diff options
author | scottl <scottl@FreeBSD.org> | 2002-10-20 08:17:39 +0000 |
---|---|---|
committer | scottl <scottl@FreeBSD.org> | 2002-10-20 08:17:39 +0000 |
commit | 710948de69ddeae56bda663219319f6d859aea1f (patch) | |
tree | 71c65823ba2e8591de708d5cb2e990a75135ee11 | |
parent | 63bd46464d6d4587c20c1ca62fb6a6e3be132db9 (diff) | |
download | FreeBSD-src-710948de69ddeae56bda663219319f6d859aea1f.zip FreeBSD-src-710948de69ddeae56bda663219319f6d859aea1f.tar.gz |
After much delay and anticipation, welcome RAIDFrame into the FreeBSD
world. This should be considered highly experimental.
Approved-by: re
148 files changed, 45834 insertions, 7 deletions
diff --git a/etc/MAKEDEV b/etc/MAKEDEV index dbc2803..fa9dd8c 100644 --- a/etc/MAKEDEV +++ b/etc/MAKEDEV @@ -446,8 +446,12 @@ wt*) umask 77 ;; +raidctl) + mknod raidctl c 201 0 root:operator + ;; + # Individual slices. -aacd*s*|ad*s*|ar*s*|afd*s*|amrd*s*|da*s*|fla*s*|idad*s*|md*s*|mlxd*s*|twed*s*|wd*s*|wfd*s*) +aacd*s*|ad*s*|ar*s*|afd*s*|amrd*s*|da*s*|fla*s*|idad*s*|md*s*|mlxd*s*|twed*s*|wd*s*|wfd*s*|raid*s*) umask $disk_umask case $i in aacd*s*) name=aacd; chr=151;; @@ -463,9 +467,10 @@ aacd*s*|ad*s*|ar*s*|afd*s*|amrd*s*|da*s*|fla*s*|idad*s*|md*s*|mlxd*s*|twed*s*|wd twed*s*) name=twed; chr=147;; wd*s*) name=wd; chr=3;; wfd*s*) name=wfd; chr=87;; + raid*s*) name=raid; chr=200;; esac case $i in - aacd*s*|amrd*s*|idad*s*|mlxd*s*|twed*s*) + aacd*s*|amrd*s*|idad*s*|mlxd*s*|twed*s*|raid*s*) unit=`expr $i : '....\([0-9]*\)s'` slice=`expr $i : '....[0-9]*s\([0-9]*\)'` part=`expr $i : '....[0-9]*s[0-9]*\(.*\)'` @@ -552,7 +557,7 @@ ata) ;; -aacd*|ad*|ar*|afd*|amrd*|da*|fla*|idad*|md*|mlxd*|twed*|wd*|wfd*) +aacd*|ad*|ar*|afd*|amrd*|da*|fla*|idad*|md*|mlxd*|twed*|wd*|wfd*|raid*) umask $disk_umask case $i in aacd*) name=aacd; chr=151;; @@ -568,9 +573,10 @@ aacd*|ad*|ar*|afd*|amrd*|da*|fla*|idad*|md*|mlxd*|twed*|wd*|wfd*) twed*) name=twed; chr=147;; wd*) name=wd; chr=3;; wfd*) name=wfd; chr=87;; + raid*) name=raid; chr=200;; esac case $i in - aacd*|amrd*|idad*|mlxd*|twed*) + aacd*|amrd*|idad*|mlxd*|twed*|raid*) unit=`expr $i : '....\(.*\)'` ;; afd*|fla*|wfd*) diff --git a/sbin/raidctl/Makefile b/sbin/raidctl/Makefile new file mode 100644 index 0000000..0705eab --- /dev/null +++ b/sbin/raidctl/Makefile @@ -0,0 +1,14 @@ +# $FreeBSD$ +# $NetBSD: Makefile,v 1.7 2000/05/23 00:46:53 thorpej Exp $ +PROG= raidctl +SRCS= rf_configure.c raidctl.c +MAN8= raidctl.8 + +LOOKHERE = ${.CURDIR}/../../sys + +CFLAGS+= -DRF_UTILITY=1 -I${LOOKHERE} + +DPADD= ${LIBUTIL} +LDADD= -lutil + +.include <bsd.prog.mk> diff --git a/sbin/raidctl/raidctl.8 b/sbin/raidctl/raidctl.8 new file mode 100644 index 0000000..9aef14f --- /dev/null +++ b/sbin/raidctl/raidctl.8 @@ -0,0 +1,1325 @@ +.\" $FreeBSD$ +.\" $NetBSD: raidctl.8,v 1.21 2000/08/10 15:14:14 oster Exp $ +.\" +.\" Copyright (c) 1998 The NetBSD Foundation, Inc. +.\" All rights reserved. +.\" +.\" This code is derived from software contributed to The NetBSD Foundation +.\" by Greg Oster +.\" +.\" Redistribution and use in source and binary forms, with or without +.\" modification, are permitted provided that the following conditions +.\" are met: +.\" 1. Redistributions of source code must retain the above copyright +.\" notice, this list of conditions and the following disclaimer. +.\" 2. Redistributions in binary form must reproduce the above copyright +.\" notice, this list of conditions and the following disclaimer in the +.\" documentation and/or other materials provided with the distribution. +.\" 3. All advertising materials mentioning features or use of this software +.\" must display the following acknowledgement: +.\" This product includes software developed by the NetBSD +.\" Foundation, Inc. and its contributors. +.\" 4. Neither the name of The NetBSD Foundation nor the names of its +.\" contributors may be used to endorse or promote products derived +.\" from this software without specific prior written permission. +.\" +.\" THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS +.\" ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED +.\" TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR +.\" PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS +.\" BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR +.\" CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF +.\" SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS +.\" INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN +.\" CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) +.\" ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE +.\" POSSIBILITY OF SUCH DAMAGE. +.\" +.\" +.\" Copyright (c) 1995 Carnegie-Mellon University. +.\" All rights reserved. +.\" +.\" Author: Mark Holland +.\" +.\" Permission to use, copy, modify and distribute this software and +.\" its documentation is hereby granted, provided that both the copyright +.\" notice and this permission notice appear in all copies of the +.\" software, derivative works or modified versions, and any portions +.\" thereof, and that both notices appear in supporting documentation. +.\" +.\" CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" +.\" CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND +.\" FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. +.\" +.\" Carnegie Mellon requests users of this software to return to +.\" +.\" Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU +.\" School of Computer Science +.\" Carnegie Mellon University +.\" Pittsburgh PA 15213-3890 +.\" +.\" any improvements or extensions that they make and grant Carnegie the +.\" rights to redistribute these changes. +.\" +.Dd November 6, 1998 +.Dt RAIDCTL 8 +.Os FreeBSD +.Sh NAME +.Nm raidctl +.Nd configuration utility for the RAIDframe disk driver +.Sh SYNOPSIS +.Nm +.Op Fl v +.Fl a Ar component Ar dev +.Nm +.Op Fl v +.Fl A Op yes | no | root +.Ar dev +.Nm +.Op Fl v +.Fl B Ar dev +.Nm +.Op Fl v +.Fl c Ar config_file +.Nm +.Op Fl v +.Fl C Ar config_file +.Nm +.Op Fl v +.Fl f Ar component Ar dev +.Nm +.Op Fl v +.Fl F Ar component Ar dev +.Nm +.Op Fl v +.Fl g Ar component Ar dev +.Nm +.Op Fl v +.Fl i Ar dev +.Nm +.Op Fl v +.Fl I Ar serial_number Ar dev +.Nm +.Op Fl v +.Fl p Ar dev +.Nm +.Op Fl v +.Fl P Ar dev +.Nm +.Op Fl v +.Fl r Ar component Ar dev +.Nm +.Op Fl v +.Fl R Ar component Ar dev +.Nm +.Op Fl v +.Fl s Ar dev +.Nm +.Op Fl v +.Fl S Ar dev +.Nm +.Op Fl v +.Fl u Ar dev +.Sh DESCRIPTION +.Nm +is the user-land control program for +.Xr raid 4 , +the RAIDframe disk device. +.Nm +is primarily used to dynamically configure and unconfigure RAIDframe disk +devices. For more information about the RAIDframe disk device, see +.Xr raid 4 . +.Pp +This document assumes the reader has at least rudimentary knowledge of +RAID and RAID concepts. +.Pp +The command-line options for +.Nm +are as follows: +.Bl -tag -width indent +.It Fl a Ar component Ar dev +Add +.Ar component +as a hot spare for the device +.Ar dev . +.It Fl A Ic yes Ar dev +Make the RAID set auto-configurable. The RAID set will be +automatically configured at boot +.Ar before +the root filesystem is +mounted. Note that all components of the set must be of type RAID in the +disklabel. +.It Fl A Ic no Ar dev +Turn off auto-configuration for the RAID set. +.It Fl A Ic root Ar dev +Make the RAID set auto-configurable, and also mark the set as being +eligible to be the root partition. A RAID set configured this way +will +.Ar override +the use of the boot disk as the root device. All components of the +set must be of type RAID in the disklabel. Note that the kernel being +booted must currently reside on a non-RAID set. +.It Fl B Ar dev +Initiate a copyback of reconstructed data from a spare disk to +its original disk. This is performed after a component has failed, +and the failed drive has been reconstructed onto a spare drive. +.It Fl c Ar config_file +Configure a RAIDframe device +according to the configuration given in +.Ar config_file . +A description of the contents of +.Ar config_file +is given later. +.It Fl C Ar config_file +As for +.Ar -c , +but forces the configuration to take place. This is required the +first time a RAID set is configured. +.It Fl f Ar component Ar dev +This marks the specified +.Ar component +as having failed, but does not initiate a reconstruction of that +component. +.It Fl F Ar component Ar dev +Fails the specified +.Ar component +of the device, and immediately begin a reconstruction of the failed +disk onto an available hot spare. This is one of the mechanisms used to start +the reconstruction process if a component does have a hardware failure. +.It Fl g Ar component Ar dev +Get the component label for the specified component. +.It Fl i Ar dev +Initialize the RAID device. In particular, (re-write) the parity on +the selected device. This +.Ar MUST +be done for +.Ar all +RAID sets before the RAID device is labeled and before +filesystems are created on the RAID device. +.It Fl I Ar serial_number Ar dev +Initialize the component labels on each component of the device. +.Ar serial_number +is used as one of the keys in determining whether a +particular set of components belong to the same RAID set. While not +strictly enforced, different serial numbers should be used for +different RAID sets. This step +.Ar MUST +be performed when a new RAID set is created. +.It Fl p Ar dev +Check the status of the parity on the RAID set. Displays a status +message, and returns successfully if the parity is up-to-date. +.It Fl P Ar dev +Check the status of the parity on the RAID set, and initialize +(re-write) the parity if the parity is not known to be up-to-date. +This is normally used after a system crash (and before a +.Xr fsck 8 ) +to ensure the integrity of the parity. +.It Fl r Ar component Ar dev +Remove the spare disk specified by +.Ar component +from the set of available spare components. +.It Fl R Ar component Ar dev +Fails the specified +.Ar component , +if necessary, and immediately begins a reconstruction back to +.Ar component . +This is useful for reconstructing back onto a component after +it has been replaced following a failure. +.It Fl s Ar dev +Display the status of the RAIDframe device for each of the components +and spares. +.It Fl S Ar dev +Check the status of parity re-writing, component reconstruction, and +component copyback. The output indicates the amount of progress +achieved in each of these areas. +.It Fl u Ar dev +Unconfigure the RAIDframe device. +.It Fl v +Be more verbose. For operations such as reconstructions, parity +re-writing, and copybacks, provide a progress indicator. +.El +.Pp +The device used by +.Nm +is specified by +.Ar dev . +.Ar dev +may be either the full name of the device, e.g. /dev/rraid0d, +for the i386 architecture, and /dev/rraid0c +for all others, or just simply raid0 (for /dev/rraid0d). +.Pp +The format of the configuration file is complex, and +only an abbreviated treatment is given here. In the configuration +files, a +.Sq # +indicates the beginning of a comment. +.Pp +There are 4 required sections of a configuration file, and 2 +optional sections. Each section begins with a +.Sq START , +followed by +the section name, and the configuration parameters associated with that +section. The first section is the +.Sq array +section, and it specifies +the number of rows, columns, and spare disks in the RAID set. For +example: +.Bd -unfilled -offset indent +START array +1 3 0 +.Ed +.Pp +indicates an array with 1 row, 3 columns, and 0 spare disks. Note +that although multi-dimensional arrays may be specified, they are +.Ar NOT +supported in the driver. +.Pp +The second section, the +.Sq disks +section, specifies the actual +components of the device. For example: +.Bd -unfilled -offset indent +START disks +/dev/da0s1e +/dev/da1s1e +/dev/da2s1e +.Ed +.Pp +specifies the three component disks to be used in the RAID device. If +any of the specified drives cannot be found when the RAID device is +configured, then they will be marked as +.Sq failed , +and the system will +operate in degraded mode. Note that it is +.Ar imperative +that the order of the components in the configuration file does not +change between configurations of a RAID device. Changing the order +of the components will result in data loss if the set is configured +with the +.Fl C +option. In normal circumstances, the RAID set will not configure if +only +.Fl c +is specified, and the components are out-of-order. +.Pp +The next section, which is the +.Sq spare +section, is optional, and, if +present, specifies the devices to be used as +.Sq hot spares +-- devices +which are on-line, but are not actively used by the RAID driver unless +one of the main components fail. A simple +.Sq spare +section might be: +.Bd -unfilled -offset indent +START spare +/dev/da3s1e +.Ed +.Pp +for a configuration with a single spare component. If no spare drives +are to be used in the configuration, then the +.Sq spare +section may be omitted. +.Pp +The next section is the +.Sq layout +section. This section describes the +general layout parameters for the RAID device, and provides such +information as sectors per stripe unit, stripe units per parity unit, +stripe units per reconstruction unit, and the parity configuration to +use. This section might look like: +.Bd -unfilled -offset indent +START layout +# sectPerSU SUsPerParityUnit SUsPerReconUnit RAID_level +32 1 1 5 +.Ed +.Pp +The sectors per stripe unit specifies, in blocks, the interleave +factor; i.e. the number of contiguous sectors to be written to each +component for a single stripe. Appropriate selection of this value +(32 in this example) is the subject of much research in RAID +architectures. The stripe units per parity unit and +stripe units per reconstruction unit are normally each set to 1. +While certain values above 1 are permitted, a discussion of valid +values and the consequences of using anything other than 1 are outside +the scope of this document. The last value in this section (5 in this +example) indicates the parity configuration desired. Valid entries +include: +.Bl -tag -width inde +.It 0 +RAID level 0. No parity, only simple striping. +.It 1 +RAID level 1. Mirroring. The parity is the mirror. +.It 4 +RAID level 4. Striping across components, with parity stored on the +last component. +.It 5 +RAID level 5. Striping across components, parity distributed across +all components. +.El +.Pp +There are other valid entries here, including those for Even-Odd +parity, RAID level 5 with rotated sparing, Chained declustering, +and Interleaved declustering, but as of this writing the code for +those parity operations has not been tested with +.Fx . +.Pp +The next required section is the +.Sq queue +section. This is most often +specified as: +.Bd -unfilled -offset indent +START queue +fifo 100 +.Ed +.Pp +where the queuing method is specified as fifo (first-in, first-out), +and the size of the per-component queue is limited to 100 requests. +Other queuing methods may also be specified, but a discussion of them +is beyond the scope of this document. +.Pp +The final section, the +.Sq debug +section, is optional. For more details +on this the reader is referred to the RAIDframe documentation +discussed in the +.Sx HISTORY +section. + +See +.Sx EXAMPLES +for a more complete configuration file example. + +.Sh EXAMPLES + +It is highly recommended that before using the RAID driver for real +filesystems that the system administrator(s) become quite familiar +with the use of +.Nm , +and that they understand how the component reconstruction process +works. The examples in this section will focus on configuring a +number of different RAID sets of varying degrees of redundancy. +By working through these examples, administrators should be able to +develop a good feel for how to configure a RAID set, and how to +initiate reconstruction of failed components. +.Pp +In the following examples +.Sq raid0 +will be used to denote the RAID device. Depending on the +architecture, +.Sq /dev/rraid0c +or +.Sq /dev/rraid0d +may be used in place of +.Sq raid0 . +.Pp +.Ss Initialization and Configuration +The initial step in configuring a RAID set is to identify the components +that will be used in the RAID set. All components should be the same +size. Each component should have a disklabel type of +.Dv FS_RAID , +and a typical disklabel entry for a RAID component +might look like: +.Bd -unfilled -offset indent +f: 1800000 200495 RAID # (Cyl. 405*- 4041*) +.Ed +.Pp +While +.Dv FS_BSDFFS +will also work as the component type, the type +.Dv FS_RAID +is preferred for RAIDframe use, as it is required for features such as +auto-configuration. As part of the initial configuration of each RAID +set, each component will be given a +.Sq component label . +A +.Sq component label +contains important information about the component, including a +user-specified serial number, the row and column of that component in +the RAID set, the redundancy level of the RAID set, a 'modification +counter', and whether the parity information (if any) on that +component is known to be correct. Component labels are an integral +part of the RAID set, since they are used to ensure that components +are configured in the correct order, and used to keep track of other +vital information about the RAID set. Component labels are also +required for the auto-detection and auto-configuration of RAID sets at +boot time. For a component label to be considered valid, that +particular component label must be in agreement with the other +component labels in the set. For example, the serial number, +.Sq modification counter , +number of rows and number of columns must all +be in agreement. If any of these are different, then the component is +not considered to be part of the set. See +.Xr raid 4 +for more information about component labels. +.Pp +Once the components have been identified, and the disks have +appropriate labels, +.Nm +is then used to configure the +.Xr raid 4 +device. To configure the device, a configuration +file which looks something like: +.Bd -unfilled -offset indent +START array +# numRow numCol numSpare +1 3 1 + +START disks +/dev/da1s1e +/dev/da2s1e +/dev/da3s1e + +START spare +/dev/da4s1e + +START layout +# sectPerSU SUsPerParityUnit SUsPerReconUnit RAID_level_5 +32 1 1 5 + +START queue +fifo 100 +.Ed +.Pp +is created in a file. The above configuration file specifies a RAID 5 +set consisting of the components /dev/da1s1e, /dev/da2s1e, and /dev/da3s1e, +with /dev/da4s1e available as a +.Sq hot spare +in case one of +the three main drives should fail. A RAID 0 set would be specified in +a similar way: +.Bd -unfilled -offset indent +START array +# numRow numCol numSpare +1 4 0 + +START disks +/dev/da1s10e +/dev/da1s11e +/dev/da1s12e +/dev/da1s13e + +START layout +# sectPerSU SUsPerParityUnit SUsPerReconUnit RAID_level_0 +64 1 1 0 + +START queue +fifo 100 +.Ed +.Pp +In this case, devices /dev/da1s10e, /dev/da1s11e, /dev/da1s12e, and /dev/da1s13e +are the components that make up this RAID set. Note that there are no +hot spares for a RAID 0 set, since there is no way to recover data if +any of the components fail. +.Pp +For a RAID 1 (mirror) set, the following configuration might be used: +.Bd -unfilled -offset indent +START array +# numRow numCol numSpare +1 2 0 + +START disks +/dev/da2s10e +/dev/da2s11e + +START layout +# sectPerSU SUsPerParityUnit SUsPerReconUnit RAID_level_1 +128 1 1 1 + +START queue +fifo 100 +.Ed +.Pp +In this case, /dev/da2s10e and /dev/da2s11e are the two components of the +mirror set. While no hot spares have been specified in this +configuration, they easily could be, just as they were specified in +the RAID 5 case above. Note as well that RAID 1 sets are currently +limited to only 2 components. At present, n-way mirroring is not +possible. +.Pp +The first time a RAID set is configured, the +.Fl C +option must be used: +.Bd -unfilled -offset indent +raidctl -C raid0.conf +.Ed +.Pp +where +.Sq raid0.conf +is the name of the RAID configuration file. The +.Fl C +forces the configuration to succeed, even if any of the component +labels are incorrect. The +.Fl C +option should not be used lightly in +situations other than initial configurations, as if +the system is refusing to configure a RAID set, there is probably a +very good reason for it. After the initial configuration is done (and +appropriate component labels are added with the +.Fl I +option) then raid0 can be configured normally with: +.Bd -unfilled -offset indent +raidctl -c raid0.conf +.Ed +.Pp +When the RAID set is configured for the first time, it is +necessary to initialize the component labels, and to initialize the +parity on the RAID set. Initializing the component labels is done with: +.Bd -unfilled -offset indent +raidctl -I 112341 raid0 +.Ed +.Pp +where +.Sq 112341 +is a user-specified serial number for the RAID set. This +initialization step is +.Ar required +for all RAID sets. As well, using different +serial numbers between RAID sets is +.Ar strongly encouraged , +as using the same serial number for all RAID sets will only serve to +decrease the usefulness of the component label checking. +.Pp +Initializing the RAID set is done via the +.Fl i +option. This initialization +.Ar MUST +be done for +.Ar all +RAID sets, since among other things it verifies that the parity (if +any) on the RAID set is correct. Since this initialization may be +quite time-consuming, the +.Fl v +option may be also used in conjunction with +.Fl i : +.Bd -unfilled -offset indent +raidctl -iv raid0 +.Ed +.Pp +This will give more verbose output on the +status of the initialization: +.Bd -unfilled -offset indent +Initiating re-write of parity +Parity Re-write status: + 10% |**** | ETA: 06:03 / +.Ed +.Pp +The output provides a +.Sq Percent Complete +in both a numeric and graphical format, as well as an estimated time +to completion of the operation. +.Pp +Since it is the parity that provides the +.Sq redundancy +part of RAID, it is critical that the parity is correct +as much as possible. If the parity is not correct, then there is no +guarantee that data will not be lost if a component fails. +.Pp +Once the parity is known to be correct, +it is then safe to perform +.Xr disklabel 8 , +.Xr newfs 8 , +or +.Xr fsck 8 +on the device or its filesystems, and then to mount the filesystems +for use. +.Pp +Under certain circumstances (e.g. the additional component has not +arrived, or data is being migrated off of a disk destined to become a +component) it may be desirable to to configure a RAID 1 set with only +a single component. This can be achieved by configuring the set with +a physically existing component (as either the first or second +component) and with a +.Sq fake +component. In the following: +.Bd -unfilled -offset indent +START array +# numRow numCol numSpare +1 2 0 + +START disks +/dev/da6s1e +/dev/da0s1e + +START layout +# sectPerSU SUsPerParityUnit SUsPerReconUnit RAID_level_1 +128 1 1 1 + +START queue +fifo 100 +.Ed +.Pp +/dev/da0s1e is the real component, and will be the second disk of a RAID 1 +set. The component /dev/da6s1e, which must exist, but have no physical +device associated with it, is simply used as a placeholder. +Configuration (using +.Fl C +and +.Fl I Ar 12345 +as above) proceeds normally, but initialization of the RAID set will +have to wait until all physical components are present. After +configuration, this set can be used normally, but will be operating +in degraded mode. Once a second physical component is obtained, it +can be hot-added, the existing data mirrored, and normal operation +resumed. +.Pp +.Ss Maintenance of the RAID set +After the parity has been initialized for the first time, the command: +.Bd -unfilled -offset indent +raidctl -p raid0 +.Ed +.Pp +can be used to check the current status of the parity. To check the +parity and rebuild it necessary (for example, after an unclean +shutdown) the command: +.Bd -unfilled -offset indent +raidctl -P raid0 +.Ed +.Pp +is used. Note that re-writing the parity can be done while +other operations on the RAID set are taking place (e.g. while doing a +.Xr fsck 8 +on a filesystem on the RAID set). However: for maximum effectiveness +of the RAID set, the parity should be known to be correct before any +data on the set is modified. +.Pp +To see how the RAID set is doing, the following command can be used to +show the RAID set's status: +.Bd -unfilled -offset indent +raidctl -s raid0 +.Ed +.Pp +The output will look something like: +.Bd -unfilled -offset indent +Components: + /dev/da1s1e: optimal + /dev/da2s1e: optimal + /dev/da3s1e: optimal +Spares: + /dev/da4s1e: spare +Component label for /dev/da1s1e: + Row: 0 Column: 0 Num Rows: 1 Num Columns: 3 + Version: 2 Serial Number: 13432 Mod Counter: 65 + Clean: No Status: 0 + sectPerSU: 32 SUsPerPU: 1 SUsPerRU: 1 + RAID Level: 5 blocksize: 512 numBlocks: 1799936 + Autoconfig: No + Last configured as: raid0 +Component label for /dev/da2s1e: + Row: 0 Column: 1 Num Rows: 1 Num Columns: 3 + Version: 2 Serial Number: 13432 Mod Counter: 65 + Clean: No Status: 0 + sectPerSU: 32 SUsPerPU: 1 SUsPerRU: 1 + RAID Level: 5 blocksize: 512 numBlocks: 1799936 + Autoconfig: No + Last configured as: raid0 +Component label for /dev/da3s1e: + Row: 0 Column: 2 Num Rows: 1 Num Columns: 3 + Version: 2 Serial Number: 13432 Mod Counter: 65 + Clean: No Status: 0 + sectPerSU: 32 SUsPerPU: 1 SUsPerRU: 1 + RAID Level: 5 blocksize: 512 numBlocks: 1799936 + Autoconfig: No + Last configured as: raid0 +Parity status: clean +Reconstruction is 100% complete. +Parity Re-write is 100% complete. +Copyback is 100% complete. +.Ed +.Pp +This indicates that all is well with the RAID set. Of importance here +are the component lines which read +.Sq optimal , +and the +.Sq Parity status +line which indicates that the parity is up-to-date. Note that if +there are filesystems open on the RAID set, the individual components +will not be +.Sq clean +but the set as a whole can still be clean. +.Pp +To check the component label of /dev/da1s1e, the following is used: +.Bd -unfilled -offset indent +raidctl -g /dev/da1s1e raid0 +.Ed +.Pp +The output of this command will look something like: +.Bd -unfilled -offset indent +Component label for /dev/da1s1e: + Row: 0 Column: 0 Num Rows: 1 Num Columns: 3 + Version: 2 Serial Number: 13432 Mod Counter: 65 + Clean: No Status: 0 + sectPerSU: 32 SUsPerPU: 1 SUsPerRU: 1 + RAID Level: 5 blocksize: 512 numBlocks: 1799936 + Autoconfig: No + Last configured as: raid0 +.Ed +.Pp +.Ss Dealing with Component Failures +If for some reason +(perhaps to test reconstruction) it is necessary to pretend a drive +has failed, the following will perform that function: +.Bd -unfilled -offset indent +raidctl -f /dev/da2s1e raid0 +.Ed +.Pp +The system will then be performing all operations in degraded mode, +where missing data is re-computed from existing data and the parity. +In this case, obtaining the status of raid0 will return (in part): +.Bd -unfilled -offset indent +Components: + /dev/da1s1e: optimal + /dev/da2s1e: failed + /dev/da3s1e: optimal +Spares: + /dev/da4s1e: spare +.Ed +.Pp +Note that with the use of +.Fl f +a reconstruction has not been started. To both fail the disk and +start a reconstruction, the +.Fl F +option must be used: +.Bd -unfilled -offset indent +raidctl -F /dev/da2s1e raid0 +.Ed +.Pp +The +.Fl f +option may be used first, and then the +.Fl F +option used later, on the same disk, if desired. +Immediately after the reconstruction is started, the status will report: +.Bd -unfilled -offset indent +Components: + /dev/da1s1e: optimal + /dev/da2s1e: reconstructing + /dev/da3s1e: optimal +Spares: + /dev/da4s1e: used_spare +[...] +Parity status: clean +Reconstruction is 10% complete. +Parity Re-write is 100% complete. +Copyback is 100% complete. +.Ed +.Pp +This indicates that a reconstruction is in progress. To find out how +the reconstruction is progressing the +.Fl S +option may be used. This will indicate the progress in terms of the +percentage of the reconstruction that is completed. When the +reconstruction is finished the +.Fl s +option will show: +.Bd -unfilled -offset indent +Components: + /dev/da1s1e: optimal + /dev/da2s1e: spared + /dev/da3s1e: optimal +Spares: + /dev/da4s1e: used_spare +[...] +Parity status: clean +Reconstruction is 100% complete. +Parity Re-write is 100% complete. +Copyback is 100% complete. +.Ed +.Pp +At this point there are at least two options. First, if /dev/da2s1e is +known to be good (i.e. the failure was either caused by +.Fl f +or +.Fl F , +or the failed disk was replaced), then a copyback of the data can +be initiated with the +.Fl B +option. In this example, this would copy the entire contents of +/dev/da4s1e to /dev/da2s1e. Once the copyback procedure is complete, the +status of the device would be (in part): +.Bd -unfilled -offset indent +Components: + /dev/da1s1e: optimal + /dev/da2s1e: optimal + /dev/da3s1e: optimal +Spares: + /dev/da4s1e: spare +.Ed +.Pp +and the system is back to normal operation. +.Pp +The second option after the reconstruction is to simply use /dev/da4s1e +in place of /dev/da2s1e in the configuration file. For example, the +configuration file (in part) might now look like: +.Bd -unfilled -offset indent +START array +1 3 0 + +START drives +/dev/da1s1e +/dev/da4s1e +/dev/da3s1e +.Ed +.Pp +This can be done as /dev/da4s1e is completely interchangeable with +/dev/da2s1e at this point. Note that extreme care must be taken when +changing the order of the drives in a configuration. This is one of +the few instances where the devices and/or their orderings can be +changed without loss of data! In general, the ordering of components +in a configuration file should +.Ar never +be changed. +.Pp +If a component fails and there are no hot spares +available on-line, the status of the RAID set might (in part) look like: +.Bd -unfilled -offset indent +Components: + /dev/da1s1e: optimal + /dev/da2s1e: failed + /dev/da3s1e: optimal +No spares. +.Ed +.Pp +In this case there are a number of options. The first option is to add a hot +spare using: +.Bd -unfilled -offset indent +raidctl -a /dev/da4s1e raid0 +.Ed +.Pp +After the hot add, the status would then be: +.Bd -unfilled -offset indent +Components: + /dev/da1s1e: optimal + /dev/da2s1e: failed + /dev/da3s1e: optimal +Spares: + /dev/da4s1e: spare +.Ed +.Pp +Reconstruction could then take place using +.Fl F +as describe above. +.Pp +A second option is to rebuild directly onto /dev/da2s1e. Once the disk +containing /dev/da2s1e has been replaced, one can simply use: +.Bd -unfilled -offset indent +raidctl -R /dev/da2s1e raid0 +.Ed +.Pp +to rebuild the /dev/da2s1e component. As the rebuilding is in progress, +the status will be: +.Bd -unfilled -offset indent +Components: + /dev/da1s1e: optimal + /dev/da2s1e: reconstructing + /dev/da3s1e: optimal +No spares. +.Ed +.Pp +and when completed, will be: +.Bd -unfilled -offset indent +Components: + /dev/da1s1e: optimal + /dev/da2s1e: optimal + /dev/da3s1e: optimal +No spares. +.Ed +.Pp +In circumstances where a particular component is completely +unavailable after a reboot, a special component name will be used to +indicate the missing component. For example: +.Bd -unfilled -offset indent +Components: + /dev/da2s1e: optimal + component1: failed +No spares. +.Ed +.Pp +indicates that the second component of this RAID set was not detected +at all by the auto-configuration code. The name +.Sq component1 +can be used anywhere a normal component name would be used. For +example, to add a hot spare to the above set, and rebuild to that hot +spare, the following could be done: +.Bd -unfilled -offset indent +raidctl -a /dev/da3s1e raid0 +raidctl -F component1 raid0 +.Ed +.Pp +at which point the data missing from +.Sq component1 +would be reconstructed onto /dev/da3s1e. +.Pp +.Ss RAID on RAID +RAID sets can be layered to create more complex and much larger RAID +sets. A RAID 0 set, for example, could be constructed from four RAID +5 sets. The following configuration file shows such a setup: +.Bd -unfilled -offset indent +START array +# numRow numCol numSpare +1 4 0 + +START disks +/dev/raid1e +/dev/raid2e +/dev/raid3e +/dev/raid4e + +START layout +# sectPerSU SUsPerParityUnit SUsPerReconUnit RAID_level_0 +128 1 1 0 + +START queue +fifo 100 +.Ed +.Pp +A similar configuration file might be used for a RAID 0 set +constructed from components on RAID 1 sets. In such a configuration, +the mirroring provides a high degree of redundancy, while the striping +provides additional speed benefits. +.Pp +.Ss Auto-configuration and Root on RAID +RAID sets can also be auto-configured at boot. To make a set +auto-configurable, simply prepare the RAID set as above, and then do +a: +.Bd -unfilled -offset indent +raidctl -A yes raid0 +.Ed +.Pp +to turn on auto-configuration for that set. To turn off +auto-configuration, use: +.Bd -unfilled -offset indent +raidctl -A no raid0 +.Ed +.Pp +RAID sets which are auto-configurable will be configured before the +root filesystem is mounted. These RAID sets are thus available for +use as a root filesystem, or for any other filesystem. A primary +advantage of using the auto-configuration is that RAID components +become more independent of the disks they reside on. For example, +SCSI ID's can change, but auto-configured sets will always be +configured correctly, even if the SCSI ID's of the component disks +have become scrambled. +.Pp +Having a system's root filesystem (/) on a RAID set is also allowed, +with the +.Sq a +partition of such a RAID set being used for /. +To use raid0a as the root filesystem, simply use: +.Bd -unfilled -offset indent +raidctl -A root raid0 +.Ed +.Pp +To return raid0a to be just an auto-configuring set simply use the +.Fl A Ar yes +arguments. +.Pp +Note that kernels can only be directly read from RAID 1 components on +alpha and pmax architectures. On those architectures, the +.Dv FS_RAID +filesystem is recognized by the bootblocks, and will properly load the +kernel directly from a RAID 1 component. For other architectures, or +to support the root filesystem on other RAID sets, some other +mechanism must be used to get a kernel booting. For example, a small +partition containing only the secondary boot-blocks and an alternate +kernel (or two) could be used. Once a kernel is booting however, and +an auto-configuring RAID set is found that is eligible to be root, +then that RAID set will be auto-configured and used as the root +device. If two or more RAID sets claim to be root devices, then the +user will be prompted to select the root device. At this time, RAID +0, 1, 4, and 5 sets are all supported as root devices. +.Pp +A typical RAID 1 setup with root on RAID might be as follows: +.Bl -enum +.It +wd0a - a small partition, which contains a complete, bootable, basic +NetBSD installation. +.It +wd1a - also contains a complete, bootable, basic NetBSD installation. +.It +wd0e and wd1e - a RAID 1 set, raid0, used for the root filesystem. +.It +wd0f and wd1f - a RAID 1 set, raid1, which will be used only for +swap space. +.It +wd0g and wd1g - a RAID 1 set, raid2, used for /usr, /home, or other +data, if desired. +.It +wd0h and wd0h - a RAID 1 set, raid3, if desired. +.El +.Pp +RAID sets raid0, raid1, and raid2 are all marked as +auto-configurable. raid0 is marked as being a root filesystem. +When new kernels are installed, the kernel is not only copied to /, +but also to wd0a and wd1a. The kernel on wd0a is required, since that +is the kernel the system boots from. The kernel on wd1a is also +required, since that will be the kernel used should wd0 fail. The +important point here is to have redundant copies of the kernel +available, in the event that one of the drives fail. +.Pp +There is no requirement that the root filesystem be on the same disk +as the kernel. For example, obtaining the kernel from wd0a, and using +da0s1e and da1s1e for raid0, and the root filesystem, is fine. It +.Ar is +critical, however, that there be multiple kernels available, in the +event of media failure. +.Pp +Multi-layered RAID devices (such as a RAID 0 set made +up of RAID 1 sets) are +.Ar not +supported as root devices or auto-configurable devices at this point. +(Multi-layered RAID devices +.Ar are +supported in general, however, as mentioned earlier.) Note that in +order to enable component auto-detection and auto-configuration of +RAID devices, the line: +.Bd -unfilled -offset indent +options RAID_AUTOCONFIG +.Ed +.Pp +must be in the kernel configuration file. See +.Xr raid 4 +for more details. +.Pp +.Ss Unconfiguration +The final operation performed by +.Nm +is to unconfigure a +.Xr raid 4 +device. This is accomplished via a simple: +.Bd -unfilled -offset indent +raidctl -u raid0 +.Ed +.Pp +at which point the device is ready to be reconfigured. +.Pp +.Ss Performance Tuning +Selection of the various parameter values which result in the best +performance can be quite tricky, and often requires a bit of +trial-and-error to get those values most appropriate for a given system. +A whole range of factors come into play, including: +.Bl -enum +.It +Types of components (e.g. SCSI vs. IDE) and their bandwidth +.It +Types of controller cards and their bandwidth +.It +Distribution of components among controllers +.It +IO bandwidth +.It +Filesystem access patterns +.It +CPU speed +.El +.Pp +As with most performance tuning, benchmarking under real-life loads +may be the only way to measure expected performance. Understanding +some of the underlying technology is also useful in tuning. The goal +of this section is to provide pointers to those parameters which may +make significant differences in performance. +.Pp +For a RAID 1 set, a SectPerSU value of 64 or 128 is typically +sufficient. Since data in a RAID 1 set is arranged in a linear +fashion on each component, selecting an appropriate stripe size is +somewhat less critical than it is for a RAID 5 set. However: a stripe +size that is too small will cause large IO's to be broken up into a +number of smaller ones, hurting performance. At the same time, a +large stripe size may cause problems with concurrent accesses to +stripes, which may also affect performance. Thus values in the range +of 32 to 128 are often the most effective. +.Pp +Tuning RAID 5 sets is trickier. In the best case, IO is presented to +the RAID set one stripe at a time. Since the entire stripe is +available at the beginning of the IO, the parity of that stripe can +be calculated before the stripe is written, and then the stripe data +and parity can be written in parallel. When the amount of data being +written is less than a full stripe worth, the +.Sq small write +problem occurs. Since a +.Sq small write +means only a portion of the stripe on the components is going to +change, the data (and parity) on the components must be updated +slightly differently. First, the +.Sq old parity +and +.Sq old data +must be read from the components. Then the new parity is constructed, +using the new data to be written, and the old data and old parity. +Finally, the new data and new parity are written. All this extra data +shuffling results in a serious loss of performance, and is typically 2 +to 4 times slower than a full stripe write (or read). To combat this +problem in the real world, it may be useful to ensure that stripe +sizes are small enough that a +.Sq large IO +from the system will use exactly one large stripe write. As is seen +later, there are some filesystem dependencies which may come into play +here as well. +.Pp +Since the size of a +.Sq large IO +is often (currently) only 32K or 64K, on a 5-drive RAID 5 set it may +be desirable to select a SectPerSU value of 16 blocks (8K) or 32 +blocks (16K). Since there are 4 data sectors per stripe, the maximum +data per stripe is 64 blocks (32K) or 128 blocks (64K). Again, +empirical measurement will provide the best indicators of which +values will yeild better performance. +.Pp +The parameters used for the filesystem are also critical to good +performance. For +.Xr newfs 8 , +for example, increasing the block size to 32K or 64K may improve +performance dramatically. As well, changing the cylinders-per-group +parameter from 16 to 32 or higher is often not only necessary for +larger filesystems, but may also have positive performance +implications. +.Pp +.Ss Summary +Despite the length of this man-page, configuring a RAID set is a +relatively straight-forward process. All that needs to be done is the +following steps: +.Bl -enum +.It +Use +.Xr disklabel 8 +to create the components (of type RAID). +.It +Construct a RAID configuration file: e.g. +.Sq raid0.conf +.It +Configure the RAID set with: +.Bd -unfilled -offset indent +raidctl -C raid0.conf +.Ed +.Pp +.It +Initialize the component labels with: +.Bd -unfilled -offset indent +raidctl -I 123456 raid0 +.Ed +.Pp +.It +Initialize other important parts of the set with: +.Bd -unfilled -offset indent +raidctl -i raid0 +.Ed +.Pp +.It +Get the default label for the RAID set: +.Bd -unfilled -offset indent +disklabel raid0 > /tmp/label +.Ed +.Pp +.It +Edit the label: +.Bd -unfilled -offset indent +vi /tmp/label +.Ed +.Pp +.It +Put the new label on the RAID set: +.Bd -unfilled -offset indent +disklabel -R -r raid0 /tmp/label +.Ed +.Pp +.It +Create the filesystem: +.Bd -unfilled -offset indent +newfs /dev/rraid0e +.Ed +.Pp +.It +Mount the filesystem: +.Bd -unfilled -offset indent +mount /dev/raid0e /mnt +.Ed +.Pp +.It +Use: +.Bd -unfilled -offset indent +raidctl -c raid0.conf +.Ed +.Pp +To re-configure the RAID set the next time it is needed, or put +raid0.conf into /etc where it will automatically be started by +the /etc/rc scripts. +.El +.Pp +.Sh WARNINGS +Certain RAID levels (1, 4, 5, 6, and others) can protect against some +data loss due to component failure. However the loss of two +components of a RAID 4 or 5 system, or the loss of a single component +of a RAID 0 system will result in the entire filesystem being lost. +RAID is +.Ar NOT +a substitute for good backup practices. +.Pp +Recomputation of parity +.Ar MUST +be performed whenever there is a chance that it may have been +compromised. This includes after system crashes, or before a RAID +device has been used for the first time. Failure to keep parity +correct will be catastrophic should a component ever fail -- it is +better to use RAID 0 and get the additional space and speed, than it +is to use parity, but not keep the parity correct. At least with RAID +0 there is no perception of increased data security. +.Pp +.Sh FILES +.Bl -tag -width /dev/XXrXraidX -compact +.It Pa /dev/{,r}raid* +.Cm raid +device special files. +.El +.Pp +.Sh SEE ALSO +.Xr raid 4 , +.Xr ccd 4 , +.Xr rc 8 +.Sh BUGS +Hot-spare removal is currently not available. +.Sh HISTORY +RAIDframe is a framework for rapid prototyping of RAID structures +developed by the folks at the Parallel Data Laboratory at Carnegie +Mellon University (CMU). +A more complete description of the internals and functionality of +RAIDframe is found in the paper "RAIDframe: A Rapid Prototyping Tool +for RAID Systems", by William V. Courtright II, Garth Gibson, Mark +Holland, LeAnn Neal Reilly, and Jim Zelenka, and published by the +Parallel Data Laboratory of Carnegie Mellon University. +.Pp +The +.Nm +command first appeared as a program in CMU's RAIDframe v1.1 distribution. This +version of +.Nm +is a complete re-write, and first appeared in +.Fx 4.4 . +.Sh COPYRIGHT +.Bd -unfilled +The RAIDframe Copyright is as follows: + +Copyright (c) 1994-1996 Carnegie-Mellon University. +All rights reserved. + +Permission to use, copy, modify and distribute this software and +its documentation is hereby granted, provided that both the copyright +notice and this permission notice appear in all copies of the +software, derivative works or modified versions, and any portions +thereof, and that both notices appear in supporting documentation. + +CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" +CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND +FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + +Carnegie Mellon requests users of this software to return to + + Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + School of Computer Science + Carnegie Mellon University + Pittsburgh PA 15213-3890 + +any improvements or extensions that they make and grant Carnegie the +rights to redistribute these changes. +.Ed diff --git a/sbin/raidctl/raidctl.c b/sbin/raidctl/raidctl.c new file mode 100644 index 0000000..4b7d27d --- /dev/null +++ b/sbin/raidctl/raidctl.c @@ -0,0 +1,1110 @@ +/*- + * Copyright (c) 2002 Scott Long <scottl@freebsd.org> + * All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND + * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS + * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) + * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF + * SUCH DAMAGE. + * + * $FreeBSD$ + */ + +/* $NetBSD: raidctl.c,v 1.25 2000/10/31 14:18:39 lukem Exp $ */ +/*- + * Copyright (c) 1996, 1997, 1998 The NetBSD Foundation, Inc. + * All rights reserved. + * + * This code is derived from software contributed to The NetBSD Foundation + * by Greg Oster + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * 3. All advertising materials mentioning features or use of this software + * must display the following acknowledgement: + * This product includes software developed by the NetBSD + * Foundation, Inc. and its contributors. + * 4. Neither the name of The NetBSD Foundation nor the names of its + * contributors may be used to endorse or promote products derived + * from this software without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS + * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED + * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR + * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS + * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + * POSSIBILITY OF SUCH DAMAGE. + */ + +/* + * This program is a re-write of the original rf_ctrl program + * distributed by CMU with RAIDframe 1.1. + * + * This program is the user-land interface to the RAIDframe kernel + * driver in NetBSD. + */ + +#include <sys/param.h> +#include <sys/ioctl.h> +#include <sys/stat.h> +#include <sys/disklabel.h> +#if defined(__FreeBSD__) +#include <sys/linker.h> +#include <sys/module.h> +#endif + +#include <ctype.h> +#include <err.h> +#include <errno.h> +#include <fcntl.h> +#include <stdio.h> +#include <stdlib.h> +#include <string.h> +#include <unistd.h> +#ifdef __FreeBSD__ +#include <paths.h> +#endif +#if defined(__NetBSD__) +#include <util.h> +#endif + +#include <dev/raidframe/rf_raidframe.h> + +int main(int, char *[]); +void do_ioctl(int, u_long, void *, const char *); +static void rf_configure(int, char*, int); +static const char *device_status(RF_DiskStatus_t); +static void rf_get_device_status(int); +static void get_component_number(int, char *, int *, int *); +static void rf_fail_disk(int, char *, int); +static void usage(void); +static void get_component_label(int, char *); +static void set_component_label(int, char *); +static void init_component_labels(int, int); +static void set_autoconfig(int, char *, char *); +static void add_hot_spare(int, char *); +static void remove_hot_spare(int, char *); +static void rebuild_in_place(int, char *); +static void check_status(int,int); +static void check_parity(int,int, char *); +static void do_meter(int, u_long); +static void get_bar(char *, double, int); +static void get_time_string(char *, int); +#if defined(__FreeBSD__) +static void check_driver(void); + +extern char *__progname; +#define PROGNAME __progname + +#define RAIDCTLDEV "/dev/raidctl" +#elif defined(__NetBSD__) +#define PROGNAME getprogname() +#endif + +int verbose; + +int +main(argc,argv) + int argc; + char *argv[]; +{ + int ch; + int num_options; + unsigned long action; + char config_filename[PATH_MAX]; + char dev_name[PATH_MAX]; + char name[PATH_MAX]; + char component[PATH_MAX]; + char autoconf[10]; + int do_recon; + int do_rewrite; + int is_clean; + int serial_number; + struct stat st; + int fd; + int force; + int raidID; + + num_options = 0; + action = 0; + do_recon = 0; + do_rewrite = 0; + is_clean = 0; + force = 0; + + while ((ch = getopt(argc, argv, "a:A:Bc:C:f:F:g:iI:l:r:R:sSpPuv")) + != -1) + switch(ch) { + case 'a': + action = RAIDFRAME_ADD_HOT_SPARE; + strncpy(component, optarg, PATH_MAX); + num_options++; + break; + case 'A': + action = RAIDFRAME_SET_AUTOCONFIG; + strncpy(autoconf, optarg, 10); + num_options++; + break; + case 'B': + action = RAIDFRAME_COPYBACK; + num_options++; + break; + case 'c': + case 'C': + strncpy(config_filename,optarg,PATH_MAX); + action = RAIDFRAME_CONFIGURE; + force = (ch == 'c') ? 0 : 1; +#if defined(__FreeBSD__) + check_driver(); + fd = open(RAIDCTLDEV, O_RDWR); + if (fd < 0) { + fprintf(stderr, "%s: unable to open raid " + "control device %s\n", PROGNAME, + RAIDCTLDEV); + fprintf(stderr, "Error: %s\n", strerror(errno)); + exit(1); + } + rf_configure(fd, config_filename, force); + close(fd); + exit(0); +#elif defined(__NetBSD__) + num_options++; + break; +#endif + case 'f': + action = RAIDFRAME_FAIL_DISK; + strncpy(component, optarg, PATH_MAX); + do_recon = 0; + num_options++; + break; + case 'F': + action = RAIDFRAME_FAIL_DISK; + strncpy(component, optarg, PATH_MAX); + do_recon = 1; + num_options++; + break; + case 'g': + action = RAIDFRAME_GET_COMPONENT_LABEL; + strncpy(component, optarg, PATH_MAX); + num_options++; + break; + case 'i': + action = RAIDFRAME_REWRITEPARITY; + num_options++; + break; + case 'I': + action = RAIDFRAME_INIT_LABELS; + serial_number = atoi(optarg); + num_options++; + break; + case 'l': + action = RAIDFRAME_SET_COMPONENT_LABEL; + strncpy(component, optarg, PATH_MAX); + num_options++; + break; + case 'r': + action = RAIDFRAME_REMOVE_HOT_SPARE; + strncpy(component, optarg, PATH_MAX); + num_options++; + break; + case 'R': + strncpy(component,optarg,PATH_MAX); + action = RAIDFRAME_REBUILD_IN_PLACE; + num_options++; + break; + case 's': + action = RAIDFRAME_GET_INFO; + num_options++; + break; + case 'S': + action = RAIDFRAME_CHECK_RECON_STATUS_EXT; + num_options++; + break; + case 'p': + action = RAIDFRAME_CHECK_PARITY; + num_options++; + break; + case 'P': + action = RAIDFRAME_CHECK_PARITY; + do_rewrite = 1; + num_options++; + break; + case 'u': + action = RAIDFRAME_SHUTDOWN; + num_options++; + break; + case 'v': + verbose = 1; + /* Don't bump num_options, as '-v' is not + an option like the others */ + /* num_options++; */ + break; + default: + usage(); + } + argc -= optind; + argv += optind; + + if ((num_options > 1) || (argc == NULL)) + usage(); + + strncpy(name,argv[0],PATH_MAX); +#if defined(__NetBSD__) + fd = opendisk(name, O_RDWR, dev_name, sizeof(dev_name), 1); +#elif defined(__FreeBSD__) + check_driver(); + + if (name[0] != '/') { + char name1[PATH_MAX]; + snprintf(name1, PATH_MAX, "%s%s", _PATH_DEV, name); + strncpy(name, name1, PATH_MAX); + } + fd = open(name, O_RDWR); +#endif + if (fd == -1) { + fprintf(stderr, "%s: unable to open device file: %s\n", + PROGNAME, name); + exit(1); + } + if (fstat(fd, &st) != 0) { + fprintf(stderr,"%s: stat failure on: %s\n", + PROGNAME, dev_name); + exit(1); + } + if (!S_ISBLK(st.st_mode) && !S_ISCHR(st.st_mode)) { + fprintf(stderr,"%s: invalid device: %s\n", + PROGNAME, dev_name); + exit(1); + } + + switch(action) { + case RAIDFRAME_ADD_HOT_SPARE: + add_hot_spare(fd, component); + break; + case RAIDFRAME_REMOVE_HOT_SPARE: + remove_hot_spare(fd, component); + break; +#if defined(__NetBSD__) + case RAIDFRAME_CONFIGURE: + rf_configure(fd, config_filename, force); + break; +#endif + case RAIDFRAME_SET_AUTOCONFIG: + set_autoconfig(fd, name, autoconf); + break; + case RAIDFRAME_COPYBACK: + printf("Copyback.\n"); + do_ioctl(fd, RAIDFRAME_COPYBACK, NULL, "RAIDFRAME_COPYBACK"); + if (verbose) { + sleep(3); /* XXX give the copyback a chance to start */ + printf("Copyback status:\n"); + do_meter(fd,RAIDFRAME_CHECK_COPYBACK_STATUS_EXT); + } + break; + case RAIDFRAME_FAIL_DISK: + rf_fail_disk(fd, component, do_recon); + break; + case RAIDFRAME_SET_COMPONENT_LABEL: + set_component_label(fd, component); + break; + case RAIDFRAME_GET_COMPONENT_LABEL: + get_component_label(fd, component); + break; + case RAIDFRAME_INIT_LABELS: + init_component_labels(fd, serial_number); + break; + case RAIDFRAME_REWRITEPARITY: + printf("Initiating re-write of parity\n"); + do_ioctl(fd, RAIDFRAME_REWRITEPARITY, NULL, + "RAIDFRAME_REWRITEPARITY"); + if (verbose) { + sleep(3); /* XXX give it time to get started */ + printf("Parity Re-write status:\n"); + do_meter(fd, RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT); + } + break; + case RAIDFRAME_CHECK_RECON_STATUS_EXT: + check_status(fd,1); + break; + case RAIDFRAME_GET_INFO: + rf_get_device_status(fd); + break; + case RAIDFRAME_REBUILD_IN_PLACE: + rebuild_in_place(fd, component); + break; + case RAIDFRAME_CHECK_PARITY: + check_parity(fd, do_rewrite, dev_name); + break; + case RAIDFRAME_SHUTDOWN: +#if defined(__NetBSD__) + do_ioctl(fd, RAIDFRAME_SHUTDOWN, NULL, "RAIDFRAME_SHUTDOWN"); +#elif defined(__FreeBSD__) + /* Find out the unit number of the raid device */ + do_ioctl(fd, RAIDFRAME_GET_UNIT, &raidID, "RAIDFRAME_GET_UNIT"); + close (fd); + + fd = open(RAIDCTLDEV, O_RDWR); + if (fd < 0) { + fprintf(stderr, "%s: unable to open raid control " + "device %s\n", PROGNAME, RAIDCTLDEV); + fprintf(stderr, "Error: %s\n", strerror(errno)); + exit(1); + } + do_ioctl(fd, RAIDFRAME_SHUTDOWN, &raidID, "RAIDFRAME_SHUTDOWN"); + close(fd); +#endif + break; + default: + break; + } + + close(fd); + exit(0); +} + +void +do_ioctl(fd, command, arg, ioctl_name) + int fd; + unsigned long command; + void *arg; + const char *ioctl_name; +{ + if (ioctl(fd, command, arg) < 0) { + warn("ioctl (%s) failed", ioctl_name); + exit(1); + } +} + + +static void +rf_configure(fd,config_file,force) + int fd; + char *config_file; + int force; +{ + void *generic; + RF_Config_t cfg; + + if (rf_MakeConfig( config_file, &cfg ) != 0) { + fprintf(stderr,"%s: unable to create RAIDframe %s\n", + PROGNAME, "configuration structure\n"); + exit(1); + } + + cfg.force = force; + + /* + * Note the extra level of redirection needed here, since + * what we really want to pass in is a pointer to the pointer to + * the configuration structure. + */ + + generic = (void *) &cfg; + do_ioctl(fd, RAIDFRAME_CONFIGURE, &generic, "RAIDFRAME_CONFIGURE"); +} + +static const char * +device_status(status) + RF_DiskStatus_t status; +{ + + switch (status) { + case rf_ds_optimal: + return ("optimal"); + break; + case rf_ds_failed: + return ("failed"); + break; + case rf_ds_reconstructing: + return ("reconstructing"); + break; + case rf_ds_dist_spared: + return ("dist_spared"); + break; + case rf_ds_spared: + return ("spared"); + break; + case rf_ds_spare: + return ("spare"); + break; + case rf_ds_used_spare: + return ("used_spare"); + break; + default: + return ("UNKNOWN"); + } + /* NOTREACHED */ +} + +static void +rf_get_device_status(fd) + int fd; +{ + RF_DeviceConfig_t device_config; + void *cfg_ptr; + int is_clean; + int i; + + cfg_ptr = &device_config; + printf("Address= %p\n", &cfg_ptr); + do_ioctl(fd, RAIDFRAME_GET_INFO, &cfg_ptr, "RAIDFRAME_GET_INFO"); + + printf("Components:\n"); + for(i=0; i < device_config.ndevs; i++) { + printf("%20s: %s\n", device_config.devs[i].devname, + device_status(device_config.devs[i].status)); + } + if (device_config.nspares > 0) { + printf("Spares:\n"); + for(i=0; i < device_config.nspares; i++) { + printf("%20s: %s\n", + device_config.spares[i].devname, + device_status(device_config.spares[i].status)); + } + } else { + printf("No spares.\n"); + } + for(i=0; i < device_config.ndevs; i++) { + if (device_config.devs[i].status == rf_ds_optimal) { + get_component_label(fd, device_config.devs[i].devname); + } else { + printf("%s status is: %s. Skipping label.\n", + device_config.devs[i].devname, + device_status(device_config.devs[i].status)); + } + } + + if (device_config.nspares > 0) { + for(i=0; i < device_config.nspares; i++) { + if ((device_config.spares[i].status == + rf_ds_optimal) || + (device_config.spares[i].status == + rf_ds_used_spare)) { + get_component_label(fd, + device_config.spares[i].devname); + } else { + printf("%s status is: %s. Skipping label.\n", + device_config.spares[i].devname, + device_status(device_config.spares[i].status)); + } + } + } + + do_ioctl(fd, RAIDFRAME_CHECK_PARITY, &is_clean, + "RAIDFRAME_CHECK_PARITY"); + if (is_clean) { + printf("Parity status: clean\n"); + } else { + printf("Parity status: DIRTY\n"); + } + check_status(fd,0); +} + +static void +get_component_number(fd, component_name, component_number, num_columns) + int fd; + char *component_name; + int *component_number; + int *num_columns; +{ + RF_DeviceConfig_t device_config; + void *cfg_ptr; + int i; + int found; + + *component_number = -1; + + /* Assuming a full path spec... */ + cfg_ptr = &device_config; + do_ioctl(fd, RAIDFRAME_GET_INFO, &cfg_ptr, "RAIDFRAME_GET_INFO"); + + *num_columns = device_config.cols; + + found = 0; + for(i=0; i < device_config.ndevs; i++) { + if (strncmp(component_name, device_config.devs[i].devname, + PATH_MAX)==0) { + found = 1; + *component_number = i; + } + } + if (!found) { /* maybe it's a spare? */ + for(i=0; i < device_config.nspares; i++) { + if (strncmp(component_name, + device_config.spares[i].devname, + PATH_MAX)==0) { + found = 1; + *component_number = i + device_config.ndevs; + /* the way spares are done should + really change... */ + *num_columns = device_config.cols + + device_config.nspares; + } + } + } + + if (!found) { + fprintf(stderr,"%s: %s is not a component %s", PROGNAME, + component_name, "of this device\n"); + exit(1); + } +} + +static void +rf_fail_disk(fd, component_to_fail, do_recon) + int fd; + char *component_to_fail; + int do_recon; +{ + struct rf_recon_req recon_request; + int component_num; + int num_cols; + + get_component_number(fd, component_to_fail, &component_num, &num_cols); + + recon_request.row = component_num / num_cols; + recon_request.col = component_num % num_cols; + if (do_recon) { + recon_request.flags = RF_FDFLAGS_RECON; + } else { + recon_request.flags = RF_FDFLAGS_NONE; + } + do_ioctl(fd, RAIDFRAME_FAIL_DISK, &recon_request, + "RAIDFRAME_FAIL_DISK"); + if (do_recon && verbose) { + printf("Reconstruction status:\n"); + sleep(3); /* XXX give reconstruction a chance to start */ + do_meter(fd,RAIDFRAME_CHECK_RECON_STATUS_EXT); + } +} + +static void +get_component_label(fd, component) + int fd; + char *component; +{ + RF_ComponentLabel_t component_label; + int component_num; + int num_cols; + + get_component_number(fd, component, &component_num, &num_cols); + + memset( &component_label, 0, sizeof(RF_ComponentLabel_t)); + component_label.row = component_num / num_cols; + component_label.column = component_num % num_cols; + + do_ioctl( fd, RAIDFRAME_GET_COMPONENT_LABEL, &component_label, + "RAIDFRAME_GET_COMPONENT_LABEL"); + + printf("Component label for %s:\n",component); + + printf(" Row: %d, Column: %d, Num Rows: %d, Num Columns: %d\n", + component_label.row, component_label.column, + component_label.num_rows, component_label.num_columns); + printf(" Version: %d, Serial Number: %d, Mod Counter: %d\n", + component_label.version, component_label.serial_number, + component_label.mod_counter); + printf(" Clean: %s, Status: %d\n", + component_label.clean ? "Yes" : "No", + component_label.status ); + printf(" sectPerSU: %d, SUsPerPU: %d, SUsPerRU: %d\n", + component_label.sectPerSU, component_label.SUsPerPU, + component_label.SUsPerRU); + printf(" Queue size: %d, blocksize: %d, numBlocks: %d\n", + component_label.maxOutstanding, component_label.blockSize, + component_label.numBlocks); + printf(" RAID Level: %c\n", (char) component_label.parityConfig); + printf(" Autoconfig: %s\n", + component_label.autoconfigure ? "Yes" : "No" ); + printf(" Root partition: %s\n", + component_label.root_partition ? "Yes" : "No" ); + printf(" Last configured as: raid%d\n", component_label.last_unit ); +} + +static void +set_component_label(fd, component) + int fd; + char *component; +{ + RF_ComponentLabel_t component_label; + int component_num; + int num_cols; + + get_component_number(fd, component, &component_num, &num_cols); + + /* XXX This is currently here for testing, and future expandability */ + + component_label.version = 1; + component_label.serial_number = 123456; + component_label.mod_counter = 0; + component_label.row = component_num / num_cols; + component_label.column = component_num % num_cols; + component_label.num_rows = 0; + component_label.num_columns = 5; + component_label.clean = 0; + component_label.status = 1; + + do_ioctl( fd, RAIDFRAME_SET_COMPONENT_LABEL, &component_label, + "RAIDFRAME_SET_COMPONENT_LABEL"); +} + + +static void +init_component_labels(fd, serial_number) + int fd; + int serial_number; +{ + RF_ComponentLabel_t component_label; + + component_label.version = 0; + component_label.serial_number = serial_number; + component_label.mod_counter = 0; + component_label.row = 0; + component_label.column = 0; + component_label.num_rows = 0; + component_label.num_columns = 0; + component_label.clean = 0; + component_label.status = 0; + + do_ioctl( fd, RAIDFRAME_INIT_LABELS, &component_label, + "RAIDFRAME_SET_COMPONENT_LABEL"); +} + +static void +set_autoconfig(fd, name, autoconf) + int fd; + char *name; + char *autoconf; +{ + int auto_config; + int root_config; + + auto_config = 0; + root_config = 0; + + if (strncasecmp(autoconf,"root", 4) == 0) { + root_config = 1; + } + + if ((strncasecmp(autoconf,"yes", 3) == 0) || + root_config == 1) { + auto_config = 1; + } + + do_ioctl(fd, RAIDFRAME_SET_AUTOCONFIG, &auto_config, + "RAIDFRAME_SET_AUTOCONFIG"); + + do_ioctl(fd, RAIDFRAME_SET_ROOT, &root_config, + "RAIDFRAME_SET_ROOT"); + + printf("%s: Autoconfigure: %s\n", name, + auto_config ? "Yes" : "No"); + + if (root_config == 1) { + printf("%s: Root: %s\n", name, + auto_config ? "Yes" : "No"); + } +} + +static void +add_hot_spare(fd, component) + int fd; + char *component; +{ + RF_SingleComponent_t hot_spare; + + hot_spare.row = 0; + hot_spare.column = 0; + strncpy(hot_spare.component_name, component, + sizeof(hot_spare.component_name)); + + do_ioctl( fd, RAIDFRAME_ADD_HOT_SPARE, &hot_spare, + "RAIDFRAME_ADD_HOT_SPARE"); +} + +static void +remove_hot_spare(fd, component) + int fd; + char *component; +{ + RF_SingleComponent_t hot_spare; + int component_num; + int num_cols; + + get_component_number(fd, component, &component_num, &num_cols); + + hot_spare.row = component_num / num_cols; + hot_spare.column = component_num % num_cols; + + strncpy(hot_spare.component_name, component, + sizeof(hot_spare.component_name)); + + do_ioctl( fd, RAIDFRAME_REMOVE_HOT_SPARE, &hot_spare, + "RAIDFRAME_REMOVE_HOT_SPARE"); +} + +static void +rebuild_in_place( fd, component ) + int fd; + char *component; +{ + RF_SingleComponent_t comp; + int component_num; + int num_cols; + + get_component_number(fd, component, &component_num, &num_cols); + + comp.row = 0; + comp.column = component_num; + strncpy(comp.component_name, component, sizeof(comp.component_name)); + + do_ioctl( fd, RAIDFRAME_REBUILD_IN_PLACE, &comp, + "RAIDFRAME_REBUILD_IN_PLACE"); + + if (verbose) { + printf("Reconstruction status:\n"); + sleep(3); /* XXX give reconstruction a chance to start */ + do_meter(fd,RAIDFRAME_CHECK_RECON_STATUS_EXT); + } + +} + +static void +check_parity( fd, do_rewrite, dev_name ) + int fd; + int do_rewrite; + char *dev_name; +{ + int is_clean; + int percent_done; + + is_clean = 0; + percent_done = 0; + do_ioctl(fd, RAIDFRAME_CHECK_PARITY, &is_clean, + "RAIDFRAME_CHECK_PARITY"); + if (is_clean) { + printf("%s: Parity status: clean\n",dev_name); + } else { + printf("%s: Parity status: DIRTY\n",dev_name); + if (do_rewrite) { + printf("%s: Initiating re-write of parity\n", + dev_name); + do_ioctl(fd, RAIDFRAME_REWRITEPARITY, NULL, + "RAIDFRAME_REWRITEPARITY"); + sleep(3); /* XXX give it time to + get started. */ + if (verbose) { + printf("Parity Re-write status:\n"); + do_meter(fd, RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT); + } else { + do_ioctl(fd, + RAIDFRAME_CHECK_PARITYREWRITE_STATUS, + &percent_done, + "RAIDFRAME_CHECK_PARITYREWRITE_STATUS" + ); + while( percent_done < 100 ) { + sleep(3); /* wait a bit... */ + do_ioctl(fd, RAIDFRAME_CHECK_PARITYREWRITE_STATUS, + &percent_done, "RAIDFRAME_CHECK_PARITYREWRITE_STATUS"); + } + + } + printf("%s: Parity Re-write complete\n", + dev_name); + } else { + /* parity is wrong, and is not being fixed. + Exit w/ an error. */ + exit(1); + } + } +} + + +static void +check_status( fd, meter ) + int fd; + int meter; +{ + int recon_percent_done = 0; + int parity_percent_done = 0; + int copyback_percent_done = 0; + + do_ioctl(fd, RAIDFRAME_CHECK_RECON_STATUS, &recon_percent_done, + "RAIDFRAME_CHECK_RECON_STATUS"); + printf("Reconstruction is %d%% complete.\n", recon_percent_done); + do_ioctl(fd, RAIDFRAME_CHECK_PARITYREWRITE_STATUS, + &parity_percent_done, + "RAIDFRAME_CHECK_PARITYREWRITE_STATUS"); + printf("Parity Re-write is %d%% complete.\n", parity_percent_done); + do_ioctl(fd, RAIDFRAME_CHECK_COPYBACK_STATUS, ©back_percent_done, + "RAIDFRAME_CHECK_COPYBACK_STATUS"); + printf("Copyback is %d%% complete.\n", copyback_percent_done); + + if (meter) { + /* These 3 should be mutually exclusive at this point */ + if (recon_percent_done < 100) { + printf("Reconstruction status:\n"); + do_meter(fd,RAIDFRAME_CHECK_RECON_STATUS_EXT); + } else if (parity_percent_done < 100) { + printf("Parity Re-write status:\n"); + do_meter(fd,RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT); + } else if (copyback_percent_done < 100) { + printf("Copyback status:\n"); + do_meter(fd,RAIDFRAME_CHECK_COPYBACK_STATUS_EXT); + } + } +} + +const char *tbits = "|/-\\"; + +static void +do_meter(fd, option) + int fd; + u_long option; +{ + int percent_done; + int last_value; + int start_value; + RF_ProgressInfo_t progressInfo; + struct timeval start_time; + struct timeval last_time; + struct timeval current_time; + double elapsed; + int elapsed_sec; + int elapsed_usec; + int simple_eta,last_eta; + double rate; + int amount; + int tbit_value; + int wait_for_more_data; + char buffer[1024]; + char bar_buffer[1024]; + char eta_buffer[1024]; + + if (gettimeofday(&start_time,NULL)) { + fprintf(stderr,"%s: gettimeofday failed!?!?\n", PROGNAME); + exit(errno); + } + memset(&progressInfo, 0, sizeof(RF_ProgressInfo_t)); + + percent_done = 0; + do_ioctl(fd, option, &progressInfo, ""); + last_value = progressInfo.completed; + start_value = last_value; + last_time = start_time; + current_time = start_time; + + wait_for_more_data = 0; + tbit_value = 0; + while(progressInfo.completed < progressInfo.total) { + + percent_done = (progressInfo.completed * 100) / + progressInfo.total; + + get_bar(bar_buffer, percent_done, 40); + + elapsed_sec = current_time.tv_sec - start_time.tv_sec; + elapsed_usec = current_time.tv_usec - start_time.tv_usec; + if (elapsed_usec < 0) { + elapsed_usec-=1000000; + elapsed_sec++; + } + + elapsed = (double) elapsed_sec + + (double) elapsed_usec / 1000000.0; + + amount = progressInfo.completed - start_value; + + if (amount <= 0) { /* we don't do negatives (yet?) */ + amount = 0; + wait_for_more_data = 1; + } else { + wait_for_more_data = 0; + } + + if (elapsed == 0) + rate = 0.0; + else + rate = amount / elapsed; + + if (rate > 0.0) { + simple_eta = (int) (((double)progressInfo.total - + (double) progressInfo.completed) + / rate); + } else { + simple_eta = -1; + } + + if (simple_eta <=0) { + simple_eta = last_eta; + } else { + last_eta = simple_eta; + } + + get_time_string(eta_buffer, simple_eta); + + snprintf(buffer,1024,"\r%3d%% |%s| ETA: %s %c", + percent_done,bar_buffer,eta_buffer,tbits[tbit_value]); + + write(fileno(stdout),buffer,strlen(buffer)); + fflush(stdout); + + /* resolution wasn't high enough... wait until we get another + timestamp and perhaps more "work" done. */ + + if (!wait_for_more_data) { + last_time = current_time; + last_value = progressInfo.completed; + } + + if (++tbit_value>3) + tbit_value = 0; + + sleep(2); + + if (gettimeofday(¤t_time,NULL)) { + fprintf(stderr,"%s: gettimeofday failed!?!?\n", + PROGNAME); + exit(errno); + } + + do_ioctl( fd, option, &progressInfo, ""); + + + } + printf("\n"); +} +/* 40 '*''s per line, then 40 ' ''s line. */ +/* If you've got a screen wider than 160 characters, "tough" */ + +#define STAR_MIDPOINT 4*40 +const char stars[] = "****************************************" + "****************************************" + "****************************************" + "****************************************" + " " + " " + " " + " " + " "; + +static void +get_bar(string,percent,max_strlen) + char *string; + double percent; + int max_strlen; +{ + int offset; + + if (max_strlen > STAR_MIDPOINT) { + max_strlen = STAR_MIDPOINT; + } + offset = STAR_MIDPOINT - + (int)((percent * max_strlen)/ 100); + if (offset < 0) + offset = 0; + snprintf(string,max_strlen,"%s",&stars[offset]); +} + +static void +get_time_string(string,simple_time) + char *string; + int simple_time; +{ + int minutes, seconds, hours; + char hours_buffer[5]; + char minutes_buffer[5]; + char seconds_buffer[5]; + + if (simple_time >= 0) { + + minutes = (int) simple_time / 60; + seconds = ((int)simple_time - 60*minutes); + hours = minutes / 60; + minutes = minutes - 60*hours; + + if (hours > 0) { + snprintf(hours_buffer,5,"%02d:",hours); + } else { + snprintf(hours_buffer,5," "); + } + + snprintf(minutes_buffer,5,"%02d:",minutes); + snprintf(seconds_buffer,5,"%02d",seconds); + snprintf(string,1024,"%s%s%s", + hours_buffer, minutes_buffer, seconds_buffer); + } else { + snprintf(string,1024," --:--"); + } + +} + +static void +usage() +{ + const char *progname = PROGNAME; + + fprintf(stderr, "usage: %s [-v] -a component dev\n", progname); + fprintf(stderr, " %s [-v] -A yes | no | root dev\n", progname); + fprintf(stderr, " %s [-v] -B dev\n", progname); + fprintf(stderr, " %s [-v] -c config_file dev\n", progname); + fprintf(stderr, " %s [-v] -C config_file dev\n", progname); + fprintf(stderr, " %s [-v] -f component dev\n", progname); + fprintf(stderr, " %s [-v] -F component dev\n", progname); + fprintf(stderr, " %s [-v] -g component dev\n", progname); + fprintf(stderr, " %s [-v] -i dev\n", progname); + fprintf(stderr, " %s [-v] -I serial_number dev\n", progname); + fprintf(stderr, " %s [-v] -r component dev\n", progname); + fprintf(stderr, " %s [-v] -R component dev\n", progname); + fprintf(stderr, " %s [-v] -s dev\n", progname); + fprintf(stderr, " %s [-v] -S dev\n", progname); + fprintf(stderr, " %s [-v] -u dev\n", progname); +#if 0 + fprintf(stderr, "usage: %s %s\n", progname, + "-a | -f | -F | -g | -r | -R component dev"); + fprintf(stderr, " %s -B | -i | -s | -S -u dev\n", progname); + fprintf(stderr, " %s -c | -C config_file dev\n", progname); + fprintf(stderr, " %s -I serial_number dev\n", progname); +#endif + exit(1); + /* NOTREACHED */ +} + +#if defined(__FreeBSD__) +static void +check_driver(void) +{ + if (modfind("raidframe") == -1 && kldload("raidframe") == -1) { + printf("Error: Cannot load RAIDframe driver.\n"); + exit(1); + } +} +#endif + diff --git a/sbin/raidctl/rf_configure.c b/sbin/raidctl/rf_configure.c new file mode 100644 index 0000000..8df7889 --- /dev/null +++ b/sbin/raidctl/rf_configure.c @@ -0,0 +1,583 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_configure.c,v 1.13 2001/01/27 19:32:47 oster Exp $ */ + +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Mark Holland + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +/*************************************************************** + * + * rf_configure.c -- code related to configuring the raidframe system + * + * configuration is complicated by the fact that we want the same + * driver to work both in the kernel and at user level. In the + * kernel, we can't read the configuration file, so we configure + * by running a user-level program that reads the config file, + * creates a data structure describing the configuration and + * passes it into the kernel via an ioctl. Since we want the config + * code to be common between the two versions of the driver, we + * configure using the same two-step process when running at + * user level. Of course, at user level, the config structure is + * passed directly to the config routine, rather than via ioctl. + * + * This file is not compiled into the kernel, so we have no + * need for KERNEL ifdefs. + * + **************************************************************/ + +#include <stdio.h> +#include <stdlib.h> +#include <errno.h> +#include <string.h> +#include <fcntl.h> +#include <unistd.h> +#include <sys/types.h> +#include <sys/stat.h> +#include <dev/raidframe/rf_raid.h> +#include <dev/raidframe/rf_raidframe.h> +#include <dev/raidframe/rf_general.h> +#include <dev/raidframe/rf_decluster.h> +#include <dev/raidframe/rf_configure.h> + +/* + * XXX we include this here so we don't need to drag rf_debugMem.c into + * the picture... This is userland, afterall... + */ + +/* + * XXX sucky hack to override the defn. of RF_Malloc as given in + * rf_debugMem.c... but I *really* don't want (nor need) to link with + * that file here in userland.. GO + */ + +#undef RF_Malloc +#define RF_Malloc(_p_, _size_, _cast_) \ + { \ + _p_ = _cast_ malloc((u_long)_size_); \ + bzero((char *)_p_, _size_); \ + } + +int distSpareYes = 1; +int distSpareNo = 0; + +/* The mapsw[] table below contains all the various RAID types that might +be supported by the kernel. The actual supported types are found +in sys/dev/raidframe/rf_layout.c. */ + +static RF_LayoutSW_t mapsw[] = { + /* parity declustering */ + {'T', "Parity declustering", + rf_MakeLayoutSpecificDeclustered, &distSpareNo}, + /* parity declustering with distributed sparing */ + {'D', "Distributed sparing parity declustering", + rf_MakeLayoutSpecificDeclustered, &distSpareYes}, + /* declustered P+Q */ + {'Q', "Declustered P+Q", + rf_MakeLayoutSpecificDeclustered, &distSpareNo}, + /* RAID 5 with rotated sparing */ + {'R', "RAID Level 5 rotated sparing", rf_MakeLayoutSpecificNULL, NULL}, + /* Chained Declustering */ + {'C', "Chained Declustering", rf_MakeLayoutSpecificNULL, NULL}, + /* Interleaved Declustering */ + {'I', "Interleaved Declustering", rf_MakeLayoutSpecificNULL, NULL}, + /* RAID level 0 */ + {'0', "RAID Level 0", rf_MakeLayoutSpecificNULL, NULL}, + /* RAID level 1 */ + {'1', "RAID Level 1", rf_MakeLayoutSpecificNULL, NULL}, + /* RAID level 4 */ + {'4', "RAID Level 4", rf_MakeLayoutSpecificNULL, NULL}, + /* RAID level 5 */ + {'5', "RAID Level 5", rf_MakeLayoutSpecificNULL, NULL}, + /* Evenodd */ + {'E', "EvenOdd", rf_MakeLayoutSpecificNULL, NULL}, + /* Declustered Evenodd */ + {'e', "Declustered EvenOdd", + rf_MakeLayoutSpecificDeclustered, &distSpareNo}, + /* parity logging */ + {'L', "Parity logging", rf_MakeLayoutSpecificNULL, NULL}, + /* end-of-list marker */ + {'\0', NULL, NULL, NULL} +}; +RF_LayoutSW_t * +rf_GetLayout(RF_ParityConfig_t parityConfig) +{ + RF_LayoutSW_t *p; + + /* look up the specific layout */ + for (p = &mapsw[0]; p->parityConfig; p++) + if (p->parityConfig == parityConfig) + break; + if (!p->parityConfig) + return (NULL); + RF_ASSERT(p->parityConfig == parityConfig); + return (p); +} + +static int rf_search_file_for_start_of(const char *string, char *buf, + int len, FILE * fp); +static int rf_get_next_nonblank_line(char *buf, int len, FILE * fp, + const char *errmsg); + +/* + * called from user level to read the configuration file and create + * a configuration control structure. This is used in the user-level + * version of the driver, and in the user-level program that configures + * the system via ioctl. + */ +int +rf_MakeConfig(configname, cfgPtr) + char *configname; + RF_Config_t *cfgPtr; +{ + int numscanned, val, r, c, retcode, aa, bb, cc; + char buf[256], buf1[256], *cp; + RF_LayoutSW_t *lp; + FILE *fp; + + bzero((char *) cfgPtr, sizeof(RF_Config_t)); + + fp = fopen(configname, "r"); + if (!fp) { + RF_ERRORMSG1("Can't open config file %s\n", configname); + return (-1); + } + rewind(fp); + if (rf_search_file_for_start_of("array", buf, 256, fp)) { + RF_ERRORMSG1("Unable to find start of \"array\" params in config file %s\n", configname); + retcode = -1; + goto out; + } + rf_get_next_nonblank_line(buf, 256, fp, "Config file error (\"array\" section): unable to get numRow and numCol\n"); + + /* + * wackiness with aa, bb, cc to get around size problems on + * different platforms + */ + numscanned = sscanf(buf, "%d %d %d", &aa, &bb, &cc); + if (numscanned != 3) { + RF_ERRORMSG("Config file error (\"array\" section): unable to get numRow, numCol, numSpare\n"); + retcode = -1; + goto out; + } + cfgPtr->numRow = (RF_RowCol_t) aa; + cfgPtr->numCol = (RF_RowCol_t) bb; + cfgPtr->numSpare = (RF_RowCol_t) cc; + + /* debug section is optional */ + for (c = 0; c < RF_MAXDBGV; c++) + cfgPtr->debugVars[c][0] = '\0'; + rewind(fp); + if (!rf_search_file_for_start_of("debug", buf, 256, fp)) { + for (c = 0; c < RF_MAXDBGV; c++) { + if (rf_get_next_nonblank_line(buf, 256, fp, NULL)) + break; + cp = rf_find_non_white(buf); + if (!strncmp(cp, "START", strlen("START"))) + break; + (void) strcpy(&cfgPtr->debugVars[c][0], cp); + } + } + rewind(fp); + strcpy(cfgPtr->diskQueueType, "fifo"); + cfgPtr->maxOutstandingDiskReqs = 1; + /* scan the file for the block related to disk queues */ + if (rf_search_file_for_start_of("queue", buf, 256, fp)) { + RF_ERRORMSG2("[No disk queue discipline specified in config file %s. Using %s.]\n", configname, cfgPtr->diskQueueType); + } else { + if (rf_get_next_nonblank_line(buf, 256, fp, NULL)) { + RF_ERRORMSG2("[No disk queue discipline specified in config file %s. Using %s.]\n", configname, cfgPtr->diskQueueType); + } + } + + /* the queue specifier line contains two entries: 1st char of first + * word specifies queue to be used 2nd word specifies max num reqs + * that can be outstanding on the disk itself (typically 1) */ + if (sscanf(buf, "%s %d", buf1, &val) != 2) { + RF_ERRORMSG1("Can't determine queue type and/or max outstanding reqs from line: %s", buf); + RF_ERRORMSG2("Using %s-%d\n", cfgPtr->diskQueueType, cfgPtr->maxOutstandingDiskReqs); + } else { + char *ch; + bcopy(buf1, cfgPtr->diskQueueType, + RF_MIN(sizeof(cfgPtr->diskQueueType), strlen(buf1) + 1)); + for (ch = buf1; *ch; ch++) { + if (*ch == ' ') { + *ch = '\0'; + break; + } + } + cfgPtr->maxOutstandingDiskReqs = val; + } + + rewind(fp); + + if (rf_search_file_for_start_of("disks", buf, 256, fp)) { + RF_ERRORMSG1("Can't find \"disks\" section in config file %s\n", configname); + retcode = -1; + goto out; + } + for (r = 0; r < cfgPtr->numRow; r++) { + for (c = 0; c < cfgPtr->numCol; c++) { + int devfd; + char bfr[256], *bfr1; + if (rf_get_next_nonblank_line(&bfr[0], 256, fp, NULL)) { + RF_ERRORMSG2("Config file error: unable to get device file for disk at row %d col %d\n", r, c); + retcode = -1; + goto out; + } + /* Get rid of the newline at the end of the string */ + if ((bfr1 = strchr(&bfr[0], '\n')) != NULL) + *bfr1 = NULL; + /* Make sure the device exists */ + if ((devfd = open(&bfr[0], O_RDWR)) < 0) { + RF_ERRORMSG2( + "Config file error: device %s, %s\n", + &bfr[0], strerror(errno)); + retcode = -1; + goto out; + } + close(devfd); + strncpy(&cfgPtr->devnames[r][c][0], &bfr[0], 50); + } + } + + /* "spare" section is optional */ + rewind(fp); + if (rf_search_file_for_start_of("spare", buf, 256, fp)) + cfgPtr->numSpare = 0; + for (c = 0; c < cfgPtr->numSpare; c++) { + if (rf_get_next_nonblank_line(&cfgPtr->spare_names[c][0], + 256, fp, NULL)) { + RF_ERRORMSG1("Config file error: unable to get device file for spare disk %d\n", c); + retcode = -1; + goto out; + } + } + + /* scan the file for the block related to layout */ + rewind(fp); + if (rf_search_file_for_start_of("layout", buf, 256, fp)) { + RF_ERRORMSG1("Can't find \"layout\" section in configuration file %s\n", configname); + retcode = -1; + goto out; + } + if (rf_get_next_nonblank_line(buf, 256, fp, NULL)) { + RF_ERRORMSG("Config file error (\"layout\" section): unable to find common layout param line\n"); + retcode = -1; + goto out; + } + c = sscanf(buf, "%d %d %d %c", &aa, &bb, &cc, &cfgPtr->parityConfig); + cfgPtr->sectPerSU = (RF_SectorNum_t) aa; + cfgPtr->SUsPerPU = (RF_StripeNum_t) bb; + cfgPtr->SUsPerRU = (RF_StripeNum_t) cc; + if (c != 4) { + RF_ERRORMSG("Unable to scan common layout line\n"); + retcode = -1; + goto out; + } + lp = rf_GetLayout(cfgPtr->parityConfig); + if (lp == NULL) { + RF_ERRORMSG1("Unknown parity config '%c'\n", + cfgPtr->parityConfig); + retcode = -1; + goto out; + } + + retcode = lp->MakeLayoutSpecific(fp, cfgPtr, lp->makeLayoutSpecificArg); +out: + fclose(fp); + if (retcode < 0) + retcode = errno = EINVAL; + else + errno = retcode; + return (retcode); +} + + +/* used in architectures such as RAID0 where there is no layout-specific + * information to be passed into the configuration code. + */ +int +rf_MakeLayoutSpecificNULL(fp, cfgPtr, ignored) + FILE *fp; + RF_Config_t *cfgPtr; + void *ignored; +{ + cfgPtr->layoutSpecificSize = 0; + cfgPtr->layoutSpecific = NULL; + return (0); +} + +int +rf_MakeLayoutSpecificDeclustered(configfp, cfgPtr, arg) + FILE *configfp; + RF_Config_t *cfgPtr; + void *arg; +{ + int b, v, k, r, lambda, norotate, i, val, distSpare; + char *cfgBuf, *bdfile, *p, *smname; + char buf[256], smbuf[256]; + FILE *fp; + + distSpare = *((int *) arg); + + /* get the block design file name */ + if (rf_get_next_nonblank_line(buf, 256, configfp, + "Can't find block design file name in config file\n")) + return (EINVAL); + bdfile = rf_find_non_white(buf); + if (bdfile[strlen(bdfile) - 1] == '\n') { + /* strip newline char */ + bdfile[strlen(bdfile) - 1] = '\0'; + } + /* open bd file, check validity of configuration */ + if ((fp = fopen(bdfile, "r")) == NULL) { + RF_ERRORMSG1("RAID: config error: Can't open layout table file %s\n", bdfile); + return (EINVAL); + } + if (fgets(buf, 256, fp) == NULL) { + RF_ERRORMSG1("RAID: config error: Can't read layout from layout table file %s\n", bdfile); + return (EINVAL); + } + i = sscanf(buf, "%u %u %u %u %u %u", &b, &v, &k, &r, &lambda, &norotate); + if (i == 5) + norotate = 0; /* no-rotate flag is optional */ + else if (i != 6) { + RF_ERRORMSG("Unable to parse header line in block design file\n"); + return (EINVAL); + } + /* set the sparemap directory. In the in-kernel version, there's a + * daemon that's responsible for finding the sparemaps */ + if (distSpare) { + if (rf_get_next_nonblank_line(smbuf, 256, configfp, + "Can't find sparemap file name in config file\n")) + return (EINVAL); + smname = rf_find_non_white(smbuf); + if (smname[strlen(smname) - 1] == '\n') { + /* strip newline char */ + smname[strlen(smname) - 1] = '\0'; + } + } else { + smbuf[0] = '\0'; + smname = smbuf; + } + + /* allocate a buffer to hold the configuration info */ + cfgPtr->layoutSpecificSize = RF_SPAREMAP_NAME_LEN + + 6 * sizeof(int) + b * k; + /* can't use RF_Malloc here b/c debugMem module not yet init'd */ + cfgBuf = (char *) malloc(cfgPtr->layoutSpecificSize); + cfgPtr->layoutSpecific = (void *) cfgBuf; + p = cfgBuf; + + /* install name of sparemap file */ + for (i = 0; smname[i]; i++) + *p++ = smname[i]; + /* pad with zeros */ + while (i < RF_SPAREMAP_NAME_LEN) { + *p++ = '\0'; + i++; + } + + /* + * fill in the buffer with the block design parameters + * and then the block design itself + */ + *((int *) p) = b; + p += sizeof(int); + *((int *) p) = v; + p += sizeof(int); + *((int *) p) = k; + p += sizeof(int); + *((int *) p) = r; + p += sizeof(int); + *((int *) p) = lambda; + p += sizeof(int); + *((int *) p) = norotate; + p += sizeof(int); + + while (fscanf(fp, "%d", &val) == 1) + *p++ = (char) val; + fclose(fp); + if (p - cfgBuf != cfgPtr->layoutSpecificSize) { + RF_ERRORMSG2("Size mismatch creating layout specific data: is %d sb %d bytes\n", (int) (p - cfgBuf), (int) (6 * sizeof(int) + b * k)); + return (EINVAL); + } + return (0); +} + +/**************************************************************************** + * + * utilities + * + ***************************************************************************/ + +/* finds a non-white character in the line */ +char * +rf_find_non_white(char *p) +{ + for (; *p != '\0' && (*p == ' ' || *p == '\t'); p++); + return (p); +} + +/* finds a white character in the line */ +char * +rf_find_white(char *p) +{ + for (; *p != '\0' && (*p != ' ' && *p != '\t'); p++); + return (p); +} + +/* + * searches a file for a line that says "START string", where string is + * specified as a parameter + */ +static int +rf_search_file_for_start_of(string, buf, len, fp) + const char *string; + char *buf; + int len; + FILE *fp; +{ + char *p; + + while (1) { + if (fgets(buf, len, fp) == NULL) + return (-1); + p = rf_find_non_white(buf); + if (!strncmp(p, "START", strlen("START"))) { + p = rf_find_white(p); + p = rf_find_non_white(p); + if (!strncmp(p, string, strlen(string))) + return (0); + } + } +} + +/* reads from file fp into buf until it finds an interesting line */ +int +rf_get_next_nonblank_line(buf, len, fp, errmsg) + char *buf; + int len; + FILE *fp; + const char *errmsg; +{ + char *p; + + while (fgets(buf, 256, fp) != NULL) { + p = rf_find_non_white(buf); + if (*p == '\n' || *p == '\0' || *p == '#') + continue; + return (0); + } + if (errmsg) + RF_ERRORMSG1("%s", errmsg); + return (1); +} + +/* + * Allocates an array for the spare table, and initializes it from a file. + * In the user-level version, this is called when recon is initiated. + * When/if I move recon into the kernel, there'll be a daemon that does + * an ioctl into raidframe which will block until a spare table is needed. + * When it returns, it will read a spare table from the file system, + * pass it into the kernel via a different ioctl, and then block again + * on the original ioctl. + * + * This is specific to the declustered layout, but doesn't belong in + * rf_decluster.c because it uses stuff that can't be compiled into + * the kernel, and it needs to be compiled into the user-level sparemap daemon. + * + */ +void * +rf_ReadSpareTable(req, fname) + RF_SparetWait_t *req; + char *fname; +{ + int i, j, numFound, linecount, tableNum, tupleNum, + spareDisk, spareBlkOffset; + char buf[1024], targString[100], errString[100]; + RF_SpareTableEntry_t **table; + FILE *fp; + + /* allocate and initialize the table */ + RF_Malloc(table, + req->TablesPerSpareRegion * sizeof(RF_SpareTableEntry_t *), + (RF_SpareTableEntry_t **)); + for (i = 0; i < req->TablesPerSpareRegion; i++) { + RF_Malloc(table[i], + req->BlocksPerTable * sizeof(RF_SpareTableEntry_t), + (RF_SpareTableEntry_t *)); + for (j = 0; j < req->BlocksPerTable; j++) + table[i][j].spareDisk = + table[i][j].spareBlockOffsetInSUs = -1; + } + + /* 2. open sparemap file, sanity check */ + if ((fp = fopen(fname, "r")) == NULL) { + fprintf(stderr, + "rf_ReadSpareTable: Can't open sparemap file %s\n", fname); + return (NULL); + } + if (rf_get_next_nonblank_line(buf, 1024, fp, + "Invalid sparemap file: can't find header line\n")) + return (NULL); + if (buf[strlen(buf) - 1] == '\n') + buf[strlen(buf) - 1] = '\0'; + + sprintf(targString, "fdisk %d\n", req->fcol); + sprintf(errString, + "Invalid sparemap file: can't find \"fdisk %d\" line\n", + req->fcol); + while (1) { + rf_get_next_nonblank_line(buf, 1024, fp, errString); + if (!strncmp(buf, targString, strlen(targString))) + break; + } + + /* no more blank lines or comments allowed now */ + linecount = req->TablesPerSpareRegion * req->TableDepthInPUs; + for (i = 0; i < linecount; i++) { + numFound = fscanf(fp, " %d %d %d %d", &tableNum, &tupleNum, + &spareDisk, &spareBlkOffset); + if (numFound != 4) { + fprintf(stderr, "Sparemap file prematurely exhausted after %d of %d lines\n", i, linecount); + return (NULL); + } + RF_ASSERT(tableNum >= 0 && + tableNum < req->TablesPerSpareRegion); + RF_ASSERT(tupleNum >= 0 && tupleNum < req->BlocksPerTable); + RF_ASSERT(spareDisk >= 0 && spareDisk < req->C); + RF_ASSERT(spareBlkOffset >= 0 && spareBlkOffset < + req->SpareSpaceDepthPerRegionInSUs / req->SUsPerPU); + + table[tableNum][tupleNum].spareDisk = spareDisk; + table[tableNum][tupleNum].spareBlockOffsetInSUs = + spareBlkOffset * req->SUsPerPU; + } + + fclose(fp); + return ((void *) table); +} diff --git a/share/man/man4/Makefile b/share/man/man4/Makefile index 94d54f4..cf80fb8 100644 --- a/share/man/man4/Makefile +++ b/share/man/man4/Makefile @@ -146,6 +146,7 @@ MAN= aac.4 \ pt.4 \ pty.4 \ puc.4 \ + raid.4 \ random.4 \ rl.4 \ route.4 \ diff --git a/share/man/man4/raid.4 b/share/man/man4/raid.4 new file mode 100644 index 0000000..54c8b77 --- /dev/null +++ b/share/man/man4/raid.4 @@ -0,0 +1,342 @@ +.