
+ p->CompleteFunc = wakeF;
+ p->argument = arg;
+ p->next = next;
+ p->tracerec = tracerec;
+ p->priority = RF_IO_NORMAL_PRIORITY;
+ p->AuxFunc = NULL;
+ p->buf2 = NULL;
+ p->raidPtr = raidPtr;
+ p->flags = flags;
+ p->b_proc = kb_proc;
+ return (p);
+}
+
+RF_DiskQueueData_t *
+rf_CreateDiskQueueDataFull(
+ RF_IoType_t typ,
+ RF_SectorNum_t ssect,
+ RF_SectorCount_t nsect,
+ caddr_t buf,
+ RF_StripeNum_t parityStripeID,
+ RF_ReconUnitNum_t which_ru,
+ int (*wakeF) (void *, int),
+ void *arg,
+ RF_DiskQueueData_t * next,
+ RF_AccTraceEntry_t * tracerec,
+ int priority,
+ int (*AuxFunc) (void *,...),
+ caddr_t buf2,
+ void *raidPtr,
+ RF_DiskQueueDataFlags_t flags,
+ void *kb_proc)
+{
+ RF_DiskQueueData_t *p;
+
+ RF_FREELIST_GET_INIT(rf_dqd_freelist, p, next, (RF_DiskQueueData_t *), init_dqd);
+
+ p->sectorOffset = ssect + rf_protectedSectors;
+ p->numSector = nsect;
+ p->type = typ;
+ p->buf = buf;
+ p->parityStripeID = parityStripeID;
+ p->which_ru = which_ru;
+ p->CompleteFunc = wakeF;
+ p->argument = arg;
+ p->next = next;
+ p->tracerec = tracerec;
+ p->priority = priority;
+ p->AuxFunc = AuxFunc;
+ p->buf2 = buf2;
+ p->raidPtr = raidPtr;
+ p->flags = flags;
+ p->b_proc = kb_proc;
+ return (p);
+}
+
+void
+rf_FreeDiskQueueData(p)
+ RF_DiskQueueData_t *p;
+{
+ RF_FREELIST_FREE_CLEAN(rf_dqd_freelist, p, next, clean_dqd);
+}
diff --git a/sys/dev/raidframe/rf_diskqueue.h b/sys/dev/raidframe/rf_diskqueue.h
new file mode 100644
index 0000000..7b162b0
--- /dev/null
+++ b/sys/dev/raidframe/rf_diskqueue.h
@@ -0,0 +1,208 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_diskqueue.h,v 1.5 2000/02/13 04:53:57 oster Exp $ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Mark Holland
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+/*****************************************************************************************
+ *
+ * rf_diskqueue.h -- header file for disk queues
+ *
+ * see comments in rf_diskqueue.c
+ *
+ ****************************************************************************************/
+
+
+#ifndef _RF__RF_DISKQUEUE_H_
+#define _RF__RF_DISKQUEUE_H_
+
+#include <dev/raidframe/rf_threadstuff.h>
+#include <dev/raidframe/rf_acctrace.h>
+#include <dev/raidframe/rf_alloclist.h>
+#include <dev/raidframe/rf_types.h>
+#include <dev/raidframe/rf_etimer.h>
+
+#include <dev/raidframe/rf_bsd.h>
+
+#define RF_IO_NORMAL_PRIORITY 1
+#define RF_IO_LOW_PRIORITY 0
+
+/* the data held by a disk queue entry */
+struct RF_DiskQueueData_s {
+ RF_SectorNum_t sectorOffset; /* sector offset into the disk */
+ RF_SectorCount_t numSector; /* number of sectors to read/write */
+ RF_IoType_t type; /* read/write/nop */
+ caddr_t buf; /* buffer pointer */
+ RF_StripeNum_t parityStripeID; /* the RAID parity stripe ID this
+ * access is for */
+ RF_ReconUnitNum_t which_ru; /* which RU within this parity stripe */
+ int priority; /* the priority of this request */
+ int (*CompleteFunc) (void *, int); /* function to be called upon
+ * completion */
+ int (*AuxFunc) (void *,...); /* function called upon
+ * completion of the first I/O
+ * of a Read_Op_Write pair */
+ void *argument; /* argument to be passed to CompleteFunc */
+ RF_Raid_t *raidPtr; /* needed for simulation */
+ RF_AccTraceEntry_t *tracerec; /* perf mon only */
+ RF_Etimer_t qtime; /* perf mon only - time request is in queue */
+ long entryTime;
+ RF_DiskQueueData_t *next;
+ RF_DiskQueueData_t *prev;
+ caddr_t buf2; /* for read-op-write */
+ dev_t dev; /* the device number for in-kernel version */
+ RF_DiskQueue_t *queue; /* the disk queue to which this req is
+ * targeted */
+ RF_DiskQueueDataFlags_t flags; /* flags controlling operation */
+
+ struct proc *b_proc; /* the b_proc from the original bp passed into
+ * the driver for this I/O */
+ /* XXX Should this be changed to the opaque
+ * RF_Thread_t ? */
+ RF_Buf_t bp; /* a bp to use to get this I/O done */
+};
+#define RF_LOCK_DISK_QUEUE 0x01
+#define RF_UNLOCK_DISK_QUEUE 0x02
+
+/* note: "Create" returns type-specific queue header pointer cast to (void *) */
+struct RF_DiskQueueSW_s {
+ RF_DiskQueueType_t queueType;
+ void *(*Create) (RF_SectorCount_t, RF_AllocListElem_t *, RF_ShutdownList_t **); /* creation routine --
+ * one call per queue in
+ * system */
+ void (*Enqueue) (void *, RF_DiskQueueData_t *, int); /* enqueue routine */
+ RF_DiskQueueData_t *(*Dequeue) (void *); /* dequeue routine */
+ RF_DiskQueueData_t *(*Peek) (void *); /* peek at head of queue */
+
+ /* the rest are optional: they improve performance, but the driver
+ * will deal with it if they don't exist */
+ int (*Promote) (void *, RF_StripeNum_t, RF_ReconUnitNum_t); /* promotes priority of
+ * tagged accesses */
+};
+
+struct RF_DiskQueue_s {
+ RF_DiskQueueSW_t *qPtr; /* access point to queue functions */
+ void *qHdr; /* queue header, of whatever type */
+ RF_DECLARE_MUTEX(mutex) /* mutex locking data structures */
+ RF_DECLARE_COND(cond) /* condition variable for
+ * synchronization */
+ long numOutstanding; /* number of I/Os currently outstanding on
+ * disk */
+ long maxOutstanding; /* max # of I/Os that can be outstanding on a
+ * disk (in-kernel only) */
+ int curPriority; /* the priority of accs all that are currently
+ * outstanding */
+ long queueLength; /* number of requests in queue */
+ RF_DiskQueueData_t *nextLockingOp; /* a locking op that has
+ * arrived at the head of the
+ * queue & is waiting for
+ * drainage */
+ RF_DiskQueueData_t *unlockingOp; /* used at user level to
+ * communicate unlocking op
+ * b/w user (or dag exec) &
+ * disk threads */
+ int numWaiting; /* number of threads waiting on this variable.
+ * user-level only */
+ RF_DiskQueueFlags_t flags; /* terminate, locked */
+ RF_Raid_t *raidPtr; /* associated array */
+ dev_t dev; /* device number for kernel version */
+ RF_SectorNum_t last_deq_sector; /* last sector number dequeued or
+ * dispatched */
+ int row, col; /* debug only */
+ struct raidcinfo *rf_cinfo; /* disks component info.. */
+};
+#define RF_DQ_LOCKED 0x02 /* no new accs allowed until queue is
+ * explicitly unlocked */
+
+/* macros setting & returning information about queues and requests */
+#define RF_QUEUE_LOCKED(_q) ((_q)->flags & RF_DQ_LOCKED)
+#define RF_QUEUE_EMPTY(_q) (((_q)->numOutstanding == 0) && ((_q)->nextLockingOp == NULL) && !RF_QUEUE_LOCKED(_q))
+#define RF_QUEUE_FULL(_q) ((_q)->numOutstanding == (_q)->maxOutstanding)
+
+#define RF_LOCK_QUEUE(_q) (_q)->flags |= RF_DQ_LOCKED
+#define RF_UNLOCK_QUEUE(_q) (_q)->flags &= ~RF_DQ_LOCKED
+
+#define RF_LOCK_QUEUE_MUTEX(_q_,_wh_) RF_LOCK_MUTEX((_q_)->mutex)
+#define RF_UNLOCK_QUEUE_MUTEX(_q_,_wh_) RF_UNLOCK_MUTEX((_q_)->mutex)
+
+#define RF_LOCKING_REQ(_r) ((_r)->flags & RF_LOCK_DISK_QUEUE)
+#define RF_UNLOCKING_REQ(_r) ((_r)->flags & RF_UNLOCK_DISK_QUEUE)
+
+/* whether it is ok to dispatch a regular request */
+#define RF_OK_TO_DISPATCH(_q_,_r_) \
+ (RF_QUEUE_EMPTY(_q_) || \
+ (!RF_QUEUE_FULL(_q_) && ((_r_)->priority >= (_q_)->curPriority)))
+
+int rf_ConfigureDiskQueueSystem(RF_ShutdownList_t ** listp);
+
+void rf_TerminateDiskQueues(RF_Raid_t * raidPtr);
+
+int
+rf_ConfigureDiskQueues(RF_ShutdownList_t ** listp, RF_Raid_t * raidPtr,
+ RF_Config_t * cfgPtr);
+
+void rf_DiskIOEnqueue(RF_DiskQueue_t * queue, RF_DiskQueueData_t * req, int pri);
+
+
+void rf_DiskIOComplete(RF_DiskQueue_t * queue, RF_DiskQueueData_t * req, int status);
+
+int
+rf_DiskIOPromote(RF_DiskQueue_t * queue, RF_StripeNum_t parityStripeID,
+ RF_ReconUnitNum_t which_ru);
+
+RF_DiskQueueData_t *
+rf_CreateDiskQueueData(RF_IoType_t typ, RF_SectorNum_t ssect,
+ RF_SectorCount_t nsect, caddr_t buf,
+ RF_StripeNum_t parityStripeID,
+ RF_ReconUnitNum_t which_ru,
+ int (*wakeF) (void *, int),
+ void *arg, RF_DiskQueueData_t * next,
+ RF_AccTraceEntry_t * tracerec,
+ void *raidPtr, RF_DiskQueueDataFlags_t flags,
+ void *kb_proc);
+
+RF_DiskQueueData_t *
+rf_CreateDiskQueueDataFull(RF_IoType_t typ, RF_SectorNum_t ssect,
+ RF_SectorCount_t nsect, caddr_t buf,
+ RF_StripeNum_t parityStripeID,
+ RF_ReconUnitNum_t which_ru,
+ int (*wakeF) (void *, int),
+ void *arg, RF_DiskQueueData_t * next,
+ RF_AccTraceEntry_t * tracerec,
+ int priority, int (*AuxFunc) (void *,...),
+ caddr_t buf2, void *raidPtr,
+ RF_DiskQueueDataFlags_t flags, void *kb_proc);
+
+void
+rf_FreeDiskQueueData(RF_DiskQueueData_t * p);
+
+int
+rf_ConfigureDiskQueue(RF_Raid_t *, RF_DiskQueue_t *, RF_RowCol_t,
+ RF_RowCol_t, RF_DiskQueueSW_t *,
+ RF_SectorCount_t, dev_t, int,
+ RF_ShutdownList_t **,
+ RF_AllocListElem_t *);
+#endif /* !_RF__RF_DISKQUEUE_H_ */
diff --git a/sys/dev/raidframe/rf_disks.c b/sys/dev/raidframe/rf_disks.c
new file mode 100644
index 0000000..dd0ea15
--- /dev/null
+++ b/sys/dev/raidframe/rf_disks.c
@@ -0,0 +1,1138 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_disks.c,v 1.34 2000/12/05 01:35:56 oster Exp $ */
+/*-
+ * Copyright (c) 1999 The NetBSD Foundation, Inc.
+ * All rights reserved.
+ *
+ * This code is derived from software contributed to The NetBSD Foundation
+ * by Greg Oster
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. All advertising materials mentioning features or use of this software
+ * must display the following acknowledgement:
+ * This product includes software developed by the NetBSD
+ * Foundation, Inc. and its contributors.
+ * 4. Neither the name of The NetBSD Foundation nor the names of its
+ * contributors may be used to endorse or promote products derived
+ * from this software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
+ * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
+ * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+ * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
+ * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ * POSSIBILITY OF SUCH DAMAGE.
+ */
+
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Mark Holland
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+/***************************************************************
+ * rf_disks.c -- code to perform operations on the actual disks
+ ***************************************************************/
+
+#include <dev/raidframe/rf_types.h>
+#include <dev/raidframe/rf_raid.h>
+#include <dev/raidframe/rf_alloclist.h>
+#include <dev/raidframe/rf_utils.h>
+#include <dev/raidframe/rf_configure.h>
+#include <dev/raidframe/rf_general.h>
+#include <dev/raidframe/rf_options.h>
+#include <dev/raidframe/rf_kintf.h>
+#include <dev/raidframe/rf_bsd.h>
+
+#include <sys/types.h>
+#include <sys/param.h>
+#include <sys/systm.h>
+#include <sys/proc.h>
+#if defined(__NetBSD__)
+#include <sys/ioctl.h>
+#elif defined(__FreeBSD__)
+#include <sys/ioccom.h>
+#include <sys/filio.h>
+#endif
+#include <sys/fcntl.h>
+#include <sys/vnode.h>
+
+static int rf_AllocDiskStructures(RF_Raid_t *, RF_Config_t *);
+static void rf_print_label_status( RF_Raid_t *, int, int, char *,
+ RF_ComponentLabel_t *);
+static int rf_check_label_vitals( RF_Raid_t *, int, int, char *,
+ RF_ComponentLabel_t *, int, int );
+
+#define DPRINTF6(a,b,c,d,e,f) if (rf_diskDebug) printf(a,b,c,d,e,f)
+#define DPRINTF7(a,b,c,d,e,f,g) if (rf_diskDebug) printf(a,b,c,d,e,f,g)
+
+/**************************************************************************
+ *
+ * initialize the disks comprising the array
+ *
+ * We want the spare disks to have regular row,col numbers so that we can
+ * easily substitue a spare for a failed disk. But, the driver code assumes
+ * throughout that the array contains numRow by numCol _non-spare_ disks, so
+ * it's not clear how to fit in the spares. This is an unfortunate holdover
+ * from raidSim. The quick and dirty fix is to make row zero bigger than the
+ * rest, and put all the spares in it. This probably needs to get changed
+ * eventually.
+ *
+ **************************************************************************/
+
+int
+rf_ConfigureDisks( listp, raidPtr, cfgPtr )
+ RF_ShutdownList_t **listp;
+ RF_Raid_t *raidPtr;
+ RF_Config_t *cfgPtr;
+{
+ RF_RaidDisk_t **disks;
+ RF_SectorCount_t min_numblks = (RF_SectorCount_t) 0x7FFFFFFFFFFFLL;
+ RF_RowCol_t r, c;
+ int bs, ret;
+ unsigned i, count, foundone = 0, numFailuresThisRow;
+ int force;
+
+ force = cfgPtr->force;
+
+ ret = rf_AllocDiskStructures(raidPtr, cfgPtr);
+ if (ret)
+ goto fail;
+
+ disks = raidPtr->Disks;
+
+ for (r = 0; r < raidPtr->numRow; r++) {
+ numFailuresThisRow = 0;
+ for (c = 0; c < raidPtr->numCol; c++) {
+ ret = rf_ConfigureDisk(raidPtr,
+ &cfgPtr->devnames[r][c][0],
+ &disks[r][c], r, c);
+
+ if (ret)
+ goto fail;
+
+ if (disks[r][c].status == rf_ds_optimal) {
+ raidread_component_label(
+ raidPtr->raid_cinfo[r][c].ci_dev,
+ raidPtr->raid_cinfo[r][c].ci_vp,
+ &raidPtr->raid_cinfo[r][c].ci_label);
+ }
+
+ if (disks[r][c].status != rf_ds_optimal) {
+ numFailuresThisRow++;
+ } else {
+ if (disks[r][c].numBlocks < min_numblks)
+ min_numblks = disks[r][c].numBlocks;
+ DPRINTF7("Disk at row %d col %d: dev %s numBlocks %ld blockSize %d (%ld MB)\n",
+ r, c, disks[r][c].devname,
+ (long int) disks[r][c].numBlocks,
+ disks[r][c].blockSize,
+ (long int) disks[r][c].numBlocks *
+ disks[r][c].blockSize / 1024 / 1024);
+ }
+ }
+ /* XXX fix for n-fault tolerant */
+ /* XXX this should probably check to see how many failures
+ we can handle for this configuration! */
+ if (numFailuresThisRow > 0)
+ raidPtr->status[r] = rf_rs_degraded;
+ }
+
+ /* all disks must be the same size & have the same block size, bs must
+ * be a power of 2 */
+ bs = 0;
+ for (foundone = r = 0; !foundone && r < raidPtr->numRow; r++) {
+ for (c = 0; !foundone && c < raidPtr->numCol; c++) {
+ if (disks[r][c].status == rf_ds_optimal) {
+ bs = disks[r][c].blockSize;
+ foundone = 1;
+ }
+ }
+ }
+ if (!foundone) {
+ RF_ERRORMSG("RAIDFRAME: Did not find any live disks in the array.\n");
+ ret = EINVAL;
+ goto fail;
+ }
+ for (count = 0, i = 1; i; i <<= 1)
+ if (bs & i)
+ count++;
+ if (count != 1) {
+ RF_ERRORMSG1("Error: block size on disks (%d) must be a power of 2\n", bs);
+ ret = EINVAL;
+ goto fail;
+ }
+
+ if (rf_CheckLabels( raidPtr, cfgPtr )) {
+ printf("raid%d: There were fatal errors\n", raidPtr->raidid);
+ if (force != 0) {
+ printf("raid%d: Fatal errors being ignored.\n",
+ raidPtr->raidid);
+ } else {
+ ret = EINVAL;
+ goto fail;
+ }
+ }
+
+ for (r = 0; r < raidPtr->numRow; r++) {
+ for (c = 0; c < raidPtr->numCol; c++) {
+ if (disks[r][c].status == rf_ds_optimal) {
+ if (disks[r][c].blockSize != bs) {
+ RF_ERRORMSG2("Error: block size of disk at r %d c %d different from disk at r 0 c 0\n", r, c);
+ ret = EINVAL;
+ goto fail;
+ }
+ if (disks[r][c].numBlocks != min_numblks) {
+ RF_ERRORMSG3("WARNING: truncating disk at r %d c %d to %d blocks\n",
+ r, c, (int) min_numblks);
+ disks[r][c].numBlocks = min_numblks;
+ }
+ }
+ }
+ }
+
+ raidPtr->sectorsPerDisk = min_numblks;
+ raidPtr->logBytesPerSector = ffs(bs) - 1;
+ raidPtr->bytesPerSector = bs;
+ raidPtr->sectorMask = bs - 1;
+ return (0);
+
+fail:
+
+ rf_UnconfigureVnodes( raidPtr );
+
+ return (ret);
+}
+
+
+/****************************************************************************
+ * set up the data structures describing the spare disks in the array
+ * recall from the above comment that the spare disk descriptors are stored
+ * in row zero, which is specially expanded to hold them.
+ ****************************************************************************/
+int
+rf_ConfigureSpareDisks( listp, raidPtr, cfgPtr )
+ RF_ShutdownList_t ** listp;
+ RF_Raid_t * raidPtr;
+ RF_Config_t * cfgPtr;
+{
+ int i, ret;
+ unsigned int bs;
+ RF_RaidDisk_t *disks;
+ int num_spares_done;
+
+ num_spares_done = 0;
+
+ /* The space for the spares should have already been allocated by
+ * ConfigureDisks() */
+
+ disks = &raidPtr->Disks[0][raidPtr->numCol];
+ for (i = 0; i < raidPtr->numSpare; i++) {
+ ret = rf_ConfigureDisk(raidPtr, &cfgPtr->spare_names[i][0],
+ &disks[i], 0, raidPtr->numCol + i);
+ if (ret)
+ goto fail;
+ if (disks[i].status != rf_ds_optimal) {
+ RF_ERRORMSG1("Warning: spare disk %s failed TUR\n",
+ &cfgPtr->spare_names[i][0]);
+ } else {
+ disks[i].status = rf_ds_spare; /* change status to
+ * spare */
+ DPRINTF6("Spare Disk %d: dev %s numBlocks %ld blockSize %d (%ld MB)\n", i,
+ disks[i].devname,
+ (long int) disks[i].numBlocks, disks[i].blockSize,
+ (long int) disks[i].numBlocks *
+ disks[i].blockSize / 1024 / 1024);
+ }
+ num_spares_done++;
+ }
+
+ /* check sizes and block sizes on spare disks */
+ bs = 1 << raidPtr->logBytesPerSector;
+ for (i = 0; i < raidPtr->numSpare; i++) {
+ if (disks[i].blockSize != bs) {
+ RF_ERRORMSG3("Block size of %d on spare disk %s is not the same as on other disks (%d)\n", disks[i].blockSize, disks[i].devname, bs);
+ ret = EINVAL;
+ goto fail;
+ }
+ if (disks[i].numBlocks < raidPtr->sectorsPerDisk) {
+ RF_ERRORMSG3("Spare disk %s (%d blocks) is too small to serve as a spare (need %ld blocks)\n",
+ disks[i].devname, disks[i].blockSize,
+ (long int) raidPtr->sectorsPerDisk);
+ ret = EINVAL;
+ goto fail;
+ } else
+ if (disks[i].numBlocks > raidPtr->sectorsPerDisk) {
+ RF_ERRORMSG2("Warning: truncating spare disk %s to %ld blocks\n", disks[i].devname, (long int) raidPtr->sectorsPerDisk);
+
+ disks[i].numBlocks = raidPtr->sectorsPerDisk;
+ }
+ }
+
+ return (0);
+
+fail:
+
+ /* Release the hold on the main components. We've failed to allocate
+ * a spare, and since we're failing, we need to free things..
+
+ XXX failing to allocate a spare is *not* that big of a deal...
+ We *can* survive without it, if need be, esp. if we get hot
+ adding working.
+
+ If we don't fail out here, then we need a way to remove this spare...
+ that should be easier to do here than if we are "live"...
+
+ */
+
+ rf_UnconfigureVnodes( raidPtr );
+
+ return (ret);
+}
+
+static int
+rf_AllocDiskStructures(raidPtr, cfgPtr)
+ RF_Raid_t *raidPtr;
+ RF_Config_t *cfgPtr;
+{
+ RF_RaidDisk_t **disks;
+ int ret;
+ int r;
+
+ RF_CallocAndAdd(disks, raidPtr->numRow, sizeof(RF_RaidDisk_t *),
+ (RF_RaidDisk_t **), raidPtr->cleanupList);
+ if (disks == NULL) {
+ ret = ENOMEM;
+ goto fail;
+ }
+ raidPtr->Disks = disks;
+ /* get space for the device-specific stuff... */
+ RF_CallocAndAdd(raidPtr->raid_cinfo, raidPtr->numRow,
+ sizeof(struct raidcinfo *), (struct raidcinfo **),
+ raidPtr->cleanupList);
+ if (raidPtr->raid_cinfo == NULL) {
+ ret = ENOMEM;
+ goto fail;
+ }
+
+ for (r = 0; r < raidPtr->numRow; r++) {
+ /* We allocate RF_MAXSPARE on the first row so that we
+ have room to do hot-swapping of spares */
+ RF_CallocAndAdd(disks[r], raidPtr->numCol
+ + ((r == 0) ? RF_MAXSPARE : 0),
+ sizeof(RF_RaidDisk_t), (RF_RaidDisk_t *),
+ raidPtr->cleanupList);
+ if (disks[r] == NULL) {
+ ret = ENOMEM;
+ goto fail;
+ }
+ /* get more space for device specific stuff.. */
+ RF_CallocAndAdd(raidPtr->raid_cinfo[r],
+ raidPtr->numCol + ((r == 0) ? raidPtr->numSpare : 0),
+ sizeof(struct raidcinfo), (struct raidcinfo *),
+ raidPtr->cleanupList);
+ if (raidPtr->raid_cinfo[r] == NULL) {
+ ret = ENOMEM;
+ goto fail;
+ }
+ }
+ return(0);
+fail:
+ rf_UnconfigureVnodes( raidPtr );
+
+ return(ret);
+}
+
+
+/* configure a single disk during auto-configuration at boot */
+int
+rf_AutoConfigureDisks(raidPtr, cfgPtr, auto_config)
+ RF_Raid_t *raidPtr;
+ RF_Config_t *cfgPtr;
+ RF_AutoConfig_t *auto_config;
+{
+ RF_RaidDisk_t **disks;
+ RF_RaidDisk_t *diskPtr;
+ RF_RowCol_t r, c;
+ RF_SectorCount_t min_numblks = (RF_SectorCount_t) 0x7FFFFFFFFFFFLL;
+ int bs, ret;
+ int numFailuresThisRow;
+ int force;
+ RF_AutoConfig_t *ac;
+ int parity_good;
+ int mod_counter;
+ int mod_counter_found;
+
+ rf_printf(0, "Starting autoconfiguration of RAID set...\n");
+ force = cfgPtr->force;
+
+ ret = rf_AllocDiskStructures(raidPtr, cfgPtr);
+ if (ret)
+ goto fail;
+
+ disks = raidPtr->Disks;
+
+ /* assume the parity will be fine.. */
+ parity_good = RF_RAID_CLEAN;
+
+ /* Check for mod_counters that are too low */
+ mod_counter_found = 0;
+ mod_counter = 0;
+ ac = auto_config;
+ while(ac!=NULL) {
+ if (mod_counter_found==0) {
+ mod_counter = ac->clabel->mod_counter;
+ mod_counter_found = 1;
+ } else {
+ if (ac->clabel->mod_counter > mod_counter) {
+ mod_counter = ac->clabel->mod_counter;
+ }
+ }
+ ac->flag = 0; /* clear the general purpose flag */
+ ac = ac->next;
+ }
+
+ bs = 0;
+ for (r = 0; r < raidPtr->numRow; r++) {
+ numFailuresThisRow = 0;
+ for (c = 0; c < raidPtr->numCol; c++) {
+ diskPtr = &disks[r][c];
+
+ /* find this row/col in the autoconfig */
+ rf_printf(1, "Looking for %d,%d in autoconfig\n",r,c);
+ ac = auto_config;
+ while(ac!=NULL) {
+ if (ac->clabel==NULL) {
+ /* big-time bad news. */
+ goto fail;
+ }
+ if ((ac->clabel->row == r) &&
+ (ac->clabel->column == c) &&
+ (ac->clabel->mod_counter == mod_counter)) {
+ /* it's this one... */
+ /* flag it as 'used', so we don't
+ free it later. */
+ ac->flag = 1;
+ rf_printf(1, "Found: %s at %d,%d\n",
+ ac->devname, r, c);
+ break;
+ }
+ ac=ac->next;
+ }
+
+ if (ac==NULL) {
+ /* we didn't find an exact match with a
+ correct mod_counter above... can we
+ find one with an incorrect mod_counter
+ to use instead? (this one, if we find
+ it, will be marked as failed once the
+ set configures)
+ */
+
+ ac = auto_config;
+ while(ac!=NULL) {
+ if (ac->clabel==NULL) {
+ /* big-time bad news. */
+ goto fail;
+ }
+ if ((ac->clabel->row == r) &&
+ (ac->clabel->column == c)) {
+ /* it's this one...
+ flag it as 'used', so we
+ don't free it later. */
+ ac->flag = 1;
+ rf_printf(1, "Found(low mod_counter): %s at %d,%d\n",
+ ac->devname,r,c);
+
+ break;
+ }
+ ac=ac->next;
+ }
+ }
+
+
+
+ if (ac!=NULL) {
+ /* Found it. Configure it.. */
+ diskPtr->blockSize = ac->clabel->blockSize;
+ diskPtr->numBlocks = ac->clabel->numBlocks;
+ /* Note: rf_protectedSectors is already
+ factored into numBlocks here */
+ raidPtr->raid_cinfo[r][c].ci_vp = ac->vp;
+ raidPtr->raid_cinfo[r][c].ci_dev = ac->dev;
+
+ memcpy(&raidPtr->raid_cinfo[r][c].ci_label,
+ ac->clabel, sizeof(*ac->clabel));
+ sprintf(diskPtr->devname, "/dev/%s",
+ ac->devname);
+
+ /* note the fact that this component was
+ autoconfigured. You'll need this info
+ later. Trust me :) */
+ diskPtr->auto_configured = 1;
+ diskPtr->dev = ac->dev;
+
+ /*
+ * we allow the user to specify that
+ * only a fraction of the disks should
+ * be used this is just for debug: it
+ * speeds up the parity scan
+ */
+
+ diskPtr->numBlocks = diskPtr->numBlocks *
+ rf_sizePercentage / 100;
+
+ /* XXX these will get set multiple times,
+ but since we're autoconfiguring, they'd
+ better be always the same each time!
+ If not, this is the least of your worries */
+
+ bs = diskPtr->blockSize;
+ min_numblks = diskPtr->numBlocks;
+
+ /* this gets done multiple times, but that's
+ fine -- the serial number will be the same
+ for all components, guaranteed */
+ raidPtr->serial_number =
+ ac->clabel->serial_number;
+ /* check the last time the label
+ was modified */
+ if (ac->clabel->mod_counter !=
+ mod_counter) {
+ /* Even though we've filled in all
+ of the above, we don't trust
+ this component since it's
+ modification counter is not
+ in sync with the rest, and we really
+ consider it to be failed. */
+ disks[r][c].status = rf_ds_failed;
+ numFailuresThisRow++;
+ } else {
+ if (ac->clabel->clean !=
+ RF_RAID_CLEAN) {
+ parity_good = RF_RAID_DIRTY;
+ }
+ }
+ } else {
+ /* Didn't find it at all!!
+ Component must really be dead */
+ disks[r][c].status = rf_ds_failed;
+ sprintf(disks[r][c].devname,"component%d",
+ r * raidPtr->numCol + c);
+ numFailuresThisRow++;
+ }
+ }
+ /* XXX fix for n-fault tolerant */
+ /* XXX this should probably check to see how many failures
+ we can handle for this configuration! */
+ if (numFailuresThisRow > 0)
+ raidPtr->status[r] = rf_rs_degraded;
+ }
+
+ /* close the device for the ones that didn't get used */
+
+ ac = auto_config;
+ while(ac!=NULL) {
+ if (ac->flag == 0) {
+#if defined(__NetBSD__)
+ vn_lock(ac->vp, LK_EXCLUSIVE | LK_RETRY);
+#elif defined(__FreeBSD__)
+ vn_lock(ac->vp, LK_EXCLUSIVE | LK_RETRY,
+ raidPtr->engine_thread);
+#endif
+ VOP_CLOSE(ac->vp, FREAD | FWRITE, NOCRED, 0);
+ vput(ac->vp);
+ ac->vp = NULL;
+ rf_printf(1, "Released %s from auto-config set.\n",
+ ac->devname);
+ }
+ ac = ac->next;
+ }
+
+ raidPtr->mod_counter = mod_counter;
+
+ /* note the state of the parity, if any */
+ raidPtr->parity_good = parity_good;
+ raidPtr->sectorsPerDisk = min_numblks;
+ raidPtr->logBytesPerSector = ffs(bs) - 1;
+ raidPtr->bytesPerSector = bs;
+ raidPtr->sectorMask = bs - 1;
+ return (0);
+
+fail:
+
+ rf_UnconfigureVnodes( raidPtr );
+
+ return (ret);
+
+}
+
+/* configure a single disk in the array */
+int
+rf_ConfigureDisk(raidPtr, buf, diskPtr, row, col)
+ RF_Raid_t *raidPtr;
+ char *buf;
+ RF_RaidDisk_t *diskPtr;
+ RF_RowCol_t row;
+ RF_RowCol_t col;
+{
+ char *p;
+ int retcode;
+
+ int error;
+
+ retcode = 0;
+ p = rf_find_non_white(buf);
+ if (p[strlen(p) - 1] == '\n') {
+ /* strip off the newline */
+ p[strlen(p) - 1] = '\0';
+ }
+ (void) strcpy(diskPtr->devname, p);
+
+ /* Let's start by claiming the component is fine and well... */
+ diskPtr->status = rf_ds_optimal;
+
+ raidPtr->raid_cinfo[row][col].ci_vp = NULL;
+ raidPtr->raid_cinfo[row][col].ci_dev = NULL;
+
+ error = raid_getcomponentsize(raidPtr, row, col);
+ if (error) {
+ printf("raidlookup on device: %s failed!\n", diskPtr->devname);
+ if (error == ENXIO) {
+ /* the component isn't there... must be dead :-( */
+ diskPtr->status = rf_ds_failed;
+ return (error);
+ }
+ }
+ return (0);
+}
+
+static void
+rf_print_label_status( raidPtr, row, column, dev_name, ci_label )
+ RF_Raid_t *raidPtr;
+ int row;
+ int column;
+ char *dev_name;
+ RF_ComponentLabel_t *ci_label;
+{
+
+ printf("raid%d: Component %s being configured at row: %d col: %d\n",
+ raidPtr->raidid, dev_name, row, column );
+ printf(" Row: %d Column: %d Num Rows: %d Num Columns: %d\n",
+ ci_label->row, ci_label->column,
+ ci_label->num_rows, ci_label->num_columns);
+ printf(" Version: %d Serial Number: %d Mod Counter: %d\n",
+ ci_label->version, ci_label->serial_number,
+ ci_label->mod_counter);
+ printf(" Clean: %s Status: %d\n",
+ ci_label->clean ? "Yes" : "No", ci_label->status );
+}
+
+static int rf_check_label_vitals( raidPtr, row, column, dev_name, ci_label,
+ serial_number, mod_counter )
+ RF_Raid_t *raidPtr;
+ int row;
+ int column;
+ char *dev_name;
+ RF_ComponentLabel_t *ci_label;
+ int serial_number;
+ int mod_counter;
+{
+ int fatal_error = 0;
+
+ if (serial_number != ci_label->serial_number) {
+ printf("%s has a different serial number: %d %d\n",
+ dev_name, serial_number, ci_label->serial_number);
+ fatal_error = 1;
+ }
+ if (mod_counter != ci_label->mod_counter) {
+ printf("%s has a different modfication count: %d %d\n",
+ dev_name, mod_counter, ci_label->mod_counter);
+ }
+
+ if (row != ci_label->row) {
+ printf("Row out of alignment for: %s\n", dev_name);
+ fatal_error = 1;
+ }
+ if (column != ci_label->column) {
+ printf("Column out of alignment for: %s\n", dev_name);
+ fatal_error = 1;
+ }
+ if (raidPtr->numRow != ci_label->num_rows) {
+ printf("Number of rows do not match for: %s\n", dev_name);
+ fatal_error = 1;
+ }
+ if (raidPtr->numCol != ci_label->num_columns) {
+ printf("Number of columns do not match for: %s\n", dev_name);
+ fatal_error = 1;
+ }
+ if (ci_label->clean == 0) {
+ /* it's not clean, but that's not fatal */
+ printf("%s is not clean!\n", dev_name);
+ }
+ return(fatal_error);
+}
+
+
+/*
+
+ rf_CheckLabels() - check all the component labels for consistency.
+ Return an error if there is anything major amiss.
+
+ */
+
+int
+rf_CheckLabels( raidPtr, cfgPtr )
+ RF_Raid_t *raidPtr;
+ RF_Config_t *cfgPtr;
+{
+ int r,c;
+ char *dev_name;
+ RF_ComponentLabel_t *ci_label;
+ int serial_number = 0;
+ int mod_number = 0;
+ int fatal_error = 0;
+ int mod_values[4];
+ int mod_count[4];
+ int ser_values[4];
+ int ser_count[4];
+ int num_ser;
+ int num_mod;
+ int i;
+ int found;
+ int hosed_row;
+ int hosed_column;
+ int too_fatal;
+ int parity_good;
+ int force;
+
+ hosed_row = -1;
+ hosed_column = -1;
+ too_fatal = 0;
+ force = cfgPtr->force;
+
+ /*
+ We're going to try to be a little intelligent here. If one
+ component's label is bogus, and we can identify that it's the
+ *only* one that's gone, we'll mark it as "failed" and allow
+ the configuration to proceed. This will be the *only* case
+ that we'll proceed if there would be (otherwise) fatal errors.
+
+ Basically we simply keep a count of how many components had
+ what serial number. If all but one agree, we simply mark
+ the disagreeing component as being failed, and allow
+ things to come up "normally".
+
+ We do this first for serial numbers, and then for "mod_counter".
+
+ */
+
+ num_ser = 0;
+ num_mod = 0;
+ for (r = 0; r < raidPtr->numRow && !fatal_error ; r++) {
+ for (c = 0; c < raidPtr->numCol; c++) {
+ ci_label = &raidPtr->raid_cinfo[r][c].ci_label;
+ found=0;
+ for(i=0;i<num_ser;i++) {
+ if (ser_values[i] == ci_label->serial_number) {
+ ser_count[i]++;
+ found=1;
+ break;
+ }
+ }
+ if (!found) {
+ ser_values[num_ser] = ci_label->serial_number;
+ ser_count[num_ser] = 1;
+ num_ser++;
+ if (num_ser>2) {
+ fatal_error = 1;
+ break;
+ }
+ }
+ found=0;
+ for(i=0;i<num_mod;i++) {
+ if (mod_values[i] == ci_label->mod_counter) {
+ mod_count[i]++;
+ found=1;
+ break;
+ }
+ }
+ if (!found) {
+ mod_values[num_mod] = ci_label->mod_counter;
+ mod_count[num_mod] = 1;
+ num_mod++;
+ if (num_mod>2) {
+ fatal_error = 1;
+ break;
+ }
+ }
+ }
+ }
+ rf_printf(1, "raid%d: Summary of serial numbers:\n", raidPtr->raidid);
+ for(i=0;i<num_ser;i++) {
+ rf_printf(1, "%d %d\n", ser_values[i], ser_count[i]);
+ }
+ rf_printf(1, "raid%d: Summary of mod counters:\n", raidPtr->raidid);
+ for(i=0;i<num_mod;i++) {
+ rf_printf(1, "%d %d\n", mod_values[i], mod_count[i]);
+ }
+ serial_number = ser_values[0];
+ if (num_ser == 2) {
+ if ((ser_count[0] == 1) || (ser_count[1] == 1)) {
+ /* Locate the maverick component */
+ if (ser_count[1] > ser_count[0]) {
+ serial_number = ser_values[1];
+ }
+ for (r = 0; r < raidPtr->numRow; r++) {
+ for (c = 0; c < raidPtr->numCol; c++) {
+ ci_label = &raidPtr->raid_cinfo[r][c].ci_label;
+ if (serial_number !=
+ ci_label->serial_number) {
+ hosed_row = r;
+ hosed_column = c;
+ break;
+ }
+ }
+ }
+ printf("Hosed component: %s\n",
+ &cfgPtr->devnames[hosed_row][hosed_column][0]);
+ if (!force) {
+ /* we'll fail this component, as if there are
+ other major errors, we arn't forcing things
+ and we'll abort the config anyways */
+ raidPtr->Disks[hosed_row][hosed_column].status
+ = rf_ds_failed;
+ raidPtr->numFailures++;
+ raidPtr->status[hosed_row] = rf_rs_degraded;
+ }
+ } else {
+ too_fatal = 1;
+ }
+ if (cfgPtr->parityConfig == '0') {
+ /* We've identified two different serial numbers.
+ RAID 0 can't cope with that, so we'll punt */
+ too_fatal = 1;
+ }
+
+ }
+
+ /* record the serial number for later. If we bail later, setting
+ this doesn't matter, otherwise we've got the best guess at the
+ correct serial number */
+ raidPtr->serial_number = serial_number;
+
+ mod_number = mod_values[0];
+ if (num_mod == 2) {
+ if ((mod_count[0] == 1) || (mod_count[1] == 1)) {
+ /* Locate the maverick component */
+ if (mod_count[1] > mod_count[0]) {
+ mod_number = mod_values[1];
+ } else if (mod_count[1] < mod_count[0]) {
+ mod_number = mod_values[0];
+ } else {
+ /* counts of different modification values
+ are the same. Assume greater value is
+ the correct one, all other things
+ considered */
+ if (mod_values[0] > mod_values[1]) {
+ mod_number = mod_values[0];
+ } else {
+ mod_number = mod_values[1];
+ }
+
+ }
+ for (r = 0; r < raidPtr->numRow && !too_fatal ; r++) {
+ for (c = 0; c < raidPtr->numCol; c++) {
+ ci_label = &raidPtr->raid_cinfo[r][c].ci_label;
+ if (mod_number !=
+ ci_label->mod_counter) {
+ if ( ( hosed_row == r ) &&
+ ( hosed_column == c )) {
+ /* same one. Can
+ deal with it. */
+ } else {
+ hosed_row = r;
+ hosed_column = c;
+ if (num_ser != 1) {
+ too_fatal = 1;
+ break;
+ }
+ }
+ }
+ }
+ }
+ printf("Hosed component: %s\n",
+ &cfgPtr->devnames[hosed_row][hosed_column][0]);
+ if (!force) {
+ /* we'll fail this component, as if there are
+ other major errors, we arn't forcing things
+ and we'll abort the config anyways */
+ if (raidPtr->Disks[hosed_row][hosed_column].status != rf_ds_failed) {
+ raidPtr->Disks[hosed_row][hosed_column].status
+ = rf_ds_failed;
+ raidPtr->numFailures++;
+ raidPtr->status[hosed_row] = rf_rs_degraded;
+ }
+ }
+ } else {
+ too_fatal = 1;
+ }
+ if (cfgPtr->parityConfig == '0') {
+ /* We've identified two different mod counters.
+ RAID 0 can't cope with that, so we'll punt */
+ too_fatal = 1;
+ }
+ }
+
+ raidPtr->mod_counter = mod_number;
+
+ if (too_fatal) {
+ /* we've had both a serial number mismatch, and a mod_counter
+ mismatch -- and they involved two different components!!
+ Bail -- make things fail so that the user must force
+ the issue... */
+ hosed_row = -1;
+ hosed_column = -1;
+ }
+
+ if (num_ser > 2) {
+ printf("raid%d: Too many different serial numbers!\n",
+ raidPtr->raidid);
+ }
+
+ if (num_mod > 2) {
+ printf("raid%d: Too many different mod counters!\n",
+ raidPtr->raidid);
+ }
+
+ /* we start by assuming the parity will be good, and flee from
+ that notion at the slightest sign of trouble */
+
+ parity_good = RF_RAID_CLEAN;
+ for (r = 0; r < raidPtr->numRow; r++) {
+ for (c = 0; c < raidPtr->numCol; c++) {
+ dev_name = &cfgPtr->devnames[r][c][0];
+ ci_label = &raidPtr->raid_cinfo[r][c].ci_label;
+
+ if ((r == hosed_row) && (c == hosed_column)) {
+ printf("raid%d: Ignoring %s\n",
+ raidPtr->raidid, dev_name);
+ } else {
+ rf_print_label_status( raidPtr, r, c,
+ dev_name, ci_label );
+ if (rf_check_label_vitals( raidPtr, r, c,
+ dev_name, ci_label,
+ serial_number,
+ mod_number )) {
+ fatal_error = 1;
+ }
+ if (ci_label->clean != RF_RAID_CLEAN) {
+ parity_good = RF_RAID_DIRTY;
+ }
+ }
+ }
+ }
+ if (fatal_error) {
+ parity_good = RF_RAID_DIRTY;
+ }
+
+ /* we note the state of the parity */
+ raidPtr->parity_good = parity_good;
+
+ return(fatal_error);
+}
+
+int
+rf_add_hot_spare(raidPtr, sparePtr)
+ RF_Raid_t *raidPtr;
+ RF_SingleComponent_t *sparePtr;
+{
+ RF_RaidDisk_t *disks;
+ RF_DiskQueue_t *spareQueues;
+ int ret;
+ unsigned int bs;
+ int spare_number;
+
+#if 0
+ printf("Just in rf_add_hot_spare: %d\n",raidPtr->numSpare);
+ printf("Num col: %d\n",raidPtr->numCol);
+#endif
+ if (raidPtr->numSpare >= RF_MAXSPARE) {
+ RF_ERRORMSG1("Too many spares: %d\n", raidPtr->numSpare);
+ return(EINVAL);
+ }
+
+ RF_LOCK_MUTEX(raidPtr->mutex);
+
+ /* the beginning of the spares... */
+ disks = &raidPtr->Disks[0][raidPtr->numCol];
+
+ spare_number = raidPtr->numSpare;
+
+ ret = rf_ConfigureDisk(raidPtr, sparePtr->component_name,
+ &disks[spare_number], 0,
+ raidPtr->numCol + spare_number);
+
+ if (ret)
+ goto fail;
+ if (disks[spare_number].status != rf_ds_optimal) {
+ RF_ERRORMSG1("Warning: spare disk %s failed TUR\n",
+ sparePtr->component_name);
+ ret=EINVAL;
+ goto fail;
+ } else {
+ disks[spare_number].status = rf_ds_spare;
+ DPRINTF6("Spare Disk %d: dev %s numBlocks %ld blockSize %d (%ld MB)\n", spare_number,
+ disks[spare_number].devname,
+ (long int) disks[spare_number].numBlocks,
+ disks[spare_number].blockSize,
+ (long int) disks[spare_number].numBlocks *
+ disks[spare_number].blockSize / 1024 / 1024);
+ }
+
+
+ /* check sizes and block sizes on the spare disk */
+ bs = 1 << raidPtr->logBytesPerSector;
+ if (disks[spare_number].blockSize != bs) {
+ RF_ERRORMSG3("Block size of %d on spare disk %s is not the same as on other disks (%d)\n", disks[spare_number].blockSize, disks[spare_number].devname, bs);
+ ret = EINVAL;
+ goto fail;
+ }
+ if (disks[spare_number].numBlocks < raidPtr->sectorsPerDisk) {
+ RF_ERRORMSG3("Spare disk %s (%d blocks) is too small to serve as a spare (need %ld blocks)\n",
+ disks[spare_number].devname,
+ disks[spare_number].blockSize,
+ (long int) raidPtr->sectorsPerDisk);
+ ret = EINVAL;
+ goto fail;
+ } else {
+ if (disks[spare_number].numBlocks >
+ raidPtr->sectorsPerDisk) {
+ RF_ERRORMSG2("Warning: truncating spare disk %s to %ld blocks\n", disks[spare_number].devname,
+ (long int) raidPtr->sectorsPerDisk);
+
+ disks[spare_number].numBlocks = raidPtr->sectorsPerDisk;
+ }
+ }
+
+ spareQueues = &raidPtr->Queues[0][raidPtr->numCol];
+ ret = rf_ConfigureDiskQueue( raidPtr, &spareQueues[spare_number],
+ 0, raidPtr->numCol + spare_number,
+ raidPtr->qType,
+ raidPtr->sectorsPerDisk,
+ raidPtr->Disks[0][raidPtr->numCol +
+ spare_number].dev,
+ raidPtr->maxOutstanding,
+ &raidPtr->shutdownList,
+ raidPtr->cleanupList);
+
+
+ raidPtr->numSpare++;
+ RF_UNLOCK_MUTEX(raidPtr->mutex);
+ return (0);
+
+fail:
+ RF_UNLOCK_MUTEX(raidPtr->mutex);
+ return(ret);
+}
+
+int
+rf_remove_hot_spare(raidPtr,sparePtr)
+ RF_Raid_t *raidPtr;
+ RF_SingleComponent_t *sparePtr;
+{
+ int spare_number;
+
+
+ if (raidPtr->numSpare==0) {
+ printf("No spares to remove!\n");
+ return(EINVAL);
+ }
+
+ spare_number = sparePtr->column;
+
+ return(EINVAL); /* XXX not implemented yet */
+#if 0
+ if (spare_number < 0 || spare_number > raidPtr->numSpare) {
+ return(EINVAL);
+ }
+
+ /* verify that this spare isn't in use... */
+
+
+
+
+ /* it's gone.. */
+
+ raidPtr->numSpare--;
+
+ return(0);
+#endif
+}
+
+
+int
+rf_delete_component(raidPtr,component)
+ RF_Raid_t *raidPtr;
+ RF_SingleComponent_t *component;
+{
+ RF_RaidDisk_t *disks;
+
+ if ((component->row < 0) ||
+ (component->row >= raidPtr->numRow) ||
+ (component->column < 0) ||
+ (component->column >= raidPtr->numCol)) {
+ return(EINVAL);
+ }
+
+ disks = &raidPtr->Disks[component->row][component->column];
+
+ /* 1. This component must be marked as 'failed' */
+
+ return(EINVAL); /* Not implemented yet. */
+}
+
+int
+rf_incorporate_hot_spare(raidPtr,component)
+ RF_Raid_t *raidPtr;
+ RF_SingleComponent_t *component;
+{
+
+ /* Issues here include how to 'move' this in if there is IO
+ taking place (e.g. component queues and such) */
+
+ return(EINVAL); /* Not implemented yet. */
+}
diff --git a/sys/dev/raidframe/rf_disks.h b/sys/dev/raidframe/rf_disks.h
new file mode 100644
index 0000000..b57c4f8
--- /dev/null
+++ b/sys/dev/raidframe/rf_disks.h
@@ -0,0 +1,108 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_disks.h,v 1.8 2000/03/27 03:25:17 oster Exp $ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Mark Holland
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+/*
+ * rf_disks.h -- header file for code related to physical disks
+ */
+
+#ifndef _RF__RF_DISKS_H_
+#define _RF__RF_DISKS_H_
+
+#include <sys/types.h>
+
+#include <dev/raidframe/rf_archs.h>
+#include <dev/raidframe/rf_types.h>
+#include <dev/raidframe/rf_bsd.h>
+
+/*
+ * A physical disk can be in one of several states:
+ * IF YOU ADD A STATE, CHECK TO SEE IF YOU NEED TO MODIFY RF_DEAD_DISK() BELOW.
+ */
+enum RF_DiskStatus_e {
+ rf_ds_optimal, /* no problems */
+ rf_ds_failed, /* reconstruction ongoing */
+ rf_ds_reconstructing, /* reconstruction complete to spare, dead disk
+ * not yet replaced */
+ rf_ds_dist_spared, /* reconstruction complete to distributed
+ * spare space, dead disk not yet replaced */
+ rf_ds_spared, /* reconstruction complete to distributed
+ * spare space, dead disk not yet replaced */
+ rf_ds_spare, /* an available spare disk */
+ rf_ds_used_spare /* a spare which has been used, and hence is
+ * not available */
+};
+typedef enum RF_DiskStatus_e RF_DiskStatus_t;
+
+struct RF_RaidDisk_s {
+ char devname[56]; /* name of device file */
+ RF_DiskStatus_t status; /* whether it is up or down */
+ RF_RowCol_t spareRow; /* if in status "spared", this identifies the
+ * spare disk */
+ RF_RowCol_t spareCol; /* if in status "spared", this identifies the
+ * spare disk */
+ RF_SectorCount_t numBlocks; /* number of blocks, obtained via READ
+ * CAPACITY */
+ int blockSize;
+ RF_SectorCount_t partitionSize; /* The *actual* and *full* size of
+ the partition, from the disklabel */
+ int auto_configured;/* 1 if this component was autoconfigured.
+ 0 otherwise. */
+ dev_t dev;
+};
+/*
+ * An RF_DiskOp_t ptr is really a pointer to a UAGT_CCB, but I want
+ * to isolate the cam layer from all other layers, so I typecast to/from
+ * RF_DiskOp_t * (i.e. void *) at the interfaces.
+ */
+typedef void RF_DiskOp_t;
+
+/* if a disk is in any of these states, it is inaccessible */
+#define RF_DEAD_DISK(_dstat_) (((_dstat_) == rf_ds_spared) || \
+ ((_dstat_) == rf_ds_reconstructing) || ((_dstat_) == rf_ds_failed) || \
+ ((_dstat_) == rf_ds_dist_spared))
+
+#ifdef _KERNEL
+#include <dev/raidframe/rf_bsd.h>
+
+int rf_ConfigureDisks(RF_ShutdownList_t ** listp, RF_Raid_t * raidPtr,
+ RF_Config_t * cfgPtr);
+int rf_ConfigureSpareDisks(RF_ShutdownList_t ** listp, RF_Raid_t * raidPtr,
+ RF_Config_t * cfgPtr);
+int rf_ConfigureDisk(RF_Raid_t * raidPtr, char *buf, RF_RaidDisk_t * diskPtr,
+ RF_RowCol_t row, RF_RowCol_t col);
+int rf_AutoConfigureDisks(RF_Raid_t *raidPtr, RF_Config_t *cfgPtr,
+ RF_AutoConfig_t *auto_config);
+int rf_CheckLabels( RF_Raid_t *, RF_Config_t *);
+int rf_add_hot_spare(RF_Raid_t *raidPtr, RF_SingleComponent_t *sparePtr);
+int rf_remove_hot_spare(RF_Raid_t *raidPtr, RF_SingleComponent_t *sparePtr);
+int rf_delete_component(RF_Raid_t *raidPtr, RF_SingleComponent_t *component);
+int rf_incorporate_hot_spare(RF_Raid_t *raidPtr,
+ RF_SingleComponent_t *component);
+#endif /* _KERNEL */
+#endif /* !_RF__RF_DISKS_H_ */
diff --git a/sys/dev/raidframe/rf_driver.c b/sys/dev/raidframe/rf_driver.c
new file mode 100644
index 0000000..3f3fe1a
--- /dev/null
+++ b/sys/dev/raidframe/rf_driver.c
@@ -0,0 +1,1048 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_driver.c,v 1.39 2000/12/15 02:12:58 oster Exp $ */
+/*-
+ * Copyright (c) 1999 The NetBSD Foundation, Inc.
+ * All rights reserved.
+ *
+ * This code is derived from software contributed to The NetBSD Foundation
+ * by Greg Oster
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. All advertising materials mentioning features or use of this software
+ * must display the following acknowledgement:
+ * This product includes software developed by the NetBSD
+ * Foundation, Inc. and its contributors.
+ * 4. Neither the name of The NetBSD Foundation nor the names of its
+ * contributors may be used to endorse or promote products derived
+ * from this software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
+ * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
+ * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+ * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
+ * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ * POSSIBILITY OF SUCH DAMAGE.
+ */
+
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Mark Holland, Khalil Amiri, Claudson Bornstein, William V. Courtright II,
+ * Robby Findler, Daniel Stodolsky, Rachad Youssef, Jim Zelenka
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+/******************************************************************************
+ *
+ * rf_driver.c -- main setup, teardown, and access routines for the RAID driver
+ *
+ * all routines are prefixed with rf_ (raidframe), to avoid conficts.
+ *
+ ******************************************************************************/
+
+
+#include <sys/types.h>
+#include <sys/param.h>
+#include <sys/systm.h>
+#if defined(__NetBSD__)
+#include <sys/ioctl.h>
+#elif defined(__FreeBSD__)
+#include <sys/ioccom.h>
+#include <sys/filio.h>
+#endif
+#include <sys/fcntl.h>
+#include <sys/vnode.h>
+
+
+#include <dev/raidframe/rf_archs.h>
+#include <dev/raidframe/rf_threadstuff.h>
+
+#include <sys/errno.h>
+
+#include <dev/raidframe/rf_raid.h>
+#include <dev/raidframe/rf_dag.h>
+#include <dev/raidframe/rf_aselect.h>
+#include <dev/raidframe/rf_diskqueue.h>
+#include <dev/raidframe/rf_parityscan.h>
+#include <dev/raidframe/rf_alloclist.h>
+#include <dev/raidframe/rf_dagutils.h>
+#include <dev/raidframe/rf_utils.h>
+#include <dev/raidframe/rf_etimer.h>
+#include <dev/raidframe/rf_acctrace.h>
+#include <dev/raidframe/rf_configure.h>
+#include <dev/raidframe/rf_general.h>
+#include <dev/raidframe/rf_desc.h>
+#include <dev/raidframe/rf_states.h>
+#include <dev/raidframe/rf_freelist.h>
+#include <dev/raidframe/rf_decluster.h>
+#include <dev/raidframe/rf_map.h>
+#include <dev/raidframe/rf_revent.h>
+#include <dev/raidframe/rf_callback.h>
+#include <dev/raidframe/rf_engine.h>
+#include <dev/raidframe/rf_memchunk.h>
+#include <dev/raidframe/rf_mcpair.h>
+#include <dev/raidframe/rf_nwayxor.h>
+#include <dev/raidframe/rf_debugprint.h>
+#include <dev/raidframe/rf_copyback.h>
+#include <dev/raidframe/rf_driver.h>
+#include <dev/raidframe/rf_options.h>
+#include <dev/raidframe/rf_shutdown.h>
+#include <dev/raidframe/rf_kintf.h>
+
+#if defined(__FreeBSD__) && __FreeBSD_version > 500005
+#include <sys/bio.h>
+#endif
+
+#include <sys/buf.h>
+
+/* rad == RF_RaidAccessDesc_t */
+static RF_FreeList_t *rf_rad_freelist;
+#define RF_MAX_FREE_RAD 128
+#define RF_RAD_INC 16
+#define RF_RAD_INITIAL 32
+
+/* debug variables */
+char rf_panicbuf[2048]; /* a buffer to hold an error msg when we panic */
+
+/* main configuration routines */
+static int raidframe_booted = 0;
+
+static void rf_ConfigureDebug(RF_Config_t * cfgPtr);
+static void set_debug_option(char *name, long val);
+static void rf_UnconfigureArray(void);
+static int init_rad(RF_RaidAccessDesc_t *);
+static void clean_rad(RF_RaidAccessDesc_t *);
+static void rf_ShutdownRDFreeList(void *);
+static int rf_ConfigureRDFreeList(RF_ShutdownList_t **);
+
+RF_DECLARE_MUTEX(rf_printf_mutex) /* debug only: avoids interleaved
+ * printfs by different stripes */
+
+#define SIGNAL_QUIESCENT_COND(_raid_) wakeup(&((_raid_)->accesses_suspended))
+#define WAIT_FOR_QUIESCENCE(_raid_) \
+ RF_LTSLEEP(&((_raid_)->accesses_suspended), PRIBIO, \
+ "raidframe quiesce", 0, &((_raid_)->access_suspend_mutex))
+
+#if defined(__FreeBSD__) && __FreeBSD_version > 500005
+#define IO_BUF_ERR(bp, err) { \
+ bp->bio_flags |= BIO_ERROR; \
+ bp->bio_resid = bp->bio_bcount; \
+ bp->bio_error = err; \
+ biodone(bp); \
+};
+#else
+#define IO_BUF_ERR(bp, err) { \
+ bp->b_flags |= B_ERROR; \
+ bp->b_resid = bp->b_bcount; \
+ bp->b_error = err; \
+ biodone(bp); \
+}
+#endif
+
+static int configureCount = 0; /* number of active configurations */
+static int configInProgress = 0; /* configuration is in progress and code
+ * needs to be serialized. */
+static int isconfigged = 0; /* is basic raidframe (non per-array)
+ * stuff configged */
+RF_DECLARE_STATIC_MUTEX(configureMutex) /* used to lock the configuration
+ * stuff */
+static RF_ShutdownList_t *globalShutdown; /* non array-specific
+ * stuff */
+
+/* called at system boot time */
+int
+rf_BootRaidframe()
+{
+ int rc;
+
+ if (raidframe_booted)
+ return (EBUSY);
+ raidframe_booted = 1;
+
+ rc = rf_mutex_init(&configureMutex, __FUNCTION__);
+ if (rc) {
+ RF_ERRORMSG3("Unable to init mutex file %s line %d rc=%d\n", __FILE__,
+ __LINE__, rc);
+ RF_PANIC();
+ }
+ configureCount = 0;
+ isconfigged = 0;
+ globalShutdown = NULL;
+ return (0);
+}
+/*
+ * This function is really just for debugging user-level stuff: it
+ * frees up all memory, other RAIDframe resources which might otherwise
+ * be kept around. This is used with systems like "sentinel" to detect
+ * memory leaks.
+ */
+int
+rf_UnbootRaidframe()
+{
+ int rc;
+
+ RF_LOCK_MUTEX(configureMutex);
+ if (configureCount) {
+ RF_UNLOCK_MUTEX(configureMutex);
+ return (EBUSY);
+ }
+ raidframe_booted = 0;
+ RF_UNLOCK_MUTEX(configureMutex);
+ rc = rf_mutex_destroy(&configureMutex);
+ if (rc) {
+ RF_ERRORMSG3("Unable to destroy mutex file %s line %d rc=%d\n", __FILE__,
+ __LINE__, rc);
+ RF_PANIC();
+ }
+ return (0);
+}
+/*
+ * Called whenever an array is shutdown
+ */
+static void
+rf_UnconfigureArray()
+{
+ int rc;
+
+ RF_LOCK_MUTEX(configureMutex);
+ if (--configureCount == 0) { /* if no active configurations, shut
+ * everything down */
+ isconfigged = 0;
+
+ rc = rf_ShutdownList(&globalShutdown);
+ if (rc) {
+ RF_ERRORMSG1("RAIDFRAME: unable to do global shutdown, rc=%d\n", rc);
+ }
+
+ /*
+ * We must wait until now, because the AllocList module
+ * uses the DebugMem module.
+ */
+ if (rf_memDebug)
+ rf_print_unfreed();
+ }
+ RF_UNLOCK_MUTEX(configureMutex);
+}
+
+/*
+ * Called to shut down an array.
+ */
+int
+rf_Shutdown(raidPtr)
+ RF_Raid_t *raidPtr;
+{
+
+ if (!raidPtr->valid) {
+ RF_ERRORMSG("Attempt to shut down unconfigured RAIDframe driver. Aborting shutdown\n");
+ return (EINVAL);
+ }
+ /*
+ * wait for outstanding IOs to land
+ * As described in rf_raid.h, we use the rad_freelist lock
+ * to protect the per-array info about outstanding descs
+ * since we need to do freelist locking anyway, and this
+ * cuts down on the amount of serialization we've got going
+ * on.
+ */
+ RF_FREELIST_DO_LOCK(rf_rad_freelist);
+ if (raidPtr->waitShutdown) {
+ RF_FREELIST_DO_UNLOCK(rf_rad_freelist);
+ return (EBUSY);
+ }
+ raidPtr->waitShutdown = 1;
+ while (raidPtr->nAccOutstanding) {
+ RF_WAIT_COND(raidPtr->outstandingCond, RF_FREELIST_MUTEX_OF(rf_rad_freelist));
+ }
+ RF_FREELIST_DO_UNLOCK(rf_rad_freelist);
+
+ /* Wait for any parity re-writes to stop... */
+ while (raidPtr->parity_rewrite_in_progress) {
+ printf("Waiting for parity re-write to exit...\n");
+ tsleep(&raidPtr->parity_rewrite_in_progress, PRIBIO,
+ "rfprwshutdown", 0);
+ }
+
+ raidPtr->valid = 0;
+
+ rf_update_component_labels(raidPtr, RF_FINAL_COMPONENT_UPDATE);
+
+ rf_UnconfigureVnodes(raidPtr);
+
+ rf_ShutdownList(&raidPtr->shutdownList);
+
+ rf_UnconfigureArray();
+
+ return (0);
+}
+
+
+#define DO_INIT_CONFIGURE(f) { \
+ rc = f (&globalShutdown); \
+ if (rc) { \
+ RF_ERRORMSG2("RAIDFRAME: failed %s with %d\n", RF_STRING(f), rc); \
+ rf_ShutdownList(&globalShutdown); \
+ RF_LOCK_MUTEX(configureMutex); \
+ configInProgress = 0; \
+ configureCount--; \
+ RF_UNLOCK_MUTEX(configureMutex); \
+ return(rc); \
+ } \
+}
+
+#define DO_RAID_FAIL() { \
+ rf_UnconfigureVnodes(raidPtr); \
+ rf_ShutdownList(&raidPtr->shutdownList); \
+ rf_UnconfigureArray(); \
+}
+
+#define DO_RAID_INIT_CONFIGURE(f) { \
+ rc = f (&raidPtr->shutdownList, raidPtr, cfgPtr); \
+ if (rc) { \
+ RF_ERRORMSG2("RAIDFRAME: failed %s with %d\n", RF_STRING(f), rc); \
+ DO_RAID_FAIL(); \
+ return(rc); \
+ } \
+}
+
+#define DO_RAID_MUTEX(_m_) { \
+ rc = rf_create_managed_mutex(&raidPtr->shutdownList, (_m_)); \
+ if (rc) { \
+ RF_ERRORMSG3("Unable to init mutex file %s line %d rc=%d\n", \
+ __FILE__, __LINE__, rc); \
+ DO_RAID_FAIL(); \
+ return(rc); \
+ } \
+}
+
+#define DO_RAID_COND(_c_) { \
+ rc = rf_create_managed_cond(&raidPtr->shutdownList, (_c_)); \
+ if (rc) { \
+ RF_ERRORMSG3("Unable to init cond file %s line %d rc=%d\n", \
+ __FILE__, __LINE__, rc); \
+ DO_RAID_FAIL(); \
+ return(rc); \
+ } \
+}
+
+int
+rf_Configure(raidPtr, cfgPtr, ac)
+ RF_Raid_t *raidPtr;
+ RF_Config_t *cfgPtr;
+ RF_AutoConfig_t *ac;
+{
+ RF_RowCol_t row, col;
+ int i, rc;
+
+ /* XXX This check can probably be removed now, since
+ RAIDFRAME_CONFIGURE now checks to make sure that the
+ RAID set is not already valid
+ */
+ if (raidPtr->valid) {
+ RF_ERRORMSG("RAIDframe configuration not shut down. Aborting configure.\n");
+ return (EINVAL);
+ }
+ RF_LOCK_MUTEX(configureMutex);
+ if (configInProgress == 1) {
+ RF_UNLOCK_MUTEX(configureMutex);
+ return (EBUSY);
+ }
+ configureCount++;
+ if (isconfigged == 0) {
+ configInProgress = 1;
+ RF_UNLOCK_MUTEX(configureMutex);
+ rc = rf_create_managed_mutex(&globalShutdown, &rf_printf_mutex);
+ if (rc) {
+ RF_ERRORMSG3("Unable to init mutex file %s line %d rc=%d\n", __FILE__,
+ __LINE__, rc);
+ rf_ShutdownList(&globalShutdown);
+ return (rc);
+ }
+ /* initialize globals */
+ printf("RAIDFRAME: protectedSectors is %ld\n",
+ rf_protectedSectors);
+
+ rf_clear_debug_print_buffer();
+
+ DO_INIT_CONFIGURE(rf_ConfigureAllocList);
+
+ /*
+ * Yes, this does make debugging general to the whole
+ * system instead of being array specific. Bummer, drag.
+ */
+ rf_ConfigureDebug(cfgPtr);
+ DO_INIT_CONFIGURE(rf_ConfigureDebugMem);
+ DO_INIT_CONFIGURE(rf_ConfigureAccessTrace);
+ DO_INIT_CONFIGURE(rf_ConfigureMapModule);
+ DO_INIT_CONFIGURE(rf_ConfigureReconEvent);
+ DO_INIT_CONFIGURE(rf_ConfigureCallback);
+ DO_INIT_CONFIGURE(rf_ConfigureMemChunk);
+ DO_INIT_CONFIGURE(rf_ConfigureRDFreeList);
+ DO_INIT_CONFIGURE(rf_ConfigureNWayXor);
+ DO_INIT_CONFIGURE(rf_ConfigureStripeLockFreeList);
+ DO_INIT_CONFIGURE(rf_ConfigureMCPair);
+ DO_INIT_CONFIGURE(rf_ConfigureDAGs);
+ DO_INIT_CONFIGURE(rf_ConfigureDAGFuncs);
+ DO_INIT_CONFIGURE(rf_ConfigureDebugPrint);
+ DO_INIT_CONFIGURE(rf_ConfigureReconstruction);
+ DO_INIT_CONFIGURE(rf_ConfigureCopyback);
+ DO_INIT_CONFIGURE(rf_ConfigureDiskQueueSystem);
+
+ RF_LOCK_MUTEX(configureMutex);
+ isconfigged = 1;
+ configInProgress = 0;
+ }
+ RF_UNLOCK_MUTEX(configureMutex);
+
+ DO_RAID_MUTEX(&raidPtr->mutex);
+ /* set up the cleanup list. Do this after ConfigureDebug so that
+ * value of memDebug will be set */
+
+ rf_MakeAllocList(raidPtr->cleanupList);
+ if (raidPtr->cleanupList == NULL) {
+ DO_RAID_FAIL();
+ return (ENOMEM);
+ }
+ rc = rf_ShutdownCreate(&raidPtr->shutdownList,
+ (void (*) (void *)) rf_FreeAllocList,
+ raidPtr->cleanupList);
+ if (rc) {
+ RF_ERRORMSG3("Unable to add to shutdown list file %s line %d rc=%d\n",
+ __FILE__, __LINE__, rc);
+ DO_RAID_FAIL();
+ return (rc);
+ }
+ raidPtr->numRow = cfgPtr->numRow;
+ raidPtr->numCol = cfgPtr->numCol;
+ raidPtr->numSpare = cfgPtr->numSpare;
+
+ /* XXX we don't even pretend to support more than one row in the
+ * kernel... */
+ if (raidPtr->numRow != 1) {
+ RF_ERRORMSG("Only one row supported in kernel.\n");
+ DO_RAID_FAIL();
+ return (EINVAL);
+ }
+ RF_CallocAndAdd(raidPtr->status, raidPtr->numRow, sizeof(RF_RowStatus_t),
+ (RF_RowStatus_t *), raidPtr->cleanupList);
+ if (raidPtr->status == NULL) {
+ DO_RAID_FAIL();
+ return (ENOMEM);
+ }
+ RF_CallocAndAdd(raidPtr->reconControl, raidPtr->numRow,
+ sizeof(RF_ReconCtrl_t *), (RF_ReconCtrl_t **), raidPtr->cleanupList);
+ if (raidPtr->reconControl == NULL) {
+ DO_RAID_FAIL();
+ return (ENOMEM);
+ }
+ for (i = 0; i < raidPtr->numRow; i++) {
+ raidPtr->status[i] = rf_rs_optimal;
+ raidPtr->reconControl[i] = NULL;
+ }
+
+ DO_RAID_INIT_CONFIGURE(rf_ConfigureEngine);
+ DO_RAID_INIT_CONFIGURE(rf_ConfigureStripeLocks);
+
+ DO_RAID_COND(&raidPtr->outstandingCond);
+
+ raidPtr->nAccOutstanding = 0;
+ raidPtr->waitShutdown = 0;
+
+ DO_RAID_MUTEX(&raidPtr->access_suspend_mutex);
+ DO_RAID_COND(&raidPtr->quiescent_cond);
+
+ DO_RAID_COND(&raidPtr->waitForReconCond);
+
+ DO_RAID_MUTEX(&raidPtr->recon_done_proc_mutex);
+
+ if (ac!=NULL) {
+ /* We have an AutoConfig structure.. Don't do the
+ normal disk configuration... call the auto config
+ stuff */
+ rf_AutoConfigureDisks(raidPtr, cfgPtr, ac);
+ } else {
+ DO_RAID_INIT_CONFIGURE(rf_ConfigureDisks);
+ DO_RAID_INIT_CONFIGURE(rf_ConfigureSpareDisks);
+ }
+ /* do this after ConfigureDisks & ConfigureSpareDisks to be sure dev
+ * no. is set */
+ DO_RAID_INIT_CONFIGURE(rf_ConfigureDiskQueues);
+
+ DO_RAID_INIT_CONFIGURE(rf_ConfigureLayout);
+
+ DO_RAID_INIT_CONFIGURE(rf_ConfigurePSStatus);
+
+ for (row = 0; row < raidPtr->numRow; row++) {
+ for (col = 0; col < raidPtr->numCol; col++) {
+ /*
+ * XXX better distribution
+ */
+ raidPtr->hist_diskreq[row][col] = 0;
+ }
+ }
+
+ raidPtr->numNewFailures = 0;
+ raidPtr->copyback_in_progress = 0;
+ raidPtr->parity_rewrite_in_progress = 0;
+ raidPtr->recon_in_progress = 0;
+ raidPtr->maxOutstanding = cfgPtr->maxOutstandingDiskReqs;
+
+ /* autoconfigure and root_partition will actually get filled in
+ after the config is done */
+ raidPtr->autoconfigure = 0;
+ raidPtr->root_partition = 0;
+ raidPtr->last_unit = raidPtr->raidid;
+ raidPtr->config_order = 0;
+
+ if (rf_keepAccTotals) {
+ raidPtr->keep_acc_totals = 1;
+ }
+ rf_StartUserStats(raidPtr);
+
+ raidPtr->valid = 1;
+ return (0);
+}
+
+static int
+init_rad(desc)
+ RF_RaidAccessDesc_t *desc;
+{
+ int rc;
+
+ rc = rf_mutex_init(&desc->mutex, __FUNCTION__);
+ if (rc) {
+ RF_ERRORMSG3("Unable to init mutex file %s line %d rc=%d\n", __FILE__,
+ __LINE__, rc);
+ return (rc);
+ }
+ rc = rf_cond_init(&desc->cond);
+ if (rc) {
+ RF_ERRORMSG3("Unable to init cond file %s line %d rc=%d\n", __FILE__,
+ __LINE__, rc);
+ rf_mutex_destroy(&desc->mutex);
+ return (rc);
+ }
+ return (0);
+}
+
+static void
+clean_rad(desc)
+ RF_RaidAccessDesc_t *desc;
+{
+ rf_mutex_destroy(&desc->mutex);
+ rf_cond_destroy(&desc->cond);
+}
+
+static void
+rf_ShutdownRDFreeList(ignored)
+ void *ignored;
+{
+ RF_FREELIST_DESTROY_CLEAN(rf_rad_freelist, next, (RF_RaidAccessDesc_t *), clean_rad);
+}
+
+static int
+rf_ConfigureRDFreeList(listp)
+ RF_ShutdownList_t **listp;
+{
+ int rc;
+
+ RF_FREELIST_CREATE(rf_rad_freelist, RF_MAX_FREE_RAD,
+ RF_RAD_INC, sizeof(RF_RaidAccessDesc_t));
+ if (rf_rad_freelist == NULL) {
+ return (ENOMEM);
+ }
+ rc = rf_ShutdownCreate(listp, rf_ShutdownRDFreeList, NULL);
+ if (rc) {
+ RF_ERRORMSG3("Unable to add to shutdown list file %s line %d rc=%d\n", __FILE__,
+ __LINE__, rc);
+ rf_ShutdownRDFreeList(NULL);
+ return (rc);
+ }
+ RF_FREELIST_PRIME_INIT(rf_rad_freelist, RF_RAD_INITIAL, next,
+ (RF_RaidAccessDesc_t *), init_rad);
+ return (0);
+}
+
+RF_RaidAccessDesc_t *
+rf_AllocRaidAccDesc(
+ RF_Raid_t * raidPtr,
+ RF_IoType_t type,
+ RF_RaidAddr_t raidAddress,
+ RF_SectorCount_t numBlocks,
+ caddr_t bufPtr,
+ void *bp,
+ RF_DagHeader_t ** paramDAG,
+ RF_AccessStripeMapHeader_t ** paramASM,
+ RF_RaidAccessFlags_t flags,
+ void (*cbF) (RF_Buf_t),
+ void *cbA,
+ RF_AccessState_t * states)
+{
+ RF_RaidAccessDesc_t *desc;
+
+ RF_FREELIST_GET_INIT_NOUNLOCK(rf_rad_freelist, desc, next, (RF_RaidAccessDesc_t *), init_rad);
+ if (raidPtr->waitShutdown) {
+ /*
+ * Actually, we're shutting the array down. Free the desc
+ * and return NULL.
+ */
+ RF_FREELIST_DO_UNLOCK(rf_rad_freelist);
+ RF_FREELIST_FREE_CLEAN(rf_rad_freelist, desc, next, clean_rad);
+ return (NULL);
+ }
+ raidPtr->nAccOutstanding++;
+ RF_FREELIST_DO_UNLOCK(rf_rad_freelist);
+
+ desc->raidPtr = (void *) raidPtr;
+ desc->type = type;
+ desc->raidAddress = raidAddress;
+ desc->numBlocks = numBlocks;
+ desc->bufPtr = bufPtr;
+ desc->bp = bp;
+ desc->paramDAG = paramDAG;
+ desc->paramASM = paramASM;
+ desc->flags = flags;
+ desc->states = states;
+ desc->state = 0;
+
+ desc->status = 0;
+ bzero((char *) &desc->tracerec, sizeof(RF_AccTraceEntry_t));
+ desc->callbackFunc = (void (*) (RF_CBParam_t)) cbF; /* XXX */
+ desc->callbackArg = cbA;
+ desc->next = NULL;
+ desc->head = desc;
+ desc->numPending = 0;
+ desc->cleanupList = NULL;
+ rf_MakeAllocList(desc->cleanupList);
+ return (desc);
+}
+
+void
+rf_FreeRaidAccDesc(RF_RaidAccessDesc_t * desc)
+{
+ RF_Raid_t *raidPtr = desc->raidPtr;
+
+ RF_ASSERT(desc);
+
+ rf_FreeAllocList(desc->cleanupList);
+ RF_FREELIST_FREE_CLEAN_NOUNLOCK(rf_rad_freelist, desc, next, clean_rad);
+ raidPtr->nAccOutstanding--;
+ if (raidPtr->waitShutdown) {
+ RF_SIGNAL_COND(raidPtr->outstandingCond);
+ }
+ RF_FREELIST_DO_UNLOCK(rf_rad_freelist);
+}
+/*********************************************************************
+ * Main routine for performing an access.
+ * Accesses are retried until a DAG can not be selected. This occurs
+ * when either the DAG library is incomplete or there are too many
+ * failures in a parity group.
+ ********************************************************************/
+int
+rf_DoAccess(
+ RF_Raid_t * raidPtr,
+ RF_IoType_t type,
+ int async_flag,
+ RF_RaidAddr_t raidAddress,
+ RF_SectorCount_t numBlocks,
+ caddr_t bufPtr,
+ void *bp_in,
+ RF_DagHeader_t ** paramDAG,
+ RF_AccessStripeMapHeader_t ** paramASM,
+ RF_RaidAccessFlags_t flags,
+ RF_RaidAccessDesc_t ** paramDesc,
+ void (*cbF) (RF_Buf_t),
+ void *cbA)
+/*
+type should be read or write
+async_flag should be RF_TRUE or RF_FALSE
+bp_in is a buf pointer. void * to facilitate ignoring it outside the kernel
+*/
+{
+ RF_RaidAccessDesc_t *desc;
+ caddr_t lbufPtr = bufPtr;
+ RF_Buf_t bp = (RF_Buf_t) bp_in;
+
+ raidAddress += rf_raidSectorOffset;
+
+ if (!raidPtr->valid) {
+ RF_ERRORMSG("RAIDframe driver not successfully configured. Rejecting access.\n");
+ IO_BUF_ERR(bp, EINVAL);
+ return (EINVAL);
+ }
+
+ if (rf_accessDebug) {
+
+ printf("logBytes is: %d %d %d\n", raidPtr->raidid,
+ raidPtr->logBytesPerSector,
+ (int) rf_RaidAddressToByte(raidPtr, numBlocks));
+ printf("raid%d: %s raidAddr %d (stripeid %d-%d) numBlocks %d (%d bytes) buf 0x%lx\n", raidPtr->raidid,
+ (type == RF_IO_TYPE_READ) ? "READ" : "WRITE", (int) raidAddress,
+ (int) rf_RaidAddressToStripeID(&raidPtr->Layout, raidAddress),
+ (int) rf_RaidAddressToStripeID(&raidPtr->Layout, raidAddress + numBlocks - 1),
+ (int) numBlocks,
+ (int) rf_RaidAddressToByte(raidPtr, numBlocks),
+ (long) bufPtr);
+ }
+ if (raidAddress + numBlocks > raidPtr->totalSectors) {
+
+ printf("DoAccess: raid addr %lu too large to access %lu sectors. Max legal addr is %lu\n",
+ (u_long) raidAddress, (u_long) numBlocks, (u_long) raidPtr->totalSectors);
+
+ IO_BUF_ERR(bp, ENOSPC);
+ return (ENOSPC);
+ }
+ desc = rf_AllocRaidAccDesc(raidPtr, type, raidAddress,
+ numBlocks, lbufPtr, bp, paramDAG, paramASM,
+ flags, cbF, cbA, raidPtr->Layout.map->states);
+
+ if (desc == NULL) {
+ return (ENOMEM);
+ }
+ RF_ETIMER_START(desc->tracerec.tot_timer);
+
+ desc->async_flag = async_flag;
+
+ rf_ContinueRaidAccess(desc);
+
+ return (0);
+}
+/* force the array into reconfigured mode without doing reconstruction */
+int
+rf_SetReconfiguredMode(raidPtr, row, col)
+ RF_Raid_t *raidPtr;
+ int row;
+ int col;
+{
+ if (!(raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE)) {
+ printf("Can't set reconfigured mode in dedicated-spare array\n");
+ RF_PANIC();
+ }
+ RF_LOCK_MUTEX(raidPtr->mutex);
+ raidPtr->numFailures++;
+ raidPtr->Disks[row][col].status = rf_ds_dist_spared;
+ raidPtr->status[row] = rf_rs_reconfigured;
+ rf_update_component_labels(raidPtr, RF_NORMAL_COMPONENT_UPDATE);
+ /* install spare table only if declustering + distributed sparing
+ * architecture. */
+ if (raidPtr->Layout.map->flags & RF_BD_DECLUSTERED)
+ rf_InstallSpareTable(raidPtr, row, col);
+ RF_UNLOCK_MUTEX(raidPtr->mutex);
+ return (0);
+}
+
+extern int fail_row, fail_col, fail_time;
+extern int delayed_recon;
+
+int
+rf_FailDisk(
+ RF_Raid_t * raidPtr,
+ int frow,
+ int fcol,
+ int initRecon)
+{
+ printf("raid%d: Failing disk r%d c%d\n", raidPtr->raidid, frow, fcol);
+ RF_LOCK_MUTEX(raidPtr->mutex);
+ raidPtr->numFailures++;
+ raidPtr->Disks[frow][fcol].status = rf_ds_failed;
+ raidPtr->status[frow] = rf_rs_degraded;
+ rf_update_component_labels(raidPtr, RF_NORMAL_COMPONENT_UPDATE);
+ RF_UNLOCK_MUTEX(raidPtr->mutex);
+ if (initRecon)
+ rf_ReconstructFailedDisk(raidPtr, frow, fcol);
+ return (0);
+}
+/* releases a thread that is waiting for the array to become quiesced.
+ * access_suspend_mutex should be locked upon calling this
+ */
+void
+rf_SignalQuiescenceLock(raidPtr, reconDesc)
+ RF_Raid_t *raidPtr;
+ RF_RaidReconDesc_t *reconDesc;
+{
+ if (rf_quiesceDebug) {
+ printf("raid%d: Signalling quiescence lock\n",
+ raidPtr->raidid);
+ }
+ raidPtr->access_suspend_release = 1;
+
+ if (raidPtr->waiting_for_quiescence) {
+ SIGNAL_QUIESCENT_COND(raidPtr);
+ }
+}
+/* suspends all new requests to the array. No effect on accesses that are in flight. */
+int
+rf_SuspendNewRequestsAndWait(raidPtr)
+ RF_Raid_t *raidPtr;
+{
+ if (rf_quiesceDebug)
+ printf("Suspending new reqs\n");
+
+ RF_LOCK_MUTEX(raidPtr->access_suspend_mutex);
+ raidPtr->accesses_suspended++;
+ raidPtr->waiting_for_quiescence = (raidPtr->accs_in_flight == 0) ? 0 : 1;
+
+ if (raidPtr->waiting_for_quiescence) {
+ raidPtr->access_suspend_release = 0;
+ while (!raidPtr->access_suspend_release) {
+ printf("Suspending: Waiting for Quiescence\n");
+ WAIT_FOR_QUIESCENCE(raidPtr);
+ raidPtr->waiting_for_quiescence = 0;
+ }
+ }
+ printf("Quiescence reached..\n");
+
+ RF_UNLOCK_MUTEX(raidPtr->access_suspend_mutex);
+ return (raidPtr->waiting_for_quiescence);
+}
+/* wake up everyone waiting for quiescence to be released */
+void
+rf_ResumeNewRequests(raidPtr)
+ RF_Raid_t *raidPtr;
+{
+ RF_CallbackDesc_t *t, *cb;
+
+ if (rf_quiesceDebug)
+ printf("Resuming new reqs\n");
+
+ RF_LOCK_MUTEX(raidPtr->access_suspend_mutex);
+ raidPtr->accesses_suspended--;
+ if (raidPtr->accesses_suspended == 0)
+ cb = raidPtr->quiesce_wait_list;
+ else
+ cb = NULL;
+ raidPtr->quiesce_wait_list = NULL;
+ RF_UNLOCK_MUTEX(raidPtr->access_suspend_mutex);
+
+ while (cb) {
+ t = cb;
+ cb = cb->next;
+ (t->callbackFunc) (t->callbackArg);
+ rf_FreeCallbackDesc(t);
+ }
+}
+/*****************************************************************************************
+ *
+ * debug routines
+ *
+ ****************************************************************************************/
+
+static void
+set_debug_option(name, val)
+ char *name;
+ long val;
+{
+ RF_DebugName_t *p;
+
+ for (p = rf_debugNames; p->name; p++) {
+ if (!strcmp(p->name, name)) {
+ *(p->ptr) = val;
+ printf("[Set debug variable %s to %ld]\n", name, val);
+ return;
+ }
+ }
+ RF_ERRORMSG1("Unknown debug string \"%s\"\n", name);
+}
+
+
+/* would like to use sscanf here, but apparently not available in kernel */
+/*ARGSUSED*/
+static void
+rf_ConfigureDebug(cfgPtr)
+ RF_Config_t *cfgPtr;
+{
+ char *val_p, *name_p, *white_p;
+ long val;
+ int i;
+
+ rf_ResetDebugOptions();
+ for (i = 0; cfgPtr->debugVars[i][0] && i < RF_MAXDBGV; i++) {
+ name_p = rf_find_non_white(&cfgPtr->debugVars[i][0]);
+ white_p = rf_find_white(name_p); /* skip to start of 2nd
+ * word */
+ val_p = rf_find_non_white(white_p);
+ if (*val_p == '0' && *(val_p + 1) == 'x')
+ val = rf_htoi(val_p + 2);
+ else
+ val = rf_atoi(val_p);
+ *white_p = '\0';
+ set_debug_option(name_p, val);
+ }
+}
+/* performance monitoring stuff */
+
+#define TIMEVAL_TO_US(t) (((long) t.tv_sec) * 1000000L + (long) t.tv_usec)
+
+#if !defined(_KERNEL) && !defined(SIMULATE)
+
+/*
+ * Throughput stats currently only used in user-level RAIDframe
+ */
+
+static int
+rf_InitThroughputStats(
+ RF_ShutdownList_t ** listp,
+ RF_Raid_t * raidPtr,
+ RF_Config_t * cfgPtr)
+{
+ int rc;
+
+ /* these used by user-level raidframe only */
+ rc = rf_create_managed_mutex(listp, &raidPtr->throughputstats.mutex);
+ if (rc) {
+ RF_ERRORMSG3("Unable to init mutex file %s line %d rc=%d\n", __FILE__,
+ __LINE__, rc);
+ return (rc);
+ }
+ raidPtr->throughputstats.sum_io_us = 0;
+ raidPtr->throughputstats.num_ios = 0;
+ raidPtr->throughputstats.num_out_ios = 0;
+ return (0);
+}
+
+void
+rf_StartThroughputStats(RF_Raid_t * raidPtr)
+{
+ RF_LOCK_MUTEX(raidPtr->throughputstats.mutex);
+ raidPtr->throughputstats.num_ios++;
+ raidPtr->throughputstats.num_out_ios++;
+ if (raidPtr->throughputstats.num_out_ios == 1)
+ RF_GETTIME(raidPtr->throughputstats.start);
+ RF_UNLOCK_MUTEX(raidPtr->throughputstats.mutex);
+}
+
+static void
+rf_StopThroughputStats(RF_Raid_t * raidPtr)
+{
+ struct timeval diff;
+
+ RF_LOCK_MUTEX(raidPtr->throughputstats.mutex);
+ raidPtr->throughputstats.num_out_ios--;
+ if (raidPtr->throughputstats.num_out_ios == 0) {
+ RF_GETTIME(raidPtr->throughputstats.stop);
+ RF_TIMEVAL_DIFF(&raidPtr->throughputstats.start, &raidPtr->throughputstats.stop, &diff);
+ raidPtr->throughputstats.sum_io_us += TIMEVAL_TO_US(diff);
+ }
+ RF_UNLOCK_MUTEX(raidPtr->throughputstats.mutex);
+}
+
+static void
+rf_PrintThroughputStats(RF_Raid_t * raidPtr)
+{
+ RF_ASSERT(raidPtr->throughputstats.num_out_ios == 0);
+ if (raidPtr->throughputstats.sum_io_us != 0) {
+ printf("[Througphut: %8.2f IOs/second]\n", raidPtr->throughputstats.num_ios
+ / (raidPtr->throughputstats.sum_io_us / 1000000.0));
+ }
+}
+#endif /* !KERNEL && !SIMULATE */
+
+void
+rf_StartUserStats(RF_Raid_t * raidPtr)
+{
+ RF_GETTIME(raidPtr->userstats.start);
+ raidPtr->userstats.sum_io_us = 0;
+ raidPtr->userstats.num_ios = 0;
+ raidPtr->userstats.num_sect_moved = 0;
+}
+
+void
+rf_StopUserStats(RF_Raid_t * raidPtr)
+{
+ RF_GETTIME(raidPtr->userstats.stop);
+}
+
+void
+rf_UpdateUserStats(raidPtr, rt, numsect)
+ RF_Raid_t *raidPtr;
+ int rt; /* resp time in us */
+ int numsect; /* number of sectors for this access */
+{
+ raidPtr->userstats.sum_io_us += rt;
+ raidPtr->userstats.num_ios++;
+ raidPtr->userstats.num_sect_moved += numsect;
+}
+
+void
+rf_PrintUserStats(RF_Raid_t * raidPtr)
+{
+ long elapsed_us, mbs, mbs_frac;
+ struct timeval diff;
+
+ RF_TIMEVAL_DIFF(&raidPtr->userstats.start, &raidPtr->userstats.stop, &diff);
+ elapsed_us = TIMEVAL_TO_US(diff);
+
+ /* 2000 sectors per megabyte, 10000000 microseconds per second */
+ if (elapsed_us)
+ mbs = (raidPtr->userstats.num_sect_moved / 2000) / (elapsed_us / 1000000);
+ else
+ mbs = 0;
+
+ /* this computes only the first digit of the fractional mb/s moved */
+ if (elapsed_us) {
+ mbs_frac = ((raidPtr->userstats.num_sect_moved / 200) / (elapsed_us / 1000000))
+ - (mbs * 10);
+ } else {
+ mbs_frac = 0;
+ }
+
+ printf("Number of I/Os: %ld\n", raidPtr->userstats.num_ios);
+ printf("Elapsed time (us): %ld\n", elapsed_us);
+ printf("User I/Os per second: %ld\n", RF_DB0_CHECK(raidPtr->userstats.num_ios, (elapsed_us / 1000000)));
+ printf("Average user response time: %ld us\n", RF_DB0_CHECK(raidPtr->userstats.sum_io_us, raidPtr->userstats.num_ios));
+ printf("Total sectors moved: %ld\n", raidPtr->userstats.num_sect_moved);
+ printf("Average access size (sect): %ld\n", RF_DB0_CHECK(raidPtr->userstats.num_sect_moved, raidPtr->userstats.num_ios));
+ printf("Achieved data rate: %ld.%ld MB/sec\n", mbs, mbs_frac);
+}
+
+
+void
+rf_print_panic_message(line,file)
+ int line;
+ char *file;
+{
+ sprintf(rf_panicbuf,"raidframe error at line %d file %s",
+ line, file);
+}
+
+void
+rf_print_assert_panic_message(line,file,condition)
+ int line;
+ char *file;
+ char *condition;
+{
+ sprintf(rf_panicbuf,
+ "raidframe error at line %d file %s (failed asserting %s)\n",
+ line, file, condition);
+}
diff --git a/sys/dev/raidframe/rf_driver.h b/sys/dev/raidframe/rf_driver.h
new file mode 100644
index 0000000..8b156c5
--- /dev/null
+++ b/sys/dev/raidframe/rf_driver.h
@@ -0,0 +1,79 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_driver.h,v 1.4 2000/02/13 04:53:57 oster Exp $ */
+/*
+ * rf_driver.h
+ */
+/*
+ * Copyright (c) 1996 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Jim Zelenka
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+#ifndef _RF__RF_DRIVER_H_
+#define _RF__RF_DRIVER_H_
+
+#include <dev/raidframe/rf_threadstuff.h>
+#include <dev/raidframe/rf_types.h>
+#include <dev/raidframe/rf_bsd.h>
+
+#if _KERNEL
+RF_DECLARE_EXTERN_MUTEX(rf_printf_mutex)
+int rf_BootRaidframe(void);
+int rf_UnbootRaidframe(void);
+int rf_Shutdown(RF_Raid_t * raidPtr);
+int rf_Configure(RF_Raid_t * raidPtr, RF_Config_t * cfgPtr,
+ RF_AutoConfig_t *ac);
+RF_RaidAccessDesc_t *rf_AllocRaidAccDesc(RF_Raid_t * raidPtr, RF_IoType_t type,
+ RF_RaidAddr_t raidAddress,
+ RF_SectorCount_t numBlocks,
+ caddr_t bufPtr,
+ void *bp, RF_DagHeader_t ** paramDAG,
+ RF_AccessStripeMapHeader_t ** paramASM,
+ RF_RaidAccessFlags_t flags,
+ void (*cbF) (RF_Buf_t),
+ void *cbA,
+ RF_AccessState_t * states);
+void rf_FreeRaidAccDesc(RF_RaidAccessDesc_t * desc);
+int rf_DoAccess(RF_Raid_t * raidPtr, RF_IoType_t type, int async_flag,
+ RF_RaidAddr_t raidAddress, RF_SectorCount_t numBlocks,
+ caddr_t bufPtr, void *bp_in, RF_DagHeader_t ** paramDAG,
+ RF_AccessStripeMapHeader_t ** paramASM,
+ RF_RaidAccessFlags_t flags,
+ RF_RaidAccessDesc_t ** paramDesc,
+ void (*cbF) (RF_Buf_t), void *cbA);
+int rf_SetReconfiguredMode(RF_Raid_t * raidPtr, RF_RowCol_t row,
+ RF_RowCol_t col);
+int rf_FailDisk(RF_Raid_t * raidPtr, RF_RowCol_t frow, RF_RowCol_t fcol,
+ int initRecon);
+void rf_SignalQuiescenceLock(RF_Raid_t * raidPtr,
+ RF_RaidReconDesc_t * reconDesc);
+int rf_SuspendNewRequestsAndWait(RF_Raid_t * raidPtr);
+void rf_ResumeNewRequests(RF_Raid_t * raidPtr);
+void rf_StartThroughputStats(RF_Raid_t * raidPtr);
+void rf_StartUserStats(RF_Raid_t * raidPtr);
+void rf_StopUserStats(RF_Raid_t * raidPtr);
+void rf_UpdateUserStats(RF_Raid_t * raidPtr, int rt, int numsect);
+void rf_PrintUserStats(RF_Raid_t * raidPtr);
+#endif /* _KERNEL */
+#endif /* !_RF__RF_DRIVER_H_ */
diff --git a/sys/dev/raidframe/rf_engine.c b/sys/dev/raidframe/rf_engine.c
new file mode 100644
index 0000000..ddd5612
--- /dev/null
+++ b/sys/dev/raidframe/rf_engine.c
@@ -0,0 +1,810 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_engine.c,v 1.10 2000/08/20 16:51:03 thorpej Exp $ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: William V. Courtright II, Mark Holland, Rachad Youssef
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+/****************************************************************************
+ * *
+ * engine.c -- code for DAG execution engine *
+ * *
+ * Modified to work as follows (holland): *
+ * A user-thread calls into DispatchDAG, which fires off the nodes that *
+ * are direct successors to the header node. DispatchDAG then returns, *
+ * and the rest of the I/O continues asynchronously. As each node *
+ * completes, the node execution function calls FinishNode(). FinishNode *
+ * scans the list of successors to the node and increments the antecedent *
+ * counts. Each node that becomes enabled is placed on a central node *
+ * queue. A dedicated dag-execution thread grabs nodes off of this *
+ * queue and fires them. *
+ * *
+ * NULL nodes are never fired. *
+ * *
+ * Terminator nodes are never fired, but rather cause the callback *
+ * associated with the DAG to be invoked. *
+ * *
+ * If a node fails, the dag either rolls forward to the completion or *
+ * rolls back, undoing previously-completed nodes and fails atomically. *
+ * The direction of recovery is determined by the location of the failed *
+ * node in the graph. If the failure occured before the commit node in *
+ * the graph, backward recovery is used. Otherwise, forward recovery is *
+ * used. *
+ * *
+ ****************************************************************************/
+
+#include <dev/raidframe/rf_threadstuff.h>
+
+#include <sys/errno.h>
+
+#include <dev/raidframe/rf_dag.h>
+#include <dev/raidframe/rf_engine.h>
+#include <dev/raidframe/rf_etimer.h>
+#include <dev/raidframe/rf_general.h>
+#include <dev/raidframe/rf_dagutils.h>
+#include <dev/raidframe/rf_shutdown.h>
+#include <dev/raidframe/rf_raid.h>
+#include <dev/raidframe/rf_kintf.h>
+
+static void DAGExecutionThread(RF_ThreadArg_t arg);
+
+#define DO_INIT(_l_,_r_) { \
+ int _rc; \
+ _rc = rf_create_managed_mutex(_l_,&(_r_)->node_queue_mutex); \
+ if (_rc) { \
+ return(_rc); \
+ } \
+ _rc = rf_create_managed_cond(_l_,&(_r_)->node_queue_cond); \
+ if (_rc) { \
+ return(_rc); \
+ } \
+}
+
+/* synchronization primitives for this file. DO_WAIT should be enclosed in a while loop. */
+
+/*
+ * XXX Is this spl-ing really necessary?
+ */
+#define DO_LOCK(_r_) \
+do { \
+ ks = splbio(); \
+ RF_LOCK_MUTEX((_r_)->node_queue_mutex); \
+} while (0)
+
+#define DO_UNLOCK(_r_) \
+do { \
+ RF_UNLOCK_MUTEX((_r_)->node_queue_mutex); \
+ splx(ks); \
+} while (0)
+
+#define DO_WAIT(_r_) \
+ RF_WAIT_COND((_r_)->node_queue, (_r_)->node_queue_mutex)
+
+#define DO_SIGNAL(_r_) \
+ RF_BROADCAST_COND((_r_)->node_queue) /* XXX RF_SIGNAL_COND? */
+
+static void rf_ShutdownEngine(void *);
+
+static void
+rf_ShutdownEngine(arg)
+ void *arg;
+{
+ RF_Raid_t *raidPtr;
+
+ raidPtr = (RF_Raid_t *) arg;
+ raidPtr->shutdown_engine = 1;
+ DO_SIGNAL(raidPtr);
+}
+
+int
+rf_ConfigureEngine(
+ RF_ShutdownList_t ** listp,
+ RF_Raid_t * raidPtr,
+ RF_Config_t * cfgPtr)
+{
+ int rc;
+
+ DO_INIT(listp, raidPtr);
+
+ raidPtr->node_queue = NULL;
+ raidPtr->dags_in_flight = 0;
+
+ rc = rf_init_managed_threadgroup(listp, &raidPtr->engine_tg);
+ if (rc)
+ return (rc);
+
+ /* we create the execution thread only once per system boot. no need
+ * to check return code b/c the kernel panics if it can't create the
+ * thread. */
+ if (rf_engineDebug) {
+ printf("raid%d: Creating engine thread\n", raidPtr->raidid);
+ }
+ if (RF_CREATE_THREAD(raidPtr->engine_thread, DAGExecutionThread, raidPtr,"raid")) {
+ RF_ERRORMSG("RAIDFRAME: Unable to create engine thread\n");
+ return (ENOMEM);
+ }
+ if (rf_engineDebug) {
+ printf("raid%d: Created engine thread\n", raidPtr->raidid);
+ }
+ RF_THREADGROUP_STARTED(&raidPtr->engine_tg);
+ /* XXX something is missing here... */
+#ifdef debug
+ printf("Skipping the WAIT_START!!\n");
+#endif
+#if 1
+ printf("Waiting for DAG engine to start\n");
+ RF_THREADGROUP_WAIT_START(&raidPtr->engine_tg);
+#endif
+ /* engine thread is now running and waiting for work */
+ if (rf_engineDebug) {
+ printf("raid%d: Engine thread running and waiting for events\n", raidPtr->raidid);
+ }
+ rc = rf_ShutdownCreate(listp, rf_ShutdownEngine, raidPtr);
+ if (rc) {
+ RF_ERRORMSG3("Unable to add to shutdown list file %s line %d rc=%d\n", __FILE__,
+ __LINE__, rc);
+ rf_ShutdownEngine(NULL);
+ }
+ return (rc);
+}
+
+static int
+BranchDone(RF_DagNode_t * node)
+{
+ int i;
+
+ /* return true if forward execution is completed for a node and it's
+ * succedents */
+ switch (node->status) {
+ case rf_wait:
+ /* should never be called in this state */
+ RF_PANIC();
+ break;
+ case rf_fired:
+ /* node is currently executing, so we're not done */
+ return (RF_FALSE);
+ case rf_good:
+ for (i = 0; i < node->numSuccedents; i++) /* for each succedent */
+ if (!BranchDone(node->succedents[i])) /* recursively check
+ * branch */
+ return RF_FALSE;
+ return RF_TRUE; /* node and all succedent branches aren't in
+ * fired state */
+ break;
+ case rf_bad:
+ /* succedents can't fire */
+ return (RF_TRUE);
+ case rf_recover:
+ /* should never be called in this state */
+ RF_PANIC();
+ break;
+ case rf_undone:
+ case rf_panic:
+ /* XXX need to fix this case */
+ /* for now, assume that we're done */
+ return (RF_TRUE);
+ break;
+ default:
+ /* illegal node status */
+ RF_PANIC();
+ break;
+ }
+}
+
+static int
+NodeReady(RF_DagNode_t * node)
+{
+ int ready;
+
+ switch (node->dagHdr->status) {
+ case rf_enable:
+ case rf_rollForward:
+ if ((node->status == rf_wait) && (node->numAntecedents == node->numAntDone))
+ ready = RF_TRUE;
+ else
+ ready = RF_FALSE;
+ break;
+ case rf_rollBackward:
+ RF_ASSERT(node->numSuccDone <= node->numSuccedents);
+ RF_ASSERT(node->numSuccFired <= node->numSuccedents);
+ RF_ASSERT(node->numSuccFired <= node->numSuccDone);
+ if ((node->status == rf_good) && (node->numSuccDone == node->numSuccedents))
+ ready = RF_TRUE;
+ else
+ ready = RF_FALSE;
+ break;
+ default:
+ printf("Execution engine found illegal DAG status in NodeReady\n");
+ RF_PANIC();
+ break;
+ }
+
+ return (ready);
+}
+
+
+
+/* user context and dag-exec-thread context:
+ * Fire a node. The node's status field determines which function, do or undo,
+ * to be fired.
+ * This routine assumes that the node's status field has alread been set to
+ * "fired" or "recover" to indicate the direction of execution.
+ */
+static void
+FireNode(RF_DagNode_t * node)
+{
+ switch (node->status) {
+ case rf_fired:
+ /* fire the do function of a node */
+ if (rf_engineDebug) {
+ printf("raid%d: Firing node 0x%lx (%s)\n",
+ node->dagHdr->raidPtr->raidid,
+ (unsigned long) node, node->name);
+ }
+ if (node->flags & RF_DAGNODE_FLAG_YIELD) {
+#if defined(__NetBSD__) || defined(__FreeBSD__) && defined(_KERNEL)
+ /* thread_block(); */
+ /* printf("Need to block the thread here...\n"); */
+ /* XXX thread_block is actually mentioned in
+ * /usr/include/vm/vm_extern.h */
+#else
+ thread_block();
+#endif
+ }
+ (*(node->doFunc)) (node);
+ break;
+ case rf_recover:
+ /* fire the undo function of a node */
+ if (rf_engineDebug) {
+ printf("raid%d: Firing (undo) node 0x%lx (%s)\n",
+ node->dagHdr->raidPtr->raidid,
+ (unsigned long) node, node->name);
+ }
+ if (node->flags & RF_DAGNODE_FLAG_YIELD)
+#if defined(__NetBSD__) || defined(__FreeBSD__) && defined(_KERNEL)
+ /* thread_block(); */
+ /* printf("Need to block the thread here...\n"); */
+ /* XXX thread_block is actually mentioned in
+ * /usr/include/vm/vm_extern.h */
+#else
+ thread_block();
+#endif
+ (*(node->undoFunc)) (node);
+ break;
+ default:
+ RF_PANIC();
+ break;
+ }
+}
+
+
+
+/* user context:
+ * Attempt to fire each node in a linear array.
+ * The entire list is fired atomically.
+ */
+static void
+FireNodeArray(
+ int numNodes,
+ RF_DagNode_t ** nodeList)
+{
+ RF_DagStatus_t dstat;
+ RF_DagNode_t *node;
+ int i, j;
+
+ /* first, mark all nodes which are ready to be fired */
+ for (i = 0; i < numNodes; i++) {
+ node = nodeList[i];
+ dstat = node->dagHdr->status;
+ RF_ASSERT((node->status == rf_wait) || (node->status == rf_good));
+ if (NodeReady(node)) {
+ if ((dstat == rf_enable) || (dstat == rf_rollForward)) {
+ RF_ASSERT(node->status == rf_wait);
+ if (node->commitNode)
+ node->dagHdr->numCommits++;
+ node->status = rf_fired;
+ for (j = 0; j < node->numAntecedents; j++)
+ node->antecedents[j]->numSuccFired++;
+ } else {
+ RF_ASSERT(dstat == rf_rollBackward);
+ RF_ASSERT(node->status == rf_good);
+ RF_ASSERT(node->commitNode == RF_FALSE); /* only one commit node
+ * per graph */
+ node->status = rf_recover;
+ }
+ }
+ }
+ /* now, fire the nodes */
+ for (i = 0; i < numNodes; i++) {
+ if ((nodeList[i]->status == rf_fired) || (nodeList[i]->status == rf_recover))
+ FireNode(nodeList[i]);
+ }
+}
+
+
+/* user context:
+ * Attempt to fire each node in a linked list.
+ * The entire list is fired atomically.
+ */
+static void
+FireNodeList(RF_DagNode_t * nodeList)
+{
+ RF_DagNode_t *node, *next;
+ RF_DagStatus_t dstat;
+ int j;
+
+ if (nodeList) {
+ /* first, mark all nodes which are ready to be fired */
+ for (node = nodeList; node; node = next) {
+ next = node->next;
+ dstat = node->dagHdr->status;
+ RF_ASSERT((node->status == rf_wait) || (node->status == rf_good));
+ if (NodeReady(node)) {
+ if ((dstat == rf_enable) || (dstat == rf_rollForward)) {
+ RF_ASSERT(node->status == rf_wait);
+ if (node->commitNode)
+ node->dagHdr->numCommits++;
+ node->status = rf_fired;
+ for (j = 0; j < node->numAntecedents; j++)
+ node->antecedents[j]->numSuccFired++;
+ } else {
+ RF_ASSERT(dstat == rf_rollBackward);
+ RF_ASSERT(node->status == rf_good);
+ RF_ASSERT(node->commitNode == RF_FALSE); /* only one commit node
+ * per graph */
+ node->status = rf_recover;
+ }
+ }
+ }
+ /* now, fire the nodes */
+ for (node = nodeList; node; node = next) {
+ next = node->next;
+ if ((node->status == rf_fired) || (node->status == rf_recover))
+ FireNode(node);
+ }
+ }
+}
+/* interrupt context:
+ * for each succedent
+ * propagate required results from node to succedent
+ * increment succedent's numAntDone
+ * place newly-enable nodes on node queue for firing
+ *
+ * To save context switches, we don't place NIL nodes on the node queue,
+ * but rather just process them as if they had fired. Note that NIL nodes
+ * that are the direct successors of the header will actually get fired by
+ * DispatchDAG, which is fine because no context switches are involved.
+ *
+ * Important: when running at user level, this can be called by any
+ * disk thread, and so the increment and check of the antecedent count
+ * must be locked. I used the node queue mutex and locked down the
+ * entire function, but this is certainly overkill.
+ */
+static void
+PropagateResults(
+ RF_DagNode_t * node,
+ int context)
+{
+ RF_DagNode_t *s, *a;
+ RF_Raid_t *raidPtr;
+ int i, ks;
+ RF_DagNode_t *finishlist = NULL; /* a list of NIL nodes to be
+ * finished */
+ RF_DagNode_t *skiplist = NULL; /* list of nodes with failed truedata
+ * antecedents */
+ RF_DagNode_t *firelist = NULL; /* a list of nodes to be fired */
+ RF_DagNode_t *q = NULL, *qh = NULL, *next;
+ int j, skipNode;
+
+ raidPtr = node->dagHdr->raidPtr;
+
+ DO_LOCK(raidPtr);
+
+ /* debug - validate fire counts */
+ for (i = 0; i < node->numAntecedents; i++) {
+ a = *(node->antecedents + i);
+ RF_ASSERT(a->numSuccFired >= a->numSuccDone);
+ RF_ASSERT(a->numSuccFired <= a->numSuccedents);
+ a->numSuccDone++;
+ }
+
+ switch (node->dagHdr->status) {
+ case rf_enable:
+ case rf_rollForward:
+ for (i = 0; i < node->numSuccedents; i++) {
+ s = *(node->succedents + i);
+ RF_ASSERT(s->status == rf_wait);
+ (s->numAntDone)++;
+ if (s->numAntDone == s->numAntecedents) {
+ /* look for NIL nodes */
+ if (s->doFunc == rf_NullNodeFunc) {
+ /* don't fire NIL nodes, just process
+ * them */
+ s->next = finishlist;
+ finishlist = s;
+ } else {
+ /* look to see if the node is to be
+ * skipped */
+ skipNode = RF_FALSE;
+ for (j = 0; j < s->numAntecedents; j++)
+ if ((s->antType[j] == rf_trueData) && (s->antecedents[j]->status == rf_bad))
+ skipNode = RF_TRUE;
+ if (skipNode) {
+ /* this node has one or more
+ * failed true data
+ * dependencies, so skip it */
+ s->next = skiplist;
+ skiplist = s;
+ } else
+ /* add s to list of nodes (q)
+ * to execute */
+ if (context != RF_INTR_CONTEXT) {
+ /* we only have to
+ * enqueue if we're at
+ * intr context */
+ s->next = firelist; /* put node on a list to
+ * be fired after we
+ * unlock */
+ firelist = s;
+ } else { /* enqueue the node for
+ * the dag exec thread
+ * to fire */
+ RF_ASSERT(NodeReady(s));
+ if (q) {
+ q->next = s;
+ q = s;
+ } else {
+ qh = q = s;
+ qh->next = NULL;
+ }
+ }
+ }
+ }
+ }
+
+ if (q) {
+ /* xfer our local list of nodes to the node queue */
+ q->next = raidPtr->node_queue;
+ raidPtr->node_queue = qh;
+ DO_SIGNAL(raidPtr);
+ }
+ DO_UNLOCK(raidPtr);
+
+ for (; skiplist; skiplist = next) {
+ next = skiplist->next;
+ skiplist->status = rf_skipped;
+ for (i = 0; i < skiplist->numAntecedents; i++) {
+ skiplist->antecedents[i]->numSuccFired++;
+ }
+ if (skiplist->commitNode) {
+ skiplist->dagHdr->numCommits++;
+ }
+ rf_FinishNode(skiplist, context);
+ }
+ for (; finishlist; finishlist = next) {
+ /* NIL nodes: no need to fire them */
+ next = finishlist->next;
+ finishlist->status = rf_good;
+ for (i = 0; i < finishlist->numAntecedents; i++) {
+ finishlist->antecedents[i]->numSuccFired++;
+ }
+ if (finishlist->commitNode)
+ finishlist->dagHdr->numCommits++;
+ /*
+ * Okay, here we're calling rf_FinishNode() on nodes that
+ * have the null function as their work proc. Such a node
+ * could be the terminal node in a DAG. If so, it will
+ * cause the DAG to complete, which will in turn free
+ * memory used by the DAG, which includes the node in
+ * question. Thus, we must avoid referencing the node
+ * at all after calling rf_FinishNode() on it.
+ */
+ rf_FinishNode(finishlist, context); /* recursive call */
+ }
+ /* fire all nodes in firelist */
+ FireNodeList(firelist);
+ break;
+
+ case rf_rollBackward:
+ for (i = 0; i < node->numAntecedents; i++) {
+ a = *(node->antecedents + i);
+ RF_ASSERT(a->status == rf_good);
+ RF_ASSERT(a->numSuccDone <= a->numSuccedents);
+ RF_ASSERT(a->numSuccDone <= a->numSuccFired);
+
+ if (a->numSuccDone == a->numSuccFired) {
+ if (a->undoFunc == rf_NullNodeFunc) {
+ /* don't fire NIL nodes, just process
+ * them */
+ a->next = finishlist;
+ finishlist = a;
+ } else {
+ if (context != RF_INTR_CONTEXT) {
+ /* we only have to enqueue if
+ * we're at intr context */
+ a->next = firelist; /* put node on a list to
+ * be fired after we
+ * unlock */
+ firelist = a;
+ } else { /* enqueue the node for
+ * the dag exec thread
+ * to fire */
+ RF_ASSERT(NodeReady(a));
+ if (q) {
+ q->next = a;
+ q = a;
+ } else {
+ qh = q = a;
+ qh->next = NULL;
+ }
+ }
+ }
+ }
+ }
+ if (q) {
+ /* xfer our local list of nodes to the node queue */
+ q->next = raidPtr->node_queue;
+ raidPtr->node_queue = qh;
+ DO_SIGNAL(raidPtr);
+ }
+ DO_UNLOCK(raidPtr);
+ for (; finishlist; finishlist = next) { /* NIL nodes: no need to
+ * fire them */
+ next = finishlist->next;
+ finishlist->status = rf_good;
+ /*
+ * Okay, here we're calling rf_FinishNode() on nodes that
+ * have the null function as their work proc. Such a node
+ * could be the first node in a DAG. If so, it will
+ * cause the DAG to complete, which will in turn free
+ * memory used by the DAG, which includes the node in
+ * question. Thus, we must avoid referencing the node
+ * at all after calling rf_FinishNode() on it.
+ */
+ rf_FinishNode(finishlist, context); /* recursive call */
+ }
+ /* fire all nodes in firelist */
+ FireNodeList(firelist);
+
+ break;
+ default:
+ printf("Engine found illegal DAG status in PropagateResults()\n");
+ RF_PANIC();
+ break;
+ }
+}
+
+
+
+/*
+ * Process a fired node which has completed
+ */
+static void
+ProcessNode(
+ RF_DagNode_t * node,
+ int context)
+{
+ RF_Raid_t *raidPtr;
+
+ raidPtr = node->dagHdr->raidPtr;
+
+ switch (node->status) {
+ case rf_good:
+ /* normal case, don't need to do anything */
+ break;
+ case rf_bad:
+ if ((node->dagHdr->numCommits > 0) || (node->dagHdr->numCommitNodes == 0)) {
+ node->dagHdr->status = rf_rollForward; /* crossed commit
+ * barrier */
+ if (rf_engineDebug || 1) {
+ printf("raid%d: node (%s) returned fail, rolling forward\n", raidPtr->raidid, node->name);
+ }
+ } else {
+ node->dagHdr->status = rf_rollBackward; /* never reached commit
+ * barrier */
+ if (rf_engineDebug || 1) {
+ printf("raid%d: node (%s) returned fail, rolling backward\n", raidPtr->raidid, node->name);
+ }
+ }
+ break;
+ case rf_undone:
+ /* normal rollBackward case, don't need to do anything */
+ break;
+ case rf_panic:
+ /* an undo node failed!!! */
+ printf("UNDO of a node failed!!!/n");
+ break;
+ default:
+ printf("node finished execution with an illegal status!!!\n");
+ RF_PANIC();
+ break;
+ }
+
+ /* enqueue node's succedents (antecedents if rollBackward) for
+ * execution */
+ PropagateResults(node, context);
+}
+
+
+
+/* user context or dag-exec-thread context:
+ * This is the first step in post-processing a newly-completed node.
+ * This routine is called by each node execution function to mark the node
+ * as complete and fire off any successors that have been enabled.
+ */
+int
+rf_FinishNode(
+ RF_DagNode_t * node,
+ int context)
+{
+ /* as far as I can tell, retcode is not used -wvcii */
+ int retcode = RF_FALSE;
+ node->dagHdr->numNodesCompleted++;
+ ProcessNode(node, context);
+
+ return (retcode);
+}
+
+
+/* user context:
+ * submit dag for execution, return non-zero if we have to wait for completion.
+ * if and only if we return non-zero, we'll cause cbFunc to get invoked with
+ * cbArg when the DAG has completed.
+ *
+ * for now we always return 1. If the DAG does not cause any I/O, then the callback
+ * may get invoked before DispatchDAG returns. There's code in state 5 of ContinueRaidAccess
+ * to handle this.
+ *
+ * All we do here is fire the direct successors of the header node. The
+ * DAG execution thread does the rest of the dag processing.
+ */
+int
+rf_DispatchDAG(
+ RF_DagHeader_t * dag,
+ void (*cbFunc) (void *),
+ void *cbArg)
+{
+ RF_Raid_t *raidPtr;
+
+ raidPtr = dag->raidPtr;
+ if (dag->tracerec) {
+ RF_ETIMER_START(dag->tracerec->timer);
+ }
+ if (rf_engineDebug || rf_validateDAGDebug) {
+ if (rf_ValidateDAG(dag))
+ RF_PANIC();
+ }
+ if (rf_engineDebug) {
+ printf("raid%d: Entering DispatchDAG\n", raidPtr->raidid);
+ }
+ raidPtr->dags_in_flight++; /* debug only: blow off proper
+ * locking */
+ dag->cbFunc = cbFunc;
+ dag->cbArg = cbArg;
+ dag->numNodesCompleted = 0;
+ dag->status = rf_enable;
+ FireNodeArray(dag->numSuccedents, dag->succedents);
+ return (1);
+}
+/* dedicated kernel thread:
+ * the thread that handles all DAG node firing.
+ * To minimize locking and unlocking, we grab a copy of the entire node queue and then set the
+ * node queue to NULL before doing any firing of nodes. This way we only have to release the
+ * lock once. Of course, it's probably rare that there's more than one node in the queue at
+ * any one time, but it sometimes happens.
+ *
+ * In the kernel, this thread runs at spl0 and is not swappable. I copied these
+ * characteristics from the aio_completion_thread.
+ */
+
+static void
+DAGExecutionThread(RF_ThreadArg_t arg)
+{
+ RF_DagNode_t *nd, *local_nq, *term_nq, *fire_nq;
+ RF_Raid_t *raidPtr;
+ int ks;
+
+ raidPtr = (RF_Raid_t *) arg;
+
+ if (rf_engineDebug) {
+ printf("raid%d: Engine thread is running\n", raidPtr->raidid);
+ }
+
+ mtx_lock(&Giant);
+
+ RF_THREADGROUP_RUNNING(&raidPtr->engine_tg);
+
+ DO_LOCK(raidPtr);
+ while (!raidPtr->shutdown_engine) {
+
+ while (raidPtr->node_queue != NULL) {
+ local_nq = raidPtr->node_queue;
+ fire_nq = NULL;
+ term_nq = NULL;
+ raidPtr->node_queue = NULL;
+ DO_UNLOCK(raidPtr);
+
+ /* first, strip out the terminal nodes */
+ while (local_nq) {
+ nd = local_nq;
+ local_nq = local_nq->next;
+ switch (nd->dagHdr->status) {
+ case rf_enable:
+ case rf_rollForward:
+ if (nd->numSuccedents == 0) {
+ /* end of the dag, add to
+ * callback list */
+ nd->next = term_nq;
+ term_nq = nd;
+ } else {
+ /* not the end, add to the
+ * fire queue */
+ nd->next = fire_nq;
+ fire_nq = nd;
+ }
+ break;
+ case rf_rollBackward:
+ if (nd->numAntecedents == 0) {
+ /* end of the dag, add to the
+ * callback list */
+ nd->next = term_nq;
+ term_nq = nd;
+ } else {
+ /* not the end, add to the
+ * fire queue */
+ nd->next = fire_nq;
+ fire_nq = nd;
+ }
+ break;
+ default:
+ RF_PANIC();
+ break;
+ }
+ }
+
+ /* execute callback of dags which have reached the
+ * terminal node */
+ while (term_nq) {
+ nd = term_nq;
+ term_nq = term_nq->next;
+ nd->next = NULL;
+ (nd->dagHdr->cbFunc) (nd->dagHdr->cbArg);
+ raidPtr->dags_in_flight--; /* debug only */
+ }
+
+ /* fire remaining nodes */
+ FireNodeList(fire_nq);
+
+ DO_LOCK(raidPtr);
+ }
+ while (!raidPtr->shutdown_engine && raidPtr->node_queue == NULL)
+ DO_WAIT(raidPtr);
+ }
+ DO_UNLOCK(raidPtr);
+
+ RF_THREADGROUP_DONE(&raidPtr->engine_tg);
+
+ RF_THREAD_EXIT(0);
+}
diff --git a/sys/dev/raidframe/rf_engine.h b/sys/dev/raidframe/rf_engine.h
new file mode 100644
index 0000000..c758c05
--- /dev/null
+++ b/sys/dev/raidframe/rf_engine.h
@@ -0,0 +1,48 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_engine.h,v 1.3 1999/02/05 00:06:11 oster Exp $ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: William V. Courtright II, Mark Holland, Jim Zelenka
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+/**********************************************************
+ * *
+ * engine.h -- header file for execution engine functions *
+ * *
+ **********************************************************/
+
+#ifndef _RF__RF_ENGINE_H_
+#define _RF__RF_ENGINE_H_
+
+int
+rf_ConfigureEngine(RF_ShutdownList_t ** listp,
+ RF_Raid_t * raidPtr, RF_Config_t * cfgPtr);
+
+int rf_FinishNode(RF_DagNode_t * node, int context); /* return finished node
+ * to engine */
+
+int rf_DispatchDAG(RF_DagHeader_t * dag, void (*cbFunc) (void *), void *cbArg); /* execute dag */
+
+#endif /* !_RF__RF_ENGINE_H_ */
diff --git a/sys/dev/raidframe/rf_etimer.h b/sys/dev/raidframe/rf_etimer.h
new file mode 100644
index 0000000..e66e01b
--- /dev/null
+++ b/sys/dev/raidframe/rf_etimer.h
@@ -0,0 +1,95 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_etimer.h,v 1.4 1999/08/13 03:26:55 oster Exp $ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Mark Holland
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+#ifndef _RF__RF_TIMER_H_
+#define _RF__RF_TIMER_H_
+
+#include <dev/raidframe/rf_options.h>
+#include <dev/raidframe/rf_utils.h>
+
+#include <sys/time.h>
+
+struct RF_Etimer_s {
+ struct timeval st;
+ struct timeval et;
+ struct timeval diff;
+};
+
+#if defined(_KERNEL)
+#include <sys/kernel.h>
+
+#if defined(__NetBSD__)
+#define RF_ETIMER_START(_t_) \
+ { \
+ int s; \
+ bzero(&(_t_), sizeof (_t_)); \
+ s = splclock(); \
+ (_t_).st = mono_time; \
+ splx(s); \
+ }
+#elif defined(__FreeBSD__)
+#define RF_ETIMER_START(_t_) \
+ { \
+ int s; \
+ bzero(&(_t_), sizeof (_t_)); \
+ s = splclock(); \
+ getmicrouptime(&(_t_).st); \
+ splx(s); \
+ }
+#endif
+
+#if defined(__NetBSD__)
+#define RF_ETIMER_STOP(_t_) \
+ { \
+ int s; \
+ s = splclock(); \
+ (_t_).et = mono_time; \
+ splx(s); \
+ }
+#elif defined(__FreeBSD__)
+#define RF_ETIMER_STOP(_t_) \
+ { \
+ int s; \
+ s = splclock(); \
+ getmicrouptime(&(_t_).et); \
+ splx(s); \
+ }
+#endif
+
+#define RF_ETIMER_EVAL(_t_) \
+ { \
+ RF_TIMEVAL_DIFF(&(_t_).st, &(_t_).et, &(_t_).diff) \
+ }
+
+#define RF_ETIMER_VAL_US(_t_) (RF_TIMEVAL_TO_US((_t_).diff))
+#define RF_ETIMER_VAL_MS(_t_) (RF_TIMEVAL_TO_US((_t_).diff)/1000)
+
+#endif /* _KERNEL */
+
+#endif /* !_RF__RF_TIMER_H_ */
diff --git a/sys/dev/raidframe/rf_evenodd.c b/sys/dev/raidframe/rf_evenodd.c
new file mode 100644
index 0000000..47ce2cf
--- /dev/null
+++ b/sys/dev/raidframe/rf_evenodd.c
@@ -0,0 +1,557 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_evenodd.c,v 1.4 2000/01/07 03:40:59 oster Exp $ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Chang-Ming Wu
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+/*****************************************************************************************
+ *
+ * rf_evenodd.c -- implements EVENODD array architecture
+ *
+ ****************************************************************************************/
+
+#include <dev/raidframe/rf_archs.h>
+
+#if RF_INCLUDE_EVENODD > 0
+
+#include <dev/raidframe/rf_types.h>
+#include <dev/raidframe/rf_raid.h>
+#include <dev/raidframe/rf_dag.h>
+#include <dev/raidframe/rf_dagffrd.h>
+#include <dev/raidframe/rf_dagffwr.h>
+#include <dev/raidframe/rf_dagdegrd.h>
+#include <dev/raidframe/rf_dagdegwr.h>
+#include <dev/raidframe/rf_dagutils.h>
+#include <dev/raidframe/rf_dagfuncs.h>
+#include <dev/raidframe/rf_etimer.h>
+#include <dev/raidframe/rf_general.h>
+#include <dev/raidframe/rf_evenodd.h>
+#include <dev/raidframe/rf_configure.h>
+#include <dev/raidframe/rf_parityscan.h>
+#include <dev/raidframe/rf_utils.h>
+#include <dev/raidframe/rf_map.h>
+#include <dev/raidframe/rf_pq.h>
+#include <dev/raidframe/rf_mcpair.h>
+#include <dev/raidframe/rf_evenodd.h>
+#include <dev/raidframe/rf_evenodd_dagfuncs.h>
+#include <dev/raidframe/rf_evenodd_dags.h>
+#include <dev/raidframe/rf_engine.h>
+#include <dev/raidframe/rf_kintf.h>
+
+typedef struct RF_EvenOddConfigInfo_s {
+ RF_RowCol_t **stripeIdentifier; /* filled in at config time & used by
+ * IdentifyStripe */
+} RF_EvenOddConfigInfo_t;
+
+int
+rf_ConfigureEvenOdd(listp, raidPtr, cfgPtr)
+ RF_ShutdownList_t **listp;
+ RF_Raid_t *raidPtr;
+ RF_Config_t *cfgPtr;
+{
+ RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
+ RF_EvenOddConfigInfo_t *info;
+ RF_RowCol_t i, j, startdisk;
+
+ RF_MallocAndAdd(info, sizeof(RF_EvenOddConfigInfo_t), (RF_EvenOddConfigInfo_t *), raidPtr->cleanupList);
+ layoutPtr->layoutSpecificInfo = (void *) info;
+
+ RF_ASSERT(raidPtr->numRow == 1);
+
+ info->stripeIdentifier = rf_make_2d_array(raidPtr->numCol, raidPtr->numCol, raidPtr->cleanupList);
+ startdisk = 0;
+ for (i = 0; i < raidPtr->numCol; i++) {
+ for (j = 0; j < raidPtr->numCol; j++) {
+ info->stripeIdentifier[i][j] = (startdisk + j) % raidPtr->numCol;
+ }
+ if ((startdisk -= 2) < 0)
+ startdisk += raidPtr->numCol;
+ }
+
+ /* fill in the remaining layout parameters */
+ layoutPtr->numStripe = layoutPtr->stripeUnitsPerDisk;
+ layoutPtr->bytesPerStripeUnit = layoutPtr->sectorsPerStripeUnit << raidPtr->logBytesPerSector;
+ layoutPtr->numDataCol = raidPtr->numCol - 2; /* ORIG:
+ * layoutPtr->numDataCol
+ * = raidPtr->numCol-1; */
+#if RF_EO_MATRIX_DIM > 17
+ if (raidPtr->numCol <= 17) {
+ printf("Number of stripe units in a parity stripe is smaller than 17. Please\n");
+ printf("define the macro RF_EO_MATRIX_DIM in file rf_evenodd_dagfuncs.h to \n");
+ printf("be 17 to increase performance. \n");
+ return (EINVAL);
+ }
+#elif RF_EO_MATRIX_DIM == 17
+ if (raidPtr->numCol > 17) {
+ printf("Number of stripe units in a parity stripe is bigger than 17. Please\n");
+ printf("define the macro RF_EO_MATRIX_DIM in file rf_evenodd_dagfuncs.h to \n");
+ printf("be 257 for encoding and decoding functions to work. \n");
+ return (EINVAL);
+ }
+#endif
+ layoutPtr->dataSectorsPerStripe = layoutPtr->numDataCol * layoutPtr->sectorsPerStripeUnit;
+ layoutPtr->numParityCol = 2;
+ layoutPtr->dataStripeUnitsPerDisk = layoutPtr->stripeUnitsPerDisk;
+ raidPtr->sectorsPerDisk = layoutPtr->stripeUnitsPerDisk * layoutPtr->sectorsPerStripeUnit;
+
+ raidPtr->totalSectors = layoutPtr->stripeUnitsPerDisk * layoutPtr->numDataCol * layoutPtr->sectorsPerStripeUnit;
+
+ return (0);
+}
+
+int
+rf_GetDefaultNumFloatingReconBuffersEvenOdd(RF_Raid_t * raidPtr)
+{
+ return (20);
+}
+
+RF_HeadSepLimit_t
+rf_GetDefaultHeadSepLimitEvenOdd(RF_Raid_t * raidPtr)
+{
+ return (10);
+}
+
+void
+rf_IdentifyStripeEvenOdd(
+ RF_Raid_t * raidPtr,
+ RF_RaidAddr_t addr,
+ RF_RowCol_t ** diskids,
+ RF_RowCol_t * outRow)
+{
+ RF_StripeNum_t stripeID = rf_RaidAddressToStripeID(&raidPtr->Layout, addr);
+ RF_EvenOddConfigInfo_t *info = (RF_EvenOddConfigInfo_t *) raidPtr->Layout.layoutSpecificInfo;
+
+ *outRow = 0;
+ *diskids = info->stripeIdentifier[stripeID % raidPtr->numCol];
+}
+/* The layout of stripe unit on the disks are: c0 c1 c2 c3 c4
+
+ 0 1 2 E P
+ 5 E P 3 4
+ P 6 7 8 E
+ 10 11 E P 9
+ E P 12 13 14
+ ....
+
+ We use the MapSectorRAID5 to map data information because the routine can be shown to map exactly
+ the layout of data stripe unit as shown above although we have 2 redundant information now.
+ But for E and P, we use rf_MapEEvenOdd and rf_MapParityEvenOdd which are different method from raid-5.