\" $FreeBSD$ +.\" $NetBSD: raid.4,v 1.16 2000/11/02 03:34:08 oster Exp $ +.\" +.\" Copyright (c) 1998 The NetBSD Foundation, Inc. +.\" All rights reserved. +.\" +.\" This code is derived from software contributed to The NetBSD Foundation +.\" by Greg Oster +.\" +.\" Redistribution and use in source and binary forms, with or without +.\" modification, are permitted provided that the following conditions +.\" are met: +.\" 1. Redistributions of source code must retain the above copyright +.\" notice, this list of conditions and the following disclaimer. +.\" 2. Redistributions in binary form must reproduce the above copyright +.\" notice, this list of conditions and the following disclaimer in the +.\" documentation and/or other materials provided with the distribution. +.\" 3. All advertising materials mentioning features or use of this software +.\" must display the following acknowledgement: +.\" This product includes software developed by the NetBSD +.\" Foundation, Inc. and its contributors. +.\" 4. Neither the name of The NetBSD Foundation nor the names of its +.\" contributors may be used to endorse or promote products derived +.\" from this software without specific prior written permission. +.\" +.\" THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS +.\" ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED +.\" TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR +.\" PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS +.\" BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR +.\" CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF +.\" SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS +.\" INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN +.\" CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) +.\" ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE +.\" POSSIBILITY OF SUCH DAMAGE. +.\" +.\" +.\" Copyright (c) 1995 Carnegie-Mellon University. +.\" All rights reserved. +.\" +.\" Author: Mark Holland +.\" +.\" Permission to use, copy, modify and distribute this software and +.\" its documentation is hereby granted, provided that both the copyright +.\" notice and this permission notice appear in all copies of the +.\" software, derivative works or modified versions, and any portions +.\" thereof, and that both notices appear in supporting documentation. +.\" +.\" CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" +.\" CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND +.\" FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. +.\" +.\" Carnegie Mellon requests users of this software to return to +.\" +.\" Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU +.\" School of Computer Science +.\" Carnegie Mellon University +.\" Pittsburgh PA 15213-3890 +.\" +.\" any improvements or extensions that they make and grant Carnegie the +.\" rights to redistribute these changes. +.\" +.Dd October 20, 2002 +.Dt RAID 4 +.Os +.Sh NAME +.Nm raid +.Nd RAIDframe disk driver +.Sh SYNOPSIS +.Cd device raidframe +.Sh DESCRIPTION +The +.Nm +driver provides RAID 0, 1, 4, and 5 (and more!) capabilities to +.Fx . +This +document assumes that the reader has at least some familiarity with RAID +and RAID concepts. The reader is also assumed to know how to configure +disks and pseudo-devices into kernels, how to generate kernels, and how +to partition disks. +.Pp +RAIDframe provides a number of different RAID levels including: +.Bl -tag -width indent +.It RAID 0 +provides simple data striping across the components. +.It RAID 1 +provides mirroring. +.It RAID 4 +provides data striping across the components, with parity +stored on a dedicated drive (in this case, the last component). +.It RAID 5 +provides data striping across the components, with parity +distributed across all the components. +.El +.Pp +There are a wide variety of other RAID levels supported by RAIDframe, +including Even-Odd parity, RAID level 5 with rotated sparing, Chained +declustering, and Interleaved declustering. The reader is referred +to the RAIDframe documentation mentioned in the +.Sx HISTORY +section for more detail on these various RAID configurations. +.Pp +Depending on the parity level configured, the device driver can +support the failure of component drives. The number of failures +allowed depends on the parity level selected. If the driver is able +to handle drive failures, and a drive does fail, then the system is +operating in "degraded mode". In this mode, all missing data must be +reconstructed from the data and parity present on the other +components. This results in much slower data accesses, but +does mean that a failure need not bring the system to a complete halt. +.Pp +The RAID driver supports and enforces the use of +.Sq component labels . +A +.Sq component label +contains important information about the component, including a +user-specified serial number, the row and column of that component in +the RAID set, and whether the data (and parity) on the component is +.Sq clean . +If the driver determines that the labels are very inconsistent with +respect to each other (e.g. two or more serial numbers do not match) +or that the component label is not consistent with it's assigned place +in the set (e.g. the component label claims the component should be +the 3rd one a 6-disk set, but the RAID set has it as the 3rd component +in a 5-disk set) then the device will fail to configure. If the +driver determines that exactly one component label seems to be +incorrect, and the RAID set is being configured as a set that supports +a single failure, then the RAID set will be allowed to configure, but +the incorrectly labeled component will be marked as +.Sq failed , +and the RAID set will begin operation in degraded mode. +If all of the components are consistent among themselves, the RAID set +will configure normally. +.Pp +Component labels are also used to support the auto-detection and +auto-configuration of RAID sets. A RAID set can be flagged as +auto-configurable, in which case it will be configured automatically +during the kernel boot process. RAID filesystems which are +automatically configured are also eligible to be the root filesystem. +There is currently only limited support (alpha and pmax architectures) +for booting a kernel directly from a RAID 1 set, and no support for +booting from any other RAID sets. To use a RAID set as the root +filesystem, a kernel is usually obtained from a small non-RAID +partition, after which any auto-configuring RAID set can be used for the +root filesystem. See +.Xr raidctl 8 +for more information on auto-configuration of RAID sets. +.Pp +The driver supports +.Sq hot spares , +disks which are on-line, but are not +actively used in an existing filesystem. Should a disk fail, the +driver is capable of reconstructing the failed disk onto a hot spare +or back onto a replacement drive. +If the components are hot swapable, the failed disk can then be +removed, a new disk put in its place, and a copyback operation +performed. The copyback operation, as its name indicates, will copy +the reconstructed data from the hot spare to the previously failed +(and now replaced) disk. Hot spares can also be hot-added using +.Xr raidctl 8 . +.Pp +If a component cannot be detected when the RAID device is configured, +that component will be simply marked as 'failed'. +.Pp +The user-land utility for doing all +.Nm +configuration and other operations +is +.Xr raidctl 8 . +Most importantly, +.Xr raidctl 8 +must be used with the +.Fl i +option to initialize all RAID sets. In particular, this +initialization includes re-building the parity data. This rebuilding +of parity data is also required when either a) a new RAID device is +brought up for the first time or b) after an un-clean shutdown of a +RAID device. By using the +.Fl P +option to +.Xr raidctl 8 , +and performing this on-demand recomputation of all parity +before doing a +.Xr fsck 8 +or a +.Xr newfs 8 , +filesystem integrity and parity integrity can be ensured. It bears +repeating again that parity recomputation is +.Ar required +before any filesystems are created or used on the RAID device. If the +parity is not correct, then missing data cannot be correctly recovered. +.Pp +RAID levels may be combined in a hierarchical fashion. For example, a RAID 0 +device can be constructed out of a number of RAID 5 devices (which, in turn, +may be constructed out of the physical disks, or of other RAID devices). +.Pp +It is important that drives be hard-coded at their respective +addresses (i.e. not left free-floating, where a drive with SCSI ID of +4 can end up as /dev/da0c) for well-behaved functioning of the RAID +device. This is true for all types of drives, including IDE, SCSI, +etc. For IDE drivers, use the option ATAPI_STATIC_ID in your kernel +config file. For SCSI, you should 'wire down' the devices according to +their ID. See +.Xr cam 4 +for examples of this. +The rationale for fixing the device addresses +is as follows: Consider a system with three SCSI drives at SCSI ID's +4, 5, and 6, and which map to components /dev/da0e, /dev/da1e, and +/dev/da2e of a RAID 5 set. If the drive with SCSI ID 5 fails, and the +system reboots, the old /dev/da2e will show up as /dev/da1e. The RAID +driver is able to detect that component positions have changed, and +will not allow normal configuration. If the device addresses are hard +coded, however, the RAID driver would detect that the middle component +is unavailable, and bring the RAID 5 set up in degraded mode. Note +that the auto-detection and auto-configuration code does not care +about where the components live. The auto-configuration code will +correctly configure a device even after any number of the components +have been re-arranged. +.Pp +The first step to using the +.Nm +driver is to ensure that it is suitably configured in the kernel. This is +done by adding a line similar to: +.Bd -unfilled -offset indent +pseudo-device raidframe # RAIDframe disk device +.Ed +.Pp +to the kernel configuration file. No count argument is required as the +driver will automatically create and configure new device units as needed. +To turn on component auto-detection and auto-configuration of RAID +sets, simply add: +.Bd -unfilled -offset indent +options RAID_AUTOCONFIG +.Ed +.Pp +to the kernel configuration file. +.Pp +All component partitions must be of the type +.Dv FS_BSDFFS +(e.g. 4.2BSD) or +.Dv FS_RAID . +The use of the latter is strongly encouraged, and is required if +auto-configuration of the RAID set is desired. Since RAIDframe leaves +room for disklabels, RAID components can be simply raw disks, or +partitions which use an entire disk. +.Pp +A more detailed treatment of actually using a +.Nm +device is found in +.Xr raidctl 8 . +It is highly recommended that the steps to reconstruct, copyback, and +re-compute parity are well understood by the system administrator(s) +.Ar before +a component failure. Doing the wrong thing when a component fails may +result in data loss. +.Pp +.Sh WARNINGS +Certain RAID levels (1, 4, 5, 6, and others) can protect against some +data loss due to component failure. However the loss of two +components of a RAID 4 or 5 system, or the loss of a single component +of a RAID 0 system, will result in the entire filesystems on that RAID +device being lost. +RAID is +.Ar NOT +a substitute for good backup practices. +.Pp +Recomputation of parity +.Ar MUST +be performed whenever there is a chance that it may have been +compromised. This includes after system crashes, or before a RAID +device has been used for the first time. Failure to keep parity +correct will be catastrophic should a component ever fail -- it is +better to use RAID 0 and get the additional space and speed, than it +is to use parity, but not keep the parity correct. At least with RAID +0 there is no perception of increased data security. +.Pp +.Sh FILES +.Bl -tag -width /dev/XXrXraidX -compact +.It Pa /dev/raid* +.Nm +device special files. +.El +.Pp +.Sh SEE ALSO +.Xr raidctl 8 , +.Xr config 8 , +.Xr fsck 8 , +.Xr mount 8 , +.Xr newfs 8 , +.Sh HISTORY +The +.Nm +driver in +.Fx +is a port of RAIDframe, a framework for rapid prototyping of RAID +structures developed by the folks at the Parallel Data Laboratory at +Carnegie Mellon University (CMU). RAIDframe, as originally distributed +by CMU, provides a RAID simulator for a number of different +architectures, and a user-level device driver and a kernel device +driver for Digital Unix. The +.Nm +driver is a kernelized version of RAIDframe v1.1, based on the +.Nx +port of RAIDframe by Greg Oster. +.Pp +A more complete description of the internals and functionality of +RAIDframe is found in the paper "RAIDframe: A Rapid Prototyping Tool +for RAID Systems", by William V. Courtright II, Garth Gibson, Mark +Holland, LeAnn Neal Reilly, and Jim Zelenka, and published by the +Parallel Data Laboratory of Carnegie Mellon University. +The +.Nm +driver first appeared in +.Fx 4.4 . +.Sh COPYRIGHT +.Bd -unfilled +The RAIDframe Copyright is as follows: + +Copyright (c) 1994-1996 Carnegie-Mellon University. +All rights reserved. + +Permission to use, copy, modify and distribute this software and +its documentation is hereby granted, provided that both the copyright +notice and this permission notice appear in all copies of the +software, derivative works or modified versions, and any portions +thereof, and that both notices appear in supporting documentation. + +CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" +CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND +FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + +Carnegie Mellon requests users of this software to return to + + Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + School of Computer Science + Carnegie Mellon University + Pittsburgh PA 15213-3890 + +any improvements or extensions that they make and grant Carnegie the +rights to redistribute these changes. +.Ed diff --git a/sys/conf/NOTES b/sys/conf/NOTES index 02e1d9f..ea14607 100644 --- a/sys/conf/NOTES +++ b/sys/conf/NOTES @@ -979,6 +979,12 @@ device ccd #Concatenated disk driver device vinum #Vinum concat/mirror/raid driver options VINUMDEBUG #enable Vinum debugging hooks +# RAIDframe device. RAID_AUTOCONFIG allows RAIDframe to search all of the +# disk devices in the system looking for components that it recognizes (already +# configured once before) and auto-configured them into arrays. +device raidframe +options RAID_AUTOCONFIG + # Kernel side iconv library options LIBICONV diff --git a/sys/conf/files b/sys/conf/files index c003bc3..d2a8210 100644 --- a/sys/conf/files +++ b/sys/conf/files @@ -547,6 +547,66 @@ dev/puc/puc.c optional puc dev/puc/puc_pci.c optional puc pci dev/puc/puc_pccard.c optional puc pccard dev/puc/pucdata.c optional puc pci +dev/raidframe/rf_acctrace.c optional raidframe +dev/raidframe/rf_alloclist.c optional raidframe +dev/raidframe/rf_aselect.c optional raidframe +dev/raidframe/rf_callback.c optional raidframe +dev/raidframe/rf_chaindecluster.c optional raidframe +dev/raidframe/rf_copyback.c optional raidframe +dev/raidframe/rf_cvscan.c optional raidframe +dev/raidframe/rf_dagdegrd.c optional raidframe +dev/raidframe/rf_dagdegwr.c optional raidframe +dev/raidframe/rf_dagffrd.c optional raidframe +dev/raidframe/rf_dagffwr.c optional raidframe +dev/raidframe/rf_dagfuncs.c optional raidframe +dev/raidframe/rf_dagutils.c optional raidframe +dev/raidframe/rf_debugMem.c optional raidframe +dev/raidframe/rf_debugprint.c optional raidframe +dev/raidframe/rf_decluster.c optional raidframe +dev/raidframe/rf_declusterPQ.c optional raidframe +dev/raidframe/rf_diskqueue.c optional raidframe +dev/raidframe/rf_disks.c optional raidframe +dev/raidframe/rf_driver.c optional raidframe +dev/raidframe/rf_engine.c optional raidframe +dev/raidframe/rf_evenodd.c optional raidframe +dev/raidframe/rf_evenodd_dagfuncs.c optional raidframe +dev/raidframe/rf_evenodd_dags.c optional raidframe +dev/raidframe/rf_fifo.c optional raidframe +dev/raidframe/rf_freebsdkintf.c optional raidframe +dev/raidframe/rf_interdecluster.c optional raidframe +dev/raidframe/rf_invertq.c optional raidframe +dev/raidframe/rf_layout.c optional raidframe +dev/raidframe/rf_map.c optional raidframe +dev/raidframe/rf_mcpair.c optional raidframe +dev/raidframe/rf_memchunk.c optional raidframe +dev/raidframe/rf_nwayxor.c optional raidframe +dev/raidframe/rf_options.c optional raidframe +dev/raidframe/rf_paritylog.c optional raidframe +dev/raidframe/rf_paritylogDiskMgr.c optional raidframe +dev/raidframe/rf_paritylogging.c optional raidframe +dev/raidframe/rf_parityloggingdags.c optional raidframe +dev/raidframe/rf_parityscan.c optional raidframe +dev/raidframe/rf_pq.c optional raidframe +dev/raidframe/rf_pqdeg.c optional raidframe +dev/raidframe/rf_pqdegdags.c optional raidframe +dev/raidframe/rf_psstatus.c optional raidframe +dev/raidframe/rf_raid0.c optional raidframe +dev/raidframe/rf_raid1.c optional raidframe +dev/raidframe/rf_raid4.c optional raidframe +dev/raidframe/rf_raid5.c optional raidframe +dev/raidframe/rf_raid5_rotatedspare.c optional raidframe +dev/raidframe/rf_reconbuffer.c optional raidframe +dev/raidframe/rf_reconmap.c optional raidframe +dev/raidframe/rf_reconstruct.c optional raidframe +dev/raidframe/rf_reconutil.c optional raidframe +dev/raidframe/rf_revent.c optional raidframe +dev/raidframe/rf_shutdown.c optional raidframe +dev/raidframe/rf_sstf.c optional raidframe +dev/raidframe/rf_states.c optional raidframe +dev/raidframe/rf_stripelocks.c optional raidframe +dev/raidframe/rf_strutils.c optional raidframe +dev/raidframe/rf_threadstuff.c optional raidframe +dev/raidframe/rf_utils.c optional raidframe dev/random/harvest.c standard dev/random/randomdev.c optional random dev/random/yarrow.c optional random diff --git a/sys/conf/majors b/sys/conf/majors index 1703c68..a83fa3d 100644 --- a/sys/conf/majors +++ b/sys/conf/majors @@ -193,6 +193,8 @@ chrdev name comments 175 ips IBM/Adaptec ServeRAID (control device) 176 ipsd IBM/Adaptec ServeRAID (disk device) 177 openfirm OpenFirmware control device <tmm> +178 raidctl RAIDframe (control device) +179 raid RAIDframe (disk device) 200 ?? entries from 200-252 are reserved for local use 252 ?? entries from 200-252 are reserved for local use 254 internal Used internally by the kernel diff --git a/sys/conf/options b/sys/conf/options index 0311849..9305b2a 100644 --- a/sys/conf/options +++ b/sys/conf/options @@ -549,6 +549,10 @@ ROOTDEVNAME opt_rootdevname.h FDC_DEBUG opt_fdc.h PCFCLOCK_VERBOSE opt_pcfclock.h PCFCLOCK_MAX_RETRIES opt_pcfclock.h + +# RAIDframe options +RAID_AUTOCONFIG opt_raid.h +RAID_DEBUG opt_raid.h TDFX_LINUX opt_tdfx.h KTR opt_global.h diff --git a/sys/dev/raidframe/rf_acctrace.c b/sys/dev/raidframe/rf_acctrace.c new file mode 100644 index 0000000..eaa4b2a --- /dev/null +++ b/sys/dev/raidframe/rf_acctrace.c @@ -0,0 +1,172 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_acctrace.c,v 1.4 1999/08/13 03:41:52 oster Exp $ */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Mark Holland + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +/***************************************************************************** + * + * acctrace.c -- code to support collecting information about each access + * + *****************************************************************************/ + +#if defined(__FreeBSD__) +#include <sys/types.h> +#include <sys/time.h> +#endif +#include <sys/stat.h> +#if defined(__NetBSD__) +#include <sys/types.h> +#endif + +#include <dev/raidframe/rf_threadstuff.h> +#include <dev/raidframe/rf_types.h> +#include <dev/raidframe/rf_debugMem.h> +#include <dev/raidframe/rf_acctrace.h> +#include <dev/raidframe/rf_general.h> +#include <dev/raidframe/rf_raid.h> +#include <dev/raidframe/rf_etimer.h> +#include <dev/raidframe/rf_hist.h> +#include <dev/raidframe/rf_shutdown.h> + +static long numTracesSoFar; +static int accessTraceBufCount = 0; +static RF_AccTraceEntry_t *access_tracebuf; +static long traceCount; + +int rf_stopCollectingTraces; +RF_DECLARE_MUTEX(rf_tracing_mutex) + int rf_trace_fd; + + static void rf_ShutdownAccessTrace(void *); + + static void rf_ShutdownAccessTrace(ignored) + void *ignored; +{ + if (rf_accessTraceBufSize) { + if (accessTraceBufCount) + rf_FlushAccessTraceBuf(); + RF_Free(access_tracebuf, rf_accessTraceBufSize * sizeof(RF_AccTraceEntry_t)); + } + rf_mutex_destroy(&rf_tracing_mutex); +} + +int +rf_ConfigureAccessTrace(listp) + RF_ShutdownList_t **listp; +{ + int rc; + + numTracesSoFar = accessTraceBufCount = rf_stopCollectingTraces = 0; + if (rf_accessTraceBufSize) { + RF_Malloc(access_tracebuf, rf_accessTraceBufSize * sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *)); + accessTraceBufCount = 0; + } + traceCount = 0; + numTracesSoFar = 0; + rc = rf_mutex_init(&rf_tracing_mutex, __FUNCTION__); + if (rc) { + RF_ERRORMSG3("Unable to init mutex file %s line %d rc=%d\n", __FILE__, + __LINE__, rc); + } + rc = rf_ShutdownCreate(listp, rf_ShutdownAccessTrace, NULL); + if (rc) { + RF_ERRORMSG3("Unable to add to shutdown list file %s line %d rc=%d\n", __FILE__, + __LINE__, rc); + if (rf_accessTraceBufSize) { + RF_Free(access_tracebuf, rf_accessTraceBufSize * sizeof(RF_AccTraceEntry_t)); + rf_mutex_destroy(&rf_tracing_mutex); + } + } + return (rc); +} +/* install a trace record. cause a flush to disk or to the trace collector daemon + * if the trace buffer is at least 1/2 full. + */ +void +rf_LogTraceRec(raid, rec) + RF_Raid_t *raid; + RF_AccTraceEntry_t *rec; +{ + RF_AccTotals_t *acc = &raid->acc_totals; +#if 0 + RF_Etimer_t timer; + int i, n; +#endif + + if (rf_stopCollectingTraces || ((rf_maxNumTraces >= 0) && (numTracesSoFar >= rf_maxNumTraces))) + return; + + /* update AccTotals for this device */ + if (!raid->keep_acc_totals) + return; + acc->num_log_ents++; + if (rec->reconacc) { + acc->recon_start_to_fetch_us += rec->specific.recon.recon_start_to_fetch_us; + acc->recon_fetch_to_return_us += rec->specific.recon.recon_fetch_to_return_us; + acc->recon_return_to_submit_us += rec->specific.recon.recon_return_to_submit_us; + acc->recon_num_phys_ios += rec->num_phys_ios; + acc->recon_phys_io_us += rec->phys_io_us; + acc->recon_diskwait_us += rec->diskwait_us; + acc->recon_reccount++; + } else { + RF_HIST_ADD(acc->tot_hist, rec->total_us); + RF_HIST_ADD(acc->dw_hist, rec->diskwait_us); + /* count of physical ios which are too big. often due to + * thermal recalibration */ + /* if bigvals > 0, you should probably ignore this data set */ + if (rec->diskwait_us > 100000) + acc->bigvals++; + acc->total_us += rec->total_us; + acc->suspend_ovhd_us += rec->specific.user.suspend_ovhd_us; + acc->map_us += rec->specific.user.map_us; + acc->lock_us += rec->specific.user.lock_us; + acc->dag_create_us += rec->specific.user.dag_create_us; + acc->dag_retry_us += rec->specific.user.dag_retry_us; + acc->exec_us += rec->specific.user.exec_us; + acc->cleanup_us += rec->specific.user.cleanup_us; + acc->exec_engine_us += rec->specific.user.exec_engine_us; + acc->xor_us += rec->xor_us; + acc->q_us += rec->q_us; + acc->plog_us += rec->plog_us; + acc->diskqueue_us += rec->diskqueue_us; + acc->diskwait_us += rec->diskwait_us; + acc->num_phys_ios += rec->num_phys_ios; + acc->phys_io_us = rec->phys_io_us; + acc->user_reccount++; + } +} + + +/* assumes the tracing mutex is locked at entry. In order to allow this to be called + * from interrupt context, we don't do any copyouts here, but rather just wake trace + * buffer collector thread. + */ +void +rf_FlushAccessTraceBuf() +{ + accessTraceBufCount = 0; +} diff --git a/sys/dev/raidframe/rf_acctrace.h b/sys/dev/raidframe/rf_acctrace.h new file mode 100644 index 0000000..c211514 --- /dev/null +++ b/sys/dev/raidframe/rf_acctrace.h @@ -0,0 +1,134 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_acctrace.h,v 1.3 1999/02/05 00:06:06 oster Exp $ */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Mark Holland + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +/***************************************************************************** + * + * acctrace.h -- header file for acctrace.c + * + *****************************************************************************/ + + +#ifndef _RF__RF_ACCTRACE_H_ +#define _RF__RF_ACCTRACE_H_ + +#include <dev/raidframe/rf_types.h> +#include <dev/raidframe/rf_hist.h> +#include <dev/raidframe/rf_etimer.h> + +typedef struct RF_user_acc_stats_s { + RF_uint64 suspend_ovhd_us; /* us spent mucking in the + * access-suspension code */ + RF_uint64 map_us; /* us spent mapping the access */ + RF_uint64 lock_us; /* us spent locking & unlocking stripes, + * including time spent blocked */ + RF_uint64 dag_create_us;/* us spent creating the DAGs */ + RF_uint64 dag_retry_us; /* _total_ us spent retrying the op -- not + * broken down into components */ + RF_uint64 exec_us; /* us spent in DispatchDAG */ + RF_uint64 exec_engine_us; /* us spent in engine, not including + * blocking time */ + RF_uint64 cleanup_us; /* us spent tearing down the dag & maps, and + * generally cleaning up */ +} RF_user_acc_stats_t; + +typedef struct RF_recon_acc_stats_s { + RF_uint32 recon_start_to_fetch_us; + RF_uint32 recon_fetch_to_return_us; + RF_uint32 recon_return_to_submit_us; +} RF_recon_acc_stats_t; + +typedef struct RF_acctrace_entry_s { + union { + RF_user_acc_stats_t user; + RF_recon_acc_stats_t recon; + } specific; + RF_uint8 reconacc; /* whether this is a tracerec for a user acc + * or a recon acc */ + RF_uint64 xor_us; /* us spent doing XORs */ + RF_uint64 q_us; /* us spent doing XORs */ + RF_uint64 plog_us; /* us spent waiting to stuff parity into log */ + RF_uint64 diskqueue_us; /* _total_ us spent in disk queue(s), incl + * concurrent ops */ + RF_uint64 diskwait_us; /* _total_ us spent waiting actually waiting + * on the disk, incl concurrent ops */ + RF_uint64 total_us; /* total us spent on this access */ + RF_uint64 num_phys_ios; /* number of physical I/Os invoked */ + RF_uint64 phys_io_us; /* time of physical I/O */ + RF_Etimer_t tot_timer; /* a timer used to compute total access time */ + RF_Etimer_t timer; /* a generic timer val for timing events that + * live across procedure boundaries */ + RF_Etimer_t recon_timer;/* generic timer for recon stuff */ + RF_uint64 index; +} RF_AccTraceEntry_t; + +typedef struct RF_AccTotals_s { + /* user acc stats */ + RF_uint64 suspend_ovhd_us; + RF_uint64 map_us; + RF_uint64 lock_us; + RF_uint64 dag_create_us; + RF_uint64 dag_retry_us; + RF_uint64 exec_us; + RF_uint64 exec_engine_us; + RF_uint64 cleanup_us; + RF_uint64 user_reccount; + /* recon acc stats */ + RF_uint64 recon_start_to_fetch_us; + RF_uint64 recon_fetch_to_return_us; + RF_uint64 recon_return_to_submit_us; + RF_uint64 recon_io_overflow_count; + RF_uint64 recon_phys_io_us; + RF_uint64 recon_num_phys_ios; + RF_uint64 recon_diskwait_us; + RF_uint64 recon_reccount; + /* trace entry stats */ + RF_uint64 xor_us; + RF_uint64 q_us; + RF_uint64 plog_us; + RF_uint64 diskqueue_us; + RF_uint64 diskwait_us; + RF_uint64 total_us; + RF_uint64 num_log_ents; + RF_uint64 phys_io_overflow_count; + RF_uint64 num_phys_ios; + RF_uint64 phys_io_us; + RF_uint64 bigvals; + /* histograms */ + RF_Hist_t dw_hist[RF_HIST_NUM_BUCKETS]; + RF_Hist_t tot_hist[RF_HIST_NUM_BUCKETS]; +} RF_AccTotals_t; +#if RF_UTILITY == 0 +RF_DECLARE_EXTERN_MUTEX(rf_tracing_mutex) +#endif /* RF_UTILITY == 0 */ + + int rf_ConfigureAccessTrace(RF_ShutdownList_t ** listp); + void rf_LogTraceRec(RF_Raid_t * raid, RF_AccTraceEntry_t * rec); + void rf_FlushAccessTraceBuf(void); + +#endif /* !_RF__RF_ACCTRACE_H_ */ diff --git a/sys/dev/raidframe/rf_alloclist.c b/sys/dev/raidframe/rf_alloclist.c new file mode 100644 index 0000000..2f0f63a --- /dev/null +++ b/sys/dev/raidframe/rf_alloclist.c @@ -0,0 +1,188 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_alloclist.c,v 1.4 1999/08/13 03:41:53 oster Exp $ */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Mark Holland + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +/**************************************************************************** + * + * Alloclist.c -- code to manipulate allocation lists + * + * an allocation list is just a list of AllocListElem structures. Each + * such structure contains a fixed-size array of pointers. Calling + * FreeAList() causes each pointer to be freed. + * + ***************************************************************************/ + +#include <dev/raidframe/rf_types.h> +#include <dev/raidframe/rf_threadstuff.h> +#include <dev/raidframe/rf_alloclist.h> +#include <dev/raidframe/rf_debugMem.h> +#include <dev/raidframe/rf_etimer.h> +#include <dev/raidframe/rf_general.h> +#include <dev/raidframe/rf_shutdown.h> + +RF_DECLARE_STATIC_MUTEX(alist_mutex) + static unsigned int fl_hit_count, fl_miss_count; + + static RF_AllocListElem_t *al_free_list = NULL; + static int al_free_list_count; + +#define RF_AL_FREELIST_MAX 256 + +#define DO_FREE(_p,_sz) RF_Free((_p),(_sz)) + + static void rf_ShutdownAllocList(void *); + + static void rf_ShutdownAllocList(ignored) + void *ignored; +{ + RF_AllocListElem_t *p, *pt; + + for (p = al_free_list; p;) { + pt = p; + p = p->next; + DO_FREE(pt, sizeof(*pt)); + } + rf_mutex_destroy(&alist_mutex); + /* + printf("Alloclist: Free list hit count %lu (%lu %%) miss count %lu (%lu %%)\n", + fl_hit_count, (100*fl_hit_count)/(fl_hit_count+fl_miss_count), + fl_miss_count, (100*fl_miss_count)/(fl_hit_count+fl_miss_count)); + */ +} + +int +rf_ConfigureAllocList(listp) + RF_ShutdownList_t **listp; +{ + int rc; + + rc = rf_mutex_init(&alist_mutex, __FUNCTION__); + if (rc) { + RF_ERRORMSG3("Unable to init mutex file %s line %d rc=%d\n", __FILE__, + __LINE__, rc); + return (rc); + } + al_free_list = NULL; + fl_hit_count = fl_miss_count = al_free_list_count = 0; + rc = rf_ShutdownCreate(listp, rf_ShutdownAllocList, NULL); + if (rc) { + RF_ERRORMSG3("Unable to add to shutdown list file %s line %d rc=%d\n", + __FILE__, __LINE__, rc); + rf_mutex_destroy(&alist_mutex); + return (rc); + } + return (0); +} + + +/* we expect the lists to have at most one or two elements, so we're willing + * to search for the end. If you ever observe the lists growing longer, + * increase POINTERS_PER_ALLOC_LIST_ELEMENT. + */ +void +rf_real_AddToAllocList(l, p, size, lockflag) + RF_AllocListElem_t *l; + void *p; + int size; + int lockflag; +{ + RF_AllocListElem_t *newelem; + + for (; l->next; l = l->next) + RF_ASSERT(l->numPointers == RF_POINTERS_PER_ALLOC_LIST_ELEMENT); /* find end of list */ + + RF_ASSERT(l->numPointers >= 0 && l->numPointers <= RF_POINTERS_PER_ALLOC_LIST_ELEMENT); + if (l->numPointers == RF_POINTERS_PER_ALLOC_LIST_ELEMENT) { + newelem = rf_real_MakeAllocList(lockflag); + l->next = newelem; + l = newelem; + } + l->pointers[l->numPointers] = p; + l->sizes[l->numPointers] = size; + l->numPointers++; + +} + + +/* we use the debug_mem_mutex here because we need to lock it anyway to call free. + * this is probably a bug somewhere else in the code, but when I call malloc/free + * outside of any lock I have endless trouble with malloc appearing to return the + * same pointer twice. Since we have to lock it anyway, we might as well use it + * as the lock around the al_free_list. Note that we can't call Free with the + * debug_mem_mutex locked. + */ +void +rf_FreeAllocList(l) + RF_AllocListElem_t *l; +{ + int i; + RF_AllocListElem_t *temp, *p; + + for (p = l; p; p = p->next) { + RF_ASSERT(p->numPointers >= 0 && p->numPointers <= RF_POINTERS_PER_ALLOC_LIST_ELEMENT); + for (i = 0; i < p->numPointers; i++) { + RF_ASSERT(p->pointers[i]); + RF_Free(p->pointers[i], p->sizes[i]); + } + } + while (l) { + temp = l; + l = l->next; + if (al_free_list_count > RF_AL_FREELIST_MAX) { + DO_FREE(temp, sizeof(*temp)); + } else { + temp->next = al_free_list; + al_free_list = temp; + al_free_list_count++; + } + } +} + +RF_AllocListElem_t * +rf_real_MakeAllocList(lockflag) + int lockflag; +{ + RF_AllocListElem_t *p; + + if (al_free_list) { + fl_hit_count++; + p = al_free_list; + al_free_list = p->next; + al_free_list_count--; + } else { + fl_miss_count++; + RF_Malloc(p, sizeof(RF_AllocListElem_t), (RF_AllocListElem_t *)); /* no allocation locking + * in kernel, so this is + * fine */ + } + if (p == NULL) { + return (NULL); + } + bzero((char *) p, sizeof(RF_AllocListElem_t)); + return (p); +} diff --git a/sys/dev/raidframe/rf_alloclist.h b/sys/dev/raidframe/rf_alloclist.h new file mode 100644 index 0000000..c746452 --- /dev/null +++ b/sys/dev/raidframe/rf_alloclist.h @@ -0,0 +1,60 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_alloclist.h,v 1.3 1999/02/05 00:06:06 oster Exp $ */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Mark Holland + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +/**************************************************************************** + * + * alloclist.h -- header file for alloclist.c + * + ***************************************************************************/ + +#ifndef _RF__RF_ALLOCLIST_H_ +#define _RF__RF_ALLOCLIST_H_ + +#include <dev/raidframe/rf_types.h> + +#define RF_POINTERS_PER_ALLOC_LIST_ELEMENT 20 + +struct RF_AllocListElem_s { + void *pointers[RF_POINTERS_PER_ALLOC_LIST_ELEMENT]; + int sizes[RF_POINTERS_PER_ALLOC_LIST_ELEMENT]; + int numPointers; + RF_AllocListElem_t *next; +}; +#define rf_MakeAllocList(_ptr_) _ptr_ = rf_real_MakeAllocList(1); +#define rf_AddToAllocList(_l_,_ptr_,_sz_) rf_real_AddToAllocList((_l_), (_ptr_), (_sz_), 1) + +int rf_ConfigureAllocList(RF_ShutdownList_t ** listp); + +#if RF_UTILITY == 0 +void rf_real_AddToAllocList(RF_AllocListElem_t * l, void *p, int size, int lockflag); +void rf_FreeAllocList(RF_AllocListElem_t * l); +RF_AllocListElem_t *rf_real_MakeAllocList(int lockflag); +#endif /* RF_UTILITY == 0 */ + +#endif /* !_RF__RF_ALLOCLIST_H_ */ diff --git a/sys/dev/raidframe/rf_archs.h b/sys/dev/raidframe/rf_archs.h new file mode 100644 index 0000000..faef157 --- /dev/null +++ b/sys/dev/raidframe/rf_archs.h @@ -0,0 +1,75 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_archs.h,v 1.11 2001/01/26 04:43:16 oster Exp $ */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Mark Holland + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +/* rf_archs.h -- defines for which architectures you want to + * include is some particular build of raidframe. Unfortunately, + * it's difficult to exclude declustering, P+Q, and distributed + * sparing because the code is intermixed with RAID5 code. This + * should be fixed. + * + * this is really intended only for use in the kernel, where I + * am worried about the size of the object module. At user level and + * in the simulator, I don't really care that much, so all the + * architectures can be compiled together. Note that by itself, turning + * off these defines does not affect the size of the executable; you + * have to edit the makefile for that. + * + * comment out any line below to eliminate that architecture. + * the list below includes all the modules that can be compiled + * out. + * + */ + +#ifndef _RF__RF_ARCHS_H_ +#define _RF__RF_ARCHS_H_ + +#define RF_INCLUDE_EVENODD 1 + +#define RF_INCLUDE_RAID5_RS 1 +#define RF_INCLUDE_PARITYLOGGING 1 + +#define RF_INCLUDE_CHAINDECLUSTER 1 +#define RF_INCLUDE_INTERDECLUSTER 1 + +#define RF_INCLUDE_PARITY_DECLUSTERING 1 +#define RF_INCLUDE_PARITY_DECLUSTERING_DS 1 + +#define RF_INCLUDE_RAID0 1 +#define RF_INCLUDE_RAID1 1 +#define RF_INCLUDE_RAID4 1 +#define RF_INCLUDE_RAID5 1 +#define RF_INCLUDE_RAID6 0 +#define RF_INCLUDE_DECL_PQ 0 + +#define RF_MEMORY_REDZONES 0 +#define RF_RECON_STATS 1 + +#include <dev/raidframe/rf_options.h> + +#endif /* !_RF__RF_ARCHS_H_ */ diff --git a/sys/dev/raidframe/rf_aselect.c b/sys/dev/raidframe/rf_aselect.c new file mode 100644 index 0000000..4fe69e3 --- /dev/null +++ b/sys/dev/raidframe/rf_aselect.c @@ -0,0 +1,494 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_aselect.c,v 1.3 1999/02/05 00:06:06 oster Exp $ */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Mark Holland, William V. Courtright II + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +/***************************************************************************** + * + * aselect.c -- algorithm selection code + * + *****************************************************************************/ + +#include <dev/raidframe/rf_archs.h> +#include <dev/raidframe/rf_types.h> +#include <dev/raidframe/rf_raid.h> +#include <dev/raidframe/rf_dag.h> +#include <dev/raidframe/rf_dagutils.h> +#include <dev/raidframe/rf_dagfuncs.h> +#include <dev/raidframe/rf_general.h> +#include <dev/raidframe/rf_desc.h> +#include <dev/raidframe/rf_map.h> + +#if defined(__NetBSD__) || defined(__FreeBSD__) && defined(_KERNEL) +/* the function below is not used... so don't define it! */ +#else +static void TransferDagMemory(RF_DagHeader_t *, RF_DagHeader_t *); +#endif + +static int InitHdrNode(RF_DagHeader_t **, RF_Raid_t *, int); +static void UpdateNodeHdrPtr(RF_DagHeader_t *, RF_DagNode_t *); +int rf_SelectAlgorithm(RF_RaidAccessDesc_t *, RF_RaidAccessFlags_t); + + +/****************************************************************************** + * + * Create and Initialiaze a dag header and termination node + * + *****************************************************************************/ +static int +InitHdrNode(hdr, raidPtr, memChunkEnable) + RF_DagHeader_t **hdr; + RF_Raid_t *raidPtr; + int memChunkEnable; +{ + /* create and initialize dag hdr */ + *hdr = rf_AllocDAGHeader(); + rf_MakeAllocList((*hdr)->allocList); + if ((*hdr)->allocList == NULL) { + rf_FreeDAGHeader(*hdr); + return (ENOMEM); + } + (*hdr)->status = rf_enable; + (*hdr)->numSuccedents = 0; + (*hdr)->raidPtr = raidPtr; + (*hdr)->next = NULL; + return (0); +} +/****************************************************************************** + * + * Transfer allocation list and mem chunks from one dag to another + * + *****************************************************************************/ +#if defined(__NetBSD__) || defined(__FreeBSD__) && defined(_KERNEL) +/* the function below is not used... so don't define it! */ +#else +static void +TransferDagMemory(daga, dagb) + RF_DagHeader_t *daga; + RF_DagHeader_t *dagb; +{ + RF_AccessStripeMapHeader_t *end; + RF_AllocListElem_t *p; + int i, memChunksXfrd = 0, xtraChunksXfrd = 0; + + /* transfer allocList from dagb to daga */ + for (p = dagb->allocList; p; p = p->next) { + for (i = 0; i < p->numPointers; i++) { + rf_AddToAllocList(daga->allocList, p->pointers[i], p->sizes[i]); + p->pointers[i] = NULL; + p->sizes[i] = 0; + } + p->numPointers = 0; + } + + /* transfer chunks from dagb to daga */ + while ((memChunksXfrd + xtraChunksXfrd < dagb->chunkIndex + dagb->xtraChunkIndex) && (daga->chunkIndex < RF_MAXCHUNKS)) { + /* stuff chunks into daga's memChunk array */ + if (memChunksXfrd < dagb->chunkIndex) { + daga->memChunk[daga->chunkIndex++] = dagb->memChunk[memChunksXfrd]; + dagb->memChunk[memChunksXfrd++] = NULL; + } else { + daga->memChunk[daga->xtraChunkIndex++] = dagb->xtraMemChunk[xtraChunksXfrd]; + dagb->xtraMemChunk[xtraChunksXfrd++] = NULL; + } + } + /* use escape hatch to hold excess chunks */ + while (memChunksXfrd + xtraChunksXfrd < dagb->chunkIndex + dagb->xtraChunkIndex) { + if (memChunksXfrd < dagb->chunkIndex) { + daga->xtraMemChunk[daga->xtraChunkIndex++] = dagb->memChunk[memChunksXfrd]; + dagb->memChunk[memChunksXfrd++] = NULL; + } else { + daga->xtraMemChunk[daga->xtraChunkIndex++] = dagb->xtraMemChunk[xtraChunksXfrd]; + dagb->xtraMemChunk[xtraChunksXfrd++] = NULL; + } + } + RF_ASSERT((memChunksXfrd == dagb->chunkIndex) && (xtraChunksXfrd == dagb->xtraChunkIndex)); + RF_ASSERT(daga->chunkIndex <= RF_MAXCHUNKS); + RF_ASSERT(daga->xtraChunkIndex <= daga->xtraChunkCnt); + dagb->chunkIndex = 0; + dagb->xtraChunkIndex = 0; + + /* transfer asmList from dagb to daga */ + if (dagb->asmList) { + if (daga->asmList) { + end = daga->asmList; + while (end->next) + end = end->next; + end->next = dagb->asmList; + } else + daga->asmList = dagb->asmList; + dagb->asmList = NULL; + } +} +#endif /* __NetBSD__ */ + +/***************************************************************************************** + * + * Ensure that all node->dagHdr fields in a dag are consistent + * + * IMPORTANT: This routine recursively searches all succedents of the node. If a + * succedent is encountered whose dagHdr ptr does not require adjusting, that node's + * succedents WILL NOT BE EXAMINED. + * + ****************************************************************************************/ +static void +UpdateNodeHdrPtr(hdr, node) + RF_DagHeader_t *hdr; + RF_DagNode_t *node; +{ + int i; + RF_ASSERT(hdr != NULL && node != NULL); + for (i = 0; i < node->numSuccedents; i++) + if (node->succedents[i]->dagHdr != hdr) + UpdateNodeHdrPtr(hdr, node->succedents[i]); + node->dagHdr = hdr; +} +/****************************************************************************** + * + * Create a DAG to do a read or write operation. + * + * create an array of dagLists, one list per parity stripe. + * return the lists in the array desc->dagArray. + * + * Normally, each list contains one dag for the entire stripe. In some + * tricky cases, we break this into multiple dags, either one per stripe + * unit or one per block (sector). When this occurs, these dags are returned + * as a linked list (dagList) which is executed sequentially (to preserve + * atomic parity updates in the stripe). + * + * dags which operate on independent parity goups (stripes) are returned in + * independent dagLists (distinct elements in desc->dagArray) and may be + * executed concurrently. + * + * Finally, if the SelectionFunc fails to create a dag for a block, we punt + * and return 1. + * + * The above process is performed in two phases: + * 1) create an array(s) of creation functions (eg stripeFuncs) + * 2) create dags and concatenate/merge to form the final dag. + * + * Because dag's are basic blocks (single entry, single exit, unconditional + * control flow, we can add the following optimizations (future work): + * first-pass optimizer to allow max concurrency (need all data dependencies) + * second-pass optimizer to eliminate common subexpressions (need true + * data dependencies) + * third-pass optimizer to eliminate dead code (need true data dependencies) + *****************************************************************************/ + +#define MAXNSTRIPES 5 + +int +rf_SelectAlgorithm(desc, flags) + RF_RaidAccessDesc_t *desc; + RF_RaidAccessFlags_t flags; +{ + RF_AccessStripeMapHeader_t *asm_h = desc->asmap; + RF_IoType_t type = desc->type; + RF_Raid_t *raidPtr = desc->raidPtr; + void *bp = desc->bp; + + RF_AccessStripeMap_t *asmap = asm_h->stripeMap; + RF_AccessStripeMap_t *asm_p; + RF_DagHeader_t *dag_h = NULL, *tempdag_h, *lastdag_h; + int i, j, k; + RF_VoidFuncPtr *stripeFuncs, normalStripeFuncs[MAXNSTRIPES]; + RF_AccessStripeMap_t *asm_up, *asm_bp; + RF_AccessStripeMapHeader_t ***asmh_u, *endASMList; + RF_AccessStripeMapHeader_t ***asmh_b; + RF_VoidFuncPtr **stripeUnitFuncs, uFunc; + RF_VoidFuncPtr **blockFuncs, bFunc; + int numStripesBailed = 0, cantCreateDAGs = RF_FALSE; + int numStripeUnitsBailed = 0; + int stripeNum, numUnitDags = 0, stripeUnitNum, numBlockDags = 0; + RF_StripeNum_t numStripeUnits; + RF_SectorNum_t numBlocks; + RF_RaidAddr_t address; + int length; + RF_PhysDiskAddr_t *physPtr; + caddr_t buffer; + + lastdag_h = NULL; + asmh_u = asmh_b = NULL; + stripeUnitFuncs = NULL; + blockFuncs = NULL; + + /* get an array of dag-function creation pointers, try to avoid + * calling malloc */ + if (asm_h->numStripes <= MAXNSTRIPES) + stripeFuncs = normalStripeFuncs; + else + RF_Calloc(stripeFuncs, asm_h->numStripes, sizeof(RF_VoidFuncPtr), (RF_VoidFuncPtr *)); + + /* walk through the asm list once collecting information */ + /* attempt to find a single creation function for each stripe */ + desc->numStripes = 0; + for (i = 0, asm_p = asmap; asm_p; asm_p = asm_p->next, i++) { + desc->numStripes++; + (raidPtr->Layout.map->SelectionFunc) (raidPtr, type, asm_p, &stripeFuncs[i]); + /* check to see if we found a creation func for this stripe */ + if (stripeFuncs[i] == (RF_VoidFuncPtr) NULL) { + /* could not find creation function for entire stripe + * so, let's see if we can find one for each stripe + * unit in the stripe */ + + if (numStripesBailed == 0) { + /* one stripe map header for each stripe we + * bail on */ + RF_Malloc(asmh_u, sizeof(RF_AccessStripeMapHeader_t **) * asm_h->numStripes, (RF_AccessStripeMapHeader_t ***)); + /* create an array of ptrs to arrays of + * stripeFuncs */ + RF_Calloc(stripeUnitFuncs, asm_h->numStripes, sizeof(RF_VoidFuncPtr), (RF_VoidFuncPtr **)); + } + /* create an array of creation funcs (called + * stripeFuncs) for this stripe */ + numStripeUnits = asm_p->numStripeUnitsAccessed; + RF_Calloc(stripeUnitFuncs[numStripesBailed], numStripeUnits, sizeof(RF_VoidFuncPtr), (RF_VoidFuncPtr *)); + RF_Malloc(asmh_u[numStripesBailed], numStripeUnits * sizeof(RF_AccessStripeMapHeader_t *), (RF_AccessStripeMapHeader_t **)); + + /* lookup array of stripeUnitFuncs for this stripe */ + for (j = 0, physPtr = asm_p->physInfo; physPtr; physPtr = physPtr->next, j++) { + /* remap for series of single stripe-unit + * accesses */ + address = physPtr->raidAddress; + length = physPtr->numSector; + buffer = physPtr->bufPtr; + + asmh_u[numStripesBailed][j] = rf_MapAccess(raidPtr, address, length, buffer, RF_DONT_REMAP); + asm_up = asmh_u[numStripesBailed][j]->stripeMap; + + /* get the creation func for this stripe unit */ + (raidPtr->Layout.map->SelectionFunc) (raidPtr, type, asm_up, &(stripeUnitFuncs[numStripesBailed][j])); + + /* check to see if we found a creation func + * for this stripe unit */ + if (stripeUnitFuncs[numStripesBailed][j] == (RF_VoidFuncPtr) NULL) { + /* could not find creation function + * for stripe unit so, let's see if we + * can find one for each block in the + * stripe unit */ + if (numStripeUnitsBailed == 0) { + /* one stripe map header for + * each stripe unit we bail on */ + RF_Malloc(asmh_b, sizeof(RF_AccessStripeMapHeader_t **) * asm_h->numStripes * raidPtr->Layout.numDataCol, (RF_AccessStripeMapHeader_t ***)); + /* create an array of ptrs to + * arrays of blockFuncs */ + RF_Calloc(blockFuncs, asm_h->numStripes * raidPtr->Layout.numDataCol, sizeof(RF_VoidFuncPtr), (RF_VoidFuncPtr **)); + } + /* create an array of creation funcs + * (called blockFuncs) for this stripe + * unit */ + numBlocks = physPtr->numSector; + numBlockDags += numBlocks; + RF_Calloc(blockFuncs[numStripeUnitsBailed], numBlocks, sizeof(RF_VoidFuncPtr), (RF_VoidFuncPtr *)); + RF_Malloc(asmh_b[numStripeUnitsBailed], numBlocks * sizeof(RF_AccessStripeMapHeader_t *), (RF_AccessStripeMapHeader_t **)); + + /* lookup array of blockFuncs for this + * stripe unit */ + for (k = 0; k < numBlocks; k++) { + /* remap for series of single + * stripe-unit accesses */ + address = physPtr->raidAddress + k; + length = 1; + buffer = physPtr->bufPtr + (k * (1 << raidPtr->logBytesPerSector)); + + asmh_b[numStripeUnitsBailed][k] = rf_MapAccess(raidPtr, address, length, buffer, RF_DONT_REMAP); + asm_bp = asmh_b[numStripeUnitsBailed][k]->stripeMap; + + /* get the creation func for + * this stripe unit */ + (raidPtr->Layout.map->SelectionFunc) (raidPtr, type, asm_bp, &(blockFuncs[numStripeUnitsBailed][k])); + + /* check to see if we found a + * creation func for this + * stripe unit */ + if (blockFuncs[numStripeUnitsBailed][k] == NULL) + cantCreateDAGs = RF_TRUE; + } + numStripeUnitsBailed++; + } else { + numUnitDags++; + } + } + RF_ASSERT(j == numStripeUnits); + numStripesBailed++; + } + } + + if (cantCreateDAGs) { + /* free memory and punt */ + if (asm_h->numStripes > MAXNSTRIPES) + RF_Free(stripeFuncs, asm_h->numStripes * sizeof(RF_VoidFuncPtr)); + if (numStripesBailed > 0) { + stripeNum = 0; + for (i = 0, asm_p = asmap; asm_p; asm_p = asm_p->next, i++) + if (stripeFuncs[i] == NULL) { + numStripeUnits = asm_p->numStripeUnitsAccessed; + for (j = 0; j < numStripeUnits; j++) + rf_FreeAccessStripeMap(asmh_u[stripeNum][j]); + RF_Free(asmh_u[stripeNum], numStripeUnits * sizeof(RF_AccessStripeMapHeader_t *)); + RF_Free(stripeUnitFuncs[stripeNum], numStripeUnits * sizeof(RF_VoidFuncPtr)); + stripeNum++; + } + RF_ASSERT(stripeNum == numStripesBailed); + RF_Free(stripeUnitFuncs, asm_h->numStripes * sizeof(RF_VoidFuncPtr)); + RF_Free(asmh_u, asm_h->numStripes * sizeof(RF_AccessStripeMapHeader_t **)); + } + return (1); + } else { + /* begin dag creation */ + stripeNum = 0; + stripeUnitNum = 0; + + /* create an array of dagLists and fill them in */ + RF_CallocAndAdd(desc->dagArray, desc->numStripes, sizeof(RF_DagList_t), (RF_DagList_t *), desc->cleanupList); + + for (i = 0, asm_p = asmap; asm_p; asm_p = asm_p->next, i++) { + /* grab dag header for this stripe */ + dag_h = NULL; + desc->dagArray[i].desc = desc; + + if (stripeFuncs[i] == (RF_VoidFuncPtr) NULL) { + /* use bailout functions for this stripe */ + for (j = 0, physPtr = asm_p->physInfo; physPtr; physPtr = physPtr->next, j++) { + uFunc = stripeUnitFuncs[stripeNum][j]; + if (uFunc == (RF_VoidFuncPtr) NULL) { + /* use bailout functions for + * this stripe unit */ + for (k = 0; k < physPtr->numSector; k++) { + /* create a dag for + * this block */ + InitHdrNode(&tempdag_h, raidPtr, rf_useMemChunks); + desc->dagArray[i].numDags++; + if (dag_h == NULL) { + dag_h = tempdag_h; + } else { + lastdag_h->next = tempdag_h; + } + lastdag_h = tempdag_h; + + bFunc = blockFuncs[stripeUnitNum][k]; + RF_ASSERT(bFunc); + asm_bp = asmh_b[stripeUnitNum][k]->stripeMap; + (*bFunc) (raidPtr, asm_bp, tempdag_h, bp, flags, tempdag_h->allocList); + } + stripeUnitNum++; + } else { + /* create a dag for this unit */ + InitHdrNode(&tempdag_h, raidPtr, rf_useMemChunks); + desc->dagArray[i].numDags++; + if (dag_h == NULL) { + dag_h = tempdag_h; + } else { + lastdag_h->next = tempdag_h; + } + lastdag_h = tempdag_h; + + asm_up = asmh_u[stripeNum][j]->stripeMap; + (*uFunc) (raidPtr, asm_up, tempdag_h, bp, flags, tempdag_h->allocList); + } + } + RF_ASSERT(j == asm_p->numStripeUnitsAccessed); + /* merge linked bailout dag to existing dag + * collection */ + stripeNum++; + } else { + /* Create a dag for this parity stripe */ + InitHdrNode(&tempdag_h, raidPtr, rf_useMemChunks); + desc->dagArray[i].numDags++; + if (dag_h == NULL) { + dag_h = tempdag_h; + } else { + lastdag_h->next = tempdag_h; + } + lastdag_h = tempdag_h; + + (stripeFuncs[i]) (raidPtr, asm_p, tempdag_h, bp, flags, tempdag_h->allocList); + } + desc->dagArray[i].dags = dag_h; + } + RF_ASSERT(i == desc->numStripes); + + /* free memory */ + if (asm_h->numStripes > MAXNSTRIPES) + RF_Free(stripeFuncs, asm_h->numStripes * sizeof(RF_VoidFuncPtr)); + if ((numStripesBailed > 0) || (numStripeUnitsBailed > 0)) { + stripeNum = 0; + stripeUnitNum = 0; + if (dag_h->asmList) { + endASMList = dag_h->asmList; + while (endASMList->next) + endASMList = endASMList->next; + } else + endASMList = NULL; + /* walk through io, stripe by stripe */ + for (i = 0, asm_p = asmap; asm_p; asm_p = asm_p->next, i++) + if (stripeFuncs[i] == NULL) { + numStripeUnits = asm_p->numStripeUnitsAccessed; + /* walk through stripe, stripe unit by + * stripe unit */ + for (j = 0, physPtr = asm_p->physInfo; physPtr; physPtr = physPtr->next, j++) { + if (stripeUnitFuncs[stripeNum][j] == NULL) { + numBlocks = physPtr->numSector; + /* walk through stripe + * unit, block by + * block */ + for (k = 0; k < numBlocks; k++) + if (dag_h->asmList == NULL) { + dag_h->asmList = asmh_b[stripeUnitNum][k]; + endASMList = dag_h->asmList; + } else { + endASMList->next = asmh_b[stripeUnitNum][k]; + endASMList = endASMList->next; + } + RF_Free(asmh_b[stripeUnitNum], numBlocks * sizeof(RF_AccessStripeMapHeader_t *)); + RF_Free(blockFuncs[stripeUnitNum], numBlocks * sizeof(RF_VoidFuncPtr)); + stripeUnitNum++; + } + if (dag_h->asmList == NULL) { + dag_h->asmList = asmh_u[stripeNum][j]; + endASMList = dag_h->asmList; + } else { + endASMList->next = asmh_u[stripeNum][j]; + endASMList = endASMList->next; + } + } + RF_Free(asmh_u[stripeNum], numStripeUnits * sizeof(RF_AccessStripeMapHeader_t *)); + RF_Free(stripeUnitFuncs[stripeNum], numStripeUnits * sizeof(RF_VoidFuncPtr)); + stripeNum++; + } + RF_ASSERT(stripeNum == numStripesBailed); + RF_Free(stripeUnitFuncs, asm_h->numStripes * sizeof(RF_VoidFuncPtr)); + RF_Free(asmh_u, asm_h->numStripes * sizeof(RF_AccessStripeMapHeader_t **)); + if (numStripeUnitsBailed > 0) { + RF_ASSERT(stripeUnitNum == numStripeUnitsBailed); + RF_Free(blockFuncs, raidPtr->Layout.numDataCol * asm_h->numStripes * sizeof(RF_VoidFuncPtr)); + RF_Free(asmh_b, raidPtr->Layout.numDataCol * asm_h->numStripes * sizeof(RF_AccessStripeMapHeader_t **)); + } + } + return (0); + } +} diff --git a/sys/dev/raidframe/rf_aselect.h b/sys/dev/raidframe/rf_aselect.h new file mode 100644 index 0000000..de9cd76 --- /dev/null +++ b/sys/dev/raidframe/rf_aselect.h @@ -0,0 +1,43 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_aselect.h,v 1.3 1999/02/05 00:06:06 oster Exp $ */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Mark Holland, William V. Courtright II + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +/***************************************************************************** + * + * aselect.h -- header file for algorithm selection code + * + *****************************************************************************/ + +#ifndef _RF__RF_ASELECT_H_ +#define _RF__RF_ASELECT_H_ + +#include <dev/raidframe/rf_desc.h> + +int rf_SelectAlgorithm(RF_RaidAccessDesc_t * desc, RF_RaidAccessFlags_t flags); + +#endif /* !_RF__RF_ASELECT_H_ */ diff --git a/sys/dev/raidframe/rf_bsd.h b/sys/dev/raidframe/rf_bsd.h new file mode 100644 index 0000000..14c10f5 --- /dev/null +++ b/sys/dev/raidframe/rf_bsd.h @@ -0,0 +1,152 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_netbsd.h,v 1.12 2000/05/28 22:53:49 oster Exp $ */ + +/*- + * Copyright (c) 1996, 1997, 1998 The NetBSD Foundation, Inc. + * All rights reserved. + * + * This code is derived from software contributed to The NetBSD Foundation + * by Greg Oster; Jason R. Thorpe. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * 3. All advertising materials mentioning features or use of this software + * must display the following acknowledgement: + * This product includes software developed by the NetBSD + * Foundation, Inc. and its contributors. + * 4. Neither the name of The NetBSD Foundation nor the names of its + * contributors may be used to endorse or promote products derived + * from this software without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS + * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED + * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR + * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS + * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + * POSSIBILITY OF SUCH DAMAGE. + */ + +#ifndef _RF__RF_BSD_H_ +#define _RF__RF_BSD_H_ + +#ifdef _KERNEL +#include <sys/fcntl.h> +#include <sys/systm.h> +#include <sys/namei.h> +#include <sys/vnode.h> +#include "opt_raid.h" + +#ifdef RAID_DEBUG +#define rf_printf(lvl, fmt, args...) \ + do { \ + if (lvl <= RAID_DEBUG) printf(fmt, ##args); \ + } while(0) + +#else /* DEBUG */ +#define rf_printf(lvl, fmt, args...) { } +#endif /* DEBUG */ +#endif /* _KERNEL */ + +/* The per-component label information that the user can set */ +typedef struct RF_ComponentInfo_s { + int row; /* the row number of this component */ + int column; /* the column number of this component */ + int serial_number; /* a user-specified serial number for this + RAID set */ +} RF_ComponentInfo_t; + +/* The per-component label information */ +typedef struct RF_ComponentLabel_s { + int version; /* The version of this label. */ + int serial_number; /* a user-specified serial number for this + RAID set */ + int mod_counter; /* modification counter. Changed (usually + by incrementing) every time the label + is changed */ + int row; /* the row number of this component */ + int column; /* the column number of this component */ + int num_rows; /* number of rows in this RAID set */ + int num_columns; /* number of columns in this RAID set */ + int clean; /* 1 when clean, 0 when dirty */ + int status; /* rf_ds_optimal, rf_ds_dist_spared, whatever. */ + /* stuff that will be in version 2 of the label */ + int sectPerSU; /* Sectors per Stripe Unit */ + int SUsPerPU; /* Stripe Units per Parity Units */ + int SUsPerRU; /* Stripe Units per Reconstruction Units */ + int parityConfig; /* '0' == RAID0, '1' == RAID1, etc. */ + int maxOutstanding; /* maxOutstanding disk requests */ + int blockSize; /* size of component block. + (disklabel->d_secsize) */ + int numBlocks; /* number of blocks on this component. May + be smaller than the partition size. */ + int partitionSize; /* number of blocks on this *partition*. + Must exactly match the partition size + from the disklabel. */ + int future_use[33]; /* Future expansion */ + int autoconfigure; /* automatically configure this RAID set. + 0 == no, 1 == yes */ + int root_partition; /* Use this set as / + 0 == no, 1 == yes*/ + int last_unit; /* last unit number (e.g. 0 for /dev/raid0) + of this component. Used for autoconfigure + only. */ + int config_order; /* 0 .. n. The order in which the component + should be auto-configured. E.g. 0 is will + done first, (and would become raid0). + This may be in conflict with last_unit!!?! */ + /* Not currently used. */ + int future_use2[44]; /* More future expansion */ +} RF_ComponentLabel_t; + +typedef struct RF_SingleComponent_s { + int row; + int column; + char component_name[50]; /* name of the component */ +} RF_SingleComponent_t; + +#ifdef _KERNEL + +struct raidcinfo { + struct vnode *ci_vp; /* component device's vnode */ + dev_t ci_dev; /* component device's dev_t */ + RF_ComponentLabel_t ci_label; /* components RAIDframe label */ +#if 0 + size_t ci_size; /* size */ + char *ci_path; /* path to component */ + size_t ci_pathlen; /* length of component path */ +#endif +}; + + + +/* XXX probably belongs in a different .h file. */ +typedef struct RF_AutoConfig_s { + char devname[56]; /* the name of this component */ + int flag; /* a general-purpose flag */ + dev_t dev; /* the device for this component */ + struct vnode *vp; /* Mr. Vnode Pointer */ + RF_ComponentLabel_t *clabel; /* the label */ + struct RF_AutoConfig_s *next; /* the next autoconfig structure + in this set. */ +} RF_AutoConfig_t; + +typedef struct RF_ConfigSet_s { + struct RF_AutoConfig_s *ac; /* all of the autoconfig structures for + this config set. */ + int rootable; /* Set to 1 if this set can be root */ + struct RF_ConfigSet_s *next; +} RF_ConfigSet_t; + +#endif /* _KERNEL */ +#endif /* _RF__RF_BSD_H_ */ diff --git a/sys/dev/raidframe/rf_callback.c b/sys/dev/raidframe/rf_callback.c new file mode 100644 index 0000000..4b79d8b --- /dev/null +++ b/sys/dev/raidframe/rf_callback.c @@ -0,0 +1,94 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_callback.c,v 1.3 1999/02/05 00:06:06 oster Exp $ */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Jim Zelenka + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +/***************************************************************************************** + * + * callback.c -- code to manipulate callback descriptor + * + ****************************************************************************************/ + + +#include <dev/raidframe/rf_types.h> +#include <dev/raidframe/rf_threadstuff.h> +#include <dev/raidframe/rf_callback.h> +#include <dev/raidframe/rf_debugMem.h> +#include <dev/raidframe/rf_freelist.h> +#include <dev/raidframe/rf_shutdown.h> + +static RF_FreeList_t *rf_callback_freelist; + +#define RF_MAX_FREE_CALLBACK 64 +#define RF_CALLBACK_INC 4 +#define RF_CALLBACK_INITIAL 4 + +static void rf_ShutdownCallback(void *); +static void +rf_ShutdownCallback(ignored) + void *ignored; +{ + RF_FREELIST_DESTROY(rf_callback_freelist, next, (RF_CallbackDesc_t *)); +} + +int +rf_ConfigureCallback(listp) + RF_ShutdownList_t **listp; +{ + int rc; + + RF_FREELIST_CREATE(rf_callback_freelist, RF_MAX_FREE_CALLBACK, + RF_CALLBACK_INC, sizeof(RF_CallbackDesc_t)); + if (rf_callback_freelist == NULL) + return (ENOMEM); + rc = rf_ShutdownCreate(listp, rf_ShutdownCallback, NULL); + if (rc) { + RF_ERRORMSG3("Unable to add to shutdown list file %s line %d rc=%d\n", __FILE__, + __LINE__, rc); + rf_ShutdownCallback(NULL); + return (rc); + } + RF_FREELIST_PRIME(rf_callback_freelist, RF_CALLBACK_INITIAL, next, + (RF_CallbackDesc_t *)); + return (0); +} + +RF_CallbackDesc_t * +rf_AllocCallbackDesc() +{ + RF_CallbackDesc_t *p; + + RF_FREELIST_GET(rf_callback_freelist, p, next, (RF_CallbackDesc_t *)); + return (p); +} + +void +rf_FreeCallbackDesc(p) + RF_CallbackDesc_t *p; +{ + RF_FREELIST_FREE(rf_callback_freelist, p, next); +} diff --git a/sys/dev/raidframe/rf_callback.h b/sys/dev/raidframe/rf_callback.h new file mode 100644 index 0000000..feda31d --- /dev/null +++ b/sys/dev/raidframe/rf_callback.h @@ -0,0 +1,65 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_callback.h,v 1.3 1999/02/05 00:06:06 oster Exp $ */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Mark Holland + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +/***************************************************************************************** + * + * callback.h -- header file for callback.c + * + * the reconstruction code must manage concurrent I/Os on multiple drives. + * it sometimes needs to suspend operation on a particular drive until some + * condition occurs. we can't block the thread, of course, or we wouldn't + * be able to manage our other outstanding I/Os. Instead we just suspend + * new activity on the indicated disk, and create a callback descriptor and + * put it someplace where it will get invoked when the condition that's + * stalling us has cleared. When the descriptor is invoked, it will call + * a function that will restart operation on the indicated disk. + * + ****************************************************************************************/ + +#ifndef _RF__RF_CALLBACK_H_ +#define _RF__RF_CALLBACK_H_ + +#include <dev/raidframe/rf_types.h> + +struct RF_CallbackDesc_s { + void (*callbackFunc) (RF_CBParam_t); /* function to call */ + RF_CBParam_t callbackArg; /* args to give to function, or just + * info about this callback */ + RF_CBParam_t callbackArg2; + RF_RowCol_t row; /* disk row and column IDs to give to the + * callback func */ + RF_RowCol_t col; + RF_CallbackDesc_t *next;/* next entry in list */ +}; + +int rf_ConfigureCallback(RF_ShutdownList_t ** listp); +RF_CallbackDesc_t *rf_AllocCallbackDesc(void); +void rf_FreeCallbackDesc(RF_CallbackDesc_t * p); + +#endif /* !_RF__RF_CALLBACK_H_ */ diff --git a/sys/dev/raidframe/rf_chaindecluster.c b/sys/dev/raidframe/rf_chaindecluster.c new file mode 100644 index 0000000..ff12bb5 --- /dev/null +++ b/sys/dev/raidframe/rf_chaindecluster.c @@ -0,0 +1,290 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_chaindecluster.c,v 1.6 2001/01/26 04:27:16 oster Exp $ */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Khalil Amiri + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +/****************************************************************************** + * + * rf_chaindecluster.c -- implements chained declustering + * + *****************************************************************************/ + +#include <dev/raidframe/rf_archs.h> + +#if (RF_INCLUDE_CHAINDECLUSTER > 0) + +#include <dev/raidframe/rf_types.h> +#include <dev/raidframe/rf_raid.h> +#include <dev/raidframe/rf_chaindecluster.h> +#include <dev/raidframe/rf_dag.h> +#include <dev/raidframe/rf_dagutils.h> +#include <dev/raidframe/rf_dagffrd.h> +#include <dev/raidframe/rf_dagffwr.h> +#include <dev/raidframe/rf_dagdegrd.h> +#include <dev/raidframe/rf_dagfuncs.h> +#include <dev/raidframe/rf_general.h> +#include <dev/raidframe/rf_utils.h> + +typedef struct RF_ChaindeclusterConfigInfo_s { + RF_RowCol_t **stripeIdentifier; /* filled in at config time and used + * by IdentifyStripe */ + RF_StripeCount_t numSparingRegions; + RF_StripeCount_t stripeUnitsPerSparingRegion; + RF_SectorNum_t mirrorStripeOffset; +} RF_ChaindeclusterConfigInfo_t; + +int +rf_ConfigureChainDecluster( + RF_ShutdownList_t ** listp, + RF_Raid_t * raidPtr, + RF_Config_t * cfgPtr) +{ + RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; + RF_StripeCount_t num_used_stripeUnitsPerDisk; + RF_ChaindeclusterConfigInfo_t *info; + RF_RowCol_t i; + + /* create a Chained Declustering configuration structure */ + RF_MallocAndAdd(info, sizeof(RF_ChaindeclusterConfigInfo_t), (RF_ChaindeclusterConfigInfo_t *), raidPtr->cleanupList); + if (info == NULL) + return (ENOMEM); + layoutPtr->layoutSpecificInfo = (void *) info; + + /* fill in the config structure. */ + info->stripeIdentifier = rf_make_2d_array(raidPtr->numCol, 2, raidPtr->cleanupList); + if (info->stripeIdentifier == NULL) + return (ENOMEM); + for (i = 0; i < raidPtr->numCol; i++) { + info->stripeIdentifier[i][0] = i % raidPtr->numCol; + info->stripeIdentifier[i][1] = (i + 1) % raidPtr->numCol; + } + + RF_ASSERT(raidPtr->numRow == 1); + + /* fill in the remaining layout parameters */ + num_used_stripeUnitsPerDisk = layoutPtr->stripeUnitsPerDisk - (layoutPtr->stripeUnitsPerDisk % + (2 * raidPtr->numCol - 2)); + info->numSparingRegions = num_used_stripeUnitsPerDisk / (2 * raidPtr->numCol - 2); + info->stripeUnitsPerSparingRegion = raidPtr->numCol * (raidPtr->numCol - 1); + info->mirrorStripeOffset = info->numSparingRegions * (raidPtr->numCol - 1); + layoutPtr->numStripe = info->numSparingRegions * info->stripeUnitsPerSparingRegion; + layoutPtr->bytesPerStripeUnit = layoutPtr->sectorsPerStripeUnit << raidPtr->logBytesPerSector; + layoutPtr->numDataCol = 1; + layoutPtr->dataSectorsPerStripe = layoutPtr->numDataCol * layoutPtr->sectorsPerStripeUnit; + layoutPtr->numParityCol = 1; + + layoutPtr->dataStripeUnitsPerDisk = num_used_stripeUnitsPerDisk; + + raidPtr->sectorsPerDisk = + num_used_stripeUnitsPerDisk * layoutPtr->sectorsPerStripeUnit; + + raidPtr->totalSectors = + (layoutPtr->numStripe) * layoutPtr->sectorsPerStripeUnit; + + layoutPtr->stripeUnitsPerDisk = raidPtr->sectorsPerDisk / layoutPtr->sectorsPerStripeUnit; + + return (0); +} + +RF_ReconUnitCount_t +rf_GetNumSpareRUsChainDecluster(raidPtr) + RF_Raid_t *raidPtr; +{ + RF_ChaindeclusterConfigInfo_t *info = (RF_ChaindeclusterConfigInfo_t *) raidPtr->Layout.layoutSpecificInfo; + + /* + * The layout uses two stripe units per disk as spare within each + * sparing region. + */ + return (2 * info->numSparingRegions); +} + + +/* Maps to the primary copy of the data, i.e. the first mirror pair */ +void +rf_MapSectorChainDecluster( + RF_Raid_t * raidPtr, + RF_RaidAddr_t raidSector, + RF_RowCol_t * row, + RF_RowCol_t * col, + RF_SectorNum_t * diskSector, + int remap) +{ + RF_ChaindeclusterConfigInfo_t *info = (RF_ChaindeclusterConfigInfo_t *) raidPtr->Layout.layoutSpecificInfo; + RF_StripeNum_t SUID = raidSector / raidPtr->Layout.sectorsPerStripeUnit; + RF_SectorNum_t index_within_region, index_within_disk; + RF_StripeNum_t sparing_region_id; + int col_before_remap; + + *row = 0; + sparing_region_id = SUID / info->stripeUnitsPerSparingRegion; + index_within_region = SUID % info->stripeUnitsPerSparingRegion; + index_within_disk = index_within_region / raidPtr->numCol; + col_before_remap = SUID % raidPtr->numCol; + + if (!remap) { + *col = col_before_remap; + *diskSector = (index_within_disk + ((raidPtr->numCol - 1) * sparing_region_id)) * + raidPtr->Layout.sectorsPerStripeUnit; + *diskSector += (raidSector % raidPtr->Layout.sectorsPerStripeUnit); + } else { + /* remap sector to spare space... */ + *diskSector = sparing_region_id * (raidPtr->numCol + 1) * raidPtr->Layout.sectorsPerStripeUnit; + *diskSector += (raidPtr->numCol - 1) * raidPtr->Layout.sectorsPerStripeUnit; + *diskSector += (raidSector % raidPtr->Layout.sectorsPerStripeUnit); + index_within_disk = index_within_region / raidPtr->numCol; + if (index_within_disk < col_before_remap) + *col = index_within_disk; + else + if (index_within_disk == raidPtr->numCol - 2) { + *col = (col_before_remap + raidPtr->numCol - 1) % raidPtr->numCol; + *diskSector += raidPtr->Layout.sectorsPerStripeUnit; + } else + *col = (index_within_disk + 2) % raidPtr->numCol; + } + +} + + + +/* Maps to the second copy of the mirror pair, which is chain declustered. The second copy is contained + in the next disk (mod numCol) after the disk containing the primary copy. + The offset into the disk is one-half disk down */ +void +rf_MapParityChainDecluster( + RF_Raid_t * raidPtr, + RF_RaidAddr_t raidSector, + RF_RowCol_t * row, + RF_RowCol_t * col, + RF_SectorNum_t * diskSector, + int remap) +{ + RF_ChaindeclusterConfigInfo_t *info = (RF_ChaindeclusterConfigInfo_t *) raidPtr->Layout.layoutSpecificInfo; + RF_StripeNum_t SUID = raidSector / raidPtr->Layout.sectorsPerStripeUnit; + RF_SectorNum_t index_within_region, index_within_disk; + RF_StripeNum_t sparing_region_id; + int col_before_remap; + + *row = 0; + if (!remap) { + *col = SUID % raidPtr->numCol; + *col = (*col + 1) % raidPtr->numCol; + *diskSector = info->mirrorStripeOffset * raidPtr->Layout.sectorsPerStripeUnit; + *diskSector += (SUID / raidPtr->numCol) * raidPtr->Layout.sectorsPerStripeUnit; + *diskSector += (raidSector % raidPtr->Layout.sectorsPerStripeUnit); + } else { + /* remap parity to spare space ... */ + sparing_region_id = SUID / info->stripeUnitsPerSparingRegion; + index_within_region = SUID % info->stripeUnitsPerSparingRegion; + index_within_disk = index_within_region / raidPtr->numCol; + *diskSector = sparing_region_id * (raidPtr->numCol + 1) * raidPtr->Layout.sectorsPerStripeUnit; + *diskSector += (raidPtr->numCol) * raidPtr->Layout.sectorsPerStripeUnit; + *diskSector += (raidSector % raidPtr->Layout.sectorsPerStripeUnit); + col_before_remap = SUID % raidPtr->numCol; + if (index_within_disk < col_before_remap) + *col = index_within_disk; + else + if (index_within_disk == raidPtr->numCol - 2) { + *col = (col_before_remap + 2) % raidPtr->numCol; + *diskSector -= raidPtr->Layout.sectorsPerStripeUnit; + } else + *col = (index_within_disk + 2) % raidPtr->numCol; + } + +} + +void +rf_IdentifyStripeChainDecluster( + RF_Raid_t * raidPtr, + RF_RaidAddr_t addr, + RF_RowCol_t ** diskids, + RF_RowCol_t * outRow) +{ + RF_ChaindeclusterConfigInfo_t *info = (RF_ChaindeclusterConfigInfo_t *) raidPtr->Layout.layoutSpecificInfo; + RF_StripeNum_t SUID; + RF_RowCol_t col; + + SUID = addr / raidPtr->Layout.sectorsPerStripeUnit; + col = SUID % raidPtr->numCol; + *outRow = 0; + *diskids = info->stripeIdentifier[col]; +} + +void +rf_MapSIDToPSIDChainDecluster( + RF_RaidLayout_t * layoutPtr, + RF_StripeNum_t stripeID, + RF_StripeNum_t * psID, + RF_ReconUnitNum_t * which_ru) +{ + *which_ru = 0; + *psID = stripeID; +} +/****************************************************************************** + * select a graph to perform a single-stripe access + * + * Parameters: raidPtr - description of the physical array + * type - type of operation (read or write) requested + * asmap - logical & physical addresses for this access + * createFunc - function to use to create the graph (return value) + *****************************************************************************/ + +void +rf_RAIDCDagSelect( + RF_Raid_t * raidPtr, + RF_IoType_t type, + RF_AccessStripeMap_t * asmap, + RF_VoidFuncPtr * createFunc) +#if 0 + void (**createFunc) (RF_Raid_t *, RF_AccessStripeMap_t *, + RF_DagHeader_t *, void *, RF_RaidAccessFlags_t, + RF_AllocListElem_t *) +#endif +{ + RF_ASSERT(RF_IO_IS_R_OR_W(type)); + RF_ASSERT(raidPtr->numRow == 1); + + if (asmap->numDataFailed + asmap->numParityFailed > 1) { + RF_ERRORMSG("Multiple disks failed in a single group! Aborting I/O operation.\n"); + *createFunc = NULL; + return; + } + *createFunc = (type == RF_IO_TYPE_READ) ? (RF_VoidFuncPtr) rf_CreateFaultFreeReadDAG : (RF_VoidFuncPtr) rf_CreateRaidOneWriteDAG; + + if (type == RF_IO_TYPE_READ) { + if ((raidPtr->status[0] == rf_rs_degraded) || (raidPtr->status[0] == rf_rs_reconstructing)) + *createFunc = (RF_VoidFuncPtr) rf_CreateRaidCDegradedReadDAG; /* array status is + * degraded, implement + * workload shifting */ + else + *createFunc = (RF_VoidFuncPtr) rf_CreateMirrorPartitionReadDAG; /* array status not + * degraded, so use + * mirror partition dag */ + } else + *createFunc = (RF_VoidFuncPtr) rf_CreateRaidOneWriteDAG; +} +#endif /* (RF_INCLUDE_CHAINDECLUSTER > 0) */ diff --git a/sys/dev/raidframe/rf_chaindecluster.h b/sys/dev/raidframe/rf_chaindecluster.h new file mode 100644 index 0000000..6030289 --- /dev/null +++ b/sys/dev/raidframe/rf_chaindecluster.h @@ -0,0 +1,68 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_chaindecluster.h,v 1.4 2001/01/26 04:14:14 oster Exp $ */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Khalil Amiri + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +/* rf_chaindecluster.h + * header file for Chained Declustering + */ + + +#ifndef _RF__RF_CHAINDECLUSTER_H_ +#define _RF__RF_CHAINDECLUSTER_H_ + +int +rf_ConfigureChainDecluster(RF_ShutdownList_t ** listp, RF_Raid_t * raidPtr, + RF_Config_t * cfgPtr); +RF_ReconUnitCount_t rf_GetNumSpareRUsChainDecluster(RF_Raid_t * raidPtr); +void +rf_MapSectorChainDecluster(RF_Raid_t * raidPtr, RF_RaidAddr_t raidSector, + RF_RowCol_t * row, RF_RowCol_t * col, RF_SectorNum_t * diskSector, int remap); +void +rf_MapParityChainDecluster(RF_Raid_t * raidPtr, RF_RaidAddr_t raidSector, + RF_RowCol_t * row, RF_RowCol_t * col, RF_SectorNum_t * diskSector, int remap); +void +rf_IdentifyStripeChainDecluster(RF_Raid_t * raidPtr, RF_RaidAddr_t addr, + RF_RowCol_t ** diskids, RF_RowCol_t * outRow); +void +rf_MapSIDToPSIDChainDecluster(RF_RaidLayout_t * layoutPtr, + RF_StripeNum_t stripeID, RF_StripeNum_t * psID, + RF_ReconUnitNum_t * which_ru); +void +rf_RAIDCDagSelect(RF_Raid_t * raidPtr, RF_IoType_t type, + RF_AccessStripeMap_t * asmap, + RF_VoidFuncPtr *); +#if 0 +void (**createFunc) (RF_Raid_t *, + RF_AccessStripeMap_t *, + RF_DagHeader_t *, + void *, + RF_RaidAccessFlags_t, + RF_AllocListElem_t *); +#endif + +#endif /* !_RF__RF_CHAINDECLUSTER_H_ */ diff --git a/sys/dev/raidframe/rf_configure.h b/sys/dev/raidframe/rf_configure.h new file mode 100644 index 0000000..c51b8a3 --- /dev/null +++ b/sys/dev/raidframe/rf_configure.h @@ -0,0 +1,99 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_configure.h,v 1.4 1999/03/02 03:18:49 oster Exp $ */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Mark Holland + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +/******************************** + * + * rf_configure.h + * + * header file for raidframe configuration in the kernel version only. + * configuration is invoked via ioctl rather than at boot time + * + *******************************/ + + +#ifndef _RF__RF_CONFIGURE_H_ +#define _RF__RF_CONFIGURE_H_ + +#include <dev/raidframe/rf_archs.h> +#include <dev/raidframe/rf_types.h> + +#include <sys/param.h> +#include <sys/proc.h> + +#if defined(__NetBSD__) +#include <sys/ioctl.h> +#elif defined(__FreeBSD__) +#include <sys/ioccom.h> +#include <sys/filio.h> +#endif + +/* the raidframe configuration, passed down through an ioctl. + * the driver can be reconfigured (with total loss of data) at any time, + * but it must be shut down first. + */ +struct RF_Config_s { + RF_RowCol_t numRow, numCol, numSpare; /* number of rows, columns, + * and spare disks */ + dev_t devs[RF_MAXROW][RF_MAXCOL]; /* device numbers for disks + * comprising array */ + char devnames[RF_MAXROW][RF_MAXCOL][50]; /* device names */ + dev_t spare_devs[RF_MAXSPARE]; /* device numbers for spare + * disks */ + char spare_names[RF_MAXSPARE][50]; /* device names */ + RF_SectorNum_t sectPerSU; /* sectors per stripe unit */ + RF_StripeNum_t SUsPerPU;/* stripe units per parity unit */ + RF_StripeNum_t SUsPerRU;/* stripe units per reconstruction unit */ + RF_ParityConfig_t parityConfig; /* identifies the RAID architecture to + * be used */ + RF_DiskQueueType_t diskQueueType; /* 'f' = fifo, 'c' = cvscan, + * not used in kernel */ + char maxOutstandingDiskReqs; /* # concurrent reqs to be sent to a + * disk. not used in kernel. */ + char debugVars[RF_MAXDBGV][50]; /* space for specifying debug + * variables & their values */ + unsigned int layoutSpecificSize; /* size in bytes of + * layout-specific info */ + void *layoutSpecific; /* a pointer to a layout-specific structure to + * be copied in */ + int force; /* if !0, ignore many fatal + configuration conditions */ + /* + "force" is used to override cases where the component labels would + indicate that configuration should not proceed without user + intervention + */ +}; +#ifndef _KERNEL +int rf_MakeConfig(char *configname, RF_Config_t * cfgPtr); +int rf_MakeLayoutSpecificNULL(FILE * fp, RF_Config_t * cfgPtr, void *arg); +int rf_MakeLayoutSpecificDeclustered(FILE * configfp, RF_Config_t * cfgPtr, void *arg); +void *rf_ReadSpareTable(RF_SparetWait_t * req, char *fname); +#endif /* !_KERNEL */ + +#endif /* !_RF__RF_CONFIGURE_H_ */ diff --git a/sys/dev/raidframe/rf_copyback.c b/sys/dev/raidframe/rf_copyback.c new file mode 100644 index 0000000..0e9a84d --- /dev/null +++ b/sys/dev/raidframe/rf_copyback.c @@ -0,0 +1,431 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_copyback.c,v 1.15 2001/01/26 02:16:24 oster Exp $ */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Mark Holland + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +/***************************************************************************************** + * + * copyback.c -- code to copy reconstructed data back from spare space to + * the replaced disk. + * + * the code operates using callbacks on the I/Os to continue with the next + * unit to be copied back. We do this because a simple loop containing blocking I/Os + * will not work in the simulator. + * + ****************************************************************************************/ + +#include <dev/raidframe/rf_types.h> + +#if defined(__FreeBSD__) +#include <sys/types.h> +#include <sys/systm.h> +#if __FreeBSD_version > 500005 +#include <sys/bio.h> +#endif +#endif + +#include <sys/time.h> +#include <sys/buf.h> +#include <dev/raidframe/rf_raid.h> +#include <dev/raidframe/rf_mcpair.h> +#include <dev/raidframe/rf_acctrace.h> +#include <dev/raidframe/rf_etimer.h> +#include <dev/raidframe/rf_general.h> +#include <dev/raidframe/rf_utils.h> +#include <dev/raidframe/rf_copyback.h> +#include <dev/raidframe/rf_decluster.h> +#include <dev/raidframe/rf_driver.h> +#include <dev/raidframe/rf_shutdown.h> +#include <dev/raidframe/rf_kintf.h> + +#define RF_COPYBACK_DATA 0 +#define RF_COPYBACK_PARITY 1 + +int rf_copyback_in_progress; + +static int rf_CopybackReadDoneProc(RF_CopybackDesc_t * desc, int status); +static int rf_CopybackWriteDoneProc(RF_CopybackDesc_t * desc, int status); +static void rf_CopybackOne(RF_CopybackDesc_t * desc, int typ, + RF_RaidAddr_t addr, RF_RowCol_t testRow, + RF_RowCol_t testCol, + RF_SectorNum_t testOffs); +static void rf_CopybackComplete(RF_CopybackDesc_t * desc, int status); + +int +rf_ConfigureCopyback(listp) + RF_ShutdownList_t **listp; +{ + rf_copyback_in_progress = 0; + return (0); +} +#include <sys/types.h> +#include <sys/param.h> +#include <sys/systm.h> +#include <sys/proc.h> +#if defined(__NetBSD__) +#include <sys/ioctl.h> +#elif defined(__FreeBSD__) +#include <sys/ioccom.h> +#include <sys/filio.h> +#endif +#include <sys/fcntl.h> +#include <sys/vnode.h> + +/* do a complete copyback */ +void +rf_CopybackReconstructedData(raidPtr) + RF_Raid_t *raidPtr; +{ + RF_ComponentLabel_t *c_label; + int done, retcode; + RF_CopybackDesc_t *desc; + RF_RowCol_t frow, fcol; + RF_RaidDisk_t *badDisk; + struct vnode *vp; + char *databuf; + int ac; + + RF_Malloc(c_label, sizeof(RF_ComponentLabel_t), (RF_ComponentLabel_t *)); + if (c_label == NULL) { + printf("rf_CopybackReconstructedData: Out of memory?