+*/
+
+
+void
+rf_MapParityEvenOdd(
+ RF_Raid_t * raidPtr,
+ RF_RaidAddr_t raidSector,
+ RF_RowCol_t * row,
+ RF_RowCol_t * col,
+ RF_SectorNum_t * diskSector,
+ int remap)
+{
+ RF_StripeNum_t SUID = raidSector / raidPtr->Layout.sectorsPerStripeUnit;
+ RF_StripeNum_t endSUIDofthisStrip = (SUID / raidPtr->Layout.numDataCol + 1) * raidPtr->Layout.numDataCol - 1;
+
+ *row = 0;
+ *col = (endSUIDofthisStrip + 2) % raidPtr->numCol;
+ *diskSector = (SUID / (raidPtr->Layout.numDataCol)) * raidPtr->Layout.sectorsPerStripeUnit +
+ (raidSector % raidPtr->Layout.sectorsPerStripeUnit);
+}
+
+void
+rf_MapEEvenOdd(
+ RF_Raid_t * raidPtr,
+ RF_RaidAddr_t raidSector,
+ RF_RowCol_t * row,
+ RF_RowCol_t * col,
+ RF_SectorNum_t * diskSector,
+ int remap)
+{
+ RF_StripeNum_t SUID = raidSector / raidPtr->Layout.sectorsPerStripeUnit;
+ RF_StripeNum_t endSUIDofthisStrip = (SUID / raidPtr->Layout.numDataCol + 1) * raidPtr->Layout.numDataCol - 1;
+
+ *row = 0;
+ *col = (endSUIDofthisStrip + 1) % raidPtr->numCol;
+ *diskSector = (SUID / (raidPtr->Layout.numDataCol)) * raidPtr->Layout.sectorsPerStripeUnit +
+ (raidSector % raidPtr->Layout.sectorsPerStripeUnit);
+}
+
+void
+rf_EODagSelect(
+ RF_Raid_t * raidPtr,
+ RF_IoType_t type,
+ RF_AccessStripeMap_t * asmap,
+ RF_VoidFuncPtr * createFunc)
+{
+ RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
+ unsigned ndfail = asmap->numDataFailed;
+ unsigned npfail = asmap->numParityFailed + asmap->numQFailed;
+ unsigned ntfail = npfail + ndfail;
+
+ RF_ASSERT(RF_IO_IS_R_OR_W(type));
+ if (ntfail > 2) {
+ RF_ERRORMSG("more than two disks failed in a single group! Aborting I/O operation.\n");
+ /* *infoFunc = */ *createFunc = NULL;
+ return;
+ }
+ /* ok, we can do this I/O */
+ if (type == RF_IO_TYPE_READ) {
+ switch (ndfail) {
+ case 0:
+ /* fault free read */
+ *createFunc = (RF_VoidFuncPtr) rf_CreateFaultFreeReadDAG; /* same as raid 5 */
+ break;
+ case 1:
+ /* lost a single data unit */
+ /* two cases: (1) parity is not lost. do a normal raid
+ * 5 reconstruct read. (2) parity is lost. do a
+ * reconstruct read using "e". */
+ if (ntfail == 2) { /* also lost redundancy */
+ if (asmap->failedPDAs[1]->type == RF_PDA_TYPE_PARITY)
+ *createFunc = (RF_VoidFuncPtr) rf_EO_110_CreateReadDAG;
+ else
+ *createFunc = (RF_VoidFuncPtr) rf_EO_101_CreateReadDAG;
+ } else {
+ /* P and E are ok. But is there a failure in
+ * some unaccessed data unit? */
+ if (rf_NumFailedDataUnitsInStripe(raidPtr, asmap) == 2)
+ *createFunc = (RF_VoidFuncPtr) rf_EO_200_CreateReadDAG;
+ else
+ *createFunc = (RF_VoidFuncPtr) rf_EO_100_CreateReadDAG;
+ }
+ break;
+ case 2:
+ /* *createFunc = rf_EO_200_CreateReadDAG; */
+ *createFunc = NULL;
+ break;
+ }
+ return;
+ }
+ /* a write */
+ switch (ntfail) {
+ case 0: /* fault free */
+ if (rf_suppressLocksAndLargeWrites ||
+ (((asmap->numStripeUnitsAccessed <= (layoutPtr->numDataCol / 2)) && (layoutPtr->numDataCol != 1)) ||
+ (asmap->parityInfo->next != NULL) || (asmap->qInfo->next != NULL) || rf_CheckStripeForFailures(raidPtr, asmap))) {
+
+ *createFunc = (RF_VoidFuncPtr) rf_EOCreateSmallWriteDAG;
+ } else {
+ *createFunc = (RF_VoidFuncPtr) rf_EOCreateLargeWriteDAG;
+ }
+ break;
+
+ case 1: /* single disk fault */
+ if (npfail == 1) {
+ RF_ASSERT((asmap->failedPDAs[0]->type == RF_PDA_TYPE_PARITY) || (asmap->failedPDAs[0]->type == RF_PDA_TYPE_Q));
+ if (asmap->failedPDAs[0]->type == RF_PDA_TYPE_Q) { /* q died, treat like
+ * normal mode raid5
+ * write. */
+ if (((asmap->numStripeUnitsAccessed <= (layoutPtr->numDataCol / 2)) || (asmap->numStripeUnitsAccessed == 1))
+ || (asmap->parityInfo->next != NULL) || rf_NumFailedDataUnitsInStripe(raidPtr, asmap))
+ *createFunc = (RF_VoidFuncPtr) rf_EO_001_CreateSmallWriteDAG;
+ else
+ *createFunc = (RF_VoidFuncPtr) rf_EO_001_CreateLargeWriteDAG;
+ } else {/* parity died, small write only updating Q */
+ if (((asmap->numStripeUnitsAccessed <= (layoutPtr->numDataCol / 2)) || (asmap->numStripeUnitsAccessed == 1))
+ || (asmap->qInfo->next != NULL) || rf_NumFailedDataUnitsInStripe(raidPtr, asmap))
+ *createFunc = (RF_VoidFuncPtr) rf_EO_010_CreateSmallWriteDAG;
+ else
+ *createFunc = (RF_VoidFuncPtr) rf_EO_010_CreateLargeWriteDAG;
+ }
+ } else { /* data missing. Do a P reconstruct write if
+ * only a single data unit is lost in the
+ * stripe, otherwise a reconstruct write which
+ * employnig both P and E units. */
+ if (rf_NumFailedDataUnitsInStripe(raidPtr, asmap) == 2) {
+ if (asmap->numStripeUnitsAccessed == 1)
+ *createFunc = (RF_VoidFuncPtr) rf_EO_200_CreateWriteDAG;
+ else
+ *createFunc = NULL; /* No direct support for
+ * this case now, like
+ * that in Raid-5 */
+ } else {
+ if (asmap->numStripeUnitsAccessed != 1 && asmap->failedPDAs[0]->numSector != layoutPtr->sectorsPerStripeUnit)
+ *createFunc = NULL; /* No direct support for
+ * this case now, like
+ * that in Raid-5 */
+ else
+ *createFunc = (RF_VoidFuncPtr) rf_EO_100_CreateWriteDAG;
+ }
+ }
+ break;
+
+ case 2: /* two disk faults */
+ switch (npfail) {
+ case 2: /* both p and q dead */
+ *createFunc = (RF_VoidFuncPtr) rf_EO_011_CreateWriteDAG;
+ break;
+ case 1: /* either p or q and dead data */
+ RF_ASSERT(asmap->failedPDAs[0]->type == RF_PDA_TYPE_DATA);
+ RF_ASSERT((asmap->failedPDAs[1]->type == RF_PDA_TYPE_PARITY) || (asmap->failedPDAs[1]->type == RF_PDA_TYPE_Q));
+ if (asmap->failedPDAs[1]->type == RF_PDA_TYPE_Q) {
+ if (asmap->numStripeUnitsAccessed != 1 && asmap->failedPDAs[0]->numSector != layoutPtr->sectorsPerStripeUnit)
+ *createFunc = NULL; /* In both PQ and
+ * EvenOdd, no direct
+ * support for this case
+ * now, like that in
+ * Raid-5 */
+ else
+ *createFunc = (RF_VoidFuncPtr) rf_EO_101_CreateWriteDAG;
+ } else {
+ if (asmap->numStripeUnitsAccessed != 1 && asmap->failedPDAs[0]->numSector != layoutPtr->sectorsPerStripeUnit)
+ *createFunc = NULL; /* No direct support for
+ * this case, like that
+ * in Raid-5 */
+ else
+ *createFunc = (RF_VoidFuncPtr) rf_EO_110_CreateWriteDAG;
+ }
+ break;
+ case 0: /* double data loss */
+ /* if(asmap->failedPDAs[0]->numSector +
+ * asmap->failedPDAs[1]->numSector == 2 *
+ * layoutPtr->sectorsPerStripeUnit ) createFunc =
+ * rf_EOCreateLargeWriteDAG; else */
+ *createFunc = NULL; /* currently, in Evenodd, No
+ * support for simultaneous
+ * access of both failed SUs */
+ break;
+ }
+ break;
+
+ default: /* more than 2 disk faults */
+ *createFunc = NULL;
+ RF_PANIC();
+ }
+ return;
+}
+
+
+int
+rf_VerifyParityEvenOdd(raidPtr, raidAddr, parityPDA, correct_it, flags)
+ RF_Raid_t *raidPtr;
+ RF_RaidAddr_t raidAddr;
+ RF_PhysDiskAddr_t *parityPDA;
+ int correct_it;
+ RF_RaidAccessFlags_t flags;
+{
+ RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
+ RF_RaidAddr_t startAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, raidAddr);
+ RF_SectorCount_t numsector = parityPDA->numSector;
+ int numbytes = rf_RaidAddressToByte(raidPtr, numsector);
+ int bytesPerStripe = numbytes * layoutPtr->numDataCol;
+ RF_DagHeader_t *rd_dag_h, *wr_dag_h; /* read, write dag */
+ RF_DagNode_t *blockNode, *unblockNode, *wrBlock, *wrUnblock;
+ RF_AccessStripeMapHeader_t *asm_h;
+ RF_AccessStripeMap_t *asmap;
+ RF_AllocListElem_t *alloclist;
+ RF_PhysDiskAddr_t *pda;
+ char *pbuf, *buf, *end_p, *p;
+ char *redundantbuf2;
+ int redundantTwoErr = 0, redundantOneErr = 0;
+ int parity_cant_correct = RF_FALSE, red2_cant_correct = RF_FALSE,
+ parity_corrected = RF_FALSE, red2_corrected = RF_FALSE;
+ int i, retcode;
+ RF_ReconUnitNum_t which_ru;
+ RF_StripeNum_t psID = rf_RaidAddressToParityStripeID(layoutPtr, raidAddr, &which_ru);
+ int stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
+ RF_AccTraceEntry_t tracerec;
+ RF_MCPair_t *mcpair;
+
+ retcode = RF_PARITY_OKAY;
+
+ mcpair = rf_AllocMCPair();
+ rf_MakeAllocList(alloclist);
+ RF_MallocAndAdd(buf, numbytes * (layoutPtr->numDataCol + layoutPtr->numParityCol), (char *), alloclist);
+ RF_CallocAndAdd(pbuf, 1, numbytes, (char *), alloclist); /* use calloc to make
+ * sure buffer is zeroed */
+ end_p = buf + bytesPerStripe;
+ RF_CallocAndAdd(redundantbuf2, 1, numbytes, (char *), alloclist); /* use calloc to make
+ * sure buffer is zeroed */
+
+ rd_dag_h = rf_MakeSimpleDAG(raidPtr, stripeWidth, numbytes, buf, rf_DiskReadFunc, rf_DiskReadUndoFunc,
+ "Rod", alloclist, flags, RF_IO_NORMAL_PRIORITY);
+ blockNode = rd_dag_h->succedents[0];
+ unblockNode = blockNode->succedents[0]->succedents[0];
+
+ /* map the stripe and fill in the PDAs in the dag */
+ asm_h = rf_MapAccess(raidPtr, startAddr, layoutPtr->dataSectorsPerStripe, buf, RF_DONT_REMAP);
+ asmap = asm_h->stripeMap;
+
+ for (pda = asmap->physInfo, i = 0; i < layoutPtr->numDataCol; i++, pda = pda->next) {
+ RF_ASSERT(pda);
+ rf_RangeRestrictPDA(raidPtr, parityPDA, pda, 0, 1);
+ RF_ASSERT(pda->numSector != 0);
+ if (rf_TryToRedirectPDA(raidPtr, pda, 0))
+ goto out; /* no way to verify parity if disk is
+ * dead. return w/ good status */
+ blockNode->succedents[i]->params[0].p = pda;
+ blockNode->succedents[i]->params[2].v = psID;
+ blockNode->succedents[i]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
+ }
+
+ RF_ASSERT(!asmap->parityInfo->next);
+ rf_RangeRestrictPDA(raidPtr, parityPDA, asmap->parityInfo, 0, 1);
+ RF_ASSERT(asmap->parityInfo->numSector != 0);
+ if (rf_TryToRedirectPDA(raidPtr, asmap->parityInfo, 1))
+ goto out;
+ blockNode->succedents[layoutPtr->numDataCol]->params[0].p = asmap->parityInfo;
+
+ RF_ASSERT(!asmap->qInfo->next);
+ rf_RangeRestrictPDA(raidPtr, parityPDA, asmap->qInfo, 0, 1);
+ RF_ASSERT(asmap->qInfo->numSector != 0);
+ if (rf_TryToRedirectPDA(raidPtr, asmap->qInfo, 1))
+ goto out;
+ /* if disk is dead, b/c no reconstruction is implemented right now,
+ * the function "rf_TryToRedirectPDA" always return one, which cause
+ * go to out and return w/ good status */
+ blockNode->succedents[layoutPtr->numDataCol + 1]->params[0].p = asmap->qInfo;
+
+ /* fire off the DAG */
+ bzero((char *) &tracerec, sizeof(tracerec));
+ rd_dag_h->tracerec = &tracerec;
+
+ if (rf_verifyParityDebug) {
+ printf("Parity verify read dag:\n");
+ rf_PrintDAGList(rd_dag_h);
+ }
+ RF_LOCK_MUTEX(mcpair->mutex);
+ mcpair->flag = 0;
+ rf_DispatchDAG(rd_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
+ (void *) mcpair);
+ while (!mcpair->flag)
+ RF_WAIT_COND(mcpair->cond, mcpair->mutex);
+ RF_UNLOCK_MUTEX(mcpair->mutex);
+ if (rd_dag_h->status != rf_enable) {
+ RF_ERRORMSG("Unable to verify parity: can't read the stripe\n");
+ retcode = RF_PARITY_COULD_NOT_VERIFY;
+ goto out;
+ }
+ for (p = buf, i = 0; p < end_p; p += numbytes, i++) {
+ rf_e_encToBuf(raidPtr, i, p, RF_EO_MATRIX_DIM - 2, redundantbuf2, numsector);
+ /* the corresponding columes in EvenOdd encoding Matrix for
+ * these p pointers which point to the databuffer in a full
+ * stripe are sequentially from 0 to layoutPtr->numDataCol-1 */
+ rf_bxor(p, pbuf, numbytes, NULL);
+ }
+ RF_ASSERT(i == layoutPtr->numDataCol);
+
+ for (i = 0; i < numbytes; i++) {
+ if (pbuf[i] != buf[bytesPerStripe + i]) {
+ if (!correct_it) {
+ RF_ERRORMSG3("Parity verify error: byte %d of parity is 0x%x should be 0x%x\n",
+ i, (u_char) buf[bytesPerStripe + i], (u_char) pbuf[i]);
+ }
+ }
+ redundantOneErr = 1;
+ break;
+ }
+
+ for (i = 0; i < numbytes; i++) {
+ if (redundantbuf2[i] != buf[bytesPerStripe + numbytes + i]) {
+ if (!correct_it) {
+ RF_ERRORMSG3("Parity verify error: byte %d of second redundant information is 0x%x should be 0x%x\n",
+ i, (u_char) buf[bytesPerStripe + numbytes + i], (u_char) redundantbuf2[i]);
+ }
+ redundantTwoErr = 1;
+ break;
+ }
+ }
+ if (redundantOneErr || redundantTwoErr)
+ retcode = RF_PARITY_BAD;
+
+ /* correct the first redundant disk, ie parity if it is error */
+ if (redundantOneErr && correct_it) {
+ wr_dag_h = rf_MakeSimpleDAG(raidPtr, 1, numbytes, pbuf, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
+ "Wnp", alloclist, flags, RF_IO_NORMAL_PRIORITY);
+ wrBlock = wr_dag_h->succedents[0];
+ wrUnblock = wrBlock->succedents[0]->succedents[0];
+ wrBlock->succedents[0]->params[0].p = asmap->parityInfo;
+ wrBlock->succedents[0]->params[2].v = psID;
+ wrBlock->succedents[0]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
+ bzero((char *) &tracerec, sizeof(tracerec));
+ wr_dag_h->tracerec = &tracerec;
+ if (rf_verifyParityDebug) {
+ printf("Parity verify write dag:\n");
+ rf_PrintDAGList(wr_dag_h);
+ }
+ RF_LOCK_MUTEX(mcpair->mutex);
+ mcpair->flag = 0;
+ rf_DispatchDAG(wr_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
+ (void *) mcpair);
+ while (!mcpair->flag)
+ RF_WAIT_COND(mcpair->cond, mcpair->mutex);
+ RF_UNLOCK_MUTEX(mcpair->mutex);
+ if (wr_dag_h->status != rf_enable) {
+ RF_ERRORMSG("Unable to correct parity in VerifyParity: can't write the stripe\n");
+ parity_cant_correct = RF_TRUE;
+ } else {
+ parity_corrected = RF_TRUE;
+ }
+ rf_FreeDAG(wr_dag_h);
+ }
+ if (redundantTwoErr && correct_it) {
+ wr_dag_h = rf_MakeSimpleDAG(raidPtr, 1, numbytes, redundantbuf2, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
+ "Wnred2", alloclist, flags, RF_IO_NORMAL_PRIORITY);
+ wrBlock = wr_dag_h->succedents[0];
+ wrUnblock = wrBlock->succedents[0]->succedents[0];
+ wrBlock->succedents[0]->params[0].p = asmap->qInfo;
+ wrBlock->succedents[0]->params[2].v = psID;
+ wrBlock->succedents[0]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
+ bzero((char *) &tracerec, sizeof(tracerec));
+ wr_dag_h->tracerec = &tracerec;
+ if (rf_verifyParityDebug) {
+ printf("Dag of write new second redundant information in parity verify :\n");
+ rf_PrintDAGList(wr_dag_h);
+ }
+ RF_LOCK_MUTEX(mcpair->mutex);
+ mcpair->flag = 0;
+ rf_DispatchDAG(wr_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
+ (void *) mcpair);
+ while (!mcpair->flag)
+ RF_WAIT_COND(mcpair->cond, mcpair->mutex);
+ RF_UNLOCK_MUTEX(mcpair->mutex);
+ if (wr_dag_h->status != rf_enable) {
+ RF_ERRORMSG("Unable to correct second redundant information in VerifyParity: can't write the stripe\n");
+ red2_cant_correct = RF_TRUE;
+ } else {
+ red2_corrected = RF_TRUE;
+ }
+ rf_FreeDAG(wr_dag_h);
+ }
+ if ((redundantOneErr && parity_cant_correct) ||
+ (redundantTwoErr && red2_cant_correct))
+ retcode = RF_PARITY_COULD_NOT_CORRECT;
+ if ((retcode = RF_PARITY_BAD) && parity_corrected && red2_corrected)
+ retcode = RF_PARITY_CORRECTED;
+
+
+out:
+ rf_FreeAccessStripeMap(asm_h);
+ rf_FreeAllocList(alloclist);
+ rf_FreeDAG(rd_dag_h);
+ rf_FreeMCPair(mcpair);
+ return (retcode);
+}
+#endif /* RF_INCLUDE_EVENODD > 0 */
diff --git a/sys/dev/raidframe/rf_evenodd.h b/sys/dev/raidframe/rf_evenodd.h
new file mode 100644
index 0000000..4babdec
--- /dev/null
+++ b/sys/dev/raidframe/rf_evenodd.h
@@ -0,0 +1,55 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_evenodd.h,v 1.2 1999/02/05 00:06:11 oster Exp $ */
+/*
+ * Copyright (c) 1995, 1996 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Chang-Ming Wu
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+#ifndef _RF__RF_EVENODD_H_
+#define _RF__RF_EVENODD_H_
+
+/* extern declerations of the failure mode functions. */
+int
+rf_ConfigureEvenOdd(RF_ShutdownList_t ** shutdownListp, RF_Raid_t * raidPtr,
+ RF_Config_t * cfgPtr);
+int rf_GetDefaultNumFloatingReconBuffersEvenOdd(RF_Raid_t * raidPtr);
+RF_HeadSepLimit_t rf_GetDefaultHeadSepLimitEvenOdd(RF_Raid_t * raidPtr);
+void
+rf_IdentifyStripeEvenOdd(RF_Raid_t * raidPtr, RF_RaidAddr_t addr,
+ RF_RowCol_t ** diskids, RF_RowCol_t * outrow);
+void
+rf_MapParityEvenOdd(RF_Raid_t * raidPtr, RF_RaidAddr_t raidSector,
+ RF_RowCol_t * row, RF_RowCol_t * col, RF_SectorNum_t * diskSector, int remap);
+void
+rf_MapEEvenOdd(RF_Raid_t * raidPtr, RF_RaidAddr_t raidSector,
+ RF_RowCol_t * row, RF_RowCol_t * col, RF_SectorNum_t * diskSector, int remap);
+void
+rf_EODagSelect(RF_Raid_t * raidPtr, RF_IoType_t type,
+ RF_AccessStripeMap_t * asmap, RF_VoidFuncPtr * createFunc);
+int
+rf_VerifyParityEvenOdd(RF_Raid_t * raidPtr, RF_RaidAddr_t raidAddr,
+ RF_PhysDiskAddr_t * parityPDA, int correct_it, RF_RaidAccessFlags_t flags);
+
+#endif /* !_RF__RF_EVENODD_H_ */
diff --git a/sys/dev/raidframe/rf_evenodd_dagfuncs.c b/sys/dev/raidframe/rf_evenodd_dagfuncs.c
new file mode 100644
index 0000000..2dbf81d
--- /dev/null
+++ b/sys/dev/raidframe/rf_evenodd_dagfuncs.c
@@ -0,0 +1,975 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_evenodd_dagfuncs.c,v 1.7 2001/01/26 03:50:53 oster Exp $ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: ChangMing Wu
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+/*
+ * Code for RAID-EVENODD architecture.
+ */
+
+#include <dev/raidframe/rf_archs.h>
+
+#if RF_INCLUDE_EVENODD > 0
+
+#include <dev/raidframe/rf_types.h>
+#include <dev/raidframe/rf_raid.h>
+#include <dev/raidframe/rf_dag.h>
+#include <dev/raidframe/rf_dagffrd.h>
+#include <dev/raidframe/rf_dagffwr.h>
+#include <dev/raidframe/rf_dagdegrd.h>
+#include <dev/raidframe/rf_dagdegwr.h>
+#include <dev/raidframe/rf_dagutils.h>
+#include <dev/raidframe/rf_dagfuncs.h>
+#include <dev/raidframe/rf_etimer.h>
+#include <dev/raidframe/rf_general.h>
+#include <dev/raidframe/rf_configure.h>
+#include <dev/raidframe/rf_parityscan.h>
+#include <dev/raidframe/rf_evenodd.h>
+#include <dev/raidframe/rf_evenodd_dagfuncs.h>
+
+/* These redundant functions are for small write */
+RF_RedFuncs_t rf_EOSmallWritePFuncs = {rf_RegularXorFunc, "Regular Old-New P", rf_SimpleXorFunc, "Simple Old-New P"};
+RF_RedFuncs_t rf_EOSmallWriteEFuncs = {rf_RegularONEFunc, "Regular Old-New E", rf_SimpleONEFunc, "Regular Old-New E"};
+/* These redundant functions are for degraded read */
+RF_RedFuncs_t rf_eoPRecoveryFuncs = {rf_RecoveryXorFunc, "Recovery Xr", rf_RecoveryXorFunc, "Recovery Xr"};
+RF_RedFuncs_t rf_eoERecoveryFuncs = {rf_RecoveryEFunc, "Recovery E Func", rf_RecoveryEFunc, "Recovery E Func"};
+/**********************************************************************************************
+ * the following encoding node functions is used in EO_000_CreateLargeWriteDAG
+ **********************************************************************************************/
+int
+rf_RegularPEFunc(node)
+ RF_DagNode_t *node;
+{
+ rf_RegularESubroutine(node, node->results[1]);
+ rf_RegularXorFunc(node);/* does the wakeup here! */
+#if 1
+ return (0); /* XXX This was missing... GO */
+#endif
+}
+
+
+/************************************************************************************************
+ * For EO_001_CreateSmallWriteDAG, there are (i)RegularONEFunc() and (ii)SimpleONEFunc() to
+ * be used. The previous case is when write access at least sectors of full stripe unit.
+ * The later function is used when the write access two stripe units but with total sectors
+ * less than sectors per SU. In this case, the access of parity and 'E' are shown as disconnected
+ * areas in their stripe unit and parity write and 'E' write are both devided into two distinct
+ * writes( totally four). This simple old-new write and regular old-new write happen as in RAID-5
+ ************************************************************************************************/
+
+/* Algorithm:
+ 1. Store the difference of old data and new data in the Rod buffer.
+ 2. then encode this buffer into the buffer which already have old 'E' information inside it,
+ the result can be shown to be the new 'E' information.
+ 3. xor the Wnd buffer into the difference buffer to recover the original old data.
+ Here we have another alternative: to allocate a temporary buffer for storing the difference of
+ old data and new data, then encode temp buf into old 'E' buf to form new 'E', but this approach
+ take the same speed as the previous, and need more memory.
+*/
+int
+rf_RegularONEFunc(node)
+ RF_DagNode_t *node;
+{
+ RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
+ RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & raidPtr->Layout;
+ int EpdaIndex = (node->numParams - 1) / 2 - 1; /* the parameter of node
+ * where you can find
+ * e-pda */
+ int i, k, retcode = 0;
+ int suoffset, length;
+ RF_RowCol_t scol;
+ char *srcbuf, *destbuf;
+ RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
+ RF_Etimer_t timer;
+ RF_PhysDiskAddr_t *pda, *EPDA = (RF_PhysDiskAddr_t *) node->params[EpdaIndex].p;
+ int ESUOffset = rf_StripeUnitOffset(layoutPtr, EPDA->startSector); /* generally zero */
+
+ RF_ASSERT(EPDA->type == RF_PDA_TYPE_Q);
+ RF_ASSERT(ESUOffset == 0);
+
+ RF_ETIMER_START(timer);
+
+ /* Xor the Wnd buffer into Rod buffer, the difference of old data and
+ * new data is stored in Rod buffer */
+ for (k = 0; k < EpdaIndex; k += 2) {
+ length = rf_RaidAddressToByte(raidPtr, ((RF_PhysDiskAddr_t *) node->params[k].p)->numSector);
+ retcode = rf_bxor(node->params[k + EpdaIndex + 3].p, node->params[k + 1].p, length, node->dagHdr->bp);
+ }
+ /* Start to encoding the buffer storing the difference of old data and
+ * new data into 'E' buffer */
+ for (i = 0; i < EpdaIndex; i += 2)
+ if (node->params[i + 1].p != node->results[0]) { /* results[0] is buf ptr
+ * of E */
+ pda = (RF_PhysDiskAddr_t *) node->params[i].p;
+ srcbuf = (char *) node->params[i + 1].p;
+ scol = rf_EUCol(layoutPtr, pda->raidAddress);
+ suoffset = rf_StripeUnitOffset(layoutPtr, pda->startSector);
+ destbuf = ((char *) node->results[0]) + rf_RaidAddressToByte(raidPtr, suoffset);
+ rf_e_encToBuf(raidPtr, scol, srcbuf, RF_EO_MATRIX_DIM - 2, destbuf, pda->numSector);
+ }
+ /* Recover the original old data to be used by parity encoding
+ * function in XorNode */
+ for (k = 0; k < EpdaIndex; k += 2) {
+ length = rf_RaidAddressToByte(raidPtr, ((RF_PhysDiskAddr_t *) node->params[k].p)->numSector);
+ retcode = rf_bxor(node->params[k + EpdaIndex + 3].p, node->params[k + 1].p, length, node->dagHdr->bp);
+ }
+ RF_ETIMER_STOP(timer);
+ RF_ETIMER_EVAL(timer);
+ tracerec->q_us += RF_ETIMER_VAL_US(timer);
+ rf_GenericWakeupFunc(node, 0);
+#if 1
+ return (0); /* XXX this was missing.. GO */
+#endif
+}
+
+int
+rf_SimpleONEFunc(node)
+ RF_DagNode_t *node;
+{
+ RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
+ RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & raidPtr->Layout;
+ RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
+ int retcode = 0;
+ char *srcbuf, *destbuf;
+ RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
+ int length;
+ RF_RowCol_t scol;
+ RF_Etimer_t timer;
+
+ RF_ASSERT(((RF_PhysDiskAddr_t *) node->params[2].p)->type == RF_PDA_TYPE_Q);
+ if (node->dagHdr->status == rf_enable) {
+ RF_ETIMER_START(timer);
+ length = rf_RaidAddressToByte(raidPtr, ((RF_PhysDiskAddr_t *) node->params[4].p)->numSector); /* this is a pda of
+ * writeDataNodes */
+ /* bxor to buffer of readDataNodes */
+ retcode = rf_bxor(node->params[5].p, node->params[1].p, length, node->dagHdr->bp);
+ /* find out the corresponding colume in encoding matrix for
+ * write colume to be encoded into redundant disk 'E' */
+ scol = rf_EUCol(layoutPtr, pda->raidAddress);
+ srcbuf = node->params[1].p;
+ destbuf = node->params[3].p;
+ /* Start encoding process */
+ rf_e_encToBuf(raidPtr, scol, srcbuf, RF_EO_MATRIX_DIM - 2, destbuf, pda->numSector);
+ rf_bxor(node->params[5].p, node->params[1].p, length, node->dagHdr->bp);
+ RF_ETIMER_STOP(timer);
+ RF_ETIMER_EVAL(timer);
+ tracerec->q_us += RF_ETIMER_VAL_US(timer);
+
+ }
+ return (rf_GenericWakeupFunc(node, retcode)); /* call wake func
+ * explicitly since no
+ * I/O in this node */
+}
+
+
+/****** called by rf_RegularPEFunc(node) and rf_RegularEFunc(node) in f.f. large write ********/
+void
+rf_RegularESubroutine(node, ebuf)
+ RF_DagNode_t *node;
+ char *ebuf;
+{
+ RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
+ RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & raidPtr->Layout;
+ RF_PhysDiskAddr_t *pda;
+ int i, suoffset;
+ RF_RowCol_t scol;
+ char *srcbuf, *destbuf;
+ RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
+ RF_Etimer_t timer;
+
+ RF_ETIMER_START(timer);
+ for (i = 0; i < node->numParams - 2; i += 2) {
+ RF_ASSERT(node->params[i + 1].p != ebuf);
+ pda = (RF_PhysDiskAddr_t *) node->params[i].p;
+ suoffset = rf_StripeUnitOffset(layoutPtr, pda->startSector);
+ scol = rf_EUCol(layoutPtr, pda->raidAddress);
+ srcbuf = (char *) node->params[i + 1].p;
+ destbuf = ebuf + rf_RaidAddressToByte(raidPtr, suoffset);
+ rf_e_encToBuf(raidPtr, scol, srcbuf, RF_EO_MATRIX_DIM - 2, destbuf, pda->numSector);
+ }
+ RF_ETIMER_STOP(timer);
+ RF_ETIMER_EVAL(timer);
+ tracerec->xor_us += RF_ETIMER_VAL_US(timer);
+}
+
+
+/*******************************************************************************************
+ * Used in EO_001_CreateLargeWriteDAG
+ ******************************************************************************************/
+int
+rf_RegularEFunc(node)
+ RF_DagNode_t *node;
+{
+ rf_RegularESubroutine(node, node->results[0]);
+ rf_GenericWakeupFunc(node, 0);
+#if 1
+ return (0); /* XXX this was missing?.. GO */
+#endif
+}
+/*******************************************************************************************
+ * This degraded function allow only two case:
+ * 1. when write access the full failed stripe unit, then the access can be more than
+ * one tripe units.
+ * 2. when write access only part of the failed SU, we assume accesses of more than
+ * one stripe unit is not allowed so that the write can be dealt with like a
+ * large write.
+ * The following function is based on these assumptions. So except in the second case,
+ * it looks the same as a large write encodeing function. But this is not exactly the
+ * normal way for doing a degraded write, since raidframe have to break cases of access
+ * other than the above two into smaller accesses. We may have to change
+ * DegrESubroutin in the future.
+ *******************************************************************************************/
+void
+rf_DegrESubroutine(node, ebuf)
+ RF_DagNode_t *node;
+ char *ebuf;
+{
+ RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
+ RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & raidPtr->Layout;
+ RF_PhysDiskAddr_t *failedPDA = (RF_PhysDiskAddr_t *) node->params[node->numParams - 2].p;
+ RF_PhysDiskAddr_t *pda;
+ int i, suoffset, failedSUOffset = rf_StripeUnitOffset(layoutPtr, failedPDA->startSector);
+ RF_RowCol_t scol;
+ char *srcbuf, *destbuf;
+ RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
+ RF_Etimer_t timer;
+
+ RF_ETIMER_START(timer);
+ for (i = 0; i < node->numParams - 2; i += 2) {
+ RF_ASSERT(node->params[i + 1].p != ebuf);
+ pda = (RF_PhysDiskAddr_t *) node->params[i].p;
+ suoffset = rf_StripeUnitOffset(layoutPtr, pda->startSector);
+ scol = rf_EUCol(layoutPtr, pda->raidAddress);
+ srcbuf = (char *) node->params[i + 1].p;
+ destbuf = ebuf + rf_RaidAddressToByte(raidPtr, suoffset - failedSUOffset);
+ rf_e_encToBuf(raidPtr, scol, srcbuf, RF_EO_MATRIX_DIM - 2, destbuf, pda->numSector);
+ }
+
+ RF_ETIMER_STOP(timer);
+ RF_ETIMER_EVAL(timer);
+ tracerec->q_us += RF_ETIMER_VAL_US(timer);
+}
+
+
+/**************************************************************************************
+ * This function is used in case where one data disk failed and both redundant disks
+ * alive. It is used in the EO_100_CreateWriteDAG. Note: if there is another disk
+ * failed in the stripe but not accessed at this time, then we should, instead, use
+ * the rf_EOWriteDoubleRecoveryFunc().
+ **************************************************************************************/
+int
+rf_Degraded_100_EOFunc(node)
+ RF_DagNode_t *node;
+{
+ rf_DegrESubroutine(node, node->results[1]);
+ rf_RecoveryXorFunc(node); /* does the wakeup here! */
+#if 1
+ return (0); /* XXX this was missing... SHould these be
+ * void functions??? GO */
+#endif
+}
+/**************************************************************************************
+ * This function is to encode one sector in one of the data disks to the E disk.
+ * However, in evenodd this function can also be used as decoding function to recover
+ * data from dead disk in the case of parity failure and a single data failure.
+ **************************************************************************************/
+void
+rf_e_EncOneSect(
+ RF_RowCol_t srcLogicCol,
+ char *srcSecbuf,
+ RF_RowCol_t destLogicCol,
+ char *destSecbuf,
+ int bytesPerSector)
+{
+ int S_index; /* index of the EU in the src col which need
+ * be Xored into all EUs in a dest sector */
+ int numRowInEncMatix = (RF_EO_MATRIX_DIM) - 1;
+ RF_RowCol_t j, indexInDest, /* row index of an encoding unit in
+ * the destination colume of encoding
+ * matrix */
+ indexInSrc; /* row index of an encoding unit in the source
+ * colume used for recovery */
+ int bytesPerEU = bytesPerSector / numRowInEncMatix;
+
+#if RF_EO_MATRIX_DIM > 17
+ int shortsPerEU = bytesPerEU / sizeof(short);
+ short *destShortBuf, *srcShortBuf1, *srcShortBuf2;
+ short temp1;
+#elif RF_EO_MATRIX_DIM == 17
+ int longsPerEU = bytesPerEU / sizeof(long);
+ long *destLongBuf, *srcLongBuf1, *srcLongBuf2;
+ long temp1;
+#endif
+
+#if RF_EO_MATRIX_DIM > 17
+ RF_ASSERT(sizeof(short) == 2 || sizeof(short) == 1);
+ RF_ASSERT(bytesPerEU % sizeof(short) == 0);
+#elif RF_EO_MATRIX_DIM == 17
+ RF_ASSERT(sizeof(long) == 8 || sizeof(long) == 4);
+ RF_ASSERT(bytesPerEU % sizeof(long) == 0);
+#endif
+
+ S_index = rf_EO_Mod((RF_EO_MATRIX_DIM - 1 + destLogicCol - srcLogicCol), RF_EO_MATRIX_DIM);
+#if RF_EO_MATRIX_DIM > 17
+ srcShortBuf1 = (short *) (srcSecbuf + S_index * bytesPerEU);
+#elif RF_EO_MATRIX_DIM == 17
+ srcLongBuf1 = (long *) (srcSecbuf + S_index * bytesPerEU);
+#endif
+
+ for (indexInDest = 0; indexInDest < numRowInEncMatix; indexInDest++) {
+ indexInSrc = rf_EO_Mod((indexInDest + destLogicCol - srcLogicCol), RF_EO_MATRIX_DIM);
+
+#if RF_EO_MATRIX_DIM > 17
+ destShortBuf = (short *) (destSecbuf + indexInDest * bytesPerEU);
+ srcShortBuf2 = (short *) (srcSecbuf + indexInSrc * bytesPerEU);
+ for (j = 0; j < shortsPerEU; j++) {
+ temp1 = destShortBuf[j] ^ srcShortBuf1[j];
+ /* note: S_index won't be at the end row for any src
+ * col! */
+ if (indexInSrc != RF_EO_MATRIX_DIM - 1)
+ destShortBuf[j] = (srcShortBuf2[j]) ^ temp1;
+ /* if indexInSrc is at the end row, ie.
+ * RF_EO_MATRIX_DIM -1, then all elements are zero! */
+ else
+ destShortBuf[j] = temp1;
+ }
+
+#elif RF_EO_MATRIX_DIM == 17
+ destLongBuf = (long *) (destSecbuf + indexInDest * bytesPerEU);
+ srcLongBuf2 = (long *) (srcSecbuf + indexInSrc * bytesPerEU);
+ for (j = 0; j < longsPerEU; j++) {
+ temp1 = destLongBuf[j] ^ srcLongBuf1[j];
+ if (indexInSrc != RF_EO_MATRIX_DIM - 1)
+ destLongBuf[j] = (srcLongBuf2[j]) ^ temp1;
+ else
+ destLongBuf[j] = temp1;
+ }
+#endif
+ }
+}
+
+void
+rf_e_encToBuf(
+ RF_Raid_t * raidPtr,
+ RF_RowCol_t srcLogicCol,
+ char *srcbuf,
+ RF_RowCol_t destLogicCol,
+ char *destbuf,
+ int numSector)
+{
+ int i, bytesPerSector = rf_RaidAddressToByte(raidPtr, 1);
+
+ for (i = 0; i < numSector; i++) {
+ rf_e_EncOneSect(srcLogicCol, srcbuf, destLogicCol, destbuf, bytesPerSector);
+ srcbuf += bytesPerSector;
+ destbuf += bytesPerSector;
+ }
+}
+/**************************************************************************************
+ * when parity die and one data die, We use second redundant information, 'E',
+ * to recover the data in dead disk. This function is used in the recovery node of
+ * for EO_110_CreateReadDAG
+ **************************************************************************************/
+int
+rf_RecoveryEFunc(node)
+ RF_DagNode_t *node;
+{
+ RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
+ RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & raidPtr->Layout;
+ RF_PhysDiskAddr_t *failedPDA = (RF_PhysDiskAddr_t *) node->params[node->numParams - 2].p;
+ RF_RowCol_t scol, /* source logical column */
+ fcol = rf_EUCol(layoutPtr, failedPDA->raidAddress); /* logical column of
+ * failed SU */
+ int i;
+ RF_PhysDiskAddr_t *pda;
+ int suoffset, failedSUOffset = rf_StripeUnitOffset(layoutPtr, failedPDA->startSector);
+ char *srcbuf, *destbuf;
+ RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
+ RF_Etimer_t timer;
+
+ bzero((char *) node->results[0], rf_RaidAddressToByte(raidPtr, failedPDA->numSector));
+ if (node->dagHdr->status == rf_enable) {
+ RF_ETIMER_START(timer);
+ for (i = 0; i < node->numParams - 2; i += 2)
+ if (node->params[i + 1].p != node->results[0]) {
+ pda = (RF_PhysDiskAddr_t *) node->params[i].p;
+ if (i == node->numParams - 4)
+ scol = RF_EO_MATRIX_DIM - 2; /* the colume of
+ * redundant E */
+ else
+ scol = rf_EUCol(layoutPtr, pda->raidAddress);
+ srcbuf = (char *) node->params[i + 1].p;
+ suoffset = rf_StripeUnitOffset(layoutPtr, pda->startSector);
+ destbuf = ((char *) node->results[0]) + rf_RaidAddressToByte(raidPtr, suoffset - failedSUOffset);
+ rf_e_encToBuf(raidPtr, scol, srcbuf, fcol, destbuf, pda->numSector);
+ }
+ RF_ETIMER_STOP(timer);
+ RF_ETIMER_EVAL(timer);
+ tracerec->xor_us += RF_ETIMER_VAL_US(timer);
+ }
+ return (rf_GenericWakeupFunc(node, 0)); /* node execute successfully */
+}
+/**************************************************************************************
+ * This function is used in the case where one data and the parity have filed.
+ * (in EO_110_CreateWriteDAG )
+ **************************************************************************************/
+int
+rf_EO_DegradedWriteEFunc(RF_DagNode_t * node)
+{
+ rf_DegrESubroutine(node, node->results[0]);
+ rf_GenericWakeupFunc(node, 0);
+#if 1
+ return (0); /* XXX Yet another one!! GO */
+#endif
+}
+
+
+
+/**************************************************************************************
+ * THE FUNCTION IS FOR DOUBLE DEGRADED READ AND WRITE CASES
+ **************************************************************************************/
+
+void
+rf_doubleEOdecode(
+ RF_Raid_t * raidPtr,
+ char **rrdbuf,
+ char **dest,
+ RF_RowCol_t * fcol,
+ char *pbuf,
+ char *ebuf)
+{
+ RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & (raidPtr->Layout);
+ int i, j, k, f1, f2, row;
+ int rrdrow, erow, count = 0;
+ int bytesPerSector = rf_RaidAddressToByte(raidPtr, 1);
+ int numRowInEncMatix = (RF_EO_MATRIX_DIM) - 1;
+#if 0
+ int pcol = (RF_EO_MATRIX_DIM) - 1;
+#endif
+ int ecol = (RF_EO_MATRIX_DIM) - 2;
+ int bytesPerEU = bytesPerSector / numRowInEncMatix;
+ int numDataCol = layoutPtr->numDataCol;
+#if RF_EO_MATRIX_DIM > 17
+ int shortsPerEU = bytesPerEU / sizeof(short);
+ short *rrdbuf_current, *pbuf_current, *ebuf_current;
+ short *dest_smaller, *dest_smaller_current, *dest_larger, *dest_larger_current;
+ short *temp;
+ short *P;
+
+ RF_ASSERT(bytesPerEU % sizeof(short) == 0);
+ RF_Malloc(P, bytesPerEU, (short *));
+ RF_Malloc(temp, bytesPerEU, (short *));
+#elif RF_EO_MATRIX_DIM == 17
+ int longsPerEU = bytesPerEU / sizeof(long);
+ long *rrdbuf_current, *pbuf_current, *ebuf_current;
+ long *dest_smaller, *dest_smaller_current, *dest_larger, *dest_larger_current;
+ long *temp;
+ long *P;
+
+ RF_ASSERT(bytesPerEU % sizeof(long) == 0);
+ RF_Malloc(P, bytesPerEU, (long *));
+ RF_Malloc(temp, bytesPerEU, (long *));
+#endif
+ RF_ASSERT(*((long *) dest[0]) == 0);
+ RF_ASSERT(*((long *) dest[1]) == 0);
+ bzero((char *) P, bytesPerEU);
+ bzero((char *) temp, bytesPerEU);
+ RF_ASSERT(*P == 0);
+ /* calculate the 'P' parameter, which, not parity, is the Xor of all
+ * elements in the last two column, ie. 'E' and 'parity' colume, see
+ * the Ref. paper by Blaum, et al 1993 */
+ for (i = 0; i < numRowInEncMatix; i++)
+ for (k = 0; k < longsPerEU; k++) {
+#if RF_EO_MATRIX_DIM > 17
+ ebuf_current = ((short *) ebuf) + i * shortsPerEU + k;
+ pbuf_current = ((short *) pbuf) + i * shortsPerEU + k;
+#elif RF_EO_MATRIX_DIM == 17
+ ebuf_current = ((long *) ebuf) + i * longsPerEU + k;
+ pbuf_current = ((long *) pbuf) + i * longsPerEU + k;
+#endif
+ P[k] ^= *ebuf_current;
+ P[k] ^= *pbuf_current;
+ }
+ RF_ASSERT(fcol[0] != fcol[1]);
+ if (fcol[0] < fcol[1]) {
+#if RF_EO_MATRIX_DIM > 17
+ dest_smaller = (short *) (dest[0]);
+ dest_larger = (short *) (dest[1]);
+#elif RF_EO_MATRIX_DIM == 17
+ dest_smaller = (long *) (dest[0]);
+ dest_larger = (long *) (dest[1]);
+#endif
+ f1 = fcol[0];
+ f2 = fcol[1];
+ } else {
+#if RF_EO_MATRIX_DIM > 17
+ dest_smaller = (short *) (dest[1]);
+ dest_larger = (short *) (dest[0]);
+#elif RF_EO_MATRIX_DIM == 17
+ dest_smaller = (long *) (dest[1]);
+ dest_larger = (long *) (dest[0]);
+#endif
+ f1 = fcol[1];
+ f2 = fcol[0];
+ }
+ row = (RF_EO_MATRIX_DIM) - 1;
+ while ((row = rf_EO_Mod((row + f1 - f2), RF_EO_MATRIX_DIM)) != ((RF_EO_MATRIX_DIM) - 1)) {
+#if RF_EO_MATRIX_DIM > 17
+ dest_larger_current = dest_larger + row * shortsPerEU;
+ dest_smaller_current = dest_smaller + row * shortsPerEU;
+#elif RF_EO_MATRIX_DIM == 17
+ dest_larger_current = dest_larger + row * longsPerEU;
+ dest_smaller_current = dest_smaller + row * longsPerEU;
+#endif
+ /** Do the diagonal recovery. Initially, temp[k] = (failed 1),
+ which is the failed data in the colume which has smaller col index. **/
+ /* step 1: ^(SUM of nonfailed in-diagonal A(rrdrow,0..m-3)) */
+ for (j = 0; j < numDataCol; j++) {
+ if (j == f1 || j == f2)
+ continue;
+ rrdrow = rf_EO_Mod((row + f2 - j), RF_EO_MATRIX_DIM);
+ if (rrdrow != (RF_EO_MATRIX_DIM) - 1) {
+#if RF_EO_MATRIX_DIM > 17
+ rrdbuf_current = (short *) (rrdbuf[j]) + rrdrow * shortsPerEU;
+ for (k = 0; k < shortsPerEU; k++)
+ temp[k] ^= *(rrdbuf_current + k);
+#elif RF_EO_MATRIX_DIM == 17
+ rrdbuf_current = (long *) (rrdbuf[j]) + rrdrow * longsPerEU;
+ for (k = 0; k < longsPerEU; k++)
+ temp[k] ^= *(rrdbuf_current + k);
+#endif
+ }
+ }
+ /* step 2: ^E(erow,m-2), If erow is at the buttom row, don't
+ * Xor into it E(erow,m-2) = (principle diagonal) ^ (failed
+ * 1) ^ (failed 2) ^ ( SUM of nonfailed in-diagonal
+ * A(rrdrow,0..m-3) ) After this step, temp[k] = (principle
+ * diagonal) ^ (failed 2) */
+
+ erow = rf_EO_Mod((row + f2 - ecol), (RF_EO_MATRIX_DIM));
+ if (erow != (RF_EO_MATRIX_DIM) - 1) {
+#if RF_EO_MATRIX_DIM > 17
+ ebuf_current = (short *) ebuf + shortsPerEU * erow;
+ for (k = 0; k < shortsPerEU; k++)
+ temp[k] ^= *(ebuf_current + k);
+#elif RF_EO_MATRIX_DIM == 17
+ ebuf_current = (long *) ebuf + longsPerEU * erow;
+ for (k = 0; k < longsPerEU; k++)
+ temp[k] ^= *(ebuf_current + k);
+#endif
+ }
+ /* step 3: ^P to obtain the failed data (failed 2). P can be
+ * proved to be actually (principle diagonal) After this
+ * step, temp[k] = (failed 2), the failed data to be recovered */
+#if RF_EO_MATRIX_DIM > 17
+ for (k = 0; k < shortsPerEU; k++)
+ temp[k] ^= P[k];
+ /* Put the data to the destination buffer */
+ for (k = 0; k < shortsPerEU; k++)
+ dest_larger_current[k] = temp[k];
+#elif RF_EO_MATRIX_DIM == 17
+ for (k = 0; k < longsPerEU; k++)
+ temp[k] ^= P[k];
+ /* Put the data to the destination buffer */
+ for (k = 0; k < longsPerEU; k++)
+ dest_larger_current[k] = temp[k];
+#endif
+
+ /** THE FOLLOWING DO THE HORIZONTAL XOR **/
+ /* step 1: ^(SUM of A(row,0..m-3)), ie. all nonfailed data
+ * columes */
+ for (j = 0; j < numDataCol; j++) {
+ if (j == f1 || j == f2)
+ continue;
+#if RF_EO_MATRIX_DIM > 17
+ rrdbuf_current = (short *) (rrdbuf[j]) + row * shortsPerEU;
+ for (k = 0; k < shortsPerEU; k++)
+ temp[k] ^= *(rrdbuf_current + k);
+#elif RF_EO_MATRIX_DIM == 17
+ rrdbuf_current = (long *) (rrdbuf[j]) + row * longsPerEU;
+ for (k = 0; k < longsPerEU; k++)
+ temp[k] ^= *(rrdbuf_current + k);
+#endif
+ }
+ /* step 2: ^A(row,m-1) */
+ /* step 3: Put the data to the destination buffer */
+#if RF_EO_MATRIX_DIM > 17
+ pbuf_current = (short *) pbuf + shortsPerEU * row;
+ for (k = 0; k < shortsPerEU; k++)
+ temp[k] ^= *(pbuf_current + k);
+ for (k = 0; k < shortsPerEU; k++)
+ dest_smaller_current[k] = temp[k];
+#elif RF_EO_MATRIX_DIM == 17
+ pbuf_current = (long *) pbuf + longsPerEU * row;
+ for (k = 0; k < longsPerEU; k++)
+ temp[k] ^= *(pbuf_current + k);
+ for (k = 0; k < longsPerEU; k++)
+ dest_smaller_current[k] = temp[k];
+#endif
+ count++;
+ }
+ /* Check if all Encoding Unit in the data buffer have been decoded,
+ * according EvenOdd theory, if "RF_EO_MATRIX_DIM" is a prime number,
+ * this algorithm will covered all buffer */
+ RF_ASSERT(count == numRowInEncMatix);
+ RF_Free((char *) P, bytesPerEU);
+ RF_Free((char *) temp, bytesPerEU);
+}
+
+
+/***************************************************************************************
+* This function is called by double degragded read
+* EO_200_CreateReadDAG
+*
+***************************************************************************************/
+int
+rf_EvenOddDoubleRecoveryFunc(node)
+ RF_DagNode_t *node;
+{
+ int ndataParam = 0;
+ int np = node->numParams;
+ RF_AccessStripeMap_t *asmap = (RF_AccessStripeMap_t *) node->params[np - 1].p;
+ RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[np - 2].p;
+ RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & (raidPtr->Layout);
+ int i, prm, sector, nresults = node->numResults;
+ RF_SectorCount_t secPerSU = layoutPtr->sectorsPerStripeUnit;
+ unsigned sosAddr;
+ int two = 0, mallc_one = 0, mallc_two = 0; /* flags to indicate if
+ * memory is allocated */
+ int bytesPerSector = rf_RaidAddressToByte(raidPtr, 1);
+ RF_PhysDiskAddr_t *ppda, *ppda2, *epda, *epda2, *pda, *pda0, *pda1,
+ npda;
+ RF_RowCol_t fcol[2], fsuoff[2], fsuend[2], numDataCol = layoutPtr->numDataCol;
+ char **buf, *ebuf, *pbuf, *dest[2];
+ long *suoff = NULL, *suend = NULL, *prmToCol = NULL, psuoff, esuoff;
+ RF_SectorNum_t startSector, endSector;
+ RF_Etimer_t timer;
+ RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
+
+ RF_ETIMER_START(timer);
+
+ /* Find out the number of parameters which are pdas for data
+ * information */
+ for (i = 0; i <= np; i++)
+ if (((RF_PhysDiskAddr_t *) node->params[i].p)->type != RF_PDA_TYPE_DATA) {
+ ndataParam = i;
+ break;
+ }
+ RF_Malloc(buf, numDataCol * sizeof(char *), (char **));
+ if (ndataParam != 0) {
+ RF_Malloc(suoff, ndataParam * sizeof(long), (long *));
+ RF_Malloc(suend, ndataParam * sizeof(long), (long *));
+ RF_Malloc(prmToCol, ndataParam * sizeof(long), (long *));
+ }
+ if (asmap->failedPDAs[1] &&
+ (asmap->failedPDAs[1]->numSector + asmap->failedPDAs[0]->numSector < secPerSU)) {
+ RF_ASSERT(0); /* currently, no support for this situation */
+ ppda = node->params[np - 6].p;
+ ppda2 = node->params[np - 5].p;
+ RF_ASSERT(ppda2->type == RF_PDA_TYPE_PARITY);
+ epda = node->params[np - 4].p;
+ epda2 = node->params[np - 3].p;
+ RF_ASSERT(epda2->type == RF_PDA_TYPE_Q);
+ two = 1;
+ } else {
+ ppda = node->params[np - 4].p;
+ epda = node->params[np - 3].p;
+ psuoff = rf_StripeUnitOffset(layoutPtr, ppda->startSector);
+ esuoff = rf_StripeUnitOffset(layoutPtr, epda->startSector);
+ RF_ASSERT(psuoff == esuoff);
+ }
+ /*
+ the followings have three goals:
+ 1. determine the startSector to begin decoding and endSector to end decoding.
+ 2. determine the colume numbers of the two failed disks.
+ 3. determine the offset and end offset of the access within each failed stripe unit.
+ */
+ if (nresults == 1) {
+ /* find the startSector to begin decoding */
+ pda = node->results[0];
+ bzero(pda->bufPtr, bytesPerSector * pda->numSector);
+ fsuoff[0] = rf_StripeUnitOffset(layoutPtr, pda->startSector);
+ fsuend[0] = fsuoff[0] + pda->numSector;
+ startSector = fsuoff[0];
+ endSector = fsuend[0];
+
+ /* find out the column of failed disk being accessed */
+ fcol[0] = rf_EUCol(layoutPtr, pda->raidAddress);
+
+ /* find out the other failed colume not accessed */
+ sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
+ for (i = 0; i < numDataCol; i++) {
+ npda.raidAddress = sosAddr + (i * secPerSU);
+ (raidPtr->Layout.map->MapSector) (raidPtr, npda.raidAddress, &(npda.row), &(npda.col), &(npda.startSector), 0);
+ /* skip over dead disks */
+ if (RF_DEAD_DISK(raidPtr->Disks[npda.row][npda.col].status))
+ if (i != fcol[0])
+ break;
+ }
+ RF_ASSERT(i < numDataCol);
+ fcol[1] = i;
+ } else {
+ RF_ASSERT(nresults == 2);
+ pda0 = node->results[0];
+ bzero(pda0->bufPtr, bytesPerSector * pda0->numSector);
+ pda1 = node->results[1];
+ bzero(pda1->bufPtr, bytesPerSector * pda1->numSector);
+ /* determine the failed colume numbers of the two failed
+ * disks. */
+ fcol[0] = rf_EUCol(layoutPtr, pda0->raidAddress);
+ fcol[1] = rf_EUCol(layoutPtr, pda1->raidAddress);
+ /* determine the offset and end offset of the access within
+ * each failed stripe unit. */
+ fsuoff[0] = rf_StripeUnitOffset(layoutPtr, pda0->startSector);
+ fsuend[0] = fsuoff[0] + pda0->numSector;
+ fsuoff[1] = rf_StripeUnitOffset(layoutPtr, pda1->startSector);
+ fsuend[1] = fsuoff[1] + pda1->numSector;
+ /* determine the startSector to begin decoding */
+ startSector = RF_MIN(pda0->startSector, pda1->startSector);
+ /* determine the endSector to end decoding */
+ endSector = RF_MAX(fsuend[0], fsuend[1]);
+ }
+ /*
+ assign the beginning sector and the end sector for each parameter
+ find out the corresponding colume # for each parameter
+ */
+ for (prm = 0; prm < ndataParam; prm++) {
+ pda = node->params[prm].p;
+ suoff[prm] = rf_StripeUnitOffset(layoutPtr, pda->startSector);
+ suend[prm] = suoff[prm] + pda->numSector;
+ prmToCol[prm] = rf_EUCol(layoutPtr, pda->raidAddress);
+ }
+ /* 'sector' is the sector for the current decoding algorithm. For each
+ * sector in the failed SU, find out the corresponding parameters that
+ * cover the current sector and that are needed for decoding of this
+ * sector in failed SU. 2. Find out if sector is in the shadow of any
+ * accessed failed SU. If not, malloc a temporary space of a sector in
+ * size. */
+ for (sector = startSector; sector < endSector; sector++) {
+ if (nresults == 2)
+ if (!(fsuoff[0] <= sector && sector < fsuend[0]) && !(fsuoff[1] <= sector && sector < fsuend[1]))
+ continue;
+ for (prm = 0; prm < ndataParam; prm++)
+ if (suoff[prm] <= sector && sector < suend[prm])
+ buf[(prmToCol[prm])] = ((RF_PhysDiskAddr_t *) node->params[prm].p)->bufPtr +
+ rf_RaidAddressToByte(raidPtr, sector - suoff[prm]);
+ /* find out if sector is in the shadow of any accessed failed
+ * SU. If yes, assign dest[0], dest[1] to point at suitable
+ * position of the buffer corresponding to failed SUs. if no,
+ * malloc a temporary space of a sector in size for
+ * destination of decoding. */
+ RF_ASSERT(nresults == 1 || nresults == 2);
+ if (nresults == 1) {
+ dest[0] = ((RF_PhysDiskAddr_t *) node->results[0])->bufPtr + rf_RaidAddressToByte(raidPtr, sector - fsuoff[0]);
+ /* Always malloc temp buffer to dest[1] */
+ RF_Malloc(dest[1], bytesPerSector, (char *));
+ bzero(dest[1], bytesPerSector);
+ mallc_two = 1;
+ } else {
+ if (fsuoff[0] <= sector && sector < fsuend[0])
+ dest[0] = ((RF_PhysDiskAddr_t *) node->results[0])->bufPtr + rf_RaidAddressToByte(raidPtr, sector - fsuoff[0]);
+ else {
+ RF_Malloc(dest[0], bytesPerSector, (char *));
+ bzero(dest[0], bytesPerSector);
+ mallc_one = 1;
+ }
+ if (fsuoff[1] <= sector && sector < fsuend[1])
+ dest[1] = ((RF_PhysDiskAddr_t *) node->results[1])->bufPtr + rf_RaidAddressToByte(raidPtr, sector - fsuoff[1]);
+ else {
+ RF_Malloc(dest[1], bytesPerSector, (char *));
+ bzero(dest[1], bytesPerSector);
+ mallc_two = 1;
+ }
+ RF_ASSERT(mallc_one == 0 || mallc_two == 0);
+ }
+ pbuf = ppda->bufPtr + rf_RaidAddressToByte(raidPtr, sector - psuoff);
+ ebuf = epda->bufPtr + rf_RaidAddressToByte(raidPtr, sector - esuoff);
+ /*
+ * After finish finding all needed sectors, call doubleEOdecode function for decoding
+ * one sector to destination.
+ */
+ rf_doubleEOdecode(raidPtr, buf, dest, fcol, pbuf, ebuf);
+ /* free all allocated memory, and mark flag to indicate no
+ * memory is being allocated */
+ if (mallc_one == 1)
+ RF_Free(dest[0], bytesPerSector);
+ if (mallc_two == 1)
+ RF_Free(dest[1], bytesPerSector);
+ mallc_one = mallc_two = 0;
+ }
+ RF_Free(buf, numDataCol * sizeof(char *));
+ if (ndataParam != 0) {
+ RF_Free(suoff, ndataParam * sizeof(long));
+ RF_Free(suend, ndataParam * sizeof(long));
+ RF_Free(prmToCol, ndataParam * sizeof(long));
+ }
+ RF_ETIMER_STOP(timer);
+ RF_ETIMER_EVAL(timer);
+ if (tracerec) {
+ tracerec->q_us += RF_ETIMER_VAL_US(timer);
+ }
+ rf_GenericWakeupFunc(node, 0);
+#if 1
+ return (0); /* XXX is this even close!!?!?!!? GO */
+#endif
+}
+
+
+/* currently, only access of one of the two failed SU is allowed in this function.
+ * also, asmap->numStripeUnitsAccessed is limited to be one, the RaidFrame will break large access into
+ * many accesses of single stripe unit.
+ */
+
+int
+rf_EOWriteDoubleRecoveryFunc(node)
+ RF_DagNode_t *node;
+{
+ int np = node->numParams;
+ RF_AccessStripeMap_t *asmap = (RF_AccessStripeMap_t *) node->params[np - 1].p;
+ RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[np - 2].p;
+ RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & (raidPtr->Layout);
+ RF_SectorNum_t sector;
+ RF_RowCol_t col, scol;
+ int prm, i, j;
+ RF_SectorCount_t secPerSU = layoutPtr->sectorsPerStripeUnit;
+ unsigned sosAddr;
+ unsigned bytesPerSector = rf_RaidAddressToByte(raidPtr, 1);
+ RF_int64 numbytes;
+ RF_SectorNum_t startSector, endSector;
+ RF_PhysDiskAddr_t *ppda, *epda, *pda, *fpda, npda;
+ RF_RowCol_t fcol[2], numDataCol = layoutPtr->numDataCol;
+ char **buf; /* buf[0], buf[1], buf[2], ...etc. point to
+ * buffer storing data read from col0, col1,
+ * col2 */
+ char *ebuf, *pbuf, *dest[2], *olddata[2];
+ RF_Etimer_t timer;
+ RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
+
+ RF_ASSERT(asmap->numDataFailed == 1); /* currently only support this
+ * case, the other failed SU
+ * is not being accessed */
+ RF_ETIMER_START(timer);
+ RF_Malloc(buf, numDataCol * sizeof(char *), (char **));
+
+ ppda = node->results[0];/* Instead of being buffers, node->results[0]
+ * and [1] are Ppda and Epda */
+ epda = node->results[1];
+ fpda = asmap->failedPDAs[0];
+
+ /* First, recovery the failed old SU using EvenOdd double decoding */
+ /* determine the startSector and endSector for decoding */
+ startSector = rf_StripeUnitOffset(layoutPtr, fpda->startSector);
+ endSector = startSector + fpda->numSector;
+ /* Assign buf[col] pointers to point to each non-failed colume and
+ * initialize the pbuf and ebuf to point at the beginning of each
+ * source buffers and destination buffers */
+ for (prm = 0; prm < numDataCol - 2; prm++) {
+ pda = (RF_PhysDiskAddr_t *) node->params[prm].p;
+ col = rf_EUCol(layoutPtr, pda->raidAddress);
+ buf[col] = pda->bufPtr;
+ }
+ /* pbuf and ebuf: they will change values as double recovery decoding
+ * goes on */
+ pbuf = ppda->bufPtr;
+ ebuf = epda->bufPtr;
+ /* find out the logical colume numbers in the encoding matrix of the
+ * two failed columes */
+ fcol[0] = rf_EUCol(layoutPtr, fpda->raidAddress);
+
+ /* find out the other failed colume not accessed this time */
+ sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
+ for (i = 0; i < numDataCol; i++) {
+ npda.raidAddress = sosAddr + (i * secPerSU);
+ (raidPtr->Layout.map->MapSector) (raidPtr, npda.raidAddress, &(npda.row), &(npda.col), &(npda.startSector), 0);
+ /* skip over dead disks */
+ if (RF_DEAD_DISK(raidPtr->Disks[npda.row][npda.col].status))
+ if (i != fcol[0])
+ break;
+ }
+ RF_ASSERT(i < numDataCol);
+ fcol[1] = i;
+ /* assign temporary space to put recovered failed SU */
+ numbytes = fpda->numSector * bytesPerSector;
+ RF_Malloc(olddata[0], numbytes, (char *));
+ RF_Malloc(olddata[1], numbytes, (char *));
+ dest[0] = olddata[0];
+ dest[1] = olddata[1];
+ bzero(olddata[0], numbytes);
+ bzero(olddata[1], numbytes);
+ /* Begin the recovery decoding, initially buf[j], ebuf, pbuf, dest[j]
+ * have already pointed at the beginning of each source buffers and
+ * destination buffers */
+ for (sector = startSector, i = 0; sector < endSector; sector++, i++) {
+ rf_doubleEOdecode(raidPtr, buf, dest, fcol, pbuf, ebuf);
+ for (j = 0; j < numDataCol; j++)
+ if ((j != fcol[0]) && (j != fcol[1]))
+ buf[j] += bytesPerSector;
+ dest[0] += bytesPerSector;
+ dest[1] += bytesPerSector;
+ ebuf += bytesPerSector;
+ pbuf += bytesPerSector;
+ }
+ /* after recovery, the buffer pointed by olddata[0] is the old failed
+ * data. With new writing data and this old data, use small write to
+ * calculate the new redundant informations */
+ /* node->params[ 0, ... PDAPerDisk * (numDataCol - 2)-1 ] are Pdas of
+ * Rrd; params[ PDAPerDisk*(numDataCol - 2), ... PDAPerDisk*numDataCol
+ * -1 ] are Pdas of Rp, ( Rp2 ), Re, ( Re2 ) ; params[
+ * PDAPerDisk*numDataCol, ... PDAPerDisk*numDataCol
+ * +asmap->numStripeUnitsAccessed -asmap->numDataFailed-1] are Pdas of
+ * wudNodes; For current implementation, we assume the simplest case:
+ * asmap->numStripeUnitsAccessed == 1 and asmap->numDataFailed == 1
+ * ie. PDAPerDisk = 1 then node->params[numDataCol] must be the new
+ * data to be writen to the failed disk. We first bxor the new data
+ * into the old recovered data, then do the same things as small
+ * write. */
+
+ rf_bxor(((RF_PhysDiskAddr_t *) node->params[numDataCol].p)->bufPtr, olddata[0], numbytes, node->dagHdr->bp);
+ /* do new 'E' calculation */
+ /* find out the corresponding colume in encoding matrix for write
+ * colume to be encoded into redundant disk 'E' */
+ scol = rf_EUCol(layoutPtr, fpda->raidAddress);
+ /* olddata[0] now is source buffer pointer; epda->bufPtr is the dest
+ * buffer pointer */
+ rf_e_encToBuf(raidPtr, scol, olddata[0], RF_EO_MATRIX_DIM - 2, epda->bufPtr, fpda->numSector);
+
+ /* do new 'P' calculation */
+ rf_bxor(olddata[0], ppda->bufPtr, numbytes, node->dagHdr->bp);
+ /* Free the allocated buffer */
+ RF_Free(olddata[0], numbytes);
+ RF_Free(olddata[1], numbytes);
+ RF_Free(buf, numDataCol * sizeof(char *));
+
+ RF_ETIMER_STOP(timer);
+ RF_ETIMER_EVAL(timer);
+ if (tracerec) {
+ tracerec->q_us += RF_ETIMER_VAL_US(timer);
+ }
+ rf_GenericWakeupFunc(node, 0);
+ return (0);
+}
+#endif /* RF_INCLUDE_EVENODD > 0 */
diff --git a/sys/dev/raidframe/rf_evenodd_dagfuncs.h b/sys/dev/raidframe/rf_evenodd_dagfuncs.h
new file mode 100644
index 0000000..cf5028b
--- /dev/null
+++ b/sys/dev/raidframe/rf_evenodd_dagfuncs.h
@@ -0,0 +1,79 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_evenodd_dagfuncs.h,v 1.2 1999/02/05 00:06:11 oster Exp $ */
+/*
+ * rf_evenodd_dagfuncs.h
+ */
+/*
+ * Copyright (c) 1996 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Chang-Ming Wu
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+#ifndef _RF__RF_EVENODD_DAGFUNCS_H_
+#define _RF__RF_EVENODD_DAGFUNCS_H_
+
+extern RF_RedFuncs_t rf_EOSmallWriteEFuncs;
+extern RF_RedFuncs_t rf_EOSmallWritePFuncs;
+extern RF_RedFuncs_t rf_eoERecoveryFuncs;
+extern RF_RedFuncs_t rf_eoPRecoveryFuncs;
+
+int rf_RegularPEFunc(RF_DagNode_t * node);
+int rf_RegularONEFunc(RF_DagNode_t * node);
+int rf_SimpleONEFunc(RF_DagNode_t * node);
+void rf_RegularESubroutine(RF_DagNode_t * node, char *ebuf);
+int rf_RegularEFunc(RF_DagNode_t * node);
+void rf_DegrESubroutine(RF_DagNode_t * node, char *ebuf);
+int rf_Degraded_100_EOFunc(RF_DagNode_t * node);
+void
+rf_e_EncOneSect(RF_RowCol_t srcLogicCol, char *srcSecbuf,
+ RF_RowCol_t destLogicCol, char *destSecbuf, int bytesPerSector);
+void
+rf_e_encToBuf(RF_Raid_t * raidPtr, RF_RowCol_t srcLogicCol,
+ char *srcbuf, RF_RowCol_t destLogicCol, char *destbuf, int numSector);
+int rf_RecoveryEFunc(RF_DagNode_t * node);
+int rf_EO_DegradedWriteEFunc(RF_DagNode_t * node);
+void
+rf_doubleEOdecode(RF_Raid_t * raidPtr, char **rrdbuf, char **dest,
+ RF_RowCol_t * fcol, char *pbuf, char *ebuf);
+int rf_EvenOddDoubleRecoveryFunc(RF_DagNode_t * node);
+int rf_EOWriteDoubleRecoveryFunc(RF_DagNode_t * node);
+
+#define rf_EUCol(_layoutPtr_, _addr_ ) \
+( (_addr_)%( (_layoutPtr_)->dataSectorsPerStripe ) )/((_layoutPtr_)->sectorsPerStripeUnit)
+
+#define rf_EO_Mod( _int1_, _int2_ ) \
+( ((_int1_) < 0)? (((_int1_)+(_int2_))%(_int2_)) : (_int1_)%(_int2_) )
+
+#define rf_OffsetOfNextEUBoundary(_offset_, sec_per_eu) ((_offset_)/(sec_per_eu) + 1)*(sec_per_eu)
+
+#define RF_EO_MATRIX_DIM 17
+
+/*
+ * RF_EO_MATRIX_DIM should be a prime number: and "bytesPerSector" should be
+ * dividable by ( RF_EO_MATRIX_DIM - 1) to fully encode and utilize the space
+ * in a sector, this number could also be 17. Tha later case doesn't apply
+ * for disk array larger than 17 columns totally.
+ */
+
+#endif /* !_RF__RF_EVENODD_DAGFUNCS_H_ */
diff --git a/sys/dev/raidframe/rf_evenodd_dags.c b/sys/dev/raidframe/rf_evenodd_dags.c
new file mode 100644
index 0000000..e644504
--- /dev/null
+++ b/sys/dev/raidframe/rf_evenodd_dags.c
@@ -0,0 +1,189 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_evenodd_dags.c,v 1.2 1999/02/05 00:06:11 oster Exp $ */
+/*
+ * rf_evenodd_dags.c
+ */
+/*
+ * Copyright (c) 1996 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Chang-Ming Wu
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+#include <dev/raidframe/rf_archs.h>
+
+#if RF_INCLUDE_EVENODD > 0
+
+#include <dev/raidframe/rf_types.h>
+#include <dev/raidframe/rf_raid.h>
+#include <dev/raidframe/rf_dag.h>
+#include <dev/raidframe/rf_dagfuncs.h>
+#include <dev/raidframe/rf_dagutils.h>
+#include <dev/raidframe/rf_etimer.h>
+#include <dev/raidframe/rf_acctrace.h>
+#include <dev/raidframe/rf_general.h>
+#include <dev/raidframe/rf_evenodd_dags.h>
+#include <dev/raidframe/rf_evenodd.h>
+#include <dev/raidframe/rf_evenodd_dagfuncs.h>
+#include <dev/raidframe/rf_pq.h>
+#include <dev/raidframe/rf_dagdegrd.h>
+#include <dev/raidframe/rf_dagdegwr.h>
+#include <dev/raidframe/rf_dagffwr.h>
+
+
+/*
+ * Lost one data.
+ * Use P to reconstruct missing data.
+ */
+RF_CREATE_DAG_FUNC_DECL(rf_EO_100_CreateReadDAG)
+{
+ rf_CreateDegradedReadDAG(raidPtr, asmap, dag_h, bp, flags, allocList, &rf_eoPRecoveryFuncs);
+}
+/*
+ * Lost data + E.
+ * Use P to reconstruct missing data.
+ */
+RF_CREATE_DAG_FUNC_DECL(rf_EO_101_CreateReadDAG)
+{
+ rf_CreateDegradedReadDAG(raidPtr, asmap, dag_h, bp, flags, allocList, &rf_eoPRecoveryFuncs);
+}
+/*
+ * Lost data + P.
+ * Make E look like P, and use Eor for Xor, and we can
+ * use degraded read DAG.
+ */
+RF_CREATE_DAG_FUNC_DECL(rf_EO_110_CreateReadDAG)
+{
+ RF_PhysDiskAddr_t *temp;
+ /* swap P and E pointers to fake out the DegradedReadDAG code */
+ temp = asmap->parityInfo;
+ asmap->parityInfo = asmap->qInfo;
+ asmap->qInfo = temp;
+ rf_CreateDegradedReadDAG(raidPtr, asmap, dag_h, bp, flags, allocList, &rf_eoERecoveryFuncs);
+}
+/*
+ * Lost two data.
+ */
+RF_CREATE_DAG_FUNC_DECL(rf_EOCreateDoubleDegradedReadDAG)
+{
+ rf_EO_DoubleDegRead(raidPtr, asmap, dag_h, bp, flags, allocList);
+}
+/*
+ * Lost two data.
+ */
+RF_CREATE_DAG_FUNC_DECL(rf_EO_200_CreateReadDAG)
+{
+ rf_EOCreateDoubleDegradedReadDAG(raidPtr, asmap, dag_h, bp, flags, allocList);
+}
+RF_CREATE_DAG_FUNC_DECL(rf_EO_100_CreateWriteDAG)
+{
+ if (asmap->numStripeUnitsAccessed != 1 &&
+ asmap->failedPDAs[0]->numSector != raidPtr->Layout.sectorsPerStripeUnit)
+ RF_PANIC();
+ rf_CommonCreateSimpleDegradedWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList, 2, (int (*) (RF_DagNode_t *)) rf_Degraded_100_EOFunc, RF_TRUE);
+}
+/*
+ * E is dead. Small write.
+ */
+RF_CREATE_DAG_FUNC_DECL(rf_EO_001_CreateSmallWriteDAG)
+{
+ rf_CommonCreateSmallWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList, &rf_EOSmallWritePFuncs, NULL);
+}
+/*
+ * E is dead. Large write.
+ */
+RF_CREATE_DAG_FUNC_DECL(rf_EO_001_CreateLargeWriteDAG)
+{
+ rf_CommonCreateLargeWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList, 1, rf_RegularPFunc, RF_TRUE);
+}
+/*
+ * P is dead. Small write.
+ * Swap E + P, use single-degraded stuff.
+ */
+RF_CREATE_DAG_FUNC_DECL(rf_EO_010_CreateSmallWriteDAG)
+{
+ RF_PhysDiskAddr_t *temp;
+ /* swap P and E pointers to fake out the DegradedReadDAG code */
+ temp = asmap->parityInfo;
+ asmap->parityInfo = asmap->qInfo;
+ asmap->qInfo = temp;
+ rf_CommonCreateSmallWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList, &rf_EOSmallWriteEFuncs, NULL);
+}
+/*
+ * P is dead. Large write.
+ * Swap E + P, use single-degraded stuff.
+ */
+RF_CREATE_DAG_FUNC_DECL(rf_EO_010_CreateLargeWriteDAG)
+{
+ RF_PhysDiskAddr_t *temp;
+ /* swap P and E pointers to fake out the code */
+ temp = asmap->parityInfo;
+ asmap->parityInfo = asmap->qInfo;
+ asmap->qInfo = temp;
+ rf_CommonCreateLargeWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList, 1, rf_RegularEFunc, RF_FALSE);
+}
+RF_CREATE_DAG_FUNC_DECL(rf_EO_011_CreateWriteDAG)
+{
+ rf_CreateNonRedundantWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList,
+ RF_IO_TYPE_WRITE);
+}
+RF_CREATE_DAG_FUNC_DECL(rf_EO_110_CreateWriteDAG)
+{
+ RF_PhysDiskAddr_t *temp;
+
+ if (asmap->numStripeUnitsAccessed != 1 &&
+ asmap->failedPDAs[0]->numSector != raidPtr->Layout.sectorsPerStripeUnit) {
+ RF_PANIC();
+ }
+ /* swap P and E to fake out parity code */
+ temp = asmap->parityInfo;
+ asmap->parityInfo = asmap->qInfo;
+ asmap->qInfo = temp;
+ rf_CommonCreateSimpleDegradedWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList, 1, (int (*) (RF_DagNode_t *)) rf_EO_DegradedWriteEFunc, RF_FALSE);
+ /* is the regular E func the right one to call? */
+}
+RF_CREATE_DAG_FUNC_DECL(rf_EO_101_CreateWriteDAG)
+{
+ if (asmap->numStripeUnitsAccessed != 1 &&
+ asmap->failedPDAs[0]->numSector != raidPtr->Layout.sectorsPerStripeUnit)
+ RF_PANIC();
+ rf_CommonCreateSimpleDegradedWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList, 1, rf_RecoveryXorFunc, RF_TRUE);
+}
+RF_CREATE_DAG_FUNC_DECL(rf_EO_DoubleDegRead)
+{
+ rf_DoubleDegRead(raidPtr, asmap, dag_h, bp, flags, allocList,
+ "Re", "EvenOddRecovery", rf_EvenOddDoubleRecoveryFunc);
+}
+RF_CREATE_DAG_FUNC_DECL(rf_EOCreateSmallWriteDAG)
+{
+ rf_CommonCreateSmallWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList, &rf_pFuncs, &rf_EOSmallWriteEFuncs);
+}
+RF_CREATE_DAG_FUNC_DECL(rf_EOCreateLargeWriteDAG)
+{
+ rf_CommonCreateLargeWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList, 2, rf_RegularPEFunc, RF_FALSE);
+}
+RF_CREATE_DAG_FUNC_DECL(rf_EO_200_CreateWriteDAG)
+{
+ rf_DoubleDegSmallWrite(raidPtr, asmap, dag_h, bp, flags, allocList, "Re", "We", "EOWrDDRecovery", rf_EOWriteDoubleRecoveryFunc);
+}
+#endif /* RF_INCLUDE_EVENODD > 0 */
diff --git a/sys/dev/raidframe/rf_evenodd_dags.h b/sys/dev/raidframe/rf_evenodd_dags.h
new file mode 100644
index 0000000..c4218a4
--- /dev/null
+++ b/sys/dev/raidframe/rf_evenodd_dags.h
@@ -0,0 +1,64 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_evenodd_dags.h,v 1.2 1999/02/05 00:06:11 oster Exp $ */
+/*
+ * rf_evenodd_dags.h
+ */
+/*
+ * Copyright (c) 1996 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Chang-Ming Wu
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+#ifndef _RF__RF_EVENODD_DAGS_H_
+#define _RF__RF_EVENODD_DAGS_H_
+
+#include <dev/raidframe/rf_types.h>
+
+#if RF_UTILITY == 0
+#include <dev/raidframe/rf_dag.h>
+
+/* extern decl's of the failure mode EO functions.
+ * swiped from rf_pqdeg.h
+ */
+
+RF_CREATE_DAG_FUNC_DECL(rf_EO_100_CreateReadDAG);
+RF_CREATE_DAG_FUNC_DECL(rf_EO_101_CreateReadDAG);
+RF_CREATE_DAG_FUNC_DECL(rf_EO_110_CreateReadDAG);
+RF_CREATE_DAG_FUNC_DECL(rf_EO_200_CreateReadDAG);
+RF_CREATE_DAG_FUNC_DECL(rf_EOCreateDoubleDegradedReadDAG);
+RF_CREATE_DAG_FUNC_DECL(rf_EO_100_CreateWriteDAG);
+RF_CREATE_DAG_FUNC_DECL(rf_EO_010_CreateSmallWriteDAG);
+RF_CREATE_DAG_FUNC_DECL(rf_EO_001_CreateSmallWriteDAG);
+RF_CREATE_DAG_FUNC_DECL(rf_EO_010_CreateLargeWriteDAG);
+RF_CREATE_DAG_FUNC_DECL(rf_EO_001_CreateLargeWriteDAG);
+RF_CREATE_DAG_FUNC_DECL(rf_EO_011_CreateWriteDAG);
+RF_CREATE_DAG_FUNC_DECL(rf_EO_110_CreateWriteDAG);
+RF_CREATE_DAG_FUNC_DECL(rf_EO_101_CreateWriteDAG);
+RF_CREATE_DAG_FUNC_DECL(rf_EO_DoubleDegRead);
+RF_CREATE_DAG_FUNC_DECL(rf_EOCreateSmallWriteDAG);
+RF_CREATE_DAG_FUNC_DECL(rf_EOCreateLargeWriteDAG);
+RF_CREATE_DAG_FUNC_DECL(rf_EO_200_CreateWriteDAG);
+#endif /* RF_UTILITY == 0 */
+
+#endif /* !_RF__RF_EVENODD_DAGS_H_ */
diff --git a/sys/dev/raidframe/rf_fifo.c b/sys/dev/raidframe/rf_fifo.c
new file mode 100644
index 0000000..51ed714
--- /dev/null
+++ b/sys/dev/raidframe/rf_fifo.c
@@ -0,0 +1,236 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_fifo.c,v 1.5 2000/03/04 03:27:13 oster Exp $ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Mark Holland
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+/***************************************************
+ *
+ * rf_fifo.c -- prioritized fifo queue code.
+ * There are only two priority levels: hi and lo.
+ *
+ * Aug 4, 1994, adapted from raidSim version (MCH)
+ *
+ ***************************************************/
+
+#include <dev/raidframe/rf_types.h>
+#include <dev/raidframe/rf_alloclist.h>
+#include <dev/raidframe/rf_stripelocks.h>
+#include <dev/raidframe/rf_layout.h>
+#include <dev/raidframe/rf_diskqueue.h>
+#include <dev/raidframe/rf_fifo.h>
+#include <dev/raidframe/rf_debugMem.h>
+#include <dev/raidframe/rf_general.h>
+#include <dev/raidframe/rf_options.h>
+#include <dev/raidframe/rf_raid.h>
+#include <dev/raidframe/rf_types.h>
+
+/* just malloc a header, zero it (via calloc), and return it */
+/*ARGSUSED*/
+void *
+rf_FifoCreate(sectPerDisk, clList, listp)
+ RF_SectorCount_t sectPerDisk;
+ RF_AllocListElem_t *clList;
+ RF_ShutdownList_t **listp;
+{
+ RF_FifoHeader_t *q;
+
+ RF_CallocAndAdd(q, 1, sizeof(RF_FifoHeader_t), (RF_FifoHeader_t *), clList);
+ q->hq_count = q->lq_count = 0;
+ return ((void *) q);
+}
+
+void
+rf_FifoEnqueue(q_in, elem, priority)
+ void *q_in;
+ RF_DiskQueueData_t *elem;
+ int priority;
+{
+ RF_FifoHeader_t *q = (RF_FifoHeader_t *) q_in;
+
+ RF_ASSERT(priority == RF_IO_NORMAL_PRIORITY || priority == RF_IO_LOW_PRIORITY);
+
+ elem->next = NULL;
+ if (priority == RF_IO_NORMAL_PRIORITY) {
+ if (!q->hq_tail) {
+ RF_ASSERT(q->hq_count == 0 && q->hq_head == NULL);
+ q->hq_head = q->hq_tail = elem;
+ } else {
+ RF_ASSERT(q->hq_count != 0 && q->hq_head != NULL);
+ q->hq_tail->next = elem;
+ q->hq_tail = elem;
+ }
+ q->hq_count++;
+ } else {
+ RF_ASSERT(elem->next == NULL);
+ if (rf_fifoDebug) {
+ printf("raid%d: fifo: ENQ lopri\n",
+ elem->raidPtr->raidid);
+ }
+ if (!q->lq_tail) {
+ RF_ASSERT(q->lq_count == 0 && q->lq_head == NULL);
+ q->lq_head = q->lq_tail = elem;
+ } else {
+ RF_ASSERT(q->lq_count != 0 && q->lq_head != NULL);
+ q->lq_tail->next = elem;
+ q->lq_tail = elem;
+ }
+ q->lq_count++;
+ }
+ if ((q->hq_count + q->lq_count) != elem->queue->queueLength) {
+ printf("Queue lengths differ!: %d %d %d\n",
+ q->hq_count, q->lq_count, (int) elem->queue->queueLength);
+ printf("%d %d %d %d\n",
+ (int) elem->queue->numOutstanding,
+ (int) elem->queue->maxOutstanding,
+ (int) elem->queue->row,
+ (int) elem->queue->col);
+ }
+ RF_ASSERT((q->hq_count + q->lq_count) == elem->queue->queueLength);
+}
+
+RF_DiskQueueData_t *
+rf_FifoDequeue(q_in)
+ void *q_in;
+{
+ RF_FifoHeader_t *q = (RF_FifoHeader_t *) q_in;
+ RF_DiskQueueData_t *nd;
+
+ RF_ASSERT(q);
+ if (q->hq_head) {
+ RF_ASSERT(q->hq_count != 0 && q->hq_tail != NULL);
+ nd = q->hq_head;
+ q->hq_head = q->hq_head->next;
+ if (!q->hq_head)
+ q->hq_tail = NULL;
+ nd->next = NULL;
+ q->hq_count--;
+ } else
+ if (q->lq_head) {
+ RF_ASSERT(q->lq_count != 0 && q->lq_tail != NULL);
+ nd = q->lq_head;
+ q->lq_head = q->lq_head->next;
+ if (!q->lq_head)
+ q->lq_tail = NULL;
+ nd->next = NULL;
+ q->lq_count--;
+ if (rf_fifoDebug) {
+ printf("raid%d: fifo: DEQ lopri %lx\n",
+ nd->raidPtr->raidid, (long) nd);
+ }
+ } else {
+ RF_ASSERT(q->hq_count == 0 && q->lq_count == 0 && q->hq_tail == NULL && q->lq_tail == NULL);
+ nd = NULL;
+ }
+ return (nd);
+}
+
+/* Return ptr to item at head of queue. Used to examine request
+ * info without actually dequeueing the request.
+ */
+RF_DiskQueueData_t *
+rf_FifoPeek(void *q_in)
+{
+ RF_DiskQueueData_t *headElement = NULL;
+ RF_FifoHeader_t *q = (RF_FifoHeader_t *) q_in;
+
+ RF_ASSERT(q);
+ if (q->hq_head)
+ headElement = q->hq_head;
+ else
+ if (q->lq_head)
+ headElement = q->lq_head;
+ return (headElement);
+}
+/* We sometimes need to promote a low priority access to a regular priority access.
+ * Currently, this is only used when the user wants to write a stripe which is currently
+ * under reconstruction.
+ * This routine will promote all accesses tagged with the indicated parityStripeID from
+ * the low priority queue to the end of the normal priority queue.
+ * We assume the queue is locked upon entry.
+ */
+int
+rf_FifoPromote(q_in, parityStripeID, which_ru)
+ void *q_in;
+ RF_StripeNum_t parityStripeID;
+ RF_ReconUnitNum_t which_ru;
+{
+ RF_FifoHeader_t *q = (RF_FifoHeader_t *) q_in;
+ RF_DiskQueueData_t *lp = q->lq_head, *pt = NULL; /* lp = lo-pri queue
+ * pointer, pt = trailer */
+ int retval = 0;
+
+ while (lp) {
+
+ /* search for the indicated parity stripe in the low-pri queue */
+ if (lp->parityStripeID == parityStripeID && lp->which_ru == which_ru) {
+ /* printf("FifoPromote: promoting access for psid
+ * %ld\n",parityStripeID); */
+ if (pt)
+ pt->next = lp->next; /* delete an entry other
+ * than the first */
+ else
+ q->lq_head = lp->next; /* delete the head entry */
+
+ if (!q->lq_head)
+ q->lq_tail = NULL; /* we deleted the only
+ * entry */
+ else
+ if (lp == q->lq_tail)
+ q->lq_tail = pt; /* we deleted the tail
+ * entry */
+
+ lp->next = NULL;
+ q->lq_count--;
+
+ if (q->hq_tail) {
+ q->hq_tail->next = lp;
+ q->hq_tail = lp;
+ }
+ /* append to hi-priority queue */
+ else {
+ q->hq_head = q->hq_tail = lp;
+ }
+ q->hq_count++;
+
+ /* UpdateShortestSeekFinishTimeForced(lp->requestPtr,
+ * lp->diskState); *//* deal with this later, if ever */
+
+ lp = (pt) ? pt->next : q->lq_head; /* reset low-pri pointer
+ * and continue */
+ retval++;
+
+ } else {
+ pt = lp;
+ lp = lp->next;
+ }
+ }
+
+ /* sanity check. delete this if you ever put more than one entry in
+ * the low-pri queue */
+ RF_ASSERT(retval == 0 || retval == 1);
+ return (retval);
+}
diff --git a/sys/dev/raidframe/rf_fifo.h b/sys/dev/raidframe/rf_fifo.h
new file mode 100644
index 0000000..9392f08
--- /dev/null
+++ b/sys/dev/raidframe/rf_fifo.h
@@ -0,0 +1,62 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_fifo.h,v 1.3 1999/02/05 00:06:11 oster Exp $ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Mark Holland
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+/*
+ * rf_fifo.h -- prioritized FIFO queue code.
+ *
+ * 4-9-93 Created (MCH)
+ */
+
+
+#ifndef _RF__RF_FIFO_H_
+#define _RF__RF_FIFO_H_
+
+#include <dev/raidframe/rf_archs.h>
+#include <dev/raidframe/rf_types.h>
+#include <dev/raidframe/rf_diskqueue.h>
+
+typedef struct RF_FifoHeader_s {
+ RF_DiskQueueData_t *hq_head, *hq_tail; /* high priority requests */
+ RF_DiskQueueData_t *lq_head, *lq_tail; /* low priority requests */
+ int hq_count, lq_count; /* debug only */
+} RF_FifoHeader_t;
+
+extern void *
+rf_FifoCreate(RF_SectorCount_t sectPerDisk,
+ RF_AllocListElem_t * clList, RF_ShutdownList_t ** listp);
+extern void
+rf_FifoEnqueue(void *q_in, RF_DiskQueueData_t * elem,
+ int priority);
+extern RF_DiskQueueData_t *rf_FifoDequeue(void *q_in);
+extern RF_DiskQueueData_t *rf_FifoPeek(void *q_in);
+extern int
+rf_FifoPromote(void *q_in, RF_StripeNum_t parityStripeID,
+ RF_ReconUnitNum_t which_ru);
+
+#endif /* !_RF__RF_FIFO_H_ */
diff --git a/sys/dev/raidframe/rf_freebsdkintf.c b/sys/dev/raidframe/rf_freebsdkintf.c
new file mode 100644
index 0000000..b7003b5
--- /dev/null
+++ b/sys/dev/raidframe/rf_freebsdkintf.c
@@ -0,0 +1,3294 @@
+/*-
+ * Copyright (c) 2002 Scott Long <scottl@freebsd.org>
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ *
+ * $FreeBSD$
+ */
+
+/* $NetBSD: rf_netbsdkintf.c,v 1.105 2001/04/05 02:48:51 oster Exp $ */
+/*-
+ * Copyright (c) 1996, 1997, 1998 The NetBSD Foundation, Inc.
+ * All rights reserved.
+ *
+ * This code is derived from software contributed to The NetBSD Foundation
+ * by Greg Oster; Jason R. Thorpe.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. All advertising materials mentioning features or use of this software
+ * must display the following acknowledgement:
+ * This product includes software developed by the NetBSD
+ * Foundation, Inc. and its contributors.
+ * 4. Neither the name of The NetBSD Foundation nor the names of its
+ * contributors may be used to endorse or promote products derived
+ * from this software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
+ * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
+ * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+ * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
+ * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ * POSSIBILITY OF SUCH DAMAGE.
+ */
+
+/*
+ * Copyright (c) 1988 University of Utah.
+ * Copyright (c) 1990, 1993
+ * The Regents of the University of California. All rights reserved.
+ *
+ * This code is derived from software contributed to Berkeley by
+ * the Systems Programming Group of the University of Utah Computer
+ * Science Department.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. All advertising materials mentioning features or use of this software
+ * must display the following acknowledgement:
+ * This product includes software developed by the University of
+ * California, Berkeley and its contributors.
+ * 4. Neither the name of the University nor the names of its contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ *
+ * from: Utah $Hdr: cd.c 1.6 90/11/28$
+ *
+ * @(#)cd.c 8.2 (Berkeley) 11/16/93
+ */
+
+
+
+
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Authors: Mark Holland, Jim Zelenka
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+/***********************************************************
+ *
+ * rf_kintf.c -- the kernel interface routines for RAIDframe
+ *
+ ***********************************************************/
+
+#include <sys/types.h>
+#include <sys/param.h>
+#include <sys/errno.h>
+#include <sys/param.h>
+#include <sys/queue.h>
+#include <sys/stat.h>
+#include <sys/ioccom.h>
+#include <sys/filio.h>
+#include <sys/fcntl.h>
+#include <sys/systm.h>
+#include <sys/namei.h>
+#include <sys/vnode.h>
+#include <sys/bio.h>
+#include <sys/buf.h>
+#include <sys/disk.h>
+#include <sys/diskslice.h>
+#include <sys/disklabel.h>
+#include <sys/conf.h>
+#include <sys/lock.h>
+#include <sys/reboot.h>
+#include <sys/module.h>
+#include <sys/devicestat.h>
+#include <vm/uma.h>
+
+#include "opt_raid.h"
+#include <dev/raidframe/rf_raid.h>
+#include <dev/raidframe/rf_raidframe.h>
+#include <dev/raidframe/rf_copyback.h>
+#include <dev/raidframe/rf_dag.h>
+#include <dev/raidframe/rf_dagflags.h>
+#include <dev/raidframe/rf_desc.h>
+#include <dev/raidframe/rf_diskqueue.h>
+#include <dev/raidframe/rf_acctrace.h>
+#include <dev/raidframe/rf_etimer.h>
+#include <dev/raidframe/rf_general.h>
+#include <dev/raidframe/rf_debugMem.h>
+#include <dev/raidframe/rf_kintf.h>
+#include <dev/raidframe/rf_options.h>
+#include <dev/raidframe/rf_driver.h>
+#include <dev/raidframe/rf_parityscan.h>
+#include <dev/raidframe/rf_debugprint.h>
+#include <dev/raidframe/rf_threadstuff.h>
+#include <dev/raidframe/rf_configure.h>
+
+RF_DECLARE_STATIC_MUTEX(rf_sparet_wait_mutex)
+
+static RF_SparetWait_t *rf_sparet_wait_queue; /* requests to install a
+ * spare table */
+static RF_SparetWait_t *rf_sparet_resp_queue; /* responses from
+ * installation process */
+
+/* prototypes */
+static void KernelWakeupFunc(struct bio *);
+static void InitBP(struct bio *, struct vnode *, unsigned rw_flag,
+ dev_t dev, RF_SectorNum_t startSect,
+ RF_SectorCount_t numSect, caddr_t buf,
+ void (*cbFunc) (struct bio *), void *cbArg,
+ int logBytesPerSector, struct proc * b_proc);
+static dev_t raidinit(RF_Raid_t *);
+static void rf_search_label(dev_t, struct disklabel *,
+ RF_AutoConfig_t **) __unused;
+
+static int raid_modevent(module_t, int, void*);
+void raidattach(void);
+d_psize_t raidsize;
+d_open_t raidopen;
+d_close_t raidclose;
+d_ioctl_t raidioctl;
+d_write_t raidwrite;
+d_read_t raidread;
+d_strategy_t raidstrategy;
+#if 0
+d_dump_t raiddump;
+#endif
+
+d_open_t raidctlopen;
+d_close_t raidctlclose;
+d_ioctl_t raidctlioctl;
+
+static struct cdevsw raid_cdevsw = {
+ raidopen,
+ raidclose,
+ raidread,
+ raidwrite,
+ raidioctl,
+ nopoll,
+ nommap,
+ raidstrategy,
+ "raid",
+ 200,
+ nodump,
+ nopsize,
+ D_DISK,
+};
+
+static struct cdevsw raidctl_cdevsw = {
+ raidctlopen,
+ raidctlclose,
+ noread,
+ nowrite,
+ raidctlioctl,
+ nopoll,
+ nommap,
+ nostrategy,
+ "raidctl",
+ 201,
+ nodump,
+ nopsize,
+ 0,
+};
+
+static struct cdevsw raiddisk_cdevsw;
+
+/*
+ * Pilfered from ccd.c
+ */
+
+struct raidbuf {
+ struct bio rf_buf; /* new I/O buf. MUST BE FIRST!!! */
+ struct bio *rf_obp; /* ptr. to original I/O buf */
+ int rf_flags; /* misc. flags */
+ RF_DiskQueueData_t *req;/* the request that this was part of.. */
+};
+
+
+#define RAIDGETBUF(sc) uma_zalloc((sc)->sc_cbufpool, M_NOWAIT)
+#define RAIDPUTBUF(sc, cbp) uma_zfree((sc)->sc_cbufpool, cbp)
+
+#define RF_MAX_ARRAYS 32
+
+/* Raid control device */
+struct raidctl_softc {
+ dev_t sc_dev; /* Device node */
+ int sc_flags; /* flags */
+ int sc_numraid; /* Number of configured raid devices */
+ dev_t sc_raiddevs[RF_MAX_ARRAYS];
+};
+
+struct raid_softc {
+ dev_t sc_dev; /* Our device */
+ dev_t sc_parent_dev;
+ int sc_flags; /* flags */
+ int sc_busycount; /* How many times are we opened? */
+ size_t sc_size; /* size of the raid device */
+ dev_t sc_parent; /* Parent device */
+ struct disk sc_dkdev; /* generic disk device info */
+ uma_zone_t sc_cbufpool; /* component buffer pool */
+ RF_Raid_t *raidPtr; /* Raid information struct */
+ struct bio_queue_head bio_queue; /* used for the device queue */
+ struct devstat device_stats; /* devstat gathering */
+};
+/* sc_flags */
+#define RAIDF_OPEN 0x01 /* unit has been initialized */
+#define RAIDF_WLABEL 0x02 /* label area is writable */
+#define RAIDF_LABELLING 0x04 /* unit is currently being labelled */
+#define RAIDF_WANTED 0x40 /* someone is waiting to obtain a lock */
+#define RAIDF_LOCKED 0x80 /* unit is locked */
+
+/*
+ * Allow RAIDOUTSTANDING number of simultaneous IO's to this RAID device.
+ * Be aware that large numbers can allow the driver to consume a lot of
+ * kernel memory, especially on writes, and in degraded mode reads.
+ *
+ * For example: with a stripe width of 64 blocks (32k) and 5 disks,
+ * a single 64K write will typically require 64K for the old data,
+ * 64K for the old parity, and 64K for the new parity, for a total
+ * of 192K (if the parity buffer is not re-used immediately).
+ * Even it if is used immedately, that's still 128K, which when multiplied
+ * by say 10 requests, is 1280K, *on top* of the 640K of incoming data.
+ *
+ * Now in degraded mode, for example, a 64K read on the above setup may
+ * require data reconstruction, which will require *all* of the 4 remaining
+ * disks to participate -- 4 * 32K/disk == 128K again.
+ */
+
+#ifndef RAIDOUTSTANDING
+#define RAIDOUTSTANDING 10
+#endif
+
+#define RAIDLABELDEV(dev) dkmodpart(dev, RAW_PART)
+#define DISKPART(dev) dkpart(dev)
+
+static void raidgetdefaultlabel(RF_Raid_t *, struct raid_softc *, struct disk*);
+static int raidlock(struct raid_softc *);
+static void raidunlock(struct raid_softc *);
+
+static void rf_markalldirty(RF_Raid_t *);
+
+static dev_t raidctl_dev;
+
+void rf_ReconThread(struct rf_recon_req *);
+/* XXX what I want is: */
+/*void rf_ReconThread(RF_Raid_t *raidPtr); */
+void rf_RewriteParityThread(RF_Raid_t *raidPtr);
+void rf_CopybackThread(RF_Raid_t *raidPtr);
+void rf_ReconstructInPlaceThread(struct rf_recon_req *);
+void rf_buildroothack(void *, struct raidctl_softc *);
+
+RF_AutoConfig_t *rf_find_raid_components(void);
+RF_ConfigSet_t *rf_create_auto_sets(RF_AutoConfig_t *);
+static int rf_does_it_fit(RF_ConfigSet_t *,RF_AutoConfig_t *);
+static int rf_reasonable_label(RF_ComponentLabel_t *);
+void rf_create_configuration(RF_AutoConfig_t *,RF_Config_t *, RF_Raid_t *);
+int rf_set_autoconfig(RF_Raid_t *, int);
+int rf_set_rootpartition(RF_Raid_t *, int);
+void rf_release_all_vps(RF_ConfigSet_t *);
+void rf_cleanup_config_set(RF_ConfigSet_t *);
+int rf_have_enough_components(RF_ConfigSet_t *);
+int rf_auto_config_set(RF_ConfigSet_t *, int *, struct raidctl_softc *);
+static int raidgetunit(struct raidctl_softc *, int);
+static int raidshutdown(void);
+
+void
+raidattach(void)
+{
+ struct raidctl_softc *parent_sc = NULL;
+ RF_AutoConfig_t *ac_list; /* autoconfig list */
+ RF_ConfigSet_t *config_sets;
+ int autoconfig = 0;
+
+ /* This is where all the initialization stuff gets done. */
+
+ if(rf_mutex_init(&rf_sparet_wait_mutex, __FUNCTION__)) {
+ rf_printf(0, "RAIDframe: failed to initialize mutexes\n");
+ return;
+ }
+
+ rf_sparet_wait_queue = rf_sparet_resp_queue = NULL;
+
+ if (rf_BootRaidframe() != 0) {
+ rf_printf(0, "Serious error booting RAIDframe!!\n");
+ return;
+ }
+
+ rf_printf(0, "Kernelized RAIDframe activated\n");
+ MALLOC(parent_sc, struct raidctl_softc *, sizeof(*parent_sc),
+ M_RAIDFRAME, M_NOWAIT|M_ZERO);
+ if (parent_sc == NULL) {
+ RF_PANIC();
+ return;
+ }
+
+ parent_sc->sc_dev= make_dev(&raidctl_cdevsw, 0, 0, 0, 0x644, "raidctl");
+ parent_sc->sc_dev->si_drv1 = parent_sc;
+ raidctl_dev = parent_sc->sc_dev;
+
+#if RAID_AUTOCONFIG
+ autoconfig = 1;
+#endif
+
+ if (autoconfig) {
+ /* 1. locate all RAID components on the system */
+
+ rf_printf(0, "Searching for raid components...\n");
+ ac_list = rf_find_raid_components();
+ if (ac_list == NULL)
+ return;
+
+ /* 2. sort them into their respective sets */
+
+ config_sets = rf_create_auto_sets(ac_list);
+
+ /* 3. evaluate each set and configure the valid ones
+ This gets done in rf_buildroothack() */
+
+ /* schedule the creation of the thread to do the
+ "/ on RAID" stuff */
+
+ rf_buildroothack(config_sets, parent_sc);
+#if 0
+ kthread_create(rf_buildroothack,config_sets);
+
+#endif /* RAID_AUTOCONFIG */
+ }
+}
+
+void
+rf_buildroothack(arg, parent_sc)
+ void *arg;
+ struct raidctl_softc *parent_sc;
+{
+ RF_ConfigSet_t *config_sets = arg;
+ RF_ConfigSet_t *cset;
+ RF_ConfigSet_t *next_cset;
+ int retcode;
+ int raidID;
+ int rootID;
+ int num_root;
+
+ rootID = 0;
+ num_root = 0;
+ cset = config_sets;
+ while(cset != NULL ) {
+ next_cset = cset->next;
+ if (rf_have_enough_components(cset) &&
+ cset->ac->clabel->autoconfigure==1) {
+ retcode = rf_auto_config_set(cset, &raidID, parent_sc);
+ if (!retcode) {
+ if (cset->rootable) {
+ rootID = raidID;
+ num_root++;
+ }
+ } else {
+ /* The autoconfig didn't work :( */
+ rf_printf(1, "Autoconfig failed with code %d"
+ "for raid%d\n", retcode, raidID);
+ rf_release_all_vps(cset);
+ }
+ } else {
+ /* we're not autoconfiguring this set...
+ release the associated resources */
+ rf_release_all_vps(cset);
+ }
+ /* cleanup */
+ rf_cleanup_config_set(cset);
+ cset = next_cset;
+ }
+ if (boothowto & RB_ASKNAME) {
+ /* We don't auto-config... */
+ } else {
+ /* They didn't ask, and we found something bootable... */
+
+#if 0
+ if (num_root == 1) {
+ booted_device = &raidrootdev[rootID];
+ } else if (num_root > 1) {
+ /* we can't guess.. require the user to answer... */
+ boothowto |= RB_ASKNAME;
+ }
+#endif
+ }
+}
+
+int
+raidctlopen(dev_t dev, int flags, int fmt, struct thread *td)
+{
+ struct raidctl_softc *parent_sc;
+
+ parent_sc = dev->si_drv1;
+
+ if ((parent_sc->sc_flags & RAIDF_OPEN) != 0)
+ return (EBUSY);
+
+ parent_sc->sc_flags |= RAIDF_OPEN;
+ return (0);
+}
+
+int
+raidctlclose(dev_t dev, int flags, int fmt, struct thread *td)
+{
+ struct raidctl_softc *parent_sc;
+
+ parent_sc = dev->si_drv1;
+
+ parent_sc->sc_flags &= ~RAIDF_OPEN;
+ return (0);
+}
+
+int
+raidctlioctl(dev_t dev, u_long cmd, caddr_t data, int flags, struct thread *td)
+{
+ struct raidctl_softc *parent_sc;
+ struct raid_softc *sc;
+ RF_Config_t *u_cfg, *k_cfg;
+ RF_Raid_t *raidPtr;
+ u_char *specific_buf;
+ u_int unit;
+ int retcode = 0;
+
+ parent_sc = dev->si_drv1;
+
+ switch (cmd) {
+ /* configure the system */
+ case RAIDFRAME_CONFIGURE:
+
+ /* copy-in the configuration information */
+ /* data points to a pointer to the configuration structure */
+
+ u_cfg = *((RF_Config_t **) data);
+ RF_Malloc(k_cfg, sizeof(RF_Config_t), (RF_Config_t *));
+ if (k_cfg == NULL) {
+ return (ENOMEM);
+ }
+ retcode = copyin((caddr_t) u_cfg, (caddr_t) k_cfg,
+ sizeof(RF_Config_t));
+ if (retcode) {
+ RF_Free(k_cfg, sizeof(RF_Config_t));
+ rf_printf(2, "raidctlioctl: retcode=%d copyin.1\n",
+ retcode);
+ return (retcode);
+ }
+ /* allocate a buffer for the layout-specific data, and copy it
+ * in */
+ if (k_cfg->layoutSpecificSize) {
+ if (k_cfg->layoutSpecificSize > 10000) {
+ /* sanity check */
+ RF_Free(k_cfg, sizeof(RF_Config_t));
+ return (EINVAL);
+ }
+ RF_Malloc(specific_buf, k_cfg->layoutSpecificSize,
+ (u_char *));
+ if (specific_buf == NULL) {
+ RF_Free(k_cfg, sizeof(RF_Config_t));
+ return (ENOMEM);
+ }
+ retcode = copyin(k_cfg->layoutSpecific,
+ (caddr_t) specific_buf,
+ k_cfg->layoutSpecificSize);
+ if (retcode) {
+ RF_Free(k_cfg, sizeof(RF_Config_t));
+ RF_Free(specific_buf,
+ k_cfg->layoutSpecificSize);
+ rf_printf(2, "raidctlioctl: retcode=%d "
+ "copyin.2\n", retcode);
+ return (retcode);
+ }
+ } else
+ specific_buf = NULL;
+ k_cfg->layoutSpecific = specific_buf;
+
+ /* should do some kind of sanity check on the configuration.
+ * Store the sum of all the bytes in the last byte? */
+
+ /* configure the system */
+
+ RF_Malloc(raidPtr, sizeof(*raidPtr), (RF_Raid_t *));
+ if (raidPtr == NULL) {
+ rf_printf(0, "No memory for raid device\n");
+ RF_Free(k_cfg, sizeof(RF_Config_t));
+ retcode = ENOMEM;
+ }
+ bzero((char *) raidPtr, sizeof(RF_Raid_t));
+
+ /* Request a unit number for this soon-to-be device. */
+ unit = raidgetunit(parent_sc, 0);
+ if (unit == -1) {
+ rf_printf(0, "Cannot allocate raid unit\n");
+ RF_Free(raidPtr, sizeof(*raidPtr));
+ goto out;
+ }
+ raidPtr->raidid = unit;
+
+ if ((retcode = rf_Configure(raidPtr, k_cfg, NULL)) == 0) {
+
+ /* allow this many simultaneous IO's to
+ this RAID device */
+ raidPtr->openings = RAIDOUTSTANDING;
+
+ parent_sc->sc_raiddevs[unit] = raidinit(raidPtr);
+ if (parent_sc->sc_raiddevs[unit] == NULL) {
+ rf_printf(0, "Could not create raid device\n");
+ RF_Free(raidPtr, sizeof(*raidPtr));
+ goto out;
+ }
+ parent_sc->sc_numraid++;
+ ((struct raid_softc *)raidPtr->sc)->sc_parent_dev = dev;
+ rf_markalldirty(raidPtr);
+ } else {
+ parent_sc->sc_raiddevs[unit] = NULL;
+ RF_Free(raidPtr, sizeof(*raidPtr));
+ }
+
+out:
+ /* free the buffers. No return code here. */
+ if (k_cfg->layoutSpecificSize) {
+ RF_Free(specific_buf, k_cfg->layoutSpecificSize);
+ }
+ RF_Free(k_cfg, sizeof(RF_Config_t));
+ break;
+
+ case RAIDFRAME_SHUTDOWN:
+
+ unit = *(u_int *)data;
+ if ((unit >= RF_MAX_ARRAYS) ||
+ (parent_sc->sc_raiddevs[unit] == NULL))
+ return (EINVAL);
+
+ sc = parent_sc->sc_raiddevs[unit]->si_drv1;
+ if ((retcode = raidlock(sc)) != 0)
+ return (retcode);
+
+ /*
+ * If somebody has a partition mounted, we shouldn't
+ * shutdown.
+ */
+
+ if ((sc->sc_flags & RAIDF_OPEN) != 0) {
+ raidunlock(sc);
+ return (EBUSY);
+ }
+
+ rf_printf(0, "Shutting down RAIDframe engine\n");
+ retcode = rf_Shutdown(sc->raidPtr);
+ RF_THREADGROUP_WAIT_STOP(&sc->raidPtr->engine_tg);
+
+ devstat_remove_entry(&sc->device_stats);
+
+ disk_destroy(parent_sc->sc_raiddevs[unit]);
+ raidunlock(sc);
+
+ /* XXX Need to be able to destroy the zone */
+ uma_zdestroy(sc->sc_cbufpool);
+
+ parent_sc->sc_numraid--;
+ parent_sc->sc_raiddevs[unit] = NULL;
+
+ RF_Free(sc->raidPtr, sizeof(*raidPtr));
+ RF_Free(sc, sizeof(*sc));
+
+ break;
+
+ default:
+ retcode = ENOIOCTL;
+ }
+
+ return (retcode);
+}
+
+#if 0 /* XXX DUMP!!!! */
+int
+raiddump(dev)
+ dev_t dev;
+{
+ /* Not implemented. */
+ return ENXIO;
+}
+#endif
+
+/* ARGSUSED */
+int
+raidopen(dev, flags, fmt, td)
+ dev_t dev;
+ int flags, fmt;
+ struct thread *td;
+{
+ struct raid_softc *sc;
+ struct disk *dp;
+ int error = 0;
+
+ sc = dev->si_drv1;
+
+ if ((error = raidlock(sc)) != 0)
+ return (error);
+ dp = &sc->sc_dkdev;
+
+ rf_printf(1, "Opening raid device %s\n", dev->si_name);
+
+ /* Generate overall disklabel */
+ raidgetdefaultlabel(sc->raidPtr, sc, dp);
+
+ if (sc->sc_busycount == 0) {
+ /* First one... mark things as dirty... Note that we *MUST*
+ have done a configure before this. I DO NOT WANT TO BE
+ SCRIBBLING TO RANDOM COMPONENTS UNTIL IT'S BEEN DETERMINED
+ THAT THEY BELONG TOGETHER!!!!! */
+ /* XXX should check to see if we're only open for reading
+ here... If so, we needn't do this, but then need some
+ other way of keeping track of what's happened.. */
+
+ rf_markalldirty( sc->raidPtr );
+ sc->sc_flags |= RAIDF_OPEN;
+ }
+
+ /* Prevent this unit from being unconfigured while open. */
+ sc->sc_busycount++;
+
+ raidunlock(sc);
+
+ return (error);
+
+
+}
+/* ARGSUSED */
+int
+raidclose(dev, flags, fmt, td)
+ dev_t dev;
+ int flags, fmt;
+ struct thread *td;
+{
+ struct raid_softc *sc;
+ int error = 0;
+
+ sc = dev->si_drv1;
+
+ if ((error = raidlock(sc)) != 0)
+ return (error);
+
+ sc->sc_busycount--;
+ if (sc->sc_busycount == 0) {
+ sc->sc_flags &= ~RAIDF_OPEN;
+ rf_update_component_labels(sc->raidPtr,
+ RF_FINAL_COMPONENT_UPDATE);
+ }
+
+ raidunlock(sc);
+ return (0);
+
+}
+
+void
+raidstrategy(bp)
+ struct bio *bp;
+{
+ RF_Raid_t *raidPtr;
+ struct raid_softc *sc = bp->bio_dev->si_drv1;
+ int s;
+
+ raidPtr = sc->raidPtr;
+ if (raidPtr == NULL) {
+ bp->bio_error = ENODEV;
+ bp->bio_flags |= BIO_ERROR;
+ bp->bio_resid = bp->bio_bcount;
+ biodone(bp);
+ return;
+ }
+ if (!raidPtr->valid) {
+ bp->bio_error = ENODEV;
+ bp->bio_flags |= BIO_ERROR;
+ bp->bio_resid = bp->bio_bcount;
+ biodone(bp);
+ return;
+ }
+ if (bp->bio_bcount == 0) {
+ rf_printf(2, "b_bcount is zero..\n");
+ biodone(bp);
+ return;
+ }
+
+ s = splbio();
+
+ bp->bio_resid = 0;
+
+ /* stuff it onto our queue. XXX locking? */
+ bioq_insert_tail(&sc->bio_queue, bp);
+
+ raidstart(raidPtr);
+
+ splx(s);
+}
+
+int
+raidread(dev, uio, flags)
+ dev_t dev;
+ struct uio *uio;
+ int flags;
+{
+ struct raid_softc *sc;
+
+ sc = dev->si_drv1;
+
+ return (physio(dev, uio, BIO_READ));
+
+}
+
+int
+raidwrite(dev, uio, flags)
+ dev_t dev;
+ struct uio *uio;
+ int flags;
+{
+ struct raid_softc *sc;
+ int ret;
+
+ sc = dev->si_drv1;
+
+ rf_printf(3, "raidwrite\n");
+ ret = physio(dev, uio, BIO_WRITE);
+
+ return (ret);
+
+}
+
+int
+raidioctl(dev, cmd, data, flag, td)
+ dev_t dev;
+ u_long cmd;
+ caddr_t data;
+ int flag;
+ struct thread *td;
+{
+ struct raid_softc *sc;
+ RF_Raid_t *raidPtr;
+ RF_RaidDisk_t *diskPtr;
+ RF_AccTotals_t *totals;
+ RF_DeviceConfig_t *d_cfg, **ucfgp;
+ struct rf_recon_req *rrcopy, *rr;
+ RF_ComponentLabel_t *clabel;
+ RF_ComponentLabel_t *ci_label;
+ RF_SingleComponent_t *sparePtr,*componentPtr;
+ RF_SingleComponent_t *hot_spare, *component;
+ RF_ProgressInfo_t progressInfo;
+ int retcode = 0;
+ int row, column;
+ int unit;
+ int i, j, d;
+
+ sc = dev->si_drv1;
+ raidPtr = sc->raidPtr;
+
+ rf_printf(2, "raidioctl: %s %ld\n", dev->si_name, cmd);
+
+ switch (cmd) {
+
+ case RAIDFRAME_GET_COMPONENT_LABEL:
+ /* need to read the component label for the disk indicated
+ by row,column in clabel */
+
+ /* For practice, let's get it directly fromdisk, rather
+ than from the in-core copy */
+ RF_Malloc( clabel, sizeof( RF_ComponentLabel_t ),
+ (RF_ComponentLabel_t *));
+ if (clabel == NULL)
+ return (ENOMEM);
+
+ bzero((char *) clabel, sizeof(RF_ComponentLabel_t));
+
+ bcopy(data, clabel, sizeof(RF_ComponentLabel_t));
+
+ row = clabel->row;
+ column = clabel->column;
+
+ if ((row < 0) || (row >= raidPtr->numRow) ||
+ (column < 0) || (column >= raidPtr->numCol +
+ raidPtr->numSpare)) {
+ RF_Free( clabel, sizeof(RF_ComponentLabel_t));
+ return(EINVAL);
+ }
+
+ raidread_component_label(raidPtr->Disks[row][column].dev,
+ raidPtr->raid_cinfo[row][column].ci_vp,
+ clabel );
+
+ bcopy(clabel, data, sizeof(RF_ComponentLabel_t));
+ RF_Free( clabel, sizeof(RF_ComponentLabel_t));
+ return (retcode);
+
+ case RAIDFRAME_SET_COMPONENT_LABEL:
+ clabel = (RF_ComponentLabel_t *) data;
+
+ /* XXX check the label for valid stuff... */
+ /* Note that some things *should not* get modified --
+ the user should be re-initing the labels instead of
+ trying to patch things.
+ */
+
+ rf_printf(1, "Got component label:\n");
+ rf_printf(1, "Version: %d\n",clabel->version);
+ rf_printf(1, "Serial Number: %d\n",clabel->serial_number);
+ rf_printf(1, "Mod counter: %d\n",clabel->mod_counter);
+ rf_printf(1, "Row: %d\n", clabel->row);
+ rf_printf(1, "Column: %d\n", clabel->column);
+ rf_printf(1, "Num Rows: %d\n", clabel->num_rows);
+ rf_printf(1, "Num Columns: %d\n", clabel->num_columns);
+ rf_printf(1, "Clean: %d\n", clabel->clean);
+ rf_printf(1, "Status: %d\n", clabel->status);
+
+ row = clabel->row;
+ column = clabel->column;
+
+ if ((row < 0) || (row >= raidPtr->numRow) ||
+ (column < 0) || (column >= raidPtr->numCol)) {
+ return(EINVAL);
+ }
+
+ /* XXX this isn't allowed to do anything for now :-) */
+
+ /* XXX and before it is, we need to fill in the rest
+ of the fields!?!?!?! */
+#if 0
+ raidwrite_component_label(
+ raidPtr->Disks[row][column].dev,
+ raidPtr->raid_cinfo[row][column].ci_vp,
+ clabel );
+#endif
+ return (0);
+
+ case RAIDFRAME_INIT_LABELS:
+ MALLOC(ci_label, RF_ComponentLabel_t *,
+ sizeof(RF_ComponentLabel_t), M_RAIDFRAME,
+ M_WAITOK | M_ZERO);
+ clabel = (RF_ComponentLabel_t *) data;
+ /*
+ we only want the serial number from
+ the above. We get all the rest of the information
+ from the config that was used to create this RAID
+ set.
+ */
+
+ raidPtr->serial_number = clabel->serial_number;
+
+ raid_init_component_label(raidPtr, ci_label);
+ ci_label->serial_number = clabel->serial_number;
+
+ for(row=0;row<raidPtr->numRow;row++) {
+ ci_label->row = row;
+ for(column=0;column<raidPtr->numCol;column++) {
+ diskPtr = &raidPtr->Disks[row][column];
+ if (!RF_DEAD_DISK(diskPtr->status)) {
+ ci_label->partitionSize =
+ diskPtr->partitionSize;
+ ci_label->column = column;
+ raidwrite_component_label(
+ raidPtr->Disks[row][column].dev,
+ raidPtr->raid_cinfo[row][column].ci_vp,
+ ci_label );
+ }
+ }
+ }
+
+ FREE(ci_label, M_RAIDFRAME);
+ return (retcode);
+ case RAIDFRAME_SET_AUTOCONFIG:
+ d = rf_set_autoconfig(raidPtr, *(int *) data);
+ rf_printf(1, "New autoconfig value is: %d\n", d);
+ *(int *) data = d;
+ return (retcode);
+
+ case RAIDFRAME_SET_ROOT:
+ d = rf_set_rootpartition(raidPtr, *(int *) data);
+ rf_printf(1, "New rootpartition value is: %d\n", d);
+ *(int *) data = d;
+ return (retcode);
+
+ /* initialize all parity */
+ case RAIDFRAME_REWRITEPARITY:
+
+ if (raidPtr->Layout.map->faultsTolerated == 0) {
+ /* Parity for RAID 0 is trivially correct */
+ raidPtr->parity_good = RF_RAID_CLEAN;
+ return(0);
+ }
+
+ if (raidPtr->parity_rewrite_in_progress == 1) {
+ /* Re-write is already in progress! */
+ return(EINVAL);
+ }
+
+ retcode = RF_CREATE_THREAD(raidPtr->parity_rewrite_thread,
+ rf_RewriteParityThread,
+ raidPtr,"raid_parity");
+ return (retcode);
+
+
+ case RAIDFRAME_ADD_HOT_SPARE:
+ MALLOC(hot_spare, RF_SingleComponent_t *,
+ sizeof(RF_SingleComponent_t), M_RAIDFRAME,
+ M_WAITOK | M_ZERO);
+ sparePtr = (RF_SingleComponent_t *) data;
+ memcpy( hot_spare, sparePtr, sizeof(RF_SingleComponent_t));
+ retcode = rf_add_hot_spare(raidPtr, hot_spare);
+ FREE(hot_spare, M_RAIDFRAME);
+ return(retcode);
+
+ case RAIDFRAME_REMOVE_HOT_SPARE:
+ return(retcode);
+
+ case RAIDFRAME_DELETE_COMPONENT:
+ MALLOC(component, RF_SingleComponent_t *,
+ sizeof(RF_SingleComponent_t), M_RAIDFRAME,
+ M_WAITOK | M_ZERO);
+ componentPtr = (RF_SingleComponent_t *)data;
+ memcpy( component, componentPtr,
+ sizeof(RF_SingleComponent_t));
+ retcode = rf_delete_component(raidPtr, component);
+ FREE(component, M_RAIDFRAME);
+ return(retcode);
+
+ case RAIDFRAME_INCORPORATE_HOT_SPARE:
+ MALLOC(component, RF_SingleComponent_t *,
+ sizeof(RF_SingleComponent_t), M_RAIDFRAME,
+ M_WAITOK | M_ZERO);
+ componentPtr = (RF_SingleComponent_t *)data;
+ memcpy( component, componentPtr,
+ sizeof(RF_SingleComponent_t));
+ retcode = rf_incorporate_hot_spare(raidPtr, component);
+ FREE(component, M_RAIDFRAME);
+ return(retcode);
+
+ case RAIDFRAME_REBUILD_IN_PLACE:
+
+ MALLOC(component, RF_SingleComponent_t *,
+ sizeof(RF_SingleComponent_t), M_RAIDFRAME,
+ M_WAITOK | M_ZERO);
+ if (raidPtr->Layout.map->faultsTolerated == 0) {
+ /* Can't do this on a RAID 0!! */
+ FREE(component, M_RAIDFRAME);
+ return(EINVAL);
+ }
+
+ if (raidPtr->recon_in_progress == 1) {
+ /* a reconstruct is already in progress! */
+ FREE(component, M_RAIDFRAME);
+ return(EINVAL);
+ }
+
+ componentPtr = (RF_SingleComponent_t *) data;
+ memcpy( component, componentPtr,
+ sizeof(RF_SingleComponent_t));
+ row = component->row;
+ column = component->column;
+ unit = raidPtr->raidid;
+ rf_printf(0, "raid%d Rebuild: %d %d\n", unit, row, column);
+ if ((row < 0) || (row >= raidPtr->numRow) ||
+ (column < 0) || (column >= raidPtr->numCol)) {
+ FREE(component, M_RAIDFRAME);
+ return(EINVAL);
+ }
+
+ RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
+ if (rrcopy == NULL) {
+ FREE(component, M_RAIDFRAME);
+ return(ENOMEM);
+ }
+
+ rrcopy->raidPtr = (void *) raidPtr;
+ rrcopy->row = row;
+ rrcopy->col = column;
+
+ retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
+ rf_ReconstructInPlaceThread,
+ rrcopy,"raid_reconip");
+ FREE(component, M_RAIDFRAME);
+ return(retcode);
+
+ case RAIDFRAME_GET_UNIT:
+
+ *(int *)data = raidPtr->raidid;
+ return (0);
+
+ case RAIDFRAME_GET_INFO:
+ if (!raidPtr->valid)
+ return (ENODEV);
+ ucfgp = (RF_DeviceConfig_t **) data;
+ RF_Malloc(d_cfg, sizeof(RF_DeviceConfig_t),
+ (RF_DeviceConfig_t *));
+ if (d_cfg == NULL)
+ return (ENOMEM);
+ bzero((char *) d_cfg, sizeof(RF_DeviceConfig_t));
+ d_cfg->rows = raidPtr->numRow;
+ d_cfg->cols = raidPtr->numCol;
+ d_cfg->ndevs = raidPtr->numRow * raidPtr->numCol;
+ if (d_cfg->ndevs >= RF_MAX_DISKS) {
+ RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
+ return (ENOMEM);
+ }
+ d_cfg->nspares = raidPtr->numSpare;
+ if (d_cfg->nspares >= RF_MAX_DISKS) {
+ RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
+ return (ENOMEM);
+ }
+ d_cfg->maxqdepth = raidPtr->maxQueueDepth;
+ d = 0;
+ for (i = 0; i < d_cfg->rows; i++) {
+ for (j = 0; j < d_cfg->cols; j++) {
+ d_cfg->devs[d] = raidPtr->Disks[i][j];
+ d++;
+ }
+ }
+ for (j = d_cfg->cols, i = 0; i < d_cfg->nspares; i++, j++) {
+ d_cfg->spares[i] = raidPtr->Disks[0][j];
+ }
+
+ retcode = copyout(d_cfg, *ucfgp, sizeof(RF_DeviceConfig_t));
+
+ RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
+
+ return (retcode);
+
+ case RAIDFRAME_CHECK_PARITY:
+ *(int *) data = raidPtr->parity_good;
+ return (0);
+
+ case RAIDFRAME_RESET_ACCTOTALS:
+ bzero(&raidPtr->acc_totals, sizeof(raidPtr->acc_totals));
+ return (0);
+
+ case RAIDFRAME_GET_ACCTOTALS:
+ totals = (RF_AccTotals_t *) data;
+ *totals = raidPtr->acc_totals;
+ return (0);
+
+ case RAIDFRAME_KEEP_ACCTOTALS:
+ raidPtr->keep_acc_totals = *(int *)data;
+ return (0);
+
+ case RAIDFRAME_GET_SIZE:
+ *(int *) data = raidPtr->totalSectors;
+ return (0);
+
+ /* fail a disk & optionally start reconstruction */
+ case RAIDFRAME_FAIL_DISK:
+
+ if (raidPtr->Layout.map->faultsTolerated == 0) {
+ /* Can't do this on a RAID 0!! */
+ return(EINVAL);
+ }
+
+ rr = (struct rf_recon_req *) data;
+
+ if (rr->row < 0 || rr->row >= raidPtr->numRow
+ || rr->col < 0 || rr->col >= raidPtr->numCol)
+ return (EINVAL);
+
+ rf_printf(0, "%s: Failing the disk: row: %d col: %d\n",
+ dev->si_name, rr->row, rr->col);
+
+ /* make a copy of the recon request so that we don't rely on
+ * the user's buffer */
+ RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
+ if (rrcopy == NULL)
+ return(ENOMEM);
+ bcopy(rr, rrcopy, sizeof(*rr));
+ rrcopy->raidPtr = (void *) raidPtr;
+
+ retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
+ rf_ReconThread,
+ rrcopy,"raid_recon");
+ return (0);
+
+ /* invoke a copyback operation after recon on whatever disk
+ * needs it, if any */
+ case RAIDFRAME_COPYBACK:
+
+ if (raidPtr->Layout.map->faultsTolerated == 0) {
+ /* This makes no sense on a RAID 0!! */
+ return(EINVAL);
+ }
+
+ if (raidPtr->copyback_in_progress == 1) {
+ /* Copyback is already in progress! */
+ return(EINVAL);
+ }
+
+ retcode = RF_CREATE_THREAD(raidPtr->copyback_thread,
+ rf_CopybackThread,
+ raidPtr,"raid_copyback");
+ return (retcode);
+
+ /* return the percentage completion of reconstruction */
+ case RAIDFRAME_CHECK_RECON_STATUS:
+ if (raidPtr->Layout.map->faultsTolerated == 0) {
+ /* This makes no sense on a RAID 0, so tell the
+ user it's done. */
+ *(int *) data = 100;
+ return(0);
+ }
+ row = 0; /* XXX we only consider a single row... */
+ if (raidPtr->status[row] != rf_rs_reconstructing)
+ *(int *) data = 100;
+ else
+ *(int *) data = raidPtr->reconControl[row]->percentComplete;
+ return (0);
+ case RAIDFRAME_CHECK_RECON_STATUS_EXT:
+ row = 0; /* XXX we only consider a single row... */
+ if (raidPtr->status[row] != rf_rs_reconstructing) {
+ progressInfo.remaining = 0;
+ progressInfo.completed = 100;
+ progressInfo.total = 100;
+ } else {
+ progressInfo.total =
+ raidPtr->reconControl[row]->numRUsTotal;
+ progressInfo.completed =
+ raidPtr->reconControl[row]->numRUsComplete;
+ progressInfo.remaining = progressInfo.total -
+ progressInfo.completed;
+ }
+ bcopy((caddr_t) &progressInfo, data, sizeof(RF_ProgressInfo_t));
+ return (retcode);
+
+ case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
+ if (raidPtr->Layout.map->faultsTolerated == 0) {
+ /* This makes no sense on a RAID 0, so tell the
+ user it's done. */
+ *(int *) data = 100;
+ return(0);
+ }
+ if (raidPtr->parity_rewrite_in_progress == 1) {
+ *(int *) data = 100 *
+ raidPtr->parity_rewrite_stripes_done /
+ raidPtr->Layout.numStripe;
+ } else {
+ *(int *) data = 100;
+ }
+ return (0);
+
+ case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
+ if (raidPtr->parity_rewrite_in_progress == 1) {
+ progressInfo.total = raidPtr->Layout.numStripe;
+ progressInfo.completed =
+ raidPtr->parity_rewrite_stripes_done;
+ progressInfo.remaining = progressInfo.total -
+ progressInfo.completed;
+ } else {
+ progressInfo.remaining = 0;
+ progressInfo.completed = 100;
+ progressInfo.total = 100;
+ }
+ bcopy((caddr_t) &progressInfo, data, sizeof(RF_ProgressInfo_t));
+ return (retcode);
+
+ case RAIDFRAME_CHECK_COPYBACK_STATUS:
+ if (raidPtr->Layout.map->faultsTolerated == 0) {
+ /* This makes no sense on a RAID 0 */
+ *(int *) data = 100;
+ return(0);
+ }
+ if (raidPtr->copyback_in_progress == 1) {
+ *(int *) data = 100 * raidPtr->copyback_stripes_done /
+ raidPtr->Layout.numStripe;
+ } else {
+ *(int *) data = 100;
+ }
+ return (0);
+
+ case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
+ if (raidPtr->copyback_in_progress == 1) {
+ progressInfo.total = raidPtr->Layout.numStripe;
+ progressInfo.completed =
+ raidPtr->copyback_stripes_done;
+ progressInfo.remaining = progressInfo.total -
+ progressInfo.completed;
+ } else {
+ progressInfo.remaining = 0;
+ progressInfo.completed = 100;
+ progressInfo.total = 100;
+ }
+ bcopy((caddr_t) &progressInfo, data, sizeof(RF_ProgressInfo_t));
+ return (retcode);
+
+ /* the sparetable daemon calls this to wait for the kernel to
+ * need a spare table. this ioctl does not return until a
+ * spare table is needed. XXX -- calling mpsleep here in the
+ * ioctl code is almost certainly wrong and evil. -- XXX XXX
+ * -- I should either compute the spare table in the kernel,
+ * or have a different -- XXX XXX -- interface (a different
+ * character device) for delivering the table -- XXX */
+#if 0
+ case RAIDFRAME_SPARET_WAIT:
+ RF_LOCK_MUTEX(rf_sparet_wait_mutex);
+ while (!rf_sparet_wait_queue)
+ mpsleep(&rf_sparet_wait_queue, (PZERO + 1) | PCATCH, "sparet wait", 0, (void *) simple_lock_addr(rf_sparet_wait_mutex), MS_LOCK_SIMPLE);
+ waitreq = rf_sparet_wait_queue;
+ rf_sparet_wait_queue = rf_sparet_wait_queue->next;
+ RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
+
+ /* structure assignment */
+ *((RF_SparetWait_t *) data) = *waitreq;
+
+ RF_Free(waitreq, sizeof(*waitreq));
+ return (0);
+
+ /* wakes up a process waiting on SPARET_WAIT and puts an error
+ * code in it that will cause the dameon to exit */
+ case RAIDFRAME_ABORT_SPARET_WAIT:
+ RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
+ waitreq->fcol = -1;
+ RF_LOCK_MUTEX(rf_sparet_wait_mutex);
+ waitreq->next = rf_sparet_wait_queue;
+ rf_sparet_wait_queue = waitreq;
+ RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
+ wakeup(&rf_sparet_wait_queue);
+ return (0);
+
+ /* used by the spare table daemon to deliver a spare table
+ * into the kernel */
+ case RAIDFRAME_SEND_SPARET:
+
+ /* install the spare table */
+ retcode = rf_SetSpareTable(raidPtr, *(void **) data);
+
+ /* respond to the requestor. the return status of the spare
+ * table installation is passed in the "fcol" field */
+ RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
+ waitreq->fcol = retcode;
+ RF_LOCK_MUTEX(rf_sparet_wait_mutex);
+ waitreq->next = rf_sparet_resp_queue;
+ rf_sparet_resp_queue = waitreq;
+ wakeup(&rf_sparet_resp_queue);
+ RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
+
+ return (retcode);
+#endif
+
+ default:
+ retcode = ENOIOCTL;
+ break; /* fall through to the os-specific code below */
+
+ }
+
+ return (retcode);
+
+}
+
+
+/* raidinit -- complete the rest of the initialization for the
+ RAIDframe device. */
+
+
+static dev_t
+raidinit(raidPtr)
+ RF_Raid_t *raidPtr;
+{
+ struct raid_softc *sc;
+ dev_t diskdev;
+
+ RF_Malloc(sc, sizeof(struct raid_softc), (struct raid_softc *));
+ if (sc == NULL) {
+ rf_printf(1, "No memory for raid device\n");
+ return(NULL);
+ }
+
+ sc->raidPtr = raidPtr;
+
+ /* XXX Should check return code here */
+ bioq_init(&sc->bio_queue);
+ sc->sc_cbufpool = uma_zcreate("raidpl", sizeof(struct raidbuf), NULL,
+ NULL, NULL, NULL, 0, 0);
+
+ /* XXX There may be a weird interaction here between this, and
+ * protectedSectors, as used in RAIDframe. */
+
+ sc->sc_size = raidPtr->totalSectors;
+
+ /* Create the disk device */
+ diskdev = disk_create(raidPtr->raidid, &sc->sc_dkdev, 0, &raid_cdevsw,
+ &raiddisk_cdevsw);
+ if (diskdev == NODEV) {
+ rf_printf(1, "disk_create failed\n");
+ return (NULL);
+ }
+ sc->sc_dkdev.d_dev->si_drv1 = sc;
+ sc->sc_dev = diskdev;
+ raidPtr->sc = sc;
+
+ /* Register with devstat */
+ devstat_add_entry(&sc->device_stats, "raid", raidPtr->raidid, 0,
+ DEVSTAT_NO_BLOCKSIZE | DEVSTAT_NO_ORDERED_TAGS,
+ DEVSTAT_TYPE_IF_OTHER, DEVSTAT_PRIORITY_ARRAY);
+
+ return (diskdev);
+}
+
+/* wake up the daemon & tell it to get us a spare table
+ * XXX
+ * the entries in the queues should be tagged with the raidPtr
+ * so that in the extremely rare case that two recons happen at once,
+ * we know for which device were requesting a spare table
+ * XXX
+ *
+ * XXX This code is not currently used. GO
+ */
+int
+rf_GetSpareTableFromDaemon(req)
+ RF_SparetWait_t *req;
+{
+ int retcode;
+
+ RF_LOCK_MUTEX(rf_sparet_wait_mutex);
+ req->next = rf_sparet_wait_queue;
+ rf_sparet_wait_queue = req;
+ wakeup(&rf_sparet_wait_queue);
+
+ /* mpsleep unlocks the mutex */
+ while (!rf_sparet_resp_queue) {
+ tsleep(&rf_sparet_resp_queue, PRIBIO,
+ "raidframe getsparetable", 0);
+ }
+ req = rf_sparet_resp_queue;
+ rf_sparet_resp_queue = req->next;
+ RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
+
+ retcode = req->fcol;
+ RF_Free(req, sizeof(*req)); /* this is not the same req as we
+ * alloc'd */
+ return (retcode);
+}
+
+/* a wrapper around rf_DoAccess that extracts appropriate info from the
+ * bp & passes it down.
+ * any calls originating in the kernel must use non-blocking I/O
+ * do some extra sanity checking to return "appropriate" error values for
+ * certain conditions (to make some standard utilities work)
+ *
+ * Formerly known as: rf_DoAccessKernel
+ */
+void
+raidstart(raidPtr)
+ RF_Raid_t *raidPtr;
+{
+ RF_SectorCount_t num_blocks, pb, sum;
+ RF_RaidAddr_t raid_addr;
+ struct raid_softc *sc;
+ struct bio *bp;
+ daddr_t blocknum;
+ int unit, retcode, do_async;
+
+ unit = raidPtr->raidid;
+ sc = raidPtr->sc;
+
+ /* quick check to see if anything has died recently */
+ RF_LOCK_MUTEX(raidPtr->mutex);
+ if (raidPtr->numNewFailures > 0) {
+ raidPtr->numNewFailures--;
+ RF_UNLOCK_MUTEX(raidPtr->mutex);
+ rf_update_component_labels(raidPtr,
+ RF_NORMAL_COMPONENT_UPDATE);
+ } else
+ RF_UNLOCK_MUTEX(raidPtr->mutex);
+
+ /* Check to see if we're at the limit... */
+ RF_LOCK_MUTEX(raidPtr->mutex);
+ while (raidPtr->openings > 0) {
+ RF_UNLOCK_MUTEX(raidPtr->mutex);
+
+ /* get the next item, if any, from the queue */
+ if ((bp = bioq_first(&sc->bio_queue)) == NULL) {
+ /* nothing more to do */
+ return;
+ }
+ bioq_remove(&sc->bio_queue, bp);
+
+ /* Ok, for the bp we have here, bp->b_blkno is relative to the
+ * partition.. Need to make it absolute to the underlying
+ * device.. */
+
+ blocknum = bp->bio_blkno;
+#if 0 /* XXX Is this needed? */
+ if (DISKPART(bp->bio_dev) != RAW_PART) {
+ struct partition *pp;
+ pp = &sc->sc_dkdev.d_label.d_partitions[DISKPART(
+ bp->bio_dev)];
+ blocknum += pp->p_offset;
+ }
+#endif
+
+ rf_printf(3, "Blocks: %ld, %ld\n", (long)bp->bio_blkno, (long)blocknum);
+
+ rf_printf(3, "bp->bio_bcount = %d\n", (int) bp->bio_bcount);
+ rf_printf(3, "bp->bio_resid = %d\n", (int) bp->bio_resid);
+
+ /* *THIS* is where we adjust what block we're going to...
+ * but DO NOT TOUCH bp->bio_blkno!!! */
+ raid_addr = blocknum;
+
+ num_blocks = bp->bio_bcount >> raidPtr->logBytesPerSector;
+ pb = (bp->bio_bcount & raidPtr->sectorMask) ? 1 : 0;
+ sum = raid_addr + num_blocks + pb;
+ if (rf_debugKernelAccess) {
+ rf_printf(0, "raid_addr=0x%x sum=%d num_blocks=%d(+%d) "
+ "(%d)\n", (int)raid_addr, (int)sum,
+ (int)num_blocks, (int)pb,
+ (int)bp->bio_resid);
+ }
+ if ((sum > raidPtr->totalSectors) || (sum < raid_addr)
+ || (sum < num_blocks) || (sum < pb)) {
+ bp->bio_error = ENOSPC;
+ bp->bio_flags |= BIO_ERROR;
+ bp->bio_resid = bp->bio_bcount;
+ biodone(bp);
+ RF_LOCK_MUTEX(raidPtr->mutex);
+ continue;
+ }
+ /*
+ * XXX rf_DoAccess() should do this, not just DoAccessKernel()
+ */
+
+ if (bp->bio_bcount & raidPtr->sectorMask) {
+ bp->bio_error = EINVAL;
+ bp->bio_flags |= BIO_ERROR;
+ bp->bio_resid = bp->bio_bcount;
+ biodone(bp);
+ RF_LOCK_MUTEX(raidPtr->mutex);
+ continue;
+
+ }
+ rf_printf(3, "Calling DoAccess..\n");
+
+
+ RF_LOCK_MUTEX(raidPtr->mutex);
+ raidPtr->openings--;
+ RF_UNLOCK_MUTEX(raidPtr->mutex);
+
+ /*
+ * Everything is async.
+ */
+ do_async = 1;
+
+ devstat_start_transaction(&sc->device_stats);
+
+ /* XXX we're still at splbio() here... do we *really*
+ need to be? */
+
+ /* don't ever condition on bp->bio_cmd & BIO_WRITE.
+ * always condition on BIO_READ instead */
+
+ retcode = rf_DoAccess(raidPtr, (bp->bio_cmd & BIO_READ) ?
+ RF_IO_TYPE_READ : RF_IO_TYPE_WRITE,
+ do_async, raid_addr, num_blocks,
+ bp->bio_data, bp, NULL, NULL,
+ RF_DAG_NONBLOCKING_IO, NULL, NULL, NULL);
+
+
+ RF_LOCK_MUTEX(raidPtr->mutex);
+ }
+ RF_UNLOCK_MUTEX(raidPtr->mutex);
+}
+
+
+
+
+/* invoke an I/O from kernel mode. Disk queue should be locked upon entry */
+
+int
+rf_DispatchKernelIO(queue, req)
+ RF_DiskQueue_t *queue;
+ RF_DiskQueueData_t *req;
+{
+ int op = (req->type == RF_IO_TYPE_READ) ? BIO_READ : BIO_WRITE;
+ struct bio *bp;
+ struct raidbuf *raidbp = NULL;
+ struct raid_softc *sc;
+
+ /* XXX along with the vnode, we also need the softc associated with
+ * this device.. */
+
+ req->queue = queue;
+
+ sc = queue->raidPtr->sc;
+
+ rf_printf(3, "DispatchKernelIO %s\n", sc->sc_dev->si_name);
+
+ bp = req->bp;
+#if 1
+ /* XXX when there is a physical disk failure, someone is passing us a
+ * buffer that contains old stuff!! Attempt to deal with this problem
+ * without taking a performance hit... (not sure where the real bug
+ * is. It's buried in RAIDframe somewhere) :-( GO ) */
+
+ if (bp->bio_flags & BIO_ERROR) {
+ bp->bio_flags &= ~BIO_ERROR;
+ }
+ if (bp->bio_error != 0) {
+ bp->bio_error = 0;
+ }
+#endif
+ raidbp = RAIDGETBUF(sc);
+
+ raidbp->rf_flags = 0; /* XXX not really used anywhere... */
+
+ /*
+ * context for raidiodone
+ */
+ raidbp->rf_obp = bp;
+ raidbp->req = req;
+
+#if 0 /* XXX */
+ LIST_INIT(&raidbp->rf_buf.b_dep);
+#endif
+
+ switch (req->type) {
+ case RF_IO_TYPE_NOP: /* used primarily to unlock a locked queue */
+ /* XXX need to do something extra here.. */
+ /* I'm leaving this in, as I've never actually seen it used,
+ * and I'd like folks to report it... GO */
+ rf_printf(2, "WAKEUP CALLED\n");
+ queue->numOutstanding++;
+
+ /* XXX need to glue the original buffer into this? */
+
+ KernelWakeupFunc(&raidbp->rf_buf);
+ break;
+
+ case RF_IO_TYPE_READ:
+ case RF_IO_TYPE_WRITE:
+
+ if (req->tracerec) {
+ RF_ETIMER_START(req->tracerec->timer);
+ }
+ InitBP(&raidbp->rf_buf, queue->rf_cinfo->ci_vp,
+ op | bp->bio_cmd, queue->rf_cinfo->ci_dev,
+ req->sectorOffset, req->numSector,
+ req->buf, KernelWakeupFunc, (void *) req,
+ queue->raidPtr->logBytesPerSector, req->b_proc);
+
+ if (rf_debugKernelAccess) {
+ rf_printf(0, "dispatch: bp->bio_blkno = %ld\n",
+ (long) bp->bio_blkno);
+ }
+ queue->numOutstanding++;
+ queue->last_deq_sector = req->sectorOffset;
+ /* acc wouldn't have been let in if there were any pending
+ * reqs at any other priority */
+ queue->curPriority = req->priority;
+
+ rf_printf(3, "Going for %c to %s row %d col %d\n",
+ req->type, sc->sc_dev->si_name, queue->row, queue->col);
+ rf_printf(3, "sector %d count %d (%d bytes) %d\n",
+ (int) req->sectorOffset, (int) req->numSector,
+ (int) (req->numSector <<
+ queue->raidPtr->logBytesPerSector),
+ (int) queue->raidPtr->logBytesPerSector);
+#if 0 /* XXX */
+ if ((raidbp->rf_buf.bio_cmd & BIO_READ) == 0) {
+ raidbp->rf_buf.b_vp->v_numoutput++;
+ }
+#endif
+ BIO_STRATEGY(&raidbp->rf_buf, 0);
+
+ break;
+
+ default:
+ panic("bad req->type in rf_DispatchKernelIO");
+ }
+ rf_printf(3, "Exiting from DispatchKernelIO\n");
+ /* splx(s); */ /* want to test this */
+ return (0);
+}
+/* this is the callback function associated with a I/O invoked from
+ kernel code.
+ */
+static void
+KernelWakeupFunc(vbp)
+ struct bio *vbp;
+{
+ RF_DiskQueueData_t *req = NULL;
+ RF_DiskQueue_t *queue;
+ struct raidbuf *raidbp = (struct raidbuf *) vbp;
+ struct bio *bp;
+ struct raid_softc *sc;
+ int s;
+
+ s = splbio();
+ rf_printf(2, "recovering the request queue:\n");
+ req = raidbp->req;
+
+ bp = raidbp->rf_obp;
+ queue = (RF_DiskQueue_t *) req->queue;
+ sc = queue->raidPtr->sc;
+
+ if (raidbp->rf_buf.bio_flags & BIO_ERROR) {
+ bp->bio_flags |= BIO_ERROR;
+ bp->bio_error = raidbp->rf_buf.bio_error ?
+ raidbp->rf_buf.bio_error : EIO;
+ }
+
+ /* XXX methinks this could be wrong... */
+#if 1
+ bp->bio_resid = raidbp->rf_buf.bio_resid;
+#endif
+
+ if (req->tracerec) {
+ RF_ETIMER_STOP(req->tracerec->timer);
+ RF_ETIMER_EVAL(req->tracerec->timer);
+ RF_LOCK_MUTEX(rf_tracing_mutex);
+ req->tracerec->diskwait_us += RF_ETIMER_VAL_US(req->tracerec->timer);
+ req->tracerec->phys_io_us += RF_ETIMER_VAL_US(req->tracerec->timer);
+ req->tracerec->num_phys_ios++;
+ RF_UNLOCK_MUTEX(rf_tracing_mutex);
+ }
+ bp->bio_bcount = raidbp->rf_buf.bio_bcount; /* XXXX ? */
+
+ /* XXX Ok, let's get aggressive... If BIO_ERROR is set, let's go
+ * ballistic, and mark the component as hosed... */
+
+ if (bp->bio_flags & BIO_ERROR) {
+ /* Mark the disk as dead */
+ /* but only mark it once... */
+ if (queue->raidPtr->Disks[queue->row][queue->col].status ==
+ rf_ds_optimal) {
+ rf_printf(0, "%s: IO Error. Marking %s as "
+ "failed.\n", sc->sc_dev->si_name, queue->raidPtr->
+ Disks[queue->row][queue->col].devname);
+ queue->raidPtr->Disks[queue->row][queue->col].status =
+ rf_ds_failed;
+ queue->raidPtr->status[queue->row] = rf_rs_degraded;
+ queue->raidPtr->numFailures++;
+ queue->raidPtr->numNewFailures++;
+ } else { /* Disk is already dead... */
+ /* printf("Disk already marked as dead!\n"); */
+ }
+
+ }
+
+ RAIDPUTBUF(sc, raidbp);
+
+ rf_DiskIOComplete(queue, req, (bp->bio_flags & BIO_ERROR) ? 1 : 0);
+ (req->CompleteFunc)(req->argument, (bp->bio_flags & BIO_ERROR) ? 1 : 0);
+
+ splx(s);
+}
+
+
+
+/*
+ * initialize a buf structure for doing an I/O in the kernel.