\n"); + return; + } + + done = 0; + fcol = 0; + for (frow = 0; frow < raidPtr->numRow; frow++) { + for (fcol = 0; fcol < raidPtr->numCol; fcol++) { + if (raidPtr->Disks[frow][fcol].status == rf_ds_dist_spared + || raidPtr->Disks[frow][fcol].status == rf_ds_spared) { + done = 1; + break; + } + } + if (done) + break; + } + + if (frow == raidPtr->numRow) { + printf("COPYBACK: no disks need copyback\n"); + return; + } + badDisk = &raidPtr->Disks[frow][fcol]; + + /* This device may have been opened successfully the first time. Close + * it before trying to open it again.. */ + + if (raidPtr->raid_cinfo[frow][fcol].ci_vp != NULL) { + printf("Closed the open device: %s\n", + raidPtr->Disks[frow][fcol].devname); + vp = raidPtr->raid_cinfo[frow][fcol].ci_vp; + ac = raidPtr->Disks[frow][fcol].auto_configured; + rf_close_component(raidPtr, vp, ac); + raidPtr->raid_cinfo[frow][fcol].ci_vp = NULL; + + } + /* note that this disk was *not* auto_configured (any longer) */ + raidPtr->Disks[frow][fcol].auto_configured = 0; + + printf("About to (re-)open the device: %s\n", + raidPtr->Disks[frow][fcol].devname); + + retcode = raid_getcomponentsize(raidPtr, frow, fcol); + + if (retcode) { + printf("COPYBACK: raidlookup on device: %s failed: %d!\n", + raidPtr->Disks[frow][fcol].devname, retcode); + + /* XXX the component isn't responding properly... must be + * still dead :-( */ + return; + + } +#if 0 + /* This is the way it was done before the CAM stuff was removed */ + + if (rf_extract_ids(badDisk->devname, &bus, &targ, &lun)) { + printf("COPYBACK: unable to extract bus, target, lun from devname %s\n", + badDisk->devname); + return; + } + /* TUR the disk that's marked as bad to be sure that it's actually + * alive */ + rf_SCSI_AllocTUR(&tur_op); + retcode = rf_SCSI_DoTUR(tur_op, bus, targ, lun, badDisk->dev); + rf_SCSI_FreeDiskOp(tur_op, 0); +#endif + + if (retcode) { + printf("COPYBACK: target disk failed TUR\n"); + return; + } + /* get a buffer to hold one SU */ + RF_Malloc(databuf, rf_RaidAddressToByte(raidPtr, raidPtr->Layout.sectorsPerStripeUnit), (char *)); + + /* create a descriptor */ + RF_Malloc(desc, sizeof(*desc), (RF_CopybackDesc_t *)); + desc->raidPtr = raidPtr; + desc->status = 0; + desc->frow = frow; + desc->fcol = fcol; + desc->spRow = badDisk->spareRow; + desc->spCol = badDisk->spareCol; + desc->stripeAddr = 0; + desc->sectPerSU = raidPtr->Layout.sectorsPerStripeUnit; + desc->sectPerStripe = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.numDataCol; + desc->databuf = databuf; + desc->mcpair = rf_AllocMCPair(); + + printf("COPYBACK: Quiescing the array\n"); + /* quiesce the array, since we don't want to code support for user + * accs here */ + rf_SuspendNewRequestsAndWait(raidPtr); + + /* adjust state of the array and of the disks */ + RF_LOCK_MUTEX(raidPtr->mutex); + raidPtr->Disks[desc->frow][desc->fcol].status = rf_ds_optimal; + raidPtr->status[desc->frow] = rf_rs_optimal; + rf_copyback_in_progress = 1; /* debug only */ + RF_UNLOCK_MUTEX(raidPtr->mutex); + + printf("COPYBACK: Beginning\n"); + RF_GETTIME(desc->starttime); + rf_ContinueCopyback(desc); + + /* Data has been restored. Fix up the component label. */ + /* Don't actually need the read here.. */ + raidread_component_label( raidPtr->raid_cinfo[frow][fcol].ci_dev, + raidPtr->raid_cinfo[frow][fcol].ci_vp, + c_label); + + raid_init_component_label( raidPtr, c_label ); + + c_label->row = frow; + c_label->column = fcol; + c_label->partitionSize = raidPtr->Disks[frow][fcol].partitionSize; + + raidwrite_component_label( raidPtr->raid_cinfo[frow][fcol].ci_dev, + raidPtr->raid_cinfo[frow][fcol].ci_vp, + c_label); + RF_Free(c_label, sizeof(RF_ComponentLabel_t)); +} + + +/* + * invoked via callback after a copyback I/O has completed to + * continue on with the next one + */ +void +rf_ContinueCopyback(desc) + RF_CopybackDesc_t *desc; +{ + RF_SectorNum_t testOffs, stripeAddr; + RF_Raid_t *raidPtr = desc->raidPtr; + RF_RaidAddr_t addr; + RF_RowCol_t testRow, testCol; + int old_pctg, new_pctg, done; + struct timeval t, diff; + + old_pctg = (-1); + while (1) { + stripeAddr = desc->stripeAddr; + desc->raidPtr->copyback_stripes_done = stripeAddr + / desc->sectPerStripe; + if (rf_prReconSched) { + old_pctg = 100 * desc->stripeAddr / raidPtr->totalSectors; + } + desc->stripeAddr += desc->sectPerStripe; + if (rf_prReconSched) { + new_pctg = 100 * desc->stripeAddr / raidPtr->totalSectors; + if (new_pctg != old_pctg) { + RF_GETTIME(t); + RF_TIMEVAL_DIFF(&desc->starttime, &t, &diff); + printf("%d %d.%06d\n", new_pctg, (int) diff.tv_sec, (int) diff.tv_usec); + } + } + if (stripeAddr >= raidPtr->totalSectors) { + rf_CopybackComplete(desc, 0); + return; + } + /* walk through the current stripe, su-by-su */ + for (done = 0, addr = stripeAddr; addr < stripeAddr + desc->sectPerStripe; addr += desc->sectPerSU) { + + /* map the SU, disallowing remap to spare space */ + (raidPtr->Layout.map->MapSector) (raidPtr, addr, &testRow, &testCol, &testOffs, RF_DONT_REMAP); + + if (testRow == desc->frow && testCol == desc->fcol) { + rf_CopybackOne(desc, RF_COPYBACK_DATA, addr, testRow, testCol, testOffs); + done = 1; + break; + } + } + + if (!done) { + /* we didn't find the failed disk in the data part. + * check parity. */ + + /* map the parity for this stripe, disallowing remap + * to spare space */ + (raidPtr->Layout.map->MapParity) (raidPtr, stripeAddr, &testRow, &testCol, &testOffs, RF_DONT_REMAP); + + if (testRow == desc->frow && testCol == desc->fcol) { + rf_CopybackOne(desc, RF_COPYBACK_PARITY, stripeAddr, testRow, testCol, testOffs); + } + } + /* check to see if the last read/write pair failed */ + if (desc->status) { + rf_CopybackComplete(desc, 1); + return; + } + /* we didn't find any units to copy back in this stripe. + * Continue with the next one */ + } +} + + +/* copyback one unit */ +static void +rf_CopybackOne(desc, typ, addr, testRow, testCol, testOffs) + RF_CopybackDesc_t *desc; + int typ; + RF_RaidAddr_t addr; + RF_RowCol_t testRow; + RF_RowCol_t testCol; + RF_SectorNum_t testOffs; +{ + RF_SectorCount_t sectPerSU = desc->sectPerSU; + RF_Raid_t *raidPtr = desc->raidPtr; + RF_RowCol_t spRow = desc->spRow; + RF_RowCol_t spCol = desc->spCol; + RF_SectorNum_t spOffs; + + /* find the spare spare location for this SU */ + if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) { + if (typ == RF_COPYBACK_DATA) + raidPtr->Layout.map->MapSector(raidPtr, addr, &spRow, &spCol, &spOffs, RF_REMAP); + else + raidPtr->Layout.map->MapParity(raidPtr, addr, &spRow, &spCol, &spOffs, RF_REMAP); + } else { + spOffs = testOffs; + } + + /* create reqs to read the old location & write the new */ + desc->readreq = rf_CreateDiskQueueData(RF_IO_TYPE_READ, spOffs, + sectPerSU, desc->databuf, 0L, 0, + (int (*) (void *, int)) rf_CopybackReadDoneProc, desc, + NULL, NULL, (void *) raidPtr, RF_DISKQUEUE_DATA_FLAGS_NONE, NULL); + desc->writereq = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, testOffs, + sectPerSU, desc->databuf, 0L, 0, + (int (*) (void *, int)) rf_CopybackWriteDoneProc, desc, + NULL, NULL, (void *) raidPtr, RF_DISKQUEUE_DATA_FLAGS_NONE, NULL); + desc->frow = testRow; + desc->fcol = testCol; + + /* enqueue the read. the write will go out as part of the callback on + * the read. at user-level & in the kernel, wait for the read-write + * pair to complete. in the simulator, just return, since everything + * will happen as callbacks */ + + RF_LOCK_MUTEX(desc->mcpair->mutex); + desc->mcpair->flag = 0; + + rf_DiskIOEnqueue(&raidPtr->Queues[spRow][spCol], desc->readreq, RF_IO_NORMAL_PRIORITY); + + while (!desc->mcpair->flag) { + RF_WAIT_MCPAIR(desc->mcpair); + } + RF_UNLOCK_MUTEX(desc->mcpair->mutex); + rf_FreeDiskQueueData(desc->readreq); + rf_FreeDiskQueueData(desc->writereq); + +} + + +/* called at interrupt context when the read has completed. just send out the write */ +static int +rf_CopybackReadDoneProc(desc, status) + RF_CopybackDesc_t *desc; + int status; +{ + if (status) { /* invoke the callback with bad status */ + printf("COPYBACK: copyback read failed. Aborting.\n"); + (desc->writereq->CompleteFunc) (desc, -100); + } else { + rf_DiskIOEnqueue(&(desc->raidPtr->Queues[desc->frow][desc->fcol]), desc->writereq, RF_IO_NORMAL_PRIORITY); + } + return (0); +} +/* called at interrupt context when the write has completed. + * at user level & in the kernel, wake up the copyback thread. + * in the simulator, invoke the next copyback directly. + * can't free diskqueuedata structs in the kernel b/c we're at interrupt context. + */ +static int +rf_CopybackWriteDoneProc(desc, status) + RF_CopybackDesc_t *desc; + int status; +{ + if (status && status != -100) { + printf("COPYBACK: copyback write failed. Aborting.\n"); + } + desc->status = status; + rf_MCPairWakeupFunc(desc->mcpair); + return (0); +} +/* invoked when the copyback has completed */ +static void +rf_CopybackComplete(desc, status) + RF_CopybackDesc_t *desc; + int status; +{ + RF_Raid_t *raidPtr = desc->raidPtr; + struct timeval t, diff; + + if (!status) { + RF_LOCK_MUTEX(raidPtr->mutex); + if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) { + RF_ASSERT(raidPtr->Layout.map->parityConfig == 'D'); + rf_FreeSpareTable(raidPtr); + } else { + raidPtr->Disks[desc->spRow][desc->spCol].status = rf_ds_spare; + } + RF_UNLOCK_MUTEX(raidPtr->mutex); + + RF_GETTIME(t); + RF_TIMEVAL_DIFF(&desc->starttime, &t, &diff); + printf("Copyback time was %d.%06d seconds\n", + (int) diff.tv_sec, (int) diff.tv_usec); + } else + printf("COPYBACK: Failure.\n"); + + RF_Free(desc->databuf, rf_RaidAddressToByte(raidPtr, desc->sectPerSU)); + rf_FreeMCPair(desc->mcpair); + RF_Free(desc, sizeof(*desc)); + + rf_copyback_in_progress = 0; + rf_ResumeNewRequests(raidPtr); +} diff --git a/sys/dev/raidframe/rf_copyback.h b/sys/dev/raidframe/rf_copyback.h new file mode 100644 index 0000000..67da842 --- /dev/null +++ b/sys/dev/raidframe/rf_copyback.h @@ -0,0 +1,61 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_copyback.h,v 1.3 1999/02/05 00:06:06 oster Exp $ */ +/* + * rf_copyback.h + */ +/* + * Copyright (c) 1996 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Jim Zelenka + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +#ifndef _RF__RF_COPYBACK_H_ +#define _RF__RF_COPYBACK_H_ + +#include <dev/raidframe/rf_types.h> + +typedef struct RF_CopybackDesc_s { + RF_Raid_t *raidPtr; + RF_RowCol_t frow; + RF_RowCol_t fcol; + RF_RowCol_t spRow; + RF_RowCol_t spCol; + int status; + RF_StripeNum_t stripeAddr; + RF_SectorCount_t sectPerSU; + RF_SectorCount_t sectPerStripe; + char *databuf; + RF_DiskQueueData_t *readreq; + RF_DiskQueueData_t *writereq; + struct timeval starttime; + RF_MCPair_t *mcpair; +} RF_CopybackDesc_t; + +extern int rf_copyback_in_progress; + +int rf_ConfigureCopyback(RF_ShutdownList_t ** listp); +void rf_CopybackReconstructedData(RF_Raid_t * raidPtr); +void rf_ContinueCopyback(RF_CopybackDesc_t * desc); + +#endif /* !_RF__RF_COPYBACK_H_ */ diff --git a/sys/dev/raidframe/rf_cvscan.c b/sys/dev/raidframe/rf_cvscan.c new file mode 100644 index 0000000..f52f938 --- /dev/null +++ b/sys/dev/raidframe/rf_cvscan.c @@ -0,0 +1,439 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_cvscan.c,v 1.5 1999/08/13 03:41:53 oster Exp $ */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Mark Holland + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +/******************************************************************************* + * + * cvscan.c -- prioritized cvscan disk queueing code. + * + * Nov 9, 1994, adapted from raidSim version (MCH) + * + ******************************************************************************/ + +#include <dev/raidframe/rf_types.h> +#include <dev/raidframe/rf_alloclist.h> +#include <dev/raidframe/rf_stripelocks.h> +#include <dev/raidframe/rf_layout.h> +#include <dev/raidframe/rf_diskqueue.h> +#include <dev/raidframe/rf_cvscan.h> +#include <dev/raidframe/rf_debugMem.h> +#include <dev/raidframe/rf_general.h> + +#define DO_CHECK_STATE(_hdr_) CheckCvscanState((_hdr_), __FILE__, __LINE__) + +#define pri_ok(p) ( ((p) == RF_IO_NORMAL_PRIORITY) || ((p) == RF_IO_LOW_PRIORITY)) + +static void +CheckCvscanState(RF_CvscanHeader_t * hdr, char *file, int line) +{ + long i, key; + RF_DiskQueueData_t *tmp; + + if (hdr->left != (RF_DiskQueueData_t *) NULL) + RF_ASSERT(hdr->left->sectorOffset < hdr->cur_block); + for (key = hdr->cur_block, i = 0, tmp = hdr->left; + tmp != (RF_DiskQueueData_t *) NULL; + key = tmp->sectorOffset, i++, tmp = tmp->next) + RF_ASSERT(tmp->sectorOffset <= key + && tmp->priority == hdr->nxt_priority && pri_ok(tmp->priority)); + RF_ASSERT(i == hdr->left_cnt); + + for (key = hdr->cur_block, i = 0, tmp = hdr->right; + tmp != (RF_DiskQueueData_t *) NULL; + key = tmp->sectorOffset, i++, tmp = tmp->next) { + RF_ASSERT(key <= tmp->sectorOffset); + RF_ASSERT(tmp->priority == hdr->nxt_priority); + RF_ASSERT(pri_ok(tmp->priority)); + } + RF_ASSERT(i == hdr->right_cnt); + + for (key = hdr->nxt_priority - 1, tmp = hdr->burner; + tmp != (RF_DiskQueueData_t *) NULL; + key = tmp->priority, tmp = tmp->next) { + RF_ASSERT(tmp); + RF_ASSERT(hdr); + RF_ASSERT(pri_ok(tmp->priority)); + RF_ASSERT(key >= tmp->priority); + RF_ASSERT(tmp->priority < hdr->nxt_priority); + } +} + + + +static void +PriorityInsert(RF_DiskQueueData_t ** list_ptr, RF_DiskQueueData_t * req) +{ + /* * insert block pointed to by req in to list whose first * entry is + * pointed to by the pointer that list_ptr points to * ie., list_ptr + * is a grandparent of the first entry */ + + for (; (*list_ptr) != (RF_DiskQueueData_t *) NULL && + (*list_ptr)->priority > req->priority; + list_ptr = &((*list_ptr)->next)) { + } + req->next = (*list_ptr); + (*list_ptr) = req; +} + + + +static void +ReqInsert(RF_DiskQueueData_t ** list_ptr, RF_DiskQueueData_t * req, RF_CvscanArmDir_t order) +{ + /* * insert block pointed to by req in to list whose first * entry is + * pointed to by the pointer that list_ptr points to * ie., list_ptr + * is a grandparent of the first entry */ + + for (; (*list_ptr) != (RF_DiskQueueData_t *) NULL && + + ((order == rf_cvscan_RIGHT && (*list_ptr)->sectorOffset <= req->sectorOffset) + || (order == rf_cvscan_LEFT && (*list_ptr)->sectorOffset > req->sectorOffset)); + list_ptr = &((*list_ptr)->next)) { + } + req->next = (*list_ptr); + (*list_ptr) = req; +} + + + +static RF_DiskQueueData_t * +ReqDequeue(RF_DiskQueueData_t ** list_ptr) +{ + RF_DiskQueueData_t *ret = (*list_ptr); + if ((*list_ptr) != (RF_DiskQueueData_t *) NULL) { + (*list_ptr) = (*list_ptr)->next; + } + return (ret); +} + + + +static void +ReBalance(RF_CvscanHeader_t * hdr) +{ + /* DO_CHECK_STATE(hdr); */ + while (hdr->right != (RF_DiskQueueData_t *) NULL + && hdr->right->sectorOffset < hdr->cur_block) { + hdr->right_cnt--; + hdr->left_cnt++; + ReqInsert(&hdr->left, ReqDequeue(&hdr->right), rf_cvscan_LEFT); + } + /* DO_CHECK_STATE(hdr); */ +} + + + +static void +Transfer(RF_DiskQueueData_t ** to_list_ptr, RF_DiskQueueData_t ** from_list_ptr) +{ + RF_DiskQueueData_t *gp; + for (gp = (*from_list_ptr); gp != (RF_DiskQueueData_t *) NULL;) { + RF_DiskQueueData_t *p = gp->next; + PriorityInsert(to_list_ptr, gp); + gp = p; + } + (*from_list_ptr) = (RF_DiskQueueData_t *) NULL; +} + + + +static void +RealEnqueue(RF_CvscanHeader_t * hdr, RF_DiskQueueData_t * req) +{ + RF_ASSERT(req->priority == RF_IO_NORMAL_PRIORITY || req->priority == RF_IO_LOW_PRIORITY); + + DO_CHECK_STATE(hdr); + if (hdr->left_cnt == 0 && hdr->right_cnt == 0) { + hdr->nxt_priority = req->priority; + } + if (req->priority > hdr->nxt_priority) { + /* + ** dump all other outstanding requests on the back burner + */ + Transfer(&hdr->burner, &hdr->left); + Transfer(&hdr->burner, &hdr->right); + hdr->left_cnt = 0; + hdr->right_cnt = 0; + hdr->nxt_priority = req->priority; + } + if (req->priority < hdr->nxt_priority) { + /* + ** yet another low priority task! + */ + PriorityInsert(&hdr->burner, req); + } else { + if (req->sectorOffset < hdr->cur_block) { + /* this request is to the left of the current arms */ + ReqInsert(&hdr->left, req, rf_cvscan_LEFT); + hdr->left_cnt++; + } else { + /* this request is to the right of the current arms */ + ReqInsert(&hdr->right, req, rf_cvscan_RIGHT); + hdr->right_cnt++; + } + } + DO_CHECK_STATE(hdr); +} + + + +void +rf_CvscanEnqueue(void *q_in, RF_DiskQueueData_t * elem, int priority) +{ + RF_CvscanHeader_t *hdr = (RF_CvscanHeader_t *) q_in; + RealEnqueue(hdr, elem /* req */ ); +} + + + +RF_DiskQueueData_t * +rf_CvscanDequeue(void *q_in) +{ + RF_CvscanHeader_t *hdr = (RF_CvscanHeader_t *) q_in; + long range, i, sum_dist_left, sum_dist_right; + RF_DiskQueueData_t *ret; + RF_DiskQueueData_t *tmp; + + DO_CHECK_STATE(hdr); + + if (hdr->left_cnt == 0 && hdr->right_cnt == 0) + return ((RF_DiskQueueData_t *) NULL); + + range = RF_MIN(hdr->range_for_avg, RF_MIN(hdr->left_cnt, hdr->right_cnt)); + for (i = 0, tmp = hdr->left, sum_dist_left = + ((hdr->direction == rf_cvscan_RIGHT) ? range * hdr->change_penalty : 0); + tmp != (RF_DiskQueueData_t *) NULL && i < range; + tmp = tmp->next, i++) { + sum_dist_left += hdr->cur_block - tmp->sectorOffset; + } + for (i = 0, tmp = hdr->right, sum_dist_right = + ((hdr->direction == rf_cvscan_LEFT) ? range * hdr->change_penalty : 0); + tmp != (RF_DiskQueueData_t *) NULL && i < range; + tmp = tmp->next, i++) { + sum_dist_right += tmp->sectorOffset - hdr->cur_block; + } + + if (hdr->right_cnt == 0 || sum_dist_left < sum_dist_right) { + hdr->direction = rf_cvscan_LEFT; + hdr->cur_block = hdr->left->sectorOffset + hdr->left->numSector; + hdr->left_cnt = RF_MAX(hdr->left_cnt - 1, 0); + tmp = hdr->left; + ret = (ReqDequeue(&hdr->left)) /*->parent*/ ; + } else { + hdr->direction = rf_cvscan_RIGHT; + hdr->cur_block = hdr->right->sectorOffset + hdr->right->numSector; + hdr->right_cnt = RF_MAX(hdr->right_cnt - 1, 0); + tmp = hdr->right; + ret = (ReqDequeue(&hdr->right)) /*->parent*/ ; + } + ReBalance(hdr); + + if (hdr->left_cnt == 0 && hdr->right_cnt == 0 + && hdr->burner != (RF_DiskQueueData_t *) NULL) { + /* + ** restore low priority requests for next dequeue + */ + RF_DiskQueueData_t *burner = hdr->burner; + hdr->nxt_priority = burner->priority; + while (burner != (RF_DiskQueueData_t *) NULL + && burner->priority == hdr->nxt_priority) { + RF_DiskQueueData_t *next = burner->next; + RealEnqueue(hdr, burner); + burner = next; + } + hdr->burner = burner; + } + DO_CHECK_STATE(hdr); + return (ret); +} + + + +RF_DiskQueueData_t * +rf_CvscanPeek(void *q_in) +{ + RF_CvscanHeader_t *hdr = (RF_CvscanHeader_t *) q_in; + long range, i, sum_dist_left, sum_dist_right; + RF_DiskQueueData_t *tmp, *headElement; + + DO_CHECK_STATE(hdr); + + if (hdr->left_cnt == 0 && hdr->right_cnt == 0) + headElement = NULL; + else { + range = RF_MIN(hdr->range_for_avg, RF_MIN(hdr->left_cnt, hdr->right_cnt)); + for (i = 0, tmp = hdr->left, sum_dist_left = + ((hdr->direction == rf_cvscan_RIGHT) ? range * hdr->change_penalty : 0); + tmp != (RF_DiskQueueData_t *) NULL && i < range; + tmp = tmp->next, i++) { + sum_dist_left += hdr->cur_block - tmp->sectorOffset; + } + for (i = 0, tmp = hdr->right, sum_dist_right = + ((hdr->direction == rf_cvscan_LEFT) ? range * hdr->change_penalty : 0); + tmp != (RF_DiskQueueData_t *) NULL && i < range; + tmp = tmp->next, i++) { + sum_dist_right += tmp->sectorOffset - hdr->cur_block; + } + + if (hdr->right_cnt == 0 || sum_dist_left < sum_dist_right) + headElement = hdr->left; + else + headElement = hdr->right; + } + return (headElement); +} + + + +/* +** CVSCAN( 1, 0 ) is Shortest Seek Time First (SSTF) +** lowest average response time +** CVSCAN( 1, infinity ) is SCAN +** lowest response time standard deviation +*/ + + +int +rf_CvscanConfigure() +{ + return (0); +} + + + +void * +rf_CvscanCreate(RF_SectorCount_t sectPerDisk, + RF_AllocListElem_t * clList, + RF_ShutdownList_t ** listp) +{ + RF_CvscanHeader_t *hdr; + long range = 2; /* Currently no mechanism to change these */ + long penalty = sectPerDisk / 5; + + RF_MallocAndAdd(hdr, sizeof(RF_CvscanHeader_t), (RF_CvscanHeader_t *), clList); + bzero((char *) hdr, sizeof(RF_CvscanHeader_t)); + hdr->range_for_avg = RF_MAX(range, 1); + hdr->change_penalty = RF_MAX(penalty, 0); + hdr->direction = rf_cvscan_RIGHT; + hdr->cur_block = 0; + hdr->left_cnt = hdr->right_cnt = 0; + hdr->left = hdr->right = (RF_DiskQueueData_t *) NULL; + hdr->burner = (RF_DiskQueueData_t *) NULL; + DO_CHECK_STATE(hdr); + + return ((void *) hdr); +} + + +#if defined(__NetBSD__) || defined(__FreeBSD__) && defined(_KERNEL) +/* PrintCvscanQueue is not used, so we ignore it... */ +#else +static void +PrintCvscanQueue(RF_CvscanHeader_t * hdr) +{ + RF_DiskQueueData_t *tmp; + + printf("CVSCAN(%d,%d) at %d going %s\n", + (int) hdr->range_for_avg, + (int) hdr->change_penalty, + (int) hdr->cur_block, + (hdr->direction == rf_cvscan_LEFT) ? "LEFT" : "RIGHT"); + printf("\tLeft(%d): ", hdr->left_cnt); + for (tmp = hdr->left; tmp != (RF_DiskQueueData_t *) NULL; tmp = tmp->next) + printf("(%d,%ld,%d) ", + (int) tmp->sectorOffset, + (long) (tmp->sectorOffset + tmp->numSector), + tmp->priority); + printf("\n"); + printf("\tRight(%d): ", hdr->right_cnt); + for (tmp = hdr->right; tmp != (RF_DiskQueueData_t *) NULL; tmp = tmp->next) + printf("(%d,%ld,%d) ", + (int) tmp->sectorOffset, + (long) (tmp->sectorOffset + tmp->numSector), + tmp->priority); + printf("\n"); + printf("\tBurner: "); + for (tmp = hdr->burner; tmp != (RF_DiskQueueData_t *) NULL; tmp = tmp->next) + printf("(%d,%ld,%d) ", + (int) tmp->sectorOffset, + (long) (tmp->sectorOffset + tmp->numSector), + tmp->priority); + printf("\n"); +} +#endif + + +/* promotes reconstruction accesses for the given stripeID to normal priority. + * returns 1 if an access was found and zero otherwise. Normally, we should + * only have one or zero entries in the burner queue, so execution time should + * be short. + */ +int +rf_CvscanPromote(void *q_in, RF_StripeNum_t parityStripeID, RF_ReconUnitNum_t which_ru) +{ + RF_CvscanHeader_t *hdr = (RF_CvscanHeader_t *) q_in; + RF_DiskQueueData_t *trailer = NULL, *tmp = hdr->burner, *tlist = NULL; + int retval = 0; + + DO_CHECK_STATE(hdr); + while (tmp) { /* handle entries at the front of the list */ + if (tmp->parityStripeID == parityStripeID && tmp->which_ru == which_ru) { + hdr->burner = tmp->next; + tmp->priority = RF_IO_NORMAL_PRIORITY; + tmp->next = tlist; + tlist = tmp; + tmp = hdr->burner; + } else + break; + } + if (tmp) { + trailer = tmp; + tmp = tmp->next; + } + while (tmp) { /* handle entries on the rest of the list */ + if (tmp->parityStripeID == parityStripeID && tmp->which_ru == which_ru) { + trailer->next = tmp->next; + tmp->priority = RF_IO_NORMAL_PRIORITY; + tmp->next = tlist; + tlist = tmp; /* insert on a temp queue */ + tmp = trailer->next; + } else { + trailer = tmp; + tmp = tmp->next; + } + } + while (tlist) { + retval++; + tmp = tlist->next; + RealEnqueue(hdr, tlist); + tlist = tmp; + } + RF_ASSERT(retval == 0 || retval == 1); + DO_CHECK_STATE((RF_CvscanHeader_t *) q_in); + return (retval); +} diff --git a/sys/dev/raidframe/rf_cvscan.h b/sys/dev/raidframe/rf_cvscan.h new file mode 100644 index 0000000..7f536a8 --- /dev/null +++ b/sys/dev/raidframe/rf_cvscan.h @@ -0,0 +1,85 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_cvscan.h,v 1.3 1999/02/05 00:06:07 oster Exp $ */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Mark Holland + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +/* +** Disk scheduling by CVSCAN( N, r ) +** +** Given a set of requests, partition them into one set on each +** side of the current arm position. The trick is to pick which +** side you are going to service next; once a side is picked you will +** service the closest request. +** Let there be n1 requests on one side and n2 requests on the other +** side. If one of n1 or n2 is zero, select the other side. +** If both n1 and n2 are nonzero, select a "range" for examination +** that is N' = min( n1, n2, N ). Average the distance from the +** current position to the nearest N' requests on each side giving +** d1 and d2. +** Suppose the last decision was to move toward set 2, then the +** current direction is toward set 2, and you will only switch to set +** 1 if d1+R < d2 where R is r*(total number of cylinders), r in [0,1]. +** +** I extend this by applying only to the set of requests that all +** share the same, highest priority level. +*/ + +#ifndef _RF__RF_CVSCAN_H_ +#define _RF__RF_CVSCAN_H_ + +#include <dev/raidframe/rf_diskqueue.h> + +typedef enum RF_CvscanArmDir_e { + rf_cvscan_LEFT, + rf_cvscan_RIGHT +} RF_CvscanArmDir_t; + +typedef struct RF_CvscanHeader_s { + long range_for_avg; /* CVSCAN param N */ + long change_penalty; /* CVSCAN param R */ + RF_CvscanArmDir_t direction; + RF_SectorNum_t cur_block; + int nxt_priority; + RF_DiskQueueData_t *left; + int left_cnt; + RF_DiskQueueData_t *right; + int right_cnt; + RF_DiskQueueData_t *burner; +} RF_CvscanHeader_t; + +int rf_CvscanConfigure(void); +void * +rf_CvscanCreate(RF_SectorCount_t sect_per_disk, + RF_AllocListElem_t * cl_list, RF_ShutdownList_t ** listp); +void rf_CvscanEnqueue(void *qptr, RF_DiskQueueData_t * req, int priority); +RF_DiskQueueData_t *rf_CvscanDequeue(void *qptr); +RF_DiskQueueData_t *rf_CvscanPeek(void *qptr); +int +rf_CvscanPromote(void *qptr, RF_StripeNum_t parityStripeID, + RF_ReconUnitNum_t which_ru); + +#endif /* !_RF__RF_CVSCAN_H_ */ diff --git a/sys/dev/raidframe/rf_dag.h b/sys/dev/raidframe/rf_dag.h new file mode 100644 index 0000000..15cd4a8 --- /dev/null +++ b/sys/dev/raidframe/rf_dag.h @@ -0,0 +1,239 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_dag.h,v 1.3 1999/02/05 00:06:07 oster Exp $ */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: William V. Courtright II, Mark Holland + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +/**************************************************************************** + * * + * dag.h -- header file for DAG-related data structures * + * * + ****************************************************************************/ + +#ifndef _RF__RF_DAG_H_ +#define _RF__RF_DAG_H_ + +#include <dev/raidframe/rf_types.h> +#include <dev/raidframe/rf_threadstuff.h> +#include <dev/raidframe/rf_alloclist.h> +#include <dev/raidframe/rf_stripelocks.h> +#include <dev/raidframe/rf_layout.h> +#include <dev/raidframe/rf_dagflags.h> +#include <dev/raidframe/rf_acctrace.h> +#include <dev/raidframe/rf_memchunk.h> + +#define RF_THREAD_CONTEXT 0 /* we were invoked from thread context */ +#define RF_INTR_CONTEXT 1 /* we were invoked from interrupt context */ +#define RF_MAX_ANTECEDENTS 20 /* max num of antecedents a node may posses */ + +#if defined(__FreeBSD__) && __FreeBSD_version > 500005 +#include <sys/bio.h> +#endif +#include <sys/buf.h> + +struct RF_PropHeader_s { /* structure for propagation of results */ + int resultNum; /* bind result # resultNum */ + int paramNum; /* to parameter # paramNum */ + RF_PropHeader_t *next; /* linked list for multiple results/params */ +}; + +typedef enum RF_NodeStatus_e { + rf_bwd1, /* node is ready for undo logging (backward + * error recovery only) */ + rf_bwd2, /* node has completed undo logging (backward + * error recovery only) */ + rf_wait, /* node is waiting to be executed */ + rf_fired, /* node is currently executing its do function */ + rf_good, /* node successfully completed execution of + * its do function */ + rf_bad, /* node failed to successfully execute its do + * function */ + rf_skipped, /* not used anymore, used to imply a node was + * not executed */ + rf_recover, /* node is currently executing its undo + * function */ + rf_panic, /* node failed to successfully execute its + * undo function */ + rf_undone /* node successfully executed its undo + * function */ +} RF_NodeStatus_t; +/* + * These were used to control skipping a node. + * Now, these are only used as comments. + */ +typedef enum RF_AntecedentType_e { + rf_trueData, + rf_antiData, + rf_outputData, + rf_control +} RF_AntecedentType_t; +#define RF_DAG_PTRCACHESIZE 40 +#define RF_DAG_PARAMCACHESIZE 12 + +typedef RF_uint8 RF_DagNodeFlags_t; + +struct RF_DagNode_s { + RF_NodeStatus_t status; /* current status of this node */ + int (*doFunc) (RF_DagNode_t *); /* normal function */ + int (*undoFunc) (RF_DagNode_t *); /* func to remove effect of + * doFunc */ + int (*wakeFunc) (RF_DagNode_t *, int status); /* func called when the + * node completes an I/O */ + int numParams; /* number of parameters required by *funcPtr */ + int numResults; /* number of results produced by *funcPtr */ + int numAntecedents; /* number of antecedents */ + int numAntDone; /* number of antecedents which have finished */ + int numSuccedents; /* number of succedents */ + int numSuccFired; /* incremented when a succedent is fired + * during forward execution */ + int numSuccDone; /* incremented when a succedent finishes + * during rollBackward */ + int commitNode; /* boolean flag - if true, this is a commit + * node */ + RF_DagNode_t **succedents; /* succedents, array size + * numSuccedents */ + RF_DagNode_t **antecedents; /* antecedents, array size + * numAntecedents */ + RF_AntecedentType_t antType[RF_MAX_ANTECEDENTS]; /* type of each + * antecedent */ + void **results; /* array of results produced by *funcPtr */ + RF_DagParam_t *params; /* array of parameters required by *funcPtr */ + RF_PropHeader_t **propList; /* propagation list, size + * numSuccedents */ + RF_DagHeader_t *dagHdr; /* ptr to head of dag containing this node */ + void *dagFuncData; /* dag execution func uses this for whatever + * it wants */ + RF_DagNode_t *next; + int nodeNum; /* used by PrintDAG for debug only */ + int visited; /* used to avoid re-visiting nodes on DAG + * walks */ + /* ANY CODE THAT USES THIS FIELD MUST MAINTAIN THE PROPERTY THAT AFTER + * IT FINISHES, ALL VISITED FLAGS IN THE DAG ARE IDENTICAL */ + char *name; /* debug only */ + RF_DagNodeFlags_t flags;/* see below */ + RF_DagNode_t *dag_ptrs[RF_DAG_PTRCACHESIZE]; /* cache for performance */ + RF_DagParam_t dag_params[RF_DAG_PARAMCACHESIZE]; /* cache for performance */ +}; +/* + * Bit values for flags field of RF_DagNode_t + */ +#define RF_DAGNODE_FLAG_NONE 0x00 +#define RF_DAGNODE_FLAG_YIELD 0x01 /* in the kernel, yield the processor + * before firing this node */ + +/* enable - DAG ready for normal execution, no errors encountered + * rollForward - DAG encountered an error after commit point, rolling forward + * rollBackward - DAG encountered an error prior to commit point, rolling backward + */ +typedef enum RF_DagStatus_e { + rf_enable, + rf_rollForward, + rf_rollBackward +} RF_DagStatus_t; +#define RF_MAX_HDR_SUCC 1 + +#define RF_MAXCHUNKS 10 + +struct RF_DagHeader_s { + RF_DagStatus_t status; /* status of this DAG */ + int numSuccedents; /* DAG may be a tree, i.e. may have > 1 root */ + int numCommitNodes; /* number of commit nodes in graph */ + int numCommits; /* number of commit nodes which have been + * fired */ + RF_DagNode_t *succedents[RF_MAX_HDR_SUCC]; /* array of succedents, + * size numSuccedents */ + RF_DagHeader_t *next; /* ptr to allow a list of dags */ + RF_AllocListElem_t *allocList; /* ptr to list of ptrs to be freed + * prior to freeing DAG */ + RF_AccessStripeMapHeader_t *asmList; /* list of access stripe maps + * to be freed */ + int nodeNum; /* used by PrintDAG for debug only */ + int numNodesCompleted; + RF_AccTraceEntry_t *tracerec; /* perf mon only */ + + void (*cbFunc) (void *); /* function to call when the dag + * completes */ + void *cbArg; /* argument for cbFunc */ + char *creator; /* name of function used to create this dag */ + + RF_Raid_t *raidPtr; /* the descriptor for the RAID device this DAG + * is for */ + void *bp; /* the bp for this I/O passed down from the + * file system. ignored outside kernel */ + + RF_ChunkDesc_t *memChunk[RF_MAXCHUNKS]; /* experimental- Chunks of + * memory to be retained upon + * DAG free for re-use */ + int chunkIndex; /* the idea is to avoid calls to alloc and + * free */ + + RF_ChunkDesc_t **xtraMemChunk; /* escape hatch which allows + * SelectAlgorithm to merge memChunks + * from several dags */ + int xtraChunkIndex; /* number of ptrs to valid chunks */ + int xtraChunkCnt; /* number of ptrs to chunks allocated */ + +}; + +struct RF_DagList_s { + /* common info for a list of dags which will be fired sequentially */ + int numDags; /* number of dags in the list */ + int numDagsFired; /* number of dags in list which have initiated + * execution */ + int numDagsDone; /* number of dags in list which have completed + * execution */ + RF_DagHeader_t *dags; /* list of dags */ + RF_RaidAccessDesc_t *desc; /* ptr to descriptor for this access */ + RF_AccTraceEntry_t tracerec; /* perf mon info for dags (not user + * info) */ +}; +/* resets a node so that it can be fired again */ +#define RF_ResetNode(_n_) { \ + (_n_)->status = rf_wait; \ + (_n_)->numAntDone = 0; \ + (_n_)->numSuccFired = 0; \ + (_n_)->numSuccDone = 0; \ + (_n_)->next = NULL; \ +} + +#define RF_ResetDagHeader(_h_) { \ + (_h_)->numNodesCompleted = 0; \ + (_h_)->numCommits = 0; \ + (_h_)->status = rf_enable; \ +} + +/* convience macro for declaring a create dag function */ + +#define RF_CREATE_DAG_FUNC_DECL(_name_) \ +void _name_ ( \ + RF_Raid_t *raidPtr, \ + RF_AccessStripeMap_t *asmap, \ + RF_DagHeader_t *dag_h, \ + void *bp, \ + RF_RaidAccessFlags_t flags, \ + RF_AllocListElem_t *allocList) + +#endif /* !_RF__RF_DAG_H_ */ diff --git a/sys/dev/raidframe/rf_dagdegrd.c b/sys/dev/raidframe/rf_dagdegrd.c new file mode 100644 index 0000000..8e4c15a --- /dev/null +++ b/sys/dev/raidframe/rf_dagdegrd.c @@ -0,0 +1,1130 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_dagdegrd.c,v 1.7 2001/01/26 14:06:16 oster Exp $ */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Mark Holland, Daniel Stodolsky, William V. Courtright II + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +/* + * rf_dagdegrd.c + * + * code for creating degraded read DAGs + */ + +#include <dev/raidframe/rf_archs.h> +#include <dev/raidframe/rf_types.h> +#include <dev/raidframe/rf_raid.h> +#include <dev/raidframe/rf_dag.h> +#include <dev/raidframe/rf_dagutils.h> +#include <dev/raidframe/rf_dagfuncs.h> +#include <dev/raidframe/rf_debugMem.h> +#include <dev/raidframe/rf_memchunk.h> +#include <dev/raidframe/rf_general.h> +#include <dev/raidframe/rf_dagdegrd.h> + + +/****************************************************************************** + * + * General comments on DAG creation: + * + * All DAGs in this file use roll-away error recovery. Each DAG has a single + * commit node, usually called "Cmt." If an error occurs before the Cmt node + * is reached, the execution engine will halt forward execution and work + * backward through the graph, executing the undo functions. Assuming that + * each node in the graph prior to the Cmt node are undoable and atomic - or - + * does not make changes to permanent state, the graph will fail atomically. + * If an error occurs after the Cmt node executes, the engine will roll-forward + * through the graph, blindly executing nodes until it reaches the end. + * If a graph reaches the end, it is assumed to have completed successfully. + * + * A graph has only 1 Cmt node. + * + */ + + +/****************************************************************************** + * + * The following wrappers map the standard DAG creation interface to the + * DAG creation routines. Additionally, these wrappers enable experimentation + * with new DAG structures by providing an extra level of indirection, allowing + * the DAG creation routines to be replaced at this single point. + */ + +void +rf_CreateRaidFiveDegradedReadDAG( + RF_Raid_t * raidPtr, + RF_AccessStripeMap_t * asmap, + RF_DagHeader_t * dag_h, + void *bp, + RF_RaidAccessFlags_t flags, + RF_AllocListElem_t * allocList) +{ + rf_CreateDegradedReadDAG(raidPtr, asmap, dag_h, bp, flags, allocList, + &rf_xorRecoveryFuncs); +} + + +/****************************************************************************** + * + * DAG creation code begins here + */ + + +/****************************************************************************** + * Create a degraded read DAG for RAID level 1 + * + * Hdr -> Nil -> R(p/s)d -> Commit -> Trm + * + * The "Rd" node reads data from the surviving disk in the mirror pair + * Rpd - read of primary copy + * Rsd - read of secondary copy + * + * Parameters: raidPtr - description of the physical array + * asmap - logical & physical addresses for this access + * bp - buffer ptr (for holding write data) + * flags - general flags (e.g. disk locking) + * allocList - list of memory allocated in DAG creation + *****************************************************************************/ + +void +rf_CreateRaidOneDegradedReadDAG( + RF_Raid_t * raidPtr, + RF_AccessStripeMap_t * asmap, + RF_DagHeader_t * dag_h, + void *bp, + RF_RaidAccessFlags_t flags, + RF_AllocListElem_t * allocList) +{ + RF_DagNode_t *nodes, *rdNode, *blockNode, *commitNode, *termNode; + RF_StripeNum_t parityStripeID; + RF_ReconUnitNum_t which_ru; + RF_PhysDiskAddr_t *pda; + int useMirror, i; + + useMirror = 0; + parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout), + asmap->raidAddress, &which_ru); + if (rf_dagDebug) { + printf("[Creating RAID level 1 degraded read DAG]\n"); + } + dag_h->creator = "RaidOneDegradedReadDAG"; + /* alloc the Wnd nodes and the Wmir node */ + if (asmap->numDataFailed == 0) + useMirror = RF_FALSE; + else + useMirror = RF_TRUE; + + /* total number of nodes = 1 + (block + commit + terminator) */ + RF_CallocAndAdd(nodes, 4, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList); + i = 0; + rdNode = &nodes[i]; + i++; + blockNode = &nodes[i]; + i++; + commitNode = &nodes[i]; + i++; + termNode = &nodes[i]; + i++; + + /* this dag can not commit until the commit node is reached. errors + * prior to the commit point imply the dag has failed and must be + * retried */ + dag_h->numCommitNodes = 1; + dag_h->numCommits = 0; + dag_h->numSuccedents = 1; + + /* initialize the block, commit, and terminator nodes */ + rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, + NULL, 1, 0, 0, 0, dag_h, "Nil", allocList); + rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc, + NULL, 1, 1, 0, 0, dag_h, "Cmt", allocList); + rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, + NULL, 0, 1, 0, 0, dag_h, "Trm", allocList); + + pda = asmap->physInfo; + RF_ASSERT(pda != NULL); + /* parityInfo must describe entire parity unit */ + RF_ASSERT(asmap->parityInfo->next == NULL); + + /* initialize the data node */ + if (!useMirror) { + /* read primary copy of data */ + rf_InitNode(rdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, + rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rpd", allocList); + rdNode->params[0].p = pda; + rdNode->params[1].p = pda->bufPtr; + rdNode->params[2].v = parityStripeID; + rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); + } else { + /* read secondary copy of data */ + rf_InitNode(rdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, + rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rsd", allocList); + rdNode->params[0].p = asmap->parityInfo; + rdNode->params[1].p = pda->bufPtr; + rdNode->params[2].v = parityStripeID; + rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); + } + + /* connect header to block node */ + RF_ASSERT(dag_h->numSuccedents == 1); + RF_ASSERT(blockNode->numAntecedents == 0); + dag_h->succedents[0] = blockNode; + + /* connect block node to rdnode */ + RF_ASSERT(blockNode->numSuccedents == 1); + RF_ASSERT(rdNode->numAntecedents == 1); + blockNode->succedents[0] = rdNode; + rdNode->antecedents[0] = blockNode; + rdNode->antType[0] = rf_control; + + /* connect rdnode to commit node */ + RF_ASSERT(rdNode->numSuccedents == 1); + RF_ASSERT(commitNode->numAntecedents == 1); + rdNode->succedents[0] = commitNode; + commitNode->antecedents[0] = rdNode; + commitNode->antType[0] = rf_control; + + /* connect commit node to terminator */ + RF_ASSERT(commitNode->numSuccedents == 1); + RF_ASSERT(termNode->numAntecedents == 1); + RF_ASSERT(termNode->numSuccedents == 0); + commitNode->succedents[0] = termNode; + termNode->antecedents[0] = commitNode; + termNode->antType[0] = rf_control; +} + + + +/****************************************************************************** + * + * creates a DAG to perform a degraded-mode read of data within one stripe. + * This DAG is as follows: + * + * Hdr -> Block -> Rud -> Xor -> Cmt -> T + * -> Rrd -> + * -> Rp --> + * + * Each R node is a successor of the L node + * One successor arc from each R node goes to C, and the other to X + * There is one Rud for each chunk of surviving user data requested by the + * user, and one Rrd for each chunk of surviving user data _not_ being read by + * the user + * R = read, ud = user data, rd = recovery (surviving) data, p = parity + * X = XOR, C = Commit, T = terminate + * + * The block node guarantees a single source node. + * + * Note: The target buffer for the XOR node is set to the actual user buffer + * where the failed data is supposed to end up. This buffer is zero'd by the + * code here. Thus, if you create a degraded read dag, use it, and then + * re-use, you have to be sure to zero the target buffer prior to the re-use. + * + * The recfunc argument at the end specifies the name and function used for + * the redundancy + * recovery function. + * + *****************************************************************************/ + +void +rf_CreateDegradedReadDAG( + RF_Raid_t * raidPtr, + RF_AccessStripeMap_t * asmap, + RF_DagHeader_t * dag_h, + void *bp, + RF_RaidAccessFlags_t flags, + RF_AllocListElem_t * allocList, + RF_RedFuncs_t * recFunc) +{ + RF_DagNode_t *nodes, *rudNodes, *rrdNodes, *xorNode, *blockNode; + RF_DagNode_t *commitNode, *rpNode, *termNode; + int nNodes, nRrdNodes, nRudNodes, nXorBufs, i; + int j, paramNum; + RF_SectorCount_t sectorsPerSU; + RF_ReconUnitNum_t which_ru; + char *overlappingPDAs;/* a temporary array of flags */ + RF_AccessStripeMapHeader_t *new_asm_h[2]; + RF_PhysDiskAddr_t *pda, *parityPDA; + RF_StripeNum_t parityStripeID; + RF_PhysDiskAddr_t *failedPDA; + RF_RaidLayout_t *layoutPtr; + char *rpBuf; + + layoutPtr = &(raidPtr->Layout); + /* failedPDA points to the pda within the asm that targets the failed + * disk */ + failedPDA = asmap->failedPDAs[0]; + parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr, + asmap->raidAddress, &which_ru); + sectorsPerSU = layoutPtr->sectorsPerStripeUnit; + + if (rf_dagDebug) { + printf("[Creating degraded read DAG]\n"); + } + RF_ASSERT(asmap->numDataFailed == 1); + dag_h->creator = "DegradedReadDAG"; + + /* + * generate two ASMs identifying the surviving data we need + * in order to recover the lost data + */ + + /* overlappingPDAs array must be zero'd */ + RF_Calloc(overlappingPDAs, asmap->numStripeUnitsAccessed, sizeof(char), (char *)); + rf_GenerateFailedAccessASMs(raidPtr, asmap, failedPDA, dag_h, new_asm_h, &nXorBufs, + &rpBuf, overlappingPDAs, allocList); + + /* + * create all the nodes at once + * + * -1 because no access is generated for the failed pda + */ + nRudNodes = asmap->numStripeUnitsAccessed - 1; + nRrdNodes = ((new_asm_h[0]) ? new_asm_h[0]->stripeMap->numStripeUnitsAccessed : 0) + + ((new_asm_h[1]) ? new_asm_h[1]->stripeMap->numStripeUnitsAccessed : 0); + nNodes = 5 + nRudNodes + nRrdNodes; /* lock, unlock, xor, Rp, Rud, + * Rrd */ + RF_CallocAndAdd(nodes, nNodes, sizeof(RF_DagNode_t), (RF_DagNode_t *), + allocList); + i = 0; + blockNode = &nodes[i]; + i++; + commitNode = &nodes[i]; + i++; + xorNode = &nodes[i]; + i++; + rpNode = &nodes[i]; + i++; + termNode = &nodes[i]; + i++; + rudNodes = &nodes[i]; + i += nRudNodes; + rrdNodes = &nodes[i]; + i += nRrdNodes; + RF_ASSERT(i == nNodes); + + /* initialize nodes */ + dag_h->numCommitNodes = 1; + dag_h->numCommits = 0; + /* this dag can not commit until the commit node is reached errors + * prior to the commit point imply the dag has failed */ + dag_h->numSuccedents = 1; + + rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, + NULL, nRudNodes + nRrdNodes + 1, 0, 0, 0, dag_h, "Nil", allocList); + rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc, + NULL, 1, 1, 0, 0, dag_h, "Cmt", allocList); + rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, + NULL, 0, 1, 0, 0, dag_h, "Trm", allocList); + rf_InitNode(xorNode, rf_wait, RF_FALSE, recFunc->simple, rf_NullNodeUndoFunc, + NULL, 1, nRudNodes + nRrdNodes + 1, 2 * nXorBufs + 2, 1, dag_h, + recFunc->SimpleName, allocList); + + /* fill in the Rud nodes */ + for (pda = asmap->physInfo, i = 0; i < nRudNodes; i++, pda = pda->next) { + if (pda == failedPDA) { + i--; + continue; + } + rf_InitNode(&rudNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, + rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, + "Rud", allocList); + RF_ASSERT(pda); + rudNodes[i].params[0].p = pda; + rudNodes[i].params[1].p = pda->bufPtr; + rudNodes[i].params[2].v = parityStripeID; + rudNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); + } + + /* fill in the Rrd nodes */ + i = 0; + if (new_asm_h[0]) { + for (pda = new_asm_h[0]->stripeMap->physInfo; + i < new_asm_h[0]->stripeMap->numStripeUnitsAccessed; + i++, pda = pda->next) { + rf_InitNode(&rrdNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, + rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, + dag_h, "Rrd", allocList); + RF_ASSERT(pda); + rrdNodes[i].params[0].p = pda; + rrdNodes[i].params[1].p = pda->bufPtr; + rrdNodes[i].params[2].v = parityStripeID; + rrdNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); + } + } + if (new_asm_h[1]) { + for (j = 0, pda = new_asm_h[1]->stripeMap->physInfo; + j < new_asm_h[1]->stripeMap->numStripeUnitsAccessed; + j++, pda = pda->next) { + rf_InitNode(&rrdNodes[i + j], rf_wait, RF_FALSE, rf_DiskReadFunc, + rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, + dag_h, "Rrd", allocList); + RF_ASSERT(pda); + rrdNodes[i + j].params[0].p = pda; + rrdNodes[i + j].params[1].p = pda->bufPtr; + rrdNodes[i + j].params[2].v = parityStripeID; + rrdNodes[i + j].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); + } + } + /* make a PDA for the parity unit */ + RF_MallocAndAdd(parityPDA, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList); + parityPDA->row = asmap->parityInfo->row; + parityPDA->col = asmap->parityInfo->col; + parityPDA->startSector = ((asmap->parityInfo->startSector / sectorsPerSU) + * sectorsPerSU) + (failedPDA->startSector % sectorsPerSU); + parityPDA->numSector = failedPDA->numSector; + + /* initialize the Rp node */ + rf_InitNode(rpNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, + rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rp ", allocList); + rpNode->params[0].p = parityPDA; + rpNode->params[1].p = rpBuf; + rpNode->params[2].v = parityStripeID; + rpNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); + + /* + * the last and nastiest step is to assign all + * the parameters of the Xor node + */ + paramNum = 0; + for (i = 0; i < nRrdNodes; i++) { + /* all the Rrd nodes need to be xored together */ + xorNode->params[paramNum++] = rrdNodes[i].params[0]; + xorNode->params[paramNum++] = rrdNodes[i].params[1]; + } + for (i = 0; i < nRudNodes; i++) { + /* any Rud nodes that overlap the failed access need to be + * xored in */ + if (overlappingPDAs[i]) { + RF_MallocAndAdd(pda, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList); + bcopy((char *) rudNodes[i].params[0].p, (char *) pda, sizeof(RF_PhysDiskAddr_t)); + rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_DOBUFFER, 0); + xorNode->params[paramNum++].p = pda; + xorNode->params[paramNum++].p = pda->bufPtr; + } + } + RF_Free(overlappingPDAs, asmap->numStripeUnitsAccessed * sizeof(char)); + + /* install parity pda as last set of params to be xor'd */ + xorNode->params[paramNum++].p = parityPDA; + xorNode->params[paramNum++].p = rpBuf; + + /* + * the last 2 params to the recovery xor node are + * the failed PDA and the raidPtr + */ + xorNode->params[paramNum++].p = failedPDA; + xorNode->params[paramNum++].p = raidPtr; + RF_ASSERT(paramNum == 2 * nXorBufs + 2); + + /* + * The xor node uses results[0] as the target buffer. + * Set pointer and zero the buffer. In the kernel, this + * may be a user buffer in which case we have to remap it. + */ + xorNode->results[0] = failedPDA->bufPtr; + RF_BZERO(bp, failedPDA->bufPtr, rf_RaidAddressToByte(raidPtr, + failedPDA->numSector)); + + /* connect nodes to form graph */ + /* connect the header to the block node */ + RF_ASSERT(dag_h->numSuccedents == 1); + RF_ASSERT(blockNode->numAntecedents == 0); + dag_h->succedents[0] = blockNode; + + /* connect the block node to the read nodes */ + RF_ASSERT(blockNode->numSuccedents == (1 + nRrdNodes + nRudNodes)); + RF_ASSERT(rpNode->numAntecedents == 1); + blockNode->succedents[0] = rpNode; + rpNode->antecedents[0] = blockNode; + rpNode->antType[0] = rf_control; + for (i = 0; i < nRrdNodes; i++) { + RF_ASSERT(rrdNodes[i].numSuccedents == 1); + blockNode->succedents[1 + i] = &rrdNodes[i]; + rrdNodes[i].antecedents[0] = blockNode; + rrdNodes[i].antType[0] = rf_control; + } + for (i = 0; i < nRudNodes; i++) { + RF_ASSERT(rudNodes[i].numSuccedents == 1); + blockNode->succedents[1 + nRrdNodes + i] = &rudNodes[i]; + rudNodes[i].antecedents[0] = blockNode; + rudNodes[i].antType[0] = rf_control; + } + + /* connect the read nodes to the xor node */ + RF_ASSERT(xorNode->numAntecedents == (1 + nRrdNodes + nRudNodes)); + RF_ASSERT(rpNode->numSuccedents == 1); + rpNode->succedents[0] = xorNode; + xorNode->antecedents[0] = rpNode; + xorNode->antType[0] = rf_trueData; + for (i = 0; i < nRrdNodes; i++) { + RF_ASSERT(rrdNodes[i].numSuccedents == 1); + rrdNodes[i].succedents[0] = xorNode; + xorNode->antecedents[1 + i] = &rrdNodes[i]; + xorNode->antType[1 + i] = rf_trueData; + } + for (i = 0; i < nRudNodes; i++) { + RF_ASSERT(rudNodes[i].numSuccedents == 1); + rudNodes[i].succedents[0] = xorNode; + xorNode->antecedents[1 + nRrdNodes + i] = &rudNodes[i]; + xorNode->antType[1 + nRrdNodes + i] = rf_trueData; + } + + /* connect the xor node to the commit node */ + RF_ASSERT(xorNode->numSuccedents == 1); + RF_ASSERT(commitNode->numAntecedents == 1); + xorNode->succedents[0] = commitNode; + commitNode->antecedents[0] = xorNode; + commitNode->antType[0] = rf_control; + + /* connect the termNode to the commit node */ + RF_ASSERT(commitNode->numSuccedents == 1); + RF_ASSERT(termNode->numAntecedents == 1); + RF_ASSERT(termNode->numSuccedents == 0); + commitNode->succedents[0] = termNode; + termNode->antType[0] = rf_control; + termNode->antecedents[0] = commitNode; +} + +#if (RF_INCLUDE_CHAINDECLUSTER > 0) +/****************************************************************************** + * Create a degraded read DAG for Chained Declustering + * + * Hdr -> Nil -> R(p/s)d -> Cmt -> Trm + * + * The "Rd" node reads data from the surviving disk in the mirror pair + * Rpd - read of primary copy + * Rsd - read of secondary copy + * + * Parameters: raidPtr - description of the physical array + * asmap - logical & physical addresses for this access + * bp - buffer ptr (for holding write data) + * flags - general flags (e.g. disk locking) + * allocList - list of memory allocated in DAG creation + *****************************************************************************/ + +void +rf_CreateRaidCDegradedReadDAG( + RF_Raid_t * raidPtr, + RF_AccessStripeMap_t * asmap, + RF_DagHeader_t * dag_h, + void *bp, + RF_RaidAccessFlags_t flags, + RF_AllocListElem_t * allocList) +{ + RF_DagNode_t *nodes, *rdNode, *blockNode, *commitNode, *termNode; + RF_StripeNum_t parityStripeID; + int useMirror, i, shiftable; + RF_ReconUnitNum_t which_ru; + RF_PhysDiskAddr_t *pda; + + if ((asmap->numDataFailed + asmap->numParityFailed) == 0) { + shiftable = RF_TRUE; + } else { + shiftable = RF_FALSE; + } + useMirror = 0; + parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout), + asmap->raidAddress, &which_ru); + + if (rf_dagDebug) { + printf("[Creating RAID C degraded read DAG]\n"); + } + dag_h->creator = "RaidCDegradedReadDAG"; + /* alloc the Wnd nodes and the Wmir node */ + if (asmap->numDataFailed == 0) + useMirror = RF_FALSE; + else + useMirror = RF_TRUE; + + /* total number of nodes = 1 + (block + commit + terminator) */ + RF_CallocAndAdd(nodes, 4, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList); + i = 0; + rdNode = &nodes[i]; + i++; + blockNode = &nodes[i]; + i++; + commitNode = &nodes[i]; + i++; + termNode = &nodes[i]; + i++; + + /* + * This dag can not commit until the commit node is reached. + * Errors prior to the commit point imply the dag has failed + * and must be retried. + */ + dag_h->numCommitNodes = 1; + dag_h->numCommits = 0; + dag_h->numSuccedents = 1; + + /* initialize the block, commit, and terminator nodes */ + rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, + NULL, 1, 0, 0, 0, dag_h, "Nil", allocList); + rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc, + NULL, 1, 1, 0, 0, dag_h, "Cmt", allocList); + rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, + NULL, 0, 1, 0, 0, dag_h, "Trm", allocList); + + pda = asmap->physInfo; + RF_ASSERT(pda != NULL); + /* parityInfo must describe entire parity unit */ + RF_ASSERT(asmap->parityInfo->next == NULL); + + /* initialize the data node */ + if (!useMirror) { + rf_InitNode(rdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, + rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rpd", allocList); + if (shiftable && rf_compute_workload_shift(raidPtr, pda)) { + /* shift this read to the next disk in line */ + rdNode->params[0].p = asmap->parityInfo; + rdNode->params[1].p = pda->bufPtr; + rdNode->params[2].v = parityStripeID; + rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); + } else { + /* read primary copy */ + rdNode->params[0].p = pda; + rdNode->params[1].p = pda->bufPtr; + rdNode->params[2].v = parityStripeID; + rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); + } + } else { + /* read secondary copy of data */ + rf_InitNode(rdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, + rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rsd", allocList); + rdNode->params[0].p = asmap->parityInfo; + rdNode->params[1].p = pda->bufPtr; + rdNode->params[2].v = parityStripeID; + rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); + } + + /* connect header to block node */ + RF_ASSERT(dag_h->numSuccedents == 1); + RF_ASSERT(blockNode->numAntecedents == 0); + dag_h->succedents[0] = blockNode; + + /* connect block node to rdnode */ + RF_ASSERT(blockNode->numSuccedents == 1); + RF_ASSERT(rdNode->numAntecedents == 1); + blockNode->succedents[0] = rdNode; + rdNode->antecedents[0] = blockNode; + rdNode->antType[0] = rf_control; + + /* connect rdnode to commit node */ + RF_ASSERT(rdNode->numSuccedents == 1); + RF_ASSERT(commitNode->numAntecedents == 1); + rdNode->succedents[0] = commitNode; + commitNode->antecedents[0] = rdNode; + commitNode->antType[0] = rf_control; + + /* connect commit node to terminator */ + RF_ASSERT(commitNode->numSuccedents == 1); + RF_ASSERT(termNode->numAntecedents == 1); + RF_ASSERT(termNode->numSuccedents == 0); + commitNode->succedents[0] = termNode; + termNode->antecedents[0] = commitNode; + termNode->antType[0] = rf_control; +} +#endif /* (RF_INCLUDE_CHAINDECLUSTER > 0) */ + +#if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0) || (RF_INCLUDE_EVENODD > 0) +/* + * XXX move this elsewhere? + */ +void +rf_DD_GenerateFailedAccessASMs( + RF_Raid_t * raidPtr, + RF_AccessStripeMap_t * asmap, + RF_PhysDiskAddr_t ** pdap, + int *nNodep, + RF_PhysDiskAddr_t ** pqpdap, + int *nPQNodep, + RF_AllocListElem_t * allocList) +{ + RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout); + int PDAPerDisk, i; + RF_SectorCount_t secPerSU = layoutPtr->sectorsPerStripeUnit; + int numDataCol = layoutPtr->numDataCol; + int state; + RF_SectorNum_t suoff, suend; + unsigned firstDataCol, napdas, count; + RF_SectorNum_t fone_start, fone_end, ftwo_start = 0, ftwo_end = 0; + RF_PhysDiskAddr_t *fone = asmap->failedPDAs[0], *ftwo = asmap->failedPDAs[1]; + RF_PhysDiskAddr_t *pda_p; + RF_PhysDiskAddr_t *phys_p; + RF_RaidAddr_t sosAddr; + + /* determine how many pda's we will have to generate per unaccess + * stripe. If there is only one failed data unit, it is one; if two, + * possibly two, depending wether they overlap. */ + + fone_start = rf_StripeUnitOffset(layoutPtr, fone->startSector); + fone_end = fone_start + fone->numSector; + +#define CONS_PDA(if,start,num) \ + pda_p->row = asmap->if->row; pda_p->col = asmap->if->col; \ + pda_p->startSector = ((asmap->if->startSector / secPerSU) * secPerSU) + start; \ + pda_p->numSector = num; \ + pda_p->next = NULL; \ + RF_MallocAndAdd(pda_p->bufPtr,rf_RaidAddressToByte(raidPtr,num),(char *), allocList) + + if (asmap->numDataFailed == 1) { + PDAPerDisk = 1; + state = 1; + RF_MallocAndAdd(*pqpdap, 2 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList); + pda_p = *pqpdap; + /* build p */ + CONS_PDA(parityInfo, fone_start, fone->numSector); + pda_p->type = RF_PDA_TYPE_PARITY; + pda_p++; + /* build q */ + CONS_PDA(qInfo, fone_start, fone->numSector); + pda_p->type = RF_PDA_TYPE_Q; + } else { + ftwo_start = rf_StripeUnitOffset(layoutPtr, ftwo->startSector); + ftwo_end = ftwo_start + ftwo->numSector; + if (fone->numSector + ftwo->numSector > secPerSU) { + PDAPerDisk = 1; + state = 2; + RF_MallocAndAdd(*pqpdap, 2 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList); + pda_p = *pqpdap; + CONS_PDA(parityInfo, 0, secPerSU); + pda_p->type = RF_PDA_TYPE_PARITY; + pda_p++; + CONS_PDA(qInfo, 0, secPerSU); + pda_p->type = RF_PDA_TYPE_Q; + } else { + PDAPerDisk = 2; + state = 3; + /* four of them, fone, then ftwo */ + RF_MallocAndAdd(*pqpdap, 4 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList); + pda_p = *pqpdap; + CONS_PDA(parityInfo, fone_start, fone->numSector); + pda_p->type = RF_PDA_TYPE_PARITY; + pda_p++; + CONS_PDA(qInfo, fone_start, fone->numSector); + pda_p->type = RF_PDA_TYPE_Q; + pda_p++; + CONS_PDA(parityInfo, ftwo_start, ftwo->numSector); + pda_p->type = RF_PDA_TYPE_PARITY; + pda_p++; + CONS_PDA(qInfo, ftwo_start, ftwo->numSector); + pda_p->type = RF_PDA_TYPE_Q; + } + } + /* figure out number of nonaccessed pda */ + napdas = PDAPerDisk * (numDataCol - asmap->numStripeUnitsAccessed - (ftwo == NULL ? 1 : 0)); + *nPQNodep = PDAPerDisk; + + /* sweep over the over accessed pda's, figuring out the number of + * additional pda's to generate. Of course, skip the failed ones */ + + count = 0; + for (pda_p = asmap->physInfo; pda_p; pda_p = pda_p->next) { + if ((pda_p == fone) || (pda_p == ftwo)) + continue; + suoff = rf_StripeUnitOffset(layoutPtr, pda_p->startSector); + suend = suoff + pda_p->numSector; + switch (state) { + case 1: /* one failed PDA to overlap */ + /* if a PDA doesn't contain the failed unit, it can + * only miss the start or end, not both */ + if ((suoff > fone_start) || (suend < fone_end)) + count++; + break; + case 2: /* whole stripe */ + if (suoff) /* leak at begining */ + count++; + if (suend < numDataCol) /* leak at end */ + count++; + break; + case 3: /* two disjoint units */ + if ((suoff > fone_start) || (suend < fone_end)) + count++; + if ((suoff > ftwo_start) || (suend < ftwo_end)) + count++; + break; + default: + RF_PANIC(); + } + } + + napdas += count; + *nNodep = napdas; + if (napdas == 0) + return; /* short circuit */ + + /* allocate up our list of pda's */ + + RF_CallocAndAdd(pda_p, napdas, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList); + *pdap = pda_p; + + /* linkem together */ + for (i = 0; i < (napdas - 1); i++) + pda_p[i].next = pda_p + (i + 1); + + /* march through the one's up to the first accessed disk */ + firstDataCol = rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), asmap->physInfo->raidAddress) % numDataCol; + sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress); + for (i = 0; i < firstDataCol; i++) { + if ((pda_p - (*pdap)) == napdas) + continue; + pda_p->type = RF_PDA_TYPE_DATA; + pda_p->raidAddress = sosAddr + (i * secPerSU); + (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0); + /* skip over dead disks */ + if (RF_DEAD_DISK(raidPtr->Disks[pda_p->row][pda_p->col].status)) + continue; + switch (state) { + case 1: /* fone */ + pda_p->numSector = fone->numSector; + pda_p->raidAddress += fone_start; + pda_p->startSector += fone_start; + RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList); + break; + case 2: /* full stripe */ + pda_p->numSector = secPerSU; + RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, secPerSU), (char *), allocList); + break; + case 3: /* two slabs */ + pda_p->numSector = fone->numSector; + pda_p->raidAddress += fone_start; + pda_p->startSector += fone_start; + RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList); + pda_p++; + pda_p->type = RF_PDA_TYPE_DATA; + pda_p->raidAddress = sosAddr + (i * secPerSU); + (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0); + pda_p->numSector = ftwo->numSector; + pda_p->raidAddress += ftwo_start; + pda_p->startSector += ftwo_start; + RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList); + break; + default: + RF_PANIC(); + } + pda_p++; + } + + /* march through the touched stripe units */ + for (phys_p = asmap->physInfo; phys_p; phys_p = phys_p->next, i++) { + if ((phys_p == asmap->failedPDAs[0]) || (phys_p == asmap->failedPDAs[1])) + continue; + suoff = rf_StripeUnitOffset(layoutPtr, phys_p->startSector); + suend = suoff + phys_p->numSector; + switch (state) { + case 1: /* single buffer */ + if (suoff > fone_start) { + RF_ASSERT(suend >= fone_end); + /* The data read starts after the mapped + * access, snip off the begining */ + pda_p->numSector = suoff - fone_start; + pda_p->raidAddress = sosAddr + (i * secPerSU) + fone_start; + (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0); + RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList); + pda_p++; + } + if (suend < fone_end) { + RF_ASSERT(suoff <= fone_start); + /* The data read stops before the end of the + * failed access, extend */ + pda_p->numSector = fone_end - suend; + pda_p->raidAddress = sosAddr + (i * secPerSU) + suend; /* off by one? */ + (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0); + RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList); + pda_p++; + } + break; + case 2: /* whole stripe unit */ + RF_ASSERT((suoff == 0) || (suend == secPerSU)); + if (suend < secPerSU) { /* short read, snip from end + * on */ + pda_p->numSector = secPerSU - suend; + pda_p->raidAddress = sosAddr + (i * secPerSU) + suend; /* off by one? */ + (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0); + RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList); + pda_p++; + } else + if (suoff > 0) { /* short at front */ + pda_p->numSector = suoff; + pda_p->raidAddress = sosAddr + (i * secPerSU); + (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0); + RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList); + pda_p++; + } + break; + case 3: /* two nonoverlapping failures */ + if ((suoff > fone_start) || (suend < fone_end)) { + if (suoff > fone_start) { + RF_ASSERT(suend >= fone_end); + /* The data read starts after the + * mapped access, snip off the + * begining */ + pda_p->numSector = suoff - fone_start; + pda_p->raidAddress = sosAddr + (i * secPerSU) + fone_start; + (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0); + RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList); + pda_p++; + } + if (suend < fone_end) { + RF_ASSERT(suoff <= fone_start); + /* The data read stops before the end + * of the failed access, extend */ + pda_p->numSector = fone_end - suend; + pda_p->raidAddress = sosAddr + (i * secPerSU) + suend; /* off by one? */ + (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0); + RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList); + pda_p++; + } + } + if ((suoff > ftwo_start) || (suend < ftwo_end)) { + if (suoff > ftwo_start) { + RF_ASSERT(suend >= ftwo_end); + /* The data read starts after the + * mapped access, snip off the + * begining */ + pda_p->numSector = suoff - ftwo_start; + pda_p->raidAddress = sosAddr + (i * secPerSU) + ftwo_start; + (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0); + RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList); + pda_p++; + } + if (suend < ftwo_end) { + RF_ASSERT(suoff <= ftwo_start); + /* The data read stops before the end + * of the failed access, extend */ + pda_p->numSector = ftwo_end - suend; + pda_p->raidAddress = sosAddr + (i * secPerSU) + suend; /* off by one? */ + (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0); + RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList); + pda_p++; + } + } + break; + default: + RF_PANIC(); + } + } + + /* after the last accessed disk */ + for (; i < numDataCol; i++) { + if ((pda_p - (*pdap)) == napdas) + continue; + pda_p->type = RF_PDA_TYPE_DATA; + pda_p->raidAddress = sosAddr + (i * secPerSU); + (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0); + /* skip over dead disks */ + if (RF_DEAD_DISK(raidPtr->Disks[pda_p->row][pda_p->col].status)) + continue; + switch (state) { + case 1: /* fone */ + pda_p->numSector = fone->numSector; + pda_p->raidAddress += fone_start; + pda_p->startSector += fone_start; + RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList); + break; + case 2: /* full stripe */ + pda_p->numSector = secPerSU; + RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, secPerSU), (char *), allocList); + break; + case 3: /* two slabs */ + pda_p->numSector = fone->numSector; + pda_p->raidAddress += fone_start; + pda_p->startSector += fone_start; + RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList); + pda_p++; + pda_p->type = RF_PDA_TYPE_DATA; + pda_p->raidAddress = sosAddr + (i * secPerSU); + (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0); + pda_p->numSector = ftwo->numSector; + pda_p->raidAddress += ftwo_start; + pda_p->startSector += ftwo_start; + RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList); + break; + default: + RF_PANIC(); + } + pda_p++; + } + + RF_ASSERT(pda_p - *pdap == napdas); + return; +} +#define INIT_DISK_NODE(node,name) \ +rf_InitNode(node, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 2,1,4,0, dag_h, name, allocList); \ +(node)->succedents[0] = unblockNode; \ +(node)->succedents[1] = recoveryNode; \ +(node)->antecedents[0] = blockNode; \ +(node)->antType[0] = rf_control + +#define DISK_NODE_PARAMS(_node_,_p_) \ + (_node_).params[0].p = _p_ ; \ + (_node_).params[1].p = (_p_)->bufPtr; \ + (_node_).params[2].v = parityStripeID; \ + (_node_).params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru) + +void +rf_DoubleDegRead( + RF_Raid_t * raidPtr, + RF_AccessStripeMap_t * asmap, + RF_DagHeader_t * dag_h, + void *bp, + RF_RaidAccessFlags_t flags, + RF_AllocListElem_t * allocList, + char *redundantReadNodeName, + char *recoveryNodeName, + int (*recovFunc) (RF_DagNode_t *)) +{ + RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout); + RF_DagNode_t *nodes, *rudNodes, *rrdNodes, *recoveryNode, *blockNode, + *unblockNode, *rpNodes, *rqNodes, *termNode; + RF_PhysDiskAddr_t *pda, *pqPDAs; + RF_PhysDiskAddr_t *npdas; + int nNodes, nRrdNodes, nRudNodes, i; + RF_ReconUnitNum_t which_ru; + int nReadNodes, nPQNodes; + RF_PhysDiskAddr_t *failedPDA = asmap->failedPDAs[0]; + RF_PhysDiskAddr_t *failedPDAtwo = asmap->failedPDAs[1]; + RF_StripeNum_t parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr, asmap->raidAddress, &which_ru); + + if (rf_dagDebug) + printf("[Creating Double Degraded Read DAG]\n"); + rf_DD_GenerateFailedAccessASMs(raidPtr, asmap, &npdas, &nRrdNodes, &pqPDAs, &nPQNodes, allocList); + + nRudNodes = asmap->numStripeUnitsAccessed - (asmap->numDataFailed); + nReadNodes = nRrdNodes + nRudNodes + 2 * nPQNodes; + nNodes = 4 /* block, unblock, recovery, term */ + nReadNodes; + + RF_CallocAndAdd(nodes, nNodes, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList); + i = 0; + blockNode = &nodes[i]; + i += 1; + unblockNode = &nodes[i]; + i += 1; + recoveryNode = &nodes[i]; + i += 1; + termNode = &nodes[i]; + i += 1; + rudNodes = &nodes[i]; + i += nRudNodes; + rrdNodes = &nodes[i]; + i += nRrdNodes; + rpNodes = &nodes[i]; + i += nPQNodes; + rqNodes = &nodes[i]; + i += nPQNodes; + RF_ASSERT(i == nNodes); + + dag_h->numSuccedents = 1; + dag_h->succedents[0] = blockNode; + dag_h->creator = "DoubleDegRead"; + dag_h->numCommits = 0; + dag_h->numCommitNodes = 1; /* unblock */ + + rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 2, 0, 0, dag_h, "Trm", allocList); + termNode->antecedents[0] = unblockNode; + termNode->antType[0] = rf_control; + termNode->antecedents[1] = recoveryNode; + termNode->antType[1] = rf_control; + + /* init the block and unblock nodes */ + /* The block node has all nodes except itself, unblock and recovery as + * successors. Similarly for predecessors of the unblock. */ + rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nReadNodes, 0, 0, 0, dag_h, "Nil", allocList); + rf_InitNode(unblockNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nReadNodes, 0, 0, dag_h, "Nil", allocList); + + for (i = 0; i < nReadNodes; i++) { + blockNode->succedents[i] = rudNodes + i; + unblockNode->antecedents[i] = rudNodes + i; + unblockNode->antType[i] = rf_control; + } + unblockNode->succedents[0] = termNode; + + /* The recovery node has all the reads as predecessors, and the term + * node as successors. It gets a pda as a param from each of the read + * nodes plus the raidPtr. For each failed unit is has a result pda. */ + rf_InitNode(recoveryNode, rf_wait, RF_FALSE, recovFunc, rf_NullNodeUndoFunc, NULL, + 1, /* succesors */ + nReadNodes, /* preds */ + nReadNodes + 2, /* params */ + asmap->numDataFailed, /* results */ + dag_h, recoveryNodeName, allocList); + + recoveryNode->succedents[0] = termNode; + for (i = 0; i < nReadNodes; i++) { + recoveryNode->antecedents[i] = rudNodes + i; + recoveryNode->antType[i] = rf_trueData; + } + + /* build the read nodes, then come back and fill in recovery params + * and results */ + pda = asmap->physInfo; + for (i = 0; i < nRudNodes; pda = pda->next) { + if ((pda == failedPDA) || (pda == failedPDAtwo)) + continue; + INIT_DISK_NODE(rudNodes + i, "Rud"); + RF_ASSERT(pda); + DISK_NODE_PARAMS(rudNodes[i], pda); + i++; + } + + pda = npdas; + for (i = 0; i < nRrdNodes; i++, pda = pda->next) { + INIT_DISK_NODE(rrdNodes + i, "Rrd"); + RF_ASSERT(pda); + DISK_NODE_PARAMS(rrdNodes[i], pda); + } + + /* redundancy pdas */ + pda = pqPDAs; + INIT_DISK_NODE(rpNodes, "Rp"); + RF_ASSERT(pda); + DISK_NODE_PARAMS(rpNodes[0], pda); + pda++; + INIT_DISK_NODE(rqNodes, redundantReadNodeName); + RF_ASSERT(pda); + DISK_NODE_PARAMS(rqNodes[0], pda); + if (nPQNodes == 2) { + pda++; + INIT_DISK_NODE(rpNodes + 1, "Rp"); + RF_ASSERT(pda); + DISK_NODE_PARAMS(rpNodes[1], pda); + pda++; + INIT_DISK_NODE(rqNodes + 1, redundantReadNodeName); + RF_ASSERT(pda); + DISK_NODE_PARAMS(rqNodes[1], pda); + } + /* fill in recovery node params */ + for (i = 0; i < nReadNodes; i++) + recoveryNode->params[i] = rudNodes[i].params[0]; /* pda */ + recoveryNode->params[i++].p = (void *) raidPtr; + recoveryNode->params[i++].p = (void *) asmap; + recoveryNode->results[0] = failedPDA; + if (asmap->numDataFailed == 2) + recoveryNode->results[1] = failedPDAtwo; + + /* zero fill the target data buffers? */ +} + +#endif /* (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0) || (RF_INCLUDE_EVENODD > 0) */ diff --git a/sys/dev/raidframe/rf_dagdegrd.h b/sys/dev/raidframe/rf_dagdegrd.h new file mode 100644 index 0000000..2e899d8 --- /dev/null +++ b/sys/dev/raidframe/rf_dagdegrd.h @@ -0,0 +1,64 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_dagdegrd.h,v 1.3 1999/02/05 00:06:07 oster Exp $ */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Mark Holland, Daniel Stodolsky, William V. Courtright II + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +#ifndef _RF__RF_DAGDEGRD_H_ +#define _RF__RF_DAGDEGRD_H_ + +#include <dev/raidframe/rf_types.h> + +/* degraded read DAG creation routines */ +void +rf_CreateRaidFiveDegradedReadDAG(RF_Raid_t * raidPtr, + RF_AccessStripeMap_t * asmap, RF_DagHeader_t * dag_h, void *bp, + RF_RaidAccessFlags_t flags, RF_AllocListElem_t * allocList); +void +rf_CreateRaidOneDegradedReadDAG(RF_Raid_t * raidPtr, + RF_AccessStripeMap_t * asmap, RF_DagHeader_t * dag_h, void *bp, + RF_RaidAccessFlags_t flags, RF_AllocListElem_t * allocList); +void +rf_CreateDegradedReadDAG(RF_Raid_t * raidPtr, + RF_AccessStripeMap_t * asmap, RF_DagHeader_t * dag_h, void *bp, + RF_RaidAccessFlags_t flags, RF_AllocListElem_t * allocList, + RF_RedFuncs_t * recFunc); +void +rf_CreateRaidCDegradedReadDAG(RF_Raid_t * raidPtr, + RF_AccessStripeMap_t * asmap, RF_DagHeader_t * dag_h, void *bp, + RF_RaidAccessFlags_t flags, RF_AllocListElem_t * allocList); +void +rf_DD_GenerateFailedAccessASMs(RF_Raid_t * raidPtr, + RF_AccessStripeMap_t * asmap, RF_PhysDiskAddr_t ** pdap, + int *nNodep, RF_PhysDiskAddr_t ** pqpdap, int *nPQNodep, + RF_AllocListElem_t * allocList); +void +rf_DoubleDegRead(RF_Raid_t * raidPtr, RF_AccessStripeMap_t * asmap, + RF_DagHeader_t * dag_h, void *bp, RF_RaidAccessFlags_t flags, + RF_AllocListElem_t * allocList, char *redundantReadNodeName, + char *recoveryNodeName, int (*recovFunc) (RF_DagNode_t *)); + +#endif /* !_RF__RF_DAGDEGRD_H_ */ diff --git a/sys/dev/raidframe/rf_dagdegwr.c b/sys/dev/raidframe/rf_dagdegwr.c new file mode 100644 index 0000000..68d1899 --- /dev/null +++ b/sys/dev/raidframe/rf_dagdegwr.c @@ -0,0 +1,844 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_dagdegwr.c,v 1.6 2001/01/26 04:05:08 oster Exp $ */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Mark Holland, Daniel Stodolsky, William V. Courtright II + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +/* + * rf_dagdegwr.c + * + * code for creating degraded write DAGs + * + */ + +#include <dev/raidframe/rf_types.h> +#include <dev/raidframe/rf_raid.h> +#include <dev/raidframe/rf_dag.h> +#include <dev/raidframe/rf_dagutils.h> +#include <dev/raidframe/rf_dagfuncs.h> +#include <dev/raidframe/rf_debugMem.h> +#include <dev/raidframe/rf_memchunk.h> +#include <dev/raidframe/rf_general.h> +#include <dev/raidframe/rf_dagdegwr.h> + + +/****************************************************************************** + * + * General comments on DAG creation: + * + * All DAGs in this file use roll-away error recovery. Each DAG has a single + * commit node, usually called "Cmt." If an error occurs before the Cmt node + * is reached, the execution engine will halt forward execution and work + * backward through the graph, executing the undo functions. Assuming that + * each node in the graph prior to the Cmt node are undoable and atomic - or - + * does not make changes to permanent state, the graph will fail atomically. + * If an error occurs after the Cmt node executes, the engine will roll-forward + * through the graph, blindly executing nodes until it reaches the end. + * If a graph reaches the end, it is assumed to have completed successfully. + * + * A graph has only 1 Cmt node. + * + */ + + +/****************************************************************************** + * + * The following wrappers map the standard DAG creation interface to the + * DAG creation routines. Additionally, these wrappers enable experimentation + * with new DAG structures by providing an extra level of indirection, allowing + * the DAG creation routines to be replaced at this single point. + */ + +static +RF_CREATE_DAG_FUNC_DECL(rf_CreateSimpleDegradedWriteDAG) +{ + rf_CommonCreateSimpleDegradedWriteDAG(raidPtr, asmap, dag_h, bp, + flags, allocList, 1, rf_RecoveryXorFunc, RF_TRUE); +} + +void +rf_CreateDegradedWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList) + RF_Raid_t *raidPtr; + RF_AccessStripeMap_t *asmap; + RF_DagHeader_t *dag_h; + void *bp; + RF_RaidAccessFlags_t flags; + RF_AllocListElem_t *allocList; +{ + RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout); + RF_PhysDiskAddr_t *failedPDA = asmap->failedPDAs[0]; + + RF_ASSERT(asmap->numDataFailed == 1); + dag_h->creator = "DegradedWriteDAG"; + + /* if the access writes only a portion of the failed unit, and also + * writes some portion of at least one surviving unit, we create two + * DAGs, one for the failed component and one for the non-failed + * component, and do them sequentially. Note that the fact that we're + * accessing only a portion of the failed unit indicates that the + * access either starts or ends in the failed unit, and hence we need + * create only two dags. This is inefficient in that the same data or + * parity can get read and written twice using this structure. I need + * to fix this to do the access all at once. */ + RF_ASSERT(!(asmap->numStripeUnitsAccessed != 1 && failedPDA->numSector != layoutPtr->sectorsPerStripeUnit)); + rf_CreateSimpleDegradedWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList); +} + + + +/****************************************************************************** + * + * DAG creation code begins here + */ + + + +/****************************************************************************** + * + * CommonCreateSimpleDegradedWriteDAG -- creates a DAG to do a degraded-mode + * write, which is as follows + * + * / {Wnq} --\ + * hdr -> blockNode -> Rod -> Xor -> Cmt -> Wnp ----> unblock -> term + * \ {Rod} / \ Wnd ---/ + * \ {Wnd} -/ + * + * commit nodes: Xor, Wnd + * + * IMPORTANT: + * This DAG generator does not work for double-degraded archs since it does not + * generate Q + * + * This dag is essentially identical to the large-write dag, except that the + * write to the failed data unit is suppressed. + * + * IMPORTANT: this dag does not work in the case where the access writes only + * a portion of the failed unit, and also writes some portion of at least one + * surviving SU. this case is handled in CreateDegradedWriteDAG above. + * + * The block & unblock nodes are leftovers from a previous version. They + * do nothing, but I haven't deleted them because it would be a tremendous + * effort to put them back in. + * + * This dag is used whenever a one of the data units in a write has failed. + * If it is the parity unit that failed, the nonredundant write dag (below) + * is used. + *****************************************************************************/ + +void +rf_CommonCreateSimpleDegradedWriteDAG(raidPtr, asmap, dag_h, bp, flags, + allocList, nfaults, redFunc, allowBufferRecycle) + RF_Raid_t *raidPtr; + RF_AccessStripeMap_t *asmap; + RF_DagHeader_t *dag_h; + void *bp; + RF_RaidAccessFlags_t flags; + RF_AllocListElem_t *allocList; + int nfaults; + int (*redFunc) (RF_DagNode_t *); + int allowBufferRecycle; +{ + int nNodes, nRrdNodes, nWndNodes, nXorBufs, i, j, paramNum, + rdnodesFaked; + RF_DagNode_t *blockNode, *unblockNode, *wnpNode, *wnqNode, *termNode; + RF_DagNode_t *nodes, *wndNodes, *rrdNodes, *xorNode, *commitNode; + RF_SectorCount_t sectorsPerSU; + RF_ReconUnitNum_t which_ru; + char *xorTargetBuf = NULL; /* the target buffer for the XOR + * operation */ + char *overlappingPDAs;/* a temporary array of flags */ + RF_AccessStripeMapHeader_t *new_asm_h[2]; + RF_PhysDiskAddr_t *pda, *parityPDA; + RF_StripeNum_t parityStripeID; + RF_PhysDiskAddr_t *failedPDA; + RF_RaidLayout_t *layoutPtr; + + layoutPtr = &(raidPtr->Layout); + parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr, asmap->raidAddress, + &which_ru); + sectorsPerSU = layoutPtr->sectorsPerStripeUnit; + /* failedPDA points to the pda within the asm that targets the failed + * disk */ + failedPDA = asmap->failedPDAs[0]; + + if (rf_dagDebug) + printf("[Creating degraded-write DAG]\n"); + + RF_ASSERT(asmap->numDataFailed == 1); + dag_h->creator = "SimpleDegradedWriteDAG"; + + /* + * Generate two ASMs identifying the surviving data + * we need in order to recover the lost data. + */ + /* overlappingPDAs array must be zero'd */ + RF_Calloc(overlappingPDAs, asmap->numStripeUnitsAccessed, sizeof(char), (char *)); + rf_GenerateFailedAccessASMs(raidPtr, asmap, failedPDA, dag_h, new_asm_h, + &nXorBufs, NULL, overlappingPDAs, allocList); + + /* create all the nodes at once */ + nWndNodes = asmap->numStripeUnitsAccessed - 1; /* no access is + * generated for the + * failed pda */ + + nRrdNodes = ((new_asm_h[0]) ? new_asm_h[0]->stripeMap->numStripeUnitsAccessed : 0) + + ((new_asm_h[1]) ? new_asm_h[1]->stripeMap->numStripeUnitsAccessed : 0); + /* + * XXX + * + * There's a bug with a complete stripe overwrite- that means 0 reads + * of old data, and the rest of the DAG generation code doesn't like + * that. A release is coming, and I don't wanna risk breaking a critical + * DAG generator, so here's what I'm gonna do- if there's no read nodes, + * I'm gonna fake there being a read node, and I'm gonna swap in a + * no-op node in its place (to make all the link-up code happy). + * This should be fixed at some point. --jimz + */ + if (nRrdNodes == 0) { + nRrdNodes = 1; + rdnodesFaked = 1; + } else { + rdnodesFaked = 0; + } + /* lock, unlock, xor, Wnd, Rrd, W(nfaults) */ + nNodes = 5 + nfaults + nWndNodes + nRrdNodes; + RF_CallocAndAdd(nodes, nNodes, sizeof(RF_DagNode_t), + (RF_DagNode_t *), allocList); + i = 0; + blockNode = &nodes[i]; + i += 1; + commitNode = &nodes[i]; + i += 1; + unblockNode = &nodes[i]; + i += 1; + termNode = &nodes[i]; + i += 1; + xorNode = &nodes[i]; + i += 1; + wnpNode = &nodes[i]; + i += 1; + wndNodes = &nodes[i]; + i += nWndNodes; + rrdNodes = &nodes[i]; + i += nRrdNodes; + if (nfaults == 2) { + wnqNode = &nodes[i]; + i += 1; + } else { + wnqNode = NULL; + } + RF_ASSERT(i == nNodes); + + /* this dag can not commit until all rrd and xor Nodes have completed */ + dag_h->numCommitNodes = 1; + dag_h->numCommits = 0; + dag_h->numSuccedents = 1; + + RF_ASSERT(nRrdNodes > 0); + rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, + NULL, nRrdNodes, 0, 0, 0, dag_h, "Nil", allocList); + rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc, + NULL, nWndNodes + nfaults, 1, 0, 0, dag_h, "Cmt", allocList); + rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, + NULL, 1, nWndNodes + nfaults, 0, 0, dag_h, "Nil", allocList); + rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, + NULL, 0, 1, 0, 0, dag_h, "Trm", allocList); + rf_InitNode(xorNode, rf_wait, RF_FALSE, redFunc, rf_NullNodeUndoFunc, NULL, 1, + nRrdNodes, 2 * nXorBufs + 2, nfaults, dag_h, "Xrc", allocList); + + /* + * Fill in the Rrd nodes. If any of the rrd buffers are the same size as + * the failed buffer, save a pointer to it so we can use it as the target + * of the XOR. The pdas in the rrd nodes have been range-restricted, so if + * a buffer is the same size as the failed buffer, it must also be at the + * same alignment within the SU. + */ + i = 0; + if (new_asm_h[0]) { + for (i = 0, pda = new_asm_h[0]->stripeMap->physInfo; + i < new_asm_h[0]->stripeMap->numStripeUnitsAccessed; + i++, pda = pda->next) { + rf_InitNode(&rrdNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, + rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rrd", allocList); + RF_ASSERT(pda); + rrdNodes[i].params[0].p = pda; + rrdNodes[i].params[1].p = pda->bufPtr; + rrdNodes[i].params[2].v = parityStripeID; + rrdNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); + } + } + /* i now equals the number of stripe units accessed in new_asm_h[0] */ + if (new_asm_h[1]) { + for (j = 0, pda = new_asm_h[1]->stripeMap->physInfo; + j < new_asm_h[1]->stripeMap->numStripeUnitsAccessed; + j++, pda = pda->next) { + rf_InitNode(&rrdNodes[i + j], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, + rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rrd", allocList); + RF_ASSERT(pda); + rrdNodes[i + j].params[0].p = pda; + rrdNodes[i + j].params[1].p = pda->bufPtr; + rrdNodes[i + j].params[2].v = parityStripeID; + rrdNodes[i + j].