+ */
+static void
+InitBP(bp, b_vp, rw_flag, dev, startSect, numSect, buf, cbFunc, cbArg,
+ logBytesPerSector, b_proc)
+ struct bio *bp;
+ struct vnode *b_vp;
+ unsigned rw_flag;
+ dev_t dev;
+ RF_SectorNum_t startSect;
+ RF_SectorCount_t numSect;
+ caddr_t buf;
+ void (*cbFunc) (struct bio *);
+ void *cbArg;
+ int logBytesPerSector;
+ struct proc *b_proc;
+{
+ /* bp->b_flags = B_PHYS | rw_flag; */
+ bp->bio_cmd = rw_flag; /* XXX need B_PHYS here too? */
+ bp->bio_bcount = numSect << logBytesPerSector;
+#if 0 /* XXX */
+ bp->bio_bufsize = bp->bio_bcount;
+#endif
+ bp->bio_error = 0;
+ bp->bio_dev = dev;
+ bp->bio_data = buf;
+ bp->bio_blkno = startSect;
+ bp->bio_resid = bp->bio_bcount; /* XXX is this right!?!?!! */
+ if (bp->bio_bcount == 0) {
+ panic("bp->bio_bcount is zero in InitBP!!\n");
+ }
+/*
+ bp->b_proc = b_proc;
+ bp->b_vp = b_vp;
+*/
+ bp->bio_done = cbFunc;
+
+}
+
+static void
+raidgetdefaultlabel(raidPtr, sc, dp)
+ RF_Raid_t *raidPtr;
+ struct raid_softc *sc;
+ struct disk *dp;
+{
+ rf_printf(1, "Building a default label...\n");
+ if (dp == NULL)
+ panic("raidgetdefaultlabel(): dp is NULL\n");
+
+ /* fabricate a label... */
+ dp->d_mediasize = raidPtr->totalSectors * raidPtr->bytesPerSector;
+ dp->d_sectorsize = raidPtr->bytesPerSector;
+ dp->d_fwsectors = raidPtr->Layout.dataSectorsPerStripe;
+ dp->d_fwheads = 4 * raidPtr->numCol;
+
+}
+/*
+ * Lookup the provided name in the filesystem. If the file exists,
+ * is a valid block device, and isn't being used by anyone else,
+ * set *vpp to the file's vnode.
+ * You'll find the original of this in ccd.c
+ */
+int
+raidlookup(path, td, vpp)
+ char *path;
+ struct thread *td;
+ struct vnode **vpp; /* result */
+{
+ struct nameidata *nd;
+ struct vnode *vp;
+ struct vattr *va;
+ struct proc *p;
+ int error = 0, flags;
+
+ MALLOC(nd, struct nameidata *, sizeof(struct nameidata), M_TEMP, M_NOWAIT | M_ZERO);
+ MALLOC(va, struct vattr *, sizeof(struct vattr), M_TEMP, M_NOWAIT | M_ZERO);
+ if ((nd == NULL) || (va == NULL)) {
+ printf("Out of memory?\n");
+ return (ENOMEM);
+ }
+
+ /* Sanity check the p_fd fields. This is really just a hack */
+ p = td->td_proc;
+ if (!p->p_fd->fd_rdir || !p->p_fd->fd_cdir)
+ printf("Warning: p_fd fields not set\n");
+
+ if (!td->td_proc->p_fd->fd_rdir)
+ p->p_fd->fd_rdir = rootvnode;
+
+ if (!p->p_fd->fd_cdir)
+ p->p_fd->fd_cdir = rootvnode;
+
+ NDINIT(nd, LOOKUP, FOLLOW, UIO_SYSSPACE, path, curthread);
+ flags = FREAD | FWRITE;
+ if ((error = vn_open(nd, &flags, 0)) != 0) {
+ rf_printf(2, "RAIDframe: vn_open returned %d\n", error);
+ goto end1;
+ }
+ vp = nd->ni_vp;
+ if (vp->v_usecount > 1) {
+ rf_printf(1, "raidlookup() vp->v_usecount= %d\n", vp->v_usecount);
+ error = EBUSY;
+ goto end;
+ }
+ if ((error = VOP_GETATTR(vp, va, td->td_ucred, td)) != 0) {
+ rf_printf(1, "raidlookup() VOP_GETATTR returned %d", error);
+ goto end;
+ }
+ /* XXX: eventually we should handle VREG, too. */
+ if (va->va_type != VCHR) {
+ rf_printf(1, "Returning ENOTBLK\n");
+ error = ENOTBLK;
+ }
+ *vpp = vp;
+
+end:
+ VOP_UNLOCK(vp, 0, td);
+ NDFREE(nd, NDF_ONLY_PNBUF);
+end1:
+ FREE(nd, M_TEMP);
+ FREE(va, M_TEMP);
+ return (error);
+}
+/*
+ * Wait interruptibly for an exclusive lock.
+ *
+ * XXX
+ * Several drivers do this; it should be abstracted and made MP-safe.
+ * (Hmm... where have we seen this warning before :-> GO )
+ */
+static int
+raidlock(sc)
+ struct raid_softc *sc;
+{
+ int error;
+
+ while ((sc->sc_flags & RAIDF_LOCKED) != 0) {
+ sc->sc_flags |= RAIDF_WANTED;
+ if ((error =
+ tsleep(sc, PRIBIO | PCATCH, "raidlck", 0)) != 0)
+ return (error);
+ }
+ sc->sc_flags |= RAIDF_LOCKED;
+ return (0);
+}
+/*
+ * Unlock and wake up any waiters.
+ */
+static void
+raidunlock(sc)
+ struct raid_softc *sc;
+{
+
+ sc->sc_flags &= ~RAIDF_LOCKED;
+ if ((sc->sc_flags & RAIDF_WANTED) != 0) {
+ sc->sc_flags &= ~RAIDF_WANTED;
+ wakeup(sc);
+ }
+}
+
+
+#define RF_COMPONENT_INFO_OFFSET 16384 /* bytes */
+#define RF_COMPONENT_INFO_SIZE 1024 /* bytes */
+
+int
+raidmarkclean(dev_t dev, struct vnode *b_vp, int mod_counter)
+{
+ RF_ComponentLabel_t *clabel;
+
+ MALLOC(clabel, RF_ComponentLabel_t *, sizeof(RF_ComponentLabel_t),
+ M_RAIDFRAME, M_NOWAIT | M_ZERO);
+ if (clabel == NULL) {
+ printf("raidmarkclean: Out of memory?\n");
+ return (ENOMEM);
+ }
+
+ raidread_component_label(dev, b_vp, clabel);
+ clabel->mod_counter = mod_counter;
+ clabel->clean = RF_RAID_CLEAN;
+ raidwrite_component_label(dev, b_vp, clabel);
+ FREE(clabel, M_RAIDFRAME);
+ return(0);
+}
+
+
+int
+raidmarkdirty(dev_t dev, struct vnode *b_vp, int mod_counter)
+{
+ RF_ComponentLabel_t *clabel;
+
+ MALLOC(clabel, RF_ComponentLabel_t *, sizeof(RF_ComponentLabel_t),
+ M_RAIDFRAME, M_NOWAIT | M_ZERO);
+ if (clabel == NULL) {
+ printf("raidmarkclean: Out of memory?\n");
+ return (ENOMEM);
+ }
+
+ raidread_component_label(dev, b_vp, clabel);
+ clabel->mod_counter = mod_counter;
+ clabel->clean = RF_RAID_DIRTY;
+ raidwrite_component_label(dev, b_vp, clabel);
+ FREE(clabel, M_RAIDFRAME);
+ return(0);
+}
+
+/* ARGSUSED */
+int
+raidread_component_label(dev, b_vp, clabel)
+ dev_t dev;
+ struct vnode *b_vp;
+ RF_ComponentLabel_t *clabel;
+{
+ struct buf *bp;
+ int error;
+
+ /* XXX should probably ensure that we don't try to do this if
+ someone has changed rf_protected_sectors. */
+
+ if (b_vp == NULL) {
+ /* For whatever reason, this component is not valid.
+ Don't try to read a component label from it. */
+ return(EINVAL);
+ }
+
+ /* get a block of the appropriate size... */
+ bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
+ bp->b_dev = dev;
+
+ /* get our ducks in a row for the read */
+ bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
+ bp->b_bcount = RF_COMPONENT_INFO_SIZE;
+ bp->b_iocmd = BIO_READ;
+ bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
+
+ DEV_STRATEGY(bp, 0);
+ error = bufwait(bp);
+
+ if (!error) {
+ memcpy(clabel, bp->b_data, sizeof(RF_ComponentLabel_t));
+#if 0
+ rf_print_component_label( clabel );
+#endif
+ } else {
+#if 0
+ rf_printf(0, "Failed to read RAID component label!\n");
+#endif
+ }
+
+ bp->b_flags |= B_INVAL | B_AGE;
+ brelse(bp);
+ return(error);
+}
+/* ARGSUSED */
+int
+raidwrite_component_label(dev, b_vp, clabel)
+ dev_t dev;
+ struct vnode *b_vp;
+ RF_ComponentLabel_t *clabel;
+{
+ struct buf *bp;
+ int error;
+
+ /* get a block of the appropriate size... */
+ bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
+ bp->b_dev = dev;
+
+ /* get our ducks in a row for the write */
+ bp->b_flags = 0;
+ bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
+ bp->b_bcount = RF_COMPONENT_INFO_SIZE;
+ bp->b_iocmd = BIO_WRITE;
+ bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
+
+ memset(bp->b_data, 0, RF_COMPONENT_INFO_SIZE );
+
+ memcpy(bp->b_data, clabel, sizeof(RF_ComponentLabel_t));
+
+ DEV_STRATEGY(bp, 0);
+ error = bufwait(bp);
+
+ bp->b_flags |= B_INVAL | B_AGE;
+ brelse(bp);
+ if (error) {
+#if 1
+ rf_printf(0, "Failed to write RAID component info!\n");
+ rf_printf(0, "b_error= %d\n", bp->b_error);
+#endif
+ }
+
+ return(error);
+}
+
+void
+rf_markalldirty(raidPtr)
+ RF_Raid_t *raidPtr;
+{
+ RF_ComponentLabel_t *clabel;
+ int r,c;
+
+ MALLOC(clabel, RF_ComponentLabel_t *, sizeof(RF_ComponentLabel_t),
+ M_RAIDFRAME, M_NOWAIT | M_ZERO);
+
+ if (clabel == NULL) {
+ printf("rf_markalldirty: Out of memory?\n");
+ return;
+ }
+
+ raidPtr->mod_counter++;
+ for (r = 0; r < raidPtr->numRow; r++) {
+ for (c = 0; c < raidPtr->numCol; c++) {
+ /* we don't want to touch (at all) a disk that has
+ failed */
+ if (!RF_DEAD_DISK(raidPtr->Disks[r][c].status)) {
+ raidread_component_label(
+ raidPtr->Disks[r][c].dev,
+ raidPtr->raid_cinfo[r][c].ci_vp,
+ clabel);
+ if (clabel->status == rf_ds_spared) {
+ /* XXX do something special...
+ but whatever you do, don't
+ try to access it!! */
+ } else {
+#if 0
+ clabel->status =
+ raidPtr->Disks[r][c].status;
+ raidwrite_component_label(
+ raidPtr->Disks[r][c].dev,
+ raidPtr->raid_cinfo[r][c].ci_vp,
+ clabel);
+#endif
+ raidmarkdirty(
+ raidPtr->Disks[r][c].dev,
+ raidPtr->raid_cinfo[r][c].ci_vp,
+ raidPtr->mod_counter);
+ }
+ }
+ }
+ }
+ /* printf("Component labels marked dirty.\n"); */
+#if 0
+ for( c = 0; c < raidPtr->numSpare ; c++) {
+ sparecol = raidPtr->numCol + c;
+ if (raidPtr->Disks[r][sparecol].status == rf_ds_used_spare) {
+ /*
+
+ XXX this is where we get fancy and map this spare
+ into it's correct spot in the array.
+
+ */
+ /*
+
+ we claim this disk is "optimal" if it's
+ rf_ds_used_spare, as that means it should be
+ directly substitutable for the disk it replaced.
+ We note that too...
+
+ */
+
+ for(i=0;i<raidPtr->numRow;i++) {
+ for(j=0;j<raidPtr->numCol;j++) {
+ if ((raidPtr->Disks[i][j].spareRow ==
+ r) &&
+ (raidPtr->Disks[i][j].spareCol ==
+ sparecol)) {
+ srow = r;
+ scol = sparecol;
+ break;
+ }
+ }
+ }
+
+ raidread_component_label(
+ raidPtr->Disks[r][sparecol].dev,
+ raidPtr->raid_cinfo[r][sparecol].ci_vp,
+ &clabel);
+ /* make sure status is noted */
+ clabel.version = RF_COMPONENT_LABEL_VERSION;
+ clabel.mod_counter = raidPtr->mod_counter;
+ clabel.serial_number = raidPtr->serial_number;
+ clabel.row = srow;
+ clabel.column = scol;
+ clabel.num_rows = raidPtr->numRow;
+ clabel.num_columns = raidPtr->numCol;
+ clabel.clean = RF_RAID_DIRTY; /* changed in a bit*/
+ clabel.status = rf_ds_optimal;
+ raidwrite_component_label(
+ raidPtr->Disks[r][sparecol].dev,
+ raidPtr->raid_cinfo[r][sparecol].ci_vp,
+ &clabel);
+ raidmarkclean( raidPtr->Disks[r][sparecol].dev,
+ raidPtr->raid_cinfo[r][sparecol].ci_vp);
+ }
+ }
+
+#endif
+ FREE(clabel, M_RAIDFRAME);
+}
+
+
+void
+rf_update_component_labels(raidPtr, final)
+ RF_Raid_t *raidPtr;
+ int final;
+{
+ RF_ComponentLabel_t *clabel;
+ int sparecol;
+ int r,c;
+ int i,j;
+ int srow, scol;
+
+ srow = -1;
+ scol = -1;
+
+ MALLOC(clabel, RF_ComponentLabel_t *, sizeof(RF_ComponentLabel_t),
+ M_RAIDFRAME, M_NOWAIT | M_ZERO);
+ if (clabel == NULL) {
+ printf("rf_update_component_labels: Out of memory?\n");
+ return;
+ }
+
+ /* XXX should do extra checks to make sure things really are clean,
+ rather than blindly setting the clean bit... */
+
+ raidPtr->mod_counter++;
+
+ for (r = 0; r < raidPtr->numRow; r++) {
+ for (c = 0; c < raidPtr->numCol; c++) {
+ if (raidPtr->Disks[r][c].status == rf_ds_optimal) {
+ raidread_component_label(
+ raidPtr->Disks[r][c].dev,
+ raidPtr->raid_cinfo[r][c].ci_vp,
+ clabel);
+ /* make sure status is noted */
+ clabel->status = rf_ds_optimal;
+ /* bump the counter */
+ clabel->mod_counter = raidPtr->mod_counter;
+
+ raidwrite_component_label(
+ raidPtr->Disks[r][c].dev,
+ raidPtr->raid_cinfo[r][c].ci_vp,
+ clabel);
+ if (final == RF_FINAL_COMPONENT_UPDATE) {
+ if (raidPtr->parity_good == RF_RAID_CLEAN) {
+ raidmarkclean(
+ raidPtr->Disks[r][c].dev,
+ raidPtr->raid_cinfo[r][c].ci_vp,
+ raidPtr->mod_counter);
+ }
+ }
+ }
+ /* else we don't touch it.. */
+ }
+ }
+
+ for( c = 0; c < raidPtr->numSpare ; c++) {
+ sparecol = raidPtr->numCol + c;
+ if (raidPtr->Disks[0][sparecol].status == rf_ds_used_spare) {
+ /*
+
+ we claim this disk is "optimal" if it's
+ rf_ds_used_spare, as that means it should be
+ directly substitutable for the disk it replaced.
+ We note that too...
+
+ */
+
+ for(i=0;i<raidPtr->numRow;i++) {
+ for(j=0;j<raidPtr->numCol;j++) {
+ if ((raidPtr->Disks[i][j].spareRow ==
+ 0) &&
+ (raidPtr->Disks[i][j].spareCol ==
+ sparecol)) {
+ srow = i;
+ scol = j;
+ break;
+ }
+ }
+ }
+
+ /* XXX shouldn't *really* need this... */
+ raidread_component_label(
+ raidPtr->Disks[0][sparecol].dev,
+ raidPtr->raid_cinfo[0][sparecol].ci_vp,
+ clabel);
+ /* make sure status is noted */
+
+ raid_init_component_label(raidPtr, clabel);
+
+ clabel->mod_counter = raidPtr->mod_counter;
+ clabel->row = srow;
+ clabel->column = scol;
+ clabel->status = rf_ds_optimal;
+
+ raidwrite_component_label(
+ raidPtr->Disks[0][sparecol].dev,
+ raidPtr->raid_cinfo[0][sparecol].ci_vp,
+ clabel);
+ if (final == RF_FINAL_COMPONENT_UPDATE) {
+ if (raidPtr->parity_good == RF_RAID_CLEAN) {
+ raidmarkclean( raidPtr->Disks[0][sparecol].dev,
+ raidPtr->raid_cinfo[0][sparecol].ci_vp,
+ raidPtr->mod_counter);
+ }
+ }
+ }
+ }
+ FREE(clabel, M_RAIDFRAME);
+ rf_printf(1, "Component labels updated\n");
+}
+
+void
+rf_close_component(raidPtr, vp, auto_configured)
+ RF_Raid_t *raidPtr;
+ struct vnode *vp;
+ int auto_configured;
+{
+ struct thread *td;
+
+ td = raidPtr->engine_thread;
+
+ if (vp != NULL) {
+ if (auto_configured == 1) {
+ VOP_CLOSE(vp, FREAD | FWRITE, td->td_ucred, td);
+
+ vrele(vp);
+ } else {
+ vn_close(vp, FREAD | FWRITE, td->td_ucred, td);
+ }
+ } else {
+ rf_printf(1, "vnode was NULL\n");
+ }
+}
+
+
+void
+rf_UnconfigureVnodes(raidPtr)
+ RF_Raid_t *raidPtr;
+{
+ int r,c;
+ struct thread *td;
+ struct vnode *vp;
+ int acd;
+
+
+ /* We take this opportunity to close the vnodes like we should.. */
+
+ td = raidPtr->engine_thread;
+
+ for (r = 0; r < raidPtr->numRow; r++) {
+ for (c = 0; c < raidPtr->numCol; c++) {
+ rf_printf(1, "Closing vnode for row: %d col: %d\n", r, c);
+ vp = raidPtr->raid_cinfo[r][c].ci_vp;
+ acd = raidPtr->Disks[r][c].auto_configured;
+ rf_close_component(raidPtr, vp, acd);
+ raidPtr->raid_cinfo[r][c].ci_vp = NULL;
+ raidPtr->Disks[r][c].auto_configured = 0;
+ }
+ }
+ for (r = 0; r < raidPtr->numSpare; r++) {
+ rf_printf(1, "Closing vnode for spare: %d\n", r);
+ vp = raidPtr->raid_cinfo[0][raidPtr->numCol + r].ci_vp;
+ acd = raidPtr->Disks[0][raidPtr->numCol + r].auto_configured;
+ rf_close_component(raidPtr, vp, acd);
+ raidPtr->raid_cinfo[0][raidPtr->numCol + r].ci_vp = NULL;
+ raidPtr->Disks[0][raidPtr->numCol + r].auto_configured = 0;
+ }
+}
+
+
+void
+rf_ReconThread(req)
+ struct rf_recon_req *req;
+{
+ RF_Raid_t *raidPtr;
+
+ mtx_lock(&Giant);
+ raidPtr = (RF_Raid_t *) req->raidPtr;
+ raidPtr->recon_in_progress = 1;
+
+ rf_FailDisk((RF_Raid_t *) req->raidPtr, req->row, req->col,
+ ((req->flags & RF_FDFLAGS_RECON) ? 1 : 0));
+
+ /* XXX get rid of this! we don't need it at all.. */
+ RF_Free(req, sizeof(*req));
+
+ raidPtr->recon_in_progress = 0;
+
+ /* That's all... */
+ RF_THREAD_EXIT(0); /* does not return */
+}
+
+void
+rf_RewriteParityThread(raidPtr)
+ RF_Raid_t *raidPtr;
+{
+ int retcode;
+
+ mtx_lock(&Giant);
+ raidPtr->parity_rewrite_in_progress = 1;
+ retcode = rf_RewriteParity(raidPtr);
+ if (retcode) {
+ rf_printf(0, "raid%d: Error re-writing parity!\n",raidPtr->raidid);
+ } else {
+ /* set the clean bit! If we shutdown correctly,
+ the clean bit on each component label will get
+ set */
+ raidPtr->parity_good = RF_RAID_CLEAN;
+ }
+ raidPtr->parity_rewrite_in_progress = 0;
+
+ /* Anyone waiting for us to stop? If so, inform them... */
+ if (raidPtr->waitShutdown) {
+ wakeup(&raidPtr->parity_rewrite_in_progress);
+ }
+
+ /* That's all... */
+ RF_THREAD_EXIT(0); /* does not return */
+}
+
+
+void
+rf_CopybackThread(raidPtr)
+ RF_Raid_t *raidPtr;
+{
+ mtx_lock(&Giant);
+ raidPtr->copyback_in_progress = 1;
+ rf_CopybackReconstructedData(raidPtr);
+ raidPtr->copyback_in_progress = 0;
+
+ /* That's all... */
+ RF_THREAD_EXIT(0); /* does not return */
+}
+
+
+void
+rf_ReconstructInPlaceThread(req)
+ struct rf_recon_req *req;
+{
+ int retcode;
+ RF_Raid_t *raidPtr;
+
+ mtx_lock(&Giant);
+ raidPtr = req->raidPtr;
+ raidPtr->recon_in_progress = 1;
+ retcode = rf_ReconstructInPlace(raidPtr, req->row, req->col);
+ RF_Free(req, sizeof(*req));
+ raidPtr->recon_in_progress = 0;
+
+ /* That's all... */
+ RF_THREAD_EXIT(0); /* does not return */
+}
+
+RF_AutoConfig_t *
+rf_find_raid_components()
+{
+ RF_AutoConfig_t *ac_list = NULL;
+#if 0 /* XXX GEOM */
+ struct vnode *vp;
+ struct disklabel *label;
+ struct diskslice *slice;
+ struct diskslices *slices;
+ struct disk *disk;
+ struct thread *td;
+ dev_t dev;
+ char *devname;
+ int error, j;
+ int nslices;
+
+ td = curthread;
+
+ MALLOC(label, struct disklabel *, sizeof(struct disklabel),
+ M_RAIDFRAME, M_NOWAIT|M_ZERO);
+ MALLOC(slices, struct diskslices *, sizeof(struct diskslices),
+ M_RAIDFRAME, M_NOWAIT|M_ZERO);
+ if ((label == NULL) || (slices == NULL)) {
+ printf("rf_find_raid_components: Out of Memory?\n");
+ return (NULL);
+ }
+
+ /* initialize the AutoConfig list */
+ ac_list = NULL;
+
+ /* we begin by trolling through *all* the disk devices on the system */
+
+ disk = NULL;
+ while ((disk = disk_enumerate(disk))) {
+
+ /* we don't care about floppies... */
+ devname = disk->d_dev->si_name;
+ if (!strncmp(devname, "fd", 2) ||
+ !strncmp(devname, "cd", 2) ||
+ !strncmp(devname, "acd", 3))
+ continue;
+
+ rf_printf(1, "Examining %s\n", disk->d_dev->si_name);
+ if (bdevvp(disk->d_dev, &vp))
+ panic("RAIDframe can't alloc vnode");
+ vref(vp);
+
+ vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td);
+ error = VOP_OPEN(vp, FREAD, td->td_ucred, td);
+ VOP_UNLOCK(vp, 0, td);
+ if (error) {
+ vput(vp);
+ continue;
+ }
+
+ error = VOP_IOCTL(vp, DIOCGSLICEINFO, (caddr_t)slices,
+ FREAD, td->td_ucred, td);
+ VOP_CLOSE(vp, FREAD | FWRITE, td->td_ucred, td);
+ vrele(vp);
+ if (error) {
+ /* No slice table. */
+ continue;
+ }
+
+ nslices = slices->dss_nslices;
+ if ((nslices == 0) || (nslices > MAX_SLICES))
+ continue;
+
+ /* Iterate through the slices */
+ for (j = 1; j < nslices; j++) {
+
+ rf_printf(1, "Examining slice %d\n", j);
+ slice = &slices->dss_slices[j - 1];
+ dev = dkmodslice(disk->d_dev, j);
+ if (bdevvp(dev, &vp))
+ panic("RAIDframe can't alloc vnode");
+
+ vref(vp);
+ vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td);
+ error = VOP_OPEN(vp, FREAD, td->td_ucred, td);
+ VOP_UNLOCK(vp, 0, td);
+ if (error) {
+ continue;
+ }
+
+ error = VOP_IOCTL(vp, DIOCGDINFO, (caddr_t)label,
+ FREAD, td->td_ucred, td);
+ VOP_CLOSE(vp, FREAD | FWRITE, td->td_ucred, td);
+ vrele(vp);
+ if (error)
+ continue;
+
+ rf_search_label(dev, label, &ac_list);
+ }
+ }
+
+ FREE(label, M_RAIDFRAME);
+ FREE(slices, M_RAIDFRAME);
+#endif
+ return (ac_list);
+}
+
+static void
+rf_search_label(dev_t dev, struct disklabel *label, RF_AutoConfig_t **ac_list)
+{
+ RF_AutoConfig_t *ac;
+ RF_ComponentLabel_t *clabel;
+ struct vnode *vp;
+ struct thread *td;
+ dev_t dev1;
+ int i, error, good_one;
+
+ td = curthread;
+
+ /* Iterate through the partitions */
+ for (i=0; i < label->d_npartitions; i++) {
+ /* We only support partitions marked as RAID */
+ if (label->d_partitions[i].p_fstype != FS_RAID)
+ continue;
+
+ dev1 = dkmodpart(dev, i);
+ if (dev1 == NULL) {
+ rf_printf(1, "dev1 == null\n");
+ continue;
+ }
+ if (bdevvp(dev1, &vp))
+ panic("RAIDframe can't alloc vnode");
+
+ vref(vp);
+ vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td);
+ error = VOP_OPEN(vp, FREAD, td->td_ucred, td);
+ VOP_UNLOCK(vp, 0, td);
+ if (error) {
+ /* Whatever... */
+ continue;
+ }
+
+ good_one = 0;
+
+ clabel = (RF_ComponentLabel_t *)
+ malloc(sizeof(RF_ComponentLabel_t), M_RAIDFRAME,
+ M_NOWAIT);
+ if (clabel == NULL) {
+ /* XXX CLEANUP HERE */
+ panic("RAID autoconfig: no memory!\n");
+ }
+
+ if (!raidread_component_label(dev1, vp, clabel)) {
+ /* Got the label. Is it reasonable? */
+ if (rf_reasonable_label(clabel) &&
+ (clabel->partitionSize <=
+ label->d_partitions[i].p_size)) {
+ rf_printf(1, "Component on: %s: %d\n",
+ dev1->si_name, label->d_partitions[i].p_size);
+ rf_print_component_label(clabel);
+ /* if it's reasonable, add it, else ignore it */
+ ac = (RF_AutoConfig_t *)
+ malloc(sizeof(RF_AutoConfig_t),
+ M_RAIDFRAME, M_NOWAIT);
+ if (ac == NULL) {
+ /* XXX should panic? */
+ panic("RAID autoconfig: no memory!\n");
+ }
+
+ sprintf(ac->devname, "%s", dev->si_name);
+ ac->dev = dev1;
+ ac->vp = vp;
+ ac->clabel = clabel;
+ ac->next = *ac_list;
+ *ac_list = ac;
+ good_one = 1;
+ }
+ }
+ if (!good_one) {
+ /* cleanup */
+ free(clabel, M_RAIDFRAME);
+ VOP_CLOSE(vp, FREAD | FWRITE, td->td_ucred, td);
+ vrele(vp);
+ }
+ }
+}
+
+static int
+rf_reasonable_label(clabel)
+ RF_ComponentLabel_t *clabel;
+{
+
+ if (((clabel->version==RF_COMPONENT_LABEL_VERSION_1) ||
+ (clabel->version==RF_COMPONENT_LABEL_VERSION)) &&
+ ((clabel->clean == RF_RAID_CLEAN) ||
+ (clabel->clean == RF_RAID_DIRTY)) &&
+ clabel->row >=0 &&
+ clabel->column >= 0 &&
+ clabel->num_rows > 0 &&
+ clabel->num_columns > 0 &&
+ clabel->row < clabel->num_rows &&
+ clabel->column < clabel->num_columns &&
+ clabel->blockSize > 0 &&
+ clabel->numBlocks > 0) {
+ /* label looks reasonable enough... */
+ return(1);
+ }
+ return(0);
+}
+
+
+void
+rf_print_component_label(clabel)
+ RF_ComponentLabel_t *clabel;
+{
+ rf_printf(1, " Row: %d Column: %d Num Rows: %d Num Columns: %d\n",
+ clabel->row, clabel->column,
+ clabel->num_rows, clabel->num_columns);
+ rf_printf(1, " Version: %d Serial Number: %d Mod Counter: %d\n",
+ clabel->version, clabel->serial_number,
+ clabel->mod_counter);
+ rf_printf(1, " Clean: %s Status: %d\n",
+ clabel->clean ? "Yes" : "No", clabel->status );
+ rf_printf(1, " sectPerSU: %d SUsPerPU: %d SUsPerRU: %d\n",
+ clabel->sectPerSU, clabel->SUsPerPU, clabel->SUsPerRU);
+ rf_printf(1, " RAID Level: %c blocksize: %d numBlocks: %d\n",
+ (char) clabel->parityConfig, clabel->blockSize,
+ clabel->numBlocks);
+ rf_printf(1, " Autoconfig: %s\n", clabel->autoconfigure ? "Yes":"No");
+ rf_printf(1, " Contains root partition: %s\n",
+ clabel->root_partition ? "Yes" : "No" );
+ rf_printf(1, " Last configured as: raid%d\n", clabel->last_unit );
+#if 0
+ rf_printf(1, " Config order: %d\n", clabel->config_order);
+#endif
+
+}
+
+RF_ConfigSet_t *
+rf_create_auto_sets(ac_list)
+ RF_AutoConfig_t *ac_list;
+{
+ RF_AutoConfig_t *ac;
+ RF_ConfigSet_t *config_sets;
+ RF_ConfigSet_t *cset;
+ RF_AutoConfig_t *ac_next;
+
+
+ config_sets = NULL;
+
+ /* Go through the AutoConfig list, and figure out which components
+ belong to what sets. */
+ ac = ac_list;
+ while(ac!=NULL) {
+ /* we're going to putz with ac->next, so save it here
+ for use at the end of the loop */
+ ac_next = ac->next;
+
+ if (config_sets == NULL) {
+ /* will need at least this one... */
+ config_sets = (RF_ConfigSet_t *)
+ malloc(sizeof(RF_ConfigSet_t),
+ M_RAIDFRAME, M_NOWAIT);
+ if (config_sets == NULL) {
+ panic("rf_create_auto_sets: No memory!\n");
+ }
+ /* this one is easy :) */
+ config_sets->ac = ac;
+ config_sets->next = NULL;
+ config_sets->rootable = 0;
+ ac->next = NULL;
+ } else {
+ /* which set does this component fit into? */
+ cset = config_sets;
+ while(cset!=NULL) {
+ if (rf_does_it_fit(cset, ac)) {
+ /* looks like it matches... */
+ ac->next = cset->ac;
+ cset->ac = ac;
+ break;
+ }
+ cset = cset->next;
+ }
+ if (cset==NULL) {
+ /* didn't find a match above... new set..*/
+ cset = (RF_ConfigSet_t *)
+ malloc(sizeof(RF_ConfigSet_t),
+ M_RAIDFRAME, M_NOWAIT);
+ if (cset == NULL) {
+ panic("rf_create_auto_sets: No memory!\n");
+ }
+ cset->ac = ac;
+ ac->next = NULL;
+ cset->next = config_sets;
+ cset->rootable = 0;
+ config_sets = cset;
+ }
+ }
+ ac = ac_next;
+ }
+
+
+ return(config_sets);
+}
+
+static int
+rf_does_it_fit(cset, ac)
+ RF_ConfigSet_t *cset;
+ RF_AutoConfig_t *ac;
+{
+ RF_ComponentLabel_t *clabel1, *clabel2;
+
+ /* If this one matches the *first* one in the set, that's good
+ enough, since the other members of the set would have been
+ through here too... */
+ /* note that we are not checking partitionSize here..
+
+ Note that we are also not checking the mod_counters here.
+ If everything else matches execpt the mod_counter, that's
+ good enough for this test. We will deal with the mod_counters
+ a little later in the autoconfiguration process.
+
+ (clabel1->mod_counter == clabel2->mod_counter) &&
+
+ The reason we don't check for this is that failed disks
+ will have lower modification counts. If those disks are
+ not added to the set they used to belong to, then they will
+ form their own set, which may result in 2 different sets,
+ for example, competing to be configured at raid0, and
+ perhaps competing to be the root filesystem set. If the
+ wrong ones get configured, or both attempt to become /,
+ weird behaviour and or serious lossage will occur. Thus we
+ need to bring them into the fold here, and kick them out at
+ a later point.
+
+ */
+
+ clabel1 = cset->ac->clabel;
+ clabel2 = ac->clabel;
+ if ((clabel1->version == clabel2->version) &&
+ (clabel1->serial_number == clabel2->serial_number) &&
+ (clabel1->num_rows == clabel2->num_rows) &&
+ (clabel1->num_columns == clabel2->num_columns) &&
+ (clabel1->sectPerSU == clabel2->sectPerSU) &&
+ (clabel1->SUsPerPU == clabel2->SUsPerPU) &&
+ (clabel1->SUsPerRU == clabel2->SUsPerRU) &&
+ (clabel1->parityConfig == clabel2->parityConfig) &&
+ (clabel1->maxOutstanding == clabel2->maxOutstanding) &&
+ (clabel1->blockSize == clabel2->blockSize) &&
+ (clabel1->numBlocks == clabel2->numBlocks) &&
+ (clabel1->autoconfigure == clabel2->autoconfigure) &&
+ (clabel1->root_partition == clabel2->root_partition) &&
+ (clabel1->last_unit == clabel2->last_unit) &&
+ (clabel1->config_order == clabel2->config_order)) {
+ /* if it get's here, it almost *has* to be a match */
+ } else {
+ /* it's not consistent with somebody in the set..
+ punt */
+ return(0);
+ }
+ /* all was fine.. it must fit... */
+ return(1);
+}
+
+int
+rf_have_enough_components(cset)
+ RF_ConfigSet_t *cset;
+{
+ RF_AutoConfig_t *ac;
+ RF_AutoConfig_t *auto_config;
+ RF_ComponentLabel_t *clabel;
+ int r,c;
+ int num_rows;
+ int num_cols;
+ int num_missing;
+ int mod_counter;
+ int mod_counter_found;
+ int even_pair_failed;
+ char parity_type;
+
+
+ /* check to see that we have enough 'live' components
+ of this set. If so, we can configure it if necessary */
+
+ num_rows = cset->ac->clabel->num_rows;
+ num_cols = cset->ac->clabel->num_columns;
+ parity_type = cset->ac->clabel->parityConfig;
+
+ /* XXX Check for duplicate components!?!?!? */
+
+ /* Determine what the mod_counter is supposed to be for this set. */
+
+ mod_counter_found = 0;
+ mod_counter = 0;
+ ac = cset->ac;
+ while(ac!=NULL) {
+ if (mod_counter_found==0) {
+ mod_counter = ac->clabel->mod_counter;
+ mod_counter_found = 1;
+ } else {
+ if (ac->clabel->mod_counter > mod_counter) {
+ mod_counter = ac->clabel->mod_counter;
+ }
+ }
+ ac = ac->next;
+ }
+
+ num_missing = 0;
+ auto_config = cset->ac;
+
+ for(r=0; r<num_rows; r++) {
+ even_pair_failed = 0;
+ for(c=0; c<num_cols; c++) {
+ ac = auto_config;
+ while(ac!=NULL) {
+ if ((ac->clabel->row == r) &&
+ (ac->clabel->column == c) &&
+ (ac->clabel->mod_counter == mod_counter)) {
+ /* it's this one... */
+ rf_printf(1, "Found: %s at %d,%d\n",
+ ac->devname,r,c);
+ break;
+ }
+ ac=ac->next;
+ }
+ if (ac==NULL) {
+ /* Didn't find one here! */
+ /* special case for RAID 1, especially
+ where there are more than 2
+ components (where RAIDframe treats
+ things a little differently :( ) */
+ if (parity_type == '1') {
+ if (c%2 == 0) { /* even component */
+ even_pair_failed = 1;
+ } else { /* odd component. If
+ we're failed, and
+ so is the even
+ component, it's
+ "Good Night, Charlie" */
+ if (even_pair_failed == 1) {
+ return(0);
+ }
+ }
+ } else {
+ /* normal accounting */
+ num_missing++;
+ }
+ }
+ if ((parity_type == '1') && (c%2 == 1)) {
+ /* Just did an even component, and we didn't
+ bail.. reset the even_pair_failed flag,
+ and go on to the next component.... */
+ even_pair_failed = 0;
+ }
+ }
+ }
+
+ clabel = cset->ac->clabel;
+
+ if (((clabel->parityConfig == '0') && (num_missing > 0)) ||
+ ((clabel->parityConfig == '4') && (num_missing > 1)) ||
+ ((clabel->parityConfig == '5') && (num_missing > 1))) {
+ /* XXX this needs to be made *much* more general */
+ /* Too many failures */
+ return(0);
+ }
+ /* otherwise, all is well, and we've got enough to take a kick
+ at autoconfiguring this set */
+ return(1);
+}
+
+void
+rf_create_configuration(ac,config,raidPtr)
+ RF_AutoConfig_t *ac;
+ RF_Config_t *config;
+ RF_Raid_t *raidPtr;
+{
+ RF_ComponentLabel_t *clabel;
+ int i;
+
+ clabel = ac->clabel;
+
+ /* 1. Fill in the common stuff */
+ config->numRow = clabel->num_rows;
+ config->numCol = clabel->num_columns;
+ config->numSpare = 0; /* XXX should this be set here? */
+ config->sectPerSU = clabel->sectPerSU;
+ config->SUsPerPU = clabel->SUsPerPU;
+ config->SUsPerRU = clabel->SUsPerRU;
+ config->parityConfig = clabel->parityConfig;
+ /* XXX... */
+ strcpy(config->diskQueueType,"fifo");
+ config->maxOutstandingDiskReqs = clabel->maxOutstanding;
+ config->layoutSpecificSize = 0; /* XXX ? */
+
+ while(ac!=NULL) {
+ /* row/col values will be in range due to the checks
+ in reasonable_label() */
+ strcpy(config->devnames[ac->clabel->row][ac->clabel->column],
+ ac->devname);
+ ac = ac->next;
+ }
+
+ for(i=0;i<RF_MAXDBGV;i++) {
+ config->debugVars[i][0] = NULL;
+ }
+}
+
+int
+rf_set_autoconfig(raidPtr, new_value)
+ RF_Raid_t *raidPtr;
+ int new_value;
+{
+ RF_ComponentLabel_t *clabel;
+ struct vnode *vp;
+ dev_t dev;
+ int row, column;
+
+ MALLOC(clabel, RF_ComponentLabel_t *, sizeof(RF_ComponentLabel_t),
+ M_RAIDFRAME, M_WAITOK | M_ZERO);
+
+ raidPtr->autoconfigure = new_value;
+ for(row=0; row<raidPtr->numRow; row++) {
+ for(column=0; column<raidPtr->numCol; column++) {
+ if (raidPtr->Disks[row][column].status ==
+ rf_ds_optimal) {
+ dev = raidPtr->Disks[row][column].dev;
+ vp = raidPtr->raid_cinfo[row][column].ci_vp;
+ raidread_component_label(dev, vp, clabel);
+ clabel->autoconfigure = new_value;
+ raidwrite_component_label(dev, vp, clabel);
+ }
+ }
+ }
+ FREE(clabel, M_RAIDFRAME);
+ return(new_value);
+}
+
+int
+rf_set_rootpartition(raidPtr, new_value)
+ RF_Raid_t *raidPtr;
+ int new_value;
+{
+ RF_ComponentLabel_t *clabel;
+ struct vnode *vp;
+ dev_t dev;
+ int row, column;
+
+ MALLOC(clabel, RF_ComponentLabel_t *, sizeof(RF_ComponentLabel_t),
+ M_RAIDFRAME, M_WAITOK | M_ZERO);
+
+ raidPtr->root_partition = new_value;
+ for(row=0; row<raidPtr->numRow; row++) {
+ for(column=0; column<raidPtr->numCol; column++) {
+ if (raidPtr->Disks[row][column].status ==
+ rf_ds_optimal) {
+ dev = raidPtr->Disks[row][column].dev;
+ vp = raidPtr->raid_cinfo[row][column].ci_vp;
+ raidread_component_label(dev, vp, clabel);
+ clabel->root_partition = new_value;
+ raidwrite_component_label(dev, vp, clabel);
+ }
+ }
+ }
+ FREE(clabel, M_RAIDFRAME);
+ return(new_value);
+}
+
+void
+rf_release_all_vps(cset)
+ RF_ConfigSet_t *cset;
+{
+ RF_AutoConfig_t *ac;
+ struct thread *td;
+
+ td = curthread;
+ ac = cset->ac;
+ while(ac!=NULL) {
+ /* Close the vp, and give it back */
+ if (ac->vp) {
+ VOP_CLOSE(ac->vp, FREAD, td->td_ucred, td);
+ vrele(ac->vp);
+ ac->vp = NULL;
+ }
+ ac = ac->next;
+ }
+}
+
+
+void
+rf_cleanup_config_set(cset)
+ RF_ConfigSet_t *cset;
+{
+ RF_AutoConfig_t *ac;
+ RF_AutoConfig_t *next_ac;
+
+ ac = cset->ac;
+ while(ac!=NULL) {
+ next_ac = ac->next;
+ /* nuke the label */
+ free(ac->clabel, M_RAIDFRAME);
+ /* cleanup the config structure */
+ free(ac, M_RAIDFRAME);
+ /* "next.." */
+ ac = next_ac;
+ }
+ /* and, finally, nuke the config set */
+ free(cset, M_RAIDFRAME);
+}
+
+
+void
+raid_init_component_label(raidPtr, clabel)
+ RF_Raid_t *raidPtr;
+ RF_ComponentLabel_t *clabel;
+{
+ /* current version number */
+ clabel->version = RF_COMPONENT_LABEL_VERSION;
+ clabel->serial_number = raidPtr->serial_number;
+ clabel->mod_counter = raidPtr->mod_counter;
+ clabel->num_rows = raidPtr->numRow;
+ clabel->num_columns = raidPtr->numCol;
+ clabel->clean = RF_RAID_DIRTY; /* not clean */
+ clabel->status = rf_ds_optimal; /* "It's good!" */
+
+ clabel->sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
+ clabel->SUsPerPU = raidPtr->Layout.SUsPerPU;
+ clabel->SUsPerRU = raidPtr->Layout.SUsPerRU;
+
+ clabel->blockSize = raidPtr->bytesPerSector;
+ clabel->numBlocks = raidPtr->sectorsPerDisk;
+
+ /* XXX not portable */
+ clabel->parityConfig = raidPtr->Layout.map->parityConfig;
+ clabel->maxOutstanding = raidPtr->maxOutstanding;
+ clabel->autoconfigure = raidPtr->autoconfigure;
+ clabel->root_partition = raidPtr->root_partition;
+ clabel->last_unit = raidPtr->raidid;
+ clabel->config_order = raidPtr->config_order;
+}
+
+int
+rf_auto_config_set(cset, unit, parent_sc)
+ RF_ConfigSet_t *cset;
+ int *unit;
+ struct raidctl_softc *parent_sc;
+{
+ int retcode = 0;
+ RF_Raid_t *raidPtr;
+ RF_Config_t *config;
+ int raidID;
+
+ rf_printf(0, "RAIDframe autoconfigure\n");
+
+ *unit = -1;
+
+ /* 1. Create a config structure */
+
+ config = (RF_Config_t *)malloc(sizeof(RF_Config_t), M_RAIDFRAME,
+ M_NOWAIT|M_ZERO);
+ if (config==NULL) {
+ rf_printf(0, "Out of mem at rf_auto_config_set\n");
+ /* XXX do something more intelligent here. */
+ return(1);
+ }
+
+ /* XXX raidID needs to be set correctly.. */
+
+ /*
+ 2. Figure out what RAID ID this one is supposed to live at
+ See if we can get the same RAID dev that it was configured
+ on last time..
+ */
+
+ raidID = cset->ac->clabel->last_unit;
+ if (raidID < 0) {
+ /* let's not wander off into lala land. */
+ raidID = raidgetunit(parent_sc, 0);
+ } else {
+ raidID = raidgetunit(parent_sc, raidID);
+ }
+
+ if (raidID < 0) {
+ /* punt... */
+ rf_printf(0, "Unable to auto configure this set!\n");
+ rf_printf(1, "Out of RAID devs!\n");
+ return(1);
+ }
+ rf_printf(0, "Configuring raid%d:\n",raidID);
+ RF_Malloc(raidPtr, sizeof(*raidPtr), (RF_Raid_t *));
+ if (raidPtr == NULL) {
+ rf_printf(0, "Out of mem at rf_auto_config_set\n");
+ return (1);
+ }
+ bzero((char *)raidPtr, sizeof(RF_Raid_t));
+
+ /* XXX all this stuff should be done SOMEWHERE ELSE! */
+ raidPtr->raidid = raidID;
+ raidPtr->openings = RAIDOUTSTANDING;
+
+ /* 3. Build the configuration structure */
+ rf_create_configuration(cset->ac, config, raidPtr);
+
+ /* 4. Do the configuration */
+ retcode = rf_Configure(raidPtr, config, cset->ac);
+
+ if (retcode == 0) {
+
+ parent_sc->sc_raiddevs[raidID] = raidinit(raidPtr);
+ if (parent_sc->sc_raiddevs[raidID] == NULL) {
+ rf_printf(0, "Could not create RAID device\n");
+ RF_Free(raidPtr, sizeof(RF_Raid_t));
+ free(config, M_RAIDFRAME);
+ return (1);
+ }
+
+ parent_sc->sc_numraid++;
+ ((struct raid_softc *)raidPtr->sc)->sc_parent_dev =
+ parent_sc->sc_dev;
+ rf_markalldirty(raidPtr);
+ raidPtr->autoconfigure = 1; /* XXX do this here? */
+ if (cset->ac->clabel->root_partition==1) {
+ /* everything configured just fine. Make a note
+ that this set is eligible to be root. */
+ cset->rootable = 1;
+ /* XXX do this here? */
+ raidPtr->root_partition = 1;
+ }
+ }
+
+ /* 5. Cleanup */
+ free(config, M_RAIDFRAME);
+
+ *unit = raidID;
+ return(retcode);
+}
+
+void
+rf_disk_unbusy(desc)
+ RF_RaidAccessDesc_t *desc;
+{
+ struct raid_softc *sc;
+ struct bio *bp;
+
+ sc = desc->raidPtr->sc;
+ bp = (struct bio *)desc->bp;
+
+ devstat_end_transaction_bio(&sc->device_stats, bp);
+}
+
+/*
+ * Get the next available unit number from the bitmap. You can also request
+ * a particular unit number by passing it in the second arg. If it's not
+ * available, then grab the next free one. Return -1 if none are available.
+ */
+static int
+raidgetunit(struct raidctl_softc *parent_sc, int id)
+{
+ int i;
+
+ if (id >= RF_MAX_ARRAYS)
+ return (-1);
+
+ for (i = id; i < RF_MAX_ARRAYS; i++) {
+ if (parent_sc->sc_raiddevs[i] == NULL)
+ return (i);
+ }
+
+ if (id != 0) {
+ for (i = 0; i < id; i++) {
+ if (parent_sc->sc_raiddevs[i] == NULL)
+ return (i);
+ }
+ }
+
+ return (-1);
+}
+
+static int
+raidshutdown(void)
+{
+ struct raidctl_softc *parent_sc;
+ int i, error = 0;
+
+ parent_sc = raidctl_dev->si_drv1;
+
+ if (parent_sc->sc_numraid != 0) {
+#if XXX_KTHREAD_EXIT_RACE
+ return (EBUSY);
+#else
+ for (i = 0; i < RF_MAX_ARRAYS; i++) {
+ if (parent_sc->sc_raiddevs[i] != NULL) {
+ rf_printf(0, "Shutting down raid%d\n", i);
+ error = raidctlioctl(raidctl_dev,
+ RAIDFRAME_SHUTDOWN, (caddr_t)&i, 0, NULL);
+ if (error)
+ return (error);
+ if (parent_sc->sc_numraid == 0)
+ break;
+ }
+ }
+#endif
+ }
+
+ destroy_dev(raidctl_dev);
+
+ return (error);
+}
+
+int
+raid_getcomponentsize(RF_Raid_t *raidPtr, RF_RowCol_t row, RF_RowCol_t col)
+{
+ struct disklabel *dlabel;
+ struct vnode *vp;
+ struct vattr va;
+ RF_Thread_t td;
+ int retcode;
+
+ td = raidPtr->engine_thread;
+
+ MALLOC(dlabel, struct disklabel *, sizeof(struct disklabel),
+ M_RAIDFRAME, M_NOWAIT | M_ZERO);
+ if (dlabel == NULL) {
+ printf("rf_getcomponentsize: Out of memory?\n");
+ return (ENOMEM);
+ }
+
+ retcode = raidlookup(raidPtr->Disks[row][col].devname, td, &vp);
+
+ if (retcode) {
+ printf("raid%d: rebuilding: raidlookup on device: %s failed: %d!\n",raidPtr->raidid,
+ raidPtr->Disks[row][col].devname, retcode);
+
+ /* XXX the component isn't responding properly...
+ must be still dead :-( */
+ raidPtr->reconInProgress--;
+ FREE(dlabel, M_RAIDFRAME);
+ return(retcode);
+
+ } else {
+
+ /* Ok, so we can at least do a lookup...
+ How about actually getting a vp for it? */
+
+ if ((retcode = VOP_GETATTR(vp, &va, rf_getucred(td),
+ td)) != 0) {
+ raidPtr->reconInProgress--;
+ FREE(dlabel, M_RAIDFRAME);
+ return(retcode);
+ }
+
+ retcode = VOP_IOCTL(vp, DIOCGDINFO, (caddr_t)dlabel,
+ FREAD, rf_getucred(td), td);
+ if (retcode) {
+ FREE(dlabel, M_RAIDFRAME);
+ return(retcode);
+ }
+ raidPtr->Disks[row][col].blockSize = dlabel->d_secsize;
+ raidPtr->Disks[row][col].numBlocks =
+ dlabel->d_partitions[dkpart(vn_todev(vp))].p_size -
+ rf_protectedSectors;
+
+ raidPtr->raid_cinfo[row][col].ci_vp = vp;
+ raidPtr->raid_cinfo[row][col].ci_dev = udev2dev(va.va_rdev, 0);
+ raidPtr->Disks[row][col].dev = udev2dev(va.va_rdev, 0);
+
+ /* we allow the user to specify that only a
+ fraction of the disks should be used this is
+ just for debug: it speeds up
+ * the parity scan */
+ raidPtr->Disks[row][col].numBlocks =
+ raidPtr->Disks[row][col].numBlocks *
+ rf_sizePercentage / 100;
+ }
+
+ FREE(dlabel, M_RAIDFRAME);
+ return(retcode);
+}
+
+static int
+raid_modevent(mod, type, data)
+ module_t mod;
+ int type;
+ void *data;
+{
+ int error = 0;
+
+ switch (type) {
+ case MOD_LOAD:
+ raidattach();
+ break;
+
+ case MOD_UNLOAD:
+ case MOD_SHUTDOWN:
+ error = raidshutdown();
+ break;
+
+ default:
+ break;
+ }
+
+ return (error);
+}
+
+moduledata_t raid_mod = {
+ "raidframe",
+ (modeventhand_t) raid_modevent,
+ 0};
+
+DECLARE_MODULE(raidframe, raid_mod, SI_SUB_RAID, SI_ORDER_MIDDLE);
diff --git a/sys/dev/raidframe/rf_freelist.h b/sys/dev/raidframe/rf_freelist.h
new file mode 100644
index 0000000..13a5e83
--- /dev/null
+++ b/sys/dev/raidframe/rf_freelist.h
@@ -0,0 +1,702 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_freelist.h,v 1.6 2002/08/08 02:53:01 oster Exp $ */
+/*
+ * rf_freelist.h
+ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Jim Zelenka
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+/*
+ * rf_freelist.h -- code to manage counted freelists
+ *
+ * Keep an arena of fixed-size objects. When a new object is needed,
+ * allocate it as necessary. When an object is freed, either put it
+ * in the arena, or really free it, depending on the maximum arena
+ * size.
+ */
+
+#ifndef _RF__RF_FREELIST_H_
+#define _RF__RF_FREELIST_H_
+
+#include <dev/raidframe/rf_types.h>
+#include <dev/raidframe/rf_debugMem.h>
+#include <dev/raidframe/rf_general.h>
+#include <dev/raidframe/rf_threadstuff.h>
+
+#define RF_FREELIST_STATS 0
+
+#if RF_FREELIST_STATS > 0
+typedef struct RF_FreeListStats_s {
+ char *file;
+ int line;
+ int allocations;
+ int frees;
+ int max_free;
+ int grows;
+ int outstanding;
+ int max_outstanding;
+} RF_FreeListStats_t;
+#define RF_FREELIST_STAT_INIT(_fl_) { \
+ bzero((char *)&((_fl_)->stats), sizeof(RF_FreeListStats_t)); \
+ (_fl_)->stats.file = __FILE__; \
+ (_fl_)->stats.line = __LINE__; \
+}
+
+#define RF_FREELIST_STAT_ALLOC(_fl_) { \
+ (_fl_)->stats.allocations++; \
+ (_fl_)->stats.outstanding++; \
+ if ((_fl_)->stats.outstanding > (_fl_)->stats.max_outstanding) \
+ (_fl_)->stats.max_outstanding = (_fl_)->stats.outstanding; \
+}
+
+#define RF_FREELIST_STAT_FREE_UPDATE(_fl_) { \
+ if ((_fl_)->free_cnt > (_fl_)->stats.max_free) \
+ (_fl_)->stats.max_free = (_fl_)->free_cnt; \
+}
+
+#define RF_FREELIST_STAT_FREE(_fl_) { \
+ (_fl_)->stats.frees++; \
+ (_fl_)->stats.outstanding--; \
+ RF_FREELIST_STAT_FREE_UPDATE(_fl_); \
+}
+
+#define RF_FREELIST_STAT_GROW(_fl_) { \
+ (_fl_)->stats.grows++; \
+ RF_FREELIST_STAT_FREE_UPDATE(_fl_); \
+}
+
+#define RF_FREELIST_STAT_REPORT(_fl_) { \
+ printf("Freelist at %s %d (%s)\n", (_fl_)->stats.file, (_fl_)->stats.line, RF_STRING(_fl_)); \
+ printf(" %d allocations, %d frees\n", (_fl_)->stats.allocations, (_fl_)->stats.frees); \
+ printf(" %d grows\n", (_fl_)->stats.grows); \
+ printf(" %d outstanding\n", (_fl_)->stats.outstanding); \
+ printf(" %d free (max)\n", (_fl_)->stats.max_free); \
+ printf(" %d outstanding (max)\n", (_fl_)->stats.max_outstanding); \
+}
+
+#else /* RF_FREELIST_STATS > 0 */
+
+#define RF_FREELIST_STAT_INIT(_fl_)
+#define RF_FREELIST_STAT_ALLOC(_fl_)
+#define RF_FREELIST_STAT_FREE_UPDATE(_fl_)
+#define RF_FREELIST_STAT_FREE(_fl_)
+#define RF_FREELIST_STAT_GROW(_fl_)
+#define RF_FREELIST_STAT_REPORT(_fl_)
+
+#endif /* RF_FREELIST_STATS > 0 */
+
+struct RF_FreeList_s {
+ void *objlist; /* list of free obj */
+ int free_cnt; /* how many free obj */
+ int max_free_cnt; /* max free arena size */
+ int obj_inc; /* how many to allocate at a time */
+ int obj_size; /* size of objects */
+ RF_DECLARE_MUTEX(lock)
+#if RF_FREELIST_STATS > 0
+ RF_FreeListStats_t stats; /* statistics */
+#endif /* RF_FREELIST_STATS > 0 */
+};
+/*
+ * fl = freelist
+ * maxcnt = max number of items in arena
+ * inc = how many to allocate at a time
+ * size = size of object
+ */
+#define RF_FREELIST_CREATE(_fl_,_maxcnt_,_inc_,_size_) { \
+ int rc; \
+ RF_ASSERT((_inc_) > 0); \
+ RF_Malloc(_fl_, sizeof(RF_FreeList_t), (RF_FreeList_t *)); \
+ (_fl_)->objlist = NULL; \
+ (_fl_)->free_cnt = 0; \
+ (_fl_)->max_free_cnt = _maxcnt_; \
+ (_fl_)->obj_inc = _inc_; \
+ (_fl_)->obj_size = _size_; \
+ rc = rf_mutex_init(&(_fl_)->lock, "RF_FREELIST"); \
+ if (rc) { \
+ RF_Free(_fl_, sizeof(RF_FreeList_t)); \
+ _fl_ = NULL; \
+ } \
+ RF_FREELIST_STAT_INIT(_fl_); \
+}
+
+/*
+ * fl = freelist
+ * cnt = number to prime with
+ * nextp = name of "next" pointer in obj
+ * cast = object cast
+ */
+#define RF_FREELIST_PRIME(_fl_,_cnt_,_nextp_,_cast_) { \
+ void *_p; \
+ int _i; \
+ for(_i=0;_i<(_cnt_);_i++) { \
+ RF_Calloc(_p,1,(_fl_)->obj_size,(void *)); \
+ if (_p) { \
+ RF_LOCK_MUTEX((_fl_)->lock); \
+ (_cast_(_p))->_nextp_ = (_fl_)->objlist; \
+ (_fl_)->objlist = _p; \
+ (_fl_)->free_cnt++; \
+ RF_UNLOCK_MUTEX((_fl_)->lock); \
+ } \
+ else { \
+ break; \
+ } \
+ } \
+ RF_LOCK_MUTEX((_fl_)->lock); \
+ RF_FREELIST_STAT_FREE_UPDATE(_fl_); \
+ RF_UNLOCK_MUTEX((_fl_)->lock); \
+}
+
+#define RF_FREELIST_MUTEX_OF(_fl_) ((_fl_)->lock)
+
+#define RF_FREELIST_DO_UNLOCK(_fl_) { \
+ RF_UNLOCK_MUTEX((_fl_)->lock); \
+}
+
+#define RF_FREELIST_DO_LOCK(_fl_) { \
+ RF_LOCK_MUTEX((_fl_)->lock); \
+}
+
+/*
+ * fl = freelist
+ * cnt = number to prime with
+ * nextp = name of "next" pointer in obj
+ * cast = object cast
+ * init = func to call to init obj
+ */
+#define RF_FREELIST_PRIME_INIT(_fl_,_cnt_,_nextp_,_cast_,_init_) { \
+ void *_p; \
+ int _i; \
+ for(_i=0;_i<(_cnt_);_i++) { \
+ RF_Calloc(_p,1,(_fl_)->obj_size,(void *)); \
+ if (_init_ (_cast_ _p)) { \
+ RF_Free(_p,(_fl_)->obj_size); \
+ _p = NULL; \
+ } \
+ if (_p) { \
+ RF_LOCK_MUTEX((_fl_)->lock); \
+ (_cast_(_p))->_nextp_ = (_fl_)->objlist; \
+ (_fl_)->objlist = _p; \
+ (_fl_)->free_cnt++; \
+ RF_UNLOCK_MUTEX((_fl_)->lock); \
+ } \
+ else { \
+ break; \
+ } \
+ } \
+ RF_LOCK_MUTEX((_fl_)->lock); \
+ RF_FREELIST_STAT_FREE_UPDATE(_fl_); \
+ RF_UNLOCK_MUTEX((_fl_)->lock); \
+}
+
+/*
+ * fl = freelist
+ * cnt = number to prime with
+ * nextp = name of "next" pointer in obj
+ * cast = object cast
+ * init = func to call to init obj
+ * arg = arg to init obj func
+ */
+#define RF_FREELIST_PRIME_INIT_ARG(_fl_,_cnt_,_nextp_,_cast_,_init_,_arg_) { \
+ void *_p; \
+ int _i; \
+ for(_i=0;_i<(_cnt_);_i++) { \
+ RF_Calloc(_p,1,(_fl_)->obj_size,(void *)); \
+ if (_init_ (_cast_ _p,_arg_)) { \
+ RF_Free(_p,(_fl_)->obj_size); \
+ _p = NULL; \
+ } \
+ if (_p) { \
+ RF_LOCK_MUTEX((_fl_)->lock); \
+ (_cast_(_p))->_nextp_ = (_fl_)->objlist; \
+ (_fl_)->objlist = _p; \
+ (_fl_)->free_cnt++; \
+ RF_UNLOCK_MUTEX((_fl_)->lock); \
+ } \
+ else { \
+ break; \
+ } \
+ } \
+ RF_LOCK_MUTEX((_fl_)->lock); \
+ RF_FREELIST_STAT_FREE_UPDATE(_fl_); \
+ RF_UNLOCK_MUTEX((_fl_)->lock); \
+}
+
+/*
+ * fl = freelist
+ * obj = object to allocate
+ * nextp = name of "next" pointer in obj
+ * cast = cast of obj assignment
+ * init = init obj func
+ */
+#define RF_FREELIST_GET_INIT(_fl_,_obj_,_nextp_,_cast_,_init_) { \
+ void *_p; \
+ int _i; \
+ RF_LOCK_MUTEX((_fl_)->lock); \
+ RF_ASSERT(sizeof(*(_obj_))==((_fl_)->obj_size)); \
+ if (_fl_->objlist) { \
+ _obj_ = _cast_((_fl_)->objlist); \
+ (_fl_)->objlist = (void *)((_obj_)->_nextp_); \
+ (_fl_)->free_cnt--; \
+ RF_UNLOCK_MUTEX((_fl_)->lock); \
+ } \
+ else { \
+ RF_UNLOCK_MUTEX((_fl_)->lock); \
+ /* \
+ * Allocate one at a time so we can free \
+ * one at a time without cleverness when arena \
+ * is full. \
+ */ \
+ RF_Calloc(_obj_,1,(_fl_)->obj_size,_cast_); \
+ if (_obj_) { \
+ if (_init_ (_obj_)) { \
+ RF_Free(_obj_,(_fl_)->obj_size); \
+ _obj_ = NULL; \
+ } \
+ else { \
+ for(_i=1;_i<(_fl_)->obj_inc;_i++) { \
+ RF_Calloc(_p,1,(_fl_)->obj_size,(void *)); \
+ if (_p) { \
+ if (_init_ (_p)) { \
+ RF_Free(_p,(_fl_)->obj_size); \
+ _p = NULL; \
+ break; \
+ } \
+ RF_LOCK_MUTEX((_fl_)->lock); \
+ (_cast_(_p))->_nextp_ = (_fl_)->objlist; \
+ (_fl_)->objlist = _p; \
+ RF_UNLOCK_MUTEX((_fl_)->lock); \
+ } \
+ else { \
+ break; \
+ } \
+ } \
+ } \
+ } \
+ RF_LOCK_MUTEX((_fl_)->lock); \
+ RF_FREELIST_STAT_GROW(_fl_); \
+ RF_UNLOCK_MUTEX((_fl_)->lock); \
+ } \
+ RF_LOCK_MUTEX((_fl_)->lock); \
+ RF_FREELIST_STAT_ALLOC(_fl_); \
+ RF_UNLOCK_MUTEX((_fl_)->lock); \
+}
+
+/*
+ * fl = freelist
+ * obj = object to allocate
+ * nextp = name of "next" pointer in obj
+ * cast = cast of obj assignment
+ * init = init obj func
+ * arg = arg to init obj func
+ */
+#define RF_FREELIST_GET_INIT_ARG(_fl_,_obj_,_nextp_,_cast_,_init_,_arg_) { \
+ void *_p; \
+ int _i; \
+ RF_LOCK_MUTEX((_fl_)->lock); \
+ RF_ASSERT(sizeof(*(_obj_))==((_fl_)->obj_size)); \
+ if (_fl_->objlist) { \
+ _obj_ = _cast_((_fl_)->objlist); \
+ (_fl_)->objlist = (void *)((_obj_)->_nextp_); \
+ (_fl_)->free_cnt--; \
+ RF_UNLOCK_MUTEX((_fl_)->lock); \
+ } \
+ else { \
+ RF_UNLOCK_MUTEX((_fl_)->lock); \
+ /* \
+ * Allocate one at a time so we can free \
+ * one at a time without cleverness when arena \
+ * is full. \
+ */ \
+ RF_Calloc(_obj_,1,(_fl_)->obj_size,_cast_); \
+ if (_obj_) { \
+ if (_init_ (_obj_,_arg_)) { \
+ RF_Free(_obj_,(_fl_)->obj_size); \
+ _obj_ = NULL; \
+ } \
+ else { \
+ for(_i=1;_i<(_fl_)->obj_inc;_i++) { \
+ RF_Calloc(_p,1,(_fl_)->obj_size,(void *)); \
+ if (_p) { \
+ if (_init_ (_p,_arg_)) { \
+ RF_Free(_p,(_fl_)->obj_size); \
+ _p = NULL; \
+ break; \
+ } \
+ RF_LOCK_MUTEX((_fl_)->lock); \
+ (_cast_(_p))->_nextp_ = (_fl_)->objlist; \
+ (_fl_)->objlist = _p; \
+ RF_UNLOCK_MUTEX((_fl_)->lock); \
+ } \
+ else { \
+ break; \
+ } \
+ } \
+ } \
+ } \
+ RF_LOCK_MUTEX((_fl_)->lock); \
+ RF_FREELIST_STAT_GROW(_fl_); \
+ RF_UNLOCK_MUTEX((_fl_)->lock); \
+ } \
+ RF_LOCK_MUTEX((_fl_)->lock); \
+ RF_FREELIST_STAT_ALLOC(_fl_); \
+ RF_UNLOCK_MUTEX((_fl_)->lock); \
+}
+
+/*
+ * fl = freelist
+ * obj = object to allocate
+ * nextp = name of "next" pointer in obj
+ * cast = cast of obj assignment
+ * init = init obj func
+ */
+#define RF_FREELIST_GET_INIT_NOUNLOCK(_fl_,_obj_,_nextp_,_cast_,_init_) { \
+ void *_p; \
+ int _i; \
+ RF_LOCK_MUTEX((_fl_)->lock); \
+ RF_ASSERT(sizeof(*(_obj_))==((_fl_)->obj_size)); \
+ if (_fl_->objlist) { \
+ _obj_ = _cast_((_fl_)->objlist); \
+ (_fl_)->objlist = (void *)((_obj_)->_nextp_); \
+ (_fl_)->free_cnt--; \
+ } \
+ else { \
+ /* \
+ * Allocate one at a time so we can free \
+ * one at a time without cleverness when arena \
+ * is full. \
+ */ \
+ RF_Calloc(_obj_,1,(_fl_)->obj_size,_cast_); \
+ if (_obj_) { \
+ if (_init_ (_obj_)) { \
+ RF_Free(_obj_,(_fl_)->obj_size); \
+ _obj_ = NULL; \
+ } \
+ else { \
+ for(_i=1;_i<(_fl_)->obj_inc;_i++) { \
+ RF_Calloc(_p,1,(_fl_)->obj_size,(void *)); \
+ if (_p) { \
+ if (_init_ (_p)) { \
+ RF_Free(_p,(_fl_)->obj_size); \
+ _p = NULL; \
+ break; \
+ } \
+ (_cast_(_p))->_nextp_ = (_fl_)->objlist; \
+ (_fl_)->objlist = _p; \
+ } \
+ else { \
+ break; \
+ } \
+ } \
+ } \
+ } \
+ RF_FREELIST_STAT_GROW(_fl_); \
+ } \
+ RF_FREELIST_STAT_ALLOC(_fl_); \
+}
+
+/*
+ * fl = freelist
+ * obj = object to allocate
+ * nextp = name of "next" pointer in obj
+ * cast = cast of obj assignment
+ */
+#define RF_FREELIST_GET(_fl_,_obj_,_nextp_,_cast_) { \
+ void *_p; \
+ int _i; \
+ RF_LOCK_MUTEX((_fl_)->lock); \
+ RF_ASSERT(sizeof(*(_obj_))==((_fl_)->obj_size)); \
+ if (_fl_->objlist) { \
+ _obj_ = _cast_((_fl_)->objlist); \
+ (_fl_)->objlist = (void *)((_obj_)->_nextp_); \
+ (_fl_)->free_cnt--; \
+ RF_UNLOCK_MUTEX((_fl_)->lock); \
+ } \
+ else { \
+ RF_UNLOCK_MUTEX((_fl_)->lock); \
+ /* \
+ * Allocate one at a time so we can free \
+ * one at a time without cleverness when arena \
+ * is full. \
+ */ \
+ RF_Calloc(_obj_,1,(_fl_)->obj_size,_cast_); \
+ if (_obj_) { \
+ for(_i=1;_i<(_fl_)->obj_inc;_i++) { \
+ RF_Calloc(_p,1,(_fl_)->obj_size,(void *)); \
+ if (_p) { \
+ RF_LOCK_MUTEX((_fl_)->lock); \
+ (_cast_(_p))->_nextp_ = (_fl_)->objlist; \
+ (_fl_)->objlist = _p; \
+ RF_UNLOCK_MUTEX((_fl_)->lock); \
+ } \
+ else { \
+ break; \
+ } \
+ } \
+ } \
+ RF_LOCK_MUTEX((_fl_)->lock); \
+ RF_FREELIST_STAT_GROW(_fl_); \
+ RF_UNLOCK_MUTEX((_fl_)->lock); \
+ } \
+ RF_LOCK_MUTEX((_fl_)->lock); \
+ RF_FREELIST_STAT_ALLOC(_fl_); \
+ RF_UNLOCK_MUTEX((_fl_)->lock); \
+}
+
+/*
+ * fl = freelist
+ * obj = object to allocate
+ * nextp = name of "next" pointer in obj
+ * cast = cast of obj assignment
+ * num = num objs to return
+ */
+#define RF_FREELIST_GET_N(_fl_,_obj_,_nextp_,_cast_,_num_) { \
+ void *_p, *_l, *_f; \
+ int _i, _n; \
+ _l = _f = NULL; \
+ _n = 0; \
+ RF_ASSERT(sizeof(*(_obj_))==((_fl_)->obj_size)); \
+ for(_n=0;_n<_num_;_n++) { \
+ RF_LOCK_MUTEX((_fl_)->lock); \
+ if (_fl_->objlist) { \
+ _obj_ = _cast_((_fl_)->objlist); \
+ (_fl_)->objlist = (void *)((_obj_)->_nextp_); \
+ (_fl_)->free_cnt--; \
+ RF_UNLOCK_MUTEX((_fl_)->lock); \
+ } \
+ else { \
+ RF_UNLOCK_MUTEX((_fl_)->lock); \
+ /* \
+ * Allocate one at a time so we can free \
+ * one at a time without cleverness when arena \
+ * is full. \
+ */ \
+ RF_Calloc(_obj_,1,(_fl_)->obj_size,_cast_); \
+ if (_obj_) { \
+ for(_i=1;_i<(_fl_)->obj_inc;_i++) { \
+ RF_Calloc(_p,1,(_fl_)->obj_size,(void *)); \
+ if (_p) { \
+ RF_LOCK_MUTEX((_fl_)->lock); \
+ (_cast_(_p))->_nextp_ = (_fl_)->objlist; \
+ (_fl_)->objlist = _p; \
+ RF_UNLOCK_MUTEX((_fl_)->lock); \
+ } \
+ else { \
+ break; \
+ } \
+ } \
+ } \
+ RF_LOCK_MUTEX((_fl_)->lock); \
+ RF_FREELIST_STAT_GROW(_fl_); \
+ RF_UNLOCK_MUTEX((_fl_)->lock); \
+ } \
+ RF_LOCK_MUTEX((_fl_)->lock); \
+ if (_f == NULL) \
+ _f = _obj_; \
+ if (_obj_) { \
+ (_cast_(_obj_))->_nextp_ = _l; \
+ _l = _obj_; \
+ RF_FREELIST_STAT_ALLOC(_fl_); \
+ } \
+ else { \
+ (_cast_(_f))->_nextp_ = (_fl_)->objlist; \
+ (_fl_)->objlist = _l; \
+ _n = _num_; \
+ } \
+ RF_UNLOCK_MUTEX((_fl_)->lock); \
+ } \
+}
+
+/*
+ * fl = freelist
+ * obj = object to free
+ * nextp = name of "next" pointer in obj
+ */
+#define RF_FREELIST_FREE(_fl_,_obj_,_nextp_) { \
+ RF_LOCK_MUTEX((_fl_)->lock); \
+ if ((_fl_)->free_cnt == (_fl_)->max_free_cnt) { \
+ RF_Free(_obj_,(_fl_)->obj_size); \
+ } \
+ else { \
+ RF_ASSERT((_fl_)->free_cnt < (_fl_)->max_free_cnt); \
+ (_obj_)->_nextp_ = (_fl_)->objlist; \
+ (_fl_)->objlist = (void *)(_obj_); \
+ (_fl_)->free_cnt++; \
+ } \
+ RF_FREELIST_STAT_FREE(_fl_); \
+ RF_UNLOCK_MUTEX((_fl_)->lock); \
+}
+
+/*
+ * fl = freelist
+ * obj = object to free
+ * nextp = name of "next" pointer in obj
+ * num = num to free (debugging)
+ */
+#define RF_FREELIST_FREE_N(_fl_,_obj_,_nextp_,_cast_,_num_) { \
+ void *_no; \
+ int _n; \
+ _n = 0; \
+ RF_LOCK_MUTEX((_fl_)->lock); \
+ while(_obj_) { \
+ _no = (_cast_(_obj_))->_nextp_; \
+ if ((_fl_)->free_cnt == (_fl_)->max_free_cnt) { \
+ RF_Free(_obj_,(_fl_)->obj_size); \
+ } \
+ else { \
+ RF_ASSERT((_fl_)->free_cnt < (_fl_)->max_free_cnt); \
+ (_obj_)->_nextp_ = (_fl_)->objlist; \
+ (_fl_)->objlist = (void *)(_obj_); \
+ (_fl_)->free_cnt++; \
+ } \
+ _n++; \
+ _obj_ = _no; \
+ RF_FREELIST_STAT_FREE(_fl_); \
+ } \
+ RF_ASSERT(_n==(_num_)); \
+ RF_UNLOCK_MUTEX((_fl_)->lock); \
+}
+
+/*
+ * fl = freelist
+ * obj = object to free
+ * nextp = name of "next" pointer in obj
+ * clean = undo for init
+ */
+#define RF_FREELIST_FREE_CLEAN(_fl_,_obj_,_nextp_,_clean_) { \
+ RF_LOCK_MUTEX((_fl_)->lock); \
+ if ((_fl_)->free_cnt == (_fl_)->max_free_cnt) { \
+ _clean_ (_obj_); \
+ RF_Free(_obj_,(_fl_)->obj_size); \
+ } \
+ else { \
+ RF_ASSERT((_fl_)->free_cnt < (_fl_)->max_free_cnt); \
+ (_obj_)->_nextp_ = (_fl_)->objlist; \
+ (_fl_)->objlist = (void *)(_obj_); \
+ (_fl_)->free_cnt++; \
+ } \
+ RF_FREELIST_STAT_FREE(_fl_); \
+ RF_UNLOCK_MUTEX((_fl_)->lock); \
+}
+
+/*
+ * fl = freelist
+ * obj = object to free
+ * nextp = name of "next" pointer in obj
+ * clean = undo for init
+ * arg = arg for undo func
+ */
+#define RF_FREELIST_FREE_CLEAN_ARG(_fl_,_obj_,_nextp_,_clean_,_arg_) { \
+ RF_LOCK_MUTEX((_fl_)->lock); \
+ if ((_fl_)->free_cnt == (_fl_)->max_free_cnt) { \
+ _clean_ (_obj_,_arg_); \
+ RF_Free(_obj_,(_fl_)->obj_size); \
+ } \
+ else { \
+ RF_ASSERT((_fl_)->free_cnt < (_fl_)->max_free_cnt); \
+ (_obj_)->_nextp_ = (_fl_)->objlist; \
+ (_fl_)->objlist = (void *)(_obj_); \
+ (_fl_)->free_cnt++; \
+ } \
+ RF_FREELIST_STAT_FREE(_fl_); \
+ RF_UNLOCK_MUTEX((_fl_)->lock); \
+}
+
+/*
+ * fl = freelist
+ * obj = object to free
+ * nextp = name of "next" pointer in obj
+ * clean = undo for init
+ */
+#define RF_FREELIST_FREE_CLEAN_NOUNLOCK(_fl_,_obj_,_nextp_,_clean_) { \
+ RF_LOCK_MUTEX((_fl_)->lock); \
+ if ((_fl_)->free_cnt == (_fl_)->max_free_cnt) { \
+ _clean_ (_obj_); \
+ RF_Free(_obj_,(_fl_)->obj_size); \
+ } \
+ else { \
+ RF_ASSERT((_fl_)->free_cnt < (_fl_)->max_free_cnt); \
+ (_obj_)->_nextp_ = (_fl_)->objlist; \
+ (_fl_)->objlist = (void *)(_obj_); \
+ (_fl_)->free_cnt++; \
+ } \
+ RF_FREELIST_STAT_FREE(_fl_); \
+}
+
+/*
+ * fl = freelist
+ * nextp = name of "next" pointer in obj
+ * cast = cast to object type
+ */
+#define RF_FREELIST_DESTROY(_fl_,_nextp_,_cast_) { \
+ void *_cur, *_next; \
+ RF_FREELIST_STAT_REPORT(_fl_); \
+ rf_mutex_destroy(&((_fl_)->lock)); \
+ for(_cur=(_fl_)->objlist;_cur;_cur=_next) { \
+ _next = (_cast_ _cur)->_nextp_; \
+ RF_Free(_cur,(_fl_)->obj_size); \
+ } \
+ RF_Free(_fl_,sizeof(RF_FreeList_t)); \
+}
+
+/*
+ * fl = freelist
+ * nextp = name of "next" pointer in obj
+ * cast = cast to object type
+ * clean = func to undo obj init
+ */
+#define RF_FREELIST_DESTROY_CLEAN(_fl_,_nextp_,_cast_,_clean_) { \
+ void *_cur, *_next; \
+ RF_FREELIST_STAT_REPORT(_fl_); \
+ rf_mutex_destroy(&((_fl_)->lock)); \
+ for(_cur=(_fl_)->objlist;_cur;_cur=_next) { \
+ _next = (_cast_ _cur)->_nextp_; \
+ _clean_ (_cur); \
+ RF_Free(_cur,(_fl_)->obj_size); \
+ } \
+ RF_Free(_fl_,sizeof(RF_FreeList_t)); \
+}
+
+/*
+ * fl = freelist
+ * nextp = name of "next" pointer in obj
+ * cast = cast to object type
+ * clean = func to undo obj init
+ * arg = arg for undo func
+ */
+#define RF_FREELIST_DESTROY_CLEAN_ARG(_fl_,_nextp_,_cast_,_clean_,_arg_) { \
+ void *_cur, *_next; \
+ RF_FREELIST_STAT_REPORT(_fl_); \
+ rf_mutex_destroy(&((_fl_)->lock)); \
+ for(_cur=(_fl_)->objlist;_cur;_cur=_next) { \
+ _next = (_cast_ _cur)->_nextp_; \
+ _clean_ (_cur,_arg_); \
+ RF_Free(_cur,(_fl_)->obj_size); \
+ } \
+ RF_Free(_fl_,sizeof(RF_FreeList_t)); \
+}
+
+#endif /* !_RF__RF_FREELIST_H_ */
diff --git a/sys/dev/raidframe/rf_general.h b/sys/dev/raidframe/rf_general.h
new file mode 100644
index 0000000..e709899
--- /dev/null
+++ b/sys/dev/raidframe/rf_general.h
@@ -0,0 +1,107 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_general.h,v 1.6 2000/12/15 02:12:58 oster Exp $ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Mark Holland
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+/*
+ * rf_general.h -- some general-use definitions
+ */
+
+/*#define NOASSERT*/
+
+#ifndef _RF__RF_GENERAL_H_
+#define _RF__RF_GENERAL_H_
+
+/* error reporting and handling */
+
+#ifdef _KERNEL
+#include<sys/systm.h> /* printf, sprintf, and friends */
+#endif
+
+#define RF_ERRORMSG(s) printf((s))
+#define RF_ERRORMSG1(s,a) printf((s),(a))
+#define RF_ERRORMSG2(s,a,b) printf((s),(a),(b))
+#define RF_ERRORMSG3(s,a,b,c) printf((s),(a),(b),(c))
+
+void rf_print_panic_message(int, char *);
+void rf_print_assert_panic_message(int, char *, char *);
+
+extern char rf_panicbuf[];
+#define RF_PANIC() {rf_print_panic_message(__LINE__,__FILE__); panic(rf_panicbuf);}
+
+#ifdef _KERNEL
+#ifdef RF_ASSERT
+#undef RF_ASSERT
+#endif /* RF_ASSERT */
+#ifndef NOASSERT
+#define RF_ASSERT(_x_) { \
+ if (!(_x_)) { \
+ rf_print_assert_panic_message(__LINE__, __FILE__, #_x_); \
+ panic(rf_panicbuf); \
+ } \
+}
+#else /* !NOASSERT */
+#define RF_ASSERT(x) {/*noop*/}
+#endif /* !NOASSERT */
+#else /* _KERNEL */
+#define RF_ASSERT(x) {/*noop*/}
+#endif /* _KERNEL */
+
+/* random stuff */
+#define RF_MAX(a,b) (((a) > (b)) ? (a) : (b))
+#define RF_MIN(a,b) (((a) < (b)) ? (a) : (b))
+
+/* divide-by-zero check */
+#define RF_DB0_CHECK(a,b) ( ((b)==0) ? 0 : (a)/(b) )
+
+/* get time of day */
+#define RF_GETTIME(_t) microtime(&(_t))
+
+/*
+ * zero memory- not all bzero calls go through here, only
+ * those which in the kernel may have a user address
+ */
+
+#define RF_BZERO(_bp,_b,_l) bzero(_b,_l) /* XXX This is likely
+ * incorrect. GO */
+
+#if defined(__FreeBSD__)
+#define NBPG PAGE_SIZE
+#endif
+
+#define RF_UL(x) ((unsigned long) (x))
+#define RF_PGMASK RF_UL(NBPG-1)
+#define RF_BLIP(x) (NBPG - (RF_UL(x) & RF_PGMASK)) /* bytes left in page */
+#define RF_PAGE_ALIGNED(x) ((RF_UL(x) & RF_PGMASK) == 0)
+
+#ifdef __STDC__
+#define RF_STRING(_str_) #_str_
+#else /* __STDC__ */
+#define RF_STRING(_str_) "_str_"
+#endif /* __STDC__ */
+
+#endif /* !_RF__RF_GENERAL_H_ */
diff --git a/sys/dev/raidframe/rf_geniq.c b/sys/dev/raidframe/rf_geniq.c
new file mode 100644
index 0000000..c839059
--- /dev/null
+++ b/sys/dev/raidframe/rf_geniq.c
@@ -0,0 +1,163 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_geniq.c,v 1.3 1999/02/05 00:06:12 oster Exp $ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Daniel Stodolsky
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+/* rf_geniq.c
+ * code which implements Reed-Solomon encoding for RAID level 6
+ */
+
+
+#define RF_UTILITY 1
+#include <dev/raidframe/rf_pqdeg.h>
+
+/*
+ five bit lfsr
+ poly - feedback connections
+
+ val = value;
+*/
+int
+lsfr_shift(val, poly)
+ unsigned val, poly;
+{
+ unsigned new;
+ unsigned int i;
+ unsigned high = (val >> 4) & 1;
+ unsigned bit;
+
+ new = (poly & 1) ? high : 0;
+
+ for (i = 1; i <= 4; i++) {
+ bit = (val >> (i - 1)) & 1;
+ if (poly & (1 << i)) /* there is a feedback connection */
+ new = new | ((bit ^ high) << i);
+ else
+ new = new | (bit << i);
+ }
+ return new;
+}
+/* generate Q matricies for the data */
+
+RF_ua32_t rf_qfor[32];
+
+void
+main()
+{
+ unsigned int i, j, l, a, b;
+ unsigned int val;
+ unsigned int r;
+ unsigned int m, p, q;
+
+ RF_ua32_t k;
+
+ printf("/*\n");
+ printf(" * rf_invertq.h\n");
+ printf(" */\n");
+ printf("/*\n");
+ printf(" * GENERATED FILE -- DO NOT EDIT\n");
+ printf(" */\n");
+ printf("\n");
+ printf("#ifndef _RF__RF_INVERTQ_H_\n");
+ printf("#define _RF__RF_INVERTQ_H_\n");
+ printf("\n");
+ printf("/*\n");
+ printf(" * rf_geniq.c must include rf_archs.h before including\n");
+ printf(" * this file (to get VPATH magic right with the way we\n");
+ printf(" * generate this file in kernel trees)\n");
+ printf(" */\n");
+ printf("/* #include \"rf_archs.h\" */\n");
+ printf("\n");
+ printf("#if (RF_INCLUDE_PQ > 0) || (RF_INCLUDE_RAID6 > 0)\n");
+ printf("\n");
+ printf("#define RF_Q_COLS 32\n");
+ printf("RF_ua32_t rf_rn = {\n");
+ k[0] = 1;
+ for (j = 0; j < 31; j++)
+ k[j + 1] = lsfr_shift(k[j], 5);
+ for (j = 0; j < 32; j++)
+ printf("%d, ", k[j]);
+ printf("};\n");
+
+ printf("RF_ua32_t rf_qfor[32] = {\n");
+ for (i = 0; i < 32; i++) {
+ printf("/* i = %d */ { 0, ", i);
+ rf_qfor[i][0] = 0;
+ for (j = 1; j < 32; j++) {
+ val = j;
+ for (l = 0; l < i; l++)
+ val = lsfr_shift(val, 5);
+ rf_qfor[i][j] = val;
+ printf("%d, ", val);
+ }
+ printf("},\n");
+ }
+ printf("};\n");
+ printf("#define RF_Q_DATA_COL(col_num) rf_rn[col_num],rf_qfor[28-(col_num)]\n");
+
+ /* generate the inverse tables. (i,j,p,q) */
+ /* The table just stores a. Get b back from the parity */
+ printf("#ifdef KERNEL\n");
+ printf("RF_ua1024_t rf_qinv[1]; /* don't compile monster table into kernel */\n");
+ printf("#elif defined(NO_PQ)\n");
+ printf("RF_ua1024_t rf_qinv[29*29];\n");
+ printf("#else /* !KERNEL && NO_PQ */\n");
+ printf("RF_ua1024_t rf_qinv[29*29] = {\n");
+ for (i = 0; i < 29; i++) {
+ for (j = 0; j < 29; j++) {
+ printf("/* i %d, j %d */{ ", i, j);
+ if (i == j)
+ for (l = 0; l < 1023; l++)
+ printf("0, ");
+ else {
+ for (p = 0; p < 32; p++)
+ for (q = 0; q < 32; q++) {
+ /* What are a, b such that a ^
+ * b = p; and qfor[(28-i)][a
+ * ^ rf_rn[i+1]] ^
+ * qfor[(28-j)][b ^
+ * rf_rn[j+1]] = q. Solve by
+ * guessing a. Then testing. */
+ for (a = 0; a < 32; a++) {
+ b = a ^ p;
+ if ((rf_qfor[28 - i][a ^ k[i + 1]] ^ rf_qfor[28 - j][b ^ k[j + 1]]) == q)
+ break;
+ }
+ if (a == 32)
+ printf("unable to solve %d %d %d %d\n", i, j, p, q);
+ printf("%d,", a);
+ }
+ }
+ printf("},\n");
+ }
+ }
+ printf("};\n");
+ printf("\n#endif /* (RF_INCLUDE_PQ > 0) || (RF_INCLUDE_RAID6 > 0) */\n\n");
+ printf("#endif /* !KERNEL && NO_PQ */\n");
+ printf("#endif /* !_RF__RF_INVERTQ_H_ */\n");
+ exit(0);
+}
diff --git a/sys/dev/raidframe/rf_hist.h b/sys/dev/raidframe/rf_hist.h
new file mode 100644
index 0000000..b8b12c3
--- /dev/null
+++ b/sys/dev/raidframe/rf_hist.h
@@ -0,0 +1,57 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_hist.h,v 1.3 1999/02/05 00:06:12 oster Exp $ */
+/*
+ * rf_hist.h
+ *
+ * Histgram operations for RAIDframe stats
+ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Jim Zelenka
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+#ifndef _RF__RF_HIST_H_
+#define _RF__RF_HIST_H_
+
+#include <dev/raidframe/rf_types.h>
+
+#define RF_HIST_RESOLUTION 5
+#define RF_HIST_MIN_VAL 0
+#define RF_HIST_MAX_VAL 1000
+#define RF_HIST_RANGE (RF_HIST_MAX_VAL - RF_HIST_MIN_VAL)
+#define RF_HIST_NUM_BUCKETS (RF_HIST_RANGE / RF_HIST_RESOLUTION + 1)
+
+typedef RF_uint32 RF_Hist_t;
+
+#define RF_HIST_ADD(_hist_,_val_) { \
+ RF_Hist_t val; \
+ val = ((RF_Hist_t)(_val_)) / 1000; \
+ if (val >= RF_HIST_MAX_VAL) \
+ _hist_[RF_HIST_NUM_BUCKETS-1]++; \
+ else \
+ _hist_[(val - RF_HIST_MIN_VAL) / RF_HIST_RESOLUTION]++; \
+}
+
+#endif /* !_RF__RF_HIST_H_ */
diff --git a/sys/dev/raidframe/rf_interdecluster.c b/sys/dev/raidframe/rf_interdecluster.c
new file mode 100644
index 0000000..c8bbff5
--- /dev/null
+++ b/sys/dev/raidframe/rf_interdecluster.c
@@ -0,0 +1,283 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_interdecluster.c,v 1.5 2001/01/26 05:09:13 oster Exp $ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Khalil Amiri
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+/************************************************************
+ *
+ * rf_interdecluster.c -- implements interleaved declustering
+ *
+ ************************************************************/
+
+#include <dev/raidframe/rf_archs.h>
+
+#if RF_INCLUDE_INTERDECLUSTER > 0
+
+#include <dev/raidframe/rf_types.h>
+#include <dev/raidframe/rf_raid.h>
+#include <dev/raidframe/rf_interdecluster.h>
+#include <dev/raidframe/rf_dag.h>
+#include <dev/raidframe/rf_dagutils.h>
+#include <dev/raidframe/rf_dagfuncs.h>
+#include <dev/raidframe/rf_general.h>
+#include <dev/raidframe/rf_utils.h>
+#include <dev/raidframe/rf_dagffrd.h>
+#include <dev/raidframe/rf_dagdegrd.h>
+#include <dev/raidframe/rf_dagffwr.h>
+#include <dev/raidframe/rf_dagdegwr.h>
+
+typedef struct RF_InterdeclusterConfigInfo_s {
+ RF_RowCol_t **stripeIdentifier; /* filled in at config time and used
+ * by IdentifyStripe */
+ RF_StripeCount_t numSparingRegions;
+ RF_StripeCount_t stripeUnitsPerSparingRegion;
+ RF_SectorNum_t mirrorStripeOffset;
+} RF_InterdeclusterConfigInfo_t;
+
+int
+rf_ConfigureInterDecluster(
+ RF_ShutdownList_t ** listp,
+ RF_Raid_t * raidPtr,
+ RF_Config_t * cfgPtr)
+{
+ RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
+ RF_StripeCount_t num_used_stripeUnitsPerDisk;
+ RF_InterdeclusterConfigInfo_t *info;
+ RF_RowCol_t i, tmp, SUs_per_region;
+
+ /* create an Interleaved Declustering configuration structure */
+ RF_MallocAndAdd(info, sizeof(RF_InterdeclusterConfigInfo_t), (RF_InterdeclusterConfigInfo_t *),
+ raidPtr->cleanupList);
+ if (info == NULL)
+ return (ENOMEM);
+ layoutPtr->layoutSpecificInfo = (void *) info;
+
+ /* fill in the config structure. */
+ SUs_per_region = raidPtr->numCol * (raidPtr->numCol - 1);
+ info->stripeIdentifier = rf_make_2d_array(SUs_per_region, 2, raidPtr->cleanupList);
+ if (info->stripeIdentifier == NULL)
+ return (ENOMEM);
+ for (i = 0; i < SUs_per_region; i++) {
+ info->stripeIdentifier[i][0] = i / (raidPtr->numCol - 1);
+ tmp = i / raidPtr->numCol;
+ info->stripeIdentifier[i][1] = (i + 1 + tmp) % raidPtr->numCol;
+ }
+
+ /* no spare tables */
+ RF_ASSERT(raidPtr->numRow == 1);
+
+ /* fill in the remaining layout parameters */
+
+ /* total number of stripes should a multiple of 2*numCol: Each sparing
+ * region consists of 2*numCol stripes: n-1 primary copy, n-1
+ * secondary copy and 2 for spare .. */
+ num_used_stripeUnitsPerDisk = layoutPtr->stripeUnitsPerDisk - (layoutPtr->stripeUnitsPerDisk %
+ (2 * raidPtr->numCol));
+ info->numSparingRegions = num_used_stripeUnitsPerDisk / (2 * raidPtr->numCol);
+ /* this is in fact the number of stripe units (that are primary data
+ * copies) in the sparing region */
+ info->stripeUnitsPerSparingRegion = raidPtr->numCol * (raidPtr->numCol - 1);
+ info->mirrorStripeOffset = info->numSparingRegions * (raidPtr->numCol + 1);
+ layoutPtr->numStripe = info->numSparingRegions * info->stripeUnitsPerSparingRegion;
+ layoutPtr->bytesPerStripeUnit = layoutPtr->sectorsPerStripeUnit << raidPtr->logBytesPerSector;
+ layoutPtr->numDataCol = 1;
+ layoutPtr->dataSectorsPerStripe = layoutPtr->numDataCol * layoutPtr->sectorsPerStripeUnit;
+ layoutPtr->numParityCol = 1;
+
+ layoutPtr->dataStripeUnitsPerDisk = num_used_stripeUnitsPerDisk;
+
+ raidPtr->sectorsPerDisk =
+ num_used_stripeUnitsPerDisk * layoutPtr->sectorsPerStripeUnit;
+
+ raidPtr->totalSectors =
+ (layoutPtr->numStripe) * layoutPtr->sectorsPerStripeUnit;
+
+ layoutPtr->stripeUnitsPerDisk = raidPtr->sectorsPerDisk / layoutPtr->sectorsPerStripeUnit;
+
+ return (0);
+}
+
+int
+rf_GetDefaultNumFloatingReconBuffersInterDecluster(RF_Raid_t * raidPtr)
+{
+ return (30);
+}
+
+RF_HeadSepLimit_t
+rf_GetDefaultHeadSepLimitInterDecluster(RF_Raid_t * raidPtr)
+{
+ return (raidPtr->sectorsPerDisk);
+}
+
+RF_ReconUnitCount_t
+rf_GetNumSpareRUsInterDecluster(
+ RF_Raid_t * raidPtr)
+{
+ RF_InterdeclusterConfigInfo_t *info = (RF_InterdeclusterConfigInfo_t *) raidPtr->Layout.layoutSpecificInfo;
+
+ return (2 * ((RF_ReconUnitCount_t) info->numSparingRegions));
+ /* the layout uses two stripe units per disk as spare within each
+ * sparing region */
+}
+/* Maps to the primary copy of the data, i.e. the first mirror pair */
+void
+rf_MapSectorInterDecluster(
+ RF_Raid_t * raidPtr,
+ RF_RaidAddr_t raidSector,
+ RF_RowCol_t * row,
+ RF_RowCol_t * col,
+ RF_SectorNum_t * diskSector,
+ int remap)
+{
+ RF_InterdeclusterConfigInfo_t *info = (RF_InterdeclusterConfigInfo_t *) raidPtr->Layout.layoutSpecificInfo;
+ RF_StripeNum_t SUID = raidSector / raidPtr->Layout.sectorsPerStripeUnit;
+ RF_StripeNum_t su_offset_into_disk, mirror_su_offset_into_disk;
+ RF_StripeNum_t sparing_region_id, index_within_region;
+ int col_before_remap;
+
+ *row = 0;
+ sparing_region_id = SUID / info->stripeUnitsPerSparingRegion;
+ index_within_region = SUID % info->stripeUnitsPerSparingRegion;
+ su_offset_into_disk = index_within_region % (raidPtr->numCol - 1);
+ mirror_su_offset_into_disk = index_within_region / raidPtr->numCol;
+ col_before_remap = index_within_region / (raidPtr->numCol - 1);
+
+ if (!remap) {
+ *col = col_before_remap;;
+ *diskSector = (su_offset_into_disk + ((raidPtr->numCol - 1) * sparing_region_id)) *
+ raidPtr->Layout.sectorsPerStripeUnit;
+ *diskSector += (raidSector % raidPtr->Layout.sectorsPerStripeUnit);
+ } else {
+ /* remap sector to spare space... */
+ *diskSector = sparing_region_id * (raidPtr->numCol + 1) * raidPtr->Layout.sectorsPerStripeUnit;
+ *diskSector += (raidPtr->numCol - 1) * raidPtr->Layout.sectorsPerStripeUnit;
+ *diskSector += (raidSector % raidPtr->Layout.sectorsPerStripeUnit);
+ *col = (index_within_region + 1 + mirror_su_offset_into_disk) % raidPtr->numCol;
+ *col = (*col + 1) % raidPtr->numCol;
+ if (*col == col_before_remap)
+ *col = (*col + 1) % raidPtr->numCol;
+ }
+}
+/* Maps to the second copy of the mirror pair. */
+void
+rf_MapParityInterDecluster(
+ RF_Raid_t * raidPtr,
+ RF_RaidAddr_t raidSector,
+ RF_RowCol_t * row,
+ RF_RowCol_t * col,
+ RF_SectorNum_t * diskSector,
+ int remap)
+{
+ RF_InterdeclusterConfigInfo_t *info = (RF_InterdeclusterConfigInfo_t *) raidPtr->Layout.layoutSpecificInfo;
+ RF_StripeNum_t sparing_region_id, index_within_region, mirror_su_offset_into_disk;
+ RF_StripeNum_t SUID = raidSector / raidPtr->Layout.sectorsPerStripeUnit;
+ int col_before_remap;
+
+ sparing_region_id = SUID / info->stripeUnitsPerSparingRegion;
+ index_within_region = SUID % info->stripeUnitsPerSparingRegion;
+ mirror_su_offset_into_disk = index_within_region / raidPtr->numCol;
+ col_before_remap = (index_within_region + 1 + mirror_su_offset_into_disk) % raidPtr->numCol;
+
+ *row = 0;
+ if (!remap) {
+ *col = col_before_remap;
+ *diskSector = info->mirrorStripeOffset * raidPtr->Layout.sectorsPerStripeUnit;
+ *diskSector += sparing_region_id * (raidPtr->numCol - 1) * raidPtr->Layout.sectorsPerStripeUnit;
+ *diskSector += mirror_su_offset_into_disk * raidPtr->Layout.sectorsPerStripeUnit;
+ *diskSector += (raidSector % raidPtr->Layout.sectorsPerStripeUnit);
+ } else {
+ /* remap parity to spare space ... */
+ *diskSector = sparing_region_id * (raidPtr->numCol + 1) * raidPtr->Layout.sectorsPerStripeUnit;
+ *diskSector += (raidPtr->numCol) * raidPtr->Layout.sectorsPerStripeUnit;
+ *diskSector += (raidSector % raidPtr->Layout.sectorsPerStripeUnit);
+ *col = index_within_region / (raidPtr->numCol - 1);
+ *col = (*col + 1) % raidPtr->numCol;
+ if (*col == col_before_remap)
+ *col = (*col + 1) % raidPtr->numCol;
+ }
+}
+
+void
+rf_IdentifyStripeInterDecluster(
+ RF_Raid_t * raidPtr,
+ RF_RaidAddr_t addr,
+ RF_RowCol_t ** diskids,
+ RF_RowCol_t * outRow)
+{
+ RF_InterdeclusterConfigInfo_t *info = (RF_InterdeclusterConfigInfo_t *) raidPtr->Layout.layoutSpecificInfo;
+ RF_StripeNum_t SUID;
+
+ SUID = addr / raidPtr->Layout.sectorsPerStripeUnit;
+ SUID = SUID % info->stripeUnitsPerSparingRegion;
+
+ *outRow = 0;
+ *diskids = info->stripeIdentifier[SUID];
+}
+
+void
+rf_MapSIDToPSIDInterDecluster(
+ RF_RaidLayout_t * layoutPtr,
+ RF_StripeNum_t stripeID,
+ RF_StripeNum_t * psID,
+ RF_ReconUnitNum_t * which_ru)
+{
+ *which_ru = 0;
+ *psID = stripeID;
+}
+/******************************************************************************
+ * select a graph to perform a single-stripe access
+ *
+ * Parameters: raidPtr - description of the physical array
+ * type - type of operation (read or write) requested
+ * asmap - logical & physical addresses for this access
+ * createFunc - name of function to use to create the graph
+ *****************************************************************************/
+
+void
+rf_RAIDIDagSelect(
+ RF_Raid_t * raidPtr,
+ RF_IoType_t type,
+ RF_AccessStripeMap_t * asmap,
+ RF_VoidFuncPtr * createFunc)
+{
+ RF_ASSERT(RF_IO_IS_R_OR_W(type));
+
+ if (asmap->numDataFailed + asmap->numParityFailed > 1) {
+ RF_ERRORMSG("Multiple disks failed in a single group! Aborting I/O operation.\n");
+ *createFunc = NULL;
+ return;
+ }
+ *createFunc = (type == RF_IO_TYPE_READ) ? (RF_VoidFuncPtr) rf_CreateFaultFreeReadDAG : (RF_VoidFuncPtr) rf_CreateRaidOneWriteDAG;
+ if (type == RF_IO_TYPE_READ) {
+ if (asmap->numDataFailed == 0)
+ *createFunc = (RF_VoidFuncPtr) rf_CreateMirrorPartitionReadDAG;
+ else
+ *createFunc = (RF_VoidFuncPtr) rf_CreateRaidOneDegradedReadDAG;
+ } else
+ *createFunc = (RF_VoidFuncPtr) rf_CreateRaidOneWriteDAG;
+}
+#endif /* RF_INCLUDE_INTERDECLUSTER > 0 */
diff --git a/sys/dev/raidframe/rf_interdecluster.h b/sys/dev/raidframe/rf_interdecluster.h
new file mode 100644
index 0000000..9bf3825
--- /dev/null
+++ b/sys/dev/raidframe/rf_interdecluster.h
@@ -0,0 +1,60 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_interdecluster.h,v 1.3 1999/02/05 00:06:12 oster Exp $ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Khalil Amiri
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+/* rf_interdecluster.h
+ * header file for Interleaved Declustering
+ */
+
+#ifndef _RF__RF_INTERDECLUSTER_H_
+#define _RF__RF_INTERDECLUSTER_H_
+
+int
+rf_ConfigureInterDecluster(RF_ShutdownList_t ** listp, RF_Raid_t * raidPtr,
+ RF_Config_t * cfgPtr);
+int rf_GetDefaultNumFloatingReconBuffersInterDecluster(RF_Raid_t * raidPtr);
+RF_HeadSepLimit_t rf_GetDefaultHeadSepLimitInterDecluster(RF_Raid_t * raidPtr);
+RF_ReconUnitCount_t rf_GetNumSpareRUsInterDecluster(RF_Raid_t * raidPtr);
+void
+rf_MapSectorInterDecluster(RF_Raid_t * raidPtr, RF_RaidAddr_t raidSector,
+ RF_RowCol_t * row, RF_RowCol_t * col, RF_SectorNum_t * diskSector, int remap);
+void
+rf_MapParityInterDecluster(RF_Raid_t * raidPtr, RF_RaidAddr_t raidSector,
+ RF_RowCol_t * row, RF_RowCol_t * col, RF_SectorNum_t * diskSector, int remap);
+void
+rf_IdentifyStripeInterDecluster(RF_Raid_t * raidPtr, RF_RaidAddr_t addr,
+ RF_RowCol_t ** diskids, RF_RowCol_t * outRow);
+void
+rf_MapSIDToPSIDInterDecluster(RF_RaidLayout_t * layoutPtr,
+ RF_StripeNum_t stripeID, RF_StripeNum_t * psID,
+ RF_ReconUnitNum_t * which_ru);
+void
+rf_RAIDIDagSelect(RF_Raid_t * raidPtr, RF_IoType_t type,
+ RF_AccessStripeMap_t * asmap, RF_VoidFuncPtr * createFunc);
+
+#endif /* !_RF__RF_INTERDECLUSTER_H_ */
diff --git a/sys/dev/raidframe/rf_invertq.c b/sys/dev/raidframe/rf_invertq.c
new file mode 100644
index 0000000..fa4f8d7
--- /dev/null
+++ b/sys/dev/raidframe/rf_invertq.c
@@ -0,0 +1,32 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_invertq.c,v 1.3 1999/02/05 00:06:12 oster Exp $ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Daniel Stodolsky
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+#include <dev/raidframe/rf_archs.h>
+#include <dev/raidframe/rf_pqdeg.h>
+#include <dev/raidframe/rf_invertq.h>
diff --git a/sys/dev/raidframe/rf_invertq.h b/sys/dev/raidframe/rf_invertq.h
new file mode 100644
index 0000000..fde2cae
--- /dev/null
+++ b/sys/dev/raidframe/rf_invertq.h
@@ -0,0 +1,64 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_invertq.h,v 1.3 1999/02/05 00:06:12 oster Exp $ */
+/*
+ * rf_invertq.h
+ */
+/*
+ * This is normally a generated file. Not so for NetBSD.
+ */
+
+#ifndef _RF__RF_INVERTQ_H_
+#define _RF__RF_INVERTQ_H_
+
+/*
+ * rf_geniq.c must include rf_archs.h before including
+ * this file (to get VPATH magic right with the way we
+ * generate this file in kernel trees)
+ */
+/* #include <dev/raidframe/rf_archs.h> */
+
+#if (RF_INCLUDE_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
+
+#define RF_Q_COLS 32
+RF_ua32_t rf_rn = {
+1, 2, 4, 8, 16, 5, 10, 20, 13, 26, 17, 7, 14, 28, 29, 31, 27, 19, 3, 6, 12, 24, 21, 15, 30, 25, 23, 11, 22, 9, 18, 1,};
+RF_ua32_t rf_qfor[32] = {
+ /* i = 0 */ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,},
+ /* i = 1 */ {0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 5, 7, 1, 3, 13, 15, 9, 11, 21, 23, 17, 19, 29, 31, 25, 27,},
+ /* i = 2 */ {0, 4, 8, 12, 16, 20, 24, 28, 5, 1, 13, 9, 21, 17, 29, 25, 10, 14, 2, 6, 26, 30, 18, 22, 15, 11, 7, 3, 31, 27, 23, 19,},
+ /* i = 3 */ {0, 8, 16, 24, 5, 13, 21, 29, 10, 2, 26, 18, 15, 7, 31, 23, 20, 28, 4, 12, 17, 25, 1, 9, 30, 22, 14, 6, 27, 19, 11, 3,},
+ /* i = 4 */ {0, 16, 5, 21, 10, 26, 15, 31, 20, 4, 17, 1, 30, 14, 27, 11, 13, 29, 8, 24, 7, 23, 2, 18, 25, 9, 28, 12, 19, 3, 22, 6,},
+ /* i = 5 */ {0, 5, 10, 15, 20, 17, 30, 27, 13, 8, 7, 2, 25, 28, 19, 22, 26, 31, 16, 21, 14, 11, 4, 1, 23, 18, 29, 24, 3, 6, 9, 12,},
+ /* i = 6 */ {0, 10, 20, 30, 13, 7, 25, 19, 26, 16, 14, 4, 23, 29, 3, 9, 17, 27, 5, 15, 28, 22, 8, 2, 11, 1, 31, 21, 6, 12, 18, 24,},
+ /* i = 7 */ {0, 20, 13, 25, 26, 14, 23, 3, 17, 5, 28, 8, 11, 31, 6, 18, 7, 19, 10, 30, 29, 9, 16, 4, 22, 2, 27, 15, 12, 24, 1, 21,},
+ /* i = 8 */ {0, 13, 26, 23, 17, 28, 11, 6, 7, 10, 29, 16, 22, 27, 12, 1, 14, 3, 20, 25, 31, 18, 5, 8, 9, 4, 19, 30, 24, 21, 2, 15,},
+ /* i = 9 */ {0, 26, 17, 11, 7, 29, 22, 12, 14, 20, 31, 5, 9, 19, 24, 2, 28, 6, 13, 23, 27, 1, 10, 16, 18, 8, 3, 25, 21, 15, 4, 30,},
+ /* i = 10 */ {0, 17, 7, 22, 14, 31, 9, 24, 28, 13, 27, 10, 18, 3, 21, 4, 29, 12, 26, 11, 19, 2, 20, 5, 1, 16, 6, 23, 15, 30, 8, 25,},
+ /* i = 11 */ {0, 7, 14, 9, 28, 27, 18, 21, 29, 26, 19, 20, 1, 6, 15, 8, 31, 24, 17, 22, 3, 4, 13, 10, 2, 5, 12, 11, 30, 25, 16, 23,},
+ /* i = 12 */ {0, 14, 28, 18, 29, 19, 1, 15, 31, 17, 3, 13, 2, 12, 30, 16, 27, 21, 7, 9, 6, 8, 26, 20, 4, 10, 24, 22, 25, 23, 5, 11,},
+ /* i = 13 */ {0, 28, 29, 1, 31, 3, 2, 30, 27, 7, 6, 26, 4, 24, 25, 5, 19, 15, 14, 18, 12, 16, 17, 13, 8, 20, 21, 9, 23, 11, 10, 22,},
+ /* i = 14 */ {0, 29, 31, 2, 27, 6, 4, 25, 19, 14, 12, 17, 8, 21, 23, 10, 3, 30, 28, 1, 24, 5, 7, 26, 16, 13, 15, 18, 11, 22, 20, 9,},
+ /* i = 15 */ {0, 31, 27, 4, 19, 12, 8, 23, 3, 28, 24, 7, 16, 15, 11, 20, 6, 25, 29, 2, 21, 10, 14, 17, 5, 26, 30, 1, 22, 9, 13, 18,},
+ /* i = 16 */ {0, 27, 19, 8, 3, 24, 16, 11, 6, 29, 21, 14, 5, 30, 22, 13, 12, 23, 31, 4, 15, 20, 28, 7, 10, 17, 25, 2, 9, 18, 26, 1,},
+ /* i = 17 */ {0, 19, 3, 16, 6, 21, 5, 22, 12, 31, 15, 28, 10, 25, 9, 26, 24, 11, 27, 8, 30, 13, 29, 14, 20, 7, 23, 4, 18, 1, 17, 2,},
+ /* i = 18 */ {0, 3, 6, 5, 12, 15, 10, 9, 24, 27, 30, 29, 20, 23, 18, 17, 21, 22, 19, 16, 25, 26, 31, 28, 13, 14, 11, 8, 1, 2, 7, 4,},
+ /* i = 19 */ {0, 6, 12, 10, 24, 30, 20, 18, 21, 19, 25, 31, 13, 11, 1, 7, 15, 9, 3, 5, 23, 17, 27, 29, 26, 28, 22, 16, 2, 4, 14, 8,},
+ /* i = 20 */ {0, 12, 24, 20, 21, 25, 13, 1, 15, 3, 23, 27, 26, 22, 2, 14, 30, 18, 6, 10, 11, 7, 19, 31, 17, 29, 9, 5, 4, 8, 28, 16,},
+ /* i = 21 */ {0, 24, 21, 13, 15, 23, 26, 2, 30, 6, 11, 19, 17, 9, 4, 28, 25, 1, 12, 20, 22, 14, 3, 27, 7, 31, 18, 10, 8, 16, 29, 5,},
+ /* i = 22 */ {0, 21, 15, 26, 30, 11, 17, 4, 25, 12, 22, 3, 7, 18, 8, 29, 23, 2, 24, 13, 9, 28, 6, 19, 14, 27, 1, 20, 16, 5, 31, 10,},
+ /* i = 23 */ {0, 15, 30, 17, 25, 22, 7, 8, 23, 24, 9, 6, 14, 1, 16, 31, 11, 4, 21, 26, 18, 29, 12, 3, 28, 19, 2, 13, 5, 10, 27, 20,},
+ /* i = 24 */ {0, 30, 25, 7, 23, 9, 14, 16, 11, 21, 18, 12, 28, 2, 5, 27, 22, 8, 15, 17, 1, 31, 24, 6, 29, 3, 4, 26, 10, 20, 19, 13,},
+ /* i = 25 */ {0, 25, 23, 14, 11, 18, 28, 5, 22, 15, 1, 24, 29, 4, 10, 19, 9, 16, 30, 7, 2, 27, 21, 12, 31, 6, 8, 17, 20, 13, 3, 26,},
+ /* i = 26 */ {0, 23, 11, 28, 22, 1, 29, 10, 9, 30, 2, 21, 31, 8, 20, 3, 18, 5, 25, 14, 4, 19, 15, 24, 27, 12, 16, 7, 13, 26, 6, 17,},
+ /* i = 27 */ {0, 11, 22, 29, 9, 2, 31, 20, 18, 25, 4, 15, 27, 16, 13, 6, 1, 10, 23, 28, 8, 3, 30, 21, 19, 24, 5, 14, 26, 17, 12, 7,},
+ /* i = 28 */ {0, 22, 9, 31, 18, 4, 27, 13, 1, 23, 8, 30, 19, 5, 26, 12, 2, 20, 11, 29, 16, 6, 25, 15, 3, 21, 10, 28, 17, 7, 24, 14,},
+ /* i = 29 */ {0, 9, 18, 27, 1, 8, 19, 26, 2, 11, 16, 25, 3, 10, 17, 24, 4, 13, 22, 31, 5, 12, 23, 30, 6, 15, 20, 29, 7, 14, 21, 28,},
+ /* i = 30 */ {0, 18, 1, 19, 2, 16, 3, 17, 4, 22, 5, 23, 6, 20, 7, 21, 8, 26, 9, 27, 10, 24, 11, 25, 12, 30, 13, 31, 14, 28, 15, 29,},
+ /* i = 31 */ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,},
+};
+#define RF_Q_DATA_COL(col_num) rf_rn[col_num],rf_qfor[28-(col_num)]
+RF_ua1024_t rf_qinv[1]; /* don't compile monster table into kernel */
+
+#endif /* (RF_INCLUDE_PQ > 0) || (RF_INCLUDE_RAID6 >
+ * 0) */
+#endif /* !_RF__RF_INVERTQ_H_ */
diff --git a/sys/dev/raidframe/rf_kintf.h b/sys/dev/raidframe/rf_kintf.h
new file mode 100644
index 0000000..ae2697b
--- /dev/null
+++ b/sys/dev/raidframe/rf_kintf.h
@@ -0,0 +1,82 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_kintf.h,v 1.15 2000/10/20 02:24:45 oster Exp $ */
+/*
+ * rf_kintf.h
+ *
+ * RAIDframe exported kernel interface
+ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Jim Zelenka
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+#ifndef _RF__RF_KINTF_H_
+#define _RF__RF_KINTF_H_
+
+#include <dev/raidframe/rf_types.h>
+
+#if defined(__NetBSD__)
+#define RF_LTSLEEP(cond, pri, text, time, mutex) \
+ ltsleep(cond, pri, text, time, mutex)
+#elif defined(__FreeBSD__)
+#if __FreeBSD_version > 500005
+#define RF_LTSLEEP(cond, pri, text, time, mutex) \
+ msleep(cond, mutex, pri, text, time);
+#else
+static __inline int
+RF_LTSLEEP(void *cond, int pri, const char *text, int time, struct simplelock *mutex)
+{
+ int ret;
+ if (mutex != NULL)
+ simple_unlock(mutex);
+ ret = tsleep(cond, pri, text, time);
+ if (mutex != NULL)
+ simple_lock(mutex);
+ return (ret);
+}
+#endif
+#endif
+
+int rf_GetSpareTableFromDaemon(RF_SparetWait_t * req);
+
+void raidstart(RF_Raid_t * raidPtr);
+int rf_DispatchKernelIO(RF_DiskQueue_t * queue, RF_DiskQueueData_t * req);
+
+int raidwrite_component_label(dev_t, struct vnode *, RF_ComponentLabel_t *);
+int raidread_component_label(dev_t, struct vnode *, RF_ComponentLabel_t *);
+
+#define RF_NORMAL_COMPONENT_UPDATE 0
+#define RF_FINAL_COMPONENT_UPDATE 1
+void rf_update_component_labels(RF_Raid_t *, int);
+int raidlookup(char *, RF_Thread_t, struct vnode **);
+int raidmarkclean(dev_t dev, struct vnode *b_vp, int);
+int raidmarkdirty(dev_t dev, struct vnode *b_vp, int);
+void raid_init_component_label(RF_Raid_t *, RF_ComponentLabel_t *);
+void rf_print_component_label(RF_ComponentLabel_t *);
+void rf_UnconfigureVnodes( RF_Raid_t * );
+void rf_close_component( RF_Raid_t *, struct vnode *, int);
+void rf_disk_unbusy(RF_RaidAccessDesc_t *);
+int raid_getcomponentsize(RF_Raid_t *, RF_RowCol_t, RF_RowCol_t);
+#endif /* _RF__RF_KINTF_H_ */
diff --git a/sys/dev/raidframe/rf_layout.c b/sys/dev/raidframe/rf_layout.c
new file mode 100644
index 0000000..539db67
--- /dev/null
+++ b/sys/dev/raidframe/rf_layout.c
@@ -0,0 +1,490 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_layout.c,v 1.9 2001/01/27 19:34:43 oster Exp $ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Mark Holland
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+/* rf_layout.c -- driver code dealing with layout and mapping issues
+ */
+
+#include <dev/raidframe/rf_types.h>
+#include <dev/raidframe/rf_archs.h>
+#include <dev/raidframe/rf_raid.h>
+#include <dev/raidframe/rf_configure.h>
+#include <dev/raidframe/rf_dag.h>
+#include <dev/raidframe/rf_desc.h>
+#include <dev/raidframe/rf_decluster.h>
+#include <dev/raidframe/rf_pq.h>
+#include <dev/raidframe/rf_declusterPQ.h>
+#include <dev/raidframe/rf_raid0.h>
+#include <dev/raidframe/rf_raid1.h>
+#include <dev/raidframe/rf_raid4.h>
+#include <dev/raidframe/rf_raid5.h>
+#include <dev/raidframe/rf_states.h>
+#if RF_INCLUDE_RAID5_RS > 0
+#include <dev/raidframe/rf_raid5_rotatedspare.h>
+#endif /* RF_INCLUDE_RAID5_RS > 0 */
+#if RF_INCLUDE_CHAINDECLUSTER > 0
+#include <dev/raidframe/rf_chaindecluster.h>
+#endif /* RF_INCLUDE_CHAINDECLUSTER > 0 */
+#if RF_INCLUDE_INTERDECLUSTER > 0
+#include <dev/raidframe/rf_interdecluster.h>
+#endif /* RF_INCLUDE_INTERDECLUSTER > 0 */
+#if RF_INCLUDE_PARITYLOGGING > 0
+#include <dev/raidframe/rf_paritylogging.h>
+#endif /* RF_INCLUDE_PARITYLOGGING > 0 */
+#if RF_INCLUDE_EVENODD > 0
+#include <dev/raidframe/rf_evenodd.h>
+#endif /* RF_INCLUDE_EVENODD > 0 */
+#include <dev/raidframe/rf_general.h>
+#include <dev/raidframe/rf_driver.h>
+#include <dev/raidframe/rf_parityscan.h>
+#include <dev/raidframe/rf_reconbuffer.h>
+#include <dev/raidframe/rf_reconutil.h>
+
+/***********************************************************************
+ *
+ * the layout switch defines all the layouts that are supported.
+ * fields are: layout ID, init routine, shutdown routine, map
+ * sector, map parity, identify stripe, dag selection, map stripeid
+ * to parity stripe id (optional), num faults tolerated, special
+ * flags.
+ *
+ ***********************************************************************/
+
+static RF_AccessState_t DefaultStates[] = {rf_QuiesceState,
+ rf_IncrAccessesCountState,
+ rf_MapState,
+ rf_LockState,
+ rf_CreateDAGState,
+ rf_ExecuteDAGState,
+ rf_ProcessDAGState,
+ rf_DecrAccessesCountState,
+ rf_CleanupState,
+ rf_LastState};
+
+#define RF_NU(a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p) a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p
+
+/* Note that if you add any new RAID types to this list, that you must
+ also update the mapsw[] table in the raidctl sources */
+
+static RF_LayoutSW_t mapsw[] = {
+#if RF_INCLUDE_PARITY_DECLUSTERING > 0
+ /* parity declustering */
+ {'T', "Parity declustering",
+ RF_NU(
+ rf_ConfigureDeclustered,
+ rf_MapSectorDeclustered, rf_MapParityDeclustered, NULL,
+ rf_IdentifyStripeDeclustered,
+ rf_RaidFiveDagSelect,
+ rf_MapSIDToPSIDDeclustered,
+ rf_GetDefaultHeadSepLimitDeclustered,
+ rf_GetDefaultNumFloatingReconBuffersDeclustered,
+ NULL, NULL,
+ rf_SubmitReconBufferBasic,
+ rf_VerifyParityBasic,
+ 1,
+ DefaultStates,
+ 0)
+ },
+#endif
+
+#if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
+ /* parity declustering with distributed sparing */
+ {'D', "Distributed sparing parity declustering",
+ RF_NU(
+ rf_ConfigureDeclusteredDS,
+ rf_MapSectorDeclustered, rf_MapParityDeclustered, NULL,
+ rf_IdentifyStripeDeclustered,
+ rf_RaidFiveDagSelect,
+ rf_MapSIDToPSIDDeclustered,
+ rf_GetDefaultHeadSepLimitDeclustered,
+ rf_GetDefaultNumFloatingReconBuffersDeclustered,
+ rf_GetNumSpareRUsDeclustered, rf_InstallSpareTable,
+ rf_SubmitReconBufferBasic,
+ rf_VerifyParityBasic,
+ 1,
+ DefaultStates,
+ RF_DISTRIBUTE_SPARE | RF_BD_DECLUSTERED)
+ },
+#endif
+
+#if RF_INCLUDE_DECL_PQ > 0
+ /* declustered P+Q */
+ {'Q', "Declustered P+Q",
+ RF_NU(
+ rf_ConfigureDeclusteredPQ,
+ rf_MapSectorDeclusteredPQ, rf_MapParityDeclusteredPQ, rf_MapQDeclusteredPQ,
+ rf_IdentifyStripeDeclusteredPQ,
+ rf_PQDagSelect,
+ rf_MapSIDToPSIDDeclustered,
+ rf_GetDefaultHeadSepLimitDeclustered,
+ rf_GetDefaultNumFloatingReconBuffersPQ,
+ NULL, NULL,
+ NULL,
+ rf_VerifyParityBasic,
+ 2,
+ DefaultStates,
+ 0)
+ },
+#endif /* RF_INCLUDE_DECL_PQ > 0 */
+
+#if RF_INCLUDE_RAID5_RS > 0
+ /* RAID 5 with rotated sparing */
+ {'R', "RAID Level 5 rotated sparing",
+ RF_NU(
+ rf_ConfigureRAID5_RS,
+ rf_MapSectorRAID5_RS, rf_MapParityRAID5_RS, NULL,
+ rf_IdentifyStripeRAID5_RS,
+ rf_RaidFiveDagSelect,
+ rf_MapSIDToPSIDRAID5_RS,
+ rf_GetDefaultHeadSepLimitRAID5,
+ rf_GetDefaultNumFloatingReconBuffersRAID5,
+ rf_GetNumSpareRUsRAID5_RS, NULL,
+ rf_SubmitReconBufferBasic,
+ rf_VerifyParityBasic,
+ 1,
+ DefaultStates,
+ RF_DISTRIBUTE_SPARE)
+ },
+#endif /* RF_INCLUDE_RAID5_RS > 0 */
+
+#if RF_INCLUDE_CHAINDECLUSTER > 0
+ /* Chained Declustering */
+ {'C', "Chained Declustering",
+ RF_NU(
+ rf_ConfigureChainDecluster,
+ rf_MapSectorChainDecluster, rf_MapParityChainDecluster, NULL,
+ rf_IdentifyStripeChainDecluster,
+ rf_RAIDCDagSelect,
+ rf_MapSIDToPSIDChainDecluster,
+ NULL,
+ NULL,
+ rf_GetNumSpareRUsChainDecluster, NULL,
+ rf_SubmitReconBufferBasic,
+ rf_VerifyParityBasic,
+ 1,
+ DefaultStates,
+ 0)
+ },
+#endif /* RF_INCLUDE_CHAINDECLUSTER > 0 */
+
+#if RF_INCLUDE_INTERDECLUSTER > 0
+ /* Interleaved Declustering */
+ {'I', "Interleaved Declustering",
+ RF_NU(
+ rf_ConfigureInterDecluster,
+ rf_MapSectorInterDecluster, rf_MapParityInterDecluster, NULL,
+ rf_IdentifyStripeInterDecluster,
+ rf_RAIDIDagSelect,
+ rf_MapSIDToPSIDInterDecluster,
+ rf_GetDefaultHeadSepLimitInterDecluster,
+ rf_GetDefaultNumFloatingReconBuffersInterDecluster,
+ rf_GetNumSpareRUsInterDecluster, NULL,
+ rf_SubmitReconBufferBasic,
+ rf_VerifyParityBasic,
+ 1,
+ DefaultStates,
+ RF_DISTRIBUTE_SPARE)
+ },
+#endif /* RF_INCLUDE_INTERDECLUSTER > 0 */
+
+#if RF_INCLUDE_RAID0 > 0
+ /* RAID level 0 */
+ {'0', "RAID Level 0",
+ RF_NU(
+ rf_ConfigureRAID0,
+ rf_MapSectorRAID0, rf_MapParityRAID0, NULL,
+ rf_IdentifyStripeRAID0,
+ rf_RAID0DagSelect,
+ rf_MapSIDToPSIDRAID0,
+ NULL,
+ NULL,
+ NULL, NULL,
+ NULL,
+ rf_VerifyParityRAID0,
+ 0,
+ DefaultStates,
+ 0)
+ },
+#endif /* RF_INCLUDE_RAID0 > 0 */
+
+#if RF_INCLUDE_RAID1 > 0
+ /* RAID level 1 */
+ {'1', "RAID Level 1",
+ RF_NU(
+ rf_ConfigureRAID1,
+ rf_MapSectorRAID1, rf_MapParityRAID1, NULL,
+ rf_IdentifyStripeRAID1,
+ rf_RAID1DagSelect,
+ rf_MapSIDToPSIDRAID1,
+ NULL,
+ NULL,
+ NULL, NULL,
+ rf_SubmitReconBufferRAID1,
+ rf_VerifyParityRAID1,
+ 1,
+ DefaultStates,
+ 0)
+ },
+#endif /* RF_INCLUDE_RAID1 > 0 */
+
+#if RF_INCLUDE_RAID4 > 0
+ /* RAID level 4 */
+ {'4', "RAID Level 4",
+ RF_NU(
+ rf_ConfigureRAID4,
+ rf_MapSectorRAID4, rf_MapParityRAID4, NULL,
+ rf_IdentifyStripeRAID4,
+ rf_RaidFiveDagSelect,
+ rf_MapSIDToPSIDRAID4,
+ rf_GetDefaultHeadSepLimitRAID4,
+ rf_GetDefaultNumFloatingReconBuffersRAID4,
+ NULL, NULL,
+ rf_SubmitReconBufferBasic,
+ rf_VerifyParityBasic,
+ 1,
+ DefaultStates,
+ 0)
+ },
+#endif /* RF_INCLUDE_RAID4 > 0 */
+
+#if RF_INCLUDE_RAID5 > 0
+ /* RAID level 5 */
+ {'5', "RAID Level 5",
+ RF_NU(
+ rf_ConfigureRAID5,
+ rf_MapSectorRAID5, rf_MapParityRAID5, NULL,
+ rf_IdentifyStripeRAID5,
+ rf_RaidFiveDagSelect,
+ rf_MapSIDToPSIDRAID5,
+ rf_GetDefaultHeadSepLimitRAID5,
+ rf_GetDefaultNumFloatingReconBuffersRAID5,
+ NULL, NULL,
+ rf_SubmitReconBufferBasic,
+ rf_VerifyParityBasic,
+ 1,
+ DefaultStates,
+ 0)
+ },
+#endif /* RF_INCLUDE_RAID5 > 0 */
+
+#if RF_INCLUDE_EVENODD > 0
+ /* Evenodd */
+ {'E', "EvenOdd",
+ RF_NU(
+ rf_ConfigureEvenOdd,
+ rf_MapSectorRAID5, rf_MapParityEvenOdd, rf_MapEEvenOdd,
+ rf_IdentifyStripeEvenOdd,
+ rf_EODagSelect,
+ rf_MapSIDToPSIDRAID5,
+ NULL,
+ NULL,
+ NULL, NULL,
+ NULL, /* no reconstruction, yet */
+ rf_VerifyParityEvenOdd,
+ 2,
+ DefaultStates,
+ 0)
+ },
+#endif /* RF_INCLUDE_EVENODD > 0 */
+
+#if RF_INCLUDE_EVENODD > 0
+ /* Declustered Evenodd */
+ {'e', "Declustered EvenOdd",
+ RF_NU(
+ rf_ConfigureDeclusteredPQ,
+ rf_MapSectorDeclusteredPQ, rf_MapParityDeclusteredPQ, rf_MapQDeclusteredPQ,
+ rf_IdentifyStripeDeclusteredPQ,
+ rf_EODagSelect,
+ rf_MapSIDToPSIDRAID5,
+ rf_GetDefaultHeadSepLimitDeclustered,
+ rf_GetDefaultNumFloatingReconBuffersPQ,
+ NULL, NULL,
+ NULL, /* no reconstruction, yet */
+ rf_VerifyParityEvenOdd,
+ 2,
+ DefaultStates,
+ 0)
+ },
+#endif /* RF_INCLUDE_EVENODD > 0 */
+
+#if RF_INCLUDE_PARITYLOGGING > 0
+ /* parity logging */
+ {'L', "Parity logging",
+ RF_NU(
+ rf_ConfigureParityLogging,
+ rf_MapSectorParityLogging, rf_MapParityParityLogging, NULL,
+ rf_IdentifyStripeParityLogging,
+ rf_ParityLoggingDagSelect,
+ rf_MapSIDToPSIDParityLogging,
+ rf_GetDefaultHeadSepLimitParityLogging,
+ rf_GetDefaultNumFloatingReconBuffersParityLogging,
+ NULL, NULL,
+ rf_SubmitReconBufferBasic,
+ NULL,
+ 1,
+ DefaultStates,
+ 0)
+ },
+#endif /* RF_INCLUDE_PARITYLOGGING > 0 */
+
+ /* end-of-list marker */
+ {'\0', NULL,
+ RF_NU(
+ NULL,
+ NULL, NULL, NULL,
+ NULL,
+ NULL,
+ NULL,
+ NULL,
+ NULL,
+ NULL, NULL,
+ NULL,
+ NULL,
+ 0,
+ NULL,
+ 0)
+ }
+};
+
+RF_LayoutSW_t *
+rf_GetLayout(RF_ParityConfig_t parityConfig)
+{
+ RF_LayoutSW_t *p;
+
+ /* look up the specific layout */
+ for (p = &mapsw[0]; p->parityConfig; p++)
+ if (p->parityConfig == parityConfig)
+ break;
+ if (!p->parityConfig)
+ return (NULL);
+ RF_ASSERT(p->parityConfig == parityConfig);
+ return (p);
+}
+
+/*****************************************************************************
+ *
+ * ConfigureLayout --
+ *
+ * read the configuration file and set up the RAID layout parameters.
+ * After reading common params, invokes the layout-specific
+ * configuration routine to finish the configuration.
+ *
+ ****************************************************************************/
+int
+rf_ConfigureLayout(
+ RF_ShutdownList_t ** listp,
+ RF_Raid_t * raidPtr,
+ RF_Config_t * cfgPtr)
+{
+ RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
+ RF_ParityConfig_t parityConfig;
+ RF_LayoutSW_t *p;
+ int retval;
+
+ layoutPtr->sectorsPerStripeUnit = cfgPtr->sectPerSU;
+ layoutPtr->SUsPerPU = cfgPtr->SUsPerPU;
+ layoutPtr->SUsPerRU = cfgPtr->SUsPerRU;
+ parityConfig = cfgPtr->parityConfig;
+
+ if (layoutPtr->sectorsPerStripeUnit <= 0) {
+ RF_ERRORMSG2("raid%d: Invalid sectorsPerStripeUnit: %d\n",
+ raidPtr->raidid,
+ (int)layoutPtr->sectorsPerStripeUnit );
+ return (EINVAL);
+ }
+
+ layoutPtr->stripeUnitsPerDisk = raidPtr->sectorsPerDisk / layoutPtr->sectorsPerStripeUnit;
+
+ p = rf_GetLayout(parityConfig);
+ if (p == NULL) {
+ RF_ERRORMSG1("Unknown parity configuration '%c'", parityConfig);
+ return (EINVAL);
+ }
+ RF_ASSERT(p->parityConfig == parityConfig);
+ layoutPtr->map = p;
+
+ /* initialize the specific layout */
+
+ retval = (p->Configure) (listp, raidPtr, cfgPtr);
+
+ if (retval)
+ return (retval);
+
+ layoutPtr->dataBytesPerStripe = layoutPtr->dataSectorsPerStripe << raidPtr->logBytesPerSector;
+ raidPtr->sectorsPerDisk = layoutPtr->stripeUnitsPerDisk * layoutPtr->sectorsPerStripeUnit;
+
+ if (rf_forceNumFloatingReconBufs >= 0) {
+ raidPtr->numFloatingReconBufs = rf_forceNumFloatingReconBufs;
+ } else {
+ raidPtr->numFloatingReconBufs = rf_GetDefaultNumFloatingReconBuffers(raidPtr);
+ }
+
+ if (rf_forceHeadSepLimit >= 0) {
+ raidPtr->headSepLimit = rf_forceHeadSepLimit;
+ } else {
+ raidPtr->headSepLimit = rf_GetDefaultHeadSepLimit(raidPtr);
+ }
+
+ printf("RAIDFRAME: Configure (%s): total number of sectors is %lu (%lu MB)\n",
+ layoutPtr->map->configName,
+ (unsigned long) raidPtr->totalSectors,
+ (unsigned long) (raidPtr->totalSectors / 1024 * (1 << raidPtr->logBytesPerSector) / 1024));
+ if (raidPtr->headSepLimit >= 0) {
+ printf("RAIDFRAME(%s): Using %ld floating recon bufs with head sep limit %ld\n",
+ layoutPtr->map->configName, (long) raidPtr->numFloatingReconBufs, (long) raidPtr->headSepLimit);
+ } else {
+ printf("RAIDFRAME(%s): Using %ld floating recon bufs with no head sep limit\n",
+ layoutPtr->map->configName, (long) raidPtr->numFloatingReconBufs);
+ }
+
+ return (0);
+}
+/* typically there is a 1-1 mapping between stripes and parity stripes.
+ * however, the declustering code supports packing multiple stripes into
+ * a single parity stripe, so as to increase the size of the reconstruction
+ * unit without affecting the size of the stripe unit. This routine finds
+ * the parity stripe identifier associated with a stripe ID. There is also
+ * a RaidAddressToParityStripeID macro in layout.h
+ */
+RF_StripeNum_t
+rf_MapStripeIDToParityStripeID(layoutPtr, stripeID, which_ru)
+ RF_RaidLayout_t *layoutPtr;
+ RF_StripeNum_t stripeID;
+ RF_ReconUnitNum_t *which_ru;
+{
+ RF_StripeNum_t parityStripeID;
+
+ /* quick exit in the common case of SUsPerPU==1 */
+ if ((layoutPtr->SUsPerPU == 1) || !layoutPtr->map->MapSIDToPSID) {
+ *which_ru = 0;
+ return (stripeID);
+ } else {
+ (layoutPtr->map->MapSIDToPSID) (layoutPtr, stripeID, &parityStripeID, which_ru);
+ }
+ return (parityStripeID);
+}
diff --git a/sys/dev/raidframe/rf_layout.h b/sys/dev/raidframe/rf_layout.h
new file mode 100644
index 0000000..2482556
--- /dev/null
+++ b/sys/dev/raidframe/rf_layout.h
@@ -0,0 +1,349 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_layout.h,v 1.5 2001/01/26 04:14:14 oster Exp $ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Mark Holland
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+/* rf_layout.h -- header file defining layout data structures
+ */
+
+#ifndef _RF__RF_LAYOUT_H_
+#define _RF__RF_LAYOUT_H_
+
+#include <dev/raidframe/rf_types.h>
+#include <dev/raidframe/rf_archs.h>
+#include <dev/raidframe/rf_alloclist.h>
+
+#ifndef _KERNEL
+#include <stdio.h>
+#endif
+
+/*****************************************************************************************
+ *
+ * This structure identifies all layout-specific operations and parameters.
+ *
+ ****************************************************************************************/
+
+typedef struct RF_LayoutSW_s {
+ RF_ParityConfig_t parityConfig;
+ const char *configName;
+
+#ifndef _KERNEL
+ /* layout-specific parsing */
+ int (*MakeLayoutSpecific) (FILE * fp, RF_Config_t * cfgPtr, void *arg);
+ void *makeLayoutSpecificArg;
+#endif /* !KERNEL */
+
+#if RF_UTILITY == 0
+ /* initialization routine */
+ int (*Configure) (RF_ShutdownList_t ** shutdownListp, RF_Raid_t * raidPtr, RF_Config_t * cfgPtr);
+
+ /* routine to map RAID sector address -> physical (row, col, offset) */
+ void (*MapSector) (RF_Raid_t * raidPtr, RF_RaidAddr_t raidSector,
+ RF_RowCol_t * row, RF_RowCol_t * col, RF_SectorNum_t * diskSector, int remap);
+
+ /* routine to map RAID sector address -> physical (r,c,o) of parity
+ * unit */
+ void (*MapParity) (RF_Raid_t * raidPtr, RF_RaidAddr_t raidSector,
+ RF_RowCol_t * row, RF_RowCol_t * col, RF_SectorNum_t * diskSector, int remap);
+
+ /* routine to map RAID sector address -> physical (r,c,o) of Q unit */
+ void (*MapQ) (RF_Raid_t * raidPtr, RF_RaidAddr_t raidSector, RF_RowCol_t * row,
+ RF_RowCol_t * col, RF_SectorNum_t * diskSector, int remap);
+
+ /* routine to identify the disks comprising a stripe */
+ void (*IdentifyStripe) (RF_Raid_t * raidPtr, RF_RaidAddr_t addr,
+ RF_RowCol_t ** diskids, RF_RowCol_t * outRow);
+
+ /* routine to select a dag */
+ void (*SelectionFunc) (RF_Raid_t * raidPtr, RF_IoType_t type,
+ RF_AccessStripeMap_t * asmap,
+ RF_VoidFuncPtr *);
+#if 0
+ void (**createFunc) (RF_Raid_t *,
+ RF_AccessStripeMap_t *,
+ RF_DagHeader_t *, void *,
+ RF_RaidAccessFlags_t,
+ RF_AllocListElem_t *);
+
+#endif
+
+ /* map a stripe ID to a parity stripe ID. This is typically the
+ * identity mapping */
+ void (*MapSIDToPSID) (RF_RaidLayout_t * layoutPtr, RF_StripeNum_t stripeID,
+ RF_StripeNum_t * psID, RF_ReconUnitNum_t * which_ru);
+
+ /* get default head separation limit (may be NULL) */
+ RF_HeadSepLimit_t(*GetDefaultHeadSepLimit) (RF_Raid_t * raidPtr);
+
+ /* get default num recon buffers (may be NULL) */
+ int (*GetDefaultNumFloatingReconBuffers) (RF_Raid_t * raidPtr);
+
+ /* get number of spare recon units (may be NULL) */
+ RF_ReconUnitCount_t(*GetNumSpareRUs) (RF_Raid_t * raidPtr);
+
+ /* spare table installation (may be NULL) */
+ int (*InstallSpareTable) (RF_Raid_t * raidPtr, RF_RowCol_t frow, RF_RowCol_t fcol);
+
+ /* recon buffer submission function */
+ int (*SubmitReconBuffer) (RF_ReconBuffer_t * rbuf, int keep_it,
+ int use_committed);
+
+ /*
+ * verify that parity information for a stripe is correct
+ * see rf_parityscan.h for return vals
+ */
+ int (*VerifyParity) (RF_Raid_t * raidPtr, RF_RaidAddr_t raidAddr,
+ RF_PhysDiskAddr_t * parityPDA, int correct_it, RF_RaidAccessFlags_t flags);
+
+ /* number of faults tolerated by this mapping */
+ int faultsTolerated;
+
+ /* states to step through in an access. Must end with "LastState". The
+ * default is DefaultStates in rf_layout.c */
+ RF_AccessState_t *states;
+
+ RF_AccessStripeMapFlags_t flags;
+#endif /* RF_UTILITY == 0 */
+} RF_LayoutSW_t;
+/* enables remapping to spare location under dist sparing */
+#define RF_REMAP 1
+#define RF_DONT_REMAP 0
+
+/*
+ * Flags values for RF_AccessStripeMapFlags_t
+ */
+#define RF_NO_STRIPE_LOCKS 0x0001 /* suppress stripe locks */
+#define RF_DISTRIBUTE_SPARE 0x0002 /* distribute spare space in archs
+ * that support it */
+#define RF_BD_DECLUSTERED 0x0004 /* declustering uses block designs */
+
+/*************************************************************************
+ *
+ * this structure forms the layout component of the main Raid
+ * structure. It describes everything needed to define and perform
+ * the mapping of logical RAID addresses <-> physical disk addresses.