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); + if (allowBufferRecycle && (pda->numSector == failedPDA->numSector)) + xorTargetBuf = pda->bufPtr; + } + } + if (rdnodesFaked) { + /* + * This is where we'll init that fake noop read node + * (XXX should the wakeup func be different?) + */ + rf_InitNode(&rrdNodes[0], rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, + NULL, 1, 1, 0, 0, dag_h, "RrN", allocList); + } + /* + * Make a PDA for the parity unit. The parity PDA should start at + * the same offset into the SU as the failed PDA. + */ + /* Danner comment: I don't think this copy is really necessary. We are + * in one of two cases here. (1) The entire failed unit is written. + * Then asmap->parityInfo will describe the entire parity. (2) We are + * only writing a subset of the failed unit and nothing else. Then the + * asmap->parityInfo describes the failed unit and the copy can also + * be avoided. */ + + RF_MallocAndAdd(parityPDA, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList); + parityPDA->row = asmap->parityInfo->row; + parityPDA->col = asmap->parityInfo->col; + parityPDA->startSector = ((asmap->parityInfo->startSector / sectorsPerSU) + * sectorsPerSU) + (failedPDA->startSector % sectorsPerSU); + parityPDA->numSector = failedPDA->numSector; + + if (!xorTargetBuf) { + RF_CallocAndAdd(xorTargetBuf, 1, + rf_RaidAddressToByte(raidPtr, failedPDA->numSector), (char *), allocList); + } + /* init the Wnp node */ + rf_InitNode(wnpNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, + rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnp", allocList); + wnpNode->params[0].p = parityPDA; + wnpNode->params[1].p = xorTargetBuf; + wnpNode->params[2].v = parityStripeID; + wnpNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); + + /* fill in the Wnq Node */ + if (nfaults == 2) { + { + RF_MallocAndAdd(parityPDA, sizeof(RF_PhysDiskAddr_t), + (RF_PhysDiskAddr_t *), allocList); + parityPDA->row = asmap->qInfo->row; + parityPDA->col = asmap->qInfo->col; + parityPDA->startSector = ((asmap->qInfo->startSector / sectorsPerSU) + * sectorsPerSU) + (failedPDA->startSector % sectorsPerSU); + parityPDA->numSector = failedPDA->numSector; + + rf_InitNode(wnqNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, + rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnq", allocList); + wnqNode->params[0].p = parityPDA; + RF_CallocAndAdd(xorNode->results[1], 1, + rf_RaidAddressToByte(raidPtr, failedPDA->numSector), (char *), allocList); + wnqNode->params[1].p = xorNode->results[1]; + wnqNode->params[2].v = parityStripeID; + wnqNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); + } + } + /* fill in the Wnd nodes */ + for (pda = asmap->physInfo, i = 0; i < nWndNodes; i++, pda = pda->next) { + if (pda == failedPDA) { + i--; + continue; + } + rf_InitNode(&wndNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, + rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnd", allocList); + RF_ASSERT(pda); + wndNodes[i].params[0].p = pda; + wndNodes[i].params[1].p = pda->bufPtr; + wndNodes[i].params[2].v = parityStripeID; + wndNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); + } + + /* fill in the results of the xor node */ + xorNode->results[0] = xorTargetBuf; + + /* fill in the params of the xor node */ + + paramNum = 0; + if (rdnodesFaked == 0) { + for (i = 0; i < nRrdNodes; i++) { + /* all the Rrd nodes need to be xored together */ + xorNode->params[paramNum++] = rrdNodes[i].params[0]; + xorNode->params[paramNum++] = rrdNodes[i].params[1]; + } + } + for (i = 0; i < nWndNodes; i++) { + /* any Wnd nodes that overlap the failed access need to be + * xored in */ + if (overlappingPDAs[i]) { + RF_MallocAndAdd(pda, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList); + bcopy((char *) wndNodes[i].params[0].p, (char *) pda, sizeof(RF_PhysDiskAddr_t)); + rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_DOBUFFER, 0); + xorNode->params[paramNum++].p = pda; + xorNode->params[paramNum++].p = pda->bufPtr; + } + } + RF_Free(overlappingPDAs, asmap->numStripeUnitsAccessed * sizeof(char)); + + /* + * Install the failed PDA into the xor param list so that the + * new data gets xor'd in. + */ + xorNode->params[paramNum++].p = failedPDA; + xorNode->params[paramNum++].p = failedPDA->bufPtr; + + /* + * The last 2 params to the recovery xor node are always the failed + * PDA and the raidPtr. install the failedPDA even though we have just + * done so above. This allows us to use the same XOR function for both + * degraded reads and degraded writes. + */ + xorNode->params[paramNum++].p = failedPDA; + xorNode->params[paramNum++].p = raidPtr; + RF_ASSERT(paramNum == 2 * nXorBufs + 2); + + /* + * Code to link nodes begins here + */ + + /* link header to block node */ + RF_ASSERT(blockNode->numAntecedents == 0); + dag_h->succedents[0] = blockNode; + + /* link block node to rd nodes */ + RF_ASSERT(blockNode->numSuccedents == nRrdNodes); + for (i = 0; i < nRrdNodes; i++) { + RF_ASSERT(rrdNodes[i].numAntecedents == 1); + blockNode->succedents[i] = &rrdNodes[i]; + rrdNodes[i].antecedents[0] = blockNode; + rrdNodes[i].antType[0] = rf_control; + } + + /* link read nodes to xor node */ + RF_ASSERT(xorNode->numAntecedents == nRrdNodes); + for (i = 0; i < nRrdNodes; i++) { + RF_ASSERT(rrdNodes[i].numSuccedents == 1); + rrdNodes[i].succedents[0] = xorNode; + xorNode->antecedents[i] = &rrdNodes[i]; + xorNode->antType[i] = rf_trueData; + } + + /* link xor node to commit node */ + RF_ASSERT(xorNode->numSuccedents == 1); + RF_ASSERT(commitNode->numAntecedents == 1); + xorNode->succedents[0] = commitNode; + commitNode->antecedents[0] = xorNode; + commitNode->antType[0] = rf_control; + + /* link commit node to wnd nodes */ + RF_ASSERT(commitNode->numSuccedents == nfaults + nWndNodes); + for (i = 0; i < nWndNodes; i++) { + RF_ASSERT(wndNodes[i].numAntecedents == 1); + commitNode->succedents[i] = &wndNodes[i]; + wndNodes[i].antecedents[0] = commitNode; + wndNodes[i].antType[0] = rf_control; + } + + /* link the commit node to wnp, wnq nodes */ + RF_ASSERT(wnpNode->numAntecedents == 1); + commitNode->succedents[nWndNodes] = wnpNode; + wnpNode->antecedents[0] = commitNode; + wnpNode->antType[0] = rf_control; + if (nfaults == 2) { + RF_ASSERT(wnqNode->numAntecedents == 1); + commitNode->succedents[nWndNodes + 1] = wnqNode; + wnqNode->antecedents[0] = commitNode; + wnqNode->antType[0] = rf_control; + } + /* link write new data nodes to unblock node */ + RF_ASSERT(unblockNode->numAntecedents == (nWndNodes + nfaults)); + for (i = 0; i < nWndNodes; i++) { + RF_ASSERT(wndNodes[i].numSuccedents == 1); + wndNodes[i].succedents[0] = unblockNode; + unblockNode->antecedents[i] = &wndNodes[i]; + unblockNode->antType[i] = rf_control; + } + + /* link write new parity node to unblock node */ + RF_ASSERT(wnpNode->numSuccedents == 1); + wnpNode->succedents[0] = unblockNode; + unblockNode->antecedents[nWndNodes] = wnpNode; + unblockNode->antType[nWndNodes] = rf_control; + + /* link write new q node to unblock node */ + if (nfaults == 2) { + RF_ASSERT(wnqNode->numSuccedents == 1); + wnqNode->succedents[0] = unblockNode; + unblockNode->antecedents[nWndNodes + 1] = wnqNode; + unblockNode->antType[nWndNodes + 1] = rf_control; + } + /* link unblock node to term node */ + RF_ASSERT(unblockNode->numSuccedents == 1); + RF_ASSERT(termNode->numAntecedents == 1); + RF_ASSERT(termNode->numSuccedents == 0); + unblockNode->succedents[0] = termNode; + termNode->antecedents[0] = unblockNode; + termNode->antType[0] = rf_control; +} +#define CONS_PDA(if,start,num) \ + pda_p->row = asmap->if->row; pda_p->col = asmap->if->col; \ + pda_p->startSector = ((asmap->if->startSector / secPerSU) * secPerSU) + start; \ + pda_p->numSector = num; \ + pda_p->next = NULL; \ + RF_MallocAndAdd(pda_p->bufPtr,rf_RaidAddressToByte(raidPtr,num),(char *), allocList) +#if (RF_INCLUDE_PQ > 0) || (RF_INCLUDE_EVENODD > 0) +void +rf_WriteGenerateFailedAccessASMs( + RF_Raid_t * raidPtr, + RF_AccessStripeMap_t * asmap, + RF_PhysDiskAddr_t ** pdap, + int *nNodep, + RF_PhysDiskAddr_t ** pqpdap, + int *nPQNodep, + RF_AllocListElem_t * allocList) +{ + RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout); + int PDAPerDisk, i; + RF_SectorCount_t secPerSU = layoutPtr->sectorsPerStripeUnit; + int numDataCol = layoutPtr->numDataCol; + int state; + unsigned napdas; + RF_SectorNum_t fone_start, fone_end, ftwo_start = 0, ftwo_end; + RF_PhysDiskAddr_t *fone = asmap->failedPDAs[0], *ftwo = asmap->failedPDAs[1]; + RF_PhysDiskAddr_t *pda_p; + RF_RaidAddr_t sosAddr; + + /* determine how many pda's we will have to generate per unaccess + * stripe. If there is only one failed data unit, it is one; if two, + * possibly two, depending wether they overlap. */ + + fone_start = rf_StripeUnitOffset(layoutPtr, fone->startSector); + fone_end = fone_start + fone->numSector; + + if (asmap->numDataFailed == 1) { + PDAPerDisk = 1; + state = 1; + RF_MallocAndAdd(*pqpdap, 2 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList); + pda_p = *pqpdap; + /* build p */ + CONS_PDA(parityInfo, fone_start, fone->numSector); + pda_p->type = RF_PDA_TYPE_PARITY; + pda_p++; + /* build q */ + CONS_PDA(qInfo, fone_start, fone->numSector); + pda_p->type = RF_PDA_TYPE_Q; + } else { + ftwo_start = rf_StripeUnitOffset(layoutPtr, ftwo->startSector); + ftwo_end = ftwo_start + ftwo->numSector; + if (fone->numSector + ftwo->numSector > secPerSU) { + PDAPerDisk = 1; + state = 2; + RF_MallocAndAdd(*pqpdap, 2 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList); + pda_p = *pqpdap; + CONS_PDA(parityInfo, 0, secPerSU); + pda_p->type = RF_PDA_TYPE_PARITY; + pda_p++; + CONS_PDA(qInfo, 0, secPerSU); + pda_p->type = RF_PDA_TYPE_Q; + } else { + PDAPerDisk = 2; + state = 3; + /* four of them, fone, then ftwo */ + RF_MallocAndAdd(*pqpdap, 4 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList); + pda_p = *pqpdap; + CONS_PDA(parityInfo, fone_start, fone->numSector); + pda_p->type = RF_PDA_TYPE_PARITY; + pda_p++; + CONS_PDA(qInfo, fone_start, fone->numSector); + pda_p->type = RF_PDA_TYPE_Q; + pda_p++; + CONS_PDA(parityInfo, ftwo_start, ftwo->numSector); + pda_p->type = RF_PDA_TYPE_PARITY; + pda_p++; + CONS_PDA(qInfo, ftwo_start, ftwo->numSector); + pda_p->type = RF_PDA_TYPE_Q; + } + } + /* figure out number of nonaccessed pda */ + napdas = PDAPerDisk * (numDataCol - 2); + *nPQNodep = PDAPerDisk; + + *nNodep = napdas; + if (napdas == 0) + return; /* short circuit */ + + /* allocate up our list of pda's */ + + RF_CallocAndAdd(pda_p, napdas, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList); + *pdap = pda_p; + + /* linkem together */ + for (i = 0; i < (napdas - 1); i++) + pda_p[i].next = pda_p + (i + 1); + + sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress); + for (i = 0; i < numDataCol; i++) { + if ((pda_p - (*pdap)) == napdas) + continue; + pda_p->type = RF_PDA_TYPE_DATA; + pda_p->raidAddress = sosAddr + (i * secPerSU); + (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0); + /* skip over dead disks */ + if (RF_DEAD_DISK(raidPtr->Disks[pda_p->row][pda_p->col].status)) + continue; + switch (state) { + case 1: /* fone */ + pda_p->numSector = fone->numSector; + pda_p->raidAddress += fone_start; + pda_p->startSector += fone_start; + RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList); + break; + case 2: /* full stripe */ + pda_p->numSector = secPerSU; + RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, secPerSU), (char *), allocList); + break; + case 3: /* two slabs */ + pda_p->numSector = fone->numSector; + pda_p->raidAddress += fone_start; + pda_p->startSector += fone_start; + RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList); + pda_p++; + pda_p->type = RF_PDA_TYPE_DATA; + pda_p->raidAddress = sosAddr + (i * secPerSU); + (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0); + pda_p->numSector = ftwo->numSector; + pda_p->raidAddress += ftwo_start; + pda_p->startSector += ftwo_start; + RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList); + break; + default: + RF_PANIC(); + } + pda_p++; + } + + RF_ASSERT(pda_p - *pdap == napdas); + return; +} +#define DISK_NODE_PDA(node) ((node)->params[0].p) + +#define DISK_NODE_PARAMS(_node_,_p_) \ + (_node_).params[0].p = _p_ ; \ + (_node_).params[1].p = (_p_)->bufPtr; \ + (_node_).params[2].v = parityStripeID; \ + (_node_).params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru) + +void +rf_DoubleDegSmallWrite( + RF_Raid_t * raidPtr, + RF_AccessStripeMap_t * asmap, + RF_DagHeader_t * dag_h, + void *bp, + RF_RaidAccessFlags_t flags, + RF_AllocListElem_t * allocList, + char *redundantReadNodeName, + char *redundantWriteNodeName, + char *recoveryNodeName, + int (*recovFunc) (RF_DagNode_t *)) +{ + RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout); + RF_DagNode_t *nodes, *wudNodes, *rrdNodes, *recoveryNode, *blockNode, + *unblockNode, *rpNodes, *rqNodes, *wpNodes, *wqNodes, *termNode; + RF_PhysDiskAddr_t *pda, *pqPDAs; + RF_PhysDiskAddr_t *npdas; + int nWriteNodes, nNodes, nReadNodes, nRrdNodes, nWudNodes, i; + RF_ReconUnitNum_t which_ru; + int nPQNodes; + RF_StripeNum_t parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr, asmap->raidAddress, &which_ru); + + /* simple small write case - First part looks like a reconstruct-read + * of the failed data units. Then a write of all data units not + * failed. */ + + + /* Hdr | ------Block- / / \ Rrd Rrd ... Rrd Rp Rq \ \ + * / -------PQ----- / \ \ Wud Wp WQ \ | / + * --Unblock- | T + * + * Rrd = read recovery data (potentially none) Wud = write user data + * (not incl. failed disks) Wp = Write P (could be two) Wq = Write Q + * (could be two) + * + */ + + rf_WriteGenerateFailedAccessASMs(raidPtr, asmap, &npdas, &nRrdNodes, &pqPDAs, &nPQNodes, allocList); + + RF_ASSERT(asmap->numDataFailed == 1); + + nWudNodes = asmap->numStripeUnitsAccessed - (asmap->numDataFailed); + nReadNodes = nRrdNodes + 2 * nPQNodes; + nWriteNodes = nWudNodes + 2 * nPQNodes; + nNodes = 4 + nReadNodes + nWriteNodes; + + RF_CallocAndAdd(nodes, nNodes, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList); + blockNode = nodes; + unblockNode = blockNode + 1; + termNode = unblockNode + 1; + recoveryNode = termNode + 1; + rrdNodes = recoveryNode + 1; + rpNodes = rrdNodes + nRrdNodes; + rqNodes = rpNodes + nPQNodes; + wudNodes = rqNodes + nPQNodes; + wpNodes = wudNodes + nWudNodes; + wqNodes = wpNodes + nPQNodes; + + dag_h->creator = "PQ_DDSimpleSmallWrite"; + dag_h->numSuccedents = 1; + dag_h->succedents[0] = blockNode; + rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", allocList); + termNode->antecedents[0] = unblockNode; + termNode->antType[0] = rf_control; + + /* init the block and unblock nodes */ + /* The block node has all the read nodes as successors */ + rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nReadNodes, 0, 0, 0, dag_h, "Nil", allocList); + for (i = 0; i < nReadNodes; i++) + blockNode->succedents[i] = rrdNodes + i; + + /* The unblock node has all the writes as successors */ + rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nWriteNodes, 0, 0, dag_h, "Nil", allocList); + for (i = 0; i < nWriteNodes; i++) { + unblockNode->antecedents[i] = wudNodes + i; + unblockNode->antType[i] = rf_control; + } + unblockNode->succedents[0] = termNode; + +#define INIT_READ_NODE(node,name) \ + rf_InitNode(node, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, name, allocList); \ + (node)->succedents[0] = recoveryNode; \ + (node)->antecedents[0] = blockNode; \ + (node)->antType[0] = rf_control; + + /* build the read nodes */ + pda = npdas; + for (i = 0; i < nRrdNodes; i++, pda = pda->next) { + INIT_READ_NODE(rrdNodes + i, "rrd"); + DISK_NODE_PARAMS(rrdNodes[i], pda); + } + + /* read redundancy pdas */ + pda = pqPDAs; + INIT_READ_NODE(rpNodes, "Rp"); + RF_ASSERT(pda); + DISK_NODE_PARAMS(rpNodes[0], pda); + pda++; + INIT_READ_NODE(rqNodes, redundantReadNodeName); + RF_ASSERT(pda); + DISK_NODE_PARAMS(rqNodes[0], pda); + if (nPQNodes == 2) { + pda++; + INIT_READ_NODE(rpNodes + 1, "Rp"); + RF_ASSERT(pda); + DISK_NODE_PARAMS(rpNodes[1], pda); + pda++; + INIT_READ_NODE(rqNodes + 1, redundantReadNodeName); + RF_ASSERT(pda); + DISK_NODE_PARAMS(rqNodes[1], pda); + } + /* the recovery node has all reads as precedessors and all writes as + * successors. It generates a result for every write P or write Q + * node. As parameters, it takes a pda per read and a pda per stripe + * of user data written. It also takes as the last params the raidPtr + * and asm. For results, it takes PDA for P & Q. */ + + + rf_InitNode(recoveryNode, rf_wait, RF_FALSE, recovFunc, rf_NullNodeUndoFunc, NULL, + nWriteNodes, /* succesors */ + nReadNodes, /* preds */ + nReadNodes + nWudNodes + 3, /* params */ + 2 * nPQNodes, /* results */ + dag_h, recoveryNodeName, allocList); + + + + for (i = 0; i < nReadNodes; i++) { + recoveryNode->antecedents[i] = rrdNodes + i; + recoveryNode->antType[i] = rf_control; + recoveryNode->params[i].p = DISK_NODE_PDA(rrdNodes + i); + } + for (i = 0; i < nWudNodes; i++) { + recoveryNode->succedents[i] = wudNodes + i; + } + recoveryNode->params[nReadNodes + nWudNodes].p = asmap->failedPDAs[0]; + recoveryNode->params[nReadNodes + nWudNodes + 1].p = raidPtr; + recoveryNode->params[nReadNodes + nWudNodes + 2].p = asmap; + + for (; i < nWriteNodes; i++) + recoveryNode->succedents[i] = wudNodes + i; + + pda = pqPDAs; + recoveryNode->results[0] = pda; + pda++; + recoveryNode->results[1] = pda; + if (nPQNodes == 2) { + pda++; + recoveryNode->results[2] = pda; + pda++; + recoveryNode->results[3] = pda; + } + /* fill writes */ +#define INIT_WRITE_NODE(node,name) \ + rf_InitNode(node, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, name, allocList); \ + (node)->succedents[0] = unblockNode; \ + (node)->antecedents[0] = recoveryNode; \ + (node)->antType[0] = rf_control; + + pda = asmap->physInfo; + for (i = 0; i < nWudNodes; i++) { + INIT_WRITE_NODE(wudNodes + i, "Wd"); + DISK_NODE_PARAMS(wudNodes[i], pda); + recoveryNode->params[nReadNodes + i].p = DISK_NODE_PDA(wudNodes + i); + pda = pda->next; + } + /* write redundancy pdas */ + pda = pqPDAs; + INIT_WRITE_NODE(wpNodes, "Wp"); + RF_ASSERT(pda); + DISK_NODE_PARAMS(wpNodes[0], pda); + pda++; + INIT_WRITE_NODE(wqNodes, "Wq"); + RF_ASSERT(pda); + DISK_NODE_PARAMS(wqNodes[0], pda); + if (nPQNodes == 2) { + pda++; + INIT_WRITE_NODE(wpNodes + 1, "Wp"); + RF_ASSERT(pda); + DISK_NODE_PARAMS(wpNodes[1], pda); + pda++; + INIT_WRITE_NODE(wqNodes + 1, "Wq"); + RF_ASSERT(pda); + DISK_NODE_PARAMS(wqNodes[1], pda); + } +} +#endif /* (RF_INCLUDE_PQ > 0) || (RF_INCLUDE_EVENODD > 0) */ diff --git a/sys/dev/raidframe/rf_dagdegwr.h b/sys/dev/raidframe/rf_dagdegwr.h new file mode 100644 index 0000000..1e4b5e2 --- /dev/null +++ b/sys/dev/raidframe/rf_dagdegwr.h @@ -0,0 +1,55 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_dagdegwr.h,v 1.4 1999/08/15 02:36:03 oster Exp $ */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Mark Holland, Daniel Stodolsky, William V. Courtright II + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + + +#ifndef _RF__RF_DAGDEGWR_H_ +#define _RF__RF_DAGDEGWR_H_ + +/* degraded write DAG creation routines */ +void rf_CreateDegradedWriteDAG(RF_Raid_t * raidPtr, + RF_AccessStripeMap_t * asmap, RF_DagHeader_t * dag_h, void *bp, + RF_RaidAccessFlags_t flags, RF_AllocListElem_t * allocList); + +void rf_CommonCreateSimpleDegradedWriteDAG(RF_Raid_t * raidPtr, + RF_AccessStripeMap_t * asmap, RF_DagHeader_t * dag_h, void *bp, + RF_RaidAccessFlags_t flags, RF_AllocListElem_t * allocList, + int nfaults, int (*redFunc) (RF_DagNode_t *), int allowBufferRecycle); + +void rf_WriteGenerateFailedAccessASMs(RF_Raid_t * raidPtr, + RF_AccessStripeMap_t * asmap, RF_PhysDiskAddr_t ** pdap, + int *nNodep, RF_PhysDiskAddr_t ** pqpdap, + int *nPQNodep, RF_AllocListElem_t * allocList); + +void rf_DoubleDegSmallWrite(RF_Raid_t * raidPtr, RF_AccessStripeMap_t * asmap, + RF_DagHeader_t * dag_h, void *bp, RF_RaidAccessFlags_t flags, + RF_AllocListElem_t * allocList, char *redundantReadNodeName, + char *redundantWriteNodeName, char *recoveryNodeName, + int (*recovFunc) (RF_DagNode_t *)); + +#endif /* !_RF__RF_DAGDEGWR_H_ */ diff --git a/sys/dev/raidframe/rf_dagffrd.c b/sys/dev/raidframe/rf_dagffrd.c new file mode 100644 index 0000000..51f3f9f --- /dev/null +++ b/sys/dev/raidframe/rf_dagffrd.c @@ -0,0 +1,439 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_dagffrd.c,v 1.4 2000/01/07 03:40:58 oster Exp $ */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Mark Holland, Daniel Stodolsky, William V. Courtright II + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +/* + * rf_dagffrd.c + * + * code for creating fault-free read DAGs + * + */ + +#include <dev/raidframe/rf_types.h> +#include <dev/raidframe/rf_raid.h> +#include <dev/raidframe/rf_dag.h> +#include <dev/raidframe/rf_dagutils.h> +#include <dev/raidframe/rf_dagfuncs.h> +#include <dev/raidframe/rf_debugMem.h> +#include <dev/raidframe/rf_memchunk.h> +#include <dev/raidframe/rf_general.h> +#include <dev/raidframe/rf_dagffrd.h> + +/****************************************************************************** + * + * General comments on DAG creation: + * + * All DAGs in this file use roll-away error recovery. Each DAG has a single + * commit node, usually called "Cmt." If an error occurs before the Cmt node + * is reached, the execution engine will halt forward execution and work + * backward through the graph, executing the undo functions. Assuming that + * each node in the graph prior to the Cmt node are undoable and atomic - or - + * does not make changes to permanent state, the graph will fail atomically. + * If an error occurs after the Cmt node executes, the engine will roll-forward + * through the graph, blindly executing nodes until it reaches the end. + * If a graph reaches the end, it is assumed to have completed successfully. + * + * A graph has only 1 Cmt node. + * + */ + + +/****************************************************************************** + * + * The following wrappers map the standard DAG creation interface to the + * DAG creation routines. Additionally, these wrappers enable experimentation + * with new DAG structures by providing an extra level of indirection, allowing + * the DAG creation routines to be replaced at this single point. + */ + +void +rf_CreateFaultFreeReadDAG( + RF_Raid_t * raidPtr, + RF_AccessStripeMap_t * asmap, + RF_DagHeader_t * dag_h, + void *bp, + RF_RaidAccessFlags_t flags, + RF_AllocListElem_t * allocList) +{ + rf_CreateNonredundantDAG(raidPtr, asmap, dag_h, bp, flags, allocList, + RF_IO_TYPE_READ); +} + + +/****************************************************************************** + * + * DAG creation code begins here + */ + +/****************************************************************************** + * + * creates a DAG to perform a nonredundant read or write of data within one + * stripe. + * For reads, this DAG is as follows: + * + * /---- read ----\ + * Header -- Block ---- read ---- Commit -- Terminate + * \---- read ----/ + * + * For writes, this DAG is as follows: + * + * /---- write ----\ + * Header -- Commit ---- write ---- Block -- Terminate + * \---- write ----/ + * + * There is one disk node per stripe unit accessed, and all disk nodes are in + * parallel. + * + * Tricky point here: The first disk node (read or write) is created + * normally. Subsequent disk nodes are created by copying the first one, + * and modifying a few params. The "succedents" and "antecedents" fields are + * _not_ re-created in each node, but rather left pointing to the same array + * that was malloc'd when the first node was created. Thus, it's essential + * that when this DAG is freed, the succedents and antecedents fields be freed + * in ONLY ONE of the read nodes. This does not apply to the "params" field + * because it is recreated for each READ node. + * + * Note that normal-priority accesses do not need to be tagged with their + * parity stripe ID, because they will never be promoted. Hence, I've + * commented-out the code to do this, and marked it with UNNEEDED. + * + *****************************************************************************/ + +void +rf_CreateNonredundantDAG( + RF_Raid_t * raidPtr, + RF_AccessStripeMap_t * asmap, + RF_DagHeader_t * dag_h, + void *bp, + RF_RaidAccessFlags_t flags, + RF_AllocListElem_t * allocList, + RF_IoType_t type) +{ + RF_DagNode_t *nodes, *diskNodes, *blockNode, *commitNode, *termNode; + RF_PhysDiskAddr_t *pda = asmap->physInfo; + int (*doFunc) (RF_DagNode_t *), (*undoFunc) (RF_DagNode_t *); + int i, n, totalNumNodes; + char *name; + + n = asmap->numStripeUnitsAccessed; + dag_h->creator = "NonredundantDAG"; + + RF_ASSERT(RF_IO_IS_R_OR_W(type)); + switch (type) { + case RF_IO_TYPE_READ: + doFunc = rf_DiskReadFunc; + undoFunc = rf_DiskReadUndoFunc; + name = "R "; + if (rf_dagDebug) + printf("[Creating non-redundant read DAG]\n"); + break; + case RF_IO_TYPE_WRITE: + doFunc = rf_DiskWriteFunc; + undoFunc = rf_DiskWriteUndoFunc; + name = "W "; + if (rf_dagDebug) + printf("[Creating non-redundant write DAG]\n"); + break; + default: + RF_PANIC(); + } + + /* + * For reads, the dag can not commit until the block node is reached. + * for writes, the dag commits immediately. + */ + dag_h->numCommitNodes = 1; + dag_h->numCommits = 0; + dag_h->numSuccedents = 1; + + /* + * Node count: + * 1 block node + * n data reads (or writes) + * 1 commit node + * 1 terminator node + */ + RF_ASSERT(n > 0); + totalNumNodes = n + 3; + RF_CallocAndAdd(nodes, totalNumNodes, sizeof(RF_DagNode_t), + (RF_DagNode_t *), allocList); + i = 0; + diskNodes = &nodes[i]; + i += n; + blockNode = &nodes[i]; + i += 1; + commitNode = &nodes[i]; + i += 1; + termNode = &nodes[i]; + i += 1; + RF_ASSERT(i == totalNumNodes); + + /* initialize nodes */ + switch (type) { + case RF_IO_TYPE_READ: + rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, + NULL, n, 0, 0, 0, dag_h, "Nil", allocList); + rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc, + NULL, 1, n, 0, 0, dag_h, "Cmt", allocList); + rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, + NULL, 0, 1, 0, 0, dag_h, "Trm", allocList); + break; + case RF_IO_TYPE_WRITE: + rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, + NULL, 1, 0, 0, 0, dag_h, "Nil", allocList); + rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc, + NULL, n, 1, 0, 0, dag_h, "Cmt", allocList); + rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, + NULL, 0, n, 0, 0, dag_h, "Trm", allocList); + break; + default: + RF_PANIC(); + } + + for (i = 0; i < n; i++) { + RF_ASSERT(pda != NULL); + rf_InitNode(&diskNodes[i], rf_wait, RF_FALSE, doFunc, undoFunc, rf_GenericWakeupFunc, + 1, 1, 4, 0, dag_h, name, allocList); + diskNodes[i].params[0].p = pda; + diskNodes[i].params[1].p = pda->bufPtr; + /* parity stripe id is not necessary */ + diskNodes[i].params[2].v = 0; + diskNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, 0); + pda = pda->next; + } + + /* + * Connect nodes. + */ + + /* connect hdr to block node */ + RF_ASSERT(blockNode->numAntecedents == 0); + dag_h->succedents[0] = blockNode; + + if (type == RF_IO_TYPE_READ) { + /* connecting a nonredundant read DAG */ + RF_ASSERT(blockNode->numSuccedents == n); + RF_ASSERT(commitNode->numAntecedents == n); + for (i = 0; i < n; i++) { + /* connect block node to each read node */ + RF_ASSERT(diskNodes[i].numAntecedents == 1); + blockNode->succedents[i] = &diskNodes[i]; + diskNodes[i].antecedents[0] = blockNode; + diskNodes[i].antType[0] = rf_control; + + /* connect each read node to the commit node */ + RF_ASSERT(diskNodes[i].numSuccedents == 1); + diskNodes[i].succedents[0] = commitNode; + commitNode->antecedents[i] = &diskNodes[i]; + commitNode->antType[i] = rf_control; + } + /* connect the commit node to the term node */ + RF_ASSERT(commitNode->numSuccedents == 1); + RF_ASSERT(termNode->numAntecedents == 1); + RF_ASSERT(termNode->numSuccedents == 0); + commitNode->succedents[0] = termNode; + termNode->antecedents[0] = commitNode; + termNode->antType[0] = rf_control; + } else { + /* connecting a nonredundant write DAG */ + /* connect the block node to the commit node */ + RF_ASSERT(blockNode->numSuccedents == 1); + RF_ASSERT(commitNode->numAntecedents == 1); + blockNode->succedents[0] = commitNode; + commitNode->antecedents[0] = blockNode; + commitNode->antType[0] = rf_control; + + RF_ASSERT(commitNode->numSuccedents == n); + RF_ASSERT(termNode->numAntecedents == n); + RF_ASSERT(termNode->numSuccedents == 0); + for (i = 0; i < n; i++) { + /* connect the commit node to each write node */ + RF_ASSERT(diskNodes[i].numAntecedents == 1); + commitNode->succedents[i] = &diskNodes[i]; + diskNodes[i].antecedents[0] = commitNode; + diskNodes[i].antType[0] = rf_control; + + /* connect each write node to the term node */ + RF_ASSERT(diskNodes[i].numSuccedents == 1); + diskNodes[i].succedents[0] = termNode; + termNode->antecedents[i] = &diskNodes[i]; + termNode->antType[i] = rf_control; + } + } +} +/****************************************************************************** + * Create a fault-free read DAG for RAID level 1 + * + * Hdr -> Nil -> Rmir -> Cmt -> Trm + * + * The "Rmir" node schedules a read from the disk in the mirror pair with the + * shortest disk queue. the proper queue is selected at Rmir execution. this + * deferred mapping is unlike other archs in RAIDframe which generally fix + * mapping at DAG creation time. + * + * Parameters: raidPtr - description of the physical array + * asmap - logical & physical addresses for this access + * bp - buffer ptr (for holding read data) + * flags - general flags (e.g. disk locking) + * allocList - list of memory allocated in DAG creation + *****************************************************************************/ + +static void +CreateMirrorReadDAG( + RF_Raid_t * raidPtr, + RF_AccessStripeMap_t * asmap, + RF_DagHeader_t * dag_h, + void *bp, + RF_RaidAccessFlags_t flags, + RF_AllocListElem_t * allocList, + int (*readfunc) (RF_DagNode_t * node)) +{ + RF_DagNode_t *readNodes, *nodes, *blockNode, *commitNode, *termNode; + RF_PhysDiskAddr_t *data_pda = asmap->physInfo; + RF_PhysDiskAddr_t *parity_pda = asmap->parityInfo; + int i, n, totalNumNodes; + + n = asmap->numStripeUnitsAccessed; + dag_h->creator = "RaidOneReadDAG"; + if (rf_dagDebug) { + printf("[Creating RAID level 1 read DAG]\n"); + } + /* + * This dag can not commit until the commit node is reached + * errors prior to the commit point imply the dag has failed. + */ + dag_h->numCommitNodes = 1; + dag_h->numCommits = 0; + dag_h->numSuccedents = 1; + + /* + * Node count: + * n data reads + * 1 block node + * 1 commit node + * 1 terminator node + */ + RF_ASSERT(n > 0); + totalNumNodes = n + 3; + RF_CallocAndAdd(nodes, totalNumNodes, sizeof(RF_DagNode_t), + (RF_DagNode_t *), allocList); + i = 0; + readNodes = &nodes[i]; + i += n; + blockNode = &nodes[i]; + i += 1; + commitNode = &nodes[i]; + i += 1; + termNode = &nodes[i]; + i += 1; + RF_ASSERT(i == totalNumNodes); + + /* initialize nodes */ + rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, + rf_NullNodeUndoFunc, NULL, n, 0, 0, 0, dag_h, "Nil", allocList); + rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, + rf_NullNodeUndoFunc, NULL, 1, n, 0, 0, dag_h, "Cmt", allocList); + rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, + rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", allocList); + + for (i = 0; i < n; i++) { + RF_ASSERT(data_pda != NULL); + RF_ASSERT(parity_pda != NULL); + rf_InitNode(&readNodes[i], rf_wait, RF_FALSE, readfunc, + rf_DiskReadMirrorUndoFunc, rf_GenericWakeupFunc, 1, 1, 5, 0, dag_h, + "Rmir", allocList); + readNodes[i].params[0].p = data_pda; + readNodes[i].params[1].p = data_pda->bufPtr; + /* parity stripe id is not necessary */ + readNodes[i].params[2].p = 0; + readNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, 0); + readNodes[i].params[4].p = parity_pda; + data_pda = data_pda->next; + parity_pda = parity_pda->next; + } + + /* + * Connect nodes + */ + + /* connect hdr to block node */ + RF_ASSERT(blockNode->numAntecedents == 0); + dag_h->succedents[0] = blockNode; + + /* connect block node to read nodes */ + RF_ASSERT(blockNode->numSuccedents == n); + for (i = 0; i < n; i++) { + RF_ASSERT(readNodes[i].numAntecedents == 1); + blockNode->succedents[i] = &readNodes[i]; + readNodes[i].antecedents[0] = blockNode; + readNodes[i].antType[0] = rf_control; + } + + /* connect read nodes to commit node */ + RF_ASSERT(commitNode->numAntecedents == n); + for (i = 0; i < n; i++) { + RF_ASSERT(readNodes[i].numSuccedents == 1); + readNodes[i].succedents[0] = commitNode; + commitNode->antecedents[i] = &readNodes[i]; + commitNode->antType[i] = rf_control; + } + + /* connect commit node to term node */ + RF_ASSERT(commitNode->numSuccedents == 1); + RF_ASSERT(termNode->numAntecedents == 1); + RF_ASSERT(termNode->numSuccedents == 0); + commitNode->succedents[0] = termNode; + termNode->antecedents[0] = commitNode; + termNode->antType[0] = rf_control; +} + +void +rf_CreateMirrorIdleReadDAG( + RF_Raid_t * raidPtr, + RF_AccessStripeMap_t * asmap, + RF_DagHeader_t * dag_h, + void *bp, + RF_RaidAccessFlags_t flags, + RF_AllocListElem_t * allocList) +{ + CreateMirrorReadDAG(raidPtr, asmap, dag_h, bp, flags, allocList, + rf_DiskReadMirrorIdleFunc); +} + +void +rf_CreateMirrorPartitionReadDAG( + RF_Raid_t * raidPtr, + RF_AccessStripeMap_t * asmap, + RF_DagHeader_t * dag_h, + void *bp, + RF_RaidAccessFlags_t flags, + RF_AllocListElem_t * allocList) +{ + CreateMirrorReadDAG(raidPtr, asmap, dag_h, bp, flags, allocList, + rf_DiskReadMirrorPartitionFunc); +} diff --git a/sys/dev/raidframe/rf_dagffrd.h b/sys/dev/raidframe/rf_dagffrd.h new file mode 100644 index 0000000..6862a8d --- /dev/null +++ b/sys/dev/raidframe/rf_dagffrd.h @@ -0,0 +1,53 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_dagffrd.h,v 1.3 1999/02/05 00:06:07 oster Exp $ */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Mark Holland, Daniel Stodolsky, William V. Courtright II + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +#ifndef _RF__RF_DAGFFRD_H_ +#define _RF__RF_DAGFFRD_H_ + +#include <dev/raidframe/rf_types.h> + +/* fault-free read DAG creation routines */ +void +rf_CreateFaultFreeReadDAG(RF_Raid_t * raidPtr, RF_AccessStripeMap_t * asmap, + RF_DagHeader_t * dag_h, void *bp, RF_RaidAccessFlags_t flags, + RF_AllocListElem_t * allocList); +void +rf_CreateNonredundantDAG(RF_Raid_t * raidPtr, RF_AccessStripeMap_t * asmap, + RF_DagHeader_t * dag_h, void *bp, RF_RaidAccessFlags_t flags, + RF_AllocListElem_t * allocList, RF_IoType_t type); +void +rf_CreateMirrorIdleReadDAG(RF_Raid_t * raidPtr, + RF_AccessStripeMap_t * asmap, RF_DagHeader_t * dag_h, void *bp, + RF_RaidAccessFlags_t flags, RF_AllocListElem_t * allocList); +void +rf_CreateMirrorPartitionReadDAG(RF_Raid_t * raidPtr, + RF_AccessStripeMap_t * asmap, RF_DagHeader_t * dag_h, void *bp, + RF_RaidAccessFlags_t flags, RF_AllocListElem_t * allocList); + +#endif /* !_RF__RF_DAGFFRD_H_ */ diff --git a/sys/dev/raidframe/rf_dagffwr.c b/sys/dev/raidframe/rf_dagffwr.c new file mode 100644 index 0000000..7520cba --- /dev/null +++ b/sys/dev/raidframe/rf_dagffwr.c @@ -0,0 +1,2129 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_dagffwr.c,v 1.5 2000/01/07 03:40:58 oster Exp $ */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Mark Holland, Daniel Stodolsky, William V. Courtright II + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +/* + * rf_dagff.c + * + * code for creating fault-free DAGs + * + */ + +#include <dev/raidframe/rf_types.h> +#include <dev/raidframe/rf_raid.h> +#include <dev/raidframe/rf_dag.h> +#include <dev/raidframe/rf_dagutils.h> +#include <dev/raidframe/rf_dagfuncs.h> +#include <dev/raidframe/rf_debugMem.h> +#include <dev/raidframe/rf_dagffrd.h> +#include <dev/raidframe/rf_memchunk.h> +#include <dev/raidframe/rf_general.h> +#include <dev/raidframe/rf_dagffwr.h> + +/****************************************************************************** + * + * General comments on DAG creation: + * + * All DAGs in this file use roll-away error recovery. Each DAG has a single + * commit node, usually called "Cmt." If an error occurs before the Cmt node + * is reached, the execution engine will halt forward execution and work + * backward through the graph, executing the undo functions. Assuming that + * each node in the graph prior to the Cmt node are undoable and atomic - or - + * does not make changes to permanent state, the graph will fail atomically. + * If an error occurs after the Cmt node executes, the engine will roll-forward + * through the graph, blindly executing nodes until it reaches the end. + * If a graph reaches the end, it is assumed to have completed successfully. + * + * A graph has only 1 Cmt node. + * + */ + + +/****************************************************************************** + * + * The following wrappers map the standard DAG creation interface to the + * DAG creation routines. Additionally, these wrappers enable experimentation + * with new DAG structures by providing an extra level of indirection, allowing + * the DAG creation routines to be replaced at this single point. + */ + + +void +rf_CreateNonRedundantWriteDAG( + RF_Raid_t * raidPtr, + RF_AccessStripeMap_t * asmap, + RF_DagHeader_t * dag_h, + void *bp, + RF_RaidAccessFlags_t flags, + RF_AllocListElem_t * allocList, + RF_IoType_t type) +{ + rf_CreateNonredundantDAG(raidPtr, asmap, dag_h, bp, flags, allocList, + RF_IO_TYPE_WRITE); +} + +void +rf_CreateRAID0WriteDAG( + RF_Raid_t * raidPtr, + RF_AccessStripeMap_t * asmap, + RF_DagHeader_t * dag_h, + void *bp, + RF_RaidAccessFlags_t flags, + RF_AllocListElem_t * allocList, + RF_IoType_t type) +{ + rf_CreateNonredundantDAG(raidPtr, asmap, dag_h, bp, flags, allocList, + RF_IO_TYPE_WRITE); +} + +void +rf_CreateSmallWriteDAG( + RF_Raid_t * raidPtr, + RF_AccessStripeMap_t * asmap, + RF_DagHeader_t * dag_h, + void *bp, + RF_RaidAccessFlags_t flags, + RF_AllocListElem_t * allocList) +{ + /* "normal" rollaway */ + rf_CommonCreateSmallWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList, + &rf_xorFuncs, NULL); +} + +void +rf_CreateLargeWriteDAG( + RF_Raid_t * raidPtr, + RF_AccessStripeMap_t * asmap, + RF_DagHeader_t * dag_h, + void *bp, + RF_RaidAccessFlags_t flags, + RF_AllocListElem_t * allocList) +{ + /* "normal" rollaway */ + rf_CommonCreateLargeWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList, + 1, rf_RegularXorFunc, RF_TRUE); +} + + +/****************************************************************************** + * + * DAG creation code begins here + */ + + +/****************************************************************************** + * + * creates a DAG to perform a large-write operation: + * + * / Rod \ / Wnd \ + * H -- block- Rod - Xor - Cmt - Wnd --- T + * \ Rod / \ Wnp / + * \[Wnq]/ + * + * The XOR node also does the Q calculation in the P+Q architecture. + * All nodes are before the commit node (Cmt) are assumed to be atomic and + * undoable - or - they make no changes to permanent state. + * + * Rod = read old data + * Cmt = commit node + * Wnp = write new parity + * Wnd = write new data + * Wnq = write new "q" + * [] denotes optional segments in the graph + * + * Parameters: raidPtr - description of the physical array + * asmap - logical & physical addresses for this access + * bp - buffer ptr (holds write data) + * flags - general flags (e.g. disk locking) + * allocList - list of memory allocated in DAG creation + * nfaults - number of faults array can tolerate + * (equal to # redundancy units in stripe) + * redfuncs - list of redundancy generating functions + * + *****************************************************************************/ + +void +rf_CommonCreateLargeWriteDAG( + RF_Raid_t * raidPtr, + RF_AccessStripeMap_t * asmap, + RF_DagHeader_t * dag_h, + void *bp, + RF_RaidAccessFlags_t flags, + RF_AllocListElem_t * allocList, + int nfaults, + int (*redFunc) (RF_DagNode_t *), + int allowBufferRecycle) +{ + RF_DagNode_t *nodes, *wndNodes, *rodNodes, *xorNode, *wnpNode; + RF_DagNode_t *wnqNode, *blockNode, *commitNode, *termNode; + int nWndNodes, nRodNodes, i, nodeNum, asmNum; + RF_AccessStripeMapHeader_t *new_asm_h[2]; + RF_StripeNum_t parityStripeID; + char *sosBuffer, *eosBuffer; + RF_ReconUnitNum_t which_ru; + RF_RaidLayout_t *layoutPtr; + RF_PhysDiskAddr_t *pda; + + layoutPtr = &(raidPtr->Layout); + parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr, asmap->raidAddress, + &which_ru); + + if (rf_dagDebug) { + printf("[Creating large-write DAG]\n"); + } + dag_h->creator = "LargeWriteDAG"; + + dag_h->numCommitNodes = 1; + dag_h->numCommits = 0; + dag_h->numSuccedents = 1; + + /* alloc the nodes: Wnd, xor, commit, block, term, and Wnp */ + nWndNodes = asmap->numStripeUnitsAccessed; + RF_CallocAndAdd(nodes, nWndNodes + 4 + nfaults, sizeof(RF_DagNode_t), + (RF_DagNode_t *), allocList); + i = 0; + wndNodes = &nodes[i]; + i += nWndNodes; + xorNode = &nodes[i]; + i += 1; + wnpNode = &nodes[i]; + i += 1; + blockNode = &nodes[i]; + i += 1; + commitNode = &nodes[i]; + i += 1; + termNode = &nodes[i]; + i += 1; + if (nfaults == 2) { + wnqNode = &nodes[i]; + i += 1; + } else { + wnqNode = NULL; + } + rf_MapUnaccessedPortionOfStripe(raidPtr, layoutPtr, asmap, dag_h, new_asm_h, + &nRodNodes, &sosBuffer, &eosBuffer, allocList); + if (nRodNodes > 0) { + RF_CallocAndAdd(rodNodes, nRodNodes, sizeof(RF_DagNode_t), + (RF_DagNode_t *), allocList); + } else { + rodNodes = NULL; + } + + /* begin node initialization */ + if (nRodNodes > 0) { + rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, + NULL, nRodNodes, 0, 0, 0, dag_h, "Nil", allocList); + } else { + rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, + NULL, 1, 0, 0, 0, dag_h, "Nil", allocList); + } + + rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, + nWndNodes + nfaults, 1, 0, 0, dag_h, "Cmt", allocList); + rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, + 0, nWndNodes + nfaults, 0, 0, dag_h, "Trm", allocList); + + /* initialize the Rod nodes */ + for (nodeNum = asmNum = 0; asmNum < 2; asmNum++) { + if (new_asm_h[asmNum]) { + pda = new_asm_h[asmNum]->stripeMap->physInfo; + while (pda) { + rf_InitNode(&rodNodes[nodeNum], rf_wait, RF_FALSE, rf_DiskReadFunc, + rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, + "Rod", allocList); + rodNodes[nodeNum].params[0].p = pda; + rodNodes[nodeNum].params[1].p = pda->bufPtr; + rodNodes[nodeNum].params[2].v = parityStripeID; + rodNodes[nodeNum].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, + 0, 0, which_ru); + nodeNum++; + pda = pda->next; + } + } + } + RF_ASSERT(nodeNum == nRodNodes); + + /* initialize the wnd nodes */ + pda = asmap->physInfo; + for (i = 0; i < nWndNodes; i++) { + rf_InitNode(&wndNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, + rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnd", allocList); + RF_ASSERT(pda != NULL); + wndNodes[i].params[0].p = pda; + wndNodes[i].params[1].p = pda->bufPtr; + wndNodes[i].params[2].v = parityStripeID; + wndNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); + pda = pda->next; + } + + /* initialize the redundancy node */ + if (nRodNodes > 0) { + rf_InitNode(xorNode, rf_wait, RF_FALSE, redFunc, rf_NullNodeUndoFunc, NULL, 1, + nRodNodes, 2 * (nWndNodes + nRodNodes) + 1, nfaults, dag_h, + "Xr ", allocList); + } else { + rf_InitNode(xorNode, rf_wait, RF_FALSE, redFunc, rf_NullNodeUndoFunc, NULL, 1, + 1, 2 * (nWndNodes + nRodNodes) + 1, nfaults, dag_h, "Xr ", allocList); + } + xorNode->flags |= RF_DAGNODE_FLAG_YIELD; + for (i = 0; i < nWndNodes; i++) { + xorNode->params[2 * i + 0] = wndNodes[i].params[0]; /* pda */ + xorNode->params[2 * i + 1] = wndNodes[i].params[1]; /* buf ptr */ + } + for (i = 0; i < nRodNodes; i++) { + xorNode->params[2 * (nWndNodes + i) + 0] = rodNodes[i].params[0]; /* pda */ + xorNode->params[2 * (nWndNodes + i) + 1] = rodNodes[i].params[1]; /* buf ptr */ + } + /* xor node needs to get at RAID information */ + xorNode->params[2 * (nWndNodes + nRodNodes)].p = raidPtr; + + /* + * Look for an Rod node that reads a complete SU. If none, alloc a buffer + * to receive the parity info. Note that we can't use a new data buffer + * because it will not have gotten written when the xor occurs. + */ + if (allowBufferRecycle) { + for (i = 0; i < nRodNodes; i++) { + if (((RF_PhysDiskAddr_t *) rodNodes[i].params[0].p)->numSector == raidPtr->Layout.sectorsPerStripeUnit) + break; + } + } + if ((!allowBufferRecycle) || (i == nRodNodes)) { + RF_CallocAndAdd(xorNode->results[0], 1, + rf_RaidAddressToByte(raidPtr, raidPtr->Layout.sectorsPerStripeUnit), + (void *), allocList); + } else { + xorNode->results[0] = rodNodes[i].params[1].p; + } + + /* initialize the Wnp node */ + rf_InitNode(wnpNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, + rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnp", allocList); + wnpNode->params[0].p = asmap->parityInfo; + wnpNode->params[1].p = xorNode->results[0]; + wnpNode->params[2].v = parityStripeID; + wnpNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); + /* parityInfo must describe entire parity unit */ + RF_ASSERT(asmap->parityInfo->next == NULL); + + if (nfaults == 2) { + /* + * We never try to recycle a buffer for the Q calcuation + * in addition to the parity. This would cause two buffers + * to get smashed during the P and Q calculation, guaranteeing + * one would be wrong. + */ + RF_CallocAndAdd(xorNode->results[1], 1, + rf_RaidAddressToByte(raidPtr, raidPtr->Layout.sectorsPerStripeUnit), + (void *), allocList); + rf_InitNode(wnqNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, + rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnq", allocList); + wnqNode->params[0].p = asmap->qInfo; + wnqNode->params[1].p = xorNode->results[1]; + wnqNode->params[2].v = parityStripeID; + wnqNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); + /* parityInfo must describe entire parity unit */ + RF_ASSERT(asmap->parityInfo->next == NULL); + } + /* + * Connect nodes to form graph. + */ + + /* connect dag header to block node */ + RF_ASSERT(blockNode->numAntecedents == 0); + dag_h->succedents[0] = blockNode; + + if (nRodNodes > 0) { + /* connect the block node to the Rod nodes */ + RF_ASSERT(blockNode->numSuccedents == nRodNodes); + RF_ASSERT(xorNode->numAntecedents == nRodNodes); + for (i = 0; i < nRodNodes; i++) { + RF_ASSERT(rodNodes[i].numAntecedents == 1); + blockNode->succedents[i] = &rodNodes[i]; + rodNodes[i].antecedents[0] = blockNode; + rodNodes[i].antType[0] = rf_control; + + /* connect the Rod nodes to the Xor node */ + RF_ASSERT(rodNodes[i].numSuccedents == 1); + rodNodes[i].succedents[0] = xorNode; + xorNode->antecedents[i] = &rodNodes[i]; + xorNode->antType[i] = rf_trueData; + } + } else { + /* connect the block node to the Xor node */ + RF_ASSERT(blockNode->numSuccedents == 1); + RF_ASSERT(xorNode->numAntecedents == 1); + blockNode->succedents[0] = xorNode; + xorNode->antecedents[0] = blockNode; + xorNode->antType[0] = rf_control; + } + + /* connect the xor node to the commit node */ + RF_ASSERT(xorNode->numSuccedents == 1); + RF_ASSERT(commitNode->numAntecedents == 1); + xorNode->succedents[0] = commitNode; + commitNode->antecedents[0] = xorNode; + commitNode->antType[0] = rf_control; + + /* connect the commit node to the write nodes */ + RF_ASSERT(commitNode->numSuccedents == nWndNodes + nfaults); + for (i = 0; i < nWndNodes; i++) { + RF_ASSERT(wndNodes->numAntecedents == 1); + commitNode->succedents[i] = &wndNodes[i]; + wndNodes[i].antecedents[0] = commitNode; + wndNodes[i].antType[0] = rf_control; + } + RF_ASSERT(wnpNode->numAntecedents == 1); + commitNode->succedents[nWndNodes] = wnpNode; + wnpNode->antecedents[0] = commitNode; + wnpNode->antType[0] = rf_trueData; + if (nfaults == 2) { + RF_ASSERT(wnqNode->numAntecedents == 1); + commitNode->succedents[nWndNodes + 1] = wnqNode; + wnqNode->antecedents[0] = commitNode; + wnqNode->antType[0] = rf_trueData; + } + /* connect the write nodes to the term node */ + RF_ASSERT(termNode->numAntecedents == nWndNodes + nfaults); + RF_ASSERT(termNode->numSuccedents == 0); + for (i = 0; i < nWndNodes; i++) { + RF_ASSERT(wndNodes->numSuccedents == 1); + wndNodes[i].succedents[0] = termNode; + termNode->antecedents[i] = &wndNodes[i]; + termNode->antType[i] = rf_control; + } + RF_ASSERT(wnpNode->numSuccedents == 1); + wnpNode->succedents[0] = termNode; + termNode->antecedents[nWndNodes] = wnpNode; + termNode->antType[nWndNodes] = rf_control; + if (nfaults == 2) { + RF_ASSERT(wnqNode->numSuccedents == 1); + wnqNode->succedents[0] = termNode; + termNode->antecedents[nWndNodes + 1] = wnqNode; + termNode->antType[nWndNodes + 1] = rf_control; + } +} +/****************************************************************************** + * + * creates a DAG to perform a small-write operation (either raid 5 or pq), + * which is as follows: + * + * Hdr -> Nil -> Rop -> Xor -> Cmt ----> Wnp [Unp] --> Trm + * \- Rod X / \----> Wnd [Und]-/ + * [\- Rod X / \---> Wnd [Und]-/] + * [\- Roq -> Q / \--> Wnq [Unq]-/] + * + * Rop = read old parity + * Rod = read old data + * Roq = read old "q" + * Cmt = commit node + * Und = unlock data disk + * Unp = unlock parity disk + * Unq = unlock q disk + * Wnp = write new parity + * Wnd = write new data + * Wnq = write new "q" + * [ ] denotes optional segments in the graph + * + * Parameters: raidPtr - description of the physical array + * asmap - logical & physical addresses for this access + * bp - buffer ptr (holds write data) + * flags - general flags (e.g. disk locking) + * allocList - list of memory allocated in DAG creation + * pfuncs - list of parity generating functions + * qfuncs - list of q generating functions + * + * A null qfuncs indicates single fault tolerant + *****************************************************************************/ + +void +rf_CommonCreateSmallWriteDAG( + RF_Raid_t * raidPtr, + RF_AccessStripeMap_t * asmap, + RF_DagHeader_t * dag_h, + void *bp, + RF_RaidAccessFlags_t flags, + RF_AllocListElem_t * allocList, + RF_RedFuncs_t * pfuncs, + RF_RedFuncs_t * qfuncs) +{ + RF_DagNode_t *readDataNodes, *readParityNodes, *readQNodes, *termNode; + RF_DagNode_t *unlockDataNodes, *unlockParityNodes, *unlockQNodes; + RF_DagNode_t *xorNodes, *qNodes, *blockNode, *commitNode, *nodes; + RF_DagNode_t *writeDataNodes, *writeParityNodes, *writeQNodes; + int i, j, nNodes, totalNumNodes, lu_flag; + RF_ReconUnitNum_t which_ru; + int (*func) (RF_DagNode_t *), (*undoFunc) (RF_DagNode_t *); + int (*qfunc) (RF_DagNode_t *); + int numDataNodes, numParityNodes; + RF_StripeNum_t parityStripeID; + RF_PhysDiskAddr_t *pda; + char *name, *qname; + long nfaults; + + nfaults = qfuncs ? 2 : 1; + lu_flag = (rf_enableAtomicRMW) ? 1 : 0; /* lock/unlock flag */ + + parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout), + asmap->raidAddress, &which_ru); + pda = asmap->physInfo; + numDataNodes = asmap->numStripeUnitsAccessed; + numParityNodes = (asmap->parityInfo->next) ? 2 : 1; + + if (rf_dagDebug) { + printf("[Creating small-write DAG]\n"); + } + RF_ASSERT(numDataNodes > 0); + dag_h->creator = "SmallWriteDAG"; + + dag_h->numCommitNodes = 1; + dag_h->numCommits = 0; + dag_h->numSuccedents = 1; + + /* + * DAG creation occurs in four steps: + * 1. count the number of nodes in the DAG + * 2. create the nodes + * 3. initialize the nodes + * 4. connect the nodes + */ + + /* + * Step 1. compute number of nodes in the graph + */ + + /* number of nodes: a read and write for each data unit a redundancy + * computation node for each parity node (nfaults * nparity) a read + * and write for each parity unit a block and commit node (2) a + * terminate node if atomic RMW an unlock node for each data unit, + * redundancy unit */ + totalNumNodes = (2 * numDataNodes) + (nfaults * numParityNodes) + + (nfaults * 2 * numParityNodes) + 3; + if (lu_flag) { + totalNumNodes += (numDataNodes + (nfaults * numParityNodes)); + } + /* + * Step 2. create the nodes + */ + RF_CallocAndAdd(nodes, totalNumNodes, sizeof(RF_DagNode_t), + (RF_DagNode_t *), allocList); + i = 0; + blockNode = &nodes[i]; + i += 1; + commitNode = &nodes[i]; + i += 1; + readDataNodes = &nodes[i]; + i += numDataNodes; + readParityNodes = &nodes[i]; + i += numParityNodes; + writeDataNodes = &nodes[i]; + i += numDataNodes; + writeParityNodes = &nodes[i]; + i += numParityNodes; + xorNodes = &nodes[i]; + i += numParityNodes; + termNode = &nodes[i]; + i += 1; + if (lu_flag) { + unlockDataNodes = &nodes[i]; + i += numDataNodes; + unlockParityNodes = &nodes[i]; + i += numParityNodes; + } else { + unlockDataNodes = unlockParityNodes = NULL; + } + if (nfaults == 2) { + readQNodes = &nodes[i]; + i += numParityNodes; + writeQNodes = &nodes[i]; + i += numParityNodes; + qNodes = &nodes[i]; + i += numParityNodes; + if (lu_flag) { + unlockQNodes = &nodes[i]; + i += numParityNodes; + } else { + unlockQNodes = NULL; + } + } else { + readQNodes = writeQNodes = qNodes = unlockQNodes = NULL; + } + RF_ASSERT(i == totalNumNodes); + + /* + * Step 3. initialize the nodes + */ + /* initialize block node (Nil) */ + nNodes = numDataNodes + (nfaults * numParityNodes); + rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, + NULL, nNodes, 0, 0, 0, dag_h, "Nil", allocList); + + /* initialize commit node (Cmt) */ + rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc, + NULL, nNodes, (nfaults * numParityNodes), 0, 0, dag_h, "Cmt", allocList); + + /* initialize terminate node (Trm) */ + rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, + NULL, 0, nNodes, 0, 0, dag_h, "Trm", allocList); + + /* initialize nodes which read old data (Rod) */ + for (i = 0; i < numDataNodes; i++) { + rf_InitNode(&readDataNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, + rf_GenericWakeupFunc, (nfaults * numParityNodes), 1, 4, 0, dag_h, + "Rod", allocList); + RF_ASSERT(pda != NULL); + /* physical disk addr desc */ + readDataNodes[i].params[0].p = pda; + /* buffer to hold old data */ + readDataNodes[i].params[1].p = rf_AllocBuffer(raidPtr, + dag_h, pda, allocList); + readDataNodes[i].params[2].v = parityStripeID; + readDataNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, + lu_flag, 0, which_ru); + pda = pda->next; + for (j = 0; j < readDataNodes[i].numSuccedents; j++) { + readDataNodes[i].propList[j] = NULL; + } + } + + /* initialize nodes which read old parity (Rop) */ + pda = asmap->parityInfo; + i = 0; + for (i = 0; i < numParityNodes; i++) { + RF_ASSERT(pda != NULL); + rf_InitNode(&readParityNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, + rf_DiskReadUndoFunc, rf_GenericWakeupFunc, numParityNodes, 1, 4, + 0, dag_h, "Rop", allocList); + readParityNodes[i].params[0].p = pda; + /* buffer to hold old parity */ + readParityNodes[i].params[1].p = rf_AllocBuffer(raidPtr, + dag_h, pda, allocList); + readParityNodes[i].params[2].v = parityStripeID; + readParityNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, + lu_flag, 0, which_ru); + pda = pda->next; + for (j = 0; j < readParityNodes[i].numSuccedents; j++) { + readParityNodes[i].propList[0] = NULL; + } + } + + /* initialize nodes which read old Q (Roq) */ + if (nfaults == 2) { + pda = asmap->qInfo; + for (i = 0; i < numParityNodes; i++) { + RF_ASSERT(pda != NULL); + rf_InitNode(&readQNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, + rf_GenericWakeupFunc, numParityNodes, 1, 4, 0, dag_h, "Roq", allocList); + readQNodes[i].params[0].p = pda; + /* buffer to hold old Q */ + readQNodes[i].params[1].p = rf_AllocBuffer(raidPtr, dag_h, pda, + allocList); + readQNodes[i].params[2].v = parityStripeID; + readQNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, + lu_flag, 0, which_ru); + pda = pda->next; + for (j = 0; j < readQNodes[i].numSuccedents; j++) { + readQNodes[i].propList[0] = NULL; + } + } + } + /* initialize nodes which write new data (Wnd) */ + pda = asmap->physInfo; + for (i = 0; i < numDataNodes; i++) { + RF_ASSERT(pda != NULL); + rf_InitNode(&writeDataNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, + rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, + "Wnd", allocList); + /* physical disk addr desc */ + writeDataNodes[i].params[0].p = pda; + /* buffer holding new data to be written */ + writeDataNodes[i].params[1].p = pda->bufPtr; + writeDataNodes[i].params[2].v = parityStripeID; + writeDataNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, + 0, 0, which_ru); + if (lu_flag) { + /* initialize node to unlock the disk queue */ + rf_InitNode(&unlockDataNodes[i], rf_wait, RF_FALSE, rf_DiskUnlockFunc, + rf_DiskUnlockUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h, + "Und", allocList); + /* physical disk addr desc */ + unlockDataNodes[i].params[0].p = pda; + unlockDataNodes[i].params[1].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, + 0, lu_flag, which_ru); + } + pda = pda->next; + } + + /* + * Initialize nodes which compute new parity and Q. + */ + /* + * We use the simple XOR func in the double-XOR case, and when + * we're accessing only a portion of one stripe unit. The distinction + * between the two is that the regular XOR func assumes that the targbuf + * is a full SU in size, and examines the pda associated with the buffer + * to decide where within the buffer to XOR the data, whereas + * the simple XOR func just XORs the data into the start of the buffer. + */ + if ((numParityNodes == 2) || ((numDataNodes == 1) + && (asmap->totalSectorsAccessed < raidPtr->Layout.sectorsPerStripeUnit))) { + func = pfuncs->simple; + undoFunc = rf_NullNodeUndoFunc; + name = pfuncs->SimpleName; + if (qfuncs) { + qfunc = qfuncs->simple; + qname = qfuncs->SimpleName; + } else { + qfunc = NULL; + qname = NULL; + } + } else { + func = pfuncs->regular; + undoFunc = rf_NullNodeUndoFunc; + name = pfuncs->RegularName; + if (qfuncs) { + qfunc = qfuncs->regular; + qname = qfuncs->RegularName; + } else { + qfunc = NULL; + qname = NULL; + } + } + /* + * Initialize the xor nodes: params are {pda,buf} + * from {Rod,Wnd,Rop} nodes, and raidPtr + */ + if (numParityNodes == 2) { + /* double-xor case */ + for (i = 0; i < numParityNodes; i++) { + /* note: no wakeup func for xor */ + rf_InitNode(&xorNodes[i], rf_wait, RF_FALSE, func, undoFunc, NULL, + 1, (numDataNodes + numParityNodes), 7, 1, dag_h, name, allocList); + xorNodes[i].flags |= RF_DAGNODE_FLAG_YIELD; + xorNodes[i].params[0] = readDataNodes[i].params[0]; + xorNodes[i].params[1] = readDataNodes[i].params[1]; + xorNodes[i].params[2] = readParityNodes[i].params[0]; + xorNodes[i].params[3] = readParityNodes[i].params[1]; + xorNodes[i].params[4] = writeDataNodes[i].params[0]; + xorNodes[i].params[5] = writeDataNodes[i].params[1]; + xorNodes[i].params[6].p = raidPtr; + /* use old parity buf as target buf */ + xorNodes[i].results[0] = readParityNodes[i].params[1].p; + if (nfaults == 2) { + /* note: no wakeup func for qor */ + rf_InitNode(&qNodes[i], rf_wait, RF_FALSE, qfunc, undoFunc, NULL, 1, + (numDataNodes + numParityNodes), 7, 1, dag_h, qname, allocList); + qNodes[i].params[0] = readDataNodes[i].params[0]; + qNodes[i].params[1] = readDataNodes[i].params[1]; + qNodes[i].params[2] = readQNodes[i].params[0]; + qNodes[i].params[3] = readQNodes[i].params[1]; + qNodes[i].params[4] = writeDataNodes[i].params[0]; + qNodes[i].params[5] = writeDataNodes[i].params[1]; + qNodes[i].params[6].p = raidPtr; + /* use old Q buf as target buf */ + qNodes[i].results[0] = readQNodes[i].params[1].p; + } + } + } else { + /* there is only one xor node in this case */ + rf_InitNode(&xorNodes[0], rf_wait, RF_FALSE, func, undoFunc, NULL, 1, + (numDataNodes + numParityNodes), + (2 * (numDataNodes + numDataNodes + 1) + 1), 1, dag_h, name, allocList); + xorNodes[0].flags |= RF_DAGNODE_FLAG_YIELD; + for (i = 0; i < numDataNodes + 1; i++) { + /* set up params related to Rod and Rop nodes */ + xorNodes[0].params[2 * i + 0] = readDataNodes[i].params[0]; /* pda */ + xorNodes[0].params[2 * i + 1] = readDataNodes[i].params[1]; /* buffer ptr */ + } + for (i = 0; i < numDataNodes; i++) { + /* set up params related to Wnd and Wnp nodes */ + xorNodes[0].params[2 * (numDataNodes + 1 + i) + 0] = /* pda */ + writeDataNodes[i].params[0]; + xorNodes[0].params[2 * (numDataNodes + 1 + i) + 1] = /* buffer ptr */ + writeDataNodes[i].params[1]; + } + /* xor node needs to get at RAID information */ + xorNodes[0].params[2 * (numDataNodes + numDataNodes + 1)].p = raidPtr; + xorNodes[0].results[0] = readParityNodes[0].params[1].p; + if (nfaults == 2) { + rf_InitNode(&qNodes[0], rf_wait, RF_FALSE, qfunc, undoFunc, NULL, 1, + (numDataNodes + numParityNodes), + (2 * (numDataNodes + numDataNodes + 1) + 1), 1, dag_h, + qname, allocList); + for (i = 0; i < numDataNodes; i++) { + /* set up params related to Rod */ + qNodes[0].params[2 * i + 0] = readDataNodes[i].params[0]; /* pda */ + qNodes[0].params[2 * i + 1] = readDataNodes[i].params[1]; /* buffer ptr */ + } + /* and read old q */ + qNodes[0].params[2 * numDataNodes + 0] = /* pda */ + readQNodes[0].params[0]; + qNodes[0].params[2 * numDataNodes + 1] = /* buffer ptr */ + readQNodes[0].params[1]; + for (i = 0; i < numDataNodes; i++) { + /* set up params related to Wnd nodes */ + qNodes[0].params[2 * (numDataNodes + 1 + i) + 0] = /* pda */ + writeDataNodes[i].params[0]; + qNodes[0].params[2 * (numDataNodes + 1 + i) + 1] = /* buffer ptr */ + writeDataNodes[i].params[1]; + } + /* xor node needs to get at RAID information */ + qNodes[0].params[2 * (numDataNodes + numDataNodes + 1)].p = raidPtr; + qNodes[0].results[0] = readQNodes[0].params[1].p; + } + } + + /* initialize nodes which write new parity (Wnp) */ + pda = asmap->parityInfo; + for (i = 0; i < numParityNodes; i++) { + rf_InitNode(&writeParityNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, + rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, + "Wnp", allocList); + RF_ASSERT(pda != NULL); + writeParityNodes[i].params[0].p = pda; /* param 1 (bufPtr) + * filled in by xor node */ + writeParityNodes[i].params[1].p = xorNodes[i].results[0]; /* buffer pointer for + * parity write + * operation */ + writeParityNodes[i].params[2].v = parityStripeID; + writeParityNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, + 0, 0, which_ru); + if (lu_flag) { + /* initialize node to unlock the disk queue */ + rf_InitNode(&unlockParityNodes[i], rf_wait, RF_FALSE, rf_DiskUnlockFunc, + rf_DiskUnlockUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h, + "Unp", allocList); + unlockParityNodes[i].params[0].p = pda; /* physical disk addr + * desc */ + unlockParityNodes[i].params[1].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, + 0, lu_flag, which_ru); + } + pda = pda->next; + } + + /* initialize nodes which write new Q (Wnq) */ + if (nfaults == 2) { + pda = asmap->qInfo; + for (i = 0; i < numParityNodes; i++) { + rf_InitNode(&writeQNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, + rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, + "Wnq", allocList); + RF_ASSERT(pda != NULL); + writeQNodes[i].params[0].p = pda; /* param 1 (bufPtr) + * filled in by xor node */ + writeQNodes[i].params[1].p = qNodes[i].results[0]; /* buffer pointer for + * parity write + * operation */ + writeQNodes[i].params[2].v = parityStripeID; + writeQNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, + 0, 0, which_ru); + if (lu_flag) { + /* initialize node to unlock the disk queue */ + rf_InitNode(&unlockQNodes[i], rf_wait, RF_FALSE, rf_DiskUnlockFunc, + rf_DiskUnlockUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h, + "Unq", allocList); + unlockQNodes[i].params[0].p = pda; /* physical disk addr + * desc */ + unlockQNodes[i].params[1].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, + 0, lu_flag, which_ru); + } + pda = pda->next; + } + } + /* + * Step 4. connect the nodes. + */ + + /* connect header to block node */ + dag_h->succedents[0] = blockNode; + + /* connect block node to read old data nodes */ + RF_ASSERT(blockNode->numSuccedents == (numDataNodes + (numParityNodes * nfaults))); + for (i = 0; i < numDataNodes; i++) { + blockNode->succedents[i] = &readDataNodes[i]; + RF_ASSERT(readDataNodes[i].numAntecedents == 1); + readDataNodes[i].antecedents[0] = blockNode; + readDataNodes[i].antType[0] = rf_control; + } + + /* connect block node to read old parity nodes */ + for (i = 0; i < numParityNodes; i++) { + blockNode->succedents[numDataNodes + i] = &readParityNodes[i]; + RF_ASSERT(readParityNodes[i].numAntecedents == 1); + readParityNodes[i].antecedents[0] = blockNode; + readParityNodes[i].antType[0] = rf_control; + } + + /* connect block node to read old Q nodes */ + if (nfaults == 2) { + for (i = 0; i < numParityNodes; i++) { + blockNode->succedents[numDataNodes + numParityNodes + i] = &readQNodes[i]; + RF_ASSERT(readQNodes[i].numAntecedents == 1); + readQNodes[i].antecedents[0] = blockNode; + readQNodes[i].antType[0] = rf_control; + } + } + /* connect read old data nodes to xor nodes */ + for (i = 0; i < numDataNodes; i++) { + RF_ASSERT(readDataNodes[i].numSuccedents == (nfaults * numParityNodes)); + for (j = 0; j < numParityNodes; j++) { + RF_ASSERT(xorNodes[j].numAntecedents == numDataNodes + numParityNodes); + readDataNodes[i].succedents[j] = &xorNodes[j]; + xorNodes[j].antecedents[i] = &readDataNodes[i]; + xorNodes[j].antType[i] = rf_trueData; + } + } + + /* connect read old data nodes to q nodes */ + if (nfaults == 2) { + for (i = 0; i < numDataNodes; i++) { + for (j = 0; j < numParityNodes; j++) { + RF_ASSERT(qNodes[j].numAntecedents == numDataNodes + numParityNodes); + readDataNodes[i].succedents[numParityNodes + j] = &qNodes[j]; + qNodes[j].antecedents[i] = &readDataNodes[i]; + qNodes[j].antType[i] = rf_trueData; + } + } + } + /* connect read old parity nodes to xor nodes */ + for (i = 0; i < numParityNodes; i++) { + RF_ASSERT(readParityNodes[i].numSuccedents == numParityNodes); + for (j = 0; j < numParityNodes; j++) { + readParityNodes[i].succedents[j] = &xorNodes[j]; + xorNodes[j].antecedents[numDataNodes + i] = &readParityNodes[i]; + xorNodes[j].antType[numDataNodes + i] = rf_trueData; + } + } + + /* connect read old q nodes to q nodes */ + if (nfaults == 2) { + for (i = 0; i < numParityNodes; i++) { + RF_ASSERT(readParityNodes[i].numSuccedents == numParityNodes); + for (j = 0; j < numParityNodes; j++) { + readQNodes[i].succedents[j] = &qNodes[j]; + qNodes[j].antecedents[numDataNodes + i] = &readQNodes[i]; + qNodes[j].antType[numDataNodes + i] = rf_trueData; + } + } + } + /* connect xor nodes to commit node */ + RF_ASSERT(commitNode->numAntecedents == (nfaults * numParityNodes)); + for (i = 0; i < numParityNodes; i++) { + RF_ASSERT(xorNodes[i].numSuccedents == 1); + xorNodes[i].succedents[0] = commitNode; + commitNode->antecedents[i] = &xorNodes[i]; + commitNode->antType[i] = rf_control; + } + + /* connect q nodes to commit node */ + if (nfaults == 2) { + for (i = 0; i < numParityNodes; i++) { + RF_ASSERT(qNodes[i].numSuccedents == 1); + qNodes[i].succedents[0] = commitNode; + commitNode->antecedents[i + numParityNodes] = &qNodes[i]; + commitNode->antType[i + numParityNodes] = rf_control; + } + } + /* connect commit node to write nodes */ + RF_ASSERT(commitNode->numSuccedents == (numDataNodes + (nfaults * numParityNodes))); + for (i = 0; i < numDataNodes; i++) { + RF_ASSERT(writeDataNodes[i].numAntecedents == 1); + commitNode->succedents[i] = &writeDataNodes[i]; + writeDataNodes[i].antecedents[0] = commitNode; + writeDataNodes[i].antType[0] = rf_trueData; + } + for (i = 0; i < numParityNodes; i++) { + RF_ASSERT(writeParityNodes[i].numAntecedents == 1); + commitNode->succedents[i + numDataNodes] = &writeParityNodes[i]; + writeParityNodes[i].antecedents[0] = commitNode; + writeParityNodes[i].antType[0] = rf_trueData; + } + if (nfaults == 2) { + for (i = 0; i < numParityNodes; i++) { + RF_ASSERT(writeQNodes[i].numAntecedents == 1); + commitNode->succedents[i + numDataNodes + numParityNodes] = &writeQNodes[i]; + writeQNodes[i].antecedents[0] = commitNode; + writeQNodes[i].antType[0] = rf_trueData; + } + } + RF_ASSERT(termNode->numAntecedents == (numDataNodes + (nfaults * numParityNodes))); + RF_ASSERT(termNode->numSuccedents == 0); + for (i = 0; i < numDataNodes; i++) { + if (lu_flag) { + /* connect write new data nodes to unlock nodes */ + RF_ASSERT(writeDataNodes[i].numSuccedents == 1); + RF_ASSERT(unlockDataNodes[i].numAntecedents == 1); + writeDataNodes[i].succedents[0] = &unlockDataNodes[i]; + unlockDataNodes[i].antecedents[0] = &writeDataNodes[i]; + unlockDataNodes[i].antType[0] = rf_control; + + /* connect unlock nodes to term node */ + RF_ASSERT(unlockDataNodes[i].numSuccedents == 1); + unlockDataNodes[i].succedents[0] = termNode; + termNode->antecedents[i] = &unlockDataNodes[i]; + termNode->antType[i] = rf_control; + } else { + /* connect write new data nodes to term node */ + RF_ASSERT(writeDataNodes[i].numSuccedents == 1); + RF_ASSERT(termNode->numAntecedents == (numDataNodes + (nfaults * numParityNodes))); + writeDataNodes[i].succedents[0] = termNode; + termNode->antecedents[i] = &writeDataNodes[i]; + termNode->antType[i] = rf_control; + } + } + + for (i = 0; i < numParityNodes; i++) { + if (lu_flag) { + /* connect write new parity nodes to unlock nodes */ + RF_ASSERT(writeParityNodes[i].numSuccedents == 1); + RF_ASSERT(unlockParityNodes[i].numAntecedents == 1); + writeParityNodes[i].succedents[0] = &unlockParityNodes[i]; + unlockParityNodes[i].antecedents[0] = &writeParityNodes[i]; + unlockParityNodes[i].antType[0] = rf_control; + + /* connect unlock nodes to term node */ + RF_ASSERT(unlockParityNodes[i].numSuccedents == 1); + unlockParityNodes[i].succedents[0] = termNode; + termNode->antecedents[numDataNodes + i] = &unlockParityNodes[i]; + termNode->antType[numDataNodes + i] = rf_control; + } else { + RF_ASSERT(writeParityNodes[i].numSuccedents == 1); + writeParityNodes[i].succedents[0] = termNode; + termNode->antecedents[numDataNodes + i] = &writeParityNodes[i]; + termNode->antType[numDataNodes + i] = rf_control; + } + } + + if (nfaults == 2) { + for (i = 0; i < numParityNodes; i++) { + if (lu_flag) { + /* connect write new Q nodes to unlock nodes */ + RF_ASSERT(writeQNodes[i].numSuccedents == 1); + RF_ASSERT(unlockQNodes[i].numAntecedents == 1); + writeQNodes[i].succedents[0] = &unlockQNodes[i]; + unlockQNodes[i].antecedents[0] = &writeQNodes[i]; + unlockQNodes[i].antType[0] = rf_control; + + /* connect unlock nodes to unblock node */ + RF_ASSERT(unlockQNodes[i].numSuccedents == 1); + unlockQNodes[i].succedents[0] = termNode; + termNode->antecedents[numDataNodes + numParityNodes + i] = &unlockQNodes[i]; + termNode->antType[numDataNodes + numParityNodes + i] = rf_control; + } else { + RF_ASSERT(writeQNodes[i].numSuccedents == 1); + writeQNodes[i].succedents[0] = termNode; + termNode->antecedents[numDataNodes + numParityNodes + i] = &writeQNodes[i]; + termNode->antType[numDataNodes + numParityNodes + i] = rf_control; + } + } + } +} + + +/****************************************************************************** + * create a write graph (fault-free or degraded) for RAID level 1 + * + * Hdr -> Commit -> Wpd -> Nil -> Trm + * -> Wsd -> + * + * The "Wpd" node writes data to the primary copy in the mirror pair + * The "Wsd" node writes data to the secondary copy in the mirror pair + * + * Parameters: raidPtr - description of the physical array + * asmap - logical & physical addresses for this access + * bp - buffer ptr (holds write data) + * flags - general flags (e.g. disk locking) + * allocList - list of memory allocated in DAG creation + *****************************************************************************/ + +void +rf_CreateRaidOneWriteDAG( + RF_Raid_t * raidPtr, + RF_AccessStripeMap_t * asmap, + RF_DagHeader_t * dag_h, + void *bp, + RF_RaidAccessFlags_t flags, + RF_AllocListElem_t * allocList) +{ + RF_DagNode_t *unblockNode, *termNode, *commitNode; + RF_DagNode_t *nodes, *wndNode, *wmirNode; + int nWndNodes, nWmirNodes, i; + RF_ReconUnitNum_t which_ru; + RF_PhysDiskAddr_t *pda, *pdaP; + RF_StripeNum_t parityStripeID; + + parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout), + asmap->raidAddress, &which_ru); + if (rf_dagDebug) { + printf("[Creating RAID level 1 write DAG]\n"); + } + dag_h->creator = "RaidOneWriteDAG"; + + /* 2 implies access not SU aligned */ + nWmirNodes = (asmap->parityInfo->next) ? 2 : 1; + nWndNodes = (asmap->physInfo->next) ? 2 : 1; + + /* alloc the Wnd nodes and the Wmir node */ + if (asmap->numDataFailed == 1) + nWndNodes--; + if (asmap->numParityFailed == 1) + nWmirNodes--; + + /* total number of nodes = nWndNodes + nWmirNodes + (commit + unblock + * + terminator) */ + RF_CallocAndAdd(nodes, nWndNodes + nWmirNodes + 3, sizeof(RF_DagNode_t), + (RF_DagNode_t *), allocList); + i = 0; + wndNode = &nodes[i]; + i += nWndNodes; + wmirNode = &nodes[i]; + i += nWmirNodes; + commitNode = &nodes[i]; + i += 1; + unblockNode = &nodes[i]; + i += 1; + termNode = &nodes[i]; + i += 1; + RF_ASSERT(i == (nWndNodes + nWmirNodes + 3)); + + /* this dag can commit immediately */ + dag_h->numCommitNodes = 1; + dag_h->numCommits = 0; + dag_h->numSuccedents = 1; + + /* initialize the commit, unblock, and term nodes */ + rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc, + NULL, (nWndNodes + nWmirNodes), 0, 0, 0, dag_h, "Cmt", allocList); + rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, + NULL, 1, (nWndNodes + nWmirNodes), 0, 0, dag_h, "Nil", allocList); + rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, + NULL, 0, 1, 0, 0, dag_h, "Trm", allocList); + + /* initialize the wnd nodes */ + if (nWndNodes > 0) { + pda = asmap->physInfo; + for (i = 0; i < nWndNodes; i++) { + rf_InitNode(&wndNode[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, + rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wpd", allocList); + RF_ASSERT(pda != NULL); + wndNode[i].params[0].p = pda; + wndNode[i].params[1].p = pda->bufPtr; + wndNode[i].params[2].v = parityStripeID; + wndNode[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); + pda = pda->next; + } + RF_ASSERT(pda == NULL); + } + /* initialize the mirror nodes */ + if (nWmirNodes > 0) { + pda = asmap->physInfo; + pdaP = asmap->parityInfo; + for (i = 0; i < nWmirNodes; i++) { + rf_InitNode(&wmirNode[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, + rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wsd", allocList); + RF_ASSERT(pda != NULL); + wmirNode[i].params[0].p = pdaP; + wmirNode[i].params[1].p = pda->bufPtr; + wmirNode[i].params[2].v = parityStripeID; + wmirNode[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); + pda = pda->next; + pdaP = pdaP->next; + } + RF_ASSERT(pda == NULL); + RF_ASSERT(pdaP == NULL); + } + /* link the header node to the commit node */ + RF_ASSERT(dag_h->numSuccedents == 1); + RF_ASSERT(commitNode->numAntecedents == 0); + dag_h->succedents[0] = commitNode; + + /* link the commit node to the write nodes */ + RF_ASSERT(commitNode->numSuccedents == (nWndNodes + nWmirNodes)); + for (i = 0; i < nWndNodes; i++) { + RF_ASSERT(wndNode[i].numAntecedents == 1); + commitNode->succedents[i] = &wndNode[i]; + wndNode[i].antecedents[0] = commitNode; + wndNode[i].antType[0] = rf_control; + } + for (i = 0; i < nWmirNodes; i++) { + RF_ASSERT(wmirNode[i].numAntecedents == 1); + commitNode->succedents[i + nWndNodes] = &wmirNode[i]; + wmirNode[i].antecedents[0] = commitNode; + wmirNode[i].antType[0] = rf_control; + } + + /* link the write nodes to the unblock node */ + RF_ASSERT(unblockNode->numAntecedents == (nWndNodes + nWmirNodes)); + for (i = 0; i < nWndNodes; i++) { + RF_ASSERT(wndNode[i].numSuccedents == 1); + wndNode[i].succedents[0] = unblockNode; + unblockNode->antecedents[i] = &wndNode[i]; + unblockNode->antType[i] = rf_control; + } + for (i = 0; i < nWmirNodes; i++) { + RF_ASSERT(wmirNode[i].numSuccedents == 1); + wmirNode[i].succedents[0] = unblockNode; + unblockNode->antecedents[i + nWndNodes] = &wmirNode[i]; + unblockNode->antType[i + nWndNodes] = rf_control; + } + + /* link the unblock node to the term node */ + RF_ASSERT(unblockNode->numSuccedents == 1); + RF_ASSERT(termNode->numAntecedents == 1); + RF_ASSERT(termNode->numSuccedents == 0); + unblockNode->succedents[0] = termNode; + termNode->antecedents[0] = unblockNode; + termNode->antType[0] = rf_control; +} + + + +/* DAGs which have no commit points. + * + * The following DAGs are used in forward and backward error recovery experiments. + * They are identical to the DAGs above this comment with the exception that the + * the commit points have been removed. + */ + + + +void +rf_CommonCreateLargeWriteDAGFwd( + RF_Raid_t * raidPtr, + RF_AccessStripeMap_t * asmap, + RF_DagHeader_t * dag_h, + void *bp, + RF_RaidAccessFlags_t flags, + RF_AllocListElem_t * allocList, + int nfaults, + int (*redFunc) (RF_DagNode_t *), + int allowBufferRecycle) +{ + RF_DagNode_t *nodes, *wndNodes, *rodNodes, *xorNode, *wnpNode; + RF_DagNode_t *wnqNode, *blockNode, *syncNode, *termNode; + int nWndNodes, nRodNodes, i, nodeNum, asmNum; + RF_AccessStripeMapHeader_t *new_asm_h[2]; + RF_StripeNum_t parityStripeID; + char *sosBuffer, *eosBuffer; + RF_ReconUnitNum_t which_ru; + RF_RaidLayout_t *layoutPtr; + RF_PhysDiskAddr_t *pda; + + layoutPtr = &(raidPtr->Layout); + parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout), asmap->raidAddress, &which_ru); + + if (rf_dagDebug) + printf("[Creating large-write DAG]\n"); + dag_h->creator = "LargeWriteDAGFwd"; + + dag_h->numCommitNodes = 0; + dag_h->numCommits = 0; + dag_h->numSuccedents = 1; + + /* alloc the nodes: Wnd, xor, commit, block, term, and Wnp */ + nWndNodes = asmap->numStripeUnitsAccessed; + RF_CallocAndAdd(nodes, nWndNodes + 4 + nfaults, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList); + i = 0; + wndNodes = &nodes[i]; + i += nWndNodes; + xorNode = &nodes[i]; + i += 1; + wnpNode = &nodes[i]; + i += 1; + blockNode = &nodes[i]; + i += 1; + syncNode = &nodes[i]; + i += 1; + termNode = &nodes[i]; + i += 1; + if (nfaults == 2) { + wnqNode = &nodes[i]; + i += 1; + } else { + wnqNode = NULL; + } + rf_MapUnaccessedPortionOfStripe(raidPtr, layoutPtr, asmap, dag_h, new_asm_h, &nRodNodes, &sosBuffer, &eosBuffer, allocList); + if (nRodNodes > 0) { + RF_CallocAndAdd(rodNodes, nRodNodes, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList); + } else { + rodNodes = NULL; + } + + /* begin node initialization */ + if (nRodNodes > 0) { + rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nRodNodes, 0, 0, 0, dag_h, "Nil", allocList); + rf_InitNode(syncNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nWndNodes + 1, nRodNodes, 0, 0, dag_h, "Nil", allocList); + } else { + rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, 0, 0, 0, dag_h, "Nil", allocList); + rf_InitNode(syncNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nWndNodes + 1, 1, 0, 0, dag_h, "Nil", allocList); + } + + rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, nWndNodes + nfaults, 0, 0, dag_h, "Trm", allocList); + + /* initialize the Rod nodes */ + for (nodeNum = asmNum = 0; asmNum < 2; asmNum++) { + if (new_asm_h[asmNum]) { + pda = new_asm_h[asmNum]->stripeMap->physInfo; + while (pda) { + rf_InitNode(&rodNodes[nodeNum], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rod", allocList); + rodNodes[nodeNum].params[0].p = pda; + rodNodes[nodeNum].params[1].p = pda->bufPtr; + rodNodes[nodeNum].params[2].v = parityStripeID; + rodNodes[nodeNum].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); + nodeNum++; + pda = pda->next; + } + } + } + RF_ASSERT(nodeNum == nRodNodes); + + /* initialize the wnd nodes */ + pda = asmap->physInfo; + for (i = 0; i < nWndNodes; i++) { + rf_InitNode(&wndNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnd", allocList); + RF_ASSERT(pda != NULL); + wndNodes[i].params[0].p = pda; + wndNodes[i].params[1].p = pda->bufPtr; + wndNodes[i].params[2].v = parityStripeID; + wndNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); + pda = pda->next; + } + + /* initialize the redundancy node */ + rf_InitNode(xorNode, rf_wait, RF_FALSE, redFunc, rf_NullNodeUndoFunc, NULL, 1, nfaults, 2 * (nWndNodes + nRodNodes) + 1, nfaults, dag_h, "Xr ", allocList); + xorNode->flags |= RF_DAGNODE_FLAG_YIELD; + for (i = 0; i < nWndNodes; i++) { + xorNode->params[2 * i + 0] = wndNodes[i].params[0]; /* pda */ + xorNode->params[2 * i + 1] = wndNodes[i].params[1]; /* buf ptr */ + } + for (i = 0; i < nRodNodes; i++) { + xorNode->params[2 * (nWndNodes + i) + 0] = rodNodes[i].params[0]; /* pda */ + xorNode->params[2 * (nWndNodes + i) + 1] = rodNodes[i].params[1]; /* buf ptr */ + } + xorNode->params[2 * (nWndNodes + nRodNodes)].p = raidPtr; /* xor node needs to get + * at RAID information */ + + /* look for an Rod node that reads a complete SU. If none, alloc a + * buffer to receive the parity info. Note that we can't use a new + * data buffer because it will not have gotten written when the xor + * occurs. */ + if (allowBufferRecycle) { + for (i = 0; i < nRodNodes; i++) + if (((RF_PhysDiskAddr_t *) rodNodes[i].params[0].p)->numSector == raidPtr->Layout.sectorsPerStripeUnit) + break; + } + if ((!allowBufferRecycle) || (i == nRodNodes)) { + RF_CallocAndAdd(xorNode->results[0], 1, rf_RaidAddressToByte(raidPtr, raidPtr->Layout.sectorsPerStripeUnit), (void *), allocList); + } else + xorNode->results[0] = rodNodes[i].params[1].p; + + /* initialize the Wnp node */ + rf_InitNode(wnpNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnp", allocList); + wnpNode->params[0].p = asmap->parityInfo; + wnpNode->params[1].p = xorNode->results[0]; + wnpNode->params[2].v = parityStripeID; + wnpNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); + RF_ASSERT(asmap->parityInfo->next == NULL); /* parityInfo must + * describe entire + * parity unit */ + + if (nfaults == 2) { + /* we never try to recycle a buffer for the Q calcuation in + * addition to the parity. This would cause two buffers to get + * smashed during the P and Q calculation, guaranteeing one + * would be wrong. */ + RF_CallocAndAdd(xorNode->results[1], 1, rf_RaidAddressToByte(raidPtr, raidPtr->Layout.sectorsPerStripeUnit), (void *), allocList); + rf_InitNode(wnqNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnq", allocList); + wnqNode->params[0].p = asmap->qInfo; + wnqNode->params[1].p = xorNode->results[1]; + wnqNode->params[2].v = parityStripeID; + wnqNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); + RF_ASSERT(asmap->parityInfo->next == NULL); /* parityInfo must + * describe entire + * parity unit */ + } + /* connect nodes to form graph */ + + /* connect dag header to block node */ + RF_ASSERT(blockNode->numAntecedents == 0); + dag_h->succedents[0] = blockNode; + + if (nRodNodes > 0) { + /* connect the block node to the Rod nodes */ + RF_ASSERT(blockNode->numSuccedents == nRodNodes); + RF_ASSERT(syncNode->numAntecedents == nRodNodes); + for (i = 0; i < nRodNodes; i++) { + RF_ASSERT(rodNodes[i].numAntecedents == 1); + blockNode->succedents[i] = &rodNodes[i]; + rodNodes[i].antecedents[0] = blockNode; + rodNodes[i].antType[0] = rf_control; + + /* connect the Rod nodes to the Nil node */ + RF_ASSERT(rodNodes[i].numSuccedents == 1); + rodNodes[i].succedents[0] = syncNode; + syncNode->antecedents[i] = &rodNodes[i]; + syncNode->antType[i] = rf_trueData; + } + } else { + /* connect the block node to the Nil node */ + RF_ASSERT(blockNode->numSuccedents == 1); + RF_ASSERT(syncNode->numAntecedents == 1); + blockNode->succedents[0] = syncNode; + syncNode->antecedents[0] = blockNode; + syncNode->antType[0] = rf_control; + } + + /* connect the sync node to the Wnd nodes */ + RF_ASSERT(syncNode->numSuccedents == (1 + nWndNodes)); + for (i = 0; i < nWndNodes; i++) { + RF_ASSERT(wndNodes->numAntecedents == 1); + syncNode->succedents[i] = &wndNodes[i]; + wndNodes[i].antecedents[0] = syncNode; + wndNodes[i].antType[0] = rf_control; + } + + /* connect the sync node to the Xor node */ + RF_ASSERT(xorNode->numAntecedents == 1); + syncNode->succedents[nWndNodes] = xorNode; + xorNode->antecedents[0] = syncNode; + xorNode->antType[0] = rf_control; + + /* connect the xor node to the write parity node */ + RF_ASSERT(xorNode->numSuccedents == nfaults); + RF_ASSERT(wnpNode->numAntecedents == 1); + xorNode->succedents[0] = wnpNode; + wnpNode->antecedents[0] = xorNode; + wnpNode->antType[0] = rf_trueData; + if (nfaults == 2) { + RF_ASSERT(wnqNode->numAntecedents == 1); + xorNode->succedents[1] = wnqNode; + wnqNode->antecedents[0] = xorNode; + wnqNode->antType[0] = rf_trueData; + } + /* connect the write nodes to the term node */ + RF_ASSERT(termNode->numAntecedents == nWndNodes + nfaults); + RF_ASSERT(termNode->numSuccedents == 0); + for (i = 0; i < nWndNodes; i++) { + RF_ASSERT(wndNodes->numSuccedents == 1); + wndNodes[i].succedents[0] = termNode; + termNode->antecedents[i] = &wndNodes[i]; + termNode->antType[i] = rf_control; + } + RF_ASSERT(wnpNode->numSuccedents == 1); + wnpNode->succedents[0] = termNode; + termNode->antecedents[nWndNodes] = wnpNode; + termNode->antType[nWndNodes] = rf_control; + if (nfaults == 2) { + RF_ASSERT(wnqNode->numSuccedents == 1); + wnqNode->succedents[0] = termNode; + termNode->antecedents[nWndNodes + 1] = wnqNode; + termNode->antType[nWndNodes + 1] = rf_control; + } +} + + +/****************************************************************************** + * + * creates a DAG to perform a small-write operation (either raid 5 or pq), + * which is as follows: + * + * Hdr -> Nil -> Rop - Xor - Wnp [Unp] -- Trm + * \- Rod X- Wnd [Und] -------/ + * [\- Rod X- Wnd [Und] ------/] + * [\- Roq - Q --> Wnq [Unq]-/] + * + * Rop = read old parity + * Rod = read old data + * Roq = read old "q" + * Cmt = commit node + * Und = unlock data disk + * Unp = unlock parity disk + * Unq = unlock q disk + * Wnp = write new parity + * Wnd = write new data + * Wnq = write new "q" + * [ ] denotes optional segments in the graph + * + * Parameters: raidPtr - description of the physical array + * asmap - logical & physical addresses for this access + * bp - buffer ptr (holds write data) + * flags - general flags (e.g. disk locking) + * allocList - list of memory allocated in DAG creation + * pfuncs - list of parity generating functions + * qfuncs - list of q generating functions + * + * A null qfuncs indicates single fault tolerant + *****************************************************************************/ + +void +rf_CommonCreateSmallWriteDAGFwd( + RF_Raid_t * raidPtr, + RF_AccessStripeMap_t * asmap, + RF_DagHeader_t * dag_h, + void *bp, + RF_RaidAccessFlags_t flags, + RF_AllocListElem_t * allocList, + RF_RedFuncs_t * pfuncs, + RF_RedFuncs_t * qfuncs) +{ + RF_DagNode_t *readDataNodes, *readParityNodes, *readQNodes, *termNode; + RF_DagNode_t *unlockDataNodes, *unlockParityNodes, *unlockQNodes; + RF_DagNode_t *xorNodes, *qNodes, *blockNode, *nodes; + RF_DagNode_t *writeDataNodes, *writeParityNodes, *writeQNodes; + int i, j, nNodes, totalNumNodes, lu_flag; + RF_ReconUnitNum_t which_ru; + int (*func) (RF_DagNode_t *), (*undoFunc) (RF_DagNode_t *); + int (*qfunc) (RF_DagNode_t *); + int numDataNodes, numParityNodes; + RF_StripeNum_t parityStripeID; + RF_PhysDiskAddr_t *pda; + char *name, *qname; + long nfaults; + + nfaults = qfuncs ? 2 : 1; + lu_flag = (rf_enableAtomicRMW) ? 1 : 0; /* lock/unlock flag */ + + parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout), asmap->raidAddress, &which_ru); + pda = asmap->physInfo; + numDataNodes = asmap->numStripeUnitsAccessed; + numParityNodes = (asmap->parityInfo->next) ? 2 : 1; + + if (rf_dagDebug) + printf("[Creating small-write DAG]\n"); + RF_ASSERT(numDataNodes > 0); + dag_h->creator = "SmallWriteDAGFwd"; + + dag_h->numCommitNodes = 0; + dag_h->numCommits = 0; + dag_h->numSuccedents = 1; + + qfunc = NULL; + qname = NULL; + + /* DAG creation occurs in four steps: 1. count the number of nodes in + * the DAG 2. create the nodes 3. initialize the nodes 4. connect the + * nodes */ + + /* Step 1. compute number of nodes in the graph */ + + /* number of nodes: a read and write for each data unit a redundancy + * computation node for each parity node (nfaults * nparity) a read + * and write for each parity unit a block node a terminate node if + * atomic RMW an unlock node for each data unit, redundancy unit */ + totalNumNodes = (2 * numDataNodes) + (nfaults * numParityNodes) + (nfaults * 2 * numParityNodes) + 2; + if (lu_flag) + totalNumNodes += (numDataNodes + (nfaults * numParityNodes)); + + + /* Step 2. create the nodes */ + RF_CallocAndAdd(nodes, totalNumNodes, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList); + i = 0; + blockNode = &nodes[i]; + i += 1; + readDataNodes = &nodes[i]; + i += numDataNodes; + readParityNodes = &nodes[i]; + i += numParityNodes; + writeDataNodes = &nodes[i]; + i += numDataNodes; + writeParityNodes = &nodes[i]; + i += numParityNodes; + xorNodes = &nodes[i]; + i += numParityNodes; + termNode = &nodes[i]; + i += 1; + if (lu_flag) { + unlockDataNodes = &nodes[i]; + i += numDataNodes; + unlockParityNodes = &nodes[i]; + i += numParityNodes; + } else { + unlockDataNodes = unlockParityNodes = NULL; + } + if (nfaults == 2) { + readQNodes = &nodes[i]; + i += numParityNodes; + writeQNodes = &nodes[i]; + i += numParityNodes; + qNodes = &nodes[i]; + i += numParityNodes; + if (lu_flag) { + unlockQNodes = &nodes[i]; + i += numParityNodes; + } else { + unlockQNodes = NULL; + } + } else { + readQNodes = writeQNodes = qNodes = unlockQNodes = NULL; + } + RF_ASSERT(i == totalNumNodes); + + /* Step 3. initialize the nodes */ + /* initialize block node (Nil) */ + nNodes = numDataNodes + (nfaults * numParityNodes); + rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nNodes, 0, 0, 0, dag_h, "Nil", allocList); + + /* initialize terminate node (Trm) */ + rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, nNodes, 0, 0, dag_h, "Trm", allocList); + + /* initialize nodes which read old data (Rod) */ + for (i = 0; i < numDataNodes; i++) { + rf_InitNode(&readDataNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, (numParityNodes * nfaults) + 1, 1, 4, 0, dag_h, "Rod", allocList); + RF_ASSERT(pda != NULL); + readDataNodes[i].params[0].p = pda; /* physical disk addr + * desc */ + readDataNodes[i].params[1].p = rf_AllocBuffer(raidPtr, dag_h, pda, allocList); /* buffer to hold old + * data */ + readDataNodes[i].params[2].v = parityStripeID; + readDataNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, lu_flag, 0, which_ru); + pda = pda->next; + for (j = 0; j < readDataNodes[i].numSuccedents; j++) + readDataNodes[i].propList[j] = NULL; + } + + /* initialize nodes which read old parity (Rop) */ + pda = asmap->parityInfo; + i = 0; + for (i = 0; i < numParityNodes; i++) { + RF_ASSERT(pda != NULL); + rf_InitNode(&readParityNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, numParityNodes, 1, 4, 0, dag_h, "Rop", allocList); + readParityNodes[i].params[0].p = pda; + readParityNodes[i].params[1].p = rf_AllocBuffer(raidPtr, dag_h, pda, allocList); /* buffer to hold old + * parity */ + readParityNodes[i].params[2].v = parityStripeID; + readParityNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, lu_flag, 0, which_ru); + for (j = 0; j < readParityNodes[i].numSuccedents; j++) + readParityNodes[i].propList[0] = NULL; + pda = pda->next; + } + + /* initialize nodes which read old Q (Roq) */ + if (nfaults == 2) { + pda = asmap->qInfo; + for (i = 0; i < numParityNodes; i++) { + RF_ASSERT(pda != NULL); + rf_InitNode(&readQNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, numParityNodes, 1, 4, 0, dag_h, "Roq", allocList); + readQNodes[i].params[0].p = pda; + readQNodes[i].params[1].p = rf_AllocBuffer(raidPtr, dag_h, pda, allocList); /* buffer to hold old Q */ + readQNodes[i].params[2].v = parityStripeID; + readQNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, lu_flag, 0, which_ru); + for (j = 0; j < readQNodes[i].numSuccedents; j++) + readQNodes[i].propList[0] = NULL; + pda = pda->next; + } + } + /* initialize nodes which write new data (Wnd) */ + pda = asmap->physInfo; + for (i = 0; i < numDataNodes; i++) { + RF_ASSERT(pda != NULL); + rf_InitNode(&writeDataNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnd", allocList); + writeDataNodes[i].params[0].p = pda; /* physical disk addr + * desc */ + writeDataNodes[i].params[1].p = pda->bufPtr; /* buffer holding new + * data to be written */ + writeDataNodes[i].params[2].v = parityStripeID; + writeDataNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); + + if (lu_flag) { + /* initialize node to unlock the disk queue */ + rf_InitNode(&unlockDataNodes[i], rf_wait, RF_FALSE, rf_DiskUnlockFunc, rf_DiskUnlockUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h, "Und", allocList); + unlockDataNodes[i].params[0].p = pda; /* physical disk addr + * desc */ + unlockDataNodes[i].params[1].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, lu_flag, which_ru); + } + pda = pda->next; + } + + + /* initialize nodes which compute new parity and Q */ + /* we use the simple XOR func in the double-XOR case, and when we're + * accessing only a portion of one stripe unit. the distinction + * between the two is that the regular XOR func assumes that the + * targbuf is a full SU in size, and examines the pda associated with + * the buffer to decide where within the buffer to XOR the data, + * whereas the simple XOR func just XORs the data into the start of + * the buffer. */ + if ((numParityNodes == 2) || ((numDataNodes == 1) && (asmap->totalSectorsAccessed < raidPtr->Layout.sectorsPerStripeUnit))) { + func = pfuncs->simple; + undoFunc = rf_NullNodeUndoFunc; + name = pfuncs->SimpleName; + if (qfuncs) { + qfunc = qfuncs->simple; + qname = qfuncs->SimpleName; + } + } else { + func = pfuncs->regular; + undoFunc = rf_NullNodeUndoFunc; + name = pfuncs->RegularName; + if (qfuncs) { + qfunc = qfuncs->regular; + qname = qfuncs->RegularName; + } + } + /* initialize the xor nodes: params are {pda,buf} from {Rod,Wnd,Rop} + * nodes, and raidPtr */ + if (numParityNodes == 2) { /* double-xor case */ + for (i = 0; i < numParityNodes; i++) { + rf_InitNode(&xorNodes[i], rf_wait, RF_FALSE, func, undoFunc, NULL, numParityNodes, numParityNodes + numDataNodes, 7, 1, dag_h, name, allocList); /* no wakeup func for + * xor */ + xorNodes[i].flags |= RF_DAGNODE_FLAG_YIELD; + xorNodes[i].params[0] = readDataNodes[i].params[0]; + xorNodes[i].params[1] = readDataNodes[i].params[1]; + xorNodes[i].params[2] = readParityNodes[i].params[0]; + xorNodes[i].params[3] = readParityNodes[i].params[1]; + xorNodes[i].params[4] = writeDataNodes[i].params[0]; + xorNodes[i].params[5] = writeDataNodes[i].params[1]; + xorNodes[i].params[6].p = raidPtr; + xorNodes[i].results[0] = readParityNodes[i].params[1].p; /* use old parity buf as + * target buf */ + if (nfaults == 2) { + rf_InitNode(&qNodes[i], rf_wait, RF_FALSE, qfunc, undoFunc, NULL, numParityNodes, numParityNodes + numDataNodes, 7, 1, dag_h, qname, allocList); /* no wakeup func for + * xor */ + qNodes[i].params[0] = readDataNodes[i].params[0]; + qNodes[i].params[1] = readDataNodes[i].params[1]; + qNodes[i].params[2] = readQNodes[i].params[0]; + qNodes[i].params[3] = readQNodes[i].params[1]; + qNodes[i].params[4] = writeDataNodes[i].params[0]; + qNodes[i].params[5] = writeDataNodes[i].params[1]; + qNodes[i].params[6].p = raidPtr; + qNodes[i].results[0] = readQNodes[i].params[1].p; /* use old Q buf as + * target buf */ + } + } + } else { + /* there is only one xor node in this case */ + rf_InitNode(&xorNodes[0], rf_wait, RF_FALSE, func, undoFunc, NULL, numParityNodes, numParityNodes + numDataNodes, (2 * (numDataNodes + numDataNodes + 1) + 1), 1, dag_h, name, allocList); + xorNodes[0].flags |= RF_DAGNODE_FLAG_YIELD; + for (i = 0; i < numDataNodes + 1; i++) { + /* set up params related to Rod and Rop nodes */ + xorNodes[0].params[2 * i + 0] = readDataNodes[i].params[0]; /* pda */ + xorNodes[0].params[2 * i + 1] = readDataNodes[i].params[1]; /* buffer pointer */ + } + for (i = 0; i < numDataNodes; i++) { + /* set up params related to Wnd and Wnp nodes */ + xorNodes[0].params[2 * (numDataNodes + 1 + i) + 0] = writeDataNodes[i].params[0]; /* pda */ + xorNodes[0].params[2 * (numDataNodes + 1 + i) + 1] = writeDataNodes[i].params[1]; /* buffer pointer */ + } + xorNodes[0].params[2 * (numDataNodes + numDataNodes + 1)].p = raidPtr; /* xor node needs to get + * at RAID information */ + xorNodes[0].results[0] = readParityNodes[0].params[1].p; + if (nfaults == 2) { + rf_InitNode(&qNodes[0], rf_wait, RF_FALSE, qfunc, undoFunc, NULL, numParityNodes, numParityNodes + numDataNodes, (2 * (numDataNodes + numDataNodes + 1) + 1), 1, dag_h, qname, allocList); + for (i = 0; i < numDataNodes; i++) { + /* set up params related to Rod */ + qNodes[0].params[2 * i + 0] = readDataNodes[i].params[0]; /* pda */ + qNodes[0].params[2 * i + 1] = readDataNodes[i].params[1]; /* buffer pointer */ + } + /* and read old q */ + qNodes[0].params[2 * numDataNodes + 0] = readQNodes[0].params[0]; /* pda */ + qNodes[0].params[2 * numDataNodes + 1] = readQNodes[0].params[1]; /* buffer pointer */ + for (i = 0; i < numDataNodes; i++) { + /* set up params related to Wnd nodes */ + qNodes[0].params[2 * (numDataNodes + 1 + i) + 0] = writeDataNodes[i].params[0]; /* pda */ + qNodes[0].params[2 * (numDataNodes + 1 + i) + 1] = writeDataNodes[i].params[1]; /* buffer pointer */ + } + qNodes[0].params[2 * (numDataNodes + numDataNodes + 1)].p = raidPtr; /* xor node needs to get + * at RAID information */ + qNodes[0].results[0] = readQNodes[0].params[1].p; + } + } + + /* initialize nodes which write new parity (Wnp) */ + pda = asmap->parityInfo; + for (i = 0; i < numParityNodes; i++) { + rf_InitNode(&writeParityNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, numParityNodes, 4, 0, dag_h, "Wnp", allocList); + RF_ASSERT(pda != NULL); + writeParityNodes[i].params[0].p = pda; /* param 1 (bufPtr) + * filled in by xor node */ + writeParityNodes[i].params[1].p = xorNodes[i].results[0]; /* buffer pointer for + * parity write + * operation */ + writeParityNodes[i].params[2].v = parityStripeID; + writeParityNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); + + if (lu_flag) { + /* initialize node to unlock the disk queue */ + rf_InitNode(&unlockParityNodes[i], rf_wait, RF_FALSE, rf_DiskUnlockFunc, rf_DiskUnlockUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h, "Unp", allocList); + unlockParityNodes[i].params[0].p = pda; /* physical disk addr + * desc */ + unlockParityNodes[i].params[1].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, lu_flag, which_ru); + } + pda = pda->next; + } + + /* initialize nodes which write new Q (Wnq) */ + if (nfaults == 2) { + pda = asmap->qInfo; + for (i = 0; i < numParityNodes; i++) { + rf_InitNode(&writeQNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, numParityNodes, 4, 0, dag_h, "Wnq", allocList); + RF_ASSERT(pda != NULL); + writeQNodes[i].params[0].p = pda; /* param 1 (bufPtr) + * filled in by xor node */ + writeQNodes[i].params[1].p = qNodes[i].results[0]; /* buffer pointer for + * parity write + * operation */ + writeQNodes[i].params[2].v = parityStripeID; + writeQNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); + + if (lu_flag) { + /* initialize node to unlock the disk queue */ + rf_InitNode(&unlockQNodes[i], rf_wait, RF_FALSE, rf_DiskUnlockFunc, rf_DiskUnlockUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h, "Unq", allocList); + unlockQNodes[i].params[0].p = pda; /* physical disk addr + * desc */ + unlockQNodes[i].params[1].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, lu_flag, which_ru); + } + pda = pda->next; + } + } + /* Step 4. connect the nodes */ + + /* connect header to block node */ + dag_h->succedents[0] = blockNode; + + /* connect block node to read old data nodes */ + RF_ASSERT(blockNode->numSuccedents == (numDataNodes + (numParityNodes * nfaults))); + for (i = 0; i < numDataNodes; i++) { + blockNode->succedents[i] = &readDataNodes[i]; + RF_ASSERT(readDataNodes[i].numAntecedents == 1); + readDataNodes[i].antecedents[0] = blockNode; + readDataNodes[i].antType[0] = rf_control; + } + + /* connect block node to read old parity nodes */ + for (i = 0; i < numParityNodes; i++) { + blockNode->succedents[numDataNodes + i] = &readParityNodes[i]; + RF_ASSERT(readParityNodes[i].numAntecedents == 1); + readParityNodes[i].antecedents[0] = blockNode; + readParityNodes[i].antType[0] = rf_control; + } + + /* connect block node to read old Q nodes */ + if (nfaults == 2) + for (i = 0; i < numParityNodes; i++) { + blockNode->succedents[numDataNodes + numParityNodes + i] = &readQNodes[i]; + RF_ASSERT(readQNodes[i].numAntecedents == 1); + readQNodes[i].antecedents[0] = blockNode; + readQNodes[i].antType[0] = rf_control; + } + + /* connect read old data nodes to write new data nodes */ + for (i = 0; i < numDataNodes; i++) { + RF_ASSERT(readDataNodes[i].numSuccedents == ((nfaults * numParityNodes) + 1)); + RF_ASSERT(writeDataNodes[i].numAntecedents == 1); + readDataNodes[i].succedents[0] = &writeDataNodes[i]; + writeDataNodes[i].antecedents[0] = &readDataNodes[i]; + writeDataNodes[i].antType[0] = rf_antiData; + } + + /* connect read old data nodes to xor nodes */ + for (i = 0; i < numDataNodes; i++) { + for (j = 0; j < numParityNodes; j++) { + RF_ASSERT(xorNodes[j].numAntecedents == numDataNodes + numParityNodes); + readDataNodes[i].succedents[1 + j] = &xorNodes[j]; + xorNodes[j].antecedents[i] = &readDataNodes[i]; + xorNodes[j].antType[i] = rf_trueData; + } + } + + /* connect read old data nodes to q nodes */ + if (nfaults == 2) + for (i = 0; i < numDataNodes; i++) + for (j = 0; j < numParityNodes; j++) { + RF_ASSERT(qNodes[j].numAntecedents == numDataNodes + numParityNodes); + readDataNodes[i].succedents[1 + numParityNodes + j] = &qNodes[j]; + qNodes[j].antecedents[i] = &readDataNodes[i]; + qNodes[j].antType[i] = rf_trueData; + } + + /* connect read old parity nodes to xor nodes */ + for (i = 0; i < numParityNodes; i++) { + for (j = 0; j < numParityNodes; j++) { + RF_ASSERT(readParityNodes[i].numSuccedents == numParityNodes); + readParityNodes[i].succedents[j] = &xorNodes[j]; + xorNodes[j].antecedents[numDataNodes + i] = &readParityNodes[i]; + xorNodes[j].antType[numDataNodes + i] = rf_trueData; + } + } + + /* connect read old q nodes to q nodes */ + if (nfaults == 2) + for (i = 0; i < numParityNodes; i++) { + for (j = 0; j < numParityNodes; j++) { + RF_ASSERT(readQNodes[i].numSuccedents == numParityNodes); + readQNodes[i].succedents[j] = &qNodes[j]; + qNodes[j].antecedents[numDataNodes + i] = &readQNodes[i]; + qNodes[j].antType[numDataNodes + i] = rf_trueData; + } + } + + /* connect xor nodes to the write new parity nodes */ + for (i = 0; i < numParityNodes; i++) { + RF_ASSERT(writeParityNodes[i].numAntecedents == numParityNodes); + for (j = 0; j < numParityNodes; j++) { + RF_ASSERT(xorNodes[j].numSuccedents == numParityNodes); + xorNodes[i].succedents[j] = &writeParityNodes[j]; + writeParityNodes[j].antecedents[i] = &xorNodes[i]; + writeParityNodes[j].antType[i] = rf_trueData; + } + } + + /* connect q nodes to the write new q nodes */ + if (nfaults == 2) + for (i = 0; i < numParityNodes; i++) { + RF_ASSERT(writeQNodes[i].numAntecedents == numParityNodes); + for (j = 0; j < numParityNodes; j++) { + RF_ASSERT(qNodes[j].numSuccedents == 1); + qNodes[i].succedents[j] = &writeQNodes[j]; + writeQNodes[j].antecedents[i] = &qNodes[i]; + writeQNodes[j].antType[i] = rf_trueData; + } + } + + RF_ASSERT(termNode->numAntecedents == (numDataNodes + (nfaults * numParityNodes))); + RF_ASSERT(termNode->numSuccedents == 0); + for (i = 0; i < numDataNodes; i++) { + if (lu_flag) { + /* connect write new data nodes to unlock nodes */ + RF_ASSERT(writeDataNodes[i].numSuccedents == 1); + RF_ASSERT(unlockDataNodes[i].numAntecedents == 1); + writeDataNodes[i].succedents[0] = &unlockDataNodes[i]; + unlockDataNodes[i].antecedents[0] = &writeDataNodes[i]; + unlockDataNodes[i].antType[0] = rf_control; + + /* connect unlock nodes to term node */ + RF_ASSERT(unlockDataNodes[i].numSuccedents == 1); + unlockDataNodes[i].succedents[0] = termNode; + termNode->antecedents[i] = &unlockDataNodes[i]; + termNode->antType[i] = rf_control; + } else { + /* connect write new data nodes to term node */ + RF_ASSERT(writeDataNodes[i].numSuccedents == 1); + RF_ASSERT(termNode->numAntecedents == (numDataNodes + (nfaults * numParityNodes))); + writeDataNodes[i].succedents[0] = termNode; + termNode->antecedents[i] = &writeDataNodes[i]; + termNode->antType[i] = rf_control; + } + } + + for (i = 0; i < numParityNodes; i++) { + if (lu_flag) { + /* connect write new parity nodes to unlock nodes */ + RF_ASSERT(writeParityNodes[i].numSuccedents == 1); + RF_ASSERT(unlockParityNodes[i].numAntecedents == 1); + writeParityNodes[i].succedents[0] = &unlockParityNodes[i]; + unlockParityNodes[i].antecedents[0] = &writeParityNodes[i]; + unlockParityNodes[i].antType[0] = rf_control; + + /* connect unlock nodes to term node */ + RF_ASSERT(unlockParityNodes[i].numSuccedents == 1); + unlockParityNodes[i].succedents[0] = termNode; + termNode->antecedents[numDataNodes + i] = &unlockParityNodes[i]; + termNode->antType[numDataNodes + i] = rf_control; + } else { + RF_ASSERT(writeParityNodes[i].numSuccedents == 1); + writeParityNodes[i].succedents[0] = termNode; + termNode->antecedents[numDataNodes + i] = &writeParityNodes[i]; + termNode->antType[numDataNodes + i] = rf_control; + } + } + + if (nfaults == 2) + for (i = 0; i < numParityNodes; i++) { + if (lu_flag) { + /* connect write new Q nodes to unlock nodes */ + RF_ASSERT(writeQNodes[i].numSuccedents == 1); + RF_ASSERT(unlockQNodes[i].numAntecedents == 1); + writeQNodes[i].succedents[0] = &unlockQNodes[i]; + unlockQNodes[i].antecedents[0] = &writeQNodes[i]; + unlockQNodes[i].antType[0] = rf_control; + + /* connect unlock nodes to unblock node */ + RF_ASSERT(unlockQNodes[i].numSuccedents == 1); + unlockQNodes[i].succedents[0] = termNode; + termNode->antecedents[numDataNodes + numParityNodes + i] = &unlockQNodes[i]; + termNode->antType[numDataNodes + numParityNodes + i] = rf_control; + } else { + RF_ASSERT(writeQNodes[i].numSuccedents == 1); + writeQNodes[i].succedents[0] = termNode; + termNode->antecedents[numDataNodes + numParityNodes + i] = &writeQNodes[i]; + termNode->antType[numDataNodes + numParityNodes + i] = rf_control; + } + } +} + + + +/****************************************************************************** + * create a write graph (fault-free or degraded) for RAID level 1 + * + * Hdr Nil -> Wpd -> Nil -> Trm + * Nil -> Wsd -> + * + * The "Wpd" node writes data to the primary copy in the mirror pair + * The "Wsd" node writes data to the secondary copy in the mirror pair + * + * Parameters: raidPtr - description of the physical array + * asmap - logical & physical addresses for this access + * bp - buffer ptr (holds write data) + * flags - general flags (e.g. disk locking) + * allocList - list of memory allocated in DAG creation + *****************************************************************************/ + +void +rf_CreateRaidOneWriteDAGFwd( + RF_Raid_t * raidPtr, + RF_AccessStripeMap_t * asmap, + RF_DagHeader_t * dag_h, + void *bp, + RF_RaidAccessFlags_t flags, + RF_AllocListElem_t * allocList) +{ + RF_DagNode_t *blockNode, *unblockNode, *termNode; + RF_DagNode_t *nodes, *wndNode, *wmirNode; + int nWndNodes, nWmirNodes, i; + RF_ReconUnitNum_t which_ru; + RF_PhysDiskAddr_t *pda, *pdaP; + RF_StripeNum_t parityStripeID; + + parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout), + asmap->raidAddress, &which_ru); + if (rf_dagDebug) { + printf("[Creating RAID level 1 write DAG]\n"); + } + nWmirNodes = (asmap->parityInfo->next) ? 2 : 1; /* 2 implies access not + * SU aligned */ + nWndNodes = (asmap->physInfo->next) ? 2 : 1; + + /* alloc the Wnd nodes and the Wmir node */ + if (asmap->numDataFailed == 1) + nWndNodes--; + if (asmap->numParityFailed == 1) + nWmirNodes--; + + /* total number of nodes = nWndNodes + nWmirNodes + (block + unblock + + * terminator) */ + RF_CallocAndAdd(nodes, nWndNodes + nWmirNodes + 3, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList); + i = 0; + wndNode = &nodes[i]; + i += nWndNodes; + wmirNode = &nodes[i]; + i += nWmirNodes; + blockNode = &nodes[i]; + i += 1; + unblockNode = &nodes[i]; + i += 1; + termNode = &nodes[i]; + i += 1; + RF_ASSERT(i == (nWndNodes + nWmirNodes + 3)); + + /* this dag can commit immediately */ + dag_h->numCommitNodes = 0; + dag_h->numCommits = 0; + dag_h->numSuccedents = 1; + + /* initialize the unblock and term nodes */ + rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, (nWndNodes + nWmirNodes), 0, 0, 0, dag_h, "Nil", allocList); + rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, (nWndNodes + nWmirNodes), 0, 0, dag_h, "Nil", allocList); + rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", allocList); + + /* initialize the wnd nodes */ + if (nWndNodes > 0) { + pda = asmap->physInfo; + for (i = 0; i < nWndNodes; i++) { + rf_InitNode(&wndNode[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wpd", allocList); + RF_ASSERT(pda != NULL); + wndNode[i].params[0].p = pda; + wndNode[i].params[1].p = pda->bufPtr; + wndNode[i].params[2].v = parityStripeID; + wndNode[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); + pda = pda->next; + } + RF_ASSERT(pda == NULL); + } + /* initialize the mirror nodes */ + if (nWmirNodes > 0) { + pda = asmap->physInfo; + pdaP = asmap->parityInfo; + for (i = 0; i < nWmirNodes; i++) { + rf_InitNode(&wmirNode[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wsd", allocList); + RF_ASSERT(pda != NULL); + wmirNode[i].params[0].p = pdaP; + wmirNode[i].params[1].p = pda->bufPtr; + wmirNode[i].params[2].v = parityStripeID; + wmirNode[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); + pda = pda->next; + pdaP = pdaP->next; + } + RF_ASSERT(pda == NULL); + RF_ASSERT(pdaP == NULL); + } + /* link the header node to the block node */ + RF_ASSERT(dag_h->numSuccedents == 1); + RF_ASSERT(blockNode->numAntecedents == 0); + dag_h->succedents[0] = blockNode; + + /* link the block node to the write nodes */ + RF_ASSERT(blockNode->numSuccedents == (nWndNodes + nWmirNodes)); + for (i = 0; i < nWndNodes; i++) { + RF_ASSERT(wndNode[i].numAntecedents == 1); + blockNode->succedents[i] = &wndNode[i]; + wndNode[i].antecedents[0] = blockNode; + wndNode[i].antType[0] = rf_control; + } + for (i = 0; i < nWmirNodes; i++) { + RF_ASSERT(wmirNode[i].numAntecedents == 1); + blockNode->succedents[i + nWndNodes] = &wmirNode[i]; + wmirNode[i].antecedents[0] = blockNode; + wmirNode[i].antType[0] = rf_control; + } + + /* link the write nodes to the unblock node */ + RF_ASSERT(unblockNode->numAntecedents == (nWndNodes + nWmirNodes)); + for (i = 0; i < nWndNodes; i++) { + RF_ASSERT(wndNode[i].numSuccedents == 1); + wndNode[i].succedents[0] = unblockNode; + unblockNode->antecedents[i] = &wndNode[i]; + unblockNode->antType[i] = rf_control; + } + for (i = 0; i < nWmirNodes; i++) { + RF_ASSERT(wmirNode[i].numSuccedents == 1); + wmirNode[i].succedents[0] = unblockNode; + unblockNode->antecedents[i + nWndNodes] = &wmirNode[i]; + unblockNode->antType[i + nWndNodes] = rf_control; + } + + /* link the unblock node to the term node */ + RF_ASSERT(unblockNode->numSuccedents == 1); + RF_ASSERT(termNode->numAntecedents == 1); + RF_ASSERT(termNode->numSuccedents == 0); + unblockNode->succedents[0] = termNode; + termNode->antecedents[0] = unblockNode; + termNode->antType[0] = rf_control; + + return; +} diff --git a/sys/dev/raidframe/rf_dagffwr.h b/sys/dev/raidframe/rf_dagffwr.h new file mode 100644 index 0000000..f65875e --- /dev/null +++ b/sys/dev/raidframe/rf_dagffwr.h @@ -0,0 +1,77 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_dagffwr.h,v 1.3 1999/02/05 00:06:08 oster Exp $ */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Mark Holland, Daniel Stodolsky, William V. Courtright II + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +#ifndef _RF__RF_DAGFFWR_H_ +#define _RF__RF_DAGFFWR_H_ + +#include <dev/raidframe/rf_types.h> + +/* fault-free write DAG creation routines */ +void +rf_CreateNonRedundantWriteDAG(RF_Raid_t * raidPtr, + RF_AccessStripeMap_t * asmap, RF_DagHeader_t * dag_h, void *bp, + RF_RaidAccessFlags_t flags, RF_AllocListElem_t * allocList, + RF_IoType_t type); +void +rf_CreateRAID0WriteDAG(RF_Raid_t * raidPtr, RF_AccessStripeMap_t * asmap, + RF_DagHeader_t * dag_h, void *bp, RF_RaidAccessFlags_t flags, + RF_AllocListElem_t * allocList, RF_IoType_t type); +void +rf_CreateSmallWriteDAG(RF_Raid_t * raidPtr, RF_AccessStripeMap_t * asmap, + RF_DagHeader_t * dag_h, void *bp, RF_RaidAccessFlags_t flags, + RF_AllocListElem_t * allocList); +void +rf_CreateLargeWriteDAG(RF_Raid_t * raidPtr, RF_AccessStripeMap_t * asmap, + RF_DagHeader_t * dag_h, void *bp, RF_RaidAccessFlags_t flags, + RF_AllocListElem_t * allocList); +void +rf_CommonCreateLargeWriteDAG(RF_Raid_t * raidPtr, + RF_AccessStripeMap_t * asmap, RF_DagHeader_t * dag_h, void *bp, + RF_RaidAccessFlags_t flags, RF_AllocListElem_t * allocList, int nfaults, + int (*redFunc) (RF_DagNode_t *), int allowBufferRecycle); + void rf_CommonCreateLargeWriteDAGFwd(RF_Raid_t * raidPtr, + RF_AccessStripeMap_t * asmap, RF_DagHeader_t * dag_h, void *bp, + RF_RaidAccessFlags_t flags, RF_AllocListElem_t * allocList, int nfaults, + int (*redFunc) (RF_DagNode_t *), int allowBufferRecycle); + void rf_CommonCreateSmallWriteDAG(RF_Raid_t * raidPtr, + RF_AccessStripeMap_t * asmap, RF_DagHeader_t * dag_h, void *bp, + RF_RaidAccessFlags_t flags, RF_AllocListElem_t * allocList, + RF_RedFuncs_t * pfuncs, RF_RedFuncs_t * qfuncs); + void rf_CommonCreateSmallWriteDAGFwd(RF_Raid_t * raidPtr, + RF_AccessStripeMap_t * asmap, RF_DagHeader_t * dag_h, void *bp, + RF_RaidAccessFlags_t flags, RF_AllocListElem_t * allocList, + RF_RedFuncs_t * pfuncs, RF_RedFuncs_t * qfuncs); + void rf_CreateRaidOneWriteDAG(RF_Raid_t * raidPtr, RF_AccessStripeMap_t * asmap, + RF_DagHeader_t * dag_h, void *bp, RF_RaidAccessFlags_t flags, + RF_AllocListElem_t * allocList); + void rf_CreateRaidOneWriteDAGFwd(RF_Raid_t * raidPtr, + RF_AccessStripeMap_t * asmap, RF_DagHeader_t * dag_h, void *bp, + RF_RaidAccessFlags_t flags, RF_AllocListElem_t * allocList); + +#endif /* !_RF__RF_DAGFFWR_H_ */ diff --git a/sys/dev/raidframe/rf_dagflags.h b/sys/dev/raidframe/rf_dagflags.h new file mode 100644 index 0000000..b0777bd --- /dev/null +++ b/sys/dev/raidframe/rf_dagflags.h @@ -0,0 +1,68 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_dagflags.h,v 1.3 1999/02/05 00:06:08 oster Exp $ */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Mark Holland + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +/************************************************************************************** + * + * dagflags.h -- flags that can be given to DoAccess + * I pulled these out of dag.h because routines that call DoAccess may need these flags, + * but certainly do not need the declarations related to the DAG data structures. + * + **************************************************************************************/ + + +#ifndef _RF__RF_DAGFLAGS_H_ +#define _RF__RF_DAGFLAGS_H_ + +/* + * Bitmasks for the "flags" parameter (RF_RaidAccessFlags_t) used + * by DoAccess, SelectAlgorithm, and the DAG creation routines. + * + * If USE_DAG or USE_ASM is specified, neither the DAG nor the ASM + * will be modified, which means that you can't SUPRESS if you + * specify USE_DAG. + */ + +#define RF_DAG_FLAGS_NONE 0 /* no flags */ +#define RF_DAG_SUPPRESS_LOCKS (1<<0) /* supress all stripe locks in + * the DAG */ +#define RF_DAG_RETURN_ASM (1<<1) /* create an ASM and return it + * instead of freeing it */ +#define RF_DAG_RETURN_DAG (1<<2) /* create a DAG and return it + * instead of freeing it */ +#define RF_DAG_NONBLOCKING_IO (1<<3) /* cause DoAccess to be + * non-blocking */ +#define RF_DAG_ACCESS_COMPLETE (1<<4) /* the access is complete */ +#define RF_DAG_DISPATCH_RETURNED (1<<5) /* used to handle the case + * where the dag invokes no + * I/O */ +#define RF_DAG_TEST_ACCESS (1<<6) /* this access came through + * rf_ioctl instead of + * rf_strategy */ + +#endif /* !_RF__RF_DAGFLAGS_H_ */ diff --git a/sys/dev/raidframe/rf_dagfuncs.c b/sys/dev/raidframe/rf_dagfuncs.c new file mode 100644 index 0000000..09ee274 --- /dev/null +++ b/sys/dev/raidframe/rf_dagfuncs.c @@ -0,0 +1,904 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_dagfuncs.c,v 1.7 2001/02/03 12:51:10 mrg Exp $ */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Mark Holland, William V. Courtright II + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +/* + * dagfuncs.c -- DAG node execution routines + * + * Rules: + * 1. Every DAG execution function must eventually cause node->status to + * get set to "good" or "bad", and "FinishNode" to be called. In the + * case of nodes that complete immediately (xor, NullNodeFunc, etc), + * the node execution function can do these two things directly. In + * the case of nodes that have to wait for some event (a disk read to + * complete, a lock to be released, etc) to occur before they can + * complete, this is typically achieved by having whatever module + * is doing the operation call GenericWakeupFunc upon completion. + * 2. DAG execution functions should check the status in the DAG header + * and NOP out their operations if the status is not "enable". However, + * execution functions that release resources must be sure to release + * them even when they NOP out the function that would use them. + * Functions that acquire resources should go ahead and acquire them + * even when they NOP, so that a downstream release node will not have + * to check to find out whether or not the acquire was suppressed. + */ + +#include <sys/param.h> +#if defined(__NetBSD__) +#include <sys/ioctl.h> +#elif defined(__FreeBSD__) +#include <sys/ioccom.h> +#include <sys/filio.h> +#endif + +#include <dev/raidframe/rf_archs.h> +#include <dev/raidframe/rf_raid.h> +#include <dev/raidframe/rf_dag.h> +#include <dev/raidframe/rf_layout.h> +#include <dev/raidframe/rf_etimer.h> +#include <dev/raidframe/rf_acctrace.h> +#include <dev/raidframe/rf_diskqueue.h> +#include <dev/raidframe/rf_dagfuncs.h> +#include <dev/raidframe/rf_general.h> +#include <dev/raidframe/rf_engine.h> +#include <dev/raidframe/rf_dagutils.h> + +#include <dev/raidframe/rf_kintf.h> + +#if RF_INCLUDE_PARITYLOGGING > 0 +#include <dev/raidframe/rf_paritylog.h> +#endif /* RF_INCLUDE_PARITYLOGGING > 0 */ + +int (*rf_DiskReadFunc) (RF_DagNode_t *); +int (*rf_DiskWriteFunc) (RF_DagNode_t *); +int (*rf_DiskReadUndoFunc) (RF_DagNode_t *); +int (*rf_DiskWriteUndoFunc) (RF_DagNode_t *); +int (*rf_DiskUnlockFunc) (RF_DagNode_t *); +int (*rf_DiskUnlockUndoFunc) (RF_DagNode_t *); +int (*rf_RegularXorUndoFunc) (RF_DagNode_t *); +int (*rf_SimpleXorUndoFunc) (RF_DagNode_t *); +int (*rf_RecoveryXorUndoFunc) (RF_DagNode_t *); + +/***************************************************************************************** + * main (only) configuration routine for this module + ****************************************************************************************/ +int +rf_ConfigureDAGFuncs(listp) + RF_ShutdownList_t **listp; +{ + RF_ASSERT(((sizeof(long) == 8) && RF_LONGSHIFT == 3) || ((sizeof(long) == 4) && RF_LONGSHIFT == 2)); + rf_DiskReadFunc = rf_DiskReadFuncForThreads; + rf_DiskReadUndoFunc = rf_DiskUndoFunc; + rf_DiskWriteFunc = rf_DiskWriteFuncForThreads; + rf_DiskWriteUndoFunc = rf_DiskUndoFunc; + rf_DiskUnlockFunc = rf_DiskUnlockFuncForThreads; + rf_DiskUnlockUndoFunc = rf_NullNodeUndoFunc; + rf_RegularXorUndoFunc = rf_NullNodeUndoFunc; + rf_SimpleXorUndoFunc = rf_NullNodeUndoFunc; + rf_RecoveryXorUndoFunc = rf_NullNodeUndoFunc; + return (0); +} + + + +/***************************************************************************************** + * the execution function associated with a terminate node + ****************************************************************************************/ +int +rf_TerminateFunc(node) + RF_DagNode_t *node; +{ + RF_ASSERT(node->dagHdr->numCommits == node->dagHdr->numCommitNodes); + node->status = rf_good; + return (rf_FinishNode(node, RF_THREAD_CONTEXT)); +} + +int +rf_TerminateUndoFunc(node) + RF_DagNode_t *node; +{ + return (0); +} + + +/***************************************************************************************** + * execution functions associated with a mirror node + * + * parameters: + * + * 0 - physical disk addres of data + * 1 - buffer for holding read data + * 2 - parity stripe ID + * 3 - flags + * 4 - physical disk address of mirror (parity) + * + ****************************************************************************************/ + +int +rf_DiskReadMirrorIdleFunc(node) + RF_DagNode_t *node; +{ + /* select the mirror copy with the shortest queue and fill in node + * parameters with physical disk address */ + + rf_SelectMirrorDiskIdle(node); + return (rf_DiskReadFunc(node)); +} + +int +rf_DiskReadMirrorPartitionFunc(node) + RF_DagNode_t *node; +{ + /* select the mirror copy with the shortest queue and fill in node + * parameters with physical disk address */ + + rf_SelectMirrorDiskPartition(node); + return (rf_DiskReadFunc(node)); +} + +int +rf_DiskReadMirrorUndoFunc(node) + RF_DagNode_t *node; +{ + return (0); +} + + + +#if RF_INCLUDE_PARITYLOGGING > 0 +/***************************************************************************************** + * the execution function associated with a parity log update node + ****************************************************************************************/ +int +rf_ParityLogUpdateFunc(node) + RF_DagNode_t *node; +{ + RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p; + caddr_t buf = (caddr_t) node->params[1].p; + RF_ParityLogData_t *logData; + RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec; + RF_Etimer_t timer; + + if (node->dagHdr->status == rf_enable) { + RF_ETIMER_START(timer); + logData = rf_CreateParityLogData(RF_UPDATE, pda, buf, + (RF_Raid_t *) (node->dagHdr->raidPtr), + node->wakeFunc, (void *) node, + node->dagHdr->tracerec, timer); + if (logData) + rf_ParityLogAppend(logData, RF_FALSE, NULL, RF_FALSE); + else { + RF_ETIMER_STOP(timer); + RF_ETIMER_EVAL(timer); + tracerec->plog_us += RF_ETIMER_VAL_US(timer); + (node->wakeFunc) (node, ENOMEM); + } + } + return (0); +} + + +/***************************************************************************************** + * the execution function associated with a parity log overwrite node + ****************************************************************************************/ +int +rf_ParityLogOverwriteFunc(node) + RF_DagNode_t *node; +{ + RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p; + caddr_t buf = (caddr_t) node->params[1].p; + RF_ParityLogData_t *logData; + RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec; + RF_Etimer_t timer; + + if (node->dagHdr->status == rf_enable) { + RF_ETIMER_START(timer); + logData = rf_CreateParityLogData(RF_OVERWRITE, pda, buf, (RF_Raid_t *) (node->dagHdr->raidPtr), + node->wakeFunc, (void *) node, node->dagHdr->tracerec, timer); + if (logData) + rf_ParityLogAppend(logData, RF_FALSE, NULL, RF_FALSE); + else { + RF_ETIMER_STOP(timer); + RF_ETIMER_EVAL(timer); + tracerec->plog_us += RF_ETIMER_VAL_US(timer); + (node->wakeFunc) (node, ENOMEM); + } + } + return (0); +} +#else /* RF_INCLUDE_PARITYLOGGING > 0 */ + +int +rf_ParityLogUpdateFunc(node) + RF_DagNode_t *node; +{ + return (0); +} +int +rf_ParityLogOverwriteFunc(node) + RF_DagNode_t *node; +{ + return (0); +} +#endif /* RF_INCLUDE_PARITYLOGGING > 0 */ + +int +rf_ParityLogUpdateUndoFunc(node) + RF_DagNode_t *node; +{ + return (0); +} + +int +rf_ParityLogOverwriteUndoFunc(node) + RF_DagNode_t *node; +{ + return (0); +} +/***************************************************************************************** + * the execution function associated with a NOP node + ****************************************************************************************/ +int +rf_NullNodeFunc(node) + RF_DagNode_t *node; +{ + node->status = rf_good; + return (rf_FinishNode(node, RF_THREAD_CONTEXT)); +} + +int +rf_NullNodeUndoFunc(node) + RF_DagNode_t *node; +{ + node->status = rf_undone; + return (rf_FinishNode(node, RF_THREAD_CONTEXT)); +} + + +/***************************************************************************************** + * the execution function associated with a disk-read node + ****************************************************************************************/ +int +rf_DiskReadFuncForThreads(node) + RF_DagNode_t *node; +{ + RF_DiskQueueData_t *req; + RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p; + caddr_t buf = (caddr_t) node->params[1].p; + RF_StripeNum_t parityStripeID = (RF_StripeNum_t) node->params[2].v; + unsigned priority = RF_EXTRACT_PRIORITY(node->params[3].v); + unsigned lock = RF_EXTRACT_LOCK_FLAG(node->params[3].v); + unsigned unlock = RF_EXTRACT_UNLOCK_FLAG(node->params[3].v); + unsigned which_ru = RF_EXTRACT_RU(node->params[3].v); + RF_DiskQueueDataFlags_t flags = 0; + RF_IoType_t iotype = (node->dagHdr->status == rf_enable) ? RF_IO_TYPE_READ : RF_IO_TYPE_NOP; + RF_DiskQueue_t **dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues; + void *b_proc = NULL; + +#if defined(__NetBSD__) + if (node->dagHdr->bp) + b_proc = (void *) ((RF_Buf_t) node->dagHdr->bp)->b_proc; +#endif + + RF_ASSERT(!(lock && unlock)); + flags |= (lock) ? RF_LOCK_DISK_QUEUE : 0; + flags |= (unlock) ? RF_UNLOCK_DISK_QUEUE : 0; + + req = rf_CreateDiskQueueData(iotype, pda->startSector, pda->numSector, + buf, parityStripeID, which_ru, + (int (*) (void *, int)) node->wakeFunc, + node, NULL, node->dagHdr->tracerec, + (void *) (node->dagHdr->raidPtr), flags, b_proc); + if (!req) { + (node->wakeFunc) (node, ENOMEM); + } else { + node->dagFuncData = (void *) req; + rf_DiskIOEnqueue(&(dqs[pda->row][pda->col]), req, priority); + } + return (0); +} + + +/***************************************************************************************** + * the execution function associated with a disk-write node + ****************************************************************************************/ +int +rf_DiskWriteFuncForThreads(node) + RF_DagNode_t *node; +{ + RF_DiskQueueData_t *req; + RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p; + caddr_t buf = (caddr_t) node->params[1].p; + RF_StripeNum_t parityStripeID = (RF_StripeNum_t) node->params[2].v; + unsigned priority = RF_EXTRACT_PRIORITY(node->params[3].v); + unsigned lock = RF_EXTRACT_LOCK_FLAG(node->params[3].v); + unsigned unlock = RF_EXTRACT_UNLOCK_FLAG(node->params[3].v); + unsigned which_ru = RF_EXTRACT_RU(node->params[3].v); + RF_DiskQueueDataFlags_t flags = 0; + RF_IoType_t iotype = (node->dagHdr->status == rf_enable) ? RF_IO_TYPE_WRITE : RF_IO_TYPE_NOP; + RF_DiskQueue_t **dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues; + void *b_proc = NULL; + +#if defined(__NetBSD__) + if (node->dagHdr->bp) + b_proc = (void *) ((RF_Buf_t) node->dagHdr->bp)->b_proc; +#endif + + /* normal processing (rollaway or forward recovery) begins here */ + RF_ASSERT(!(lock && unlock)); + flags |= (lock) ? RF_LOCK_DISK_QUEUE : 0; + flags |= (unlock) ? RF_UNLOCK_DISK_QUEUE : 0; + req = rf_CreateDiskQueueData(iotype, pda->startSector, pda->numSector, + buf, parityStripeID, which_ru, + (int (*) (void *, int)) node->wakeFunc, + (void *) node, NULL, + node->dagHdr->tracerec, + (void *) (node->dagHdr->raidPtr), + flags, b_proc); + + if (!req) { + (node->wakeFunc) (node, ENOMEM); + } else { + node->dagFuncData = (void *) req; + rf_DiskIOEnqueue(&(dqs[pda->row][pda->col]), req, priority); + } + + return (0); +} +/***************************************************************************************** + * the undo function for disk nodes + * Note: this is not a proper undo of a write node, only locks are released. + * old data is not restored to disk! + ****************************************************************************************/ +int +rf_DiskUndoFunc(node) + RF_DagNode_t *node; +{ + RF_DiskQueueData_t *req; + RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p; + RF_DiskQueue_t **dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues; + + req = rf_CreateDiskQueueData(RF_IO_TYPE_NOP, + 0L, 0, NULL, 0L, 0, + (int (*) (void *, int)) node->wakeFunc, + (void *) node, + NULL, node->dagHdr->tracerec, + (void *) (node->dagHdr->raidPtr), + RF_UNLOCK_DISK_QUEUE, NULL); + if (!req) + (node->wakeFunc) (node, ENOMEM); + else { + node->dagFuncData = (void *) req; + rf_DiskIOEnqueue(&(dqs[pda->row][pda->col]), req, RF_IO_NORMAL_PRIORITY); + } + + return (0); +} +/***************************************************************************************** + * the execution function associated with an "unlock disk queue" node + ****************************************************************************************/ +int +rf_DiskUnlockFuncForThreads(node) + RF_DagNode_t *node; +{ + RF_DiskQueueData_t *req; + RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p; + RF_DiskQueue_t **dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues; + + req = rf_CreateDiskQueueData(RF_IO_TYPE_NOP, + 0L, 0, NULL, 0L, 0, + (int (*) (void *, int)) node->wakeFunc, + (void *) node, + NULL, node->dagHdr->tracerec, + (void *) (node->dagHdr->raidPtr), + RF_UNLOCK_DISK_QUEUE, NULL); + if (!req) + (node->wakeFunc) (node, ENOMEM); + else { + node->dagFuncData = (void *) req; + rf_DiskIOEnqueue(&(dqs[pda->row][pda->col]), req, RF_IO_NORMAL_PRIORITY); + } + + return (0); +} +/***************************************************************************************** + * Callback routine for DiskRead and DiskWrite nodes. When the disk op completes, + * the routine is called to set the node status and inform the execution engine that + * the node has fired. + ****************************************************************************************/ +int +rf_GenericWakeupFunc(node, status) + RF_DagNode_t *node; + int status; +{ + switch (node->status) { + case rf_bwd1: + node->status = rf_bwd2; + if (node->dagFuncData) + rf_FreeDiskQueueData((RF_DiskQueueData_t *) node->dagFuncData); + return (rf_DiskWriteFuncForThreads(node)); + break; + case rf_fired: + if (status) + node->status = rf_bad; + else + node->status = rf_good; + break; + case rf_recover: + /* probably should never reach this case */ + if (status) + node->status = rf_panic; + else + node->status = rf_undone; + break; + default: + printf("rf_GenericWakeupFunc:"); + printf("node->status is %d,", node->status); + printf("status is %d \n", status); + RF_PANIC(); + break; + } + if (node->dagFuncData) + rf_FreeDiskQueueData((RF_DiskQueueData_t *) node->dagFuncData); + return (rf_FinishNode(node, RF_INTR_CONTEXT)); +} + + +/***************************************************************************************** + * there are three distinct types of xor nodes + * A "regular xor" is used in the fault-free case where the access spans a complete + * stripe unit. It assumes that the result buffer is one full stripe unit in size, + * and uses the stripe-unit-offset values that it computes from the PDAs to determine + * where within the stripe unit to XOR each argument buffer. + * + * A "simple xor" is used in the fault-free case where the access touches only a portion + * of one (or two, in some cases) stripe unit(s). It assumes that all the argument + * buffers are of the same size and have the same stripe unit offset. + * + * A "recovery xor" is used in the degraded-mode case. It's similar to the regular + * xor function except that it takes the failed PDA as an additional parameter, and + * uses it to determine what portions of the argument buffers need to be xor'd into + * the result buffer, and where in the result buffer they should go. + ****************************************************************************************/ + +/* xor the params together and store the result in the result field. + * assume the result field points to a buffer that is the size of one SU, + * and use the pda params to determine where within the buffer to XOR + * the input buffers. + */ +int +rf_RegularXorFunc(node) + RF_DagNode_t *node; +{ + RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p; + RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec; + RF_Etimer_t timer; + int i, retcode; + + retcode = 0; + if (node->dagHdr->status == rf_enable) { + /* don't do the XOR if the input is the same as the output */ + RF_ETIMER_START(timer); + for (i = 0; i < node->numParams - 1; i += 2) + if (node->params[i + 1].p != node->results[0]) { + retcode = rf_XorIntoBuffer(raidPtr, (RF_PhysDiskAddr_t *) node->params[i].p, + (char *) node->params[i + 1].p, (char *) node->results[0], node->dagHdr->bp); + } + RF_ETIMER_STOP(timer); + RF_ETIMER_EVAL(timer); + tracerec->xor_us += RF_ETIMER_VAL_US(timer); + } + return (rf_GenericWakeupFunc(node, retcode)); /* call wake func + * explicitly since no + * I/O in this node */ +} +/* xor the inputs into the result buffer, ignoring placement issues */ +int +rf_SimpleXorFunc(node) + RF_DagNode_t *node; +{ + RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p; + int i, retcode = 0; + RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec; + RF_Etimer_t timer; + + if (node->dagHdr->status == rf_enable) { + RF_ETIMER_START(timer); + /* don't do the XOR if the input is the same as the output */ + for (i = 0; i < node->numParams - 1; i += 2) + if (node->params[i + 1].p != node->results[0]) { + retcode = rf_bxor((char *)node->params[i + 1].p, + (char *)node->results[0], + rf_RaidAddressToByte(raidPtr, + ((RF_PhysDiskAddr_t *)node->params[i].p)-> + numSector), (RF_Buf_t)node->dagHdr->bp); + } + RF_ETIMER_STOP(timer); + RF_ETIMER_EVAL(timer); + tracerec->xor_us += RF_ETIMER_VAL_US(timer); + } + return (rf_GenericWakeupFunc(node, retcode)); /* call wake func + * explicitly since no + * I/O in this node */ +} +/* this xor is used by the degraded-mode dag functions to recover lost data. + * the second-to-last parameter is the PDA for the failed portion of the access. + * the code here looks at this PDA and assumes that the xor target buffer is + * equal in size to the number of sectors in the failed PDA. It then uses + * the other PDAs in the parameter list to determine where within the target + * buffer the corresponding data should be xored. + */ +int +rf_RecoveryXorFunc(node) + RF_DagNode_t *node; +{ + RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p; + RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & raidPtr->Layout; + RF_PhysDiskAddr_t *failedPDA = (RF_PhysDiskAddr_t *) node->params[node->numParams - 2].p; + int i, retcode = 0; + RF_PhysDiskAddr_t *pda; + int suoffset, failedSUOffset = rf_StripeUnitOffset(layoutPtr, failedPDA->startSector); + char *srcbuf, *destbuf; + RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec; + RF_Etimer_t timer; + + if (node->dagHdr->status == rf_enable) { + RF_ETIMER_START(timer); + for (i = 0; i < node->numParams - 2; i += 2) + if (node->params[i + 1].p != node->results[0]) { + pda = (RF_PhysDiskAddr_t *) node->params[i].p; + srcbuf = (char *) node->params[i + 1].p; + suoffset = rf_StripeUnitOffset(layoutPtr, pda->startSector); + destbuf = ((char *) node->results[0]) + rf_RaidAddressToByte(raidPtr, suoffset - failedSUOffset); + retcode = rf_bxor(srcbuf, destbuf, rf_RaidAddressToByte(raidPtr, pda->numSector), node->dagHdr->bp); + } + RF_ETIMER_STOP(timer); + RF_ETIMER_EVAL(timer); + tracerec->xor_us += RF_ETIMER_VAL_US(timer); + } + return (rf_GenericWakeupFunc(node, retcode)); +} +/***************************************************************************************** + * The next three functions are utilities used by the above xor-execution functions. + ****************************************************************************************/ + + +/* + * this is just a glorified buffer xor. targbuf points to a buffer that is one full stripe unit + * in size. srcbuf points to a buffer that may be less than 1 SU, but never more. When the + * access described by pda is one SU in size (which by implication means it's SU-aligned), + * all that happens is (targbuf) <- (srcbuf ^ targbuf). When the access is less than one + * SU in size the XOR occurs on only the portion of targbuf identified in the pda. + */ + +int +rf_XorIntoBuffer(raidPtr, pda, srcbuf, targbuf, bp) + RF_Raid_t *raidPtr; + RF_PhysDiskAddr_t *pda; + char *srcbuf; + char *targbuf; + void *bp; +{ + char *targptr; + int sectPerSU = raidPtr->Layout.sectorsPerStripeUnit; + int SUOffset = pda->startSector % sectPerSU; + int length, retcode = 0; + + RF_ASSERT(pda->numSector <= sectPerSU); + + targptr = targbuf + rf_RaidAddressToByte(raidPtr, SUOffset); + length = rf_RaidAddressToByte(raidPtr, pda->numSector); + retcode = rf_bxor(srcbuf, targptr, length, bp); + return (retcode); +} +/* it really should be the case that the buffer pointers (returned by malloc) + * are aligned to the natural word size of the machine, so this is the only + * case we optimize for. The length should always be a multiple of the sector + * size, so there should be no problem with leftover bytes at the end. + */ +int +rf_bxor(src, dest, len, bp) + char *src; + char *dest; + int len; + void *bp; +{ + unsigned mask = sizeof(long) - 1, retcode = 0; + + if (!(((unsigned long) src) & mask) && !(((unsigned long) dest) & mask) && !(len & mask)) { + retcode = rf_longword_bxor((unsigned long *) src, (unsigned long *) dest, len >> RF_LONGSHIFT, bp); + } else { + RF_ASSERT(0); + } + return (retcode); +} +/* map a user buffer into kernel space, if necessary */ +#define REMAP_VA(_bp,x,y) (y) = (x) + +/* When XORing in kernel mode, we need to map each user page to kernel space before we can access it. + * We don't want to assume anything about which input buffers are in kernel/user + * space, nor about their alignment, so in each loop we compute the maximum number + * of bytes that we can xor without crossing any page boundaries, and do only this many + * bytes before the next remap. + */ +int +rf_longword_bxor(src, dest, len, bp) + unsigned long *src; + unsigned long *dest; + int len; /* longwords */ + void *bp; +{ + unsigned long *end = src + len; + unsigned long d0, d1, d2, d3, s0, s1, s2, s3; /* temps */ + unsigned long *pg_src, *pg_dest; /* per-page source/dest + * pointers */ + int longs_this_time;/* # longwords to xor in the current iteration */ + + REMAP_VA(bp, src, pg_src); + REMAP_VA(bp, dest, pg_dest); + if (!pg_src || !pg_dest) + return (EFAULT); + + while (len >= 4) { + longs_this_time = RF_MIN(len, RF_MIN(RF_BLIP(pg_src), RF_BLIP(pg_dest)) >> RF_LONGSHIFT); /* note len in longwords */ + src += longs_this_time; + dest += longs_this_time; + len -= longs_this_time; + while (longs_this_time >= 4) { + d0 = pg_dest[0]; + d1 = pg_dest[1]; + d2 = pg_dest[2]; + d3 = pg_dest[3]; + s0 = pg_src[0]; + s1 = pg_src[1]; + s2 = pg_src[2]; + s3 = pg_src[3]; + pg_dest[0] = d0 ^ s0; + pg_dest[1] = d1 ^ s1; + pg_dest[2] = d2 ^ s2; + pg_dest[3] = d3 ^ s3; + pg_src += 4; + pg_dest += 4; + longs_this_time -= 4; + } + while (longs_this_time > 0) { /* cannot cross any page + * boundaries here */ + *pg_dest++ ^= *pg_src++; + longs_this_time--; + } + + /* either we're done, or we've reached a page boundary on one + * (or possibly both) of the pointers */ + if (len) { + if (RF_PAGE_ALIGNED(src)) + REMAP_VA(bp, src, pg_src); + if (RF_PAGE_ALIGNED(dest)) + REMAP_VA(bp, dest, pg_dest); + if (!pg_src || !pg_dest) + return (EFAULT); + } + } + while (src < end) { + *pg_dest++ ^= *pg_src++; + src++; + dest++; + len--; + if (RF_PAGE_ALIGNED(src)) + REMAP_VA(bp, src, pg_src); + if (RF_PAGE_ALIGNED(dest)) + REMAP_VA(bp, dest, pg_dest); + } + RF_ASSERT(len == 0); + return (0); +} + + +/* + dst = a ^ b ^ c; + a may equal dst + see comment above longword_bxor +*/ +int +rf_longword_bxor3(dst, a, b, c, len, bp) + unsigned long *dst; + unsigned long *a; + unsigned long *b; + unsigned long *c; + int len; /* length in longwords */ + void *bp; +{ + unsigned long a0, a1, a2, a3, b0, b1, b2, b3; + unsigned long *pg_a, *pg_b, *pg_c, *pg_dst; /* per-page source/dest + * pointers */ + int longs_this_time;/* # longs to xor in the current iteration */ + char dst_is_a = 0; + + REMAP_VA(bp, a, pg_a); + REMAP_VA(bp, b, pg_b); + REMAP_VA(bp, c, pg_c); + if (a == dst) { + pg_dst = pg_a; + dst_is_a = 1; + } else { + REMAP_VA(bp, dst, pg_dst); + } + + /* align dest to cache line. Can't cross a pg boundary on dst here. */ + while ((((unsigned long) pg_dst) & 0x1f)) { + *pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++; + dst++; + a++; + b++; + c++; + if (RF_PAGE_ALIGNED(a)) { + REMAP_VA(bp, a, pg_a); + if (!pg_a) + return (EFAULT); + } + if (RF_PAGE_ALIGNED(b)) { + REMAP_VA(bp, a, pg_b); + if (!pg_b) + return (EFAULT); + } + if (RF_PAGE_ALIGNED(c)) { + REMAP_VA(bp, a, pg_c); + if (!pg_c) + return (EFAULT); + } + len--; + } + + while (len > 4) { + longs_this_time = RF_MIN(len, RF_MIN(RF_BLIP(a), RF_MIN(RF_BLIP(b), RF_MIN(RF_BLIP(c), RF_BLIP(dst)))) >> RF_LONGSHIFT); + a += longs_this_time; + b += longs_this_time; + c += longs_this_time; + dst += longs_this_time; + len -= longs_this_time; + while (longs_this_time >= 4) { + a0 = pg_a[0]; + longs_this_time -= 4; + + a1 = pg_a[1]; + a2 = pg_a[2]; + + a3 = pg_a[3]; + pg_a += 4; + + b0 = pg_b[0]; + b1 = pg_b[1]; + + b2 = pg_b[2]; + b3 = pg_b[3]; + /* start dual issue */ + a0 ^= b0; + b0 = pg_c[0]; + + pg_b += 4; + a1 ^= b1; + + a2 ^= b2; + a3 ^= b3; + + b1 = pg_c[1]; + a0 ^= b0; + + b2 = pg_c[2]; + a1 ^= b1; + + b3 = pg_c[3]; + a2 ^= b2; + + pg_dst[0] = a0; + a3 ^= b3; + pg_dst[1] = a1; + pg_c += 4; + pg_dst[2] = a2; + pg_dst[3] = a3; + pg_dst += 4; + } + while (longs_this_time > 0) { /* cannot cross any page + * boundaries here */ + *pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++; + longs_this_time--; + } + + if (len) { + if (RF_PAGE_ALIGNED(a)) { + REMAP_VA(bp, a, pg_a); + if (!pg_a) + return (EFAULT); + if (dst_is_a) + pg_dst = pg_a; + } + if (RF_PAGE_ALIGNED(b)) { + REMAP_VA(bp, b, pg_b); + if (!pg_b) + return (EFAULT); + } + if (RF_PAGE_ALIGNED(c)) { + REMAP_VA(bp, c, pg_c); + if (!pg_c) + return (EFAULT); + } + if (!dst_is_a) + if (RF_PAGE_ALIGNED(dst)) { + REMAP_VA(bp, dst, pg_dst); + if (!pg_dst) + return (EFAULT); + } + } + } + while (len) { + *pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++; + dst++; + a++; + b++; + c++; + if (RF_PAGE_ALIGNED(a)) { + REMAP_VA(bp, a, pg_a); + if (!pg_a) + return (EFAULT); + if (dst_is_a) + pg_dst = pg_a; + } + if (RF_PAGE_ALIGNED(b)) { + REMAP_VA(bp, b, pg_b); + if (!pg_b) + return (EFAULT); + } + if (RF_PAGE_ALIGNED(c)) { + REMAP_VA(bp, c, pg_c); + if (!pg_c) + return (EFAULT); + } + if (!dst_is_a) + if (RF_PAGE_ALIGNED(dst)) { + REMAP_VA(bp, dst, pg_dst); + if (!pg_dst) + return (EFAULT); + } + len--; + } + return (0); +} + +int +rf_bxor3(dst, a, b, c, len, bp) + unsigned char *dst; + unsigned char *a; + unsigned char *b; + unsigned char *c; + unsigned long len; + void *bp; +{ + RF_ASSERT(((RF_UL(dst) | RF_UL(a) | RF_UL(b) | RF_UL(c) | len) & 0x7) == 0); + + return (rf_longword_bxor3((unsigned long *) dst, (unsigned long *) a, + (unsigned long *) b, (unsigned long *) c, len >> RF_LONGSHIFT, bp)); +} diff --git a/sys/dev/raidframe/rf_dagfuncs.h b/sys/dev/raidframe/rf_dagfuncs.h new file mode 100644 index 0000000..da7e8b2 --- /dev/null +++ b/sys/dev/raidframe/rf_dagfuncs.h @@ -0,0 +1,90 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_dagfuncs.h,v 1.4 2000/03/30 13:39:07 oster Exp $ */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Mark Holland, William V. Courtright II, Jim Zelenka + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +/***************************************************************************************** + * + * dagfuncs.h -- header file for DAG node execution routines + * + ****************************************************************************************/ + +#ifndef _RF__RF_DAGFUNCS_H_ +#define _RF__RF_DAGFUNCS_H_ + +int rf_ConfigureDAGFuncs(RF_ShutdownList_t ** listp); +int rf_TerminateFunc(RF_DagNode_t * node); +int rf_TerminateUndoFunc(RF_DagNode_t * node); +int rf_DiskReadMirrorIdleFunc(RF_DagNode_t * node); +int rf_DiskReadMirrorPartitionFunc(RF_DagNode_t * node); +int rf_DiskReadMirrorUndoFunc(RF_DagNode_t * node); +int rf_ParityLogUpdateFunc(RF_DagNode_t * node); +int rf_ParityLogOverwriteFunc(RF_DagNode_t * node); +int rf_ParityLogUpdateUndoFunc(RF_DagNode_t * node); +int rf_ParityLogOverwriteUndoFunc(RF_DagNode_t * node); +int rf_NullNodeFunc(RF_DagNode_t * node); +int rf_NullNodeUndoFunc(RF_DagNode_t * node); +int rf_DiskReadFuncForThreads(RF_DagNode_t * node); +int rf_DiskWriteFuncForThreads(RF_DagNode_t * node); +int rf_DiskUndoFunc(RF_DagNode_t * node); +int rf_DiskUnlockFuncForThreads(RF_DagNode_t * node); +int rf_GenericWakeupFunc(RF_DagNode_t * node, int status); +int rf_RegularXorFunc(RF_DagNode_t * node); +int rf_SimpleXorFunc(RF_DagNode_t * node); +int rf_RecoveryXorFunc(RF_DagNode_t * node); +int +rf_XorIntoBuffer(RF_Raid_t * raidPtr, RF_PhysDiskAddr_t * pda, char *srcbuf, + char *targbuf, void *bp); +int rf_bxor(char *src, char *dest, int len, void *bp); +int +rf_longword_bxor(unsigned long *src, unsigned long *dest, int len, void *bp); +int +rf_longword_bxor3(unsigned long *dest, unsigned long *a, unsigned long *b, + unsigned long *c, int len, void *bp); +int +rf_bxor3(unsigned char *dst, unsigned char *a, unsigned char *b, + unsigned char *c, unsigned long len, void *bp); + +/* function ptrs defined in ConfigureDAGFuncs() */ +extern int (*rf_DiskReadFunc) (RF_DagNode_t *); +extern int (*rf_DiskWriteFunc) (RF_DagNode_t *); +extern int (*rf_DiskReadUndoFunc) (RF_DagNode_t *); +extern int (*rf_DiskWriteUndoFunc) (RF_DagNode_t *); +extern int (*rf_DiskUnlockFunc) (RF_DagNode_t *); +extern int (*rf_DiskUnlockUndoFunc) (RF_DagNode_t *); +extern int (*rf_SimpleXorUndoFunc) (RF_DagNode_t *); +extern int (*rf_RegularXorUndoFunc) (RF_DagNode_t *); +extern int (*rf_RecoveryXorUndoFunc) (RF_DagNode_t *); + +/* macros for manipulating the param[3] in a read or write node */ +#define RF_CREATE_PARAM3(pri, lk, unlk, wru) (((RF_uint64)(((wru&0xFFFFFF)<<8)|((lk)?0x10:0)|((unlk)?0x20:0)|((pri)&0xF)) )) +#define RF_EXTRACT_PRIORITY(_x_) ((((unsigned) ((unsigned long)(_x_))) >> 0) & 0x0F) +#define RF_EXTRACT_LOCK_FLAG(_x_) ((((unsigned) ((unsigned long)(_x_))) >> 4) & 0x1) +#define RF_EXTRACT_UNLOCK_FLAG(_x_) ((((unsigned) ((unsigned long)(_x_))) >> 5) & 0x1) +#define RF_EXTRACT_RU(_x_) ((((unsigned) ((unsigned long)(_x_))) >> 8) & 0xFFFFFF) + +#endif /* !_RF__RF_DAGFUNCS_H_ */ diff --git a/sys/dev/raidframe/rf_dagutils.c b/sys/dev/raidframe/rf_dagutils.c new file mode 100644 index 0000000..dd851a4 --- /dev/null +++ b/sys/dev/raidframe/rf_dagutils.c @@ -0,0 +1,1297 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_dagutils.c,v 1.6 1999/12/09 02:26:09 oster Exp $ */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Authors: Mark Holland, William V. Courtright II, Jim Zelenka + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +/****************************************************************************** + * + * rf_dagutils.c -- utility routines for manipulating dags + * + *****************************************************************************/ + +#include <dev/raidframe/rf_archs.h> +#include <dev/raidframe/rf_types.h> +#include <dev/raidframe/rf_threadstuff.h> +#include <dev/raidframe/rf_raid.h> +#include <dev/raidframe/rf_dag.h> +#include <dev/raidframe/rf_dagutils.h> +#include <dev/raidframe/rf_dagfuncs.h> +#include <dev/raidframe/rf_general.h> +#include <dev/raidframe/rf_freelist.h> +#include <dev/raidframe/rf_map.h> +#include <dev/raidframe/rf_shutdown.h> + +#define SNUM_DIFF(_a_,_b_) (((_a_)>(_b_))?((_a_)-(_b_)):((_b_)-(_a_))) + +RF_RedFuncs_t rf_xorFuncs = { + rf_RegularXorFunc, "Reg Xr", +rf_SimpleXorFunc, "Simple Xr"}; + +RF_RedFuncs_t rf_xorRecoveryFuncs = { + rf_RecoveryXorFunc, "Recovery Xr", +rf_RecoveryXorFunc, "Recovery Xr"}; + +static void rf_RecurPrintDAG(RF_DagNode_t *, int, int); +static void rf_PrintDAG(RF_DagHeader_t *); +static int +rf_ValidateBranch(RF_DagNode_t *, int *, int *, + RF_DagNode_t **, int); +static void rf_ValidateBranchVisitedBits(RF_DagNode_t *, int, int); +static void rf_ValidateVisitedBits(RF_DagHeader_t *); + +/****************************************************************************** + * + * InitNode - initialize a dag node + * + * the size of the propList array is always the same as that of the + * successors array. + * + *****************************************************************************/ +void +rf_InitNode( + RF_DagNode_t * node, + RF_NodeStatus_t initstatus, + int commit, + int (*doFunc) (RF_DagNode_t * node), + int (*undoFunc) (RF_DagNode_t * node), + int (*wakeFunc) (RF_DagNode_t * node, int status), + int nSucc, + int nAnte, + int nParam, + int nResult, + RF_DagHeader_t * hdr, + char *name, + RF_AllocListElem_t * alist) +{ + void **ptrs; + int nptrs; + + if (nAnte > RF_MAX_ANTECEDENTS) + RF_PANIC(); + node->status = initstatus; + node->commitNode = commit; + node->doFunc = doFunc; + node->undoFunc = undoFunc; + node->wakeFunc = wakeFunc; + node->numParams = nParam; + node->numResults = nResult; + node->numAntecedents = nAnte; + node->numAntDone = 0; + node->next = NULL; + node->numSuccedents = nSucc; + node->name = name; + node->dagHdr = hdr; + node->visited = 0; + + /* allocate all the pointers with one call to malloc */ + nptrs = nSucc + nAnte + nResult + nSucc; + + if (nptrs <= RF_DAG_PTRCACHESIZE) { + /* + * The dag_ptrs field of the node is basically some scribble + * space to be used here. We could get rid of it, and always + * allocate the range of pointers, but that's expensive. So, + * we pick a "common case" size for the pointer cache. Hopefully, + * we'll find that: + * (1) Generally, nptrs doesn't exceed RF_DAG_PTRCACHESIZE by + * only a little bit (least efficient case) + * (2) Generally, ntprs isn't a lot less than RF_DAG_PTRCACHESIZE + * (wasted memory) + */ + ptrs = (void **) node->dag_ptrs; + } else { + RF_CallocAndAdd(ptrs, nptrs, sizeof(void *), (void **), alist); + } + node->succedents = (nSucc) ? (RF_DagNode_t **) ptrs : NULL; + node->antecedents = (nAnte) ? (RF_DagNode_t **) (ptrs + nSucc) : NULL; + node->results = (nResult) ? (void **) (ptrs + nSucc + nAnte) : NULL; + node->propList = (nSucc) ? (RF_PropHeader_t **) (ptrs + nSucc + nAnte + nResult) : NULL; + + if (nParam) { + if (nParam <= RF_DAG_PARAMCACHESIZE) { + node->params = (RF_DagParam_t *) node->dag_params; + } else { + RF_CallocAndAdd(node->params, nParam, sizeof(RF_DagParam_t), (RF_DagParam_t *), alist); + } + } else { + node->params = NULL; + } +} + + + +/****************************************************************************** + * + * allocation and deallocation routines + * + *****************************************************************************/ + +void +rf_FreeDAG(dag_h) + RF_DagHeader_t *dag_h; +{ + RF_AccessStripeMapHeader_t *asmap, *t_asmap; + RF_DagHeader_t *nextDag; + int i; + + while (dag_h) { + nextDag = dag_h->next; + for (i = 0; dag_h->memChunk[i] && i < RF_MAXCHUNKS; i++) { + /* release mem chunks */ + rf_ReleaseMemChunk(dag_h->memChunk[i]); + dag_h->memChunk[i] = NULL; + } + + RF_ASSERT(i == dag_h->chunkIndex); + if (dag_h->xtraChunkCnt > 0) { + /* free xtraMemChunks */ + for (i = 0; dag_h->xtraMemChunk[i] && i < dag_h->xtraChunkIndex; i++) { + rf_ReleaseMemChunk(dag_h->xtraMemChunk[i]); + dag_h->xtraMemChunk[i] = NULL; + } + RF_ASSERT(i == dag_h->xtraChunkIndex); + /* free ptrs to xtraMemChunks */ + RF_Free(dag_h->xtraMemChunk, dag_h->xtraChunkCnt * sizeof(RF_ChunkDesc_t *)); + } + rf_FreeAllocList(dag_h->allocList); + for (asmap = dag_h->asmList; asmap;) { + t_asmap = asmap; + asmap = asmap->next; + rf_FreeAccessStripeMap(t_asmap); + } + rf_FreeDAGHeader(dag_h); + dag_h = nextDag; + } +} + +RF_PropHeader_t * +rf_MakePropListEntry( + RF_DagHeader_t * dag_h, + int resultNum, + int paramNum, + RF_PropHeader_t * next, + RF_AllocListElem_t * allocList) +{ + RF_PropHeader_t *p; + + RF_CallocAndAdd(p, 1, sizeof(RF_PropHeader_t), + (RF_PropHeader_t *), allocList); + p->resultNum = resultNum; + p->paramNum = paramNum; + p->next = next; + return (p); +} + +static RF_FreeList_t *rf_dagh_freelist; + +#define RF_MAX_FREE_DAGH 128 +#define RF_DAGH_INC 16 +#define RF_DAGH_INITIAL 32 + +static void rf_ShutdownDAGs(void *); +static void +rf_ShutdownDAGs(ignored) + void *ignored; +{ + RF_FREELIST_DESTROY(rf_dagh_freelist, next, (RF_DagHeader_t *)); +} + +int +rf_ConfigureDAGs(listp) + RF_ShutdownList_t **listp; +{ + int rc; + + RF_FREELIST_CREATE(rf_dagh_freelist, RF_MAX_FREE_DAGH, + RF_DAGH_INC, sizeof(RF_DagHeader_t)); + if (rf_dagh_freelist == NULL) + return (ENOMEM); + rc = rf_ShutdownCreate(listp, rf_ShutdownDAGs, NULL); + if (rc) { + RF_ERRORMSG3("Unable to add to shutdown list file %s line %d rc=%d\n", + __FILE__, __LINE__, rc); + rf_ShutdownDAGs(NULL); + return (rc); + } + RF_FREELIST_PRIME(rf_dagh_freelist, RF_DAGH_INITIAL, next, + (RF_DagHeader_t *)); + return (0); +} + +RF_DagHeader_t * +rf_AllocDAGHeader() +{ + RF_DagHeader_t *dh; + + RF_FREELIST_GET(rf_dagh_freelist, dh, next, (RF_DagHeader_t *)); + if (dh) { + bzero((char *) dh, sizeof(RF_DagHeader_t)); + } + return (dh); +} + +void +rf_FreeDAGHeader(RF_DagHeader_t * dh) +{ + RF_FREELIST_FREE(rf_dagh_freelist, dh, next); +} +/* allocates a buffer big enough to hold the data described by pda */ +void * +rf_AllocBuffer( + RF_Raid_t * raidPtr, + RF_DagHeader_t * dag_h, + RF_PhysDiskAddr_t * pda, + RF_AllocListElem_t * allocList) +{ + char *p; + + RF_MallocAndAdd(p, pda->numSector << raidPtr->logBytesPerSector, + (char *), allocList); + return ((void *) p); +} +/****************************************************************************** + * + * debug routines + * + *****************************************************************************/ + +char * +rf_NodeStatusString(RF_DagNode_t * node) +{ + switch (node->status) { + case rf_wait:return ("wait"); + case rf_fired: + return ("fired"); + case rf_good: + return ("good"); + case rf_bad: + return ("bad"); + default: + return ("?"); + } +} + +void +rf_PrintNodeInfoString(RF_DagNode_t * node) +{ + RF_PhysDiskAddr_t *pda; + int (*df) (RF_DagNode_t *) = node->doFunc; + int i, lk, unlk; + void *bufPtr; + + if ((df == rf_DiskReadFunc) || (df == rf_DiskWriteFunc) + || (df == rf_DiskReadMirrorIdleFunc) + || (df == rf_DiskReadMirrorPartitionFunc)) { + pda = (RF_PhysDiskAddr_t *) node->params[0].p; + bufPtr = (void *) node->params[1].p; + lk = RF_EXTRACT_LOCK_FLAG(node->params[3].v); + unlk = RF_EXTRACT_UNLOCK_FLAG(node->params[3].v); + RF_ASSERT(!(lk && unlk)); + printf("r %d c %d offs %ld nsect %d buf 0x%lx %s\n", pda->row, pda->col, + (long) pda->startSector, (int) pda->numSector, (long) bufPtr, + (lk) ? "LOCK" : ((unlk) ? "UNLK" : " ")); + return; + } + if (df == rf_DiskUnlockFunc) { + pda = (RF_PhysDiskAddr_t *) node->params[0].p; + lk = RF_EXTRACT_LOCK_FLAG(node->params[3].v); + unlk = RF_EXTRACT_UNLOCK_FLAG(node->params[3].v); + RF_ASSERT(!(lk && unlk)); + printf("r %d c %d %s\n", pda->row, pda->col, + (lk) ? "LOCK" : ((unlk) ? "UNLK" : "nop")); + return; + } + if ((df == rf_SimpleXorFunc) || (df == rf_RegularXorFunc) + || (df == rf_RecoveryXorFunc)) { + printf("result buf 0x%lx\n", (long) node->results[0]); + for (i = 0; i < node->numParams - 1; i += 2) { + pda = (RF_PhysDiskAddr_t *) node->params[i].p; + bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p; + printf(" buf 0x%lx r%d c%d offs %ld nsect %d\n", + (long) bufPtr, pda->row, pda->col, + (long) pda->startSector, (int) pda->numSector); + } + return; + } +#if RF_INCLUDE_PARITYLOGGING > 0 + if (df == rf_ParityLogOverwriteFunc || df == rf_ParityLogUpdateFunc) { + for (i = 0; i < node->numParams - 1; i += 2) { + pda = (RF_PhysDiskAddr_t *) node->params[i].p; + bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p; + printf(" r%d c%d offs %ld nsect %d buf 0x%lx\n", + pda->row, pda->col, (long) pda->startSector, + (int) pda->numSector, (long) bufPtr); + } + return; + } +#endif /* RF_INCLUDE_PARITYLOGGING > 0 */ + + if ((df == rf_TerminateFunc) || (df == rf_NullNodeFunc)) { + printf("\n"); + return; + } + printf("?\n"); +} + +static void +rf_RecurPrintDAG(node, depth, unvisited) + RF_DagNode_t *node; + int depth; + int unvisited; +{ + char *anttype; + int i; + + node->visited = (unvisited) ? 0 : 1; + printf("(%d) %d C%d %s: %s,s%d %d/%d,a%d/%d,p%d,r%d S{", depth, + node->nodeNum, node->commitNode, node->name, rf_NodeStatusString(node), + node->numSuccedents, node->numSuccFired, node->numSuccDone, + node->numAntecedents, node->numAntDone, node->numParams, node->numResults); + for (i = 0; i < node->numSuccedents; i++) { + printf("%d%s", node->succedents[i]->nodeNum, + ((i == node->numSuccedents - 1) ? "\0" : " ")); + } + printf("} A{"); + for (i = 0; i < node->numAntecedents; i++) { + switch (node->antType[i]) { + case rf_trueData: + anttype = "T"; + break; + case rf_antiData: + anttype = "A"; + break; + case rf_outputData: + anttype = "O"; + break; + case rf_control: + anttype = "C"; + break; + default: + anttype = "?"; + break; + } + printf("%d(%s)%s", node->antecedents[i]->nodeNum, anttype, (i == node->numAntecedents - 1) ? "\0" : " "); + } + printf("}; "); + rf_PrintNodeInfoString(node); + for (i = 0; i < node->numSuccedents; i++) { + if (node->succedents[i]->visited == unvisited) + rf_RecurPrintDAG(node->succedents[i], depth + 1, unvisited); + } +} + +static void +rf_PrintDAG(dag_h) + RF_DagHeader_t *dag_h; +{ + int unvisited, i; + char *status; + + /* set dag status */ + switch (dag_h->status) { + case rf_enable: + status = "enable"; + break; + case rf_rollForward: + status = "rollForward"; + break; + case rf_rollBackward: + status = "rollBackward"; + break; + default: + status = "illegal!"; + break; + } + /* find out if visited bits are currently set or clear */ + unvisited = dag_h->succedents[0]->visited; + + printf("DAG type: %s\n", dag_h->creator); + printf("format is (depth) num commit type: status,nSucc nSuccFired/nSuccDone,nAnte/nAnteDone,nParam,nResult S{x} A{x(type)}; info\n"); + printf("(0) %d Hdr: %s, s%d, (commit %d/%d) S{", dag_h->nodeNum, + status, dag_h->numSuccedents, dag_h->numCommitNodes, dag_h->numCommits); + for (i = 0; i < dag_h->numSuccedents; i++) { + printf("%d%s", dag_h->succedents[i]->nodeNum, + ((i == dag_h->numSuccedents - 1) ? "\0" : " ")); + } + printf("};\n"); + for (i = 0; i < dag_h->numSuccedents; i++) { + if (dag_h->succedents[i]->visited == unvisited) + rf_RecurPrintDAG(dag_h->succedents[i], 1, unvisited); + } +} +/* assigns node numbers */ +int +rf_AssignNodeNums(RF_DagHeader_t * dag_h) +{ + int unvisited, i, nnum; + RF_DagNode_t *node; + + nnum = 0; + unvisited = dag_h->succedents[0]->visited; + + dag_h->nodeNum = nnum++; + for (i = 0; i < dag_h->numSuccedents; i++) { + node = dag_h->succedents[i]; + if (node->visited == unvisited) { + nnum = rf_RecurAssignNodeNums(dag_h->succedents[i], nnum, unvisited); + } + } + return (nnum); +} + +int +rf_RecurAssignNodeNums(node, num, unvisited) + RF_DagNode_t *node; + int num; + int unvisited; +{ + int i; + + node->visited = (unvisited) ? 0 : 1; + + node->nodeNum = num++; + for (i = 0; i < node->numSuccedents; i++) { + if (node->succedents[i]->visited == unvisited) { + num = rf_RecurAssignNodeNums(node->succedents[i], num, unvisited); + } + } + return (num); +} +/* set the header pointers in each node to "newptr" */ +void +rf_ResetDAGHeaderPointers(dag_h, newptr) + RF_DagHeader_t *dag_h; + RF_DagHeader_t *newptr; +{ + int i; + for (i = 0; i < dag_h->numSuccedents; i++) + if (dag_h->succedents[i]->dagHdr != newptr) + rf_RecurResetDAGHeaderPointers(dag_h->succedents[i], newptr); +} + +void +rf_RecurResetDAGHeaderPointers(node, newptr) + RF_DagNode_t *node; + RF_DagHeader_t *newptr; +{ + int i; + node->dagHdr = newptr; + for (i = 0; i < node->numSuccedents; i++) + if (node->succedents[i]->dagHdr != newptr) + rf_RecurResetDAGHeaderPointers(node->succedents[i], newptr); +} + + +void +rf_PrintDAGList(RF_DagHeader_t * dag_h) +{ + int i = 0; + + for (; dag_h; dag_h = dag_h->next) { + rf_AssignNodeNums(dag_h); + printf("\n\nDAG %d IN LIST:\n", i++); + rf_PrintDAG(dag_h); + } +} + +static int +rf_ValidateBranch(node, scount, acount, nodes, unvisited) + RF_DagNode_t *node; + int *scount; + int *acount; + RF_DagNode_t **nodes; + int unvisited; +{ + int i, retcode = 0; + + /* construct an array of node pointers indexed by node num */ + node->visited = (unvisited) ? 0 : 1; + nodes[node->nodeNum] = node; + + if (node->next != NULL) { + printf("INVALID DAG: next pointer in node is not NULL\n"); + retcode = 1; + } + if (node->status != rf_wait) { + printf("INVALID DAG: Node status is not wait\n"); + retcode = 1; + } + if (node->numAntDone != 0) { + printf("INVALID DAG: numAntDone is not zero\n"); + retcode = 1; + } + if (node->doFunc == rf_TerminateFunc) { + if (node->numSuccedents != 0) { + printf("INVALID DAG: Terminator node has succedents\n"); + retcode = 1; + } + } else { + if (node->numSuccedents == 0) { + printf("INVALID DAG: Non-terminator node has no succedents\n"); + retcode = 1; + } + } + for (i = 0; i < node->numSuccedents; i++) { + if (!node->succedents[i]) { + printf("INVALID DAG: succedent %d of node %s is NULL\n", i, node->name); + retcode = 1; + } + scount[node->succedents[i]->nodeNum]++; + } + for (i = 0; i < node->numAntecedents; i++) { + if (!node->antecedents[i]) { + printf("INVALID DAG: antecedent %d of node %s is NULL\n", i, node->name); + retcode = 1; + } + acount[node->antecedents[i]->nodeNum]++; + } + for (i = 0; i < node->numSuccedents; i++) { + if (node->succedents[i]->visited == unvisited) { + if (rf_ValidateBranch(node->succedents[i], scount, + acount, nodes, unvisited)) { + retcode = 1; + } + } + } + return (retcode); +} + +static void +rf_ValidateBranchVisitedBits(node, unvisited, rl) + RF_DagNode_t *node; + int unvisited; + int rl; +{ + int i; + + RF_ASSERT(node->visited == unvisited); + for (i = 0; i < node->numSuccedents; i++) { + if (node->succedents[i] == NULL) { + printf("node=%lx node->succedents[%d] is NULL\n", (long) node, i); + RF_ASSERT(0); + } + rf_ValidateBranchVisitedBits(node->succedents[i], unvisited, rl + 1); + } +} +/* NOTE: never call this on a big dag, because it is exponential + * in execution time + */ +static void +rf_ValidateVisitedBits(dag) + RF_DagHeader_t *dag; +{ + int i, unvisited; + + unvisited = dag->succedents[0]->visited; + + for (i = 0; i < dag->numSuccedents; i++) { + if (dag->succedents[i] == NULL) { + printf("dag=%lx dag->succedents[%d] is NULL\n", (long) dag, i); + RF_ASSERT(0); + } + rf_ValidateBranchVisitedBits(dag->succedents[i], unvisited, 0); + } +} +/* validate a DAG. _at entry_ verify that: + * -- numNodesCompleted is zero + * -- node queue is null + * -- dag status is rf_enable + * -- next pointer is null on every node + * -- all nodes have status wait + * -- numAntDone is zero in all nodes + * -- terminator node has zero successors + * -- no other node besides terminator has zero successors + * -- no successor or antecedent pointer in a node is NULL + * -- number of times that each node appears as a successor of another node + * is equal to the antecedent count on that node + * -- number of times that each node appears as an antecedent of another node + * is equal to the succedent count on that node + * -- what else? + */ +int +rf_ValidateDAG(dag_h) + RF_DagHeader_t *dag_h; +{ + int i, nodecount; + int *scount, *acount;/* per-node successor and antecedent counts */ + RF_DagNode_t **nodes; /* array of ptrs to nodes in dag */ + int retcode = 0; + int unvisited; + int commitNodeCount = 0; + + if (rf_validateVisitedDebug) + rf_ValidateVisitedBits(dag_h); + + if (dag_h->numNodesCompleted != 0) { + printf("INVALID DAG: num nodes completed is %d, should be 0\n", dag_h->numNodesCompleted); + retcode = 1; + goto validate_dag_bad; + } + if (dag_h->status != rf_enable) { + printf("INVALID DAG: not enabled\n"); + retcode = 1; + goto validate_dag_bad; + } + if (dag_h->numCommits != 0) { + printf("INVALID DAG: numCommits != 0 (%d)\n", dag_h->numCommits); + retcode = 1; + goto validate_dag_bad; + } + if (dag_h->numSuccedents != 1) { + /* currently, all dags must have only one succedent */ + printf("INVALID DAG: numSuccedents !1 (%d)\n", dag_h->numSuccedents); + retcode = 1; + goto validate_dag_bad; + } + nodecount = rf_AssignNodeNums(dag_h); + + unvisited = dag_h->succedents[0]->visited; + + RF_Calloc(scount, nodecount, sizeof(int), (int *)); + RF_Calloc(acount, nodecount, sizeof(int), (int *)); + RF_Calloc(nodes, nodecount, sizeof(RF_DagNode_t *), (RF_DagNode_t **)); + for (i = 0; i < dag_h->numSuccedents; i++) { + if ((dag_h->succedents[i]->visited == unvisited) + && rf_ValidateBranch(dag_h->succedents[i], scount, + acount, nodes, unvisited)) { + retcode = 1; + } + } + /* start at 1 to skip the header node */ + for (i = 1; i < nodecount; i++) { + if (nodes[i]->commitNode) + commitNodeCount++; + if (nodes[i]->doFunc == NULL) { + printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name); + retcode = 1; + goto validate_dag_out; + } + if (nodes[i]->undoFunc == NULL) { + printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name); + retcode = 1; + goto validate_dag_out; + } + if (nodes[i]->numAntecedents != scount[nodes[i]->nodeNum]) { + printf("INVALID DAG: node %s has %d antecedents but appears as a succedent %d times\n", + nodes[i]->name, nodes[i]->numAntecedents, scount[nodes[i]->nodeNum]); + retcode = 1; + goto validate_dag_out; + } + if (nodes[i]->numSuccedents != acount[nodes[i]->nodeNum]) { + printf("INVALID DAG: node %s has %d succedents but appears as an antecedent %d times\n", + nodes[i]->name, nodes[i]->numSuccedents, acount[nodes[i]->nodeNum]); + retcode = 1; + goto validate_dag_out; + } + } + + if (dag_h->numCommitNodes != commitNodeCount) { + printf("INVALID DAG: incorrect commit node count. hdr->numCommitNodes (%d) found (%d) commit nodes in graph\n", + dag_h->numCommitNodes, commitNodeCount); + retcode = 1; + goto validate_dag_out; + } +validate_dag_out: + RF_Free(scount, nodecount * sizeof(int)); + RF_Free(acount, nodecount * sizeof(int)); + RF_Free(nodes, nodecount * sizeof(RF_DagNode_t *)); + if (retcode) + rf_PrintDAGList(dag_h); + + if (rf_validateVisitedDebug) + rf_ValidateVisitedBits(dag_h); + + return (retcode); + +validate_dag_bad: + rf_PrintDAGList(dag_h); + return (retcode); +} + + +/****************************************************************************** + * + * misc construction routines + * + *****************************************************************************/ + +void +rf_redirect_asm( + RF_Raid_t * raidPtr, + RF_AccessStripeMap_t * asmap) +{ + int ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) ? 