+ *
+ *************************************************************************/
+struct RF_RaidLayout_s {
+ /* configuration parameters */
+ RF_SectorCount_t sectorsPerStripeUnit; /* number of sectors in one
+ * stripe unit */
+ RF_StripeCount_t SUsPerPU; /* stripe units per parity unit */
+ RF_StripeCount_t SUsPerRU; /* stripe units per reconstruction
+ * unit */
+
+ /* redundant-but-useful info computed from the above, used in all
+ * layouts */
+ RF_StripeCount_t numStripe; /* total number of stripes in the
+ * array */
+ RF_SectorCount_t dataSectorsPerStripe;
+ RF_StripeCount_t dataStripeUnitsPerDisk;
+ u_int bytesPerStripeUnit;
+ u_int dataBytesPerStripe;
+ RF_StripeCount_t numDataCol; /* number of SUs of data per stripe
+ * (name here is a la RAID4) */
+ RF_StripeCount_t numParityCol; /* number of SUs of parity per stripe.
+ * Always 1 for now */
+ RF_StripeCount_t numParityLogCol; /* number of SUs of parity log
+ * per stripe. Always 1 for
+ * now */
+ RF_StripeCount_t stripeUnitsPerDisk;
+
+ RF_LayoutSW_t *map; /* ptr to struct holding mapping fns and
+ * information */
+ void *layoutSpecificInfo; /* ptr to a structure holding
+ * layout-specific params */
+};
+/*****************************************************************************************
+ *
+ * The mapping code returns a pointer to a list of AccessStripeMap structures, which
+ * describes all the mapping information about an access. The list contains one
+ * AccessStripeMap structure per stripe touched by the access. Each element in the list
+ * contains a stripe identifier and a pointer to a list of PhysDiskAddr structuress. Each
+ * element in this latter list describes the physical location of a stripe unit accessed
+ * within the corresponding stripe.
+ *
+ ****************************************************************************************/
+
+#define RF_PDA_TYPE_DATA 0
+#define RF_PDA_TYPE_PARITY 1
+#define RF_PDA_TYPE_Q 2
+
+struct RF_PhysDiskAddr_s {
+ RF_RowCol_t row, col; /* disk identifier */
+ RF_SectorNum_t startSector; /* sector offset into the disk */
+ RF_SectorCount_t numSector; /* number of sectors accessed */
+ int type; /* used by higher levels: currently, data,
+ * parity, or q */
+ caddr_t bufPtr; /* pointer to buffer supplying/receiving data */
+ RF_RaidAddr_t raidAddress; /* raid address corresponding to this
+ * physical disk address */
+ RF_PhysDiskAddr_t *next;
+};
+#define RF_MAX_FAILED_PDA RF_MAXCOL
+
+struct RF_AccessStripeMap_s {
+ RF_StripeNum_t stripeID;/* the stripe index */
+ RF_RaidAddr_t raidAddress; /* the starting raid address within
+ * this stripe */
+ RF_RaidAddr_t endRaidAddress; /* raid address one sector past the
+ * end of the access */
+ RF_SectorCount_t totalSectorsAccessed; /* total num sectors
+ * identified in physInfo list */
+ RF_StripeCount_t numStripeUnitsAccessed; /* total num elements in
+ * physInfo list */
+ int numDataFailed; /* number of failed data disks accessed */
+ int numParityFailed;/* number of failed parity disks accessed (0
+ * or 1) */
+ int numQFailed; /* number of failed Q units accessed (0 or 1) */
+ RF_AccessStripeMapFlags_t flags; /* various flags */
+#if 0
+ RF_PhysDiskAddr_t *failedPDA; /* points to the PDA that has failed */
+ RF_PhysDiskAddr_t *failedPDAtwo; /* points to the second PDA
+ * that has failed, if any */
+#else
+ int numFailedPDAs; /* number of failed phys addrs */
+ RF_PhysDiskAddr_t *failedPDAs[RF_MAX_FAILED_PDA]; /* array of failed phys
+ * addrs */
+#endif
+ RF_PhysDiskAddr_t *physInfo; /* a list of PhysDiskAddr structs */
+ RF_PhysDiskAddr_t *parityInfo; /* list of physical addrs for the
+ * parity (P of P + Q ) */
+ RF_PhysDiskAddr_t *qInfo; /* list of physical addrs for the Q of
+ * P + Q */
+ RF_LockReqDesc_t lockReqDesc; /* used for stripe locking */
+ RF_RowCol_t origRow; /* the original row: we may redirect the acc
+ * to a different row */
+ RF_AccessStripeMap_t *next;
+};
+/* flag values */
+#define RF_ASM_REDIR_LARGE_WRITE 0x00000001 /* allows large-write creation
+ * code to redirect failed
+ * accs */
+#define RF_ASM_BAILOUT_DAG_USED 0x00000002 /* allows us to detect
+ * recursive calls to the
+ * bailout write dag */
+#define RF_ASM_FLAGS_LOCK_TRIED 0x00000004 /* we've acquired the lock on
+ * the first parity range in
+ * this parity stripe */
+#define RF_ASM_FLAGS_LOCK_TRIED2 0x00000008 /* we've acquired the lock on
+ * the 2nd parity range in
+ * this parity stripe */
+#define RF_ASM_FLAGS_FORCE_TRIED 0x00000010 /* we've done the force-recon
+ * call on this parity stripe */
+#define RF_ASM_FLAGS_RECON_BLOCKED 0x00000020 /* we blocked recon => we must
+ * unblock it later */
+
+struct RF_AccessStripeMapHeader_s {
+ RF_StripeCount_t numStripes; /* total number of stripes touched by
+ * this acc */
+ RF_AccessStripeMap_t *stripeMap; /* pointer to the actual map.
+ * Also used for making lists */
+ RF_AccessStripeMapHeader_t *next;
+};
+/*****************************************************************************************
+ *
+ * various routines mapping addresses in the RAID address space. These work across
+ * all layouts. DON'T PUT ANY LAYOUT-SPECIFIC CODE HERE.
+ *
+ ****************************************************************************************/
+
+/* return the identifier of the stripe containing the given address */
+#define rf_RaidAddressToStripeID(_layoutPtr_, _addr_) \
+ ( ((_addr_) / (_layoutPtr_)->sectorsPerStripeUnit) / (_layoutPtr_)->numDataCol )
+
+/* return the raid address of the start of the indicates stripe ID */
+#define rf_StripeIDToRaidAddress(_layoutPtr_, _sid_) \
+ ( ((_sid_) * (_layoutPtr_)->sectorsPerStripeUnit) * (_layoutPtr_)->numDataCol )
+
+/* return the identifier of the stripe containing the given stripe unit id */
+#define rf_StripeUnitIDToStripeID(_layoutPtr_, _addr_) \
+ ( (_addr_) / (_layoutPtr_)->numDataCol )
+
+/* return the identifier of the stripe unit containing the given address */
+#define rf_RaidAddressToStripeUnitID(_layoutPtr_, _addr_) \
+ ( ((_addr_) / (_layoutPtr_)->sectorsPerStripeUnit) )
+
+/* return the RAID address of next stripe boundary beyond the given address */
+#define rf_RaidAddressOfNextStripeBoundary(_layoutPtr_, _addr_) \
+ ( (((_addr_)/(_layoutPtr_)->dataSectorsPerStripe)+1) * (_layoutPtr_)->dataSectorsPerStripe )
+
+/* return the RAID address of the start of the stripe containing the given address */
+#define rf_RaidAddressOfPrevStripeBoundary(_layoutPtr_, _addr_) \
+ ( (((_addr_)/(_layoutPtr_)->dataSectorsPerStripe)+0) * (_layoutPtr_)->dataSectorsPerStripe )
+
+/* return the RAID address of next stripe unit boundary beyond the given address */
+#define rf_RaidAddressOfNextStripeUnitBoundary(_layoutPtr_, _addr_) \
+ ( (((_addr_)/(_layoutPtr_)->sectorsPerStripeUnit)+1L)*(_layoutPtr_)->sectorsPerStripeUnit )
+
+/* return the RAID address of the start of the stripe unit containing RAID address _addr_ */
+#define rf_RaidAddressOfPrevStripeUnitBoundary(_layoutPtr_, _addr_) \
+ ( (((_addr_)/(_layoutPtr_)->sectorsPerStripeUnit)+0)*(_layoutPtr_)->sectorsPerStripeUnit )
+
+/* returns the offset into the stripe. used by RaidAddressStripeAligned */
+#define rf_RaidAddressStripeOffset(_layoutPtr_, _addr_) \
+ ( (_addr_) % ((_layoutPtr_)->dataSectorsPerStripe) )
+
+/* returns the offset into the stripe unit. */
+#define rf_StripeUnitOffset(_layoutPtr_, _addr_) \
+ ( (_addr_) % ((_layoutPtr_)->sectorsPerStripeUnit) )
+
+/* returns nonzero if the given RAID address is stripe-aligned */
+#define rf_RaidAddressStripeAligned( __layoutPtr__, __addr__ ) \
+ ( rf_RaidAddressStripeOffset(__layoutPtr__, __addr__) == 0 )
+
+/* returns nonzero if the given address is stripe-unit aligned */
+#define rf_StripeUnitAligned( __layoutPtr__, __addr__ ) \
+ ( rf_StripeUnitOffset(__layoutPtr__, __addr__) == 0 )
+
+/* convert an address expressed in RAID blocks to/from an addr expressed in bytes */
+#define rf_RaidAddressToByte(_raidPtr_, _addr_) \
+ ( (_addr_) << ( (_raidPtr_)->logBytesPerSector ) )
+
+#define rf_ByteToRaidAddress(_raidPtr_, _addr_) \
+ ( (_addr_) >> ( (_raidPtr_)->logBytesPerSector ) )
+
+/* convert a raid address to/from a parity stripe ID. Conversion to raid address is easy,
+ * since we're asking for the address of the first sector in the parity stripe. Conversion to a
+ * parity stripe ID is more complex, since stripes are not contiguously allocated in
+ * parity stripes.
+ */
+#define rf_RaidAddressToParityStripeID(_layoutPtr_, _addr_, _ru_num_) \
+ rf_MapStripeIDToParityStripeID( (_layoutPtr_), rf_RaidAddressToStripeID( (_layoutPtr_), (_addr_) ), (_ru_num_) )
+
+#define rf_ParityStripeIDToRaidAddress(_layoutPtr_, _psid_) \
+ ( (_psid_) * (_layoutPtr_)->SUsPerPU * (_layoutPtr_)->numDataCol * (_layoutPtr_)->sectorsPerStripeUnit )
+
+RF_LayoutSW_t *rf_GetLayout(RF_ParityConfig_t parityConfig);
+int
+rf_ConfigureLayout(RF_ShutdownList_t ** listp, RF_Raid_t * raidPtr,
+ RF_Config_t * cfgPtr);
+RF_StripeNum_t
+rf_MapStripeIDToParityStripeID(RF_RaidLayout_t * layoutPtr,
+ RF_StripeNum_t stripeID, RF_ReconUnitNum_t * which_ru);
+
+#endif /* !_RF__RF_LAYOUT_H_ */
diff --git a/sys/dev/raidframe/rf_map.c b/sys/dev/raidframe/rf_map.c
new file mode 100644
index 0000000..98f455f
--- /dev/null
+++ b/sys/dev/raidframe/rf_map.c
@@ -0,0 +1,907 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_map.c,v 1.5 2000/06/29 00:22:27 oster Exp $ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Mark Holland
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+/**************************************************************************
+ *
+ * map.c -- main code for mapping RAID addresses to physical disk addresses
+ *
+ **************************************************************************/
+
+#include <dev/raidframe/rf_types.h>
+#include <dev/raidframe/rf_threadstuff.h>
+#include <dev/raidframe/rf_raid.h>
+#include <dev/raidframe/rf_general.h>
+#include <dev/raidframe/rf_map.h>
+#include <dev/raidframe/rf_freelist.h>
+#include <dev/raidframe/rf_shutdown.h>
+
+static void rf_FreePDAList(RF_PhysDiskAddr_t * start, RF_PhysDiskAddr_t * end, int count);
+static void
+rf_FreeASMList(RF_AccessStripeMap_t * start, RF_AccessStripeMap_t * end,
+ int count);
+
+/*****************************************************************************************
+ *
+ * MapAccess -- main 1st order mapping routine.
+ *
+ * Maps an access in the RAID address space to the corresponding set of physical disk
+ * addresses. The result is returned as a list of AccessStripeMap structures, one per
+ * stripe accessed. Each ASM structure contains a pointer to a list of PhysDiskAddr
+ * structures, which describe the physical locations touched by the user access. Note
+ * that this routine returns only static mapping information, i.e. the list of physical
+ * addresses returned does not necessarily identify the set of physical locations that
+ * will actually be read or written.
+ *
+ * The routine also maps the parity. The physical disk location returned always
+ * indicates the entire parity unit, even when only a subset of it is being accessed.
+ * This is because an access that is not stripe unit aligned but that spans a stripe
+ * unit boundary may require access two distinct portions of the parity unit, and we
+ * can't yet tell which portion(s) we'll actually need. We leave it up to the algorithm
+ * selection code to decide what subset of the parity unit to access.
+ *
+ * Note that addresses in the RAID address space must always be maintained as
+ * longs, instead of ints.
+ *
+ * This routine returns NULL if numBlocks is 0
+ *
+ ****************************************************************************************/
+
+RF_AccessStripeMapHeader_t *
+rf_MapAccess(raidPtr, raidAddress, numBlocks, buffer, remap)
+ RF_Raid_t *raidPtr;
+ RF_RaidAddr_t raidAddress; /* starting address in RAID address
+ * space */
+ RF_SectorCount_t numBlocks; /* number of blocks in RAID address
+ * space to access */
+ caddr_t buffer; /* buffer to supply/receive data */
+ int remap; /* 1 => remap addresses to spare space */
+{
+ RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
+ RF_AccessStripeMapHeader_t *asm_hdr = NULL;
+ RF_AccessStripeMap_t *asm_list = NULL, *asm_p = NULL;
+ int faultsTolerated = layoutPtr->map->faultsTolerated;
+ RF_RaidAddr_t startAddress = raidAddress; /* we'll change
+ * raidAddress along the
+ * way */
+ RF_RaidAddr_t endAddress = raidAddress + numBlocks;
+ RF_RaidDisk_t **disks = raidPtr->Disks;
+
+ RF_PhysDiskAddr_t *pda_p, *pda_q;
+ RF_StripeCount_t numStripes = 0;
+ RF_RaidAddr_t stripeRealEndAddress, stripeEndAddress, nextStripeUnitAddress;
+ RF_RaidAddr_t startAddrWithinStripe, lastRaidAddr;
+ RF_StripeCount_t totStripes;
+ RF_StripeNum_t stripeID, lastSID, SUID, lastSUID;
+ RF_AccessStripeMap_t *asmList, *t_asm;
+ RF_PhysDiskAddr_t *pdaList, *t_pda;
+
+ /* allocate all the ASMs and PDAs up front */
+ lastRaidAddr = raidAddress + numBlocks - 1;
+ stripeID = rf_RaidAddressToStripeID(layoutPtr, raidAddress);
+ lastSID = rf_RaidAddressToStripeID(layoutPtr, lastRaidAddr);
+ totStripes = lastSID - stripeID + 1;
+ SUID = rf_RaidAddressToStripeUnitID(layoutPtr, raidAddress);
+ lastSUID = rf_RaidAddressToStripeUnitID(layoutPtr, lastRaidAddr);
+
+ asmList = rf_AllocASMList(totStripes);
+ pdaList = rf_AllocPDAList(lastSUID - SUID + 1 + faultsTolerated * totStripes); /* may also need pda(s)
+ * per stripe for parity */
+
+ if (raidAddress + numBlocks > raidPtr->totalSectors) {
+ RF_ERRORMSG1("Unable to map access because offset (%d) was invalid\n",
+ (int) raidAddress);
+ return (NULL);
+ }
+ if (rf_mapDebug)
+ rf_PrintRaidAddressInfo(raidPtr, raidAddress, numBlocks);
+ for (; raidAddress < endAddress;) {
+ /* make the next stripe structure */
+ RF_ASSERT(asmList);
+ t_asm = asmList;
+ asmList = asmList->next;
+ bzero((char *) t_asm, sizeof(RF_AccessStripeMap_t));
+ if (!asm_p)
+ asm_list = asm_p = t_asm;
+ else {
+ asm_p->next = t_asm;
+ asm_p = asm_p->next;
+ }
+ numStripes++;
+
+ /* map SUs from current location to the end of the stripe */
+ asm_p->stripeID = /* rf_RaidAddressToStripeID(layoutPtr,
+ raidAddress) */ stripeID++;
+ stripeRealEndAddress = rf_RaidAddressOfNextStripeBoundary(layoutPtr, raidAddress);
+ stripeEndAddress = RF_MIN(endAddress, stripeRealEndAddress);
+ asm_p->raidAddress = raidAddress;
+ asm_p->endRaidAddress = stripeEndAddress;
+
+ /* map each stripe unit in the stripe */
+ pda_p = NULL;
+ startAddrWithinStripe = raidAddress; /* Raid addr of start of
+ * portion of access
+ * that is within this
+ * stripe */
+ for (; raidAddress < stripeEndAddress;) {
+ RF_ASSERT(pdaList);
+ t_pda = pdaList;
+ pdaList = pdaList->next;
+ bzero((char *) t_pda, sizeof(RF_PhysDiskAddr_t));
+ if (!pda_p)
+ asm_p->physInfo = pda_p = t_pda;
+ else {
+ pda_p->next = t_pda;
+ pda_p = pda_p->next;
+ }
+
+ pda_p->type = RF_PDA_TYPE_DATA;
+ (layoutPtr->map->MapSector) (raidPtr, raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), remap);
+
+ /* mark any failures we find. failedPDA is don't-care
+ * if there is more than one failure */
+ pda_p->raidAddress = raidAddress; /* the RAID address
+ * corresponding to this
+ * physical disk address */
+ nextStripeUnitAddress = rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, raidAddress);
+ pda_p->numSector = RF_MIN(endAddress, nextStripeUnitAddress) - raidAddress;
+ RF_ASSERT(pda_p->numSector != 0);
+ rf_ASMCheckStatus(raidPtr, pda_p, asm_p, disks, 0);
+ pda_p->bufPtr = buffer + rf_RaidAddressToByte(raidPtr, (raidAddress - startAddress));
+ asm_p->totalSectorsAccessed += pda_p->numSector;
+ asm_p->numStripeUnitsAccessed++;
+ asm_p->origRow = pda_p->row; /* redundant but
+ * harmless to do this
+ * in every loop
+ * iteration */
+
+ raidAddress = RF_MIN(endAddress, nextStripeUnitAddress);
+ }
+
+ /* Map the parity. At this stage, the startSector and
+ * numSector fields for the parity unit are always set to
+ * indicate the entire parity unit. We may modify this after
+ * mapping the data portion. */
+ switch (faultsTolerated) {
+ case 0:
+ break;
+ case 1: /* single fault tolerant */
+ RF_ASSERT(pdaList);
+ t_pda = pdaList;
+ pdaList = pdaList->next;
+ bzero((char *) t_pda, sizeof(RF_PhysDiskAddr_t));
+ pda_p = asm_p->parityInfo = t_pda;
+ pda_p->type = RF_PDA_TYPE_PARITY;
+ (layoutPtr->map->MapParity) (raidPtr, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe),
+ &(pda_p->row), &(pda_p->col), &(pda_p->startSector), remap);
+ pda_p->numSector = layoutPtr->sectorsPerStripeUnit;
+ /* raidAddr may be needed to find unit to redirect to */
+ pda_p->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe);
+ rf_ASMCheckStatus(raidPtr, pda_p, asm_p, disks, 1);
+ rf_ASMParityAdjust(asm_p->parityInfo, startAddrWithinStripe, endAddress, layoutPtr, asm_p);
+
+ break;
+ case 2: /* two fault tolerant */
+ RF_ASSERT(pdaList && pdaList->next);
+ t_pda = pdaList;
+ pdaList = pdaList->next;
+ bzero((char *) t_pda, sizeof(RF_PhysDiskAddr_t));
+ pda_p = asm_p->parityInfo = t_pda;
+ pda_p->type = RF_PDA_TYPE_PARITY;
+ t_pda = pdaList;
+ pdaList = pdaList->next;
+ bzero((char *) t_pda, sizeof(RF_PhysDiskAddr_t));
+ pda_q = asm_p->qInfo = t_pda;
+ pda_q->type = RF_PDA_TYPE_Q;
+ (layoutPtr->map->MapParity) (raidPtr, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe),
+ &(pda_p->row), &(pda_p->col), &(pda_p->startSector), remap);
+ (layoutPtr->map->MapQ) (raidPtr, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe),
+ &(pda_q->row), &(pda_q->col), &(pda_q->startSector), remap);
+ pda_q->numSector = pda_p->numSector = layoutPtr->sectorsPerStripeUnit;
+ /* raidAddr may be needed to find unit to redirect to */
+ pda_p->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe);
+ pda_q->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe);
+ /* failure mode stuff */
+ rf_ASMCheckStatus(raidPtr, pda_p, asm_p, disks, 1);
+ rf_ASMCheckStatus(raidPtr, pda_q, asm_p, disks, 1);
+ rf_ASMParityAdjust(asm_p->parityInfo, startAddrWithinStripe, endAddress, layoutPtr, asm_p);
+ rf_ASMParityAdjust(asm_p->qInfo, startAddrWithinStripe, endAddress, layoutPtr, asm_p);
+ break;
+ }
+ }
+ RF_ASSERT(asmList == NULL && pdaList == NULL);
+ /* make the header structure */
+ asm_hdr = rf_AllocAccessStripeMapHeader();
+ RF_ASSERT(numStripes == totStripes);
+ asm_hdr->numStripes = numStripes;
+ asm_hdr->stripeMap = asm_list;
+
+ if (rf_mapDebug)
+ rf_PrintAccessStripeMap(asm_hdr);
+ return (asm_hdr);
+}
+/*****************************************************************************************
+ * This routine walks through an ASM list and marks the PDAs that have failed.
+ * It's called only when a disk failure causes an in-flight DAG to fail.
+ * The parity may consist of two components, but we want to use only one failedPDA
+ * pointer. Thus we set failedPDA to point to the first parity component, and rely
+ * on the rest of the code to do the right thing with this.
+ ****************************************************************************************/
+
+void
+rf_MarkFailuresInASMList(raidPtr, asm_h)
+ RF_Raid_t *raidPtr;
+ RF_AccessStripeMapHeader_t *asm_h;
+{
+ RF_RaidDisk_t **disks = raidPtr->Disks;
+ RF_AccessStripeMap_t *asmap;
+ RF_PhysDiskAddr_t *pda;
+
+ for (asmap = asm_h->stripeMap; asmap; asmap = asmap->next) {
+ asmap->numDataFailed = asmap->numParityFailed = asmap->numQFailed = 0;
+ asmap->numFailedPDAs = 0;
+ bzero((char *) asmap->failedPDAs,
+ RF_MAX_FAILED_PDA * sizeof(RF_PhysDiskAddr_t *));
+ for (pda = asmap->physInfo; pda; pda = pda->next) {
+ if (RF_DEAD_DISK(disks[pda->row][pda->col].status)) {
+ asmap->numDataFailed++;
+ asmap->failedPDAs[asmap->numFailedPDAs] = pda;
+ asmap->numFailedPDAs++;
+ }
+ }
+ pda = asmap->parityInfo;
+ if (pda && RF_DEAD_DISK(disks[pda->row][pda->col].status)) {
+ asmap->numParityFailed++;
+ asmap->failedPDAs[asmap->numFailedPDAs] = pda;
+ asmap->numFailedPDAs++;
+ }
+ pda = asmap->qInfo;
+ if (pda && RF_DEAD_DISK(disks[pda->row][pda->col].status)) {
+ asmap->numQFailed++;
+ asmap->failedPDAs[asmap->numFailedPDAs] = pda;
+ asmap->numFailedPDAs++;
+ }
+ }
+}
+/*****************************************************************************************
+ *
+ * DuplicateASM -- duplicates an ASM and returns the new one
+ *
+ ****************************************************************************************/
+RF_AccessStripeMap_t *
+rf_DuplicateASM(asmap)
+ RF_AccessStripeMap_t *asmap;
+{
+ RF_AccessStripeMap_t *new_asm;
+ RF_PhysDiskAddr_t *pda, *new_pda, *t_pda;
+
+ new_pda = NULL;
+ new_asm = rf_AllocAccessStripeMapComponent();
+ bcopy((char *) asmap, (char *) new_asm, sizeof(RF_AccessStripeMap_t));
+ new_asm->numFailedPDAs = 0; /* ??? */
+ new_asm->failedPDAs[0] = NULL;
+ new_asm->physInfo = NULL;
+ new_asm->parityInfo = NULL;
+ new_asm->next = NULL;
+
+ for (pda = asmap->physInfo; pda; pda = pda->next) { /* copy the physInfo
+ * list */
+ t_pda = rf_AllocPhysDiskAddr();
+ bcopy((char *) pda, (char *) t_pda, sizeof(RF_PhysDiskAddr_t));
+ t_pda->next = NULL;
+ if (!new_asm->physInfo) {
+ new_asm->physInfo = t_pda;
+ new_pda = t_pda;
+ } else {
+ new_pda->next = t_pda;
+ new_pda = new_pda->next;
+ }
+ if (pda == asmap->failedPDAs[0])
+ new_asm->failedPDAs[0] = t_pda;
+ }
+ for (pda = asmap->parityInfo; pda; pda = pda->next) { /* copy the parityInfo
+ * list */
+ t_pda = rf_AllocPhysDiskAddr();
+ bcopy((char *) pda, (char *) t_pda, sizeof(RF_PhysDiskAddr_t));
+ t_pda->next = NULL;
+ if (!new_asm->parityInfo) {
+ new_asm->parityInfo = t_pda;
+ new_pda = t_pda;
+ } else {
+ new_pda->next = t_pda;
+ new_pda = new_pda->next;
+ }
+ if (pda == asmap->failedPDAs[0])
+ new_asm->failedPDAs[0] = t_pda;
+ }
+ return (new_asm);
+}
+/*****************************************************************************************
+ *
+ * DuplicatePDA -- duplicates a PDA and returns the new one
+ *
+ ****************************************************************************************/
+RF_PhysDiskAddr_t *
+rf_DuplicatePDA(pda)
+ RF_PhysDiskAddr_t *pda;
+{
+ RF_PhysDiskAddr_t *new;
+
+ new = rf_AllocPhysDiskAddr();
+ bcopy((char *) pda, (char *) new, sizeof(RF_PhysDiskAddr_t));
+ return (new);
+}
+/*****************************************************************************************
+ *
+ * routines to allocate and free list elements. All allocation routines zero the
+ * structure before returning it.
+ *
+ * FreePhysDiskAddr is static. It should never be called directly, because
+ * FreeAccessStripeMap takes care of freeing the PhysDiskAddr list.
+ *
+ ****************************************************************************************/
+
+static RF_FreeList_t *rf_asmhdr_freelist;
+#define RF_MAX_FREE_ASMHDR 128
+#define RF_ASMHDR_INC 16
+#define RF_ASMHDR_INITIAL 32
+
+static RF_FreeList_t *rf_asm_freelist;
+#define RF_MAX_FREE_ASM 192
+#define RF_ASM_INC 24
+#define RF_ASM_INITIAL 64
+
+static RF_FreeList_t *rf_pda_freelist;
+#define RF_MAX_FREE_PDA 192
+#define RF_PDA_INC 24
+#define RF_PDA_INITIAL 64
+
+/* called at shutdown time. So far, all that is necessary is to release all the free lists */
+static void rf_ShutdownMapModule(void *);
+static void
+rf_ShutdownMapModule(ignored)
+ void *ignored;
+{
+ RF_FREELIST_DESTROY(rf_asmhdr_freelist, next, (RF_AccessStripeMapHeader_t *));
+ RF_FREELIST_DESTROY(rf_pda_freelist, next, (RF_PhysDiskAddr_t *));
+ RF_FREELIST_DESTROY(rf_asm_freelist, next, (RF_AccessStripeMap_t *));
+}
+
+int
+rf_ConfigureMapModule(listp)
+ RF_ShutdownList_t **listp;
+{
+ int rc;
+
+ RF_FREELIST_CREATE(rf_asmhdr_freelist, RF_MAX_FREE_ASMHDR,
+ RF_ASMHDR_INC, sizeof(RF_AccessStripeMapHeader_t));
+ if (rf_asmhdr_freelist == NULL) {
+ return (ENOMEM);
+ }
+ RF_FREELIST_CREATE(rf_asm_freelist, RF_MAX_FREE_ASM,
+ RF_ASM_INC, sizeof(RF_AccessStripeMap_t));
+ if (rf_asm_freelist == NULL) {
+ RF_FREELIST_DESTROY(rf_asmhdr_freelist, next, (RF_AccessStripeMapHeader_t *));
+ return (ENOMEM);
+ }
+ RF_FREELIST_CREATE(rf_pda_freelist, RF_MAX_FREE_PDA,
+ RF_PDA_INC, sizeof(RF_PhysDiskAddr_t));
+ if (rf_pda_freelist == NULL) {
+ RF_FREELIST_DESTROY(rf_asmhdr_freelist, next, (RF_AccessStripeMapHeader_t *));
+ RF_FREELIST_DESTROY(rf_pda_freelist, next, (RF_PhysDiskAddr_t *));
+ return (ENOMEM);
+ }
+ rc = rf_ShutdownCreate(listp, rf_ShutdownMapModule, NULL);
+ if (rc) {
+ RF_ERRORMSG3("Unable to add to shutdown list file %s line %d rc=%d\n", __FILE__,
+ __LINE__, rc);
+ rf_ShutdownMapModule(NULL);
+ return (rc);
+ }
+ RF_FREELIST_PRIME(rf_asmhdr_freelist, RF_ASMHDR_INITIAL, next,
+ (RF_AccessStripeMapHeader_t *));
+ RF_FREELIST_PRIME(rf_asm_freelist, RF_ASM_INITIAL, next,
+ (RF_AccessStripeMap_t *));
+ RF_FREELIST_PRIME(rf_pda_freelist, RF_PDA_INITIAL, next,
+ (RF_PhysDiskAddr_t *));
+
+ return (0);
+}
+
+RF_AccessStripeMapHeader_t *
+rf_AllocAccessStripeMapHeader()
+{
+ RF_AccessStripeMapHeader_t *p;
+
+ RF_FREELIST_GET(rf_asmhdr_freelist, p, next, (RF_AccessStripeMapHeader_t *));
+ bzero((char *) p, sizeof(RF_AccessStripeMapHeader_t));
+
+ return (p);
+}
+
+
+void
+rf_FreeAccessStripeMapHeader(p)
+ RF_AccessStripeMapHeader_t *p;
+{
+ RF_FREELIST_FREE(rf_asmhdr_freelist, p, next);
+}
+
+RF_PhysDiskAddr_t *
+rf_AllocPhysDiskAddr()
+{
+ RF_PhysDiskAddr_t *p;
+
+ RF_FREELIST_GET(rf_pda_freelist, p, next, (RF_PhysDiskAddr_t *));
+ bzero((char *) p, sizeof(RF_PhysDiskAddr_t));
+
+ return (p);
+}
+/* allocates a list of PDAs, locking the free list only once
+ * when we have to call calloc, we do it one component at a time to simplify
+ * the process of freeing the list at program shutdown. This should not be
+ * much of a performance hit, because it should be very infrequently executed.
+ */
+RF_PhysDiskAddr_t *
+rf_AllocPDAList(count)
+ int count;
+{
+ RF_PhysDiskAddr_t *p = NULL;
+
+ RF_FREELIST_GET_N(rf_pda_freelist, p, next, (RF_PhysDiskAddr_t *), count);
+ return (p);
+}
+
+void
+rf_FreePhysDiskAddr(p)
+ RF_PhysDiskAddr_t *p;
+{
+ RF_FREELIST_FREE(rf_pda_freelist, p, next);
+}
+
+static void
+rf_FreePDAList(l_start, l_end, count)
+ RF_PhysDiskAddr_t *l_start, *l_end; /* pointers to start and end
+ * of list */
+ int count; /* number of elements in list */
+{
+ RF_FREELIST_FREE_N(rf_pda_freelist, l_start, next, (RF_PhysDiskAddr_t *), count);
+}
+
+RF_AccessStripeMap_t *
+rf_AllocAccessStripeMapComponent()
+{
+ RF_AccessStripeMap_t *p;
+
+ RF_FREELIST_GET(rf_asm_freelist, p, next, (RF_AccessStripeMap_t *));
+ bzero((char *) p, sizeof(RF_AccessStripeMap_t));
+
+ return (p);
+}
+/* this is essentially identical to AllocPDAList. I should combine the two.
+ * when we have to call calloc, we do it one component at a time to simplify
+ * the process of freeing the list at program shutdown. This should not be
+ * much of a performance hit, because it should be very infrequently executed.
+ */
+RF_AccessStripeMap_t *
+rf_AllocASMList(count)
+ int count;
+{
+ RF_AccessStripeMap_t *p = NULL;
+
+ RF_FREELIST_GET_N(rf_asm_freelist, p, next, (RF_AccessStripeMap_t *), count);
+ return (p);
+}
+
+void
+rf_FreeAccessStripeMapComponent(p)
+ RF_AccessStripeMap_t *p;
+{
+ RF_FREELIST_FREE(rf_asm_freelist, p, next);
+}
+
+static void
+rf_FreeASMList(l_start, l_end, count)
+ RF_AccessStripeMap_t *l_start, *l_end;
+ int count;
+{
+ RF_FREELIST_FREE_N(rf_asm_freelist, l_start, next, (RF_AccessStripeMap_t *), count);
+}
+
+void
+rf_FreeAccessStripeMap(hdr)
+ RF_AccessStripeMapHeader_t *hdr;
+{
+ RF_AccessStripeMap_t *p, *pt = NULL;
+ RF_PhysDiskAddr_t *pdp, *trailer, *pdaList = NULL, *pdaEnd = NULL;
+ int count = 0, t, asm_count = 0;
+
+ for (p = hdr->stripeMap; p; p = p->next) {
+
+ /* link the 3 pda lists into the accumulating pda list */
+
+ if (!pdaList)
+ pdaList = p->qInfo;
+ else
+ pdaEnd->next = p->qInfo;
+ for (trailer = NULL, pdp = p->qInfo; pdp;) {
+ trailer = pdp;
+ pdp = pdp->next;
+ count++;
+ }
+ if (trailer)
+ pdaEnd = trailer;
+
+ if (!pdaList)
+ pdaList = p->parityInfo;
+ else
+ pdaEnd->next = p->parityInfo;
+ for (trailer = NULL, pdp = p->parityInfo; pdp;) {
+ trailer = pdp;
+ pdp = pdp->next;
+ count++;
+ }
+ if (trailer)
+ pdaEnd = trailer;
+
+ if (!pdaList)
+ pdaList = p->physInfo;
+ else
+ pdaEnd->next = p->physInfo;
+ for (trailer = NULL, pdp = p->physInfo; pdp;) {
+ trailer = pdp;
+ pdp = pdp->next;
+ count++;
+ }
+ if (trailer)
+ pdaEnd = trailer;
+
+ pt = p;
+ asm_count++;
+ }
+
+ /* debug only */
+ for (t = 0, pdp = pdaList; pdp; pdp = pdp->next)
+ t++;
+ RF_ASSERT(t == count);
+
+ if (pdaList)
+ rf_FreePDAList(pdaList, pdaEnd, count);
+ rf_FreeASMList(hdr->stripeMap, pt, asm_count);
+ rf_FreeAccessStripeMapHeader(hdr);
+}
+/* We can't use the large write optimization if there are any failures in the stripe.
+ * In the declustered layout, there is no way to immediately determine what disks
+ * constitute a stripe, so we actually have to hunt through the stripe looking for failures.
+ * The reason we map the parity instead of just using asm->parityInfo->col is because
+ * the latter may have been already redirected to a spare drive, which would
+ * mess up the computation of the stripe offset.
+ *
+ * ASSUMES AT MOST ONE FAILURE IN THE STRIPE.
+ */
+int
+rf_CheckStripeForFailures(raidPtr, asmap)
+ RF_Raid_t *raidPtr;
+ RF_AccessStripeMap_t *asmap;
+{
+ RF_RowCol_t trow, tcol, prow, pcol, *diskids, row, i;
+ RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
+ RF_StripeCount_t stripeOffset;
+ int numFailures;
+ RF_RaidAddr_t sosAddr;
+ RF_SectorNum_t diskOffset, poffset;
+ RF_RowCol_t testrow;
+
+ /* quick out in the fault-free case. */
+ RF_LOCK_MUTEX(raidPtr->mutex);
+ numFailures = raidPtr->numFailures;
+ RF_UNLOCK_MUTEX(raidPtr->mutex);
+ if (numFailures == 0)
+ return (0);
+
+ sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
+ row = asmap->physInfo->row;
+ (layoutPtr->map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids, &testrow);
+ (layoutPtr->map->MapParity) (raidPtr, asmap->raidAddress, &prow, &pcol, &poffset, 0); /* get pcol */
+
+ /* this need not be true if we've redirected the access to a spare in
+ * another row RF_ASSERT(row == testrow); */
+ stripeOffset = 0;
+ for (i = 0; i < layoutPtr->numDataCol + layoutPtr->numParityCol; i++) {
+ if (diskids[i] != pcol) {
+ if (RF_DEAD_DISK(raidPtr->Disks[testrow][diskids[i]].status)) {
+ if (raidPtr->status[testrow] != rf_rs_reconstructing)
+ return (1);
+ RF_ASSERT(raidPtr->reconControl[testrow]->fcol == diskids[i]);
+ layoutPtr->map->MapSector(raidPtr,
+ sosAddr + stripeOffset * layoutPtr->sectorsPerStripeUnit,
+ &trow, &tcol, &diskOffset, 0);
+ RF_ASSERT((trow == testrow) && (tcol == diskids[i]));
+ if (!rf_CheckRUReconstructed(raidPtr->reconControl[testrow]->reconMap, diskOffset))
+ return (1);
+ asmap->flags |= RF_ASM_REDIR_LARGE_WRITE;
+ return (0);
+ }
+ stripeOffset++;
+ }
+ }
+ return (0);
+}
+/*
+ return the number of failed data units in the stripe.
+*/
+
+int
+rf_NumFailedDataUnitsInStripe(raidPtr, asmap)
+ RF_Raid_t *raidPtr;
+ RF_AccessStripeMap_t *asmap;
+{
+ RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
+ RF_RowCol_t trow, tcol, row, i;
+ RF_SectorNum_t diskOffset;
+ RF_RaidAddr_t sosAddr;
+ int numFailures;
+
+ /* quick out in the fault-free case. */
+ RF_LOCK_MUTEX(raidPtr->mutex);
+ numFailures = raidPtr->numFailures;
+ RF_UNLOCK_MUTEX(raidPtr->mutex);
+ if (numFailures == 0)
+ return (0);
+ numFailures = 0;
+
+ sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
+ row = asmap->physInfo->row;
+ for (i = 0; i < layoutPtr->numDataCol; i++) {
+ (layoutPtr->map->MapSector) (raidPtr, sosAddr + i * layoutPtr->sectorsPerStripeUnit,
+ &trow, &tcol, &diskOffset, 0);
+ if (RF_DEAD_DISK(raidPtr->Disks[trow][tcol].status))
+ numFailures++;
+ }
+
+ return numFailures;
+}
+
+
+/*****************************************************************************************
+ *
+ * debug routines
+ *
+ ****************************************************************************************/
+
+void
+rf_PrintAccessStripeMap(asm_h)
+ RF_AccessStripeMapHeader_t *asm_h;
+{
+ rf_PrintFullAccessStripeMap(asm_h, 0);
+}
+
+void
+rf_PrintFullAccessStripeMap(asm_h, prbuf)
+ RF_AccessStripeMapHeader_t *asm_h;
+ int prbuf; /* flag to print buffer pointers */
+{
+ int i;
+ RF_AccessStripeMap_t *asmap = asm_h->stripeMap;
+ RF_PhysDiskAddr_t *p;
+ printf("%d stripes total\n", (int) asm_h->numStripes);
+ for (; asmap; asmap = asmap->next) {
+ /* printf("Num failures: %d\n",asmap->numDataFailed); */
+ /* printf("Num sectors:
+ * %d\n",(int)asmap->totalSectorsAccessed); */
+ printf("Stripe %d (%d sectors), failures: %d data, %d parity: ",
+ (int) asmap->stripeID,
+ (int) asmap->totalSectorsAccessed,
+ (int) asmap->numDataFailed,
+ (int) asmap->numParityFailed);
+ if (asmap->parityInfo) {
+ printf("Parity [r%d c%d s%d-%d", asmap->parityInfo->row, asmap->parityInfo->col,
+ (int) asmap->parityInfo->startSector,
+ (int) (asmap->parityInfo->startSector +
+ asmap->parityInfo->numSector - 1));
+ if (prbuf)
+ printf(" b0x%lx", (unsigned long) asmap->parityInfo->bufPtr);
+ if (asmap->parityInfo->next) {
+ printf(", r%d c%d s%d-%d", asmap->parityInfo->next->row,
+ asmap->parityInfo->next->col,
+ (int) asmap->parityInfo->next->startSector,
+ (int) (asmap->parityInfo->next->startSector +
+ asmap->parityInfo->next->numSector - 1));
+ if (prbuf)
+ printf(" b0x%lx", (unsigned long) asmap->parityInfo->next->bufPtr);
+ RF_ASSERT(asmap->parityInfo->next->next == NULL);
+ }
+ printf("]\n\t");
+ }
+ for (i = 0, p = asmap->physInfo; p; p = p->next, i++) {
+ printf("SU r%d c%d s%d-%d ", p->row, p->col, (int) p->startSector,
+ (int) (p->startSector + p->numSector - 1));
+ if (prbuf)
+ printf("b0x%lx ", (unsigned long) p->bufPtr);
+ if (i && !(i & 1))
+ printf("\n\t");
+ }
+ printf("\n");
+ p = asm_h->stripeMap->failedPDAs[0];
+ if (asm_h->stripeMap->numDataFailed + asm_h->stripeMap->numParityFailed > 1)
+ printf("[multiple failures]\n");
+ else
+ if (asm_h->stripeMap->numDataFailed + asm_h->stripeMap->numParityFailed > 0)
+ printf("\t[Failed PDA: r%d c%d s%d-%d]\n", p->row, p->col,
+ (int) p->startSector, (int) (p->startSector + p->numSector - 1));
+ }
+}
+
+void
+rf_PrintRaidAddressInfo(raidPtr, raidAddr, numBlocks)
+ RF_Raid_t *raidPtr;
+ RF_RaidAddr_t raidAddr;
+ RF_SectorCount_t numBlocks;
+{
+ RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
+ RF_RaidAddr_t ra, sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, raidAddr);
+
+ printf("Raid addrs of SU boundaries from start of stripe to end of access:\n\t");
+ for (ra = sosAddr; ra <= raidAddr + numBlocks; ra += layoutPtr->sectorsPerStripeUnit) {
+ printf("%d (0x%x), ", (int) ra, (int) ra);
+ }
+ printf("\n");
+ printf("Offset into stripe unit: %d (0x%x)\n",
+ (int) (raidAddr % layoutPtr->sectorsPerStripeUnit),
+ (int) (raidAddr % layoutPtr->sectorsPerStripeUnit));
+}
+/*
+ given a parity descriptor and the starting address within a stripe,
+ range restrict the parity descriptor to touch only the correct stuff.
+*/
+void
+rf_ASMParityAdjust(
+ RF_PhysDiskAddr_t * toAdjust,
+ RF_StripeNum_t startAddrWithinStripe,
+ RF_SectorNum_t endAddress,
+ RF_RaidLayout_t * layoutPtr,
+ RF_AccessStripeMap_t * asm_p)
+{
+ RF_PhysDiskAddr_t *new_pda;
+
+ /* when we're accessing only a portion of one stripe unit, we want the
+ * parity descriptor to identify only the chunk of parity associated
+ * with the data. When the access spans exactly one stripe unit
+ * boundary and is less than a stripe unit in size, it uses two
+ * disjoint regions of the parity unit. When an access spans more
+ * than one stripe unit boundary, it uses all of the parity unit.
+ *
+ * To better handle the case where stripe units are small, we may
+ * eventually want to change the 2nd case so that if the SU size is
+ * below some threshold, we just read/write the whole thing instead of
+ * breaking it up into two accesses. */
+ if (asm_p->numStripeUnitsAccessed == 1) {
+ int x = (startAddrWithinStripe % layoutPtr->sectorsPerStripeUnit);
+ toAdjust->startSector += x;
+ toAdjust->raidAddress += x;
+ toAdjust->numSector = asm_p->physInfo->numSector;
+ RF_ASSERT(toAdjust->numSector != 0);
+ } else
+ if (asm_p->numStripeUnitsAccessed == 2 && asm_p->totalSectorsAccessed < layoutPtr->sectorsPerStripeUnit) {
+ int x = (startAddrWithinStripe % layoutPtr->sectorsPerStripeUnit);
+
+ /* create a second pda and copy the parity map info
+ * into it */
+ RF_ASSERT(toAdjust->next == NULL);
+ new_pda = toAdjust->next = rf_AllocPhysDiskAddr();
+ *new_pda = *toAdjust; /* structure assignment */
+ new_pda->next = NULL;
+
+ /* adjust the start sector & number of blocks for the
+ * first parity pda */
+ toAdjust->startSector += x;
+ toAdjust->raidAddress += x;
+ toAdjust->numSector = rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, startAddrWithinStripe) - startAddrWithinStripe;
+ RF_ASSERT(toAdjust->numSector != 0);
+
+ /* adjust the second pda */
+ new_pda->numSector = endAddress - rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, endAddress);
+ /* new_pda->raidAddress =
+ * rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr,
+ * toAdjust->raidAddress); */
+ RF_ASSERT(new_pda->numSector != 0);
+ }
+}
+/*
+ Check if a disk has been spared or failed. If spared,
+ redirect the I/O.
+ If it has been failed, record it in the asm pointer.
+ Fourth arg is whether data or parity.
+*/
+void
+rf_ASMCheckStatus(
+ RF_Raid_t * raidPtr,
+ RF_PhysDiskAddr_t * pda_p,
+ RF_AccessStripeMap_t * asm_p,
+ RF_RaidDisk_t ** disks,
+ int parity)
+{
+ RF_DiskStatus_t dstatus;
+ RF_RowCol_t frow, fcol;
+
+ dstatus = disks[pda_p->row][pda_p->col].status;
+
+ if (dstatus == rf_ds_spared) {
+ /* if the disk has been spared, redirect access to the spare */
+ frow = pda_p->row;
+ fcol = pda_p->col;
+ pda_p->row = disks[frow][fcol].spareRow;
+ pda_p->col = disks[frow][fcol].spareCol;
+ } else
+ if (dstatus == rf_ds_dist_spared) {
+ /* ditto if disk has been spared to dist spare space */
+ RF_RowCol_t or = pda_p->row, oc = pda_p->col;
+ RF_SectorNum_t oo = pda_p->startSector;
+
+ if (pda_p->type == RF_PDA_TYPE_DATA)
+ raidPtr->Layout.map->MapSector(raidPtr, pda_p->raidAddress, &pda_p->row, &pda_p->col, &pda_p->startSector, RF_REMAP);
+ else
+ raidPtr->Layout.map->MapParity(raidPtr, pda_p->raidAddress, &pda_p->row, &pda_p->col, &pda_p->startSector, RF_REMAP);
+
+ if (rf_mapDebug) {
+ printf("Redirected r %d c %d o %d -> r%d c %d o %d\n", or, oc, (int) oo,
+ pda_p->row, pda_p->col, (int) pda_p->startSector);
+ }
+ } else
+ if (RF_DEAD_DISK(dstatus)) {
+ /* if the disk is inaccessible, mark the
+ * failure */
+ if (parity)
+ asm_p->numParityFailed++;
+ else {
+ asm_p->numDataFailed++;
+#if 0
+ /* XXX Do we really want this spewing
+ * out on the console? GO */
+ printf("DATA_FAILED!\n");
+#endif
+ }
+ asm_p->failedPDAs[asm_p->numFailedPDAs] = pda_p;
+ asm_p->numFailedPDAs++;
+#if 0
+ switch (asm_p->numParityFailed + asm_p->numDataFailed) {
+ case 1:
+ asm_p->failedPDAs[0] = pda_p;
+ break;
+ case 2:
+ asm_p->failedPDAs[1] = pda_p;
+ default:
+ break;
+ }
+#endif
+ }
+ /* the redirected access should never span a stripe unit boundary */
+ RF_ASSERT(rf_RaidAddressToStripeUnitID(&raidPtr->Layout, pda_p->raidAddress) ==
+ rf_RaidAddressToStripeUnitID(&raidPtr->Layout, pda_p->raidAddress + pda_p->numSector - 1));
+ RF_ASSERT(pda_p->col != -1);
+}
diff --git a/sys/dev/raidframe/rf_map.h b/sys/dev/raidframe/rf_map.h
new file mode 100644
index 0000000..d7c6d19
--- /dev/null
+++ b/sys/dev/raidframe/rf_map.h
@@ -0,0 +1,94 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_map.h,v 1.3 1999/02/05 00:06:12 oster Exp $ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Mark Holland
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+/* rf_map.h */
+
+#ifndef _RF__RF_MAP_H_
+#define _RF__RF_MAP_H_
+
+#include <dev/raidframe/rf_types.h>
+#include <dev/raidframe/rf_alloclist.h>
+#include <dev/raidframe/rf_raid.h>
+
+/* mapping structure allocation and free routines */
+RF_AccessStripeMapHeader_t *
+rf_MapAccess(RF_Raid_t * raidPtr,
+ RF_RaidAddr_t raidAddress, RF_SectorCount_t numBlocks,
+ caddr_t buffer, int remap);
+
+void
+rf_MarkFailuresInASMList(RF_Raid_t * raidPtr,
+ RF_AccessStripeMapHeader_t * asm_h);
+
+RF_AccessStripeMap_t *rf_DuplicateASM(RF_AccessStripeMap_t * asmap);
+
+RF_PhysDiskAddr_t *rf_DuplicatePDA(RF_PhysDiskAddr_t * pda);
+
+int rf_ConfigureMapModule(RF_ShutdownList_t ** listp);
+
+RF_AccessStripeMapHeader_t *rf_AllocAccessStripeMapHeader(void);
+
+void rf_FreeAccessStripeMapHeader(RF_AccessStripeMapHeader_t * p);
+
+RF_PhysDiskAddr_t *rf_AllocPhysDiskAddr(void);
+
+RF_PhysDiskAddr_t *rf_AllocPDAList(int count);
+
+void rf_FreePhysDiskAddr(RF_PhysDiskAddr_t * p);
+
+RF_AccessStripeMap_t *rf_AllocAccessStripeMapComponent(void);
+
+RF_AccessStripeMap_t *rf_AllocASMList(int count);
+
+void rf_FreeAccessStripeMapComponent(RF_AccessStripeMap_t * p);
+
+void rf_FreeAccessStripeMap(RF_AccessStripeMapHeader_t * hdr);
+
+int rf_CheckStripeForFailures(RF_Raid_t * raidPtr, RF_AccessStripeMap_t * asmap);
+
+int rf_NumFailedDataUnitsInStripe(RF_Raid_t * raidPtr, RF_AccessStripeMap_t * asmap);
+
+void rf_PrintAccessStripeMap(RF_AccessStripeMapHeader_t * asm_h);
+
+void rf_PrintFullAccessStripeMap(RF_AccessStripeMapHeader_t * asm_h, int prbuf);
+
+void
+rf_PrintRaidAddressInfo(RF_Raid_t * raidPtr, RF_RaidAddr_t raidAddr,
+ RF_SectorCount_t numBlocks);
+
+void
+rf_ASMParityAdjust(RF_PhysDiskAddr_t * toAdjust,
+ RF_StripeNum_t startAddrWithinStripe, RF_SectorNum_t endAddress,
+ RF_RaidLayout_t * layoutPtr, RF_AccessStripeMap_t * asm_p);
+
+void
+rf_ASMCheckStatus(RF_Raid_t * raidPtr, RF_PhysDiskAddr_t * pda_p,
+ RF_AccessStripeMap_t * asm_p, RF_RaidDisk_t ** disks, int parity);
+
+#endif /* !_RF__RF_MAP_H_ */
diff --git a/sys/dev/raidframe/rf_mcpair.c b/sys/dev/raidframe/rf_mcpair.c
new file mode 100644
index 0000000..ff233fe
--- /dev/null
+++ b/sys/dev/raidframe/rf_mcpair.c
@@ -0,0 +1,141 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_mcpair.c,v 1.4 2000/09/11 02:23:14 oster Exp $ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Jim Zelenka
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+/* rf_mcpair.c
+ * an mcpair is a structure containing a mutex and a condition variable.
+ * it's used to block the current thread until some event occurs.
+ */
+
+#include <dev/raidframe/rf_types.h>
+#include <dev/raidframe/rf_threadstuff.h>
+#include <dev/raidframe/rf_mcpair.h>
+#include <dev/raidframe/rf_debugMem.h>
+#include <dev/raidframe/rf_freelist.h>
+#include <dev/raidframe/rf_shutdown.h>
+
+#include <sys/proc.h>
+
+static RF_FreeList_t *rf_mcpair_freelist;
+
+#define RF_MAX_FREE_MCPAIR 128
+#define RF_MCPAIR_INC 16
+#define RF_MCPAIR_INITIAL 24
+
+static int init_mcpair(RF_MCPair_t *);
+static void clean_mcpair(RF_MCPair_t *);
+static void rf_ShutdownMCPair(void *);
+
+
+
+static int
+init_mcpair(t)
+ RF_MCPair_t *t;
+{
+ int rc;
+
+ rc = rf_mutex_init(&t->mutex, __FUNCTION__);
+ if (rc) {
+ RF_ERRORMSG3("Unable to init mutex file %s line %d rc=%d\n", __FILE__,
+ __LINE__, rc);
+ return (rc);
+ }
+ rc = rf_cond_init(&t->cond);
+ if (rc) {
+ RF_ERRORMSG3("Unable to init cond file %s line %d rc=%d\n", __FILE__,
+ __LINE__, rc);
+ rf_mutex_destroy(&t->mutex);
+ return (rc);
+ }
+ return (0);
+}
+
+static void
+clean_mcpair(t)
+ RF_MCPair_t *t;
+{
+ rf_mutex_destroy(&t->mutex);
+ rf_cond_destroy(&t->cond);
+}
+
+static void
+rf_ShutdownMCPair(ignored)
+ void *ignored;
+{
+ RF_FREELIST_DESTROY_CLEAN(rf_mcpair_freelist, next, (RF_MCPair_t *), clean_mcpair);
+}
+
+int
+rf_ConfigureMCPair(listp)
+ RF_ShutdownList_t **listp;
+{
+ int rc;
+
+ RF_FREELIST_CREATE(rf_mcpair_freelist, RF_MAX_FREE_MCPAIR,
+ RF_MCPAIR_INC, sizeof(RF_MCPair_t));
+ rc = rf_ShutdownCreate(listp, rf_ShutdownMCPair, NULL);
+ if (rc) {
+ RF_ERRORMSG3("Unable to add to shutdown list file %s line %d rc=%d\n",
+ __FILE__, __LINE__, rc);
+ rf_ShutdownMCPair(NULL);
+ return (rc);
+ }
+ RF_FREELIST_PRIME_INIT(rf_mcpair_freelist, RF_MCPAIR_INITIAL, next,
+ (RF_MCPair_t *), init_mcpair);
+ return (0);
+}
+
+RF_MCPair_t *
+rf_AllocMCPair()
+{
+ RF_MCPair_t *t;
+
+ RF_FREELIST_GET_INIT(rf_mcpair_freelist, t, next, (RF_MCPair_t *), init_mcpair);
+ if (t) {
+ t->flag = 0;
+ t->next = NULL;
+ }
+ return (t);
+}
+
+void
+rf_FreeMCPair(t)
+ RF_MCPair_t *t;
+{
+ RF_FREELIST_FREE_CLEAN(rf_mcpair_freelist, t, next, clean_mcpair);
+}
+/* the callback function used to wake you up when you use an mcpair to wait for something */
+void
+rf_MCPairWakeupFunc(mcpair)
+ RF_MCPair_t *mcpair;
+{
+ RF_LOCK_MUTEX(mcpair->mutex);
+ mcpair->flag = 1;
+ wakeup(&(mcpair->cond));
+ RF_UNLOCK_MUTEX(mcpair->mutex);
+}
diff --git a/sys/dev/raidframe/rf_mcpair.h b/sys/dev/raidframe/rf_mcpair.h
new file mode 100644
index 0000000..d43c728
--- /dev/null
+++ b/sys/dev/raidframe/rf_mcpair.h
@@ -0,0 +1,54 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_mcpair.h,v 1.6 2000/09/21 01:45:46 oster Exp $ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Mark Holland
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+/* rf_mcpair.h
+ * see comments in rf_mcpair.c
+ */
+
+#ifndef _RF__RF_MCPAIR_H_
+#define _RF__RF_MCPAIR_H_
+
+#include <dev/raidframe/rf_types.h>
+#include <dev/raidframe/rf_threadstuff.h>
+
+struct RF_MCPair_s {
+ RF_DECLARE_MUTEX(mutex)
+ RF_DECLARE_COND(cond)
+ int flag;
+ RF_MCPair_t *next;
+};
+#define RF_WAIT_MCPAIR(_mcp) \
+ RF_LTSLEEP(&((_mcp)->cond), PRIBIO, "mcpair", 0, &((_mcp)->mutex))
+
+int rf_ConfigureMCPair(RF_ShutdownList_t ** listp);
+RF_MCPair_t *rf_AllocMCPair(void);
+void rf_FreeMCPair(RF_MCPair_t * t);
+void rf_MCPairWakeupFunc(RF_MCPair_t * t);
+
+#endif /* !_RF__RF_MCPAIR_H_ */
diff --git a/sys/dev/raidframe/rf_memchunk.c b/sys/dev/raidframe/rf_memchunk.c
new file mode 100644
index 0000000..b4aae57
--- /dev/null
+++ b/sys/dev/raidframe/rf_memchunk.c
@@ -0,0 +1,211 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_memchunk.c,v 1.4 1999/08/13 03:41:56 oster Exp $ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Mark Holland
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+/*********************************************************************************
+ * rf_memchunk.c
+ *
+ * experimental code. I've found that the malloc and free calls in the DAG
+ * creation code are very expensive. Since for any given workload the DAGs
+ * created for different accesses are likely to be similar to each other, the
+ * amount of memory used for any given DAG data structure is likely to be one
+ * of a small number of values. For example, in UNIX, all reads and writes will
+ * be less than 8k and will not span stripe unit boundaries. Thus in the absence
+ * of failure, the only DAGs that will ever get created are single-node reads
+ * and single-stripe-unit atomic read-modify-writes. So, I'm very likely to
+ * be continually asking for chunks of memory equal to the sizes of these two
+ * DAGs.
+ *
+ * This leads to the idea of holding on to these chunks of memory when the DAG is
+ * freed and then, when a new DAG is created, trying to find such a chunk before
+ * calling malloc.
+ *
+ * the "chunk list" is a list of lists. Each header node contains a size value
+ * and a pointer to a list of chunk descriptors, each of which holds a pointer
+ * to a chunk of memory of the indicated size.
+ *
+ * There is currently no way to purge memory out of the chunk list. My
+ * initial thought on this is to have a low-priority thread that wakes up every
+ * 1 or 2 seconds, purges all the chunks with low reuse counts, and sets all
+ * the reuse counts to zero.
+ *
+ * This whole idea may be bad, since malloc may be able to do this more efficiently.
+ * It's worth a try, though, and it can be turned off by setting useMemChunks to 0.
+ *
+ ********************************************************************************/
+
+#include <dev/raidframe/rf_types.h>
+#include <dev/raidframe/rf_threadstuff.h>
+#include <dev/raidframe/rf_debugMem.h>
+#include <dev/raidframe/rf_memchunk.h>
+#include <dev/raidframe/rf_general.h>
+#include <dev/raidframe/rf_options.h>
+#include <dev/raidframe/rf_shutdown.h>
+
+typedef struct RF_ChunkHdr_s RF_ChunkHdr_t;
+struct RF_ChunkHdr_s {
+ int size;
+ RF_ChunkDesc_t *list;
+ RF_ChunkHdr_t *next;
+};
+
+static RF_ChunkHdr_t *chunklist, *chunk_hdr_free_list;
+static RF_ChunkDesc_t *chunk_desc_free_list;
+RF_DECLARE_STATIC_MUTEX(chunkmutex)
+ static void rf_ShutdownMemChunk(void *);
+ static RF_ChunkDesc_t *NewMemChunk(int, char *);
+
+
+ static void rf_ShutdownMemChunk(ignored)
+ void *ignored;
+{
+ RF_ChunkDesc_t *pt, *p;
+ RF_ChunkHdr_t *hdr, *ht;
+
+ if (rf_memChunkDebug)
+ printf("Chunklist:\n");
+ for (hdr = chunklist; hdr;) {
+ for (p = hdr->list; p;) {
+ if (rf_memChunkDebug)
+ printf("Size %d reuse count %d\n", p->size, p->reuse_count);
+ pt = p;
+ p = p->next;
+ RF_Free(pt->buf, pt->size);
+ RF_Free(pt, sizeof(*pt));
+ }
+ ht = hdr;
+ hdr = hdr->next;
+ RF_Free(ht, sizeof(*ht));
+ }
+
+ rf_mutex_destroy(&chunkmutex);
+}
+
+int
+rf_ConfigureMemChunk(listp)
+ RF_ShutdownList_t **listp;
+{
+ int rc;
+
+ chunklist = NULL;
+ chunk_hdr_free_list = NULL;
+ chunk_desc_free_list = NULL;
+ rc = rf_mutex_init(&chunkmutex, __FUNCTION__);
+ if (rc) {
+ RF_ERRORMSG3("Unable to init mutex file %s line %d rc=%d\n", __FILE__,
+ __LINE__, rc);
+ }
+ rc = rf_ShutdownCreate(listp, rf_ShutdownMemChunk, NULL);
+ if (rc) {
+ RF_ERRORMSG3("Unable to add to shutdown list file %s line %d rc=%d\n", __FILE__,
+ __LINE__, rc);
+ rf_mutex_destroy(&chunkmutex);
+ }
+ return (rc);
+}
+/* called to get a chunk descriptor for a newly-allocated chunk of memory
+ * MUTEX MUST BE LOCKED
+ *
+ * free list is not currently used
+ */
+static RF_ChunkDesc_t *
+NewMemChunk(size, buf)
+ int size;
+ char *buf;
+{
+ RF_ChunkDesc_t *p;
+
+ if (chunk_desc_free_list) {
+ p = chunk_desc_free_list;
+ chunk_desc_free_list = p->next;
+ } else
+ RF_Malloc(p, sizeof(RF_ChunkDesc_t), (RF_ChunkDesc_t *));
+ p->size = size;
+ p->buf = buf;
+ p->next = NULL;
+ p->reuse_count = 0;
+ return (p);
+}
+/* looks for a chunk of memory of acceptable size. If none, allocates one and returns
+ * a chunk descriptor for it, but does not install anything in the list. This is done
+ * when the chunk is released.
+ */
+RF_ChunkDesc_t *
+rf_GetMemChunk(size)
+ int size;
+{
+ RF_ChunkHdr_t *hdr = chunklist;
+ RF_ChunkDesc_t *p = NULL;
+ char *buf;
+
+ RF_LOCK_MUTEX(chunkmutex);
+ for (hdr = chunklist; hdr; hdr = hdr->next)
+ if (hdr->size >= size) {
+ p = hdr->list;
+ if (p) {
+ hdr->list = p->next;
+ p->next = NULL;
+ p->reuse_count++;
+ }
+ break;
+ }
+ if (!p) {
+ RF_Malloc(buf, size, (char *));
+ p = NewMemChunk(size, buf);
+ }
+ RF_UNLOCK_MUTEX(chunkmutex);
+ (void) bzero(p->buf, size);
+ return (p);
+}
+
+void
+rf_ReleaseMemChunk(chunk)
+ RF_ChunkDesc_t *chunk;
+{
+ RF_ChunkHdr_t *hdr, *ht = NULL, *new;
+
+ RF_LOCK_MUTEX(chunkmutex);
+ for (hdr = chunklist; hdr && hdr->size < chunk->size; ht = hdr, hdr = hdr->next);
+ if (hdr && hdr->size == chunk->size) {
+ chunk->next = hdr->list;
+ hdr->list = chunk;
+ } else {
+ RF_Malloc(new, sizeof(RF_ChunkHdr_t), (RF_ChunkHdr_t *));
+ new->size = chunk->size;
+ new->list = chunk;
+ chunk->next = NULL;
+ if (ht) {
+ new->next = ht->next;
+ ht->next = new;
+ } else {
+ new->next = hdr;
+ chunklist = new;
+ }
+ }
+ RF_UNLOCK_MUTEX(chunkmutex);
+}
diff --git a/sys/dev/raidframe/rf_memchunk.h b/sys/dev/raidframe/rf_memchunk.h
new file mode 100644
index 0000000..5806d20
--- /dev/null
+++ b/sys/dev/raidframe/rf_memchunk.h
@@ -0,0 +1,48 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_memchunk.h,v 1.3 1999/02/05 00:06:13 oster Exp $ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Mark Holland
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+/* header file for rf_memchunk.c. See comments there */
+
+#ifndef _RF__RF_MEMCHUNK_H_
+#define _RF__RF_MEMCHUNK_H_
+
+#include <dev/raidframe/rf_types.h>
+
+struct RF_ChunkDesc_s {
+ int size;
+ int reuse_count;
+ char *buf;
+ RF_ChunkDesc_t *next;
+};
+
+int rf_ConfigureMemChunk(RF_ShutdownList_t ** listp);
+RF_ChunkDesc_t *rf_GetMemChunk(int size);
+void rf_ReleaseMemChunk(RF_ChunkDesc_t * chunk);
+
+#endif /* !_RF__RF_MEMCHUNK_H_ */
diff --git a/sys/dev/raidframe/rf_nwayxor.c b/sys/dev/raidframe/rf_nwayxor.c
new file mode 100644
index 0000000..c5d142b
--- /dev/null
+++ b/sys/dev/raidframe/rf_nwayxor.c
@@ -0,0 +1,449 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_nwayxor.c,v 1.4 2000/03/30 12:45:41 augustss Exp $ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Mark Holland, Daniel Stodolsky
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+/************************************************************
+ *
+ * nwayxor.c -- code to do N-way xors for reconstruction
+ *
+ * nWayXorN xors N input buffers into the destination buffer.
+ * adapted from danner's longword_bxor code.
+ *
+ ************************************************************/
+
+#include <dev/raidframe/rf_nwayxor.h>
+#include <dev/raidframe/rf_shutdown.h>
+
+static int callcount[10];
+static void rf_ShutdownNWayXor(void *);
+
+static void
+rf_ShutdownNWayXor(ignored)
+ void *ignored;
+{
+ int i;
+
+ if (rf_showXorCallCounts == 0)
+ return;
+ printf("Call counts for n-way xor routines: ");
+ for (i = 0; i < 10; i++)
+ printf("%d ", callcount[i]);
+ printf("\n");
+}
+
+int
+rf_ConfigureNWayXor(listp)
+ RF_ShutdownList_t **listp;
+{
+ int i, rc;
+
+ for (i = 0; i < 10; i++)
+ callcount[i] = 0;
+ rc = rf_ShutdownCreate(listp, rf_ShutdownNWayXor, NULL);
+ return (rc);
+}
+
+void
+rf_nWayXor1(src_rbs, dest_rb, len)
+ RF_ReconBuffer_t **src_rbs;
+ RF_ReconBuffer_t *dest_rb;
+ int len;
+{
+ unsigned long *src = (unsigned long *) src_rbs[0]->buffer;
+ unsigned long *dest = (unsigned long *) dest_rb->buffer;
+ unsigned long *end = src + len;
+ unsigned long d0, d1, d2, d3, s0, s1, s2, s3;
+
+ callcount[1]++;
+ while (len >= 4) {
+ d0 = dest[0];
+ d1 = dest[1];
+ d2 = dest[2];
+ d3 = dest[3];
+ s0 = src[0];
+ s1 = src[1];
+ s2 = src[2];
+ s3 = src[3];
+ dest[0] = d0 ^ s0;
+ dest[1] = d1 ^ s1;
+ dest[2] = d2 ^ s2;
+ dest[3] = d3 ^ s3;
+ src += 4;
+ dest += 4;
+ len -= 4;
+ }
+ while (src < end) {
+ *dest++ ^= *src++;
+ }
+}
+
+void
+rf_nWayXor2(src_rbs, dest_rb, len)
+ RF_ReconBuffer_t **src_rbs;
+ RF_ReconBuffer_t *dest_rb;
+ int len;
+{
+ unsigned long *dst = (unsigned long *) dest_rb->buffer;
+ unsigned long *a = dst;
+ unsigned long *b = (unsigned long *) src_rbs[0]->buffer;
+ unsigned long *c = (unsigned long *) src_rbs[1]->buffer;
+ unsigned long a0, a1, a2, a3, b0, b1, b2, b3;
+
+ callcount[2]++;
+ /* align dest to cache line */
+ while ((((unsigned long) dst) & 0x1f)) {
+ *dst++ = *a++ ^ *b++ ^ *c++;
+ len--;
+ }
+ while (len > 4) {
+ a0 = a[0];
+ len -= 4;
+
+ a1 = a[1];
+ a2 = a[2];
+
+ a3 = a[3];
+ a += 4;
+
+ b0 = b[0];
+ b1 = b[1];
+
+ b2 = b[2];
+ b3 = b[3];
+ /* start dual issue */
+ a0 ^= b0;
+ b0 = c[0];
+
+ b += 4;
+ a1 ^= b1;
+
+ a2 ^= b2;
+ a3 ^= b3;
+
+ b1 = c[1];
+ a0 ^= b0;
+
+ b2 = c[2];
+ a1 ^= b1;
+
+ b3 = c[3];
+ a2 ^= b2;
+
+ dst[0] = a0;
+ a3 ^= b3;
+ dst[1] = a1;
+ c += 4;
+ dst[2] = a2;
+ dst[3] = a3;
+ dst += 4;
+ }
+ while (len) {
+ *dst++ = *a++ ^ *b++ ^ *c++;
+ len--;
+ }
+}
+/* note that first arg is not incremented but 2nd arg is */
+#define LOAD_FIRST(_dst,_b) \
+ a0 = _dst[0]; len -= 4; \
+ a1 = _dst[1]; \
+ a2 = _dst[2]; \
+ a3 = _dst[3]; \
+ b0 = _b[0]; \
+ b1 = _b[1]; \
+ b2 = _b[2]; \
+ b3 = _b[3]; _b += 4;
+
+/* note: arg is incremented */
+#define XOR_AND_LOAD_NEXT(_n) \
+ a0 ^= b0; b0 = _n[0]; \
+ a1 ^= b1; b1 = _n[1]; \
+ a2 ^= b2; b2 = _n[2]; \
+ a3 ^= b3; b3 = _n[3]; \
+ _n += 4;
+
+/* arg is incremented */
+#define XOR_AND_STORE(_dst) \
+ a0 ^= b0; _dst[0] = a0; \
+ a1 ^= b1; _dst[1] = a1; \
+ a2 ^= b2; _dst[2] = a2; \
+ a3 ^= b3; _dst[3] = a3; \
+ _dst += 4;
+
+
+void
+rf_nWayXor3(src_rbs, dest_rb, len)
+ RF_ReconBuffer_t **src_rbs;
+ RF_ReconBuffer_t *dest_rb;
+ int len;
+{
+ unsigned long *dst = (unsigned long *) dest_rb->buffer;
+ unsigned long *b = (unsigned long *) src_rbs[0]->buffer;
+ unsigned long *c = (unsigned long *) src_rbs[1]->buffer;
+ unsigned long *d = (unsigned long *) src_rbs[2]->buffer;
+ unsigned long a0, a1, a2, a3, b0, b1, b2, b3;
+
+ callcount[3]++;
+ /* align dest to cache line */
+ while ((((unsigned long) dst) & 0x1f)) {
+ *dst++ ^= *b++ ^ *c++ ^ *d++;
+ len--;
+ }
+ while (len > 4) {
+ LOAD_FIRST(dst, b);
+ XOR_AND_LOAD_NEXT(c);
+ XOR_AND_LOAD_NEXT(d);
+ XOR_AND_STORE(dst);
+ }
+ while (len) {
+ *dst++ ^= *b++ ^ *c++ ^ *d++;
+ len--;
+ }
+}
+
+void
+rf_nWayXor4(src_rbs, dest_rb, len)
+ RF_ReconBuffer_t **src_rbs;
+ RF_ReconBuffer_t *dest_rb;
+ int len;
+{
+ unsigned long *dst = (unsigned long *) dest_rb->buffer;
+ unsigned long *b = (unsigned long *) src_rbs[0]->buffer;
+ unsigned long *c = (unsigned long *) src_rbs[1]->buffer;
+ unsigned long *d = (unsigned long *) src_rbs[2]->buffer;
+ unsigned long *e = (unsigned long *) src_rbs[3]->buffer;
+ unsigned long a0, a1, a2, a3, b0, b1, b2, b3;
+
+ callcount[4]++;
+ /* align dest to cache line */
+ while ((((unsigned long) dst) & 0x1f)) {
+ *dst++ ^= *b++ ^ *c++ ^ *d++ ^ *e++;
+ len--;
+ }
+ while (len > 4) {
+ LOAD_FIRST(dst, b);
+ XOR_AND_LOAD_NEXT(c);
+ XOR_AND_LOAD_NEXT(d);
+ XOR_AND_LOAD_NEXT(e);
+ XOR_AND_STORE(dst);
+ }
+ while (len) {
+ *dst++ ^= *b++ ^ *c++ ^ *d++ ^ *e++;
+ len--;
+ }
+}
+
+void
+rf_nWayXor5(src_rbs, dest_rb, len)
+ RF_ReconBuffer_t **src_rbs;
+ RF_ReconBuffer_t *dest_rb;
+ int len;
+{
+ unsigned long *dst = (unsigned long *) dest_rb->buffer;
+ unsigned long *b = (unsigned long *) src_rbs[0]->buffer;
+ unsigned long *c = (unsigned long *) src_rbs[1]->buffer;
+ unsigned long *d = (unsigned long *) src_rbs[2]->buffer;
+ unsigned long *e = (unsigned long *) src_rbs[3]->buffer;
+ unsigned long *f = (unsigned long *) src_rbs[4]->buffer;
+ unsigned long a0, a1, a2, a3, b0, b1, b2, b3;
+
+ callcount[5]++;
+ /* align dest to cache line */
+ while ((((unsigned long) dst) & 0x1f)) {
+ *dst++ ^= *b++ ^ *c++ ^ *d++ ^ *e++ ^ *f++;
+ len--;
+ }
+ while (len > 4) {
+ LOAD_FIRST(dst, b);
+ XOR_AND_LOAD_NEXT(c);
+ XOR_AND_LOAD_NEXT(d);
+ XOR_AND_LOAD_NEXT(e);
+ XOR_AND_LOAD_NEXT(f);
+ XOR_AND_STORE(dst);
+ }
+ while (len) {
+ *dst++ ^= *b++ ^ *c++ ^ *d++ ^ *e++ ^ *f++;
+ len--;
+ }
+}
+
+void
+rf_nWayXor6(src_rbs, dest_rb, len)
+ RF_ReconBuffer_t **src_rbs;
+ RF_ReconBuffer_t *dest_rb;
+ int len;
+{
+ unsigned long *dst = (unsigned long *) dest_rb->buffer;
+ unsigned long *b = (unsigned long *) src_rbs[0]->buffer;
+ unsigned long *c = (unsigned long *) src_rbs[1]->buffer;
+ unsigned long *d = (unsigned long *) src_rbs[2]->buffer;
+ unsigned long *e = (unsigned long *) src_rbs[3]->buffer;
+ unsigned long *f = (unsigned long *) src_rbs[4]->buffer;
+ unsigned long *g = (unsigned long *) src_rbs[5]->buffer;
+ unsigned long a0, a1, a2, a3, b0, b1, b2, b3;
+
+ callcount[6]++;
+ /* align dest to cache line */
+ while ((((unsigned long) dst) & 0x1f)) {
+ *dst++ ^= *b++ ^ *c++ ^ *d++ ^ *e++ ^ *f++ ^ *g++;
+ len--;
+ }
+ while (len > 4) {
+ LOAD_FIRST(dst, b);
+ XOR_AND_LOAD_NEXT(c);
+ XOR_AND_LOAD_NEXT(d);
+ XOR_AND_LOAD_NEXT(e);
+ XOR_AND_LOAD_NEXT(f);
+ XOR_AND_LOAD_NEXT(g);
+ XOR_AND_STORE(dst);
+ }
+ while (len) {
+ *dst++ ^= *b++ ^ *c++ ^ *d++ ^ *e++ ^ *f++ ^ *g++;
+ len--;
+ }
+}
+
+void
+rf_nWayXor7(src_rbs, dest_rb, len)
+ RF_ReconBuffer_t **src_rbs;
+ RF_ReconBuffer_t *dest_rb;
+ int len;
+{
+ unsigned long *dst = (unsigned long *) dest_rb->buffer;
+ unsigned long *b = (unsigned long *) src_rbs[0]->buffer;
+ unsigned long *c = (unsigned long *) src_rbs[1]->buffer;
+ unsigned long *d = (unsigned long *) src_rbs[2]->buffer;
+ unsigned long *e = (unsigned long *) src_rbs[3]->buffer;
+ unsigned long *f = (unsigned long *) src_rbs[4]->buffer;
+ unsigned long *g = (unsigned long *) src_rbs[5]->buffer;
+ unsigned long *h = (unsigned long *) src_rbs[6]->buffer;
+ unsigned long a0, a1, a2, a3, b0, b1, b2, b3;
+
+ callcount[7]++;
+ /* align dest to cache line */
+ while ((((unsigned long) dst) & 0x1f)) {
+ *dst++ ^= *b++ ^ *c++ ^ *d++ ^ *e++ ^ *f++ ^ *g++ ^ *h++;
+ len--;
+ }
+ while (len > 4) {
+ LOAD_FIRST(dst, b);
+ XOR_AND_LOAD_NEXT(c);
+ XOR_AND_LOAD_NEXT(d);
+ XOR_AND_LOAD_NEXT(e);
+ XOR_AND_LOAD_NEXT(f);
+ XOR_AND_LOAD_NEXT(g);
+ XOR_AND_LOAD_NEXT(h);
+ XOR_AND_STORE(dst);
+ }
+ while (len) {
+ *dst++ ^= *b++ ^ *c++ ^ *d++ ^ *e++ ^ *f++ ^ *g++ ^ *h++;
+ len--;
+ }
+}
+
+void
+rf_nWayXor8(src_rbs, dest_rb, len)
+ RF_ReconBuffer_t **src_rbs;
+ RF_ReconBuffer_t *dest_rb;
+ int len;
+{
+ unsigned long *dst = (unsigned long *) dest_rb->buffer;
+ unsigned long *b = (unsigned long *) src_rbs[0]->buffer;
+ unsigned long *c = (unsigned long *) src_rbs[1]->buffer;
+ unsigned long *d = (unsigned long *) src_rbs[2]->buffer;
+ unsigned long *e = (unsigned long *) src_rbs[3]->buffer;
+ unsigned long *f = (unsigned long *) src_rbs[4]->buffer;
+ unsigned long *g = (unsigned long *) src_rbs[5]->buffer;
+ unsigned long *h = (unsigned long *) src_rbs[6]->buffer;
+ unsigned long *i = (unsigned long *) src_rbs[7]->buffer;
+ unsigned long a0, a1, a2, a3, b0, b1, b2, b3;
+
+ callcount[8]++;
+ /* align dest to cache line */
+ while ((((unsigned long) dst) & 0x1f)) {
+ *dst++ ^= *b++ ^ *c++ ^ *d++ ^ *e++ ^ *f++ ^ *g++ ^ *h++ ^ *i++;
+ len--;
+ }
+ while (len > 4) {
+ LOAD_FIRST(dst, b);
+ XOR_AND_LOAD_NEXT(c);
+ XOR_AND_LOAD_NEXT(d);
+ XOR_AND_LOAD_NEXT(e);
+ XOR_AND_LOAD_NEXT(f);
+ XOR_AND_LOAD_NEXT(g);
+ XOR_AND_LOAD_NEXT(h);
+ XOR_AND_LOAD_NEXT(i);
+ XOR_AND_STORE(dst);
+ }
+ while (len) {
+ *dst++ ^= *b++ ^ *c++ ^ *d++ ^ *e++ ^ *f++ ^ *g++ ^ *h++ ^ *i++;
+ len--;
+ }
+}
+
+
+void
+rf_nWayXor9(src_rbs, dest_rb, len)
+ RF_ReconBuffer_t **src_rbs;
+ RF_ReconBuffer_t *dest_rb;
+ int len;
+{
+ unsigned long *dst = (unsigned long *) dest_rb->buffer;
+ unsigned long *b = (unsigned long *) src_rbs[0]->buffer;
+ unsigned long *c = (unsigned long *) src_rbs[1]->buffer;
+ unsigned long *d = (unsigned long *) src_rbs[2]->buffer;
+ unsigned long *e = (unsigned long *) src_rbs[3]->buffer;
+ unsigned long *f = (unsigned long *) src_rbs[4]->buffer;
+ unsigned long *g = (unsigned long *) src_rbs[5]->buffer;
+ unsigned long *h = (unsigned long *) src_rbs[6]->buffer;
+ unsigned long *i = (unsigned long *) src_rbs[7]->buffer;
+ unsigned long *j = (unsigned long *) src_rbs[8]->buffer;
+ unsigned long a0, a1, a2, a3, b0, b1, b2, b3;
+
+ callcount[9]++;
+ /* align dest to cache line */
+ while ((((unsigned long) dst) & 0x1f)) {
+ *dst++ ^= *b++ ^ *c++ ^ *d++ ^ *e++ ^ *f++ ^ *g++ ^ *h++ ^ *i++ ^ *j++;
+ len--;
+ }
+ while (len > 4) {
+ LOAD_FIRST(dst, b);
+ XOR_AND_LOAD_NEXT(c);
+ XOR_AND_LOAD_NEXT(d);
+ XOR_AND_LOAD_NEXT(e);
+ XOR_AND_LOAD_NEXT(f);
+ XOR_AND_LOAD_NEXT(g);
+ XOR_AND_LOAD_NEXT(h);
+ XOR_AND_LOAD_NEXT(i);
+ XOR_AND_LOAD_NEXT(j);
+ XOR_AND_STORE(dst);
+ }
+ while (len) {
+ *dst++ ^= *b++ ^ *c++ ^ *d++ ^ *e++ ^ *f++ ^ *g++ ^ *h++ ^ *i++ ^ *j++;
+ len--;
+ }
+}
diff --git a/sys/dev/raidframe/rf_nwayxor.h b/sys/dev/raidframe/rf_nwayxor.h
new file mode 100644
index 0000000..1460d9b
--- /dev/null
+++ b/sys/dev/raidframe/rf_nwayxor.h
@@ -0,0 +1,54 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_nwayxor.h,v 1.3 1999/02/05 00:06:13 oster Exp $ */
+/*
+ * rf_nwayxor.h
+ */
+/*
+ * Copyright (c) 1996 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Jim Zelenka
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+/*
+ * rf_nwayxor.h -- types and prototypes for nwayxor module
+ */
+
+#ifndef _RF__RF_NWAYXOR_H_
+#define _RF__RF_NWAYXOR_H_
+
+#include <dev/raidframe/rf_types.h>
+#include <dev/raidframe/rf_raid.h>
+#include <dev/raidframe/rf_reconstruct.h>
+
+int rf_ConfigureNWayXor(RF_ShutdownList_t ** listp);
+void rf_nWayXor1(RF_ReconBuffer_t ** src_rbs, RF_ReconBuffer_t * dest_rb, int len);
+void rf_nWayXor2(RF_ReconBuffer_t ** src_rbs, RF_ReconBuffer_t * dest_rb, int len);
+void rf_nWayXor3(RF_ReconBuffer_t ** src_rbs, RF_ReconBuffer_t * dest_rb, int len);
+void rf_nWayXor4(RF_ReconBuffer_t ** src_rbs, RF_ReconBuffer_t * dest_rb, int len);
+void rf_nWayXor5(RF_ReconBuffer_t ** src_rbs, RF_ReconBuffer_t * dest_rb, int len);
+void rf_nWayXor6(RF_ReconBuffer_t ** src_rbs, RF_ReconBuffer_t * dest_rb, int len);
+void rf_nWayXor7(RF_ReconBuffer_t ** src_rbs, RF_ReconBuffer_t * dest_rb, int len);
+void rf_nWayXor8(RF_ReconBuffer_t ** src_rbs, RF_ReconBuffer_t * dest_rb, int len);
+void rf_nWayXor9(RF_ReconBuffer_t ** src_rbs, RF_ReconBuffer_t * dest_rb, int len);
+
+#endif /* !_RF__RF_NWAYXOR_H_ */
diff --git a/sys/dev/raidframe/rf_options.c b/sys/dev/raidframe/rf_options.c
new file mode 100644
index 0000000..9ead8b2
--- /dev/null
+++ b/sys/dev/raidframe/rf_options.c
@@ -0,0 +1,76 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_options.c,v 1.3 1999/02/05 00:06:13 oster Exp $ */
+/*
+ * rf_options.c
+ */
+/*
+ * Copyright (c) 1996 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Jim Zelenka
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+
+#include <dev/raidframe/rf_threadstuff.h>
+#include <dev/raidframe/rf_types.h>
+#include <dev/raidframe/rf_archs.h>
+#include <dev/raidframe/rf_general.h>
+#include <dev/raidframe/rf_options.h>
+
+#ifdef RF_DBG_OPTION
+#undef RF_DBG_OPTION
+#endif /* RF_DBG_OPTION */
+
+#ifdef __STDC__
+#define RF_DBG_OPTION(_option_,_defval_) long rf_##_option_ = _defval_;
+#else /* __STDC__ */
+#define RF_DBG_OPTION(_option_,_defval_) long rf_/**/_option_ = _defval_;
+#endif /* __STDC__ */
+
+#include <dev/raidframe/rf_optnames.h>
+
+#undef RF_DBG_OPTION
+
+#ifdef __STDC__
+#define RF_DBG_OPTION(_option_,_defval_) { RF_STRING(_option_), &rf_##_option_ },
+#else /* __STDC__ */
+#define RF_DBG_OPTION(_option_,_defval_) { RF_STRING(_option_), &rf_/**/_option_ },
+#endif /* __STDC__ */
+
+RF_DebugName_t rf_debugNames[] = {
+#include <dev/raidframe/rf_optnames.h>
+ {NULL, NULL}
+};
+#undef RF_DBG_OPTION
+
+#ifdef __STDC__
+#define RF_DBG_OPTION(_option_,_defval_) rf_##_option_ = _defval_ ;
+#else /* __STDC__ */
+#define RF_DBG_OPTION(_option_,_defval_) rf_/**/_option_ = _defval_ ;
+#endif /* __STDC__ */
+
+void
+rf_ResetDebugOptions()
+{
+#include <dev/raidframe/rf_optnames.h>
+}
diff --git a/sys/dev/raidframe/rf_options.h b/sys/dev/raidframe/rf_options.h
new file mode 100644
index 0000000..22b6341
--- /dev/null
+++ b/sys/dev/raidframe/rf_options.h
@@ -0,0 +1,58 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_options.h,v 1.3 1999/02/05 00:06:13 oster Exp $ */
+/*
+ * rf_options.h
+ */
+/*
+ * Copyright (c) 1996 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Jim Zelenka
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+#ifndef _RF__RF_OPTIONS_H_
+#define _RF__RF_OPTIONS_H_
+
+#define RF_DEFAULT_LOCK_TABLE_SIZE 256
+
+typedef struct RF_DebugNames_s {
+ char *name;
+ long *ptr;
+} RF_DebugName_t;
+
+extern RF_DebugName_t rf_debugNames[];
+
+#ifdef RF_DBG_OPTION
+#undef RF_DBG_OPTION
+#endif /* RF_DBG_OPTION */
+
+#ifdef __STDC__
+#define RF_DBG_OPTION(_option_,_defval_) extern long rf_##_option_;
+#else /* __STDC__ */
+#define RF_DBG_OPTION(_option_,_defval_) extern long rf_/**/_option_;
+#endif /* __STDC__ */
+#include <dev/raidframe/rf_optnames.h>
+
+void rf_ResetDebugOptions(void);
+
+#endif /* !_RF__RF_OPTIONS_H_ */
diff --git a/sys/dev/raidframe/rf_optnames.h b/sys/dev/raidframe/rf_optnames.h
new file mode 100644
index 0000000..f04fbc1
--- /dev/null
+++ b/sys/dev/raidframe/rf_optnames.h
@@ -0,0 +1,105 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_optnames.h,v 1.6 1999/12/07 02:54:08 oster Exp $ */
+/*
+ * rf_optnames.h
+ */
+/*
+ * Copyright (c) 1996 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Jim Zelenka
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+/*
+ * Don't protect against multiple inclusion here- we actually want this.
+ */
+
+RF_DBG_OPTION(accessDebug, 0)
+RF_DBG_OPTION(accessTraceBufSize, 0)
+RF_DBG_OPTION(cscanDebug, 0) /* debug CSCAN sorting */
+RF_DBG_OPTION(dagDebug, 0)
+RF_DBG_OPTION(debugPrintUseBuffer, 0)
+RF_DBG_OPTION(degDagDebug, 0)
+RF_DBG_OPTION(disableAsyncAccs, 0)
+RF_DBG_OPTION(diskDebug, 0)
+RF_DBG_OPTION(enableAtomicRMW, 0) /* this debug var enables locking of
+ * the disk arm during small-write
+ * operations. Setting this variable
+ * to anything other than 0 will
+ * result in deadlock. (wvcii) */
+RF_DBG_OPTION(engineDebug, 0)
+RF_DBG_OPTION(fifoDebug, 0) /* debug fifo queueing */
+RF_DBG_OPTION(floatingRbufDebug, 0)
+RF_DBG_OPTION(forceHeadSepLimit, -1)
+RF_DBG_OPTION(forceNumFloatingReconBufs, -1) /* wire down number of
+ * extra recon buffers
+ * to use */
+RF_DBG_OPTION(keepAccTotals, 0) /* turn on keep_acc_totals */
+RF_DBG_OPTION(lockTableSize, RF_DEFAULT_LOCK_TABLE_SIZE)
+RF_DBG_OPTION(mapDebug, 0)
+RF_DBG_OPTION(maxNumTraces, -1)
+
+RF_DBG_OPTION(memChunkDebug, 0)
+RF_DBG_OPTION(memDebug, 0)
+RF_DBG_OPTION(memDebugAddress, 0)
+RF_DBG_OPTION(numBufsToAccumulate, 1) /* number of buffers to
+ * accumulate before doing XOR */
+RF_DBG_OPTION(prReconSched, 0)
+RF_DBG_OPTION(printDAGsDebug, 0)
+RF_DBG_OPTION(printStatesDebug, 0)
+RF_DBG_OPTION(protectedSectors, 64L) /* # of sectors at start of
+ * disk to exclude from RAID
+ * address space */
+RF_DBG_OPTION(pssDebug, 0)
+RF_DBG_OPTION(queueDebug, 0)
+RF_DBG_OPTION(quiesceDebug, 0)
+RF_DBG_OPTION(raidSectorOffset, 0) /* added to all incoming sectors to
+ * debug alignment problems */
+RF_DBG_OPTION(reconDebug, 0)
+RF_DBG_OPTION(reconbufferDebug, 0)
+RF_DBG_OPTION(scanDebug, 0) /* debug SCAN sorting */
+RF_DBG_OPTION(showXorCallCounts, 0) /* show n-way Xor call counts */
+RF_DBG_OPTION(shutdownDebug, 0) /* show shutdown calls */
+RF_DBG_OPTION(sizePercentage, 100)
+RF_DBG_OPTION(sstfDebug, 0) /* turn on debugging info for sstf queueing */
+RF_DBG_OPTION(stripeLockDebug, 0)
+RF_DBG_OPTION(suppressLocksAndLargeWrites, 0)
+RF_DBG_OPTION(suppressTraceDelays, 0)
+RF_DBG_OPTION(useMemChunks, 1)
+RF_DBG_OPTION(validateDAGDebug, 0)
+RF_DBG_OPTION(validateVisitedDebug, 1) /* XXX turn to zero by
+ * default? */
+RF_DBG_OPTION(verifyParityDebug, 0)
+RF_DBG_OPTION(debugKernelAccess, 0) /* DoAccessKernel debugging */
+
+#if RF_INCLUDE_PARITYLOGGING > 0
+RF_DBG_OPTION(forceParityLogReint, 0)
+RF_DBG_OPTION(numParityRegions, 0) /* number of regions in the array */
+RF_DBG_OPTION(numReintegrationThreads, 1)
+RF_DBG_OPTION(parityLogDebug, 0) /* if nonzero, enables debugging of
+ * parity logging */
+RF_DBG_OPTION(totalInCoreLogCapacity, 1024 * 1024) /* target bytes
+ * available for in-core
+ * logs */
+#endif /* RF_INCLUDE_PARITYLOGGING > 0 */
+
diff --git a/sys/dev/raidframe/rf_paritylog.c b/sys/dev/raidframe/rf_paritylog.c
new file mode 100644
index 0000000..6c56c95
--- /dev/null
+++ b/sys/dev/raidframe/rf_paritylog.c
@@ -0,0 +1,869 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_paritylog.c,v 1.5 2000/01/07 03:41:01 oster Exp $ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: William V. Courtright II
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+/* Code for manipulating in-core parity logs
+ *
+ */
+
+#include <dev/raidframe/rf_archs.h>
+
+#if RF_INCLUDE_PARITYLOGGING > 0
+
+/*
+ * Append-only log for recording parity "update" and "overwrite" records
+ */
+
+#include <dev/raidframe/rf_types.h>
+#include <dev/raidframe/rf_threadstuff.h>
+#include <dev/raidframe/rf_mcpair.h>
+#include <dev/raidframe/rf_raid.h>
+#include <dev/raidframe/rf_dag.h>
+#include <dev/raidframe/rf_dagfuncs.h>
+#include <dev/raidframe/rf_desc.h>
+#include <dev/raidframe/rf_layout.h>
+#include <dev/raidframe/rf_diskqueue.h>
+#include <dev/raidframe/rf_etimer.h>
+#include <dev/raidframe/rf_paritylog.h>
+#include <dev/raidframe/rf_general.h>
+#include <dev/raidframe/rf_map.h>
+#include <dev/raidframe/rf_paritylogging.h>
+#include <dev/raidframe/rf_paritylogDiskMgr.h>
+
+static RF_CommonLogData_t *
+AllocParityLogCommonData(RF_Raid_t * raidPtr)
+{
+ RF_CommonLogData_t *common = NULL;
+ int rc;
+
+ /* Return a struct for holding common parity log information from the
+ * free list (rf_parityLogDiskQueue.freeCommonList). If the free list
+ * is empty, call RF_Malloc to create a new structure. NON-BLOCKING */
+
+ RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
+ if (raidPtr->parityLogDiskQueue.freeCommonList) {
+ common = raidPtr->parityLogDiskQueue.freeCommonList;
+ raidPtr->parityLogDiskQueue.freeCommonList = raidPtr->parityLogDiskQueue.freeCommonList->next;
+ RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
+ } else {
+ RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
+ RF_Malloc(common, sizeof(RF_CommonLogData_t), (RF_CommonLogData_t *));
+ rc = rf_mutex_init(&common->mutex, __FUNCTION__);
+ if (rc) {
+ RF_ERRORMSG3("Unable to init mutex file %s line %d rc=%d\n", __FILE__,
+ __LINE__, rc);
+ RF_Free(common, sizeof(RF_CommonLogData_t));
+ common = NULL;
+ }
+ }
+ common->next = NULL;
+ return (common);
+}
+
+static void
+FreeParityLogCommonData(RF_CommonLogData_t * common)
+{
+ RF_Raid_t *raidPtr;
+
+ /* Insert a single struct for holding parity log information (data)
+ * into the free list (rf_parityLogDiskQueue.freeCommonList).
+ * NON-BLOCKING */
+
+ raidPtr = common->raidPtr;
+ RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
+ common->next = raidPtr->parityLogDiskQueue.freeCommonList;
+ raidPtr->parityLogDiskQueue.freeCommonList = common;
+ RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
+}
+
+static RF_ParityLogData_t *
+AllocParityLogData(RF_Raid_t * raidPtr)
+{
+ RF_ParityLogData_t *data = NULL;
+
+ /* Return a struct for holding parity log information from the free
+ * list (rf_parityLogDiskQueue.freeList). If the free list is empty,
+ * call RF_Malloc to create a new structure. NON-BLOCKING */
+
+ RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
+ if (raidPtr->parityLogDiskQueue.freeDataList) {
+ data = raidPtr->parityLogDiskQueue.freeDataList;
+ raidPtr->parityLogDiskQueue.freeDataList = raidPtr->parityLogDiskQueue.freeDataList->next;
+ RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
+ } else {
+ RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
+ RF_Malloc(data, sizeof(RF_ParityLogData_t), (RF_ParityLogData_t *));
+ }
+ data->next = NULL;
+ data->prev = NULL;
+ return (data);
+}
+
+
+static void
+FreeParityLogData(RF_ParityLogData_t * data)
+{
+ RF_ParityLogData_t *nextItem;
+ RF_Raid_t *raidPtr;
+
+ /* Insert a linked list of structs for holding parity log information
+ * (data) into the free list (parityLogDiskQueue.freeList).
+ * NON-BLOCKING */
+
+ raidPtr = data->common->raidPtr;
+ RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
+ while (data) {
+ nextItem = data->next;
+ data->next = raidPtr->parityLogDiskQueue.freeDataList;
+ raidPtr->parityLogDiskQueue.freeDataList = data;
+ data = nextItem;
+ }
+ RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
+}
+
+
+static void
+EnqueueParityLogData(
+ RF_ParityLogData_t * data,
+ RF_ParityLogData_t ** head,
+ RF_ParityLogData_t ** tail)
+{
+ RF_Raid_t *raidPtr;
+
+ /* Insert an in-core parity log (*data) into the head of a disk queue
+ * (*head, *tail). NON-BLOCKING */
+
+ raidPtr = data->common->raidPtr;
+ if (rf_parityLogDebug)
+ printf("[enqueueing parity log data, region %d, raidAddress %d, numSector %d]\n", data->regionID, (int) data->diskAddress.raidAddress, (int) data->diskAddress.numSector);
+ RF_ASSERT(data->prev == NULL);
+ RF_ASSERT(data->next == NULL);
+ RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
+ if (*head) {
+ /* insert into head of queue */
+ RF_ASSERT((*head)->prev == NULL);
+ RF_ASSERT((*tail)->next == NULL);
+ data->next = *head;
+ (*head)->prev = data;
+ *head = data;
+ } else {
+ /* insert into empty list */
+ RF_ASSERT(*head == NULL);
+ RF_ASSERT(*tail == NULL);
+ *head = data;
+ *tail = data;
+ }
+ RF_ASSERT((*head)->prev == NULL);
+ RF_ASSERT((*tail)->next == NULL);
+ RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
+}
+
+static RF_ParityLogData_t *
+DequeueParityLogData(
+ RF_Raid_t * raidPtr,
+ RF_ParityLogData_t ** head,
+ RF_ParityLogData_t ** tail,
+ int ignoreLocks)
+{
+ RF_ParityLogData_t *data;
+
+ /* Remove and return an in-core parity log from the tail of a disk
+ * queue (*head, *tail). NON-BLOCKING */
+
+ /* remove from tail, preserving FIFO order */
+ if (!ignoreLocks)
+ RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
+ data = *tail;
+ if (data) {
+ if (*head == *tail) {
+ /* removing last item from queue */
+ *head = NULL;
+ *tail = NULL;
+ } else {
+ *tail = (*tail)->prev;
+ (*tail)->next = NULL;
+ RF_ASSERT((*head)->prev == NULL);
+ RF_ASSERT((*tail)->next == NULL);
+ }
+ data->next = NULL;
+ data->prev = NULL;
+ if (rf_parityLogDebug)
+ printf("[dequeueing parity log data, region %d, raidAddress %d, numSector %d]\n", data->regionID, (int) data->diskAddress.raidAddress, (int) data->diskAddress.numSector);
+ }
+ if (*head) {
+ RF_ASSERT((*head)->prev == NULL);
+ RF_ASSERT((*tail)->next == NULL);
+ }
+ if (!ignoreLocks)
+ RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
+ return (data);
+}
+
+
+static void
+RequeueParityLogData(
+ RF_ParityLogData_t * data,
+ RF_ParityLogData_t ** head,
+ RF_ParityLogData_t ** tail)
+{
+ RF_Raid_t *raidPtr;
+
+ /* Insert an in-core parity log (*data) into the tail of a disk queue
+ * (*head, *tail). NON-BLOCKING */
+
+ raidPtr = data->common->raidPtr;
+ RF_ASSERT(data);
+ if (rf_parityLogDebug)
+ printf("[requeueing parity log data, region %d, raidAddress %d, numSector %d]\n", data->regionID, (int) data->diskAddress.raidAddress, (int) data->diskAddress.numSector);
+ RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
+ if (*tail) {
+ /* append to tail of list */
+ data->prev = *tail;
+ data->next = NULL;
+ (*tail)->next = data;
+ *tail = data;
+ } else {
+ /* inserting into an empty list */
+ *head = data;
+ *tail = data;
+ (*head)->prev = NULL;
+ (*tail)->next = NULL;
+ }
+ RF_ASSERT((*head)->prev == NULL);
+ RF_ASSERT((*tail)->next == NULL);
+ RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
+}
+
+RF_ParityLogData_t *
+rf_CreateParityLogData(
+ RF_ParityRecordType_t operation,
+ RF_PhysDiskAddr_t * pda,
+ caddr_t bufPtr,
+ RF_Raid_t * raidPtr,
+ int (*wakeFunc) (RF_DagNode_t * node, int status),
+ void *wakeArg,
+ RF_AccTraceEntry_t * tracerec,
+ RF_Etimer_t startTime)
+{
+ RF_ParityLogData_t *data, *resultHead = NULL, *resultTail = NULL;
+ RF_CommonLogData_t *common;
+ RF_PhysDiskAddr_t *diskAddress;
+ int boundary, offset = 0;
+
+ /* Return an initialized struct of info to be logged. Build one item
+ * per physical disk address, one item per region.
+ *
+ * NON-BLOCKING */
+
+ diskAddress = pda;
+ common = AllocParityLogCommonData(raidPtr);
+ RF_ASSERT(common);
+
+ common->operation = operation;
+ common->bufPtr = bufPtr;
+ common->raidPtr = raidPtr;
+ common->wakeFunc = wakeFunc;
+ common->wakeArg = wakeArg;
+ common->tracerec = tracerec;
+ common->startTime = startTime;
+ common->cnt = 0;
+
+ if (rf_parityLogDebug)
+ printf("[entering CreateParityLogData]\n");
+ while (diskAddress) {
+ common->cnt++;
+ data = AllocParityLogData(raidPtr);
+ RF_ASSERT(data);
+ data->common = common;
+ data->next = NULL;
+ data->prev = NULL;
+ data->regionID = rf_MapRegionIDParityLogging(raidPtr, diskAddress->startSector);
+ if (data->regionID == rf_MapRegionIDParityLogging(raidPtr, diskAddress->startSector + diskAddress->numSector - 1)) {
+ /* disk address does not cross a region boundary */
+ data->diskAddress = *diskAddress;
+ data->bufOffset = offset;
+ offset = offset + diskAddress->numSector;
+ EnqueueParityLogData(data, &resultHead, &resultTail);
+ /* adjust disk address */
+ diskAddress = diskAddress->next;
+ } else {
+ /* disk address crosses a region boundary */
+ /* find address where region is crossed */
+ boundary = 0;
+ while (data->regionID == rf_MapRegionIDParityLogging(raidPtr, diskAddress->startSector + boundary))
+ boundary++;
+
+ /* enter data before the boundary */
+ data->diskAddress = *diskAddress;
+ data->diskAddress.numSector = boundary;
+ data->bufOffset = offset;
+ offset += boundary;
+ EnqueueParityLogData(data, &resultHead, &resultTail);
+ /* adjust disk address */
+ diskAddress->startSector += boundary;
+ diskAddress->numSector -= boundary;
+ }
+ }
+ if (rf_parityLogDebug)
+ printf("[leaving CreateParityLogData]\n");
+ return (resultHead);
+}
+
+
+RF_ParityLogData_t *
+rf_SearchAndDequeueParityLogData(
+ RF_Raid_t * raidPtr,
+ int regionID,
+ RF_ParityLogData_t ** head,
+ RF_ParityLogData_t ** tail,
+ int ignoreLocks)
+{
+ RF_ParityLogData_t *w;
+
+ /* Remove and return an in-core parity log from a specified region
+ * (regionID). If a matching log is not found, return NULL.
+ *
+ * NON-BLOCKING. */
+
+ /* walk backward through a list, looking for an entry with a matching
+ * region ID */
+ if (!ignoreLocks)
+ RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
+ w = (*tail);
+ while (w) {
+ if (w->regionID == regionID) {
+ /* remove an element from the list */
+ if (w == *tail) {
+ if (*head == *tail) {
+ /* removing only element in the list */
+ *head = NULL;
+ *tail = NULL;
+ } else {
+ /* removing last item in the list */
+ *tail = (*tail)->prev;
+ (*tail)->next = NULL;
+ RF_ASSERT((*head)->prev == NULL);
+ RF_ASSERT((*tail)->next == NULL);
+ }
+ } else {
+ if (w == *head) {
+ /* removing first item in the list */
+ *head = (*head)->next;
+ (*head)->prev = NULL;
+ RF_ASSERT((*head)->prev == NULL);
+ RF_ASSERT((*tail)->next == NULL);
+ } else {
+ /* removing an item from the middle of
+ * the list */
+ w->prev->next = w->next;
+ w->next->prev = w->prev;
+ RF_ASSERT((*head)->prev == NULL);
+ RF_ASSERT((*tail)->next == NULL);
+ }
+ }
+ w->prev = NULL;
+ w->next = NULL;
+ if (rf_parityLogDebug)
+ printf("[dequeueing parity log data, region %d, raidAddress %d, numSector %d]\n", w->regionID, (int) w->diskAddress.raidAddress, (int) w->diskAddress.numSector);
+ return (w);
+ } else
+ w = w->prev;
+ }
+ if (!ignoreLocks)
+ RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
+ return (NULL);
+}
+
+static RF_ParityLogData_t *
+DequeueMatchingLogData(
+ RF_Raid_t * raidPtr,
+ RF_ParityLogData_t ** head,
+ RF_ParityLogData_t ** tail)
+{
+ RF_ParityLogData_t *logDataList, *logData;
+ int regionID;
+
+ /* Remove and return an in-core parity log from the tail of a disk
+ * queue (*head, *tail). Then remove all matching (identical
+ * regionIDs) logData and return as a linked list.
+ *
+ * NON-BLOCKING */
+
+ logDataList = DequeueParityLogData(raidPtr, head, tail, RF_TRUE);
+ if (logDataList) {
+ regionID = logDataList->regionID;
+ logData = logDataList;
+ logData->next = rf_SearchAndDequeueParityLogData(raidPtr, regionID, head, tail, RF_TRUE);
+ while (logData->next) {
+ logData = logData->next;
+ logData->next = rf_SearchAndDequeueParityLogData(raidPtr, regionID, head, tail, RF_TRUE);
+ }
+ }
+ return (logDataList);
+}
+
+
+static RF_ParityLog_t *
+AcquireParityLog(
+ RF_ParityLogData_t * logData,
+ int finish)
+{
+ RF_ParityLog_t *log = NULL;
+ RF_Raid_t *raidPtr;
+
+ /* Grab a log buffer from the pool and return it. If no buffers are
+ * available, return NULL. NON-BLOCKING */
+ raidPtr = logData->common->raidPtr;
+ RF_LOCK_MUTEX(raidPtr->parityLogPool.mutex);
+ if (raidPtr->parityLogPool.parityLogs) {
+ log = raidPtr->parityLogPool.parityLogs;
+ raidPtr->parityLogPool.parityLogs = raidPtr->parityLogPool.parityLogs->next;
+ log->regionID = logData->regionID;
+ log->numRecords = 0;
+ log->next = NULL;
+ raidPtr->logsInUse++;
+ RF_ASSERT(raidPtr->logsInUse >= 0 && raidPtr->logsInUse <= raidPtr->numParityLogs);
+ } else {
+ /* no logs available, so place ourselves on the queue of work
+ * waiting on log buffers this is done while
+ * parityLogPool.mutex is held, to ensure synchronization with
+ * ReleaseParityLogs. */
+ if (rf_parityLogDebug)
+ printf("[blocked on log, region %d, finish %d]\n", logData->regionID, finish);
+ if (finish)
+ RequeueParityLogData(logData, &raidPtr->parityLogDiskQueue.logBlockHead, &raidPtr->parityLogDiskQueue.logBlockTail);
+ else
+ EnqueueParityLogData(logData, &raidPtr->parityLogDiskQueue.logBlockHead, &raidPtr->parityLogDiskQueue.logBlockTail);
+ }
+ RF_UNLOCK_MUTEX(raidPtr->parityLogPool.mutex);
+ return (log);
+}
+
+void
+rf_ReleaseParityLogs(
+ RF_Raid_t * raidPtr,
+ RF_ParityLog_t * firstLog)
+{
+ RF_ParityLogData_t *logDataList;
+ RF_ParityLog_t *log, *lastLog;
+ int cnt;
+
+ /* Insert a linked list of parity logs (firstLog) to the free list
+ * (parityLogPool.parityLogPool)
+ *
+ * NON-BLOCKING. */
+
+ RF_ASSERT(firstLog);
+
+ /* Before returning logs to global free list, service all requests
+ * which are blocked on logs. Holding mutexes for parityLogPool and
+ * parityLogDiskQueue forces synchronization with AcquireParityLog(). */
+ RF_LOCK_MUTEX(raidPtr->parityLogPool.mutex);
+ RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
+ logDataList = DequeueMatchingLogData(raidPtr, &raidPtr->parityLogDiskQueue.logBlockHead, &raidPtr->parityLogDiskQueue.logBlockTail);
+ log = firstLog;
+ if (firstLog)
+ firstLog = firstLog->next;
+ log->numRecords = 0;
+ log->next = NULL;
+ while (logDataList && log) {
+ RF_UNLOCK_MUTEX(raidPtr->parityLogPool.mutex);
+ RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
+ rf_ParityLogAppend(logDataList, RF_TRUE, &log, RF_FALSE);
+ if (rf_parityLogDebug)
+ printf("[finishing up buf-blocked log data, region %d]\n", logDataList->regionID);
+ if (log == NULL) {
+ log = firstLog;
+ if (firstLog) {
+ firstLog = firstLog->next;
+ log->numRecords = 0;
+ log->next = NULL;
+ }
+ }
+ RF_LOCK_MUTEX(raidPtr->parityLogPool.mutex);
+ RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
+ if (log)
+ logDataList = DequeueMatchingLogData(raidPtr, &raidPtr->parityLogDiskQueue.logBlockHead, &raidPtr->parityLogDiskQueue.logBlockTail);
+ }
+ /* return remaining logs to pool */
+ if (log) {
+ log->next = firstLog;
+ firstLog = log;
+ }
+ if (firstLog) {
+ lastLog = firstLog;
+ raidPtr->logsInUse--;
+ RF_ASSERT(raidPtr->logsInUse >= 0 && raidPtr->logsInUse <= raidPtr->numParityLogs);
+ while (lastLog->next) {
+ lastLog = lastLog->next;
+ raidPtr->logsInUse--;
+ RF_ASSERT(raidPtr->logsInUse >= 0 && raidPtr->logsInUse <= raidPtr->numParityLogs);
+ }
+ lastLog->next = raidPtr->parityLogPool.parityLogs;
+ raidPtr->parityLogPool.parityLogs = firstLog;
+ cnt = 0;
+ log = raidPtr->parityLogPool.parityLogs;
+ while (log) {
+ cnt++;
+ log = log->next;
+ }
+ RF_ASSERT(cnt + raidPtr->logsInUse == raidPtr->numParityLogs);
+ }
+ RF_UNLOCK_MUTEX(raidPtr->parityLogPool.mutex);
+ RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
+}
+
+static void
+ReintLog(
+ RF_Raid_t * raidPtr,
+ int regionID,
+ RF_ParityLog_t * log)
+{
+ RF_ASSERT(log);
+
+ /* Insert an in-core parity log (log) into the disk queue of
+ * reintegration work. Set the flag (reintInProgress) for the
+ * specified region (regionID) to indicate that reintegration is in
+ * progress for this region. NON-BLOCKING */
+
+ RF_LOCK_MUTEX(raidPtr->regionInfo[regionID].reintMutex);
+ raidPtr->regionInfo[regionID].reintInProgress = RF_TRUE; /* cleared when reint
+ * complete */
+
+ if (rf_parityLogDebug)
+ printf("[requesting reintegration of region %d]\n", log->regionID);
+ /* move record to reintegration queue */
+ RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
+ log->next = raidPtr->parityLogDiskQueue.reintQueue;
+ raidPtr->parityLogDiskQueue.reintQueue = log;
+ RF_UNLOCK_MUTEX(raidPtr->regionInfo[regionID].reintMutex);
+ RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
+ RF_SIGNAL_COND(raidPtr->parityLogDiskQueue.cond);
+}
+
+static void
+FlushLog(
+ RF_Raid_t * raidPtr,
+ RF_ParityLog_t * log)
+{
+ /* insert a core log (log) into a list of logs
+ * (parityLogDiskQueue.flushQueue) waiting to be written to disk.
+ * NON-BLOCKING */
+
+ RF_ASSERT(log);
+ RF_ASSERT(log->numRecords == raidPtr->numSectorsPerLog);
+ RF_ASSERT(log->next == NULL);
+ /* move log to flush queue */
+ RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
+ log->next = raidPtr->parityLogDiskQueue.flushQueue;
+ raidPtr->parityLogDiskQueue.flushQueue = log;
+ RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
+ RF_SIGNAL_COND(raidPtr->parityLogDiskQueue.cond);
+}
+
+static int
+DumpParityLogToDisk(
+ int finish,
+ RF_ParityLogData_t * logData)
+{
+ int i, diskCount, regionID = logData->regionID;
+ RF_ParityLog_t *log;
+ RF_Raid_t *raidPtr;
+
+ raidPtr = logData->common->raidPtr;
+
+ /* Move a core log to disk. If the log disk is full, initiate
+ * reintegration.
+ *
+ * Return (0) if we can enqueue the dump immediately, otherwise return
+ * (1) to indicate we are blocked on reintegration and control of the
+ * thread should be relinquished.
+ *
+ * Caller must hold regionInfo[regionID].mutex
+ *
+ * NON-BLOCKING */
+
+ if (rf_parityLogDebug)
+ printf("[dumping parity log to disk, region %d]\n", regionID);
+ log = raidPtr->regionInfo[regionID].coreLog;
+ RF_ASSERT(log->numRecords == raidPtr->numSectorsPerLog);
+ RF_ASSERT(log->next == NULL);
+
+ /* if reintegration is in progress, must queue work */
+ RF_LOCK_MUTEX(raidPtr->regionInfo[regionID].reintMutex);
+ if (raidPtr->regionInfo[regionID].reintInProgress) {
+ /* Can not proceed since this region is currently being
+ * reintegrated. We can not block, so queue remaining work and
+ * return */
+ if (rf_parityLogDebug)
+ printf("[region %d waiting on reintegration]\n", regionID);
+ /* XXX not sure about the use of finish - shouldn't this
+ * always be "Enqueue"? */
+ if (finish)
+ RequeueParityLogData(logData, &raidPtr->parityLogDiskQueue.reintBlockHead, &raidPtr->parityLogDiskQueue.reintBlockTail);
+ else
+ EnqueueParityLogData(logData, &raidPtr->parityLogDiskQueue.reintBlockHead, &raidPtr->parityLogDiskQueue.reintBlockTail);
+ RF_UNLOCK_MUTEX(raidPtr->regionInfo[regionID].reintMutex);
+ return (1); /* relenquish control of this thread */
+ }
+ RF_UNLOCK_MUTEX(raidPtr->regionInfo[regionID].reintMutex);
+ raidPtr->regionInfo[regionID].coreLog = NULL;
+ if ((raidPtr->regionInfo[regionID].diskCount) < raidPtr->regionInfo[regionID].capacity)
+ /* IMPORTANT!! this loop bound assumes region disk holds an
+ * integral number of core logs */
+ {
+ /* update disk map for this region */
+ diskCount = raidPtr->regionInfo[regionID].diskCount;
+ for (i = 0; i < raidPtr->numSectorsPerLog; i++) {
+ raidPtr->regionInfo[regionID].diskMap[i + diskCount].operation = log->records[i].operation;
+ raidPtr->regionInfo[regionID].diskMap[i + diskCount].parityAddr = log->records[i].parityAddr;
+ }
+ log->diskOffset = diskCount;
+ raidPtr->regionInfo[regionID].diskCount += raidPtr->numSectorsPerLog;
+ FlushLog(raidPtr, log);
+ } else {
+ /* no room for log on disk, send it to disk manager and
+ * request reintegration */
+ RF_ASSERT(raidPtr->regionInfo[regionID].diskCount == raidPtr->regionInfo[regionID].capacity);
+ ReintLog(raidPtr, regionID, log);
+ }
+ if (rf_parityLogDebug)
+ printf("[finished dumping parity log to disk, region %d]\n", regionID);
+ return (0);
+}
+
+int
+rf_ParityLogAppend(
+ RF_ParityLogData_t * logData,
+ int finish,
+ RF_ParityLog_t ** incomingLog,
+ int clearReintFlag)
+{
+ int regionID, logItem, itemDone;
+ RF_ParityLogData_t *item;
+ int punt, done = RF_FALSE;
+ RF_ParityLog_t *log;
+ RF_Raid_t *raidPtr;
+ RF_Etimer_t timer;
+ int (*wakeFunc) (RF_DagNode_t * node, int status);
+ void *wakeArg;
+
+ /* Add parity to the appropriate log, one sector at a time. This
+ * routine is called is called by dag functions ParityLogUpdateFunc
+ * and ParityLogOverwriteFunc and therefore MUST BE NONBLOCKING.
+ *
+ * Parity to be logged is contained in a linked-list (logData). When
+ * this routine returns, every sector in the list will be in one of
+ * three places: 1) entered into the parity log 2) queued, waiting on
+ * reintegration 3) queued, waiting on a core log
+ *
+ * Blocked work is passed to the ParityLoggingDiskManager for completion.
+ * Later, as conditions which required the block are removed, the work
+ * reenters this routine with the "finish" parameter set to "RF_TRUE."
+ *
+ * NON-BLOCKING */
+
+ raidPtr = logData->common->raidPtr;
+ /* lock the region for the first item in logData */
+ RF_ASSERT(logData != NULL);
+ regionID = logData->regionID;
+ RF_LOCK_MUTEX(raidPtr->regionInfo[regionID].mutex);
+ RF_ASSERT(raidPtr->regionInfo[regionID].loggingEnabled);
+
+ if (clearReintFlag) {
+ /* Enable flushing for this region. Holding both locks
+ * provides a synchronization barrier with DumpParityLogToDisk */
+ RF_LOCK_MUTEX(raidPtr->regionInfo[regionID].reintMutex);
+ RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
+ RF_ASSERT(raidPtr->regionInfo[regionID].reintInProgress == RF_TRUE);
+ raidPtr->regionInfo[regionID].diskCount = 0;
+ raidPtr->regionInfo[regionID].reintInProgress = RF_FALSE;
+ RF_UNLOCK_MUTEX(raidPtr->regionInfo[regionID].reintMutex); /* flushing is now
+ * enabled */
+ RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
+ }
+ /* process each item in logData */
+ while (logData) {
+ /* remove an item from logData */
+ item = logData;
+ logData = logData->next;
+ item->next = NULL;
+ item->prev = NULL;
+
+ if (rf_parityLogDebug)
+ printf("[appending parity log data, region %d, raidAddress %d, numSector %d]\n", item->regionID, (int) item->diskAddress.raidAddress, (int) item->diskAddress.numSector);
+
+ /* see if we moved to a new region */
+ if (regionID != item->regionID) {
+ RF_UNLOCK_MUTEX(raidPtr->regionInfo[regionID].mutex);
+ regionID = item->regionID;
+ RF_LOCK_MUTEX(raidPtr->regionInfo[regionID].mutex);
+ RF_ASSERT(raidPtr->regionInfo[regionID].loggingEnabled);
+ }
+ punt = RF_FALSE;/* Set to RF_TRUE if work is blocked. This
+ * can happen in one of two ways: 1) no core
+ * log (AcquireParityLog) 2) waiting on
+ * reintegration (DumpParityLogToDisk) If punt
+ * is RF_TRUE, the dataItem was queued, so
+ * skip to next item. */
+
+ /* process item, one sector at a time, until all sectors
+ * processed or we punt */
+ if (item->diskAddress.numSector > 0)
+ done = RF_FALSE;
+ else
+ RF_ASSERT(0);
+ while (!punt && !done) {
+ /* verify that a core log exists for this region */
+ if (!raidPtr->regionInfo[regionID].coreLog) {
+ /* Attempt to acquire a parity log. If
+ * acquisition fails, queue remaining work in
+ * data item and move to nextItem. */
+ if (incomingLog)
+ if (*incomingLog) {
+ RF_ASSERT((*incomingLog)->next == NULL);
+ raidPtr->regionInfo[regionID].coreLog = *incomingLog;
+ raidPtr->regionInfo[regionID].coreLog->regionID = regionID;
+ *incomingLog = NULL;
+ } else
+ raidPtr->regionInfo[regionID].coreLog = AcquireParityLog(item, finish);
+ else
+ raidPtr->regionInfo[regionID].coreLog = AcquireParityLog(item, finish);
+ /* Note: AcquireParityLog either returns a log
+ * or enqueues currentItem */
+ }
+ if (!raidPtr->regionInfo[regionID].coreLog)
+ punt = RF_TRUE; /* failed to find a core log */
+ else {
+ RF_ASSERT(raidPtr->regionInfo[regionID].coreLog->next == NULL);
+ /* verify that the log has room for new
+ * entries */
+ /* if log is full, dump it to disk and grab a
+ * new log */
+ if (raidPtr->regionInfo[regionID].coreLog->numRecords == raidPtr->numSectorsPerLog) {
+ /* log is full, dump it to disk */
+ if (DumpParityLogToDisk(finish, item))
+ punt = RF_TRUE; /* dump unsuccessful,
+ * blocked on
+ * reintegration */
+ else {
+ /* dump was successful */
+ if (incomingLog)
+ if (*incomingLog) {
+ RF_ASSERT((*incomingLog)->next == NULL);
+ raidPtr->regionInfo[regionID].coreLog = *incomingLog;
+ raidPtr->regionInfo[regionID].coreLog->regionID = regionID;
+ *incomingLog = NULL;
+ } else
+ raidPtr->regionInfo[regionID].coreLog = AcquireParityLog(item, finish);
+ else
+ raidPtr->regionInfo[regionID].coreLog = AcquireParityLog(item, finish);
+ /* if a core log is not
+ * available, must queue work
+ * and return */
+ if (!raidPtr->regionInfo[regionID].coreLog)
+ punt = RF_TRUE; /* blocked on log
+ * availability */
+ }
+ }
+ }
+ /* if we didn't punt on this item, attempt to add a
+ * sector to the core log */
+ if (!punt) {
+ RF_ASSERT(raidPtr->regionInfo[regionID].coreLog->next == NULL);
+ /* at this point, we have a core log with
+ * enough room for a sector */
+ /* copy a sector into the log */
+ log = raidPtr->regionInfo[regionID].coreLog;
+ RF_ASSERT(log->numRecords < raidPtr->numSectorsPerLog);
+ logItem = log->numRecords++;
+ log->records[logItem].parityAddr = item->diskAddress;
+ RF_ASSERT(log->records[logItem].parityAddr.startSector >= raidPtr->regionInfo[regionID].parityStartAddr);
+ RF_ASSERT(log->records[logItem].parityAddr.startSector < raidPtr->regionInfo[regionID].parityStartAddr + raidPtr->regionInfo[regionID].numSectorsParity);
+ log->records[logItem].parityAddr.numSector = 1;
+ log->records[logItem].operation = item->common->operation;
+ bcopy((item->common->bufPtr + (item->bufOffset++ * (1 << item->common->raidPtr->logBytesPerSector))), log->bufPtr + (logItem * (1 << item->common->raidPtr->logBytesPerSector)), (1 << item->common->raidPtr->logBytesPerSector));
+ item->diskAddress.numSector--;
+ item->diskAddress.startSector++;
+ if (item->diskAddress.numSector == 0)
+ done = RF_TRUE;
+ }
+ }
+
+ if (!punt) {
+ /* Processed this item completely, decrement count of
+ * items to be processed. */
+ RF_ASSERT(item->diskAddress.numSector == 0);
+ RF_LOCK_MUTEX(item->common->mutex);
+ item->common->cnt--;
+ if (item->common->cnt == 0)
+ itemDone = RF_TRUE;
+ else
+ itemDone = RF_FALSE;
+ RF_UNLOCK_MUTEX(item->common->mutex);
+ if (itemDone) {
+ /* Finished processing all log data for this
+ * IO Return structs to free list and invoke
+ * wakeup function. */
+ timer = item->common->startTime; /* grab initial value of
+ * timer */
+ RF_ETIMER_STOP(timer);
+ RF_ETIMER_EVAL(timer);
+ item->common->tracerec->plog_us += RF_ETIMER_VAL_US(timer);
+ if (rf_parityLogDebug)
+ printf("[waking process for region %d]\n", item->regionID);
+ wakeFunc = item->common->wakeFunc;
+ wakeArg = item->common->wakeArg;
+ FreeParityLogCommonData(item->common);
+ FreeParityLogData(item);
+ (wakeFunc) (wakeArg, 0);
+ } else
+ FreeParityLogData(item);
+ }
+ }
+ RF_UNLOCK_MUTEX(raidPtr->regionInfo[regionID].mutex);
+ if (rf_parityLogDebug)
+ printf("[exiting ParityLogAppend]\n");
+ return (0);
+}
+
+
+void
+rf_EnableParityLogging(RF_Raid_t * raidPtr)
+{
+ int regionID;
+
+ for (regionID = 0; regionID < rf_numParityRegions; regionID++) {
+ RF_LOCK_MUTEX(raidPtr->regionInfo[regionID].mutex);
+ raidPtr->regionInfo[regionID].loggingEnabled = RF_TRUE;
+ RF_UNLOCK_MUTEX(raidPtr->regionInfo[regionID].mutex);
+ }
+ if (rf_parityLogDebug)
+ printf("[parity logging enabled]\n");
+}
+#endif /* RF_INCLUDE_PARITYLOGGING > 0 */
diff --git a/sys/dev/raidframe/rf_paritylog.h b/sys/dev/raidframe/rf_paritylog.h
new file mode 100644
index 0000000..1f2b80d
--- /dev/null
+++ b/sys/dev/raidframe/rf_paritylog.h
@@ -0,0 +1,181 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_paritylog.h,v 1.3 1999/02/05 00:06:14 oster Exp $ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: William V. Courtright II
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+/* header file for parity log
+ *
+ */
+
+#ifndef _RF__RF_PARITYLOG_H_
+#define _RF__RF_PARITYLOG_H_
+
+#include <dev/raidframe/rf_types.h>
+
+#define RF_DEFAULT_NUM_SECTORS_PER_LOG 64
+
+typedef int RF_RegionId_t;
+
+typedef enum RF_ParityRecordType_e {
+ RF_STOP,
+ RF_UPDATE,
+ RF_OVERWRITE
+} RF_ParityRecordType_t;
+
+struct RF_CommonLogData_s {
+ RF_DECLARE_MUTEX(mutex) /* protects cnt */
+ int cnt; /* when 0, time to call wakeFunc */
+ RF_Raid_t *raidPtr;
+/* int (*wakeFunc)(RF_Buf_t); */
+ int (*wakeFunc) (RF_DagNode_t * node, int status);
+ void *wakeArg;
+ RF_AccTraceEntry_t *tracerec;
+ RF_Etimer_t startTime;
+ caddr_t bufPtr;
+ RF_ParityRecordType_t operation;
+ RF_CommonLogData_t *next;
+};
+
+struct RF_ParityLogData_s {
+ RF_RegionId_t regionID; /* this struct guaranteed to span a single
+ * region */
+ int bufOffset; /* offset from common->bufPtr */
+ RF_PhysDiskAddr_t diskAddress;
+ RF_CommonLogData_t *common; /* info shared by one or more
+ * parityLogData structs */
+ RF_ParityLogData_t *next;
+ RF_ParityLogData_t *prev;
+};
+
+struct RF_ParityLogAppendQueue_s {
+ RF_DECLARE_MUTEX(mutex)
+};
+
+struct RF_ParityLogRecord_s {
+ RF_PhysDiskAddr_t parityAddr;
+ RF_ParityRecordType_t operation;
+};
+
+struct RF_ParityLog_s {
+ RF_RegionId_t regionID;
+ int numRecords;
+ int diskOffset;
+ RF_ParityLogRecord_t *records;
+ caddr_t bufPtr;
+ RF_ParityLog_t *next;
+};
+
+struct RF_ParityLogQueue_s {
+ RF_DECLARE_MUTEX(mutex)
+ RF_ParityLog_t *parityLogs;
+};
+
+struct RF_RegionBufferQueue_s {
+ RF_DECLARE_MUTEX(mutex)
+ RF_DECLARE_COND(cond)
+ int bufferSize;
+ int totalBuffers; /* size of array 'buffers' */
+ int availableBuffers; /* num available 'buffers' */
+ int emptyBuffersIndex; /* stick next freed buffer here */
+ int availBuffersIndex; /* grab next buffer from here */
+ caddr_t *buffers; /* array buffers used to hold parity */
+};
+#define RF_PLOG_CREATED (1<<0)/* thread is created */
+#define RF_PLOG_RUNNING (1<<1)/* thread is running */
+#define RF_PLOG_TERMINATE (1<<2)/* thread is terminated (should exit) */
+#define RF_PLOG_SHUTDOWN (1<<3)/* thread is aware and exiting/exited */
+
+struct RF_ParityLogDiskQueue_s {
+ RF_DECLARE_MUTEX(mutex) /* protects all vars in this struct */
+ RF_DECLARE_COND(cond)
+ int threadState; /* is thread running, should it shutdown (see
+ * above) */
+ RF_ParityLog_t *flushQueue; /* list of parity logs to be flushed
+ * to log disk */
+ RF_ParityLog_t *reintQueue; /* list of parity logs waiting to be
+ * reintegrated */
+ RF_ParityLogData_t *bufHead; /* head of FIFO list of log data,
+ * waiting on a buffer */
+ RF_ParityLogData_t *bufTail; /* tail of FIFO list of log data,
+ * waiting on a buffer */
+ RF_ParityLogData_t *reintHead; /* head of FIFO list of log data,
+ * waiting on reintegration */
+ RF_ParityLogData_t *reintTail; /* tail of FIFO list of log data,
+ * waiting on reintegration */
+ RF_ParityLogData_t *logBlockHead; /* queue of work, blocked
+ * until a log is available */
+ RF_ParityLogData_t *logBlockTail;
+ RF_ParityLogData_t *reintBlockHead; /* queue of work, blocked
+ * until reintegration is
+ * complete */
+ RF_ParityLogData_t *reintBlockTail;
+ RF_CommonLogData_t *freeCommonList; /* list of unused common data
+ * structs */
+ RF_ParityLogData_t *freeDataList; /* list of unused log data
+ * structs */
+};
+
+struct RF_DiskMap_s {
+ RF_PhysDiskAddr_t parityAddr;
+ RF_ParityRecordType_t operation;
+};
+
+struct RF_RegionInfo_s {
+ RF_DECLARE_MUTEX(mutex) /* protects: diskCount, diskMap,
+ * loggingEnabled, coreLog */
+ RF_DECLARE_MUTEX(reintMutex) /* protects: reintInProgress */
+ int reintInProgress;/* flag used to suspend flushing operations */
+ RF_SectorCount_t capacity; /* capacity of this region in sectors */
+ RF_SectorNum_t regionStartAddr; /* starting disk address for this
+ * region */
+ RF_SectorNum_t parityStartAddr; /* starting disk address for this
+ * region */
+ RF_SectorCount_t numSectorsParity; /* number of parity sectors
+ * protected by this region */
+ RF_SectorCount_t diskCount; /* num of sectors written to this
+ * region's disk log */
+ RF_DiskMap_t *diskMap; /* in-core map of what's in this region's disk
+ * log */
+ int loggingEnabled; /* logging enable for this region */
+ RF_ParityLog_t *coreLog;/* in-core log for this region */
+};
+
+RF_ParityLogData_t *
+rf_CreateParityLogData(RF_ParityRecordType_t operation,
+ RF_PhysDiskAddr_t * pda, caddr_t bufPtr, RF_Raid_t * raidPtr,
+ int (*wakeFunc) (RF_DagNode_t * node, int status),
+ void *wakeArg, RF_AccTraceEntry_t * tracerec,
+ RF_Etimer_t startTime);
+ RF_ParityLogData_t *rf_SearchAndDequeueParityLogData(RF_Raid_t * raidPtr,
+ RF_RegionId_t regionID, RF_ParityLogData_t ** head,
+ RF_ParityLogData_t ** tail, int ignoreLocks);
+ void rf_ReleaseParityLogs(RF_Raid_t * raidPtr, RF_ParityLog_t * firstLog);
+ int rf_ParityLogAppend(RF_ParityLogData_t * logData, int finish,
+ RF_ParityLog_t ** incomingLog, int clearReintFlag);
+ void rf_EnableParityLogging(RF_Raid_t * raidPtr);
+
+#endif /* !_RF__RF_PARITYLOG_H_ */
diff --git a/sys/dev/raidframe/rf_paritylogDiskMgr.c b/sys/dev/raidframe/rf_paritylogDiskMgr.c
new file mode 100644
index 0000000..5eadad8
--- /dev/null
+++ b/sys/dev/raidframe/rf_paritylogDiskMgr.c
@@ -0,0 +1,701 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_paritylogDiskMgr.c,v 1.10 2000/01/15 01:57:57 oster Exp $ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: William V. Courtright II
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+/* Code for flushing and reintegration operations related to parity logging.
+ *
+ */
+
+#include <dev/raidframe/rf_archs.h>
+
+#if RF_INCLUDE_PARITYLOGGING > 0
+
+#include <dev/raidframe/rf_types.h>
+#include <dev/raidframe/rf_threadstuff.h>
+#include <dev/raidframe/rf_mcpair.h>
+#include <dev/raidframe/rf_raid.h>
+#include <dev/raidframe/rf_dag.h>
+#include <dev/raidframe/rf_dagfuncs.h>
+#include <dev/raidframe/rf_desc.h>
+#include <dev/raidframe/rf_layout.h>
+#include <dev/raidframe/rf_diskqueue.h>
+#include <dev/raidframe/rf_paritylog.h>
+#include <dev/raidframe/rf_general.h>
+#include <dev/raidframe/rf_etimer.h>
+#include <dev/raidframe/rf_paritylogging.h>
+#include <dev/raidframe/rf_engine.h>
+#include <dev/raidframe/rf_dagutils.h>
+#include <dev/raidframe/rf_map.h>
+#include <dev/raidframe/rf_parityscan.h>
+#include <dev/raidframe/rf_kintf.h>
+
+#include <dev/raidframe/rf_paritylogDiskMgr.h>
+
+static caddr_t AcquireReintBuffer(RF_RegionBufferQueue_t *);
+
+static caddr_t
+AcquireReintBuffer(pool)
+ RF_RegionBufferQueue_t *pool;
+{
+ caddr_t bufPtr = NULL;
+
+ /* Return a region buffer from the free list (pool). If the free list
+ * is empty, WAIT. BLOCKING */
+
+ RF_LOCK_MUTEX(pool->mutex);
+ if (pool->availableBuffers > 0) {
+ bufPtr = pool->buffers[pool->availBuffersIndex];
+ pool->availableBuffers--;
+ pool->availBuffersIndex++;
+ if (pool->availBuffersIndex == pool->totalBuffers)
+ pool->availBuffersIndex = 0;
+ RF_UNLOCK_MUTEX(pool->mutex);
+ } else {
+ RF_PANIC(); /* should never happen in correct config,
+ * single reint */
+ RF_WAIT_COND(pool->cond, pool->mutex);
+ }
+ return (bufPtr);
+}
+
+static void
+ReleaseReintBuffer(
+ RF_RegionBufferQueue_t * pool,
+ caddr_t bufPtr)
+{
+ /* Insert a region buffer (bufPtr) into the free list (pool).
+ * NON-BLOCKING */
+
+ RF_LOCK_MUTEX(pool->mutex);
+ pool->availableBuffers++;
+ pool->buffers[pool->emptyBuffersIndex] = bufPtr;
+ pool->emptyBuffersIndex++;
+ if (pool->emptyBuffersIndex == pool->totalBuffers)
+ pool->emptyBuffersIndex = 0;
+ RF_ASSERT(pool->availableBuffers <= pool->totalBuffers);
+ RF_UNLOCK_MUTEX(pool->mutex);
+ RF_SIGNAL_COND(pool->cond);
+}
+
+
+
+static void
+ReadRegionLog(
+ RF_RegionId_t regionID,
+ RF_MCPair_t * rrd_mcpair,
+ caddr_t regionBuffer,
+ RF_Raid_t * raidPtr,
+ RF_DagHeader_t ** rrd_dag_h,
+ RF_AllocListElem_t ** rrd_alloclist,
+ RF_PhysDiskAddr_t ** rrd_pda)
+{
+ /* Initiate the read a region log from disk. Once initiated, return
+ * to the calling routine.
+ *
+ * NON-BLOCKING */
+
+ RF_AccTraceEntry_t *tracerec;
+ RF_DagNode_t *rrd_rdNode;
+
+ /* create DAG to read region log from disk */
+ rf_MakeAllocList(*rrd_alloclist);
+ *rrd_dag_h = rf_MakeSimpleDAG(raidPtr, 1, 0, regionBuffer,
+ rf_DiskReadFunc, rf_DiskReadUndoFunc,
+ "Rrl", *rrd_alloclist,
+ RF_DAG_FLAGS_NONE,
+ RF_IO_NORMAL_PRIORITY);
+
+ /* create and initialize PDA for the core log */
+ /* RF_Malloc(*rrd_pda, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t
+ * *)); */
+ *rrd_pda = rf_AllocPDAList(1);
+ rf_MapLogParityLogging(raidPtr, regionID, 0, &((*rrd_pda)->row),
+ &((*rrd_pda)->col), &((*rrd_pda)->startSector));
+ (*rrd_pda)->numSector = raidPtr->regionInfo[regionID].capacity;
+
+ if ((*rrd_pda)->next) {
+ (*rrd_pda)->next = NULL;
+ printf("set rrd_pda->next to NULL\n");
+ }
+ /* initialize DAG parameters */
+ RF_Malloc(tracerec,sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *));
+ bzero((char *) tracerec, sizeof(RF_AccTraceEntry_t));
+ (*rrd_dag_h)->tracerec = tracerec;
+ rrd_rdNode = (*rrd_dag_h)->succedents[0]->succedents[0];
+ rrd_rdNode->params[0].p = *rrd_pda;
+/* rrd_rdNode->params[1] = regionBuffer; */
+ rrd_rdNode->params[2].v = 0;
+ rrd_rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
+ 0, 0, 0);
+
+ /* launch region log read dag */
+ rf_DispatchDAG(*rrd_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
+ (void *) rrd_mcpair);
+}
+
+
+
+static void
+WriteCoreLog(
+ RF_ParityLog_t * log,
+ RF_MCPair_t * fwr_mcpair,
+ RF_Raid_t * raidPtr,
+ RF_DagHeader_t ** fwr_dag_h,
+ RF_AllocListElem_t ** fwr_alloclist,
+ RF_PhysDiskAddr_t ** fwr_pda)
+{
+ RF_RegionId_t regionID = log->regionID;
+ RF_AccTraceEntry_t *tracerec;
+ RF_SectorNum_t regionOffset;
+ RF_DagNode_t *fwr_wrNode;
+
+ /* Initiate the write of a core log to a region log disk. Once
+ * initiated, return to the calling routine.