1 : 0; + int row = asmap->physInfo->row; + int fcol = raidPtr->reconControl[row]->fcol; + int srow = raidPtr->reconControl[row]->spareRow; + int scol = raidPtr->reconControl[row]->spareCol; + RF_PhysDiskAddr_t *pda; + + RF_ASSERT(raidPtr->status[row] == rf_rs_reconstructing); + for (pda = asmap->physInfo; pda; pda = pda->next) { + if (pda->col == fcol) { + if (rf_dagDebug) { + if (!rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, + pda->startSector)) { + RF_PANIC(); + } + } + /* printf("Remapped data for large write\n"); */ + if (ds) { + raidPtr->Layout.map->MapSector(raidPtr, pda->raidAddress, + &pda->row, &pda->col, &pda->startSector, RF_REMAP); + } else { + pda->row = srow; + pda->col = scol; + } + } + } + for (pda = asmap->parityInfo; pda; pda = pda->next) { + if (pda->col == fcol) { + if (rf_dagDebug) { + if (!rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, pda->startSector)) { + RF_PANIC(); + } + } + } + if (ds) { + (raidPtr->Layout.map->MapParity) (raidPtr, pda->raidAddress, &pda->row, &pda->col, &pda->startSector, RF_REMAP); + } else { + pda->row = srow; + pda->col = scol; + } + } +} + + +/* this routine allocates read buffers and generates stripe maps for the + * regions of the array from the start of the stripe to the start of the + * access, and from the end of the access to the end of the stripe. It also + * computes and returns the number of DAG nodes needed to read all this data. + * Note that this routine does the wrong thing if the access is fully + * contained within one stripe unit, so we RF_ASSERT against this case at the + * start. + */ +void +rf_MapUnaccessedPortionOfStripe( + RF_Raid_t * raidPtr, + RF_RaidLayout_t * layoutPtr,/* in: layout information */ + RF_AccessStripeMap_t * asmap, /* in: access stripe map */ + RF_DagHeader_t * dag_h, /* in: header of the dag to create */ + RF_AccessStripeMapHeader_t ** new_asm_h, /* in: ptr to array of 2 + * headers, to be filled in */ + int *nRodNodes, /* out: num nodes to be generated to read + * unaccessed data */ + char **sosBuffer, /* out: pointers to newly allocated buffer */ + char **eosBuffer, + RF_AllocListElem_t * allocList) +{ + RF_RaidAddr_t sosRaidAddress, eosRaidAddress; + RF_SectorNum_t sosNumSector, eosNumSector; + + RF_ASSERT(asmap->numStripeUnitsAccessed > (layoutPtr->numDataCol / 2)); + /* generate an access map for the region of the array from start of + * stripe to start of access */ + new_asm_h[0] = new_asm_h[1] = NULL; + *nRodNodes = 0; + if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->raidAddress)) { + sosRaidAddress = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress); + sosNumSector = asmap->raidAddress - sosRaidAddress; + RF_MallocAndAdd(*sosBuffer, rf_RaidAddressToByte(raidPtr, sosNumSector), (char *), allocList); + new_asm_h[0] = rf_MapAccess(raidPtr, sosRaidAddress, sosNumSector, *sosBuffer, RF_DONT_REMAP); + new_asm_h[0]->next = dag_h->asmList; + dag_h->asmList = new_asm_h[0]; + *nRodNodes += new_asm_h[0]->stripeMap->numStripeUnitsAccessed; + + RF_ASSERT(new_asm_h[0]->stripeMap->next == NULL); + /* we're totally within one stripe here */ + if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE) + rf_redirect_asm(raidPtr, new_asm_h[0]->stripeMap); + } + /* generate an access map for the region of the array from end of + * access to end of stripe */ + if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->endRaidAddress)) { + eosRaidAddress = asmap->endRaidAddress; + eosNumSector = rf_RaidAddressOfNextStripeBoundary(layoutPtr, eosRaidAddress) - eosRaidAddress; + RF_MallocAndAdd(*eosBuffer, rf_RaidAddressToByte(raidPtr, eosNumSector), (char *), allocList); + new_asm_h[1] = rf_MapAccess(raidPtr, eosRaidAddress, eosNumSector, *eosBuffer, RF_DONT_REMAP); + new_asm_h[1]->next = dag_h->asmList; + dag_h->asmList = new_asm_h[1]; + *nRodNodes += new_asm_h[1]->stripeMap->numStripeUnitsAccessed; + + RF_ASSERT(new_asm_h[1]->stripeMap->next == NULL); + /* we're totally within one stripe here */ + if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE) + rf_redirect_asm(raidPtr, new_asm_h[1]->stripeMap); + } +} + + + +/* returns non-zero if the indicated ranges of stripe unit offsets overlap */ +int +rf_PDAOverlap( + RF_RaidLayout_t * layoutPtr, + RF_PhysDiskAddr_t * src, + RF_PhysDiskAddr_t * dest) +{ + RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector); + RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector); + /* use -1 to be sure we stay within SU */ + RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1); + RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1); + return ((RF_MAX(soffs, doffs) <= RF_MIN(send, dend)) ? 1 : 0); +} + + +/* GenerateFailedAccessASMs + * + * this routine figures out what portion of the stripe needs to be read + * to effect the degraded read or write operation. It's primary function + * is to identify everything required to recover the data, and then + * eliminate anything that is already being accessed by the user. + * + * The main result is two new ASMs, one for the region from the start of the + * stripe to the start of the access, and one for the region from the end of + * the access to the end of the stripe. These ASMs describe everything that + * needs to be read to effect the degraded access. Other results are: + * nXorBufs -- the total number of buffers that need to be XORed together to + * recover the lost data, + * rpBufPtr -- ptr to a newly-allocated buffer to hold the parity. If NULL + * at entry, not allocated. + * overlappingPDAs -- + * describes which of the non-failed PDAs in the user access + * overlap data that needs to be read to effect recovery. + * overlappingPDAs[i]==1 if and only if, neglecting the failed + * PDA, the ith pda in the input asm overlaps data that needs + * to be read for recovery. + */ + /* in: asm - ASM for the actual access, one stripe only */ + /* in: faildPDA - which component of the access has failed */ + /* in: dag_h - header of the DAG we're going to create */ + /* out: new_asm_h - the two new ASMs */ + /* out: nXorBufs - the total number of xor bufs required */ + /* out: rpBufPtr - a buffer for the parity read */ +void +rf_GenerateFailedAccessASMs( + RF_Raid_t * raidPtr, + RF_AccessStripeMap_t * asmap, + RF_PhysDiskAddr_t * failedPDA, + RF_DagHeader_t * dag_h, + RF_AccessStripeMapHeader_t ** new_asm_h, + int *nXorBufs, + char **rpBufPtr, + char *overlappingPDAs, + RF_AllocListElem_t * allocList) +{ + RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout); + + /* s=start, e=end, s=stripe, a=access, f=failed, su=stripe unit */ + RF_RaidAddr_t sosAddr, sosEndAddr, eosStartAddr, eosAddr; + + RF_SectorCount_t numSect[2], numParitySect; + RF_PhysDiskAddr_t *pda; + char *rdBuf, *bufP; + int foundit, i; + + bufP = NULL; + foundit = 0; + /* first compute the following raid addresses: start of stripe, + * (sosAddr) MIN(start of access, start of failed SU), (sosEndAddr) + * MAX(end of access, end of failed SU), (eosStartAddr) end of + * stripe (i.e. start of next stripe) (eosAddr) */ + sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress); + sosEndAddr = RF_MIN(asmap->raidAddress, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, failedPDA->raidAddress)); + eosStartAddr = RF_MAX(asmap->endRaidAddress, rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, failedPDA->raidAddress)); + eosAddr = rf_RaidAddressOfNextStripeBoundary(layoutPtr, asmap->raidAddress); + + /* now generate access stripe maps for each of the above regions of + * the stripe. Use a dummy (NULL) buf ptr for now */ + + new_asm_h[0] = (sosAddr != sosEndAddr) ? rf_MapAccess(raidPtr, sosAddr, sosEndAddr - sosAddr, NULL, RF_DONT_REMAP) : NULL; + new_asm_h[1] = (eosStartAddr != eosAddr) ? rf_MapAccess(raidPtr, eosStartAddr, eosAddr - eosStartAddr, NULL, RF_DONT_REMAP) : NULL; + + /* walk through the PDAs and range-restrict each SU to the region of + * the SU touched on the failed PDA. also compute total data buffer + * space requirements in this step. Ignore the parity for now. */ + + numSect[0] = numSect[1] = 0; + if (new_asm_h[0]) { + new_asm_h[0]->next = dag_h->asmList; + dag_h->asmList = new_asm_h[0]; + for (pda = new_asm_h[0]->stripeMap->physInfo; pda; pda = pda->next) { + rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0); + numSect[0] += pda->numSector; + } + } + if (new_asm_h[1]) { + new_asm_h[1]->next = dag_h->asmList; + dag_h->asmList = new_asm_h[1]; + for (pda = new_asm_h[1]->stripeMap->physInfo; pda; pda = pda->next) { + rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0); + numSect[1] += pda->numSector; + } + } + numParitySect = failedPDA->numSector; + + /* allocate buffer space for the data & parity we have to read to + * recover from the failure */ + + if (numSect[0] + numSect[1] + ((rpBufPtr) ? numParitySect : 0)) { /* don't allocate parity + * buf if not needed */ + RF_MallocAndAdd(rdBuf, rf_RaidAddressToByte(raidPtr, numSect[0] + numSect[1] + numParitySect), (char *), allocList); + bufP = rdBuf; + if (rf_degDagDebug) + printf("Newly allocated buffer (%d bytes) is 0x%lx\n", + (int) rf_RaidAddressToByte(raidPtr, numSect[0] + numSect[1] + numParitySect), (unsigned long) bufP); + } + /* now walk through the pdas one last time and assign buffer pointers + * (ugh!). Again, ignore the parity. also, count nodes to find out + * how many bufs need to be xored together */ + (*nXorBufs) = 1; /* in read case, 1 is for parity. In write + * case, 1 is for failed data */ + if (new_asm_h[0]) { + for (pda = new_asm_h[0]->stripeMap->physInfo; pda; pda = pda->next) { + pda->bufPtr = bufP; + bufP += rf_RaidAddressToByte(raidPtr, pda->numSector); + } + *nXorBufs += new_asm_h[0]->stripeMap->numStripeUnitsAccessed; + } + if (new_asm_h[1]) { + for (pda = new_asm_h[1]->stripeMap->physInfo; pda; pda = pda->next) { + pda->bufPtr = bufP; + bufP += rf_RaidAddressToByte(raidPtr, pda->numSector); + } + (*nXorBufs) += new_asm_h[1]->stripeMap->numStripeUnitsAccessed; + } + if (rpBufPtr) + *rpBufPtr = bufP; /* the rest of the buffer is for + * parity */ + + /* the last step is to figure out how many more distinct buffers need + * to get xor'd to produce the missing unit. there's one for each + * user-data read node that overlaps the portion of the failed unit + * being accessed */ + + for (foundit = i = 0, pda = asmap->physInfo; pda; i++, pda = pda->next) { + if (pda == failedPDA) { + i--; + foundit = 1; + continue; + } + if (rf_PDAOverlap(layoutPtr, pda, failedPDA)) { + overlappingPDAs[i] = 1; + (*nXorBufs)++; + } + } + if (!foundit) { + RF_ERRORMSG("GenerateFailedAccessASMs: did not find failedPDA in asm list\n"); + RF_ASSERT(0); + } + if (rf_degDagDebug) { + if (new_asm_h[0]) { + printf("First asm:\n"); + rf_PrintFullAccessStripeMap(new_asm_h[0], 1); + } + if (new_asm_h[1]) { + printf("Second asm:\n"); + rf_PrintFullAccessStripeMap(new_asm_h[1], 1); + } + } +} + + +/* adjusts the offset and number of sectors in the destination pda so that + * it covers at most the region of the SU covered by the source PDA. This + * is exclusively a restriction: the number of sectors indicated by the + * target PDA can only shrink. + * + * For example: s = sectors within SU indicated by source PDA + * d = sectors within SU indicated by dest PDA + * r = results, stored in dest PDA + * + * |--------------- one stripe unit ---------------------| + * | sssssssssssssssssssssssssssssssss | + * | ddddddddddddddddddddddddddddddddddddddddddddd | + * | rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr | + * + * Another example: + * + * |--------------- one stripe unit ---------------------| + * | sssssssssssssssssssssssssssssssss | + * | ddddddddddddddddddddddd | + * | rrrrrrrrrrrrrrrr | + * + */ +void +rf_RangeRestrictPDA( + RF_Raid_t * raidPtr, + RF_PhysDiskAddr_t * src, + RF_PhysDiskAddr_t * dest, + int dobuffer, + int doraidaddr) +{ + RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; + RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector); + RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector); + RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1); /* use -1 to be sure we + * stay within SU */ + RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1); + RF_SectorNum_t subAddr = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->startSector); /* stripe unit boundary */ + + dest->startSector = subAddr + RF_MAX(soffs, doffs); + dest->numSector = subAddr + RF_MIN(send, dend) + 1 - dest->startSector; + + if (dobuffer) + dest->bufPtr += (soffs > doffs) ? rf_RaidAddressToByte(raidPtr, soffs - doffs) : 0; + if (doraidaddr) { + dest->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->raidAddress) + + rf_StripeUnitOffset(layoutPtr, dest->startSector); + } +} +/* + * Want the highest of these primes to be the largest one + * less than the max expected number of columns (won't hurt + * to be too small or too large, but won't be optimal, either) + * --jimz + */ +#define NLOWPRIMES 8 +static int lowprimes[NLOWPRIMES] = {2, 3, 5, 7, 11, 13, 17, 19}; +/***************************************************************************** + * compute the workload shift factor. (chained declustering) + * + * return nonzero if access should shift to secondary, otherwise, + * access is to primary + *****************************************************************************/ +int +rf_compute_workload_shift( + RF_Raid_t * raidPtr, + RF_PhysDiskAddr_t * pda) +{ + /* + * variables: + * d = column of disk containing primary + * f = column of failed disk + * n = number of disks in array + * sd = "shift distance" (number of columns that d is to the right of f) + * row = row of array the access is in + * v = numerator of redirection ratio + * k = denominator of redirection ratio + */ + RF_RowCol_t d, f, sd, row, n; + int k, v, ret, i; + + row = pda->row; + n = raidPtr->numCol; + + /* assign column of primary copy to d */ + d = pda->col; + + /* assign column of dead disk to f */ + for (f = 0; ((!RF_DEAD_DISK(raidPtr->Disks[row][f].status)) && (f < n)); f++); + + RF_ASSERT(f < n); + RF_ASSERT(f != d); + + sd = (f > d) ? (n + d - f) : (d - f); + RF_ASSERT(sd < n); + + /* + * v of every k accesses should be redirected + * + * v/k := (n-1-sd)/(n-1) + */ + v = (n - 1 - sd); + k = (n - 1); + +#if 1 + /* + * XXX + * Is this worth it? + * + * Now reduce the fraction, by repeatedly factoring + * out primes (just like they teach in elementary school!) + */ + for (i = 0; i < NLOWPRIMES; i++) { + if (lowprimes[i] > v) + break; + while (((v % lowprimes[i]) == 0) && ((k % lowprimes[i]) == 0)) { + v /= lowprimes[i]; + k /= lowprimes[i]; + } + } +#endif + + raidPtr->hist_diskreq[row][d]++; + if (raidPtr->hist_diskreq[row][d] > v) { + ret = 0; /* do not redirect */ + } else { + ret = 1; /* redirect */ + } + +#if 0 + printf("d=%d f=%d sd=%d v=%d k=%d ret=%d h=%d\n", d, f, sd, v, k, ret, + raidPtr->hist_diskreq[row][d]); +#endif + + if (raidPtr->hist_diskreq[row][d] >= k) { + /* reset counter */ + raidPtr->hist_diskreq[row][d] = 0; + } + return (ret); +} +/* + * Disk selection routines + */ + +/* + * Selects the disk with the shortest queue from a mirror pair. + * Both the disk I/Os queued in RAIDframe as well as those at the physical + * disk are counted as members of the "queue" + */ +void +rf_SelectMirrorDiskIdle(RF_DagNode_t * node) +{ + RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr; + RF_RowCol_t rowData, colData, rowMirror, colMirror; + int dataQueueLength, mirrorQueueLength, usemirror; + RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p; + RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p; + RF_PhysDiskAddr_t *tmp_pda; + RF_RaidDisk_t **disks = raidPtr->Disks; + RF_DiskQueue_t **dqs = raidPtr->Queues, *dataQueue, *mirrorQueue; + + /* return the [row col] of the disk with the shortest queue */ + rowData = data_pda->row; + colData = data_pda->col; + rowMirror = mirror_pda->row; + colMirror = mirror_pda->col; + dataQueue = &(dqs[rowData][colData]); + mirrorQueue = &(dqs[rowMirror][colMirror]); + +#ifdef RF_LOCK_QUEUES_TO_READ_LEN + RF_LOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle"); +#endif /* RF_LOCK_QUEUES_TO_READ_LEN */ + dataQueueLength = dataQueue->queueLength + dataQueue->numOutstanding; +#ifdef RF_LOCK_QUEUES_TO_READ_LEN + RF_UNLOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle"); + RF_LOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle"); +#endif /* RF_LOCK_QUEUES_TO_READ_LEN */ + mirrorQueueLength = mirrorQueue->queueLength + mirrorQueue->numOutstanding; +#ifdef RF_LOCK_QUEUES_TO_READ_LEN + RF_UNLOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle"); +#endif /* RF_LOCK_QUEUES_TO_READ_LEN */ + + usemirror = 0; + if (RF_DEAD_DISK(disks[rowMirror][colMirror].status)) { + usemirror = 0; + } else + if (RF_DEAD_DISK(disks[rowData][colData].status)) { + usemirror = 1; + } else + if (raidPtr->parity_good == RF_RAID_DIRTY) { + /* Trust only the main disk */ + usemirror = 0; + } else + if (dataQueueLength < mirrorQueueLength) { + usemirror = 0; + } else + if (mirrorQueueLength < dataQueueLength) { + usemirror = 1; + } else { + /* queues are equal length. attempt + * cleverness. */ + if (SNUM_DIFF(dataQueue->last_deq_sector, data_pda->startSector) + <= SNUM_DIFF(mirrorQueue->last_deq_sector, mirror_pda->startSector)) { + usemirror = 0; + } else { + usemirror = 1; + } + } + + if (usemirror) { + /* use mirror (parity) disk, swap params 0 & 4 */ + tmp_pda = data_pda; + node->params[0].p = mirror_pda; + node->params[4].p = tmp_pda; + } else { + /* use data disk, leave param 0 unchanged */ + } + /* printf("dataQueueLength %d, mirrorQueueLength + * %d\n",dataQueueLength, mirrorQueueLength); */ +} +/* + * Do simple partitioning. This assumes that + * the data and parity disks are laid out identically. + */ +void +rf_SelectMirrorDiskPartition(RF_DagNode_t * node) +{ + RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr; + RF_RowCol_t rowData, colData, rowMirror, colMirror; + RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p; + RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p; + RF_PhysDiskAddr_t *tmp_pda; + RF_RaidDisk_t **disks = raidPtr->Disks; + RF_DiskQueue_t **dqs = raidPtr->Queues, *dataQueue, *mirrorQueue; + int usemirror; + + /* return the [row col] of the disk with the shortest queue */ + rowData = data_pda->row; + colData = data_pda->col; + rowMirror = mirror_pda->row; + colMirror = mirror_pda->col; + dataQueue = &(dqs[rowData][colData]); + mirrorQueue = &(dqs[rowMirror][colMirror]); + + usemirror = 0; + if (RF_DEAD_DISK(disks[rowMirror][colMirror].status)) { + usemirror = 0; + } else + if (RF_DEAD_DISK(disks[rowData][colData].status)) { + usemirror = 1; + } else + if (raidPtr->parity_good == RF_RAID_DIRTY) { + /* Trust only the main disk */ + usemirror = 0; + } else + if (data_pda->startSector < + (disks[rowData][colData].numBlocks / 2)) { + usemirror = 0; + } else { + usemirror = 1; + } + + if (usemirror) { + /* use mirror (parity) disk, swap params 0 & 4 */ + tmp_pda = data_pda; + node->params[0].p = mirror_pda; + node->params[4].p = tmp_pda; + } else { + /* use data disk, leave param 0 unchanged */ + } +} diff --git a/sys/dev/raidframe/rf_dagutils.h b/sys/dev/raidframe/rf_dagutils.h new file mode 100644 index 0000000..bad2c76 --- /dev/null +++ b/sys/dev/raidframe/rf_dagutils.h @@ -0,0 +1,121 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_dagutils.h,v 1.3 1999/02/05 00:06:08 oster Exp $ */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Mark Holland, William V. Courtright II + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +/************************************************************************* + * + * rf_dagutils.h -- header file for utility routines for manipulating DAGs + * + *************************************************************************/ + + +#include <dev/raidframe/rf_types.h> +#include <dev/raidframe/rf_dagfuncs.h> +#include <dev/raidframe/rf_general.h> + +#ifndef _RF__RF_DAGUTILS_H_ +#define _RF__RF_DAGUTILS_H_ + +struct RF_RedFuncs_s { + int (*regular) (RF_DagNode_t *); + char *RegularName; + int (*simple) (RF_DagNode_t *); + char *SimpleName; +}; + +extern RF_RedFuncs_t rf_xorFuncs; +extern RF_RedFuncs_t rf_xorRecoveryFuncs; + +void +rf_InitNode(RF_DagNode_t * node, RF_NodeStatus_t initstatus, + int commit, + int (*doFunc) (RF_DagNode_t * node), + int (*undoFunc) (RF_DagNode_t * node), + int (*wakeFunc) (RF_DagNode_t * node, int status), + int nSucc, int nAnte, int nParam, int nResult, + RF_DagHeader_t * hdr, char *name, RF_AllocListElem_t * alist); + + void rf_FreeDAG(RF_DagHeader_t * dag_h); + + RF_PropHeader_t *rf_MakePropListEntry(RF_DagHeader_t * dag_h, int resultNum, + int paramNum, RF_PropHeader_t * next, RF_AllocListElem_t * allocList); + + int rf_ConfigureDAGs(RF_ShutdownList_t ** listp); + + RF_DagHeader_t *rf_AllocDAGHeader(void); + + void rf_FreeDAGHeader(RF_DagHeader_t * dh); + + void *rf_AllocBuffer(RF_Raid_t * raidPtr, RF_DagHeader_t * dag_h, + RF_PhysDiskAddr_t * pda, RF_AllocListElem_t * allocList); + + char *rf_NodeStatusString(RF_DagNode_t * node); + + void rf_PrintNodeInfoString(RF_DagNode_t * node); + + int rf_AssignNodeNums(RF_DagHeader_t * dag_h); + + int rf_RecurAssignNodeNums(RF_DagNode_t * node, int num, int unvisited); + + void rf_ResetDAGHeaderPointers(RF_DagHeader_t * dag_h, RF_DagHeader_t * newptr); + + void rf_RecurResetDAGHeaderPointers(RF_DagNode_t * node, RF_DagHeader_t * newptr); + + void rf_PrintDAGList(RF_DagHeader_t * dag_h); + + int rf_ValidateDAG(RF_DagHeader_t * dag_h); + + void rf_redirect_asm(RF_Raid_t * raidPtr, RF_AccessStripeMap_t * asmap); + + void rf_MapUnaccessedPortionOfStripe(RF_Raid_t * raidPtr, + RF_RaidLayout_t * layoutPtr, + RF_AccessStripeMap_t * asmap, RF_DagHeader_t * dag_h, + RF_AccessStripeMapHeader_t ** new_asm_h, int *nRodNodes, char **sosBuffer, + char **eosBuffer, RF_AllocListElem_t * allocList); + + int rf_PDAOverlap(RF_RaidLayout_t * layoutPtr, RF_PhysDiskAddr_t * src, + RF_PhysDiskAddr_t * dest); + + void rf_GenerateFailedAccessASMs(RF_Raid_t * raidPtr, + RF_AccessStripeMap_t * asmap, RF_PhysDiskAddr_t * failedPDA, + RF_DagHeader_t * dag_h, RF_AccessStripeMapHeader_t ** new_asm_h, + int *nXorBufs, char **rpBufPtr, char *overlappingPDAs, + RF_AllocListElem_t * allocList); + +/* flags used by RangeRestrictPDA */ +#define RF_RESTRICT_NOBUFFER 0 +#define RF_RESTRICT_DOBUFFER 1 + + void rf_RangeRestrictPDA(RF_Raid_t * raidPtr, RF_PhysDiskAddr_t * src, + RF_PhysDiskAddr_t * dest, int dobuffer, int doraidaddr); + + int rf_compute_workload_shift(RF_Raid_t * raidPtr, RF_PhysDiskAddr_t * pda); + void rf_SelectMirrorDiskIdle(RF_DagNode_t * node); + void rf_SelectMirrorDiskPartition(RF_DagNode_t * node); + +#endif /* !_RF__RF_DAGUTILS_H_ */ diff --git a/sys/dev/raidframe/rf_debugMem.c b/sys/dev/raidframe/rf_debugMem.c new file mode 100644 index 0000000..f754812 --- /dev/null +++ b/sys/dev/raidframe/rf_debugMem.c @@ -0,0 +1,206 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_debugMem.c,v 1.7 2000/01/07 03:40:59 oster Exp $ */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Daniel Stodolsky, Mark Holland, Jim Zelenka + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +/* debugMem.c: memory usage debugging stuff. + * Malloc, Calloc, and Free are #defined everywhere + * to do_malloc, do_calloc, and do_free. + * + * if RF_UTILITY is nonzero, it means were compiling one of the + * raidframe utility programs, such as rfctrl or smd. In this + * case, we eliminate all references to the threads package + * and to the allocation list stuff. + */ + +#include <dev/raidframe/rf_types.h> + +#include <dev/raidframe/rf_threadstuff.h> +#include <dev/raidframe/rf_options.h> +#include <dev/raidframe/rf_debugMem.h> +#include <dev/raidframe/rf_general.h> + +#if defined(__FreeBSD__) +#include <sys/kernel.h> +MALLOC_DEFINE(M_RAIDFRAME, "rfbuf", "Buffers for RAIDframe operation"); +#endif + +static long tot_mem_in_use = 0; + +/* Hash table of information about memory allocations */ +#define RF_MH_TABLESIZE 1000 + +struct mh_struct { + void *address; + int size; + int line; + char *filen; + char allocated; + struct mh_struct *next; +}; +static struct mh_struct *mh_table[RF_MH_TABLESIZE]; +RF_DECLARE_MUTEX(rf_debug_mem_mutex) + static int mh_table_initialized = 0; + + static void memory_hash_insert(void *addr, int size, int line, char *filen); + static int memory_hash_remove(void *addr, int sz); + +void +rf_record_malloc(p, size, line, filen) + void *p; + int size, line; + char *filen; +{ + RF_ASSERT(size != 0); + + /* RF_LOCK_MUTEX(rf_debug_mem_mutex); */ + memory_hash_insert(p, size, line, filen); + tot_mem_in_use += size; + /* RF_UNLOCK_MUTEX(rf_debug_mem_mutex); */ + if ((long) p == rf_memDebugAddress) { + printf("Allocate: debug address allocated from line %d file %s\n", line, filen); + } +} + +void +rf_unrecord_malloc(p, sz) + void *p; + int sz; +{ + int size; + + /* RF_LOCK_MUTEX(rf_debug_mem_mutex); */ + size = memory_hash_remove(p, sz); + tot_mem_in_use -= size; + /* RF_UNLOCK_MUTEX(rf_debug_mem_mutex); */ + if ((long) p == rf_memDebugAddress) { + printf("Free: Found debug address\n"); /* this is really only a + * flag line for gdb */ + } +} + +void +rf_print_unfreed() +{ + int i, foundone = 0; + struct mh_struct *p; + + for (i = 0; i < RF_MH_TABLESIZE; i++) { + for (p = mh_table[i]; p; p = p->next) + if (p->allocated) { + if (!foundone) + printf("\n\nThere are unfreed memory locations at program shutdown:\n"); + foundone = 1; + printf("Addr 0x%lx Size %d line %d file %s\n", + (long) p->address, p->size, p->line, p->filen); + } + } + if (tot_mem_in_use) { + printf("%ld total bytes in use\n", tot_mem_in_use); + } +} + +int +rf_ConfigureDebugMem(listp) + RF_ShutdownList_t **listp; +{ + int i, rc; + + rc = rf_create_managed_mutex(listp, &rf_debug_mem_mutex); + if (rc) { + RF_ERRORMSG3("Unable to init mutex file %s line %d rc=%d\n", __FILE__, + __LINE__, rc); + return (rc); + } + if (rf_memDebug) { + for (i = 0; i < RF_MH_TABLESIZE; i++) + mh_table[i] = NULL; + mh_table_initialized = 1; + } + return (0); +} +#define HASHADDR(_a_) ( (((unsigned long) _a_)>>3) % RF_MH_TABLESIZE ) + +static void +memory_hash_insert(addr, size, line, filen) + void *addr; + int size, line; + char *filen; +{ + unsigned long bucket = HASHADDR(addr); + struct mh_struct *p; + + RF_ASSERT(mh_table_initialized); + + /* search for this address in the hash table */ + for (p = mh_table[bucket]; p && (p->address != addr); p = p->next); + if (!p) { + RF_Malloc(p, sizeof(struct mh_struct), (struct mh_struct *)); + RF_ASSERT(p); + p->next = mh_table[bucket]; + mh_table[bucket] = p; + p->address = addr; + p->allocated = 0; + } + if (p->allocated) { + printf("ERROR: reallocated address 0x%lx from line %d, file %s without intervening free\n", (long) addr, line, filen); + printf(" last allocated from line %d file %s\n", p->line, p->filen); + RF_ASSERT(0); + } + p->size = size; + p->line = line; + p->filen = filen; + p->allocated = 1; +} + +static int +memory_hash_remove(addr, sz) + void *addr; + int sz; +{ + unsigned long bucket = HASHADDR(addr); + struct mh_struct *p; + + RF_ASSERT(mh_table_initialized); + for (p = mh_table[bucket]; p && (p->address != addr); p = p->next); + if (!p) { + printf("ERROR: freeing never-allocated address 0x%lx\n", (long) addr); + RF_PANIC(); + } + if (!p->allocated) { + printf("ERROR: freeing unallocated address 0x%lx. Last allocation line %d file %s\n", (long) addr, p->line, p->filen); + RF_PANIC(); + } + if (sz > 0 && p->size != sz) { /* you can suppress this error by + * using a negative value as the size + * to free */ + printf("ERROR: incorrect size at free for address 0x%lx: is %d should be %d. Alloc at line %d of file %s\n", (unsigned long) addr, sz, p->size, p->line, p->filen); + RF_PANIC(); + } + p->allocated = 0; + return (p->size); +} diff --git a/sys/dev/raidframe/rf_debugMem.h b/sys/dev/raidframe/rf_debugMem.h new file mode 100644 index 0000000..e6d8c60 --- /dev/null +++ b/sys/dev/raidframe/rf_debugMem.h @@ -0,0 +1,88 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_debugMem.h,v 1.7 1999/09/05 01:58:11 oster Exp $ */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Daniel Stodolsky, Mark Holland + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +/* + * rf_debugMem.h -- memory leak debugging module + * + * IMPORTANT: if you put the lock/unlock mutex stuff back in here, you + * need to take it out of the routines in debugMem.c + * + */ + +#ifndef _RF__RF_DEBUGMEM_H_ +#define _RF__RF_DEBUGMEM_H_ + +#include <dev/raidframe/rf_alloclist.h> + +#ifdef _KERNEL +#include <sys/types.h> +#include <sys/malloc.h> + +#if defined(__FreeBSD__) +MALLOC_DECLARE(M_RAIDFRAME); +#endif + +#define RF_Malloc(_p_, _size_, _cast_) \ + { \ + _p_ = _cast_ malloc((u_long)_size_, M_RAIDFRAME, M_NOWAIT | M_ZERO); \ + if (_p_ == NULL) panic("out of memory\n"); \ + if (rf_memDebug) rf_record_malloc(_p_, _size_, __LINE__, __FILE__); \ + } + +#define RF_MallocAndAdd(__p_, __size_, __cast_, __alist_) \ + { \ + RF_Malloc(__p_, __size_, __cast_); \ + if (__alist_) rf_AddToAllocList(__alist_, __p_, __size_); \ + } + +#define RF_Calloc(_p_, _nel_, _elsz_, _cast_) \ + { \ + RF_Malloc( _p_, (_nel_) * (_elsz_), _cast_); \ + } + +#define RF_CallocAndAdd(__p,__nel,__elsz,__cast,__alist) \ + { \ + RF_Calloc(__p, __nel, __elsz, __cast); \ + if (__alist) rf_AddToAllocList(__alist, __p, (__nel)*(__elsz)); \ + } + +#define RF_Free(_p_, _sz_) \ + { \ + free((void *)(_p_), M_RAIDFRAME); \ + if (rf_memDebug) rf_unrecord_malloc(_p_, (u_int32_t) (_sz_)); \ + } + +#endif /* _KERNEL */ + +void rf_record_malloc(void *p, int size, int line, char *filen); +void rf_unrecord_malloc(void *p, int sz); +void rf_print_unfreed(void); +int rf_ConfigureDebugMem(RF_ShutdownList_t ** listp); + +#endif /* !_RF__RF_DEBUGMEM_H_ */ diff --git a/sys/dev/raidframe/rf_debugprint.c b/sys/dev/raidframe/rf_debugprint.c new file mode 100644 index 0000000..6c96023 --- /dev/null +++ b/sys/dev/raidframe/rf_debugprint.c @@ -0,0 +1,134 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_debugprint.c,v 1.3 1999/02/05 00:06:08 oster Exp $ */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Mark Holland + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +/* + * Code to do debug printfs. Calls to rf_debug_printf cause the corresponding + * information to be printed to a circular buffer rather than the screen. + * The point is to try and minimize the timing variations induced by the + * printfs, and to capture only the printf's immediately preceding a failure. + */ + +#include <dev/raidframe/rf_types.h> +#include <dev/raidframe/rf_threadstuff.h> +#include <dev/raidframe/rf_debugprint.h> +#include <dev/raidframe/rf_general.h> +#include <dev/raidframe/rf_options.h> + +#include <sys/param.h> + +struct RF_Entry_s { + char *cstring; + void *a1, *a2, *a3, *a4, *a5, *a6, *a7, *a8; +}; +/* space for 1k lines */ +#define BUFSHIFT 10 +#define BUFSIZE (1<<BUFSHIFT) +#define BUFMASK (BUFSIZE-1) + +static struct RF_Entry_s rf_debugprint_buf[BUFSIZE]; +static int rf_debugprint_index = 0; +RF_DECLARE_STATIC_MUTEX(rf_debug_print_mutex) + int rf_ConfigureDebugPrint(listp) + RF_ShutdownList_t **listp; +{ + int rc; + + rc = rf_create_managed_mutex(listp, &rf_debug_print_mutex); + if (rc) { + RF_ERRORMSG3("Unable to init mutex file %s line %d rc=%d\n", __FILE__, + __LINE__, rc); + return (rc); + } + rf_clear_debug_print_buffer(); + return (0); +} + +void +rf_clear_debug_print_buffer() +{ + int i; + + for (i = 0; i < BUFSIZE; i++) + rf_debugprint_buf[i].cstring = NULL; + rf_debugprint_index = 0; +} + +void +rf_debug_printf(s, a1, a2, a3, a4, a5, a6, a7, a8) + char *s; + void *a1, *a2, *a3, *a4, *a5, *a6, *a7, *a8; +{ + int idx; + + if (rf_debugPrintUseBuffer) { + + RF_LOCK_MUTEX(rf_debug_print_mutex); + idx = rf_debugprint_index; + rf_debugprint_index = (rf_debugprint_index + 1) & BUFMASK; + RF_UNLOCK_MUTEX(rf_debug_print_mutex); + + rf_debugprint_buf[idx].cstring = s; + rf_debugprint_buf[idx].a1 = a1; + rf_debugprint_buf[idx].a2 = a2; + rf_debugprint_buf[idx].a3 = a3; + rf_debugprint_buf[idx].a4 = a4; + rf_debugprint_buf[idx].a5 = a5; + rf_debugprint_buf[idx].a6 = a6; + rf_debugprint_buf[idx].a7 = a7; + rf_debugprint_buf[idx].a8 = a8; + } else { + printf(s, a1, a2, a3, a4, a5, a6, a7, a8); + } +} + +void +rf_print_debug_buffer() +{ + rf_spill_debug_buffer(NULL); +} + +void +rf_spill_debug_buffer(fname) + char *fname; +{ + int i; + + if (!rf_debugPrintUseBuffer) + return; + + RF_LOCK_MUTEX(rf_debug_print_mutex); + + for (i = rf_debugprint_index + 1; i != rf_debugprint_index; i = (i + 1) & BUFMASK) + if (rf_debugprint_buf[i].cstring) + printf(rf_debugprint_buf[i].cstring, rf_debugprint_buf[i].a1, rf_debugprint_buf[i].a2, rf_debugprint_buf[i].a3, + rf_debugprint_buf[i].a4, rf_debugprint_buf[i].a5, rf_debugprint_buf[i].a6, rf_debugprint_buf[i].a7, rf_debugprint_buf[i].a8); + printf(rf_debugprint_buf[i].cstring, rf_debugprint_buf[i].a1, rf_debugprint_buf[i].a2, rf_debugprint_buf[i].a3, + rf_debugprint_buf[i].a4, rf_debugprint_buf[i].a5, rf_debugprint_buf[i].a6, rf_debugprint_buf[i].a7, rf_debugprint_buf[i].a8); + RF_UNLOCK_MUTEX(rf_debug_print_mutex); +} diff --git a/sys/dev/raidframe/rf_debugprint.h b/sys/dev/raidframe/rf_debugprint.h new file mode 100644 index 0000000..318f620 --- /dev/null +++ b/sys/dev/raidframe/rf_debugprint.h @@ -0,0 +1,44 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_debugprint.h,v 1.3 1999/02/05 00:06:08 oster Exp $ */ +/* + * rf_debugprint.h + */ +/* + * Copyright (c) 1996 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Mark Holland + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +#ifndef _RF__RF_DEBUGPRINT_H_ +#define _RF__RF_DEBUGPRINT_H_ + +int rf_ConfigureDebugPrint(RF_ShutdownList_t ** listp); +void rf_clear_debug_print_buffer(void); +void +rf_debug_printf(char *s, void *a1, void *a2, void *a3, void *a4, + void *a5, void *a6, void *a7, void *a8); +void rf_print_debug_buffer(void); +void rf_spill_debug_buffer(char *fname); + +#endif /* !_RF__RF_DEBUGPRINT_H_ */ diff --git a/sys/dev/raidframe/rf_decluster.c b/sys/dev/raidframe/rf_decluster.c new file mode 100644 index 0000000..3a02519 --- /dev/null +++ b/sys/dev/raidframe/rf_decluster.c @@ -0,0 +1,745 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_decluster.c,v 1.6 2001/01/26 04:40:03 oster Exp $ */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Mark Holland + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +/*---------------------------------------------------------------------- + * + * rf_decluster.c -- code related to the declustered layout + * + * Created 10-21-92 (MCH) + * + * Nov 93: adding support for distributed sparing. This code is a little + * complex: the basic layout used is as follows: + * let F = (v-1)/GCD(r,v-1). The spare space for each set of + * F consecutive fulltables is grouped together and placed after + * that set of tables. + * +------------------------------+ + * | F fulltables | + * | Spare Space | + * | F fulltables | + * | Spare Space | + * | ... | + * +------------------------------+ + * + *--------------------------------------------------------------------*/ + +#include <dev/raidframe/rf_archs.h> +#include <dev/raidframe/rf_types.h> +#include <dev/raidframe/rf_raid.h> +#include <dev/raidframe/rf_raidframe.h> +#include <dev/raidframe/rf_configure.h> +#include <dev/raidframe/rf_decluster.h> +#include <dev/raidframe/rf_debugMem.h> +#include <dev/raidframe/rf_utils.h> +#include <dev/raidframe/rf_alloclist.h> +#include <dev/raidframe/rf_general.h> +#include <dev/raidframe/rf_shutdown.h> + + +extern int rf_copyback_in_progress; /* debug only */ + +/* found in rf_kintf.c */ +int rf_GetSpareTableFromDaemon(RF_SparetWait_t * req); + +#if (RF_INCLUDE_PARITY_DECLUSTERING > 0) || (RF_INCLUDE_PARITY_DECLUSTERING_PQ > 0) + +/* configuration code */ + +int +rf_ConfigureDeclustered( + RF_ShutdownList_t ** listp, + RF_Raid_t * raidPtr, + RF_Config_t * cfgPtr) +{ + RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout); + int b, v, k, r, lambda; /* block design params */ + int i, j; + RF_RowCol_t *first_avail_slot; + RF_StripeCount_t complete_FT_count, numCompleteFullTablesPerDisk; + RF_DeclusteredConfigInfo_t *info; + RF_StripeCount_t PUsPerDisk, spareRegionDepthInPUs, numCompleteSpareRegionsPerDisk, + extraPUsPerDisk; + RF_StripeCount_t totSparePUsPerDisk; + RF_SectorNum_t diskOffsetOfLastFullTableInSUs; + RF_SectorCount_t SpareSpaceInSUs; + char *cfgBuf = (char *) (cfgPtr->layoutSpecific); + RF_StripeNum_t l, SUID; + + SUID = l = 0; + numCompleteSpareRegionsPerDisk = 0; + + /* 1. create layout specific structure */ + RF_MallocAndAdd(info, sizeof(RF_DeclusteredConfigInfo_t), (RF_DeclusteredConfigInfo_t *), raidPtr->cleanupList); + if (info == NULL) + return (ENOMEM); + layoutPtr->layoutSpecificInfo = (void *) info; + info->SpareTable = NULL; + + /* 2. extract parameters from the config structure */ + if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) { + (void) bcopy(cfgBuf, info->sparemap_fname, RF_SPAREMAP_NAME_LEN); + } + cfgBuf += RF_SPAREMAP_NAME_LEN; + + b = *((int *) cfgBuf); + cfgBuf += sizeof(int); + v = *((int *) cfgBuf); + cfgBuf += sizeof(int); + k = *((int *) cfgBuf); + cfgBuf += sizeof(int); + r = *((int *) cfgBuf); + cfgBuf += sizeof(int); + lambda = *((int *) cfgBuf); + cfgBuf += sizeof(int); + raidPtr->noRotate = *((int *) cfgBuf); + cfgBuf += sizeof(int); + + /* the sparemaps are generated assuming that parity is rotated, so we + * issue a warning if both distributed sparing and no-rotate are on at + * the same time */ + if ((layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) && raidPtr->noRotate) { + RF_ERRORMSG("Warning: distributed sparing specified without parity rotation.\n"); + } + if (raidPtr->numCol != v) { + RF_ERRORMSG2("RAID: config error: table element count (%d) not equal to no. of cols (%d)\n", v, raidPtr->numCol); + return (EINVAL); + } + /* 3. set up the values used in the mapping code */ + info->BlocksPerTable = b; + info->Lambda = lambda; + info->NumParityReps = info->groupSize = k; + info->SUsPerTable = b * (k - 1) * layoutPtr->SUsPerPU; /* b blks, k-1 SUs each */ + info->SUsPerFullTable = k * info->SUsPerTable; /* rot k times */ + info->PUsPerBlock = k - 1; + info->SUsPerBlock = info->PUsPerBlock * layoutPtr->SUsPerPU; + info->TableDepthInPUs = (b * k) / v; + info->FullTableDepthInPUs = info->TableDepthInPUs * k; /* k repetitions */ + + /* used only in distributed sparing case */ + info->FullTablesPerSpareRegion = (v - 1) / rf_gcd(r, v - 1); /* (v-1)/gcd fulltables */ + info->TablesPerSpareRegion = k * info->FullTablesPerSpareRegion; + info->SpareSpaceDepthPerRegionInSUs = (r * info->TablesPerSpareRegion / (v - 1)) * layoutPtr->SUsPerPU; + + /* check to make sure the block design is sufficiently small */ + if ((raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE)) { + if (info->FullTableDepthInPUs * layoutPtr->SUsPerPU + info->SpareSpaceDepthPerRegionInSUs > layoutPtr->stripeUnitsPerDisk) { + RF_ERRORMSG3("RAID: config error: Full Table depth (%d) + Spare Space (%d) larger than disk size (%d) (BD too big)\n", + (int) info->FullTableDepthInPUs, + (int) info->SpareSpaceDepthPerRegionInSUs, + (int) layoutPtr->stripeUnitsPerDisk); + return (EINVAL); + } + } else { + if (info->TableDepthInPUs * layoutPtr->SUsPerPU > layoutPtr->stripeUnitsPerDisk) { + RF_ERRORMSG2("RAID: config error: Table depth (%d) larger than disk size (%d) (BD too big)\n", + (int) (info->TableDepthInPUs * layoutPtr->SUsPerPU), \ + (int) layoutPtr->stripeUnitsPerDisk); + return (EINVAL); + } + } + + + /* compute the size of each disk, and the number of tables in the last + * fulltable (which need not be complete) */ + if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) { + + PUsPerDisk = layoutPtr->stripeUnitsPerDisk / layoutPtr->SUsPerPU; + spareRegionDepthInPUs = (info->TablesPerSpareRegion * info->TableDepthInPUs + + (info->TablesPerSpareRegion * info->TableDepthInPUs) / (v - 1)); + info->SpareRegionDepthInSUs = spareRegionDepthInPUs * layoutPtr->SUsPerPU; + + numCompleteSpareRegionsPerDisk = PUsPerDisk / spareRegionDepthInPUs; + info->NumCompleteSRs = numCompleteSpareRegionsPerDisk; + extraPUsPerDisk = PUsPerDisk % spareRegionDepthInPUs; + + /* assume conservatively that we need the full amount of spare + * space in one region in order to provide spares for the + * partial spare region at the end of the array. We set "i" + * to the number of tables in the partial spare region. This + * may actually include some fulltables. */ + extraPUsPerDisk -= (info->SpareSpaceDepthPerRegionInSUs / layoutPtr->SUsPerPU); + if (extraPUsPerDisk <= 0) + i = 0; + else + i = extraPUsPerDisk / info->TableDepthInPUs; + + complete_FT_count = raidPtr->numRow * (numCompleteSpareRegionsPerDisk * (info->TablesPerSpareRegion / k) + i / k); + info->FullTableLimitSUID = complete_FT_count * info->SUsPerFullTable; + info->ExtraTablesPerDisk = i % k; + + /* note that in the last spare region, the spare space is + * complete even though data/parity space is not */ + totSparePUsPerDisk = (numCompleteSpareRegionsPerDisk + 1) * (info->SpareSpaceDepthPerRegionInSUs / layoutPtr->SUsPerPU); + info->TotSparePUsPerDisk = totSparePUsPerDisk; + + layoutPtr->stripeUnitsPerDisk = + ((complete_FT_count / raidPtr->numRow) * info->FullTableDepthInPUs + /* data & parity space */ + info->ExtraTablesPerDisk * info->TableDepthInPUs + + totSparePUsPerDisk /* spare space */ + ) * layoutPtr->SUsPerPU; + layoutPtr->dataStripeUnitsPerDisk = + (complete_FT_count * info->FullTableDepthInPUs + info->ExtraTablesPerDisk * info->TableDepthInPUs) + * layoutPtr->SUsPerPU * (k - 1) / k; + + } else { + /* non-dist spare case: force each disk to contain an + * integral number of tables */ + layoutPtr->stripeUnitsPerDisk /= (info->TableDepthInPUs * layoutPtr->SUsPerPU); + layoutPtr->stripeUnitsPerDisk *= (info->TableDepthInPUs * layoutPtr->SUsPerPU); + + /* compute the number of tables in the last fulltable, which + * need not be complete */ + complete_FT_count = + ((layoutPtr->stripeUnitsPerDisk / layoutPtr->SUsPerPU) / info->FullTableDepthInPUs) * raidPtr->numRow; + + info->FullTableLimitSUID = complete_FT_count * info->SUsPerFullTable; + info->ExtraTablesPerDisk = + ((layoutPtr->stripeUnitsPerDisk / layoutPtr->SUsPerPU) / info->TableDepthInPUs) % k; + } + + raidPtr->sectorsPerDisk = layoutPtr->stripeUnitsPerDisk * layoutPtr->sectorsPerStripeUnit; + + /* find the disk offset of the stripe unit where the last fulltable + * starts */ + numCompleteFullTablesPerDisk = complete_FT_count / raidPtr->numRow; + diskOffsetOfLastFullTableInSUs = numCompleteFullTablesPerDisk * info->FullTableDepthInPUs * layoutPtr->SUsPerPU; + if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) { + SpareSpaceInSUs = numCompleteSpareRegionsPerDisk * info->SpareSpaceDepthPerRegionInSUs; + diskOffsetOfLastFullTableInSUs += SpareSpaceInSUs; + info->DiskOffsetOfLastSpareSpaceChunkInSUs = + diskOffsetOfLastFullTableInSUs + info->ExtraTablesPerDisk * info->TableDepthInPUs * layoutPtr->SUsPerPU; + } + info->DiskOffsetOfLastFullTableInSUs = diskOffsetOfLastFullTableInSUs; + info->numCompleteFullTablesPerDisk = numCompleteFullTablesPerDisk; + + /* 4. create and initialize the lookup tables */ + info->LayoutTable = rf_make_2d_array(b, k, raidPtr->cleanupList); + if (info->LayoutTable == NULL) + return (ENOMEM); + info->OffsetTable = rf_make_2d_array(b, k, raidPtr->cleanupList); + if (info->OffsetTable == NULL) + return (ENOMEM); + info->BlockTable = rf_make_2d_array(info->TableDepthInPUs * layoutPtr->SUsPerPU, raidPtr->numCol, raidPtr->cleanupList); + if (info->BlockTable == NULL) + return (ENOMEM); + + first_avail_slot = rf_make_1d_array(v, NULL); + if (first_avail_slot == NULL) + return (ENOMEM); + + for (i = 0; i < b; i++) + for (j = 0; j < k; j++) + info->LayoutTable[i][j] = *cfgBuf++; + + /* initialize offset table */ + for (i = 0; i < b; i++) + for (j = 0; j < k; j++) { + info->OffsetTable[i][j] = first_avail_slot[info->LayoutTable[i][j]]; + first_avail_slot[info->LayoutTable[i][j]]++; + } + + /* initialize block table */ + for (SUID = l = 0; l < layoutPtr->SUsPerPU; l++) { + for (i = 0; i < b; i++) { + for (j = 0; j < k; j++) { + info->BlockTable[(info->OffsetTable[i][j] * layoutPtr->SUsPerPU) + l] + [info->LayoutTable[i][j]] = SUID; + } + SUID++; + } + } + + rf_free_1d_array(first_avail_slot, v); + + /* 5. set up the remaining redundant-but-useful parameters */ + + raidPtr->totalSectors = (k * complete_FT_count + raidPtr->numRow * info->ExtraTablesPerDisk) * + info->SUsPerTable * layoutPtr->sectorsPerStripeUnit; + layoutPtr->numStripe = (raidPtr->totalSectors / layoutPtr->sectorsPerStripeUnit) / (k - 1); + + /* strange evaluation order below to try and minimize overflow + * problems */ + + layoutPtr->dataSectorsPerStripe = (k - 1) * layoutPtr->sectorsPerStripeUnit; + layoutPtr->bytesPerStripeUnit = layoutPtr->sectorsPerStripeUnit << raidPtr->logBytesPerSector; + layoutPtr->numDataCol = k - 1; + layoutPtr->numParityCol = 1; + + return (0); +} +/* declustering with distributed sparing */ +static void rf_ShutdownDeclusteredDS(RF_ThreadArg_t); +static void +rf_ShutdownDeclusteredDS(arg) + RF_ThreadArg_t arg; +{ + RF_DeclusteredConfigInfo_t *info; + RF_Raid_t *raidPtr; + + raidPtr = (RF_Raid_t *) arg; + info = (RF_DeclusteredConfigInfo_t *) raidPtr->Layout.layoutSpecificInfo; + if (info->SpareTable) + rf_FreeSpareTable(raidPtr); +} + +int +rf_ConfigureDeclusteredDS( + RF_ShutdownList_t ** listp, + RF_Raid_t * raidPtr, + RF_Config_t * cfgPtr) +{ + int rc; + + rc = rf_ConfigureDeclustered(listp, raidPtr, cfgPtr); + if (rc) + return (rc); + rc = rf_ShutdownCreate(listp, rf_ShutdownDeclusteredDS, raidPtr); + if (rc) { + RF_ERRORMSG1("Got %d adding shutdown event for DeclusteredDS\n", rc); + rf_ShutdownDeclusteredDS(raidPtr); + return (rc); + } + return (0); +} + +void +rf_MapSectorDeclustered(raidPtr, raidSector, row, col, diskSector, remap) + RF_Raid_t *raidPtr; + RF_RaidAddr_t raidSector; + RF_RowCol_t *row; + RF_RowCol_t *col; + RF_SectorNum_t *diskSector; + int remap; +{ + RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout); + RF_DeclusteredConfigInfo_t *info = (RF_DeclusteredConfigInfo_t *) layoutPtr->layoutSpecificInfo; + RF_StripeNum_t SUID = raidSector / layoutPtr->sectorsPerStripeUnit; + RF_StripeNum_t FullTableID, FullTableOffset, TableID, TableOffset; + RF_StripeNum_t BlockID, BlockOffset, RepIndex; + RF_StripeCount_t sus_per_fulltable = info->SUsPerFullTable; + RF_StripeCount_t fulltable_depth = info->FullTableDepthInPUs * layoutPtr->SUsPerPU; + RF_StripeNum_t base_suid = 0, outSU, SpareRegion = 0, SpareSpace = 0; + + rf_decluster_adjust_params(layoutPtr, &SUID, &sus_per_fulltable, &fulltable_depth, &base_suid); + + FullTableID = SUID / sus_per_fulltable; /* fulltable ID within array + * (across rows) */ + if (raidPtr->numRow == 1) + *row = 0; /* avoid a mod and a div in the common case */ + else { + *row = FullTableID % raidPtr->numRow; + FullTableID /= raidPtr->numRow; /* convert to fulltable ID on + * this disk */ + } + if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) { + SpareRegion = FullTableID / info->FullTablesPerSpareRegion; + SpareSpace = SpareRegion * info->SpareSpaceDepthPerRegionInSUs; + } + FullTableOffset = SUID % sus_per_fulltable; + TableID = FullTableOffset / info->SUsPerTable; + TableOffset = FullTableOffset - TableID * info->SUsPerTable; + BlockID = TableOffset / info->PUsPerBlock; + BlockOffset = TableOffset - BlockID * info->PUsPerBlock; + BlockID %= info->BlocksPerTable; + RepIndex = info->PUsPerBlock - TableID; + if (!raidPtr->noRotate) + BlockOffset += ((BlockOffset >= RepIndex) ? 1 : 0); + *col = info->LayoutTable[BlockID][BlockOffset]; + + /* remap to distributed spare space if indicated */ + if (remap) { + RF_ASSERT(raidPtr->Disks[*row][*col].status == rf_ds_reconstructing || raidPtr->Disks[*row][*col].status == rf_ds_dist_spared || + (rf_copyback_in_progress && raidPtr->Disks[*row][*col].status == rf_ds_optimal)); + rf_remap_to_spare_space(layoutPtr, info, *row, FullTableID, TableID, BlockID, (base_suid) ? 1 : 0, SpareRegion, col, &outSU); + } else { + + outSU = base_suid; + outSU += FullTableID * fulltable_depth; /* offs to strt of FT */ + outSU += SpareSpace; /* skip rsvd spare space */ + outSU += TableID * info->TableDepthInPUs * layoutPtr->SUsPerPU; /* offs to strt of tble */ + outSU += info->OffsetTable[BlockID][BlockOffset] * layoutPtr->SUsPerPU; /* offs to the PU */ + } + outSU += TableOffset / (info->BlocksPerTable * info->PUsPerBlock); /* offs to the SU within + * a PU */ + + /* convert SUs to sectors, and, if not aligned to SU boundary, add in + * offset to sector. */ + *diskSector = outSU * layoutPtr->sectorsPerStripeUnit + (raidSector % layoutPtr->sectorsPerStripeUnit); + + RF_ASSERT(*col != -1); +} + + +/* prototyping this inexplicably causes the compile of the layout table (rf_layout.c) to fail */ +void +rf_MapParityDeclustered( + RF_Raid_t * raidPtr, + RF_RaidAddr_t raidSector, + RF_RowCol_t * row, + RF_RowCol_t * col, + RF_SectorNum_t * diskSector, + int remap) +{ + RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout); + RF_DeclusteredConfigInfo_t *info = (RF_DeclusteredConfigInfo_t *) layoutPtr->layoutSpecificInfo; + RF_StripeNum_t SUID = raidSector / layoutPtr->sectorsPerStripeUnit; + RF_StripeNum_t FullTableID, FullTableOffset, TableID, TableOffset; + RF_StripeNum_t BlockID, BlockOffset, RepIndex; + RF_StripeCount_t sus_per_fulltable = info->SUsPerFullTable; + RF_StripeCount_t fulltable_depth = info->FullTableDepthInPUs * layoutPtr->SUsPerPU; + RF_StripeNum_t base_suid = 0, outSU, SpareRegion = 0, SpareSpace = 0; + + rf_decluster_adjust_params(layoutPtr, &SUID, &sus_per_fulltable, &fulltable_depth, &base_suid); + + /* compute row & (possibly) spare space exactly as before */ + FullTableID = SUID / sus_per_fulltable; + if (raidPtr->numRow == 1) + *row = 0; /* avoid a mod and a div in the common case */ + else { + *row = FullTableID % raidPtr->numRow; + FullTableID /= raidPtr->numRow; /* convert to fulltable ID on + * this disk */ + } + if ((raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE)) { + SpareRegion = FullTableID / info->FullTablesPerSpareRegion; + SpareSpace = SpareRegion * info->SpareSpaceDepthPerRegionInSUs; + } + /* compute BlockID and RepIndex exactly as before */ + FullTableOffset = SUID % sus_per_fulltable; + TableID = FullTableOffset / info->SUsPerTable; + TableOffset = FullTableOffset - TableID * info->SUsPerTable; + /* TableOffset = FullTableOffset % info->SUsPerTable; */ + /* BlockID = (TableOffset / info->PUsPerBlock) % + * info->BlocksPerTable; */ + BlockID = TableOffset / info->PUsPerBlock; + /* BlockOffset = TableOffset % info->PUsPerBlock; */ + BlockOffset = TableOffset - BlockID * info->PUsPerBlock; + BlockID %= info->BlocksPerTable; + + /* the parity block is in the position indicated by RepIndex */ + RepIndex = (raidPtr->noRotate) ? info->PUsPerBlock : info->PUsPerBlock - TableID; + *col = info->LayoutTable[BlockID][RepIndex]; + + if (remap) { + RF_ASSERT(raidPtr->Disks[*row][*col].status == rf_ds_reconstructing || raidPtr->Disks[*row][*col].status == rf_ds_dist_spared || + (rf_copyback_in_progress && raidPtr->Disks[*row][*col].status == rf_ds_optimal)); + rf_remap_to_spare_space(layoutPtr, info, *row, FullTableID, TableID, BlockID, (base_suid) ? 1 : 0, SpareRegion, col, &outSU); + } else { + + /* compute sector as before, except use RepIndex instead of + * BlockOffset */ + outSU = base_suid; + outSU += FullTableID * fulltable_depth; + outSU += SpareSpace; /* skip rsvd spare space */ + outSU += TableID * info->TableDepthInPUs * layoutPtr->SUsPerPU; + outSU += info->OffsetTable[BlockID][RepIndex] * layoutPtr->SUsPerPU; + } + + outSU += TableOffset / (info->BlocksPerTable * info->PUsPerBlock); + *diskSector = outSU * layoutPtr->sectorsPerStripeUnit + (raidSector % layoutPtr->sectorsPerStripeUnit); + + RF_ASSERT(*col != -1); +} +/* returns an array of ints identifying the disks that comprise the stripe containing the indicated address. + * the caller must _never_ attempt to modify this array. + */ +void +rf_IdentifyStripeDeclustered( + RF_Raid_t * raidPtr, + RF_RaidAddr_t addr, + RF_RowCol_t ** diskids, + RF_RowCol_t * outRow) +{ + RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout); + RF_DeclusteredConfigInfo_t *info = (RF_DeclusteredConfigInfo_t *) layoutPtr->layoutSpecificInfo; + RF_StripeCount_t sus_per_fulltable = info->SUsPerFullTable; + RF_StripeCount_t fulltable_depth = info->FullTableDepthInPUs * layoutPtr->SUsPerPU; + RF_StripeNum_t base_suid = 0; + RF_StripeNum_t SUID = rf_RaidAddressToStripeUnitID(layoutPtr, addr); + RF_StripeNum_t stripeID, FullTableID; + int tableOffset; + + rf_decluster_adjust_params(layoutPtr, &SUID, &sus_per_fulltable, &fulltable_depth, &base_suid); + FullTableID = SUID / sus_per_fulltable; /* fulltable ID within array + * (across rows) */ + *outRow = FullTableID % raidPtr->numRow; + stripeID = rf_StripeUnitIDToStripeID(layoutPtr, SUID); /* find stripe offset + * into array */ + tableOffset = (stripeID % info->BlocksPerTable); /* find offset into + * block design table */ + *diskids = info->LayoutTable[tableOffset]; +} +/* This returns the default head-separation limit, which is measured + * in "required units for reconstruction". Each time a disk fetches + * a unit, it bumps a counter. The head-sep code prohibits any disk + * from getting more than headSepLimit counter values ahead of any + * other. + * + * We assume here that the number of floating recon buffers is already + * set. There are r stripes to be reconstructed in each table, and so + * if we have a total of B buffers, we can have at most B/r tables + * under recon at any one time. In each table, lambda units are required + * from each disk, so given B buffers, the head sep limit has to be + * (lambda*B)/r units. We subtract one to avoid weird boundary cases. + * + * for example, suppose were given 50 buffers, r=19, and lambda=4 as in + * the 20.5 design. There are 19 stripes/table to be reconstructed, so + * we can have 50/19 tables concurrently under reconstruction, which means + * we can allow the fastest disk to get 50/19 tables ahead of the slower + * disk. There are lambda "required units" for each disk, so the fastest + * disk can get 4*50/19 = 10 counter values ahead of the slowest. + * + * If numBufsToAccumulate is not 1, we need to limit the head sep further + * because multiple bufs will be required for each stripe under recon. + */ +RF_HeadSepLimit_t +rf_GetDefaultHeadSepLimitDeclustered( + RF_Raid_t * raidPtr) +{ + RF_DeclusteredConfigInfo_t *info = (RF_DeclusteredConfigInfo_t *) raidPtr->Layout.layoutSpecificInfo; + + return (info->Lambda * raidPtr->numFloatingReconBufs / info->TableDepthInPUs / rf_numBufsToAccumulate); +} +/* returns the default number of recon buffers to use. The value + * is somewhat arbitrary...it's intended to be large enough to allow + * for a reasonably large head-sep limit, but small enough that you + * don't use up all your system memory with buffers. + */ +int +rf_GetDefaultNumFloatingReconBuffersDeclustered(RF_Raid_t * raidPtr) +{ + return (100 * rf_numBufsToAccumulate); +} +/* sectors in the last fulltable of the array need to be handled + * specially since this fulltable can be incomplete. this function + * changes the values of certain params to handle this. + * + * the idea here is that MapSector et. al. figure out which disk the + * addressed unit lives on by computing the modulos of the unit number + * with the number of units per fulltable, table, etc. In the last + * fulltable, there are fewer units per fulltable, so we need to adjust + * the number of user data units per fulltable to reflect this. + * + * so, we (1) convert the fulltable size and depth parameters to + * the size of the partial fulltable at the end, (2) compute the + * disk sector offset where this fulltable starts, and (3) convert + * the users stripe unit number from an offset into the array to + * an offset into the last fulltable. + */ +void +rf_decluster_adjust_params( + RF_RaidLayout_t * layoutPtr, + RF_StripeNum_t * SUID, + RF_StripeCount_t * sus_per_fulltable, + RF_StripeCount_t * fulltable_depth, + RF_StripeNum_t * base_suid) +{ + RF_DeclusteredConfigInfo_t *info = (RF_DeclusteredConfigInfo_t *) layoutPtr->layoutSpecificInfo; + + if (*SUID >= info->FullTableLimitSUID) { + /* new full table size is size of last full table on disk */ + *sus_per_fulltable = info->ExtraTablesPerDisk * info->SUsPerTable; + + /* new full table depth is corresponding depth */ + *fulltable_depth = info->ExtraTablesPerDisk * info->TableDepthInPUs * layoutPtr->SUsPerPU; + + /* set up the new base offset */ + *base_suid = info->DiskOffsetOfLastFullTableInSUs; + + /* convert users array address to an offset into the last + * fulltable */ + *SUID -= info->FullTableLimitSUID; + } +} +/* + * map a stripe ID to a parity stripe ID. + * See comment above RaidAddressToParityStripeID in layout.c. + */ +void +rf_MapSIDToPSIDDeclustered( + RF_RaidLayout_t * layoutPtr, + RF_StripeNum_t stripeID, + RF_StripeNum_t * psID, + RF_ReconUnitNum_t * which_ru) +{ + RF_DeclusteredConfigInfo_t *info; + + info = (RF_DeclusteredConfigInfo_t *) layoutPtr->layoutSpecificInfo; + + *psID = (stripeID / (layoutPtr->SUsPerPU * info->BlocksPerTable)) + * info->BlocksPerTable + (stripeID % info->BlocksPerTable); + *which_ru = (stripeID % (info->BlocksPerTable * layoutPtr->SUsPerPU)) + / info->BlocksPerTable; + RF_ASSERT((*which_ru) < layoutPtr->SUsPerPU / layoutPtr->SUsPerRU); +} +/* + * Called from MapSector and MapParity to retarget an access at the spare unit. + * Modifies the "col" and "outSU" parameters only. + */ +void +rf_remap_to_spare_space( + RF_RaidLayout_t * layoutPtr, + RF_DeclusteredConfigInfo_t * info, + RF_RowCol_t row, + RF_StripeNum_t FullTableID, + RF_StripeNum_t TableID, + RF_SectorNum_t BlockID, + RF_StripeNum_t base_suid, + RF_StripeNum_t SpareRegion, + RF_RowCol_t * outCol, + RF_StripeNum_t * outSU) +{ + RF_StripeNum_t ftID, spareTableStartSU, TableInSpareRegion, lastSROffset, + which_ft; + + /* + * note that FullTableID and hence SpareRegion may have gotten + * tweaked by rf_decluster_adjust_params. We detect this by + * noticing that base_suid is not 0. + */ + if (base_suid == 0) { + ftID = FullTableID; + } else { + /* + * There may be > 1.0 full tables in the last (i.e. partial) + * spare region. find out which of these we're in. + */ + lastSROffset = info->NumCompleteSRs * info->SpareRegionDepthInSUs; + which_ft = (info->DiskOffsetOfLastFullTableInSUs - lastSROffset) / (info->FullTableDepthInPUs * layoutPtr->SUsPerPU); + + /* compute the actual full table ID */ + ftID = info->DiskOffsetOfLastFullTableInSUs / (info->FullTableDepthInPUs * layoutPtr->SUsPerPU) + which_ft; + SpareRegion = info->NumCompleteSRs; + } + TableInSpareRegion = (ftID * info->NumParityReps + TableID) % info->TablesPerSpareRegion; + + *outCol = info->SpareTable[TableInSpareRegion][BlockID].spareDisk; + RF_ASSERT(*outCol != -1); + + spareTableStartSU = (SpareRegion == info->NumCompleteSRs) ? + info->DiskOffsetOfLastFullTableInSUs + info->ExtraTablesPerDisk * info->TableDepthInPUs * layoutPtr->SUsPerPU : + (SpareRegion + 1) * info->SpareRegionDepthInSUs - info->SpareSpaceDepthPerRegionInSUs; + *outSU = spareTableStartSU + info->SpareTable[TableInSpareRegion][BlockID].spareBlockOffsetInSUs; + if (*outSU >= layoutPtr->stripeUnitsPerDisk) { + printf("rf_remap_to_spare_space: invalid remapped disk SU offset %ld\n", (long) *outSU); + } +} + +#endif /* (RF_INCLUDE_PARITY_DECLUSTERING > 0) || (RF_INCLUDE_PARITY_DECLUSTERING_PQ > 0) */ + + +int +rf_InstallSpareTable( + RF_Raid_t * raidPtr, + RF_RowCol_t frow, + RF_RowCol_t fcol) +{ + RF_DeclusteredConfigInfo_t *info = (RF_DeclusteredConfigInfo_t *) raidPtr->Layout.layoutSpecificInfo; + RF_SparetWait_t *req; + int retcode; + + RF_Malloc(req, sizeof(*req), (RF_SparetWait_t *)); + req->C = raidPtr->numCol; + req->G = raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; + req->fcol = fcol; + req->SUsPerPU = raidPtr->Layout.SUsPerPU; + req->TablesPerSpareRegion = info->TablesPerSpareRegion; + req->BlocksPerTable = info->BlocksPerTable; + req->TableDepthInPUs = info->TableDepthInPUs; + req->SpareSpaceDepthPerRegionInSUs = info->SpareSpaceDepthPerRegionInSUs; + + retcode = rf_GetSpareTableFromDaemon(req); + RF_ASSERT(!retcode); /* XXX -- fix this to recover gracefully -- + * XXX */ + return (retcode); +} +/* + * Invoked via ioctl to install a spare table in the kernel. + */ +int +rf_SetSpareTable(raidPtr, data) + RF_Raid_t *raidPtr; + void *data; +{ + RF_DeclusteredConfigInfo_t *info = (RF_DeclusteredConfigInfo_t *) raidPtr->Layout.layoutSpecificInfo; + RF_SpareTableEntry_t **ptrs; + int i, retcode; + + /* what we need to copyin is a 2-d array, so first copyin the user + * pointers to the rows in the table */ + RF_Malloc(ptrs, info->TablesPerSpareRegion * sizeof(RF_SpareTableEntry_t *), (RF_SpareTableEntry_t **)); + retcode = copyin((caddr_t) data, (caddr_t) ptrs, info->TablesPerSpareRegion * sizeof(RF_SpareTableEntry_t *)); + + if (retcode) + return (retcode); + + /* now allocate kernel space for the row pointers */ + RF_Malloc(info->SpareTable, info->TablesPerSpareRegion * sizeof(RF_SpareTableEntry_t *), (RF_SpareTableEntry_t **)); + + /* now allocate kernel space for each row in the table, and copy it in + * from user space */ + for (i = 0; i < info->TablesPerSpareRegion; i++) { + RF_Malloc(info->SpareTable[i], info->BlocksPerTable * sizeof(RF_SpareTableEntry_t), (RF_SpareTableEntry_t *)); + retcode = copyin(ptrs[i], info->SpareTable[i], info->BlocksPerTable * sizeof(RF_SpareTableEntry_t)); + if (retcode) { + info->SpareTable = NULL; /* blow off the memory + * we've allocated */ + return (retcode); + } + } + + /* free up the temporary array we used */ + RF_Free(ptrs, info->TablesPerSpareRegion * sizeof(RF_SpareTableEntry_t *)); + + return (0); +} + +RF_ReconUnitCount_t +rf_GetNumSpareRUsDeclustered(raidPtr) + RF_Raid_t *raidPtr; +{ + RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; + + return (((RF_DeclusteredConfigInfo_t *) layoutPtr->layoutSpecificInfo)->TotSparePUsPerDisk); +} + +void +rf_FreeSpareTable(raidPtr) + RF_Raid_t *raidPtr; +{ + long i; + RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; + RF_DeclusteredConfigInfo_t *info = (RF_DeclusteredConfigInfo_t *) layoutPtr->layoutSpecificInfo; + RF_SpareTableEntry_t **table = info->SpareTable; + + for (i = 0; i < info->TablesPerSpareRegion; i++) { + RF_Free(table[i], info->BlocksPerTable * sizeof(RF_SpareTableEntry_t)); + } + RF_Free(table, info->TablesPerSpareRegion * sizeof(RF_SpareTableEntry_t *)); + info->SpareTable = (RF_SpareTableEntry_t **) NULL; +} diff --git a/sys/dev/raidframe/rf_decluster.h b/sys/dev/raidframe/rf_decluster.h new file mode 100644 index 0000000..a630298 --- /dev/null +++ b/sys/dev/raidframe/rf_decluster.h @@ -0,0 +1,141 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_decluster.h,v 1.3 1999/02/05 00:06:09 oster Exp $ */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Mark Holland + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +/*---------------------------------------------------------------------- + * + * decluster.h -- header file for declustered layout code + * + * Adapted from raidSim version July 1994 + * Created 10-21-92 (MCH) + * + *--------------------------------------------------------------------*/ + +#ifndef _RF__RF_DECLUSTER_H_ +#define _RF__RF_DECLUSTER_H_ + +#include <dev/raidframe/rf_types.h> + +/* + * These structures define the tables used to locate the spare unit + * associated with a particular data or parity unit, and to perform + * the associated inverse mapping. + */ +struct RF_SpareTableEntry_s { + u_int spareDisk; /* disk to which this block is spared */ + u_int spareBlockOffsetInSUs; /* offset into spare table for that + * disk */ +}; +#define RF_SPAREMAP_NAME_LEN 128 + +/* this is the layout-specific info structure for the declustered layout. + */ +struct RF_DeclusteredConfigInfo_s { + RF_StripeCount_t groupSize; /* no. of stripe units per parity + * stripe */ + RF_RowCol_t **LayoutTable; /* the block design table */ + RF_RowCol_t **OffsetTable; /* the sector offset table */ + RF_RowCol_t **BlockTable; /* the block membership table */ + RF_StripeCount_t SUsPerFullTable; /* stripe units per full table */ + RF_StripeCount_t SUsPerTable; /* stripe units per table */ + RF_StripeCount_t PUsPerBlock; /* parity units per block */ + RF_StripeCount_t SUsPerBlock; /* stripe units per block */ + RF_StripeCount_t BlocksPerTable; /* block design tuples per + * table */ + RF_StripeCount_t NumParityReps; /* tables per full table */ + RF_StripeCount_t TableDepthInPUs; /* PUs on one disk in 1 table */ + RF_StripeCount_t FullTableDepthInPUs; /* PUs on one disk in 1 + * fulltable */ + RF_StripeCount_t FullTableLimitSUID; /* SU where partial fulltables + * start */ + RF_StripeCount_t ExtraTablesPerDisk; /* # of tables in last + * fulltable */ + RF_SectorNum_t DiskOffsetOfLastFullTableInSUs; /* disk offs of partial + * ft, if any */ + RF_StripeCount_t numCompleteFullTablesPerDisk; /* ft identifier of + * partial ft, if any */ + u_int Lambda; /* the pair count in the block design */ + + /* these are used only in the distributed-sparing case */ + RF_StripeCount_t FullTablesPerSpareRegion; /* # of ft's comprising + * 1 spare region */ + RF_StripeCount_t TablesPerSpareRegion; /* # of tables */ + RF_SectorCount_t SpareSpaceDepthPerRegionInSUs; /* spare + * space/disk/region */ + RF_SectorCount_t SpareRegionDepthInSUs; /* # of units/disk/region */ + RF_SectorNum_t DiskOffsetOfLastSpareSpaceChunkInSUs; /* locates sp space + * after partial ft */ + RF_StripeCount_t TotSparePUsPerDisk; /* total number of spare PUs + * per disk */ + RF_StripeCount_t NumCompleteSRs; + RF_SpareTableEntry_t **SpareTable; /* remap table for spare space */ + char sparemap_fname[RF_SPAREMAP_NAME_LEN]; /* where to find + * sparemap. not used in + * kernel */ +}; + +int +rf_ConfigureDeclustered(RF_ShutdownList_t ** listp, RF_Raid_t * raidPtr, + RF_Config_t * cfgPtr); +int +rf_ConfigureDeclusteredDS(RF_ShutdownList_t ** listp, RF_Raid_t * raidPtr, + RF_Config_t * cfgPtr); + +void +rf_MapSectorDeclustered(RF_Raid_t * raidPtr, RF_RaidAddr_t raidSector, + RF_RowCol_t * row, RF_RowCol_t * col, RF_SectorNum_t * diskSector, int remap); +void +rf_MapParityDeclustered(RF_Raid_t * raidPtr, RF_RaidAddr_t raidSector, + RF_RowCol_t * row, RF_RowCol_t * col, RF_SectorNum_t * diskSector, int remap); +void +rf_IdentifyStripeDeclustered(RF_Raid_t * raidPtr, RF_RaidAddr_t addr, + RF_RowCol_t ** diskids, RF_RowCol_t * outRow); +void +rf_MapSIDToPSIDDeclustered(RF_RaidLayout_t * layoutPtr, + RF_StripeNum_t stripeID, RF_StripeNum_t * psID, + RF_ReconUnitNum_t * which_ru); +int rf_InstallSpareTable(RF_Raid_t * raidPtr, RF_RowCol_t frow, RF_RowCol_t fcol); +void rf_FreeSpareTable(RF_Raid_t * raidPtr); + +RF_HeadSepLimit_t rf_GetDefaultHeadSepLimitDeclustered(RF_Raid_t * raidPtr); +int rf_GetDefaultNumFloatingReconBuffersDeclustered(RF_Raid_t * raidPtr); + +void +rf_decluster_adjust_params(RF_RaidLayout_t * layoutPtr, + RF_StripeNum_t * SUID, RF_StripeCount_t * sus_per_fulltable, + RF_StripeCount_t * fulltable_depth, RF_StripeNum_t * base_suid); +void +rf_remap_to_spare_space( + RF_RaidLayout_t * layoutPtr, + RF_DeclusteredConfigInfo_t * info, RF_RowCol_t row, RF_StripeNum_t FullTableID, + RF_StripeNum_t TableID, RF_SectorNum_t BlockID, RF_StripeNum_t base_suid, + RF_StripeNum_t SpareRegion, RF_RowCol_t * outCol, RF_StripeNum_t * outSU); +int rf_SetSpareTable(RF_Raid_t * raidPtr, void *data); +RF_ReconUnitCount_t rf_GetNumSpareRUsDeclustered(RF_Raid_t * raidPtr); + +#endif /* !_RF__RF_DECLUSTER_H_ */ diff --git a/sys/dev/raidframe/rf_declusterPQ.c b/sys/dev/raidframe/rf_declusterPQ.c new file mode 100644 index 0000000..77a03b8 --- /dev/null +++ b/sys/dev/raidframe/rf_declusterPQ.c @@ -0,0 +1,491 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_declusterPQ.c,v 1.5 2001/01/26 14:06:17 oster Exp $ */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Authors: Daniel Stodolsky, Mark Holland, Jim Zelenka + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +/*-------------------------------------------------- + * rf_declusterPQ.c + * + * mapping code for declustered P & Q or declustered EvenOdd + * much code borrowed from rf_decluster.c + * + *--------------------------------------------------*/ + +#include <dev/raidframe/rf_archs.h> +#include <dev/raidframe/rf_types.h> +#include <dev/raidframe/rf_raid.h> +#include <dev/raidframe/rf_configure.h> +#include <dev/raidframe/rf_decluster.h> +#include <dev/raidframe/rf_declusterPQ.h> +#include <dev/raidframe/rf_debugMem.h> +#include <dev/raidframe/rf_utils.h> +#include <dev/raidframe/rf_alloclist.h> +#include <dev/raidframe/rf_general.h> + +#if (RF_INCLUDE_PARITY_DECLUSTERING_PQ > 0) || (RF_INCLUDE_EVENODD > 0) +/* configuration code */ + +int +rf_ConfigureDeclusteredPQ( + RF_ShutdownList_t ** listp, + RF_Raid_t * raidPtr, + RF_Config_t * cfgPtr) +{ + RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout); + int b, v, k, r, lambda; /* block design params */ + int i, j, l; + int *first_avail_slot; + int complete_FT_count, SUID; + RF_DeclusteredConfigInfo_t *info; + int numCompleteFullTablesPerDisk; + int PUsPerDisk, spareRegionDepthInPUs, numCompleteSpareRegionsPerDisk = 0, + extraPUsPerDisk; + int totSparePUsPerDisk; + int diskOffsetOfLastFullTableInSUs, SpareSpaceInSUs; + char *cfgBuf = (char *) (cfgPtr->layoutSpecific); + + cfgBuf += RF_SPAREMAP_NAME_LEN; + + b = *((int *) cfgBuf); + cfgBuf += sizeof(int); + v = *((int *) cfgBuf); + cfgBuf += sizeof(int); + k = *((int *) cfgBuf); + cfgBuf += sizeof(int); + r = *((int *) cfgBuf); + cfgBuf += sizeof(int); + lambda = *((int *) cfgBuf); + cfgBuf += sizeof(int); + raidPtr->noRotate = *((int *) cfgBuf); + cfgBuf += sizeof(int); + + if (k <= 2) { + printf("RAIDFRAME: k=%d, minimum value 2\n", k); + return (EINVAL); + } + /* 1. create layout specific structure */ + RF_MallocAndAdd(info, sizeof(RF_DeclusteredConfigInfo_t), (RF_DeclusteredConfigInfo_t *), raidPtr->cleanupList); + if (info == NULL) + return (ENOMEM); + layoutPtr->layoutSpecificInfo = (void *) info; + + /* the sparemaps are generated assuming that parity is rotated, so we + * issue a warning if both distributed sparing and no-rotate are on at + * the same time */ + if ((raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) && raidPtr->noRotate) { + RF_ERRORMSG("Warning: distributed sparing specified without parity rotation.\n"); + } + if (raidPtr->numCol != v) { + RF_ERRORMSG2("RAID: config error: table element count (%d) not equal to no. of cols (%d)\n", v, raidPtr->numCol); + return (EINVAL); + } + /* 3. set up the values used in devRaidMap */ + info->BlocksPerTable = b; + info->NumParityReps = info->groupSize = k; + info->PUsPerBlock = k - 2; /* PQ */ + info->SUsPerTable = b * info->PUsPerBlock * layoutPtr->SUsPerPU; /* b blks, k-1 SUs each */ + info->SUsPerFullTable = k * info->SUsPerTable; /* rot k times */ + info->SUsPerBlock = info->PUsPerBlock * layoutPtr->SUsPerPU; + info->TableDepthInPUs = (b * k) / v; + info->FullTableDepthInPUs = info->TableDepthInPUs * k; /* k repetitions */ + + /* used only in distributed sparing case */ + info->FullTablesPerSpareRegion = (v - 1) / rf_gcd(r, v - 1); /* (v-1)/gcd fulltables */ + info->TablesPerSpareRegion = k * info->FullTablesPerSpareRegion; + info->SpareSpaceDepthPerRegionInSUs = (r * info->TablesPerSpareRegion / (v - 1)) * layoutPtr->SUsPerPU; + + /* check to make sure the block design is sufficiently small */ + if ((raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE)) { + if (info->FullTableDepthInPUs * layoutPtr->SUsPerPU + info->SpareSpaceDepthPerRegionInSUs > layoutPtr->stripeUnitsPerDisk) { + RF_ERRORMSG3("RAID: config error: Full Table depth (%d) + Spare Space (%d) larger than disk size (%d) (BD too big)\n", + (int) info->FullTableDepthInPUs, + (int) info->SpareSpaceDepthPerRegionInSUs, + (int) layoutPtr->stripeUnitsPerDisk); + return (EINVAL); + } + } else { + if (info->TableDepthInPUs * layoutPtr->SUsPerPU > layoutPtr->stripeUnitsPerDisk) { + RF_ERRORMSG2("RAID: config error: Table depth (%d) larger than disk size (%d) (BD too big)\n", + (int) (info->TableDepthInPUs * layoutPtr->SUsPerPU), + (int) layoutPtr->stripeUnitsPerDisk); + return (EINVAL); + } + } + + + /* compute the size of each disk, and the number of tables in the last + * fulltable (which need not be complete) */ + if ((raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE)) { + + PUsPerDisk = layoutPtr->stripeUnitsPerDisk / layoutPtr->SUsPerPU; + spareRegionDepthInPUs = (info->TablesPerSpareRegion * info->TableDepthInPUs + + (info->TablesPerSpareRegion * info->TableDepthInPUs) / (v - 1)); + info->SpareRegionDepthInSUs = spareRegionDepthInPUs * layoutPtr->SUsPerPU; + + numCompleteSpareRegionsPerDisk = PUsPerDisk / spareRegionDepthInPUs; + info->NumCompleteSRs = numCompleteSpareRegionsPerDisk; + extraPUsPerDisk = PUsPerDisk % spareRegionDepthInPUs; + + /* assume conservatively that we need the full amount of spare + * space in one region in order to provide spares for the + * partial spare region at the end of the array. We set "i" + * to the number of tables in the partial spare region. This + * may actually include some fulltables. */ + extraPUsPerDisk -= (info->SpareSpaceDepthPerRegionInSUs / layoutPtr->SUsPerPU); + if (extraPUsPerDisk <= 0) + i = 0; + else + i = extraPUsPerDisk / info->TableDepthInPUs; + + complete_FT_count = raidPtr->numRow * (numCompleteSpareRegionsPerDisk * (info->TablesPerSpareRegion / k) + i / k); + info->FullTableLimitSUID = complete_FT_count * info->SUsPerFullTable; + info->ExtraTablesPerDisk = i % k; + + /* note that in the last spare region, the spare space is + * complete even though data/parity space is not */ + totSparePUsPerDisk = (numCompleteSpareRegionsPerDisk + 1) * (info->SpareSpaceDepthPerRegionInSUs / layoutPtr->SUsPerPU); + info->TotSparePUsPerDisk = totSparePUsPerDisk; + + layoutPtr->stripeUnitsPerDisk = + ((complete_FT_count / raidPtr->numRow) * info->FullTableDepthInPUs + /* data & parity space */ + info->ExtraTablesPerDisk * info->TableDepthInPUs + + totSparePUsPerDisk /* spare space */ + ) * layoutPtr->SUsPerPU; + layoutPtr->dataStripeUnitsPerDisk = + (complete_FT_count * info->FullTableDepthInPUs + info->ExtraTablesPerDisk * info->TableDepthInPUs) + * layoutPtr->SUsPerPU * (k - 1) / k; + + } else { + /* non-dist spare case: force each disk to contain an + * integral number of tables */ + layoutPtr->stripeUnitsPerDisk /= (info->TableDepthInPUs * layoutPtr->SUsPerPU); + layoutPtr->stripeUnitsPerDisk *= (info->TableDepthInPUs * layoutPtr->SUsPerPU); + + /* compute the number of tables in the last fulltable, which + * need not be complete */ + complete_FT_count = + ((layoutPtr->stripeUnitsPerDisk / layoutPtr->SUsPerPU) / info->FullTableDepthInPUs) * raidPtr->numRow; + + info->FullTableLimitSUID = complete_FT_count * info->SUsPerFullTable; + info->ExtraTablesPerDisk = + ((layoutPtr->stripeUnitsPerDisk / layoutPtr->SUsPerPU) / info->TableDepthInPUs) % k; + } + + raidPtr->sectorsPerDisk = layoutPtr->stripeUnitsPerDisk * layoutPtr->sectorsPerStripeUnit; + + /* find the disk offset of the stripe unit where the last fulltable + * starts */ + numCompleteFullTablesPerDisk = complete_FT_count / raidPtr->numRow; + diskOffsetOfLastFullTableInSUs = numCompleteFullTablesPerDisk * info->FullTableDepthInPUs * layoutPtr->SUsPerPU; + if ((raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE)) { + SpareSpaceInSUs = numCompleteSpareRegionsPerDisk * info->SpareSpaceDepthPerRegionInSUs; + diskOffsetOfLastFullTableInSUs += SpareSpaceInSUs; + info->DiskOffsetOfLastSpareSpaceChunkInSUs = + diskOffsetOfLastFullTableInSUs + info->ExtraTablesPerDisk * info->TableDepthInPUs * layoutPtr->SUsPerPU; + } + info->DiskOffsetOfLastFullTableInSUs = diskOffsetOfLastFullTableInSUs; + info->numCompleteFullTablesPerDisk = numCompleteFullTablesPerDisk; + + /* 4. create and initialize the lookup tables */ + info->LayoutTable = rf_make_2d_array(b, k, raidPtr->cleanupList); + if (info->LayoutTable == NULL) + return (ENOMEM); + info->OffsetTable = rf_make_2d_array(b, k, raidPtr->cleanupList); + if (info->OffsetTable == NULL) + return (ENOMEM); + info->BlockTable = rf_make_2d_array(info->TableDepthInPUs * layoutPtr->SUsPerPU, raidPtr->numCol, raidPtr->cleanupList); + if (info->BlockTable == NULL) + return (ENOMEM); + + first_avail_slot = (int *) rf_make_1d_array(v, NULL); + if (first_avail_slot == NULL) + return (ENOMEM); + + for (i = 0; i < b; i++) + for (j = 0; j < k; j++) + info->LayoutTable[i][j] = *cfgBuf++; + + /* initialize offset table */ + for (i = 0; i < b; i++) + for (j = 0; j < k; j++) { + info->OffsetTable[i][j] = first_avail_slot[info->LayoutTable[i][j]]; + first_avail_slot[info->LayoutTable[i][j]]++; + } + + /* initialize block table */ + for (SUID = l = 0; l < layoutPtr->SUsPerPU; l++) { + for (i = 0; i < b; i++) { + for (j = 0; j < k; j++) { + info->BlockTable[(info->OffsetTable[i][j] * layoutPtr->SUsPerPU) + l] + [info->LayoutTable[i][j]] = SUID; + } + SUID++; + } + } + + rf_free_1d_array(first_avail_slot, v); + + /* 5. set up the remaining redundant-but-useful parameters */ + + raidPtr->totalSectors = (k * complete_FT_count + raidPtr->numRow * info->ExtraTablesPerDisk) * + info->SUsPerTable * layoutPtr->sectorsPerStripeUnit; + layoutPtr->numStripe = (raidPtr->totalSectors / layoutPtr->sectorsPerStripeUnit) / (k - 2); + + /* strange evaluation order below to try and minimize overflow + * problems */ + + layoutPtr->dataSectorsPerStripe = (k - 2) * layoutPtr->sectorsPerStripeUnit; + layoutPtr->bytesPerStripeUnit = layoutPtr->sectorsPerStripeUnit << raidPtr->logBytesPerSector; + layoutPtr->numDataCol = k - 2; + layoutPtr->numParityCol = 2; + + return (0); +} + +int +rf_GetDefaultNumFloatingReconBuffersPQ(RF_Raid_t * raidPtr) +{ + int def_decl; + + def_decl = rf_GetDefaultNumFloatingReconBuffersDeclustered(raidPtr); + return (RF_MAX(3 * raidPtr->numCol, def_decl)); +} + +void +rf_MapSectorDeclusteredPQ( + RF_Raid_t * raidPtr, + RF_RaidAddr_t raidSector, + RF_RowCol_t * row, + RF_RowCol_t * col, + RF_SectorNum_t * diskSector, + int remap) +{ + RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout); + RF_DeclusteredConfigInfo_t *info = (RF_DeclusteredConfigInfo_t *) layoutPtr->layoutSpecificInfo; + RF_StripeNum_t SUID = raidSector / layoutPtr->sectorsPerStripeUnit; + RF_StripeNum_t FullTableID, FullTableOffset, TableID, TableOffset; + RF_StripeNum_t BlockID, BlockOffset, RepIndex; + RF_StripeCount_t sus_per_fulltable = info->SUsPerFullTable; + RF_StripeCount_t fulltable_depth = info->FullTableDepthInPUs * layoutPtr->SUsPerPU; + RF_StripeNum_t base_suid = 0, outSU, SpareRegion = 0, SpareSpace = 0; + + rf_decluster_adjust_params(layoutPtr, &SUID, &sus_per_fulltable, &fulltable_depth, &base_suid); + + FullTableID = SUID / sus_per_fulltable; /* fulltable ID within array + * (across rows) */ + *row = FullTableID % raidPtr->numRow; + FullTableID /= raidPtr->numRow; /* convert to fulltable ID on this + * disk */ + if ((raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE)) { + SpareRegion = FullTableID / info->FullTablesPerSpareRegion; + SpareSpace = SpareRegion * info->SpareSpaceDepthPerRegionInSUs; + } + FullTableOffset = SUID % sus_per_fulltable; + TableID = FullTableOffset / info->SUsPerTable; + TableOffset = FullTableOffset - TableID * info->SUsPerTable; + BlockID = TableOffset / info->PUsPerBlock; + BlockOffset = TableOffset - BlockID * info->PUsPerBlock; + BlockID %= info->BlocksPerTable; + RF_ASSERT(BlockOffset < info->groupSize - 2); + /* + TableIDs go from 0 .. GroupSize-1 inclusive. + PUsPerBlock is k-2. + We want the tableIDs to rotate from the + right, so use GroupSize + */ + RepIndex = info->groupSize - 1 - TableID; + RF_ASSERT(RepIndex >= 0); + if (!raidPtr->noRotate) { + if (TableID == 0) + BlockOffset++; /* P on last drive, Q on first */ + else + BlockOffset += ((BlockOffset >= RepIndex) ? 2 : 0); /* skip over PQ */ + RF_ASSERT(BlockOffset < info->groupSize); + *col = info->LayoutTable[BlockID][BlockOffset]; + } + /* remap to distributed spare space if indicated */ + if (remap) { + rf_remap_to_spare_space(layoutPtr, info, *row, FullTableID, TableID, BlockID, (base_suid) ? 1 : 0, SpareRegion, col, &outSU); + } else { + + outSU = base_suid; + outSU += FullTableID * fulltable_depth; /* offs to strt of FT */ + outSU += SpareSpace; /* skip rsvd spare space */ + outSU += TableID * info->TableDepthInPUs * layoutPtr->SUsPerPU; /* offs to strt of tble */ + outSU += info->OffsetTable[BlockID][BlockOffset] * layoutPtr->SUsPerPU; /* offs to the PU */ + } + outSU += TableOffset / (info->BlocksPerTable * info->PUsPerBlock); /* offs to the SU within + * a PU */ + + /* convert SUs to sectors, and, if not aligned to SU boundary, add in + * offset to sector */ + *diskSector = outSU * layoutPtr->sectorsPerStripeUnit + (raidSector % layoutPtr->sectorsPerStripeUnit); +} + + +void +rf_MapParityDeclusteredPQ( + RF_Raid_t * raidPtr, + RF_RaidAddr_t raidSector, + RF_RowCol_t * row, + RF_RowCol_t * col, + RF_SectorNum_t * diskSector, + int remap) +{ + RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout); + RF_DeclusteredConfigInfo_t *info = (RF_DeclusteredConfigInfo_t *) layoutPtr->layoutSpecificInfo; + RF_StripeNum_t SUID = raidSector / layoutPtr->sectorsPerStripeUnit; + RF_StripeNum_t FullTableID, FullTableOffset, TableID, TableOffset; + RF_StripeNum_t BlockID, BlockOffset, RepIndex; + RF_StripeCount_t sus_per_fulltable = info->SUsPerFullTable; + RF_StripeCount_t fulltable_depth = info->FullTableDepthInPUs * layoutPtr->SUsPerPU; + RF_StripeNum_t base_suid = 0, outSU, SpareRegion, SpareSpace = 0; + + rf_decluster_adjust_params(layoutPtr, &SUID, &sus_per_fulltable, &fulltable_depth, &base_suid); + + /* compute row & (possibly) spare space exactly as before */ + FullTableID = SUID / sus_per_fulltable; + *row = FullTableID % raidPtr->numRow; + FullTableID /= raidPtr->numRow; /* convert to fulltable ID on this + * disk */ + if ((raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE)) { + SpareRegion = FullTableID / info->FullTablesPerSpareRegion; + SpareSpace = SpareRegion * info->SpareSpaceDepthPerRegionInSUs; + } + /* compute BlockID and RepIndex exactly as before */ + FullTableOffset = SUID % sus_per_fulltable; + TableID = FullTableOffset / info->SUsPerTable; + TableOffset = FullTableOffset - TableID * info->SUsPerTable; + BlockID = TableOffset / info->PUsPerBlock; + BlockOffset = TableOffset - BlockID * info->PUsPerBlock; + BlockID %= info->BlocksPerTable; + + /* the parity block is in the position indicated by RepIndex */ + RepIndex = (raidPtr->noRotate) ? info->PUsPerBlock : info->groupSize - 1 - TableID; + *col = info->LayoutTable[BlockID][RepIndex]; + + if (remap) + RF_PANIC(); + + /* compute sector as before, except use RepIndex instead of + * BlockOffset */ + outSU = base_suid; + outSU += FullTableID * fulltable_depth; + outSU += SpareSpace; /* skip rsvd spare space */ + outSU += TableID * info->TableDepthInPUs * layoutPtr->SUsPerPU; + outSU += info->OffsetTable[BlockID][RepIndex] * layoutPtr->SUsPerPU; + outSU += TableOffset / (info->BlocksPerTable * info->PUsPerBlock); + + *diskSector = outSU * layoutPtr->sectorsPerStripeUnit + (raidSector % layoutPtr->sectorsPerStripeUnit); +} + +void +rf_MapQDeclusteredPQ( + RF_Raid_t * raidPtr, + RF_RaidAddr_t raidSector, + RF_RowCol_t * row, + RF_RowCol_t * col, + RF_SectorNum_t * diskSector, + int remap) +{ + RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout); + RF_DeclusteredConfigInfo_t *info = (RF_DeclusteredConfigInfo_t *) layoutPtr->layoutSpecificInfo; + RF_StripeNum_t SUID = raidSector / layoutPtr->sectorsPerStripeUnit; + RF_StripeNum_t FullTableID, FullTableOffset, TableID, TableOffset; + RF_StripeNum_t BlockID, BlockOffset, RepIndex, RepIndexQ; + RF_StripeCount_t sus_per_fulltable = info->SUsPerFullTable; + RF_StripeCount_t fulltable_depth = info->FullTableDepthInPUs * layoutPtr->SUsPerPU; + RF_StripeNum_t base_suid = 0, outSU, SpareRegion, SpareSpace = 0; + + rf_decluster_adjust_params(layoutPtr, &SUID, &sus_per_fulltable, &fulltable_depth, &base_suid); + + /* compute row & (possibly) spare space exactly as before */ + FullTableID = SUID / sus_per_fulltable; + *row = FullTableID % raidPtr->numRow; + FullTableID /= raidPtr->numRow; /* convert to fulltable ID on this + * disk */ + if ((raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE)) { + SpareRegion = FullTableID / info->FullTablesPerSpareRegion; + SpareSpace = SpareRegion * info->SpareSpaceDepthPerRegionInSUs; + } + /* compute BlockID and RepIndex exactly as before */ + FullTableOffset = SUID % sus_per_fulltable; + TableID = FullTableOffset / info->SUsPerTable; + TableOffset = FullTableOffset - TableID * info->SUsPerTable; + BlockID = TableOffset / info->PUsPerBlock; + BlockOffset = TableOffset - BlockID * info->PUsPerBlock; + BlockID %= info->BlocksPerTable; + + /* the q block is in the position indicated by RepIndex */ + RepIndex = (raidPtr->noRotate) ? info->PUsPerBlock : info->groupSize - 1 - TableID; + RepIndexQ = ((RepIndex == (info->groupSize - 1)) ? 