+ *
+ * NON-BLOCKING */
+
+ /* create DAG to write a core log to a region log disk */
+ rf_MakeAllocList(*fwr_alloclist);
+ *fwr_dag_h = rf_MakeSimpleDAG(raidPtr, 1, 0, log->bufPtr,
+ rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
+ "Wcl", *fwr_alloclist, RF_DAG_FLAGS_NONE, RF_IO_NORMAL_PRIORITY);
+
+ /* create and initialize PDA for the region log */
+ /* RF_Malloc(*fwr_pda, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t
+ * *)); */
+ *fwr_pda = rf_AllocPDAList(1);
+ regionOffset = log->diskOffset;
+ rf_MapLogParityLogging(raidPtr, regionID, regionOffset,
+ &((*fwr_pda)->row), &((*fwr_pda)->col),
+ &((*fwr_pda)->startSector));
+ (*fwr_pda)->numSector = raidPtr->numSectorsPerLog;
+
+ /* initialize DAG parameters */
+ RF_Malloc(tracerec,sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *));
+ bzero((char *) tracerec, sizeof(RF_AccTraceEntry_t));
+ (*fwr_dag_h)->tracerec = tracerec;
+ fwr_wrNode = (*fwr_dag_h)->succedents[0]->succedents[0];
+ fwr_wrNode->params[0].p = *fwr_pda;
+/* fwr_wrNode->params[1] = log->bufPtr; */
+ fwr_wrNode->params[2].v = 0;
+ fwr_wrNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
+ 0, 0, 0);
+
+ /* launch the dag to write the core log to disk */
+ rf_DispatchDAG(*fwr_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
+ (void *) fwr_mcpair);
+}
+
+
+static void
+ReadRegionParity(
+ RF_RegionId_t regionID,
+ RF_MCPair_t * prd_mcpair,
+ caddr_t parityBuffer,
+ RF_Raid_t * raidPtr,
+ RF_DagHeader_t ** prd_dag_h,
+ RF_AllocListElem_t ** prd_alloclist,
+ RF_PhysDiskAddr_t ** prd_pda)
+{
+ /* Initiate the read region parity from disk. Once initiated, return
+ * to the calling routine.
+ *
+ * NON-BLOCKING */
+
+ RF_AccTraceEntry_t *tracerec;
+ RF_DagNode_t *prd_rdNode;
+
+ /* create DAG to read region parity from disk */
+ rf_MakeAllocList(*prd_alloclist);
+ *prd_dag_h = rf_MakeSimpleDAG(raidPtr, 1, 0, NULL, rf_DiskReadFunc,
+ rf_DiskReadUndoFunc, "Rrp",
+ *prd_alloclist, RF_DAG_FLAGS_NONE,
+ RF_IO_NORMAL_PRIORITY);
+
+ /* create and initialize PDA for region parity */
+ /* RF_Malloc(*prd_pda, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t
+ * *)); */
+ *prd_pda = rf_AllocPDAList(1);
+ rf_MapRegionParity(raidPtr, regionID, &((*prd_pda)->row),
+ &((*prd_pda)->col), &((*prd_pda)->startSector),
+ &((*prd_pda)->numSector));
+ if (rf_parityLogDebug)
+ printf("[reading %d sectors of parity from region %d]\n",
+ (int) (*prd_pda)->numSector, regionID);
+ if ((*prd_pda)->next) {
+ (*prd_pda)->next = NULL;
+ printf("set prd_pda->next to NULL\n");
+ }
+ /* initialize DAG parameters */
+ RF_Malloc(tracerec,sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *));
+ bzero((char *) tracerec, sizeof(RF_AccTraceEntry_t));
+ (*prd_dag_h)->tracerec = tracerec;
+ prd_rdNode = (*prd_dag_h)->succedents[0]->succedents[0];
+ prd_rdNode->params[0].p = *prd_pda;
+ prd_rdNode->params[1].p = parityBuffer;
+ prd_rdNode->params[2].v = 0;
+ prd_rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
+ 0, 0, 0);
+ if (rf_validateDAGDebug)
+ rf_ValidateDAG(*prd_dag_h);
+ /* launch region parity read dag */
+ rf_DispatchDAG(*prd_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
+ (void *) prd_mcpair);
+}
+
+static void
+WriteRegionParity(
+ RF_RegionId_t regionID,
+ RF_MCPair_t * pwr_mcpair,
+ caddr_t parityBuffer,
+ RF_Raid_t * raidPtr,
+ RF_DagHeader_t ** pwr_dag_h,
+ RF_AllocListElem_t ** pwr_alloclist,
+ RF_PhysDiskAddr_t ** pwr_pda)
+{
+ /* Initiate the write of region parity to disk. Once initiated, return
+ * to the calling routine.
+ *
+ * NON-BLOCKING */
+
+ RF_AccTraceEntry_t *tracerec;
+ RF_DagNode_t *pwr_wrNode;
+
+ /* create DAG to write region log from disk */
+ rf_MakeAllocList(*pwr_alloclist);
+ *pwr_dag_h = rf_MakeSimpleDAG(raidPtr, 1, 0, parityBuffer,
+ rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
+ "Wrp", *pwr_alloclist,
+ RF_DAG_FLAGS_NONE,
+ RF_IO_NORMAL_PRIORITY);
+
+ /* create and initialize PDA for region parity */
+ /* RF_Malloc(*pwr_pda, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t
+ * *)); */
+ *pwr_pda = rf_AllocPDAList(1);
+ rf_MapRegionParity(raidPtr, regionID, &((*pwr_pda)->row),
+ &((*pwr_pda)->col), &((*pwr_pda)->startSector),
+ &((*pwr_pda)->numSector));
+
+ /* initialize DAG parameters */
+ RF_Malloc(tracerec,sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *));
+ bzero((char *) tracerec, sizeof(RF_AccTraceEntry_t));
+ (*pwr_dag_h)->tracerec = tracerec;
+ pwr_wrNode = (*pwr_dag_h)->succedents[0]->succedents[0];
+ pwr_wrNode->params[0].p = *pwr_pda;
+/* pwr_wrNode->params[1] = parityBuffer; */
+ pwr_wrNode->params[2].v = 0;
+ pwr_wrNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
+ 0, 0, 0);
+
+ /* launch the dag to write region parity to disk */
+ rf_DispatchDAG(*pwr_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
+ (void *) pwr_mcpair);
+}
+
+static void
+FlushLogsToDisk(
+ RF_Raid_t * raidPtr,
+ RF_ParityLog_t * logList)
+{
+ /* Flush a linked list of core logs to the log disk. Logs contain the
+ * disk location where they should be written. Logs were written in
+ * FIFO order and that order must be preserved.
+ *
+ * Recommended optimizations: 1) allow multiple flushes to occur
+ * simultaneously 2) coalesce contiguous flush operations
+ *
+ * BLOCKING */
+
+ RF_ParityLog_t *log;
+ RF_RegionId_t regionID;
+ RF_MCPair_t *fwr_mcpair;
+ RF_DagHeader_t *fwr_dag_h;
+ RF_AllocListElem_t *fwr_alloclist;
+ RF_PhysDiskAddr_t *fwr_pda;
+
+ fwr_mcpair = rf_AllocMCPair();
+ RF_LOCK_MUTEX(fwr_mcpair->mutex);
+
+ RF_ASSERT(logList);
+ log = logList;
+ while (log) {
+ regionID = log->regionID;
+
+ /* create and launch a DAG to write the core log */
+ if (rf_parityLogDebug)
+ printf("[initiating write of core log for region %d]\n", regionID);
+ fwr_mcpair->flag = RF_FALSE;
+ WriteCoreLog(log, fwr_mcpair, raidPtr, &fwr_dag_h,
+ &fwr_alloclist, &fwr_pda);
+
+ /* wait for the DAG to complete */
+ while (!fwr_mcpair->flag)
+ RF_WAIT_COND(fwr_mcpair->cond, fwr_mcpair->mutex);
+ if (fwr_dag_h->status != rf_enable) {
+ RF_ERRORMSG1("Unable to write core log to disk (region %d)\n", regionID);
+ RF_ASSERT(0);
+ }
+ /* RF_Free(fwr_pda, sizeof(RF_PhysDiskAddr_t)); */
+ rf_FreePhysDiskAddr(fwr_pda);
+ rf_FreeDAG(fwr_dag_h);
+ rf_FreeAllocList(fwr_alloclist);
+
+ log = log->next;
+ }
+ RF_UNLOCK_MUTEX(fwr_mcpair->mutex);
+ rf_FreeMCPair(fwr_mcpair);
+ rf_ReleaseParityLogs(raidPtr, logList);
+}
+
+static void
+ReintegrateRegion(
+ RF_Raid_t * raidPtr,
+ RF_RegionId_t regionID,
+ RF_ParityLog_t * coreLog)
+{
+ RF_MCPair_t *rrd_mcpair = NULL, *prd_mcpair, *pwr_mcpair;
+ RF_DagHeader_t *rrd_dag_h, *prd_dag_h, *pwr_dag_h;
+ RF_AllocListElem_t *rrd_alloclist, *prd_alloclist, *pwr_alloclist;
+ RF_PhysDiskAddr_t *rrd_pda, *prd_pda, *pwr_pda;
+ caddr_t parityBuffer, regionBuffer = NULL;
+
+ /* Reintegrate a region (regionID).
+ *
+ * 1. acquire region and parity buffers
+ * 2. read log from disk
+ * 3. read parity from disk
+ * 4. apply log to parity
+ * 5. apply core log to parity
+ * 6. write new parity to disk
+ *
+ * BLOCKING */
+
+ if (rf_parityLogDebug)
+ printf("[reintegrating region %d]\n", regionID);
+
+ /* initiate read of region parity */
+ if (rf_parityLogDebug)
+ printf("[initiating read of parity for region %d]\n",regionID);
+ parityBuffer = AcquireReintBuffer(&raidPtr->parityBufferPool);
+ prd_mcpair = rf_AllocMCPair();
+ RF_LOCK_MUTEX(prd_mcpair->mutex);
+ prd_mcpair->flag = RF_FALSE;
+ ReadRegionParity(regionID, prd_mcpair, parityBuffer, raidPtr,
+ &prd_dag_h, &prd_alloclist, &prd_pda);
+
+ /* if region log nonempty, initiate read */
+ if (raidPtr->regionInfo[regionID].diskCount > 0) {
+ if (rf_parityLogDebug)
+ printf("[initiating read of disk log for region %d]\n",
+ regionID);
+ regionBuffer = AcquireReintBuffer(&raidPtr->regionBufferPool);
+ rrd_mcpair = rf_AllocMCPair();
+ RF_LOCK_MUTEX(rrd_mcpair->mutex);
+ rrd_mcpair->flag = RF_FALSE;
+ ReadRegionLog(regionID, rrd_mcpair, regionBuffer, raidPtr,
+ &rrd_dag_h, &rrd_alloclist, &rrd_pda);
+ }
+ /* wait on read of region parity to complete */
+ while (!prd_mcpair->flag) {
+ RF_WAIT_COND(prd_mcpair->cond, prd_mcpair->mutex);
+ }
+ RF_UNLOCK_MUTEX(prd_mcpair->mutex);
+ if (prd_dag_h->status != rf_enable) {
+ RF_ERRORMSG("Unable to read parity from disk\n");
+ /* add code to fail the parity disk */
+ RF_ASSERT(0);
+ }
+ /* apply core log to parity */
+ /* if (coreLog) ApplyLogsToParity(coreLog, parityBuffer); */
+
+ if (raidPtr->regionInfo[regionID].diskCount > 0) {
+ /* wait on read of region log to complete */
+ while (!rrd_mcpair->flag)
+ RF_WAIT_COND(rrd_mcpair->cond, rrd_mcpair->mutex);
+ RF_UNLOCK_MUTEX(rrd_mcpair->mutex);
+ if (rrd_dag_h->status != rf_enable) {
+ RF_ERRORMSG("Unable to read region log from disk\n");
+ /* add code to fail the log disk */
+ RF_ASSERT(0);
+ }
+ /* apply region log to parity */
+ /* ApplyRegionToParity(regionID, regionBuffer, parityBuffer); */
+ /* release resources associated with region log */
+ /* RF_Free(rrd_pda, sizeof(RF_PhysDiskAddr_t)); */
+ rf_FreePhysDiskAddr(rrd_pda);
+ rf_FreeDAG(rrd_dag_h);
+ rf_FreeAllocList(rrd_alloclist);
+ rf_FreeMCPair(rrd_mcpair);
+ ReleaseReintBuffer(&raidPtr->regionBufferPool, regionBuffer);
+ }
+ /* write reintegrated parity to disk */
+ if (rf_parityLogDebug)
+ printf("[initiating write of parity for region %d]\n",
+ regionID);
+ pwr_mcpair = rf_AllocMCPair();
+ RF_LOCK_MUTEX(pwr_mcpair->mutex);
+ pwr_mcpair->flag = RF_FALSE;
+ WriteRegionParity(regionID, pwr_mcpair, parityBuffer, raidPtr,
+ &pwr_dag_h, &pwr_alloclist, &pwr_pda);
+ while (!pwr_mcpair->flag)
+ RF_WAIT_COND(pwr_mcpair->cond, pwr_mcpair->mutex);
+ RF_UNLOCK_MUTEX(pwr_mcpair->mutex);
+ if (pwr_dag_h->status != rf_enable) {
+ RF_ERRORMSG("Unable to write parity to disk\n");
+ /* add code to fail the parity disk */
+ RF_ASSERT(0);
+ }
+ /* release resources associated with read of old parity */
+ /* RF_Free(prd_pda, sizeof(RF_PhysDiskAddr_t)); */
+ rf_FreePhysDiskAddr(prd_pda);
+ rf_FreeDAG(prd_dag_h);
+ rf_FreeAllocList(prd_alloclist);
+ rf_FreeMCPair(prd_mcpair);
+
+ /* release resources associated with write of new parity */
+ ReleaseReintBuffer(&raidPtr->parityBufferPool, parityBuffer);
+ /* RF_Free(pwr_pda, sizeof(RF_PhysDiskAddr_t)); */
+ rf_FreePhysDiskAddr(pwr_pda);
+ rf_FreeDAG(pwr_dag_h);
+ rf_FreeAllocList(pwr_alloclist);
+ rf_FreeMCPair(pwr_mcpair);
+
+ if (rf_parityLogDebug)
+ printf("[finished reintegrating region %d]\n", regionID);
+}
+
+
+
+static void
+ReintegrateLogs(
+ RF_Raid_t * raidPtr,
+ RF_ParityLog_t * logList)
+{
+ RF_ParityLog_t *log, *freeLogList = NULL;
+ RF_ParityLogData_t *logData, *logDataList;
+ RF_RegionId_t regionID;
+
+ RF_ASSERT(logList);
+ while (logList) {
+ log = logList;
+ logList = logList->next;
+ log->next = NULL;
+ regionID = log->regionID;
+ ReintegrateRegion(raidPtr, regionID, log);
+ log->numRecords = 0;
+
+ /* remove all items which are blocked on reintegration of this
+ * region */
+ RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
+ logData = rf_SearchAndDequeueParityLogData(raidPtr, regionID,
+ &raidPtr->parityLogDiskQueue.reintBlockHead,
+ &raidPtr->parityLogDiskQueue.reintBlockTail,
+ RF_TRUE);
+ logDataList = logData;
+ while (logData) {
+ logData->next = rf_SearchAndDequeueParityLogData(
+ raidPtr, regionID,
+ &raidPtr->parityLogDiskQueue.reintBlockHead,
+ &raidPtr->parityLogDiskQueue.reintBlockTail,
+ RF_TRUE);
+ logData = logData->next;
+ }
+ RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
+
+ /* process blocked log data and clear reintInProgress flag for
+ * this region */
+ if (logDataList)
+ rf_ParityLogAppend(logDataList, RF_TRUE, &log, RF_TRUE);
+ else {
+ /* Enable flushing for this region. Holding both
+ * locks provides a synchronization barrier with
+ * DumpParityLogToDisk */
+ RF_LOCK_MUTEX(raidPtr->regionInfo[regionID].mutex);
+ RF_LOCK_MUTEX(raidPtr->regionInfo[regionID].reintMutex);
+ RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
+ raidPtr->regionInfo[regionID].diskCount = 0;
+ raidPtr->regionInfo[regionID].reintInProgress = RF_FALSE;
+ RF_UNLOCK_MUTEX(raidPtr->regionInfo[regionID].mutex);
+ RF_UNLOCK_MUTEX(raidPtr->regionInfo[regionID].reintMutex); /* flushing is now
+ * enabled */
+ RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
+ }
+ /* if log wasn't used, attach it to the list of logs to be
+ * returned */
+ if (log) {
+ log->next = freeLogList;
+ freeLogList = log;
+ }
+ }
+ if (freeLogList)
+ rf_ReleaseParityLogs(raidPtr, freeLogList);
+}
+
+int
+rf_ShutdownLogging(RF_Raid_t * raidPtr)
+{
+ /* shutdown parity logging 1) disable parity logging in all regions 2)
+ * reintegrate all regions */
+
+ RF_SectorCount_t diskCount;
+ RF_RegionId_t regionID;
+ RF_ParityLog_t *log;
+
+ if (rf_parityLogDebug)
+ printf("[shutting down parity logging]\n");
+ /* Since parity log maps are volatile, we must reintegrate all
+ * regions. */
+ if (rf_forceParityLogReint) {
+ for (regionID = 0; regionID < rf_numParityRegions; regionID++) {
+ RF_LOCK_MUTEX(raidPtr->regionInfo[regionID].mutex);
+ raidPtr->regionInfo[regionID].loggingEnabled =
+ RF_FALSE;
+ log = raidPtr->regionInfo[regionID].coreLog;
+ raidPtr->regionInfo[regionID].coreLog = NULL;
+ diskCount = raidPtr->regionInfo[regionID].diskCount;
+ RF_UNLOCK_MUTEX(raidPtr->regionInfo[regionID].mutex);
+ if (diskCount > 0 || log != NULL)
+ ReintegrateRegion(raidPtr, regionID, log);
+ if (log != NULL)
+ rf_ReleaseParityLogs(raidPtr, log);
+ }
+ }
+ if (rf_parityLogDebug) {
+ printf("[parity logging disabled]\n");
+ printf("[should be done!]\n");
+ }
+ return (0);
+}
+
+int
+rf_ParityLoggingDiskManager(RF_Raid_t * raidPtr)
+{
+ RF_ParityLog_t *reintQueue, *flushQueue;
+ int workNeeded, done = RF_FALSE;
+ int s;
+
+ /* Main program for parity logging disk thread. This routine waits
+ * for work to appear in either the flush or reintegration queues and
+ * is responsible for flushing core logs to the log disk as well as
+ * reintegrating parity regions.
+ *
+ * BLOCKING */
+
+ s = splbio();
+
+ RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
+
+ /*
+ * Inform our creator that we're running. Don't bother doing the
+ * mutex lock/unlock dance- we locked above, and we'll unlock
+ * below with nothing to do, yet.
+ */
+ raidPtr->parityLogDiskQueue.threadState |= RF_PLOG_RUNNING;
+ RF_SIGNAL_COND(raidPtr->parityLogDiskQueue.cond);
+
+ /* empty the work queues */
+ flushQueue = raidPtr->parityLogDiskQueue.flushQueue;
+ raidPtr->parityLogDiskQueue.flushQueue = NULL;
+ reintQueue = raidPtr->parityLogDiskQueue.reintQueue;
+ raidPtr->parityLogDiskQueue.reintQueue = NULL;
+ workNeeded = (flushQueue || reintQueue);
+
+ while (!done) {
+ while (workNeeded) {
+ /* First, flush all logs in the flush queue, freeing
+ * buffers Second, reintegrate all regions which are
+ * reported as full. Third, append queued log data
+ * until blocked.
+ *
+ * Note: Incoming appends (ParityLogAppend) can block on
+ * either 1. empty buffer pool 2. region under
+ * reintegration To preserve a global FIFO ordering of
+ * appends, buffers are not released to the world
+ * until those appends blocked on buffers are removed
+ * from the append queue. Similarly, regions which
+ * are reintegrated are not opened for general use
+ * until the append queue has been emptied. */
+
+ RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
+
+ /* empty flushQueue, using free'd log buffers to
+ * process bufTail */
+ if (flushQueue)
+ FlushLogsToDisk(raidPtr, flushQueue);
+
+ /* empty reintQueue, flushing from reintTail as we go */
+ if (reintQueue)
+ ReintegrateLogs(raidPtr, reintQueue);
+
+ RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
+ flushQueue = raidPtr->parityLogDiskQueue.flushQueue;
+ raidPtr->parityLogDiskQueue.flushQueue = NULL;
+ reintQueue = raidPtr->parityLogDiskQueue.reintQueue;
+ raidPtr->parityLogDiskQueue.reintQueue = NULL;
+ workNeeded = (flushQueue || reintQueue);
+ }
+ /* no work is needed at this point */
+ if (raidPtr->parityLogDiskQueue.threadState & RF_PLOG_TERMINATE) {
+ /* shutdown parity logging 1. disable parity logging
+ * in all regions 2. reintegrate all regions */
+ done = RF_TRUE; /* thread disabled, no work needed */
+ RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
+ rf_ShutdownLogging(raidPtr);
+ }
+ if (!done) {
+ /* thread enabled, no work needed, so sleep */
+ if (rf_parityLogDebug)
+ printf("[parity logging disk manager sleeping]\n");
+ RF_WAIT_COND(raidPtr->parityLogDiskQueue.cond,
+ raidPtr->parityLogDiskQueue.mutex);
+ if (rf_parityLogDebug)
+ printf("[parity logging disk manager just woke up]\n");
+ flushQueue = raidPtr->parityLogDiskQueue.flushQueue;
+ raidPtr->parityLogDiskQueue.flushQueue = NULL;
+ reintQueue = raidPtr->parityLogDiskQueue.reintQueue;
+ raidPtr->parityLogDiskQueue.reintQueue = NULL;
+ workNeeded = (flushQueue || reintQueue);
+ }
+ }
+ /*
+ * Announce that we're done.
+ */
+ RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
+ raidPtr->parityLogDiskQueue.threadState |= RF_PLOG_SHUTDOWN;
+ RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
+ RF_SIGNAL_COND(raidPtr->parityLogDiskQueue.cond);
+
+ splx(s);
+
+ /*
+ * In the NetBSD kernel, the thread must exit; returning would
+ * cause the proc trampoline to attempt to return to userspace.
+ */
+ kthread_exit(0); /* does not return */
+}
+#endif /* RF_INCLUDE_PARITYLOGGING > 0 */
diff --git a/sys/dev/raidframe/rf_paritylogDiskMgr.h b/sys/dev/raidframe/rf_paritylogDiskMgr.h
new file mode 100644
index 0000000..bdcc2a5
--- /dev/null
+++ b/sys/dev/raidframe/rf_paritylogDiskMgr.h
@@ -0,0 +1,42 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_paritylogDiskMgr.h,v 1.3 1999/02/05 00:06:14 oster Exp $ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: William V. Courtright II
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+/* header file for parity log disk mgr code
+ *
+ */
+
+#ifndef _RF__RF_PARITYLOGDISKMGR_H_
+#define _RF__RF_PARITYLOGDISKMGR_H_
+
+#include <dev/raidframe/rf_types.h>
+
+int rf_ShutdownLogging(RF_Raid_t * raidPtr);
+int rf_ParityLoggingDiskManager(RF_Raid_t * raidPtr);
+
+#endif /* !_RF__RF_PARITYLOGDISKMGR_H_ */
diff --git a/sys/dev/raidframe/rf_paritylogging.c b/sys/dev/raidframe/rf_paritylogging.c
new file mode 100644
index 0000000..f318655
--- /dev/null
+++ b/sys/dev/raidframe/rf_paritylogging.c
@@ -0,0 +1,1074 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_paritylogging.c,v 1.10 2000/02/12 16:06:27 oster Exp $ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: William V. Courtright II
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+
+/*
+ parity logging configuration, dag selection, and mapping is implemented here
+ */
+
+#include <dev/raidframe/rf_archs.h>
+
+#if RF_INCLUDE_PARITYLOGGING > 0
+
+#include <dev/raidframe/rf_types.h>
+#include <dev/raidframe/rf_raid.h>
+#include <dev/raidframe/rf_dag.h>
+#include <dev/raidframe/rf_dagutils.h>
+#include <dev/raidframe/rf_dagfuncs.h>
+#include <dev/raidframe/rf_dagffrd.h>
+#include <dev/raidframe/rf_dagffwr.h>
+#include <dev/raidframe/rf_dagdegrd.h>
+#include <dev/raidframe/rf_dagdegwr.h>
+#include <dev/raidframe/rf_paritylog.h>
+#include <dev/raidframe/rf_paritylogDiskMgr.h>
+#include <dev/raidframe/rf_paritylogging.h>
+#include <dev/raidframe/rf_parityloggingdags.h>
+#include <dev/raidframe/rf_general.h>
+#include <dev/raidframe/rf_map.h>
+#include <dev/raidframe/rf_utils.h>
+#include <dev/raidframe/rf_shutdown.h>
+#include <dev/raidframe/rf_kintf.h>
+
+typedef struct RF_ParityLoggingConfigInfo_s {
+ RF_RowCol_t **stripeIdentifier; /* filled in at config time & used by
+ * IdentifyStripe */
+} RF_ParityLoggingConfigInfo_t;
+
+static void FreeRegionInfo(RF_Raid_t * raidPtr, RF_RegionId_t regionID);
+static void rf_ShutdownParityLogging(RF_ThreadArg_t arg);
+static void rf_ShutdownParityLoggingRegionInfo(RF_ThreadArg_t arg);
+static void rf_ShutdownParityLoggingPool(RF_ThreadArg_t arg);
+static void rf_ShutdownParityLoggingRegionBufferPool(RF_ThreadArg_t arg);
+static void rf_ShutdownParityLoggingParityBufferPool(RF_ThreadArg_t arg);
+static void rf_ShutdownParityLoggingDiskQueue(RF_ThreadArg_t arg);
+
+int
+rf_ConfigureParityLogging(
+ RF_ShutdownList_t ** listp,
+ RF_Raid_t * raidPtr,
+ RF_Config_t * cfgPtr)
+{
+ int i, j, startdisk, rc;
+ RF_SectorCount_t totalLogCapacity, fragmentation, lastRegionCapacity;
+ RF_SectorCount_t parityBufferCapacity, maxRegionParityRange;
+ RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
+ RF_ParityLoggingConfigInfo_t *info;
+ RF_ParityLog_t *l = NULL, *next;
+ caddr_t lHeapPtr;
+
+ if (rf_numParityRegions <= 0)
+ return(EINVAL);
+
+ /*
+ * We create multiple entries on the shutdown list here, since
+ * this configuration routine is fairly complicated in and of
+ * itself, and this makes backing out of a failed configuration
+ * much simpler.
+ */
+
+ raidPtr->numSectorsPerLog = RF_DEFAULT_NUM_SECTORS_PER_LOG;
+
+ /* create a parity logging configuration structure */
+ RF_MallocAndAdd(info, sizeof(RF_ParityLoggingConfigInfo_t),
+ (RF_ParityLoggingConfigInfo_t *),
+ raidPtr->cleanupList);
+ if (info == NULL)
+ return (ENOMEM);
+ layoutPtr->layoutSpecificInfo = (void *) info;
+
+ RF_ASSERT(raidPtr->numRow == 1);
+
+ /* the stripe identifier must identify the disks in each stripe, IN
+ * THE ORDER THAT THEY APPEAR IN THE STRIPE. */
+ info->stripeIdentifier = rf_make_2d_array((raidPtr->numCol),
+ (raidPtr->numCol),
+ raidPtr->cleanupList);
+ if (info->stripeIdentifier == NULL)
+ return (ENOMEM);
+
+ startdisk = 0;
+ for (i = 0; i < (raidPtr->numCol); i++) {
+ for (j = 0; j < (raidPtr->numCol); j++) {
+ info->stripeIdentifier[i][j] = (startdisk + j) %
+ (raidPtr->numCol - 1);
+ }
+ if ((--startdisk) < 0)
+ startdisk = raidPtr->numCol - 1 - 1;
+ }
+
+ /* fill in the remaining layout parameters */
+ layoutPtr->numStripe = layoutPtr->stripeUnitsPerDisk;
+ layoutPtr->bytesPerStripeUnit = layoutPtr->sectorsPerStripeUnit <<
+ raidPtr->logBytesPerSector;
+ layoutPtr->numParityCol = 1;
+ layoutPtr->numParityLogCol = 1;
+ layoutPtr->numDataCol = raidPtr->numCol - layoutPtr->numParityCol -
+ layoutPtr->numParityLogCol;
+ layoutPtr->dataSectorsPerStripe = layoutPtr->numDataCol *
+ layoutPtr->sectorsPerStripeUnit;
+ layoutPtr->dataStripeUnitsPerDisk = layoutPtr->stripeUnitsPerDisk;
+ raidPtr->sectorsPerDisk = layoutPtr->stripeUnitsPerDisk *
+ layoutPtr->sectorsPerStripeUnit;
+
+ raidPtr->totalSectors = layoutPtr->stripeUnitsPerDisk *
+ layoutPtr->numDataCol * layoutPtr->sectorsPerStripeUnit;
+
+ /* configure parity log parameters
+ *
+ * parameter comment/constraints
+ * -------------------------------------------
+ * numParityRegions* all regions (except possibly last)
+ * of equal size
+ * totalInCoreLogCapacity* amount of memory in bytes available
+ * for in-core logs (default 1 MB)
+ * numSectorsPerLog# capacity of an in-core log in sectors
+ * (1 * disk track)
+ * numParityLogs total number of in-core logs,
+ * should be at least numParityRegions
+ * regionLogCapacity size of a region log (except possibly
+ * last one) in sectors
+ * totalLogCapacity total amount of log space in sectors
+ *
+ * where '*' denotes a user settable parameter.
+ * Note that logs are fixed to be the size of a disk track,
+ * value #defined in rf_paritylog.h
+ *
+ */
+
+ totalLogCapacity = layoutPtr->stripeUnitsPerDisk * layoutPtr->sectorsPerStripeUnit * layoutPtr->numParityLogCol;
+ raidPtr->regionLogCapacity = totalLogCapacity / rf_numParityRegions;
+ if (rf_parityLogDebug)
+ printf("bytes per sector %d\n", raidPtr->bytesPerSector);
+
+ /* reduce fragmentation within a disk region by adjusting the number
+ * of regions in an attempt to allow an integral number of logs to fit
+ * into a disk region */
+ fragmentation = raidPtr->regionLogCapacity % raidPtr->numSectorsPerLog;
+ if (fragmentation > 0)
+ for (i = 1; i < (raidPtr->numSectorsPerLog / 2); i++) {
+ if (((totalLogCapacity / (rf_numParityRegions + i)) %
+ raidPtr->numSectorsPerLog) < fragmentation) {
+ rf_numParityRegions++;
+ raidPtr->regionLogCapacity = totalLogCapacity /
+ rf_numParityRegions;
+ fragmentation = raidPtr->regionLogCapacity %
+ raidPtr->numSectorsPerLog;
+ }
+ if (((totalLogCapacity / (rf_numParityRegions - i)) %
+ raidPtr->numSectorsPerLog) < fragmentation) {
+ rf_numParityRegions--;
+ raidPtr->regionLogCapacity = totalLogCapacity /
+ rf_numParityRegions;
+ fragmentation = raidPtr->regionLogCapacity %
+ raidPtr->numSectorsPerLog;
+ }
+ }
+ /* ensure integral number of regions per log */
+ raidPtr->regionLogCapacity = (raidPtr->regionLogCapacity /
+ raidPtr->numSectorsPerLog) *
+ raidPtr->numSectorsPerLog;
+
+ raidPtr->numParityLogs = rf_totalInCoreLogCapacity /
+ (raidPtr->bytesPerSector * raidPtr->numSectorsPerLog);
+ /* to avoid deadlock, must ensure that enough logs exist for each
+ * region to have one simultaneously */
+ if (raidPtr->numParityLogs < rf_numParityRegions)
+ raidPtr->numParityLogs = rf_numParityRegions;
+
+ /* create region information structs */
+ printf("Allocating %d bytes for in-core parity region info\n",
+ (int) (rf_numParityRegions * sizeof(RF_RegionInfo_t)));
+ RF_Malloc(raidPtr->regionInfo,
+ (rf_numParityRegions * sizeof(RF_RegionInfo_t)),
+ (RF_RegionInfo_t *));
+ if (raidPtr->regionInfo == NULL)
+ return (ENOMEM);
+
+ /* last region may not be full capacity */
+ lastRegionCapacity = raidPtr->regionLogCapacity;
+ while ((rf_numParityRegions - 1) * raidPtr->regionLogCapacity +
+ lastRegionCapacity > totalLogCapacity)
+ lastRegionCapacity = lastRegionCapacity -
+ raidPtr->numSectorsPerLog;
+
+ raidPtr->regionParityRange = raidPtr->sectorsPerDisk /
+ rf_numParityRegions;
+ maxRegionParityRange = raidPtr->regionParityRange;
+
+/* i can't remember why this line is in the code -wvcii 6/30/95 */
+/* if (raidPtr->sectorsPerDisk % rf_numParityRegions > 0)
+ regionParityRange++; */
+
+ /* build pool of unused parity logs */
+ printf("Allocating %d bytes for %d parity logs\n",
+ raidPtr->numParityLogs * raidPtr->numSectorsPerLog *
+ raidPtr->bytesPerSector,
+ raidPtr->numParityLogs);
+ RF_Malloc(raidPtr->parityLogBufferHeap, raidPtr->numParityLogs *
+ raidPtr->numSectorsPerLog * raidPtr->bytesPerSector,
+ (caddr_t));
+ if (raidPtr->parityLogBufferHeap == NULL)
+ return (ENOMEM);
+ lHeapPtr = raidPtr->parityLogBufferHeap;
+ rc = rf_mutex_init(&raidPtr->parityLogPool.mutex, "RF_PARITYLOGGING1");
+ if (rc) {
+ RF_ERRORMSG3("Unable to init mutex file %s line %d rc=%d\n",
+ __FILE__, __LINE__, rc);
+ RF_Free(raidPtr->parityLogBufferHeap, raidPtr->numParityLogs *
+ raidPtr->numSectorsPerLog * raidPtr->bytesPerSector);
+ return (ENOMEM);
+ }
+ for (i = 0; i < raidPtr->numParityLogs; i++) {
+ if (i == 0) {
+ RF_Calloc(raidPtr->parityLogPool.parityLogs, 1,
+ sizeof(RF_ParityLog_t), (RF_ParityLog_t *));
+ if (raidPtr->parityLogPool.parityLogs == NULL) {
+ RF_Free(raidPtr->parityLogBufferHeap,
+ raidPtr->numParityLogs *
+ raidPtr->numSectorsPerLog *
+ raidPtr->bytesPerSector);
+ return (ENOMEM);
+ }
+ l = raidPtr->parityLogPool.parityLogs;
+ } else {
+ RF_Calloc(l->next, 1, sizeof(RF_ParityLog_t),
+ (RF_ParityLog_t *));
+ if (l->next == NULL) {
+ RF_Free(raidPtr->parityLogBufferHeap,
+ raidPtr->numParityLogs *
+ raidPtr->numSectorsPerLog *
+ raidPtr->bytesPerSector);
+ for (l = raidPtr->parityLogPool.parityLogs;
+ l;
+ l = next) {
+ next = l->next;
+ if (l->records)
+ RF_Free(l->records, (raidPtr->numSectorsPerLog * sizeof(RF_ParityLogRecord_t)));
+ RF_Free(l, sizeof(RF_ParityLog_t));
+ }
+ return (ENOMEM);
+ }
+ l = l->next;
+ }
+ l->bufPtr = lHeapPtr;
+ lHeapPtr += raidPtr->numSectorsPerLog *
+ raidPtr->bytesPerSector;
+ RF_Malloc(l->records, (raidPtr->numSectorsPerLog *
+ sizeof(RF_ParityLogRecord_t)),
+ (RF_ParityLogRecord_t *));
+ if (l->records == NULL) {
+ RF_Free(raidPtr->parityLogBufferHeap,
+ raidPtr->numParityLogs *
+ raidPtr->numSectorsPerLog *
+ raidPtr->bytesPerSector);
+ for (l = raidPtr->parityLogPool.parityLogs;
+ l;
+ l = next) {
+ next = l->next;
+ if (l->records)
+ RF_Free(l->records,
+ (raidPtr->numSectorsPerLog *
+ sizeof(RF_ParityLogRecord_t)));
+ RF_Free(l, sizeof(RF_ParityLog_t));
+ }
+ return (ENOMEM);
+ }
+ }
+ rc = rf_ShutdownCreate(listp, rf_ShutdownParityLoggingPool, raidPtr);
+ if (rc) {
+ RF_ERRORMSG3("Unable to create shutdown entry file %s line %d rc=%d\n", __FILE__,
+ __LINE__, rc);
+ rf_ShutdownParityLoggingPool(raidPtr);
+ return (rc);
+ }
+ /* build pool of region buffers */
+ rc = rf_mutex_init(&raidPtr->regionBufferPool.mutex, "RF_PARITYLOGGING3");
+ if (rc) {
+ RF_ERRORMSG3("Unable to init mutex file %s line %d rc=%d\n",
+ __FILE__, __LINE__, rc);
+ return (ENOMEM);
+ }
+ rc = rf_cond_init(&raidPtr->regionBufferPool.cond);
+ if (rc) {
+ RF_ERRORMSG3("Unable to init cond file %s line %d rc=%d\n",
+ __FILE__, __LINE__, rc);
+ rf_mutex_destroy(&raidPtr->regionBufferPool.mutex);
+ return (ENOMEM);
+ }
+ raidPtr->regionBufferPool.bufferSize = raidPtr->regionLogCapacity *
+ raidPtr->bytesPerSector;
+ printf("regionBufferPool.bufferSize %d\n",
+ raidPtr->regionBufferPool.bufferSize);
+
+ /* for now, only one region at a time may be reintegrated */
+ raidPtr->regionBufferPool.totalBuffers = 1;
+
+ raidPtr->regionBufferPool.availableBuffers =
+ raidPtr->regionBufferPool.totalBuffers;
+ raidPtr->regionBufferPool.availBuffersIndex = 0;
+ raidPtr->regionBufferPool.emptyBuffersIndex = 0;
+ printf("Allocating %d bytes for regionBufferPool\n",
+ (int) (raidPtr->regionBufferPool.totalBuffers *
+ sizeof(caddr_t)));
+ RF_Malloc(raidPtr->regionBufferPool.buffers,
+ raidPtr->regionBufferPool.totalBuffers * sizeof(caddr_t),
+ (caddr_t *));
+ if (raidPtr->regionBufferPool.buffers == NULL) {
+ rf_mutex_destroy(&raidPtr->regionBufferPool.mutex);
+ rf_cond_destroy(&raidPtr->regionBufferPool.cond);
+ return (ENOMEM);
+ }
+ for (i = 0; i < raidPtr->regionBufferPool.totalBuffers; i++) {
+ printf("Allocating %d bytes for regionBufferPool#%d\n",
+ (int) (raidPtr->regionBufferPool.bufferSize *
+ sizeof(char)), i);
+ RF_Malloc(raidPtr->regionBufferPool.buffers[i],
+ raidPtr->regionBufferPool.bufferSize * sizeof(char),
+ (caddr_t));
+ if (raidPtr->regionBufferPool.buffers[i] == NULL) {
+ rf_mutex_destroy(&raidPtr->regionBufferPool.mutex);
+ rf_cond_destroy(&raidPtr->regionBufferPool.cond);
+ for (j = 0; j < i; j++) {
+ RF_Free(raidPtr->regionBufferPool.buffers[i],
+ raidPtr->regionBufferPool.bufferSize *
+ sizeof(char));
+ }
+ RF_Free(raidPtr->regionBufferPool.buffers,
+ raidPtr->regionBufferPool.totalBuffers *
+ sizeof(caddr_t));
+ return (ENOMEM);
+ }
+ printf("raidPtr->regionBufferPool.buffers[%d] = %lx\n", i,
+ (long) raidPtr->regionBufferPool.buffers[i]);
+ }
+ rc = rf_ShutdownCreate(listp,
+ rf_ShutdownParityLoggingRegionBufferPool,
+ raidPtr);
+ if (rc) {
+ RF_ERRORMSG3("Unable to create shutdown entry file %s line %d rc=%d\n", __FILE__,
+ __LINE__, rc);
+ rf_ShutdownParityLoggingRegionBufferPool(raidPtr);
+ return (rc);
+ }
+ /* build pool of parity buffers */
+ parityBufferCapacity = maxRegionParityRange;
+ rc = rf_mutex_init(&raidPtr->parityBufferPool.mutex, "RF_PARITYLOGGING3");
+ if (rc) {
+ RF_ERRORMSG3("Unable to init mutex file %s line %d rc=%d\n",
+ __FILE__, __LINE__, rc);
+ return (rc);
+ }
+ rc = rf_cond_init(&raidPtr->parityBufferPool.cond);
+ if (rc) {
+ RF_ERRORMSG3("Unable to init cond file %s line %d rc=%d\n",
+ __FILE__, __LINE__, rc);
+ rf_mutex_destroy(&raidPtr->parityBufferPool.mutex);
+ return (ENOMEM);
+ }
+ raidPtr->parityBufferPool.bufferSize = parityBufferCapacity *
+ raidPtr->bytesPerSector;
+ printf("parityBufferPool.bufferSize %d\n",
+ raidPtr->parityBufferPool.bufferSize);
+
+ /* for now, only one region at a time may be reintegrated */
+ raidPtr->parityBufferPool.totalBuffers = 1;
+
+ raidPtr->parityBufferPool.availableBuffers =
+ raidPtr->parityBufferPool.totalBuffers;
+ raidPtr->parityBufferPool.availBuffersIndex = 0;
+ raidPtr->parityBufferPool.emptyBuffersIndex = 0;
+ printf("Allocating %d bytes for parityBufferPool of %d units\n",
+ (int) (raidPtr->parityBufferPool.totalBuffers *
+ sizeof(caddr_t)),
+ raidPtr->parityBufferPool.totalBuffers );
+ RF_Malloc(raidPtr->parityBufferPool.buffers,
+ raidPtr->parityBufferPool.totalBuffers * sizeof(caddr_t),
+ (caddr_t *));
+ if (raidPtr->parityBufferPool.buffers == NULL) {
+ rf_mutex_destroy(&raidPtr->parityBufferPool.mutex);
+ rf_cond_destroy(&raidPtr->parityBufferPool.cond);
+ return (ENOMEM);
+ }
+ for (i = 0; i < raidPtr->parityBufferPool.totalBuffers; i++) {
+ printf("Allocating %d bytes for parityBufferPool#%d\n",
+ (int) (raidPtr->parityBufferPool.bufferSize *
+ sizeof(char)),i);
+ RF_Malloc(raidPtr->parityBufferPool.buffers[i],
+ raidPtr->parityBufferPool.bufferSize * sizeof(char),
+ (caddr_t));
+ if (raidPtr->parityBufferPool.buffers == NULL) {
+ rf_mutex_destroy(&raidPtr->parityBufferPool.mutex);
+ rf_cond_destroy(&raidPtr->parityBufferPool.cond);
+ for (j = 0; j < i; j++) {
+ RF_Free(raidPtr->parityBufferPool.buffers[i],
+ raidPtr->regionBufferPool.bufferSize *
+ sizeof(char));
+ }
+ RF_Free(raidPtr->parityBufferPool.buffers,
+ raidPtr->regionBufferPool.totalBuffers *
+ sizeof(caddr_t));
+ return (ENOMEM);
+ }
+ printf("parityBufferPool.buffers[%d] = %lx\n", i,
+ (long) raidPtr->parityBufferPool.buffers[i]);
+ }
+ rc = rf_ShutdownCreate(listp,
+ rf_ShutdownParityLoggingParityBufferPool,
+ raidPtr);
+ if (rc) {
+ RF_ERRORMSG3("Unable to create shutdown entry file %s line %d rc=%d\n", __FILE__,
+ __LINE__, rc);
+ rf_ShutdownParityLoggingParityBufferPool(raidPtr);
+ return (rc);
+ }
+ /* initialize parityLogDiskQueue */
+ rc = rf_create_managed_mutex(listp,
+ &raidPtr->parityLogDiskQueue.mutex);
+ if (rc) {
+ RF_ERRORMSG3("Unable to init mutex file %s line %d rc=%d\n",
+ __FILE__, __LINE__, rc);
+ return (rc);
+ }
+ rc = rf_create_managed_cond(listp, &raidPtr->parityLogDiskQueue.cond);
+ if (rc) {
+ RF_ERRORMSG3("Unable to init cond file %s line %d rc=%d\n",
+ __FILE__, __LINE__, rc);
+ return (rc);
+ }
+ raidPtr->parityLogDiskQueue.flushQueue = NULL;
+ raidPtr->parityLogDiskQueue.reintQueue = NULL;
+ raidPtr->parityLogDiskQueue.bufHead = NULL;
+ raidPtr->parityLogDiskQueue.bufTail = NULL;
+ raidPtr->parityLogDiskQueue.reintHead = NULL;
+ raidPtr->parityLogDiskQueue.reintTail = NULL;
+ raidPtr->parityLogDiskQueue.logBlockHead = NULL;
+ raidPtr->parityLogDiskQueue.logBlockTail = NULL;
+ raidPtr->parityLogDiskQueue.reintBlockHead = NULL;
+ raidPtr->parityLogDiskQueue.reintBlockTail = NULL;
+ raidPtr->parityLogDiskQueue.freeDataList = NULL;
+ raidPtr->parityLogDiskQueue.freeCommonList = NULL;
+
+ rc = rf_ShutdownCreate(listp,
+ rf_ShutdownParityLoggingDiskQueue,
+ raidPtr);
+ if (rc) {
+ RF_ERRORMSG3("Unable to create shutdown entry file %s line %d rc=%d\n", __FILE__,
+ __LINE__, rc);
+ return (rc);
+ }
+ for (i = 0; i < rf_numParityRegions; i++) {
+ rc = rf_mutex_init(&raidPtr->regionInfo[i].mutex, "RF_PARITYLOGGING3");
+ if (rc) {
+ RF_ERRORMSG3("Unable to init mutex file %s line %d rc=%d\n", __FILE__,
+ __LINE__, rc);
+ for (j = 0; j < i; j++)
+ FreeRegionInfo(raidPtr, j);
+ RF_Free(raidPtr->regionInfo,
+ (rf_numParityRegions *
+ sizeof(RF_RegionInfo_t)));
+ return (ENOMEM);
+ }
+ rc = rf_mutex_init(&raidPtr->regionInfo[i].reintMutex, "RF_PARITYLOGGING4");
+ if (rc) {
+ RF_ERRORMSG3("Unable to init mutex file %s line %d rc=%d\n", __FILE__,
+ __LINE__, rc);
+ rf_mutex_destroy(&raidPtr->regionInfo[i].mutex);
+ for (j = 0; j < i; j++)
+ FreeRegionInfo(raidPtr, j);
+ RF_Free(raidPtr->regionInfo,
+ (rf_numParityRegions *
+ sizeof(RF_RegionInfo_t)));
+ return (ENOMEM);
+ }
+ raidPtr->regionInfo[i].reintInProgress = RF_FALSE;
+ raidPtr->regionInfo[i].regionStartAddr =
+ raidPtr->regionLogCapacity * i;
+ raidPtr->regionInfo[i].parityStartAddr =
+ raidPtr->regionParityRange * i;
+ if (i < rf_numParityRegions - 1) {
+ raidPtr->regionInfo[i].capacity =
+ raidPtr->regionLogCapacity;
+ raidPtr->regionInfo[i].numSectorsParity =
+ raidPtr->regionParityRange;
+ } else {
+ raidPtr->regionInfo[i].capacity =
+ lastRegionCapacity;
+ raidPtr->regionInfo[i].numSectorsParity =
+ raidPtr->sectorsPerDisk -
+ raidPtr->regionParityRange * i;
+ if (raidPtr->regionInfo[i].numSectorsParity >
+ maxRegionParityRange)
+ maxRegionParityRange =
+ raidPtr->regionInfo[i].numSectorsParity;
+ }
+ raidPtr->regionInfo[i].diskCount = 0;
+ RF_ASSERT(raidPtr->regionInfo[i].capacity +
+ raidPtr->regionInfo[i].regionStartAddr <=
+ totalLogCapacity);
+ RF_ASSERT(raidPtr->regionInfo[i].parityStartAddr +
+ raidPtr->regionInfo[i].numSectorsParity <=
+ raidPtr->sectorsPerDisk);
+ printf("Allocating %d bytes for region %d\n",
+ (int) (raidPtr->regionInfo[i].capacity *
+ sizeof(RF_DiskMap_t)), i);
+ RF_Malloc(raidPtr->regionInfo[i].diskMap,
+ (raidPtr->regionInfo[i].capacity *
+ sizeof(RF_DiskMap_t)),
+ (RF_DiskMap_t *));
+ if (raidPtr->regionInfo[i].diskMap == NULL) {
+ rf_mutex_destroy(&raidPtr->regionInfo[i].mutex);
+ rf_mutex_destroy(&raidPtr->regionInfo[i].reintMutex);
+ for (j = 0; j < i; j++)
+ FreeRegionInfo(raidPtr, j);
+ RF_Free(raidPtr->regionInfo,
+ (rf_numParityRegions *
+ sizeof(RF_RegionInfo_t)));
+ return (ENOMEM);
+ }
+ raidPtr->regionInfo[i].loggingEnabled = RF_FALSE;
+ raidPtr->regionInfo[i].coreLog = NULL;
+ }
+ rc = rf_ShutdownCreate(listp,
+ rf_ShutdownParityLoggingRegionInfo,
+ raidPtr);
+ if (rc) {
+ RF_ERRORMSG3("Unable to create shutdown entry file %s line %d rc=%d\n", __FILE__,
+ __LINE__, rc);
+ rf_ShutdownParityLoggingRegionInfo(raidPtr);
+ return (rc);
+ }
+ RF_ASSERT(raidPtr->parityLogDiskQueue.threadState == 0);
+ raidPtr->parityLogDiskQueue.threadState = RF_PLOG_CREATED;
+ rc = RF_CREATE_THREAD(raidPtr->pLogDiskThreadHandle,
+ rf_ParityLoggingDiskManager, raidPtr,"rf_log");
+ if (rc) {
+ raidPtr->parityLogDiskQueue.threadState = 0;
+ RF_ERRORMSG3("Unable to create parity logging disk thread file %s line %d rc=%d\n",
+ __FILE__, __LINE__, rc);
+ return (ENOMEM);
+ }
+ /* wait for thread to start */
+ RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
+ while (!(raidPtr->parityLogDiskQueue.threadState & RF_PLOG_RUNNING)) {
+ RF_WAIT_COND(raidPtr->parityLogDiskQueue.cond,
+ raidPtr->parityLogDiskQueue.mutex);
+ }
+ RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
+
+ rc = rf_ShutdownCreate(listp, rf_ShutdownParityLogging, raidPtr);
+ if (rc) {
+ RF_ERRORMSG1("Got rc=%d adding parity logging shutdown event\n", rc);
+ rf_ShutdownParityLogging(raidPtr);
+ return (rc);
+ }
+ if (rf_parityLogDebug) {
+ printf(" size of disk log in sectors: %d\n",
+ (int) totalLogCapacity);
+ printf(" total number of parity regions is %d\n", (int) rf_numParityRegions);
+ printf(" nominal sectors of log per parity region is %d\n", (int) raidPtr->regionLogCapacity);
+ printf(" nominal region fragmentation is %d sectors\n", (int) fragmentation);
+ printf(" total number of parity logs is %d\n", raidPtr->numParityLogs);
+ printf(" parity log size is %d sectors\n", raidPtr->numSectorsPerLog);
+ printf(" total in-core log space is %d bytes\n", (int) rf_totalInCoreLogCapacity);
+ }
+ rf_EnableParityLogging(raidPtr);
+
+ return (0);
+}
+
+static void
+FreeRegionInfo(
+ RF_Raid_t * raidPtr,
+ RF_RegionId_t regionID)
+{
+ RF_LOCK_MUTEX(raidPtr->regionInfo[regionID].mutex);
+ RF_Free(raidPtr->regionInfo[regionID].diskMap,
+ (raidPtr->regionInfo[regionID].capacity *
+ sizeof(RF_DiskMap_t)));
+ if (!rf_forceParityLogReint && raidPtr->regionInfo[regionID].coreLog) {
+ rf_ReleaseParityLogs(raidPtr,
+ raidPtr->regionInfo[regionID].coreLog);
+ raidPtr->regionInfo[regionID].coreLog = NULL;
+ } else {
+ RF_ASSERT(raidPtr->regionInfo[regionID].coreLog == NULL);
+ RF_ASSERT(raidPtr->regionInfo[regionID].diskCount == 0);
+ }
+ RF_UNLOCK_MUTEX(raidPtr->regionInfo[regionID].mutex);
+ rf_mutex_destroy(&raidPtr->regionInfo[regionID].mutex);
+ rf_mutex_destroy(&raidPtr->regionInfo[regionID].reintMutex);
+}
+
+
+static void
+FreeParityLogQueue(
+ RF_Raid_t * raidPtr,
+ RF_ParityLogQueue_t * queue)
+{
+ RF_ParityLog_t *l1, *l2;
+
+ RF_LOCK_MUTEX(queue->mutex);
+ l1 = queue->parityLogs;
+ while (l1) {
+ l2 = l1;
+ l1 = l2->next;
+ RF_Free(l2->records, (raidPtr->numSectorsPerLog *
+ sizeof(RF_ParityLogRecord_t)));
+ RF_Free(l2, sizeof(RF_ParityLog_t));
+ }
+ RF_UNLOCK_MUTEX(queue->mutex);
+ rf_mutex_destroy(&queue->mutex);
+}
+
+
+static void
+FreeRegionBufferQueue(RF_RegionBufferQueue_t * queue)
+{
+ int i;
+
+ RF_LOCK_MUTEX(queue->mutex);
+ if (queue->availableBuffers != queue->totalBuffers) {
+ printf("Attempt to free region queue which is still in use!\n");
+ RF_ASSERT(0);
+ }
+ for (i = 0; i < queue->totalBuffers; i++)
+ RF_Free(queue->buffers[i], queue->bufferSize);
+ RF_Free(queue->buffers, queue->totalBuffers * sizeof(caddr_t));
+ RF_UNLOCK_MUTEX(queue->mutex);
+ rf_mutex_destroy(&queue->mutex);
+}
+
+static void
+rf_ShutdownParityLoggingRegionInfo(RF_ThreadArg_t arg)
+{
+ RF_Raid_t *raidPtr;
+ RF_RegionId_t i;
+
+ raidPtr = (RF_Raid_t *) arg;
+ if (rf_parityLogDebug) {
+ printf("raid%d: ShutdownParityLoggingRegionInfo\n",
+ raidPtr->raidid);
+ }
+ /* free region information structs */
+ for (i = 0; i < rf_numParityRegions; i++)
+ FreeRegionInfo(raidPtr, i);
+ RF_Free(raidPtr->regionInfo, (rf_numParityRegions *
+ sizeof(raidPtr->regionInfo)));
+ raidPtr->regionInfo = NULL;
+}
+
+static void
+rf_ShutdownParityLoggingPool(RF_ThreadArg_t arg)
+{
+ RF_Raid_t *raidPtr;
+
+ raidPtr = (RF_Raid_t *) arg;
+ if (rf_parityLogDebug) {
+ printf("raid%d: ShutdownParityLoggingPool\n", raidPtr->raidid);
+ }
+ /* free contents of parityLogPool */
+ FreeParityLogQueue(raidPtr, &raidPtr->parityLogPool);
+ RF_Free(raidPtr->parityLogBufferHeap, raidPtr->numParityLogs *
+ raidPtr->numSectorsPerLog * raidPtr->bytesPerSector);
+}
+
+static void
+rf_ShutdownParityLoggingRegionBufferPool(RF_ThreadArg_t arg)
+{
+ RF_Raid_t *raidPtr;
+
+ raidPtr = (RF_Raid_t *) arg;
+ if (rf_parityLogDebug) {
+ printf("raid%d: ShutdownParityLoggingRegionBufferPool\n",
+ raidPtr->raidid);
+ }
+ FreeRegionBufferQueue(&raidPtr->regionBufferPool);
+}
+
+static void
+rf_ShutdownParityLoggingParityBufferPool(RF_ThreadArg_t arg)
+{
+ RF_Raid_t *raidPtr;
+
+ raidPtr = (RF_Raid_t *) arg;
+ if (rf_parityLogDebug) {
+ printf("raid%d: ShutdownParityLoggingParityBufferPool\n",
+ raidPtr->raidid);
+ }
+ FreeRegionBufferQueue(&raidPtr->parityBufferPool);
+}
+
+static void
+rf_ShutdownParityLoggingDiskQueue(RF_ThreadArg_t arg)
+{
+ RF_ParityLogData_t *d;
+ RF_CommonLogData_t *c;
+ RF_Raid_t *raidPtr;
+
+ raidPtr = (RF_Raid_t *) arg;
+ if (rf_parityLogDebug) {
+ printf("raid%d: ShutdownParityLoggingDiskQueue\n",
+ raidPtr->raidid);
+ }
+ /* free disk manager stuff */
+ RF_ASSERT(raidPtr->parityLogDiskQueue.bufHead == NULL);
+ RF_ASSERT(raidPtr->parityLogDiskQueue.bufTail == NULL);
+ RF_ASSERT(raidPtr->parityLogDiskQueue.reintHead == NULL);
+ RF_ASSERT(raidPtr->parityLogDiskQueue.reintTail == NULL);
+ while (raidPtr->parityLogDiskQueue.freeDataList) {
+ d = raidPtr->parityLogDiskQueue.freeDataList;
+ raidPtr->parityLogDiskQueue.freeDataList =
+ raidPtr->parityLogDiskQueue.freeDataList->next;
+ RF_Free(d, sizeof(RF_ParityLogData_t));
+ }
+ while (raidPtr->parityLogDiskQueue.freeCommonList) {
+ c = raidPtr->parityLogDiskQueue.freeCommonList;
+ rf_mutex_destroy(&c->mutex);
+ raidPtr->parityLogDiskQueue.freeCommonList =
+ raidPtr->parityLogDiskQueue.freeCommonList->next;
+ RF_Free(c, sizeof(RF_CommonLogData_t));
+ }
+}
+
+static void
+rf_ShutdownParityLogging(RF_ThreadArg_t arg)
+{
+ RF_Raid_t *raidPtr;
+
+ raidPtr = (RF_Raid_t *) arg;
+ if (rf_parityLogDebug) {
+ printf("raid%d: ShutdownParityLogging\n", raidPtr->raidid);
+ }
+ /* shutdown disk thread */
+ /* This has the desirable side-effect of forcing all regions to be
+ * reintegrated. This is necessary since all parity log maps are
+ * currently held in volatile memory. */
+
+ RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
+ raidPtr->parityLogDiskQueue.threadState |= RF_PLOG_TERMINATE;
+ RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
+ RF_SIGNAL_COND(raidPtr->parityLogDiskQueue.cond);
+ /*
+ * pLogDiskThread will now terminate when queues are cleared
+ * now wait for it to be done
+ */
+ RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
+ while (!(raidPtr->parityLogDiskQueue.threadState & RF_PLOG_SHUTDOWN)) {
+ RF_WAIT_COND(raidPtr->parityLogDiskQueue.cond,
+ raidPtr->parityLogDiskQueue.mutex);
+ }
+ RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
+ if (rf_parityLogDebug) {
+ printf("raid%d: ShutdownParityLogging done (thread completed)\n", raidPtr->raidid);
+ }
+}
+
+int
+rf_GetDefaultNumFloatingReconBuffersParityLogging(RF_Raid_t * raidPtr)
+{
+ return (20);
+}
+
+RF_HeadSepLimit_t
+rf_GetDefaultHeadSepLimitParityLogging(RF_Raid_t * raidPtr)
+{
+ return (10);
+}
+/* return the region ID for a given RAID address */
+RF_RegionId_t
+rf_MapRegionIDParityLogging(
+ RF_Raid_t * raidPtr,
+ RF_SectorNum_t address)
+{
+ RF_RegionId_t regionID;
+
+/* regionID = address / (raidPtr->regionParityRange * raidPtr->Layout.numDataCol); */
+ regionID = address / raidPtr->regionParityRange;
+ if (regionID == rf_numParityRegions) {
+ /* last region may be larger than other regions */
+ regionID--;
+ }
+ RF_ASSERT(address >= raidPtr->regionInfo[regionID].parityStartAddr);
+ RF_ASSERT(address < raidPtr->regionInfo[regionID].parityStartAddr +
+ raidPtr->regionInfo[regionID].numSectorsParity);
+ RF_ASSERT(regionID < rf_numParityRegions);
+ return (regionID);
+}
+
+
+/* given a logical RAID sector, determine physical disk address of data */
+void
+rf_MapSectorParityLogging(
+ RF_Raid_t * raidPtr,
+ RF_RaidAddr_t raidSector,
+ RF_RowCol_t * row,
+ RF_RowCol_t * col,
+ RF_SectorNum_t * diskSector,
+ int remap)
+{
+ RF_StripeNum_t SUID = raidSector /
+ raidPtr->Layout.sectorsPerStripeUnit;
+ *row = 0;
+ /* *col = (SUID % (raidPtr->numCol -
+ * raidPtr->Layout.numParityLogCol)); */
+ *col = SUID % raidPtr->Layout.numDataCol;
+ *diskSector = (SUID / (raidPtr->Layout.numDataCol)) *
+ raidPtr->Layout.sectorsPerStripeUnit +
+ (raidSector % raidPtr->Layout.sectorsPerStripeUnit);
+}
+
+
+/* given a logical RAID sector, determine physical disk address of parity */
+void
+rf_MapParityParityLogging(
+ RF_Raid_t * raidPtr,
+ RF_RaidAddr_t raidSector,
+ RF_RowCol_t * row,
+ RF_RowCol_t * col,
+ RF_SectorNum_t * diskSector,
+ int remap)
+{
+ RF_StripeNum_t SUID = raidSector /
+ raidPtr->Layout.sectorsPerStripeUnit;
+
+ *row = 0;
+ /* *col =
+ * raidPtr->Layout.numDataCol-(SUID/raidPtr->Layout.numDataCol)%(raidPt
+ * r->numCol - raidPtr->Layout.numParityLogCol); */
+ *col = raidPtr->Layout.numDataCol;
+ *diskSector = (SUID / (raidPtr->Layout.numDataCol)) *
+ raidPtr->Layout.sectorsPerStripeUnit +
+ (raidSector % raidPtr->Layout.sectorsPerStripeUnit);
+}
+
+
+/* given a regionID and sector offset, determine the physical disk address of the parity log */
+void
+rf_MapLogParityLogging(
+ RF_Raid_t * raidPtr,
+ RF_RegionId_t regionID,
+ RF_SectorNum_t regionOffset,
+ RF_RowCol_t * row,
+ RF_RowCol_t * col,
+ RF_SectorNum_t * startSector)
+{
+ *row = 0;
+ *col = raidPtr->numCol - 1;
+ *startSector = raidPtr->regionInfo[regionID].regionStartAddr + regionOffset;
+}
+
+
+/* given a regionID, determine the physical disk address of the logged
+ parity for that region */
+void
+rf_MapRegionParity(
+ RF_Raid_t * raidPtr,
+ RF_RegionId_t regionID,
+ RF_RowCol_t * row,
+ RF_RowCol_t * col,
+ RF_SectorNum_t * startSector,
+ RF_SectorCount_t * numSector)
+{
+ *row = 0;
+ *col = raidPtr->numCol - 2;
+ *startSector = raidPtr->regionInfo[regionID].parityStartAddr;
+ *numSector = raidPtr->regionInfo[regionID].numSectorsParity;
+}
+
+
+/* given a logical RAID address, determine the participating disks in
+ the stripe */
+void
+rf_IdentifyStripeParityLogging(
+ RF_Raid_t * raidPtr,
+ RF_RaidAddr_t addr,
+ RF_RowCol_t ** diskids,
+ RF_RowCol_t * outRow)
+{
+ RF_StripeNum_t stripeID = rf_RaidAddressToStripeID(&raidPtr->Layout,
+ addr);
+ RF_ParityLoggingConfigInfo_t *info = (RF_ParityLoggingConfigInfo_t *)
+ raidPtr->Layout.layoutSpecificInfo;
+ *outRow = 0;
+ *diskids = info->stripeIdentifier[stripeID % raidPtr->numCol];
+}
+
+
+void
+rf_MapSIDToPSIDParityLogging(
+ RF_RaidLayout_t * layoutPtr,
+ RF_StripeNum_t stripeID,
+ RF_StripeNum_t * psID,
+ RF_ReconUnitNum_t * which_ru)
+{
+ *which_ru = 0;
+ *psID = stripeID;
+}
+
+
+/* select an algorithm for performing an access. Returns two pointers,
+ * one to a function that will return information about the DAG, and
+ * another to a function that will create the dag.
+ */
+void
+rf_ParityLoggingDagSelect(
+ RF_Raid_t * raidPtr,
+ RF_IoType_t type,
+ RF_AccessStripeMap_t * asmp,
+ RF_VoidFuncPtr * createFunc)
+{
+ RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
+ RF_PhysDiskAddr_t *failedPDA = NULL;
+ RF_RowCol_t frow, fcol;
+ RF_RowStatus_t rstat;
+ int prior_recon;
+
+ RF_ASSERT(RF_IO_IS_R_OR_W(type));
+
+ if (asmp->numDataFailed + asmp->numParityFailed > 1) {
+ RF_ERRORMSG("Multiple disks failed in a single group! Aborting I/O operation.\n");
+ /* *infoFunc = */ *createFunc = NULL;
+ return;
+ } else
+ if (asmp->numDataFailed + asmp->numParityFailed == 1) {
+
+ /* if under recon & already reconstructed, redirect
+ * the access to the spare drive and eliminate the
+ * failure indication */
+ failedPDA = asmp->failedPDAs[0];
+ frow = failedPDA->row;
+ fcol = failedPDA->col;
+ rstat = raidPtr->status[failedPDA->row];
+ prior_recon = (rstat == rf_rs_reconfigured) || (
+ (rstat == rf_rs_reconstructing) ?
+ rf_CheckRUReconstructed(raidPtr->reconControl[frow]->reconMap, failedPDA->startSector) : 0
+ );
+ if (prior_recon) {
+ RF_RowCol_t or = failedPDA->row, oc = failedPDA->col;
+ RF_SectorNum_t oo = failedPDA->startSector;
+ if (layoutPtr->map->flags &
+ RF_DISTRIBUTE_SPARE) {
+ /* redirect to dist spare space */
+
+ if (failedPDA == asmp->parityInfo) {
+
+ /* parity has failed */
+ (layoutPtr->map->MapParity) (raidPtr, failedPDA->raidAddress, &failedPDA->row,
+ &failedPDA->col, &failedPDA->startSector, RF_REMAP);
+
+ if (asmp->parityInfo->next) { /* redir 2nd component,
+ * if any */
+ RF_PhysDiskAddr_t *p = asmp->parityInfo->next;
+ RF_SectorNum_t SUoffs = p->startSector % layoutPtr->sectorsPerStripeUnit;
+ p->row = failedPDA->row;
+ p->col = failedPDA->col;
+ p->startSector = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, failedPDA->startSector) +
+ SUoffs; /* cheating:
+ * startSector is not
+ * really a RAID address */
+ }
+ } else
+ if (asmp->parityInfo->next && failedPDA == asmp->parityInfo->next) {
+ RF_ASSERT(0); /* should not ever
+ * happen */
+ } else {
+
+ /* data has failed */
+ (layoutPtr->map->MapSector) (raidPtr, failedPDA->raidAddress, &failedPDA->row,
+ &failedPDA->col, &failedPDA->startSector, RF_REMAP);
+
+ }
+
+ } else {
+ /* redirect to dedicated spare space */
+
+ failedPDA->row = raidPtr->Disks[frow][fcol].spareRow;
+ failedPDA->col = raidPtr->Disks[frow][fcol].spareCol;
+
+ /* the parity may have two distinct
+ * components, both of which may need
+ * to be redirected */
+ if (asmp->parityInfo->next) {
+ if (failedPDA == asmp->parityInfo) {
+ failedPDA->next->row = failedPDA->row;
+ failedPDA->next->col = failedPDA->col;
+ } else
+ if (failedPDA == asmp->parityInfo->next) { /* paranoid: should never occur */
+ asmp->parityInfo->row = failedPDA->row;
+ asmp->parityInfo->col = failedPDA->col;
+ }
+ }
+ }
+
+ RF_ASSERT(failedPDA->col != -1);
+
+ if (rf_dagDebug || rf_mapDebug) {
+ printf("raid%d: Redirected type '%c' r %d c %d o %ld -> r %d c %d o %ld\n",
+ raidPtr->raidid, type, or, oc, (long) oo, failedPDA->row, failedPDA->col, (long) failedPDA->startSector);
+ }
+ asmp->numDataFailed = asmp->numParityFailed = 0;
+ }
+ }
+ if (type == RF_IO_TYPE_READ) {
+
+ if (asmp->numDataFailed == 0)
+ *createFunc = (RF_VoidFuncPtr) rf_CreateFaultFreeReadDAG;
+ else
+ *createFunc = (RF_VoidFuncPtr) rf_CreateRaidFiveDegradedReadDAG;
+
+ } else {
+
+
+ /* if mirroring, always use large writes. If the access
+ * requires two distinct parity updates, always do a small
+ * write. If the stripe contains a failure but the access
+ * does not, do a small write. The first conditional
+ * (numStripeUnitsAccessed <= numDataCol/2) uses a
+ * less-than-or-equal rather than just a less-than because
+ * when G is 3 or 4, numDataCol/2 is 1, and I want
+ * single-stripe-unit updates to use just one disk. */
+ if ((asmp->numDataFailed + asmp->numParityFailed) == 0) {
+ if (((asmp->numStripeUnitsAccessed <=
+ (layoutPtr->numDataCol / 2)) &&
+ (layoutPtr->numDataCol != 1)) ||
+ (asmp->parityInfo->next != NULL) ||
+ rf_CheckStripeForFailures(raidPtr, asmp)) {
+ *createFunc = (RF_VoidFuncPtr) rf_CreateParityLoggingSmallWriteDAG;
+ } else
+ *createFunc = (RF_VoidFuncPtr) rf_CreateParityLoggingLargeWriteDAG;
+ } else
+ if (asmp->numParityFailed == 1)
+ *createFunc = (RF_VoidFuncPtr) rf_CreateNonRedundantWriteDAG;
+ else
+ if (asmp->numStripeUnitsAccessed != 1 && failedPDA->numSector != layoutPtr->sectorsPerStripeUnit)
+ *createFunc = NULL;
+ else
+ *createFunc = (RF_VoidFuncPtr) rf_CreateDegradedWriteDAG;
+ }
+}
+#endif /* RF_INCLUDE_PARITYLOGGING > 0 */
diff --git a/sys/dev/raidframe/rf_paritylogging.h b/sys/dev/raidframe/rf_paritylogging.h
new file mode 100644
index 0000000..5b7dd25
--- /dev/null
+++ b/sys/dev/raidframe/rf_paritylogging.h
@@ -0,0 +1,70 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_paritylogging.h,v 1.3 1999/02/05 00:06:14 oster Exp $ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: William V. Courtright II
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+/* header file for Parity Logging */
+
+#ifndef _RF__RF_PARITYLOGGING_H_
+#define _RF__RF_PARITYLOGGING_H_
+
+int
+rf_ConfigureParityLogging(RF_ShutdownList_t ** listp, RF_Raid_t * raidPtr,
+ RF_Config_t * cfgPtr);
+int rf_GetDefaultNumFloatingReconBuffersParityLogging(RF_Raid_t * raidPtr);
+RF_HeadSepLimit_t rf_GetDefaultHeadSepLimitParityLogging(RF_Raid_t * raidPtr);
+RF_RegionId_t
+rf_MapRegionIDParityLogging(RF_Raid_t * raidPtr,
+ RF_SectorNum_t address);
+void
+rf_MapSectorParityLogging(RF_Raid_t * raidPtr, RF_RaidAddr_t raidSector,
+ RF_RowCol_t * row, RF_RowCol_t * col, RF_SectorNum_t * diskSector,
+ int remap);
+void
+rf_MapParityParityLogging(RF_Raid_t * raidPtr, RF_RaidAddr_t raidSector,
+ RF_RowCol_t * row, RF_RowCol_t * col, RF_SectorNum_t * diskSector,
+ int remap);
+void
+rf_MapLogParityLogging(RF_Raid_t * raidPtr, RF_RegionId_t regionID,
+ RF_SectorNum_t regionOffset, RF_RowCol_t * row, RF_RowCol_t * col,
+ RF_SectorNum_t * startSector);
+void
+rf_MapRegionParity(RF_Raid_t * raidPtr, RF_RegionId_t regionID,
+ RF_RowCol_t * row, RF_RowCol_t * col, RF_SectorNum_t * startSector,
+ RF_SectorCount_t * numSector);
+void
+rf_IdentifyStripeParityLogging(RF_Raid_t * raidPtr, RF_RaidAddr_t addr,
+ RF_RowCol_t ** diskids, RF_RowCol_t * outRow);
+void
+rf_MapSIDToPSIDParityLogging(RF_RaidLayout_t * layoutPtr,
+ RF_StripeNum_t stripeID, RF_StripeNum_t * psID,
+ RF_ReconUnitNum_t * which_ru);
+void
+rf_ParityLoggingDagSelect(RF_Raid_t * raidPtr, RF_IoType_t type,
+ RF_AccessStripeMap_t * asmap, RF_VoidFuncPtr * createFunc);
+
+#endif /* !_RF__RF_PARITYLOGGING_H_ */
diff --git a/sys/dev/raidframe/rf_parityloggingdags.c b/sys/dev/raidframe/rf_parityloggingdags.c
new file mode 100644
index 0000000..7ccef55
--- /dev/null
+++ b/sys/dev/raidframe/rf_parityloggingdags.c
@@ -0,0 +1,673 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_parityloggingdags.c,v 1.4 2000/01/07 03:41:04 oster Exp $ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: William V. Courtright II
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+#include <dev/raidframe/rf_archs.h>
+
+#if RF_INCLUDE_PARITYLOGGING > 0
+
+/*
+ DAGs specific to parity logging are created here
+ */
+
+#include <dev/raidframe/rf_types.h>
+#include <dev/raidframe/rf_raid.h>
+#include <dev/raidframe/rf_dag.h>
+#include <dev/raidframe/rf_dagutils.h>
+#include <dev/raidframe/rf_dagfuncs.h>
+#include <dev/raidframe/rf_debugMem.h>
+#include <dev/raidframe/rf_paritylog.h>
+#include <dev/raidframe/rf_memchunk.h>
+#include <dev/raidframe/rf_general.h>
+
+#include <dev/raidframe/rf_parityloggingdags.h>
+
+/******************************************************************************
+ *
+ * creates a DAG to perform a large-write operation:
+ *
+ * / Rod \ / Wnd \
+ * H -- NIL- Rod - NIL - Wnd ------ NIL - T
+ * \ Rod / \ Xor - Lpo /
+ *
+ * The writes are not done until the reads complete because if they were done in
+ * parallel, a failure on one of the reads could leave the parity in an inconsistent
+ * state, so that the retry with a new DAG would produce erroneous parity.
+ *
+ * Note: this DAG has the nasty property that none of the buffers allocated for reading
+ * old data can be freed until the XOR node fires. Need to fix this.
+ *
+ * The last two arguments are the number of faults tolerated, and function for the
+ * redundancy calculation. The undo for the redundancy calc is assumed to be null
+ *
+ *****************************************************************************/
+
+void
+rf_CommonCreateParityLoggingLargeWriteDAG(
+ RF_Raid_t * raidPtr,
+ RF_AccessStripeMap_t * asmap,
+ RF_DagHeader_t * dag_h,
+ void *bp,
+ RF_RaidAccessFlags_t flags,
+ RF_AllocListElem_t * allocList,
+ int nfaults,
+ int (*redFunc) (RF_DagNode_t *))
+{
+ RF_DagNode_t *nodes, *wndNodes, *rodNodes = NULL, *syncNode, *xorNode,
+ *lpoNode, *blockNode, *unblockNode, *termNode;
+ int nWndNodes, nRodNodes, i;
+ RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
+ RF_AccessStripeMapHeader_t *new_asm_h[2];
+ int nodeNum, asmNum;
+ RF_ReconUnitNum_t which_ru;
+ char *sosBuffer, *eosBuffer;
+ RF_PhysDiskAddr_t *pda;
+ RF_StripeNum_t parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout), asmap->raidAddress, &which_ru);
+
+ if (rf_dagDebug)
+ printf("[Creating parity-logging large-write DAG]\n");
+ RF_ASSERT(nfaults == 1);/* this arch only single fault tolerant */
+ dag_h->creator = "ParityLoggingLargeWriteDAG";
+
+ /* alloc the Wnd nodes, the xor node, and the Lpo node */
+ nWndNodes = asmap->numStripeUnitsAccessed;
+ RF_CallocAndAdd(nodes, nWndNodes + 6, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
+ i = 0;
+ wndNodes = &nodes[i];
+ i += nWndNodes;
+ xorNode = &nodes[i];
+ i += 1;
+ lpoNode = &nodes[i];
+ i += 1;
+ blockNode = &nodes[i];
+ i += 1;
+ syncNode = &nodes[i];
+ i += 1;
+ unblockNode = &nodes[i];
+ i += 1;
+ termNode = &nodes[i];
+ i += 1;
+
+ dag_h->numCommitNodes = nWndNodes + 1;
+ dag_h->numCommits = 0;
+ dag_h->numSuccedents = 1;
+
+ rf_MapUnaccessedPortionOfStripe(raidPtr, layoutPtr, asmap, dag_h, new_asm_h, &nRodNodes, &sosBuffer, &eosBuffer, allocList);
+ if (nRodNodes > 0)
+ RF_CallocAndAdd(rodNodes, nRodNodes, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
+
+ /* begin node initialization */
+ rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nRodNodes + 1, 0, 0, 0, dag_h, "Nil", allocList);
+ rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nWndNodes + 1, 0, 0, dag_h, "Nil", allocList);
+ rf_InitNode(syncNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nWndNodes + 1, nRodNodes + 1, 0, 0, dag_h, "Nil", allocList);
+ rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
+
+ /* initialize the Rod nodes */
+ for (nodeNum = asmNum = 0; asmNum < 2; asmNum++) {
+ if (new_asm_h[asmNum]) {
+ pda = new_asm_h[asmNum]->stripeMap->physInfo;
+ while (pda) {
+ rf_InitNode(&rodNodes[nodeNum], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rod", allocList);
+ rodNodes[nodeNum].params[0].p = pda;
+ rodNodes[nodeNum].params[1].p = pda->bufPtr;
+ rodNodes[nodeNum].params[2].v = parityStripeID;
+ rodNodes[nodeNum].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
+ nodeNum++;
+ pda = pda->next;
+ }
+ }
+ }
+ RF_ASSERT(nodeNum == nRodNodes);
+
+ /* initialize the wnd nodes */
+ pda = asmap->physInfo;
+ for (i = 0; i < nWndNodes; i++) {
+ rf_InitNode(&wndNodes[i], rf_wait, RF_TRUE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnd", allocList);
+ RF_ASSERT(pda != NULL);
+ wndNodes[i].params[0].p = pda;
+ wndNodes[i].params[1].p = pda->bufPtr;
+ wndNodes[i].params[2].v = parityStripeID;
+ wndNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
+ pda = pda->next;
+ }
+
+ /* initialize the redundancy node */
+ rf_InitNode(xorNode, rf_wait, RF_TRUE, redFunc, rf_NullNodeUndoFunc, NULL, 1, 1, 2 * (nWndNodes + nRodNodes) + 1, 1, dag_h, "Xr ", allocList);
+ xorNode->flags |= RF_DAGNODE_FLAG_YIELD;
+ for (i = 0; i < nWndNodes; i++) {
+ xorNode->params[2 * i + 0] = wndNodes[i].params[0]; /* pda */
+ xorNode->params[2 * i + 1] = wndNodes[i].params[1]; /* buf ptr */
+ }
+ for (i = 0; i < nRodNodes; i++) {
+ xorNode->params[2 * (nWndNodes + i) + 0] = rodNodes[i].params[0]; /* pda */
+ xorNode->params[2 * (nWndNodes + i) + 1] = rodNodes[i].params[1]; /* buf ptr */
+ }
+ xorNode->params[2 * (nWndNodes + nRodNodes)].p = raidPtr; /* xor node needs to get
+ * at RAID information */
+
+ /* look for an Rod node that reads a complete SU. If none, alloc a
+ * buffer to receive the parity info. Note that we can't use a new
+ * data buffer because it will not have gotten written when the xor
+ * occurs. */
+ for (i = 0; i < nRodNodes; i++)
+ if (((RF_PhysDiskAddr_t *) rodNodes[i].params[0].p)->numSector == raidPtr->Layout.sectorsPerStripeUnit)
+ break;
+ if (i == nRodNodes) {
+ RF_CallocAndAdd(xorNode->results[0], 1, rf_RaidAddressToByte(raidPtr, raidPtr->Layout.sectorsPerStripeUnit), (void *), allocList);
+ } else {
+ xorNode->results[0] = rodNodes[i].params[1].p;
+ }
+
+ /* initialize the Lpo node */
+ rf_InitNode(lpoNode, rf_wait, RF_FALSE, rf_ParityLogOverwriteFunc, rf_ParityLogOverwriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h, "Lpo", allocList);
+
+ lpoNode->params[0].p = asmap->parityInfo;
+ lpoNode->params[1].p = xorNode->results[0];
+ RF_ASSERT(asmap->parityInfo->next == NULL); /* parityInfo must
+ * describe entire
+ * parity unit */
+
+ /* connect nodes to form graph */
+
+ /* connect dag header to block node */
+ RF_ASSERT(dag_h->numSuccedents == 1);
+ RF_ASSERT(blockNode->numAntecedents == 0);
+ dag_h->succedents[0] = blockNode;
+
+ /* connect the block node to the Rod nodes */
+ RF_ASSERT(blockNode->numSuccedents == nRodNodes + 1);
+ for (i = 0; i < nRodNodes; i++) {
+ RF_ASSERT(rodNodes[i].numAntecedents == 1);
+ blockNode->succedents[i] = &rodNodes[i];
+ rodNodes[i].antecedents[0] = blockNode;
+ rodNodes[i].antType[0] = rf_control;
+ }
+
+ /* connect the block node to the sync node */
+ /* necessary if nRodNodes == 0 */
+ RF_ASSERT(syncNode->numAntecedents == nRodNodes + 1);
+ blockNode->succedents[nRodNodes] = syncNode;
+ syncNode->antecedents[0] = blockNode;
+ syncNode->antType[0] = rf_control;
+
+ /* connect the Rod nodes to the syncNode */
+ for (i = 0; i < nRodNodes; i++) {
+ rodNodes[i].succedents[0] = syncNode;
+ syncNode->antecedents[1 + i] = &rodNodes[i];
+ syncNode->antType[1 + i] = rf_control;
+ }
+
+ /* connect the sync node to the xor node */
+ RF_ASSERT(syncNode->numSuccedents == nWndNodes + 1);
+ RF_ASSERT(xorNode->numAntecedents == 1);
+ syncNode->succedents[0] = xorNode;
+ xorNode->antecedents[0] = syncNode;
+ xorNode->antType[0] = rf_trueData; /* carry forward from sync */
+
+ /* connect the sync node to the Wnd nodes */
+ for (i = 0; i < nWndNodes; i++) {
+ RF_ASSERT(wndNodes->numAntecedents == 1);
+ syncNode->succedents[1 + i] = &wndNodes[i];
+ wndNodes[i].antecedents[0] = syncNode;
+ wndNodes[i].antType[0] = rf_control;
+ }
+
+ /* connect the xor node to the Lpo node */
+ RF_ASSERT(xorNode->numSuccedents == 1);
+ RF_ASSERT(lpoNode->numAntecedents == 1);
+ xorNode->succedents[0] = lpoNode;
+ lpoNode->antecedents[0] = xorNode;
+ lpoNode->antType[0] = rf_trueData;
+
+ /* connect the Wnd nodes to the unblock node */
+ RF_ASSERT(unblockNode->numAntecedents == nWndNodes + 1);
+ for (i = 0; i < nWndNodes; i++) {
+ RF_ASSERT(wndNodes->numSuccedents == 1);
+ wndNodes[i].succedents[0] = unblockNode;
+ unblockNode->antecedents[i] = &wndNodes[i];
+ unblockNode->antType[i] = rf_control;
+ }
+
+ /* connect the Lpo node to the unblock node */
+ RF_ASSERT(lpoNode->numSuccedents == 1);
+ lpoNode->succedents[0] = unblockNode;
+ unblockNode->antecedents[nWndNodes] = lpoNode;
+ unblockNode->antType[nWndNodes] = rf_control;
+
+ /* connect unblock node to terminator */
+ RF_ASSERT(unblockNode->numSuccedents == 1);
+ RF_ASSERT(termNode->numAntecedents == 1);
+ RF_ASSERT(termNode->numSuccedents == 0);
+ unblockNode->succedents[0] = termNode;
+ termNode->antecedents[0] = unblockNode;
+ termNode->antType[0] = rf_control;
+}
+
+
+
+
+/******************************************************************************
+ *
+ * creates a DAG to perform a small-write operation (either raid 5 or pq), which is as follows:
+ *
+ * Header
+ * |
+ * Block
+ * / | ... \ \
+ * / | \ \
+ * Rod Rod Rod Rop
+ * | \ /| \ / | \/ |
+ * | | | /\ |
+ * Wnd Wnd Wnd X
+ * | \ / |
+ * | \ / |
+ * \ \ / Lpo
+ * \ \ / /
+ * +-> Unblock <-+
+ * |
+ * T
+ *
+ *
+ * R = Read, W = Write, X = Xor, o = old, n = new, d = data, p = parity.
+ * When the access spans a stripe unit boundary and is less than one SU in size, there will
+ * be two Rop -- X -- Wnp branches. I call this the "double-XOR" case.
+ * The second output from each Rod node goes to the X node. In the double-XOR
+ * case, there are exactly 2 Rod nodes, and each sends one output to one X node.
+ * There is one Rod -- Wnd -- T branch for each stripe unit being updated.
+ *
+ * The block and unblock nodes are unused. See comment above CreateFaultFreeReadDAG.
+ *
+ * Note: this DAG ignores all the optimizations related to making the RMWs atomic.
+ * it also has the nasty property that none of the buffers allocated for reading
+ * old data & parity can be freed until the XOR node fires. Need to fix this.
+ *
+ * A null qfuncs indicates single fault tolerant
+ *****************************************************************************/
+
+void
+rf_CommonCreateParityLoggingSmallWriteDAG(
+ RF_Raid_t * raidPtr,
+ RF_AccessStripeMap_t * asmap,
+ RF_DagHeader_t * dag_h,
+ void *bp,
+ RF_RaidAccessFlags_t flags,
+ RF_AllocListElem_t * allocList,
+ RF_RedFuncs_t * pfuncs,
+ RF_RedFuncs_t * qfuncs)
+{
+ RF_DagNode_t *xorNodes, *blockNode, *unblockNode, *nodes;
+ RF_DagNode_t *readDataNodes, *readParityNodes;
+ RF_DagNode_t *writeDataNodes, *lpuNodes;
+ RF_DagNode_t *unlockDataNodes = NULL, *termNode;
+ RF_PhysDiskAddr_t *pda = asmap->physInfo;
+ int numDataNodes = asmap->numStripeUnitsAccessed;
+ int numParityNodes = (asmap->parityInfo->next) ? 2 : 1;
+ int i, j, nNodes, totalNumNodes;
+ RF_ReconUnitNum_t which_ru;
+ int (*func) (RF_DagNode_t * node), (*undoFunc) (RF_DagNode_t * node);
+ int (*qfunc) (RF_DagNode_t * node);
+ char *name, *qname;
+ RF_StripeNum_t parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout), asmap->raidAddress, &which_ru);
+ long nfaults = qfuncs ? 2 : 1;
+ int lu_flag = (rf_enableAtomicRMW) ? 1 : 0; /* lock/unlock flag */
+
+ if (rf_dagDebug)
+ printf("[Creating parity-logging small-write DAG]\n");
+ RF_ASSERT(numDataNodes > 0);
+ RF_ASSERT(nfaults == 1);
+ dag_h->creator = "ParityLoggingSmallWriteDAG";
+
+ /* DAG creation occurs in three steps: 1. count the number of nodes in
+ * the DAG 2. create the nodes 3. initialize the nodes 4. connect the
+ * nodes */
+
+ /* Step 1. compute number of nodes in the graph */
+
+ /* number of nodes: a read and write for each data unit a redundancy
+ * computation node for each parity node a read and Lpu for each
+ * parity unit a block and unblock node (2) a terminator node if
+ * atomic RMW an unlock node for each data unit, redundancy unit */
+ totalNumNodes = (2 * numDataNodes) + numParityNodes + (2 * numParityNodes) + 3;
+ if (lu_flag)
+ totalNumNodes += numDataNodes;
+
+ nNodes = numDataNodes + numParityNodes;
+
+ dag_h->numCommitNodes = numDataNodes + numParityNodes;
+ dag_h->numCommits = 0;
+ dag_h->numSuccedents = 1;
+
+ /* Step 2. create the nodes */
+ RF_CallocAndAdd(nodes, totalNumNodes, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
+ i = 0;
+ blockNode = &nodes[i];
+ i += 1;
+ unblockNode = &nodes[i];
+ i += 1;
+ readDataNodes = &nodes[i];
+ i += numDataNodes;
+ readParityNodes = &nodes[i];
+ i += numParityNodes;
+ writeDataNodes = &nodes[i];
+ i += numDataNodes;
+ lpuNodes = &nodes[i];
+ i += numParityNodes;
+ xorNodes = &nodes[i];
+ i += numParityNodes;
+ termNode = &nodes[i];
+ i += 1;
+ if (lu_flag) {
+ unlockDataNodes = &nodes[i];
+ i += numDataNodes;
+ }
+ RF_ASSERT(i == totalNumNodes);
+
+ /* Step 3. initialize the nodes */
+ /* initialize block node (Nil) */
+ rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nNodes, 0, 0, 0, dag_h, "Nil", allocList);
+
+ /* initialize unblock node (Nil) */
+ rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nNodes, 0, 0, dag_h, "Nil", allocList);
+
+ /* initialize terminatory node (Trm) */
+ rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
+
+ /* initialize nodes which read old data (Rod) */
+ for (i = 0; i < numDataNodes; i++) {
+ rf_InitNode(&readDataNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, nNodes, 1, 4, 0, dag_h, "Rod", allocList);
+ RF_ASSERT(pda != NULL);
+ readDataNodes[i].params[0].p = pda; /* physical disk addr
+ * desc */
+ readDataNodes[i].params[1].p = rf_AllocBuffer(raidPtr, dag_h, pda, allocList); /* buffer to hold old
+ * data */
+ readDataNodes[i].params[2].v = parityStripeID;
+ readDataNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, lu_flag, 0, which_ru);
+ pda = pda->next;
+ readDataNodes[i].propList[0] = NULL;
+ readDataNodes[i].propList[1] = NULL;
+ }
+
+ /* initialize nodes which read old parity (Rop) */
+ pda = asmap->parityInfo;
+ i = 0;
+ for (i = 0; i < numParityNodes; i++) {
+ RF_ASSERT(pda != NULL);
+ rf_InitNode(&readParityNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, nNodes, 1, 4, 0, dag_h, "Rop", allocList);
+ readParityNodes[i].params[0].p = pda;
+ readParityNodes[i].params[1].p = rf_AllocBuffer(raidPtr, dag_h, pda, allocList); /* buffer to hold old
+ * parity */
+ readParityNodes[i].params[2].v = parityStripeID;
+ readParityNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
+ readParityNodes[i].propList[0] = NULL;
+ pda = pda->next;
+ }
+
+ /* initialize nodes which write new data (Wnd) */
+ pda = asmap->physInfo;
+ for (i = 0; i < numDataNodes; i++) {
+ RF_ASSERT(pda != NULL);
+ rf_InitNode(&writeDataNodes[i], rf_wait, RF_TRUE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, nNodes, 4, 0, dag_h, "Wnd", allocList);
+ writeDataNodes[i].params[0].p = pda; /* physical disk addr
+ * desc */
+ writeDataNodes[i].params[1].p = pda->bufPtr; /* buffer holding new
+ * data to be written */
+ writeDataNodes[i].params[2].v = parityStripeID;
+ writeDataNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
+
+ if (lu_flag) {
+ /* initialize node to unlock the disk queue */
+ rf_InitNode(&unlockDataNodes[i], rf_wait, RF_FALSE, rf_DiskUnlockFunc, rf_DiskUnlockUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h, "Und", allocList);
+ unlockDataNodes[i].params[0].p = pda; /* physical disk addr
+ * desc */
+ unlockDataNodes[i].params[1].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, lu_flag, which_ru);
+ }
+ pda = pda->next;
+ }
+
+
+ /* initialize nodes which compute new parity */
+ /* we use the simple XOR func in the double-XOR case, and when we're
+ * accessing only a portion of one stripe unit. the distinction
+ * between the two is that the regular XOR func assumes that the
+ * targbuf is a full SU in size, and examines the pda associated with
+ * the buffer to decide where within the buffer to XOR the data,
+ * whereas the simple XOR func just XORs the data into the start of
+ * the buffer. */
+ if ((numParityNodes == 2) || ((numDataNodes == 1) && (asmap->totalSectorsAccessed < raidPtr->Layout.sectorsPerStripeUnit))) {
+ func = pfuncs->simple;
+ undoFunc = rf_NullNodeUndoFunc;
+ name = pfuncs->SimpleName;
+ if (qfuncs) {
+ qfunc = qfuncs->simple;
+ qname = qfuncs->SimpleName;
+ }
+ } else {
+ func = pfuncs->regular;
+ undoFunc = rf_NullNodeUndoFunc;
+ name = pfuncs->RegularName;
+ if (qfuncs) {
+ qfunc = qfuncs->regular;
+ qname = qfuncs->RegularName;
+ }
+ }
+ /* initialize the xor nodes: params are {pda,buf} from {Rod,Wnd,Rop}
+ * nodes, and raidPtr */
+ if (numParityNodes == 2) { /* double-xor case */
+ for (i = 0; i < numParityNodes; i++) {
+ rf_InitNode(&xorNodes[i], rf_wait, RF_TRUE, func, undoFunc, NULL, 1, nNodes, 7, 1, dag_h, name, allocList); /* no wakeup func for
+ * xor */
+ xorNodes[i].flags |= RF_DAGNODE_FLAG_YIELD;
+ xorNodes[i].params[0] = readDataNodes[i].params[0];
+ xorNodes[i].params[1] = readDataNodes[i].params[1];
+ xorNodes[i].params[2] = readParityNodes[i].params[0];
+ xorNodes[i].params[3] = readParityNodes[i].params[1];
+ xorNodes[i].params[4] = writeDataNodes[i].params[0];
+ xorNodes[i].params[5] = writeDataNodes[i].params[1];
+ xorNodes[i].params[6].p = raidPtr;
+ xorNodes[i].results[0] = readParityNodes[i].params[1].p; /* use old parity buf as
+ * target buf */
+ }
+ } else {
+ /* there is only one xor node in this case */
+ rf_InitNode(&xorNodes[0], rf_wait, RF_TRUE, func, undoFunc, NULL, 1, nNodes, (2 * (numDataNodes + numDataNodes + 1) + 1), 1, dag_h, name, allocList);
+ xorNodes[0].flags |= RF_DAGNODE_FLAG_YIELD;
+ for (i = 0; i < numDataNodes + 1; i++) {
+ /* set up params related to Rod and Rop nodes */
+ xorNodes[0].params[2 * i + 0] = readDataNodes[i].params[0]; /* pda */
+ xorNodes[0].params[2 * i + 1] = readDataNodes[i].params[1]; /* buffer pointer */
+ }
+ for (i = 0; i < numDataNodes; i++) {
+ /* set up params related to Wnd and Wnp nodes */
+ xorNodes[0].params[2 * (numDataNodes + 1 + i) + 0] = writeDataNodes[i].params[0]; /* pda */
+ xorNodes[0].params[2 * (numDataNodes + 1 + i) + 1] = writeDataNodes[i].params[1]; /* buffer pointer */
+ }
+ xorNodes[0].params[2 * (numDataNodes + numDataNodes + 1)].p = raidPtr; /* xor node needs to get
+ * at RAID information */
+ xorNodes[0].results[0] = readParityNodes[0].params[1].p;
+ }
+
+ /* initialize the log node(s) */
+ pda = asmap->parityInfo;
+ for (i = 0; i < numParityNodes; i++) {
+ RF_ASSERT(pda);
+ rf_InitNode(&lpuNodes[i], rf_wait, RF_FALSE, rf_ParityLogUpdateFunc, rf_ParityLogUpdateUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h, "Lpu", allocList);
+ lpuNodes[i].params[0].p = pda; /* PhysDiskAddr of parity */
+ lpuNodes[i].params[1].p = xorNodes[i].results[0]; /* buffer pointer to
+ * parity */
+ pda = pda->next;
+ }
+
+
+ /* Step 4. connect the nodes */
+
+ /* connect header to block node */
+ RF_ASSERT(dag_h->numSuccedents == 1);
+ RF_ASSERT(blockNode->numAntecedents == 0);
+ dag_h->succedents[0] = blockNode;
+
+ /* connect block node to read old data nodes */
+ RF_ASSERT(blockNode->numSuccedents == (numDataNodes + numParityNodes));
+ for (i = 0; i < numDataNodes; i++) {
+ blockNode->succedents[i] = &readDataNodes[i];
+ RF_ASSERT(readDataNodes[i].numAntecedents == 1);
+ readDataNodes[i].antecedents[0] = blockNode;
+ readDataNodes[i].antType[0] = rf_control;
+ }
+
+ /* connect block node to read old parity nodes */
+ for (i = 0; i < numParityNodes; i++) {
+ blockNode->succedents[numDataNodes + i] = &readParityNodes[i];
+ RF_ASSERT(readParityNodes[i].numAntecedents == 1);
+ readParityNodes[i].antecedents[0] = blockNode;
+ readParityNodes[i].antType[0] = rf_control;
+ }
+
+ /* connect read old data nodes to write new data nodes */
+ for (i = 0; i < numDataNodes; i++) {
+ RF_ASSERT(readDataNodes[i].numSuccedents == numDataNodes + numParityNodes);
+ for (j = 0; j < numDataNodes; j++) {
+ RF_ASSERT(writeDataNodes[j].numAntecedents == numDataNodes + numParityNodes);
+ readDataNodes[i].succedents[j] = &writeDataNodes[j];
+ writeDataNodes[j].antecedents[i] = &readDataNodes[i];
+ if (i == j)
+ writeDataNodes[j].antType[i] = rf_antiData;
+ else
+ writeDataNodes[j].antType[i] = rf_control;
+ }
+ }
+
+ /* connect read old data nodes to xor nodes */
+ for (i = 0; i < numDataNodes; i++)
+ for (j = 0; j < numParityNodes; j++) {
+ RF_ASSERT(xorNodes[j].numAntecedents == numDataNodes + numParityNodes);
+ readDataNodes[i].succedents[numDataNodes + j] = &xorNodes[j];
+ xorNodes[j].antecedents[i] = &readDataNodes[i];
+ xorNodes[j].antType[i] = rf_trueData;
+ }
+
+ /* connect read old parity nodes to write new data nodes */
+ for (i = 0; i < numParityNodes; i++) {
+ RF_ASSERT(readParityNodes[i].numSuccedents == numDataNodes + numParityNodes);
+ for (j = 0; j < numDataNodes; j++) {
+ readParityNodes[i].succedents[j] = &writeDataNodes[j];
+ writeDataNodes[j].antecedents[numDataNodes + i] = &readParityNodes[i];
+ writeDataNodes[j].antType[numDataNodes + i] = rf_control;
+ }
+ }
+
+ /* connect read old parity nodes to xor nodes */
+ for (i = 0; i < numParityNodes; i++)
+ for (j = 0; j < numParityNodes; j++) {
+ readParityNodes[i].succedents[numDataNodes + j] = &xorNodes[j];
+ xorNodes[j].antecedents[numDataNodes + i] = &readParityNodes[i];
+ xorNodes[j].antType[numDataNodes + i] = rf_trueData;
+ }
+
+ /* connect xor nodes to write new parity nodes */
+ for (i = 0; i < numParityNodes; i++) {
+ RF_ASSERT(xorNodes[i].numSuccedents == 1);
+ RF_ASSERT(lpuNodes[i].numAntecedents == 1);
+ xorNodes[i].succedents[0] = &lpuNodes[i];
+ lpuNodes[i].antecedents[0] = &xorNodes[i];
+ lpuNodes[i].antType[0] = rf_trueData;
+ }
+
+ for (i = 0; i < numDataNodes; i++) {
+ if (lu_flag) {
+ /* connect write new data nodes to unlock nodes */
+ RF_ASSERT(writeDataNodes[i].numSuccedents == 1);
+ RF_ASSERT(unlockDataNodes[i].numAntecedents == 1);
+ writeDataNodes[i].succedents[0] = &unlockDataNodes[i];
+ unlockDataNodes[i].antecedents[0] = &writeDataNodes[i];
+ unlockDataNodes[i].antType[0] = rf_control;
+
+ /* connect unlock nodes to unblock node */
+ RF_ASSERT(unlockDataNodes[i].numSuccedents == 1);
+ RF_ASSERT(unblockNode->numAntecedents == (numDataNodes + (nfaults * numParityNodes)));
+ unlockDataNodes[i].succedents[0] = unblockNode;
+ unblockNode->antecedents[i] = &unlockDataNodes[i];
+ unblockNode->antType[i] = rf_control;
+ } else {
+ /* connect write new data nodes to unblock node */
+ RF_ASSERT(writeDataNodes[i].numSuccedents == 1);
+ RF_ASSERT(unblockNode->numAntecedents == (numDataNodes + (nfaults * numParityNodes)));
+ writeDataNodes[i].succedents[0] = unblockNode;
+ unblockNode->antecedents[i] = &writeDataNodes[i];
+ unblockNode->antType[i] = rf_control;
+ }
+ }
+
+ /* connect write new parity nodes to unblock node */
+ for (i = 0; i < numParityNodes; i++) {
+ RF_ASSERT(lpuNodes[i].numSuccedents == 1);
+ lpuNodes[i].succedents[0] = unblockNode;
+ unblockNode->antecedents[numDataNodes + i] = &lpuNodes[i];
+ unblockNode->antType[numDataNodes + i] = rf_control;
+ }
+
+ /* connect unblock node to terminator */
+ RF_ASSERT(unblockNode->numSuccedents == 1);
+ RF_ASSERT(termNode->numAntecedents == 1);
+ RF_ASSERT(termNode->numSuccedents == 0);
+ unblockNode->succedents[0] = termNode;
+ termNode->antecedents[0] = unblockNode;
+ termNode->antType[0] = rf_control;
+}
+
+
+void
+rf_CreateParityLoggingSmallWriteDAG(
+ RF_Raid_t * raidPtr,
+ RF_AccessStripeMap_t * asmap,
+ RF_DagHeader_t * dag_h,
+ void *bp,
+ RF_RaidAccessFlags_t flags,
+ RF_AllocListElem_t * allocList,
+ RF_RedFuncs_t * pfuncs,
+ RF_RedFuncs_t * qfuncs)
+{
+ dag_h->creator = "ParityLoggingSmallWriteDAG";
+ rf_CommonCreateParityLoggingSmallWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList, &rf_xorFuncs, NULL);
+}
+
+
+void
+rf_CreateParityLoggingLargeWriteDAG(
+ RF_Raid_t * raidPtr,
+ RF_AccessStripeMap_t * asmap,
+ RF_DagHeader_t * dag_h,
+ void *bp,
+ RF_RaidAccessFlags_t flags,
+ RF_AllocListElem_t * allocList,
+ int nfaults,
+ int (*redFunc) (RF_DagNode_t *))
+{
+ dag_h->creator = "ParityLoggingSmallWriteDAG";
+ rf_CommonCreateParityLoggingLargeWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList, 1, rf_RegularXorFunc);
+}
+#endif /* RF_INCLUDE_PARITYLOGGING > 0 */
diff --git a/sys/dev/raidframe/rf_parityloggingdags.h b/sys/dev/raidframe/rf_parityloggingdags.h
new file mode 100644
index 0000000..dc0fc9b
--- /dev/null
+++ b/sys/dev/raidframe/rf_parityloggingdags.h
@@ -0,0 +1,59 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_parityloggingdags.h,v 1.3 1999/02/05 00:06:14 oster Exp $ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: William V. Courtright II
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+/****************************************************************************
+ * *
+ * rf_parityloggingdags.h -- header file for parity logging dags *
+ * *
+ ****************************************************************************/
+
+#ifndef _RF__RF_PARITYLOGGINGDAGS_H_
+#define _RF__RF_PARITYLOGGINGDAGS_H_
+
+/* routines that create DAGs */
+void
+rf_CommonCreateParityLoggingLargeWriteDAG(RF_Raid_t * raidPtr,
+ RF_AccessStripeMap_t * asmap, RF_DagHeader_t * dag_h,
+ void *bp, RF_RaidAccessFlags_t flags, RF_AllocListElem_t * allocList,
+ int nfaults, int (*redFunc) (RF_DagNode_t *));
+ void rf_CommonCreateParityLoggingSmallWriteDAG(RF_Raid_t * raidPtr,
+ RF_AccessStripeMap_t * asmap, RF_DagHeader_t * dag_h,
+ void *bp, RF_RaidAccessFlags_t flags, RF_AllocListElem_t * allocList,
+ RF_RedFuncs_t * pfuncs, RF_RedFuncs_t * qfuncs);
+
+ void rf_CreateParityLoggingLargeWriteDAG(RF_Raid_t * raidPtr,
+ RF_AccessStripeMap_t * asmap, RF_DagHeader_t * dag_h,
+ void *bp, RF_RaidAccessFlags_t flags, RF_AllocListElem_t * allocList,
+ int nfaults, int (*redFunc) (RF_DagNode_t *));
+ void rf_CreateParityLoggingSmallWriteDAG(RF_Raid_t * raidPtr,
+ RF_AccessStripeMap_t * asmap, RF_DagHeader_t * dag_h,
+ void *bp, RF_RaidAccessFlags_t flags, RF_AllocListElem_t * allocList,
+ RF_RedFuncs_t * pfuncs, RF_RedFuncs_t * qfuncs);
+
+#endif /* !_RF__RF_PARITYLOGGINGDAGS_H_ */
diff --git a/sys/dev/raidframe/rf_parityscan.c b/sys/dev/raidframe/rf_parityscan.c
new file mode 100644
index 0000000..bcdf506
--- /dev/null
+++ b/sys/dev/raidframe/rf_parityscan.c
@@ -0,0 +1,443 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_parityscan.c,v 1.9 2000/05/28 03:00:31 oster Exp $ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Mark Holland
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+/*****************************************************************************
+ *
+ * rf_parityscan.c -- misc utilities related to parity verification
+ *
+ *****************************************************************************/
+
+#include <dev/raidframe/rf_types.h>
+#include <dev/raidframe/rf_raid.h>
+#include <dev/raidframe/rf_dag.h>
+#include <dev/raidframe/rf_dagfuncs.h>
+#include <dev/raidframe/rf_dagutils.h>
+#include <dev/raidframe/rf_mcpair.h>
+#include <dev/raidframe/rf_general.h>
+#include <dev/raidframe/rf_engine.h>
+#include <dev/raidframe/rf_parityscan.h>
+#include <dev/raidframe/rf_map.h>
+#include <dev/raidframe/rf_kintf.h>
+
+/*****************************************************************************************
+ *
+ * walk through the entire arry and write new parity.
+ * This works by creating two DAGs, one to read a stripe of data and one to
+ * write new parity. The first is executed, the data is xored together, and
+ * then the second is executed. To avoid constantly building and tearing down
+ * the DAGs, we create them a priori and fill them in with the mapping
+ * information as we go along.
+ *
+ * there should never be more than one thread running this.
+ *
+ ****************************************************************************************/
+
+int
+rf_RewriteParity(raidPtr)
+ RF_Raid_t *raidPtr;
+{
+ RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
+ RF_AccessStripeMapHeader_t *asm_h;
+ int ret_val;
+ int rc;
+ RF_PhysDiskAddr_t pda;
+ RF_SectorNum_t i;
+
+ if (raidPtr->Layout.map->faultsTolerated == 0) {
+ /* There isn't any parity. Call it "okay." */
+ return (RF_PARITY_OKAY);
+ }
+ if (raidPtr->status[0] != rf_rs_optimal) {
+ /*
+ * We're in degraded mode. Don't try to verify parity now!
+ * XXX: this should be a "we don't want to", not a
+ * "we can't" error.
+ */
+ return (RF_PARITY_COULD_NOT_VERIFY);
+ }
+
+ ret_val = 0;
+
+ pda.startSector = 0;
+ pda.numSector = raidPtr->Layout.sectorsPerStripeUnit;
+ rc = RF_PARITY_OKAY;
+
+ for (i = 0; i < raidPtr->totalSectors &&
+ rc <= RF_PARITY_CORRECTED;
+ i += layoutPtr->dataSectorsPerStripe) {
+ if (raidPtr->waitShutdown) {
+ /* Someone is pulling the plug on this set...
+ abort the re-write */
+ return (1);
+ }
+ asm_h = rf_MapAccess(raidPtr, i,
+ layoutPtr->dataSectorsPerStripe,
+ NULL, RF_DONT_REMAP);
+ raidPtr->parity_rewrite_stripes_done =
+ i / layoutPtr->dataSectorsPerStripe ;
+ rc = rf_VerifyParity(raidPtr, asm_h->stripeMap, 1, 0);
+
+ switch (rc) {
+ case RF_PARITY_OKAY:
+ case RF_PARITY_CORRECTED:
+ break;
+ case RF_PARITY_BAD:
+ printf("Parity bad during correction\n");
+ ret_val = 1;
+ break;
+ case RF_PARITY_COULD_NOT_CORRECT:
+ printf("Could not correct bad parity\n");
+ ret_val = 1;
+ break;
+ case RF_PARITY_COULD_NOT_VERIFY:
+ printf("Could not verify parity\n");
+ ret_val = 1;
+ break;
+ default:
+ printf("Bad rc=%d from VerifyParity in RewriteParity\n", rc);
+ ret_val = 1;
+ }
+ rf_FreeAccessStripeMap(asm_h);
+ }
+ return (ret_val);
+}
+/*****************************************************************************************
+ *
+ * verify that the parity in a particular stripe is correct.
+ * we validate only the range of parity defined by parityPDA, since
+ * this is all we have locked. The way we do this is to create an asm
+ * that maps the whole stripe and then range-restrict it to the parity
+ * region defined by the parityPDA.
+ *
+ ****************************************************************************************/
+int
+rf_VerifyParity(raidPtr, aasm, correct_it, flags)
+ RF_Raid_t *raidPtr;
+ RF_AccessStripeMap_t *aasm;
+ int correct_it;
+ RF_RaidAccessFlags_t flags;
+{
+ RF_PhysDiskAddr_t *parityPDA;
+ RF_AccessStripeMap_t *doasm;
+ RF_LayoutSW_t *lp;
+ int lrc, rc;
+
+ lp = raidPtr->Layout.map;
+ if (lp->faultsTolerated == 0) {
+ /*
+ * There isn't any parity. Call it "okay."
+ */
+ return (RF_PARITY_OKAY);
+ }
+ rc = RF_PARITY_OKAY;
+ if (lp->VerifyParity) {
+ for (doasm = aasm; doasm; doasm = doasm->next) {
+ for (parityPDA = doasm->parityInfo; parityPDA;
+ parityPDA = parityPDA->next) {
+ lrc = lp->VerifyParity(raidPtr,
+ doasm->raidAddress,
+ parityPDA,
+ correct_it, flags);
+ if (lrc > rc) {
+ /* see rf_parityscan.h for why this
+ * works */
+ rc = lrc;
+ }
+ }
+ }
+ } else {
+ rc = RF_PARITY_COULD_NOT_VERIFY;
+ }
+ return (rc);
+}
+
+int
+rf_VerifyParityBasic(raidPtr, raidAddr, parityPDA, correct_it, flags)
+ RF_Raid_t *raidPtr;
+ RF_RaidAddr_t raidAddr;
+ RF_PhysDiskAddr_t *parityPDA;
+ int correct_it;
+ RF_RaidAccessFlags_t flags;
+{
+ RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
+ RF_RaidAddr_t startAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr,
+ raidAddr);
+ RF_SectorCount_t numsector = parityPDA->numSector;
+ int numbytes = rf_RaidAddressToByte(raidPtr, numsector);
+ int bytesPerStripe = numbytes * layoutPtr->numDataCol;
+ RF_DagHeader_t *rd_dag_h, *wr_dag_h; /* read, write dag */
+ RF_DagNode_t *blockNode, *unblockNode, *wrBlock, *wrUnblock;
+ RF_AccessStripeMapHeader_t *asm_h;
+ RF_AccessStripeMap_t *asmap;
+ RF_AllocListElem_t *alloclist;
+ RF_PhysDiskAddr_t *pda;
+ char *pbuf, *buf, *end_p, *p;
+ int i, retcode;
+ RF_ReconUnitNum_t which_ru;
+ RF_StripeNum_t psID = rf_RaidAddressToParityStripeID(layoutPtr,
+ raidAddr,
+ &which_ru);
+ int stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
+ RF_AccTraceEntry_t tracerec;
+ RF_MCPair_t *mcpair;
+
+ retcode = RF_PARITY_OKAY;
+
+ mcpair = rf_AllocMCPair();
+ rf_MakeAllocList(alloclist);
+ RF_MallocAndAdd(buf, numbytes * (layoutPtr->numDataCol + layoutPtr->numParityCol), (char *), alloclist);
+ RF_CallocAndAdd(pbuf, 1, numbytes, (char *), alloclist); /* use calloc to make
+ * sure buffer is zeroed */
+ end_p = buf + bytesPerStripe;
+
+ rd_dag_h = rf_MakeSimpleDAG(raidPtr, stripeWidth, numbytes, buf, rf_DiskReadFunc, rf_DiskReadUndoFunc,
+ "Rod", alloclist, flags, RF_IO_NORMAL_PRIORITY);
+ blockNode = rd_dag_h->succedents[0];
+ unblockNode = blockNode->succedents[0]->succedents[0];
+
+ /* map the stripe and fill in the PDAs in the dag */
+ asm_h = rf_MapAccess(raidPtr, startAddr, layoutPtr->dataSectorsPerStripe, buf, RF_DONT_REMAP);
+ asmap = asm_h->stripeMap;
+
+ for (pda = asmap->physInfo, i = 0; i < layoutPtr->numDataCol; i++, pda = pda->next) {
+ RF_ASSERT(pda);
+ rf_RangeRestrictPDA(raidPtr, parityPDA, pda, 0, 1);
+ RF_ASSERT(pda->numSector != 0);
+ if (rf_TryToRedirectPDA(raidPtr, pda, 0))
+ goto out; /* no way to verify parity if disk is
+ * dead. return w/ good status */
+ blockNode->succedents[i]->params[0].p = pda;
+ blockNode->succedents[i]->params[2].v = psID;
+ blockNode->succedents[i]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
+ }
+
+ RF_ASSERT(!asmap->parityInfo->next);
+ rf_RangeRestrictPDA(raidPtr, parityPDA, asmap->parityInfo, 0, 1);
+ RF_ASSERT(asmap->parityInfo->numSector != 0);
+ if (rf_TryToRedirectPDA(raidPtr, asmap->parityInfo, 1))
+ goto out;
+ blockNode->succedents[layoutPtr->numDataCol]->params[0].p = asmap->parityInfo;
+
+ /* fire off the DAG */
+ bzero((char *) &tracerec, sizeof(tracerec));
+ rd_dag_h->tracerec = &tracerec;
+
+ if (rf_verifyParityDebug) {
+ printf("Parity verify read dag:\n");
+ rf_PrintDAGList(rd_dag_h);
+ }
+ RF_LOCK_MUTEX(mcpair->mutex);
+ mcpair->flag = 0;
+ rf_DispatchDAG(rd_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
+ (void *) mcpair);
+ while (!mcpair->flag)
+ RF_WAIT_COND(mcpair->cond, mcpair->mutex);
+ RF_UNLOCK_MUTEX(mcpair->mutex);
+ if (rd_dag_h->status != rf_enable) {
+ RF_ERRORMSG("Unable to verify parity: can't read the stripe\n");
+ retcode = RF_PARITY_COULD_NOT_VERIFY;
+ goto out;
+ }
+ for (p = buf; p < end_p; p += numbytes) {
+ rf_bxor(p, pbuf, numbytes, NULL);
+ }
+ for (i = 0; i < numbytes; i++) {
+#if 0
+ if (pbuf[i] != 0 || buf[bytesPerStripe + i] != 0) {
+ printf("Bytes: %d %d %d\n", i, pbuf[i], buf[bytesPerStripe + i]);
+ }
+#endif
+ if (pbuf[i] != buf[bytesPerStripe + i]) {
+ if (!correct_it)
+ RF_ERRORMSG3("Parity verify error: byte %d of parity is 0x%x should be 0x%x\n",
+ i, (u_char) buf[bytesPerStripe + i], (u_char) pbuf[i]);
+ retcode = RF_PARITY_BAD;
+ break;
+ }
+ }
+
+ if (retcode && correct_it) {
+ wr_dag_h = rf_MakeSimpleDAG(raidPtr, 1, numbytes, pbuf, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
+ "Wnp", alloclist, flags, RF_IO_NORMAL_PRIORITY);
+ wrBlock = wr_dag_h->succedents[0];
+ wrUnblock = wrBlock->succedents[0]->succedents[0];
+ wrBlock->succedents[0]->params[0].p = asmap->parityInfo;
+ wrBlock->succedents[0]->params[2].v = psID;
+ wrBlock->succedents[0]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
+ bzero((char *) &tracerec, sizeof(tracerec));
+ wr_dag_h->tracerec = &tracerec;
+ if (rf_verifyParityDebug) {
+ printf("Parity verify write dag:\n");
+ rf_PrintDAGList(wr_dag_h);
+ }
+ RF_LOCK_MUTEX(mcpair->mutex);
+ mcpair->flag = 0;
+ rf_DispatchDAG(wr_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
+ (void *) mcpair);
+ while (!mcpair->flag)
+ RF_WAIT_COND(mcpair->cond, mcpair->mutex);
+ RF_UNLOCK_MUTEX(mcpair->mutex);
+ if (wr_dag_h->status != rf_enable) {
+ RF_ERRORMSG("Unable to correct parity in VerifyParity: can't write the stripe\n");
+ retcode = RF_PARITY_COULD_NOT_CORRECT;
+ }
+ rf_FreeDAG(wr_dag_h);
+ if (retcode == RF_PARITY_BAD)
+ retcode = RF_PARITY_CORRECTED;
+ }
+out:
+ rf_FreeAccessStripeMap(asm_h);
+ rf_FreeAllocList(alloclist);
+ rf_FreeDAG(rd_dag_h);
+ rf_FreeMCPair(mcpair);
+ return (retcode);
+}
+
+int
+rf_TryToRedirectPDA(raidPtr, pda, parity)
+ RF_Raid_t *raidPtr;
+ RF_PhysDiskAddr_t *pda;
+ int parity;
+{
+ if (raidPtr->Disks[pda->row][pda->col].status == rf_ds_reconstructing) {
+ if (rf_CheckRUReconstructed(raidPtr->reconControl[pda->row]->reconMap, pda->startSector)) {
+ if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
+ RF_RowCol_t or = pda->row, oc = pda->col;
+ RF_SectorNum_t os = pda->startSector;
+ if (parity) {
+ (raidPtr->Layout.map->MapParity) (raidPtr, pda->raidAddress, &pda->row, &pda->col, &pda->startSector, RF_REMAP);
+ if (rf_verifyParityDebug)
+ printf("VerifyParity: Redir P r %d c %d sect %ld -> r %d c %d sect %ld\n",
+ or, oc, (long) os, pda->row, pda->col, (long) pda->startSector);
+ } else {
+ (raidPtr->Layout.map->MapSector) (raidPtr, pda->raidAddress, &pda->row, &pda->col, &pda->startSector, RF_REMAP);
+ if (rf_verifyParityDebug)
+ printf("VerifyParity: Redir D r %d c %d sect %ld -> r %d c %d sect %ld\n",
+ or, oc, (long) os, pda->row, pda->col, (long) pda->startSector);
+ }
+ } else {
+ RF_RowCol_t spRow = raidPtr->Disks[pda->row][pda->col].spareRow;
+ RF_RowCol_t spCol = raidPtr->Disks[pda->row][pda->col].spareCol;
+ pda->row = spRow;
+ pda->col = spCol;
+ }
+ }
+ }
+ if (RF_DEAD_DISK(raidPtr->Disks[pda->row][pda->col].status))
+ return (1);
+ return (0);
+}
+/*****************************************************************************************
+ *
+ * currently a stub.
+ *
+ * takes as input an ASM describing a write operation and containing one failure, and
+ * verifies that the parity was correctly updated to reflect the write.
+ *
+ * if it's a data unit that's failed, we read the other data units in the stripe and
+ * the parity unit, XOR them together, and verify that we get the data intended for
+ * the failed disk. Since it's easy, we also validate that the right data got written
+ * to the surviving data disks.
+ *
+ * If it's the parity that failed, there's really no validation we can do except the
+ * above verification that the right data got written to all disks. This is because
+ * the new data intended for the failed disk is supplied in the ASM, but this is of
+ * course not the case for the new parity.
+ *
+ ****************************************************************************************/
+int
+rf_VerifyDegrModeWrite(raidPtr, asmh)
+ RF_Raid_t *raidPtr;
+ RF_AccessStripeMapHeader_t *asmh;
+{
+ return (0);
+}
+/* creates a simple DAG with a header, a block-recon node at level 1,
+ * nNodes nodes at level 2, an unblock-recon node at level 3, and
+ * a terminator node at level 4. The stripe address field in
+ * the block and unblock nodes are not touched, nor are the pda
+ * fields in the second-level nodes, so they must be filled in later.
+ *
+ * commit point is established at unblock node - this means that any
+ * failure during dag execution causes the dag to fail
+ */
+RF_DagHeader_t *
+rf_MakeSimpleDAG(raidPtr, nNodes, bytesPerSU, databuf, doFunc, undoFunc, name, alloclist, flags, priority)
+ RF_Raid_t *raidPtr;
+ int nNodes;
+ int bytesPerSU;
+ char *databuf;
+ int (*doFunc) (RF_DagNode_t * node);
+ int (*undoFunc) (RF_DagNode_t * node);
+ char *name; /* node names at the second level */
+ RF_AllocListElem_t *alloclist;
+ RF_RaidAccessFlags_t flags;
+ int priority;
+{
+ RF_DagHeader_t *dag_h;
+ RF_DagNode_t *nodes, *termNode, *blockNode, *unblockNode;
+ int i;
+
+ /* create the nodes, the block & unblock nodes, and the terminator
+ * node */
+ RF_CallocAndAdd(nodes, nNodes + 3, sizeof(RF_DagNode_t), (RF_DagNode_t *), alloclist);
+ blockNode = &nodes[nNodes];
+ unblockNode = blockNode + 1;
+ termNode = unblockNode + 1;
+
+ dag_h = rf_AllocDAGHeader();
+ dag_h->raidPtr = (void *) raidPtr;
+ dag_h->allocList = NULL;/* we won't use this alloc list */
+ dag_h->status = rf_enable;
+ dag_h->numSuccedents = 1;
+ dag_h->creator = "SimpleDAG";
+
+ /* this dag can not commit until the unblock node is reached errors
+ * prior to the commit point imply the dag has failed */
+ dag_h->numCommitNodes = 1;
+ dag_h->numCommits = 0;
+
+ dag_h->succedents[0] = blockNode;
+ rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nNodes, 0, 0, 0, dag_h, "Nil", alloclist);
+ rf_InitNode(unblockNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nNodes, 0, 0, dag_h, "Nil", alloclist);
+ unblockNode->succedents[0] = termNode;
+ for (i = 0; i < nNodes; i++) {
+ blockNode->succedents[i] = unblockNode->antecedents[i] = &nodes[i];
+ unblockNode->antType[i] = rf_control;
+ rf_InitNode(&nodes[i], rf_wait, RF_FALSE, doFunc, undoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, name, alloclist);
+ nodes[i].succedents[0] = unblockNode;
+ nodes[i].antecedents[0] = blockNode;
+ nodes[i].antType[0] = rf_control;
+ nodes[i].params[1].p = (databuf + (i * bytesPerSU));
+ }
+ rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", alloclist);
+ termNode->antecedents[0] = unblockNode;
+ termNode->antType[0] = rf_control;
+ return (dag_h);
+}
diff --git a/sys/dev/raidframe/rf_parityscan.h b/sys/dev/raidframe/rf_parityscan.h
new file mode 100644
index 0000000..babca41
--- /dev/null
+++ b/sys/dev/raidframe/rf_parityscan.h
@@ -0,0 +1,67 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_parityscan.h,v 1.3 1999/02/05 00:06:14 oster Exp $ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Mark Holland
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+#ifndef _RF__RF_PARITYSCAN_H_
+#define _RF__RF_PARITYSCAN_H_
+
+#include <dev/raidframe/rf_types.h>
+#include <dev/raidframe/rf_alloclist.h>
+
+int rf_RewriteParity(RF_Raid_t * raidPtr);
+int
+rf_VerifyParityBasic(RF_Raid_t * raidPtr, RF_RaidAddr_t raidAddr,
+ RF_PhysDiskAddr_t * parityPDA, int correct_it, RF_RaidAccessFlags_t flags);
+int
+rf_VerifyParity(RF_Raid_t * raidPtr, RF_AccessStripeMap_t * stripeMap,
+ int correct_it, RF_RaidAccessFlags_t flags);
+int rf_TryToRedirectPDA(RF_Raid_t * raidPtr, RF_PhysDiskAddr_t * pda, int parity);
+int rf_VerifyDegrModeWrite(RF_Raid_t * raidPtr, RF_AccessStripeMapHeader_t * asmh);
+RF_DagHeader_t *
+rf_MakeSimpleDAG(RF_Raid_t * raidPtr, int nNodes,
+ int bytesPerSU, char *databuf,
+ int (*doFunc) (RF_DagNode_t *),
+ int (*undoFunc) (RF_DagNode_t *),
+ char *name, RF_AllocListElem_t * alloclist,
+ RF_RaidAccessFlags_t flags, int priority);
+
+#define RF_DO_CORRECT_PARITY 1
+#define RF_DONT_CORRECT_PARITY 0
+
+/*
+ * Return vals for VerifyParity operation
+ *
+ * Ordering is important here.
+ */
+#define RF_PARITY_OKAY 0 /* or no parity information */
+#define RF_PARITY_CORRECTED 1
+#define RF_PARITY_BAD 2
+#define RF_PARITY_COULD_NOT_CORRECT 3
+#define RF_PARITY_COULD_NOT_VERIFY 4
+
+#endif /* !_RF__RF_PARITYSCAN_H_ */
diff --git a/sys/dev/raidframe/rf_pq.c b/sys/dev/raidframe/rf_pq.c
new file mode 100644
index 0000000..b96729e
--- /dev/null
+++ b/sys/dev/raidframe/rf_pq.c
@@ -0,0 +1,926 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_pq.c,v 1.7 2000/01/07 03:41:02 oster Exp $ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Daniel Stodolsky
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+/*
+ * Code for RAID level 6 (P + Q) disk array architecture.
+ */
+
+#include <dev/raidframe/rf_archs.h>
+#include <dev/raidframe/rf_types.h>
+#include <dev/raidframe/rf_raid.h>
+#include <dev/raidframe/rf_dag.h>
+#include <dev/raidframe/rf_dagffrd.h>
+#include <dev/raidframe/rf_dagffwr.h>
+#include <dev/raidframe/rf_dagdegrd.h>
+#include <dev/raidframe/rf_dagdegwr.h>
+#include <dev/raidframe/rf_dagutils.h>
+#include <dev/raidframe/rf_dagfuncs.h>
+#include <dev/raidframe/rf_etimer.h>
+#include <dev/raidframe/rf_pqdeg.h>
+#include <dev/raidframe/rf_general.h>
+#include <dev/raidframe/rf_map.h>
+#include <dev/raidframe/rf_pq.h>
+
+RF_RedFuncs_t rf_pFuncs = {rf_RegularONPFunc, "Regular Old-New P", rf_SimpleONPFunc, "Simple Old-New P"};
+RF_RedFuncs_t rf_pRecoveryFuncs = {rf_RecoveryPFunc, "Recovery P Func", rf_RecoveryPFunc, "Recovery P Func"};
+
+int
+rf_RegularONPFunc(node)
+ RF_DagNode_t *node;
+{
+ return (rf_RegularXorFunc(node));
+}
+/*
+ same as simpleONQ func, but the coefficient is always 1
+*/
+
+int
+rf_SimpleONPFunc(node)
+ RF_DagNode_t *node;
+{
+ return (rf_SimpleXorFunc(node));
+}
+
+int
+rf_RecoveryPFunc(node)
+ RF_DagNode_t *node;
+{
+ return (rf_RecoveryXorFunc(node));
+}
+
+int
+rf_RegularPFunc(node)
+ RF_DagNode_t *node;
+{
+ return (rf_RegularXorFunc(node));
+}
+#if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
+
+static void
+QDelta(char *dest, char *obuf, char *nbuf, unsigned length,
+ unsigned char coeff);
+static void
+rf_InvertQ(unsigned long *qbuf, unsigned long *abuf,
+ unsigned length, unsigned coeff);
+
+RF_RedFuncs_t rf_qFuncs = {rf_RegularONQFunc, "Regular Old-New Q", rf_SimpleONQFunc, "Simple Old-New Q"};
+RF_RedFuncs_t rf_qRecoveryFuncs = {rf_RecoveryQFunc, "Recovery Q Func", rf_RecoveryQFunc, "Recovery Q Func"};
+RF_RedFuncs_t rf_pqRecoveryFuncs = {rf_RecoveryPQFunc, "Recovery PQ Func", rf_RecoveryPQFunc, "Recovery PQ Func"};
+
+void
+rf_PQDagSelect(
+ RF_Raid_t * raidPtr,
+ RF_IoType_t type,
+ RF_AccessStripeMap_t * asmap,
+ RF_VoidFuncPtr * createFunc)
+{
+ RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
+ unsigned ndfail = asmap->numDataFailed;
+ unsigned npfail = asmap->numParityFailed;
+ unsigned ntfail = npfail + ndfail;
+
+ RF_ASSERT(RF_IO_IS_R_OR_W(type));
+ if (ntfail > 2) {
+ RF_ERRORMSG("more than two disks failed in a single group! Aborting I/O operation.\n");
+ /* *infoFunc = */ *createFunc = NULL;
+ return;
+ }
+ /* ok, we can do this I/O */
+ if (type == RF_IO_TYPE_READ) {
+ switch (ndfail) {
+ case 0:
+ /* fault free read */
+ *createFunc = (RF_VoidFuncPtr) rf_CreateFaultFreeReadDAG; /* same as raid 5 */
+ break;
+ case 1:
+ /* lost a single data unit */
+ /* two cases: (1) parity is not lost. do a normal raid
+ * 5 reconstruct read. (2) parity is lost. do a
+ * reconstruct read using "q". */
+ if (ntfail == 2) { /* also lost redundancy */
+ if (asmap->failedPDAs[1]->type == RF_PDA_TYPE_PARITY)
+ *createFunc = (RF_VoidFuncPtr) rf_PQ_110_CreateReadDAG;
+ else
+ *createFunc = (RF_VoidFuncPtr) rf_PQ_101_CreateReadDAG;
+ } else {
+ /* P and Q are ok. But is there a failure in
+ * some unaccessed data unit? */
+ if (rf_NumFailedDataUnitsInStripe(raidPtr, asmap) == 2)
+ *createFunc = (RF_VoidFuncPtr) rf_PQ_200_CreateReadDAG;
+ else
+ *createFunc = (RF_VoidFuncPtr) rf_PQ_100_CreateReadDAG;
+ }
+ break;
+ case 2:
+ /* lost two data units */
+ /* *infoFunc = PQOneTwo; */
+ *createFunc = (RF_VoidFuncPtr) rf_PQ_200_CreateReadDAG;
+ break;
+ }
+ return;
+ }
+ /* a write */
+ switch (ntfail) {
+ case 0: /* fault free */
+ if (rf_suppressLocksAndLargeWrites ||
+ (((asmap->numStripeUnitsAccessed <= (layoutPtr->numDataCol / 2)) && (layoutPtr->numDataCol != 1)) ||
+ (asmap->parityInfo->next != NULL) || (asmap->qInfo->next != NULL) || rf_CheckStripeForFailures(raidPtr, asmap))) {
+
+ *createFunc = (RF_VoidFuncPtr) rf_PQCreateSmallWriteDAG;
+ } else {
+ *createFunc = (RF_VoidFuncPtr) rf_PQCreateLargeWriteDAG;
+ }
+ break;
+
+ case 1: /* single disk fault */
+ if (npfail == 1) {
+ RF_ASSERT((asmap->failedPDAs[0]->type == RF_PDA_TYPE_PARITY) || (asmap->failedPDAs[0]->type == RF_PDA_TYPE_Q));
+ if (asmap->failedPDAs[0]->type == RF_PDA_TYPE_Q) { /* q died, treat like
+ * normal mode raid5
+ * write. */
+ if (((asmap->numStripeUnitsAccessed <= (layoutPtr->numDataCol / 2)) || (asmap->numStripeUnitsAccessed == 1))
+ || rf_NumFailedDataUnitsInStripe(raidPtr, asmap))
+ *createFunc = (RF_VoidFuncPtr) rf_PQ_001_CreateSmallWriteDAG;
+ else
+ *createFunc = (RF_VoidFuncPtr) rf_PQ_001_CreateLargeWriteDAG;
+ } else {/* parity died, small write only updating Q */
+ if (((asmap->numStripeUnitsAccessed <= (layoutPtr->numDataCol / 2)) || (asmap->numStripeUnitsAccessed == 1))
+ || rf_NumFailedDataUnitsInStripe(raidPtr, asmap))
+ *createFunc = (RF_VoidFuncPtr) rf_PQ_010_CreateSmallWriteDAG;
+ else
+ *createFunc = (RF_VoidFuncPtr) rf_PQ_010_CreateLargeWriteDAG;
+ }
+ } else { /* data missing. Do a P reconstruct write if
+ * only a single data unit is lost in the
+ * stripe, otherwise a PQ reconstruct write. */
+ if (rf_NumFailedDataUnitsInStripe(raidPtr, asmap) == 2)
+ *createFunc = (RF_VoidFuncPtr) rf_PQ_200_CreateWriteDAG;
+ else
+ *createFunc = (RF_VoidFuncPtr) rf_PQ_100_CreateWriteDAG;
+ }
+ break;
+
+ case 2: /* two disk faults */
+ switch (npfail) {
+ case 2: /* both p and q dead */
+ *createFunc = (RF_VoidFuncPtr) rf_PQ_011_CreateWriteDAG;
+ break;
+ case 1: /* either p or q and dead data */
+ RF_ASSERT(asmap->failedPDAs[0]->type == RF_PDA_TYPE_DATA);
+ RF_ASSERT((asmap->failedPDAs[1]->type == RF_PDA_TYPE_PARITY) || (asmap->failedPDAs[1]->type == RF_PDA_TYPE_Q));
+ if (asmap->failedPDAs[1]->type == RF_PDA_TYPE_Q)
+ *createFunc = (RF_VoidFuncPtr) rf_PQ_101_CreateWriteDAG;
+ else
+ *createFunc = (RF_VoidFuncPtr) rf_PQ_110_CreateWriteDAG;
+ break;
+ case 0: /* double data loss */
+ *createFunc = (RF_VoidFuncPtr) rf_PQ_200_CreateWriteDAG;
+ break;
+ }
+ break;
+
+ default: /* more than 2 disk faults */
+ *createFunc = NULL;
+ RF_PANIC();
+ }
+ return;
+}
+/*
+ Used as a stop gap info function
+*/
+#if 0
+static void
+PQOne(raidPtr, nSucc, nAnte, asmap)
+ RF_Raid_t *raidPtr;
+ int *nSucc;
+ int *nAnte;
+ RF_AccessStripeMap_t *asmap;
+{
+ *nSucc = *nAnte = 1;
+}
+
+static void
+PQOneTwo(raidPtr, nSucc, nAnte, asmap)
+ RF_Raid_t *raidPtr;
+ int *nSucc;
+ int *nAnte;
+ RF_AccessStripeMap_t *asmap;
+{
+ *nSucc = 1;
+ *nAnte = 2;
+}
+#endif
+
+RF_CREATE_DAG_FUNC_DECL(rf_PQCreateLargeWriteDAG)
+{
+ rf_CommonCreateLargeWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList, 2,
+ rf_RegularPQFunc, RF_FALSE);
+}
+
+int
+rf_RegularONQFunc(node)
+ RF_DagNode_t *node;
+{
+ int np = node->numParams;
+ int d;
+ RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[np - 1].p;
+ int i;
+ RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
+ RF_Etimer_t timer;
+ char *qbuf, *qpbuf;
+ char *obuf, *nbuf;
+ RF_PhysDiskAddr_t *old, *new;
+ unsigned long coeff;
+ unsigned secPerSU = raidPtr->Layout.sectorsPerStripeUnit;
+
+ RF_ETIMER_START(timer);
+
+ d = (np - 3) / 4;
+ RF_ASSERT(4 * d + 3 == np);
+ qbuf = (char *) node->params[2 * d + 1].p; /* q buffer */
+ for (i = 0; i < d; i++) {
+ old = (RF_PhysDiskAddr_t *) node->params[2 * i].p;
+ obuf = (char *) node->params[2 * i + 1].p;
+ new = (RF_PhysDiskAddr_t *) node->params[2 * (d + 1 + i)].p;
+ nbuf = (char *) node->params[2 * (d + 1 + i) + 1].p;
+ RF_ASSERT(new->numSector == old->numSector);
+ RF_ASSERT(new->raidAddress == old->raidAddress);
+ /* the stripe unit within the stripe tells us the coefficient
+ * to use for the multiply. */
+ coeff = rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), new->raidAddress);
+ /* compute the data unit offset within the column, then add
+ * one */
+ coeff = (coeff % raidPtr->Layout.numDataCol);
+ qpbuf = qbuf + rf_RaidAddressToByte(raidPtr, old->startSector % secPerSU);
+ QDelta(qpbuf, obuf, nbuf, rf_RaidAddressToByte(raidPtr, old->numSector), coeff);
+ }
+
+ RF_ETIMER_STOP(timer);
+ RF_ETIMER_EVAL(timer);
+ tracerec->q_us += RF_ETIMER_VAL_US(timer);
+ rf_GenericWakeupFunc(node, 0); /* call wake func explicitly since no
+ * I/O in this node */
+ return (0);
+}
+/*
+ See the SimpleXORFunc for the difference between a simple and regular func.
+ These Q functions should be used for
+
+ new q = Q(data,old data,old q)
+
+ style updates and not for
+
+ q = ( new data, new data, .... )
+
+ computations.
+
+ The simple q takes 2(2d+1)+1 params, where d is the number
+ of stripes written. The order of params is
+ old data pda_0, old data buffer_0, old data pda_1, old data buffer_1, ... old data pda_d, old data buffer_d
+ [2d] old q pda_0, old q buffer
+ [2d_2] new data pda_0, new data buffer_0, ... new data pda_d, new data buffer_d
+ raidPtr
+*/
+
+int
+rf_SimpleONQFunc(node)
+ RF_DagNode_t *node;
+{
+ int np = node->numParams;
+ int d;
+ RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[np - 1].p;
+ int i;
+ RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
+ RF_Etimer_t timer;
+ char *qbuf;
+ char *obuf, *nbuf;
+ RF_PhysDiskAddr_t *old, *new;
+ unsigned long coeff;
+
+ RF_ETIMER_START(timer);
+
+ d = (np - 3) / 4;
+ RF_ASSERT(4 * d + 3 == np);
+ qbuf = (char *) node->params[2 * d + 1].p; /* q buffer */
+ for (i = 0; i < d; i++) {
+ old = (RF_PhysDiskAddr_t *) node->params[2 * i].p;
+ obuf = (char *) node->params[2 * i + 1].p;
+ new = (RF_PhysDiskAddr_t *) node->params[2 * (d + 1 + i)].p;
+ nbuf = (char *) node->params[2 * (d + 1 + i) + 1].p;
+ RF_ASSERT(new->numSector == old->numSector);
+ RF_ASSERT(new->raidAddress == old->raidAddress);
+ /* the stripe unit within the stripe tells us the coefficient
+ * to use for the multiply. */
+ coeff = rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), new->raidAddress);
+ /* compute the data unit offset within the column, then add
+ * one */
+ coeff = (coeff % raidPtr->Layout.numDataCol);
+ QDelta(qbuf, obuf, nbuf, rf_RaidAddressToByte(raidPtr, old->numSector), coeff);
+ }
+
+ RF_ETIMER_STOP(timer);
+ RF_ETIMER_EVAL(timer);
+ tracerec->q_us += RF_ETIMER_VAL_US(timer);
+ rf_GenericWakeupFunc(node, 0); /* call wake func explicitly since no
+ * I/O in this node */
+ return (0);
+}
+RF_CREATE_DAG_FUNC_DECL(rf_PQCreateSmallWriteDAG)
+{
+ rf_CommonCreateSmallWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList, &rf_pFuncs, &rf_qFuncs);
+}
+
+static void RegularQSubr(RF_DagNode_t *node, char *qbuf);
+
+static void
+RegularQSubr(node, qbuf)
+ RF_DagNode_t *node;
+ char *qbuf;
+{
+ int np = node->numParams;
+ int d;
+ RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[np - 1].p;
+ unsigned secPerSU = raidPtr->Layout.sectorsPerStripeUnit;
+ int i;
+ RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
+ RF_Etimer_t timer;
+ char *obuf, *qpbuf;
+ RF_PhysDiskAddr_t *old;
+ unsigned long coeff;
+
+ RF_ETIMER_START(timer);
+
+ d = (np - 1) / 2;
+ RF_ASSERT(2 * d + 1 == np);
+ for (i = 0; i < d; i++) {
+ old = (RF_PhysDiskAddr_t *) node->params[2 * i].p;
+ obuf = (char *) node->params[2 * i + 1].p;
+ coeff = rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), old->raidAddress);
+ /* compute the data unit offset within the column, then add
+ * one */
+ coeff = (coeff % raidPtr->Layout.numDataCol);
+ /* the input buffers may not all be aligned with the start of
+ * the stripe. so shift by their sector offset within the
+ * stripe unit */
+ qpbuf = qbuf + rf_RaidAddressToByte(raidPtr, old->startSector % secPerSU);
+ rf_IncQ((unsigned long *) qpbuf, (unsigned long *) obuf, rf_RaidAddressToByte(raidPtr, old->numSector), coeff);
+ }
+
+ RF_ETIMER_STOP(timer);
+ RF_ETIMER_EVAL(timer);
+ tracerec->q_us += RF_ETIMER_VAL_US(timer);
+}
+/*
+ used in degraded writes.
+*/
+
+static void DegrQSubr(RF_DagNode_t *node);
+
+static void
+DegrQSubr(node)
+ RF_DagNode_t *node;
+{
+ int np = node->numParams;
+ int d;
+ RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[np - 1].p;
+ unsigned secPerSU = raidPtr->Layout.sectorsPerStripeUnit;
+ int i;
+ RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
+ RF_Etimer_t timer;
+ char *qbuf = node->results[1];
+ char *obuf, *qpbuf;
+ RF_PhysDiskAddr_t *old;
+ unsigned long coeff;
+ unsigned fail_start;
+ int j;
+
+ old = (RF_PhysDiskAddr_t *) node->params[np - 2].p;
+ fail_start = old->startSector % secPerSU;
+
+ RF_ETIMER_START(timer);
+
+ d = (np - 2) / 2;
+ RF_ASSERT(2 * d + 2 == np);
+ for (i = 0; i < d; i++) {
+ old = (RF_PhysDiskAddr_t *) node->params[2 * i].p;
+ obuf = (char *) node->params[2 * i + 1].p;
+ coeff = rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), old->raidAddress);
+ /* compute the data unit offset within the column, then add
+ * one */
+ coeff = (coeff % raidPtr->Layout.numDataCol);
+ /* the input buffers may not all be aligned with the start of
+ * the stripe. so shift by their sector offset within the
+ * stripe unit */
+ j = old->startSector % secPerSU;
+ RF_ASSERT(j >= fail_start);
+ qpbuf = qbuf + rf_RaidAddressToByte(raidPtr, j - fail_start);
+ rf_IncQ((unsigned long *) qpbuf, (unsigned long *) obuf, rf_RaidAddressToByte(raidPtr, old->numSector), coeff);
+ }
+
+ RF_ETIMER_STOP(timer);
+ RF_ETIMER_EVAL(timer);
+ tracerec->q_us += RF_ETIMER_VAL_US(timer);
+}
+/*
+ Called by large write code to compute the new parity and the new q.
+
+ structure of the params:
+
+ pda_0, buffer_0, pda_1 , buffer_1, ... , pda_d, buffer_d ( d = numDataCol
+ raidPtr
+
+ for a total of 2d+1 arguments.
+ The result buffers results[0], results[1] are the buffers for the p and q,
+ respectively.
+
+ We compute Q first, then compute P. The P calculation may try to reuse
+ one of the input buffers for its output, so if we computed P first, we would
+ corrupt the input for the q calculation.
+*/
+
+int
+rf_RegularPQFunc(node)
+ RF_DagNode_t *node;
+{
+ RegularQSubr(node, node->results[1]);
+ return (rf_RegularXorFunc(node)); /* does the wakeup */
+}
+
+int
+rf_RegularQFunc(node)
+ RF_DagNode_t *node;
+{
+ /* Almost ... adjust Qsubr args */
+ RegularQSubr(node, node->results[0]);
+ rf_GenericWakeupFunc(node, 0); /* call wake func explicitly since no
+ * I/O in this node */
+ return (0);
+}
+/*
+ Called by singly degraded write code to compute the new parity and the new q.
+
+ structure of the params:
+
+ pda_0, buffer_0, pda_1 , buffer_1, ... , pda_d, buffer_d
+ failedPDA raidPtr
+
+ for a total of 2d+2 arguments.
+ The result buffers results[0], results[1] are the buffers for the parity and q,
+ respectively.
+
+ We compute Q first, then compute parity. The parity calculation may try to reuse
+ one of the input buffers for its output, so if we computed parity first, we would
+ corrupt the input for the q calculation.
+
+ We treat this identically to the regularPQ case, ignoring the failedPDA extra argument.
+*/
+
+void
+rf_Degraded_100_PQFunc(node)
+ RF_DagNode_t *node;
+{
+ int np = node->numParams;
+
+ RF_ASSERT(np >= 2);
+ DegrQSubr(node);
+ rf_RecoveryXorFunc(node);
+}
+
+
+/*
+ The two below are used when reading a stripe with a single lost data unit.
+ The parameters are
+
+ pda_0, buffer_0, .... pda_n, buffer_n, P pda, P buffer, failedPDA, raidPtr
+
+ and results[0] contains the data buffer. Which is originally zero-filled.
+
+*/
+
+/* this Q func is used by the degraded-mode dag functions to recover lost data.
+ * the second-to-last parameter is the PDA for the failed portion of the access.
+ * the code here looks at this PDA and assumes that the xor target buffer is
+ * equal in size to the number of sectors in the failed PDA. It then uses
+ * the other PDAs in the parameter list to determine where within the target
+ * buffer the corresponding data should be xored.
+ *
+ * Recall the basic equation is
+ *
+ * Q = ( data_1 + 2 * data_2 ... + k * data_k ) mod 256
+ *
+ * so to recover data_j we need
+ *
+ * J data_j = (Q - data_1 - 2 data_2 ....- k* data_k) mod 256
+ *
+ * So the coefficient for each buffer is (255 - data_col), and j should be initialized by
+ * copying Q into it. Then we need to do a table lookup to convert to solve
+ * data_j /= J
+ *
+ *
+ */
+int
+rf_RecoveryQFunc(node)
+ RF_DagNode_t *node;
+{
+ RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
+ RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & raidPtr->Layout;
+ RF_PhysDiskAddr_t *failedPDA = (RF_PhysDiskAddr_t *) node->params[node->numParams - 2].p;
+ int i;
+ RF_PhysDiskAddr_t *pda;
+ RF_RaidAddr_t suoffset, failedSUOffset = rf_StripeUnitOffset(layoutPtr, failedPDA->startSector);
+ char *srcbuf, *destbuf;
+ RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
+ RF_Etimer_t timer;
+ unsigned long coeff;
+
+ RF_ETIMER_START(timer);
+ /* start by copying Q into the buffer */
+ bcopy(node->params[node->numParams - 3].p, node->results[0],
+ rf_RaidAddressToByte(raidPtr, failedPDA->numSector));
+ for (i = 0; i < node->numParams - 4; i += 2) {
+ RF_ASSERT(node->params[i + 1].p != node->results[0]);
+ pda = (RF_PhysDiskAddr_t *) node->params[i].p;
+ srcbuf = (char *) node->params[i + 1].p;
+ suoffset = rf_StripeUnitOffset(layoutPtr, pda->startSector);
+ destbuf = ((char *) node->results[0]) + rf_RaidAddressToByte(raidPtr, suoffset - failedSUOffset);
+ coeff = rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), pda->raidAddress);
+ /* compute the data unit offset within the column */
+ coeff = (coeff % raidPtr->Layout.numDataCol);
+ rf_IncQ((unsigned long *) destbuf, (unsigned long *) srcbuf, rf_RaidAddressToByte(raidPtr, pda->numSector), coeff);
+ }
+ /* Do the nasty inversion now */
+ coeff = (rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), failedPDA->startSector) % raidPtr->Layout.numDataCol);
+ rf_InvertQ(node->results[0], node->results[0], rf_RaidAddressToByte(raidPtr, pda->numSector), coeff);
+ RF_ETIMER_STOP(timer);
+ RF_ETIMER_EVAL(timer);
+ tracerec->q_us += RF_ETIMER_VAL_US(timer);
+ rf_GenericWakeupFunc(node, 0);
+ return (0);
+}
+
+int
+rf_RecoveryPQFunc(node)
+ RF_DagNode_t *node;
+{
+ RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
+ printf("raid%d: Recovery from PQ not implemented.\n",raidPtr->raidid);
+ return (1);
+}
+/*
+ Degraded write Q subroutine.
+ Used when P is dead.
+ Large-write style Q computation.
+ Parameters
+
+ (pda,buf),(pda,buf),.....,(failedPDA,bufPtr),failedPDA,raidPtr.
+
+ We ignore failedPDA.
+
+ This is a "simple style" recovery func.
+*/
+
+void
+rf_PQ_DegradedWriteQFunc(node)
+ RF_DagNode_t *node;
+{
+ int np = node->numParams;
+ int d;
+ RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[np - 1].p;
+ unsigned secPerSU = raidPtr->Layout.sectorsPerStripeUnit;
+ int i;
+ RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
+ RF_Etimer_t timer;
+ char *qbuf = node->results[0];
+ char *obuf, *qpbuf;
+ RF_PhysDiskAddr_t *old;
+ unsigned long coeff;
+ int fail_start, j;
+
+ old = (RF_PhysDiskAddr_t *) node->params[np - 2].p;
+ fail_start = old->startSector % secPerSU;
+
+ RF_ETIMER_START(timer);
+
+ d = (np - 2) / 2;
+ RF_ASSERT(2 * d + 2 == np);
+
+ for (i = 0; i < d; i++) {
+ old = (RF_PhysDiskAddr_t *) node->params[2 * i].p;
+ obuf = (char *) node->params[2 * i + 1].p;
+ coeff = rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), old->raidAddress);
+ /* compute the data unit offset within the column, then add
+ * one */
+ coeff = (coeff % raidPtr->Layout.numDataCol);
+ j = old->startSector % secPerSU;
+ RF_ASSERT(j >= fail_start);
+ qpbuf = qbuf + rf_RaidAddressToByte(raidPtr, j - fail_start);
+ rf_IncQ((unsigned long *) qpbuf, (unsigned long *) obuf, rf_RaidAddressToByte(raidPtr, old->numSector), coeff);
+ }
+
+ RF_ETIMER_STOP(timer);
+ RF_ETIMER_EVAL(timer);
+ tracerec->q_us += RF_ETIMER_VAL_US(timer);
+ rf_GenericWakeupFunc(node, 0);
+}
+
+
+
+
+/* Q computations */
+
+/*
+ coeff - colummn;
+
+ compute dest ^= qfor[28-coeff][rn[coeff+1] a]
+
+ on 5-bit basis;
+ length in bytes;
+*/
+
+void
+rf_IncQ(dest, buf, length, coeff)
+ unsigned long *dest;
+ unsigned long *buf;
+ unsigned length;
+ unsigned coeff;
+{
+ unsigned long a, d, new;
+ unsigned long a1, a2;
+ unsigned int *q = &(rf_qfor[28 - coeff][0]);
+ unsigned r = rf_rn[coeff + 1];
+
+#define EXTRACT(a,i) ((a >> (5L*i)) & 0x1f)
+#define INSERT(a,i) (a << (5L*i))
+
+ length /= 8;
+ /* 13 5 bit quants in a 64 bit word */
+ while (length) {
+ a = *buf++;
+ d = *dest;
+ a1 = EXTRACT(a, 0) ^ r;
+ a2 = EXTRACT(a, 1) ^ r;
+ new = INSERT(a2, 1) | a1;
+ a1 = EXTRACT(a, 2) ^ r;
+ a2 = EXTRACT(a, 3) ^ r;
+ a1 = q[a1];
+ a2 = q[a2];
+ new = new | INSERT(a1, 2) | INSERT(a2, 3);
+ a1 = EXTRACT(a, 4) ^ r;
+ a2 = EXTRACT(a, 5) ^ r;
+ a1 = q[a1];
+ a2 = q[a2];
+ new = new | INSERT(a1, 4) | INSERT(a2, 5);
+ a1 = EXTRACT(a, 5) ^ r;
+ a2 = EXTRACT(a, 6) ^ r;
+ a1 = q[a1];
+ a2 = q[a2];
+ new = new | INSERT(a1, 5) | INSERT(a2, 6);
+#if RF_LONGSHIFT > 2
+ a1 = EXTRACT(a, 7) ^ r;
+ a2 = EXTRACT(a, 8) ^ r;
+ a1 = q[a1];
+ a2 = q[a2];
+ new = new | INSERT(a1, 7) | INSERT(a2, 8);
+ a1 = EXTRACT(a, 9) ^ r;
+ a2 = EXTRACT(a, 10) ^ r;
+ a1 = q[a1];
+ a2 = q[a2];
+ new = new | INSERT(a1, 9) | INSERT(a2, 10);
+ a1 = EXTRACT(a, 11) ^ r;
+ a2 = EXTRACT(a, 12) ^ r;
+ a1 = q[a1];
+ a2 = q[a2];
+ new = new | INSERT(a1, 11) | INSERT(a2, 12);
+#endif /* RF_LONGSHIFT > 2 */
+ d ^= new;
+ *dest++ = d;
+ length--;
+ }
+}
+/*
+ compute
+
+ dest ^= rf_qfor[28-coeff][rf_rn[coeff+1] (old^new) ]
+
+ on a five bit basis.
+ optimization: compute old ^ new on 64 bit basis.
+
+ length in bytes.
+*/
+
+static void
+QDelta(
+ char *dest,
+ char *obuf,
+ char *nbuf,
+ unsigned length,
+ unsigned char coeff)
+{
+ unsigned long a, d, new;
+ unsigned long a1, a2;
+ unsigned int *q = &(rf_qfor[28 - coeff][0]);
+ unsigned int r = rf_rn[coeff + 1];
+
+ r = a1 = a2 = new = d = a = 0; /* XXX for now... */
+ q = NULL; /* XXX for now */
+
+#ifdef _KERNEL
+ /* PQ in kernel currently not supported because the encoding/decoding
+ * table is not present */
+ bzero(dest, length);
+#else /* KERNEL */
+ /* this code probably doesn't work and should be rewritten -wvcii */
+ /* 13 5 bit quants in a 64 bit word */
+ length /= 8;
+ while (length) {
+ a = *obuf++; /* XXX need to reorg to avoid cache conflicts */
+ a ^= *nbuf++;
+ d = *dest;
+ a1 = EXTRACT(a, 0) ^ r;
+ a2 = EXTRACT(a, 1) ^ r;
+ a1 = q[a1];
+ a2 = q[a2];
+ new = INSERT(a2, 1) | a1;
+ a1 = EXTRACT(a, 2) ^ r;
+ a2 = EXTRACT(a, 3) ^ r;
+ a1 = q[a1];
+ a2 = q[a2];
+ new = new | INSERT(a1, 2) | INSERT(a2, 3);
+ a1 = EXTRACT(a, 4) ^ r;
+ a2 = EXTRACT(a, 5) ^ r;
+ a1 = q[a1];
+ a2 = q[a2];
+ new = new | INSERT(a1, 4) | INSERT(a2, 5);
+ a1 = EXTRACT(a, 5) ^ r;
+ a2 = EXTRACT(a, 6) ^ r;
+ a1 = q[a1];
+ a2 = q[a2];
+ new = new | INSERT(a1, 5) | INSERT(a2, 6);
+#if RF_LONGSHIFT > 2
+ a1 = EXTRACT(a, 7) ^ r;
+ a2 = EXTRACT(a, 8) ^ r;
+ a1 = q[a1];
+ a2 = q[a2];
+ new = new | INSERT(a1, 7) | INSERT(a2, 8);
+ a1 = EXTRACT(a, 9) ^ r;
+ a2 = EXTRACT(a, 10) ^ r;
+ a1 = q[a1];
+ a2 = q[a2];
+ new = new | INSERT(a1, 9) | INSERT(a2, 10);
+ a1 = EXTRACT(a, 11) ^ r;
+ a2 = EXTRACT(a, 12) ^ r;
+ a1 = q[a1];
+ a2 = q[a2];
+ new = new | INSERT(a1, 11) | INSERT(a2, 12);
+#endif /* RF_LONGSHIFT > 2 */
+ d ^= new;
+ *dest++ = d;
+ length--;
+ }
+#endif /* _KERNEL */
+}
+/*
+ recover columns a and b from the given p and q into
+ bufs abuf and bbuf. All bufs are word aligned.
+ Length is in bytes.
+*/
+
+
+/*
+ * XXX
+ *
+ * Everything about this seems wrong.
+ */
+void
+rf_PQ_recover(pbuf, qbuf, abuf, bbuf, length, coeff_a, coeff_b)
+ unsigned long *pbuf;
+ unsigned long *qbuf;
+ unsigned long *abuf;
+ unsigned long *bbuf;
+ unsigned length;
+ unsigned coeff_a;
+ unsigned coeff_b;
+{
+ unsigned long p, q, a, a0, a1;
+ int col = (29 * coeff_a) + coeff_b;
+ unsigned char *q0 = &(rf_qinv[col][0]);
+
+ length /= 8;
+ while (length) {
+ p = *pbuf++;
+ q = *qbuf++;
+ a0 = EXTRACT(p, 0);
+ a1 = EXTRACT(q, 0);
+ a = q0[a0 << 5 | a1];
+#define MF(i) \
+ a0 = EXTRACT(p,i); \
+ a1 = EXTRACT(q,i); \
+ a = a | INSERT(q0[a0<<5 | a1],i)
+
+ MF(1);
+ MF(2);
+ MF(3);
+ MF(4);
+ MF(5);
+ MF(6);
+#if 0
+ MF(7);
+ MF(8);
+ MF(9);
+ MF(10);
+ MF(11);
+ MF(12);
+#endif /* 0 */
+ *abuf++ = a;
+ *bbuf++ = a ^ p;
+ length--;
+ }
+}
+/*
+ Lost parity and a data column. Recover that data column.
+ Assume col coeff is lost. Let q the contents of Q after
+ all surviving data columns have been q-xored out of it.
+ Then we have the equation
+
+ q[28-coeff][a_i ^ r_i+1] = q
+
+ but q is cyclic with period 31.
+ So q[3+coeff][q[28-coeff][a_i ^ r_{i+1}]] =
+ q[31][a_i ^ r_{i+1}] = a_i ^ r_{i+1} .
+
+ so a_i = r_{coeff+1} ^ q[3+coeff][q]
+
+ The routine is passed q buffer and the buffer
+ the data is to be recoverd into. They can be the same.
+*/
+
+
+
+static void
+rf_InvertQ(
+ unsigned long *qbuf,
+ unsigned long *abuf,
+ unsigned length,
+ unsigned coeff)
+{
+ unsigned long a, new;
+ unsigned long a1, a2;
+ unsigned int *q = &(rf_qfor[3 + coeff][0]);
+ unsigned r = rf_rn[coeff + 1];
+
+ /* 13 5 bit quants in a 64 bit word */
+ length /= 8;
+ while (length) {
+ a = *qbuf++;
+ a1 = EXTRACT(a, 0);
+ a2 = EXTRACT(a, 1);
+ a1 = r ^ q[a1];
+ a2 = r ^ q[a2];
+ new = INSERT(a2, 1) | a1;
+#define M(i,j) \
+ a1 = EXTRACT(a,i); \
+ a2 = EXTRACT(a,j); \
+ a1 = r ^ q[a1]; \
+ a2 = r ^ q[a2]; \
+ new = new | INSERT(a1,i) | INSERT(a2,j)
+
+ M(2, 3);
+ M(4, 5);
+ M(5, 6);
+#if RF_LONGSHIFT > 2
+ M(7, 8);
+ M(9, 10);
+ M(11, 12);
+#endif /* RF_LONGSHIFT > 2 */
+ *abuf++ = new;
+ length--;
+ }
+}
+#endif /* (RF_INCLUDE_DECL_PQ > 0) ||
+ * (RF_INCLUDE_RAID6 > 0) */
diff --git a/sys/dev/raidframe/rf_pq.h b/sys/dev/raidframe/rf_pq.h
new file mode 100644
index 0000000..9a2ce23
--- /dev/null
+++ b/sys/dev/raidframe/rf_pq.h
@@ -0,0 +1,75 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_pq.h,v 1.3 1999/02/05 00:06:15 oster Exp $ */
+/*
+ * rf_pq.h
+ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Daniel Stodolsky
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+#ifndef _RF__RF_PQ_H_
+#define _RF__RF_PQ_H_
+
+#include <dev/raidframe/rf_archs.h>
+
+extern RF_RedFuncs_t rf_pFuncs;
+extern RF_RedFuncs_t rf_pRecoveryFuncs;
+
+int rf_RegularONPFunc(RF_DagNode_t * node);
+int rf_SimpleONPFunc(RF_DagNode_t * node);
+int rf_RecoveryPFunc(RF_DagNode_t * node);
+int rf_RegularPFunc(RF_DagNode_t * node);
+
+#if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
+
+extern RF_RedFuncs_t rf_qFuncs;
+extern RF_RedFuncs_t rf_qRecoveryFuncs;
+extern RF_RedFuncs_t rf_pqRecoveryFuncs;
+
+void
+rf_PQDagSelect(RF_Raid_t * raidPtr, RF_IoType_t type,
+ RF_AccessStripeMap_t * asmap, RF_VoidFuncPtr * createFunc);
+RF_CREATE_DAG_FUNC_DECL(rf_PQCreateLargeWriteDAG);
+int rf_RegularONQFunc(RF_DagNode_t * node);
+int rf_SimpleONQFunc(RF_DagNode_t * node);
+RF_CREATE_DAG_FUNC_DECL(rf_PQCreateSmallWriteDAG);
+int rf_RegularPQFunc(RF_DagNode_t * node);
+int rf_RegularQFunc(RF_DagNode_t * node);
+void rf_Degraded_100_PQFunc(RF_DagNode_t * node);
+int rf_RecoveryQFunc(RF_DagNode_t * node);
+int rf_RecoveryPQFunc(RF_DagNode_t * node);
+void rf_PQ_DegradedWriteQFunc(RF_DagNode_t * node);
+void
+rf_IncQ(unsigned long *dest, unsigned long *buf, unsigned length,
+ unsigned coeff);
+void
+rf_PQ_recover(unsigned long *pbuf, unsigned long *qbuf, unsigned long *abuf,
+ unsigned long *bbuf, unsigned length, unsigned coeff_a, unsigned coeff_b);
+
+#endif /* (RF_INCLUDE_DECL_PQ > 0) ||
+ * (RF_INCLUDE_RAID6 > 0) */
+
+#endif /* !_RF__RF_PQ_H_ */
diff --git a/sys/dev/raidframe/rf_pqdeg.c b/sys/dev/raidframe/rf_pqdeg.c
new file mode 100644
index 0000000..e76ccdf
--- /dev/null
+++ b/sys/dev/raidframe/rf_pqdeg.c
@@ -0,0 +1,217 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_pqdeg.c,v 1.5 2000/01/07 03:41:04 oster Exp $ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Daniel Stodolsky
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+#include <dev/raidframe/rf_archs.h>
+
+#if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
+
+#include <dev/raidframe/rf_types.h>
+#include <dev/raidframe/rf_raid.h>
+#include <dev/raidframe/rf_dag.h>
+#include <dev/raidframe/rf_dagutils.h>
+#include <dev/raidframe/rf_dagfuncs.h>
+#include <dev/raidframe/rf_dagffrd.h>
+#include <dev/raidframe/rf_dagffwr.h>
+#include <dev/raidframe/rf_dagdegrd.h>
+#include <dev/raidframe/rf_dagdegwr.h>
+#include <dev/raidframe/rf_etimer.h>
+#include <dev/raidframe/rf_pqdeg.h>
+#include <dev/raidframe/rf_general.h>
+#include <dev/raidframe/rf_pqdegdags.h>
+#include <dev/raidframe/rf_pq.h>
+
+/*
+ Degraded mode dag functions for P+Q calculations.
+
+ The following nomenclature is used.
+
+ PQ_<D><P><Q>_Create{Large,Small}<Write|Read>DAG
+
+ where <D><P><Q> are single digits representing the number of failed
+ data units <D> (0,1,2), parity units <P> (0,1), and Q units <Q>, effecting
+ the I/O. The reads have only PQ_<D><P><Q>_CreateReadDAG variants, while
+ the single fault writes have both large and small write versions. (Single fault
+ PQ is equivalent to normal mode raid 5 in many aspects.
+
+ Some versions degenerate into the same case, and are grouped together below.
+*/
+
+/* Reads, single failure
+
+ we have parity, so we can do a raid 5
+ reconstruct read.
+*/
+
+RF_CREATE_DAG_FUNC_DECL(rf_PQ_100_CreateReadDAG)
+{
+ rf_CreateDegradedReadDAG(raidPtr, asmap, dag_h, bp, flags, allocList, &rf_pRecoveryFuncs);
+}
+/* Reads double failure */
+
+/*
+ Q is lost, but not parity
+ so we can a raid 5 reconstruct read.
+*/
+
+RF_CREATE_DAG_FUNC_DECL(rf_PQ_101_CreateReadDAG)
+{
+ rf_CreateDegradedReadDAG(raidPtr, asmap, dag_h, bp, flags, allocList, &rf_pRecoveryFuncs);
+}
+/*
+ parity is lost, so we need to
+ do a reconstruct read and recompute
+ the data with Q.
+*/
+
+RF_CREATE_DAG_FUNC_DECL(rf_PQ_110_CreateReadDAG)
+{
+ RF_PhysDiskAddr_t *temp;
+ /* swap P and Q pointers to fake out the DegradedReadDAG code */
+ temp = asmap->parityInfo;
+ asmap->parityInfo = asmap->qInfo;
+ asmap->qInfo = temp;
+ rf_CreateDegradedReadDAG(raidPtr, asmap, dag_h, bp, flags, allocList, &rf_qRecoveryFuncs);
+}
+/*
+ Two data units are dead in this stripe, so we will need read
+ both P and Q to reconstruct the data. Note that only
+ one data unit we are reading may actually be missing.
+*/
+RF_CREATE_DAG_FUNC_DECL(rf_CreateDoubleDegradedReadDAG);
+RF_CREATE_DAG_FUNC_DECL(rf_CreateDoubleDegradedReadDAG)
+{
+ rf_PQ_DoubleDegRead(raidPtr, asmap, dag_h, bp, flags, allocList);
+}
+RF_CREATE_DAG_FUNC_DECL(rf_PQ_200_CreateReadDAG);
+RF_CREATE_DAG_FUNC_DECL(rf_PQ_200_CreateReadDAG)
+{
+ rf_CreateDoubleDegradedReadDAG(raidPtr, asmap, dag_h, bp, flags, allocList);
+}
+/* Writes, single failure */
+
+RF_CREATE_DAG_FUNC_DECL(rf_PQ_100_CreateWriteDAG);
+RF_CREATE_DAG_FUNC_DECL(rf_PQ_100_CreateWriteDAG)
+{
+ if (asmap->numStripeUnitsAccessed != 1 &&
+ asmap->failedPDAs[0]->numSector !=
+ raidPtr->Layout.sectorsPerStripeUnit)
+ RF_PANIC();
+ rf_CommonCreateSimpleDegradedWriteDAG(raidPtr, asmap, dag_h, bp,
+ flags, allocList, 2,
+ (int (*) (RF_DagNode_t *)) rf_Degraded_100_PQFunc,
+ RF_FALSE);
+}
+/* Dead P - act like a RAID 5 small write with parity = Q */
+RF_CREATE_DAG_FUNC_DECL(rf_PQ_010_CreateSmallWriteDAG)
+{
+ RF_PhysDiskAddr_t *temp;
+ /* swap P and Q pointers to fake out the DegradedReadDAG code */
+ temp = asmap->parityInfo;
+ asmap->parityInfo = asmap->qInfo;
+ asmap->qInfo = temp;
+ rf_CommonCreateSmallWriteDAG(raidPtr, asmap, dag_h, bp, flags,
+ allocList, &rf_qFuncs, NULL);
+}
+/* Dead Q - act like a RAID 5 small write */
+RF_CREATE_DAG_FUNC_DECL(rf_PQ_001_CreateSmallWriteDAG)
+{
+ rf_CommonCreateSmallWriteDAG(raidPtr, asmap, dag_h, bp, flags,
+ allocList, &rf_pFuncs, NULL);
+}
+/* Dead P - act like a RAID 5 large write but for Q */
+RF_CREATE_DAG_FUNC_DECL(rf_PQ_010_CreateLargeWriteDAG)
+{
+ RF_PhysDiskAddr_t *temp;
+ /* swap P and Q pointers to fake out the code */
+ temp = asmap->parityInfo;
+ asmap->parityInfo = asmap->qInfo;
+ asmap->qInfo = temp;
+ rf_CommonCreateLargeWriteDAG(raidPtr, asmap, dag_h, bp, flags,
+ allocList, 1, rf_RegularQFunc, RF_FALSE);
+}
+/* Dead Q - act like a RAID 5 large write */
+RF_CREATE_DAG_FUNC_DECL(rf_PQ_001_CreateLargeWriteDAG)
+{
+ rf_CommonCreateLargeWriteDAG(raidPtr, asmap, dag_h, bp, flags,
+ allocList, 1, rf_RegularPFunc, RF_FALSE);
+}
+
+
+/*
+ * writes, double failure
+ */
+
+/*
+ * Lost P & Q - do a nonredundant write
+ */
+RF_CREATE_DAG_FUNC_DECL(rf_PQ_011_CreateWriteDAG)
+{
+ rf_CreateNonRedundantWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList,
+ RF_IO_TYPE_WRITE);
+}
+/*
+ In the two cases below,
+ A nasty case arises when the write a (strict) portion of a failed stripe unit
+ and parts of another su. For now, we do not support this.
+*/
+
+/*
+ Lost Data and P - do a Q write.
+*/
+RF_CREATE_DAG_FUNC_DECL(rf_PQ_110_CreateWriteDAG)
+{
+ RF_PhysDiskAddr_t *temp;
+
+ if (asmap->numStripeUnitsAccessed != 1 &&
+ asmap->failedPDAs[0]->numSector != raidPtr->Layout.sectorsPerStripeUnit) {
+ RF_PANIC();
+ }
+ /* swap P and Q to fake out parity code */
+ temp = asmap->parityInfo;
+ asmap->parityInfo = asmap->qInfo;
+ asmap->qInfo = temp;
+ rf_CommonCreateSimpleDegradedWriteDAG(raidPtr, asmap, dag_h, bp, flags,
+ allocList, 1,
+ (int (*) (RF_DagNode_t *)) rf_PQ_DegradedWriteQFunc,
+ RF_FALSE);
+ /* is the regular Q func the right one to call? */
+}
+/*
+ Lost Data and Q - do degraded mode P write
+*/
+RF_CREATE_DAG_FUNC_DECL(rf_PQ_101_CreateWriteDAG)
+{
+ if (asmap->numStripeUnitsAccessed != 1 &&
+ asmap->failedPDAs[0]->numSector != raidPtr->Layout.sectorsPerStripeUnit)
+ RF_PANIC();
+ rf_CommonCreateSimpleDegradedWriteDAG(raidPtr, asmap, dag_h, bp, flags,
+ allocList, 1, rf_RecoveryXorFunc, RF_FALSE);
+}
+#endif /* (RF_INCLUDE_DECL_PQ > 0) ||
+ * (RF_INCLUDE_RAID6 > 0) */
diff --git a/sys/dev/raidframe/rf_pqdeg.h b/sys/dev/raidframe/rf_pqdeg.h
new file mode 100644
index 0000000..83371e6
--- /dev/null
+++ b/sys/dev/raidframe/rf_pqdeg.h
@@ -0,0 +1,75 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_pqdeg.h,v 1.3 1999/02/05 00:06:15 oster Exp $ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Daniel Stodolsky
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+#ifndef _RF__RF_PQDEG_H_
+#define _RF__RF_PQDEG_H_
+
+#include <dev/raidframe/rf_types.h>
+
+#if RF_UTILITY == 0
+#include <dev/raidframe/rf_dag.h>
+
+/* extern decl's of the failure mode PQ functions.
+ * See pddeg.c for nomenclature discussion.
+ */
+
+/* reads, single failure */
+RF_CREATE_DAG_FUNC_DECL(rf_PQ_100_CreateReadDAG);
+/* reads, two failure */
+RF_CREATE_DAG_FUNC_DECL(rf_PQ_110_CreateReadDAG);
+RF_CREATE_DAG_FUNC_DECL(rf_PQ_101_CreateReadDAG);
+RF_CREATE_DAG_FUNC_DECL(rf_PQ_200_CreateReadDAG);
+
+/* writes, single failure */
+RF_CREATE_DAG_FUNC_DECL(rf_PQ_100_CreateWriteDAG);
+RF_CREATE_DAG_FUNC_DECL(rf_PQ_010_CreateSmallWriteDAG);
+RF_CREATE_DAG_FUNC_DECL(rf_PQ_010_CreateLargeWriteDAG);
+RF_CREATE_DAG_FUNC_DECL(rf_PQ_001_CreateSmallWriteDAG);
+RF_CREATE_DAG_FUNC_DECL(rf_PQ_001_CreateLargeWriteDAG);
+
+/* writes, double failure */
+RF_CREATE_DAG_FUNC_DECL(rf_PQ_011_CreateWriteDAG);
+RF_CREATE_DAG_FUNC_DECL(rf_PQ_110_CreateWriteDAG);
+RF_CREATE_DAG_FUNC_DECL(rf_PQ_101_CreateWriteDAG);
+RF_CREATE_DAG_FUNC_DECL(rf_PQ_200_CreateWriteDAG);
+#endif /* RF_UTILITY == 0 */
+
+typedef RF_uint32 RF_ua32_t[32];
+typedef RF_uint8 RF_ua1024_t[1024];
+
+extern RF_ua32_t rf_rn;
+extern RF_ua32_t rf_qfor[32];
+#ifndef _KERNEL /* we don't support PQ in the kernel yet, so
+ * don't link in this monster table */
+extern RF_ua1024_t rf_qinv[29 * 29];
+#else /* !_KERNEL */
+extern RF_ua1024_t rf_qinv[1];
+#endif /* !_KERNEL */
+
+#endif /* !_RF__RF_PQDEG_H_ */
diff --git a/sys/dev/raidframe/rf_pqdegdags.c b/sys/dev/raidframe/rf_pqdegdags.c
new file mode 100644
index 0000000..e0d97ed
--- /dev/null
+++ b/sys/dev/raidframe/rf_pqdegdags.c
@@ -0,0 +1,430 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_pqdegdags.c,v 1.5 1999/08/15 02:36:40 oster Exp $ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Daniel Stodolsky
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+/*
+ * rf_pqdegdags.c
+ * Degraded mode dags for double fault cases.
+*/
+
+
+#include <dev/raidframe/rf_archs.h>
+
+#if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
+
+#include <dev/raidframe/rf_types.h>
+#include <dev/raidframe/rf_raid.h>
+#include <dev/raidframe/rf_dag.h>
+#include <dev/raidframe/rf_dagdegrd.h>
+#include <dev/raidframe/rf_dagdegwr.h>
+#include <dev/raidframe/rf_dagfuncs.h>
+#include <dev/raidframe/rf_dagutils.h>
+#include <dev/raidframe/rf_etimer.h>
+#include <dev/raidframe/rf_acctrace.h>
+#include <dev/raidframe/rf_general.h>
+#include <dev/raidframe/rf_pqdegdags.h>
+#include <dev/raidframe/rf_pq.h>
+
+static void
+applyPDA(RF_Raid_t * raidPtr, RF_PhysDiskAddr_t * pda, RF_PhysDiskAddr_t * ppda,
+ RF_PhysDiskAddr_t * qpda, void *bp);
+
+/*
+ Two data drives have failed, and we are doing a read that covers one of them.
+ We may also be reading some of the surviving drives.
+
+
+ *****************************************************************************************
+ *
+ * creates a DAG to perform a degraded-mode read of data within one stripe.
+ * This DAG is as follows:
+ *
+ * Hdr
+ * |
+ * Block
+ * / / \ \ \ \
+ * Rud ... Rud Rrd ... Rrd Rp Rq
+ * | \ | \ | \ | \ | \ | \
+ *
+ * | |
+ * Unblock X
+ * \ /
+ * ------ T ------
+ *
+ * Each R node is a successor of the L node
+ * One successor arc from each R node goes to U, and the other to X
+ * There is one Rud for each chunk of surviving user data requested by the user,
+ * and one Rrd for each chunk of surviving user data _not_ being read by the user
+ * R = read, ud = user data, rd = recovery (surviving) data, p = P data, q = Qdata
+ * X = pq recovery node, T = terminate
+ *
+ * The block & unblock nodes are leftovers from a previous version. They
+ * do nothing, but I haven't deleted them because it would be a tremendous
+ * effort to put them back in.
+ *
+ * Note: The target buffer for the XOR node is set to the actual user buffer where the
+ * failed data is supposed to end up. This buffer is zero'd by the code here. Thus,
+ * if you create a degraded read dag, use it, and then re-use, you have to be sure to
+ * zero the target buffer prior to the re-use.
+ *
+ * Every buffer read is passed to the pq recovery node, whose job it is to sort out whats
+ * needs and what's not.
+ ****************************************************************************************/
+/* init a disk node with 2 successors and one predecessor */
+#define INIT_DISK_NODE(node,name) \
+rf_InitNode(node, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 2,1,4,0, dag_h, name, allocList); \
+(node)->succedents[0] = unblockNode; \
+(node)->succedents[1] = recoveryNode; \
+(node)->antecedents[0] = blockNode; \
+(node)->antType[0] = rf_control
+
+#define DISK_NODE_PARAMS(_node_,_p_) \
+ (_node_).params[0].p = _p_ ; \
+ (_node_).params[1].p = (_p_)->bufPtr; \
+ (_node_).params[2].v = parityStripeID; \
+ (_node_).params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru)
+
+#define DISK_NODE_PDA(node) ((node)->params[0].p)
+
+RF_CREATE_DAG_FUNC_DECL(rf_PQ_DoubleDegRead)
+{
+ rf_DoubleDegRead(raidPtr, asmap, dag_h, bp, flags, allocList,
+ "Rq", "PQ Recovery", rf_PQDoubleRecoveryFunc);
+}
+
+static void
+applyPDA(raidPtr, pda, ppda, qpda, bp)
+ RF_Raid_t *raidPtr;
+ RF_PhysDiskAddr_t *pda;
+ RF_PhysDiskAddr_t *ppda;
+ RF_PhysDiskAddr_t *qpda;
+ void *bp;
+{
+ RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
+ RF_RaidAddr_t s0off = rf_StripeUnitOffset(layoutPtr, ppda->startSector);
+ RF_SectorCount_t s0len = ppda->numSector, len;
+ RF_SectorNum_t suoffset;
+ unsigned coeff;
+ char *pbuf = ppda->bufPtr;
+ char *qbuf = qpda->bufPtr;
+ char *buf;
+ int delta;
+
+ suoffset = rf_StripeUnitOffset(layoutPtr, pda->startSector);
+ len = pda->numSector;
+ /* see if pda intersects a recovery pda */
+ if ((suoffset < s0off + s0len) && (suoffset + len > s0off)) {
+ buf = pda->bufPtr;
+ coeff = rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), pda->raidAddress);
+ coeff = (coeff % raidPtr->Layout.numDataCol);
+
+ if (suoffset < s0off) {
+ delta = s0off - suoffset;
+ buf += rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), delta);
+ suoffset = s0off;
+ len -= delta;
+ }
+ if (suoffset > s0off) {
+ delta = suoffset - s0off;
+ pbuf += rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), delta);
+ qbuf += rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), delta);
+ }
+ if ((suoffset + len) > (s0len + s0off))
+ len = s0len + s0off - suoffset;
+
+ /* src, dest, len */
+ rf_bxor(buf, pbuf, rf_RaidAddressToByte(raidPtr, len), bp);
+
+ /* dest, src, len, coeff */
+ rf_IncQ((unsigned long *) qbuf, (unsigned long *) buf, rf_RaidAddressToByte(raidPtr, len), coeff);
+ }
+}
+/*
+ Recover data in the case of a double failure. There can be two
+ result buffers, one for each chunk of data trying to be recovered.
+ The params are pda's that have not been range restricted or otherwise
+ politely massaged - this should be done here. The last params are the
+ pdas of P and Q, followed by the raidPtr. The list can look like
+
+ pda, pda, ... , p pda, q pda, raidptr, asm
+
+ or
+
+ pda, pda, ... , p_1 pda, p_2 pda, q_1 pda, q_2 pda, raidptr, asm
+
+ depending on wether two chunks of recovery data were required.
+
+ The second condition only arises if there are two failed buffers
+ whose lengths do not add up a stripe unit.
+*/
+
+
+int
+rf_PQDoubleRecoveryFunc(node)
+ RF_DagNode_t *node;
+{
+ int np = node->numParams;
+ RF_AccessStripeMap_t *asmap = (RF_AccessStripeMap_t *) node->params[np - 1].p;
+ RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[np - 2].p;
+ RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & (raidPtr->Layout);
+ int d, i;
+ unsigned coeff;
+ RF_RaidAddr_t sosAddr, suoffset;
+ RF_SectorCount_t len, secPerSU = layoutPtr->sectorsPerStripeUnit;
+ int two = 0;
+ RF_PhysDiskAddr_t *ppda, *ppda2, *qpda, *qpda2, *pda, npda;
+ char *buf;
+ int numDataCol = layoutPtr->numDataCol;
+ RF_Etimer_t timer;
+ RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
+
+ RF_ETIMER_START(timer);
+
+ if (asmap->failedPDAs[1] &&
+ (asmap->failedPDAs[1]->numSector + asmap->failedPDAs[0]->numSector < secPerSU)) {
+ RF_ASSERT(0);
+ ppda = node->params[np - 6].p;
+ ppda2 = node->params[np - 5].p;
+ qpda = node->params[np - 4].p;
+ qpda2 = node->params[np - 3].p;
+ d = (np - 6);
+ two = 1;
+ } else {
+ ppda = node->params[np - 4].p;
+ qpda = node->params[np - 3].p;
+ d = (np - 4);
+ }
+
+ for (i = 0; i < d; i++) {
+ pda = node->params[i].p;
+ buf = pda->bufPtr;
+ suoffset = rf_StripeUnitOffset(layoutPtr, pda->startSector);
+ len = pda->numSector;
+ coeff = rf_RaidAddressToStripeUnitID(layoutPtr, pda->raidAddress);
+ /* compute the data unit offset within the column */
+ coeff = (coeff % raidPtr->Layout.numDataCol);
+ /* see if pda intersects a recovery pda */
+ applyPDA(raidPtr, pda, ppda, qpda, node->dagHdr->bp);
+ if (two)
+ applyPDA(raidPtr, pda, ppda, qpda, node->dagHdr->bp);
+ }
+
+ /* ok, we got the parity back to the point where we can recover. We
+ * now need to determine the coeff of the columns that need to be
+ * recovered. We can also only need to recover a single stripe unit. */
+
+ if (asmap->failedPDAs[1] == NULL) { /* only a single stripe unit
+ * to recover. */
+ pda = asmap->failedPDAs[0];
+ sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
+ /* need to determine the column of the other failed disk */
+ coeff = rf_RaidAddressToStripeUnitID(layoutPtr, pda->raidAddress);
+ /* compute the data unit offset within the column */
+ coeff = (coeff % raidPtr->Layout.numDataCol);
+ for (i = 0; i < numDataCol; i++) {
+ npda.raidAddress = sosAddr + (i * secPerSU);
+ (raidPtr->Layout.map->MapSector) (raidPtr, npda.raidAddress, &(npda.row), &(npda.col), &(npda.startSector), 0);
+ /* skip over dead disks */
+ if (RF_DEAD_DISK(raidPtr->Disks[npda.row][npda.col].status))
+ if (i != coeff)
+ break;
+ }
+ RF_ASSERT(i < numDataCol);
+ RF_ASSERT(two == 0);
+ /* recover the data. Since we need only want to recover one
+ * column, we overwrite the parity with the other one. */
+ if (coeff < i) /* recovering 'a' */
+ rf_PQ_recover((unsigned long *) ppda->bufPtr, (unsigned long *) qpda->bufPtr, (unsigned long *) pda->bufPtr, (unsigned long *) ppda->bufPtr, rf_RaidAddressToByte(raidPtr, pda->numSector), coeff, i);
+ else /* recovering 'b' */
+ rf_PQ_recover((unsigned long *) ppda->bufPtr, (unsigned long *) qpda->bufPtr, (unsigned long *) ppda->bufPtr, (unsigned long *) pda->bufPtr, rf_RaidAddressToByte(raidPtr, pda->numSector), i, coeff);
+ } else
+ RF_PANIC();
+
+ RF_ETIMER_STOP(timer);
+ RF_ETIMER_EVAL(timer);
+ if (tracerec)
+ tracerec->q_us += RF_ETIMER_VAL_US(timer);
+ rf_GenericWakeupFunc(node, 0);
+ return (0);
+}
+
+int
+rf_PQWriteDoubleRecoveryFunc(node)
+ RF_DagNode_t *node;
+{
+ /* The situation:
+ *
+ * We are doing a write that hits only one failed data unit. The other
+ * failed data unit is not being overwritten, so we need to generate
+ * it.
+ *
+ * For the moment, we assume all the nonfailed data being written is in
+ * the shadow of the failed data unit. (i.e,, either a single data
+ * unit write or the entire failed stripe unit is being overwritten. )
+ *
+ * Recovery strategy: apply the recovery data to the parity and q. Use P
+ * & Q to recover the second failed data unit in P. Zero fill Q, then
+ * apply the recovered data to p. Then apply the data being written to
+ * the failed drive. Then walk through the surviving drives, applying
+ * new data when it exists, othewise the recovery data. Quite a mess.
+ *
+ *
+ * The params
+ *
+ * read pda0, read pda1, ... read pda (numDataCol-3), write pda0, ... ,
+ * write pda (numStripeUnitAccess - numDataFailed), failed pda,
+ * raidPtr, asmap */
+
+ int np = node->numParams;
+ RF_AccessStripeMap_t *asmap = (RF_AccessStripeMap_t *) node->params[np - 1].p;
+ RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[np - 2].p;
+ RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & (raidPtr->Layout);
+ int i;
+ RF_RaidAddr_t sosAddr;
+ unsigned coeff;
+ RF_StripeCount_t secPerSU = layoutPtr->sectorsPerStripeUnit;
+ RF_PhysDiskAddr_t *ppda, *qpda, *pda, npda;
+ int numDataCol = layoutPtr->numDataCol;
+ RF_Etimer_t timer;
+ RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
+
+ RF_ASSERT(node->numResults == 2);
+ RF_ASSERT(asmap->failedPDAs[1] == NULL);
+ RF_ETIMER_START(timer);
+ ppda = node->results[0];
+ qpda = node->results[1];
+ /* apply the recovery data */
+ for (i = 0; i < numDataCol - 2; i++)
+ applyPDA(raidPtr, node->params[i].p, ppda, qpda, node->dagHdr->bp);
+
+ /* determine the other failed data unit */
+ pda = asmap->failedPDAs[0];
+ sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
+ /* need to determine the column of the other failed disk */
+ coeff = rf_RaidAddressToStripeUnitID(layoutPtr, pda->raidAddress);
+ /* compute the data unit offset within the column */
+ coeff = (coeff % raidPtr->Layout.numDataCol);
+ for (i = 0; i < numDataCol; i++) {
+ npda.raidAddress = sosAddr + (i * secPerSU);
+ (raidPtr->Layout.map->MapSector) (raidPtr, npda.raidAddress, &(npda.row), &(npda.col), &(npda.startSector), 0);
+ /* skip over dead disks */
+ if (RF_DEAD_DISK(raidPtr->Disks[npda.row][npda.col].status))
+ if (i != coeff)
+ break;
+ }
+ RF_ASSERT(i < numDataCol);
+ /* recover the data. The column we want to recover we write over the
+ * parity. The column we don't care about we dump in q. */
+ if (coeff < i) /* recovering 'a' */
+ rf_PQ_recover((unsigned long *) ppda->bufPtr, (unsigned long *) qpda->bufPtr, (unsigned long *) ppda->bufPtr, (unsigned long *) qpda->bufPtr, rf_RaidAddressToByte(raidPtr, pda->numSector), coeff, i);
+ else /* recovering 'b' */
+ rf_PQ_recover((unsigned long *) ppda->bufPtr, (unsigned long *) qpda->bufPtr, (unsigned long *) qpda->bufPtr, (unsigned long *) ppda->bufPtr, rf_RaidAddressToByte(raidPtr, pda->numSector), i, coeff);
+
+ /* OK. The valid data is in P. Zero fill Q, then inc it into it. */
+ bzero(qpda->bufPtr, rf_RaidAddressToByte(raidPtr, qpda->numSector));
+ rf_IncQ((unsigned long *) qpda->bufPtr, (unsigned long *) ppda->bufPtr, rf_RaidAddressToByte(raidPtr, qpda->numSector), i);
+
+ /* now apply all the write data to the buffer */
+ /* single stripe unit write case: the failed data is only thing we are
+ * writing. */
+ RF_ASSERT(asmap->numStripeUnitsAccessed == 1);
+ /* dest, src, len, coeff */
+ rf_IncQ((unsigned long *) qpda->bufPtr, (unsigned long *) asmap->failedPDAs[0]->bufPtr, rf_RaidAddressToByte(raidPtr, qpda->numSector), coeff);
+ rf_bxor(asmap->failedPDAs[0]->bufPtr, ppda->bufPtr, rf_RaidAddressToByte(raidPtr, ppda->numSector), node->dagHdr->bp);
+
+ /* now apply all the recovery data */
+ for (i = 0; i < numDataCol - 2; i++)
+ applyPDA(raidPtr, node->params[i].p, ppda, qpda, node->dagHdr->bp);
+
+ RF_ETIMER_STOP(timer);
+ RF_ETIMER_EVAL(timer);
+ if (tracerec)
+ tracerec->q_us += RF_ETIMER_VAL_US(timer);
+
+ rf_GenericWakeupFunc(node, 0);
+ return (0);
+}
+RF_CREATE_DAG_FUNC_DECL(rf_PQ_DDLargeWrite)
+{
+ RF_PANIC();
+}
+/*
+ Two lost data unit write case.
+
+ There are really two cases here:
+
+ (1) The write completely covers the two lost data units.
+ In that case, a reconstruct write that doesn't write the
+ failed data units will do the correct thing. So in this case,
+ the dag looks like
+
+ full stripe read of surviving data units (not being overwriten)
+ write new data (ignoring failed units) compute P&Q
+ write P&Q
+
+
+ (2) The write does not completely cover both failed data units
+ (but touches at least one of them). Then we need to do the
+ equivalent of a reconstruct read to recover the missing data
+ unit from the other stripe.
+
+ For any data we are writing that is not in the "shadow"
+ of the failed units, we need to do a four cycle update.
+ PANIC on this case. for now
+
+*/
+
+RF_CREATE_DAG_FUNC_DECL(rf_PQ_200_CreateWriteDAG)
+{
+ RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
+ RF_SectorCount_t sectorsPerSU = layoutPtr->sectorsPerStripeUnit;
+ int sum;
+ int nf = asmap->numDataFailed;
+
+ sum = asmap->failedPDAs[0]->numSector;
+ if (nf == 2)
+ sum += asmap->failedPDAs[1]->numSector;
+
+ if ((nf == 2) && (sum == (2 * sectorsPerSU))) {
+ /* large write case */
+ rf_PQ_DDLargeWrite(raidPtr, asmap, dag_h, bp, flags, allocList);
+ return;
+ }
+ if ((nf == asmap->numStripeUnitsAccessed) || (sum >= sectorsPerSU)) {
+ /* small write case, no user data not in shadow */
+ rf_PQ_DDSimpleSmallWrite(raidPtr, asmap, dag_h, bp, flags, allocList);
+ return;
+ }
+ RF_PANIC();
+}
+RF_CREATE_DAG_FUNC_DECL(rf_PQ_DDSimpleSmallWrite)
+{
+ rf_DoubleDegSmallWrite(raidPtr, asmap, dag_h, bp, flags, allocList, "Rq", "Wq", "PQ Recovery", rf_PQWriteDoubleRecoveryFunc);
+}
+#endif /* (RF_INCLUDE_DECL_PQ > 0) ||
+ * (RF_INCLUDE_RAID6 > 0) */
diff --git a/sys/dev/raidframe/rf_pqdegdags.h b/sys/dev/raidframe/rf_pqdegdags.h
new file mode 100644
index 0000000..11ce820
--- /dev/null
+++ b/sys/dev/raidframe/rf_pqdegdags.h
@@ -0,0 +1,49 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_pqdegdags.h,v 1.3 1999/02/05 00:06:15 oster Exp $ */
+/*
+ * rf_pqdegdags.h
+ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Daniel Stodolsky
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+/*
+ * rf_pqdegdags.c
+ * Degraded mode dags for double fault cases.
+ */
+
+#ifndef _RF__RF_PQDEGDAGS_H_
+#define _RF__RF_PQDEGDAGS_H_
+
+#include <dev/raidframe/rf_dag.h>
+
+RF_CREATE_DAG_FUNC_DECL(rf_PQ_DoubleDegRead);
+int rf_PQDoubleRecoveryFunc(RF_DagNode_t * node);
+int rf_PQWriteDoubleRecoveryFunc(RF_DagNode_t * node);
+RF_CREATE_DAG_FUNC_DECL(rf_PQ_DDLargeWrite);
+RF_CREATE_DAG_FUNC_DECL(rf_PQ_DDSimpleSmallWrite);
+RF_CREATE_DAG_FUNC_DECL(rf_PQ_200_CreateWriteDAG);
+
+#endif /* !_RF__RF_PQDEGDAGS_H_ */
diff --git a/sys/dev/raidframe/rf_psstatus.c b/sys/dev/raidframe/rf_psstatus.c
new file mode 100644
index 0000000..31c2be7
--- /dev/null
+++ b/sys/dev/raidframe/rf_psstatus.c
@@ -0,0 +1,376 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_psstatus.c,v 1.5 2000/01/08 22:57:31 oster Exp $ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Mark Holland
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+/*****************************************************************************
+ *
+ * psstatus.c
+ *
+ * The reconstruction code maintains a bunch of status related to the parity
+ * stripes that are currently under reconstruction. This header file defines
+ * the status structures.
+ *
+ *****************************************************************************/
+
+#include <dev/raidframe/rf_types.h>
+#include <dev/raidframe/rf_raid.h>
+#include <dev/raidframe/rf_general.h>
+#include <dev/raidframe/rf_debugprint.h>
+#include <dev/raidframe/rf_freelist.h>
+#include <dev/raidframe/rf_psstatus.h>
+#include <dev/raidframe/rf_shutdown.h>
+
+#define Dprintf1(s,a) if (rf_pssDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
+#define Dprintf2(s,a,b) if (rf_pssDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
+#define Dprintf3(s,a,b,c) if (rf_pssDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
+
+static void
+RealPrintPSStatusTable(RF_Raid_t * raidPtr,
+ RF_PSStatusHeader_t * pssTable);
+
+#define RF_MAX_FREE_PSS 32
+#define RF_PSS_INC 8
+#define RF_PSS_INITIAL 4
+
+static int init_pss(RF_ReconParityStripeStatus_t *, RF_Raid_t *);
+static void clean_pss(RF_ReconParityStripeStatus_t *, RF_Raid_t *);
+static void rf_ShutdownPSStatus(void *);
+
+static int
+init_pss(p, raidPtr)
+ RF_ReconParityStripeStatus_t *p;
+ RF_Raid_t *raidPtr;
+{
+ RF_Calloc(p->issued, raidPtr->numCol, sizeof(char), (char *));
+ if (p->issued == NULL)
+ return (ENOMEM);
+ return (0);
+}
+
+static void
+clean_pss(p, raidPtr)
+ RF_ReconParityStripeStatus_t *p;
+ RF_Raid_t *raidPtr;
+{
+ RF_Free(p->issued, raidPtr->numCol * sizeof(char));
+}
+
+static void
+rf_ShutdownPSStatus(arg)
+ void *arg;
+{
+ RF_Raid_t *raidPtr = (RF_Raid_t *) arg;
+
+ RF_FREELIST_DESTROY_CLEAN_ARG(raidPtr->pss_freelist, next, (RF_ReconParityStripeStatus_t *), clean_pss, raidPtr);
+}
+
+int
+rf_ConfigurePSStatus(
+ RF_ShutdownList_t ** listp,
+ RF_Raid_t * raidPtr,
+ RF_Config_t * cfgPtr)
+{
+ int rc;
+
+ raidPtr->pssTableSize = RF_PSS_DEFAULT_TABLESIZE;
+ RF_FREELIST_CREATE(raidPtr->pss_freelist, RF_MAX_FREE_PSS,
+ RF_PSS_INC, sizeof(RF_ReconParityStripeStatus_t));
+ if (raidPtr->pss_freelist == NULL)
+ return (ENOMEM);
+ rc = rf_ShutdownCreate(listp, rf_ShutdownPSStatus, raidPtr);
+ if (rc) {
+ RF_ERRORMSG3("Unable to add to shutdown list file %s line %d rc=%d\n",
+ __FILE__, __LINE__, rc);
+ rf_ShutdownPSStatus(raidPtr);
+ return (rc);
+ }
+ RF_FREELIST_PRIME_INIT_ARG(raidPtr->pss_freelist, RF_PSS_INITIAL, next,
+ (RF_ReconParityStripeStatus_t *), init_pss, raidPtr);
+ return (0);
+}
+/*****************************************************************************************
+ * sets up the pss table
+ * We pre-allocate a bunch of entries to avoid as much as possible having to
+ * malloc up hash chain entries.
+ ****************************************************************************************/
+RF_PSStatusHeader_t *
+rf_MakeParityStripeStatusTable(raidPtr)
+ RF_Raid_t *raidPtr;
+{
+ RF_PSStatusHeader_t *pssTable;
+ int i, j, rc;
+
+ RF_Calloc(pssTable, raidPtr->pssTableSize, sizeof(RF_PSStatusHeader_t), (RF_PSStatusHeader_t *));
+ for (i = 0; i < raidPtr->pssTableSize; i++) {
+ rc = rf_mutex_init(&pssTable[i].mutex, __FUNCTION__);
+ if (rc) {
+ RF_ERRORMSG3("Unable to init mutex file %s line %d rc=%d\n", __FILE__,
+ __LINE__, rc);
+ /* fail and deallocate */
+ for (j = 0; j < i; j++) {
+ rf_mutex_destroy(&pssTable[i].mutex);
+ }
+ RF_Free(pssTable, raidPtr->pssTableSize * sizeof(RF_PSStatusHeader_t));
+ return (NULL);
+ }
+ }
+ return (pssTable);
+}
+
+void
+rf_FreeParityStripeStatusTable(raidPtr, pssTable)
+ RF_Raid_t *raidPtr;
+ RF_PSStatusHeader_t *pssTable;
+{
+ int i;
+
+ if (rf_pssDebug)
+ RealPrintPSStatusTable(raidPtr, pssTable);
+ for (i = 0; i < raidPtr->pssTableSize; i++) {
+ if (pssTable[i].chain) {
+ printf("ERROR: pss hash chain not null at recon shutdown\n");
+ }
+ rf_mutex_destroy(&pssTable[i].mutex);
+ }
+ RF_Free(pssTable, raidPtr->pssTableSize * sizeof(RF_PSStatusHeader_t));
+}
+
+
+/* looks up the status structure for a parity stripe.
+ * if the create_flag is on, creates and returns the status structure it it doesn't exist
+ * otherwise returns NULL if the status structure does not exist
+ *
+ * ASSUMES THE PSS DESCRIPTOR IS LOCKED UPON ENTRY
+ */
+RF_ReconParityStripeStatus_t *
+rf_LookupRUStatus(
+ RF_Raid_t * raidPtr,
+ RF_PSStatusHeader_t * pssTable,
+ RF_StripeNum_t psID,
+ RF_ReconUnitNum_t which_ru,
+ RF_PSSFlags_t flags, /* whether or not to create it if it doesn't
+ * exist + what flags to set initially */
+ int *created)
+{
+ RF_PSStatusHeader_t *hdr = &pssTable[RF_HASH_PSID(raidPtr, psID)];
+ RF_ReconParityStripeStatus_t *p, *pssPtr = hdr->chain;
+
+ *created = 0;
+ for (p = pssPtr; p; p = p->next) {
+ if (p->parityStripeID == psID && p->which_ru == which_ru)
+ break;
+ }
+
+ if (!p && (flags & RF_PSS_CREATE)) {
+ Dprintf2("PSS: creating pss for psid %ld ru %d\n", psID, which_ru);
+ p = rf_AllocPSStatus(raidPtr);
+ p->next = hdr->chain;
+ hdr->chain = p;
+
+ p->parityStripeID = psID;
+ p->which_ru = which_ru;
+ p->flags = flags;
+ p->rbuf = NULL;
+ p->writeRbuf = NULL;
+ p->blockCount = 0;
+ p->procWaitList = NULL;
+ p->blockWaitList = NULL;
+ p->bufWaitList = NULL;
+ *created = 1;
+ } else
+ if (p) { /* we didn't create, but we want to specify
+ * some new status */
+ p->flags |= flags; /* add in whatever flags we're
+ * specifying */
+ }
+ if (p && (flags & RF_PSS_RECON_BLOCKED)) {
+ p->blockCount++;/* if we're asking to block recon, bump the
+ * count */
+ Dprintf3("raid%d: Blocked recon on psid %ld. count now %d\n",
+ raidPtr->raidid, psID, p->blockCount);
+ }
+ return (p);
+}
+/* deletes an entry from the parity stripe status table. typically used
+ * when an entry has been allocated solely to block reconstruction, and
+ * no recon was requested while recon was blocked. Assumes the hash
+ * chain is ALREADY LOCKED.
+ */
+void
+rf_PSStatusDelete(raidPtr, pssTable, pssPtr)
+ RF_Raid_t *raidPtr;
+ RF_PSStatusHeader_t *pssTable;
+ RF_ReconParityStripeStatus_t *pssPtr;
+{
+ RF_PSStatusHeader_t *hdr = &(pssTable[RF_HASH_PSID(raidPtr, pssPtr->parityStripeID)]);
+ RF_ReconParityStripeStatus_t *p = hdr->chain, *pt = NULL;
+
+ while (p) {
+ if (p == pssPtr) {
+ if (pt)
+ pt->next = p->next;
+ else
+ hdr->chain = p->next;
+ p->next = NULL;
+ rf_FreePSStatus(raidPtr, p);
+ return;
+ }
+ pt = p;
+ p = p->next;
+ }
+ RF_ASSERT(0); /* we must find it here */
+}
+/* deletes an entry from the ps status table after reconstruction has completed */
+void
+rf_RemoveFromActiveReconTable(raidPtr, row, psid, which_ru)
+ RF_Raid_t *raidPtr;
+ RF_RowCol_t row;
+ RF_ReconUnitNum_t which_ru;
+ RF_StripeNum_t psid;
+{
+ RF_PSStatusHeader_t *hdr = &(raidPtr->reconControl[row]->pssTable[RF_HASH_PSID(raidPtr, psid)]);
+ RF_ReconParityStripeStatus_t *p, *pt;
+ RF_CallbackDesc_t *cb, *cb1;
+
+ RF_LOCK_MUTEX(hdr->mutex);
+ for (pt = NULL, p = hdr->chain; p; pt = p, p = p->next) {
+ if ((p->parityStripeID == psid) && (p->which_ru == which_ru))
+ break;
+ }
+ if (p == NULL) {
+ rf_PrintPSStatusTable(raidPtr, row);
+ }
+ RF_ASSERT(p); /* it must be there */
+
+ Dprintf2("PSS: deleting pss for psid %ld ru %d\n", psid, which_ru);
+
+ /* delete this entry from the hash chain */
+ if (pt)
+ pt->next = p->next;
+ else
+ hdr->chain = p->next;
+ p->next = NULL;
+
+ RF_UNLOCK_MUTEX(hdr->mutex);
+
+ /* wakup anyone waiting on the parity stripe ID */
+ cb = p->procWaitList;
+ p->procWaitList = NULL;
+ while (cb) {
+ Dprintf1("Waking up access waiting on parity stripe ID %ld\n", p->parityStripeID);
+ cb1 = cb->next;
+ (cb->callbackFunc) (cb->callbackArg);
+
+ /* THIS IS WHAT THE ORIGINAL CODE HAD... the extra 0 is bogus,
+ * IMHO */
+ /* (cb->callbackFunc)(cb->callbackArg, 0); */
+ rf_FreeCallbackDesc(cb);
+ cb = cb1;
+ }
+
+ rf_FreePSStatus(raidPtr, p);
+}
+
+RF_ReconParityStripeStatus_t *
+rf_AllocPSStatus(raidPtr)
+ RF_Raid_t *raidPtr;
+{
+ RF_ReconParityStripeStatus_t *p;
+
+ RF_FREELIST_GET_INIT_ARG(raidPtr->pss_freelist, p, next, (RF_ReconParityStripeStatus_t *), init_pss, raidPtr);
+ if (p) {
+ bzero(p->issued, raidPtr->numCol);
+ }
+ p->next = NULL;
+ /* no need to initialize here b/c the only place we're called from is
+ * the above Lookup */
+ return (p);
+}
+
+void
+rf_FreePSStatus(raidPtr, p)
+ RF_Raid_t *raidPtr;
+ RF_ReconParityStripeStatus_t *p;
+{
+ RF_ASSERT(p->procWaitList == NULL);
+ RF_ASSERT(p->blockWaitList == NULL);
+ RF_ASSERT(p->bufWaitList == NULL);
+
+ RF_FREELIST_FREE_CLEAN_ARG(raidPtr->pss_freelist, p, next, clean_pss, raidPtr);
+}
+
+static void
+RealPrintPSStatusTable(raidPtr, pssTable)
+ RF_Raid_t *raidPtr;
+ RF_PSStatusHeader_t *pssTable;
+{
+ int i, j, procsWaiting, blocksWaiting, bufsWaiting;
+ RF_ReconParityStripeStatus_t *p;
+ RF_CallbackDesc_t *cb;
+
+ printf("\nParity Stripe Status Table\n");
+ for (i = 0; i < raidPtr->pssTableSize; i++) {
+ for (p = pssTable[i].chain; p; p = p->next) {
+ procsWaiting = blocksWaiting = bufsWaiting = 0;
+ for (cb = p->procWaitList; cb; cb = cb->next)
+ procsWaiting++;
+ for (cb = p->blockWaitList; cb; cb = cb->next)
+ blocksWaiting++;
+ for (cb = p->bufWaitList; cb; cb = cb->next)
+ bufsWaiting++;
+ printf("PSID %ld RU %d : blockCount %d %d/%d/%d proc/block/buf waiting, issued ",
+ (long) p->parityStripeID, p->which_ru, p->blockCount, procsWaiting, blocksWaiting, bufsWaiting);
+ for (j = 0; j < raidPtr->numCol; j++)
+ printf("%c", (p->issued[j]) ? '1' : '0');
+ if (!p->flags)
+ printf(" flags: (none)");
+ else {
+ if (p->flags & RF_PSS_UNDER_RECON)
+ printf(" under-recon");
+ if (p->flags & RF_PSS_FORCED_ON_WRITE)
+ printf(" forced-w");
+ if (p->flags & RF_PSS_FORCED_ON_READ)
+ printf(" forced-r");
+ if (p->flags & RF_PSS_RECON_BLOCKED)
+ printf(" blocked");
+ if (p->flags & RF_PSS_BUFFERWAIT)
+ printf(" bufwait");
+ }
+ printf("\n");
+ }
+ }
+}
+
+void
+rf_PrintPSStatusTable(raidPtr, row)
+ RF_Raid_t *raidPtr;
+ RF_RowCol_t row;
+{
+ RF_PSStatusHeader_t *pssTable = raidPtr->reconControl[row]->pssTable;
+ RealPrintPSStatusTable(raidPtr, pssTable);
+}
diff --git a/sys/dev/raidframe/rf_psstatus.h b/sys/dev/raidframe/rf_psstatus.h
new file mode 100644
index 0000000..c836d49
--- /dev/null
+++ b/sys/dev/raidframe/rf_psstatus.h
@@ -0,0 +1,132 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_psstatus.h,v 1.3 1999/02/05 00:06:15 oster Exp $ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Mark Holland
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+/*****************************************************************************
+ *
+ * psstatus.h
+ *
+ * The reconstruction code maintains a bunch of status related to the parity
+ * stripes that are currently under reconstruction. This header file defines
+ * the status structures.
+ *
+ *****************************************************************************/
+
+#ifndef _RF__RF_PSSTATUS_H_
+#define _RF__RF_PSSTATUS_H_
+
+#include <dev/raidframe/rf_types.h>
+#include <dev/raidframe/rf_threadstuff.h>
+#include <dev/raidframe/rf_callback.h>
+
+#define RF_PS_MAX_BUFS 10 /* max number of bufs we'll accumulate before
+ * we do an XOR */
+
+#define RF_PSS_DEFAULT_TABLESIZE 200
+
+/*
+ * Macros to acquire/release the mutex lock on a parity stripe status
+ * descriptor. Note that we use just one lock for the whole hash chain.
+ */
+#define RF_HASH_PSID(_raid_,_psid_) ( (_psid_) % ((_raid_)->pssTableSize) ) /* simple hash function */
+#define RF_LOCK_PSS_MUTEX(_raidPtr, _row, _psid) \
+ RF_LOCK_MUTEX((_raidPtr)->reconControl[_row]->pssTable[ RF_HASH_PSID(_raidPtr,_psid) ].mutex)
+#define RF_UNLOCK_PSS_MUTEX(_raidPtr, _row, _psid) \
+ RF_UNLOCK_MUTEX((_raidPtr)->reconControl[_row]->pssTable[ RF_HASH_PSID(_raidPtr,_psid) ].mutex)
+
+struct RF_ReconParityStripeStatus_s {
+ RF_StripeNum_t parityStripeID; /* the parity stripe ID */
+ RF_ReconUnitNum_t which_ru; /* which reconstruction unit with the
+ * indicated parity stripe */
+ RF_PSSFlags_t flags; /* flags indicating various conditions */
+ void *rbuf; /* this is the accumulating xor sum */
+ void *writeRbuf; /* DEBUG ONLY: a pointer to the rbuf after it
+ * has filled & been sent to disk */
+ void *rbufsForXor[RF_PS_MAX_BUFS]; /* these are buffers still to
+ * be xored into the
+ * accumulating sum */
+ int xorBufCount; /* num buffers waiting to be xored */
+ int blockCount; /* count of # proc that have blocked recon on
+ * this parity stripe */
+ char *issued; /* issued[i]==1 <=> column i has already
+ * issued a read request for the indicated RU */
+ RF_CallbackDesc_t *procWaitList; /* list of user procs waiting
+ * for recon to be done */
+ RF_CallbackDesc_t *blockWaitList; /* list of disks blocked
+ * waiting for user write to
+ * complete */
+ RF_CallbackDesc_t *bufWaitList; /* list of disks blocked waiting to
+ * acquire a buffer for this RU */
+ RF_ReconParityStripeStatus_t *next;
+};
+
+struct RF_PSStatusHeader_s {
+ RF_DECLARE_MUTEX(mutex) /* mutex for this hash chain */
+ RF_ReconParityStripeStatus_t *chain; /* the hash chain */
+};
+/* masks for the "flags" field above */
+#define RF_PSS_NONE 0x00000000 /* no flags */
+#define RF_PSS_UNDER_RECON 0x00000001 /* this parity stripe is
+ * currently under
+ * reconstruction */
+#define RF_PSS_FORCED_ON_WRITE 0x00000002 /* indicates a recon was
+ * forced due to a user-write
+ * operation */
+#define RF_PSS_FORCED_ON_READ 0x00000004 /* ditto for read, but not
+ * currently implemented */
+#define RF_PSS_RECON_BLOCKED 0x00000008 /* reconstruction is currently
+ * blocked due to a pending
+ * user I/O */
+#define RF_PSS_CREATE 0x00000010 /* tells LookupRUStatus to
+ * create the entry */
+#define RF_PSS_BUFFERWAIT 0x00000020 /* someone is waiting for a
+ * buffer for this RU */
+
+int
+rf_ConfigurePSStatus(RF_ShutdownList_t ** listp, RF_Raid_t * raidPtr,
+ RF_Config_t * cfgPtr);
+
+RF_PSStatusHeader_t *rf_MakeParityStripeStatusTable(RF_Raid_t * raidPtr);
+void
+rf_FreeParityStripeStatusTable(RF_Raid_t * raidPtr,
+ RF_PSStatusHeader_t * pssTable);
+RF_ReconParityStripeStatus_t *
+rf_LookupRUStatus(RF_Raid_t * raidPtr,
+ RF_PSStatusHeader_t * pssTable, RF_StripeNum_t psID,
+ RF_ReconUnitNum_t which_ru, RF_PSSFlags_t flags, int *created);
+void
+rf_PSStatusDelete(RF_Raid_t * raidPtr, RF_PSStatusHeader_t * pssTable,
+ RF_ReconParityStripeStatus_t * pssPtr);
+void
+rf_RemoveFromActiveReconTable(RF_Raid_t * raidPtr, RF_RowCol_t row,
+ RF_StripeNum_t psid, RF_ReconUnitNum_t which_ru);
+RF_ReconParityStripeStatus_t *rf_AllocPSStatus(RF_Raid_t * raidPtr);
+void rf_FreePSStatus(RF_Raid_t * raidPtr, RF_ReconParityStripeStatus_t * p);
+void rf_PrintPSStatusTable(RF_Raid_t * raidPtr, RF_RowCol_t row);
+
+#endif /* !_RF__RF_PSSTATUS_H_ */
diff --git a/sys/dev/raidframe/rf_raid.h b/sys/dev/raidframe/rf_raid.h
new file mode 100644
index 0000000..e91a2ae
--- /dev/null
+++ b/sys/dev/raidframe/rf_raid.h
@@ -0,0 +1,299 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_raid.h,v 1.12 2000/02/24 17:12:10 oster Exp $ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Mark Holland
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+/**********************************************
+ * rf_raid.h -- main header file for RAID driver
+ **********************************************/
+
+
+#ifndef _RF__RF_RAID_H_
+#define _RF__RF_RAID_H_
+
+#include <dev/raidframe/rf_archs.h>
+#include <dev/raidframe/rf_types.h>
+#include <dev/raidframe/rf_threadstuff.h>
+
+#include <dev/raidframe/rf_bsd.h>
+
+#include <sys/disklabel.h>
+#include <sys/types.h>
+
+#include <dev/raidframe/rf_alloclist.h>
+#include <dev/raidframe/rf_stripelocks.h>
+#include <dev/raidframe/rf_layout.h>
+#include <dev/raidframe/rf_disks.h>
+#include <dev/raidframe/rf_debugMem.h>
+#include <dev/raidframe/rf_diskqueue.h>
+#include <dev/raidframe/rf_reconstruct.h>
+#include <dev/raidframe/rf_acctrace.h>
+
+#if RF_INCLUDE_PARITYLOGGING > 0
+#include <dev/raidframe/rf_paritylog.h>
+#endif /* RF_INCLUDE_PARITYLOGGING > 0 */
+
+#define RF_MAX_DISKS 128 /* max disks per array */
+#if defined(__NetBSD__)
+#define RF_DEV2RAIDID(_dev) (DISKUNIT(_dev))
+#endif
+
+#define RF_COMPONENT_LABEL_VERSION_1 1
+#define RF_COMPONENT_LABEL_VERSION 2
+#define RF_RAID_DIRTY 0
+#define RF_RAID_CLEAN 1
+
+
+/*
+ * Each row in the array is a distinct parity group, so
+ * each has it's own status, which is one of the following.
+ */
+typedef enum RF_RowStatus_e {
+ rf_rs_optimal,
+ rf_rs_degraded,
+ rf_rs_reconstructing,
+ rf_rs_reconfigured
+} RF_RowStatus_t;
+
+struct RF_CumulativeStats_s {
+ struct timeval start; /* the time when the stats were last started */
+ struct timeval stop; /* the time when the stats were last stopped */
+ long sum_io_us; /* sum of all user response times (us) */
+ long num_ios; /* total number of I/Os serviced */
+ long num_sect_moved; /* total number of sectors read or written */
+};
+
+struct RF_ThroughputStats_s {
+ RF_DECLARE_MUTEX(mutex) /* a mutex used to lock the configuration
+ * stuff */
+ struct timeval start; /* timer started when numOutstandingRequests
+ * moves from 0 to 1 */
+ struct timeval stop; /* timer stopped when numOutstandingRequests
+ * moves from 1 to 0 */
+ RF_uint64 sum_io_us; /* total time timer is enabled */
+ RF_uint64 num_ios; /* total number of ios processed by RAIDframe */
+ long num_out_ios; /* number of outstanding ios */
+};
+
+struct RF_Raid_s {
+ /* This portion never changes, and can be accessed without locking */
+ /* an exception is Disks[][].status, which requires locking when it is
+ * changed. XXX this is no longer true. numSpare and friends can
+ * change now.
+ */
+ u_int numRow; /* number of rows of disks, typically == # of
+ * ranks */
+ u_int numCol; /* number of columns of disks, typically == #
+ * of disks/rank */
+ u_int numSpare; /* number of spare disks */
+ int maxQueueDepth; /* max disk queue depth */
+ RF_SectorCount_t totalSectors; /* total number of sectors in the
+ * array */
+ RF_SectorCount_t sectorsPerDisk; /* number of sectors on each
+ * disk */
+ u_int logBytesPerSector; /* base-2 log of the number of bytes
+ * in a sector */
+ u_int bytesPerSector; /* bytes in a sector */
+ RF_int32 sectorMask; /* mask of bytes-per-sector */
+
+ RF_RaidLayout_t Layout; /* all information related to layout */
+ RF_RaidDisk_t **Disks; /* all information related to physical disks */
+ RF_DiskQueue_t **Queues;/* all information related to disk queues */
+ RF_DiskQueueSW_t *qType;/* pointer to the DiskQueueSW used for the
+ component queues. */
+ /* NOTE: This is an anchor point via which the queues can be
+ * accessed, but the enqueue/dequeue routines in diskqueue.c use a
+ * local copy of this pointer for the actual accesses. */
+ /* The remainder of the structure can change, and therefore requires
+ * locking on reads and updates */
+ RF_DECLARE_MUTEX(mutex) /* mutex used to serialize access to
+ * the fields below */
+ RF_RowStatus_t *status; /* the status of each row in the array */
+ int valid; /* indicates successful configuration */
+ RF_LockTableEntry_t *lockTable; /* stripe-lock table */
+ RF_LockTableEntry_t *quiesceLock; /* quiesnce table */
+ int numFailures; /* total number of failures in the array */
+ int numNewFailures; /* number of *new* failures (that havn't
+ caused a mod_counter update */
+
+ int parity_good; /* !0 if parity is known to be correct */
+ int serial_number; /* a "serial number" for this set */
+ int mod_counter; /* modification counter for component labels */
+ int clean; /* the clean bit for this array. */
+
+ int openings; /* Number of IO's which can be scheduled
+ simultaneously (high-level - not a
+ per-component limit)*/
+
+ int maxOutstanding; /* maxOutstanding requests (per-component) */
+ int autoconfigure; /* automatically configure this RAID set.
+ 0 == no, 1 == yes */
+ int root_partition; /* Use this set as /
+ 0 == no, 1 == yes*/
+ int last_unit; /* last unit number (e.g. 0 for /dev/raid0)
+ of this component. Used for autoconfigure
+ only. */
+ int config_order; /* 0 .. n. The order in which the component
+ should be auto-configured. E.g. 0 is will
+ done first, (and would become raid0).
+ This may be in conflict with last_unit!!?! */
+ /* Not currently used. */
+
+ /*
+ * Cleanup stuff
+ */
+ RF_ShutdownList_t *shutdownList; /* shutdown activities */
+ RF_AllocListElem_t *cleanupList; /* memory to be freed at
+ * shutdown time */
+
+ /*
+ * Recon stuff
+ */
+ RF_HeadSepLimit_t headSepLimit;
+ int numFloatingReconBufs;
+ int reconInProgress;
+ RF_DECLARE_COND(waitForReconCond)
+ RF_RaidReconDesc_t *reconDesc; /* reconstruction descriptor */
+ RF_ReconCtrl_t **reconControl; /* reconstruction control structure
+ * pointers for each row in the array */
+
+ /*
+ * Array-quiescence stuff
+ */
+ RF_DECLARE_MUTEX(access_suspend_mutex)
+ RF_DECLARE_COND(quiescent_cond)
+ RF_IoCount_t accesses_suspended;
+ RF_IoCount_t accs_in_flight;
+ int access_suspend_release;
+ int waiting_for_quiescence;
+ RF_CallbackDesc_t *quiesce_wait_list;
+
+ /*
+ * Statistics
+ */
+#if !defined(_KERNEL) && !defined(SIMULATE)
+ RF_ThroughputStats_t throughputstats;
+#endif /* !KERNEL && !SIMULATE */
+ RF_CumulativeStats_t userstats;
+ int parity_rewrite_stripes_done;
+ int recon_stripes_done;
+ int copyback_stripes_done;
+
+ int recon_in_progress;
+ int parity_rewrite_in_progress;
+ int copyback_in_progress;
+
+ /*
+ * Engine thread control
+ */
+ RF_DECLARE_MUTEX(node_queue_mutex)
+ RF_DECLARE_COND(node_queue_cond)
+ RF_DagNode_t *node_queue;
+ RF_Thread_t parity_rewrite_thread;
+ RF_Thread_t copyback_thread;
+ RF_Thread_t engine_thread;
+ RF_Thread_t recon_thread;
+ RF_ThreadGroup_t engine_tg;
+ int shutdown_engine;
+ int dags_in_flight; /* debug */
+
+ /*
+ * PSS (Parity Stripe Status) stuff
+ */
+ RF_FreeList_t *pss_freelist;
+ long pssTableSize;
+
+ /*
+ * Reconstruction stuff
+ */
+ int procsInBufWait;
+ int numFullReconBuffers;
+ RF_AccTraceEntry_t *recon_tracerecs;
+ unsigned long accumXorTimeUs;
+ RF_ReconDoneProc_t *recon_done_procs;
+ RF_DECLARE_MUTEX(recon_done_proc_mutex)
+ /*
+ * nAccOutstanding, waitShutdown protected by desc freelist lock
+ * (This may seem strange, since that's a central serialization point
+ * for a per-array piece of data, but otherwise, it'd be an extra
+ * per-array lock, and that'd only be less efficient...)
+ */
+ RF_DECLARE_COND(outstandingCond)
+ int waitShutdown;
+ int nAccOutstanding;
+
+ RF_DiskId_t **diskids;
+ RF_DiskId_t *sparediskids;
+
+ int raidid;
+ RF_AccTotals_t acc_totals;
+ int keep_acc_totals;
+
+ struct raidcinfo **raid_cinfo; /* array of component info */
+
+ int terminate_disk_queues;
+
+ /*
+ * XXX
+ *
+ * config-specific information should be moved
+ * somewhere else, or at least hung off this
+ * in some generic way
+ */
+
+ /* used by rf_compute_workload_shift */
+ RF_RowCol_t hist_diskreq[RF_MAXROW][RF_MAXCOL];
+
+ /* used by declustering */
+ int noRotate;
+
+#if RF_INCLUDE_PARITYLOGGING > 0
+ /* used by parity logging */
+ RF_SectorCount_t regionLogCapacity;
+ RF_ParityLogQueue_t parityLogPool; /* pool of unused parity logs */
+ RF_RegionInfo_t *regionInfo; /* array of region state */
+ int numParityLogs;
+ int numSectorsPerLog;
+ int regionParityRange;
+ int logsInUse; /* debugging */
+ RF_ParityLogDiskQueue_t parityLogDiskQueue; /* state of parity
+ * logging disk work */
+ RF_RegionBufferQueue_t regionBufferPool; /* buffers for holding
+ * region log */
+ RF_RegionBufferQueue_t parityBufferPool; /* buffers for holding
+ * parity */
+ caddr_t parityLogBufferHeap; /* pool of unused parity logs */
+ RF_Thread_t pLogDiskThreadHandle;
+
+#endif /* RF_INCLUDE_PARITYLOGGING > 0 */
+ /* Point back to the softc for this device. This is needed to rid
+ * ourselves of the ugly static device arrays.
+ * XXX Will this affect compatibility with NetBSD?
+ */
+ void *sc;
+};
+#endif /* !_RF__RF_RAID_H_ */
diff --git a/sys/dev/raidframe/rf_raid0.c b/sys/dev/raidframe/rf_raid0.c
new file mode 100644
index 0000000..a9418d3
--- /dev/null
+++ b/sys/dev/raidframe/rf_raid0.c
@@ -0,0 +1,161 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_raid0.c,v 1.4 2000/01/07 03:41:02 oster Exp $ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Mark Holland
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+/***************************************
+ *
+ * rf_raid0.c -- implements RAID Level 0
+ *
+ ***************************************/
+
+#include <dev/raidframe/rf_types.h>
+#include <dev/raidframe/rf_raid.h>
+#include <dev/raidframe/rf_raid0.h>
+#include <dev/raidframe/rf_dag.h>
+#include <dev/raidframe/rf_dagffrd.h>
+#include <dev/raidframe/rf_dagffwr.h>
+#include <dev/raidframe/rf_dagutils.h>
+#include <dev/raidframe/rf_dagfuncs.h>
+#include <dev/raidframe/rf_general.h>
+#include <dev/raidframe/rf_configure.h>
+#include <dev/raidframe/rf_parityscan.h>
+
+typedef struct RF_Raid0ConfigInfo_s {
+ RF_RowCol_t *stripeIdentifier;
+} RF_Raid0ConfigInfo_t;
+
+int
+rf_ConfigureRAID0(
+ RF_ShutdownList_t ** listp,
+ RF_Raid_t * raidPtr,
+ RF_Config_t * cfgPtr)
+{
+ RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
+ RF_Raid0ConfigInfo_t *info;
+ RF_RowCol_t i;
+
+ /* create a RAID level 0 configuration structure */
+ RF_MallocAndAdd(info, sizeof(RF_Raid0ConfigInfo_t), (RF_Raid0ConfigInfo_t *), raidPtr->cleanupList);
+ if (info == NULL)
+ return (ENOMEM);
+ layoutPtr->layoutSpecificInfo = (void *) info;
+
+ RF_MallocAndAdd(info->stripeIdentifier, raidPtr->numCol * sizeof(RF_RowCol_t), (RF_RowCol_t *), raidPtr->cleanupList);
+ if (info->stripeIdentifier == NULL)
+ return (ENOMEM);
+ for (i = 0; i < raidPtr->numCol; i++)
+ info->stripeIdentifier[i] = i;
+
+ RF_ASSERT(raidPtr->numRow == 1);
+ raidPtr->totalSectors = layoutPtr->stripeUnitsPerDisk * raidPtr->numCol * layoutPtr->sectorsPerStripeUnit;
+ layoutPtr->numStripe = layoutPtr->stripeUnitsPerDisk;
+ layoutPtr->dataSectorsPerStripe = raidPtr->numCol * layoutPtr->sectorsPerStripeUnit;
+ layoutPtr->bytesPerStripeUnit = layoutPtr->sectorsPerStripeUnit << raidPtr->logBytesPerSector;
+ layoutPtr->numDataCol = raidPtr->numCol;
+ layoutPtr->numParityCol = 0;
+ return (0);
+}
+
+void
+rf_MapSectorRAID0(
+ RF_Raid_t * raidPtr,
+ RF_RaidAddr_t raidSector,
+ RF_RowCol_t * row,
+ RF_RowCol_t * col,
+ RF_SectorNum_t * diskSector,
+ int remap)
+{
+ RF_StripeNum_t SUID = raidSector / raidPtr->Layout.sectorsPerStripeUnit;
+ *row = 0;
+ *col = SUID % raidPtr->numCol;
+ *diskSector = (SUID / raidPtr->numCol) * raidPtr->Layout.sectorsPerStripeUnit +
+ (raidSector % raidPtr->Layout.sectorsPerStripeUnit);
+}
+
+void
+rf_MapParityRAID0(
+ RF_Raid_t * raidPtr,
+ RF_RaidAddr_t raidSector,
+ RF_RowCol_t * row,
+ RF_RowCol_t * col,
+ RF_SectorNum_t * diskSector,
+ int remap)
+{
+ *row = *col = 0;
+ *diskSector = 0;
+}
+
+void
+rf_IdentifyStripeRAID0(
+ RF_Raid_t * raidPtr,
+ RF_RaidAddr_t addr,
+ RF_RowCol_t ** diskids,
+ RF_RowCol_t * outRow)
+{
+ RF_Raid0ConfigInfo_t *info;
+
+ info = raidPtr->Layout.layoutSpecificInfo;
+ *diskids = info->stripeIdentifier;
+ *outRow = 0;
+}
+
+void
+rf_MapSIDToPSIDRAID0(
+ RF_RaidLayout_t * layoutPtr,
+ RF_StripeNum_t stripeID,
+ RF_StripeNum_t * psID,
+ RF_ReconUnitNum_t * which_ru)
+{
+ *which_ru = 0;
+ *psID = stripeID;
+}
+
+void
+rf_RAID0DagSelect(
+ RF_Raid_t * raidPtr,
+ RF_IoType_t type,
+ RF_AccessStripeMap_t * asmap,
+ RF_VoidFuncPtr * createFunc)
+{
+ *createFunc = ((type == RF_IO_TYPE_READ) ?
+ (RF_VoidFuncPtr) rf_CreateFaultFreeReadDAG : (RF_VoidFuncPtr) rf_CreateRAID0WriteDAG);
+}
+
+int
+rf_VerifyParityRAID0(
+ RF_Raid_t * raidPtr,
+ RF_RaidAddr_t raidAddr,
+ RF_PhysDiskAddr_t * parityPDA,
+ int correct_it,
+ RF_RaidAccessFlags_t flags)
+{
+ /*
+ * No parity is always okay.
+ */
+ return (RF_PARITY_OKAY);
+}
diff --git a/sys/dev/raidframe/rf_raid0.h b/sys/dev/raidframe/rf_raid0.h
new file mode 100644
index 0000000..36aae81
--- /dev/null
+++ b/sys/dev/raidframe/rf_raid0.h
@@ -0,0 +1,58 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_raid0.h,v 1.3 1999/02/05 00:06:15 oster Exp $ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Mark Holland
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+/* rf_raid0.h - header file for RAID Level 0 */
+
+#ifndef _RF__RF_RAID0_H_
+#define _RF__RF_RAID0_H_
+
+int
+rf_ConfigureRAID0(RF_ShutdownList_t ** listp, RF_Raid_t * raidPtr,
+ RF_Config_t * cfgPtr);
+void
+rf_MapSectorRAID0(RF_Raid_t * raidPtr, RF_RaidAddr_t raidSector,
+ RF_RowCol_t * row, RF_RowCol_t * col, RF_SectorNum_t * diskSector, int remap);
+void
+rf_MapParityRAID0(RF_Raid_t * raidPtr, RF_RaidAddr_t raidSector,
+ RF_RowCol_t * row, RF_RowCol_t * col, RF_SectorNum_t * diskSector, int remap);
+void
+rf_IdentifyStripeRAID0(RF_Raid_t * raidPtr, RF_RaidAddr_t addr,
+ RF_RowCol_t ** diskids, RF_RowCol_t * outRow);
+void
+rf_MapSIDToPSIDRAID0(RF_RaidLayout_t * layoutPtr,
+ RF_StripeNum_t stripeID, RF_StripeNum_t * psID,
+ RF_ReconUnitNum_t * which_ru);
+void
+rf_RAID0DagSelect(RF_Raid_t * raidPtr, RF_IoType_t type,
+ RF_AccessStripeMap_t * asmap, RF_VoidFuncPtr * createFunc);
+int
+rf_VerifyParityRAID0(RF_Raid_t * raidPtr, RF_RaidAddr_t raidAddr,
+ RF_PhysDiskAddr_t * parityPDA, int correct_it, RF_RaidAccessFlags_t flags);
+
+#endif /* !_RF__RF_RAID0_H_ */
diff --git a/sys/dev/raidframe/rf_raid1.c b/sys/dev/raidframe/rf_raid1.c
new file mode 100644
index 0000000..5831dfe
--- /dev/null
+++ b/sys/dev/raidframe/rf_raid1.c
@@ -0,0 +1,689 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_raid1.c,v 1.5 2000/01/08 22:57:30 oster Exp $ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: William V. Courtright II
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+/*****************************************************************************
+ *
+ * rf_raid1.c -- implements RAID Level 1
+ *
+ *****************************************************************************/
+
+#include <dev/raidframe/rf_raid.h>
+#include <dev/raidframe/rf_raid1.h>
+#include <dev/raidframe/rf_dag.h>
+#include <dev/raidframe/rf_dagffrd.h>
+#include <dev/raidframe/rf_dagffwr.h>
+#include <dev/raidframe/rf_dagdegrd.h>
+#include <dev/raidframe/rf_dagutils.h>
+#include <dev/raidframe/rf_dagfuncs.h>
+#include <dev/raidframe/rf_diskqueue.h>
+#include <dev/raidframe/rf_general.h>
+#include <dev/raidframe/rf_utils.h>
+#include <dev/raidframe/rf_parityscan.h>
+#include <dev/raidframe/rf_mcpair.h>
+#include <dev/raidframe/rf_layout.h>
+#include <dev/raidframe/rf_map.h>
+#include <dev/raidframe/rf_engine.h>
+#include <dev/raidframe/rf_reconbuffer.h>
+#include <dev/raidframe/rf_kintf.h>
+
+typedef struct RF_Raid1ConfigInfo_s {
+ RF_RowCol_t **stripeIdentifier;
+} RF_Raid1ConfigInfo_t;
+/* start of day code specific to RAID level 1 */
+int
+rf_ConfigureRAID1(
+ RF_ShutdownList_t ** listp,
+ RF_Raid_t * raidPtr,
+ RF_Config_t * cfgPtr)
+{
+ RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
+ RF_Raid1ConfigInfo_t *info;
+ RF_RowCol_t i;
+
+ /* create a RAID level 1 configuration structure */
+ RF_MallocAndAdd(info, sizeof(RF_Raid1ConfigInfo_t), (RF_Raid1ConfigInfo_t *), raidPtr->cleanupList);
+ if (info == NULL)
+ return (ENOMEM);
+ layoutPtr->layoutSpecificInfo = (void *) info;
+
+ /* ... and fill it in. */
+ info->stripeIdentifier = rf_make_2d_array(raidPtr->numCol / 2, 2, raidPtr->cleanupList);
+ if (info->stripeIdentifier == NULL)
+ return (ENOMEM);
+ for (i = 0; i < (raidPtr->numCol / 2); i++) {
+ info->stripeIdentifier[i][0] = (2 * i);
+ info->stripeIdentifier[i][1] = (2 * i) + 1;
+ }
+
+ RF_ASSERT(raidPtr->numRow == 1);
+
+ /* this implementation of RAID level 1 uses one row of numCol disks
+ * and allows multiple (numCol / 2) stripes per row. A stripe
+ * consists of a single data unit and a single parity (mirror) unit.
+ * stripe id = raidAddr / stripeUnitSize */
+ raidPtr->totalSectors = layoutPtr->stripeUnitsPerDisk * (raidPtr->numCol / 2) * layoutPtr->sectorsPerStripeUnit;
+ layoutPtr->numStripe = layoutPtr->stripeUnitsPerDisk * (raidPtr->numCol / 2);
+ layoutPtr->dataSectorsPerStripe = layoutPtr->sectorsPerStripeUnit;
+ layoutPtr->bytesPerStripeUnit = layoutPtr->sectorsPerStripeUnit << raidPtr->logBytesPerSector;
+ layoutPtr->numDataCol = 1;
+ layoutPtr->numParityCol = 1;
+ return (0);
+}
+
+
+/* returns the physical disk location of the primary copy in the mirror pair */
+void
+rf_MapSectorRAID1(
+ RF_Raid_t * raidPtr,
+ RF_RaidAddr_t raidSector,
+ RF_RowCol_t * row,
+ RF_RowCol_t * col,
+ RF_SectorNum_t * diskSector,
+ int remap)
+{
+ RF_StripeNum_t SUID = raidSector / raidPtr->Layout.sectorsPerStripeUnit;
+ RF_RowCol_t mirrorPair = SUID % (raidPtr->numCol / 2);
+
+ *row = 0;
+ *col = 2 * mirrorPair;
+ *diskSector = ((SUID / (raidPtr->numCol / 2)) * raidPtr->Layout.sectorsPerStripeUnit) + (raidSector % raidPtr->Layout.sectorsPerStripeUnit);
+}
+
+
+/* Map Parity
+ *
+ * returns the physical disk location of the secondary copy in the mirror
+ * pair
+ */
+void
+rf_MapParityRAID1(
+ RF_Raid_t * raidPtr,
+ RF_RaidAddr_t raidSector,
+ RF_RowCol_t * row,
+ RF_RowCol_t * col,
+ RF_SectorNum_t * diskSector,
+ int remap)
+{
+ RF_StripeNum_t SUID = raidSector / raidPtr->Layout.sectorsPerStripeUnit;
+ RF_RowCol_t mirrorPair = SUID % (raidPtr->numCol / 2);
+
+ *row = 0;
+ *col = (2 * mirrorPair) + 1;
+
+ *diskSector = ((SUID / (raidPtr->numCol / 2)) * raidPtr->Layout.sectorsPerStripeUnit) + (raidSector % raidPtr->Layout.sectorsPerStripeUnit);
+}
+
+
+/* IdentifyStripeRAID1
+ *
+ * returns a list of disks for a given redundancy group
+ */
+void
+rf_IdentifyStripeRAID1(
+ RF_Raid_t * raidPtr,
+ RF_RaidAddr_t addr,
+ RF_RowCol_t ** diskids,
+ RF_RowCol_t * outRow)
+{
+ RF_StripeNum_t stripeID = rf_RaidAddressToStripeID(&raidPtr->Layout, addr);
+ RF_Raid1ConfigInfo_t *info = raidPtr->Layout.layoutSpecificInfo;
+ RF_ASSERT(stripeID >= 0);
+ RF_ASSERT(addr >= 0);
+ *outRow = 0;
+ *diskids = info->stripeIdentifier[stripeID % (raidPtr->numCol / 2)];
+ RF_ASSERT(*diskids);
+}
+
+
+/* MapSIDToPSIDRAID1
+ *
+ * maps a logical stripe to a stripe in the redundant array
+ */
+void
+rf_MapSIDToPSIDRAID1(
+ RF_RaidLayout_t * layoutPtr,
+ RF_StripeNum_t stripeID,
+ RF_StripeNum_t * psID,
+ RF_ReconUnitNum_t * which_ru)
+{
+ *which_ru = 0;
+ *psID = stripeID;
+}
+
+
+
+/******************************************************************************
+ * select a graph to perform a single-stripe access
+ *
+ * Parameters: raidPtr - description of the physical array
+ * type - type of operation (read or write) requested
+ * asmap - logical & physical addresses for this access
+ * createFunc - name of function to use to create the graph
+ *****************************************************************************/
+
+void
+rf_RAID1DagSelect(
+ RF_Raid_t * raidPtr,
+ RF_IoType_t type,
+ RF_AccessStripeMap_t * asmap,
+ RF_VoidFuncPtr * createFunc)
+{
+ RF_RowCol_t frow, fcol, or, oc;
+ RF_PhysDiskAddr_t *failedPDA;
+ int prior_recon;
+ RF_RowStatus_t rstat;
+ RF_SectorNum_t oo;
+
+
+ RF_ASSERT(RF_IO_IS_R_OR_W(type));
+
+ if (asmap->numDataFailed + asmap->numParityFailed > 1) {
+ RF_ERRORMSG("Multiple disks failed in a single group! Aborting I/O operation.\n");
+ *createFunc = NULL;
+ return;
+ }
+ if (asmap->numDataFailed + asmap->numParityFailed) {
+ /*
+ * We've got a fault. Re-map to spare space, iff applicable.
+ * Shouldn't the arch-independent code do this for us?
+ * Anyway, it turns out if we don't do this here, then when
+ * we're reconstructing, writes go only to the surviving
+ * original disk, and aren't reflected on the reconstructed
+ * spare. Oops. --jimz
+ */
+ failedPDA = asmap->failedPDAs[0];
+ frow = failedPDA->row;
+ fcol = failedPDA->col;
+ rstat = raidPtr->status[frow];
+ prior_recon = (rstat == rf_rs_reconfigured) || (
+ (rstat == rf_rs_reconstructing) ?
+ rf_CheckRUReconstructed(raidPtr->reconControl[frow]->reconMap, failedPDA->startSector) : 0
+ );
+ if (prior_recon) {
+ or = frow;
+ oc = fcol;
+ oo = failedPDA->startSector;
+ /*
+ * If we did distributed sparing, we'd monkey with that here.
+ * But we don't, so we'll
+ */
+ failedPDA->row = raidPtr->Disks[frow][fcol].spareRow;
+ failedPDA->col = raidPtr->Disks[frow][fcol].spareCol;
+ /*
+ * Redirect other components, iff necessary. This looks
+ * pretty suspicious to me, but it's what the raid5
+ * DAG select does.
+ */
+ if (asmap->parityInfo->next) {
+ if (failedPDA == asmap->parityInfo) {
+ failedPDA->next->row = failedPDA->row;
+ failedPDA->next->col = failedPDA->col;
+ } else {
+ if (failedPDA == asmap->parityInfo->next) {
+ asmap->parityInfo->row = failedPDA->row;
+ asmap->parityInfo->col = failedPDA->col;
+ }
+ }
+ }
+ if (rf_dagDebug || rf_mapDebug) {
+ printf("raid%d: Redirected type '%c' r %d c %d o %ld -> r %d c %d o %ld\n",
+ raidPtr->raidid, type, or, oc,
+ (long) oo, failedPDA->row,
+ failedPDA->col,
+ (long) failedPDA->startSector);
+ }
+ asmap->numDataFailed = asmap->numParityFailed = 0;
+ }
+ }
+ if (type == RF_IO_TYPE_READ) {
+ if (asmap->numDataFailed == 0)
+ *createFunc = (RF_VoidFuncPtr) rf_CreateMirrorIdleReadDAG;
+ else
+ *createFunc = (RF_VoidFuncPtr) rf_CreateRaidOneDegradedReadDAG;
+ } else {
+ *createFunc = (RF_VoidFuncPtr) rf_CreateRaidOneWriteDAG;
+ }
+}
+
+int
+rf_VerifyParityRAID1(
+ RF_Raid_t * raidPtr,
+ RF_RaidAddr_t raidAddr,
+ RF_PhysDiskAddr_t * parityPDA,
+ int correct_it,
+ RF_RaidAccessFlags_t flags)
+{
+ int nbytes, bcount, stripeWidth, ret, i, j, nbad, *bbufs;
+ RF_DagNode_t *blockNode, *unblockNode, *wrBlock;
+ RF_DagHeader_t *rd_dag_h, *wr_dag_h;
+ RF_AccessStripeMapHeader_t *asm_h;
+ RF_AllocListElem_t *allocList;
+ RF_AccTraceEntry_t tracerec;
+ RF_ReconUnitNum_t which_ru;
+ RF_RaidLayout_t *layoutPtr;
+ RF_AccessStripeMap_t *aasm;
+ RF_SectorCount_t nsector;
+ RF_RaidAddr_t startAddr;
+ char *buf, *buf1, *buf2;
+ RF_PhysDiskAddr_t *pda;
+ RF_StripeNum_t psID;
+ RF_MCPair_t *mcpair;
+
+ layoutPtr = &raidPtr->Layout;
+ startAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, raidAddr);
+ nsector = parityPDA->numSector;
+ nbytes = rf_RaidAddressToByte(raidPtr, nsector);
+ psID = rf_RaidAddressToParityStripeID(layoutPtr, raidAddr, &which_ru);
+
+ asm_h = NULL;
+ rd_dag_h = wr_dag_h = NULL;
+ mcpair = NULL;
+
+ ret = RF_PARITY_COULD_NOT_VERIFY;
+
+ rf_MakeAllocList(allocList);
+ if (allocList == NULL)
+ return (RF_PARITY_COULD_NOT_VERIFY);
+ mcpair = rf_AllocMCPair();
+ if (mcpair == NULL)
+ goto done;
+ RF_ASSERT(layoutPtr->numDataCol == layoutPtr->numParityCol);
+ stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
+ bcount = nbytes * (layoutPtr->numDataCol + layoutPtr->numParityCol);
+ RF_MallocAndAdd(buf, bcount, (char *), allocList);
+ if (buf == NULL)
+ goto done;
+ if (rf_verifyParityDebug) {
+ printf("raid%d: RAID1 parity verify: buf=%lx bcount=%d (%lx - %lx)\n",
+ raidPtr->raidid, (long) buf, bcount, (long) buf,
+ (long) buf + bcount);
+ }
+ /*
+ * Generate a DAG which will read the entire stripe- then we can
+ * just compare data chunks versus "parity" chunks.
+ */
+
+ rd_dag_h = rf_MakeSimpleDAG(raidPtr, stripeWidth, nbytes, buf,
+ rf_DiskReadFunc, rf_DiskReadUndoFunc, "Rod", allocList, flags,
+ RF_IO_NORMAL_PRIORITY);
+ if (rd_dag_h == NULL)
+ goto done;
+ blockNode = rd_dag_h->succedents[0];
+ unblockNode = blockNode->succedents[0]->succedents[0];
+
+ /*
+ * Map the access to physical disk addresses (PDAs)- this will
+ * get us both a list of data addresses, and "parity" addresses
+ * (which are really mirror copies).
+ */
+ asm_h = rf_MapAccess(raidPtr, startAddr, layoutPtr->dataSectorsPerStripe,
+ buf, RF_DONT_REMAP);
+ aasm = asm_h->stripeMap;
+
+ buf1 = buf;
+ /*
+ * Loop through the data blocks, setting up read nodes for each.
+ */
+ for (pda = aasm->physInfo, i = 0; i < layoutPtr->numDataCol; i++, pda = pda->next) {
+ RF_ASSERT(pda);
+
+ rf_RangeRestrictPDA(raidPtr, parityPDA, pda, 0, 1);
+
+ RF_ASSERT(pda->numSector != 0);
+ if (rf_TryToRedirectPDA(raidPtr, pda, 0)) {
+ /* cannot verify parity with dead disk */
+ goto done;
+ }
+ pda->bufPtr = buf1;
+ blockNode->succedents[i]->params[0].p = pda;
+ blockNode->succedents[i]->params[1].p = buf1;
+ blockNode->succedents[i]->params[2].v = psID;
+ blockNode->succedents[i]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
+ buf1 += nbytes;
+ }
+ RF_ASSERT(pda == NULL);
+ /*
+ * keep i, buf1 running
+ *
+ * Loop through parity blocks, setting up read nodes for each.
+ */
+ for (pda = aasm->parityInfo; i < layoutPtr->numDataCol + layoutPtr->numParityCol; i++, pda = pda->next) {
+ RF_ASSERT(pda);
+ rf_RangeRestrictPDA(raidPtr, parityPDA, pda, 0, 1);
+ RF_ASSERT(pda->numSector != 0);
+ if (rf_TryToRedirectPDA(raidPtr, pda, 0)) {
+ /* cannot verify parity with dead disk */
+ goto done;
+ }
+ pda->bufPtr = buf1;
+ blockNode->succedents[i]->params[0].p = pda;
+ blockNode->succedents[i]->params[1].p = buf1;
+ blockNode->succedents[i]->params[2].v = psID;
+ blockNode->succedents[i]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
+ buf1 += nbytes;
+ }
+ RF_ASSERT(pda == NULL);
+
+ bzero((char *) &tracerec, sizeof(tracerec));
+ rd_dag_h->tracerec = &tracerec;
+
+ if (rf_verifyParityDebug > 1) {
+ printf("raid%d: RAID1 parity verify read dag:\n",
+ raidPtr->raidid);
+ rf_PrintDAGList(rd_dag_h);
+ }
+ RF_LOCK_MUTEX(mcpair->mutex);
+ mcpair->flag = 0;
+ rf_DispatchDAG(rd_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
+ (void *) mcpair);
+ while (mcpair->flag == 0) {
+ RF_WAIT_MCPAIR(mcpair);
+ }
+ RF_UNLOCK_MUTEX(mcpair->mutex);
+
+ if (rd_dag_h->status != rf_enable) {
+ RF_ERRORMSG("Unable to verify raid1 parity: can't read stripe\n");
+ ret = RF_PARITY_COULD_NOT_VERIFY;
+ goto done;
+ }
+ /*
+ * buf1 is the beginning of the data blocks chunk
+ * buf2 is the beginning of the parity blocks chunk
+ */
+ buf1 = buf;
+ buf2 = buf + (nbytes * layoutPtr->numDataCol);
+ ret = RF_PARITY_OKAY;
+ /*
+ * bbufs is "bad bufs"- an array whose entries are the data
+ * column numbers where we had miscompares. (That is, column 0
+ * and column 1 of the array are mirror copies, and are considered
+ * "data column 0" for this purpose).
+ */
+ RF_MallocAndAdd(bbufs, layoutPtr->numParityCol * sizeof(int), (int *),
+ allocList);
+ nbad = 0;
+ /*
+ * Check data vs "parity" (mirror copy).
+ */
+ for (i = 0; i < layoutPtr->numDataCol; i++) {
+ if (rf_verifyParityDebug) {
+ printf("raid%d: RAID1 parity verify %d bytes: i=%d buf1=%lx buf2=%lx buf=%lx\n",
+ raidPtr->raidid, nbytes, i, (long) buf1,
+ (long) buf2, (long) buf);
+ }
+ ret = bcmp(buf1, buf2, nbytes);
+ if (ret) {
+ if (rf_verifyParityDebug > 1) {
+ for (j = 0; j < nbytes; j++) {
+ if (buf1[j] != buf2[j])
+ break;
+ }
+ printf("psid=%ld j=%d\n", (long) psID, j);
+ printf("buf1 %02x %02x %02x %02x %02x\n", buf1[0] & 0xff,
+ buf1[1] & 0xff, buf1[2] & 0xff, buf1[3] & 0xff, buf1[4] & 0xff);
+ printf("buf2 %02x %02x %02x %02x %02x\n", buf2[0] & 0xff,
+ buf2[1] & 0xff, buf2[2] & 0xff, buf2[3] & 0xff, buf2[4] & 0xff);
+ }
+ if (rf_verifyParityDebug) {
+ printf("raid%d: RAID1: found bad parity, i=%d\n", raidPtr->raidid, i);
+ }
+ /*
+ * Parity is bad. Keep track of which columns were bad.
+ */
+ if (bbufs)
+ bbufs[nbad] = i;
+ nbad++;
+ ret = RF_PARITY_BAD;
+ }
+ buf1 += nbytes;
+ buf2 += nbytes;
+ }
+
+ if ((ret != RF_PARITY_OKAY) && correct_it) {
+ ret = RF_PARITY_COULD_NOT_CORRECT;
+ if (rf_verifyParityDebug) {
+ printf("raid%d: RAID1 parity verify: parity not correct\n", raidPtr->raidid);
+ }
+ if (bbufs == NULL)
+ goto done;
+ /*
+ * Make a DAG with one write node for each bad unit. We'll simply
+ * write the contents of the data unit onto the parity unit for
+ * correction. (It's possible that the mirror copy was the correct
+ * copy, and that we're spooging good data by writing bad over it,
+ * but there's no way we can know that.
+ */
+ wr_dag_h = rf_MakeSimpleDAG(raidPtr, nbad, nbytes, buf,
+ rf_DiskWriteFunc, rf_DiskWriteUndoFunc, "Wnp", allocList, flags,
+ RF_IO_NORMAL_PRIORITY);
+ if (wr_dag_h == NULL)
+ goto done;
+ wrBlock = wr_dag_h->succedents[0];
+ /*
+ * Fill in a write node for each bad compare.
+ */
+ for (i = 0; i < nbad; i++) {
+ j = i + layoutPtr->numDataCol;
+ pda = blockNode->succedents[j]->params[0].p;
+ pda->bufPtr = blockNode->succedents[i]->params[1].p;
+ wrBlock->succedents[i]->params[0].p = pda;
+ wrBlock->succedents[i]->params[1].p = pda->bufPtr;
+ wrBlock->succedents[i]->params[2].v = psID;
+ wrBlock->succedents[0]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
+ }
+ bzero((char *) &tracerec, sizeof(tracerec));
+ wr_dag_h->tracerec = &tracerec;
+ if (rf_verifyParityDebug > 1) {
+ printf("Parity verify write dag:\n");
+ rf_PrintDAGList(wr_dag_h);
+ }
+ RF_LOCK_MUTEX(mcpair->mutex);
+ mcpair->flag = 0;
+ /* fire off the write DAG */
+ rf_DispatchDAG(wr_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
+ (void *) mcpair);
+ while (!mcpair->flag) {
+ RF_WAIT_COND(mcpair->cond, mcpair->mutex);
+ }
+ RF_UNLOCK_MUTEX(mcpair->mutex);
+ if (wr_dag_h->status != rf_enable) {
+ RF_ERRORMSG("Unable to correct RAID1 parity in VerifyParity\n");
+ goto done;
+ }
+ ret = RF_PARITY_CORRECTED;
+ }
+done:
+ /*
+ * All done. We might've gotten here without doing part of the function,
+ * so cleanup what we have to and return our running status.
+ */
+ if (asm_h)
+ rf_FreeAccessStripeMap(asm_h);
+ if (rd_dag_h)
+ rf_FreeDAG(rd_dag_h);
+ if (wr_dag_h)
+ rf_FreeDAG(wr_dag_h);
+ if (mcpair)
+ rf_FreeMCPair(mcpair);
+ rf_FreeAllocList(allocList);
+ if (rf_verifyParityDebug) {
+ printf("raid%d: RAID1 parity verify, returning %d\n",
+ raidPtr->raidid, ret);
+ }
+ return (ret);
+}
+
+int
+rf_SubmitReconBufferRAID1(rbuf, keep_it, use_committed)
+ RF_ReconBuffer_t *rbuf; /* the recon buffer to submit */
+ int keep_it; /* whether we can keep this buffer or we have
+ * to return it */
+ int use_committed; /* whether to use a committed or an available
+ * recon buffer */
+{
+ RF_ReconParityStripeStatus_t *pssPtr;
+ RF_ReconCtrl_t *reconCtrlPtr;
+ RF_RaidLayout_t *layoutPtr;
+ int retcode, created;
+ RF_CallbackDesc_t *cb, *p;
+ RF_ReconBuffer_t *t;
+ RF_Raid_t *raidPtr;
+ caddr_t ta;
+
+ retcode = 0;
+ created = 0;
+
+ raidPtr = rbuf->raidPtr;
+ layoutPtr = &raidPtr->Layout;
+ reconCtrlPtr = raidPtr->reconControl[rbuf->row];
+
+ RF_ASSERT(rbuf);
+ RF_ASSERT(rbuf->col != reconCtrlPtr->fcol);
+
+ if (rf_reconbufferDebug) {
+ printf("raid%d: RAID1 reconbuffer submission r%d c%d psid %ld ru%d (failed offset %ld)\n",
+ raidPtr->raidid, rbuf->row, rbuf->col,
+ (long) rbuf->parityStripeID, rbuf->which_ru,
+ (long) rbuf->failedDiskSectorOffset);
+ }
+ if (rf_reconDebug) {
+ printf("RAID1 reconbuffer submit psid %ld buf %lx\n",
+ (long) rbuf->parityStripeID, (long) rbuf->buffer);
+ printf("RAID1 psid %ld %02x %02x %02x %02x %02x\n",
+ (long) rbuf->parityStripeID,
+ rbuf->buffer[0], rbuf->buffer[1], rbuf->buffer[2], rbuf->buffer[3],
+ rbuf->buffer[4]);
+ }
+ RF_LOCK_PSS_MUTEX(raidPtr, rbuf->row, rbuf->parityStripeID);
+
+ RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
+
+ pssPtr = rf_LookupRUStatus(raidPtr, reconCtrlPtr->pssTable,
+ rbuf->parityStripeID, rbuf->which_ru, RF_PSS_NONE, &created);
+ RF_ASSERT(pssPtr); /* if it didn't exist, we wouldn't have gotten
+ * an rbuf for it */
+
+ /*
+ * Since this is simple mirroring, the first submission for a stripe is also
+ * treated as the last.
+ */
+
+ t = NULL;
+ if (keep_it) {
+ if (rf_reconbufferDebug) {
+ printf("raid%d: RAID1 rbuf submission: keeping rbuf\n",
+ raidPtr->raidid);
+ }
+ t = rbuf;
+ } else {
+ if (use_committed) {
+ if (rf_reconbufferDebug) {
+ printf("raid%d: RAID1 rbuf submission: using committed rbuf\n", raidPtr->raidid);
+ }
+ t = reconCtrlPtr->committedRbufs;
+ RF_ASSERT(t);
+ reconCtrlPtr->committedRbufs = t->next;
+ t->next = NULL;
+ } else
+ if (reconCtrlPtr->floatingRbufs) {
+ if (rf_reconbufferDebug) {
+ printf("raid%d: RAID1 rbuf submission: using floating rbuf\n", raidPtr->raidid);
+ }
+ t = reconCtrlPtr->floatingRbufs;
+ reconCtrlPtr->floatingRbufs = t->next;
+ t->next = NULL;
+ }
+ }
+ if (t == NULL) {
+ if (rf_reconbufferDebug) {
+ printf("raid%d: RAID1 rbuf submission: waiting for rbuf\n", raidPtr->raidid);
+ }
+ RF_ASSERT((keep_it == 0) && (use_committed == 0));
+ raidPtr->procsInBufWait++;
+ if ((raidPtr->procsInBufWait == (raidPtr->numCol - 1))
+ && (raidPtr->numFullReconBuffers == 0)) {
+ /* ruh-ro */
+ RF_ERRORMSG("Buffer wait deadlock\n");
+ rf_PrintPSStatusTable(raidPtr, rbuf->row);
+ RF_PANIC();
+ }
+ pssPtr->flags |= RF_PSS_BUFFERWAIT;
+ cb = rf_AllocCallbackDesc();
+ cb->row = rbuf->row;
+ cb->col = rbuf->col;
+ cb->callbackArg.v = rbuf->parityStripeID;
+ cb->callbackArg2.v = rbuf->which_ru;
+ cb->next = NULL;
+ if (reconCtrlPtr->bufferWaitList == NULL) {
+ /* we are the wait list- lucky us */
+ reconCtrlPtr->bufferWaitList = cb;
+ } else {
+ /* append to wait list */
+ for (p = reconCtrlPtr->bufferWaitList; p->next; p = p->next);
+ p->next = cb;
+ }
+ retcode = 1;
+ goto out;
+ }
+ if (t != rbuf) {
+ t->row = rbuf->row;
+ t->col = reconCtrlPtr->fcol;
+ t->parityStripeID = rbuf->parityStripeID;
+ t->which_ru = rbuf->which_ru;
+ t->failedDiskSectorOffset = rbuf->failedDiskSectorOffset;
+ t->spRow = rbuf->spRow;
+ t->spCol = rbuf->spCol;
+ t->spOffset = rbuf->spOffset;
+ /* Swap buffers. DANCE! */
+ ta = t->buffer;
+ t->buffer = rbuf->buffer;
+ rbuf->buffer = ta;
+ }
+ /*
+ * Use the rbuf we've been given as the target.
+ */
+ RF_ASSERT(pssPtr->rbuf == NULL);
+ pssPtr->rbuf = t;
+
+ t->count = 1;
+ /*
+ * Below, we use 1 for numDataCol (which is equal to the count in the
+ * previous line), so we'll always be done.
+ */
+ rf_CheckForFullRbuf(raidPtr, reconCtrlPtr, pssPtr, 1);
+
+out:
+ RF_UNLOCK_PSS_MUTEX(raidPtr, rbuf->row, rbuf->parityStripeID);
+ RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
+ if (rf_reconbufferDebug) {
+ printf("raid%d: RAID1 rbuf submission: returning %d\n",
+ raidPtr->raidid, retcode);
+ }
+ return (retcode);
+}
diff --git a/sys/dev/raidframe/rf_raid1.h b/sys/dev/raidframe/rf_raid1.h
new file mode 100644
index 0000000..484cbcf
--- /dev/null
+++ b/sys/dev/raidframe/rf_raid1.h
@@ -0,0 +1,63 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_raid1.h,v 1.3 1999/02/05 00:06:16 oster Exp $ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: William V. Courtright II
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+/* header file for RAID Level 1 */
+
+#ifndef _RF__RF_RAID1_H_
+#define _RF__RF_RAID1_H_
+
+#include <dev/raidframe/rf_types.h>
+
+int
+rf_ConfigureRAID1(RF_ShutdownList_t ** listp, RF_Raid_t * raidPtr,
+ RF_Config_t * cfgPtr);
+void
+rf_MapSectorRAID1(RF_Raid_t * raidPtr, RF_RaidAddr_t raidSector,
+ RF_RowCol_t * row, RF_RowCol_t * col, RF_SectorNum_t * diskSector, int remap);
+void
+rf_MapParityRAID1(RF_Raid_t * raidPtr, RF_RaidAddr_t raidSector,
+ RF_RowCol_t * row, RF_RowCol_t * col, RF_SectorNum_t * diskSector, int remap);
+void
+rf_IdentifyStripeRAID1(RF_Raid_t * raidPtr, RF_RaidAddr_t addr,
+ RF_RowCol_t ** diskids, RF_RowCol_t * outRow);
+void
+rf_MapSIDToPSIDRAID1(RF_RaidLayout_t * layoutPtr,
+ RF_StripeNum_t stripeID, RF_StripeNum_t * psID,
+ RF_ReconUnitNum_t * which_ru);
+void
+rf_RAID1DagSelect(RF_Raid_t * raidPtr, RF_IoType_t type,
+ RF_AccessStripeMap_t * asmap, RF_VoidFuncPtr * createFunc);
+int
+rf_VerifyParityRAID1(RF_Raid_t * raidPtr, RF_RaidAddr_t raidAddr,
+ RF_PhysDiskAddr_t * parityPDA, int correct_it, RF_RaidAccessFlags_t flags);
+int
+rf_SubmitReconBufferRAID1(RF_ReconBuffer_t * rbuf, int keep_int,
+ int use_committed);
+
+#endif /* !_RF__RF_RAID1_H_ */
diff --git a/sys/dev/raidframe/rf_raid4.c b/sys/dev/raidframe/rf_raid4.c
new file mode 100644
index 0000000..3f6c398
--- /dev/null
+++ b/sys/dev/raidframe/rf_raid4.c
@@ -0,0 +1,157 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_raid4.c,v 1.4 2000/01/07 03:41:02 oster Exp $ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Rachad Youssef
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+/***************************************
+ *
+ * rf_raid4.c -- implements RAID Level 4
+ *
+ ***************************************/
+
+#include <dev/raidframe/rf_raid.h>
+#include <dev/raidframe/rf_dag.h>
+#include <dev/raidframe/rf_dagutils.h>
+#include <dev/raidframe/rf_dagfuncs.h>
+#include <dev/raidframe/rf_dagffrd.h>
+#include <dev/raidframe/rf_dagffwr.h>
+#include <dev/raidframe/rf_dagdegrd.h>
+#include <dev/raidframe/rf_dagdegwr.h>
+#include <dev/raidframe/rf_raid4.h>
+#include <dev/raidframe/rf_general.h>
+
+typedef struct RF_Raid4ConfigInfo_s {
+ RF_RowCol_t *stripeIdentifier; /* filled in at config time & used by
+ * IdentifyStripe */
+} RF_Raid4ConfigInfo_t;
+
+
+
+int
+rf_ConfigureRAID4(
+ RF_ShutdownList_t ** listp,
+ RF_Raid_t * raidPtr,
+ RF_Config_t * cfgPtr)
+{
+ RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
+ RF_Raid4ConfigInfo_t *info;
+ int i;
+
+ /* create a RAID level 4 configuration structure ... */
+ RF_MallocAndAdd(info, sizeof(RF_Raid4ConfigInfo_t), (RF_Raid4ConfigInfo_t *), raidPtr->cleanupList);
+ if (info == NULL)
+ return (ENOMEM);
+ layoutPtr->layoutSpecificInfo = (void *) info;
+
+ /* ... and fill it in. */
+ RF_MallocAndAdd(info->stripeIdentifier, raidPtr->numCol * sizeof(RF_RowCol_t), (RF_RowCol_t *), raidPtr->cleanupList);
+ if (info->stripeIdentifier == NULL)
+ return (ENOMEM);
+ for (i = 0; i < raidPtr->numCol; i++)
+ info->stripeIdentifier[i] = i;
+
+ RF_ASSERT(raidPtr->numRow == 1);
+
+ /* fill in the remaining layout parameters */
+ layoutPtr->numStripe = layoutPtr->stripeUnitsPerDisk;
+ layoutPtr->bytesPerStripeUnit = layoutPtr->sectorsPerStripeUnit << raidPtr->logBytesPerSector;
+ layoutPtr->numDataCol = raidPtr->numCol - 1;
+ layoutPtr->dataSectorsPerStripe = layoutPtr->numDataCol * layoutPtr->sectorsPerStripeUnit;
+ layoutPtr->numParityCol = 1;
+ raidPtr->totalSectors = layoutPtr->stripeUnitsPerDisk * layoutPtr->numDataCol * layoutPtr->sectorsPerStripeUnit;
+
+ return (0);
+}
+
+int
+rf_GetDefaultNumFloatingReconBuffersRAID4(RF_Raid_t * raidPtr)
+{
+ return (20);
+}
+
+RF_HeadSepLimit_t
+rf_GetDefaultHeadSepLimitRAID4(RF_Raid_t * raidPtr)
+{
+ return (20);
+}
+
+void
+rf_MapSectorRAID4(
+ RF_Raid_t * raidPtr,
+ RF_RaidAddr_t raidSector,
+ RF_RowCol_t * row,
+ RF_RowCol_t * col,
+ RF_SectorNum_t * diskSector,
+ int remap)
+{
+ RF_StripeNum_t SUID = raidSector / raidPtr->Layout.sectorsPerStripeUnit;
+ *row = 0;
+ *col = SUID % raidPtr->Layout.numDataCol;
+ *diskSector = (SUID / (raidPtr->Layout.numDataCol)) * raidPtr->Layout.sectorsPerStripeUnit +
+ (raidSector % raidPtr->Layout.sectorsPerStripeUnit);
+}
+
+void
+rf_MapParityRAID4(
+ RF_Raid_t * raidPtr,
+ RF_RaidAddr_t raidSector,
+ RF_RowCol_t * row,
+ RF_RowCol_t * col,
+ RF_SectorNum_t * diskSector,
+ int remap)
+{
+ RF_StripeNum_t SUID = raidSector / raidPtr->Layout.sectorsPerStripeUnit;
+
+ *row = 0;
+ *col = raidPtr->Layout.numDataCol;
+ *diskSector = (SUID / (raidPtr->Layout.numDataCol)) * raidPtr->Layout.sectorsPerStripeUnit +
+ (raidSector % raidPtr->Layout.sectorsPerStripeUnit);
+}
+
+void
+rf_IdentifyStripeRAID4(
+ RF_Raid_t * raidPtr,
+ RF_RaidAddr_t addr,
+ RF_RowCol_t ** diskids,
+ RF_RowCol_t * outRow)
+{
+ RF_Raid4ConfigInfo_t *info = raidPtr->Layout.layoutSpecificInfo;
+
+ *outRow = 0;
+ *diskids = info->stripeIdentifier;
+}
+
+void
+rf_MapSIDToPSIDRAID4(
+ RF_RaidLayout_t * layoutPtr,
+ RF_StripeNum_t stripeID,
+ RF_StripeNum_t * psID,
+ RF_ReconUnitNum_t * which_ru)
+{
+ *which_ru = 0;
+ *psID = stripeID;
+}
diff --git a/sys/dev/raidframe/rf_raid4.h b/sys/dev/raidframe/rf_raid4.h
new file mode 100644
index 0000000..56df05a
--- /dev/null
+++ b/sys/dev/raidframe/rf_raid4.h
@@ -0,0 +1,57 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_raid4.h,v 1.3 1999/02/05 00:06:16 oster Exp $ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Rachad Youssef
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+/* rf_raid4.h header file for RAID Level 4 */
+
+#ifndef _RF__RF_RAID4_H_
+#define _RF__RF_RAID4_H_
+
+int
+rf_ConfigureRAID4(RF_ShutdownList_t ** listp, RF_Raid_t * raidPtr,
+ RF_Config_t * cfgPtr);
+int rf_GetDefaultNumFloatingReconBuffersRAID4(RF_Raid_t * raidPtr);
+RF_HeadSepLimit_t rf_GetDefaultHeadSepLimitRAID4(RF_Raid_t * raidPtr);
+void
+rf_MapSectorRAID4(RF_Raid_t * raidPtr, RF_RaidAddr_t raidSector,
+ RF_RowCol_t * row, RF_RowCol_t * col, RF_SectorNum_t * diskSector, int remap);
+void
+rf_MapParityRAID4(RF_Raid_t * raidPtr, RF_RaidAddr_t raidSector,
+ RF_RowCol_t * row, RF_RowCol_t * col, RF_SectorNum_t * diskSector, int remap);
+void
+rf_IdentifyStripeRAID4(RF_Raid_t * raidPtr, RF_RaidAddr_t addr,
+ RF_RowCol_t ** diskids, RF_RowCol_t * outRow);
+void
+rf_MapSIDToPSIDRAID4(RF_RaidLayout_t * layoutPtr,
+ RF_StripeNum_t stripeID, RF_StripeNum_t * psID,
+ RF_ReconUnitNum_t * which_ru);
+void
+rf_RAID4DagSelect(RF_Raid_t * raidPtr, RF_IoType_t type,
+ RF_AccessStripeMap_t * asmap, RF_VoidFuncPtr * createFunc);
+
+#endif /* !_RF__RF_RAID4_H_ */
diff --git a/sys/dev/raidframe/rf_raid5.c b/sys/dev/raidframe/rf_raid5.c
new file mode 100644
index 0000000..c1261ad
--- /dev/null
+++ b/sys/dev/raidframe/rf_raid5.c
@@ -0,0 +1,320 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_raid5.c,v 1.4 2000/01/08 22:57:30 oster Exp $ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Mark Holland
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+/******************************************************************************
+ *
+ * rf_raid5.c -- implements RAID Level 5
+ *
+ *****************************************************************************/
+
+#include <dev/raidframe/rf_types.h>
+#include <dev/raidframe/rf_raid.h>
+#include <dev/raidframe/rf_raid5.h>
+#include <dev/raidframe/rf_dag.h>
+#include <dev/raidframe/rf_dagffrd.h>
+#include <dev/raidframe/rf_dagffwr.h>
+#include <dev/raidframe/rf_dagdegrd.h>
+#include <dev/raidframe/rf_dagdegwr.h>
+#include <dev/raidframe/rf_dagutils.h>
+#include <dev/raidframe/rf_general.h>
+#include <dev/raidframe/rf_map.h>
+#include <dev/raidframe/rf_utils.h>
+
+typedef struct RF_Raid5ConfigInfo_s {
+ RF_RowCol_t **stripeIdentifier; /* filled in at config time and used
+ * by IdentifyStripe */
+} RF_Raid5ConfigInfo_t;
+
+int
+rf_ConfigureRAID5(
+ RF_ShutdownList_t ** listp,
+ RF_Raid_t * raidPtr,
+ RF_Config_t * cfgPtr)
+{
+ RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
+ RF_Raid5ConfigInfo_t *info;
+ RF_RowCol_t i, j, startdisk;
+
+ /* create a RAID level 5 configuration structure */
+ RF_MallocAndAdd(info, sizeof(RF_Raid5ConfigInfo_t), (RF_Raid5ConfigInfo_t *), raidPtr->cleanupList);
+ if (info == NULL)
+ return (ENOMEM);
+ layoutPtr->layoutSpecificInfo = (void *) info;
+
+ RF_ASSERT(raidPtr->numRow == 1);
+
+ /* the stripe identifier must identify the disks in each stripe, IN
+ * THE ORDER THAT THEY APPEAR IN THE STRIPE. */
+ info->stripeIdentifier = rf_make_2d_array(raidPtr->numCol, raidPtr->numCol, raidPtr->cleanupList);
+ if (info->stripeIdentifier == NULL)
+ return (ENOMEM);
+ startdisk = 0;
+ for (i = 0; i < raidPtr->numCol; i++) {
+ for (j = 0; j < raidPtr->numCol; j++) {
+ info->stripeIdentifier[i][j] = (startdisk + j) % raidPtr->numCol;
+ }
+ if ((--startdisk) < 0)
+ startdisk = raidPtr->numCol - 1;
+ }
+
+ /* fill in the remaining layout parameters */
+ layoutPtr->numStripe = layoutPtr->stripeUnitsPerDisk;
+ layoutPtr->bytesPerStripeUnit = layoutPtr->sectorsPerStripeUnit << raidPtr->logBytesPerSector;
+ layoutPtr->numDataCol = raidPtr->numCol - 1;
+ layoutPtr->dataSectorsPerStripe = layoutPtr->numDataCol * layoutPtr->sectorsPerStripeUnit;
+ layoutPtr->numParityCol = 1;
+ layoutPtr->dataStripeUnitsPerDisk = layoutPtr->stripeUnitsPerDisk;
+
+ raidPtr->totalSectors = layoutPtr->stripeUnitsPerDisk * layoutPtr->numDataCol * layoutPtr->sectorsPerStripeUnit;
+
+ return (0);
+}
+
+int
+rf_GetDefaultNumFloatingReconBuffersRAID5(RF_Raid_t * raidPtr)
+{
+ return (20);
+}
+
+RF_HeadSepLimit_t
+rf_GetDefaultHeadSepLimitRAID5(RF_Raid_t * raidPtr)
+{
+ return (10);
+}
+#if !defined(__NetBSD__) && !defined(__FreeBSD__) && !defined(_KERNEL)
+/* not currently used */
+int
+rf_ShutdownRAID5(RF_Raid_t * raidPtr)
+{
+ return (0);
+}
+#endif
+
+void
+rf_MapSectorRAID5(
+ RF_Raid_t * raidPtr,
+ RF_RaidAddr_t raidSector,
+ RF_RowCol_t * row,
+ RF_RowCol_t * col,
+ RF_SectorNum_t * diskSector,
+ int remap)
+{
+ RF_StripeNum_t SUID = raidSector / raidPtr->Layout.sectorsPerStripeUnit;
+ *row = 0;
+ *col = (SUID % raidPtr->numCol);
+ *diskSector = (SUID / (raidPtr->Layout.numDataCol)) * raidPtr->Layout.sectorsPerStripeUnit +
+ (raidSector % raidPtr->Layout.sectorsPerStripeUnit);
+}
+
+void
+rf_MapParityRAID5(
+ RF_Raid_t * raidPtr,
+ RF_RaidAddr_t raidSector,
+ RF_RowCol_t * row,
+ RF_RowCol_t * col,
+ RF_SectorNum_t * diskSector,
+ int remap)
+{
+ RF_StripeNum_t SUID = raidSector / raidPtr->Layout.sectorsPerStripeUnit;
+
+ *row = 0;
+ *col = raidPtr->Layout.numDataCol - (SUID / raidPtr->Layout.numDataCol) % raidPtr->numCol;
+ *diskSector = (SUID / (raidPtr->Layout.numDataCol)) * raidPtr->Layout.sectorsPerStripeUnit +
+ (raidSector % raidPtr->Layout.sectorsPerStripeUnit);
+}
+
+void
+rf_IdentifyStripeRAID5(
+ RF_Raid_t * raidPtr,
+ RF_RaidAddr_t addr,
+ RF_RowCol_t ** diskids,
+ RF_RowCol_t * outRow)
+{
+ RF_StripeNum_t stripeID = rf_RaidAddressToStripeID(&raidPtr->Layout, addr);
+ RF_Raid5ConfigInfo_t *info = (RF_Raid5ConfigInfo_t *) raidPtr->Layout.layoutSpecificInfo;
+
+ *outRow = 0;
+ *diskids = info->stripeIdentifier[stripeID % raidPtr->numCol];
+}
+
+void
+rf_MapSIDToPSIDRAID5(
+ RF_RaidLayout_t * layoutPtr,
+ RF_StripeNum_t stripeID,
+ RF_StripeNum_t * psID,
+ RF_ReconUnitNum_t * which_ru)
+{
+ *which_ru = 0;
+ *psID = stripeID;
+}
+/* select an algorithm for performing an access. Returns two pointers,
+ * one to a function that will return information about the DAG, and
+ * another to a function that will create the dag.
+ */
+void
+rf_RaidFiveDagSelect(
+ RF_Raid_t * raidPtr,
+ RF_IoType_t type,
+ RF_AccessStripeMap_t * asmap,
+ RF_VoidFuncPtr * createFunc)
+{
+ RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
+ RF_PhysDiskAddr_t *failedPDA = NULL;
+ RF_RowCol_t frow, fcol;
+ RF_RowStatus_t rstat;
+ int prior_recon;
+
+ RF_ASSERT(RF_IO_IS_R_OR_W(type));
+
+ if (asmap->numDataFailed + asmap->numParityFailed > 1) {
+ RF_ERRORMSG("Multiple disks failed in a single group! Aborting I/O operation.\n");
+ /* *infoFunc = */ *createFunc = NULL;
+ return;
+ } else
+ if (asmap->numDataFailed + asmap->numParityFailed == 1) {
+
+ /* if under recon & already reconstructed, redirect
+ * the access to the spare drive and eliminate the
+ * failure indication */
+ failedPDA = asmap->failedPDAs[0];
+ frow = failedPDA->row;
+ fcol = failedPDA->col;
+ rstat = raidPtr->status[failedPDA->row];
+ prior_recon = (rstat == rf_rs_reconfigured) || (
+ (rstat == rf_rs_reconstructing) ?