0 : RepIndex + 1); + *col = info->LayoutTable[BlockID][RepIndexQ]; + + if (remap) + RF_PANIC(); + + /* compute sector as before, except use RepIndex instead of + * BlockOffset */ + outSU = base_suid; + outSU += FullTableID * fulltable_depth; + outSU += SpareSpace; /* skip rsvd spare space */ + outSU += TableID * info->TableDepthInPUs * layoutPtr->SUsPerPU; + outSU += TableOffset / (info->BlocksPerTable * info->PUsPerBlock); + + outSU += info->OffsetTable[BlockID][RepIndexQ] * layoutPtr->SUsPerPU; + *diskSector = outSU * layoutPtr->sectorsPerStripeUnit + (raidSector % layoutPtr->sectorsPerStripeUnit); +} +/* returns an array of ints identifying the disks that comprise the stripe containing the indicated address. + * the caller must _never_ attempt to modify this array. + */ +void +rf_IdentifyStripeDeclusteredPQ( + RF_Raid_t * raidPtr, + RF_RaidAddr_t addr, + RF_RowCol_t ** diskids, + RF_RowCol_t * outRow) +{ + RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout); + RF_DeclusteredConfigInfo_t *info = (RF_DeclusteredConfigInfo_t *) layoutPtr->layoutSpecificInfo; + RF_StripeCount_t sus_per_fulltable = info->SUsPerFullTable; + RF_StripeCount_t fulltable_depth = info->FullTableDepthInPUs * layoutPtr->SUsPerPU; + RF_StripeNum_t base_suid = 0; + RF_StripeNum_t SUID = rf_RaidAddressToStripeUnitID(layoutPtr, addr); + RF_StripeNum_t stripeID, FullTableID; + int tableOffset; + + rf_decluster_adjust_params(layoutPtr, &SUID, &sus_per_fulltable, &fulltable_depth, &base_suid); + FullTableID = SUID / sus_per_fulltable; /* fulltable ID within array + * (across rows) */ + *outRow = FullTableID % raidPtr->numRow; + stripeID = rf_StripeUnitIDToStripeID(layoutPtr, SUID); /* find stripe offset + * into array */ + tableOffset = (stripeID % info->BlocksPerTable); /* find offset into + * block design table */ + *diskids = info->LayoutTable[tableOffset]; +} +#endif /* (RF_INCLUDE_PARITY_DECLUSTERING_PQ > 0) || (RF_INCLUDE_EVENODD > 0) */ diff --git a/sys/dev/raidframe/rf_declusterPQ.h b/sys/dev/raidframe/rf_declusterPQ.h new file mode 100644 index 0000000..6edef0b --- /dev/null +++ b/sys/dev/raidframe/rf_declusterPQ.h @@ -0,0 +1,52 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_declusterPQ.h,v 1.3 1999/02/05 00:06:09 oster Exp $ */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Daniel Stodolsky, Mark Holland + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +#ifndef _RF__RF_DECLUSTERPQ_H_ +#define _RF__RF_DECLUSTERPQ_H_ + +#include <dev/raidframe/rf_types.h> + +int +rf_ConfigureDeclusteredPQ(RF_ShutdownList_t ** listp, RF_Raid_t * raidPtr, + RF_Config_t * cfgPtr); +int rf_GetDefaultNumFloatingReconBuffersPQ(RF_Raid_t * raidPtr); +void +rf_MapSectorDeclusteredPQ(RF_Raid_t * raidPtr, RF_RaidAddr_t raidSector, + RF_RowCol_t * row, RF_RowCol_t * col, RF_SectorNum_t * diskSector, int remap); +void +rf_MapParityDeclusteredPQ(RF_Raid_t * raidPtr, RF_RaidAddr_t raidSector, + RF_RowCol_t * row, RF_RowCol_t * col, RF_SectorNum_t * diskSector, int remap); +void +rf_MapQDeclusteredPQ(RF_Raid_t * raidPtr, RF_RaidAddr_t raidSector, + RF_RowCol_t * row, RF_RowCol_t * col, RF_SectorNum_t * diskSector, int remap); +void +rf_IdentifyStripeDeclusteredPQ(RF_Raid_t * raidPtr, RF_RaidAddr_t addr, + RF_RowCol_t ** diskids, RF_RowCol_t * outRow); + +#endif /* !_RF__RF_DECLUSTERPQ_H_ */ diff --git a/sys/dev/raidframe/rf_desc.h b/sys/dev/raidframe/rf_desc.h new file mode 100644 index 0000000..8a6951b --- /dev/null +++ b/sys/dev/raidframe/rf_desc.h @@ -0,0 +1,113 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_desc.h,v 1.5 2000/01/09 00:00:18 oster Exp $ */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Mark Holland + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +#ifndef _RF__RF_DESC_H_ +#define _RF__RF_DESC_H_ + +#include <dev/raidframe/rf_archs.h> +#include <dev/raidframe/rf_types.h> +#include <dev/raidframe/rf_etimer.h> +#include <dev/raidframe/rf_dag.h> + +struct RF_RaidReconDesc_s { + RF_Raid_t *raidPtr; /* raid device descriptor */ + RF_RowCol_t row; /* row of failed disk */ + RF_RowCol_t col; /* col of failed disk */ + int state; /* how far along the reconstruction operation + * has gotten */ + RF_RaidDisk_t *spareDiskPtr; /* describes target disk for recon + * (not used in dist sparing) */ + int numDisksDone; /* the number of surviving disks that have + * completed their work */ + RF_RowCol_t srow; /* row ID of the spare disk (not used in dist + * sparing) */ + RF_RowCol_t scol; /* col ID of the spare disk (not used in dist + * sparing) */ + /* + * Prevent recon from hogging CPU + */ + RF_Etimer_t recon_exec_timer; + RF_uint64 reconExecTimerRunning; + RF_uint64 reconExecTicks; + RF_uint64 maxReconExecTicks; + +#if RF_RECON_STATS > 0 + RF_uint64 hsStallCount; /* head sep stall count */ + RF_uint64 numReconExecDelays; + RF_uint64 numReconEventWaits; +#endif /* RF_RECON_STATS > 0 */ + RF_RaidReconDesc_t *next; +}; + +struct RF_RaidAccessDesc_s { + RF_Raid_t *raidPtr; /* raid device descriptor */ + RF_IoType_t type; /* read or write */ + RF_RaidAddr_t raidAddress; /* starting address in raid address + * space */ + RF_SectorCount_t numBlocks; /* number of blocks (sectors) to + * transfer */ + RF_StripeCount_t numStripes; /* number of stripes involved in + * access */ + caddr_t bufPtr; /* pointer to data buffer */ + RF_RaidAccessFlags_t flags; /* flags controlling operation */ + int state; /* index into states telling how far along the + * RAID operation has gotten */ + RF_AccessState_t *states; /* array of states to be run */ + int status; /* pass/fail status of the last operation */ + RF_DagList_t *dagArray; /* array of dag lists, one list per stripe */ + RF_AccessStripeMapHeader_t *asmap; /* the asm for this I/O */ + void *bp; /* buf pointer for this RAID acc. ignored + * outside the kernel */ + RF_DagHeader_t **paramDAG; /* allows the DAG to be returned to + * the caller after I/O completion */ + RF_AccessStripeMapHeader_t **paramASM; /* allows the ASM to be + * returned to the caller + * after I/O completion */ + RF_AccTraceEntry_t tracerec; /* perf monitoring information for a + * user access (not for dag stats) */ + void (*callbackFunc) (RF_CBParam_t); /* callback function for this + * I/O */ + void *callbackArg; /* arg to give to callback func */ + + RF_AllocListElem_t *cleanupList; /* memory to be freed at the + * end of the access */ + + RF_RaidAccessDesc_t *next; + RF_RaidAccessDesc_t *head; + + int numPending; + + RF_DECLARE_MUTEX(mutex) /* these are used to implement + * blocking I/O */ + RF_DECLARE_COND(cond) + int async_flag; + + RF_Etimer_t timer; /* used for timing this access */ +}; +#endif /* !_RF__RF_DESC_H_ */ diff --git a/sys/dev/raidframe/rf_diskqueue.c b/sys/dev/raidframe/rf_diskqueue.c new file mode 100644 index 0000000..3359ae5 --- /dev/null +++ b/sys/dev/raidframe/rf_diskqueue.c @@ -0,0 +1,591 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_diskqueue.c,v 1.13 2000/03/04 04:22:34 oster Exp $ */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Mark Holland + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +/**************************************************************************** + * + * rf_diskqueue.c -- higher-level disk queue code + * + * the routines here are a generic wrapper around the actual queueing + * routines. The code here implements thread scheduling, synchronization, + * and locking ops (see below) on top of the lower-level queueing code. + * + * to support atomic RMW, we implement "locking operations". When a + * locking op is dispatched to the lower levels of the driver, the + * queue is locked, and no further I/Os are dispatched until the queue + * receives & completes a corresponding "unlocking operation". This + * code relies on the higher layers to guarantee that a locking op + * will always be eventually followed by an unlocking op. The model + * is that the higher layers are structured so locking and unlocking + * ops occur in pairs, i.e. an unlocking op cannot be generated until + * after a locking op reports completion. There is no good way to + * check to see that an unlocking op "corresponds" to the op that + * currently has the queue locked, so we make no such attempt. Since + * by definition there can be only one locking op outstanding on a + * disk, this should not be a problem. + * + * In the kernel, we allow multiple I/Os to be concurrently dispatched + * to the disk driver. In order to support locking ops in this + * environment, when we decide to do a locking op, we stop dispatching + * new I/Os and wait until all dispatched I/Os have completed before + * dispatching the locking op. + * + * Unfortunately, the code is different in the 3 different operating + * states (user level, kernel, simulator). In the kernel, I/O is + * non-blocking, and we have no disk threads to dispatch for us. + * Therefore, we have to dispatch new I/Os to the scsi driver at the + * time of enqueue, and also at the time of completion. At user + * level, I/O is blocking, and so only the disk threads may dispatch + * I/Os. Thus at user level, all we can do at enqueue time is enqueue + * and wake up the disk thread to do the dispatch. + * + ****************************************************************************/ + +#include <dev/raidframe/rf_types.h> +#include <dev/raidframe/rf_threadstuff.h> +#include <dev/raidframe/rf_raid.h> +#include <dev/raidframe/rf_diskqueue.h> +#include <dev/raidframe/rf_alloclist.h> +#include <dev/raidframe/rf_acctrace.h> +#include <dev/raidframe/rf_etimer.h> +#include <dev/raidframe/rf_configure.h> +#include <dev/raidframe/rf_general.h> +#include <dev/raidframe/rf_freelist.h> +#include <dev/raidframe/rf_debugprint.h> +#include <dev/raidframe/rf_shutdown.h> +#include <dev/raidframe/rf_cvscan.h> +#include <dev/raidframe/rf_sstf.h> +#include <dev/raidframe/rf_fifo.h> +#include <dev/raidframe/rf_kintf.h> + +static int init_dqd(RF_DiskQueueData_t *); +static void clean_dqd(RF_DiskQueueData_t *); +static void rf_ShutdownDiskQueueSystem(void *); + +#define Dprintf1(s,a) if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL) +#define Dprintf2(s,a,b) if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL) +#define Dprintf3(s,a,b,c) if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL) + +/***************************************************************************** + * + * the disk queue switch defines all the functions used in the + * different queueing disciplines queue ID, init routine, enqueue + * routine, dequeue routine + * + ****************************************************************************/ + +static RF_DiskQueueSW_t diskqueuesw[] = { + {"fifo", /* FIFO */ + rf_FifoCreate, + rf_FifoEnqueue, + rf_FifoDequeue, + rf_FifoPeek, + rf_FifoPromote}, + + {"cvscan", /* cvscan */ + rf_CvscanCreate, + rf_CvscanEnqueue, + rf_CvscanDequeue, + rf_CvscanPeek, + rf_CvscanPromote}, + + {"sstf", /* shortest seek time first */ + rf_SstfCreate, + rf_SstfEnqueue, + rf_SstfDequeue, + rf_SstfPeek, + rf_SstfPromote}, + + {"scan", /* SCAN (two-way elevator) */ + rf_ScanCreate, + rf_SstfEnqueue, + rf_ScanDequeue, + rf_ScanPeek, + rf_SstfPromote}, + + {"cscan", /* CSCAN (one-way elevator) */ + rf_CscanCreate, + rf_SstfEnqueue, + rf_CscanDequeue, + rf_CscanPeek, + rf_SstfPromote}, + +}; +#define NUM_DISK_QUEUE_TYPES (sizeof(diskqueuesw)/sizeof(RF_DiskQueueSW_t)) + +static RF_FreeList_t *rf_dqd_freelist; + +#define RF_MAX_FREE_DQD 256 +#define RF_DQD_INC 16 +#define RF_DQD_INITIAL 64 + +#if defined(__FreeBSD__) && __FreeBSD_version > 500005 +#include <sys/bio.h> +#endif + +#include <sys/buf.h> + +static int +init_dqd(dqd) + RF_DiskQueueData_t *dqd; +{ + + dqd->bp = (RF_Buf_t) malloc(sizeof(RF_Buf_t), M_RAIDFRAME, M_NOWAIT); + if (dqd->bp == NULL) { + return (ENOMEM); + } + memset(dqd->bp, 0, sizeof(RF_Buf_t)); /* if you don't do it, nobody + * else will.. */ + return (0); +} + +static void +clean_dqd(dqd) + RF_DiskQueueData_t *dqd; +{ + free(dqd->bp, M_RAIDFRAME); +} +/* configures a single disk queue */ + +int +rf_ConfigureDiskQueue( + RF_Raid_t * raidPtr, + RF_DiskQueue_t * diskqueue, + RF_RowCol_t r, /* row & col -- debug only. BZZT not any + * more... */ + RF_RowCol_t c, + RF_DiskQueueSW_t * p, + RF_SectorCount_t sectPerDisk, + dev_t dev, + int maxOutstanding, + RF_ShutdownList_t ** listp, + RF_AllocListElem_t * clList) +{ + int rc; + + diskqueue->row = r; + diskqueue->col = c; + diskqueue->qPtr = p; + diskqueue->qHdr = (p->Create) (sectPerDisk, clList, listp); + diskqueue->dev = dev; + diskqueue->numOutstanding = 0; + diskqueue->queueLength = 0; + diskqueue->maxOutstanding = maxOutstanding; + diskqueue->curPriority = RF_IO_NORMAL_PRIORITY; + diskqueue->nextLockingOp = NULL; + diskqueue->unlockingOp = NULL; + diskqueue->numWaiting = 0; + diskqueue->flags = 0; + diskqueue->raidPtr = raidPtr; + diskqueue->rf_cinfo = &raidPtr->raid_cinfo[r][c]; + rc = rf_create_managed_mutex(listp, &diskqueue->mutex); + if (rc) { + RF_ERRORMSG3("Unable to init mutex file %s line %d rc=%d\n", __FILE__, + __LINE__, rc); + return (rc); + } + rc = rf_create_managed_cond(listp, &diskqueue->cond); + if (rc) { + RF_ERRORMSG3("Unable to init cond file %s line %d rc=%d\n", __FILE__, + __LINE__, rc); + return (rc); + } + return (0); +} + +static void +rf_ShutdownDiskQueueSystem(ignored) + void *ignored; +{ + RF_FREELIST_DESTROY_CLEAN(rf_dqd_freelist, next, (RF_DiskQueueData_t *), clean_dqd); +} + +int +rf_ConfigureDiskQueueSystem(listp) + RF_ShutdownList_t **listp; +{ + int rc; + + RF_FREELIST_CREATE(rf_dqd_freelist, RF_MAX_FREE_DQD, + RF_DQD_INC, sizeof(RF_DiskQueueData_t)); + if (rf_dqd_freelist == NULL) + return (ENOMEM); + rc = rf_ShutdownCreate(listp, rf_ShutdownDiskQueueSystem, NULL); + if (rc) { + RF_ERRORMSG3("Unable to add to shutdown list file %s line %d rc=%d\n", + __FILE__, __LINE__, rc); + rf_ShutdownDiskQueueSystem(NULL); + return (rc); + } + RF_FREELIST_PRIME_INIT(rf_dqd_freelist, RF_DQD_INITIAL, next, + (RF_DiskQueueData_t *), init_dqd); + return (0); +} + +int +rf_ConfigureDiskQueues( + RF_ShutdownList_t ** listp, + RF_Raid_t * raidPtr, + RF_Config_t * cfgPtr) +{ + RF_DiskQueue_t **diskQueues, *spareQueues; + RF_DiskQueueSW_t *p; + RF_RowCol_t r, c; + int rc, i; + + raidPtr->maxQueueDepth = cfgPtr->maxOutstandingDiskReqs; + + for (p = NULL, i = 0; i < NUM_DISK_QUEUE_TYPES; i++) { + if (!strcmp(diskqueuesw[i].queueType, cfgPtr->diskQueueType)) { + p = &diskqueuesw[i]; + break; + } + } + if (p == NULL) { + RF_ERRORMSG2("Unknown queue type \"%s\". Using %s\n", cfgPtr->diskQueueType, diskqueuesw[0].queueType); + p = &diskqueuesw[0]; + } + raidPtr->qType = p; + RF_CallocAndAdd(diskQueues, raidPtr->numRow, sizeof(RF_DiskQueue_t *), (RF_DiskQueue_t **), raidPtr->cleanupList); + if (diskQueues == NULL) { + return (ENOMEM); + } + raidPtr->Queues = diskQueues; + for (r = 0; r < raidPtr->numRow; r++) { + RF_CallocAndAdd(diskQueues[r], raidPtr->numCol + + ((r == 0) ? RF_MAXSPARE : 0), + sizeof(RF_DiskQueue_t), (RF_DiskQueue_t *), + raidPtr->cleanupList); + if (diskQueues[r] == NULL) + return (ENOMEM); + for (c = 0; c < raidPtr->numCol; c++) { + rc = rf_ConfigureDiskQueue(raidPtr, &diskQueues[r][c], + r, c, p, + raidPtr->sectorsPerDisk, + raidPtr->Disks[r][c].dev, + cfgPtr->maxOutstandingDiskReqs, + listp, raidPtr->cleanupList); + if (rc) + return (rc); + } + } + + spareQueues = &raidPtr->Queues[0][raidPtr->numCol]; + for (r = 0; r < raidPtr->numSpare; r++) { + rc = rf_ConfigureDiskQueue(raidPtr, &spareQueues[r], + 0, raidPtr->numCol + r, p, + raidPtr->sectorsPerDisk, + raidPtr->Disks[0][raidPtr->numCol + r].dev, + cfgPtr->maxOutstandingDiskReqs, listp, + raidPtr->cleanupList); + if (rc) + return (rc); + } + return (0); +} +/* Enqueue a disk I/O + * + * Unfortunately, we have to do things differently in the different + * environments (simulator, user-level, kernel). + * At user level, all I/O is blocking, so we have 1 or more threads/disk + * and the thread that enqueues is different from the thread that dequeues. + * In the kernel, I/O is non-blocking and so we'd like to have multiple + * I/Os outstanding on the physical disks when possible. + * + * when any request arrives at a queue, we have two choices: + * dispatch it to the lower levels + * queue it up + * + * kernel rules for when to do what: + * locking request: queue empty => dispatch and lock queue, + * else queue it + * unlocking req : always dispatch it + * normal req : queue empty => dispatch it & set priority + * queue not full & priority is ok => dispatch it + * else queue it + * + * user-level rules: + * always enqueue. In the special case of an unlocking op, enqueue + * in a special way that will cause the unlocking op to be the next + * thing dequeued. + * + * simulator rules: + * Do the same as at user level, with the sleeps and wakeups suppressed. + */ +void +rf_DiskIOEnqueue(queue, req, pri) + RF_DiskQueue_t *queue; + RF_DiskQueueData_t *req; + int pri; +{ + RF_ETIMER_START(req->qtime); + RF_ASSERT(req->type == RF_IO_TYPE_NOP || req->numSector); + req->priority = pri; + + if (rf_queueDebug && (req->numSector == 0)) { + printf("Warning: Enqueueing zero-sector access\n"); + } + /* + * kernel + */ + RF_LOCK_QUEUE_MUTEX(queue, "DiskIOEnqueue"); + /* locking request */ + if (RF_LOCKING_REQ(req)) { + if (RF_QUEUE_EMPTY(queue)) { + Dprintf3("Dispatching pri %d locking op to r %d c %d (queue empty)\n", pri, queue->row, queue->col); + RF_LOCK_QUEUE(queue); + rf_DispatchKernelIO(queue, req); + } else { + queue->queueLength++; /* increment count of number + * of requests waiting in this + * queue */ + Dprintf3("Enqueueing pri %d locking op to r %d c %d (queue not empty)\n", pri, queue->row, queue->col); + req->queue = (void *) queue; + (queue->qPtr->Enqueue) (queue->qHdr, req, pri); + } + } + /* unlocking request */ + else + if (RF_UNLOCKING_REQ(req)) { /* we'll do the actual unlock + * when this I/O completes */ + Dprintf3("Dispatching pri %d unlocking op to r %d c %d\n", pri, queue->row, queue->col); + RF_ASSERT(RF_QUEUE_LOCKED(queue)); + rf_DispatchKernelIO(queue, req); + } + /* normal request */ + else + if (RF_OK_TO_DISPATCH(queue, req)) { + Dprintf3("Dispatching pri %d regular op to r %d c %d (ok to dispatch)\n", pri, queue->row, queue->col); + rf_DispatchKernelIO(queue, req); + } else { + queue->queueLength++; /* increment count of + * number of requests + * waiting in this queue */ + Dprintf3("Enqueueing pri %d regular op to r %d c %d (not ok to dispatch)\n", pri, queue->row, queue->col); + req->queue = (void *) queue; + (queue->qPtr->Enqueue) (queue->qHdr, req, pri); + } + RF_UNLOCK_QUEUE_MUTEX(queue, "DiskIOEnqueue"); +} + + +/* get the next set of I/Os started, kernel version only */ +void +rf_DiskIOComplete(queue, req, status) + RF_DiskQueue_t *queue; + RF_DiskQueueData_t *req; + int status; +{ + int done = 0; + + RF_LOCK_QUEUE_MUTEX(queue, "DiskIOComplete"); + + /* unlock the queue: (1) after an unlocking req completes (2) after a + * locking req fails */ + if (RF_UNLOCKING_REQ(req) || (RF_LOCKING_REQ(req) && status)) { + Dprintf2("DiskIOComplete: unlocking queue at r %d c %d\n", queue->row, queue->col); + RF_ASSERT(RF_QUEUE_LOCKED(queue) && (queue->unlockingOp == NULL)); + RF_UNLOCK_QUEUE(queue); + } + queue->numOutstanding--; + RF_ASSERT(queue->numOutstanding >= 0); + + /* dispatch requests to the disk until we find one that we can't. */ + /* no reason to continue once we've filled up the queue */ + /* no reason to even start if the queue is locked */ + + while (!done && !RF_QUEUE_FULL(queue) && !RF_QUEUE_LOCKED(queue)) { + if (queue->nextLockingOp) { + req = queue->nextLockingOp; + queue->nextLockingOp = NULL; + Dprintf3("DiskIOComplete: a pri %d locking req was pending at r %d c %d\n", req->priority, queue->row, queue->col); + } else { + req = (queue->qPtr->Dequeue) (queue->qHdr); + if (req != NULL) { + Dprintf3("DiskIOComplete: extracting pri %d req from queue at r %d c %d\n", req->priority, queue->row, queue->col); + } else { + Dprintf1("DiskIOComplete: no more requests to extract.\n", ""); + } + } + if (req) { + queue->queueLength--; /* decrement count of number + * of requests waiting in this + * queue */ + RF_ASSERT(queue->queueLength >= 0); + } + if (!req) + done = 1; + else + if (RF_LOCKING_REQ(req)) { + if (RF_QUEUE_EMPTY(queue)) { /* dispatch it */ + Dprintf3("DiskIOComplete: dispatching pri %d locking req to r %d c %d (queue empty)\n", req->priority, queue->row, queue->col); + RF_LOCK_QUEUE(queue); + rf_DispatchKernelIO(queue, req); + done = 1; + } else { /* put it aside to wait for + * the queue to drain */ + Dprintf3("DiskIOComplete: postponing pri %d locking req to r %d c %d\n", req->priority, queue->row, queue->col); + RF_ASSERT(queue->nextLockingOp == NULL); + queue->nextLockingOp = req; + done = 1; + } + } else + if (RF_UNLOCKING_REQ(req)) { /* should not happen: + * unlocking ops should + * not get queued */ + RF_ASSERT(RF_QUEUE_LOCKED(queue)); /* support it anyway for + * the future */ + Dprintf3("DiskIOComplete: dispatching pri %d unl req to r %d c %d (SHOULD NOT SEE THIS)\n", req->priority, queue->row, queue->col); + rf_DispatchKernelIO(queue, req); + done = 1; + } else + if (RF_OK_TO_DISPATCH(queue, req)) { + Dprintf3("DiskIOComplete: dispatching pri %d regular req to r %d c %d (ok to dispatch)\n", req->priority, queue->row, queue->col); + rf_DispatchKernelIO(queue, req); + } else { /* we can't dispatch it, + * so just re-enqueue + * it. */ + /* potential trouble here if + * disk queues batch reqs */ + Dprintf3("DiskIOComplete: re-enqueueing pri %d regular req to r %d c %d\n", req->priority, queue->row, queue->col); + queue->queueLength++; + (queue->qPtr->Enqueue) (queue->qHdr, req, req->priority); + done = 1; + } + } + + RF_UNLOCK_QUEUE_MUTEX(queue, "DiskIOComplete"); +} +/* promotes accesses tagged with the given parityStripeID from low priority + * to normal priority. This promotion is optional, meaning that a queue + * need not implement it. If there is no promotion routine associated with + * a queue, this routine does nothing and returns -1. + */ +int +rf_DiskIOPromote(queue, parityStripeID, which_ru) + RF_DiskQueue_t *queue; + RF_StripeNum_t parityStripeID; + RF_ReconUnitNum_t which_ru; +{ + int retval; + + if (!queue->qPtr->Promote) + return (-1); + RF_LOCK_QUEUE_MUTEX(queue, "DiskIOPromote"); + retval = (queue->qPtr->Promote) (queue->qHdr, parityStripeID, which_ru); + RF_UNLOCK_QUEUE_MUTEX(queue, "DiskIOPromote"); + return (retval); +} + +RF_DiskQueueData_t * +rf_CreateDiskQueueData( + RF_IoType_t typ, + RF_SectorNum_t ssect, + RF_SectorCount_t nsect, + caddr_t buf, + RF_StripeNum_t parityStripeID, + RF_ReconUnitNum_t which_ru, + int (*wakeF) (void *, int), + void *arg, + RF_DiskQueueData_t * next, + RF_AccTraceEntry_t * tracerec, + void *raidPtr, + RF_DiskQueueDataFlags_t flags, + void *kb_proc) +{ + RF_DiskQueueData_t *p; + + RF_FREELIST_GET_INIT(rf_dqd_freelist, p, next, (RF_DiskQueueData_t *), init_dqd); + + p->sectorOffset = ssect + rf_protectedSectors; + p->numSector = nsect; + p->type = typ; + p->buf = buf; + p->parityStripeID = parityStripeID; + p->which_ru = which_ru; + p->CompleteFunc = wakeF; + p->argument = arg; + p->next = next; + p->tracerec = tracerec; + p->priority = RF_IO_NORMAL_PRIORITY; + p->AuxFunc = NULL; + p->buf2 = NULL; + p->raidPtr = raidPtr; + p->flags = flags; + p->b_proc = kb_proc; + return (p); +} + +RF_DiskQueueData_t * +rf_CreateDiskQueueDataFull( + RF_IoType_t typ, + RF_SectorNum_t ssect, + RF_SectorCount_t nsect, + caddr_t buf, + RF_StripeNum_t parityStripeID, + RF_ReconUnitNum_t which_ru, + int (*wakeF) (void *, int), + void *arg, + RF_DiskQueueData_t * next, + RF_AccTraceEntry_t * tracerec, + int priority, + int (*AuxFunc) (void *,...), + caddr_t buf2, + void *raidPtr, + RF_DiskQueueDataFlags_t flags, + void *kb_proc) +{ + RF_DiskQueueData_t *p; + + RF_FREELIST_GET_INIT(rf_dqd_freelist, p, next, (RF_DiskQueueData_t *), init_dqd); + + p->sectorOffset = ssect + rf_protectedSectors; + p->numSector = nsect; + p->type = typ; + p->buf = buf; + p->parityStripeID = parityStripeID; + p->which_ru = which_ru; + p->CompleteFunc = wakeF; + p->argument = arg; + p->next = next; + p->tracerec = tracerec; + p->priority = priority; + p->AuxFunc = AuxFunc; + p->buf2 = buf2; + p->raidPtr = raidPtr; + p->flags = flags; + p->b_proc = kb_proc; + return (p); +} + +void +rf_FreeDiskQueueData(p) + RF_DiskQueueData_t *p; +{ + RF_FREELIST_FREE_CLEAN(rf_dqd_freelist, p, next, clean_dqd); +} diff --git a/sys/dev/raidframe/rf_diskqueue.h b/sys/dev/raidframe/rf_diskqueue.h new file mode 100644 index 0000000..7b162b0 --- /dev/null +++ b/sys/dev/raidframe/rf_diskqueue.h @@ -0,0 +1,208 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_diskqueue.h,v 1.5 2000/02/13 04:53:57 oster Exp $ */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Mark Holland + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +/***************************************************************************************** + * + * rf_diskqueue.h -- header file for disk queues + * + * see comments in rf_diskqueue.c + * + ****************************************************************************************/ + + +#ifndef _RF__RF_DISKQUEUE_H_ +#define _RF__RF_DISKQUEUE_H_ + +#include <dev/raidframe/rf_threadstuff.h> +#include <dev/raidframe/rf_acctrace.h> +#include <dev/raidframe/rf_alloclist.h> +#include <dev/raidframe/rf_types.h> +#include <dev/raidframe/rf_etimer.h> + +#include <dev/raidframe/rf_bsd.h> + +#define RF_IO_NORMAL_PRIORITY 1 +#define RF_IO_LOW_PRIORITY 0 + +/* the data held by a disk queue entry */ +struct RF_DiskQueueData_s { + RF_SectorNum_t sectorOffset; /* sector offset into the disk */ + RF_SectorCount_t numSector; /* number of sectors to read/write */ + RF_IoType_t type; /* read/write/nop */ + caddr_t buf; /* buffer pointer */ + RF_StripeNum_t parityStripeID; /* the RAID parity stripe ID this + * access is for */ + RF_ReconUnitNum_t which_ru; /* which RU within this parity stripe */ + int priority; /* the priority of this request */ + int (*CompleteFunc) (void *, int); /* function to be called upon + * completion */ + int (*AuxFunc) (void *,...); /* function called upon + * completion of the first I/O + * of a Read_Op_Write pair */ + void *argument; /* argument to be passed to CompleteFunc */ + RF_Raid_t *raidPtr; /* needed for simulation */ + RF_AccTraceEntry_t *tracerec; /* perf mon only */ + RF_Etimer_t qtime; /* perf mon only - time request is in queue */ + long entryTime; + RF_DiskQueueData_t *next; + RF_DiskQueueData_t *prev; + caddr_t buf2; /* for read-op-write */ + dev_t dev; /* the device number for in-kernel version */ + RF_DiskQueue_t *queue; /* the disk queue to which this req is + * targeted */ + RF_DiskQueueDataFlags_t flags; /* flags controlling operation */ + + struct proc *b_proc; /* the b_proc from the original bp passed into + * the driver for this I/O */ + /* XXX Should this be changed to the opaque + * RF_Thread_t ? */ + RF_Buf_t bp; /* a bp to use to get this I/O done */ +}; +#define RF_LOCK_DISK_QUEUE 0x01 +#define RF_UNLOCK_DISK_QUEUE 0x02 + +/* note: "Create" returns type-specific queue header pointer cast to (void *) */ +struct RF_DiskQueueSW_s { + RF_DiskQueueType_t queueType; + void *(*Create) (RF_SectorCount_t, RF_AllocListElem_t *, RF_ShutdownList_t **); /* creation routine -- + * one call per queue in + * system */ + void (*Enqueue) (void *, RF_DiskQueueData_t *, int); /* enqueue routine */ + RF_DiskQueueData_t *(*Dequeue) (void *); /* dequeue routine */ + RF_DiskQueueData_t *(*Peek) (void *); /* peek at head of queue */ + + /* the rest are optional: they improve performance, but the driver + * will deal with it if they don't exist */ + int (*Promote) (void *, RF_StripeNum_t, RF_ReconUnitNum_t); /* promotes priority of + * tagged accesses */ +}; + +struct RF_DiskQueue_s { + RF_DiskQueueSW_t *qPtr; /* access point to queue functions */ + void *qHdr; /* queue header, of whatever type */ + RF_DECLARE_MUTEX(mutex) /* mutex locking data structures */ + RF_DECLARE_COND(cond) /* condition variable for + * synchronization */ + long numOutstanding; /* number of I/Os currently outstanding on + * disk */ + long maxOutstanding; /* max # of I/Os that can be outstanding on a + * disk (in-kernel only) */ + int curPriority; /* the priority of accs all that are currently + * outstanding */ + long queueLength; /* number of requests in queue */ + RF_DiskQueueData_t *nextLockingOp; /* a locking op that has + * arrived at the head of the + * queue & is waiting for + * drainage */ + RF_DiskQueueData_t *unlockingOp; /* used at user level to + * communicate unlocking op + * b/w user (or dag exec) & + * disk threads */ + int numWaiting; /* number of threads waiting on this variable. + * user-level only */ + RF_DiskQueueFlags_t flags; /* terminate, locked */ + RF_Raid_t *raidPtr; /* associated array */ + dev_t dev; /* device number for kernel version */ + RF_SectorNum_t last_deq_sector; /* last sector number dequeued or + * dispatched */ + int row, col; /* debug only */ + struct raidcinfo *rf_cinfo; /* disks component info.. */ +}; +#define RF_DQ_LOCKED 0x02 /* no new accs allowed until queue is + * explicitly unlocked */ + +/* macros setting & returning information about queues and requests */ +#define RF_QUEUE_LOCKED(_q) ((_q)->flags & RF_DQ_LOCKED) +#define RF_QUEUE_EMPTY(_q) (((_q)->numOutstanding == 0) && ((_q)->nextLockingOp == NULL) && !RF_QUEUE_LOCKED(_q)) +#define RF_QUEUE_FULL(_q) ((_q)->numOutstanding == (_q)->maxOutstanding) + +#define RF_LOCK_QUEUE(_q) (_q)->flags |= RF_DQ_LOCKED +#define RF_UNLOCK_QUEUE(_q) (_q)->flags &= ~RF_DQ_LOCKED + +#define RF_LOCK_QUEUE_MUTEX(_q_,_wh_) RF_LOCK_MUTEX((_q_)->mutex) +#define RF_UNLOCK_QUEUE_MUTEX(_q_,_wh_) RF_UNLOCK_MUTEX((_q_)->mutex) + +#define RF_LOCKING_REQ(_r) ((_r)->flags & RF_LOCK_DISK_QUEUE) +#define RF_UNLOCKING_REQ(_r) ((_r)->flags & RF_UNLOCK_DISK_QUEUE) + +/* whether it is ok to dispatch a regular request */ +#define RF_OK_TO_DISPATCH(_q_,_r_) \ + (RF_QUEUE_EMPTY(_q_) || \ + (!RF_QUEUE_FULL(_q_) && ((_r_)->priority >= (_q_)->curPriority))) + +int rf_ConfigureDiskQueueSystem(RF_ShutdownList_t ** listp); + +void rf_TerminateDiskQueues(RF_Raid_t * raidPtr); + +int +rf_ConfigureDiskQueues(RF_ShutdownList_t ** listp, RF_Raid_t * raidPtr, + RF_Config_t * cfgPtr); + +void rf_DiskIOEnqueue(RF_DiskQueue_t * queue, RF_DiskQueueData_t * req, int pri); + + +void rf_DiskIOComplete(RF_DiskQueue_t * queue, RF_DiskQueueData_t * req, int status); + +int +rf_DiskIOPromote(RF_DiskQueue_t * queue, RF_StripeNum_t parityStripeID, + RF_ReconUnitNum_t which_ru); + +RF_DiskQueueData_t * +rf_CreateDiskQueueData(RF_IoType_t typ, RF_SectorNum_t ssect, + RF_SectorCount_t nsect, caddr_t buf, + RF_StripeNum_t parityStripeID, + RF_ReconUnitNum_t which_ru, + int (*wakeF) (void *, int), + void *arg, RF_DiskQueueData_t * next, + RF_AccTraceEntry_t * tracerec, + void *raidPtr, RF_DiskQueueDataFlags_t flags, + void *kb_proc); + +RF_DiskQueueData_t * +rf_CreateDiskQueueDataFull(RF_IoType_t typ, RF_SectorNum_t ssect, + RF_SectorCount_t nsect, caddr_t buf, + RF_StripeNum_t parityStripeID, + RF_ReconUnitNum_t which_ru, + int (*wakeF) (void *, int), + void *arg, RF_DiskQueueData_t * next, + RF_AccTraceEntry_t * tracerec, + int priority, int (*AuxFunc) (void *,...), + caddr_t buf2, void *raidPtr, + RF_DiskQueueDataFlags_t flags, void *kb_proc); + +void +rf_FreeDiskQueueData(RF_DiskQueueData_t * p); + +int +rf_ConfigureDiskQueue(RF_Raid_t *, RF_DiskQueue_t *, RF_RowCol_t, + RF_RowCol_t, RF_DiskQueueSW_t *, + RF_SectorCount_t, dev_t, int, + RF_ShutdownList_t **, + RF_AllocListElem_t *); +#endif /* !_RF__RF_DISKQUEUE_H_ */ diff --git a/sys/dev/raidframe/rf_disks.c b/sys/dev/raidframe/rf_disks.c new file mode 100644 index 0000000..dd0ea15 --- /dev/null +++ b/sys/dev/raidframe/rf_disks.c @@ -0,0 +1,1138 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_disks.c,v 1.34 2000/12/05 01:35:56 oster Exp $ */ +/*- + * Copyright (c) 1999 The NetBSD Foundation, Inc. + * All rights reserved. + * + * This code is derived from software contributed to The NetBSD Foundation + * by Greg Oster + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * 3. All advertising materials mentioning features or use of this software + * must display the following acknowledgement: + * This product includes software developed by the NetBSD + * Foundation, Inc. and its contributors. + * 4. Neither the name of The NetBSD Foundation nor the names of its + * contributors may be used to endorse or promote products derived + * from this software without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS + * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED + * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR + * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS + * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + * POSSIBILITY OF SUCH DAMAGE. + */ + +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Mark Holland + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +/*************************************************************** + * rf_disks.c -- code to perform operations on the actual disks + ***************************************************************/ + +#include <dev/raidframe/rf_types.h> +#include <dev/raidframe/rf_raid.h> +#include <dev/raidframe/rf_alloclist.h> +#include <dev/raidframe/rf_utils.h> +#include <dev/raidframe/rf_configure.h> +#include <dev/raidframe/rf_general.h> +#include <dev/raidframe/rf_options.h> +#include <dev/raidframe/rf_kintf.h> +#include <dev/raidframe/rf_bsd.h> + +#include <sys/types.h> +#include <sys/param.h> +#include <sys/systm.h> +#include <sys/proc.h> +#if defined(__NetBSD__) +#include <sys/ioctl.h> +#elif defined(__FreeBSD__) +#include <sys/ioccom.h> +#include <sys/filio.h> +#endif +#include <sys/fcntl.h> +#include <sys/vnode.h> + +static int rf_AllocDiskStructures(RF_Raid_t *, RF_Config_t *); +static void rf_print_label_status( RF_Raid_t *, int, int, char *, + RF_ComponentLabel_t *); +static int rf_check_label_vitals( RF_Raid_t *, int, int, char *, + RF_ComponentLabel_t *, int, int ); + +#define DPRINTF6(a,b,c,d,e,f) if (rf_diskDebug) printf(a,b,c,d,e,f) +#define DPRINTF7(a,b,c,d,e,f,g) if (rf_diskDebug) printf(a,b,c,d,e,f,g) + +/************************************************************************** + * + * initialize the disks comprising the array + * + * We want the spare disks to have regular row,col numbers so that we can + * easily substitue a spare for a failed disk. But, the driver code assumes + * throughout that the array contains numRow by numCol _non-spare_ disks, so + * it's not clear how to fit in the spares. This is an unfortunate holdover + * from raidSim. The quick and dirty fix is to make row zero bigger than the + * rest, and put all the spares in it. This probably needs to get changed + * eventually. + * + **************************************************************************/ + +int +rf_ConfigureDisks( listp, raidPtr, cfgPtr ) + RF_ShutdownList_t **listp; + RF_Raid_t *raidPtr; + RF_Config_t *cfgPtr; +{ + RF_RaidDisk_t **disks; + RF_SectorCount_t min_numblks = (RF_SectorCount_t) 0x7FFFFFFFFFFFLL; + RF_RowCol_t r, c; + int bs, ret; + unsigned i, count, foundone = 0, numFailuresThisRow; + int force; + + force = cfgPtr->force; + + ret = rf_AllocDiskStructures(raidPtr, cfgPtr); + if (ret) + goto fail; + + disks = raidPtr->Disks; + + for (r = 0; r < raidPtr->numRow; r++) { + numFailuresThisRow = 0; + for (c = 0; c < raidPtr->numCol; c++) { + ret = rf_ConfigureDisk(raidPtr, + &cfgPtr->devnames[r][c][0], + &disks[r][c], r, c); + + if (ret) + goto fail; + + if (disks[r][c].status == rf_ds_optimal) { + raidread_component_label( + raidPtr->raid_cinfo[r][c].ci_dev, + raidPtr->raid_cinfo[r][c].ci_vp, + &raidPtr->raid_cinfo[r][c].ci_label); + } + + if (disks[r][c].status != rf_ds_optimal) { + numFailuresThisRow++; + } else { + if (disks[r][c].numBlocks < min_numblks) + min_numblks = disks[r][c].numBlocks; + DPRINTF7("Disk at row %d col %d: dev %s numBlocks %ld blockSize %d (%ld MB)\n", + r, c, disks[r][c].devname, + (long int) disks[r][c].numBlocks, + disks[r][c].blockSize, + (long int) disks[r][c].numBlocks * + disks[r][c].blockSize / 1024 / 1024); + } + } + /* XXX fix for n-fault tolerant */ + /* XXX this should probably check to see how many failures + we can handle for this configuration! */ + if (numFailuresThisRow > 0) + raidPtr->status[r] = rf_rs_degraded; + } + + /* all disks must be the same size & have the same block size, bs must + * be a power of 2 */ + bs = 0; + for (foundone = r = 0; !foundone && r < raidPtr->numRow; r++) { + for (c = 0; !foundone && c < raidPtr->numCol; c++) { + if (disks[r][c].status == rf_ds_optimal) { + bs = disks[r][c].blockSize; + foundone = 1; + } + } + } + if (!foundone) { + RF_ERRORMSG("RAIDFRAME: Did not find any live disks in the array.\n"); + ret = EINVAL; + goto fail; + } + for (count = 0, i = 1; i; i <<= 1) + if (bs & i) + count++; + if (count != 1) { + RF_ERRORMSG1("Error: block size on disks (%d) must be a power of 2\n", bs); + ret = EINVAL; + goto fail; + } + + if (rf_CheckLabels( raidPtr, cfgPtr )) { + printf("raid%d: There were fatal errors\n", raidPtr->raidid); + if (force != 0) { + printf("raid%d: Fatal errors being ignored.\n", + raidPtr->raidid); + } else { + ret = EINVAL; + goto fail; + } + } + + for (r = 0; r < raidPtr->numRow; r++) { + for (c = 0; c < raidPtr->numCol; c++) { + if (disks[r][c].status == rf_ds_optimal) { + if (disks[r][c].blockSize != bs) { + RF_ERRORMSG2("Error: block size of disk at r %d c %d different from disk at r 0 c 0\n", r, c); + ret = EINVAL; + goto fail; + } + if (disks[r][c].numBlocks != min_numblks) { + RF_ERRORMSG3("WARNING: truncating disk at r %d c %d to %d blocks\n", + r, c, (int) min_numblks); + disks[r][c].numBlocks = min_numblks; + } + } + } + } + + raidPtr->sectorsPerDisk = min_numblks; + raidPtr->logBytesPerSector = ffs(bs) - 1; + raidPtr->bytesPerSector = bs; + raidPtr->sectorMask = bs - 1; + return (0); + +fail: + + rf_UnconfigureVnodes( raidPtr ); + + return (ret); +} + + +/**************************************************************************** + * set up the data structures describing the spare disks in the array + * recall from the above comment that the spare disk descriptors are stored + * in row zero, which is specially expanded to hold them. + ****************************************************************************/ +int +rf_ConfigureSpareDisks( listp, raidPtr, cfgPtr ) + RF_ShutdownList_t ** listp; + RF_Raid_t * raidPtr; + RF_Config_t * cfgPtr; +{ + int i, ret; + unsigned int bs; + RF_RaidDisk_t *disks; + int num_spares_done; + + num_spares_done = 0; + + /* The space for the spares should have already been allocated by + * ConfigureDisks() */ + + disks = &raidPtr->Disks[0][raidPtr->numCol]; + for (i = 0; i < raidPtr->numSpare; i++) { + ret = rf_ConfigureDisk(raidPtr, &cfgPtr->spare_names[i][0], + &disks[i], 0, raidPtr->numCol + i); + if (ret) + goto fail; + if (disks[i].status != rf_ds_optimal) { + RF_ERRORMSG1("Warning: spare disk %s failed TUR\n", + &cfgPtr->spare_names[i][0]); + } else { + disks[i].status = rf_ds_spare; /* change status to + * spare */ + DPRINTF6("Spare Disk %d: dev %s numBlocks %ld blockSize %d (%ld MB)\n", i, + disks[i].devname, + (long int) disks[i].numBlocks, disks[i].blockSize, + (long int) disks[i].numBlocks * + disks[i].blockSize / 1024 / 1024); + } + num_spares_done++; + } + + /* check sizes and block sizes on spare disks */ + bs = 1 << raidPtr->logBytesPerSector; + for (i = 0; i < raidPtr->numSpare; i++) { + if (disks[i].blockSize != bs) { + RF_ERRORMSG3("Block size of %d on spare disk %s is not the same as on other disks (%d)\n", disks[i].blockSize, disks[i].devname, bs); + ret = EINVAL; + goto fail; + } + if (disks[i].numBlocks < raidPtr->sectorsPerDisk) { + RF_ERRORMSG3("Spare disk %s (%d blocks) is too small to serve as a spare (need %ld blocks)\n", + disks[i].devname, disks[i].blockSize, + (long int) raidPtr->sectorsPerDisk); + ret = EINVAL; + goto fail; + } else + if (disks[i].numBlocks > raidPtr->sectorsPerDisk) { + RF_ERRORMSG2("Warning: truncating spare disk %s to %ld blocks\n", disks[i].devname, (long int) raidPtr->sectorsPerDisk); + + disks[i].numBlocks = raidPtr->sectorsPerDisk; + } + } + + return (0); + +fail: + + /* Release the hold on the main components. We've failed to allocate + * a spare, and since we're failing, we need to free things.. + + XXX failing to allocate a spare is *not* that big of a deal... + We *can* survive without it, if need be, esp. if we get hot + adding working. + + If we don't fail out here, then we need a way to remove this spare... + that should be easier to do here than if we are "live"... + + */ + + rf_UnconfigureVnodes( raidPtr ); + + return (ret); +} + +static int +rf_AllocDiskStructures(raidPtr, cfgPtr) + RF_Raid_t *raidPtr; + RF_Config_t *cfgPtr; +{ + RF_RaidDisk_t **disks; + int ret; + int r; + + RF_CallocAndAdd(disks, raidPtr->numRow, sizeof(RF_RaidDisk_t *), + (RF_RaidDisk_t **), raidPtr->cleanupList); + if (disks == NULL) { + ret = ENOMEM; + goto fail; + } + raidPtr->Disks = disks; + /* get space for the device-specific stuff... */ + RF_CallocAndAdd(raidPtr->raid_cinfo, raidPtr->numRow, + sizeof(struct raidcinfo *), (struct raidcinfo **), + raidPtr->cleanupList); + if (raidPtr->raid_cinfo == NULL) { + ret = ENOMEM; + goto fail; + } + + for (r = 0; r < raidPtr->numRow; r++) { + /* We allocate RF_MAXSPARE on the first row so that we + have room to do hot-swapping of spares */ + RF_CallocAndAdd(disks[r], raidPtr->numCol + + ((r == 0) ? RF_MAXSPARE : 0), + sizeof(RF_RaidDisk_t), (RF_RaidDisk_t *), + raidPtr->cleanupList); + if (disks[r] == NULL) { + ret = ENOMEM; + goto fail; + } + /* get more space for device specific stuff.. */ + RF_CallocAndAdd(raidPtr->raid_cinfo[r], + raidPtr->numCol + ((r == 0) ? raidPtr->numSpare : 0), + sizeof(struct raidcinfo), (struct raidcinfo *), + raidPtr->cleanupList); + if (raidPtr->raid_cinfo[r] == NULL) { + ret = ENOMEM; + goto fail; + } + } + return(0); +fail: + rf_UnconfigureVnodes( raidPtr ); + + return(ret); +} + + +/* configure a single disk during auto-configuration at boot */ +int +rf_AutoConfigureDisks(raidPtr, cfgPtr, auto_config) + RF_Raid_t *raidPtr; + RF_Config_t *cfgPtr; + RF_AutoConfig_t *auto_config; +{ + RF_RaidDisk_t **disks; + RF_RaidDisk_t *diskPtr; + RF_RowCol_t r, c; + RF_SectorCount_t min_numblks = (RF_SectorCount_t) 0x7FFFFFFFFFFFLL; + int bs, ret; + int numFailuresThisRow; + int force; + RF_AutoConfig_t *ac; + int parity_good; + int mod_counter; + int mod_counter_found; + + rf_printf(0, "Starting autoconfiguration of RAID set...\n"); + force = cfgPtr->force; + + ret = rf_AllocDiskStructures(raidPtr, cfgPtr); + if (ret) + goto fail; + + disks = raidPtr->Disks; + + /* assume the parity will be fine.. */ + parity_good = RF_RAID_CLEAN; + + /* Check for mod_counters that are too low */ + mod_counter_found = 0; + mod_counter = 0; + ac = auto_config; + while(ac!=NULL) { + if (mod_counter_found==0) { + mod_counter = ac->clabel->mod_counter; + mod_counter_found = 1; + } else { + if (ac->clabel->mod_counter > mod_counter) { + mod_counter = ac->clabel->mod_counter; + } + } + ac->flag = 0; /* clear the general purpose flag */ + ac = ac->next; + } + + bs = 0; + for (r = 0; r < raidPtr->numRow; r++) { + numFailuresThisRow = 0; + for (c = 0; c < raidPtr->numCol; c++) { + diskPtr = &disks[r][c]; + + /* find this row/col in the autoconfig */ + rf_printf(1, "Looking for %d,%d in autoconfig\n",r,c); + ac = auto_config; + while(ac!=NULL) { + if (ac->clabel==NULL) { + /* big-time bad news. */ + goto fail; + } + if ((ac->clabel->row == r) && + (ac->clabel->column == c) && + (ac->clabel->mod_counter == mod_counter)) { + /* it's this one... */ + /* flag it as 'used', so we don't + free it later. */ + ac->flag = 1; + rf_printf(1, "Found: %s at %d,%d\n", + ac->devname, r, c); + break; + } + ac=ac->next; + } + + if (ac==NULL) { + /* we didn't find an exact match with a + correct mod_counter above... can we + find one with an incorrect mod_counter + to use instead? (this one, if we find + it, will be marked as failed once the + set configures) + */ + + ac = auto_config; + while(ac!=NULL) { + if (ac->clabel==NULL) { + /* big-time bad news. */ + goto fail; + } + if ((ac->clabel->row == r) && + (ac->clabel->column == c)) { + /* it's this one... + flag it as 'used', so we + don't free it later. */ + ac->flag = 1; + rf_printf(1, "Found(low mod_counter): %s at %d,%d\n", + ac->devname,r,c); + + break; + } + ac=ac->next; + } + } + + + + if (ac!=NULL) { + /* Found it. Configure it.. */ + diskPtr->blockSize = ac->clabel->blockSize; + diskPtr->numBlocks = ac->clabel->numBlocks; + /* Note: rf_protectedSectors is already + factored into numBlocks here */ + raidPtr->raid_cinfo[r][c].ci_vp = ac->vp; + raidPtr->raid_cinfo[r][c].ci_dev = ac->dev; + + memcpy(&raidPtr->raid_cinfo[r][c].ci_label, + ac->clabel, sizeof(*ac->clabel)); + sprintf(diskPtr->devname, "/dev/%s", + ac->devname); + + /* note the fact that this component was + autoconfigured. You'll need this info + later. Trust me :) */ + diskPtr->auto_configured = 1; + diskPtr->dev = ac->dev; + + /* + * we allow the user to specify that + * only a fraction of the disks should + * be used this is just for debug: it + * speeds up the parity scan + */ + + diskPtr->numBlocks = diskPtr->numBlocks * + rf_sizePercentage / 100; + + /* XXX these will get set multiple times, + but since we're autoconfiguring, they'd + better be always the same each time! + If not, this is the least of your worries */ + + bs = diskPtr->blockSize; + min_numblks = diskPtr->numBlocks; + + /* this gets done multiple times, but that's + fine -- the serial number will be the same + for all components, guaranteed */ + raidPtr->serial_number = + ac->clabel->serial_number; + /* check the last time the label + was modified */ + if (ac->clabel->mod_counter != + mod_counter) { + /* Even though we've filled in all + of the above, we don't trust + this component since it's + modification counter is not + in sync with the rest, and we really + consider it to be failed. */ + disks[r][c].status = rf_ds_failed; + numFailuresThisRow++; + } else { + if (ac->clabel->clean != + RF_RAID_CLEAN) { + parity_good = RF_RAID_DIRTY; + } + } + } else { + /* Didn't find it at all!! + Component must really be dead */ + disks[r][c].status = rf_ds_failed; + sprintf(disks[r][c].devname,"component%d", + r * raidPtr->numCol + c); + numFailuresThisRow++; + } + } + /* XXX fix for n-fault tolerant */ + /* XXX this should probably check to see how many failures + we can handle for this configuration! */ + if (numFailuresThisRow > 0) + raidPtr->status[r] = rf_rs_degraded; + } + + /* close the device for the ones that didn't get used */ + + ac = auto_config; + while(ac!=NULL) { + if (ac->flag == 0) { +#if defined(__NetBSD__) + vn_lock(ac->vp, LK_EXCLUSIVE | LK_RETRY); +#elif defined(__FreeBSD__) + vn_lock(ac->vp, LK_EXCLUSIVE | LK_RETRY, + raidPtr->engine_thread); +#endif + VOP_CLOSE(ac->vp, FREAD | FWRITE, NOCRED, 0); + vput(ac->vp); + ac->vp = NULL; + rf_printf(1, "Released %s from auto-config set.\n", + ac->devname); + } + ac = ac->next; + } + + raidPtr->mod_counter = mod_counter; + + /* note the state of the parity, if any */ + raidPtr->parity_good = parity_good; + raidPtr->sectorsPerDisk = min_numblks; + raidPtr->logBytesPerSector = ffs(bs) - 1; + raidPtr->bytesPerSector = bs; + raidPtr->sectorMask = bs - 1; + return (0); + +fail: + + rf_UnconfigureVnodes( raidPtr ); + + return (ret); + +} + +/* configure a single disk in the array */ +int +rf_ConfigureDisk(raidPtr, buf, diskPtr, row, col) + RF_Raid_t *raidPtr; + char *buf; + RF_RaidDisk_t *diskPtr; + RF_RowCol_t row; + RF_RowCol_t col; +{ + char *p; + int retcode; + + int error; + + retcode = 0; + p = rf_find_non_white(buf); + if (p[strlen(p) - 1] == '\n') { + /* strip off the newline */ + p[strlen(p) - 1] = '\0'; + } + (void) strcpy(diskPtr->devname, p); + + /* Let's start by claiming the component is fine and well... */ + diskPtr->status = rf_ds_optimal; + + raidPtr->raid_cinfo[row][col].ci_vp = NULL; + raidPtr->raid_cinfo[row][col].ci_dev = NULL; + + error = raid_getcomponentsize(raidPtr, row, col); + if (error) { + printf("raidlookup on device: %s failed!\n", diskPtr->devname); + if (error == ENXIO) { + /* the component isn't there... must be dead :-( */ + diskPtr->status = rf_ds_failed; + return (error); + } + } + return (0); +} + +static void +rf_print_label_status( raidPtr, row, column, dev_name, ci_label ) + RF_Raid_t *raidPtr; + int row; + int column; + char *dev_name; + RF_ComponentLabel_t *ci_label; +{ + + printf("raid%d: Component %s being configured at row: %d col: %d\n", + raidPtr->raidid, dev_name, row, column ); + printf(" Row: %d Column: %d Num Rows: %d Num Columns: %d\n", + ci_label->row, ci_label->column, + ci_label->num_rows, ci_label->num_columns); + printf(" Version: %d Serial Number: %d Mod Counter: %d\n", + ci_label->version, ci_label->serial_number, + ci_label->mod_counter); + printf(" Clean: %s Status: %d\n", + ci_label->clean ? "Yes" : "No", ci_label->status ); +} + +static int rf_check_label_vitals( raidPtr, row, column, dev_name, ci_label, + serial_number, mod_counter ) + RF_Raid_t *raidPtr; + int row; + int column; + char *dev_name; + RF_ComponentLabel_t *ci_label; + int serial_number; + int mod_counter; +{ + int fatal_error = 0; + + if (serial_number != ci_label->serial_number) { + printf("%s has a different serial number: %d %d\n", + dev_name, serial_number, ci_label->serial_number); + fatal_error = 1; + } + if (mod_counter != ci_label->mod_counter) { + printf("%s has a different modfication count: %d %d\n", + dev_name, mod_counter, ci_label->mod_counter); + } + + if (row != ci_label->row) { + printf("Row out of alignment for: %s\n", dev_name); + fatal_error = 1; + } + if (column != ci_label->column) { + printf("Column out of alignment for: %s\n", dev_name); + fatal_error = 1; + } + if (raidPtr->numRow != ci_label->num_rows) { + printf("Number of rows do not match for: %s\n", dev_name); + fatal_error = 1; + } + if (raidPtr->numCol != ci_label->num_columns) { + printf("Number of columns do not match for: %s\n", dev_name); + fatal_error = 1; + } + if (ci_label->clean == 0) { + /* it's not clean, but that's not fatal */ + printf("%s is not clean!\n", dev_name); + } + return(fatal_error); +} + + +/* + + rf_CheckLabels() - check all the component labels for consistency. + Return an error if there is anything major amiss. + + */ + +int +rf_CheckLabels( raidPtr, cfgPtr ) + RF_Raid_t *raidPtr; + RF_Config_t *cfgPtr; +{ + int r,c; + char *dev_name; + RF_ComponentLabel_t *ci_label; + int serial_number = 0; + int mod_number = 0; + int fatal_error = 0; + int mod_values[4]; + int mod_count[4]; + int ser_values[4]; + int ser_count[4]; + int num_ser; + int num_mod; + int i; + int found; + int hosed_row; + int hosed_column; + int too_fatal; + int parity_good; + int force; + + hosed_row = -1; + hosed_column = -1; + too_fatal = 0; + force = cfgPtr->force; + + /* + We're going to try to be a little intelligent here. If one + component's label is bogus, and we can identify that it's the + *only* one that's gone, we'll mark it as "failed" and allow + the configuration to proceed. This will be the *only* case + that we'll proceed if there would be (otherwise) fatal errors. + + Basically we simply keep a count of how many components had + what serial number. If all but one agree, we simply mark + the disagreeing component as being failed, and allow + things to come up "normally". + + We do this first for serial numbers, and then for "mod_counter". + + */ + + num_ser = 0; + num_mod = 0; + for (r = 0; r < raidPtr->numRow && !fatal_error ; r++) { + for (c = 0; c < raidPtr->numCol; c++) { + ci_label = &raidPtr->raid_cinfo[r][c].ci_label; + found=0; + for(i=0;i<num_ser;i++) { + if (ser_values[i] == ci_label->serial_number) { + ser_count[i]++; + found=1; + break; + } + } + if (!found) { + ser_values[num_ser] = ci_label->serial_number; + ser_count[num_ser] = 1; + num_ser++; + if (num_ser>2) { + fatal_error = 1; + break; + } + } + found=0; + for(i=0;i<num_mod;i++) { + if (mod_values[i] == ci_label->mod_counter) { + mod_count[i]++; + found=1; + break; + } + } + if (!found) { + mod_values[num_mod] = ci_label->mod_counter; + mod_count[num_mod] = 1; + num_mod++; + if (num_mod>2) { + fatal_error = 1; + break; + } + } + } + } + rf_printf(1, "raid%d: Summary of serial numbers:\n", raidPtr->raidid); + for(i=0;i<num_ser;i++) { + rf_printf(1, "%d %d\n", ser_values[i], ser_count[i]); + } + rf_printf(1, "raid%d: Summary of mod counters:\n", raidPtr->raidid); + for(i=0;i<num_mod;i++) { + rf_printf(1, "%d %d\n", mod_values[i], mod_count[i]); + } + serial_number = ser_values[0]; + if (num_ser == 2) { + if ((ser_count[0] == 1) || (ser_count[1] == 1)) { + /* Locate the maverick component */ + if (ser_count[1] > ser_count[0]) { + serial_number = ser_values[1]; + } + for (r = 0; r < raidPtr->numRow; r++) { + for (c = 0; c < raidPtr->numCol; c++) { + ci_label = &raidPtr->raid_cinfo[r][c].ci_label; + if (serial_number != + ci_label->serial_number) { + hosed_row = r; + hosed_column = c; + break; + } + } + } + printf("Hosed component: %s\n", + &cfgPtr->devnames[hosed_row][hosed_column][0]); + if (!force) { + /* we'll fail this component, as if there are + other major errors, we arn't forcing things + and we'll abort the config anyways */ + raidPtr->Disks[hosed_row][hosed_column].status + = rf_ds_failed; + raidPtr->numFailures++; + raidPtr->status[hosed_row] = rf_rs_degraded; + } + } else { + too_fatal = 1; + } + if (cfgPtr->parityConfig == '0') { + /* We've identified two different serial numbers. + RAID 0 can't cope with that, so we'll punt */ + too_fatal = 1; + } + + } + + /* record the serial number for later. If we bail later, setting + this doesn't matter, otherwise we've got the best guess at the + correct serial number */ + raidPtr->serial_number = serial_number; + + mod_number = mod_values[0]; + if (num_mod == 2) { + if ((mod_count[0] == 1) || (mod_count[1] == 1)) { + /* Locate the maverick component */ + if (mod_count[1] > mod_count[0]) { + mod_number = mod_values[1]; + } else if (mod_count[1] < mod_count[0]) { + mod_number = mod_values[0]; + } else { + /* counts of different modification values + are the same. Assume greater value is + the correct one, all other things + considered */ + if (mod_values[0] > mod_values[1]) { + mod_number = mod_values[0]; + } else { + mod_number = mod_values[1]; + } + + } + for (r = 0; r < raidPtr->numRow && !too_fatal ; r++) { + for (c = 0; c < raidPtr->numCol; c++) { + ci_label = &raidPtr->raid_cinfo[r][c].ci_label; + if (mod_number != + ci_label->mod_counter) { + if ( ( hosed_row == r ) && + ( hosed_column == c )) { + /* same one. Can + deal with it. */ + } else { + hosed_row = r; + hosed_column = c; + if (num_ser != 1) { + too_fatal = 1; + break; + } + } + } + } + } + printf("Hosed component: %s\n", + &cfgPtr->devnames[hosed_row][hosed_column][0]); + if (!force) { + /* we'll fail this component, as if there are + other major errors, we arn't forcing things + and we'll abort the config anyways */ + if (raidPtr->Disks[hosed_row][hosed_column].status != rf_ds_failed) { + raidPtr->Disks[hosed_row][hosed_column].status + = rf_ds_failed; + raidPtr->numFailures++; + raidPtr->status[hosed_row] = rf_rs_degraded; + } + } + } else { + too_fatal = 1; + } + if (cfgPtr->parityConfig == '0') { + /* We've identified two different mod counters. + RAID 0 can't cope with that, so we'll punt */ + too_fatal = 1; + } + } + + raidPtr->mod_counter = mod_number; + + if (too_fatal) { + /* we've had both a serial number mismatch, and a mod_counter + mismatch -- and they involved two different components!! + Bail -- make things fail so that the user must force + the issue... */ + hosed_row = -1; + hosed_column = -1; + } + + if (num_ser > 2) { + printf("raid%d: Too many different serial numbers!\n", + raidPtr->raidid); + } + + if (num_mod > 2) { + printf("raid%d: Too many different mod counters!\n", + raidPtr->raidid); + } + + /* we start by assuming the parity will be good, and flee from + that notion at the slightest sign of trouble */ + + parity_good = RF_RAID_CLEAN; + for (r = 0; r < raidPtr->numRow; r++) { + for (c = 0; c < raidPtr->numCol; c++) { + dev_name = &cfgPtr->devnames[r][c][0]; + ci_label = &raidPtr->raid_cinfo[r][c].ci_label; + + if ((r == hosed_row) && (c == hosed_column)) { + printf("raid%d: Ignoring %s\n", + raidPtr->raidid, dev_name); + } else { + rf_print_label_status( raidPtr, r, c, + dev_name, ci_label ); + if (rf_check_label_vitals( raidPtr, r, c, + dev_name, ci_label, + serial_number, + mod_number )) { + fatal_error = 1; + } + if (ci_label->clean != RF_RAID_CLEAN) { + parity_good = RF_RAID_DIRTY; + } + } + } + } + if (fatal_error) { + parity_good = RF_RAID_DIRTY; + } + + /* we note the state of the parity */ + raidPtr->parity_good = parity_good; + + return(fatal_error); +} + +int +rf_add_hot_spare(raidPtr, sparePtr) + RF_Raid_t *raidPtr; + RF_SingleComponent_t *sparePtr; +{ + RF_RaidDisk_t *disks; + RF_DiskQueue_t *spareQueues; + int ret; + unsigned int bs; + int spare_number; + +#if 0 + printf("Just in rf_add_hot_spare: %d\n",raidPtr->numSpare); + printf("Num col: %d\n",raidPtr->numCol); +#endif + if (raidPtr->numSpare >= RF_MAXSPARE) { + RF_ERRORMSG1("Too many spares: %d\n", raidPtr->numSpare); + return(EINVAL); + } + + RF_LOCK_MUTEX(raidPtr->mutex); + + /* the beginning of the spares... */ + disks = &raidPtr->Disks[0][raidPtr->numCol]; + + spare_number = raidPtr->numSpare; + + ret = rf_ConfigureDisk(raidPtr, sparePtr->component_name, + &disks[spare_number], 0, + raidPtr->numCol + spare_number); + + if (ret) + goto fail; + if (disks[spare_number].status != rf_ds_optimal) { + RF_ERRORMSG1("Warning: spare disk %s failed TUR\n", + sparePtr->component_name); + ret=EINVAL; + goto fail; + } else { + disks[spare_number].status = rf_ds_spare; + DPRINTF6("Spare Disk %d: dev %s numBlocks %ld blockSize %d (%ld MB)\n", spare_number, + disks[spare_number].devname, + (long int) disks[spare_number].numBlocks, + disks[spare_number].blockSize, + (long int) disks[spare_number].numBlocks * + disks[spare_number].blockSize / 1024 / 1024); + } + + + /* check sizes and block sizes on the spare disk */ + bs = 1 << raidPtr->logBytesPerSector; + if (disks[spare_number].blockSize != bs) { + RF_ERRORMSG3("Block size of %d on spare disk %s is not the same as on other disks (%d)\n", disks[spare_number].blockSize, disks[spare_number].devname, bs); + ret = EINVAL; + goto fail; + } + if (disks[spare_number].numBlocks < raidPtr->sectorsPerDisk) { + RF_ERRORMSG3("Spare disk %s (%d blocks) is too small to serve as a spare (need %ld blocks)\n", + disks[spare_number].devname, + disks[spare_number].blockSize, + (long int) raidPtr->sectorsPerDisk); + ret = EINVAL; + goto fail; + } else { + if (disks[spare_number].numBlocks > + raidPtr->sectorsPerDisk) { + RF_ERRORMSG2("Warning: truncating spare disk %s to %ld blocks\n", disks[spare_number].devname, + (long int) raidPtr->sectorsPerDisk); + + disks[spare_number].numBlocks = raidPtr->sectorsPerDisk; + } + } + + spareQueues = &raidPtr->Queues[0][raidPtr->numCol]; + ret = rf_ConfigureDiskQueue( raidPtr, &spareQueues[spare_number], + 0, raidPtr->numCol + spare_number, + raidPtr->qType, + raidPtr->sectorsPerDisk, + raidPtr->Disks[0][raidPtr->numCol + + spare_number].dev, + raidPtr->maxOutstanding, + &raidPtr->shutdownList, + raidPtr->cleanupList); + + + raidPtr->numSpare++; + RF_UNLOCK_MUTEX(raidPtr->mutex); + return (0); + +fail: + RF_UNLOCK_MUTEX(raidPtr->mutex); + return(ret); +} + +int +rf_remove_hot_spare(raidPtr,sparePtr) + RF_Raid_t *raidPtr; + RF_SingleComponent_t *sparePtr; +{ + int spare_number; + + + if (raidPtr->numSpare==0) { + printf("No spares to remove!\n"); + return(EINVAL); + } + + spare_number = sparePtr->column; + + return(EINVAL); /* XXX not implemented yet */ +#if 0 + if (spare_number < 0 || spare_number > raidPtr->numSpare) { + return(EINVAL); + } + + /* verify that this spare isn't in use... */ + + + + + /* it's gone.. */ + + raidPtr->numSpare--; + + return(0); +#endif +} + + +int +rf_delete_component(raidPtr,component) + RF_Raid_t *raidPtr; + RF_SingleComponent_t *component; +{ + RF_RaidDisk_t *disks; + + if ((component->row < 0) || + (component->row >= raidPtr->numRow) || + (component->column < 0) || + (component->column >= raidPtr->numCol)) { + return(EINVAL); + } + + disks = &raidPtr->Disks[component->row][component->column]; + + /* 1. This component must be marked as 'failed' */ + + return(EINVAL); /* Not implemented yet. */ +} + +int +rf_incorporate_hot_spare(raidPtr,component) + RF_Raid_t *raidPtr; + RF_SingleComponent_t *component; +{ + + /* Issues here include how to 'move' this in if there is IO + taking place (e.g. component queues and such) */ + + return(EINVAL); /* Not implemented yet. */ +} diff --git a/sys/dev/raidframe/rf_disks.h b/sys/dev/raidframe/rf_disks.h new file mode 100644 index 0000000..b57c4f8 --- /dev/null +++ b/sys/dev/raidframe/rf_disks.h @@ -0,0 +1,108 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_disks.h,v 1.8 2000/03/27 03:25:17 oster Exp $ */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Mark Holland + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +/* + * rf_disks.h -- header file for code related to physical disks + */ + +#ifndef _RF__RF_DISKS_H_ +#define _RF__RF_DISKS_H_ + +#include <sys/types.h> + +#include <dev/raidframe/rf_archs.h> +#include <dev/raidframe/rf_types.h> +#include <dev/raidframe/rf_bsd.h> + +/* + * A physical disk can be in one of several states: + * IF YOU ADD A STATE, CHECK TO SEE IF YOU NEED TO MODIFY RF_DEAD_DISK() BELOW. + */ +enum RF_DiskStatus_e { + rf_ds_optimal, /* no problems */ + rf_ds_failed, /* reconstruction ongoing */ + rf_ds_reconstructing, /* reconstruction complete to spare, dead disk + * not yet replaced */ + rf_ds_dist_spared, /* reconstruction complete to distributed + * spare space, dead disk not yet replaced */ + rf_ds_spared, /* reconstruction complete to distributed + * spare space, dead disk not yet replaced */ + rf_ds_spare, /* an available spare disk */ + rf_ds_used_spare /* a spare which has been used, and hence is + * not available */ +}; +typedef enum RF_DiskStatus_e RF_DiskStatus_t; + +struct RF_RaidDisk_s { + char devname[56]; /* name of device file */ + RF_DiskStatus_t status; /* whether it is up or down */ + RF_RowCol_t spareRow; /* if in status "spared", this identifies the + * spare disk */ + RF_RowCol_t spareCol; /* if in status "spared", this identifies the + * spare disk */ + RF_SectorCount_t numBlocks; /* number of blocks, obtained via READ + * CAPACITY */ + int blockSize; + RF_SectorCount_t partitionSize; /* The *actual* and *full* size of + the partition, from the disklabel */ + int auto_configured;/* 1 if this component was autoconfigured. + 0 otherwise. */ + dev_t dev; +}; +/* + * An RF_DiskOp_t ptr is really a pointer to a UAGT_CCB, but I want + * to isolate the cam layer from all other layers, so I typecast to/from + * RF_DiskOp_t * (i.e. void *) at the interfaces. + */ +typedef void RF_DiskOp_t; + +/* if a disk is in any of these states, it is inaccessible */ +#define RF_DEAD_DISK(_dstat_) (((_dstat_) == rf_ds_spared) || \ + ((_dstat_) == rf_ds_reconstructing) || ((_dstat_) == rf_ds_failed) || \ + ((_dstat_) == rf_ds_dist_spared)) + +#ifdef _KERNEL +#include <dev/raidframe/rf_bsd.h> + +int rf_ConfigureDisks(RF_ShutdownList_t ** listp, RF_Raid_t * raidPtr, + RF_Config_t * cfgPtr); +int rf_ConfigureSpareDisks(RF_ShutdownList_t ** listp, RF_Raid_t * raidPtr, + RF_Config_t * cfgPtr); +int rf_ConfigureDisk(RF_Raid_t * raidPtr, char *buf, RF_RaidDisk_t * diskPtr, + RF_RowCol_t row, RF_RowCol_t col); +int rf_AutoConfigureDisks(RF_Raid_t *raidPtr, RF_Config_t *cfgPtr, + RF_AutoConfig_t *auto_config); +int rf_CheckLabels( RF_Raid_t *, RF_Config_t *); +int rf_add_hot_spare(RF_Raid_t *raidPtr, RF_SingleComponent_t *sparePtr); +int rf_remove_hot_spare(RF_Raid_t *raidPtr, RF_SingleComponent_t *sparePtr); +int rf_delete_component(RF_Raid_t *raidPtr, RF_SingleComponent_t *component); +int rf_incorporate_hot_spare(RF_Raid_t *raidPtr, + RF_SingleComponent_t *component); +#endif /* _KERNEL */ +#endif /* !_RF__RF_DISKS_H_ */ diff --git a/sys/dev/raidframe/rf_driver.c b/sys/dev/raidframe/rf_driver.c new file mode 100644 index 0000000..3f3fe1a --- /dev/null +++ b/sys/dev/raidframe/rf_driver.c @@ -0,0 +1,1048 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_driver.c,v 1.39 2000/12/15 02:12:58 oster Exp $ */ +/*- + * Copyright (c) 1999 The NetBSD Foundation, Inc. + * All rights reserved. + * + * This code is derived from software contributed to The NetBSD Foundation + * by Greg Oster + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * 3. All advertising materials mentioning features or use of this software + * must display the following acknowledgement: + * This product includes software developed by the NetBSD + * Foundation, Inc. and its contributors. + * 4. Neither the name of The NetBSD Foundation nor the names of its + * contributors may be used to endorse or promote products derived + * from this software without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS + * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED + * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR + * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS + * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + * POSSIBILITY OF SUCH DAMAGE. + */ + +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Mark Holland, Khalil Amiri, Claudson Bornstein, William V. Courtright II, + * Robby Findler, Daniel Stodolsky, Rachad Youssef, Jim Zelenka + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +/****************************************************************************** + * + * rf_driver.c -- main setup, teardown, and access routines for the RAID driver + * + * all routines are prefixed with rf_ (raidframe), to avoid conficts. + * + ******************************************************************************/ + + +#include <sys/types.h> +#include <sys/param.h> +#include <sys/systm.h> +#if defined(__NetBSD__) +#include <sys/ioctl.h> +#elif defined(__FreeBSD__) +#include <sys/ioccom.h> +#include <sys/filio.h> +#endif +#include <sys/fcntl.h> +#include <sys/vnode.h> + + +#include <dev/raidframe/rf_archs.h> +#include <dev/raidframe/rf_threadstuff.h> + +#include <sys/errno.h> + +#include <dev/raidframe/rf_raid.h> +#include <dev/raidframe/rf_dag.h> +#include <dev/raidframe/rf_aselect.h> +#include <dev/raidframe/rf_diskqueue.h> +#include <dev/raidframe/rf_parityscan.h> +#include <dev/raidframe/rf_alloclist.h> +#include <dev/raidframe/rf_dagutils.h> +#include <dev/raidframe/rf_utils.h> +#include <dev/raidframe/rf_etimer.h> +#include <dev/raidframe/rf_acctrace.h> +#include <dev/raidframe/rf_configure.h> +#include <dev/raidframe/rf_general.h> +#include <dev/raidframe/rf_desc.h> +#include <dev/raidframe/rf_states.h> +#include <dev/raidframe/rf_freelist.h> +#include <dev/raidframe/rf_decluster.h> +#include <dev/raidframe/rf_map.h> +#include <dev/raidframe/rf_revent.h> +#include <dev/raidframe/rf_callback.h> +#include <dev/raidframe/rf_engine.h> +#include <dev/raidframe/rf_memchunk.h> +#include <dev/raidframe/rf_mcpair.h> +#include <dev/raidframe/rf_nwayxor.h> +#include <dev/raidframe/rf_debugprint.h> +#include <dev/raidframe/rf_copyback.h> +#include <dev/raidframe/rf_driver.h> +#include <dev/raidframe/rf_options.h> +#include <dev/raidframe/rf_shutdown.h> +#include <dev/raidframe/rf_kintf.h> + +#if defined(__FreeBSD__) && __FreeBSD_version > 500005 +#include <sys/bio.h> +#endif + +#include <sys/buf.h> + +/* rad == RF_RaidAccessDesc_t */ +static RF_FreeList_t *rf_rad_freelist; +#define RF_MAX_FREE_RAD 128 +#define RF_RAD_INC 16 +#define RF_RAD_INITIAL 32 + +/* debug variables */ +char rf_panicbuf[2048]; /* a buffer to hold an error msg when we panic */ + +/* main configuration routines */ +static int raidframe_booted = 0; + +static void rf_ConfigureDebug(RF_Config_t * cfgPtr); +static void set_debug_option(char *name, long val); +static void rf_UnconfigureArray(void); +static int init_rad(RF_RaidAccessDesc_t *); +static void clean_rad(RF_RaidAccessDesc_t *); +static void rf_ShutdownRDFreeList(void *); +static int rf_ConfigureRDFreeList(RF_ShutdownList_t **); + +RF_DECLARE_MUTEX(rf_printf_mutex) /* debug only: avoids interleaved + * printfs by different stripes */ + +#define SIGNAL_QUIESCENT_COND(_raid_) wakeup(&((_raid_)->accesses_suspended)) +#define WAIT_FOR_QUIESCENCE(_raid_) \ + RF_LTSLEEP(&((_raid_)->accesses_suspended), PRIBIO, \ + "raidframe quiesce", 0, &((_raid_)->access_suspend_mutex)) + +#if defined(__FreeBSD__) && __FreeBSD_version > 500005 +#define IO_BUF_ERR(bp, err) { \ + bp->bio_flags |= BIO_ERROR; \ + bp->bio_resid = bp->bio_bcount; \ + bp->bio_error = err; \ + biodone(bp); \ +}; +#else +#define IO_BUF_ERR(bp, err) { \ + bp->b_flags |= B_ERROR; \ + bp->b_resid = bp->b_bcount; \ + bp->b_error = err; \ + biodone(bp); \ +} +#endif + +static int configureCount = 0; /* number of active configurations */ +static int configInProgress = 0; /* configuration is in progress and code + * needs to be serialized. */ +static int isconfigged = 0; /* is basic raidframe (non per-array) + * stuff configged */ +RF_DECLARE_STATIC_MUTEX(configureMutex) /* used to lock the configuration + * stuff */ +static RF_ShutdownList_t *globalShutdown; /* non array-specific + * stuff */ + +/* called at system boot time */ +int +rf_BootRaidframe() +{ + int rc; + + if (raidframe_booted) + return (EBUSY); + raidframe_booted = 1; + + rc = rf_mutex_init(&configureMutex, __FUNCTION__); + if (rc) { + RF_ERRORMSG3("Unable to init mutex file %s line %d rc=%d\n", __FILE__, + __LINE__, rc); + RF_PANIC(); + } + configureCount = 0; + isconfigged = 0; + globalShutdown = NULL; + return (0); +} +/* + * This function is really just for debugging user-level stuff: it + * frees up all memory, other RAIDframe resources which might otherwise + * be kept around. This is used with systems like "sentinel" to detect + * memory leaks. + */ +int +rf_UnbootRaidframe() +{ + int rc; + + RF_LOCK_MUTEX(configureMutex); + if (configureCount) { + RF_UNLOCK_MUTEX(configureMutex); + return (EBUSY); + } + raidframe_booted = 0; + RF_UNLOCK_MUTEX(configureMutex); + rc = rf_mutex_destroy(&configureMutex); + if (rc) { + RF_ERRORMSG3("Unable to destroy mutex file %s line %d rc=%d\n", __FILE__, + __LINE__, rc); + RF_PANIC(); + } + return (0); +} +/* + * Called whenever an array is shutdown + */ +static void +rf_UnconfigureArray() +{ + int rc; + + RF_LOCK_MUTEX(configureMutex); + if (--configureCount == 0) { /* if no active configurations, shut + * everything down */ + isconfigged = 0; + + rc = rf_ShutdownList(&globalShutdown); + if (rc) { + RF_ERRORMSG1("RAIDFRAME: unable to do global shutdown, rc=%d\n", rc); + } + + /* + * We must wait until now, because the AllocList module + * uses the DebugMem module. + */ + if (rf_memDebug) + rf_print_unfreed(); + } + RF_UNLOCK_MUTEX(configureMutex); +} + +/* + * Called to shut down an array. + */ +int +rf_Shutdown(raidPtr) + RF_Raid_t *raidPtr; +{ + + if (!raidPtr->valid) { + RF_ERRORMSG("Attempt to shut down unconfigured RAIDframe driver. Aborting shutdown\n"); + return (EINVAL); + } + /* + * wait for outstanding IOs to land + * As described in rf_raid.h, we use the rad_freelist lock + * to protect the per-array info about outstanding descs + * since we need to do freelist locking anyway, and this + * cuts down on the amount of serialization we've got going + * on. + */ + RF_FREELIST_DO_LOCK(rf_rad_freelist); + if (raidPtr->waitShutdown) { + RF_FREELIST_DO_UNLOCK(rf_rad_freelist); + return (EBUSY); + } + raidPtr->waitShutdown = 1; + while (raidPtr->nAccOutstanding) { + RF_WAIT_COND(raidPtr->outstandingCond, RF_FREELIST_MUTEX_OF(rf_rad_freelist)); + } + RF_FREELIST_DO_UNLOCK(rf_rad_freelist); + + /* Wait for any parity re-writes to stop... */ + while (raidPtr->parity_rewrite_in_progress) { + printf("Waiting for parity re-write to exit...\n"); + tsleep(&raidPtr->parity_rewrite_in_progress, PRIBIO, + "rfprwshutdown", 0); + } + + raidPtr->valid = 0; + + rf_update_component_labels(raidPtr, RF_FINAL_COMPONENT_UPDATE); + + rf_UnconfigureVnodes(raidPtr); + + rf_ShutdownList(&raidPtr->shutdownList); + + rf_UnconfigureArray(); + + return (0); +} + + +#define DO_INIT_CONFIGURE(f) { \ + rc = f (&globalShutdown); \ + if (rc) { \ + RF_ERRORMSG2("RAIDFRAME: failed %s with %d\n", RF_STRING(f), rc); \ + rf_ShutdownList(&globalShutdown); \ + RF_LOCK_MUTEX(configureMutex); \ + configInProgress = 0; \ + configureCount--; \ + RF_UNLOCK_MUTEX(configureMutex); \ + return(rc); \ + } \ +} + +#define DO_RAID_FAIL() { \ + rf_UnconfigureVnodes(raidPtr); \ + rf_ShutdownList(&raidPtr->shutdownList); \ + rf_UnconfigureArray(); \ +} + +#define DO_RAID_INIT_CONFIGURE(f) { \ + rc = f (&raidPtr->shutdownList, raidPtr, cfgPtr); \ + if (rc) { \ + RF_ERRORMSG2("RAIDFRAME: failed %s with %d\n", RF_STRING(f), rc); \ + DO_RAID_FAIL(); \ + return(rc); \ + } \ +} + +#define DO_RAID_MUTEX(_m_) { \ + rc = rf_create_managed_mutex(&raidPtr->shutdownList, (_m_)); \ + if (rc) { \ + RF_ERRORMSG3("Unable to init mutex file %s line %d rc=%d\n", \ + __FILE__, __LINE__, rc); \ + DO_RAID_FAIL(); \ + return(rc); \ + } \ +} + +#define DO_RAID_COND(_c_) { \ + rc = rf_create_managed_cond(&raidPtr->shutdownList, (_c_)); \ + if (rc) { \ + RF_ERRORMSG3("Unable to init cond file %s line %d rc=%d\n", \ + __FILE__, __LINE__, rc); \ + DO_RAID_FAIL(); \ + return(rc); \ + } \ +} + +int +rf_Configure(raidPtr, cfgPtr, ac) + RF_Raid_t *raidPtr; + RF_Config_t *cfgPtr; + RF_AutoConfig_t *ac; +{ + RF_RowCol_t row, col; + int i, rc; + + /* XXX This check can probably be removed now, since + RAIDFRAME_CONFIGURE now checks to make sure that the + RAID set is not already valid + */ + if (raidPtr->valid) { + RF_ERRORMSG("RAIDframe configuration not shut down. Aborting configure.\n"); + return (EINVAL); + } + RF_LOCK_MUTEX(configureMutex); + if (configInProgress == 1) { + RF_UNLOCK_MUTEX(configureMutex); + return (EBUSY); + } + configureCount++; + if (isconfigged == 0) { + configInProgress = 1; + RF_UNLOCK_MUTEX(configureMutex); + rc = rf_create_managed_mutex(&globalShutdown, &rf_printf_mutex); + if (rc) { + RF_ERRORMSG3("Unable to init mutex file %s line %d rc=%d\n", __FILE__, + __LINE__, rc); + rf_ShutdownList(&globalShutdown); + return (rc); + } + /* initialize globals */ + printf("RAIDFRAME: protectedSectors is %ld\n", + rf_protectedSectors); + + rf_clear_debug_print_buffer(); + + DO_INIT_CONFIGURE(rf_ConfigureAllocList); + + /* + * Yes, this does make debugging general to the whole + * system instead of being array specific. Bummer, drag. + */ + rf_ConfigureDebug(cfgPtr); + DO_INIT_CONFIGURE(rf_ConfigureDebugMem); + DO_INIT_CONFIGURE(rf_ConfigureAccessTrace); + DO_INIT_CONFIGURE(rf_ConfigureMapModule); + DO_INIT_CONFIGURE(rf_ConfigureReconEvent); + DO_INIT_CONFIGURE(rf_ConfigureCallback); + DO_INIT_CONFIGURE(rf_ConfigureMemChunk); + DO_INIT_CONFIGURE(rf_ConfigureRDFreeList); + DO_INIT_CONFIGURE(rf_ConfigureNWayXor); + DO_INIT_CONFIGURE(rf_ConfigureStripeLockFreeList); + DO_INIT_CONFIGURE(rf_ConfigureMCPair); + DO_INIT_CONFIGURE(rf_ConfigureDAGs); + DO_INIT_CONFIGURE(rf_ConfigureDAGFuncs); + DO_INIT_CONFIGURE(rf_ConfigureDebugPrint); + DO_INIT_CONFIGURE(rf_ConfigureReconstruction); + DO_INIT_CONFIGURE(rf_ConfigureCopyback); + DO_INIT_CONFIGURE(rf_ConfigureDiskQueueSystem); + + RF_LOCK_MUTEX(configureMutex); + isconfigged = 1; + configInProgress = 0; + } + RF_UNLOCK_MUTEX(configureMutex); + + DO_RAID_MUTEX(&raidPtr->mutex); + /* set up the cleanup list. Do this after ConfigureDebug so that + * value of memDebug will be set */ + + rf_MakeAllocList(raidPtr->cleanupList); + if (raidPtr->cleanupList == NULL) { + DO_RAID_FAIL(); + return (ENOMEM); + } + rc = rf_ShutdownCreate(&raidPtr->shutdownList, + (void (*) (void *)) rf_FreeAllocList, + raidPtr->cleanupList); + if (rc) { + RF_ERRORMSG3("Unable to add to shutdown list file %s line %d rc=%d\n", + __FILE__, __LINE__, rc); + DO_RAID_FAIL(); + return (rc); + } + raidPtr->numRow = cfgPtr->numRow; + raidPtr->numCol = cfgPtr->numCol; + raidPtr->numSpare = cfgPtr->numSpare; + + /* XXX we don't even pretend to support more than one row in the + * kernel... */ + if (raidPtr->numRow != 1) { + RF_ERRORMSG("Only one row supported in kernel.\n"); + DO_RAID_FAIL(); + return (EINVAL); + } + RF_CallocAndAdd(raidPtr->status, raidPtr->numRow, sizeof(RF_RowStatus_t), + (RF_RowStatus_t *), raidPtr->cleanupList); + if (raidPtr->status == NULL) { + DO_RAID_FAIL(); + return (ENOMEM); + } + RF_CallocAndAdd(raidPtr->reconControl, raidPtr->numRow, + sizeof(RF_ReconCtrl_t *), (RF_ReconCtrl_t **), raidPtr->cleanupList); + if (raidPtr->reconControl == NULL) { + DO_RAID_FAIL(); + return (ENOMEM); + } + for (i = 0; i < raidPtr->numRow; i++) { + raidPtr->status[i] = rf_rs_optimal; + raidPtr->reconControl[i] = NULL; + } + + DO_RAID_INIT_CONFIGURE(rf_ConfigureEngine); + DO_RAID_INIT_CONFIGURE(rf_ConfigureStripeLocks); + + DO_RAID_COND(&raidPtr->outstandingCond); + + raidPtr->nAccOutstanding = 0; + raidPtr->waitShutdown = 0; + + DO_RAID_MUTEX(&raidPtr->access_suspend_mutex); + DO_RAID_COND(&raidPtr->quiescent_cond); + + DO_RAID_COND(&raidPtr->waitForReconCond); + + DO_RAID_MUTEX(&raidPtr->recon_done_proc_mutex); + + if (ac!=NULL) { + /* We have an AutoConfig structure.. Don't do the + normal disk configuration... call the auto config + stuff */ + rf_AutoConfigureDisks(raidPtr, cfgPtr, ac); + } else { + DO_RAID_INIT_CONFIGURE(rf_ConfigureDisks); + DO_RAID_INIT_CONFIGURE(rf_ConfigureSpareDisks); + } + /* do this after ConfigureDisks & ConfigureSpareDisks to be sure dev + * no. is set */ + DO_RAID_INIT_CONFIGURE(rf_ConfigureDiskQueues); + + DO_RAID_INIT_CONFIGURE(rf_ConfigureLayout); + + DO_RAID_INIT_CONFIGURE(rf_ConfigurePSStatus); + + for (row = 0; row < raidPtr->numRow; row++) { + for (col = 0; col < raidPtr->numCol; col++) { + /* + * XXX better distribution + */ + raidPtr->hist_diskreq[row][col] = 0; + } + } + + raidPtr->numNewFailures = 0; + raidPtr->copyback_in_progress = 0; + raidPtr->parity_rewrite_in_progress = 0; + raidPtr->recon_in_progress = 0; + raidPtr->maxOutstanding = cfgPtr->maxOutstandingDiskReqs; + + /* autoconfigure and root_partition will actually get filled in + after the config is done */ + raidPtr->autoconfigure = 0; + raidPtr->root_partition = 0; + raidPtr->last_unit = raidPtr->raidid; + raidPtr->config_order = 0; + + if (rf_keepAccTotals) { + raidPtr->keep_acc_totals = 1; + } + rf_StartUserStats(raidPtr); + + raidPtr->valid = 1; + return (0); +} + +static int +init_rad(desc) + RF_RaidAccessDesc_t *desc; +{ + int rc; + + rc = rf_mutex_init(&desc->mutex, __FUNCTION__); + if (rc) { + RF_ERRORMSG3("Unable to init mutex file %s line %d rc=%d\n", __FILE__, + __LINE__, rc); + return (rc); + } + rc = rf_cond_init(&desc->cond); + if (rc) { + RF_ERRORMSG3("Unable to init cond file %s line %d rc=%d\n", __FILE__, + __LINE__, rc); + rf_mutex_destroy(&desc->mutex); + return (rc); + } + return (0); +} + +static void +clean_rad(desc) + RF_RaidAccessDesc_t *desc; +{ + rf_mutex_destroy(&desc->mutex); + rf_cond_destroy(&desc->cond); +} + +static void +rf_ShutdownRDFreeList(ignored) + void *ignored; +{ + RF_FREELIST_DESTROY_CLEAN(rf_rad_freelist, next, (RF_RaidAccessDesc_t *), clean_rad); +} + +static int +rf_ConfigureRDFreeList(listp) + RF_ShutdownList_t **listp; +{ + int rc; + + RF_FREELIST_CREATE(rf_rad_freelist, RF_MAX_FREE_RAD, + RF_RAD_INC, sizeof(RF_RaidAccessDesc_t)); + if (rf_rad_freelist == NULL) { + return (ENOMEM); + } + rc = rf_ShutdownCreate(listp, rf_ShutdownRDFreeList, NULL); + if (rc) { + RF_ERRORMSG3("Unable to add to shutdown list file %s line %d rc=%d\n", __FILE__, + __LINE__, rc); + rf_ShutdownRDFreeList(NULL); + return (rc); + } + RF_FREELIST_PRIME_INIT(rf_rad_freelist, RF_RAD_INITIAL, next, + (RF_RaidAccessDesc_t *), init_rad); + return (0); +} + +RF_RaidAccessDesc_t * +rf_AllocRaidAccDesc( + RF_Raid_t * raidPtr, + RF_IoType_t type, + RF_RaidAddr_t raidAddress, + RF_SectorCount_t numBlocks, + caddr_t bufPtr, + void *bp, + RF_DagHeader_t ** paramDAG, + RF_AccessStripeMapHeader_t ** paramASM, + RF_RaidAccessFlags_t flags, + void (*cbF) (RF_Buf_t), + void *cbA, + RF_AccessState_t * states) +{ + RF_RaidAccessDesc_t *desc; + + RF_FREELIST_GET_INIT_NOUNLOCK(rf_rad_freelist, desc, next, (RF_RaidAccessDesc_t *), init_rad); + if (raidPtr->waitShutdown) { + /* + * Actually, we're shutting the array down. Free the desc + * and return NULL. + */ + RF_FREELIST_DO_UNLOCK(rf_rad_freelist); + RF_FREELIST_FREE_CLEAN(rf_rad_freelist, desc, next, clean_rad); + return (NULL); + } + raidPtr->nAccOutstanding++; + RF_FREELIST_DO_UNLOCK(rf_rad_freelist); + + desc->raidPtr = (void *) raidPtr; + desc->type = type; + desc->raidAddress = raidAddress; + desc->numBlocks = numBlocks; + desc->bufPtr = bufPtr; + desc->bp = bp; + desc->paramDAG = paramDAG; + desc->paramASM = paramASM; + desc->flags = flags; + desc->states = states; + desc->state = 0; + + desc->status = 0; + bzero((char *) &desc->tracerec, sizeof(RF_AccTraceEntry_t)); + desc->callbackFunc = (void (*) (RF_CBParam_t)) cbF; /* XXX */ + desc->callbackArg = cbA; + desc->next = NULL; + desc->head = desc; + desc->numPending = 0; + desc->cleanupList = NULL; + rf_MakeAllocList(desc->cleanupList); + return (desc); +} + +void +rf_FreeRaidAccDesc(RF_RaidAccessDesc_t * desc) +{ + RF_Raid_t *raidPtr = desc->raidPtr; + + RF_ASSERT(desc); + + rf_FreeAllocList(desc->cleanupList); + RF_FREELIST_FREE_CLEAN_NOUNLOCK(rf_rad_freelist, desc, next, clean_rad); + raidPtr->nAccOutstanding--; + if (raidPtr->waitShutdown) { + RF_SIGNAL_COND(raidPtr->outstandingCond); + } + RF_FREELIST_DO_UNLOCK(rf_rad_freelist); +} +/********************************************************************* + * Main routine for performing an access. + * Accesses are retried until a DAG can not be selected. This occurs + * when either the DAG library is incomplete or there are too many + * failures in a parity group. + ********************************************************************/ +int +rf_DoAccess( + RF_Raid_t * raidPtr, + RF_IoType_t type, + int async_flag, + RF_RaidAddr_t raidAddress, + RF_SectorCount_t numBlocks, + caddr_t bufPtr, + void *bp_in, + RF_DagHeader_t ** paramDAG, + RF_AccessStripeMapHeader_t ** paramASM, + RF_RaidAccessFlags_t flags, + RF_RaidAccessDesc_t ** paramDesc, + void (*cbF) (RF_Buf_t), + void *cbA) +/* +type should be read or write +async_flag should be RF_TRUE or RF_FALSE +bp_in is a buf pointer. void * to facilitate ignoring it outside the kernel +*/ +{ + RF_RaidAccessDesc_t *desc; + caddr_t lbufPtr = bufPtr; + RF_Buf_t bp = (RF_Buf_t) bp_in; + + raidAddress += rf_raidSectorOffset; + + if (!raidPtr->valid) { + RF_ERRORMSG("RAIDframe driver not successfully configured. Rejecting access.