+ rf_CheckRUReconstructed(raidPtr->reconControl[frow]->reconMap, failedPDA->startSector) : 0
+ );
+ if (prior_recon) {
+ RF_RowCol_t or = failedPDA->row, oc = failedPDA->col;
+ RF_SectorNum_t oo = failedPDA->startSector;
+
+ if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) { /* redirect to dist
+ * spare space */
+
+ if (failedPDA == asmap->parityInfo) {
+
+ /* parity has failed */
+ (layoutPtr->map->MapParity) (raidPtr, failedPDA->raidAddress, &failedPDA->row,
+ &failedPDA->col, &failedPDA->startSector, RF_REMAP);
+
+ if (asmap->parityInfo->next) { /* redir 2nd component,
+ * if any */
+ RF_PhysDiskAddr_t *p = asmap->parityInfo->next;
+ RF_SectorNum_t SUoffs = p->startSector % layoutPtr->sectorsPerStripeUnit;
+ p->row = failedPDA->row;
+ p->col = failedPDA->col;
+ p->startSector = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, failedPDA->startSector) +
+ SUoffs; /* cheating:
+ * startSector is not
+ * really a RAID address */
+ }
+ } else
+ if (asmap->parityInfo->next && failedPDA == asmap->parityInfo->next) {
+ RF_ASSERT(0); /* should not ever
+ * happen */
+ } else {
+
+ /* data has failed */
+ (layoutPtr->map->MapSector) (raidPtr, failedPDA->raidAddress, &failedPDA->row,
+ &failedPDA->col, &failedPDA->startSector, RF_REMAP);
+
+ }
+
+ } else { /* redirect to dedicated spare
+ * space */
+
+ failedPDA->row = raidPtr->Disks[frow][fcol].spareRow;
+ failedPDA->col = raidPtr->Disks[frow][fcol].spareCol;
+
+ /* the parity may have two distinct
+ * components, both of which may need
+ * to be redirected */
+ if (asmap->parityInfo->next) {
+ if (failedPDA == asmap->parityInfo) {
+ failedPDA->next->row = failedPDA->row;
+ failedPDA->next->col = failedPDA->col;
+ } else
+ if (failedPDA == asmap->parityInfo->next) { /* paranoid: should
+ * never occur */
+ asmap->parityInfo->row = failedPDA->row;
+ asmap->parityInfo->col = failedPDA->col;
+ }
+ }
+ }
+
+ RF_ASSERT(failedPDA->col != -1);
+
+ if (rf_dagDebug || rf_mapDebug) {
+ printf("raid%d: Redirected type '%c' r %d c %d o %ld -> r %d c %d o %ld\n",
+ raidPtr->raidid, type, or, oc,
+ (long) oo, failedPDA->row,
+ failedPDA->col,
+ (long) failedPDA->startSector);
+ }
+ asmap->numDataFailed = asmap->numParityFailed = 0;
+ }
+ }
+ /* all dags begin/end with block/unblock node therefore, hdrSucc &
+ * termAnt counts should always be 1 also, these counts should not be
+ * visible outside dag creation routines - manipulating the counts
+ * here should be removed */
+ if (type == RF_IO_TYPE_READ) {
+ if (asmap->numDataFailed == 0)
+ *createFunc = (RF_VoidFuncPtr) rf_CreateFaultFreeReadDAG;
+ else
+ *createFunc = (RF_VoidFuncPtr) rf_CreateRaidFiveDegradedReadDAG;
+ } else {
+
+
+ /* if mirroring, always use large writes. If the access
+ * requires two distinct parity updates, always do a small
+ * write. If the stripe contains a failure but the access
+ * does not, do a small write. The first conditional
+ * (numStripeUnitsAccessed <= numDataCol/2) uses a
+ * less-than-or-equal rather than just a less-than because
+ * when G is 3 or 4, numDataCol/2 is 1, and I want
+ * single-stripe-unit updates to use just one disk. */
+ if ((asmap->numDataFailed + asmap->numParityFailed) == 0) {
+ if (rf_suppressLocksAndLargeWrites ||
+ (((asmap->numStripeUnitsAccessed <= (layoutPtr->numDataCol / 2)) && (layoutPtr->numDataCol != 1)) ||
+ (asmap->parityInfo->next != NULL) || rf_CheckStripeForFailures(raidPtr, asmap))) {
+ *createFunc = (RF_VoidFuncPtr) rf_CreateSmallWriteDAG;
+ } else
+ *createFunc = (RF_VoidFuncPtr) rf_CreateLargeWriteDAG;
+ } else {
+ if (asmap->numParityFailed == 1)
+ *createFunc = (RF_VoidFuncPtr) rf_CreateNonRedundantWriteDAG;
+ else
+ if (asmap->numStripeUnitsAccessed != 1 && failedPDA->numSector != layoutPtr->sectorsPerStripeUnit)
+ *createFunc = NULL;
+ else
+ *createFunc = (RF_VoidFuncPtr) rf_CreateDegradedWriteDAG;
+ }
+ }
+}
diff --git a/sys/dev/raidframe/rf_raid5.h b/sys/dev/raidframe/rf_raid5.h
new file mode 100644
index 0000000..17549fe
--- /dev/null
+++ b/sys/dev/raidframe/rf_raid5.h
@@ -0,0 +1,57 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_raid5.h,v 1.3 1999/02/05 00:06:16 oster Exp $ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Mark Holland
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+/* rf_raid5.h - header file for RAID Level 5 */
+
+#ifndef _RF__RF_RAID5_H_
+#define _RF__RF_RAID5_H_
+
+int
+rf_ConfigureRAID5(RF_ShutdownList_t ** listp, RF_Raid_t * raidPtr,
+ RF_Config_t * cfgPtr);
+int rf_GetDefaultNumFloatingReconBuffersRAID5(RF_Raid_t * raidPtr);
+RF_HeadSepLimit_t rf_GetDefaultHeadSepLimitRAID5(RF_Raid_t * raidPtr);
+void
+rf_MapSectorRAID5(RF_Raid_t * raidPtr, RF_RaidAddr_t raidSector,
+ RF_RowCol_t * row, RF_RowCol_t * col, RF_SectorNum_t * diskSector, int remap);
+void
+rf_MapParityRAID5(RF_Raid_t * raidPtr, RF_RaidAddr_t raidSector,
+ RF_RowCol_t * row, RF_RowCol_t * col, RF_SectorNum_t * diskSector, int remap);
+void
+rf_IdentifyStripeRAID5(RF_Raid_t * raidPtr, RF_RaidAddr_t addr,
+ RF_RowCol_t ** diskids, RF_RowCol_t * outRow);
+void
+rf_MapSIDToPSIDRAID5(RF_RaidLayout_t * layoutPtr,
+ RF_StripeNum_t stripeID, RF_StripeNum_t * psID,
+ RF_ReconUnitNum_t * which_ru);
+void
+rf_RaidFiveDagSelect(RF_Raid_t * raidPtr, RF_IoType_t type,
+ RF_AccessStripeMap_t * asmap, RF_VoidFuncPtr * createFunc);
+
+#endif /* !_RF__RF_RAID5_H_ */
diff --git a/sys/dev/raidframe/rf_raid5_rotatedspare.c b/sys/dev/raidframe/rf_raid5_rotatedspare.c
new file mode 100644
index 0000000..5c17b43
--- /dev/null
+++ b/sys/dev/raidframe/rf_raid5_rotatedspare.c
@@ -0,0 +1,175 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_raid5_rotatedspare.c,v 1.5 2001/01/26 05:16:58 oster Exp $ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Khalil Amiri
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+/**************************************************************************
+ *
+ * rf_raid5_rotated_spare.c -- implements RAID Level 5 with rotated sparing
+ *
+ **************************************************************************/
+
+#include <dev/raidframe/rf_archs.h>
+
+#if RF_INCLUDE_RAID5_RS > 0
+
+#include <dev/raidframe/rf_raid.h>
+#include <dev/raidframe/rf_raid5.h>
+#include <dev/raidframe/rf_dag.h>
+#include <dev/raidframe/rf_dagutils.h>
+#include <dev/raidframe/rf_dagfuncs.h>
+#include <dev/raidframe/rf_general.h>
+#include <dev/raidframe/rf_utils.h>
+#include <dev/raidframe/rf_raid5_rotatedspare.h>
+
+typedef struct RF_Raid5RSConfigInfo_s {
+ RF_RowCol_t **stripeIdentifier; /* filled in at config time & used by
+ * IdentifyStripe */
+} RF_Raid5RSConfigInfo_t;
+
+int
+rf_ConfigureRAID5_RS(
+ RF_ShutdownList_t ** listp,
+ RF_Raid_t * raidPtr,
+ RF_Config_t * cfgPtr)
+{
+ RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
+ RF_Raid5RSConfigInfo_t *info;
+ RF_RowCol_t i, j, startdisk;
+
+ /* create a RAID level 5 configuration structure */
+ RF_MallocAndAdd(info, sizeof(RF_Raid5RSConfigInfo_t), (RF_Raid5RSConfigInfo_t *), raidPtr->cleanupList);
+ if (info == NULL)
+ return (ENOMEM);
+ layoutPtr->layoutSpecificInfo = (void *) info;
+
+ RF_ASSERT(raidPtr->numRow == 1);
+ RF_ASSERT(raidPtr->numCol >= 3);
+
+ /* the stripe identifier must identify the disks in each stripe, IN
+ * THE ORDER THAT THEY APPEAR IN THE STRIPE. */
+ info->stripeIdentifier = rf_make_2d_array(raidPtr->numCol, raidPtr->numCol, raidPtr->cleanupList);
+ if (info->stripeIdentifier == NULL)
+ return (ENOMEM);
+ startdisk = 0;
+ for (i = 0; i < raidPtr->numCol; i++) {
+ for (j = 0; j < raidPtr->numCol; j++) {
+ info->stripeIdentifier[i][j] = (startdisk + j) % raidPtr->numCol;
+ }
+ if ((--startdisk) < 0)
+ startdisk = raidPtr->numCol - 1;
+ }
+
+ /* fill in the remaining layout parameters */
+ layoutPtr->numStripe = layoutPtr->stripeUnitsPerDisk;
+ layoutPtr->bytesPerStripeUnit = layoutPtr->sectorsPerStripeUnit << raidPtr->logBytesPerSector;
+ layoutPtr->numDataCol = raidPtr->numCol - 2;
+ layoutPtr->dataSectorsPerStripe = layoutPtr->numDataCol * layoutPtr->sectorsPerStripeUnit;
+ layoutPtr->numParityCol = 1;
+ layoutPtr->dataStripeUnitsPerDisk = layoutPtr->stripeUnitsPerDisk;
+ raidPtr->sectorsPerDisk = layoutPtr->stripeUnitsPerDisk * layoutPtr->sectorsPerStripeUnit;
+
+ raidPtr->totalSectors = layoutPtr->stripeUnitsPerDisk * layoutPtr->numDataCol * layoutPtr->sectorsPerStripeUnit;
+
+ return (0);
+}
+
+RF_ReconUnitCount_t
+rf_GetNumSpareRUsRAID5_RS(raidPtr)
+ RF_Raid_t *raidPtr;
+{
+ return (raidPtr->Layout.stripeUnitsPerDisk / raidPtr->numCol);
+}
+
+void
+rf_MapSectorRAID5_RS(
+ RF_Raid_t * raidPtr,
+ RF_RaidAddr_t raidSector,
+ RF_RowCol_t * row,
+ RF_RowCol_t * col,
+ RF_SectorNum_t * diskSector,
+ int remap)
+{
+ RF_StripeNum_t SUID = raidSector / raidPtr->Layout.sectorsPerStripeUnit;
+
+ *row = 0;
+ if (remap) {
+ *col = raidPtr->numCol - 1 - (1 + SUID / raidPtr->Layout.numDataCol) % raidPtr->numCol;
+ *col = (*col + 1) % raidPtr->numCol; /* spare unit is rotated
+ * with parity; line
+ * above maps to parity */
+ } else {
+ *col = (SUID + (SUID / raidPtr->Layout.numDataCol)) % raidPtr->numCol;
+ }
+ *diskSector = (SUID / (raidPtr->Layout.numDataCol)) * raidPtr->Layout.sectorsPerStripeUnit +
+ (raidSector % raidPtr->Layout.sectorsPerStripeUnit);
+}
+
+void
+rf_MapParityRAID5_RS(
+ RF_Raid_t * raidPtr,
+ RF_RaidAddr_t raidSector,
+ RF_RowCol_t * row,
+ RF_RowCol_t * col,
+ RF_SectorNum_t * diskSector,
+ int remap)
+{
+ RF_StripeNum_t SUID = raidSector / raidPtr->Layout.sectorsPerStripeUnit;
+
+ *row = 0;
+ *col = raidPtr->numCol - 1 - (1 + SUID / raidPtr->Layout.numDataCol) % raidPtr->numCol;
+ *diskSector = (SUID / (raidPtr->Layout.numDataCol)) * raidPtr->Layout.sectorsPerStripeUnit +
+ (raidSector % raidPtr->Layout.sectorsPerStripeUnit);
+ if (remap)
+ *col = (*col + 1) % raidPtr->numCol;
+}
+
+void
+rf_IdentifyStripeRAID5_RS(
+ RF_Raid_t * raidPtr,
+ RF_RaidAddr_t addr,
+ RF_RowCol_t ** diskids,
+ RF_RowCol_t * outRow)
+{
+ RF_StripeNum_t stripeID = rf_RaidAddressToStripeID(&raidPtr->Layout, addr);
+ RF_Raid5RSConfigInfo_t *info = (RF_Raid5RSConfigInfo_t *) raidPtr->Layout.layoutSpecificInfo;
+ *outRow = 0;
+ *diskids = info->stripeIdentifier[stripeID % raidPtr->numCol];
+
+}
+
+void
+rf_MapSIDToPSIDRAID5_RS(
+ RF_RaidLayout_t * layoutPtr,
+ RF_StripeNum_t stripeID,
+ RF_StripeNum_t * psID,
+ RF_ReconUnitNum_t * which_ru)
+{
+ *which_ru = 0;
+ *psID = stripeID;
+}
+#endif /* RF_INCLUDE_RAID5_RS > 0 */
diff --git a/sys/dev/raidframe/rf_raid5_rotatedspare.h b/sys/dev/raidframe/rf_raid5_rotatedspare.h
new file mode 100644
index 0000000..779150f
--- /dev/null
+++ b/sys/dev/raidframe/rf_raid5_rotatedspare.h
@@ -0,0 +1,53 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_raid5_rotatedspare.h,v 1.3 1999/02/05 00:06:16 oster Exp $ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Khalil Amiri
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+/* rf_raid5_rotatedspare.h - header file for RAID Level 5 with rotated sparing */
+
+#ifndef _RF__RF_RAID5_ROTATEDSPARE_H_
+#define _RF__RF_RAID5_ROTATEDSPARE_H_
+
+int
+rf_ConfigureRAID5_RS(RF_ShutdownList_t ** listp, RF_Raid_t * raidPtr,
+ RF_Config_t * cfgPtr);
+RF_ReconUnitCount_t rf_GetNumSpareRUsRAID5_RS(RF_Raid_t * raidPtr);
+void
+rf_MapSectorRAID5_RS(RF_Raid_t * raidPtr, RF_RaidAddr_t raidSector,
+ RF_RowCol_t * row, RF_RowCol_t * col, RF_SectorNum_t * diskSector, int remap);
+void
+rf_MapParityRAID5_RS(RF_Raid_t * raidPtr, RF_RaidAddr_t raidSector,
+ RF_RowCol_t * row, RF_RowCol_t * col, RF_SectorNum_t * diskSector, int remap);
+void
+rf_IdentifyStripeRAID5_RS(RF_Raid_t * raidPtr, RF_RaidAddr_t addr,
+ RF_RowCol_t ** diskids, RF_RowCol_t * outRow);
+void
+rf_MapSIDToPSIDRAID5_RS(RF_RaidLayout_t * layoutPtr,
+ RF_StripeNum_t stripeID, RF_StripeNum_t * psID,
+ RF_ReconUnitNum_t * which_ru);
+
+#endif /* !_RF__RF_RAID5_ROTATEDSPARE_H_ */
diff --git a/sys/dev/raidframe/rf_raidframe.h b/sys/dev/raidframe/rf_raidframe.h
new file mode 100644
index 0000000..fd711bd
--- /dev/null
+++ b/sys/dev/raidframe/rf_raidframe.h
@@ -0,0 +1,162 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_raidframe.h,v 1.11 2000/05/28 00:48:31 oster Exp $ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Mark Holland
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+/*****************************************************
+ *
+ * rf_raidframe.h
+ *
+ * main header file for using raidframe in the kernel.
+ *
+ *****************************************************/
+
+
+#ifndef _RF__RF_RAIDFRAME_H_
+#define _RF__RF_RAIDFRAME_H_
+
+#include <dev/raidframe/rf_types.h>
+#include <dev/raidframe/rf_configure.h>
+#include <dev/raidframe/rf_disks.h>
+#include <dev/raidframe/rf_raid.h>
+
+typedef RF_uint32 RF_ReconReqFlags_t;
+
+struct rf_recon_req { /* used to tell the kernel to fail a disk */
+ RF_RowCol_t row, col;
+ RF_ReconReqFlags_t flags;
+ void *raidPtr; /* used internally; need not be set at ioctl
+ * time */
+ struct rf_recon_req *next; /* used internally; need not be set at
+ * ioctl time */
+};
+
+struct RF_SparetWait_s {
+ int C, G, fcol; /* C = # disks in row, G = # units in stripe,
+ * fcol = which disk has failed */
+
+ RF_StripeCount_t SUsPerPU; /* this stuff is the info required to
+ * create a spare table */
+ int TablesPerSpareRegion;
+ int BlocksPerTable;
+ RF_StripeCount_t TableDepthInPUs;
+ RF_StripeCount_t SpareSpaceDepthPerRegionInSUs;
+
+ RF_SparetWait_t *next; /* used internally; need not be set at ioctl
+ * time */
+};
+
+typedef struct RF_DeviceConfig_s {
+ u_int rows;
+ u_int cols;
+ u_int maxqdepth;
+ int ndevs;
+ RF_RaidDisk_t devs[RF_MAX_DISKS];
+ int nspares;
+ RF_RaidDisk_t spares[RF_MAX_DISKS];
+} RF_DeviceConfig_t;
+
+typedef struct RF_ProgressInfo_s {
+ RF_uint64 remaining;
+ RF_uint64 completed;
+ RF_uint64 total;
+} RF_ProgressInfo_t;
+
+/* flags that can be put in the rf_recon_req structure */
+#define RF_FDFLAGS_NONE 0x0 /* just fail the disk */
+#define RF_FDFLAGS_RECON 0x1 /* fail and initiate recon */
+
+#define RAIDFRAME_CONFIGURE _IOW ('r', 1, void *) /* config an array */
+#if defined(__NetBSD__)
+#define RAIDFRAME_SHUTDOWN _IO ('r', 2) /* shutdown the array */
+#elif defined(__FreeBSD__)
+#define RAIDFRAME_SHUTDOWN _IOW ('r', 2, int) /* shutdown the array */
+#endif
+#define RAIDFRAME_TUR _IOW ('r', 3, dev_t) /* debug only: test
+ * ready */
+#define RAIDFRAME_TEST_ACC _IOWR('r', 4, struct rf_test_acc)
+ /* run a test access */
+#define RAIDFRAME_FAIL_DISK _IOW ('r', 5, struct rf_recon_req)
+ /* fail a disk &
+ * optionally start
+ * recon */
+#define RAIDFRAME_CHECK_RECON_STATUS _IOR('r', 6, int) /* get reconstruction %
+ * complete on indicated
+ * row */
+#define RAIDFRAME_REWRITEPARITY _IO ('r', 7) /* rewrite (initialize)
+ * all parity */
+#define RAIDFRAME_COPYBACK _IO ('r', 8) /* copy reconstructed
+ * data back to replaced
+ * disk */
+#define RAIDFRAME_SPARET_WAIT _IOR ('r', 9, RF_SparetWait_t)
+ /* does not return until
+ * kernel needs a spare
+ * table */
+#define RAIDFRAME_SEND_SPARET _IOW ('r', 10, void *) /* used to send a spare
+ * table down into the
+ * kernel */
+#define RAIDFRAME_ABORT_SPARET_WAIT _IO ('r', 11) /* used to wake up the
+ * sparemap daemon &
+ * tell it to exit */
+#define RAIDFRAME_START_ATRACE _IO ('r', 12) /* start tracing
+ * accesses */
+#define RAIDFRAME_STOP_ATRACE _IO ('r', 13) /* stop tracing
+ * accesses */
+#define RAIDFRAME_GET_SIZE _IOR ('r', 14, int) /* get size (# sectors)
+ * in raid device */
+#define RAIDFRAME_GET_INFO _IOWR ('r', 15, RF_DeviceConfig_t *)
+ /* get configuration */
+#define RAIDFRAME_RESET_ACCTOTALS _IO ('r', 16) /* reset AccTotals for
+ * device */
+#define RAIDFRAME_GET_ACCTOTALS _IOR ('r', 17, RF_AccTotals_t)
+ /* retrieve AccTotals
+ * for device */
+#define RAIDFRAME_KEEP_ACCTOTALS _IOW ('r', 18, int) /* turn AccTotals on or
+ * off for device */
+#define RAIDFRAME_GET_COMPONENT_LABEL _IOWR ('r', 19, RF_ComponentLabel_t)
+#define RAIDFRAME_SET_COMPONENT_LABEL _IOW ('r', 20, RF_ComponentLabel_t)
+
+#define RAIDFRAME_INIT_LABELS _IOW ('r', 21, RF_ComponentLabel_t)
+#define RAIDFRAME_ADD_HOT_SPARE _IOW ('r', 22, RF_SingleComponent_t)
+#define RAIDFRAME_REMOVE_HOT_SPARE _IOW ('r', 23, RF_SingleComponent_t)
+#define RAIDFRAME_REBUILD_IN_PLACE _IOW ('r', 24, RF_SingleComponent_t)
+#define RAIDFRAME_CHECK_PARITY _IOWR ('r', 25, int)
+#define RAIDFRAME_CHECK_PARITYREWRITE_STATUS _IOR ('r', 26, int)
+#define RAIDFRAME_CHECK_COPYBACK_STATUS _IOR ('r', 27, int)
+#define RAIDFRAME_SET_AUTOCONFIG _IOWR ('r', 28, int)
+#define RAIDFRAME_SET_ROOT _IOWR ('r', 29, int)
+#define RAIDFRAME_DELETE_COMPONENT _IOW ('r', 30, RF_SingleComponent_t)
+#define RAIDFRAME_INCORPORATE_HOT_SPARE _IOW ('r', 31, RF_SingleComponent_t)
+
+/* 'Extended' status versions */
+#define RAIDFRAME_CHECK_RECON_STATUS_EXT _IOR('r', 32, RF_ProgressInfo_t)
+#define RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT _IOR ('r', 33, \
+ RF_ProgressInfo_t)
+#define RAIDFRAME_CHECK_COPYBACK_STATUS_EXT _IOR ('r', 34, RF_ProgressInfo_t)
+#define RAIDFRAME_GET_UNIT _IOWR ('r', 35, int)
+
+#endif /* !_RF__RF_RAIDFRAME_H_ */
diff --git a/sys/dev/raidframe/rf_reconbuffer.c b/sys/dev/raidframe/rf_reconbuffer.c
new file mode 100644
index 0000000..1f38a82
--- /dev/null
+++ b/sys/dev/raidframe/rf_reconbuffer.c
@@ -0,0 +1,466 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_reconbuffer.c,v 1.5 2001/01/27 20:10:49 oster Exp $ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Mark Holland
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+/***************************************************
+ *
+ * rf_reconbuffer.c -- reconstruction buffer manager
+ *
+ ***************************************************/
+
+#include <dev/raidframe/rf_raid.h>
+#include <dev/raidframe/rf_reconbuffer.h>
+#include <dev/raidframe/rf_acctrace.h>
+#include <dev/raidframe/rf_etimer.h>
+#include <dev/raidframe/rf_general.h>
+#include <dev/raidframe/rf_debugprint.h>
+#include <dev/raidframe/rf_revent.h>
+#include <dev/raidframe/rf_reconutil.h>
+#include <dev/raidframe/rf_nwayxor.h>
+
+#define Dprintf1(s,a) if (rf_reconbufferDebug) printf(s,a)
+#define Dprintf2(s,a,b) if (rf_reconbufferDebug) printf(s,a,b)
+#define Dprintf3(s,a,b,c) if (rf_reconbufferDebug) printf(s,a,b,c)
+#define Dprintf4(s,a,b,c,d) if (rf_reconbufferDebug) printf(s,a,b,c,d)
+#define Dprintf5(s,a,b,c,d,e) if (rf_reconbufferDebug) printf(s,a,b,c,d,e)
+
+/*****************************************************************************
+ *
+ * Submit a reconstruction buffer to the manager for XOR. We can only
+ * submit a buffer if (1) we can xor into an existing buffer, which
+ * means we don't have to acquire a new one, (2) we can acquire a
+ * floating recon buffer, or (3) the caller has indicated that we are
+ * allowed to keep the submitted buffer.
+ *
+ * Returns non-zero if and only if we were not able to submit.
+ * In this case, we append the current disk ID to the wait list on the
+ * indicated RU, so that it will be re-enabled when we acquire a buffer
+ * for this RU.
+ *
+ ****************************************************************************/
+
+/*
+ * nWayXorFuncs[i] is a pointer to a function that will xor "i"
+ * bufs into the accumulating sum.
+ */
+static RF_VoidFuncPtr nWayXorFuncs[] = {
+ NULL,
+ (RF_VoidFuncPtr) rf_nWayXor1,
+ (RF_VoidFuncPtr) rf_nWayXor2,
+ (RF_VoidFuncPtr) rf_nWayXor3,
+ (RF_VoidFuncPtr) rf_nWayXor4,
+ (RF_VoidFuncPtr) rf_nWayXor5,
+ (RF_VoidFuncPtr) rf_nWayXor6,
+ (RF_VoidFuncPtr) rf_nWayXor7,
+ (RF_VoidFuncPtr) rf_nWayXor8,
+ (RF_VoidFuncPtr) rf_nWayXor9
+};
+
+int
+rf_SubmitReconBuffer(rbuf, keep_it, use_committed)
+ RF_ReconBuffer_t *rbuf; /* the recon buffer to submit */
+ int keep_it; /* whether we can keep this buffer or we have
+ * to return it */
+ int use_committed; /* whether to use a committed or an available
+ * recon buffer */
+{
+ RF_LayoutSW_t *lp;
+ int rc;
+
+ lp = rbuf->raidPtr->Layout.map;
+ rc = lp->SubmitReconBuffer(rbuf, keep_it, use_committed);
+ return (rc);
+}
+
+int
+rf_SubmitReconBufferBasic(rbuf, keep_it, use_committed)
+ RF_ReconBuffer_t *rbuf; /* the recon buffer to submit */
+ int keep_it; /* whether we can keep this buffer or we have
+ * to return it */
+ int use_committed; /* whether to use a committed or an available
+ * recon buffer */
+{
+ RF_Raid_t *raidPtr = rbuf->raidPtr;
+ RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
+ RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[rbuf->row];
+ RF_ReconParityStripeStatus_t *pssPtr;
+ RF_ReconBuffer_t *targetRbuf, *t = NULL; /* temporary rbuf
+ * pointers */
+ caddr_t ta; /* temporary data buffer pointer */
+ RF_CallbackDesc_t *cb, *p;
+ int retcode = 0, created = 0;
+
+ RF_Etimer_t timer;
+
+ /* makes no sense to have a submission from the failed disk */
+ RF_ASSERT(rbuf);
+ RF_ASSERT(rbuf->col != reconCtrlPtr->fcol);
+
+ Dprintf5("RECON: submission by row %d col %d for psid %ld ru %d (failed offset %ld)\n",
+ rbuf->row, rbuf->col, (long) rbuf->parityStripeID, rbuf->which_ru, (long) rbuf->failedDiskSectorOffset);
+
+ RF_LOCK_PSS_MUTEX(raidPtr, rbuf->row, rbuf->parityStripeID);
+
+ RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
+
+ pssPtr = rf_LookupRUStatus(raidPtr, reconCtrlPtr->pssTable, rbuf->parityStripeID, rbuf->which_ru, RF_PSS_NONE, &created);
+ RF_ASSERT(pssPtr); /* if it didn't exist, we wouldn't have gotten
+ * an rbuf for it */
+
+ /* check to see if enough buffers have accumulated to do an XOR. If
+ * so, there's no need to acquire a floating rbuf. Before we can do
+ * any XORing, we must have acquired a destination buffer. If we
+ * have, then we can go ahead and do the XOR if (1) including this
+ * buffer, enough bufs have accumulated, or (2) this is the last
+ * submission for this stripe. Otherwise, we have to go acquire a
+ * floating rbuf. */
+
+ targetRbuf = (RF_ReconBuffer_t *) pssPtr->rbuf;
+ if ((targetRbuf != NULL) &&
+ ((pssPtr->xorBufCount == rf_numBufsToAccumulate - 1) || (targetRbuf->count + pssPtr->xorBufCount + 1 == layoutPtr->numDataCol))) {
+ pssPtr->rbufsForXor[pssPtr->xorBufCount++] = rbuf; /* install this buffer */
+ Dprintf3("RECON: row %d col %d invoking a %d-way XOR\n", rbuf->row, rbuf->col, pssPtr->xorBufCount);
+ RF_ETIMER_START(timer);
+ rf_MultiWayReconXor(raidPtr, pssPtr);
+ RF_ETIMER_STOP(timer);
+ RF_ETIMER_EVAL(timer);
+ raidPtr->accumXorTimeUs += RF_ETIMER_VAL_US(timer);
+ if (!keep_it) {
+ raidPtr->recon_tracerecs[rbuf->col].xor_us = RF_ETIMER_VAL_US(timer);
+ RF_ETIMER_STOP(raidPtr->recon_tracerecs[rbuf->col].recon_timer);
+ RF_ETIMER_EVAL(raidPtr->recon_tracerecs[rbuf->col].recon_timer);
+ raidPtr->recon_tracerecs[rbuf->col].specific.recon.recon_return_to_submit_us +=
+ RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[rbuf->col].recon_timer);
+ RF_ETIMER_START(raidPtr->recon_tracerecs[rbuf->col].recon_timer);
+
+ rf_LogTraceRec(raidPtr, &raidPtr->recon_tracerecs[rbuf->col]);
+ }
+ rf_CheckForFullRbuf(raidPtr, reconCtrlPtr, pssPtr, layoutPtr->numDataCol);
+
+ /* if use_committed is on, we _must_ consume a buffer off the
+ * committed list. */
+ if (use_committed) {
+ t = reconCtrlPtr->committedRbufs;
+ RF_ASSERT(t);
+ reconCtrlPtr->committedRbufs = t->next;
+ rf_ReleaseFloatingReconBuffer(raidPtr, rbuf->row, t);
+ }
+ if (keep_it) {
+ RF_UNLOCK_PSS_MUTEX(raidPtr, rbuf->row, rbuf->parityStripeID);
+ RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
+ rf_FreeReconBuffer(rbuf);
+ return (retcode);
+ }
+ goto out;
+ }
+ /* set the value of "t", which we'll use as the rbuf from here on */
+ if (keep_it) {
+ t = rbuf;
+ } else {
+ if (use_committed) { /* if a buffer has been committed to
+ * us, use it */
+ t = reconCtrlPtr->committedRbufs;
+ RF_ASSERT(t);
+ reconCtrlPtr->committedRbufs = t->next;
+ t->next = NULL;
+ } else
+ if (reconCtrlPtr->floatingRbufs) {
+ t = reconCtrlPtr->floatingRbufs;
+ reconCtrlPtr->floatingRbufs = t->next;
+ t->next = NULL;
+ }
+ }
+
+ /* If we weren't able to acquire a buffer, append to the end of the
+ * buf list in the recon ctrl struct. */
+ if (!t) {
+ RF_ASSERT(!keep_it && !use_committed);
+ Dprintf2("RECON: row %d col %d failed to acquire floating rbuf\n", rbuf->row, rbuf->col);
+
+ raidPtr->procsInBufWait++;
+ if ((raidPtr->procsInBufWait == raidPtr->numCol - 1) && (raidPtr->numFullReconBuffers == 0)) {
+ printf("Buffer wait deadlock detected. Exiting.\n");
+ rf_PrintPSStatusTable(raidPtr, rbuf->row);
+ RF_PANIC();
+ }
+ pssPtr->flags |= RF_PSS_BUFFERWAIT;
+ cb = rf_AllocCallbackDesc(); /* append to buf wait list in
+ * recon ctrl structure */
+ cb->row = rbuf->row;
+ cb->col = rbuf->col;
+ cb->callbackArg.v = rbuf->parityStripeID;
+ cb->callbackArg2.v = rbuf->which_ru;
+ cb->next = NULL;
+ if (!reconCtrlPtr->bufferWaitList)
+ reconCtrlPtr->bufferWaitList = cb;
+ else { /* might want to maintain head/tail pointers
+ * here rather than search for end of list */
+ for (p = reconCtrlPtr->bufferWaitList; p->next; p = p->next);
+ p->next = cb;
+ }
+ retcode = 1;
+ goto out;
+ }
+ Dprintf2("RECON: row %d col %d acquired rbuf\n", rbuf->row, rbuf->col);
+ RF_ETIMER_STOP(raidPtr->recon_tracerecs[rbuf->col].recon_timer);
+ RF_ETIMER_EVAL(raidPtr->recon_tracerecs[rbuf->col].recon_timer);
+ raidPtr->recon_tracerecs[rbuf->col].specific.recon.recon_return_to_submit_us +=
+ RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[rbuf->col].recon_timer);
+ RF_ETIMER_START(raidPtr->recon_tracerecs[rbuf->col].recon_timer);
+
+ rf_LogTraceRec(raidPtr, &raidPtr->recon_tracerecs[rbuf->col]);
+
+ /* initialize the buffer */
+ if (t != rbuf) {
+ t->row = rbuf->row;
+ t->col = reconCtrlPtr->fcol;
+ t->parityStripeID = rbuf->parityStripeID;
+ t->which_ru = rbuf->which_ru;
+ t->failedDiskSectorOffset = rbuf->failedDiskSectorOffset;
+ t->spRow = rbuf->spRow;
+ t->spCol = rbuf->spCol;
+ t->spOffset = rbuf->spOffset;
+
+ ta = t->buffer;
+ t->buffer = rbuf->buffer;
+ rbuf->buffer = ta; /* swap buffers */
+ }
+ /* the first installation always gets installed as the destination
+ * buffer. subsequent installations get stacked up to allow for
+ * multi-way XOR */
+ if (!pssPtr->rbuf) {
+ pssPtr->rbuf = t;
+ t->count = 1;
+ } else
+ pssPtr->rbufsForXor[pssPtr->xorBufCount++] = t; /* install this buffer */
+
+ rf_CheckForFullRbuf(raidPtr, reconCtrlPtr, pssPtr, layoutPtr->numDataCol); /* the buffer is full if
+ * G=2 */
+
+out:
+ RF_UNLOCK_PSS_MUTEX(raidPtr, rbuf->row, rbuf->parityStripeID);
+ RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
+ return (retcode);
+}
+
+int
+rf_MultiWayReconXor(raidPtr, pssPtr)
+ RF_Raid_t *raidPtr;
+ RF_ReconParityStripeStatus_t *pssPtr; /* the pss descriptor for this
+ * parity stripe */
+{
+ int i, numBufs = pssPtr->xorBufCount;
+ int numBytes = rf_RaidAddressToByte(raidPtr, raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU);
+ RF_ReconBuffer_t **rbufs = (RF_ReconBuffer_t **) pssPtr->rbufsForXor;
+ RF_ReconBuffer_t *targetRbuf = (RF_ReconBuffer_t *) pssPtr->rbuf;
+
+ RF_ASSERT(pssPtr->rbuf != NULL);
+ RF_ASSERT(numBufs > 0 && numBufs < RF_PS_MAX_BUFS);
+#ifdef _KERNEL
+#ifndef __NetBSD__
+#ifndef __FreeBSD__
+ thread_block(); /* yield the processor before doing a big XOR */
+#endif
+#endif
+#endif /* _KERNEL */
+ /*
+ * XXX
+ *
+ * What if more than 9 bufs?
+ */
+ nWayXorFuncs[numBufs] (pssPtr->rbufsForXor, targetRbuf, numBytes / sizeof(long));
+
+ /* release all the reconstruction buffers except the last one, which
+ * belongs to the disk whose submission caused this XOR to take place */
+ for (i = 0; i < numBufs - 1; i++) {
+ if (rbufs[i]->type == RF_RBUF_TYPE_FLOATING)
+ rf_ReleaseFloatingReconBuffer(raidPtr, rbufs[i]->row, rbufs[i]);
+ else
+ if (rbufs[i]->type == RF_RBUF_TYPE_FORCED)
+ rf_FreeReconBuffer(rbufs[i]);
+ else
+ RF_ASSERT(0);
+ }
+ targetRbuf->count += pssPtr->xorBufCount;
+ pssPtr->xorBufCount = 0;
+ return (0);
+}
+/* removes one full buffer from one of the full-buffer lists and returns it.
+ *
+ * ASSUMES THE RB_MUTEX IS UNLOCKED AT ENTRY.
+ */
+RF_ReconBuffer_t *
+rf_GetFullReconBuffer(reconCtrlPtr)
+ RF_ReconCtrl_t *reconCtrlPtr;
+{
+ RF_ReconBuffer_t *p;
+
+ RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
+
+ if ((p = reconCtrlPtr->priorityList) != NULL) {
+ reconCtrlPtr->priorityList = p->next;
+ p->next = NULL;
+ goto out;
+ }
+ if ((p = reconCtrlPtr->fullBufferList) != NULL) {
+ reconCtrlPtr->fullBufferList = p->next;
+ p->next = NULL;
+ goto out;
+ }
+out:
+ RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
+ return (p);
+}
+
+
+/* if the reconstruction buffer is full, move it to the full list,
+ * which is maintained sorted by failed disk sector offset
+ *
+ * ASSUMES THE RB_MUTEX IS LOCKED AT ENTRY. */
+int
+rf_CheckForFullRbuf(raidPtr, reconCtrl, pssPtr, numDataCol)
+ RF_Raid_t *raidPtr;
+ RF_ReconCtrl_t *reconCtrl;
+ RF_ReconParityStripeStatus_t *pssPtr;
+ int numDataCol;
+{
+ RF_ReconBuffer_t *p, *pt, *rbuf = (RF_ReconBuffer_t *) pssPtr->rbuf;
+
+ if (rbuf->count == numDataCol) {
+ raidPtr->numFullReconBuffers++;
+ Dprintf2("RECON: rbuf for psid %ld ru %d has filled\n",
+ (long) rbuf->parityStripeID, rbuf->which_ru);
+ if (!reconCtrl->fullBufferList || (rbuf->failedDiskSectorOffset < reconCtrl->fullBufferList->failedDiskSectorOffset)) {
+ Dprintf2("RECON: rbuf for psid %ld ru %d is head of list\n",
+ (long) rbuf->parityStripeID, rbuf->which_ru);
+ rbuf->next = reconCtrl->fullBufferList;
+ reconCtrl->fullBufferList = rbuf;
+ } else {
+ for (pt = reconCtrl->fullBufferList, p = pt->next; p && p->failedDiskSectorOffset < rbuf->failedDiskSectorOffset; pt = p, p = p->next);
+ rbuf->next = p;
+ pt->next = rbuf;
+ Dprintf2("RECON: rbuf for psid %ld ru %d is in list\n",
+ (long) rbuf->parityStripeID, rbuf->which_ru);
+ }
+#if 0
+ pssPtr->writeRbuf = pssPtr->rbuf; /* DEBUG ONLY: we like
+ * to be able to find
+ * this rbuf while it's
+ * awaiting write */
+#else
+ rbuf->pssPtr = pssPtr;
+#endif
+ pssPtr->rbuf = NULL;
+ rf_CauseReconEvent(raidPtr, rbuf->row, rbuf->col, NULL, RF_REVENT_BUFREADY);
+ }
+ return (0);
+}
+
+
+/* release a floating recon buffer for someone else to use.
+ * assumes the rb_mutex is LOCKED at entry
+ */
+void
+rf_ReleaseFloatingReconBuffer(raidPtr, row, rbuf)
+ RF_Raid_t *raidPtr;
+ RF_RowCol_t row;
+ RF_ReconBuffer_t *rbuf;
+{
+ RF_ReconCtrl_t *rcPtr = raidPtr->reconControl[row];
+ RF_CallbackDesc_t *cb;
+
+ Dprintf2("RECON: releasing rbuf for psid %ld ru %d\n",
+ (long) rbuf->parityStripeID, rbuf->which_ru);
+
+ /* if anyone is waiting on buffers, wake one of them up. They will
+ * subsequently wake up anyone else waiting on their RU */
+ if (rcPtr->bufferWaitList) {
+ rbuf->next = rcPtr->committedRbufs;
+ rcPtr->committedRbufs = rbuf;
+ cb = rcPtr->bufferWaitList;
+ rcPtr->bufferWaitList = cb->next;
+ rf_CauseReconEvent(raidPtr, cb->row, cb->col, (void *) 1, RF_REVENT_BUFCLEAR); /* arg==1 => we've
+ * committed a buffer */
+ rf_FreeCallbackDesc(cb);
+ raidPtr->procsInBufWait--;
+ } else {
+ rbuf->next = rcPtr->floatingRbufs;
+ rcPtr->floatingRbufs = rbuf;
+ }
+}
+/* release any disk that is waiting on a buffer for the indicated RU.
+ * assumes the rb_mutex is LOCKED at entry
+ */
+void
+rf_ReleaseBufferWaiters(raidPtr, pssPtr)
+ RF_Raid_t *raidPtr;
+ RF_ReconParityStripeStatus_t *pssPtr;
+{
+ RF_CallbackDesc_t *cb1, *cb = pssPtr->bufWaitList;
+
+ Dprintf2("RECON: releasing buf waiters for psid %ld ru %d\n",
+ (long) pssPtr->parityStripeID, pssPtr->which_ru);
+ pssPtr->flags &= ~RF_PSS_BUFFERWAIT;
+ while (cb) {
+ cb1 = cb->next;
+ cb->next = NULL;
+ rf_CauseReconEvent(raidPtr, cb->row, cb->col, (void *) 0, RF_REVENT_BUFCLEAR); /* arg==0 => we haven't
+ * committed a buffer */
+ rf_FreeCallbackDesc(cb);
+ cb = cb1;
+ }
+ pssPtr->bufWaitList = NULL;
+}
+/* when reconstruction is forced on an RU, there may be some disks waiting to
+ * acquire a buffer for that RU. Since we allocate a new buffer as part of
+ * the forced-reconstruction process, we no longer have to wait for any
+ * buffers, so we wakeup any waiter that we find in the bufferWaitList
+ *
+ * assumes the rb_mutex is LOCKED at entry
+ */
+void
+rf_ReleaseBufferWaiter(rcPtr, rbuf)
+ RF_ReconCtrl_t *rcPtr;
+ RF_ReconBuffer_t *rbuf;
+{
+ RF_CallbackDesc_t *cb, *cbt;
+
+ for (cbt = NULL, cb = rcPtr->bufferWaitList; cb; cbt = cb, cb = cb->next) {
+ if ((cb->callbackArg.v == rbuf->parityStripeID) && (cb->callbackArg2.v == rbuf->which_ru)) {
+ Dprintf2("RECON: Dropping row %d col %d from buffer wait list\n", cb->row, cb->col);
+ if (cbt)
+ cbt->next = cb->next;
+ else
+ rcPtr->bufferWaitList = cb->next;
+ rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, cb->row, cb->col, (void *) 0, RF_REVENT_BUFREADY); /* arg==0 => no
+ * committed buffer */
+ rf_FreeCallbackDesc(cb);
+ return;
+ }
+ }
+}
diff --git a/sys/dev/raidframe/rf_reconbuffer.h b/sys/dev/raidframe/rf_reconbuffer.h
new file mode 100644
index 0000000..1a5407e
--- /dev/null
+++ b/sys/dev/raidframe/rf_reconbuffer.h
@@ -0,0 +1,63 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_reconbuffer.h,v 1.3 1999/02/05 00:06:16 oster Exp $ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Mark Holland
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+/*******************************************************************
+ *
+ * rf_reconbuffer.h -- header file for reconstruction buffer manager
+ *
+ *******************************************************************/
+
+#ifndef _RF__RF_RECONBUFFER_H_
+#define _RF__RF_RECONBUFFER_H_
+
+#include <dev/raidframe/rf_types.h>
+#include <dev/raidframe/rf_reconstruct.h>
+
+int
+rf_SubmitReconBuffer(RF_ReconBuffer_t * rbuf, int keep_int,
+ int use_committed);
+int
+rf_SubmitReconBufferBasic(RF_ReconBuffer_t * rbuf, int keep_int,
+ int use_committed);
+int
+rf_MultiWayReconXor(RF_Raid_t * raidPtr,
+ RF_ReconParityStripeStatus_t * pssPtr);
+RF_ReconBuffer_t *rf_GetFullReconBuffer(RF_ReconCtrl_t * reconCtrlPtr);
+int
+rf_CheckForFullRbuf(RF_Raid_t * raidPtr, RF_ReconCtrl_t * reconCtrl,
+ RF_ReconParityStripeStatus_t * pssPtr, int numDataCol);
+void
+rf_ReleaseFloatingReconBuffer(RF_Raid_t * raidPtr, RF_RowCol_t row,
+ RF_ReconBuffer_t * rbuf);
+void
+rf_ReleaseBufferWaiters(RF_Raid_t * raidPtr,
+ RF_ReconParityStripeStatus_t * pssPtr);
+void rf_ReleaseBufferWaiter(RF_ReconCtrl_t * rcPtr, RF_ReconBuffer_t * rbuf);
+
+#endif /* !_RF__RF_RECONBUFFER_H_ */
diff --git a/sys/dev/raidframe/rf_reconmap.c b/sys/dev/raidframe/rf_reconmap.c
new file mode 100644
index 0000000..a73c138
--- /dev/null
+++ b/sys/dev/raidframe/rf_reconmap.c
@@ -0,0 +1,394 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_reconmap.c,v 1.6 1999/08/14 21:44:24 oster Exp $ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Mark Holland
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+/*************************************************************************
+ * rf_reconmap.c
+ *
+ * code to maintain a map of what sectors have/have not been reconstructed
+ *
+ *************************************************************************/
+
+#include <dev/raidframe/rf_raid.h>
+#include <sys/time.h>
+#include <dev/raidframe/rf_general.h>
+#include <dev/raidframe/rf_utils.h>
+
+/* special pointer values indicating that a reconstruction unit
+ * has been either totally reconstructed or not at all. Both
+ * are illegal pointer values, so you have to be careful not to
+ * dereference through them. RU_NOTHING must be zero, since
+ * MakeReconMap uses bzero to initialize the structure. These are used
+ * only at the head of the list.
+ */
+#define RU_ALL ((RF_ReconMapListElem_t *) -1)
+#define RU_NOTHING ((RF_ReconMapListElem_t *) 0)
+
+/* used to mark the end of the list */
+#define RU_NIL ((RF_ReconMapListElem_t *) 0)
+
+
+static void
+compact_stat_entry(RF_Raid_t * raidPtr, RF_ReconMap_t * mapPtr,
+ int i);
+static void crunch_list(RF_ReconMap_t * mapPtr, RF_ReconMapListElem_t * listPtr);
+static RF_ReconMapListElem_t *
+MakeReconMapListElem(RF_SectorNum_t startSector,
+ RF_SectorNum_t stopSector, RF_ReconMapListElem_t * next);
+static void
+FreeReconMapListElem(RF_ReconMap_t * mapPtr,
+ RF_ReconMapListElem_t * p);
+static void update_size(RF_ReconMap_t * mapPtr, int size);
+static void PrintList(RF_ReconMapListElem_t * listPtr);
+
+/*-----------------------------------------------------------------------------
+ *
+ * Creates and initializes new Reconstruction map
+ *
+ *-----------------------------------------------------------------------------*/
+
+RF_ReconMap_t *
+rf_MakeReconMap(raidPtr, ru_sectors, disk_sectors, spareUnitsPerDisk)
+ RF_Raid_t *raidPtr;
+ RF_SectorCount_t ru_sectors; /* size of reconstruction unit in
+ * sectors */
+ RF_SectorCount_t disk_sectors; /* size of disk in sectors */
+ RF_ReconUnitCount_t spareUnitsPerDisk; /* zero unless distributed
+ * sparing */
+{
+ RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
+ RF_ReconUnitCount_t num_rus = layoutPtr->stripeUnitsPerDisk / layoutPtr->SUsPerRU;
+ RF_ReconMap_t *p;
+ int rc;
+
+ RF_Malloc(p, sizeof(RF_ReconMap_t), (RF_ReconMap_t *));
+ p->sectorsPerReconUnit = ru_sectors;
+ p->sectorsInDisk = disk_sectors;
+
+ p->totalRUs = num_rus;
+ p->spareRUs = spareUnitsPerDisk;
+ p->unitsLeft = num_rus - spareUnitsPerDisk;
+
+ RF_Malloc(p->status, num_rus * sizeof(RF_ReconMapListElem_t *), (RF_ReconMapListElem_t **));
+ RF_ASSERT(p->status != (RF_ReconMapListElem_t **) NULL);
+
+ (void) bzero((char *) p->status, num_rus * sizeof(RF_ReconMapListElem_t *));
+
+ p->size = sizeof(RF_ReconMap_t) + num_rus * sizeof(RF_ReconMapListElem_t *);
+ p->maxSize = p->size;
+
+ rc = rf_mutex_init(&p->mutex, __FUNCTION__);
+ if (rc) {
+ RF_ERRORMSG3("Unable to init mutex file %s line %d rc=%d\n", __FILE__,
+ __LINE__, rc);
+ RF_Free(p->status, num_rus * sizeof(RF_ReconMapListElem_t *));
+ RF_Free(p, sizeof(RF_ReconMap_t));
+ return (NULL);
+ }
+ return (p);
+}
+
+
+/*-----------------------------------------------------------------------------
+ *
+ * marks a new set of sectors as reconstructed. All the possible mergings get
+ * complicated. To simplify matters, the approach I take is to just dump
+ * something into the list, and then clean it up (i.e. merge elements and
+ * eliminate redundant ones) in a second pass over the list (compact_stat_entry()).
+ * Not 100% efficient, since a structure can be allocated and then immediately
+ * freed, but it keeps this code from becoming (more of) a nightmare of
+ * special cases. The only thing that compact_stat_entry() assumes is that the
+ * list is sorted by startSector, and so this is the only condition I maintain
+ * here. (MCH)
+ *
+ *-----------------------------------------------------------------------------*/
+
+void
+rf_ReconMapUpdate(raidPtr, mapPtr, startSector, stopSector)
+ RF_Raid_t *raidPtr;
+ RF_ReconMap_t *mapPtr;
+ RF_SectorNum_t startSector;
+ RF_SectorNum_t stopSector;
+{
+ RF_SectorCount_t sectorsPerReconUnit = mapPtr->sectorsPerReconUnit;
+ RF_SectorNum_t i, first_in_RU, last_in_RU;
+ RF_ReconMapListElem_t *p, *pt;
+
+ RF_LOCK_MUTEX(mapPtr->mutex);
+ RF_ASSERT(startSector >= 0 && stopSector < mapPtr->sectorsInDisk && stopSector >= startSector);
+
+ while (startSector <= stopSector) {
+ i = startSector / mapPtr->sectorsPerReconUnit;
+ first_in_RU = i * sectorsPerReconUnit;
+ last_in_RU = first_in_RU + sectorsPerReconUnit - 1;
+ p = mapPtr->status[i];
+ if (p != RU_ALL) {
+ if (p == RU_NOTHING || p->startSector > startSector) { /* insert at front of
+ * list */
+
+ mapPtr->status[i] = MakeReconMapListElem(startSector, RF_MIN(stopSector, last_in_RU), (p == RU_NOTHING) ? NULL : p);
+ update_size(mapPtr, sizeof(RF_ReconMapListElem_t));
+
+ } else {/* general case */
+ do { /* search for place to insert */
+ pt = p;
+ p = p->next;
+ } while (p && (p->startSector < startSector));
+ pt->next = MakeReconMapListElem(startSector, RF_MIN(stopSector, last_in_RU), p);
+ update_size(mapPtr, sizeof(RF_ReconMapListElem_t));
+ }
+ compact_stat_entry(raidPtr, mapPtr, i);
+ }
+ startSector = RF_MIN(stopSector, last_in_RU) + 1;
+ }
+ RF_UNLOCK_MUTEX(mapPtr->mutex);
+}
+
+
+
+/*-----------------------------------------------------------------------------
+ *
+ * performs whatever list compactions can be done, and frees any space
+ * that is no longer necessary. Assumes only that the list is sorted
+ * by startSector. crunch_list() compacts a single list as much as possible,
+ * and the second block of code deletes the entire list if possible.
+ * crunch_list() is also called from MakeReconMapAccessList().
+ *
+ * When a recon unit is detected to be fully reconstructed, we set the
+ * corresponding bit in the parity stripe map so that the head follow
+ * code will not select this parity stripe again. This is redundant (but
+ * harmless) when compact_stat_entry is called from the reconstruction code,
+ * but necessary when called from the user-write code.
+ *
+ *-----------------------------------------------------------------------------*/
+
+static void
+compact_stat_entry(raidPtr, mapPtr, i)
+ RF_Raid_t *raidPtr;
+ RF_ReconMap_t *mapPtr;
+ int i;
+{
+ RF_SectorCount_t sectorsPerReconUnit = mapPtr->sectorsPerReconUnit;
+ RF_ReconMapListElem_t *p = mapPtr->status[i];
+
+ crunch_list(mapPtr, p);
+
+ if ((p->startSector == i * sectorsPerReconUnit) &&
+ (p->stopSector == i * sectorsPerReconUnit + sectorsPerReconUnit - 1)) {
+ mapPtr->status[i] = RU_ALL;
+ mapPtr->unitsLeft--;
+ FreeReconMapListElem(mapPtr, p);
+ }
+}
+
+static void
+crunch_list(mapPtr, listPtr)
+ RF_ReconMap_t *mapPtr;
+ RF_ReconMapListElem_t *listPtr;
+{
+ RF_ReconMapListElem_t *pt, *p = listPtr;
+
+ if (!p)
+ return;
+ pt = p;
+ p = p->next;
+ while (p) {
+ if (pt->stopSector >= p->startSector - 1) {
+ pt->stopSector = RF_MAX(pt->stopSector, p->stopSector);
+ pt->next = p->next;
+ FreeReconMapListElem(mapPtr, p);
+ p = pt->next;
+ } else {
+ pt = p;
+ p = p->next;
+ }
+ }
+}
+/*-----------------------------------------------------------------------------
+ *
+ * Allocate and fill a new list element
+ *
+ *-----------------------------------------------------------------------------*/
+
+static RF_ReconMapListElem_t *
+MakeReconMapListElem(
+ RF_SectorNum_t startSector,
+ RF_SectorNum_t stopSector,
+ RF_ReconMapListElem_t * next)
+{
+ RF_ReconMapListElem_t *p;
+
+ RF_Malloc(p, sizeof(RF_ReconMapListElem_t), (RF_ReconMapListElem_t *));
+ if (p == NULL)
+ return (NULL);
+ p->startSector = startSector;
+ p->stopSector = stopSector;
+ p->next = next;
+ return (p);
+}
+/*-----------------------------------------------------------------------------
+ *
+ * Free a list element
+ *
+ *-----------------------------------------------------------------------------*/
+
+static void
+FreeReconMapListElem(mapPtr, p)
+ RF_ReconMap_t *mapPtr;
+ RF_ReconMapListElem_t *p;
+{
+ int delta;
+
+ if (mapPtr) {
+ delta = 0 - (int) sizeof(RF_ReconMapListElem_t);
+ update_size(mapPtr, delta);
+ }
+ RF_Free(p, sizeof(*p));
+}
+/*-----------------------------------------------------------------------------
+ *
+ * Free an entire status structure. Inefficient, but can be called at any time.
+ *
+ *-----------------------------------------------------------------------------*/
+void
+rf_FreeReconMap(mapPtr)
+ RF_ReconMap_t *mapPtr;
+{
+ RF_ReconMapListElem_t *p, *q;
+ RF_ReconUnitCount_t numRUs;
+ RF_ReconUnitNum_t i;
+
+ numRUs = mapPtr->sectorsInDisk / mapPtr->sectorsPerReconUnit;
+ if (mapPtr->sectorsInDisk % mapPtr->sectorsPerReconUnit)
+ numRUs++;
+
+ for (i = 0; i < numRUs; i++) {
+ p = mapPtr->status[i];
+ while (p != RU_NOTHING && p != RU_ALL) {
+ q = p;
+ p = p->next;
+ RF_Free(q, sizeof(*q));
+ }
+ }
+ rf_mutex_destroy(&mapPtr->mutex);
+ RF_Free(mapPtr->status, mapPtr->totalRUs * sizeof(RF_ReconMapListElem_t *));
+ RF_Free(mapPtr, sizeof(RF_ReconMap_t));
+}
+/*-----------------------------------------------------------------------------
+ *
+ * returns nonzero if the indicated RU has been reconstructed already
+ *
+ *---------------------------------------------------------------------------*/
+
+int
+rf_CheckRUReconstructed(mapPtr, startSector)
+ RF_ReconMap_t *mapPtr;
+ RF_SectorNum_t startSector;
+{
+ RF_ReconMapListElem_t *l; /* used for searching */
+ RF_ReconUnitNum_t i;
+
+ i = startSector / mapPtr->sectorsPerReconUnit;
+ l = mapPtr->status[i];
+ return ((l == RU_ALL) ? 1 : 0);
+}
+
+RF_ReconUnitCount_t
+rf_UnitsLeftToReconstruct(mapPtr)
+ RF_ReconMap_t *mapPtr;
+{
+ RF_ASSERT(mapPtr != NULL);
+ return (mapPtr->unitsLeft);
+}
+/* updates the size fields of a status descriptor */
+static void
+update_size(mapPtr, size)
+ RF_ReconMap_t *mapPtr;
+ int size;
+{
+ mapPtr->size += size;
+ mapPtr->maxSize = RF_MAX(mapPtr->size, mapPtr->maxSize);
+}
+
+static void
+PrintList(listPtr)
+ RF_ReconMapListElem_t *listPtr;
+{
+ while (listPtr) {
+ printf("%d,%d -> ", (int) listPtr->startSector, (int) listPtr->stopSector);
+ listPtr = listPtr->next;
+ }
+ printf("\n");
+}
+
+void
+rf_PrintReconMap(raidPtr, mapPtr, frow, fcol)
+ RF_Raid_t *raidPtr;
+ RF_ReconMap_t *mapPtr;
+ RF_RowCol_t frow;
+ RF_RowCol_t fcol;
+{
+ RF_ReconUnitCount_t numRUs;
+ RF_ReconMapListElem_t *p;
+ RF_ReconUnitNum_t i;
+
+ numRUs = mapPtr->totalRUs;
+ if (mapPtr->sectorsInDisk % mapPtr->sectorsPerReconUnit)
+ numRUs++;
+
+ for (i = 0; i < numRUs; i++) {
+ p = mapPtr->status[i];
+ if (p == RU_ALL)/* printf("[%d] ALL\n",i) */
+ ;
+ else
+ if (p == RU_NOTHING) {
+ printf("%d: Unreconstructed\n", i);
+ } else {
+ printf("%d: ", i);
+ PrintList(p);
+ }
+ }
+}
+
+void
+rf_PrintReconSchedule(mapPtr, starttime)
+ RF_ReconMap_t *mapPtr;
+ struct timeval *starttime;
+{
+ static int old_pctg = -1;
+ struct timeval tv, diff;
+ int new_pctg;
+
+ new_pctg = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs);
+ if (new_pctg != old_pctg) {
+ RF_GETTIME(tv);
+ RF_TIMEVAL_DIFF(starttime, &tv, &diff);
+ printf("%d %d.%06d\n", (int) new_pctg, (int) diff.tv_sec, (int) diff.tv_usec);
+ old_pctg = new_pctg;
+ }
+}
diff --git a/sys/dev/raidframe/rf_reconmap.h b/sys/dev/raidframe/rf_reconmap.h
new file mode 100644
index 0000000..2fee059
--- /dev/null
+++ b/sys/dev/raidframe/rf_reconmap.h
@@ -0,0 +1,86 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_reconmap.h,v 1.3 1999/02/05 00:06:16 oster Exp $ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Mark Holland
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+/******************************************************************************
+ * rf_reconMap.h -- Header file describing reconstruction status data structure
+ ******************************************************************************/
+
+#ifndef _RF__RF_RECONMAP_H_
+#define _RF__RF_RECONMAP_H_
+
+#include <dev/raidframe/rf_types.h>
+#include <dev/raidframe/rf_threadstuff.h>
+
+/*
+ * Main reconstruction status descriptor. size and maxsize are used for
+ * monitoring only: they have no function for reconstruction.
+ */
+struct RF_ReconMap_s {
+ RF_SectorCount_t sectorsPerReconUnit; /* sectors per reconstruct
+ * unit */
+ RF_SectorCount_t sectorsInDisk; /* total sectors in disk */
+ RF_SectorCount_t unitsLeft; /* recon units left to recon */
+ RF_ReconUnitCount_t totalRUs; /* total recon units on disk */
+ RF_ReconUnitCount_t spareRUs; /* total number of spare RUs on failed
+ * disk */
+ RF_StripeCount_t totalParityStripes; /* total number of parity
+ * stripes in array */
+ u_int size; /* overall size of this structure */
+ u_int maxSize; /* maximum size so far */
+ RF_ReconMapListElem_t **status; /* array of ptrs to list elements */
+ RF_DECLARE_MUTEX(mutex)
+};
+/* a list element */
+struct RF_ReconMapListElem_s {
+ RF_SectorNum_t startSector; /* bounding sect nums on this block */
+ RF_SectorNum_t stopSector;
+ RF_ReconMapListElem_t *next; /* next element in list */
+};
+
+RF_ReconMap_t *
+rf_MakeReconMap(RF_Raid_t * raidPtr, RF_SectorCount_t ru_sectors,
+ RF_SectorCount_t disk_sectors, RF_ReconUnitCount_t spareUnitsPerDisk);
+
+void
+rf_ReconMapUpdate(RF_Raid_t * raidPtr, RF_ReconMap_t * mapPtr,
+ RF_SectorNum_t startSector, RF_SectorNum_t stopSector);
+
+void rf_FreeReconMap(RF_ReconMap_t * mapPtr);
+
+int rf_CheckRUReconstructed(RF_ReconMap_t * mapPtr, RF_SectorNum_t startSector);
+
+RF_ReconUnitCount_t rf_UnitsLeftToReconstruct(RF_ReconMap_t * mapPtr);
+
+void
+rf_PrintReconMap(RF_Raid_t * raidPtr, RF_ReconMap_t * mapPtr,
+ RF_RowCol_t frow, RF_RowCol_t fcol);
+
+void rf_PrintReconSchedule(RF_ReconMap_t * mapPtr, struct timeval * starttime);
+
+#endif /* !_RF__RF_RECONMAP_H_ */
diff --git a/sys/dev/raidframe/rf_reconstruct.c b/sys/dev/raidframe/rf_reconstruct.c
new file mode 100644
index 0000000..9f13b67
--- /dev/null
+++ b/sys/dev/raidframe/rf_reconstruct.c
@@ -0,0 +1,1680 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_reconstruct.c,v 1.27 2001/01/26 02:16:24 oster Exp $ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Mark Holland
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+/************************************************************
+ *
+ * rf_reconstruct.c -- code to perform on-line reconstruction
+ *
+ ************************************************************/
+
+#include <dev/raidframe/rf_types.h>
+#include <sys/time.h>
+#if defined(__FreeBSD__)
+#include <sys/systm.h>
+#if __FreeBSD_version > 500005
+#include <sys/bio.h>
+#endif
+#endif
+#include <sys/buf.h>
+#include <sys/errno.h>
+
+#include <sys/types.h>
+#include <sys/param.h>
+#include <sys/systm.h>
+#include <sys/proc.h>
+#if defined(__NetBSD__)
+#include <sys/ioctl.h>
+#elif defined(__FreeBSD__)
+#include <sys/ioccom.h>
+#endif
+#include <sys/fcntl.h>
+#include <sys/vnode.h>
+
+
+#include <dev/raidframe/rf_raid.h>
+#include <dev/raidframe/rf_reconutil.h>
+#include <dev/raidframe/rf_revent.h>
+#include <dev/raidframe/rf_reconbuffer.h>
+#include <dev/raidframe/rf_acctrace.h>
+#include <dev/raidframe/rf_etimer.h>
+#include <dev/raidframe/rf_dag.h>
+#include <dev/raidframe/rf_desc.h>
+#include <dev/raidframe/rf_general.h>
+#include <dev/raidframe/rf_freelist.h>
+#include <dev/raidframe/rf_debugprint.h>
+#include <dev/raidframe/rf_driver.h>
+#include <dev/raidframe/rf_utils.h>
+#include <dev/raidframe/rf_shutdown.h>
+
+#include <dev/raidframe/rf_kintf.h>
+
+/* setting these to -1 causes them to be set to their default values if not set by debug options */
+
+#define Dprintf(s) if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL)
+#define Dprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
+#define Dprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
+#define Dprintf3(s,a,b,c) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
+#define Dprintf4(s,a,b,c,d) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL)
+#define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL)
+#define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL)
+#define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL)
+
+#define DDprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
+#define DDprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
+
+static RF_FreeList_t *rf_recond_freelist;
+#define RF_MAX_FREE_RECOND 4
+#define RF_RECOND_INC 1
+
+static RF_RaidReconDesc_t *
+AllocRaidReconDesc(RF_Raid_t * raidPtr,
+ RF_RowCol_t row, RF_RowCol_t col, RF_RaidDisk_t * spareDiskPtr,
+ int numDisksDone, RF_RowCol_t srow, RF_RowCol_t scol);
+static void FreeReconDesc(RF_RaidReconDesc_t * reconDesc);
+static int
+ProcessReconEvent(RF_Raid_t * raidPtr, RF_RowCol_t frow,
+ RF_ReconEvent_t * event);
+static int
+IssueNextReadRequest(RF_Raid_t * raidPtr, RF_RowCol_t row,
+ RF_RowCol_t col);
+static int TryToRead(RF_Raid_t * raidPtr, RF_RowCol_t row, RF_RowCol_t col);
+static int
+ComputePSDiskOffsets(RF_Raid_t * raidPtr, RF_StripeNum_t psid,
+ RF_RowCol_t row, RF_RowCol_t col, RF_SectorNum_t * outDiskOffset,
+ RF_SectorNum_t * outFailedDiskSectorOffset, RF_RowCol_t * spRow,
+ RF_RowCol_t * spCol, RF_SectorNum_t * spOffset);
+static int IssueNextWriteRequest(RF_Raid_t * raidPtr, RF_RowCol_t row);
+static int ReconReadDoneProc(void *arg, int status);
+static int ReconWriteDoneProc(void *arg, int status);
+static void
+CheckForNewMinHeadSep(RF_Raid_t * raidPtr, RF_RowCol_t row,
+ RF_HeadSepLimit_t hsCtr);
+static int
+CheckHeadSeparation(RF_Raid_t * raidPtr, RF_PerDiskReconCtrl_t * ctrl,
+ RF_RowCol_t row, RF_RowCol_t col, RF_HeadSepLimit_t hsCtr,
+ RF_ReconUnitNum_t which_ru);
+static int
+CheckForcedOrBlockedReconstruction(RF_Raid_t * raidPtr,
+ RF_ReconParityStripeStatus_t * pssPtr, RF_PerDiskReconCtrl_t * ctrl,
+ RF_RowCol_t row, RF_RowCol_t col, RF_StripeNum_t psid,
+ RF_ReconUnitNum_t which_ru);
+static void ForceReconReadDoneProc(void *arg, int status);
+
+static void rf_ShutdownReconstruction(void *);
+
+struct RF_ReconDoneProc_s {
+ void (*proc) (RF_Raid_t *, void *);
+ void *arg;
+ RF_ReconDoneProc_t *next;
+};
+
+static RF_FreeList_t *rf_rdp_freelist;
+#define RF_MAX_FREE_RDP 4
+#define RF_RDP_INC 1
+
+static void
+SignalReconDone(RF_Raid_t * raidPtr)
+{
+ RF_ReconDoneProc_t *p;
+
+ RF_LOCK_MUTEX(raidPtr->recon_done_proc_mutex);
+ for (p = raidPtr->recon_done_procs; p; p = p->next) {
+ p->proc(raidPtr, p->arg);
+ }
+ RF_UNLOCK_MUTEX(raidPtr->recon_done_proc_mutex);
+}
+
+int
+rf_RegisterReconDoneProc(
+ RF_Raid_t * raidPtr,
+ void (*proc) (RF_Raid_t *, void *),
+ void *arg,
+ RF_ReconDoneProc_t ** handlep)
+{
+ RF_ReconDoneProc_t *p;
+
+ RF_FREELIST_GET(rf_rdp_freelist, p, next, (RF_ReconDoneProc_t *));
+ if (p == NULL)
+ return (ENOMEM);
+ p->proc = proc;
+ p->arg = arg;
+ RF_LOCK_MUTEX(raidPtr->recon_done_proc_mutex);
+ p->next = raidPtr->recon_done_procs;
+ raidPtr->recon_done_procs = p;
+ RF_UNLOCK_MUTEX(raidPtr->recon_done_proc_mutex);
+ if (handlep)
+ *handlep = p;
+ return (0);
+}
+/**************************************************************************
+ *
+ * sets up the parameters that will be used by the reconstruction process
+ * currently there are none, except for those that the layout-specific
+ * configuration (e.g. rf_ConfigureDeclustered) routine sets up.
+ *
+ * in the kernel, we fire off the recon thread.
+ *
+ **************************************************************************/
+static void
+rf_ShutdownReconstruction(ignored)
+ void *ignored;
+{
+ RF_FREELIST_DESTROY(rf_recond_freelist, next, (RF_RaidReconDesc_t *));
+ RF_FREELIST_DESTROY(rf_rdp_freelist, next, (RF_ReconDoneProc_t *));
+}
+
+int
+rf_ConfigureReconstruction(listp)
+ RF_ShutdownList_t **listp;
+{
+ int rc;
+
+ RF_FREELIST_CREATE(rf_recond_freelist, RF_MAX_FREE_RECOND,
+ RF_RECOND_INC, sizeof(RF_RaidReconDesc_t));
+ if (rf_recond_freelist == NULL)
+ return (ENOMEM);
+ RF_FREELIST_CREATE(rf_rdp_freelist, RF_MAX_FREE_RDP,
+ RF_RDP_INC, sizeof(RF_ReconDoneProc_t));
+ if (rf_rdp_freelist == NULL) {
+ RF_FREELIST_DESTROY(rf_recond_freelist, next, (RF_RaidReconDesc_t *));
+ return (ENOMEM);
+ }
+ rc = rf_ShutdownCreate(listp, rf_ShutdownReconstruction, NULL);
+ if (rc) {
+ RF_ERRORMSG3("Unable to add to shutdown list file %s line %d rc=%d\n",
+ __FILE__, __LINE__, rc);
+ rf_ShutdownReconstruction(NULL);
+ return (rc);
+ }
+ return (0);
+}
+
+static RF_RaidReconDesc_t *
+AllocRaidReconDesc(raidPtr, row, col, spareDiskPtr, numDisksDone, srow, scol)
+ RF_Raid_t *raidPtr;
+ RF_RowCol_t row;
+ RF_RowCol_t col;
+ RF_RaidDisk_t *spareDiskPtr;
+ int numDisksDone;
+ RF_RowCol_t srow;
+ RF_RowCol_t scol;
+{
+
+ RF_RaidReconDesc_t *reconDesc;
+
+ RF_FREELIST_GET(rf_recond_freelist, reconDesc, next, (RF_RaidReconDesc_t *));
+
+ reconDesc->raidPtr = raidPtr;
+ reconDesc->row = row;
+ reconDesc->col = col;
+ reconDesc->spareDiskPtr = spareDiskPtr;
+ reconDesc->numDisksDone = numDisksDone;
+ reconDesc->srow = srow;
+ reconDesc->scol = scol;
+ reconDesc->state = 0;
+ reconDesc->next = NULL;
+
+ return (reconDesc);
+}
+
+static void
+FreeReconDesc(reconDesc)
+ RF_RaidReconDesc_t *reconDesc;
+{
+#if RF_RECON_STATS > 0
+ printf("RAIDframe: %lu recon event waits, %lu recon delays\n",
+ (long) reconDesc->numReconEventWaits, (long) reconDesc->numReconExecDelays);
+#endif /* RF_RECON_STATS > 0 */
+ printf("RAIDframe: %lu max exec ticks\n",
+ (long) reconDesc->maxReconExecTicks);
+#if (RF_RECON_STATS > 0) || defined(KERNEL)
+ printf("\n");
+#endif /* (RF_RECON_STATS > 0) || KERNEL */
+ RF_FREELIST_FREE(rf_recond_freelist, reconDesc, next);
+}
+
+
+/*****************************************************************************
+ *
+ * primary routine to reconstruct a failed disk. This should be called from
+ * within its own thread. It won't return until reconstruction completes,
+ * fails, or is aborted.
+ *****************************************************************************/
+int
+rf_ReconstructFailedDisk(raidPtr, row, col)
+ RF_Raid_t *raidPtr;
+ RF_RowCol_t row;
+ RF_RowCol_t col;
+{
+ RF_LayoutSW_t *lp;
+ int rc;
+
+ lp = raidPtr->Layout.map;
+ if (lp->SubmitReconBuffer) {
+ /*
+ * The current infrastructure only supports reconstructing one
+ * disk at a time for each array.
+ */
+ RF_LOCK_MUTEX(raidPtr->mutex);
+ while (raidPtr->reconInProgress) {
+ RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
+ }
+ raidPtr->reconInProgress++;
+ RF_UNLOCK_MUTEX(raidPtr->mutex);
+ rc = rf_ReconstructFailedDiskBasic(raidPtr, row, col);
+ RF_LOCK_MUTEX(raidPtr->mutex);
+ raidPtr->reconInProgress--;
+ RF_UNLOCK_MUTEX(raidPtr->mutex);
+ } else {
+ RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
+ lp->parityConfig);
+ rc = EIO;
+ }
+ RF_SIGNAL_COND(raidPtr->waitForReconCond);
+ wakeup(&raidPtr->waitForReconCond); /* XXX Methinks this will be
+ * needed at some point... GO */
+ return (rc);
+}
+
+int
+rf_ReconstructFailedDiskBasic(raidPtr, row, col)
+ RF_Raid_t *raidPtr;
+ RF_RowCol_t row;
+ RF_RowCol_t col;
+{
+ RF_ComponentLabel_t *c_label;
+ RF_RaidDisk_t *spareDiskPtr = NULL;
+ RF_RaidReconDesc_t *reconDesc;
+ RF_RowCol_t srow, scol;
+ int numDisksDone = 0, rc;
+
+ RF_Malloc(c_label, sizeof(RF_ComponentLabel_t), (RF_ComponentLabel_t *));
+ if (c_label == NULL) {
+ printf("rf_ReconstructInPlace: Out of memory?\n");
+ return (ENOMEM);
+ }
+
+ /* first look for a spare drive onto which to reconstruct the data */
+ /* spare disk descriptors are stored in row 0. This may have to
+ * change eventually */
+
+ RF_LOCK_MUTEX(raidPtr->mutex);
+ RF_ASSERT(raidPtr->Disks[row][col].status == rf_ds_failed);
+
+ if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
+ if (raidPtr->status[row] != rf_rs_degraded) {
+ RF_ERRORMSG2("Unable to reconstruct disk at row %d col %d because status not degraded\n", row, col);
+ RF_UNLOCK_MUTEX(raidPtr->mutex);
+ RF_Free(c_label, sizeof(RF_ComponentLabel_t));
+ return (EINVAL);
+ }
+ srow = row;
+ scol = (-1);
+ } else {
+ srow = 0;
+ for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) {
+ if (raidPtr->Disks[srow][scol].status == rf_ds_spare) {
+ spareDiskPtr = &raidPtr->Disks[srow][scol];
+ spareDiskPtr->status = rf_ds_used_spare;
+ break;
+ }
+ }
+ if (!spareDiskPtr) {
+ RF_ERRORMSG2("Unable to reconstruct disk at row %d col %d because no spares are available\n", row, col);
+ RF_UNLOCK_MUTEX(raidPtr->mutex);
+ RF_Free(c_label, sizeof(RF_ComponentLabel_t));
+ return (ENOSPC);
+ }
+ printf("RECON: initiating reconstruction on row %d col %d -> spare at row %d col %d\n", row, col, srow, scol);
+ }
+ RF_UNLOCK_MUTEX(raidPtr->mutex);
+
+ reconDesc = AllocRaidReconDesc((void *) raidPtr, row, col, spareDiskPtr, numDisksDone, srow, scol);
+ raidPtr->reconDesc = (void *) reconDesc;
+#if RF_RECON_STATS > 0
+ reconDesc->hsStallCount = 0;
+ reconDesc->numReconExecDelays = 0;
+ reconDesc->numReconEventWaits = 0;
+#endif /* RF_RECON_STATS > 0 */
+ reconDesc->reconExecTimerRunning = 0;
+ reconDesc->reconExecTicks = 0;
+ reconDesc->maxReconExecTicks = 0;
+ rc = rf_ContinueReconstructFailedDisk(reconDesc);
+
+ if (!rc) {
+ /* fix up the component label */
+ /* Don't actually need the read here.. */
+ raidread_component_label(
+ raidPtr->raid_cinfo[srow][scol].ci_dev,
+ raidPtr->raid_cinfo[srow][scol].ci_vp,
+ c_label);
+
+ raid_init_component_label( raidPtr, c_label);
+ c_label->row = row;
+ c_label->column = col;
+ c_label->clean = RF_RAID_DIRTY;
+ c_label->status = rf_ds_optimal;
+ c_label->partitionSize = raidPtr->Disks[srow][scol].partitionSize;
+
+ /* We've just done a rebuild based on all the other
+ disks, so at this point the parity is known to be
+ clean, even if it wasn't before. */
+
+ /* XXX doesn't hold for RAID 6!! */
+
+ raidPtr->parity_good = RF_RAID_CLEAN;
+
+ /* XXXX MORE NEEDED HERE */
+
+ raidwrite_component_label(
+ raidPtr->raid_cinfo[srow][scol].ci_dev,
+ raidPtr->raid_cinfo[srow][scol].ci_vp,
+ c_label);
+
+ }
+ RF_Free(c_label, sizeof(RF_ComponentLabel_t));
+ return (rc);
+}
+
+/*
+
+ Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL,
+ and you don't get a spare until the next Monday. With this function
+ (and hot-swappable drives) you can now put your new disk containing
+ /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to
+ rebuild the data "on the spot".
+
+*/
+
+int
+rf_ReconstructInPlace(raidPtr, row, col)
+ RF_Raid_t *raidPtr;
+ RF_RowCol_t row;
+ RF_RowCol_t col;
+{
+ RF_RaidDisk_t *spareDiskPtr = NULL;
+ RF_RaidReconDesc_t *reconDesc;
+ RF_LayoutSW_t *lp;
+ RF_RaidDisk_t *badDisk;
+ RF_ComponentLabel_t *c_label;
+ int numDisksDone = 0, rc;
+ struct vnode *vp;
+ int retcode;
+ int ac;
+
+ RF_Malloc(c_label, sizeof(RF_ComponentLabel_t), (RF_ComponentLabel_t *));
+ if (c_label == NULL) {
+ printf("rf_ReconstructInPlace: Out of memory?\n");
+ return (ENOMEM);
+ }
+
+ lp = raidPtr->Layout.map;
+ if (lp->SubmitReconBuffer) {
+ /*
+ * The current infrastructure only supports reconstructing one
+ * disk at a time for each array.
+ */
+ RF_LOCK_MUTEX(raidPtr->mutex);
+ if ((raidPtr->Disks[row][col].status == rf_ds_optimal) &&
+ (raidPtr->numFailures > 0)) {
+ /* XXX 0 above shouldn't be constant!!! */
+ /* some component other than this has failed.
+ Let's not make things worse than they already
+ are... */
+ printf("RAIDFRAME: Unable to reconstruct to disk at:\n");
+ printf(" Row: %d Col: %d Too many failures.\n",
+ row, col);
+ RF_UNLOCK_MUTEX(raidPtr->mutex);
+ RF_Free(c_label, sizeof(RF_ComponentLabel_t));
+ return (EINVAL);
+ }
+ if (raidPtr->Disks[row][col].status == rf_ds_reconstructing) {
+ printf("RAIDFRAME: Unable to reconstruct to disk at:\n");
+ printf(" Row: %d Col: %d Reconstruction already occuring!\n", row, col);
+
+ RF_UNLOCK_MUTEX(raidPtr->mutex);
+ RF_Free(c_label, sizeof(RF_ComponentLabel_t));
+ return (EINVAL);
+ }
+
+
+ if (raidPtr->Disks[row][col].status != rf_ds_failed) {
+ /* "It's gone..." */
+ raidPtr->numFailures++;
+ raidPtr->Disks[row][col].status = rf_ds_failed;
+ raidPtr->status[row] = rf_rs_degraded;
+ rf_update_component_labels(raidPtr,
+ RF_NORMAL_COMPONENT_UPDATE);
+ }
+
+ while (raidPtr->reconInProgress) {
+ RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
+ }
+
+ raidPtr->reconInProgress++;
+
+
+ /* first look for a spare drive onto which to reconstruct
+ the data. spare disk descriptors are stored in row 0.
+ This may have to change eventually */
+
+ /* Actually, we don't care if it's failed or not...
+ On a RAID set with correct parity, this function
+ should be callable on any component without ill affects. */
+ /* RF_ASSERT(raidPtr->Disks[row][col].status == rf_ds_failed);
+ */
+
+ if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
+ RF_ERRORMSG2("Unable to reconstruct to disk at row %d col %d: operation not supported for RF_DISTRIBUTE_SPARE\n", row, col);
+
+ raidPtr->reconInProgress--;
+ RF_UNLOCK_MUTEX(raidPtr->mutex);
+ RF_Free(c_label, sizeof(RF_ComponentLabel_t));
+ return (EINVAL);
+ }
+
+ /* XXX need goop here to see if the disk is alive,
+ and, if not, make it so... */
+
+
+
+ badDisk = &raidPtr->Disks[row][col];
+
+ /* This device may have been opened successfully the
+ first time. Close it before trying to open it again.. */
+
+ if (raidPtr->raid_cinfo[row][col].ci_vp != NULL) {
+ printf("Closed the open device: %s\n",
+ raidPtr->Disks[row][col].devname);
+ vp = raidPtr->raid_cinfo[row][col].ci_vp;
+ ac = raidPtr->Disks[row][col].auto_configured;
+ rf_close_component(raidPtr, vp, ac);
+ raidPtr->raid_cinfo[row][col].ci_vp = NULL;
+ }
+ /* note that this disk was *not* auto_configured (any longer)*/
+ raidPtr->Disks[row][col].auto_configured = 0;
+
+ printf("About to (re-)open the device for rebuilding: %s\n",
+ raidPtr->Disks[row][col].devname);
+
+ retcode = raid_getcomponentsize(raidPtr, row, col);
+
+ if (retcode) {
+ printf("raid%d: rebuilding: raidlookup on device: %s failed: %d!\n",
+ raidPtr->raidid, raidPtr->Disks[row][col].devname,
+ retcode);
+
+ /* XXX the component isn't responding properly...
+ must be still dead :-( */
+ raidPtr->reconInProgress--;
+ RF_UNLOCK_MUTEX(raidPtr->mutex);
+ RF_Free(c_label, sizeof(RF_ComponentLabel_t));
+ return(retcode);
+
+ }
+
+ spareDiskPtr = &raidPtr->Disks[row][col];
+ spareDiskPtr->status = rf_ds_used_spare;
+
+ printf("RECON: initiating in-place reconstruction on\n");
+ printf(" row %d col %d -> spare at row %d col %d\n",
+ row, col, row, col);
+
+ RF_UNLOCK_MUTEX(raidPtr->mutex);
+
+ reconDesc = AllocRaidReconDesc((void *) raidPtr, row, col,
+ spareDiskPtr, numDisksDone,
+ row, col);
+ raidPtr->reconDesc = (void *) reconDesc;
+#if RF_RECON_STATS > 0
+ reconDesc->hsStallCount = 0;
+ reconDesc->numReconExecDelays = 0;
+ reconDesc->numReconEventWaits = 0;
+#endif /* RF_RECON_STATS > 0 */
+ reconDesc->reconExecTimerRunning = 0;
+ reconDesc->reconExecTicks = 0;
+ reconDesc->maxReconExecTicks = 0;
+ rc = rf_ContinueReconstructFailedDisk(reconDesc);
+
+ RF_LOCK_MUTEX(raidPtr->mutex);
+ raidPtr->reconInProgress--;
+ RF_UNLOCK_MUTEX(raidPtr->mutex);
+
+ } else {
+ RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
+ lp->parityConfig);
+ rc = EIO;
+ }
+ RF_LOCK_MUTEX(raidPtr->mutex);
+
+ if (!rc) {
+ /* Need to set these here, as at this point it'll be claiming
+ that the disk is in rf_ds_spared! But we know better :-) */
+
+ raidPtr->Disks[row][col].status = rf_ds_optimal;
+ raidPtr->status[row] = rf_rs_optimal;
+
+ /* fix up the component label */
+ /* Don't actually need the read here.. */
+ raidread_component_label(raidPtr->raid_cinfo[row][col].ci_dev,
+ raidPtr->raid_cinfo[row][col].ci_vp,
+ c_label);
+
+ raid_init_component_label(raidPtr, c_label);
+
+ c_label->row = row;
+ c_label->column = col;
+
+ /* We've just done a rebuild based on all the other
+ disks, so at this point the parity is known to be
+ clean, even if it wasn't before. */
+
+ /* XXX doesn't hold for RAID 6!! */
+
+ raidPtr->parity_good = RF_RAID_CLEAN;
+
+ raidwrite_component_label(raidPtr->raid_cinfo[row][col].ci_dev,
+ raidPtr->raid_cinfo[row][col].ci_vp,
+ c_label);
+
+ }
+ RF_UNLOCK_MUTEX(raidPtr->mutex);
+ RF_SIGNAL_COND(raidPtr->waitForReconCond);
+ wakeup(&raidPtr->waitForReconCond);
+ RF_Free(c_label, sizeof(RF_ComponentLabel_t));
+ return (rc);
+}
+
+
+int
+rf_ContinueReconstructFailedDisk(reconDesc)
+ RF_RaidReconDesc_t *reconDesc;
+{
+ RF_Raid_t *raidPtr = reconDesc->raidPtr;
+ RF_RowCol_t row = reconDesc->row;
+ RF_RowCol_t col = reconDesc->col;
+ RF_RowCol_t srow = reconDesc->srow;
+ RF_RowCol_t scol = reconDesc->scol;
+ RF_ReconMap_t *mapPtr;
+
+ RF_ReconEvent_t *event;
+ struct timeval etime, elpsd;
+ unsigned long xor_s, xor_resid_us;
+ int retcode, i, ds;
+
+ switch (reconDesc->state) {
+
+
+ case 0:
+
+ raidPtr->accumXorTimeUs = 0;
+
+ /* create one trace record per physical disk */
+ RF_Malloc(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *));
+
+ /* quiesce the array prior to starting recon. this is needed
+ * to assure no nasty interactions with pending user writes.
+ * We need to do this before we change the disk or row status. */
+ reconDesc->state = 1;
+
+ Dprintf("RECON: begin request suspend\n");
+ retcode = rf_SuspendNewRequestsAndWait(raidPtr);
+ Dprintf("RECON: end request suspend\n");
+ rf_StartUserStats(raidPtr); /* zero out the stats kept on
+ * user accs */
+
+ /* fall through to state 1 */
+
+ case 1:
+
+ RF_LOCK_MUTEX(raidPtr->mutex);
+
+ /* create the reconstruction control pointer and install it in
+ * the right slot */
+ raidPtr->reconControl[row] = rf_MakeReconControl(reconDesc, row, col, srow, scol);
+ mapPtr = raidPtr->reconControl[row]->reconMap;
+ raidPtr->status[row] = rf_rs_reconstructing;
+ raidPtr->Disks[row][col].status = rf_ds_reconstructing;
+ raidPtr->Disks[row][col].spareRow = srow;
+ raidPtr->Disks[row][col].spareCol = scol;
+
+ RF_UNLOCK_MUTEX(raidPtr->mutex);
+
+ RF_GETTIME(raidPtr->reconControl[row]->starttime);
+
+ /* now start up the actual reconstruction: issue a read for
+ * each surviving disk */
+
+ reconDesc->numDisksDone = 0;
+ for (i = 0; i < raidPtr->numCol; i++) {
+ if (i != col) {
+ /* find and issue the next I/O on the
+ * indicated disk */
+ if (IssueNextReadRequest(raidPtr, row, i)) {
+ Dprintf2("RECON: done issuing for r%d c%d\n", row, i);
+ reconDesc->numDisksDone++;
+ }
+ }
+ }
+
+ case 2:
+ Dprintf("RECON: resume requests\n");
+ rf_ResumeNewRequests(raidPtr);
+
+
+ reconDesc->state = 3;
+
+ case 3:
+
+ /* process reconstruction events until all disks report that
+ * they've completed all work */
+ mapPtr = raidPtr->reconControl[row]->reconMap;
+
+
+
+ while (reconDesc->numDisksDone < raidPtr->numCol - 1) {
+
+ event = rf_GetNextReconEvent(reconDesc, row, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc);
+ RF_ASSERT(event);
+
+ if (ProcessReconEvent(raidPtr, row, event))
+ reconDesc->numDisksDone++;
+ raidPtr->reconControl[row]->numRUsTotal =
+ mapPtr->totalRUs;
+ raidPtr->reconControl[row]->numRUsComplete =
+ mapPtr->totalRUs -
+ rf_UnitsLeftToReconstruct(mapPtr);
+
+ raidPtr->reconControl[row]->percentComplete =
+ (raidPtr->reconControl[row]->numRUsComplete * 100 / raidPtr->reconControl[row]->numRUsTotal);
+ if (rf_prReconSched) {
+ rf_PrintReconSchedule(raidPtr->reconControl[row]->reconMap, &(raidPtr->reconControl[row]->starttime));
+ }
+ }
+
+
+
+ reconDesc->state = 4;
+
+
+ case 4:
+ mapPtr = raidPtr->reconControl[row]->reconMap;
+ if (rf_reconDebug) {
+ printf("RECON: all reads completed\n");
+ }
+ /* at this point all the reads have completed. We now wait
+ * for any pending writes to complete, and then we're done */
+
+ while (rf_UnitsLeftToReconstruct(raidPtr->reconControl[row]->reconMap) > 0) {
+
+ event = rf_GetNextReconEvent(reconDesc, row, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc);
+ RF_ASSERT(event);
+
+ (void) ProcessReconEvent(raidPtr, row, event); /* ignore return code */
+ raidPtr->reconControl[row]->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs);
+ if (rf_prReconSched) {
+ rf_PrintReconSchedule(raidPtr->reconControl[row]->reconMap, &(raidPtr->reconControl[row]->starttime));
+ }
+ }
+ reconDesc->state = 5;
+
+ case 5:
+ /* Success: mark the dead disk as reconstructed. We quiesce
+ * the array here to assure no nasty interactions with pending
+ * user accesses when we free up the psstatus structure as
+ * part of FreeReconControl() */
+
+ reconDesc->state = 6;
+
+ retcode = rf_SuspendNewRequestsAndWait(raidPtr);
+ rf_StopUserStats(raidPtr);
+ rf_PrintUserStats(raidPtr); /* print out the stats on user
+ * accs accumulated during
+ * recon */
+
+ /* fall through to state 6 */
+ case 6:
+
+
+
+ RF_LOCK_MUTEX(raidPtr->mutex);
+ raidPtr->numFailures--;
+ ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE);
+ raidPtr->Disks[row][col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared;
+ raidPtr->status[row] = (ds) ? rf_rs_reconfigured : rf_rs_optimal;
+ RF_UNLOCK_MUTEX(raidPtr->mutex);
+ RF_GETTIME(etime);
+ RF_TIMEVAL_DIFF(&(raidPtr->reconControl[row]->starttime), &etime, &elpsd);
+
+ /* XXX -- why is state 7 different from state 6 if there is no
+ * return() here? -- XXX Note that I set elpsd above & use it
+ * below, so if you put a return here you'll have to fix this.
+ * (also, FreeReconControl is called below) */
+
+ case 7:
+
+ rf_ResumeNewRequests(raidPtr);
+
+ printf("Reconstruction of disk at row %d col %d completed\n",
+ row, col);
+ xor_s = raidPtr->accumXorTimeUs / 1000000;
+ xor_resid_us = raidPtr->accumXorTimeUs % 1000000;
+ printf("Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n",
+ (int) elpsd.tv_sec, (int) elpsd.tv_usec, raidPtr->accumXorTimeUs, xor_s, xor_resid_us);
+ printf(" (start time %d sec %d usec, end time %d sec %d usec)\n",
+ (int) raidPtr->reconControl[row]->starttime.tv_sec,
+ (int) raidPtr->reconControl[row]->starttime.tv_usec,
+ (int) etime.tv_sec, (int) etime.tv_usec);
+
+#if RF_RECON_STATS > 0
+ printf("Total head-sep stall count was %d\n",
+ (int) reconDesc->hsStallCount);
+#endif /* RF_RECON_STATS > 0 */
+ rf_FreeReconControl(raidPtr, row);
+ RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t));
+ FreeReconDesc(reconDesc);
+
+ }
+
+ SignalReconDone(raidPtr);
+ return (0);
+}
+/*****************************************************************************
+ * do the right thing upon each reconstruction event.
+ * returns nonzero if and only if there is nothing left unread on the
+ * indicated disk
+ *****************************************************************************/
+static int
+ProcessReconEvent(raidPtr, frow, event)
+ RF_Raid_t *raidPtr;
+ RF_RowCol_t frow;
+ RF_ReconEvent_t *event;
+{
+ int retcode = 0, submitblocked;
+ RF_ReconBuffer_t *rbuf;
+ RF_SectorCount_t sectorsPerRU;
+
+ Dprintf1("RECON: ProcessReconEvent type %d\n", event->type);
+ switch (event->type) {
+
+ /* a read I/O has completed */
+ case RF_REVENT_READDONE:
+ rbuf = raidPtr->reconControl[frow]->perDiskInfo[event->col].rbuf;
+ Dprintf3("RECON: READDONE EVENT: row %d col %d psid %ld\n",
+ frow, event->col, rbuf->parityStripeID);
+ Dprintf7("RECON: done read psid %ld buf %lx %02x %02x %02x %02x %02x\n",
+ rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
+ rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
+ rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
+ submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0);
+ Dprintf1("RECON: submitblocked=%d\n", submitblocked);
+ if (!submitblocked)
+ retcode = IssueNextReadRequest(raidPtr, frow, event->col);
+ break;
+
+ /* a write I/O has completed */
+ case RF_REVENT_WRITEDONE:
+ if (rf_floatingRbufDebug) {
+ rf_CheckFloatingRbufCount(raidPtr, 1);
+ }
+ sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
+ rbuf = (RF_ReconBuffer_t *) event->arg;
+ rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
+ Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n",
+ rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl[frow]->percentComplete);
+ rf_ReconMapUpdate(raidPtr, raidPtr->reconControl[frow]->reconMap,
+ rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1);
+ rf_RemoveFromActiveReconTable(raidPtr, frow, rbuf->parityStripeID, rbuf->which_ru);
+
+ if (rbuf->type == RF_RBUF_TYPE_FLOATING) {
+ RF_LOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex);
+ raidPtr->numFullReconBuffers--;
+ rf_ReleaseFloatingReconBuffer(raidPtr, frow, rbuf);
+ RF_UNLOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex);
+ } else
+ if (rbuf->type == RF_RBUF_TYPE_FORCED)
+ rf_FreeReconBuffer(rbuf);
+ else
+ RF_ASSERT(0);
+ break;
+
+ case RF_REVENT_BUFCLEAR: /* A buffer-stall condition has been
+ * cleared */
+ Dprintf2("RECON: BUFCLEAR EVENT: row %d col %d\n", frow, event->col);
+ submitblocked = rf_SubmitReconBuffer(raidPtr->reconControl[frow]->perDiskInfo[event->col].rbuf, 0, (int) (long) event->arg);
+ RF_ASSERT(!submitblocked); /* we wouldn't have gotten the
+ * BUFCLEAR event if we
+ * couldn't submit */
+ retcode = IssueNextReadRequest(raidPtr, frow, event->col);
+ break;
+
+ case RF_REVENT_BLOCKCLEAR: /* A user-write reconstruction
+ * blockage has been cleared */
+ DDprintf2("RECON: BLOCKCLEAR EVENT: row %d col %d\n", frow, event->col);
+ retcode = TryToRead(raidPtr, frow, event->col);
+ break;
+
+ case RF_REVENT_HEADSEPCLEAR: /* A max-head-separation
+ * reconstruction blockage has been
+ * cleared */
+ Dprintf2("RECON: HEADSEPCLEAR EVENT: row %d col %d\n", frow, event->col);
+ retcode = TryToRead(raidPtr, frow, event->col);
+ break;
+
+ /* a buffer has become ready to write */
+ case RF_REVENT_BUFREADY:
+ Dprintf2("RECON: BUFREADY EVENT: row %d col %d\n", frow, event->col);
+ retcode = IssueNextWriteRequest(raidPtr, frow);
+ if (rf_floatingRbufDebug) {
+ rf_CheckFloatingRbufCount(raidPtr, 1);
+ }
+ break;
+
+ /* we need to skip the current RU entirely because it got
+ * recon'd while we were waiting for something else to happen */
+ case RF_REVENT_SKIP:
+ DDprintf2("RECON: SKIP EVENT: row %d col %d\n", frow, event->col);
+ retcode = IssueNextReadRequest(raidPtr, frow, event->col);
+ break;
+
+ /* a forced-reconstruction read access has completed. Just
+ * submit the buffer */
+ case RF_REVENT_FORCEDREADDONE:
+ rbuf = (RF_ReconBuffer_t *) event->arg;
+ rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
+ DDprintf2("RECON: FORCEDREADDONE EVENT: row %d col %d\n", frow, event->col);
+ submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0);
+ RF_ASSERT(!submitblocked);
+ break;
+
+ default:
+ RF_PANIC();
+ }
+ rf_FreeReconEventDesc(event);
+ return (retcode);
+}
+/*****************************************************************************
+ *
+ * find the next thing that's needed on the indicated disk, and issue
+ * a read request for it. We assume that the reconstruction buffer
+ * associated with this process is free to receive the data. If
+ * reconstruction is blocked on the indicated RU, we issue a
+ * blockage-release request instead of a physical disk read request.
+ * If the current disk gets too far ahead of the others, we issue a
+ * head-separation wait request and return.
+ *
+ * ctrl->{ru_count, curPSID, diskOffset} and
+ * rbuf->failedDiskSectorOffset are maintained to point to the unit
+ * we're currently accessing. Note that this deviates from the
+ * standard C idiom of having counters point to the next thing to be
+ * accessed. This allows us to easily retry when we're blocked by
+ * head separation or reconstruction-blockage events.
+ *
+ * returns nonzero if and only if there is nothing left unread on the
+ * indicated disk
+ *
+ *****************************************************************************/
+static int
+IssueNextReadRequest(raidPtr, row, col)
+ RF_Raid_t *raidPtr;
+ RF_RowCol_t row;
+ RF_RowCol_t col;
+{
+ RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl[row]->perDiskInfo[col];
+ RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
+ RF_ReconBuffer_t *rbuf = ctrl->rbuf;
+ RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU;
+ RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
+ int do_new_check = 0, retcode = 0, status;
+
+ /* if we are currently the slowest disk, mark that we have to do a new
+ * check */
+ if (ctrl->headSepCounter <= raidPtr->reconControl[row]->minHeadSepCounter)
+ do_new_check = 1;
+
+ while (1) {
+
+ ctrl->ru_count++;
+ if (ctrl->ru_count < RUsPerPU) {
+ ctrl->diskOffset += sectorsPerRU;
+ rbuf->failedDiskSectorOffset += sectorsPerRU;
+ } else {
+ ctrl->curPSID++;
+ ctrl->ru_count = 0;
+ /* code left over from when head-sep was based on
+ * parity stripe id */
+ if (ctrl->curPSID >= raidPtr->reconControl[row]->lastPSID) {
+ CheckForNewMinHeadSep(raidPtr, row, ++(ctrl->headSepCounter));
+ return (1); /* finito! */
+ }
+ /* find the disk offsets of the start of the parity
+ * stripe on both the current disk and the failed
+ * disk. skip this entire parity stripe if either disk
+ * does not appear in the indicated PS */
+ status = ComputePSDiskOffsets(raidPtr, ctrl->curPSID, row, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset,
+ &rbuf->spRow, &rbuf->spCol, &rbuf->spOffset);
+ if (status) {
+ ctrl->ru_count = RUsPerPU - 1;
+ continue;
+ }
+ }
+ rbuf->which_ru = ctrl->ru_count;
+
+ /* skip this RU if it's already been reconstructed */
+ if (rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, rbuf->failedDiskSectorOffset)) {
+ Dprintf2("Skipping psid %ld ru %d: already reconstructed\n", ctrl->curPSID, ctrl->ru_count);
+ continue;
+ }
+ break;
+ }
+ ctrl->headSepCounter++;
+ if (do_new_check)
+ CheckForNewMinHeadSep(raidPtr, row, ctrl->headSepCounter); /* update min if needed */
+
+
+ /* at this point, we have definitely decided what to do, and we have
+ * only to see if we can actually do it now */
+ rbuf->parityStripeID = ctrl->curPSID;
+ rbuf->which_ru = ctrl->ru_count;
+ bzero((char *) &raidPtr->recon_tracerecs[col], sizeof(raidPtr->recon_tracerecs[col]));
+ raidPtr->recon_tracerecs[col].reconacc = 1;
+ RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
+ retcode = TryToRead(raidPtr, row, col);
+ return (retcode);
+}
+
+/*
+ * tries to issue the next read on the indicated disk. We may be
+ * blocked by (a) the heads being too far apart, or (b) recon on the
+ * indicated RU being blocked due to a write by a user thread. In
+ * this case, we issue a head-sep or blockage wait request, which will
+ * cause this same routine to be invoked again later when the blockage
+ * has cleared.
+ */
+
+static int
+TryToRead(raidPtr, row, col)
+ RF_Raid_t *raidPtr;
+ RF_RowCol_t row;
+ RF_RowCol_t col;
+{
+ RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl[row]->perDiskInfo[col];
+ RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
+ RF_StripeNum_t psid = ctrl->curPSID;
+ RF_ReconUnitNum_t which_ru = ctrl->ru_count;
+ RF_DiskQueueData_t *req;
+ int status, created = 0;
+ RF_ReconParityStripeStatus_t *pssPtr;
+
+ /* if the current disk is too far ahead of the others, issue a
+ * head-separation wait and return */
+ if (CheckHeadSeparation(raidPtr, ctrl, row, col, ctrl->headSepCounter, which_ru))
+ return (0);
+ RF_LOCK_PSS_MUTEX(raidPtr, row, psid);
+ pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_CREATE, &created);
+
+ /* if recon is blocked on the indicated parity stripe, issue a
+ * block-wait request and return. this also must mark the indicated RU
+ * in the stripe as under reconstruction if not blocked. */
+ status = CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, row, col, psid, which_ru);
+ if (status == RF_PSS_RECON_BLOCKED) {
+ Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n", psid, which_ru);
+ goto out;
+ } else
+ if (status == RF_PSS_FORCED_ON_WRITE) {
+ rf_CauseReconEvent(raidPtr, row, col, NULL, RF_REVENT_SKIP);
+ goto out;
+ }
+ /* make one last check to be sure that the indicated RU didn't get
+ * reconstructed while we were waiting for something else to happen.
+ * This is unfortunate in that it causes us to make this check twice
+ * in the normal case. Might want to make some attempt to re-work
+ * this so that we only do this check if we've definitely blocked on
+ * one of the above checks. When this condition is detected, we may
+ * have just created a bogus status entry, which we need to delete. */
+ if (rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, ctrl->rbuf->failedDiskSectorOffset)) {
+ Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n", psid, which_ru);
+ if (created)
+ rf_PSStatusDelete(raidPtr, raidPtr->reconControl[row]->pssTable, pssPtr);
+ rf_CauseReconEvent(raidPtr, row, col, NULL, RF_REVENT_SKIP);
+ goto out;
+ }
+ /* found something to read. issue the I/O */
+ Dprintf5("RECON: Read for psid %ld on row %d col %d offset %ld buf %lx\n",
+ psid, row, col, ctrl->diskOffset, ctrl->rbuf->buffer);
+ RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer);
+ RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer);
+ raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us =
+ RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer);
+ RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
+
+ /* should be ok to use a NULL proc pointer here, all the bufs we use
+ * should be in kernel space */
+ req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru,
+ ReconReadDoneProc, (void *) ctrl, NULL, &raidPtr->recon_tracerecs[col], (void *) raidPtr, 0, NULL);
+
+ RF_ASSERT(req); /* XXX -- fix this -- XXX */
+
+ ctrl->rbuf->arg = (void *) req;
+ rf_DiskIOEnqueue(&raidPtr->Queues[row][col], req, RF_IO_RECON_PRIORITY);
+ pssPtr->issued[col] = 1;
+
+out:
+ RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
+ return (0);
+}
+
+
+/*
+ * given a parity stripe ID, we want to find out whether both the
+ * current disk and the failed disk exist in that parity stripe. If
+ * not, we want to skip this whole PS. If so, we want to find the
+ * disk offset of the start of the PS on both the current disk and the
+ * failed disk.
+ *
+ * this works by getting a list of disks comprising the indicated
+ * parity stripe, and searching the list for the current and failed
+ * disks. Once we've decided they both exist in the parity stripe, we
+ * need to decide whether each is data or parity, so that we'll know
+ * which mapping function to call to get the corresponding disk
+ * offsets.
+ *
+ * this is kind of unpleasant, but doing it this way allows the
+ * reconstruction code to use parity stripe IDs rather than physical
+ * disks address to march through the failed disk, which greatly
+ * simplifies a lot of code, as well as eliminating the need for a
+ * reverse-mapping function. I also think it will execute faster,
+ * since the calls to the mapping module are kept to a minimum.
+ *
+ * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING
+ * THE STRIPE IN THE CORRECT ORDER */
+
+
+static int
+ComputePSDiskOffsets(
+ RF_Raid_t * raidPtr, /* raid descriptor */
+ RF_StripeNum_t psid, /* parity stripe identifier */
+ RF_RowCol_t row, /* row and column of disk to find the offsets
+ * for */
+ RF_RowCol_t col,
+ RF_SectorNum_t * outDiskOffset,
+ RF_SectorNum_t * outFailedDiskSectorOffset,
+ RF_RowCol_t * spRow, /* OUT: row,col of spare unit for failed unit */
+ RF_RowCol_t * spCol,
+ RF_SectorNum_t * spOffset)
+{ /* OUT: offset into disk containing spare unit */
+ RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
+ RF_RowCol_t fcol = raidPtr->reconControl[row]->fcol;
+ RF_RaidAddr_t sosRaidAddress; /* start-of-stripe */
+ RF_RowCol_t *diskids;
+ u_int i, j, k, i_offset, j_offset;
+ RF_RowCol_t prow, pcol;
+ int testcol, testrow;
+ RF_RowCol_t stripe;
+ RF_SectorNum_t poffset;
+ char i_is_parity = 0, j_is_parity = 0;
+ RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
+
+ /* get a listing of the disks comprising that stripe */
+ sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid);
+ (layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids, &stripe);
+ RF_ASSERT(diskids);
+
+ /* reject this entire parity stripe if it does not contain the
+ * indicated disk or it does not contain the failed disk */
+ if (row != stripe)
+ goto skipit;
+ for (i = 0; i < stripeWidth; i++) {
+ if (col == diskids[i])
+ break;
+ }
+ if (i == stripeWidth)
+ goto skipit;
+ for (j = 0; j < stripeWidth; j++) {
+ if (fcol == diskids[j])
+ break;
+ }
+ if (j == stripeWidth) {
+ goto skipit;
+ }
+ /* find out which disk the parity is on */
+ (layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &prow, &pcol, &poffset, RF_DONT_REMAP);
+
+ /* find out if either the current RU or the failed RU is parity */
+ /* also, if the parity occurs in this stripe prior to the data and/or
+ * failed col, we need to decrement i and/or j */
+ for (k = 0; k < stripeWidth; k++)
+ if (diskids[k] == pcol)
+ break;
+ RF_ASSERT(k < stripeWidth);
+ i_offset = i;
+ j_offset = j;
+ if (k < i)
+ i_offset--;
+ else
+ if (k == i) {
+ i_is_parity = 1;
+ i_offset = 0;
+ } /* set offsets to zero to disable multiply
+ * below */
+ if (k < j)
+ j_offset--;
+ else
+ if (k == j) {
+ j_is_parity = 1;
+ j_offset = 0;
+ }
+ /* at this point, [ij]_is_parity tells us whether the [current,failed]
+ * disk is parity at the start of this RU, and, if data, "[ij]_offset"
+ * tells us how far into the stripe the [current,failed] disk is. */
+
+ /* call the mapping routine to get the offset into the current disk,
+ * repeat for failed disk. */
+ if (i_is_parity)
+ layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outDiskOffset, RF_DONT_REMAP);
+ else
+ layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outDiskOffset, RF_DONT_REMAP);
+
+ RF_ASSERT(row == testrow && col == testcol);
+
+ if (j_is_parity)
+ layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
+ else
+ layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
+ RF_ASSERT(row == testrow && fcol == testcol);
+
+ /* now locate the spare unit for the failed unit */
+ if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) {
+ if (j_is_parity)
+ layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spRow, spCol, spOffset, RF_REMAP);
+ else
+ layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spRow, spCol, spOffset, RF_REMAP);
+ } else {
+ *spRow = raidPtr->reconControl[row]->spareRow;
+ *spCol = raidPtr->reconControl[row]->spareCol;
+ *spOffset = *outFailedDiskSectorOffset;
+ }
+
+ return (0);
+
+skipit:
+ Dprintf3("RECON: Skipping psid %ld: nothing needed from r%d c%d\n",
+ psid, row, col);
+ return (1);
+}
+/* this is called when a buffer has become ready to write to the replacement disk */
+static int
+IssueNextWriteRequest(raidPtr, row)
+ RF_Raid_t *raidPtr;
+ RF_RowCol_t row;
+{
+ RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
+ RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
+ RF_RowCol_t fcol = raidPtr->reconControl[row]->fcol;
+ RF_ReconBuffer_t *rbuf;
+ RF_DiskQueueData_t *req;
+
+ rbuf = rf_GetFullReconBuffer(raidPtr->reconControl[row]);
+ RF_ASSERT(rbuf); /* there must be one available, or we wouldn't
+ * have gotten the event that sent us here */
+ RF_ASSERT(rbuf->pssPtr);
+
+ rbuf->pssPtr->writeRbuf = rbuf;
+ rbuf->pssPtr = NULL;
+
+ Dprintf7("RECON: New write (r %d c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n",
+ rbuf->spRow, rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID,
+ rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer);
+ Dprintf6("RECON: new write psid %ld %02x %02x %02x %02x %02x\n",
+ rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
+ rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
+
+ /* should be ok to use a NULL b_proc here b/c all addrs should be in
+ * kernel space */
+ req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset,
+ sectorsPerRU, rbuf->buffer,
+ rbuf->parityStripeID, rbuf->which_ru,
+ ReconWriteDoneProc, (void *) rbuf, NULL,
+ &raidPtr->recon_tracerecs[fcol],
+ (void *) raidPtr, 0, NULL);
+
+ RF_ASSERT(req); /* XXX -- fix this -- XXX */
+
+ rbuf->arg = (void *) req;
+ rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spRow][rbuf->spCol], req, RF_IO_RECON_PRIORITY);
+
+ return (0);
+}
+
+/*
+ * this gets called upon the completion of a reconstruction read
+ * operation the arg is a pointer to the per-disk reconstruction
+ * control structure for the process that just finished a read.
+ *
+ * called at interrupt context in the kernel, so don't do anything
+ * illegal here.
+ */
+static int
+ReconReadDoneProc(arg, status)
+ void *arg;
+ int status;
+{
+ RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg;
+ RF_Raid_t *raidPtr = ctrl->reconCtrl->reconDesc->raidPtr;
+
+ if (status) {
+ /*
+ * XXX
+ */
+ printf("Recon read failed!\n");
+ RF_PANIC();
+ }
+ RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
+ RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
+ raidPtr->recon_tracerecs[ctrl->col].specific.recon.recon_fetch_to_return_us =
+ RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
+ RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
+
+ rf_CauseReconEvent(raidPtr, ctrl->row, ctrl->col, NULL, RF_REVENT_READDONE);
+ return (0);
+}
+/* this gets called upon the completion of a reconstruction write operation.
+ * the arg is a pointer to the rbuf that was just written
+ *
+ * called at interrupt context in the kernel, so don't do anything illegal here.
+ */
+static int
+ReconWriteDoneProc(arg, status)
+ void *arg;
+ int status;
+{
+ RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg;
+
+ Dprintf2("Reconstruction completed on psid %ld ru %d\n", rbuf->parityStripeID, rbuf->which_ru);
+ if (status) {
+ printf("Recon write failed!\n"); /* fprintf(stderr,"Recon
+ * write failed!\n"); */
+ RF_PANIC();
+ }
+ rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->row, rbuf->col, arg, RF_REVENT_WRITEDONE);
+ return (0);
+}
+
+
+/*
+ * computes a new minimum head sep, and wakes up anyone who needs to
+ * be woken as a result
+ */
+static void
+CheckForNewMinHeadSep(raidPtr, row, hsCtr)
+ RF_Raid_t *raidPtr;
+ RF_RowCol_t row;
+ RF_HeadSepLimit_t hsCtr;
+{
+ RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[row];
+ RF_HeadSepLimit_t new_min;
+ RF_RowCol_t i;
+ RF_CallbackDesc_t *p;
+ RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter); /* from the definition
+ * of a minimum */
+
+
+ RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
+
+ new_min = ~(1L << (8 * sizeof(long) - 1)); /* 0x7FFF....FFF */
+ for (i = 0; i < raidPtr->numCol; i++)
+ if (i != reconCtrlPtr->fcol) {
+ if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min)
+ new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter;
+ }
+ /* set the new minimum and wake up anyone who can now run again */
+ if (new_min != reconCtrlPtr->minHeadSepCounter) {
+ reconCtrlPtr->minHeadSepCounter = new_min;
+ Dprintf1("RECON: new min head pos counter val is %ld\n", new_min);
+ while (reconCtrlPtr->headSepCBList) {
+ if (reconCtrlPtr->headSepCBList->callbackArg.v > new_min)
+ break;
+ p = reconCtrlPtr->headSepCBList;
+ reconCtrlPtr->headSepCBList = p->next;
+ p->next = NULL;
+ rf_CauseReconEvent(raidPtr, p->row, p->col, NULL, RF_REVENT_HEADSEPCLEAR);
+ rf_FreeCallbackDesc(p);
+ }
+
+ }
+ RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
+}
+
+/*
+ * checks to see that the maximum head separation will not be violated
+ * if we initiate a reconstruction I/O on the indicated disk.
+ * Limiting the maximum head separation between two disks eliminates
+ * the nasty buffer-stall conditions that occur when one disk races
+ * ahead of the others and consumes all of the floating recon buffers.
+ * This code is complex and unpleasant but it's necessary to avoid
+ * some very nasty, albeit fairly rare, reconstruction behavior.
+ *
+ * returns non-zero if and only if we have to stop working on the
+ * indicated disk due to a head-separation delay.
+ */
+static int
+CheckHeadSeparation(
+ RF_Raid_t * raidPtr,
+ RF_PerDiskReconCtrl_t * ctrl,
+ RF_RowCol_t row,
+ RF_RowCol_t col,
+ RF_HeadSepLimit_t hsCtr,
+ RF_ReconUnitNum_t which_ru)
+{
+ RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[row];
+ RF_CallbackDesc_t *cb, *p, *pt;
+ int retval = 0;
+
+ /* if we're too far ahead of the slowest disk, stop working on this
+ * disk until the slower ones catch up. We do this by scheduling a
+ * wakeup callback for the time when the slowest disk has caught up.
+ * We define "caught up" with 20% hysteresis, i.e. the head separation
+ * must have fallen to at most 80% of the max allowable head
+ * separation before we'll wake up.
+ *
+ */
+ RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
+ if ((raidPtr->headSepLimit >= 0) &&
+ ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) {
+ Dprintf6("raid%d: RECON: head sep stall: row %d col %d hsCtr %ld minHSCtr %ld limit %ld\n",
+ raidPtr->raidid, row, col, ctrl->headSepCounter,
+ reconCtrlPtr->minHeadSepCounter,
+ raidPtr->headSepLimit);
+ cb = rf_AllocCallbackDesc();
+ /* the minHeadSepCounter value we have to get to before we'll
+ * wake up. build in 20% hysteresis. */
+ cb->callbackArg.v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5);
+ cb->row = row;
+ cb->col = col;
+ cb->next = NULL;
+
+ /* insert this callback descriptor into the sorted list of
+ * pending head-sep callbacks */
+ p = reconCtrlPtr->headSepCBList;
+ if (!p)
+ reconCtrlPtr->headSepCBList = cb;
+ else
+ if (cb->callbackArg.v < p->callbackArg.v) {
+ cb->next = reconCtrlPtr->headSepCBList;
+ reconCtrlPtr->headSepCBList = cb;
+ } else {
+ for (pt = p, p = p->next; p && (p->callbackArg.v < cb->callbackArg.v); pt = p, p = p->next);
+ cb->next = p;
+ pt->next = cb;
+ }
+ retval = 1;
+#if RF_RECON_STATS > 0
+ ctrl->reconCtrl->reconDesc->hsStallCount++;
+#endif /* RF_RECON_STATS > 0 */
+ }
+ RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
+
+ return (retval);
+}
+/*
+ * checks to see if reconstruction has been either forced or blocked
+ * by a user operation. if forced, we skip this RU entirely. else if
+ * blocked, put ourselves on the wait list. else return 0.
+ *
+ * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY
+ */
+static int
+CheckForcedOrBlockedReconstruction(
+ RF_Raid_t * raidPtr,
+ RF_ReconParityStripeStatus_t * pssPtr,
+ RF_PerDiskReconCtrl_t * ctrl,
+ RF_RowCol_t row,
+ RF_RowCol_t col,
+ RF_StripeNum_t psid,
+ RF_ReconUnitNum_t which_ru)
+{
+ RF_CallbackDesc_t *cb;
+ int retcode = 0;
+
+ if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE))
+ retcode = RF_PSS_FORCED_ON_WRITE;
+ else
+ if (pssPtr->flags & RF_PSS_RECON_BLOCKED) {
+ Dprintf4("RECON: row %d col %d blocked at psid %ld ru %d\n", row, col, psid, which_ru);
+ cb = rf_AllocCallbackDesc(); /* append ourselves to
+ * the blockage-wait
+ * list */
+ cb->row = row;
+ cb->col = col;
+ cb->next = pssPtr->blockWaitList;
+ pssPtr->blockWaitList = cb;
+ retcode = RF_PSS_RECON_BLOCKED;
+ }
+ if (!retcode)
+ pssPtr->flags |= RF_PSS_UNDER_RECON; /* mark this RU as under
+ * reconstruction */
+
+ return (retcode);
+}
+/*
+ * if reconstruction is currently ongoing for the indicated stripeID,
+ * reconstruction is forced to completion and we return non-zero to
+ * indicate that the caller must wait. If not, then reconstruction is
+ * blocked on the indicated stripe and the routine returns zero. If
+ * and only if we return non-zero, we'll cause the cbFunc to get
+ * invoked with the cbArg when the reconstruction has completed.
+ */
+int
+rf_ForceOrBlockRecon(raidPtr, asmap, cbFunc, cbArg)
+ RF_Raid_t *raidPtr;
+ RF_AccessStripeMap_t *asmap;
+ void (*cbFunc) (RF_Raid_t *, void *);
+ void *cbArg;
+{
+ RF_RowCol_t row = asmap->physInfo->row; /* which row of the array
+ * we're working on */
+ RF_StripeNum_t stripeID = asmap->stripeID; /* the stripe ID we're
+ * forcing recon on */
+ RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; /* num sects in one RU */
+ RF_ReconParityStripeStatus_t *pssPtr; /* a pointer to the parity
+ * stripe status structure */
+ RF_StripeNum_t psid; /* parity stripe id */
+ RF_SectorNum_t offset, fd_offset; /* disk offset, failed-disk
+ * offset */
+ RF_RowCol_t *diskids;
+ RF_RowCol_t stripe;
+ RF_ReconUnitNum_t which_ru; /* RU within parity stripe */
+ RF_RowCol_t fcol, diskno, i;
+ RF_ReconBuffer_t *new_rbuf; /* ptr to newly allocated rbufs */
+ RF_DiskQueueData_t *req;/* disk I/O req to be enqueued */
+ RF_CallbackDesc_t *cb;
+ int created = 0, nPromoted;
+
+ psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
+
+ RF_LOCK_PSS_MUTEX(raidPtr, row, psid);
+
+ pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, &created);
+
+ /* if recon is not ongoing on this PS, just return */
+ if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
+ RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
+ return (0);
+ }
+ /* otherwise, we have to wait for reconstruction to complete on this
+ * RU. */
+ /* In order to avoid waiting for a potentially large number of
+ * low-priority accesses to complete, we force a normal-priority (i.e.
+ * not low-priority) reconstruction on this RU. */
+ if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) {
+ DDprintf1("Forcing recon on psid %ld\n", psid);
+ pssPtr->flags |= RF_PSS_FORCED_ON_WRITE; /* mark this RU as under
+ * forced recon */
+ pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; /* clear the blockage
+ * that we just set */
+ fcol = raidPtr->reconControl[row]->fcol;
+
+ /* get a listing of the disks comprising the indicated stripe */
+ (raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids, &stripe);
+ RF_ASSERT(row == stripe);
+
+ /* For previously issued reads, elevate them to normal
+ * priority. If the I/O has already completed, it won't be
+ * found in the queue, and hence this will be a no-op. For
+ * unissued reads, allocate buffers and issue new reads. The
+ * fact that we've set the FORCED bit means that the regular
+ * recon procs will not re-issue these reqs */
+ for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++)
+ if ((diskno = diskids[i]) != fcol) {
+ if (pssPtr->issued[diskno]) {
+ nPromoted = rf_DiskIOPromote(&raidPtr->Queues[row][diskno], psid, which_ru);
+ if (rf_reconDebug && nPromoted)
+ printf("raid%d: promoted read from row %d col %d\n", raidPtr->raidid, row, diskno);
+ } else {
+ new_rbuf = rf_MakeReconBuffer(raidPtr, row, diskno, RF_RBUF_TYPE_FORCED); /* create new buf */
+ ComputePSDiskOffsets(raidPtr, psid, row, diskno, &offset, &fd_offset,
+ &new_rbuf->spRow, &new_rbuf->spCol, &new_rbuf->spOffset); /* find offsets & spare
+ * location */
+ new_rbuf->parityStripeID = psid; /* fill in the buffer */
+ new_rbuf->which_ru = which_ru;
+ new_rbuf->failedDiskSectorOffset = fd_offset;
+ new_rbuf->priority = RF_IO_NORMAL_PRIORITY;
+
+ /* use NULL b_proc b/c all addrs
+ * should be in kernel space */
+ req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer,
+ psid, which_ru, (int (*) (void *, int)) ForceReconReadDoneProc, (void *) new_rbuf, NULL,
+ NULL, (void *) raidPtr, 0, NULL);
+
+ RF_ASSERT(req); /* XXX -- fix this --
+ * XXX */
+
+ new_rbuf->arg = req;
+ rf_DiskIOEnqueue(&raidPtr->Queues[row][diskno], req, RF_IO_NORMAL_PRIORITY); /* enqueue the I/O */
+ Dprintf3("raid%d: Issued new read req on row %d col %d\n", raidPtr->raidid, row, diskno);
+ }
+ }
+ /* if the write is sitting in the disk queue, elevate its
+ * priority */
+ if (rf_DiskIOPromote(&raidPtr->Queues[row][fcol], psid, which_ru))
+ printf("raid%d: promoted write to row %d col %d\n",
+ raidPtr->raidid, row, fcol);
+ }
+ /* install a callback descriptor to be invoked when recon completes on
+ * this parity stripe. */
+ cb = rf_AllocCallbackDesc();
+ /* XXX the following is bogus.. These functions don't really match!!
+ * GO */
+ cb->callbackFunc = (void (*) (RF_CBParam_t)) cbFunc;
+ cb->callbackArg.p = (void *) cbArg;
+ cb->next = pssPtr->procWaitList;
+ pssPtr->procWaitList = cb;
+ DDprintf2("raid%d: Waiting for forced recon on psid %ld\n",
+ raidPtr->raidid, psid);
+
+ RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
+ return (1);
+}
+/* called upon the completion of a forced reconstruction read.
+ * all we do is schedule the FORCEDREADONE event.
+ * called at interrupt context in the kernel, so don't do anything illegal here.
+ */
+static void
+ForceReconReadDoneProc(arg, status)
+ void *arg;
+ int status;
+{
+ RF_ReconBuffer_t *rbuf = arg;
+
+ if (status) {
+ printf("Forced recon read failed!\n"); /* fprintf(stderr,"Forced
+ * recon read
+ * failed!\n"); */
+ RF_PANIC();
+ }
+ rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->row, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE);
+}
+/* releases a block on the reconstruction of the indicated stripe */
+int
+rf_UnblockRecon(raidPtr, asmap)
+ RF_Raid_t *raidPtr;
+ RF_AccessStripeMap_t *asmap;
+{
+ RF_RowCol_t row = asmap->origRow;
+ RF_StripeNum_t stripeID = asmap->stripeID;
+ RF_ReconParityStripeStatus_t *pssPtr;
+ RF_ReconUnitNum_t which_ru;
+ RF_StripeNum_t psid;
+ int created = 0;
+ RF_CallbackDesc_t *cb;
+
+ psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
+ RF_LOCK_PSS_MUTEX(raidPtr, row, psid);
+ pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_NONE, &created);
+
+ /* When recon is forced, the pss desc can get deleted before we get
+ * back to unblock recon. But, this can _only_ happen when recon is
+ * forced. It would be good to put some kind of sanity check here, but
+ * how to decide if recon was just forced or not? */
+ if (!pssPtr) {
+ /* printf("Warning: no pss descriptor upon unblock on psid %ld
+ * RU %d\n",psid,which_ru); */
+ if (rf_reconDebug || rf_pssDebug)
+ printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n", (long) psid, which_ru);
+ goto out;
+ }
+ pssPtr->blockCount--;
+ Dprintf3("raid%d: unblocking recon on psid %ld: blockcount is %d\n",
+ raidPtr->raidid, psid, pssPtr->blockCount);
+ if (pssPtr->blockCount == 0) { /* if recon blockage has been released */
+
+ /* unblock recon before calling CauseReconEvent in case
+ * CauseReconEvent causes us to try to issue a new read before
+ * returning here. */
+ pssPtr->flags &= ~RF_PSS_RECON_BLOCKED;
+
+
+ while (pssPtr->blockWaitList) {
+ /* spin through the block-wait list and
+ release all the waiters */
+ cb = pssPtr->blockWaitList;
+ pssPtr->blockWaitList = cb->next;
+ cb->next = NULL;
+ rf_CauseReconEvent(raidPtr, cb->row, cb->col, NULL, RF_REVENT_BLOCKCLEAR);
+ rf_FreeCallbackDesc(cb);
+ }
+ if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
+ /* if no recon was requested while recon was blocked */
+ rf_PSStatusDelete(raidPtr, raidPtr->reconControl[row]->pssTable, pssPtr);
+ }
+ }
+out:
+ RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
+ return (0);
+}
diff --git a/sys/dev/raidframe/rf_reconstruct.h b/sys/dev/raidframe/rf_reconstruct.h
new file mode 100644
index 0000000..318d546
--- /dev/null
+++ b/sys/dev/raidframe/rf_reconstruct.h
@@ -0,0 +1,202 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_reconstruct.h,v 1.5 2000/05/28 00:48:30 oster Exp $ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Mark Holland
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+/*********************************************************
+ * rf_reconstruct.h -- header file for reconstruction code
+ *********************************************************/
+
+#ifndef _RF__RF_RECONSTRUCT_H_
+#define _RF__RF_RECONSTRUCT_H_
+
+#include <dev/raidframe/rf_types.h>
+#include <sys/time.h>
+#include <dev/raidframe/rf_reconmap.h>
+#include <dev/raidframe/rf_psstatus.h>
+
+/* reconstruction configuration information */
+struct RF_ReconConfig_s {
+ unsigned numFloatingReconBufs; /* number of floating recon bufs to
+ * use */
+ RF_HeadSepLimit_t headSepLimit; /* how far apart the heads are allow
+ * to become, in parity stripes */
+};
+/* a reconstruction buffer */
+struct RF_ReconBuffer_s {
+ RF_Raid_t *raidPtr; /* void * to avoid recursive includes */
+ caddr_t buffer; /* points to the data */
+ RF_StripeNum_t parityStripeID; /* the parity stripe that this data
+ * relates to */
+ int which_ru; /* which reconstruction unit within the PSS */
+ RF_SectorNum_t failedDiskSectorOffset; /* the offset into the failed
+ * disk */
+ RF_RowCol_t row, col; /* which disk this buffer belongs to or is
+ * targeted at */
+ RF_StripeCount_t count; /* counts the # of SUs installed so far */
+ int priority; /* used to force hi priority recon */
+ RF_RbufType_t type; /* FORCED or FLOATING */
+ char *arrived; /* [x] = 1/0 if SU from disk x has/hasn't
+ * arrived */
+ RF_ReconBuffer_t *next; /* used for buffer management */
+ void *arg; /* generic field for general use */
+ RF_RowCol_t spRow, spCol; /* spare disk to which this buf should
+ * be written */
+ /* if dist sparing off, always identifies the replacement disk */
+ RF_SectorNum_t spOffset;/* offset into the spare disk */
+ /* if dist sparing off, identical to failedDiskSectorOffset */
+ RF_ReconParityStripeStatus_t *pssPtr; /* debug- pss associated with
+ * issue-pending write */
+};
+/* a reconstruction event descriptor. The event types currently are:
+ * RF_REVENT_READDONE -- a read operation has completed
+ * RF_REVENT_WRITEDONE -- a write operation has completed
+ * RF_REVENT_BUFREADY -- the buffer manager has produced a full buffer
+ * RF_REVENT_BLOCKCLEAR -- a reconstruction blockage has been cleared
+ * RF_REVENT_BUFCLEAR -- the buffer manager has released a process blocked on submission
+ * RF_REVENT_SKIP -- we need to skip the current RU and go on to the next one, typ. b/c we found recon forced
+ * RF_REVENT_FORCEDREADONE- a forced-reconstructoin read operation has completed
+ */
+typedef enum RF_Revent_e {
+ RF_REVENT_READDONE,
+ RF_REVENT_WRITEDONE,
+ RF_REVENT_BUFREADY,
+ RF_REVENT_BLOCKCLEAR,
+ RF_REVENT_BUFCLEAR,
+ RF_REVENT_HEADSEPCLEAR,
+ RF_REVENT_SKIP,
+ RF_REVENT_FORCEDREADDONE
+} RF_Revent_t;
+
+struct RF_ReconEvent_s {
+ RF_Revent_t type; /* what kind of event has occurred */
+ RF_RowCol_t col; /* row ID is implicit in the queue in which
+ * the event is placed */
+ void *arg; /* a generic argument */
+ RF_ReconEvent_t *next;
+};
+/*
+ * Reconstruction control information maintained per-disk
+ * (for surviving disks)
+ */
+struct RF_PerDiskReconCtrl_s {
+ RF_ReconCtrl_t *reconCtrl;
+ RF_RowCol_t row, col; /* to make this structure self-identifying */
+ RF_StripeNum_t curPSID; /* the next parity stripe ID to check on this
+ * disk */
+ RF_HeadSepLimit_t headSepCounter; /* counter used to control
+ * maximum head separation */
+ RF_SectorNum_t diskOffset; /* the offset into the indicated disk
+ * of the current PU */
+ RF_ReconUnitNum_t ru_count; /* this counts off the recon units
+ * within each parity unit */
+ RF_ReconBuffer_t *rbuf; /* the recon buffer assigned to this disk */
+};
+/* main reconstruction control structure */
+struct RF_ReconCtrl_s {
+ RF_RaidReconDesc_t *reconDesc;
+ RF_RowCol_t fcol; /* which column has failed */
+ RF_PerDiskReconCtrl_t *perDiskInfo; /* information maintained
+ * per-disk */
+ RF_ReconMap_t *reconMap;/* map of what has/has not been reconstructed */
+ RF_RowCol_t spareRow; /* which of the spare disks we're using */
+ RF_RowCol_t spareCol;
+ RF_StripeNum_t lastPSID;/* the ID of the last parity stripe we want
+ * reconstructed */
+ int percentComplete;/* percentage completion of reconstruction */
+ int numRUsComplete; /* number of Reconstruction Units done */
+ int numRUsTotal; /* total number of Reconstruction Units */
+
+ /* reconstruction event queue */
+ RF_ReconEvent_t *eventQueue; /* queue of pending reconstruction
+ * events */
+ RF_DECLARE_MUTEX(eq_mutex) /* mutex for locking event
+ * queue */
+ RF_DECLARE_COND(eq_cond) /* condition variable for
+ * signalling recon events */
+ int eq_count; /* debug only */
+
+ /* reconstruction buffer management */
+ RF_DECLARE_MUTEX(rb_mutex) /* mutex for messing around
+ * with recon buffers */
+ RF_ReconBuffer_t *floatingRbufs; /* available floating
+ * reconstruction buffers */
+ RF_ReconBuffer_t *committedRbufs; /* recon buffers that have
+ * been committed to some
+ * waiting disk */
+ RF_ReconBuffer_t *fullBufferList; /* full buffers waiting to be
+ * written out */
+ RF_ReconBuffer_t *priorityList; /* full buffers that have been
+ * elevated to higher priority */
+ RF_CallbackDesc_t *bufferWaitList; /* disks that are currently
+ * blocked waiting for buffers */
+
+ /* parity stripe status table */
+ RF_PSStatusHeader_t *pssTable; /* stores the reconstruction status of
+ * active parity stripes */
+
+ /* maximum-head separation control */
+ RF_HeadSepLimit_t minHeadSepCounter; /* the minimum hs counter over
+ * all disks */
+ RF_CallbackDesc_t *headSepCBList; /* list of callbacks to be
+ * done as minPSID advances */
+
+ /* performance monitoring */
+ struct timeval starttime; /* recon start time */
+
+ void (*continueFunc) (void *); /* function to call when io
+ * returns */
+ void *continueArg; /* argument for Func */
+};
+/* the default priority for reconstruction accesses */
+#define RF_IO_RECON_PRIORITY RF_IO_LOW_PRIORITY
+
+int rf_ConfigureReconstruction(RF_ShutdownList_t ** listp);
+
+int
+rf_ReconstructFailedDisk(RF_Raid_t * raidPtr, RF_RowCol_t row,
+ RF_RowCol_t col);
+
+int
+rf_ReconstructFailedDiskBasic(RF_Raid_t * raidPtr, RF_RowCol_t row,
+ RF_RowCol_t col);
+
+int
+rf_ReconstructInPlace(RF_Raid_t * raidPtr, RF_RowCol_t row, RF_RowCol_t col);
+
+int rf_ContinueReconstructFailedDisk(RF_RaidReconDesc_t * reconDesc);
+
+int
+rf_ForceOrBlockRecon(RF_Raid_t * raidPtr, RF_AccessStripeMap_t * asmap,
+ void (*cbFunc) (RF_Raid_t *, void *), void *cbArg);
+
+ int rf_UnblockRecon(RF_Raid_t * raidPtr, RF_AccessStripeMap_t * asmap);
+
+ int rf_RegisterReconDoneProc(RF_Raid_t * raidPtr, void (*proc) (RF_Raid_t *, void *), void *arg,
+ RF_ReconDoneProc_t ** handlep);
+
+#endif /* !_RF__RF_RECONSTRUCT_H_ */
diff --git a/sys/dev/raidframe/rf_reconutil.c b/sys/dev/raidframe/rf_reconutil.c
new file mode 100644
index 0000000..51e9c07
--- /dev/null
+++ b/sys/dev/raidframe/rf_reconutil.c
@@ -0,0 +1,336 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_reconutil.c,v 1.3 1999/02/05 00:06:17 oster Exp $ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Mark Holland
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+/********************************************
+ * rf_reconutil.c -- reconstruction utilities
+ ********************************************/
+
+#include <dev/raidframe/rf_types.h>
+#include <dev/raidframe/rf_raid.h>
+#include <dev/raidframe/rf_desc.h>
+#include <dev/raidframe/rf_reconutil.h>
+#include <dev/raidframe/rf_reconbuffer.h>
+#include <dev/raidframe/rf_general.h>
+#include <dev/raidframe/rf_decluster.h>
+#include <dev/raidframe/rf_raid5_rotatedspare.h>
+#include <dev/raidframe/rf_interdecluster.h>
+#include <dev/raidframe/rf_chaindecluster.h>
+
+/*******************************************************************
+ * allocates/frees the reconstruction control information structures
+ *******************************************************************/
+RF_ReconCtrl_t *
+rf_MakeReconControl(reconDesc, frow, fcol, srow, scol)
+ RF_RaidReconDesc_t *reconDesc;
+ RF_RowCol_t frow; /* failed row and column */
+ RF_RowCol_t fcol;
+ RF_RowCol_t srow; /* identifies which spare we're using */
+ RF_RowCol_t scol;
+{
+ RF_Raid_t *raidPtr = reconDesc->raidPtr;
+ RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
+ RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU;
+ RF_ReconUnitCount_t numSpareRUs;
+ RF_ReconCtrl_t *reconCtrlPtr;
+ RF_ReconBuffer_t *rbuf;
+ RF_LayoutSW_t *lp;
+ int retcode, rc;
+ RF_RowCol_t i;
+
+ lp = raidPtr->Layout.map;
+
+ /* make and zero the global reconstruction structure and the per-disk
+ * structure */
+ RF_Calloc(reconCtrlPtr, 1, sizeof(RF_ReconCtrl_t), (RF_ReconCtrl_t *));
+ RF_Calloc(reconCtrlPtr->perDiskInfo, raidPtr->numCol, sizeof(RF_PerDiskReconCtrl_t), (RF_PerDiskReconCtrl_t *)); /* this zeros it */
+ reconCtrlPtr->reconDesc = reconDesc;
+ reconCtrlPtr->fcol = fcol;
+ reconCtrlPtr->spareRow = srow;
+ reconCtrlPtr->spareCol = scol;
+ reconCtrlPtr->lastPSID = layoutPtr->numStripe / layoutPtr->SUsPerPU;
+ reconCtrlPtr->percentComplete = 0;
+
+ /* initialize each per-disk recon information structure */
+ for (i = 0; i < raidPtr->numCol; i++) {
+ reconCtrlPtr->perDiskInfo[i].reconCtrl = reconCtrlPtr;
+ reconCtrlPtr->perDiskInfo[i].row = frow;
+ reconCtrlPtr->perDiskInfo[i].col = i;
+ reconCtrlPtr->perDiskInfo[i].curPSID = -1; /* make it appear as if
+ * we just finished an
+ * RU */
+ reconCtrlPtr->perDiskInfo[i].ru_count = RUsPerPU - 1;
+ }
+
+ /* Get the number of spare units per disk and the sparemap in case
+ * spare is distributed */
+
+ if (lp->GetNumSpareRUs) {
+ numSpareRUs = lp->GetNumSpareRUs(raidPtr);
+ } else {
+ numSpareRUs = 0;
+ }
+
+ /*
+ * Not all distributed sparing archs need dynamic mappings
+ */
+ if (lp->InstallSpareTable) {
+ retcode = rf_InstallSpareTable(raidPtr, frow, fcol);
+ if (retcode) {
+ RF_PANIC(); /* XXX fix this */
+ }
+ }
+ /* make the reconstruction map */
+ reconCtrlPtr->reconMap = rf_MakeReconMap(raidPtr, (int) (layoutPtr->SUsPerRU * layoutPtr->sectorsPerStripeUnit),
+ raidPtr->sectorsPerDisk, numSpareRUs);
+
+ /* make the per-disk reconstruction buffers */
+ for (i = 0; i < raidPtr->numCol; i++) {
+ reconCtrlPtr->perDiskInfo[i].rbuf = (i == fcol) ? NULL : rf_MakeReconBuffer(raidPtr, frow, i, RF_RBUF_TYPE_EXCLUSIVE);
+ }
+
+ /* initialize the event queue */
+ rc = rf_mutex_init(&reconCtrlPtr->eq_mutex, __FUNCTION__);
+ if (rc) {
+ /* XXX deallocate, cleanup */
+ RF_ERRORMSG3("Unable to init mutex file %s line %d rc=%d\n", __FILE__,
+ __LINE__, rc);
+ return (NULL);
+ }
+ rc = rf_cond_init(&reconCtrlPtr->eq_cond);
+ if (rc) {
+ /* XXX deallocate, cleanup */
+ RF_ERRORMSG3("Unable to init cond file %s line %d rc=%d\n", __FILE__,
+ __LINE__, rc);
+ return (NULL);
+ }
+ reconCtrlPtr->eventQueue = NULL;
+ reconCtrlPtr->eq_count = 0;
+
+ /* make the floating recon buffers and append them to the free list */
+ rc = rf_mutex_init(&reconCtrlPtr->rb_mutex, __FUNCTION__);
+ if (rc) {
+ /* XXX deallocate, cleanup */
+ RF_ERRORMSG3("Unable to init mutex file %s line %d rc=%d\n", __FILE__,
+ __LINE__, rc);
+ return (NULL);
+ }
+ reconCtrlPtr->fullBufferList = NULL;
+ reconCtrlPtr->priorityList = NULL;
+ reconCtrlPtr->floatingRbufs = NULL;
+ reconCtrlPtr->committedRbufs = NULL;
+ for (i = 0; i < raidPtr->numFloatingReconBufs; i++) {
+ rbuf = rf_MakeReconBuffer(raidPtr, frow, fcol, RF_RBUF_TYPE_FLOATING);
+ rbuf->next = reconCtrlPtr->floatingRbufs;
+ reconCtrlPtr->floatingRbufs = rbuf;
+ }
+
+ /* create the parity stripe status table */
+ reconCtrlPtr->pssTable = rf_MakeParityStripeStatusTable(raidPtr);
+
+ /* set the initial min head sep counter val */
+ reconCtrlPtr->minHeadSepCounter = 0;
+
+ return (reconCtrlPtr);
+}
+
+void
+rf_FreeReconControl(raidPtr, row)
+ RF_Raid_t *raidPtr;
+ RF_RowCol_t row;
+{
+ RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[row];
+ RF_ReconBuffer_t *t;
+ RF_ReconUnitNum_t i;
+
+ RF_ASSERT(reconCtrlPtr);
+ for (i = 0; i < raidPtr->numCol; i++)
+ if (reconCtrlPtr->perDiskInfo[i].rbuf)
+ rf_FreeReconBuffer(reconCtrlPtr->perDiskInfo[i].rbuf);
+ for (i = 0; i < raidPtr->numFloatingReconBufs; i++) {
+ t = reconCtrlPtr->floatingRbufs;
+ RF_ASSERT(t);
+ reconCtrlPtr->floatingRbufs = t->next;
+ rf_FreeReconBuffer(t);
+ }
+ rf_mutex_destroy(&reconCtrlPtr->rb_mutex);
+ rf_mutex_destroy(&reconCtrlPtr->eq_mutex);
+ rf_cond_destroy(&reconCtrlPtr->eq_cond);
+ rf_FreeReconMap(reconCtrlPtr->reconMap);
+ rf_FreeParityStripeStatusTable(raidPtr, reconCtrlPtr->pssTable);
+ RF_Free(reconCtrlPtr->perDiskInfo, raidPtr->numCol * sizeof(RF_PerDiskReconCtrl_t));
+ RF_Free(reconCtrlPtr, sizeof(*reconCtrlPtr));
+}
+
+
+/******************************************************************************
+ * computes the default head separation limit
+ *****************************************************************************/
+RF_HeadSepLimit_t
+rf_GetDefaultHeadSepLimit(raidPtr)
+ RF_Raid_t *raidPtr;
+{
+ RF_HeadSepLimit_t hsl;
+ RF_LayoutSW_t *lp;
+
+ lp = raidPtr->Layout.map;
+ if (lp->GetDefaultHeadSepLimit == NULL)
+ return (-1);
+ hsl = lp->GetDefaultHeadSepLimit(raidPtr);
+ return (hsl);
+}
+
+
+/******************************************************************************
+ * computes the default number of floating recon buffers
+ *****************************************************************************/
+int
+rf_GetDefaultNumFloatingReconBuffers(raidPtr)
+ RF_Raid_t *raidPtr;
+{
+ RF_LayoutSW_t *lp;
+ int nrb;
+
+ lp = raidPtr->Layout.map;
+ if (lp->GetDefaultNumFloatingReconBuffers == NULL)
+ return (3 * raidPtr->numCol);
+ nrb = lp->GetDefaultNumFloatingReconBuffers(raidPtr);
+ return (nrb);
+}
+
+
+/******************************************************************************
+ * creates and initializes a reconstruction buffer
+ *****************************************************************************/
+RF_ReconBuffer_t *
+rf_MakeReconBuffer(
+ RF_Raid_t * raidPtr,
+ RF_RowCol_t row,
+ RF_RowCol_t col,
+ RF_RbufType_t type)
+{
+ RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
+ RF_ReconBuffer_t *t;
+ u_int recon_buffer_size = rf_RaidAddressToByte(raidPtr, layoutPtr->SUsPerRU * layoutPtr->sectorsPerStripeUnit);
+
+ RF_Malloc(t, sizeof(RF_ReconBuffer_t), (RF_ReconBuffer_t *));
+ RF_Malloc(t->buffer, recon_buffer_size, (caddr_t));
+ RF_Malloc(t->arrived, raidPtr->numCol * sizeof(char), (char *));
+ t->raidPtr = raidPtr;
+ t->row = row;
+ t->col = col;
+ t->priority = RF_IO_RECON_PRIORITY;
+ t->type = type;
+ t->pssPtr = NULL;
+ t->next = NULL;
+ return (t);
+}
+/******************************************************************************
+ * frees a reconstruction buffer
+ *****************************************************************************/
+void
+rf_FreeReconBuffer(rbuf)
+ RF_ReconBuffer_t *rbuf;
+{
+ RF_Raid_t *raidPtr = rbuf->raidPtr;
+ u_int recon_buffer_size = rf_RaidAddressToByte(raidPtr, raidPtr->Layout.SUsPerRU * raidPtr->Layout.sectorsPerStripeUnit);
+
+ RF_Free(rbuf->arrived, raidPtr->numCol * sizeof(char));
+ RF_Free(rbuf->buffer, recon_buffer_size);
+ RF_Free(rbuf, sizeof(*rbuf));
+}
+
+
+/******************************************************************************
+ * debug only: sanity check the number of floating recon bufs in use
+ *****************************************************************************/
+void
+rf_CheckFloatingRbufCount(raidPtr, dolock)
+ RF_Raid_t *raidPtr;
+ int dolock;
+{
+ RF_ReconParityStripeStatus_t *p;
+ RF_PSStatusHeader_t *pssTable;
+ RF_ReconBuffer_t *rbuf;
+ int i, j, sum = 0;
+ RF_RowCol_t frow = 0;
+
+ for (i = 0; i < raidPtr->numRow; i++)
+ if (raidPtr->reconControl[i]) {
+ frow = i;
+ break;
+ }
+ RF_ASSERT(frow >= 0);
+
+ if (dolock)
+ RF_LOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex);
+ pssTable = raidPtr->reconControl[frow]->pssTable;
+
+ for (i = 0; i < raidPtr->pssTableSize; i++) {
+ RF_LOCK_MUTEX(pssTable[i].mutex);
+ for (p = pssTable[i].chain; p; p = p->next) {
+ rbuf = (RF_ReconBuffer_t *) p->rbuf;
+ if (rbuf && rbuf->type == RF_RBUF_TYPE_FLOATING)
+ sum++;
+
+ rbuf = (RF_ReconBuffer_t *) p->writeRbuf;
+ if (rbuf && rbuf->type == RF_RBUF_TYPE_FLOATING)
+ sum++;
+
+ for (j = 0; j < p->xorBufCount; j++) {
+ rbuf = (RF_ReconBuffer_t *) p->rbufsForXor[j];
+ RF_ASSERT(rbuf);
+ if (rbuf->type == RF_RBUF_TYPE_FLOATING)
+ sum++;
+ }
+ }
+ RF_UNLOCK_MUTEX(pssTable[i].mutex);
+ }
+
+ for (rbuf = raidPtr->reconControl[frow]->floatingRbufs; rbuf; rbuf = rbuf->next) {
+ if (rbuf->type == RF_RBUF_TYPE_FLOATING)
+ sum++;
+ }
+ for (rbuf = raidPtr->reconControl[frow]->committedRbufs; rbuf; rbuf = rbuf->next) {
+ if (rbuf->type == RF_RBUF_TYPE_FLOATING)
+ sum++;
+ }
+ for (rbuf = raidPtr->reconControl[frow]->fullBufferList; rbuf; rbuf = rbuf->next) {
+ if (rbuf->type == RF_RBUF_TYPE_FLOATING)
+ sum++;
+ }
+ for (rbuf = raidPtr->reconControl[frow]->priorityList; rbuf; rbuf = rbuf->next) {
+ if (rbuf->type == RF_RBUF_TYPE_FLOATING)
+ sum++;
+ }
+
+ RF_ASSERT(sum == raidPtr->numFloatingReconBufs);
+
+ if (dolock)
+ RF_UNLOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex);
+}
diff --git a/sys/dev/raidframe/rf_reconutil.h b/sys/dev/raidframe/rf_reconutil.h
new file mode 100644
index 0000000..744d7b9
--- /dev/null
+++ b/sys/dev/raidframe/rf_reconutil.h
@@ -0,0 +1,52 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_reconutil.h,v 1.3 1999/02/05 00:06:17 oster Exp $ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Mark Holland
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+/************************************************************
+ * rf_reconutil.h -- header file for reconstruction utilities
+ ************************************************************/
+
+#ifndef _RF__RF_RECONUTIL_H_
+#define _RF__RF_RECONUTIL_H_
+
+#include <dev/raidframe/rf_types.h>
+#include <dev/raidframe/rf_reconstruct.h>
+
+RF_ReconCtrl_t *
+rf_MakeReconControl(RF_RaidReconDesc_t * reconDesc,
+ RF_RowCol_t frow, RF_RowCol_t fcol, RF_RowCol_t srow, RF_RowCol_t scol);
+void rf_FreeReconControl(RF_Raid_t * raidPtr, RF_RowCol_t row);
+RF_HeadSepLimit_t rf_GetDefaultHeadSepLimit(RF_Raid_t * raidPtr);
+int rf_GetDefaultNumFloatingReconBuffers(RF_Raid_t * raidPtr);
+RF_ReconBuffer_t *
+rf_MakeReconBuffer(RF_Raid_t * raidPtr, RF_RowCol_t row,
+ RF_RowCol_t col, RF_RbufType_t type);
+void rf_FreeReconBuffer(RF_ReconBuffer_t * rbuf);
+void rf_CheckFloatingRbufCount(RF_Raid_t * raidPtr, int dolock);
+
+#endif /* !_RF__RF_RECONUTIL_H_ */
diff --git a/sys/dev/raidframe/rf_revent.c b/sys/dev/raidframe/rf_revent.c
new file mode 100644
index 0000000..06df033
--- /dev/null
+++ b/sys/dev/raidframe/rf_revent.c
@@ -0,0 +1,228 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_revent.c,v 1.9 2000/09/21 01:45:46 oster Exp $ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author:
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+/*
+ * revent.c -- reconstruction event handling code
+ */
+
+#include <sys/errno.h>
+
+#include <dev/raidframe/rf_raid.h>
+#include <dev/raidframe/rf_revent.h>
+#include <dev/raidframe/rf_etimer.h>
+#include <dev/raidframe/rf_general.h>
+#include <dev/raidframe/rf_freelist.h>
+#include <dev/raidframe/rf_desc.h>
+#include <dev/raidframe/rf_shutdown.h>
+#include <dev/raidframe/rf_kintf.h>
+
+static RF_FreeList_t *rf_revent_freelist;
+#define RF_MAX_FREE_REVENT 128
+#define RF_REVENT_INC 8
+#define RF_REVENT_INITIAL 8
+
+
+
+#include <sys/proc.h>
+#include <sys/kernel.h>
+
+#define DO_WAIT(_rc) \
+ RF_LTSLEEP(&(_rc)->eventQueue, PRIBIO, "raidframe eventq", \
+ 0, &((_rc)->eq_mutex))
+
+#define DO_SIGNAL(_rc) wakeup(&(_rc)->eventQueue)
+
+
+static void rf_ShutdownReconEvent(void *);
+
+static RF_ReconEvent_t *
+GetReconEventDesc(RF_RowCol_t row, RF_RowCol_t col,
+ void *arg, RF_Revent_t type);
+
+static void rf_ShutdownReconEvent(ignored)
+ void *ignored;
+{
+ RF_FREELIST_DESTROY(rf_revent_freelist, next, (RF_ReconEvent_t *));
+}
+
+int
+rf_ConfigureReconEvent(listp)
+ RF_ShutdownList_t **listp;
+{
+ int rc;
+
+ RF_FREELIST_CREATE(rf_revent_freelist, RF_MAX_FREE_REVENT,
+ RF_REVENT_INC, sizeof(RF_ReconEvent_t));
+ if (rf_revent_freelist == NULL)
+ return (ENOMEM);
+ rc = rf_ShutdownCreate(listp, rf_ShutdownReconEvent, NULL);
+ if (rc) {
+ RF_ERRORMSG3("Unable to add to shutdown list file %s line %d rc=%d\n", __FILE__,
+ __LINE__, rc);
+ rf_ShutdownReconEvent(NULL);
+ return (rc);
+ }
+ RF_FREELIST_PRIME(rf_revent_freelist, RF_REVENT_INITIAL, next,
+ (RF_ReconEvent_t *));
+ return (0);
+}
+
+/* returns the next reconstruction event, blocking the calling thread
+ * until one becomes available. will now return null if it is blocked
+ * or will return an event if it is not */
+
+RF_ReconEvent_t *
+rf_GetNextReconEvent(reconDesc, row, continueFunc, continueArg)
+ RF_RaidReconDesc_t *reconDesc;
+ RF_RowCol_t row;
+ void (*continueFunc) (void *);
+ void *continueArg;
+{
+ RF_Raid_t *raidPtr = reconDesc->raidPtr;
+ RF_ReconCtrl_t *rctrl = raidPtr->reconControl[row];
+ RF_ReconEvent_t *event;
+
+ RF_ASSERT(row >= 0 && row <= raidPtr->numRow);
+ RF_LOCK_MUTEX(rctrl->eq_mutex);
+ /* q null and count==0 must be equivalent conditions */
+ RF_ASSERT((rctrl->eventQueue == NULL) == (rctrl->eq_count == 0));
+
+ rctrl->continueFunc = continueFunc;
+ rctrl->continueArg = continueArg;
+
+
+ /* mpsleep timeout value: secs = timo_val/hz. 'ticks' here is
+ defined as cycle-counter ticks, not softclock ticks */
+
+#define MAX_RECON_EXEC_USECS (100 * 1000) /* 100 ms */
+#define RECON_DELAY_MS 25
+#define RECON_TIMO ((RECON_DELAY_MS * hz) / 1000)
+
+ /* we are not pre-emptible in the kernel, but we don't want to run
+ * forever. If we run w/o blocking for more than MAX_RECON_EXEC_TICKS
+ * ticks of the cycle counter, delay for RECON_DELAY before
+ * continuing. this may murder us with context switches, so we may
+ * need to increase both the MAX...TICKS and the RECON_DELAY_MS. */
+ if (reconDesc->reconExecTimerRunning) {
+ int status;
+
+ RF_ETIMER_STOP(reconDesc->recon_exec_timer);
+ RF_ETIMER_EVAL(reconDesc->recon_exec_timer);
+ reconDesc->reconExecTicks +=
+ RF_ETIMER_VAL_US(reconDesc->recon_exec_timer);
+ if (reconDesc->reconExecTicks > reconDesc->maxReconExecTicks)
+ reconDesc->maxReconExecTicks =
+ reconDesc->reconExecTicks;
+ if (reconDesc->reconExecTicks >= MAX_RECON_EXEC_USECS) {
+ /* we've been running too long. delay for
+ * RECON_DELAY_MS */
+#if RF_RECON_STATS > 0
+ reconDesc->numReconExecDelays++;
+#endif /* RF_RECON_STATS > 0 */
+
+ status = RF_LTSLEEP(&reconDesc->reconExecTicks, PRIBIO,
+ "recon delay", RECON_TIMO,
+ &rctrl->eq_mutex);
+ RF_ASSERT(status == EWOULDBLOCK);
+ reconDesc->reconExecTicks = 0;
+ }
+ }
+ while (!rctrl->eventQueue) {
+#if RF_RECON_STATS > 0
+ reconDesc->numReconEventWaits++;
+#endif /* RF_RECON_STATS > 0 */
+ DO_WAIT(rctrl);
+ reconDesc->reconExecTicks = 0; /* we've just waited */
+ }
+
+ reconDesc->reconExecTimerRunning = 1;
+ if (RF_ETIMER_VAL_US(reconDesc->recon_exec_timer)!=0) {
+ /* it moved!! reset the timer. */
+ RF_ETIMER_START(reconDesc->recon_exec_timer);
+ }
+ event = rctrl->eventQueue;
+ rctrl->eventQueue = event->next;
+ event->next = NULL;
+ rctrl->eq_count--;
+
+ /* q null and count==0 must be equivalent conditions */
+ RF_ASSERT((rctrl->eventQueue == NULL) == (rctrl->eq_count == 0));
+ RF_UNLOCK_MUTEX(rctrl->eq_mutex);
+ return (event);
+}
+/* enqueues a reconstruction event on the indicated queue */
+void
+rf_CauseReconEvent(raidPtr, row, col, arg, type)
+ RF_Raid_t *raidPtr;
+ RF_RowCol_t row;
+ RF_RowCol_t col;
+ void *arg;
+ RF_Revent_t type;
+{
+ RF_ReconCtrl_t *rctrl = raidPtr->reconControl[row];
+ RF_ReconEvent_t *event = GetReconEventDesc(row, col, arg, type);
+
+ if (type == RF_REVENT_BUFCLEAR) {
+ RF_ASSERT(col != rctrl->fcol);
+ }
+ RF_ASSERT(row >= 0 && row <= raidPtr->numRow && col >= 0 && col <= raidPtr->numCol);
+ RF_LOCK_MUTEX(rctrl->eq_mutex);
+ /* q null and count==0 must be equivalent conditions */
+ RF_ASSERT((rctrl->eventQueue == NULL) == (rctrl->eq_count == 0));
+ event->next = rctrl->eventQueue;
+ rctrl->eventQueue = event;
+ rctrl->eq_count++;
+ RF_UNLOCK_MUTEX(rctrl->eq_mutex);
+
+ DO_SIGNAL(rctrl);
+}
+/* allocates and initializes a recon event descriptor */
+static RF_ReconEvent_t *
+GetReconEventDesc(row, col, arg, type)
+ RF_RowCol_t row;
+ RF_RowCol_t col;
+ void *arg;
+ RF_Revent_t type;
+{
+ RF_ReconEvent_t *t;
+
+ RF_FREELIST_GET(rf_revent_freelist, t, next, (RF_ReconEvent_t *));
+ if (t == NULL)
+ return (NULL);
+ t->col = col;
+ t->arg = arg;
+ t->type = type;
+ return (t);
+}
+
+void
+rf_FreeReconEventDesc(event)
+ RF_ReconEvent_t *event;
+{
+ RF_FREELIST_FREE(rf_revent_freelist, event, next);
+}
diff --git a/sys/dev/raidframe/rf_revent.h b/sys/dev/raidframe/rf_revent.h
new file mode 100644
index 0000000..51c3202
--- /dev/null
+++ b/sys/dev/raidframe/rf_revent.h
@@ -0,0 +1,52 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_revent.h,v 1.3 1999/02/05 00:06:17 oster Exp $ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author:
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+/*******************************************************************
+ *
+ * rf_revent.h -- header file for reconstruction event handling code
+ *
+ *******************************************************************/
+
+#ifndef _RF__RF_REVENT_H_
+#define _RF__RF_REVENT_H_
+
+#include <dev/raidframe/rf_types.h>
+
+int rf_ConfigureReconEvent(RF_ShutdownList_t ** listp);
+
+RF_ReconEvent_t *
+rf_GetNextReconEvent(RF_RaidReconDesc_t * reconDesc,
+ RF_RowCol_t row, void (*continueFunc) (void *), void *continueArg);
+
+ void rf_CauseReconEvent(RF_Raid_t * raidPtr, RF_RowCol_t row, RF_RowCol_t col,
+ void *arg, RF_Revent_t type);
+
+ void rf_FreeReconEventDesc(RF_ReconEvent_t * event);
+
+#endif /* !_RF__RF_REVENT_H_ */
diff --git a/sys/dev/raidframe/rf_shutdown.c b/sys/dev/raidframe/rf_shutdown.c
new file mode 100644
index 0000000..7db93e9
--- /dev/null
+++ b/sys/dev/raidframe/rf_shutdown.c
@@ -0,0 +1,102 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_shutdown.c,v 1.6 2000/01/13 23:41:18 oster Exp $ */
+/*
+ * rf_shutdown.c
+ */
+/*
+ * Copyright (c) 1996 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Jim Zelenka
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+/*
+ * Maintain lists of cleanup functions. Also, mechanisms for coordinating
+ * thread startup and shutdown.
+ */
+
+#include <dev/raidframe/rf_types.h>
+#include <dev/raidframe/rf_threadstuff.h>
+#include <dev/raidframe/rf_shutdown.h>
+#include <dev/raidframe/rf_debugMem.h>
+#include <dev/raidframe/rf_freelist.h>
+
+static void
+rf_FreeShutdownEnt(RF_ShutdownList_t * ent)
+{
+ FREE(ent, M_RAIDFRAME);
+}
+
+int
+_rf_ShutdownCreate(
+ RF_ShutdownList_t ** listp,
+ void (*cleanup) (void *arg),
+ void *arg,
+ char *file,
+ int line)
+{
+ RF_ShutdownList_t *ent;
+
+ /*
+ * Have to directly allocate memory here, since we start up before
+ * and shutdown after RAIDframe internal allocation system.
+ */
+ /* ent = (RF_ShutdownList_t *) malloc(sizeof(RF_ShutdownList_t),
+ M_RAIDFRAME, M_WAITOK); */
+ ent = (RF_ShutdownList_t *) malloc(sizeof(RF_ShutdownList_t),
+ M_RAIDFRAME, M_NOWAIT);
+ if (ent == NULL)
+ return (ENOMEM);
+ ent->cleanup = cleanup;
+ ent->arg = arg;
+ ent->file = file;
+ ent->line = line;
+ ent->next = *listp;
+ *listp = ent;
+ return (0);
+}
+
+int
+rf_ShutdownList(RF_ShutdownList_t ** list)
+{
+ RF_ShutdownList_t *r, *next;
+ char *file;
+ int line;
+
+ for (r = *list; r; r = next) {
+ next = r->next;
+ file = r->file;
+ line = r->line;
+
+ if (rf_shutdownDebug) {
+ printf("call shutdown, created %s:%d\n", file, line);
+ }
+ r->cleanup(r->arg);
+
+ if (rf_shutdownDebug) {
+ printf("completed shutdown, created %s:%d\n", file, line);
+ }
+ rf_FreeShutdownEnt(r);
+ }
+ *list = NULL;
+ return (0);
+}
diff --git a/sys/dev/raidframe/rf_shutdown.h b/sys/dev/raidframe/rf_shutdown.h
new file mode 100644
index 0000000..5abc5ba
--- /dev/null
+++ b/sys/dev/raidframe/rf_shutdown.h
@@ -0,0 +1,67 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_shutdown.h,v 1.2 1999/02/05 00:06:17 oster Exp $ */
+/*
+ * rf_shutdown.h
+ */
+/*
+ * Copyright (c) 1996 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Jim Zelenka
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+/*
+ * Maintain lists of cleanup functions. Also, mechanisms for coordinating
+ * thread startup and shutdown.
+ */
+
+#ifndef _RF__RF_SHUTDOWN_H_
+#define _RF__RF_SHUTDOWN_H_
+
+#include <dev/raidframe/rf_types.h>
+#include <dev/raidframe/rf_threadstuff.h>
+
+/*
+ * Important note: the shutdown list is run like a stack, new
+ * entries pushed on top. Therefore, the most recently added
+ * entry (last started) is the first removed (stopped). This
+ * should handle system-dependencies pretty nicely- if a system
+ * is there when you start another, it'll be there when you
+ * shut down another. Hopefully, this subsystem will remove
+ * more complexity than it introduces.
+ */
+
+struct RF_ShutdownList_s {
+ void (*cleanup) (void *arg);
+ void *arg;
+ char *file;
+ int line;
+ RF_ShutdownList_t *next;
+};
+#define rf_ShutdownCreate(_listp_,_func_,_arg_) \
+ _rf_ShutdownCreate(_listp_,_func_,_arg_,__FILE__,__LINE__)
+
+int _rf_ShutdownCreate(RF_ShutdownList_t ** listp, void (*cleanup) (void *arg),
+ void *arg, char *file, int line);
+int rf_ShutdownList(RF_ShutdownList_t ** listp);
+
+#endif /* !_RF__RF_SHUTDOWN_H_ */
diff --git a/sys/dev/raidframe/rf_sstf.c b/sys/dev/raidframe/rf_sstf.c
new file mode 100644
index 0000000..3d20275
--- /dev/null
+++ b/sys/dev/raidframe/rf_sstf.c
@@ -0,0 +1,656 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_sstf.c,v 1.6 2001/01/27 20:18:55 oster Exp $ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Jim Zelenka
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+/*******************************************************************************
+ *
+ * sstf.c -- prioritized shortest seek time first disk queueing code
+ *
+ ******************************************************************************/
+
+#include <dev/raidframe/rf_alloclist.h>
+#include <dev/raidframe/rf_stripelocks.h>
+#include <dev/raidframe/rf_layout.h>
+#include <dev/raidframe/rf_diskqueue.h>
+#include <dev/raidframe/rf_sstf.h>
+#include <dev/raidframe/rf_debugMem.h>
+#include <dev/raidframe/rf_general.h>
+#include <dev/raidframe/rf_options.h>
+#include <dev/raidframe/rf_raid.h>
+#include <dev/raidframe/rf_types.h>
+
+#define DIR_LEFT 1
+#define DIR_RIGHT 2
+#define DIR_EITHER 3
+
+#define SNUM_DIFF(_a_,_b_) (((_a_)>(_b_))?((_a_)-(_b_)):((_b_)-(_a_)))
+
+#define QSUM(_sstfq_) (((_sstfq_)->lopri.qlen)+((_sstfq_)->left.qlen)+((_sstfq_)->right.qlen))
+
+
+static void
+do_sstf_ord_q(RF_DiskQueueData_t **,
+ RF_DiskQueueData_t **,
+ RF_DiskQueueData_t *);
+
+static RF_DiskQueueData_t *
+closest_to_arm(RF_SstfQ_t *,
+ RF_SectorNum_t,
+ int *,
+ int);
+static void do_dequeue(RF_SstfQ_t *, RF_DiskQueueData_t *);
+
+
+static void
+do_sstf_ord_q(queuep, tailp, req)
+ RF_DiskQueueData_t **queuep;
+ RF_DiskQueueData_t **tailp;
+ RF_DiskQueueData_t *req;
+{
+ RF_DiskQueueData_t *r, *s;
+
+ if (*queuep == NULL) {
+ *queuep = req;
+ *tailp = req;
+ req->next = NULL;
+ req->prev = NULL;
+ return;
+ }
+ if (req->sectorOffset <= (*queuep)->sectorOffset) {
+ req->next = *queuep;
+ req->prev = NULL;
+ (*queuep)->prev = req;
+ *queuep = req;
+ return;
+ }
+ if (req->sectorOffset > (*tailp)->sectorOffset) {
+ /* optimization */
+ r = NULL;
+ s = *tailp;
+ goto q_at_end;
+ }
+ for (s = NULL, r = *queuep; r; s = r, r = r->next) {
+ if (r->sectorOffset >= req->sectorOffset) {
+ /* insert after s, before r */
+ RF_ASSERT(s);
+ req->next = r;
+ r->prev = req;
+ s->next = req;
+ req->prev = s;
+ return;
+ }
+ }
+q_at_end:
+ /* insert after s, at end of queue */
+ RF_ASSERT(r == NULL);
+ RF_ASSERT(s);
+ RF_ASSERT(s == (*tailp));
+ req->next = NULL;
+ req->prev = s;
+ s->next = req;
+ *tailp = req;
+}
+/* for removing from head-of-queue */
+#define DO_HEAD_DEQ(_r_,_q_) { \
+ _r_ = (_q_)->queue; \
+ RF_ASSERT((_r_) != NULL); \
+ (_q_)->queue = (_r_)->next; \
+ (_q_)->qlen--; \
+ if ((_q_)->qlen == 0) { \
+ RF_ASSERT((_r_) == (_q_)->qtail); \
+ RF_ASSERT((_q_)->queue == NULL); \
+ (_q_)->qtail = NULL; \
+ } \
+ else { \
+ RF_ASSERT((_q_)->queue->prev == (_r_)); \
+ (_q_)->queue->prev = NULL; \
+ } \
+}
+
+/* for removing from end-of-queue */
+#define DO_TAIL_DEQ(_r_,_q_) { \
+ _r_ = (_q_)->qtail; \
+ RF_ASSERT((_r_) != NULL); \
+ (_q_)->qtail = (_r_)->prev; \
+ (_q_)->qlen--; \
+ if ((_q_)->qlen == 0) { \
+ RF_ASSERT((_r_) == (_q_)->queue); \
+ RF_ASSERT((_q_)->qtail == NULL); \
+ (_q_)->queue = NULL; \
+ } \
+ else { \
+ RF_ASSERT((_q_)->qtail->next == (_r_)); \
+ (_q_)->qtail->next = NULL; \
+ } \
+}
+
+#define DO_BEST_DEQ(_l_,_r_,_q_) { \
+ if (SNUM_DIFF((_q_)->queue->sectorOffset,_l_) \
+ < SNUM_DIFF((_q_)->qtail->sectorOffset,_l_)) \
+ { \
+ DO_HEAD_DEQ(_r_,_q_); \
+ } \
+ else { \
+ DO_TAIL_DEQ(_r_,_q_); \
+ } \
+}
+
+static RF_DiskQueueData_t *
+closest_to_arm(queue, arm_pos, dir, allow_reverse)
+ RF_SstfQ_t *queue;
+ RF_SectorNum_t arm_pos;
+ int *dir;
+ int allow_reverse;
+{
+ RF_SectorNum_t best_pos_l = 0, this_pos_l = 0, last_pos = 0;
+ RF_SectorNum_t best_pos_r = 0, this_pos_r = 0;
+ RF_DiskQueueData_t *r, *best_l, *best_r;
+
+ best_r = best_l = NULL;
+ for (r = queue->queue; r; r = r->next) {
+ if (r->sectorOffset < arm_pos) {
+ if (best_l == NULL) {
+ best_l = r;
+ last_pos = best_pos_l = this_pos_l;
+ } else {
+ this_pos_l = arm_pos - r->sectorOffset;
+ if (this_pos_l < best_pos_l) {
+ best_l = r;
+ last_pos = best_pos_l = this_pos_l;
+ } else {
+ last_pos = this_pos_l;
+ }
+ }
+ } else {
+ if (best_r == NULL) {
+ best_r = r;
+ last_pos = best_pos_r = this_pos_r;
+ } else {
+ this_pos_r = r->sectorOffset - arm_pos;
+ if (this_pos_r < best_pos_r) {
+ best_r = r;
+ last_pos = best_pos_r = this_pos_r;
+ } else {
+ last_pos = this_pos_r;
+ }
+ if (this_pos_r > last_pos) {
+ /* getting farther away */
+ break;
+ }
+ }
+ }
+ }
+ if ((best_r == NULL) && (best_l == NULL))
+ return (NULL);
+ if ((*dir == DIR_RIGHT) && best_r)
+ return (best_r);
+ if ((*dir == DIR_LEFT) && best_l)
+ return (best_l);
+ if (*dir == DIR_EITHER) {
+ if (best_l == NULL)
+ return (best_r);
+ if (best_r == NULL)
+ return (best_l);
+ if (best_pos_r < best_pos_l)
+ return (best_r);
+ else
+ return (best_l);
+ }
+ /*
+ * Nothing in the direction we want to go. Reverse or
+ * reset the arm. We know we have an I/O in the other
+ * direction.
+ */
+ if (allow_reverse) {
+ if (*dir == DIR_RIGHT) {
+ *dir = DIR_LEFT;
+ return (best_l);
+ } else {
+ *dir = DIR_RIGHT;
+ return (best_r);
+ }
+ }
+ /*
+ * Reset (beginning of queue).
+ */
+ RF_ASSERT(*dir == DIR_RIGHT);
+ return (queue->queue);
+}
+
+void *
+rf_SstfCreate(sect_per_disk, cl_list, listp)
+ RF_SectorCount_t sect_per_disk;
+ RF_AllocListElem_t *cl_list;
+ RF_ShutdownList_t **listp;
+{
+ RF_Sstf_t *sstfq;
+
+ RF_CallocAndAdd(sstfq, 1, sizeof(RF_Sstf_t), (RF_Sstf_t *), cl_list);
+ sstfq->dir = DIR_EITHER;
+ sstfq->allow_reverse = 1;
+ return ((void *) sstfq);
+}
+
+void *
+rf_ScanCreate(sect_per_disk, cl_list, listp)
+ RF_SectorCount_t sect_per_disk;
+ RF_AllocListElem_t *cl_list;
+ RF_ShutdownList_t **listp;
+{
+ RF_Sstf_t *scanq;
+
+ RF_CallocAndAdd(scanq, 1, sizeof(RF_Sstf_t), (RF_Sstf_t *), cl_list);
+ scanq->dir = DIR_RIGHT;
+ scanq->allow_reverse = 1;
+ return ((void *) scanq);
+}
+
+void *
+rf_CscanCreate(sect_per_disk, cl_list, listp)
+ RF_SectorCount_t sect_per_disk;
+ RF_AllocListElem_t *cl_list;
+ RF_ShutdownList_t **listp;
+{
+ RF_Sstf_t *cscanq;
+
+ RF_CallocAndAdd(cscanq, 1, sizeof(RF_Sstf_t), (RF_Sstf_t *), cl_list);
+ cscanq->dir = DIR_RIGHT;
+ return ((void *) cscanq);
+}
+
+void
+rf_SstfEnqueue(qptr, req, priority)
+ void *qptr;
+ RF_DiskQueueData_t *req;
+ int priority;
+{
+ RF_Sstf_t *sstfq;
+
+ sstfq = (RF_Sstf_t *) qptr;
+
+ if (priority == RF_IO_LOW_PRIORITY) {
+ if (rf_sstfDebug || rf_scanDebug || rf_cscanDebug) {
+ RF_DiskQueue_t *dq;
+ dq = (RF_DiskQueue_t *) req->queue;
+ printf("raid%d: ENQ lopri %d,%d queues are %d,%d,%d\n",
+ req->raidPtr->raidid,
+ dq->row, dq->col,
+ sstfq->left.qlen, sstfq->right.qlen,
+ sstfq->lopri.qlen);
+ }
+ do_sstf_ord_q(&sstfq->lopri.queue, &sstfq->lopri.qtail, req);
+ sstfq->lopri.qlen++;
+ } else {
+ if (req->sectorOffset < sstfq->last_sector) {
+ do_sstf_ord_q(&sstfq->left.queue, &sstfq->left.qtail, req);
+ sstfq->left.qlen++;
+ } else {
+ do_sstf_ord_q(&sstfq->right.queue, &sstfq->right.qtail, req);
+ sstfq->right.qlen++;
+ }
+ }
+}
+
+static void
+do_dequeue(queue, req)
+ RF_SstfQ_t *queue;
+ RF_DiskQueueData_t *req;
+{
+ RF_DiskQueueData_t *req2;
+
+ if (rf_sstfDebug || rf_scanDebug || rf_cscanDebug) {
+ printf("raid%d: do_dequeue\n", req->raidPtr->raidid);
+ }
+ if (req == queue->queue) {
+ DO_HEAD_DEQ(req2, queue);
+ RF_ASSERT(req2 == req);
+ } else
+ if (req == queue->qtail) {
+ DO_TAIL_DEQ(req2, queue);
+ RF_ASSERT(req2 == req);
+ } else {
+ /* dequeue from middle of list */
+ RF_ASSERT(req->next);
+ RF_ASSERT(req->prev);
+ queue->qlen--;
+ req->next->prev = req->prev;
+ req->prev->next = req->next;
+ req->next = req->prev = NULL;
+ }
+}
+
+RF_DiskQueueData_t *
+rf_SstfDequeue(qptr)
+ void *qptr;
+{
+ RF_DiskQueueData_t *req = NULL;
+ RF_Sstf_t *sstfq;
+
+ sstfq = (RF_Sstf_t *) qptr;
+
+ if (rf_sstfDebug) {
+ RF_DiskQueue_t *dq;
+ dq = (RF_DiskQueue_t *) req->queue;
+ RF_ASSERT(QSUM(sstfq) == dq->queueLength);
+ printf("raid%d: sstf: Dequeue %d,%d queues are %d,%d,%d\n",
+ req->raidPtr->raidid, dq->row, dq->col,
+ sstfq->left.qlen, sstfq->right.qlen, sstfq->lopri.qlen);
+ }
+ if (sstfq->left.queue == NULL) {
+ RF_ASSERT(sstfq->left.qlen == 0);
+ if (sstfq->right.queue == NULL) {
+ RF_ASSERT(sstfq->right.qlen == 0);
+ if (sstfq->lopri.queue == NULL) {
+ RF_ASSERT(sstfq->lopri.qlen == 0);
+ return (NULL);
+ }
+ if (rf_sstfDebug) {
+ printf("raid%d: sstf: check for close lopri",
+ req->raidPtr->raidid);
+ }
+ req = closest_to_arm(&sstfq->lopri, sstfq->last_sector,
+ &sstfq->dir, sstfq->allow_reverse);
+ if (rf_sstfDebug) {
+ printf("raid%d: sstf: closest_to_arm said %lx",
+ req->raidPtr->raidid, (long) req);
+ }
+ if (req == NULL)
+ return (NULL);
+ do_dequeue(&sstfq->lopri, req);
+ } else {
+ DO_BEST_DEQ(sstfq->last_sector, req, &sstfq->right);
+ }
+ } else {
+ if (sstfq->right.queue == NULL) {
+ RF_ASSERT(sstfq->right.qlen == 0);
+ DO_BEST_DEQ(sstfq->last_sector, req, &sstfq->left);
+ } else {
+ if (SNUM_DIFF(sstfq->last_sector, sstfq->right.queue->sectorOffset)
+ < SNUM_DIFF(sstfq->last_sector, sstfq->left.qtail->sectorOffset)) {
+ DO_HEAD_DEQ(req, &sstfq->right);
+ } else {
+ DO_TAIL_DEQ(req, &sstfq->left);
+ }
+ }
+ }
+ RF_ASSERT(req);
+ sstfq->last_sector = req->sectorOffset;
+ return (req);
+}
+
+RF_DiskQueueData_t *
+rf_ScanDequeue(qptr)
+ void *qptr;
+{
+ RF_DiskQueueData_t *req = NULL;
+ RF_Sstf_t *scanq;
+
+ scanq = (RF_Sstf_t *) qptr;
+
+ if (rf_scanDebug) {
+ RF_DiskQueue_t *dq;
+ dq = (RF_DiskQueue_t *) req->queue;
+ RF_ASSERT(QSUM(scanq) == dq->queueLength);
+ printf("raid%d: scan: Dequeue %d,%d queues are %d,%d,%d\n",
+ req->raidPtr->raidid, dq->row, dq->col,
+ scanq->left.qlen, scanq->right.qlen, scanq->lopri.qlen);
+ }
+ if (scanq->left.queue == NULL) {
+ RF_ASSERT(scanq->left.qlen == 0);
+ if (scanq->right.queue == NULL) {
+ RF_ASSERT(scanq->right.qlen == 0);
+ if (scanq->lopri.queue == NULL) {
+ RF_ASSERT(scanq->lopri.qlen == 0);
+ return (NULL);
+ }
+ req = closest_to_arm(&scanq->lopri, scanq->last_sector,
+ &scanq->dir, scanq->allow_reverse);
+ if (req == NULL)
+ return (NULL);
+ do_dequeue(&scanq->lopri, req);
+ } else {
+ scanq->dir = DIR_RIGHT;
+ DO_HEAD_DEQ(req, &scanq->right);
+ }
+ } else
+ if (scanq->right.queue == NULL) {
+ RF_ASSERT(scanq->right.qlen == 0);
+ RF_ASSERT(scanq->left.queue);
+ scanq->dir = DIR_LEFT;
+ DO_TAIL_DEQ(req, &scanq->left);
+ } else {
+ RF_ASSERT(scanq->right.queue);
+ RF_ASSERT(scanq->left.queue);
+ if (scanq->dir == DIR_RIGHT) {
+ DO_HEAD_DEQ(req, &scanq->right);
+ } else {
+ DO_TAIL_DEQ(req, &scanq->left);
+ }
+ }
+ RF_ASSERT(req);
+ scanq->last_sector = req->sectorOffset;
+ return (req);
+}
+
+RF_DiskQueueData_t *
+rf_CscanDequeue(qptr)
+ void *qptr;
+{
+ RF_DiskQueueData_t *req = NULL;
+ RF_Sstf_t *cscanq;
+
+ cscanq = (RF_Sstf_t *) qptr;
+
+ RF_ASSERT(cscanq->dir == DIR_RIGHT);
+ if (rf_cscanDebug) {
+ RF_DiskQueue_t *dq;
+ dq = (RF_DiskQueue_t *) req->queue;
+ RF_ASSERT(QSUM(cscanq) == dq->queueLength);
+ printf("raid%d: scan: Dequeue %d,%d queues are %d,%d,%d\n",
+ req->raidPtr->raidid, dq->row, dq->col,
+ cscanq->left.qlen, cscanq->right.qlen,
+ cscanq->lopri.qlen);
+ }
+ if (cscanq->right.queue) {
+ DO_HEAD_DEQ(req, &cscanq->right);
+ } else {
+ RF_ASSERT(cscanq->right.qlen == 0);
+ if (cscanq->left.queue == NULL) {
+ RF_ASSERT(cscanq->left.qlen == 0);
+ if (cscanq->lopri.queue == NULL) {
+ RF_ASSERT(cscanq->lopri.qlen == 0);
+ return (NULL);
+ }
+ req = closest_to_arm(&cscanq->lopri, cscanq->last_sector,
+ &cscanq->dir, cscanq->allow_reverse);
+ if (req == NULL)
+ return (NULL);
+ do_dequeue(&cscanq->lopri, req);
+ } else {
+ /*
+ * There's I/Os to the left of the arm. Swing
+ * on back (swap queues).
+ */
+ cscanq->right = cscanq->left;
+ cscanq->left.qlen = 0;
+ cscanq->left.queue = cscanq->left.qtail = NULL;
+ DO_HEAD_DEQ(req, &cscanq->right);
+ }
+ }
+ RF_ASSERT(req);
+ cscanq->last_sector = req->sectorOffset;
+ return (req);
+}
+
+RF_DiskQueueData_t *
+rf_SstfPeek(qptr)
+ void *qptr;
+{
+ RF_DiskQueueData_t *req;
+ RF_Sstf_t *sstfq;
+
+ sstfq = (RF_Sstf_t *) qptr;
+
+ if ((sstfq->left.queue == NULL) && (sstfq->right.queue == NULL)) {
+ req = closest_to_arm(&sstfq->lopri, sstfq->last_sector, &sstfq->dir,
+ sstfq->allow_reverse);
+ } else {
+ if (sstfq->left.queue == NULL)
+ req = sstfq->right.queue;
+ else {
+ if (sstfq->right.queue == NULL)
+ req = sstfq->left.queue;
+ else {
+ if (SNUM_DIFF(sstfq->last_sector, sstfq->right.queue->sectorOffset)
+ < SNUM_DIFF(sstfq->last_sector, sstfq->left.qtail->sectorOffset)) {
+ req = sstfq->right.queue;
+ } else {
+ req = sstfq->left.qtail;
+ }
+ }
+ }
+ }
+ if (req == NULL) {
+ RF_ASSERT(QSUM(sstfq) == 0);
+ }
+ return (req);
+}
+
+RF_DiskQueueData_t *
+rf_ScanPeek(qptr)
+ void *qptr;
+{
+ RF_DiskQueueData_t *req;
+ RF_Sstf_t *scanq;
+ int dir;
+
+ scanq = (RF_Sstf_t *) qptr;
+ dir = scanq->dir;
+
+ if (scanq->left.queue == NULL) {
+ RF_ASSERT(scanq->left.qlen == 0);
+ if (scanq->right.queue == NULL) {
+ RF_ASSERT(scanq->right.qlen == 0);
+ if (scanq->lopri.queue == NULL) {
+ RF_ASSERT(scanq->lopri.qlen == 0);
+ return (NULL);
+ }
+ req = closest_to_arm(&scanq->lopri, scanq->last_sector,
+ &dir, scanq->allow_reverse);
+ } else {
+ req = scanq->right.queue;
+ }
+ } else
+ if (scanq->right.queue == NULL) {
+ RF_ASSERT(scanq->right.qlen == 0);
+ RF_ASSERT(scanq->left.queue);
+ req = scanq->left.qtail;
+ } else {
+ RF_ASSERT(scanq->right.queue);
+ RF_ASSERT(scanq->left.queue);
+ if (scanq->dir == DIR_RIGHT) {
+ req = scanq->right.queue;
+ } else {
+ req = scanq->left.qtail;
+ }
+ }
+ if (req == NULL) {
+ RF_ASSERT(QSUM(scanq) == 0);
+ }
+ return (req);
+}
+
+RF_DiskQueueData_t *
+rf_CscanPeek(qptr)
+ void *qptr;
+{
+ RF_DiskQueueData_t *req;
+ RF_Sstf_t *cscanq;
+
+ cscanq = (RF_Sstf_t *) qptr;
+
+ RF_ASSERT(cscanq->dir == DIR_RIGHT);
+ if (cscanq->right.queue) {
+ req = cscanq->right.queue;
+ } else {
+ RF_ASSERT(cscanq->right.qlen == 0);
+ if (cscanq->left.queue == NULL) {
+ RF_ASSERT(cscanq->left.qlen == 0);
+ if (cscanq->lopri.queue == NULL) {
+ RF_ASSERT(cscanq->lopri.qlen == 0);
+ return (NULL);
+ }
+ req = closest_to_arm(&cscanq->lopri, cscanq->last_sector,
+ &cscanq->dir, cscanq->allow_reverse);
+ } else {
+ /*
+ * There's I/Os to the left of the arm. We'll end
+ * up swinging on back.
+ */
+ req = cscanq->left.queue;
+ }
+ }
+ if (req == NULL) {
+ RF_ASSERT(QSUM(cscanq) == 0);
+ }
+ return (req);
+}
+
+int
+rf_SstfPromote(qptr, parityStripeID, which_ru)
+ void *qptr;
+ RF_StripeNum_t parityStripeID;
+ RF_ReconUnitNum_t which_ru;
+{
+ RF_DiskQueueData_t *r, *next;
+ RF_Sstf_t *sstfq;
+ int n;
+
+ sstfq = (RF_Sstf_t *) qptr;
+
+ n = 0;
+ for (r = sstfq->lopri.queue; r; r = next) {
+ next = r->next;
+ if (rf_sstfDebug || rf_scanDebug || rf_cscanDebug) {
+ printf("raid%d: check promote %lx\n",
+ r->raidPtr->raidid, (long) r);
+ }
+ if ((r->parityStripeID == parityStripeID)
+ && (r->which_ru == which_ru)) {
+ do_dequeue(&sstfq->lopri, r);
+ rf_SstfEnqueue(qptr, r, RF_IO_NORMAL_PRIORITY);
+ n++;
+ }
+ }
+ if (rf_sstfDebug || rf_scanDebug || rf_cscanDebug) {
+ printf("raid%d: promoted %d matching I/Os queues are %d,%d,%d\n",
+ r->raidPtr->raidid, n, sstfq->left.qlen,
+ sstfq->right.qlen, sstfq->lopri.qlen);
+ }
+ return (n);
+}
diff --git a/sys/dev/raidframe/rf_sstf.h b/sys/dev/raidframe/rf_sstf.h
new file mode 100644
index 0000000..2fc1c0d
--- /dev/null
+++ b/sys/dev/raidframe/rf_sstf.h
@@ -0,0 +1,70 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_sstf.h,v 1.3 1999/02/05 00:06:17 oster Exp $ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Jim Zelenka
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+#ifndef _RF__RF_SSTF_H_
+#define _RF__RF_SSTF_H_
+
+#include <dev/raidframe/rf_diskqueue.h>
+
+typedef struct RF_SstfQ_s {
+ RF_DiskQueueData_t *queue;
+ RF_DiskQueueData_t *qtail;
+ int qlen;
+} RF_SstfQ_t;
+
+typedef struct RF_Sstf_s {
+ RF_SstfQ_t left;
+ RF_SstfQ_t right;
+ RF_SstfQ_t lopri;
+ RF_SectorNum_t last_sector;
+ int dir;
+ int allow_reverse;
+} RF_Sstf_t;
+
+void *
+rf_SstfCreate(RF_SectorCount_t sect_per_disk,
+ RF_AllocListElem_t * cl_list, RF_ShutdownList_t ** listp);
+void *
+rf_ScanCreate(RF_SectorCount_t sect_per_disk,
+ RF_AllocListElem_t * cl_list, RF_ShutdownList_t ** listp);
+void *
+rf_CscanCreate(RF_SectorCount_t sect_per_disk,
+ RF_AllocListElem_t * cl_list, RF_ShutdownList_t ** listp);
+void rf_SstfEnqueue(void *qptr, RF_DiskQueueData_t * req, int priority);
+RF_DiskQueueData_t *rf_SstfDequeue(void *qptr);
+RF_DiskQueueData_t *rf_SstfPeek(void *qptr);
+int
+rf_SstfPromote(void *qptr, RF_StripeNum_t parityStripeID,
+ RF_ReconUnitNum_t which_ru);
+RF_DiskQueueData_t *rf_ScanDequeue(void *qptr);
+RF_DiskQueueData_t *rf_ScanPeek(void *qptr);
+RF_DiskQueueData_t *rf_CscanDequeue(void *qptr);
+RF_DiskQueueData_t *rf_CscanPeek(void *qptr);
+
+#endif /* !_RF__RF_SSTF_H_ */
diff --git a/sys/dev/raidframe/rf_states.c b/sys/dev/raidframe/rf_states.c
new file mode 100644
index 0000000..c96ee87
--- /dev/null
+++ b/sys/dev/raidframe/rf_states.c
@@ -0,0 +1,667 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_states.c,v 1.15 2000/10/20 02:24:45 oster Exp $ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Mark Holland, William V. Courtright II, Robby Findler
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+#include <sys/errno.h>
+
+#include <dev/raidframe/rf_archs.h>
+#include <dev/raidframe/rf_threadstuff.h>
+#include <dev/raidframe/rf_raid.h>
+#include <dev/raidframe/rf_dag.h>
+#include <dev/raidframe/rf_desc.h>
+#include <dev/raidframe/rf_aselect.h>
+#include <dev/raidframe/rf_general.h>
+#include <dev/raidframe/rf_states.h>
+#include <dev/raidframe/rf_dagutils.h>
+#include <dev/raidframe/rf_driver.h>
+#include <dev/raidframe/rf_engine.h>
+#include <dev/raidframe/rf_map.h>
+#include <dev/raidframe/rf_etimer.h>
+#include <dev/raidframe/rf_kintf.h>
+
+/* prototypes for some of the available states.
+
+ States must:
+
+ - not block.
+
+ - either schedule rf_ContinueRaidAccess as a callback and return
+ RF_TRUE, or complete all of their work and return RF_FALSE.
+
+ - increment desc->state when they have finished their work.
+*/
+
+static char *
+StateName(RF_AccessState_t state)
+{
+ switch (state) {
+ case rf_QuiesceState:return "QuiesceState";
+ case rf_MapState:
+ return "MapState";
+ case rf_LockState:
+ return "LockState";
+ case rf_CreateDAGState:
+ return "CreateDAGState";
+ case rf_ExecuteDAGState:
+ return "ExecuteDAGState";
+ case rf_ProcessDAGState:
+ return "ProcessDAGState";
+ case rf_CleanupState:
+ return "CleanupState";
+ case rf_LastState:
+ return "LastState";
+ case rf_IncrAccessesCountState:
+ return "IncrAccessesCountState";
+ case rf_DecrAccessesCountState:
+ return "DecrAccessesCountState";
+ default:
+ return "!!! UnnamedState !!!";
+ }
+}
+
+void
+rf_ContinueRaidAccess(RF_RaidAccessDesc_t * desc)
+{
+ int suspended = RF_FALSE;
+ int current_state_index = desc->state;
+ RF_AccessState_t current_state = desc->states[current_state_index];
+ int unit = desc->raidPtr->raidid;
+
+ do {
+
+ current_state_index = desc->state;
+ current_state = desc->states[current_state_index];
+
+ switch (current_state) {
+
+ case rf_QuiesceState:
+ suspended = rf_State_Quiesce(desc);
+ break;
+ case rf_IncrAccessesCountState:
+ suspended = rf_State_IncrAccessCount(desc);
+ break;
+ case rf_MapState:
+ suspended = rf_State_Map(desc);
+ break;
+ case rf_LockState:
+ suspended = rf_State_Lock(desc);
+ break;
+ case rf_CreateDAGState:
+ suspended = rf_State_CreateDAG(desc);
+ break;
+ case rf_ExecuteDAGState:
+ suspended = rf_State_ExecuteDAG(desc);
+ break;
+ case rf_ProcessDAGState:
+ suspended = rf_State_ProcessDAG(desc);
+ break;
+ case rf_CleanupState:
+ suspended = rf_State_Cleanup(desc);
+ break;
+ case rf_DecrAccessesCountState:
+ suspended = rf_State_DecrAccessCount(desc);
+ break;
+ case rf_LastState:
+ suspended = rf_State_LastState(desc);
+ break;
+ }
+
+ /* after this point, we cannot dereference desc since desc may
+ * have been freed. desc is only freed in LastState, so if we
+ * renter this function or loop back up, desc should be valid. */
+
+ if (rf_printStatesDebug) {
+ printf("raid%d: State: %-24s StateIndex: %3i desc: 0x%ld %s\n",
+ unit, StateName(current_state),
+ current_state_index, (long) desc,
+ suspended ? "callback scheduled" : "looping");
+ }
+ } while (!suspended && current_state != rf_LastState);
+
+ return;
+}
+
+
+void
+rf_ContinueDagAccess(RF_DagList_t * dagList)
+{
+ RF_AccTraceEntry_t *tracerec = &(dagList->desc->tracerec);
+ RF_RaidAccessDesc_t *desc;
+ RF_DagHeader_t *dag_h;
+ RF_Etimer_t timer;
+ int i;
+
+ desc = dagList->desc;
+
+ timer = tracerec->timer;
+ RF_ETIMER_STOP(timer);
+ RF_ETIMER_EVAL(timer);
+ tracerec->specific.user.exec_us = RF_ETIMER_VAL_US(timer);
+ RF_ETIMER_START(tracerec->timer);
+
+ /* skip to dag which just finished */
+ dag_h = dagList->dags;
+ for (i = 0; i < dagList->numDagsDone; i++) {
+ dag_h = dag_h->next;
+ }
+
+ /* check to see if retry is required */
+ if (dag_h->status == rf_rollBackward) {
+ /* when a dag fails, mark desc status as bad and allow all
+ * other dags in the desc to execute to completion. then,
+ * free all dags and start over */
+ desc->status = 1; /* bad status */
+ {
+ printf("raid%d: DAG failure: %c addr 0x%lx (%ld) nblk 0x%x (%d) buf 0x%lx\n",
+ desc->raidPtr->raidid, desc->type,
+ (long) desc->raidAddress,
+ (long) desc->raidAddress, (int) desc->numBlocks,
+ (int) desc->numBlocks,
+ (unsigned long) (desc->bufPtr));
+ }
+ }
+ dagList->numDagsDone++;
+ rf_ContinueRaidAccess(desc);
+}
+
+int
+rf_State_LastState(RF_RaidAccessDesc_t * desc)
+{
+ void (*callbackFunc) (RF_CBParam_t) = desc->callbackFunc;
+ RF_CBParam_t callbackArg;
+
+ callbackArg.p = desc->callbackArg;
+
+ /*
+ * If this is not an async request, wake up the caller
+ */
+ if (desc->async_flag == 0)
+ wakeup(desc->bp);
+
+ /*
+ * That's all the IO for this one... unbusy the 'disk'.
+ */
+
+ rf_disk_unbusy(desc);
+
+ /*
+ * Wakeup any requests waiting to go.
+ */
+
+ RF_LOCK_MUTEX(((RF_Raid_t *) desc->raidPtr)->mutex);
+ ((RF_Raid_t *) desc->raidPtr)->openings++;
+ RF_UNLOCK_MUTEX(((RF_Raid_t *) desc->raidPtr)->mutex);
+
+ /* wake up any pending IO */
+ raidstart(((RF_Raid_t *) desc->raidPtr));
+
+ /* printf("Calling biodone on 0x%x\n",desc->bp); */
+ biodone(desc->bp); /* access came through ioctl */
+
+ if (callbackFunc)
+ callbackFunc(callbackArg);
+ rf_FreeRaidAccDesc(desc);
+
+ return RF_FALSE;
+}
+
+int
+rf_State_IncrAccessCount(RF_RaidAccessDesc_t * desc)
+{
+ RF_Raid_t *raidPtr;
+
+ raidPtr = desc->raidPtr;
+ /* Bummer. We have to do this to be 100% safe w.r.t. the increment
+ * below */
+ RF_LOCK_MUTEX(raidPtr->access_suspend_mutex);
+ raidPtr->accs_in_flight++; /* used to detect quiescence */
+ RF_UNLOCK_MUTEX(raidPtr->access_suspend_mutex);
+
+ desc->state++;
+ return RF_FALSE;
+}
+
+int
+rf_State_DecrAccessCount(RF_RaidAccessDesc_t * desc)
+{
+ RF_Raid_t *raidPtr;
+
+ raidPtr = desc->raidPtr;
+
+ RF_LOCK_MUTEX(raidPtr->access_suspend_mutex);
+ raidPtr->accs_in_flight--;
+ if (raidPtr->accesses_suspended && raidPtr->accs_in_flight == 0) {
+ rf_SignalQuiescenceLock(raidPtr, raidPtr->reconDesc);
+ }
+ rf_UpdateUserStats(raidPtr, RF_ETIMER_VAL_US(desc->timer), desc->numBlocks);
+ RF_UNLOCK_MUTEX(raidPtr->access_suspend_mutex);
+
+ desc->state++;
+ return RF_FALSE;
+}
+
+int
+rf_State_Quiesce(RF_RaidAccessDesc_t * desc)
+{
+ RF_AccTraceEntry_t *tracerec = &desc->tracerec;
+ RF_Etimer_t timer;
+ int suspended = RF_FALSE;
+ RF_Raid_t *raidPtr;
+
+ raidPtr = desc->raidPtr;
+
+ RF_ETIMER_START(timer);
+ RF_ETIMER_START(desc->timer);
+
+ RF_LOCK_MUTEX(raidPtr->access_suspend_mutex);
+ if (raidPtr->accesses_suspended) {
+ RF_CallbackDesc_t *cb;
+ cb = rf_AllocCallbackDesc();
+ /* XXX the following cast is quite bogus...
+ * rf_ContinueRaidAccess takes a (RF_RaidAccessDesc_t *) as an
+ * argument.. GO */
+ cb->callbackFunc = (void (*) (RF_CBParam_t)) rf_ContinueRaidAccess;
+ cb->callbackArg.p = (void *) desc;
+ cb->next = raidPtr->quiesce_wait_list;
+ raidPtr->quiesce_wait_list = cb;
+ suspended = RF_TRUE;
+ }
+ RF_UNLOCK_MUTEX(raidPtr->access_suspend_mutex);
+
+ RF_ETIMER_STOP(timer);
+ RF_ETIMER_EVAL(timer);
+ tracerec->specific.user.suspend_ovhd_us += RF_ETIMER_VAL_US(timer);
+
+ if (suspended && rf_quiesceDebug)
+ printf("Stalling access due to quiescence lock\n");
+
+ desc->state++;
+ return suspended;
+}
+
+int
+rf_State_Map(RF_RaidAccessDesc_t * desc)
+{
+ RF_Raid_t *raidPtr = desc->raidPtr;
+ RF_AccTraceEntry_t *tracerec = &desc->tracerec;
+ RF_Etimer_t timer;
+
+ RF_ETIMER_START(timer);
+
+ if (!(desc->asmap = rf_MapAccess(raidPtr, desc->raidAddress, desc->numBlocks,
+ desc->bufPtr, RF_DONT_REMAP)))
+ RF_PANIC();
+
+ RF_ETIMER_STOP(timer);
+ RF_ETIMER_EVAL(timer);
+ tracerec->specific.user.map_us = RF_ETIMER_VAL_US(timer);
+
+ desc->state++;
+ return RF_FALSE;
+}
+
+int
+rf_State_Lock(RF_RaidAccessDesc_t * desc)
+{
+ RF_AccTraceEntry_t *tracerec = &desc->tracerec;
+ RF_Raid_t *raidPtr = desc->raidPtr;
+ RF_AccessStripeMapHeader_t *asmh = desc->asmap;
+ RF_AccessStripeMap_t *asm_p;
+ RF_Etimer_t timer;
+ int suspended = RF_FALSE;
+
+ RF_ETIMER_START(timer);
+ if (!(raidPtr->Layout.map->flags & RF_NO_STRIPE_LOCKS)) {
+ RF_StripeNum_t lastStripeID = -1;
+
+ /* acquire each lock that we don't already hold */
+ for (asm_p = asmh->stripeMap; asm_p; asm_p = asm_p->next) {
+ RF_ASSERT(RF_IO_IS_R_OR_W(desc->type));
+ if (!rf_suppressLocksAndLargeWrites &&
+ asm_p->parityInfo &&
+ !(desc->flags & RF_DAG_SUPPRESS_LOCKS) &&
+ !(asm_p->flags & RF_ASM_FLAGS_LOCK_TRIED)) {
+ asm_p->flags |= RF_ASM_FLAGS_LOCK_TRIED;
+ RF_ASSERT(asm_p->stripeID > lastStripeID);
+
+ /* locks must be acquired hierarchically */
+
+ lastStripeID = asm_p->stripeID;
+ /* XXX the cast to (void (*)(RF_CBParam_t))
+ * below is bogus! GO */
+ RF_INIT_LOCK_REQ_DESC(asm_p->lockReqDesc,
+ desc->type,
+ (void (*) (RF_Buf_t)) rf_ContinueRaidAccess,
+ desc, asm_p,
+ raidPtr->Layout.dataSectorsPerStripe);
+ if (rf_AcquireStripeLock(raidPtr->lockTable,
+ asm_p->stripeID, &asm_p->lockReqDesc)) {
+ suspended = RF_TRUE;
+ break;
+ }
+ }
+ if (desc->type == RF_IO_TYPE_WRITE &&
+ raidPtr->status[asm_p->physInfo->row] == rf_rs_reconstructing) {
+ if (!(asm_p->flags & RF_ASM_FLAGS_FORCE_TRIED)) {
+ int val;
+
+ asm_p->flags |= RF_ASM_FLAGS_FORCE_TRIED;
+ /* XXX the cast below is quite
+ * bogus!!! XXX GO */
+ val = rf_ForceOrBlockRecon(raidPtr, asm_p,
+ (void (*) (RF_Raid_t *, void *)) rf_ContinueRaidAccess, desc);
+ if (val == 0) {
+ asm_p->flags |= RF_ASM_FLAGS_RECON_BLOCKED;
+ } else {
+ suspended = RF_TRUE;
+ break;
+ }
+ } else {
+ if (rf_pssDebug) {
+ printf("raid%d: skipping force/block because already done, psid %ld\n",
+ desc->raidPtr->raidid,
+ (long) asm_p->stripeID);
+ }
+ }
+ } else {
+ if (rf_pssDebug) {
+ printf("raid%d: skipping force/block because not write or not under recon, psid %ld\n",
+ desc->raidPtr->raidid,
+ (long) asm_p->stripeID);
+ }
+ }
+ }
+
+ RF_ETIMER_STOP(timer);
+ RF_ETIMER_EVAL(timer);
+ tracerec->specific.user.lock_us += RF_ETIMER_VAL_US(timer);
+
+ if (suspended)
+ return (RF_TRUE);
+ }
+ desc->state++;
+ return (RF_FALSE);
+}
+/*
+ * the following three states create, execute, and post-process dags
+ * the error recovery unit is a single dag.
+ * by default, SelectAlgorithm creates an array of dags, one per parity stripe
+ * in some tricky cases, multiple dags per stripe are created
+ * - dags within a parity stripe are executed sequentially (arbitrary order)
+ * - dags for distinct parity stripes are executed concurrently
+ *
+ * repeat until all dags complete successfully -or- dag selection fails
+ *
+ * while !done
+ * create dag(s) (SelectAlgorithm)
+ * if dag
+ * execute dag (DispatchDAG)
+ * if dag successful
+ * done (SUCCESS)
+ * else
+ * !done (RETRY - start over with new dags)
+ * else
+ * done (FAIL)
+ */
+int
+rf_State_CreateDAG(RF_RaidAccessDesc_t * desc)
+{
+ RF_AccTraceEntry_t *tracerec = &desc->tracerec;
+ RF_Etimer_t timer;
+ RF_DagHeader_t *dag_h;
+ int i, selectStatus;
+
+ /* generate a dag for the access, and fire it off. When the dag
+ * completes, we'll get re-invoked in the next state. */
+ RF_ETIMER_START(timer);
+ /* SelectAlgorithm returns one or more dags */
+ selectStatus = rf_SelectAlgorithm(desc, desc->flags | RF_DAG_SUPPRESS_LOCKS);
+ if (rf_printDAGsDebug)
+ for (i = 0; i < desc->numStripes; i++)
+ rf_PrintDAGList(desc->dagArray[i].dags);
+ RF_ETIMER_STOP(timer);
+ RF_ETIMER_EVAL(timer);
+ /* update time to create all dags */
+ tracerec->specific.user.dag_create_us = RF_ETIMER_VAL_US(timer);
+
+ desc->status = 0; /* good status */
+
+ if (selectStatus) {
+ /* failed to create a dag */
+ /* this happens when there are too many faults or incomplete
+ * dag libraries */
+ printf("[Failed to create a DAG]\n");
+ RF_PANIC();
+ } else {
+ /* bind dags to desc */
+ for (i = 0; i < desc->numStripes; i++) {
+ dag_h = desc->dagArray[i].dags;
+ while (dag_h) {
+ dag_h->bp = (RF_Buf_t) desc->bp;
+ dag_h->tracerec = tracerec;
+ dag_h = dag_h->next;
+ }
+ }
+ desc->flags |= RF_DAG_DISPATCH_RETURNED;
+ desc->state++; /* next state should be rf_State_ExecuteDAG */
+ }
+ return RF_FALSE;
+}
+
+
+
+/* the access has an array of dagLists, one dagList per parity stripe.
+ * fire the first dag in each parity stripe (dagList).
+ * dags within a stripe (dagList) must be executed sequentially
+ * - this preserves atomic parity update
+ * dags for independents parity groups (stripes) are fired concurrently */
+
+int
+rf_State_ExecuteDAG(RF_RaidAccessDesc_t * desc)
+{
+ int i;
+ RF_DagHeader_t *dag_h;
+ RF_DagList_t *dagArray = desc->dagArray;
+
+ /* next state is always rf_State_ProcessDAG important to do this
+ * before firing the first dag (it may finish before we leave this
+ * routine) */
+ desc->state++;
+
+ /* sweep dag array, a stripe at a time, firing the first dag in each
+ * stripe */
+ for (i = 0; i < desc->numStripes; i++) {
+ RF_ASSERT(dagArray[i].numDags > 0);
+ RF_ASSERT(dagArray[i].numDagsDone == 0);
+ RF_ASSERT(dagArray[i].numDagsFired == 0);
+ RF_ETIMER_START(dagArray[i].tracerec.timer);
+ /* fire first dag in this stripe */
+ dag_h = dagArray[i].dags;
+ RF_ASSERT(dag_h);
+ dagArray[i].numDagsFired++;
+ /* XXX Yet another case where we pass in a conflicting
+ * function pointer :-( XXX GO */
+ rf_DispatchDAG(dag_h, (void (*) (void *)) rf_ContinueDagAccess, &dagArray[i]);
+ }
+
+ /* the DAG will always call the callback, even if there was no
+ * blocking, so we are always suspended in this state */
+ return RF_TRUE;
+}
+
+
+
+/* rf_State_ProcessDAG is entered when a dag completes.
+ * first, check to all dags in the access have completed
+ * if not, fire as many dags as possible */
+
+int
+rf_State_ProcessDAG(RF_RaidAccessDesc_t * desc)
+{
+ RF_AccessStripeMapHeader_t *asmh = desc->asmap;
+ RF_Raid_t *raidPtr = desc->raidPtr;
+ RF_DagHeader_t *dag_h;
+ int i, j, done = RF_TRUE;
+ RF_DagList_t *dagArray = desc->dagArray;
+ RF_Etimer_t timer;
+
+ /* check to see if this is the last dag */
+ for (i = 0; i < desc->numStripes; i++)
+ if (dagArray[i].numDags != dagArray[i].numDagsDone)
+ done = RF_FALSE;
+
+ if (done) {
+ if (desc->status) {
+ /* a dag failed, retry */
+ RF_ETIMER_START(timer);
+ /* free all dags */
+ for (i = 0; i < desc->numStripes; i++) {
+ rf_FreeDAG(desc->dagArray[i].dags);
+ }
+ rf_MarkFailuresInASMList(raidPtr, asmh);
+ /* back up to rf_State_CreateDAG */
+ desc->state = desc->state - 2;
+ return RF_FALSE;
+ } else {
+ /* move on to rf_State_Cleanup */
+ desc->state++;
+ }
+ return RF_FALSE;
+ } else {
+ /* more dags to execute */
+ /* see if any are ready to be fired. if so, fire them */
+ /* don't fire the initial dag in a list, it's fired in
+ * rf_State_ExecuteDAG */
+ for (i = 0; i < desc->numStripes; i++) {
+ if ((dagArray[i].numDagsDone < dagArray[i].numDags)
+ && (dagArray[i].numDagsDone == dagArray[i].numDagsFired)
+ && (dagArray[i].numDagsFired > 0)) {
+ RF_ETIMER_START(dagArray[i].tracerec.timer);
+ /* fire next dag in this stripe */
+ /* first, skip to next dag awaiting execution */
+ dag_h = dagArray[i].dags;
+ for (j = 0; j < dagArray[i].numDagsDone; j++)
+ dag_h = dag_h->next;
+ dagArray[i].numDagsFired++;
+ /* XXX and again we pass a different function
+ * pointer.. GO */
+ rf_DispatchDAG(dag_h, (void (*) (void *)) rf_ContinueDagAccess,
+ &dagArray[i]);
+ }
+ }
+ return RF_TRUE;
+ }
+}
+/* only make it this far if all dags complete successfully */
+int
+rf_State_Cleanup(RF_RaidAccessDesc_t * desc)
+{
+ RF_AccTraceEntry_t *tracerec = &desc->tracerec;
+ RF_AccessStripeMapHeader_t *asmh = desc->asmap;
+ RF_Raid_t *raidPtr = desc->raidPtr;
+ RF_AccessStripeMap_t *asm_p;
+ RF_DagHeader_t *dag_h;
+ RF_Etimer_t timer;
+ int i;
+
+ desc->state++;
+
+ timer = tracerec->timer;
+ RF_ETIMER_STOP(timer);
+ RF_ETIMER_EVAL(timer);
+ tracerec->specific.user.dag_retry_us = RF_ETIMER_VAL_US(timer);
+
+ /* the RAID I/O is complete. Clean up. */
+ tracerec->specific.user.dag_retry_us = 0;
+
+ RF_ETIMER_START(timer);
+ if (desc->flags & RF_DAG_RETURN_DAG) {
+ /* copy dags into paramDAG */
+ *(desc->paramDAG) = desc->dagArray[0].dags;
+ dag_h = *(desc->paramDAG);
+ for (i = 1; i < desc->numStripes; i++) {
+ /* concatenate dags from remaining stripes */
+ RF_ASSERT(dag_h);
+ while (dag_h->next)
+ dag_h = dag_h->next;
+ dag_h->next = desc->dagArray[i].dags;
+ }
+ } else {
+ /* free all dags */
+ for (i = 0; i < desc->numStripes; i++) {
+ rf_FreeDAG(desc->dagArray[i].dags);
+ }
+ }
+
+ RF_ETIMER_STOP(timer);
+ RF_ETIMER_EVAL(timer);
+ tracerec->specific.user.cleanup_us = RF_ETIMER_VAL_US(timer);
+
+ RF_ETIMER_START(timer);
+ if (!(raidPtr->Layout.map->flags & RF_NO_STRIPE_LOCKS)) {
+ for (asm_p = asmh->stripeMap; asm_p; asm_p = asm_p->next) {
+ if (!rf_suppressLocksAndLargeWrites &&
+ asm_p->parityInfo &&
+ !(desc->flags & RF_DAG_SUPPRESS_LOCKS)) {
+ RF_ASSERT_VALID_LOCKREQ(&asm_p->lockReqDesc);
+ rf_ReleaseStripeLock(raidPtr->lockTable,
+ asm_p->stripeID,
+ &asm_p->lockReqDesc);
+ }
+ if (asm_p->flags & RF_ASM_FLAGS_RECON_BLOCKED) {
+ rf_UnblockRecon(raidPtr, asm_p);
+ }
+ }
+ }
+ RF_ETIMER_STOP(timer);
+ RF_ETIMER_EVAL(timer);
+ tracerec->specific.user.lock_us += RF_ETIMER_VAL_US(timer);
+
+ RF_ETIMER_START(timer);
+ if (desc->flags & RF_DAG_RETURN_ASM)
+ *(desc->paramASM) = asmh;
+ else
+ rf_FreeAccessStripeMap(asmh);
+ RF_ETIMER_STOP(timer);
+ RF_ETIMER_EVAL(timer);
+ tracerec->specific.user.cleanup_us += RF_ETIMER_VAL_US(timer);
+
+ RF_ETIMER_STOP(desc->timer);
+ RF_ETIMER_EVAL(desc->timer);
+
+ timer = desc->tracerec.tot_timer;
+ RF_ETIMER_STOP(timer);
+ RF_ETIMER_EVAL(timer);
+ desc->tracerec.total_us = RF_ETIMER_VAL_US(timer);
+
+ rf_LogTraceRec(raidPtr, tracerec);
+
+ desc->flags |= RF_DAG_ACCESS_COMPLETE;
+
+ return RF_FALSE;
+}
diff --git a/sys/dev/raidframe/rf_states.h b/sys/dev/raidframe/rf_states.h
new file mode 100644
index 0000000..6c0aee4
--- /dev/null
+++ b/sys/dev/raidframe/rf_states.h
@@ -0,0 +1,48 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_states.h,v 1.3 1999/02/05 00:06:17 oster Exp $ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Mark Holland, William V. Courtright II, Robby Findler
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+#ifndef _RF__RF_STATES_H_
+#define _RF__RF_STATES_H_
+
+#include <dev/raidframe/rf_types.h>
+
+void rf_ContinueRaidAccess(RF_RaidAccessDesc_t * desc);
+void rf_ContinueDagAccess(RF_DagList_t * dagList);
+int rf_State_LastState(RF_RaidAccessDesc_t * desc);
+int rf_State_IncrAccessCount(RF_RaidAccessDesc_t * desc);
+int rf_State_DecrAccessCount(RF_RaidAccessDesc_t * desc);
+int rf_State_Quiesce(RF_RaidAccessDesc_t * desc);
+int rf_State_Map(RF_RaidAccessDesc_t * desc);
+int rf_State_Lock(RF_RaidAccessDesc_t * desc);
+int rf_State_CreateDAG(RF_RaidAccessDesc_t * desc);
+int rf_State_ExecuteDAG(RF_RaidAccessDesc_t * desc);
+int rf_State_ProcessDAG(RF_RaidAccessDesc_t * desc);
+int rf_State_Cleanup(RF_RaidAccessDesc_t * desc);
+
+#endif /* !_RF__RF_STATES_H_ */
diff --git a/sys/dev/raidframe/rf_stripelocks.c b/sys/dev/raidframe/rf_stripelocks.c
new file mode 100644
index 0000000..bcee719
--- /dev/null
+++ b/sys/dev/raidframe/rf_stripelocks.c
@@ -0,0 +1,667 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_stripelocks.c,v 1.6 2000/12/04 11:35:46 fvdl Exp $ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Authors: Mark Holland, Jim Zelenka
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+/*
+ * stripelocks.c -- code to lock stripes for read and write access
+ *
+ * The code distinguishes between read locks and write locks. There can be
+ * as many readers to given stripe as desired. When a write request comes
+ * in, no further readers are allowed to enter, and all subsequent requests
+ * are queued in FIFO order. When a the number of readers goes to zero, the
+ * writer is given the lock. When a writer releases the lock, the list of
+ * queued requests is scanned, and all readersq up to the next writer are
+ * given the lock.
+ *
+ * The lock table size must be one less than a power of two, but HASH_STRIPEID
+ * is the only function that requires this.
+ *
+ * The code now supports "range locks". When you ask to lock a stripe, you
+ * specify a range of addresses in that stripe that you want to lock. When
+ * you acquire the lock, you've locked only this range of addresses, and
+ * other threads can concurrently read/write any non-overlapping portions
+ * of the stripe. The "addresses" that you lock are abstract in that you
+ * can pass in anything you like. The expectation is that you'll pass in
+ * the range of physical disk offsets of the parity bits you're planning
+ * to update. The idea behind this, of course, is to allow sub-stripe
+ * locking. The implementation is perhaps not the best imaginable; in the
+ * worst case a lock release is O(n^2) in the total number of outstanding
+ * requests to a given stripe. Note that if you're striping with a
+ * stripe unit size equal to an entire disk (i.e. not striping), there will
+ * be only one stripe and you may spend some significant number of cycles
+ * searching through stripe lock descriptors.
+ */
+
+#include <dev/raidframe/rf_types.h>
+#include <dev/raidframe/rf_raid.h>
+#include <dev/raidframe/rf_stripelocks.h>
+#include <dev/raidframe/rf_alloclist.h>
+#include <dev/raidframe/rf_general.h>
+#include <dev/raidframe/rf_freelist.h>
+#include <dev/raidframe/rf_debugprint.h>
+#include <dev/raidframe/rf_driver.h>
+#include <dev/raidframe/rf_shutdown.h>
+
+#define Dprintf1(s,a) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
+#define Dprintf2(s,a,b) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
+#define Dprintf3(s,a,b,c) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
+#define Dprintf4(s,a,b,c,d) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL)
+#define Dprintf5(s,a,b,c,d,e) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL)
+#define Dprintf6(s,a,b,c,d,e,f) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL)
+#define Dprintf7(s,a,b,c,d,e,f,g) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL)
+#define Dprintf8(s,a,b,c,d,e,f,g,h) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),(void *)((unsigned long)h))
+
+#define FLUSH
+
+#define HASH_STRIPEID(_sid_) ( (_sid_) & (rf_lockTableSize-1) )
+
+static void AddToWaitersQueue(RF_LockTableEntry_t * lockTable, RF_StripeLockDesc_t * lockDesc, RF_LockReqDesc_t * lockReqDesc);
+static RF_StripeLockDesc_t *AllocStripeLockDesc(RF_StripeNum_t stripeID);
+static void FreeStripeLockDesc(RF_StripeLockDesc_t * p);
+static void PrintLockedStripes(RF_LockTableEntry_t * lockTable);
+
+/* determines if two ranges overlap. always yields false if either start value is negative */
+#define SINGLE_RANGE_OVERLAP(_strt1, _stop1, _strt2, _stop2) \
+ ( (_strt1 >= 0) && (_strt2 >= 0) && (RF_MAX(_strt1, _strt2) <= RF_MIN(_stop1, _stop2)) )
+
+/* determines if any of the ranges specified in the two lock descriptors overlap each other */
+#define RANGE_OVERLAP(_cand, _pred) \
+ ( SINGLE_RANGE_OVERLAP((_cand)->start, (_cand)->stop, (_pred)->start, (_pred)->stop ) || \
+ SINGLE_RANGE_OVERLAP((_cand)->start2, (_cand)->stop2, (_pred)->start, (_pred)->stop ) || \
+ SINGLE_RANGE_OVERLAP((_cand)->start, (_cand)->stop, (_pred)->start2, (_pred)->stop2) || \
+ SINGLE_RANGE_OVERLAP((_cand)->start2, (_cand)->stop2, (_pred)->start2, (_pred)->stop2) )
+
+/* Determines if a candidate lock request conflicts with a predecessor lock req.
+ * Note that the arguments are not interchangeable.
+ * The rules are:
+ * a candidate read conflicts with a predecessor write if any ranges overlap
+ * a candidate write conflicts with a predecessor read if any ranges overlap
+ * a candidate write conflicts with a predecessor write if any ranges overlap
+ */
+#define STRIPELOCK_CONFLICT(_cand, _pred) \
+ RANGE_OVERLAP((_cand), (_pred)) && \
+ ( ( (((_cand)->type == RF_IO_TYPE_READ) && ((_pred)->type == RF_IO_TYPE_WRITE)) || \
+ (((_cand)->type == RF_IO_TYPE_WRITE) && ((_pred)->type == RF_IO_TYPE_READ)) || \
+ (((_cand)->type == RF_IO_TYPE_WRITE) && ((_pred)->type == RF_IO_TYPE_WRITE)) \
+ ) \
+ )
+
+static RF_FreeList_t *rf_stripelock_freelist;
+#define RF_MAX_FREE_STRIPELOCK 128
+#define RF_STRIPELOCK_INC 8
+#define RF_STRIPELOCK_INITIAL 32
+
+static void rf_ShutdownStripeLockFreeList(void *);
+static void rf_RaidShutdownStripeLocks(void *);
+
+static void
+rf_ShutdownStripeLockFreeList(ignored)
+ void *ignored;
+{
+ RF_FREELIST_DESTROY(rf_stripelock_freelist, next, (RF_StripeLockDesc_t *));
+}
+
+int
+rf_ConfigureStripeLockFreeList(listp)
+ RF_ShutdownList_t **listp;
+{
+ unsigned mask;
+ int rc;
+
+ RF_FREELIST_CREATE(rf_stripelock_freelist, RF_MAX_FREE_STRIPELOCK,
+ RF_STRIPELOCK_INITIAL, sizeof(RF_StripeLockDesc_t));
+ rc = rf_ShutdownCreate(listp, rf_ShutdownStripeLockFreeList, NULL);
+ if (rc) {
+ RF_ERRORMSG3("Unable to add to shutdown list file %s line %d rc=%d\n",
+ __FILE__, __LINE__, rc);
+ rf_ShutdownStripeLockFreeList(NULL);
+ return (rc);
+ }
+ RF_FREELIST_PRIME(rf_stripelock_freelist, RF_STRIPELOCK_INITIAL, next,
+ (RF_StripeLockDesc_t *));
+ for (mask = 0x1; mask; mask <<= 1)
+ if (rf_lockTableSize == mask)
+ break;
+ if (!mask) {
+ printf("[WARNING: lock table size must be a power of two. Setting to %d.]\n", RF_DEFAULT_LOCK_TABLE_SIZE);
+ rf_lockTableSize = RF_DEFAULT_LOCK_TABLE_SIZE;
+ }
+ return (0);
+}
+
+RF_LockTableEntry_t *
+rf_MakeLockTable()
+{
+ RF_LockTableEntry_t *lockTable;
+ int i, rc;
+
+ RF_Calloc(lockTable, ((int) rf_lockTableSize), sizeof(RF_LockTableEntry_t), (RF_LockTableEntry_t *));
+ if (lockTable == NULL)
+ return (NULL);
+ for (i = 0; i < rf_lockTableSize; i++) {
+ rc = rf_mutex_init(&lockTable[i].mutex, __FUNCTION__);
+ if (rc) {
+ RF_ERRORMSG3("Unable to init mutex file %s line %d rc=%d\n", __FILE__,
+ __LINE__, rc);
+ /* XXX clean up other mutexes */
+ return (NULL);
+ }
+ }
+ return (lockTable);
+}
+
+void
+rf_ShutdownStripeLocks(RF_LockTableEntry_t * lockTable)
+{
+ int i;
+
+ if (rf_stripeLockDebug) {
+ PrintLockedStripes(lockTable);
+ }
+ for (i = 0; i < rf_lockTableSize; i++) {
+ rf_mutex_destroy(&lockTable[i].mutex);
+ }
+ RF_Free(lockTable, rf_lockTableSize * sizeof(RF_LockTableEntry_t));
+}
+
+static void
+rf_RaidShutdownStripeLocks(arg)
+ void *arg;
+{
+ RF_Raid_t *raidPtr = (RF_Raid_t *) arg;
+ rf_ShutdownStripeLocks(raidPtr->lockTable);
+}
+
+int
+rf_ConfigureStripeLocks(
+ RF_ShutdownList_t ** listp,
+ RF_Raid_t * raidPtr,
+ RF_Config_t * cfgPtr)
+{
+ int rc;
+
+ raidPtr->lockTable = rf_MakeLockTable();
+ if (raidPtr->lockTable == NULL)
+ return (ENOMEM);
+ rc = rf_ShutdownCreate(listp, rf_RaidShutdownStripeLocks, raidPtr);
+ if (rc) {
+ RF_ERRORMSG3("Unable to add to shutdown list file %s line %d rc=%d\n",
+ __FILE__, __LINE__, rc);
+ rf_ShutdownStripeLocks(raidPtr->lockTable);
+ return (rc);
+ }
+ return (0);
+}
+/* returns 0 if you've got the lock, and non-zero if you have to wait.
+ * if and only if you have to wait, we'll cause cbFunc to get invoked
+ * with cbArg when you are granted the lock. We store a tag in *releaseTag
+ * that you need to give back to us when you release the lock.
+ */
+int
+rf_AcquireStripeLock(
+ RF_LockTableEntry_t * lockTable,
+ RF_StripeNum_t stripeID,
+ RF_LockReqDesc_t * lockReqDesc)
+{
+ RF_StripeLockDesc_t *lockDesc;
+ RF_LockReqDesc_t *p;
+ int tid = 0, hashval = HASH_STRIPEID(stripeID);
+ int retcode = 0;
+
+ RF_ASSERT(RF_IO_IS_R_OR_W(lockReqDesc->type));
+
+ if (rf_stripeLockDebug) {
+ if (stripeID == -1)
+ Dprintf1("[%d] Lock acquisition supressed (stripeID == -1)\n", tid);
+ else {
+ Dprintf8("[%d] Trying to acquire stripe lock table 0x%lx SID %ld type %c range %ld-%ld, range2 %ld-%ld hashval %d\n",
+ tid, (unsigned long) lockTable, stripeID, lockReqDesc->type, lockReqDesc->start,
+ lockReqDesc->stop, lockReqDesc->start2, lockReqDesc->stop2);
+ Dprintf3("[%d] lock %ld hashval %d\n", tid, stripeID, hashval);
+ FLUSH;
+ }
+ }
+ if (stripeID == -1)
+ return (0);
+ lockReqDesc->next = NULL; /* just to be sure */
+
+ RF_LOCK_MUTEX(lockTable[hashval].mutex);
+ for (lockDesc = lockTable[hashval].descList; lockDesc; lockDesc = lockDesc->next) {
+ if (lockDesc->stripeID == stripeID)
+ break;
+ }
+
+ if (!lockDesc) { /* no entry in table => no one reading or
+ * writing */
+ lockDesc = AllocStripeLockDesc(stripeID);
+ lockDesc->next = lockTable[hashval].descList;
+ lockTable[hashval].descList = lockDesc;
+ if (lockReqDesc->type == RF_IO_TYPE_WRITE)
+ lockDesc->nWriters++;
+ lockDesc->granted = lockReqDesc;
+ if (rf_stripeLockDebug) {
+ Dprintf7("[%d] no one waiting: lock %ld %c %ld-%ld %ld-%ld granted\n",
+ tid, stripeID, lockReqDesc->type, lockReqDesc->start, lockReqDesc->stop, lockReqDesc->start2, lockReqDesc->stop2);
+ FLUSH;
+ }
+ } else {
+
+ if (lockReqDesc->type == RF_IO_TYPE_WRITE)
+ lockDesc->nWriters++;
+
+ if (lockDesc->nWriters == 0) { /* no need to search any lists
+ * if there are no writers
+ * anywhere */
+ lockReqDesc->next = lockDesc->granted;
+ lockDesc->granted = lockReqDesc;
+ if (rf_stripeLockDebug) {
+ Dprintf7("[%d] no writers: lock %ld %c %ld-%ld %ld-%ld granted\n",
+ tid, stripeID, lockReqDesc->type, lockReqDesc->start, lockReqDesc->stop, lockReqDesc->start2, lockReqDesc->stop2);
+ FLUSH;
+ }
+ } else {
+
+ /* search the granted & waiting lists for a conflict.
+ * stop searching as soon as we find one */
+ retcode = 0;
+ for (p = lockDesc->granted; p; p = p->next)
+ if (STRIPELOCK_CONFLICT(lockReqDesc, p)) {
+ retcode = 1;
+ break;
+ }
+ if (!retcode)
+ for (p = lockDesc->waitersH; p; p = p->next)
+ if (STRIPELOCK_CONFLICT(lockReqDesc, p)) {
+ retcode = 2;
+ break;
+ }
+ if (!retcode) {
+ lockReqDesc->next = lockDesc->granted; /* no conflicts found =>
+ * grant lock */
+ lockDesc->granted = lockReqDesc;
+ if (rf_stripeLockDebug) {
+ Dprintf7("[%d] no conflicts: lock %ld %c %ld-%ld %ld-%ld granted\n",
+ tid, stripeID, lockReqDesc->type, lockReqDesc->start, lockReqDesc->stop,
+ lockReqDesc->start2, lockReqDesc->stop2);
+ FLUSH;
+ }
+ } else {
+ if (rf_stripeLockDebug) {
+ Dprintf6("[%d] conflict: lock %ld %c %ld-%ld hashval=%d not granted\n",
+ tid, stripeID, lockReqDesc->type, lockReqDesc->start, lockReqDesc->stop,
+ hashval);
+ Dprintf3("[%d] lock %ld retcode=%d\n", tid, stripeID, retcode);
+ FLUSH;
+ }
+ AddToWaitersQueue(lockTable, lockDesc, lockReqDesc); /* conflict => the
+ * current access must
+ * wait */
+ }
+ }
+ }
+
+ RF_UNLOCK_MUTEX(lockTable[hashval].mutex);
+ return (retcode);
+}
+
+void
+rf_ReleaseStripeLock(
+ RF_LockTableEntry_t * lockTable,
+ RF_StripeNum_t stripeID,
+ RF_LockReqDesc_t * lockReqDesc)
+{
+ RF_StripeLockDesc_t *lockDesc, *ld_t;
+ RF_LockReqDesc_t *lr, *lr_t, *callbacklist, *t;
+ RF_IoType_t type = lockReqDesc->type;
+ int tid = 0, hashval = HASH_STRIPEID(stripeID);
+ int release_it, consider_it;
+ RF_LockReqDesc_t *candidate, *candidate_t, *predecessor;
+
+ RF_ASSERT(RF_IO_IS_R_OR_W(type));
+
+ if (rf_stripeLockDebug) {
+ if (stripeID == -1)
+ Dprintf1("[%d] Lock release supressed (stripeID == -1)\n", tid);
+ else {
+ Dprintf8("[%d] Releasing stripe lock on stripe ID %ld, type %c range %ld-%ld %ld-%ld table 0x%lx\n",
+ tid, stripeID, lockReqDesc->type, lockReqDesc->start, lockReqDesc->stop, lockReqDesc->start2, lockReqDesc->stop2, lockTable);
+ FLUSH;
+ }
+ }
+ if (stripeID == -1)
+ return;
+
+ RF_LOCK_MUTEX(lockTable[hashval].mutex);
+
+ /* find the stripe lock descriptor */
+ for (ld_t = NULL, lockDesc = lockTable[hashval].descList; lockDesc; ld_t = lockDesc, lockDesc = lockDesc->next) {
+ if (lockDesc->stripeID == stripeID)
+ break;
+ }
+ RF_ASSERT(lockDesc); /* major error to release a lock that doesn't
+ * exist */
+
+ /* find the stripe lock request descriptor & delete it from the list */
+ for (lr_t = NULL, lr = lockDesc->granted; lr; lr_t = lr, lr = lr->next)
+ if (lr == lockReqDesc)
+ break;
+
+ RF_ASSERT(lr && (lr == lockReqDesc)); /* major error to release a
+ * lock that hasn't been
+ * granted */
+ if (lr_t)
+ lr_t->next = lr->next;
+ else {
+ RF_ASSERT(lr == lockDesc->granted);
+ lockDesc->granted = lr->next;
+ }
+ lr->next = NULL;
+
+ if (lockReqDesc->type == RF_IO_TYPE_WRITE)
+ lockDesc->nWriters--;
+
+ /* search through the waiters list to see if anyone needs to be woken
+ * up. for each such descriptor in the wait list, we check it against
+ * everything granted and against everything _in front_ of it in the
+ * waiters queue. If it conflicts with none of these, we release it.
+ *
+ * DON'T TOUCH THE TEMPLINK POINTER OF ANYTHING IN THE GRANTED LIST HERE.
+ * This will roach the case where the callback tries to acquire a new
+ * lock in the same stripe. There are some asserts to try and detect
+ * this.
+ *
+ * We apply 2 performance optimizations: (1) if releasing this lock
+ * results in no more writers to this stripe, we just release
+ * everybody waiting, since we place no restrictions on the number of
+ * concurrent reads. (2) we consider as candidates for wakeup only
+ * those waiters that have a range overlap with either the descriptor
+ * being woken up or with something in the callbacklist (i.e.
+ * something we've just now woken up). This allows us to avoid the
+ * long evaluation for some descriptors. */
+
+ callbacklist = NULL;
+ if (lockDesc->nWriters == 0) { /* performance tweak (1) */
+ while (lockDesc->waitersH) {
+
+ lr = lockDesc->waitersH; /* delete from waiters
+ * list */
+ lockDesc->waitersH = lr->next;
+
+ RF_ASSERT(lr->type == RF_IO_TYPE_READ);
+
+ lr->next = lockDesc->granted; /* add to granted list */
+ lockDesc->granted = lr;
+
+ RF_ASSERT(!lr->templink);
+ lr->templink = callbacklist; /* put on callback list
+ * so that we'll invoke
+ * callback below */
+ callbacklist = lr;
+ if (rf_stripeLockDebug) {
+ Dprintf8("[%d] No writers: granting lock stripe ID %ld, type %c range %ld-%ld %ld-%ld table 0x%lx\n",
+ tid, stripeID, lr->type, lr->start, lr->stop, lr->start2, lr->stop2, (unsigned long) lockTable);
+ FLUSH;
+ }
+ }
+ lockDesc->waitersT = NULL; /* we've purged the whole
+ * waiters list */
+
+ } else
+ for (candidate_t = NULL, candidate = lockDesc->waitersH; candidate;) {
+
+ /* performance tweak (2) */
+ consider_it = 0;
+ if (RANGE_OVERLAP(lockReqDesc, candidate))
+ consider_it = 1;
+ else
+ for (t = callbacklist; t; t = t->templink)
+ if (RANGE_OVERLAP(t, candidate)) {
+ consider_it = 1;
+ break;
+ }
+ if (!consider_it) {
+ if (rf_stripeLockDebug) {
+ Dprintf8("[%d] No overlap: rejecting candidate stripeID %ld, type %c range %ld-%ld %ld-%ld table 0x%lx\n",
+ tid, stripeID, candidate->type, candidate->start, candidate->stop, candidate->start2, candidate->stop2,
+ (unsigned long) lockTable);
+ FLUSH;
+ }
+ candidate_t = candidate;
+ candidate = candidate->next;
+ continue;
+ }
+ /* we have a candidate for release. check to make
+ * sure it is not blocked by any granted locks */
+ release_it = 1;
+ for (predecessor = lockDesc->granted; predecessor; predecessor = predecessor->next) {
+ if (STRIPELOCK_CONFLICT(candidate, predecessor)) {
+ if (rf_stripeLockDebug) {
+ Dprintf8("[%d] Conflicts with granted lock: rejecting candidate stripeID %ld, type %c range %ld-%ld %ld-%ld table 0x%lx\n",
+ tid, stripeID, candidate->type, candidate->start, candidate->stop, candidate->start2, candidate->stop2,
+ (unsigned long) lockTable);
+ FLUSH;
+ }
+ release_it = 0;
+ break;
+ }
+ }
+
+ /* now check to see if the candidate is blocked by any
+ * waiters that occur before it it the wait queue */
+ if (release_it)
+ for (predecessor = lockDesc->waitersH; predecessor != candidate; predecessor = predecessor->next) {
+ if (STRIPELOCK_CONFLICT(candidate, predecessor)) {
+ if (rf_stripeLockDebug) {
+ Dprintf8("[%d] Conflicts with waiting lock: rejecting candidate stripeID %ld, type %c range %ld-%ld %ld-%ld table 0x%lx\n",
+ tid, stripeID, candidate->type, candidate->start, candidate->stop, candidate->start2, candidate->stop2,
+ (unsigned long) lockTable);
+ FLUSH;
+ }
+ release_it = 0;
+ break;
+ }
+ }
+
+ /* release it if indicated */
+ if (release_it) {
+ if (rf_stripeLockDebug) {
+ Dprintf8("[%d] Granting lock to candidate stripeID %ld, type %c range %ld-%ld %ld-%ld table 0x%lx\n",
+ tid, stripeID, candidate->type, candidate->start, candidate->stop, candidate->start2, candidate->stop2,
+ (unsigned long) lockTable);
+ FLUSH;
+ }
+ if (candidate_t) {
+ candidate_t->next = candidate->next;
+ if (lockDesc->waitersT == candidate)
+ lockDesc->waitersT = candidate_t; /* cannot be waitersH
+ * since candidate_t is
+ * not NULL */
+ } else {
+ RF_ASSERT(candidate == lockDesc->waitersH);
+ lockDesc->waitersH = lockDesc->waitersH->next;
+ if (!lockDesc->waitersH)
+ lockDesc->waitersT = NULL;
+ }
+ candidate->next = lockDesc->granted; /* move it to the
+ * granted list */
+ lockDesc->granted = candidate;
+
+ RF_ASSERT(!candidate->templink);
+ candidate->templink = callbacklist; /* put it on the list of
+ * things to be called
+ * after we release the
+ * mutex */
+ callbacklist = candidate;
+
+ if (!candidate_t)
+ candidate = lockDesc->waitersH;
+ else
+ candidate = candidate_t->next; /* continue with the
+ * rest of the list */
+ } else {
+ candidate_t = candidate;
+ candidate = candidate->next; /* continue with the
+ * rest of the list */
+ }
+ }
+
+ /* delete the descriptor if no one is waiting or active */
+ if (!lockDesc->granted && !lockDesc->waitersH) {
+ RF_ASSERT(lockDesc->nWriters == 0);
+ if (rf_stripeLockDebug) {
+ Dprintf3("[%d] Last lock released (table 0x%lx): deleting desc for stripeID %ld\n", tid, (unsigned long) lockTable, stripeID);
+ FLUSH;
+ }
+ if (ld_t)
+ ld_t->next = lockDesc->next;
+ else {
+ RF_ASSERT(lockDesc == lockTable[hashval].descList);
+ lockTable[hashval].descList = lockDesc->next;
+ }
+ FreeStripeLockDesc(lockDesc);
+ lockDesc = NULL;/* only for the ASSERT below */
+ }
+ RF_UNLOCK_MUTEX(lockTable[hashval].mutex);
+
+ /* now that we've unlocked the mutex, invoke the callback on all the
+ * descriptors in the list */
+ RF_ASSERT(!((callbacklist) && (!lockDesc))); /* if we deleted the
+ * descriptor, we should
+ * have no callbacks to
+ * do */
+ for (candidate = callbacklist; candidate;) {
+ t = candidate;
+ candidate = candidate->templink;
+ t->templink = NULL;
+ (t->cbFunc) (t->cbArg);
+ }
+}
+/* must have the indicated lock table mutex upon entry */
+static void
+AddToWaitersQueue(
+ RF_LockTableEntry_t * lockTable,
+ RF_StripeLockDesc_t * lockDesc,
+ RF_LockReqDesc_t * lockReqDesc)
+{
+#if 0 /* XXX fvdl -- unitialized use of 'tid' */
+ int tid;
+
+ if (rf_stripeLockDebug) {
+ Dprintf3("[%d] Waiting on lock for stripe %ld table 0x%lx\n", tid, lockDesc->stripeID, (unsigned long) lockTable);
+ FLUSH;
+ }
+#endif
+ if (!lockDesc->waitersH) {
+ lockDesc->waitersH = lockDesc->waitersT = lockReqDesc;
+ } else {
+ lockDesc->waitersT->next = lockReqDesc;
+ lockDesc->waitersT = lockReqDesc;
+ }
+}
+
+static RF_StripeLockDesc_t *
+AllocStripeLockDesc(RF_StripeNum_t stripeID)
+{
+ RF_StripeLockDesc_t *p;
+
+ RF_FREELIST_GET(rf_stripelock_freelist, p, next, (RF_StripeLockDesc_t *));
+ if (p) {
+ p->stripeID = stripeID;
+ }
+ return (p);
+}
+
+static void
+FreeStripeLockDesc(RF_StripeLockDesc_t * p)
+{
+ RF_FREELIST_FREE(rf_stripelock_freelist, p, next);
+}
+
+static void
+PrintLockedStripes(lockTable)
+ RF_LockTableEntry_t *lockTable;
+{
+ int i, j, foundone = 0, did;
+ RF_StripeLockDesc_t *p;
+ RF_LockReqDesc_t *q;
+
+ RF_LOCK_MUTEX(rf_printf_mutex);
+ printf("Locked stripes:\n");
+ for (i = 0; i < rf_lockTableSize; i++)
+ if (lockTable[i].descList) {
+ foundone = 1;
+ for (p = lockTable[i].descList; p; p = p->next) {
+ printf("Stripe ID 0x%lx (%d) nWriters %d\n",
+ (long) p->stripeID, (int) p->stripeID, p->nWriters);
+
+ if (!(p->granted))
+ printf("Granted: (none)\n");
+ else
+ printf("Granted:\n");
+ for (did = 1, j = 0, q = p->granted; q; j++, q = q->next) {
+ printf(" %c(%ld-%ld", q->type, (long) q->start, (long) q->stop);
+ if (q->start2 != -1)
+ printf(",%ld-%ld) ", (long) q->start2,
+ (long) q->stop2);
+ else
+ printf(") ");
+ if (j && !(j % 4)) {
+ printf("\n");
+ did = 1;
+ } else
+ did = 0;
+ }
+ if (!did)
+ printf("\n");
+
+ if (!(p->waitersH))
+ printf("Waiting: (none)\n");
+ else
+ printf("Waiting:\n");
+ for (did = 1, j = 0, q = p->waitersH; q; j++, q = q->next) {
+ printf("%c(%ld-%ld", q->type, (long) q->start, (long) q->stop);
+ if (q->start2 != -1)
+ printf(",%ld-%ld) ", (long) q->start2, (long) q->stop2);
+ else
+ printf(") ");
+ if (j && !(j % 4)) {
+ printf("\n ");
+ did = 1;
+ } else
+ did = 0;
+ }
+ if (!did)
+ printf("\n");
+ }
+ }
+ if (!foundone)
+ printf("(none)\n");
+ else
+ printf("\n");
+ RF_UNLOCK_MUTEX(rf_printf_mutex);
+}
diff --git a/sys/dev/raidframe/rf_stripelocks.h b/sys/dev/raidframe/rf_stripelocks.h
new file mode 100644
index 0000000..ab960c1
--- /dev/null
+++ b/sys/dev/raidframe/rf_stripelocks.h
@@ -0,0 +1,130 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_stripelocks.h,v 1.3 1999/02/05 00:06:18 oster Exp $ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Mark Holland
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+/*****************************************************************************
+ *
+ * stripelocks.h -- header file for locking stripes
+ *
+ * Note that these functions are called from the execution routines of certain
+ * DAG Nodes, and so they must be NON-BLOCKING to assure maximum parallelism
+ * in the DAG. Accordingly, when a node wants to acquire a lock, it calls
+ * AcquireStripeLock, supplying a pointer to a callback function. If the lock
+ * is free at the time of the call, 0 is returned, indicating that the lock
+ * has been acquired. If the lock is not free, 1 is returned, and a copy of
+ * the function pointer and argument are held in the lock table. When the
+ * lock becomes free, the callback function is invoked.
+ *
+ *****************************************************************************/
+
+#ifndef _RF__RF_STRIPELOCKS_H_
+#define _RF__RF_STRIPELOCKS_H_
+
+#if defined(__FreeBSD__)
+#include <sys/types.h>
+#if __FreeBSD_version > 500005
+#include <sys/bio.h>
+#endif
+#if _KERNEL
+#include <sys/systm.h>
+#endif
+#endif
+#include <sys/buf.h>
+
+#include <dev/raidframe/rf_types.h>
+#include <dev/raidframe/rf_threadstuff.h>
+#include <dev/raidframe/rf_general.h>
+
+struct RF_LockReqDesc_s {
+ RF_IoType_t type; /* read or write */
+ RF_int64 start, stop; /* start and end of range to be locked */
+ RF_int64 start2, stop2; /* start and end of 2nd range to be locked */
+ void (*cbFunc) (RF_Buf_t); /* callback function */
+ void *cbArg; /* argument to callback function */
+ RF_LockReqDesc_t *next; /* next element in chain */
+ RF_LockReqDesc_t *templink; /* for making short-lived lists of
+ * request descriptors */
+};
+#define RF_ASSERT_VALID_LOCKREQ(_lr_) { \
+ RF_ASSERT(RF_IO_IS_R_OR_W((_lr_)->type)); \
+}
+
+struct RF_StripeLockDesc_s {
+ RF_StripeNum_t stripeID;/* the stripe ID */
+ RF_LockReqDesc_t *granted; /* unordered list of granted requests */
+ RF_LockReqDesc_t *waitersH; /* FIFO queue of all waiting reqs,
+ * both read and write (Head and Tail) */
+ RF_LockReqDesc_t *waitersT;
+ int nWriters; /* number of writers either granted or waiting */
+ RF_StripeLockDesc_t *next; /* for hash table collision resolution */
+};
+
+struct RF_LockTableEntry_s {
+ RF_DECLARE_MUTEX(mutex) /* mutex on this hash chain */
+ RF_StripeLockDesc_t *descList; /* hash chain of lock descriptors */
+};
+/*
+ * Initializes a stripe lock descriptor. _defSize is the number of sectors
+ * that we lock when there is no parity information in the ASM (e.g. RAID0).
+ */
+
+#define RF_INIT_LOCK_REQ_DESC(_lrd, _typ, _cbf, _cba, _asm, _defSize) \
+ { \
+ (_lrd).type = _typ; \
+ (_lrd).start2 = -1; \
+ (_lrd).stop2 = -1; \
+ if ((_asm)->parityInfo) { \
+ (_lrd).start = (_asm)->parityInfo->startSector; \
+ (_lrd).stop = (_asm)->parityInfo->startSector + (_asm)->parityInfo->numSector-1; \
+ if ((_asm)->parityInfo->next) { \
+ (_lrd).start2 = (_asm)->parityInfo->next->startSector; \
+ (_lrd).stop2 = (_asm)->parityInfo->next->startSector + (_asm)->parityInfo->next->numSector-1; \
+ } \
+ } else { \
+ (_lrd).start = 0; \
+ (_lrd).stop = (_defSize); \
+ } \
+ (_lrd).templink= NULL; \
+ (_lrd).cbFunc = (_cbf); \
+ (_lrd).cbArg = (void *) (_cba); \
+ }
+
+int rf_ConfigureStripeLockFreeList(RF_ShutdownList_t ** listp);
+RF_LockTableEntry_t *rf_MakeLockTable(void);
+void rf_ShutdownStripeLocks(RF_LockTableEntry_t * lockTable);
+int
+rf_ConfigureStripeLocks(RF_ShutdownList_t ** listp, RF_Raid_t * raidPtr,
+ RF_Config_t * cfgPtr);
+int
+rf_AcquireStripeLock(RF_LockTableEntry_t * lockTable,
+ RF_StripeNum_t stripeID, RF_LockReqDesc_t * lockReqDesc);
+void
+rf_ReleaseStripeLock(RF_LockTableEntry_t * lockTable,
+ RF_StripeNum_t stripeID, RF_LockReqDesc_t * lockReqDesc);
+
+#endif /* !_RF__RF_STRIPELOCKS_H_ */
diff --git a/sys/dev/raidframe/rf_strutils.c b/sys/dev/raidframe/rf_strutils.c
new file mode 100644
index 0000000..bb8a776
--- /dev/null
+++ b/sys/dev/raidframe/rf_strutils.c
@@ -0,0 +1,56 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_strutils.c,v 1.3 1999/02/05 00:06:18 oster Exp $ */
+/*
+ * rf_strutils.c
+ *
+ * String-parsing funcs
+ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Mark Holland
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+/*
+ * rf_strutils.c -- some simple utilities for munging on strings.
+ * I put them in a file by themselves because they're needed in
+ * setconfig, in the user-level driver, and in the kernel.
+ *
+ */
+
+#include <dev/raidframe/rf_utils.h>
+
+/* finds a non-white character in the line */
+char *
+rf_find_non_white(char *p)
+{
+ for (; *p != '\0' && (*p == ' ' || *p == '\t'); p++);
+ return (p);
+}
+/* finds a white character in the line */
+char *
+rf_find_white(char *p)
+{
+ for (; *p != '\0' && (*p != ' ' && *p != '\t'); p++);
+ return (p);
+}
diff --git a/sys/dev/raidframe/rf_threadstuff.c b/sys/dev/raidframe/rf_threadstuff.c
new file mode 100644
index 0000000..d1ecf16
--- /dev/null
+++ b/sys/dev/raidframe/rf_threadstuff.c
@@ -0,0 +1,221 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_threadstuff.c,v 1.5 1999/12/07 02:13:28 oster Exp $ */
+/*
+ * rf_threadstuff.c
+ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Jim Zelenka
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+#include <dev/raidframe/rf_types.h>
+#include <dev/raidframe/rf_threadstuff.h>
+#include <dev/raidframe/rf_general.h>
+#include <dev/raidframe/rf_shutdown.h>
+
+static void mutex_destroyer(void *);
+static void cond_destroyer(void *);
+
+/*
+ * Shared stuff
+ */
+
+static void
+mutex_destroyer(arg)
+ void *arg;
+{
+ int rc;
+
+ rc = rf_mutex_destroy(arg);
+ if (rc) {
+ RF_ERRORMSG1("RAIDFRAME: Error %d auto-destroying mutex\n", rc);
+ }
+}
+
+static void
+cond_destroyer(arg)
+ void *arg;
+{
+ int rc;
+
+ rc = rf_cond_destroy(arg);
+ if (rc) {
+ RF_ERRORMSG1("RAIDFRAME: Error %d auto-destroying condition\n", rc);
+ }
+}
+
+int
+_rf_create_managed_mutex(listp, m, file, line)
+ RF_ShutdownList_t **listp;
+RF_DECLARE_MUTEX(*m)
+ char *file;
+ int line;
+{
+ int rc, rc1;
+
+ rc = rf_mutex_init(m, __FUNCTION__);
+ if (rc)
+ return (rc);
+ rc = _rf_ShutdownCreate(listp, mutex_destroyer, (void *) m, file, line);
+ if (rc) {
+ RF_ERRORMSG1("RAIDFRAME: Error %d adding shutdown entry\n", rc);
+ rc1 = rf_mutex_destroy(m);
+ if (rc1) {
+ RF_ERRORMSG1("RAIDFRAME: Error %d destroying mutex\n", rc1);
+ }
+ }
+ return (rc);
+}
+
+int
+_rf_create_managed_cond(listp, c, file, line)
+ RF_ShutdownList_t **listp;
+RF_DECLARE_COND(*c)
+ char *file;
+ int line;
+{
+ int rc, rc1;
+
+ rc = rf_cond_init(c);
+ if (rc)
+ return (rc);
+ rc = _rf_ShutdownCreate(listp, cond_destroyer, (void *) c, file, line);
+ if (rc) {
+ RF_ERRORMSG1("RAIDFRAME: Error %d adding shutdown entry\n", rc);
+ rc1 = rf_cond_destroy(c);
+ if (rc1) {
+ RF_ERRORMSG1("RAIDFRAME: Error %d destroying cond\n", rc1);
+ }
+ }
+ return (rc);
+}
+
+int
+_rf_init_managed_threadgroup(listp, g, file, line)
+ RF_ShutdownList_t **listp;
+ RF_ThreadGroup_t *g;
+ char *file;
+ int line;
+{
+ int rc;
+
+ rc = _rf_create_managed_mutex(listp, &g->mutex, file, line);
+ if (rc)
+ return (rc);
+ rc = _rf_create_managed_cond(listp, &g->cond, file, line);
+ if (rc)
+ return (rc);
+ g->created = g->running = g->shutdown = 0;
+ return (0);
+}
+
+int
+_rf_destroy_threadgroup(g, file, line)
+ RF_ThreadGroup_t *g;
+ char *file;
+ int line;
+{
+ int rc1, rc2;
+
+ rc1 = rf_mutex_destroy(&g->mutex);
+ rc2 = rf_cond_destroy(&g->cond);
+ if (rc1)
+ return (rc1);
+ return (rc2);
+}
+
+int
+_rf_init_threadgroup(g, file, line)
+ RF_ThreadGroup_t *g;
+ char *file;
+ int line;
+{
+ int rc;
+
+ rc = rf_mutex_init(&g->mutex, __FUNCTION__);
+ if (rc)
+ return (rc);
+ rc = rf_cond_init(&g->cond);
+ if (rc) {
+ rf_mutex_destroy(&g->mutex);
+ return (rc);
+ }
+ g->created = g->running = g->shutdown = 0;
+ return (0);
+}
+
+
+/*
+ * Kernel
+ */
+#if defined(__FreeBSD__) && __FreeBSD_version > 500005
+int
+rf_mutex_init(m, s)
+decl_simple_lock_data(, *m)
+const char *s;
+{
+ mtx_init(m, s, NULL, MTX_DEF);
+ return (0);
+}
+
+int
+rf_mutex_destroy(m)
+decl_simple_lock_data(, *m)
+{
+ mtx_destroy(m);
+ return (0);
+}
+#else
+int
+rf_mutex_init(m, s)
+decl_simple_lock_data(, *m)
+const char *s;
+{
+ simple_lock_init(m);
+ return (0);
+}
+
+int
+rf_mutex_destroy(m)
+decl_simple_lock_data(, *m)
+{
+ return (0);
+}
+#endif
+
+int
+rf_cond_init(c)
+RF_DECLARE_COND(*c)
+{
+ *c = 0; /* no reason */
+ return (0);
+}
+
+int
+rf_cond_destroy(c)
+RF_DECLARE_COND(*c)
+{
+ return (0);
+}
diff --git a/sys/dev/raidframe/rf_threadstuff.h b/sys/dev/raidframe/rf_threadstuff.h
new file mode 100644
index 0000000..f7e81ff
--- /dev/null
+++ b/sys/dev/raidframe/rf_threadstuff.h
@@ -0,0 +1,229 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_threadstuff.h,v 1.10 2001/01/27 20:42:21 oster Exp $ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Mark Holland, Daniel Stodolsky, Jim Zelenka
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+/*
+ * threadstuff.h -- definitions for threads, locks, and synchronization
+ *
+ * The purpose of this file is provide some illusion of portability.
+ * If the functions below can be implemented with the same semantics on
+ * some new system, then at least the synchronization and thread control
+ * part of the code should not require modification to port to a new machine.
+ * the only other place where the pthread package is explicitly used is
+ * threadid.h
+ *
+ * this file should be included above stdio.h to get some necessary defines.
+ *
+ */
+
+#ifndef _RF__RF_THREADSTUFF_H_
+#define _RF__RF_THREADSTUFF_H_
+
+#include <dev/raidframe/rf_types.h>
+#include <sys/types.h>
+#include <sys/param.h>
+#ifdef _KERNEL
+#include <sys/systm.h>
+#include <sys/proc.h>
+#include <sys/kthread.h>
+#endif
+
+#define rf_create_managed_mutex(a,b) _rf_create_managed_mutex(a,b,__FILE__,__LINE__)
+#define rf_create_managed_cond(a,b) _rf_create_managed_cond(a,b,__FILE__,__LINE__)
+#define rf_init_managed_threadgroup(a,b) _rf_init_managed_threadgroup(a,b,__FILE__,__LINE__)
+#define rf_init_threadgroup(a) _rf_init_threadgroup(a,__FILE__,__LINE__)
+#define rf_destroy_threadgroup(a) _rf_destroy_threadgroup(a,__FILE__,__LINE__)
+
+int _rf_init_threadgroup(RF_ThreadGroup_t * g, char *file, int line);
+int _rf_destroy_threadgroup(RF_ThreadGroup_t * g, char *file, int line);
+int
+_rf_init_managed_threadgroup(RF_ShutdownList_t ** listp,
+ RF_ThreadGroup_t * g, char *file, int line);
+
+#include <sys/lock.h>
+#if defined(__FreeBSD__ ) && __FreeBSD_version > 500005
+#include <sys/mutex.h>
+#define decl_simple_lock_data(a,b) a struct mtx b;
+#define simple_lock_addr(a) ((struct mtx *)&(a))
+
+typedef struct thread *RF_Thread_t;
+typedef void *RF_ThreadArg_t;
+
+#ifdef _KERNEL
+static __inline struct ucred *
+rf_getucred(RF_Thread_t td)
+{
+ return (((struct thread *)td)->td_proc->p_ucred);
+}
+#endif
+
+#define RF_LOCK_MUTEX(_m_) mtx_lock(&(_m_))
+#define RF_UNLOCK_MUTEX(_m_) mtx_unlock(&(_m_))
+#else
+#define decl_simple_lock_data(a,b) a struct simplelock b;
+#define simple_lock_addr(a) ((struct simplelock *)&(a))
+
+typedef struct proc *RF_Thread_t;
+typedef void *RF_ThreadArg_t;
+
+static __inline struct ucred *
+rf_getucred(RF_Thread_t td)
+{
+ return (((struct proc *)td)->p_ucred);
+}
+
+#define RF_LOCK_MUTEX(_m_) simple_lock(&(_m_))
+#define RF_UNLOCK_MUTEX(_m_) simple_unlock(&(_m_))
+#endif
+
+#define RF_DECLARE_MUTEX(_m_) decl_simple_lock_data(,(_m_))
+#define RF_DECLARE_STATIC_MUTEX(_m_) decl_simple_lock_data(static,(_m_))
+#define RF_DECLARE_EXTERN_MUTEX(_m_) decl_simple_lock_data(extern,(_m_))
+
+#define RF_DECLARE_COND(_c_) int _c_;
+#define RF_DECLARE_STATIC_COND(_c_) static int _c_;
+#define RF_DECLARE_EXTERN_COND(_c_) extern int _c_;
+
+/*
+ * In NetBSD, kernel threads are simply processes which share several
+ * substructures and never run in userspace.
+ */
+#define RF_WAIT_COND(_c_,_m_) \
+ RF_LTSLEEP(&(_c_), PRIBIO, "rfwcond", 0, &(_m_))
+#define RF_SIGNAL_COND(_c_) wakeup_one(&(_c_))
+#define RF_BROADCAST_COND(_c_) wakeup(&(_c_))
+#if defined(__NetBSD__)
+#define RF_CREATE_THREAD(_handle_, _func_, _arg_, _name_) \
+ kthread_create1((void (*)(void *))(_func_), (void *)(_arg_), \
+ (struct proc **)&(_handle_), _name_)
+#define RF_THREAD_EXIT(ret) \
+ kthread_exit(ret)
+#elif defined(__FreeBSD__)
+#if __FreeBSD_version > 500005
+#define RF_CREATE_THREAD(_handle_, _func_, _arg_, _name_) \
+ kthread_create((void (*)(void *))(_func_), (void *)(_arg_), \
+ (struct proc **)&(_handle_), 0, 4, _name_)
+#define RF_THREAD_EXIT(ret) \
+ kthread_exit(ret)
+#else
+#define RF_CREATE_THREAD(_handle_, _func_, _arg_, _name_) \
+ kthread_create((void (*)(void *))(_func_), (void *)(_arg_), \
+ (struct proc **)&(_handle_), _name_)
+#define RF_THREAD_EXIT(ret) \
+ kthread_exit(ret);
+#endif
+#endif
+
+struct RF_ThreadGroup_s {
+ int created;
+ int running;
+ int shutdown;
+ RF_DECLARE_MUTEX(mutex)
+ RF_DECLARE_COND(cond)
+};
+/*
+ * Someone has started a thread in the group
+ */
+#define RF_THREADGROUP_STARTED(_g_) { \
+ RF_LOCK_MUTEX((_g_)->mutex); \
+ (_g_)->created++; \
+ RF_UNLOCK_MUTEX((_g_)->mutex); \
+}
+
+/*
+ * Thread announcing that it is now running
+ */
+#define RF_THREADGROUP_RUNNING(_g_) { \
+ RF_LOCK_MUTEX((_g_)->mutex); \
+ (_g_)->running++; \
+ RF_UNLOCK_MUTEX((_g_)->mutex); \
+ RF_SIGNAL_COND((_g_)->cond); \
+}
+
+/*
+ * Thread announcing that it is now done
+ */
+#define RF_THREADGROUP_DONE(_g_) { \
+ RF_LOCK_MUTEX((_g_)->mutex); \
+ (_g_)->shutdown++; \
+ RF_UNLOCK_MUTEX((_g_)->mutex); \
+ RF_SIGNAL_COND((_g_)->cond); \
+}
+
+/*
+ * Wait for all threads to start running
+ */
+#define RF_THREADGROUP_WAIT_START(_g_) { \
+ RF_LOCK_MUTEX((_g_)->mutex); \
+ while((_g_)->running < (_g_)->created) { \
+ RF_WAIT_COND((_g_)->cond, (_g_)->mutex); \
+ } \
+ RF_UNLOCK_MUTEX((_g_)->mutex); \
+}
+
+/*
+ * Wait for all threads to stop running
+ */
+#ifndef __NetBSD__
+#define RF_THREADGROUP_WAIT_STOP(_g_) { \
+ RF_LOCK_MUTEX((_g_)->mutex); \
+ RF_ASSERT((_g_)->running == (_g_)->created); \
+ while((_g_)->shutdown < (_g_)->running) { \
+ RF_WAIT_COND((_g_)->cond, (_g_)->mutex); \
+ } \
+ RF_UNLOCK_MUTEX((_g_)->mutex); \
+}
+#else
+ /* XXX Note that we've removed the assert. That should get put back in once
+ * we actually get something like a kernel thread running */
+#define RF_THREADGROUP_WAIT_STOP(_g_) { \
+ RF_LOCK_MUTEX((_g_)->mutex); \
+ while((_g_)->shutdown < (_g_)->running) { \
+ RF_WAIT_COND((_g_)->cond, (_g_)->mutex); \
+ } \
+ RF_UNLOCK_MUTEX((_g_)->mutex); \
+}
+#endif
+
+#if defined(__FreeBSD__) && __FreeBSD_version > 500005
+int rf_mutex_init(struct mtx *, const char *);
+int rf_mutex_destroy(struct mtx *);
+int _rf_create_managed_mutex(RF_ShutdownList_t **, struct mtx *,
+ char *, int);
+#else
+int rf_mutex_init(struct simplelock *, const char *);
+int rf_mutex_destroy(struct simplelock *);
+int _rf_create_managed_mutex(RF_ShutdownList_t **, struct simplelock *,
+ char *, int);
+#endif
+int _rf_create_managed_cond(RF_ShutdownList_t ** listp, int *,
+ char *file, int line);
+
+int rf_cond_init(int *c);
+int rf_cond_destroy(int *c);
+#endif /* !_RF__RF_THREADSTUFF_H_ */
diff --git a/sys/dev/raidframe/rf_types.h b/sys/dev/raidframe/rf_types.h
new file mode 100644
index 0000000..37a5519
--- /dev/null
+++ b/sys/dev/raidframe/rf_types.h
@@ -0,0 +1,245 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_types.h,v 1.6 1999/09/05 03:05:55 oster Exp $ */
+/*
+ * rf_types.h
+ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Jim Zelenka
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+/***********************************************************
+ *
+ * rf_types.h -- standard types for RAIDframe
+ *
+ ***********************************************************/
+
+#ifndef _RF__RF_TYPES_H_
+#define _RF__RF_TYPES_H_
+
+
+#include <dev/raidframe/rf_archs.h>
+
+#include <sys/errno.h>
+#include <sys/types.h>
+
+#include <sys/uio.h>
+#include <sys/param.h>
+#include <sys/lock.h>
+
+/*
+ * First, define system-dependent types and constants.
+ *
+ * If the machine is big-endian, RF_BIG_ENDIAN should be 1.
+ * Otherwise, it should be 0.
+ *
+ * The various integer types should be self-explanatory; we
+ * use these elsewhere to avoid size confusion.
+ *
+ * LONGSHIFT is lg(sizeof(long)) (that is, log base two of sizeof(long)
+ *
+ */
+
+#include <sys/types.h>
+#include <machine/endian.h>
+#include <machine/limits.h>
+
+#if BYTE_ORDER == BIG_ENDIAN
+#define RF_IS_BIG_ENDIAN 1
+#elif BYTE_ORDER == LITTLE_ENDIAN
+#define RF_IS_BIG_ENDIAN 0
+#else
+#error byte order not defined
+#endif
+typedef int8_t RF_int8;
+typedef u_int8_t RF_uint8;
+typedef int16_t RF_int16;
+typedef u_int16_t RF_uint16;
+typedef int32_t RF_int32;
+typedef u_int32_t RF_uint32;
+typedef int64_t RF_int64;
+typedef u_int64_t RF_uint64;
+#if LONG_BIT == 32
+#define RF_LONGSHIFT 2
+#elif LONG_BIT == 64
+#define RF_LONGSHIFT 3
+#elif defined(__i386__)
+#define RF_LONGSHIFT 2
+#elif defined(__alpha__)
+#define RF_LONGSHIFT 3
+#else
+#error word size not defined
+#endif
+
+/*
+ * These are just zero and non-zero. We don't use "TRUE"
+ * and "FALSE" because there's too much nonsense trying
+ * to get them defined exactly once on every platform, given
+ * the different places they may be defined in system header
+ * files.
+ */
+#define RF_TRUE 1
+#define RF_FALSE 0
+
+/*
+ * Now, some generic types
+ */
+typedef RF_uint64 RF_IoCount_t;
+typedef RF_uint64 RF_Offset_t;
+typedef RF_uint32 RF_PSSFlags_t;
+typedef RF_uint64 RF_SectorCount_t;
+typedef RF_uint64 RF_StripeCount_t;
+typedef RF_int64 RF_SectorNum_t;/* these are unsigned so we can set them to
+ * (-1) for "uninitialized" */
+typedef RF_int64 RF_StripeNum_t;
+typedef RF_int64 RF_RaidAddr_t;
+typedef int RF_RowCol_t; /* unsigned so it can be (-1) */
+typedef RF_int64 RF_HeadSepLimit_t;
+typedef RF_int64 RF_ReconUnitCount_t;
+typedef int RF_ReconUnitNum_t;
+
+typedef char RF_ParityConfig_t;
+
+typedef char RF_DiskQueueType_t[1024];
+#define RF_DISK_QUEUE_TYPE_NONE ""
+
+/* values for the 'type' field in a reconstruction buffer */
+typedef int RF_RbufType_t;
+#define RF_RBUF_TYPE_EXCLUSIVE 0 /* this buf assigned exclusively to
+ * one disk */
+#define RF_RBUF_TYPE_FLOATING 1 /* this is a floating recon buf */
+#define RF_RBUF_TYPE_FORCED 2 /* this rbuf was allocated to complete
+ * a forced recon */
+
+typedef char RF_IoType_t;
+#define RF_IO_TYPE_READ 'r'
+#define RF_IO_TYPE_WRITE 'w'
+#define RF_IO_TYPE_NOP 'n'
+#define RF_IO_IS_R_OR_W(_type_) (((_type_) == RF_IO_TYPE_READ) \
+ || ((_type_) == RF_IO_TYPE_WRITE))
+
+typedef void (*RF_VoidFuncPtr) (void *,...);
+
+typedef RF_uint32 RF_AccessStripeMapFlags_t;
+typedef RF_uint32 RF_DiskQueueDataFlags_t;
+typedef RF_uint32 RF_DiskQueueFlags_t;
+typedef RF_uint32 RF_RaidAccessFlags_t;
+
+#define RF_DISKQUEUE_DATA_FLAGS_NONE ((RF_DiskQueueDataFlags_t)0)
+
+typedef struct RF_AccessStripeMap_s RF_AccessStripeMap_t;
+typedef struct RF_AccessStripeMapHeader_s RF_AccessStripeMapHeader_t;
+typedef struct RF_AllocListElem_s RF_AllocListElem_t;
+typedef struct RF_CallbackDesc_s RF_CallbackDesc_t;
+typedef struct RF_ChunkDesc_s RF_ChunkDesc_t;
+typedef struct RF_CommonLogData_s RF_CommonLogData_t;
+typedef struct RF_Config_s RF_Config_t;
+typedef struct RF_CumulativeStats_s RF_CumulativeStats_t;
+typedef struct RF_DagHeader_s RF_DagHeader_t;
+typedef struct RF_DagList_s RF_DagList_t;
+typedef struct RF_DagNode_s RF_DagNode_t;
+typedef struct RF_DeclusteredConfigInfo_s RF_DeclusteredConfigInfo_t;
+typedef struct RF_DiskId_s RF_DiskId_t;
+typedef struct RF_DiskMap_s RF_DiskMap_t;
+typedef struct RF_DiskQueue_s RF_DiskQueue_t;
+typedef struct RF_DiskQueueData_s RF_DiskQueueData_t;
+typedef struct RF_DiskQueueSW_s RF_DiskQueueSW_t;
+typedef struct RF_Etimer_s RF_Etimer_t;
+typedef struct RF_EventCreate_s RF_EventCreate_t;
+typedef struct RF_FreeList_s RF_FreeList_t;
+typedef struct RF_LockReqDesc_s RF_LockReqDesc_t;
+typedef struct RF_LockTableEntry_s RF_LockTableEntry_t;
+typedef struct RF_MCPair_s RF_MCPair_t;
+typedef struct RF_OwnerInfo_s RF_OwnerInfo_t;
+typedef struct RF_ParityLog_s RF_ParityLog_t;
+typedef struct RF_ParityLogAppendQueue_s RF_ParityLogAppendQueue_t;
+typedef struct RF_ParityLogData_s RF_ParityLogData_t;
+typedef struct RF_ParityLogDiskQueue_s RF_ParityLogDiskQueue_t;
+typedef struct RF_ParityLogQueue_s RF_ParityLogQueue_t;
+typedef struct RF_ParityLogRecord_s RF_ParityLogRecord_t;
+typedef struct RF_PerDiskReconCtrl_s RF_PerDiskReconCtrl_t;
+typedef struct RF_PSStatusHeader_s RF_PSStatusHeader_t;
+typedef struct RF_PhysDiskAddr_s RF_PhysDiskAddr_t;
+typedef struct RF_PropHeader_s RF_PropHeader_t;
+typedef struct RF_Raid_s RF_Raid_t;
+typedef struct RF_RaidAccessDesc_s RF_RaidAccessDesc_t;
+typedef struct RF_RaidDisk_s RF_RaidDisk_t;
+typedef struct RF_RaidLayout_s RF_RaidLayout_t;
+typedef struct RF_RaidReconDesc_s RF_RaidReconDesc_t;
+typedef struct RF_ReconBuffer_s RF_ReconBuffer_t;
+typedef struct RF_ReconConfig_s RF_ReconConfig_t;
+typedef struct RF_ReconCtrl_s RF_ReconCtrl_t;
+typedef struct RF_ReconDoneProc_s RF_ReconDoneProc_t;
+typedef struct RF_ReconEvent_s RF_ReconEvent_t;
+typedef struct RF_ReconMap_s RF_ReconMap_t;
+typedef struct RF_ReconMapListElem_s RF_ReconMapListElem_t;
+typedef struct RF_ReconParityStripeStatus_s RF_ReconParityStripeStatus_t;
+typedef struct RF_RedFuncs_s RF_RedFuncs_t;
+typedef struct RF_RegionBufferQueue_s RF_RegionBufferQueue_t;
+typedef struct RF_RegionInfo_s RF_RegionInfo_t;
+typedef struct RF_ShutdownList_s RF_ShutdownList_t;
+typedef struct RF_SpareTableEntry_s RF_SpareTableEntry_t;
+typedef struct RF_SparetWait_s RF_SparetWait_t;
+typedef struct RF_StripeLockDesc_s RF_StripeLockDesc_t;
+typedef struct RF_ThreadGroup_s RF_ThreadGroup_t;
+typedef struct RF_ThroughputStats_s RF_ThroughputStats_t;
+
+/*
+ * Important assumptions regarding ordering of the states in this list
+ * have been made!!!
+ * Before disturbing this ordering, look at code in rf_states.c
+ */
+typedef enum RF_AccessState_e {
+ /* original states */
+ rf_QuiesceState, /* handles queisence for reconstruction */
+ rf_IncrAccessesCountState, /* count accesses in flight */
+ rf_DecrAccessesCountState,
+ rf_MapState, /* map access to disk addresses */
+ rf_LockState, /* take stripe locks */
+ rf_CreateDAGState, /* create DAGs */
+ rf_ExecuteDAGState, /* execute DAGs */
+ rf_ProcessDAGState, /* DAGs are completing- check if correct, or
+ * if we need to retry */
+ rf_CleanupState, /* release stripe locks, clean up */
+ rf_LastState /* must be the last state */
+} RF_AccessState_t;
+#define RF_MAXROW 10 /* these are arbitrary and can be modified at
+ * will */
+#define RF_MAXCOL 40
+#define RF_MAXSPARE 10
+#define RF_MAXDBGV 75 /* max number of debug variables */
+
+union RF_GenericParam_u {
+ void *p;
+ RF_uint64 v;
+};
+typedef union RF_GenericParam_u RF_DagParam_t;
+typedef union RF_GenericParam_u RF_CBParam_t;
+
+#if defined(__FreeBSD__) && __FreeBSD_version > 500005
+typedef struct bio *RF_Buf_t;
+#else
+typedef struct buf *RF_Buf_t;
+#endif
+#endif /* _RF__RF_TYPES_H_ */
diff --git a/sys/dev/raidframe/rf_utils.c b/sys/dev/raidframe/rf_utils.c
new file mode 100644
index 0000000..ee226d9
--- /dev/null
+++ b/sys/dev/raidframe/rf_utils.c
@@ -0,0 +1,147 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_utils.c,v 1.5 2000/01/07 03:41:03 oster Exp $ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Mark Holland
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+/****************************************
+ *
+ * rf_utils.c -- various support routines
+ *
+ ****************************************/
+
+
+#include <dev/raidframe/rf_threadstuff.h>
+
+#include <sys/time.h>
+
+#include <dev/raidframe/rf_utils.h>
+#include <dev/raidframe/rf_debugMem.h>
+#include <dev/raidframe/rf_alloclist.h>
+#include <dev/raidframe/rf_general.h>
+
+/* creates & zeros 2-d array with b rows and k columns (MCH) */
+RF_RowCol_t **
+rf_make_2d_array(b, k, allocList)
+ int b;
+ int k;
+ RF_AllocListElem_t *allocList;
+{
+ RF_RowCol_t **retval, i;
+
+ RF_MallocAndAdd(retval, b * sizeof(RF_RowCol_t *), (RF_RowCol_t **), allocList);
+ for (i = 0; i < b; i++) {
+ RF_MallocAndAdd(retval[i], k * sizeof(RF_RowCol_t), (RF_RowCol_t *), allocList);
+ (void) bzero((char *) retval[i], k * sizeof(RF_RowCol_t));
+ }
+ return (retval);
+}
+
+void
+rf_free_2d_array(a, b, k)
+ RF_RowCol_t **a;
+ int b;
+ int k;
+{
+ RF_RowCol_t i;
+
+ for (i = 0; i < b; i++)
+ RF_Free(a[i], k * sizeof(RF_RowCol_t));
+ RF_Free(a, b * sizeof(RF_RowCol_t));
+}
+
+
+/* creates & zeros a 1-d array with c columns */
+RF_RowCol_t *
+rf_make_1d_array(c, allocList)
+ int c;
+ RF_AllocListElem_t *allocList;
+{
+ RF_RowCol_t *retval;
+
+ RF_MallocAndAdd(retval, c * sizeof(RF_RowCol_t), (RF_RowCol_t *), allocList);
+ (void) bzero((char *) retval, c * sizeof(RF_RowCol_t));
+ return (retval);
+}
+
+void
+rf_free_1d_array(a, n)
+ RF_RowCol_t *a;
+ int n;
+{
+ RF_Free(a, n * sizeof(RF_RowCol_t));
+}
+/* Euclid's algorithm: finds and returns the greatest common divisor
+ * between a and b. (MCH)
+ */
+int
+rf_gcd(m, n)
+ int m;
+ int n;
+{
+ int t;
+
+ while (m > 0) {
+ t = n % m;
+ n = m;
+ m = t;
+ }
+ return (n);
+}
+/* these convert between text and integer. Apparently the regular C macros
+ * for doing this are not available in the kernel
+ */
+
+#define ISDIGIT(x) ( (x) >= '0' && (x) <= '9' )
+#define ISHEXCHAR(x) ( ((x) >= 'a' && (x) <= 'f') || ((x) >= 'A' && (x) <= 'F') )
+#define ISHEX(x) ( ISDIGIT(x) || ISHEXCHAR(x) )
+#define HC2INT(x) ( ((x) >= 'a' && (x) <= 'f') ? (x) - 'a' + 10 : \
+ ( ((x) >= 'A' && (x) <= 'F') ? (x) - 'A' + 10 : (x - '0') ) )
+
+int
+rf_atoi(p)
+ char *p;
+{
+ int val = 0, negate = 0;
+
+ if (*p == '-') {
+ negate = 1;
+ p++;
+ }
+ for (; ISDIGIT(*p); p++)
+ val = 10 * val + (*p - '0');
+ return ((negate) ? -val : val);
+}
+
+int
+rf_htoi(p)
+ char *p;
+{
+ int val = 0;
+ for (; ISHEXCHAR(*p); p++)
+ val = 16 * val + HC2INT(*p);
+ return (val);
+}
diff --git a/sys/dev/raidframe/rf_utils.h b/sys/dev/raidframe/rf_utils.h
new file mode 100644
index 0000000..18eac84
--- /dev/null
+++ b/sys/dev/raidframe/rf_utils.h
@@ -0,0 +1,70 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_utils.h,v 1.4 1999/08/13 03:26:55 oster Exp $ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Mark Holland
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+/***************************************
+ *
+ * rf_utils.c -- header file for utils.c
+ *
+ ***************************************/
+
+
+#ifndef _RF__RF_UTILS_H_
+#define _RF__RF_UTILS_H_
+
+#include <dev/raidframe/rf_types.h>
+#include <dev/raidframe/rf_alloclist.h>
+#include <dev/raidframe/rf_threadstuff.h>
+
+char *rf_find_non_white(char *p);
+char *rf_find_white(char *p);
+RF_RowCol_t **rf_make_2d_array(int b, int k, RF_AllocListElem_t * allocList);
+RF_RowCol_t *rf_make_1d_array(int c, RF_AllocListElem_t * allocList);
+void rf_free_2d_array(RF_RowCol_t ** a, int b, int k);
+void rf_free_1d_array(RF_RowCol_t * a, int n);
+int rf_gcd(int m, int n);
+int rf_atoi(char *p);
+int rf_htoi(char *p);
+
+#define RF_USEC_PER_SEC 1000000
+#define RF_TIMEVAL_TO_US(_t_) (((_t_).tv_sec) \
+ * RF_USEC_PER_SEC + (_t_).tv_usec)
+
+#define RF_TIMEVAL_DIFF(_start_,_end_,_diff_) { \
+ if ((_end_)->tv_usec < (_start_)->tv_usec) { \
+ (_diff_)->tv_usec = ((_end_)->tv_usec + RF_USEC_PER_SEC) \
+ - (_start_)->tv_usec; \
+ (_diff_)->tv_sec = ((_end_)->tv_sec-1) - (_start_)->tv_sec; \
+ } \
+ else { \
+ (_diff_)->tv_usec = (_end_)->tv_usec - (_start_)->tv_usec; \
+ (_diff_)->tv_sec = (_end_)->tv_sec - (_start_)->tv_sec; \
+ } \
+}
+
+#endif /* !_RF__RF_UTILS_H_ */
diff --git a/sys/modules/raidframe/Makefile b/sys/modules/raidframe/Makefile
new file mode 100644
index 0000000..d4ff5dc
--- /dev/null
+++ b/sys/modules/raidframe/Makefile
@@ -0,0 +1,32 @@
+# $FreeBSD$
+KMOD= raidframe
+NOMAN=
+
+.PATH: ${.CURDIR}/../../dev/raidframe
+
+SRCS= rf_acctrace.c rf_alloclist.c rf_aselect.c rf_callback.c \
+ rf_chaindecluster.c rf_copyback.c rf_cvscan.c rf_dagdegrd.c \
+ rf_dagdegwr.c rf_dagffrd.c rf_dagffwr.c rf_dagfuncs.c rf_dagutils.c \
+ rf_debugMem.c rf_debugprint.c rf_decluster.c rf_declusterPQ.c \
+ rf_diskqueue.c rf_disks.c rf_driver.c rf_engine.c rf_evenodd.c \
+ rf_evenodd_dagfuncs.c rf_evenodd_dags.c rf_fifo.c rf_interdecluster.c \
+ rf_invertq.c rf_layout.c rf_map.c rf_mcpair.c rf_memchunk.c \
+ rf_nwayxor.c rf_options.c rf_paritylog.c rf_paritylogDiskMgr.c \
+ rf_paritylogging.c rf_parityloggingdags.c rf_parityscan.c rf_pq.c \
+ rf_pqdeg.c rf_pqdegdags.c rf_psstatus.c rf_raid0.c rf_raid1.c \
+ rf_raid4.c rf_raid5.c rf_raid5_rotatedspare.c rf_reconbuffer.c \
+ rf_reconmap.c rf_reconstruct.c rf_reconutil.c rf_revent.c \
+ rf_shutdown.c rf_sstf.c rf_states.c rf_stripelocks.c rf_strutils.c \
+ rf_threadstuff.c rf_utils.c rf_freebsdkintf.c
+
+SRCS+= opt_raid.h vnode_if.h
+RF_DEBUG?= 0
+RF_AUTOCONFIG?= 1
+
+#CFLAGS+= -g
+
+opt_raid.h:
+ @echo "#define RAID_AUTOCONFIG ${RF_AUTOCONFIG}" > opt_raid.h
+ @echo "#define RAID_DEBUG ${RF_DEBUG}" >> opt_raid.h
+
+.include <bsd.kmod.mk>
diff --git a/sys/sys/disklabel.h b/sys/sys/disklabel.h
index 039b5a6..fde605f 100644
--- a/sys/sys/disklabel.h
+++ b/sys/sys/disklabel.h
@@ -202,6 +202,7 @@ dkcksum(struct disklabel *lp)
#define DTYPE_CCD 11 /* concatenated disk */
#define DTYPE_VINUM 12 /* vinum volume */
#define DTYPE_DOC2K 13 /* Msys DiskOnChip */
+#define DTYPE_RAID 14 /* CMU RAIDFrame */
#define DTYPE_JFS2 16 /* IBM JFS 2 */
#ifdef DKTYPENAMES
@@ -220,7 +221,7 @@ static const char *dktypenames[] = {
"CCD",
"Vinum",
"DOC2K",
- "?",
+ "Raid",
"?",
"jfs",
NULL
@@ -248,6 +249,7 @@ static const char *dktypenames[] = {
#define FS_ISO9660 12 /* ISO 9660, normally CD-ROM */
#define FS_BOOT 13 /* partition contains bootstrap */
#define FS_VINUM 14 /* Vinum drive */
+#define FS_RAID 15 /* RAIDFrame drive */
#define FS_JFS2 21 /* IBM JFS2 */
#ifdef FSTYPENAMES
@@ -267,8 +269,7 @@ static const char *fstypenames[] = {
"ISO9660",
"boot",
"vinum",
- "?",
- "?",
+ "raid",
"?",
"?",
"?",
diff --git a/sys/sys/kernel.h b/sys/sys/kernel.h
index 333ff64..4089d59 100644
--- a/sys/sys/kernel.h
+++ b/sys/sys/kernel.h
@@ -154,6 +154,7 @@ enum sysinit_sub_id {
SI_SUB_ROOT_CONF = 0xb000000, /* Find root devices */
SI_SUB_DUMP_CONF = 0xb200000, /* Find dump devices */
SI_SUB_VINUM = 0xb300000, /* Configure vinum */
+ SI_SUB_RAID = 0xb380000, /* Configure RAIDframe */
SI_SUB_MOUNT_ROOT = 0xb400000, /* root mount*/
SI_SUB_SWAP = 0xc000000, /* swap*/
SI_SUB_INTRINSIC_POST = 0xd000000, /* proc 0 cleanup*/
OpenPOWER on IntegriCloud