\n"); + IO_BUF_ERR(bp, EINVAL); + return (EINVAL); + } + + if (rf_accessDebug) { + + printf("logBytes is: %d %d %d\n", raidPtr->raidid, + raidPtr->logBytesPerSector, + (int) rf_RaidAddressToByte(raidPtr, numBlocks)); + printf("raid%d: %s raidAddr %d (stripeid %d-%d) numBlocks %d (%d bytes) buf 0x%lx\n", raidPtr->raidid, + (type == RF_IO_TYPE_READ) ? "READ" : "WRITE", (int) raidAddress, + (int) rf_RaidAddressToStripeID(&raidPtr->Layout, raidAddress), + (int) rf_RaidAddressToStripeID(&raidPtr->Layout, raidAddress + numBlocks - 1), + (int) numBlocks, + (int) rf_RaidAddressToByte(raidPtr, numBlocks), + (long) bufPtr); + } + if (raidAddress + numBlocks > raidPtr->totalSectors) { + + printf("DoAccess: raid addr %lu too large to access %lu sectors. Max legal addr is %lu\n", + (u_long) raidAddress, (u_long) numBlocks, (u_long) raidPtr->totalSectors); + + IO_BUF_ERR(bp, ENOSPC); + return (ENOSPC); + } + desc = rf_AllocRaidAccDesc(raidPtr, type, raidAddress, + numBlocks, lbufPtr, bp, paramDAG, paramASM, + flags, cbF, cbA, raidPtr->Layout.map->states); + + if (desc == NULL) { + return (ENOMEM); + } + RF_ETIMER_START(desc->tracerec.tot_timer); + + desc->async_flag = async_flag; + + rf_ContinueRaidAccess(desc); + + return (0); +} +/* force the array into reconfigured mode without doing reconstruction */ +int +rf_SetReconfiguredMode(raidPtr, row, col) + RF_Raid_t *raidPtr; + int row; + int col; +{ + if (!(raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE)) { + printf("Can't set reconfigured mode in dedicated-spare array\n"); + RF_PANIC(); + } + RF_LOCK_MUTEX(raidPtr->mutex); + raidPtr->numFailures++; + raidPtr->Disks[row][col].status = rf_ds_dist_spared; + raidPtr->status[row] = rf_rs_reconfigured; + rf_update_component_labels(raidPtr, RF_NORMAL_COMPONENT_UPDATE); + /* install spare table only if declustering + distributed sparing + * architecture. */ + if (raidPtr->Layout.map->flags & RF_BD_DECLUSTERED) + rf_InstallSpareTable(raidPtr, row, col); + RF_UNLOCK_MUTEX(raidPtr->mutex); + return (0); +} + +extern int fail_row, fail_col, fail_time; +extern int delayed_recon; + +int +rf_FailDisk( + RF_Raid_t * raidPtr, + int frow, + int fcol, + int initRecon) +{ + printf("raid%d: Failing disk r%d c%d\n", raidPtr->raidid, frow, fcol); + RF_LOCK_MUTEX(raidPtr->mutex); + raidPtr->numFailures++; + raidPtr->Disks[frow][fcol].status = rf_ds_failed; + raidPtr->status[frow] = rf_rs_degraded; + rf_update_component_labels(raidPtr, RF_NORMAL_COMPONENT_UPDATE); + RF_UNLOCK_MUTEX(raidPtr->mutex); + if (initRecon) + rf_ReconstructFailedDisk(raidPtr, frow, fcol); + return (0); +} +/* releases a thread that is waiting for the array to become quiesced. + * access_suspend_mutex should be locked upon calling this + */ +void +rf_SignalQuiescenceLock(raidPtr, reconDesc) + RF_Raid_t *raidPtr; + RF_RaidReconDesc_t *reconDesc; +{ + if (rf_quiesceDebug) { + printf("raid%d: Signalling quiescence lock\n", + raidPtr->raidid); + } + raidPtr->access_suspend_release = 1; + + if (raidPtr->waiting_for_quiescence) { + SIGNAL_QUIESCENT_COND(raidPtr); + } +} +/* suspends all new requests to the array. No effect on accesses that are in flight. */ +int +rf_SuspendNewRequestsAndWait(raidPtr) + RF_Raid_t *raidPtr; +{ + if (rf_quiesceDebug) + printf("Suspending new reqs\n"); + + RF_LOCK_MUTEX(raidPtr->access_suspend_mutex); + raidPtr->accesses_suspended++; + raidPtr->waiting_for_quiescence = (raidPtr->accs_in_flight == 0) ? 0 : 1; + + if (raidPtr->waiting_for_quiescence) { + raidPtr->access_suspend_release = 0; + while (!raidPtr->access_suspend_release) { + printf("Suspending: Waiting for Quiescence\n"); + WAIT_FOR_QUIESCENCE(raidPtr); + raidPtr->waiting_for_quiescence = 0; + } + } + printf("Quiescence reached..\n"); + + RF_UNLOCK_MUTEX(raidPtr->access_suspend_mutex); + return (raidPtr->waiting_for_quiescence); +} +/* wake up everyone waiting for quiescence to be released */ +void +rf_ResumeNewRequests(raidPtr) + RF_Raid_t *raidPtr; +{ + RF_CallbackDesc_t *t, *cb; + + if (rf_quiesceDebug) + printf("Resuming new reqs\n"); + + RF_LOCK_MUTEX(raidPtr->access_suspend_mutex); + raidPtr->accesses_suspended--; + if (raidPtr->accesses_suspended == 0) + cb = raidPtr->quiesce_wait_list; + else + cb = NULL; + raidPtr->quiesce_wait_list = NULL; + RF_UNLOCK_MUTEX(raidPtr->access_suspend_mutex); + + while (cb) { + t = cb; + cb = cb->next; + (t->callbackFunc) (t->callbackArg); + rf_FreeCallbackDesc(t); + } +} +/***************************************************************************************** + * + * debug routines + * + ****************************************************************************************/ + +static void +set_debug_option(name, val) + char *name; + long val; +{ + RF_DebugName_t *p; + + for (p = rf_debugNames; p->name; p++) { + if (!strcmp(p->name, name)) { + *(p->ptr) = val; + printf("[Set debug variable %s to %ld]\n", name, val); + return; + } + } + RF_ERRORMSG1("Unknown debug string \"%s\"\n", name); +} + + +/* would like to use sscanf here, but apparently not available in kernel */ +/*ARGSUSED*/ +static void +rf_ConfigureDebug(cfgPtr) + RF_Config_t *cfgPtr; +{ + char *val_p, *name_p, *white_p; + long val; + int i; + + rf_ResetDebugOptions(); + for (i = 0; cfgPtr->debugVars[i][0] && i < RF_MAXDBGV; i++) { + name_p = rf_find_non_white(&cfgPtr->debugVars[i][0]); + white_p = rf_find_white(name_p); /* skip to start of 2nd + * word */ + val_p = rf_find_non_white(white_p); + if (*val_p == '0' && *(val_p + 1) == 'x') + val = rf_htoi(val_p + 2); + else + val = rf_atoi(val_p); + *white_p = '\0'; + set_debug_option(name_p, val); + } +} +/* performance monitoring stuff */ + +#define TIMEVAL_TO_US(t) (((long) t.tv_sec) * 1000000L + (long) t.tv_usec) + +#if !defined(_KERNEL) && !defined(SIMULATE) + +/* + * Throughput stats currently only used in user-level RAIDframe + */ + +static int +rf_InitThroughputStats( + RF_ShutdownList_t ** listp, + RF_Raid_t * raidPtr, + RF_Config_t * cfgPtr) +{ + int rc; + + /* these used by user-level raidframe only */ + rc = rf_create_managed_mutex(listp, &raidPtr->throughputstats.mutex); + if (rc) { + RF_ERRORMSG3("Unable to init mutex file %s line %d rc=%d\n", __FILE__, + __LINE__, rc); + return (rc); + } + raidPtr->throughputstats.sum_io_us = 0; + raidPtr->throughputstats.num_ios = 0; + raidPtr->throughputstats.num_out_ios = 0; + return (0); +} + +void +rf_StartThroughputStats(RF_Raid_t * raidPtr) +{ + RF_LOCK_MUTEX(raidPtr->throughputstats.mutex); + raidPtr->throughputstats.num_ios++; + raidPtr->throughputstats.num_out_ios++; + if (raidPtr->throughputstats.num_out_ios == 1) + RF_GETTIME(raidPtr->throughputstats.start); + RF_UNLOCK_MUTEX(raidPtr->throughputstats.mutex); +} + +static void +rf_StopThroughputStats(RF_Raid_t * raidPtr) +{ + struct timeval diff; + + RF_LOCK_MUTEX(raidPtr->throughputstats.mutex); + raidPtr->throughputstats.num_out_ios--; + if (raidPtr->throughputstats.num_out_ios == 0) { + RF_GETTIME(raidPtr->throughputstats.stop); + RF_TIMEVAL_DIFF(&raidPtr->throughputstats.start, &raidPtr->throughputstats.stop, &diff); + raidPtr->throughputstats.sum_io_us += TIMEVAL_TO_US(diff); + } + RF_UNLOCK_MUTEX(raidPtr->throughputstats.mutex); +} + +static void +rf_PrintThroughputStats(RF_Raid_t * raidPtr) +{ + RF_ASSERT(raidPtr->throughputstats.num_out_ios == 0); + if (raidPtr->throughputstats.sum_io_us != 0) { + printf("[Througphut: %8.2f IOs/second]\n", raidPtr->throughputstats.num_ios + / (raidPtr->throughputstats.sum_io_us / 1000000.0)); + } +} +#endif /* !KERNEL && !SIMULATE */ + +void +rf_StartUserStats(RF_Raid_t * raidPtr) +{ + RF_GETTIME(raidPtr->userstats.start); + raidPtr->userstats.sum_io_us = 0; + raidPtr->userstats.num_ios = 0; + raidPtr->userstats.num_sect_moved = 0; +} + +void +rf_StopUserStats(RF_Raid_t * raidPtr) +{ + RF_GETTIME(raidPtr->userstats.stop); +} + +void +rf_UpdateUserStats(raidPtr, rt, numsect) + RF_Raid_t *raidPtr; + int rt; /* resp time in us */ + int numsect; /* number of sectors for this access */ +{ + raidPtr->userstats.sum_io_us += rt; + raidPtr->userstats.num_ios++; + raidPtr->userstats.num_sect_moved += numsect; +} + +void +rf_PrintUserStats(RF_Raid_t * raidPtr) +{ + long elapsed_us, mbs, mbs_frac; + struct timeval diff; + + RF_TIMEVAL_DIFF(&raidPtr->userstats.start, &raidPtr->userstats.stop, &diff); + elapsed_us = TIMEVAL_TO_US(diff); + + /* 2000 sectors per megabyte, 10000000 microseconds per second */ + if (elapsed_us) + mbs = (raidPtr->userstats.num_sect_moved / 2000) / (elapsed_us / 1000000); + else + mbs = 0; + + /* this computes only the first digit of the fractional mb/s moved */ + if (elapsed_us) { + mbs_frac = ((raidPtr->userstats.num_sect_moved / 200) / (elapsed_us / 1000000)) + - (mbs * 10); + } else { + mbs_frac = 0; + } + + printf("Number of I/Os: %ld\n", raidPtr->userstats.num_ios); + printf("Elapsed time (us): %ld\n", elapsed_us); + printf("User I/Os per second: %ld\n", RF_DB0_CHECK(raidPtr->userstats.num_ios, (elapsed_us / 1000000))); + printf("Average user response time: %ld us\n", RF_DB0_CHECK(raidPtr->userstats.sum_io_us, raidPtr->userstats.num_ios)); + printf("Total sectors moved: %ld\n", raidPtr->userstats.num_sect_moved); + printf("Average access size (sect): %ld\n", RF_DB0_CHECK(raidPtr->userstats.num_sect_moved, raidPtr->userstats.num_ios)); + printf("Achieved data rate: %ld.%ld MB/sec\n", mbs, mbs_frac); +} + + +void +rf_print_panic_message(line,file) + int line; + char *file; +{ + sprintf(rf_panicbuf,"raidframe error at line %d file %s", + line, file); +} + +void +rf_print_assert_panic_message(line,file,condition) + int line; + char *file; + char *condition; +{ + sprintf(rf_panicbuf, + "raidframe error at line %d file %s (failed asserting %s)\n", + line, file, condition); +} diff --git a/sys/dev/raidframe/rf_driver.h b/sys/dev/raidframe/rf_driver.h new file mode 100644 index 0000000..8b156c5 --- /dev/null +++ b/sys/dev/raidframe/rf_driver.h @@ -0,0 +1,79 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_driver.h,v 1.4 2000/02/13 04:53:57 oster Exp $ */ +/* + * rf_driver.h + */ +/* + * Copyright (c) 1996 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Jim Zelenka + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +#ifndef _RF__RF_DRIVER_H_ +#define _RF__RF_DRIVER_H_ + +#include <dev/raidframe/rf_threadstuff.h> +#include <dev/raidframe/rf_types.h> +#include <dev/raidframe/rf_bsd.h> + +#if _KERNEL +RF_DECLARE_EXTERN_MUTEX(rf_printf_mutex) +int rf_BootRaidframe(void); +int rf_UnbootRaidframe(void); +int rf_Shutdown(RF_Raid_t * raidPtr); +int rf_Configure(RF_Raid_t * raidPtr, RF_Config_t * cfgPtr, + RF_AutoConfig_t *ac); +RF_RaidAccessDesc_t *rf_AllocRaidAccDesc(RF_Raid_t * raidPtr, RF_IoType_t type, + RF_RaidAddr_t raidAddress, + RF_SectorCount_t numBlocks, + caddr_t bufPtr, + void *bp, RF_DagHeader_t ** paramDAG, + RF_AccessStripeMapHeader_t ** paramASM, + RF_RaidAccessFlags_t flags, + void (*cbF) (RF_Buf_t), + void *cbA, + RF_AccessState_t * states); +void rf_FreeRaidAccDesc(RF_RaidAccessDesc_t * desc); +int rf_DoAccess(RF_Raid_t * raidPtr, RF_IoType_t type, int async_flag, + RF_RaidAddr_t raidAddress, RF_SectorCount_t numBlocks, + caddr_t bufPtr, void *bp_in, RF_DagHeader_t ** paramDAG, + RF_AccessStripeMapHeader_t ** paramASM, + RF_RaidAccessFlags_t flags, + RF_RaidAccessDesc_t ** paramDesc, + void (*cbF) (RF_Buf_t), void *cbA); +int rf_SetReconfiguredMode(RF_Raid_t * raidPtr, RF_RowCol_t row, + RF_RowCol_t col); +int rf_FailDisk(RF_Raid_t * raidPtr, RF_RowCol_t frow, RF_RowCol_t fcol, + int initRecon); +void rf_SignalQuiescenceLock(RF_Raid_t * raidPtr, + RF_RaidReconDesc_t * reconDesc); +int rf_SuspendNewRequestsAndWait(RF_Raid_t * raidPtr); +void rf_ResumeNewRequests(RF_Raid_t * raidPtr); +void rf_StartThroughputStats(RF_Raid_t * raidPtr); +void rf_StartUserStats(RF_Raid_t * raidPtr); +void rf_StopUserStats(RF_Raid_t * raidPtr); +void rf_UpdateUserStats(RF_Raid_t * raidPtr, int rt, int numsect); +void rf_PrintUserStats(RF_Raid_t * raidPtr); +#endif /* _KERNEL */ +#endif /* !_RF__RF_DRIVER_H_ */ diff --git a/sys/dev/raidframe/rf_engine.c b/sys/dev/raidframe/rf_engine.c new file mode 100644 index 0000000..ddd5612 --- /dev/null +++ b/sys/dev/raidframe/rf_engine.c @@ -0,0 +1,810 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_engine.c,v 1.10 2000/08/20 16:51:03 thorpej Exp $ */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: William V. Courtright II, Mark Holland, Rachad Youssef + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +/**************************************************************************** + * * + * engine.c -- code for DAG execution engine * + * * + * Modified to work as follows (holland): * + * A user-thread calls into DispatchDAG, which fires off the nodes that * + * are direct successors to the header node. DispatchDAG then returns, * + * and the rest of the I/O continues asynchronously. As each node * + * completes, the node execution function calls FinishNode(). FinishNode * + * scans the list of successors to the node and increments the antecedent * + * counts. Each node that becomes enabled is placed on a central node * + * queue. A dedicated dag-execution thread grabs nodes off of this * + * queue and fires them. * + * * + * NULL nodes are never fired. * + * * + * Terminator nodes are never fired, but rather cause the callback * + * associated with the DAG to be invoked. * + * * + * If a node fails, the dag either rolls forward to the completion or * + * rolls back, undoing previously-completed nodes and fails atomically. * + * The direction of recovery is determined by the location of the failed * + * node in the graph. If the failure occured before the commit node in * + * the graph, backward recovery is used. Otherwise, forward recovery is * + * used. * + * * + ****************************************************************************/ + +#include <dev/raidframe/rf_threadstuff.h> + +#include <sys/errno.h> + +#include <dev/raidframe/rf_dag.h> +#include <dev/raidframe/rf_engine.h> +#include <dev/raidframe/rf_etimer.h> +#include <dev/raidframe/rf_general.h> +#include <dev/raidframe/rf_dagutils.h> +#include <dev/raidframe/rf_shutdown.h> +#include <dev/raidframe/rf_raid.h> +#include <dev/raidframe/rf_kintf.h> + +static void DAGExecutionThread(RF_ThreadArg_t arg); + +#define DO_INIT(_l_,_r_) { \ + int _rc; \ + _rc = rf_create_managed_mutex(_l_,&(_r_)->node_queue_mutex); \ + if (_rc) { \ + return(_rc); \ + } \ + _rc = rf_create_managed_cond(_l_,&(_r_)->node_queue_cond); \ + if (_rc) { \ + return(_rc); \ + } \ +} + +/* synchronization primitives for this file. DO_WAIT should be enclosed in a while loop. */ + +/* + * XXX Is this spl-ing really necessary? + */ +#define DO_LOCK(_r_) \ +do { \ + ks = splbio(); \ + RF_LOCK_MUTEX((_r_)->node_queue_mutex); \ +} while (0) + +#define DO_UNLOCK(_r_) \ +do { \ + RF_UNLOCK_MUTEX((_r_)->node_queue_mutex); \ + splx(ks); \ +} while (0) + +#define DO_WAIT(_r_) \ + RF_WAIT_COND((_r_)->node_queue, (_r_)->node_queue_mutex) + +#define DO_SIGNAL(_r_) \ + RF_BROADCAST_COND((_r_)->node_queue) /* XXX RF_SIGNAL_COND? */ + +static void rf_ShutdownEngine(void *); + +static void +rf_ShutdownEngine(arg) + void *arg; +{ + RF_Raid_t *raidPtr; + + raidPtr = (RF_Raid_t *) arg; + raidPtr->shutdown_engine = 1; + DO_SIGNAL(raidPtr); +} + +int +rf_ConfigureEngine( + RF_ShutdownList_t ** listp, + RF_Raid_t * raidPtr, + RF_Config_t * cfgPtr) +{ + int rc; + + DO_INIT(listp, raidPtr); + + raidPtr->node_queue = NULL; + raidPtr->dags_in_flight = 0; + + rc = rf_init_managed_threadgroup(listp, &raidPtr->engine_tg); + if (rc) + return (rc); + + /* we create the execution thread only once per system boot. no need + * to check return code b/c the kernel panics if it can't create the + * thread. */ + if (rf_engineDebug) { + printf("raid%d: Creating engine thread\n", raidPtr->raidid); + } + if (RF_CREATE_THREAD(raidPtr->engine_thread, DAGExecutionThread, raidPtr,"raid")) { + RF_ERRORMSG("RAIDFRAME: Unable to create engine thread\n"); + return (ENOMEM); + } + if (rf_engineDebug) { + printf("raid%d: Created engine thread\n", raidPtr->raidid); + } + RF_THREADGROUP_STARTED(&raidPtr->engine_tg); + /* XXX something is missing here... */ +#ifdef debug + printf("Skipping the WAIT_START!!\n"); +#endif +#if 1 + printf("Waiting for DAG engine to start\n"); + RF_THREADGROUP_WAIT_START(&raidPtr->engine_tg); +#endif + /* engine thread is now running and waiting for work */ + if (rf_engineDebug) { + printf("raid%d: Engine thread running and waiting for events\n", raidPtr->raidid); + } + rc = rf_ShutdownCreate(listp, rf_ShutdownEngine, raidPtr); + if (rc) { + RF_ERRORMSG3("Unable to add to shutdown list file %s line %d rc=%d\n", __FILE__, + __LINE__, rc); + rf_ShutdownEngine(NULL); + } + return (rc); +} + +static int +BranchDone(RF_DagNode_t * node) +{ + int i; + + /* return true if forward execution is completed for a node and it's + * succedents */ + switch (node->status) { + case rf_wait: + /* should never be called in this state */ + RF_PANIC(); + break; + case rf_fired: + /* node is currently executing, so we're not done */ + return (RF_FALSE); + case rf_good: + for (i = 0; i < node->numSuccedents; i++) /* for each succedent */ + if (!BranchDone(node->succedents[i])) /* recursively check + * branch */ + return RF_FALSE; + return RF_TRUE; /* node and all succedent branches aren't in + * fired state */ + break; + case rf_bad: + /* succedents can't fire */ + return (RF_TRUE); + case rf_recover: + /* should never be called in this state */ + RF_PANIC(); + break; + case rf_undone: + case rf_panic: + /* XXX need to fix this case */ + /* for now, assume that we're done */ + return (RF_TRUE); + break; + default: + /* illegal node status */ + RF_PANIC(); + break; + } +} + +static int +NodeReady(RF_DagNode_t * node) +{ + int ready; + + switch (node->dagHdr->status) { + case rf_enable: + case rf_rollForward: + if ((node->status == rf_wait) && (node->numAntecedents == node->numAntDone)) + ready = RF_TRUE; + else + ready = RF_FALSE; + break; + case rf_rollBackward: + RF_ASSERT(node->numSuccDone <= node->numSuccedents); + RF_ASSERT(node->numSuccFired <= node->numSuccedents); + RF_ASSERT(node->numSuccFired <= node->numSuccDone); + if ((node->status == rf_good) && (node->numSuccDone == node->numSuccedents)) + ready = RF_TRUE; + else + ready = RF_FALSE; + break; + default: + printf("Execution engine found illegal DAG status in NodeReady\n"); + RF_PANIC(); + break; + } + + return (ready); +} + + + +/* user context and dag-exec-thread context: + * Fire a node. The node's status field determines which function, do or undo, + * to be fired. + * This routine assumes that the node's status field has alread been set to + * "fired" or "recover" to indicate the direction of execution. + */ +static void +FireNode(RF_DagNode_t * node) +{ + switch (node->status) { + case rf_fired: + /* fire the do function of a node */ + if (rf_engineDebug) { + printf("raid%d: Firing node 0x%lx (%s)\n", + node->dagHdr->raidPtr->raidid, + (unsigned long) node, node->name); + } + if (node->flags & RF_DAGNODE_FLAG_YIELD) { +#if defined(__NetBSD__) || defined(__FreeBSD__) && defined(_KERNEL) + /* thread_block(); */ + /* printf("Need to block the thread here...\n"); */ + /* XXX thread_block is actually mentioned in + * /usr/include/vm/vm_extern.h */ +#else + thread_block(); +#endif + } + (*(node->doFunc)) (node); + break; + case rf_recover: + /* fire the undo function of a node */ + if (rf_engineDebug) { + printf("raid%d: Firing (undo) node 0x%lx (%s)\n", + node->dagHdr->raidPtr->raidid, + (unsigned long) node, node->name); + } + if (node->flags & RF_DAGNODE_FLAG_YIELD) +#if defined(__NetBSD__) || defined(__FreeBSD__) && defined(_KERNEL) + /* thread_block(); */ + /* printf("Need to block the thread here...\n"); */ + /* XXX thread_block is actually mentioned in + * /usr/include/vm/vm_extern.h */ +#else + thread_block(); +#endif + (*(node->undoFunc)) (node); + break; + default: + RF_PANIC(); + break; + } +} + + + +/* user context: + * Attempt to fire each node in a linear array. + * The entire list is fired atomically. + */ +static void +FireNodeArray( + int numNodes, + RF_DagNode_t ** nodeList) +{ + RF_DagStatus_t dstat; + RF_DagNode_t *node; + int i, j; + + /* first, mark all nodes which are ready to be fired */ + for (i = 0; i < numNodes; i++) { + node = nodeList[i]; + dstat = node->dagHdr->status; + RF_ASSERT((node->status == rf_wait) || (node->status == rf_good)); + if (NodeReady(node)) { + if ((dstat == rf_enable) || (dstat == rf_rollForward)) { + RF_ASSERT(node->status == rf_wait); + if (node->commitNode) + node->dagHdr->numCommits++; + node->status = rf_fired; + for (j = 0; j < node->numAntecedents; j++) + node->antecedents[j]->numSuccFired++; + } else { + RF_ASSERT(dstat == rf_rollBackward); + RF_ASSERT(node->status == rf_good); + RF_ASSERT(node->commitNode == RF_FALSE); /* only one commit node + * per graph */ + node->status = rf_recover; + } + } + } + /* now, fire the nodes */ + for (i = 0; i < numNodes; i++) { + if ((nodeList[i]->status == rf_fired) || (nodeList[i]->status == rf_recover)) + FireNode(nodeList[i]); + } +} + + +/* user context: + * Attempt to fire each node in a linked list. + * The entire list is fired atomically. + */ +static void +FireNodeList(RF_DagNode_t * nodeList) +{ + RF_DagNode_t *node, *next; + RF_DagStatus_t dstat; + int j; + + if (nodeList) { + /* first, mark all nodes which are ready to be fired */ + for (node = nodeList; node; node = next) { + next = node->next; + dstat = node->dagHdr->status; + RF_ASSERT((node->status == rf_wait) || (node->status == rf_good)); + if (NodeReady(node)) { + if ((dstat == rf_enable) || (dstat == rf_rollForward)) { + RF_ASSERT(node->status == rf_wait); + if (node->commitNode) + node->dagHdr->numCommits++; + node->status = rf_fired; + for (j = 0; j < node->numAntecedents; j++) + node->antecedents[j]->numSuccFired++; + } else { + RF_ASSERT(dstat == rf_rollBackward); + RF_ASSERT(node->status == rf_good); + RF_ASSERT(node->commitNode == RF_FALSE); /* only one commit node + * per graph */ + node->status = rf_recover; + } + } + } + /* now, fire the nodes */ + for (node = nodeList; node; node = next) { + next = node->next; + if ((node->status == rf_fired) || (node->status == rf_recover)) + FireNode(node); + } + } +} +/* interrupt context: + * for each succedent + * propagate required results from node to succedent + * increment succedent's numAntDone + * place newly-enable nodes on node queue for firing + * + * To save context switches, we don't place NIL nodes on the node queue, + * but rather just process them as if they had fired. Note that NIL nodes + * that are the direct successors of the header will actually get fired by + * DispatchDAG, which is fine because no context switches are involved. + * + * Important: when running at user level, this can be called by any + * disk thread, and so the increment and check of the antecedent count + * must be locked. I used the node queue mutex and locked down the + * entire function, but this is certainly overkill. + */ +static void +PropagateResults( + RF_DagNode_t * node, + int context) +{ + RF_DagNode_t *s, *a; + RF_Raid_t *raidPtr; + int i, ks; + RF_DagNode_t *finishlist = NULL; /* a list of NIL nodes to be + * finished */ + RF_DagNode_t *skiplist = NULL; /* list of nodes with failed truedata + * antecedents */ + RF_DagNode_t *firelist = NULL; /* a list of nodes to be fired */ + RF_DagNode_t *q = NULL, *qh = NULL, *next; + int j, skipNode; + + raidPtr = node->dagHdr->raidPtr; + + DO_LOCK(raidPtr); + + /* debug - validate fire counts */ + for (i = 0; i < node->numAntecedents; i++) { + a = *(node->antecedents + i); + RF_ASSERT(a->numSuccFired >= a->numSuccDone); + RF_ASSERT(a->numSuccFired <= a->numSuccedents); + a->numSuccDone++; + } + + switch (node->dagHdr->status) { + case rf_enable: + case rf_rollForward: + for (i = 0; i < node->numSuccedents; i++) { + s = *(node->succedents + i); + RF_ASSERT(s->status == rf_wait); + (s->numAntDone)++; + if (s->numAntDone == s->numAntecedents) { + /* look for NIL nodes */ + if (s->doFunc == rf_NullNodeFunc) { + /* don't fire NIL nodes, just process + * them */ + s->next = finishlist; + finishlist = s; + } else { + /* look to see if the node is to be + * skipped */ + skipNode = RF_FALSE; + for (j = 0; j < s->numAntecedents; j++) + if ((s->antType[j] == rf_trueData) && (s->antecedents[j]->status == rf_bad)) + skipNode = RF_TRUE; + if (skipNode) { + /* this node has one or more + * failed true data + * dependencies, so skip it */ + s->next = skiplist; + skiplist = s; + } else + /* add s to list of nodes (q) + * to execute */ + if (context != RF_INTR_CONTEXT) { + /* we only have to + * enqueue if we're at + * intr context */ + s->next = firelist; /* put node on a list to + * be fired after we + * unlock */ + firelist = s; + } else { /* enqueue the node for + * the dag exec thread + * to fire */ + RF_ASSERT(NodeReady(s)); + if (q) { + q->next = s; + q = s; + } else { + qh = q = s; + qh->next = NULL; + } + } + } + } + } + + if (q) { + /* xfer our local list of nodes to the node queue */ + q->next = raidPtr->node_queue; + raidPtr->node_queue = qh; + DO_SIGNAL(raidPtr); + } + DO_UNLOCK(raidPtr); + + for (; skiplist; skiplist = next) { + next = skiplist->next; + skiplist->status = rf_skipped; + for (i = 0; i < skiplist->numAntecedents; i++) { + skiplist->antecedents[i]->numSuccFired++; + } + if (skiplist->commitNode) { + skiplist->dagHdr->numCommits++; + } + rf_FinishNode(skiplist, context); + } + for (; finishlist; finishlist = next) { + /* NIL nodes: no need to fire them */ + next = finishlist->next; + finishlist->status = rf_good; + for (i = 0; i < finishlist->numAntecedents; i++) { + finishlist->antecedents[i]->numSuccFired++; + } + if (finishlist->commitNode) + finishlist->dagHdr->numCommits++; + /* + * Okay, here we're calling rf_FinishNode() on nodes that + * have the null function as their work proc. Such a node + * could be the terminal node in a DAG. If so, it will + * cause the DAG to complete, which will in turn free + * memory used by the DAG, which includes the node in + * question. Thus, we must avoid referencing the node + * at all after calling rf_FinishNode() on it. + */ + rf_FinishNode(finishlist, context); /* recursive call */ + } + /* fire all nodes in firelist */ + FireNodeList(firelist); + break; + + case rf_rollBackward: + for (i = 0; i < node->numAntecedents; i++) { + a = *(node->antecedents + i); + RF_ASSERT(a->status == rf_good); + RF_ASSERT(a->numSuccDone <= a->numSuccedents); + RF_ASSERT(a->numSuccDone <= a->numSuccFired); + + if (a->numSuccDone == a->numSuccFired) { + if (a->undoFunc == rf_NullNodeFunc) { + /* don't fire NIL nodes, just process + * them */ + a->next = finishlist; + finishlist = a; + } else { + if (context != RF_INTR_CONTEXT) { + /* we only have to enqueue if + * we're at intr context */ + a->next = firelist; /* put node on a list to + * be fired after we + * unlock */ + firelist = a; + } else { /* enqueue the node for + * the dag exec thread + * to fire */ + RF_ASSERT(NodeReady(a)); + if (q) { + q->next = a; + q = a; + } else { + qh = q = a; + qh->next = NULL; + } + } + } + } + } + if (q) { + /* xfer our local list of nodes to the node queue */ + q->next = raidPtr->node_queue; + raidPtr->node_queue = qh; + DO_SIGNAL(raidPtr); + } + DO_UNLOCK(raidPtr); + for (; finishlist; finishlist = next) { /* NIL nodes: no need to + * fire them */ + next = finishlist->next; + finishlist->status = rf_good; + /* + * Okay, here we're calling rf_FinishNode() on nodes that + * have the null function as their work proc. Such a node + * could be the first node in a DAG. If so, it will + * cause the DAG to complete, which will in turn free + * memory used by the DAG, which includes the node in + * question. Thus, we must avoid referencing the node + * at all after calling rf_FinishNode() on it. + */ + rf_FinishNode(finishlist, context); /* recursive call */ + } + /* fire all nodes in firelist */ + FireNodeList(firelist); + + break; + default: + printf("Engine found illegal DAG status in PropagateResults()\n"); + RF_PANIC(); + break; + } +} + + + +/* + * Process a fired node which has completed + */ +static void +ProcessNode( + RF_DagNode_t * node, + int context) +{ + RF_Raid_t *raidPtr; + + raidPtr = node->dagHdr->raidPtr; + + switch (node->status) { + case rf_good: + /* normal case, don't need to do anything */ + break; + case rf_bad: + if ((node->dagHdr->numCommits > 0) || (node->dagHdr->numCommitNodes == 0)) { + node->dagHdr->status = rf_rollForward; /* crossed commit + * barrier */ + if (rf_engineDebug || 1) { + printf("raid%d: node (%s) returned fail, rolling forward\n", raidPtr->raidid, node->name); + } + } else { + node->dagHdr->status = rf_rollBackward; /* never reached commit + * barrier */ + if (rf_engineDebug || 1) { + printf("raid%d: node (%s) returned fail, rolling backward\n", raidPtr->raidid, node->name); + } + } + break; + case rf_undone: + /* normal rollBackward case, don't need to do anything */ + break; + case rf_panic: + /* an undo node failed!!! */ + printf("UNDO of a node failed!!!/n"); + break; + default: + printf("node finished execution with an illegal status!!!\n"); + RF_PANIC(); + break; + } + + /* enqueue node's succedents (antecedents if rollBackward) for + * execution */ + PropagateResults(node, context); +} + + + +/* user context or dag-exec-thread context: + * This is the first step in post-processing a newly-completed node. + * This routine is called by each node execution function to mark the node + * as complete and fire off any successors that have been enabled. + */ +int +rf_FinishNode( + RF_DagNode_t * node, + int context) +{ + /* as far as I can tell, retcode is not used -wvcii */ + int retcode = RF_FALSE; + node->dagHdr->numNodesCompleted++; + ProcessNode(node, context); + + return (retcode); +} + + +/* user context: + * submit dag for execution, return non-zero if we have to wait for completion. + * if and only if we return non-zero, we'll cause cbFunc to get invoked with + * cbArg when the DAG has completed. + * + * for now we always return 1. If the DAG does not cause any I/O, then the callback + * may get invoked before DispatchDAG returns. There's code in state 5 of ContinueRaidAccess + * to handle this. + * + * All we do here is fire the direct successors of the header node. The + * DAG execution thread does the rest of the dag processing. + */ +int +rf_DispatchDAG( + RF_DagHeader_t * dag, + void (*cbFunc) (void *), + void *cbArg) +{ + RF_Raid_t *raidPtr; + + raidPtr = dag->raidPtr; + if (dag->tracerec) { + RF_ETIMER_START(dag->tracerec->timer); + } + if (rf_engineDebug || rf_validateDAGDebug) { + if (rf_ValidateDAG(dag)) + RF_PANIC(); + } + if (rf_engineDebug) { + printf("raid%d: Entering DispatchDAG\n", raidPtr->raidid); + } + raidPtr->dags_in_flight++; /* debug only: blow off proper + * locking */ + dag->cbFunc = cbFunc; + dag->cbArg = cbArg; + dag->numNodesCompleted = 0; + dag->status = rf_enable; + FireNodeArray(dag->numSuccedents, dag->succedents); + return (1); +} +/* dedicated kernel thread: + * the thread that handles all DAG node firing. + * To minimize locking and unlocking, we grab a copy of the entire node queue and then set the + * node queue to NULL before doing any firing of nodes. This way we only have to release the + * lock once. Of course, it's probably rare that there's more than one node in the queue at + * any one time, but it sometimes happens. + * + * In the kernel, this thread runs at spl0 and is not swappable. I copied these + * characteristics from the aio_completion_thread. + */ + +static void +DAGExecutionThread(RF_ThreadArg_t arg) +{ + RF_DagNode_t *nd, *local_nq, *term_nq, *fire_nq; + RF_Raid_t *raidPtr; + int ks; + + raidPtr = (RF_Raid_t *) arg; + + if (rf_engineDebug) { + printf("raid%d: Engine thread is running\n", raidPtr->raidid); + } + + mtx_lock(&Giant); + + RF_THREADGROUP_RUNNING(&raidPtr->engine_tg); + + DO_LOCK(raidPtr); + while (!raidPtr->shutdown_engine) { + + while (raidPtr->node_queue != NULL) { + local_nq = raidPtr->node_queue; + fire_nq = NULL; + term_nq = NULL; + raidPtr->node_queue = NULL; + DO_UNLOCK(raidPtr); + + /* first, strip out the terminal nodes */ + while (local_nq) { + nd = local_nq; + local_nq = local_nq->next; + switch (nd->dagHdr->status) { + case rf_enable: + case rf_rollForward: + if (nd->numSuccedents == 0) { + /* end of the dag, add to + * callback list */ + nd->next = term_nq; + term_nq = nd; + } else { + /* not the end, add to the + * fire queue */ + nd->next = fire_nq; + fire_nq = nd; + } + break; + case rf_rollBackward: + if (nd->numAntecedents == 0) { + /* end of the dag, add to the + * callback list */ + nd->next = term_nq; + term_nq = nd; + } else { + /* not the end, add to the + * fire queue */ + nd->next = fire_nq; + fire_nq = nd; + } + break; + default: + RF_PANIC(); + break; + } + } + + /* execute callback of dags which have reached the + * terminal node */ + while (term_nq) { + nd = term_nq; + term_nq = term_nq->next; + nd->next = NULL; + (nd->dagHdr->cbFunc) (nd->dagHdr->cbArg); + raidPtr->dags_in_flight--; /* debug only */ + } + + /* fire remaining nodes */ + FireNodeList(fire_nq); + + DO_LOCK(raidPtr); + } + while (!raidPtr->shutdown_engine && raidPtr->node_queue == NULL) + DO_WAIT(raidPtr); + } + DO_UNLOCK(raidPtr); + + RF_THREADGROUP_DONE(&raidPtr->engine_tg); + + RF_THREAD_EXIT(0); +} diff --git a/sys/dev/raidframe/rf_engine.h b/sys/dev/raidframe/rf_engine.h new file mode 100644 index 0000000..c758c05 --- /dev/null +++ b/sys/dev/raidframe/rf_engine.h @@ -0,0 +1,48 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_engine.h,v 1.3 1999/02/05 00:06:11 oster Exp $ */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: William V. Courtright II, Mark Holland, Jim Zelenka + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +/********************************************************** + * * + * engine.h -- header file for execution engine functions * + * * + **********************************************************/ + +#ifndef _RF__RF_ENGINE_H_ +#define _RF__RF_ENGINE_H_ + +int +rf_ConfigureEngine(RF_ShutdownList_t ** listp, + RF_Raid_t * raidPtr, RF_Config_t * cfgPtr); + +int rf_FinishNode(RF_DagNode_t * node, int context); /* return finished node + * to engine */ + +int rf_DispatchDAG(RF_DagHeader_t * dag, void (*cbFunc) (void *), void *cbArg); /* execute dag */ + +#endif /* !_RF__RF_ENGINE_H_ */ diff --git a/sys/dev/raidframe/rf_etimer.h b/sys/dev/raidframe/rf_etimer.h new file mode 100644 index 0000000..e66e01b --- /dev/null +++ b/sys/dev/raidframe/rf_etimer.h @@ -0,0 +1,95 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_etimer.h,v 1.4 1999/08/13 03:26:55 oster Exp $ */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Mark Holland + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +#ifndef _RF__RF_TIMER_H_ +#define _RF__RF_TIMER_H_ + +#include <dev/raidframe/rf_options.h> +#include <dev/raidframe/rf_utils.h> + +#include <sys/time.h> + +struct RF_Etimer_s { + struct timeval st; + struct timeval et; + struct timeval diff; +}; + +#if defined(_KERNEL) +#include <sys/kernel.h> + +#if defined(__NetBSD__) +#define RF_ETIMER_START(_t_) \ + { \ + int s; \ + bzero(&(_t_), sizeof (_t_)); \ + s = splclock(); \ + (_t_).st = mono_time; \ + splx(s); \ + } +#elif defined(__FreeBSD__) +#define RF_ETIMER_START(_t_) \ + { \ + int s; \ + bzero(&(_t_), sizeof (_t_)); \ + s = splclock(); \ + getmicrouptime(&(_t_).st); \ + splx(s); \ + } +#endif + +#if defined(__NetBSD__) +#define RF_ETIMER_STOP(_t_) \ + { \ + int s; \ + s = splclock(); \ + (_t_).et = mono_time; \ + splx(s); \ + } +#elif defined(__FreeBSD__) +#define RF_ETIMER_STOP(_t_) \ + { \ + int s; \ + s = splclock(); \ + getmicrouptime(&(_t_).et); \ + splx(s); \ + } +#endif + +#define RF_ETIMER_EVAL(_t_) \ + { \ + RF_TIMEVAL_DIFF(&(_t_).st, &(_t_).et, &(_t_).diff) \ + } + +#define RF_ETIMER_VAL_US(_t_) (RF_TIMEVAL_TO_US((_t_).diff)) +#define RF_ETIMER_VAL_MS(_t_) (RF_TIMEVAL_TO_US((_t_).diff)/1000) + +#endif /* _KERNEL */ + +#endif /* !_RF__RF_TIMER_H_ */ diff --git a/sys/dev/raidframe/rf_evenodd.c b/sys/dev/raidframe/rf_evenodd.c new file mode 100644 index 0000000..47ce2cf --- /dev/null +++ b/sys/dev/raidframe/rf_evenodd.c @@ -0,0 +1,557 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_evenodd.c,v 1.4 2000/01/07 03:40:59 oster Exp $ */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Chang-Ming Wu + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +/***************************************************************************************** + * + * rf_evenodd.c -- implements EVENODD array architecture + * + ****************************************************************************************/ + +#include <dev/raidframe/rf_archs.h> + +#if RF_INCLUDE_EVENODD > 0 + +#include <dev/raidframe/rf_types.h> +#include <dev/raidframe/rf_raid.h> +#include <dev/raidframe/rf_dag.h> +#include <dev/raidframe/rf_dagffrd.h> +#include <dev/raidframe/rf_dagffwr.h> +#include <dev/raidframe/rf_dagdegrd.h> +#include <dev/raidframe/rf_dagdegwr.h> +#include <dev/raidframe/rf_dagutils.h> +#include <dev/raidframe/rf_dagfuncs.h> +#include <dev/raidframe/rf_etimer.h> +#include <dev/raidframe/rf_general.h> +#include <dev/raidframe/rf_evenodd.h> +#include <dev/raidframe/rf_configure.h> +#include <dev/raidframe/rf_parityscan.h> +#include <dev/raidframe/rf_utils.h> +#include <dev/raidframe/rf_map.h> +#include <dev/raidframe/rf_pq.h> +#include <dev/raidframe/rf_mcpair.h> +#include <dev/raidframe/rf_evenodd.h> +#include <dev/raidframe/rf_evenodd_dagfuncs.h> +#include <dev/raidframe/rf_evenodd_dags.h> +#include <dev/raidframe/rf_engine.h> +#include <dev/raidframe/rf_kintf.h> + +typedef struct RF_EvenOddConfigInfo_s { + RF_RowCol_t **stripeIdentifier; /* filled in at config time & used by + * IdentifyStripe */ +} RF_EvenOddConfigInfo_t; + +int +rf_ConfigureEvenOdd(listp, raidPtr, cfgPtr) + RF_ShutdownList_t **listp; + RF_Raid_t *raidPtr; + RF_Config_t *cfgPtr; +{ + RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; + RF_EvenOddConfigInfo_t *info; + RF_RowCol_t i, j, startdisk; + + RF_MallocAndAdd(info, sizeof(RF_EvenOddConfigInfo_t), (RF_EvenOddConfigInfo_t *), raidPtr->cleanupList); + layoutPtr->layoutSpecificInfo = (void *) info; + + RF_ASSERT(raidPtr->numRow == 1); + + info->stripeIdentifier = rf_make_2d_array(raidPtr->numCol, raidPtr->numCol, raidPtr->cleanupList); + startdisk = 0; + for (i = 0; i < raidPtr->numCol; i++) { + for (j = 0; j < raidPtr->numCol; j++) { + info->stripeIdentifier[i][j] = (startdisk + j) % raidPtr->numCol; + } + if ((startdisk -= 2) < 0) + startdisk += raidPtr->numCol; + } + + /* fill in the remaining layout parameters */ + layoutPtr->numStripe = layoutPtr->stripeUnitsPerDisk; + layoutPtr->bytesPerStripeUnit = layoutPtr->sectorsPerStripeUnit << raidPtr->logBytesPerSector; + layoutPtr->numDataCol = raidPtr->numCol - 2; /* ORIG: + * layoutPtr->numDataCol + * = raidPtr->numCol-1; */ +#if RF_EO_MATRIX_DIM > 17 + if (raidPtr->numCol <= 17) { + printf("Number of stripe units in a parity stripe is smaller than 17. Please\n"); + printf("define the macro RF_EO_MATRIX_DIM in file rf_evenodd_dagfuncs.h to \n"); + printf("be 17 to increase performance. \n"); + return (EINVAL); + } +#elif RF_EO_MATRIX_DIM == 17 + if (raidPtr->numCol > 17) { + printf("Number of stripe units in a parity stripe is bigger than 17. Please\n"); + printf("define the macro RF_EO_MATRIX_DIM in file rf_evenodd_dagfuncs.h to \n"); + printf("be 257 for encoding and decoding functions to work. \n"); + return (EINVAL); + } +#endif + layoutPtr->dataSectorsPerStripe = layoutPtr->numDataCol * layoutPtr->sectorsPerStripeUnit; + layoutPtr->numParityCol = 2; + layoutPtr->dataStripeUnitsPerDisk = layoutPtr->stripeUnitsPerDisk; + raidPtr->sectorsPerDisk = layoutPtr->stripeUnitsPerDisk * layoutPtr->sectorsPerStripeUnit; + + raidPtr->totalSectors = layoutPtr->stripeUnitsPerDisk * layoutPtr->numDataCol * layoutPtr->sectorsPerStripeUnit; + + return (0); +} + +int +rf_GetDefaultNumFloatingReconBuffersEvenOdd(RF_Raid_t * raidPtr) +{ + return (20); +} + +RF_HeadSepLimit_t +rf_GetDefaultHeadSepLimitEvenOdd(RF_Raid_t * raidPtr) +{ + return (10); +} + +void +rf_IdentifyStripeEvenOdd( + RF_Raid_t * raidPtr, + RF_RaidAddr_t addr, + RF_RowCol_t ** diskids, + RF_RowCol_t * outRow) +{ + RF_StripeNum_t stripeID = rf_RaidAddressToStripeID(&raidPtr->Layout, addr); + RF_EvenOddConfigInfo_t *info = (RF_EvenOddConfigInfo_t *) raidPtr->Layout.layoutSpecificInfo; + + *outRow = 0; + *diskids = info->stripeIdentifier[stripeID % raidPtr->numCol]; +} +/* The layout of stripe unit on the disks are: c0 c1 c2 c3 c4 + + 0 1 2 E P + 5 E P 3 4 + P 6 7 8 E + 10 11 E P 9 + E P 12 13 14 + .... + + We use the MapSectorRAID5 to map data information because the routine can be shown to map exactly + the layout of data stripe unit as shown above although we have 2 redundant information now. + But for E and P, we use rf_MapEEvenOdd and rf_MapParityEvenOdd which are different method from raid-5. +*/ + + +void +rf_MapParityEvenOdd( + RF_Raid_t * raidPtr, + RF_RaidAddr_t raidSector, + RF_RowCol_t * row, + RF_RowCol_t * col, + RF_SectorNum_t * diskSector, + int remap) +{ + RF_StripeNum_t SUID = raidSector / raidPtr->Layout.sectorsPerStripeUnit; + RF_StripeNum_t endSUIDofthisStrip = (SUID / raidPtr->Layout.numDataCol + 1) * raidPtr->Layout.numDataCol - 1; + + *row = 0; + *col = (endSUIDofthisStrip + 2) % raidPtr->numCol; + *diskSector = (SUID / (raidPtr->Layout.numDataCol)) * raidPtr->Layout.sectorsPerStripeUnit + + (raidSector % raidPtr->Layout.sectorsPerStripeUnit); +} + +void +rf_MapEEvenOdd( + RF_Raid_t * raidPtr, + RF_RaidAddr_t raidSector, + RF_RowCol_t * row, + RF_RowCol_t * col, + RF_SectorNum_t * diskSector, + int remap) +{ + RF_StripeNum_t SUID = raidSector / raidPtr->Layout.sectorsPerStripeUnit; + RF_StripeNum_t endSUIDofthisStrip = (SUID / raidPtr->Layout.numDataCol + 1) * raidPtr->Layout.numDataCol - 1; + + *row = 0; + *col = (endSUIDofthisStrip + 1) % raidPtr->numCol; + *diskSector = (SUID / (raidPtr->Layout.numDataCol)) * raidPtr->Layout.sectorsPerStripeUnit + + (raidSector % raidPtr->Layout.sectorsPerStripeUnit); +} + +void +rf_EODagSelect( + RF_Raid_t * raidPtr, + RF_IoType_t type, + RF_AccessStripeMap_t * asmap, + RF_VoidFuncPtr * createFunc) +{ + RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout); + unsigned ndfail = asmap->numDataFailed; + unsigned npfail = asmap->numParityFailed + asmap->numQFailed; + unsigned ntfail = npfail + ndfail; + + RF_ASSERT(RF_IO_IS_R_OR_W(type)); + if (ntfail > 2) { + RF_ERRORMSG("more than two disks failed in a single group! Aborting I/O operation.\n"); + /* *infoFunc = */ *createFunc = NULL; + return; + } + /* ok, we can do this I/O */ + if (type == RF_IO_TYPE_READ) { + switch (ndfail) { + case 0: + /* fault free read */ + *createFunc = (RF_VoidFuncPtr) rf_CreateFaultFreeReadDAG; /* same as raid 5 */ + break; + case 1: + /* lost a single data unit */ + /* two cases: (1) parity is not lost. do a normal raid + * 5 reconstruct read. (2) parity is lost. do a + * reconstruct read using "e". */ + if (ntfail == 2) { /* also lost redundancy */ + if (asmap->failedPDAs[1]->type == RF_PDA_TYPE_PARITY) + *createFunc = (RF_VoidFuncPtr) rf_EO_110_CreateReadDAG; + else + *createFunc = (RF_VoidFuncPtr) rf_EO_101_CreateReadDAG; + } else { + /* P and E are ok. But is there a failure in + * some unaccessed data unit? */ + if (rf_NumFailedDataUnitsInStripe(raidPtr, asmap) == 2) + *createFunc = (RF_VoidFuncPtr) rf_EO_200_CreateReadDAG; + else + *createFunc = (RF_VoidFuncPtr) rf_EO_100_CreateReadDAG; + } + break; + case 2: + /* *createFunc = rf_EO_200_CreateReadDAG; */ + *createFunc = NULL; + break; + } + return; + } + /* a write */ + switch (ntfail) { + case 0: /* fault free */ + if (rf_suppressLocksAndLargeWrites || + (((asmap->numStripeUnitsAccessed <= (layoutPtr->numDataCol / 2)) && (layoutPtr->numDataCol != 1)) || + (asmap->parityInfo->next != NULL) || (asmap->qInfo->next != NULL) || rf_CheckStripeForFailures(raidPtr, asmap))) { + + *createFunc = (RF_VoidFuncPtr) rf_EOCreateSmallWriteDAG; + } else { + *createFunc = (RF_VoidFuncPtr) rf_EOCreateLargeWriteDAG; + } + break; + + case 1: /* single disk fault */ + if (npfail == 1) { + RF_ASSERT((asmap->failedPDAs[0]->type == RF_PDA_TYPE_PARITY) || (asmap->failedPDAs[0]->type == RF_PDA_TYPE_Q)); + if (asmap->failedPDAs[0]->type == RF_PDA_TYPE_Q) { /* q died, treat like + * normal mode raid5 + * write. */ + if (((asmap->numStripeUnitsAccessed <= (layoutPtr->numDataCol / 2)) || (asmap->numStripeUnitsAccessed == 1)) + || (asmap->parityInfo->next != NULL) || rf_NumFailedDataUnitsInStripe(raidPtr, asmap)) + *createFunc = (RF_VoidFuncPtr) rf_EO_001_CreateSmallWriteDAG; + else + *createFunc = (RF_VoidFuncPtr) rf_EO_001_CreateLargeWriteDAG; + } else {/* parity died, small write only updating Q */ + if (((asmap->numStripeUnitsAccessed <= (layoutPtr->numDataCol / 2)) || (asmap->numStripeUnitsAccessed == 1)) + || (asmap->qInfo->next != NULL) || rf_NumFailedDataUnitsInStripe(raidPtr, asmap)) + *createFunc = (RF_VoidFuncPtr) rf_EO_010_CreateSmallWriteDAG; + else + *createFunc = (RF_VoidFuncPtr) rf_EO_010_CreateLargeWriteDAG; + } + } else { /* data missing. Do a P reconstruct write if + * only a single data unit is lost in the + * stripe, otherwise a reconstruct write which + * employnig both P and E units. */ + if (rf_NumFailedDataUnitsInStripe(raidPtr, asmap) == 2) { + if (asmap->numStripeUnitsAccessed == 1) + *createFunc = (RF_VoidFuncPtr) rf_EO_200_CreateWriteDAG; + else + *createFunc = NULL; /* No direct support for + * this case now, like + * that in Raid-5 */ + } else { + if (asmap->numStripeUnitsAccessed != 1 && asmap->failedPDAs[0]->numSector != layoutPtr->sectorsPerStripeUnit) + *createFunc = NULL; /* No direct support for + * this case now, like + * that in Raid-5 */ + else + *createFunc = (RF_VoidFuncPtr) rf_EO_100_CreateWriteDAG; + } + } + break; + + case 2: /* two disk faults */ + switch (npfail) { + case 2: /* both p and q dead */ + *createFunc = (RF_VoidFuncPtr) rf_EO_011_CreateWriteDAG; + break; + case 1: /* either p or q and dead data */ + RF_ASSERT(asmap->failedPDAs[0]->type == RF_PDA_TYPE_DATA); + RF_ASSERT((asmap->failedPDAs[1]->type == RF_PDA_TYPE_PARITY) || (asmap->failedPDAs[1]->type == RF_PDA_TYPE_Q)); + if (asmap->failedPDAs[1]->type == RF_PDA_TYPE_Q) { + if (asmap->numStripeUnitsAccessed != 1 && asmap->failedPDAs[0]->numSector != layoutPtr->sectorsPerStripeUnit) + *createFunc = NULL; /* In both PQ and + * EvenOdd, no direct + * support for this case + * now, like that in + * Raid-5 */ + else + *createFunc = (RF_VoidFuncPtr) rf_EO_101_CreateWriteDAG; + } else { + if (asmap->numStripeUnitsAccessed != 1 && asmap->failedPDAs[0]->numSector != layoutPtr->sectorsPerStripeUnit) + *createFunc = NULL; /* No direct support for + * this case, like that + * in Raid-5 */ + else + *createFunc = (RF_VoidFuncPtr) rf_EO_110_CreateWriteDAG; + } + break; + case 0: /* double data loss */ + /* if(asmap->failedPDAs[0]->numSector + + * asmap->failedPDAs[1]->numSector == 2 * + * layoutPtr->sectorsPerStripeUnit ) createFunc = + * rf_EOCreateLargeWriteDAG; else */ + *createFunc = NULL; /* currently, in Evenodd, No + * support for simultaneous + * access of both failed SUs */ + break; + } + break; + + default: /* more than 2 disk faults */ + *createFunc = NULL; + RF_PANIC(); + } + return; +} + + +int +rf_VerifyParityEvenOdd(raidPtr, raidAddr, parityPDA, correct_it, flags) + RF_Raid_t *raidPtr; + RF_RaidAddr_t raidAddr; + RF_PhysDiskAddr_t *parityPDA; + int correct_it; + RF_RaidAccessFlags_t flags; +{ + RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout); + RF_RaidAddr_t startAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, raidAddr); + RF_SectorCount_t numsector = parityPDA->numSector; + int numbytes = rf_RaidAddressToByte(raidPtr, numsector); + int bytesPerStripe = numbytes * layoutPtr->numDataCol; + RF_DagHeader_t *rd_dag_h, *wr_dag_h; /* read, write dag */ + RF_DagNode_t *blockNode, *unblockNode, *wrBlock, *wrUnblock; + RF_AccessStripeMapHeader_t *asm_h; + RF_AccessStripeMap_t *asmap; + RF_AllocListElem_t *alloclist; + RF_PhysDiskAddr_t *pda; + char *pbuf, *buf, *end_p, *p; + char *redundantbuf2; + int redundantTwoErr = 0, redundantOneErr = 0; + int parity_cant_correct = RF_FALSE, red2_cant_correct = RF_FALSE, + parity_corrected = RF_FALSE, red2_corrected = RF_FALSE; + int i, retcode; + RF_ReconUnitNum_t which_ru; + RF_StripeNum_t psID = rf_RaidAddressToParityStripeID(layoutPtr, raidAddr, &which_ru); + int stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol; + RF_AccTraceEntry_t tracerec; + RF_MCPair_t *mcpair; + + retcode = RF_PARITY_OKAY; + + mcpair = rf_AllocMCPair(); + rf_MakeAllocList(alloclist); + RF_MallocAndAdd(buf, numbytes * (layoutPtr->numDataCol + layoutPtr->numParityCol), (char *), alloclist); + RF_CallocAndAdd(pbuf, 1, numbytes, (char *), alloclist); /* use calloc to make + * sure buffer is zeroed */ + end_p = buf + bytesPerStripe; + RF_CallocAndAdd(redundantbuf2, 1, numbytes, (char *), alloclist); /* use calloc to make + * sure buffer is zeroed */ + + rd_dag_h = rf_MakeSimpleDAG(raidPtr, stripeWidth, numbytes, buf, rf_DiskReadFunc, rf_DiskReadUndoFunc, + "Rod", alloclist, flags, RF_IO_NORMAL_PRIORITY); + blockNode = rd_dag_h->succedents[0]; + unblockNode = blockNode->succedents[0]->succedents[0]; + + /* map the stripe and fill in the PDAs in the dag */ + asm_h = rf_MapAccess(raidPtr, startAddr, layoutPtr->dataSectorsPerStripe, buf, RF_DONT_REMAP); + asmap = asm_h->stripeMap; + + for (pda = asmap->physInfo, i = 0; i < layoutPtr->numDataCol; i++, pda = pda->next) { + RF_ASSERT(pda); + rf_RangeRestrictPDA(raidPtr, parityPDA, pda, 0, 1); + RF_ASSERT(pda->numSector != 0); + if (rf_TryToRedirectPDA(raidPtr, pda, 0)) + goto out; /* no way to verify parity if disk is + * dead. return w/ good status */ + blockNode->succedents[i]->params[0].p = pda; + blockNode->succedents[i]->params[2].v = psID; + blockNode->succedents[i]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); + } + + RF_ASSERT(!asmap->parityInfo->next); + rf_RangeRestrictPDA(raidPtr, parityPDA, asmap->parityInfo, 0, 1); + RF_ASSERT(asmap->parityInfo->numSector != 0); + if (rf_TryToRedirectPDA(raidPtr, asmap->parityInfo, 1)) + goto out; + blockNode->succedents[layoutPtr->numDataCol]->params[0].p = asmap->parityInfo; + + RF_ASSERT(!asmap->qInfo->next); + rf_RangeRestrictPDA(raidPtr, parityPDA, asmap->qInfo, 0, 1); + RF_ASSERT(asmap->qInfo->numSector != 0); + if (rf_TryToRedirectPDA(raidPtr, asmap->qInfo, 1)) + goto out; + /* if disk is dead, b/c no reconstruction is implemented right now, + * the function "rf_TryToRedirectPDA" always return one, which cause + * go to out and return w/ good status */ + blockNode->succedents[layoutPtr->numDataCol + 1]->params[0].p = asmap->qInfo; + + /* fire off the DAG */ + bzero((char *) &tracerec, sizeof(tracerec)); + rd_dag_h->tracerec = &tracerec; + + if (rf_verifyParityDebug) { + printf("Parity verify read dag:\n"); + rf_PrintDAGList(rd_dag_h); + } + RF_LOCK_MUTEX(mcpair->mutex); + mcpair->flag = 0; + rf_DispatchDAG(rd_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc, + (void *) mcpair); + while (!mcpair->flag) + RF_WAIT_COND(mcpair->cond, mcpair->mutex); + RF_UNLOCK_MUTEX(mcpair->mutex); + if (rd_dag_h->status != rf_enable) { + RF_ERRORMSG("Unable to verify parity: can't read the stripe\n"); + retcode = RF_PARITY_COULD_NOT_VERIFY; + goto out; + } + for (p = buf, i = 0; p < end_p; p += numbytes, i++) { + rf_e_encToBuf(raidPtr, i, p, RF_EO_MATRIX_DIM - 2, redundantbuf2, numsector); + /* the corresponding columes in EvenOdd encoding Matrix for + * these p pointers which point to the databuffer in a full + * stripe are sequentially from 0 to layoutPtr->numDataCol-1 */ + rf_bxor(p, pbuf, numbytes, NULL); + } + RF_ASSERT(i == layoutPtr->numDataCol); + + for (i = 0; i < numbytes; i++) { + if (pbuf[i] != buf[bytesPerStripe + i]) { + if (!correct_it) { + RF_ERRORMSG3("Parity verify error: byte %d of parity is 0x%x should be 0x%x\n", + i, (u_char) buf[bytesPerStripe + i], (u_char) pbuf[i]); + } + } + redundantOneErr = 1; + break; + } + + for (i = 0; i < numbytes; i++) { + if (redundantbuf2[i] != buf[bytesPerStripe + numbytes + i]) { + if (!correct_it) { + RF_ERRORMSG3("Parity verify error: byte %d of second redundant information is 0x%x should be 0x%x\n", + i, (u_char) buf[bytesPerStripe + numbytes + i], (u_char) redundantbuf2[i]); + } + redundantTwoErr = 1; + break; + } + } + if (redundantOneErr || redundantTwoErr) + retcode = RF_PARITY_BAD; + + /* correct the first redundant disk, ie parity if it is error */ + if (redundantOneErr && correct_it) { + wr_dag_h = rf_MakeSimpleDAG(raidPtr, 1, numbytes, pbuf, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, + "Wnp", alloclist, flags, RF_IO_NORMAL_PRIORITY); + wrBlock = wr_dag_h->succedents[0]; + wrUnblock = wrBlock->succedents[0]->succedents[0]; + wrBlock->succedents[0]->params[0].p = asmap->parityInfo; + wrBlock->succedents[0]->params[2].v = psID; + wrBlock->succedents[0]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); + bzero((char *) &tracerec, sizeof(tracerec)); + wr_dag_h->tracerec = &tracerec; + if (rf_verifyParityDebug) { + printf("Parity verify write dag:\n"); + rf_PrintDAGList(wr_dag_h); + } + RF_LOCK_MUTEX(mcpair->mutex); + mcpair->flag = 0; + rf_DispatchDAG(wr_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc, + (void *) mcpair); + while (!mcpair->flag) + RF_WAIT_COND(mcpair->cond, mcpair->mutex); + RF_UNLOCK_MUTEX(mcpair->mutex); + if (wr_dag_h->status != rf_enable) { + RF_ERRORMSG("Unable to correct parity in VerifyParity: can't write the stripe\n"); + parity_cant_correct = RF_TRUE; + } else { + parity_corrected = RF_TRUE; + } + rf_FreeDAG(wr_dag_h); + } + if (redundantTwoErr && correct_it) { + wr_dag_h = rf_MakeSimpleDAG(raidPtr, 1, numbytes, redundantbuf2, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, + "Wnred2", alloclist, flags, RF_IO_NORMAL_PRIORITY); + wrBlock = wr_dag_h->succedents[0]; + wrUnblock = wrBlock->succedents[0]->succedents[0]; + wrBlock->succedents[0]->params[0].p = asmap->qInfo; + wrBlock->succedents[0]->params[2].v = psID; + wrBlock->succedents[0]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); + bzero((char *) &tracerec, sizeof(tracerec)); + wr_dag_h->tracerec = &tracerec; + if (rf_verifyParityDebug) { + printf("Dag of write new second redundant information in parity verify :\n"); + rf_PrintDAGList(wr_dag_h); + } + RF_LOCK_MUTEX(mcpair->mutex); + mcpair->flag = 0; + rf_DispatchDAG(wr_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc, + (void *) mcpair); + while (!mcpair->flag) + RF_WAIT_COND(mcpair->cond, mcpair->mutex); + RF_UNLOCK_MUTEX(mcpair->mutex); + if (wr_dag_h->status != rf_enable) { + RF_ERRORMSG("Unable to correct second redundant information in VerifyParity: can't write the stripe\n"); + red2_cant_correct = RF_TRUE; + } else { + red2_corrected = RF_TRUE; + } + rf_FreeDAG(wr_dag_h); + } + if ((redundantOneErr && parity_cant_correct) || + (redundantTwoErr && red2_cant_correct)) + retcode = RF_PARITY_COULD_NOT_CORRECT; + if ((retcode = RF_PARITY_BAD) && parity_corrected && red2_corrected) + retcode = RF_PARITY_CORRECTED; + + +out: + rf_FreeAccessStripeMap(asm_h); + rf_FreeAllocList(alloclist); + rf_FreeDAG(rd_dag_h); + rf_FreeMCPair(mcpair); + return (retcode); +} +#endif /* RF_INCLUDE_EVENODD > 0 */ diff --git a/sys/dev/raidframe/rf_evenodd.h b/sys/dev/raidframe/rf_evenodd.h new file mode 100644 index 0000000..4babdec --- /dev/null +++ b/sys/dev/raidframe/rf_evenodd.h @@ -0,0 +1,55 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_evenodd.h,v 1.2 1999/02/05 00:06:11 oster Exp $ */ +/* + * Copyright (c) 1995, 1996 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Chang-Ming Wu + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +#ifndef _RF__RF_EVENODD_H_ +#define _RF__RF_EVENODD_H_ + +/* extern declerations of the failure mode functions. */ +int +rf_ConfigureEvenOdd(RF_ShutdownList_t ** shutdownListp, RF_Raid_t * raidPtr, + RF_Config_t * cfgPtr); +int rf_GetDefaultNumFloatingReconBuffersEvenOdd(RF_Raid_t * raidPtr); +RF_HeadSepLimit_t rf_GetDefaultHeadSepLimitEvenOdd(RF_Raid_t * raidPtr); +void +rf_IdentifyStripeEvenOdd(RF_Raid_t * raidPtr, RF_RaidAddr_t addr, + RF_RowCol_t ** diskids, RF_RowCol_t * outrow); +void +rf_MapParityEvenOdd(RF_Raid_t * raidPtr, RF_RaidAddr_t raidSector, + RF_RowCol_t * row, RF_RowCol_t * col, RF_SectorNum_t * diskSector, int remap); +void +rf_MapEEvenOdd(RF_Raid_t * raidPtr, RF_RaidAddr_t raidSector, + RF_RowCol_t * row, RF_RowCol_t * col, RF_SectorNum_t * diskSector, int remap); +void +rf_EODagSelect(RF_Raid_t * raidPtr, RF_IoType_t type, + RF_AccessStripeMap_t * asmap, RF_VoidFuncPtr * createFunc); +int +rf_VerifyParityEvenOdd(RF_Raid_t * raidPtr, RF_RaidAddr_t raidAddr, + RF_PhysDiskAddr_t * parityPDA, int correct_it, RF_RaidAccessFlags_t flags); + +#endif /* !_RF__RF_EVENODD_H_ */ diff --git a/sys/dev/raidframe/rf_evenodd_dagfuncs.c b/sys/dev/raidframe/rf_evenodd_dagfuncs.c new file mode 100644 index 0000000..2dbf81d --- /dev/null +++ b/sys/dev/raidframe/rf_evenodd_dagfuncs.c @@ -0,0 +1,975 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_evenodd_dagfuncs.c,v 1.7 2001/01/26 03:50:53 oster Exp $ */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: ChangMing Wu + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +/* + * Code for RAID-EVENODD architecture. + */ + +#include <dev/raidframe/rf_archs.h> + +#if RF_INCLUDE_EVENODD > 0 + +#include <dev/raidframe/rf_types.h> +#include <dev/raidframe/rf_raid.h> +#include <dev/raidframe/rf_dag.h> +#include <dev/raidframe/rf_dagffrd.h> +#include <dev/raidframe/rf_dagffwr.h> +#include <dev/raidframe/rf_dagdegrd.h> +#include <dev/raidframe/rf_dagdegwr.h> +#include <dev/raidframe/rf_dagutils.h> +#include <dev/raidframe/rf_dagfuncs.h> +#include <dev/raidframe/rf_etimer.h> +#include <dev/raidframe/rf_general.h> +#include <dev/raidframe/rf_configure.h> +#include <dev/raidframe/rf_parityscan.h> +#include <dev/raidframe/rf_evenodd.h> +#include <dev/raidframe/rf_evenodd_dagfuncs.h> + +/* These redundant functions are for small write */ +RF_RedFuncs_t rf_EOSmallWritePFuncs = {rf_RegularXorFunc, "Regular Old-New P", rf_SimpleXorFunc, "Simple Old-New P"}; +RF_RedFuncs_t rf_EOSmallWriteEFuncs = {rf_RegularONEFunc, "Regular Old-New E", rf_SimpleONEFunc, "Regular Old-New E"}; +/* These redundant functions are for degraded read */ +RF_RedFuncs_t rf_eoPRecoveryFuncs = {rf_RecoveryXorFunc, "Recovery Xr", rf_RecoveryXorFunc, "Recovery Xr"}; +RF_RedFuncs_t rf_eoERecoveryFuncs = {rf_RecoveryEFunc, "Recovery E Func", rf_RecoveryEFunc, "Recovery E Func"}; +/********************************************************************************************** + * the following encoding node functions is used in EO_000_CreateLargeWriteDAG + **********************************************************************************************/ +int +rf_RegularPEFunc(node) + RF_DagNode_t *node; +{ + rf_RegularESubroutine(node, node->results[1]); + rf_RegularXorFunc(node);/* does the wakeup here! */ +#if 1 + return (0); /* XXX This was missing... GO */ +#endif +} + + +/************************************************************************************************ + * For EO_001_CreateSmallWriteDAG, there are (i)RegularONEFunc() and (ii)SimpleONEFunc() to + * be used. The previous case is when write access at least sectors of full stripe unit. + * The later function is used when the write access two stripe units but with total sectors + * less than sectors per SU. In this case, the access of parity and 'E' are shown as disconnected + * areas in their stripe unit and parity write and 'E' write are both devided into two distinct + * writes( totally four). This simple old-new write and regular old-new write happen as in RAID-5 + ************************************************************************************************/ + +/* Algorithm: + 1. Store the difference of old data and new data in the Rod buffer. + 2. then encode this buffer into the buffer which already have old 'E' information inside it, + the result can be shown to be the new 'E' information. + 3. xor the Wnd buffer into the difference buffer to recover the original old data. + Here we have another alternative: to allocate a temporary buffer for storing the difference of + old data and new data, then encode temp buf into old 'E' buf to form new 'E', but this approach + take the same speed as the previous, and need more memory. +*/ +int +rf_RegularONEFunc(node) + RF_DagNode_t *node; +{ + RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p; + RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & raidPtr->Layout; + int EpdaIndex = (node->numParams - 1) / 2 - 1; /* the parameter of node + * where you can find + * e-pda */ + int i, k, retcode = 0; + int suoffset, length; + RF_RowCol_t scol; + char *srcbuf, *destbuf; + RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec; + RF_Etimer_t timer; + RF_PhysDiskAddr_t *pda, *EPDA = (RF_PhysDiskAddr_t *) node->params[EpdaIndex].p; + int ESUOffset = rf_StripeUnitOffset(layoutPtr, EPDA->startSector); /* generally zero */ + + RF_ASSERT(EPDA->type == RF_PDA_TYPE_Q); + RF_ASSERT(ESUOffset == 0); + + RF_ETIMER_START(timer); + + /* Xor the Wnd buffer into Rod buffer, the difference of old data and + * new data is stored in Rod buffer */ + for (k = 0; k < EpdaIndex; k += 2) { + length = rf_RaidAddressToByte(raidPtr, ((RF_PhysDiskAddr_t *) node->params[k].p)->numSector); + retcode = rf_bxor(node->params[k + EpdaIndex + 3].p, node->params[k + 1].p, length, node->dagHdr->bp); + } + /* Start to encoding the buffer storing the difference of old data and + * new data into 'E' buffer */ + for (i = 0; i < EpdaIndex; i += 2) + if (node->params[i + 1].p != node->results[0]) { /* results[0] is buf ptr + * of E */ + pda = (RF_PhysDiskAddr_t *) node->params[i].p; + srcbuf = (char *) node->params[i + 1].p; + scol = rf_EUCol(layoutPtr, pda->raidAddress); + suoffset = rf_StripeUnitOffset(layoutPtr, pda->startSector); + destbuf = ((char *) node->results[0]) + rf_RaidAddressToByte(raidPtr, suoffset); + rf_e_encToBuf(raidPtr, scol, srcbuf, RF_EO_MATRIX_DIM - 2, destbuf, pda->numSector); + } + /* Recover the original old data to be used by parity encoding + * function in XorNode */ + for (k = 0; k < EpdaIndex; k += 2) { + length = rf_RaidAddressToByte(raidPtr, ((RF_PhysDiskAddr_t *) node->params[k].p)->numSector); + retcode = rf_bxor(node->params[k + EpdaIndex + 3].p, node->params[k + 1].p, length, node->dagHdr->bp); + } + RF_ETIMER_STOP(timer); + RF_ETIMER_EVAL(timer); + tracerec->q_us += RF_ETIMER_VAL_US(timer); + rf_GenericWakeupFunc(node, 0); +#if 1 + return (0); /* XXX this was missing.. GO */ +#endif +} + +int +rf_SimpleONEFunc(node) + RF_DagNode_t *node; +{ + RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p; + RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & raidPtr->Layout; + RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p; + int retcode = 0; + char *srcbuf, *destbuf; + RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec; + int length; + RF_RowCol_t scol; + RF_Etimer_t timer; + + RF_ASSERT(((RF_PhysDiskAddr_t *) node->params[2].p)->type == RF_PDA_TYPE_Q); + if (node->dagHdr->status == rf_enable) { + RF_ETIMER_START(timer); + length = rf_RaidAddressToByte(raidPtr, ((RF_PhysDiskAddr_t *) node->params[4].p)->numSector); /* this is a pda of + * writeDataNodes */ + /* bxor to buffer of readDataNodes */ + retcode = rf_bxor(node->params[5].p, node->params[1].p, length, node->dagHdr->bp); + /* find out the corresponding colume in encoding matrix for + * write colume to be encoded into redundant disk 'E' */ + scol = rf_EUCol(layoutPtr, pda->raidAddress); + srcbuf = node->params[1].p; + destbuf = node->params[3].p; + /* Start encoding process */ + rf_e_encToBuf(raidPtr, scol, srcbuf, RF_EO_MATRIX_DIM - 2, destbuf, pda->numSector); + rf_bxor(node->params[5].p, node->params[1].p, length, node->dagHdr->bp); + RF_ETIMER_STOP(timer); + RF_ETIMER_EVAL(timer); + tracerec->q_us += RF_ETIMER_VAL_US(timer); + + } + return (rf_GenericWakeupFunc(node, retcode)); /* call wake func + * explicitly since no + * I/O in this node */ +} + + +/****** called by rf_RegularPEFunc(node) and rf_RegularEFunc(node) in f.f. large write ********/ +void +rf_RegularESubroutine(node, ebuf) + RF_DagNode_t *node; + char *ebuf; +{ + RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p; + RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & raidPtr->Layout; + RF_PhysDiskAddr_t *pda; + int i, suoffset; + RF_RowCol_t scol; + char *srcbuf, *destbuf; + RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec; + RF_Etimer_t timer; + + RF_ETIMER_START(timer); + for (i = 0; i < node->numParams - 2; i += 2) { + RF_ASSERT(node->params[i + 1].p != ebuf); + pda = (RF_PhysDiskAddr_t *) node->params[i].p; + suoffset = rf_StripeUnitOffset(layoutPtr, pda->startSector); + scol = rf_EUCol(layoutPtr, pda->raidAddress); + srcbuf = (char *) node->params[i + 1].p; + destbuf = ebuf + rf_RaidAddressToByte(raidPtr, suoffset); + rf_e_encToBuf(raidPtr, scol, srcbuf, RF_EO_MATRIX_DIM - 2, destbuf, pda->numSector); + } + RF_ETIMER_STOP(timer); + RF_ETIMER_EVAL(timer); + tracerec->xor_us += RF_ETIMER_VAL_US(timer); +} + + +/******************************************************************************************* + * Used in EO_001_CreateLargeWriteDAG + ******************************************************************************************/ +int +rf_RegularEFunc(node) + RF_DagNode_t *node; +{ + rf_RegularESubroutine(node, node->results[0]); + rf_GenericWakeupFunc(node, 0); +#if 1 + return (0); /* XXX this was missing?.. GO */ +#endif +} +/******************************************************************************************* + * This degraded function allow only two case: + * 1. when write access the full failed stripe unit, then the access can be more than + * one tripe units. + * 2. when write access only part of the failed SU, we assume accesses of more than + * one stripe unit is not allowed so that the write can be dealt with like a + * large write. + * The following function is based on these assumptions. So except in the second case, + * it looks the same as a large write encodeing function. But this is not exactly the + * normal way for doing a degraded write, since raidframe have to break cases of access + * other than the above two into smaller accesses. We may have to change + * DegrESubroutin in the future. + *******************************************************************************************/ +void +rf_DegrESubroutine(node, ebuf) + RF_DagNode_t *node; + char *ebuf; +{ + RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p; + RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & raidPtr->Layout; + RF_PhysDiskAddr_t *failedPDA = (RF_PhysDiskAddr_t *) node->params[node->numParams - 2].p; + RF_PhysDiskAddr_t *pda; + int i, suoffset, failedSUOffset = rf_StripeUnitOffset(layoutPtr, failedPDA->startSector); + RF_RowCol_t scol; + char *srcbuf, *destbuf; + RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec; + RF_Etimer_t timer; + + RF_ETIMER_START(timer); + for (i = 0; i < node->numParams - 2; i += 2) { + RF_ASSERT(node->params[i + 1].p != ebuf); + pda = (RF_PhysDiskAddr_t *) node->params[i].p; + suoffset = rf_StripeUnitOffset(layoutPtr, pda->startSector); + scol = rf_EUCol(layoutPtr, pda->raidAddress); + srcbuf = (char *) node->params[i + 1].p; + destbuf = ebuf + rf_RaidAddressToByte(raidPtr, suoffset - failedSUOffset); + rf_e_encToBuf(raidPtr, scol, srcbuf, RF_EO_MATRIX_DIM - 2, destbuf, pda->numSector); + } + + RF_ETIMER_STOP(timer); + RF_ETIMER_EVAL(timer); + tracerec->q_us += RF_ETIMER_VAL_US(timer); +} + + +/************************************************************************************** + * This function is used in case where one data disk failed and both redundant disks + * alive. It is used in the EO_100_CreateWriteDAG. Note: if there is another disk + * failed in the stripe but not accessed at this time, then we should, instead, use + * the rf_EOWriteDoubleRecoveryFunc(). + **************************************************************************************/ +int +rf_Degraded_100_EOFunc(node) + RF_DagNode_t *node; +{ + rf_DegrESubroutine(node, node->results[1]); + rf_RecoveryXorFunc(node); /* does the wakeup here! */ +#if 1 + return (0); /* XXX this was missing... SHould these be + * void functions??? GO */ +#endif +} +/************************************************************************************** + * This function is to encode one sector in one of the data disks to the E disk. + * However, in evenodd this function can also be used as decoding function to recover + * data from dead disk in the case of parity failure and a single data failure. + **************************************************************************************/ +void +rf_e_EncOneSect( + RF_RowCol_t srcLogicCol, + char *srcSecbuf, + RF_RowCol_t destLogicCol, + char *destSecbuf, + int bytesPerSector) +{ + int S_index; /* index of the EU in the src col which need + * be Xored into all EUs in a dest sector */ + int numRowInEncMatix = (RF_EO_MATRIX_DIM) - 1; + RF_RowCol_t j, indexInDest, /* row index of an encoding unit in + * the destination colume of encoding + * matrix */ + indexInSrc; /* row index of an encoding unit in the source + * colume used for recovery */ + int bytesPerEU = bytesPerSector / numRowInEncMatix; + +#if RF_EO_MATRIX_DIM > 17 + int shortsPerEU = bytesPerEU / sizeof(short); + short *destShortBuf, *srcShortBuf1, *srcShortBuf2; + short temp1; +#elif RF_EO_MATRIX_DIM == 17 + int longsPerEU = bytesPerEU / sizeof(long); + long *destLongBuf, *srcLongBuf1, *srcLongBuf2; + long temp1; +#endif + +#if RF_EO_MATRIX_DIM > 17 + RF_ASSERT(sizeof(short) == 2 || sizeof(short) == 1); + RF_ASSERT(bytesPerEU % sizeof(short) == 0); +#elif RF_EO_MATRIX_DIM == 17 + RF_ASSERT(sizeof(long) == 8 || sizeof(long) == 4); + RF_ASSERT(bytesPerEU % sizeof(long) == 0); +#endif + + S_index = rf_EO_Mod((RF_EO_MATRIX_DIM - 1 + destLogicCol - srcLogicCol), RF_EO_MATRIX_DIM); +#if RF_EO_MATRIX_DIM > 17 + srcShortBuf1 = (short *) (srcSecbuf + S_index * bytesPerEU); +#elif RF_EO_MATRIX_DIM == 17 + srcLongBuf1 = (long *) (srcSecbuf + S_index * bytesPerEU); +#endif + + for (indexInDest = 0; indexInDest < numRowInEncMatix; indexInDest++) { + indexInSrc = rf_EO_Mod((indexInDest + destLogicCol - srcLogicCol), RF_EO_MATRIX_DIM); + +#if RF_EO_MATRIX_DIM > 17 + destShortBuf = (short *) (destSecbuf + indexInDest * bytesPerEU); + srcShortBuf2 = (short *) (srcSecbuf + indexInSrc * bytesPerEU); + for (j = 0; j < shortsPerEU; j++) { + temp1 = destShortBuf[j] ^ srcShortBuf1[j]; + /* note: S_index won't be at the end row for any src + * col! */ + if (indexInSrc != RF_EO_MATRIX_DIM - 1) + destShortBuf[j] = (srcShortBuf2[j]) ^ temp1; + /* if indexInSrc is at the end row, ie. + * RF_EO_MATRIX_DIM -1, then all elements are zero! */ + else + destShortBuf[j] = temp1; + } + +#elif RF_EO_MATRIX_DIM == 17 + destLongBuf = (long *) (destSecbuf + indexInDest * bytesPerEU); + srcLongBuf2 = (long *) (srcSecbuf + indexInSrc * bytesPerEU); + for (j = 0; j < longsPerEU; j++) { + temp1 = destLongBuf[j] ^ srcLongBuf1[j]; + if (indexInSrc != RF_EO_MATRIX_DIM - 1) + destLongBuf[j] = (srcLongBuf2[j]) ^ temp1; + else + destLongBuf[j] = temp1; + } +#endif + } +} + +void +rf_e_encToBuf( + RF_Raid_t * raidPtr, + RF_RowCol_t srcLogicCol, + char *srcbuf, + RF_RowCol_t destLogicCol, + char *destbuf, + int numSector) +{ + int i, bytesPerSector = rf_RaidAddressToByte(raidPtr, 1); + + for (i = 0; i < numSector; i++) { + rf_e_EncOneSect(srcLogicCol, srcbuf, destLogicCol, destbuf, bytesPerSector); + srcbuf += bytesPerSector; + destbuf += bytesPerSector; + } +} +/************************************************************************************** + * when parity die and one data die, We use second redundant information, 'E', + * to recover the data in dead disk. This function is used in the recovery node of + * for EO_110_CreateReadDAG + **************************************************************************************/ +int +rf_RecoveryEFunc(node) + RF_DagNode_t *node; +{ + RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p; + RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & raidPtr->Layout; + RF_PhysDiskAddr_t *failedPDA = (RF_PhysDiskAddr_t *) node->params[node->numParams - 2].p; + RF_RowCol_t scol, /* source logical column */ + fcol = rf_EUCol(layoutPtr, failedPDA->raidAddress); /* logical column of + * failed SU */ + int i; + RF_PhysDiskAddr_t *pda; + int suoffset, failedSUOffset = rf_StripeUnitOffset(layoutPtr, failedPDA->startSector); + char *srcbuf, *destbuf; + RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec; + RF_Etimer_t timer; + + bzero((char *) node->results[0], rf_RaidAddressToByte(raidPtr, failedPDA->numSector)); + if (node->dagHdr->status == rf_enable) { + RF_ETIMER_START(timer); + for (i = 0; i < node->numParams - 2; i += 2) + if (node->params[i + 1].p != node->results[0]) { + pda = (RF_PhysDiskAddr_t *) node->params[i].p; + if (i == node->numParams - 4) + scol = RF_EO_MATRIX_DIM - 2; /* the colume of + * redundant E */ + else + scol = rf_EUCol(layoutPtr, pda->raidAddress); + srcbuf = (char *) node->params[i + 1].p; + suoffset = rf_StripeUnitOffset(layoutPtr, pda->startSector); + destbuf = ((char *) node->results[0]) + rf_RaidAddressToByte(raidPtr, suoffset - failedSUOffset); + rf_e_encToBuf(raidPtr, scol, srcbuf, fcol, destbuf, pda->numSector); + } + RF_ETIMER_STOP(timer); + RF_ETIMER_EVAL(timer); + tracerec->xor_us += RF_ETIMER_VAL_US(timer); + } + return (rf_GenericWakeupFunc(node, 0)); /* node execute successfully */ +} +/************************************************************************************** + * This function is used in the case where one data and the parity have filed. + * (in EO_110_CreateWriteDAG ) + **************************************************************************************/ +int +rf_EO_DegradedWriteEFunc(RF_DagNode_t * node) +{ + rf_DegrESubroutine(node, node->results[0]); + rf_GenericWakeupFunc(node, 0); +#if 1 + return (0); /* XXX Yet another one!! GO */ +#endif +} + + + +/************************************************************************************** + * THE FUNCTION IS FOR DOUBLE DEGRADED READ AND WRITE CASES + **************************************************************************************/ + +void +rf_doubleEOdecode( + RF_Raid_t * raidPtr, + char **rrdbuf, + char **dest, + RF_RowCol_t * fcol, + char *pbuf, + char *ebuf) +{ + RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & (raidPtr->Layout); + int i, j, k, f1, f2, row; + int rrdrow, erow, count = 0; + int bytesPerSector = rf_RaidAddressToByte(raidPtr, 1); + int numRowInEncMatix = (RF_EO_MATRIX_DIM) - 1; +#if 0 + int pcol = (RF_EO_MATRIX_DIM) - 1; +#endif + int ecol = (RF_EO_MATRIX_DIM) - 2; + int bytesPerEU = bytesPerSector / numRowInEncMatix; + int numDataCol = layoutPtr->numDataCol; +#if RF_EO_MATRIX_DIM > 17 + int shortsPerEU = bytesPerEU / sizeof(short); + short *rrdbuf_current, *pbuf_current, *ebuf_current; + short *dest_smaller, *dest_smaller_current, *dest_larger, *dest_larger_current; + short *temp; + short *P; + + RF_ASSERT(bytesPerEU % sizeof(short) == 0); + RF_Malloc(P, bytesPerEU, (short *)); + RF_Malloc(temp, bytesPerEU, (short *)); +#elif RF_EO_MATRIX_DIM == 17 + int longsPerEU = bytesPerEU / sizeof(long); + long *rrdbuf_current, *pbuf_current, *ebuf_current; + long *dest_smaller, *dest_smaller_current, *dest_larger, *dest_larger_current; + long *temp; + long *P; + + RF_ASSERT(bytesPerEU % sizeof(long) == 0); + RF_Malloc(P, bytesPerEU, (long *)); + RF_Malloc(temp, bytesPerEU, (long *)); +#endif + RF_ASSERT(*((long *) dest[0]) == 0); + RF_ASSERT(*((long *) dest[1]) == 0); + bzero((char *) P, bytesPerEU); + bzero((char *) temp, bytesPerEU); + RF_ASSERT(*P == 0); + /* calculate the 'P' parameter, which, not parity, is the Xor of all + * elements in the last two column, ie. 'E' and 'parity' colume, see + * the Ref. paper by Blaum, et al 1993 */ + for (i = 0; i < numRowInEncMatix; i++) + for (k = 0; k < longsPerEU; k++) { +#if RF_EO_MATRIX_DIM > 17 + ebuf_current = ((short *) ebuf) + i * shortsPerEU + k; + pbuf_current = ((short *) pbuf) + i * shortsPerEU + k; +#elif RF_EO_MATRIX_DIM == 17 + ebuf_current = ((long *) ebuf) + i * longsPerEU + k; + pbuf_current = ((long *) pbuf) + i * longsPerEU + k; +#endif + P[k] ^= *ebuf_current; + P[k] ^= *pbuf_current; + } + RF_ASSERT(fcol[0] != fcol[1]); + if (fcol[0] < fcol[1]) { +#if RF_EO_MATRIX_DIM > 17 + dest_smaller = (short *) (dest[0]); + dest_larger = (short *) (dest[1]); +#elif RF_EO_MATRIX_DIM == 17 + dest_smaller = (long *) (dest[0]); + dest_larger = (long *) (dest[1]); +#endif + f1 = fcol[0]; + f2 = fcol[1]; + } else { +#if RF_EO_MATRIX_DIM > 17 + dest_smaller = (short *) (dest[1]); + dest_larger = (short *) (dest[0]); +#elif RF_EO_MATRIX_DIM == 17 + dest_smaller = (long *) (dest[1]); + dest_larger = (long *) (dest[0]); +#endif + f1 = fcol[1]; + f2 = fcol[0]; + } + row = (RF_EO_MATRIX_DIM) - 1; + while ((row = rf_EO_Mod((row + f1 - f2), RF_EO_MATRIX_DIM)) != ((RF_EO_MATRIX_DIM) - 1)) { +#if RF_EO_MATRIX_DIM > 17 + dest_larger_current = dest_larger + row * shortsPerEU; + dest_smaller_current = dest_smaller + row * shortsPerEU; +#elif RF_EO_MATRIX_DIM == 17 + dest_larger_current = dest_larger + row * longsPerEU; + dest_smaller_current = dest_smaller + row * longsPerEU; +#endif + /** Do the diagonal recovery. Initially, temp[k] = (failed 1), + which is the failed data in the colume which has smaller col index. **/ + /* step 1: ^(SUM of nonfailed in-diagonal A(rrdrow,0..m-3)) */ + for (j = 0; j < numDataCol; j++) { + if (j == f1 || j == f2) + continue; + rrdrow = rf_EO_Mod((row + f2 - j), RF_EO_MATRIX_DIM); + if (rrdrow != (RF_EO_MATRIX_DIM) - 1) { +#if RF_EO_MATRIX_DIM > 17 + rrdbuf_current = (short *) (rrdbuf[j]) + rrdrow * shortsPerEU; + for (k = 0; k < shortsPerEU; k++) + temp[k] ^= *(rrdbuf_current + k); +#elif RF_EO_MATRIX_DIM == 17 + rrdbuf_current = (long *) (rrdbuf[j]) + rrdrow * longsPerEU; + for (k = 0; k < longsPerEU; k++) + temp[k] ^= *(rrdbuf_current + k); +#endif + } + } + /* step 2: ^E(erow,m-2), If erow is at the buttom row, don't + * Xor into it E(erow,m-2) = (principle diagonal) ^ (failed + * 1) ^ (failed 2) ^ ( SUM of nonfailed in-diagonal + * A(rrdrow,0..m-3) ) After this step, temp[k] = (principle + * diagonal) ^ (failed 2) */ + + erow = rf_EO_Mod((row + f2 - ecol), (RF_EO_MATRIX_DIM)); + if (erow != (RF_EO_MATRIX_DIM) - 1) { +#if RF_EO_MATRIX_DIM > 17 + ebuf_current = (short *) ebuf + shortsPerEU * erow; + for (k = 0; k < shortsPerEU; k++) + temp[k] ^= *(ebuf_current + k); +#elif RF_EO_MATRIX_DIM == 17 + ebuf_current = (long *) ebuf + longsPerEU * erow; + for (k = 0; k < longsPerEU; k++) + temp[k] ^= *(ebuf_current + k); +#endif + } + /* step 3: ^P to obtain the failed data (failed 2). P can be + * proved to be actually (principle diagonal) After this + * step, temp[k] = (failed 2), the failed data to be recovered */ +#if RF_EO_MATRIX_DIM > 17 + for (k = 0; k < shortsPerEU; k++) + temp[k] ^= P[k]; + /* Put the data to the destination buffer */ + for (k = 0; k < shortsPerEU; k++) + dest_larger_current[k] = temp[k]; +#elif RF_EO_MATRIX_DIM == 17 + for (k = 0; k < longsPerEU; k++) + temp[k] ^= P[k]; + /* Put the data to the destination buffer */ + for (k = 0; k < longsPerEU; k++) + dest_larger_current[k] = temp[k]; +#endif + + /** THE FOLLOWING DO THE HORIZONTAL XOR **/ + /* step 1: ^(SUM of A(row,0..m-3)), ie. all nonfailed data + * columes */ + for (j = 0; j < numDataCol; j++) { + if (j == f1 || j == f2) + continue; +#if RF_EO_MATRIX_DIM > 17 + rrdbuf_current = (short *) (rrdbuf[j]) + row * shortsPerEU; + for (k = 0; k < shortsPerEU; k++) + temp[k] ^= *(rrdbuf_current + k); +#elif RF_EO_MATRIX_DIM == 17 + rrdbuf_current = (long *) (rrdbuf[j]) + row * longsPerEU; + for (k = 0; k < longsPerEU; k++) + temp[k] ^= *(rrdbuf_current + k); +#endif + } + /* step 2: ^A(row,m-1) */ + /* step 3: Put the data to the destination buffer */ +#if RF_EO_MATRIX_DIM > 17 + pbuf_current = (short *) pbuf + shortsPerEU * row; + for (k = 0; k < shortsPerEU; k++) + temp[k] ^= *(pbuf_current + k); + for (k = 0; k < shortsPerEU; k++) + dest_smaller_current[k] = temp[k]; +#elif RF_EO_MATRIX_DIM == 17 + pbuf_current = (long *) pbuf + longsPerEU * row; + for (k = 0; k < longsPerEU; k++) + temp[k] ^= *(pbuf_current + k); + for (k = 0; k < longsPerEU; k++) + dest_smaller_current[k] = temp[k]; +#endif + count++; + } + /* Check if all Encoding Unit in the data buffer have been decoded, + * according EvenOdd theory, if "RF_EO_MATRIX_DIM" is a prime number, + * this algorithm will covered all buffer */ + RF_ASSERT(count == numRowInEncMatix); + RF_Free((char *) P, bytesPerEU); + RF_Free((char *) temp, bytesPerEU); +} + + +/*************************************************************************************** +* This function is called by double degragded read +* EO_200_CreateReadDAG +* +***************************************************************************************/ +int +rf_EvenOddDoubleRecoveryFunc(node) + RF_DagNode_t *node; +{ + int ndataParam = 0; + int np = node->numParams; + RF_AccessStripeMap_t *asmap = (RF_AccessStripeMap_t *) node->params[np - 1].p; + RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[np - 2].p; + RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & (raidPtr->Layout); + int i, prm, sector, nresults = node->numResults; + RF_SectorCount_t secPerSU = layoutPtr->sectorsPerStripeUnit; + unsigned sosAddr; + int two = 0, mallc_one = 0, mallc_two = 0; /* flags to indicate if + * memory is allocated */ + int bytesPerSector = rf_RaidAddressToByte(raidPtr, 1); + RF_PhysDiskAddr_t *ppda, *ppda2, *epda, *epda2, *pda, *pda0, *pda1, + npda; + RF_RowCol_t fcol[2], fsuoff[2], fsuend[2], numDataCol = layoutPtr->numDataCol; + char **buf, *ebuf, *pbuf, *dest[2]; + long *suoff = NULL, *suend = NULL, *prmToCol = NULL, psuoff, esuoff; + RF_SectorNum_t startSector, endSector; + RF_Etimer_t timer; + RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec; + + RF_ETIMER_START(timer); + + /* Find out the number of parameters which are pdas for data + * information */ + for (i = 0; i <= np; i++) + if (((RF_PhysDiskAddr_t *) node->params[i].p)->type != RF_PDA_TYPE_DATA) { + ndataParam = i; + break; + } + RF_Malloc(buf, numDataCol * sizeof(char *), (char **)); + if (ndataParam != 0) { + RF_Malloc(suoff, ndataParam * sizeof(long), (long *)); + RF_Malloc(suend, ndataParam * sizeof(long), (long *)); + RF_Malloc(prmToCol, ndataParam * sizeof(long), (long *)); + } + if (asmap->failedPDAs[1] && + (asmap->failedPDAs[1]->numSector + asmap->failedPDAs[0]->numSector < secPerSU)) { + RF_ASSERT(0); /* currently, no support for this situation */ + ppda = node->params[np - 6].p; + ppda2 = node->params[np - 5].p; + RF_ASSERT(ppda2->type == RF_PDA_TYPE_PARITY); + epda = node->params[np - 4].p; + epda2 = node->params[np - 3].p; + RF_ASSERT(epda2->type == RF_PDA_TYPE_Q); + two = 1; + } else { + ppda = node->params[np - 4].p; + epda = node->params[np - 3].p; + psuoff = rf_StripeUnitOffset(layoutPtr, ppda->startSector); + esuoff = rf_StripeUnitOffset(layoutPtr, epda->startSector); + RF_ASSERT(psuoff == esuoff); + } + /* + the followings have three goals: + 1. determine the startSector to begin decoding and endSector to end decoding. + 2. determine the colume numbers of the two failed disks. + 3. determine the offset and end offset of the access within each failed stripe unit. + */ + if (nresults == 1) { + /* find the startSector to begin decoding */ + pda = node->results[0]; + bzero(pda->bufPtr, bytesPerSector * pda->numSector); + fsuoff[0] = rf_StripeUnitOffset(layoutPtr, pda->startSector); + fsuend[0] = fsuoff[0] + pda->numSector; + startSector = fsuoff[0]; + endSector = fsuend[0]; + + /* find out the column of failed disk being accessed */ + fcol[0] = rf_EUCol(layoutPtr, pda->raidAddress); + + /* find out the other failed colume not accessed */ + sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress); + for (i = 0; i < numDataCol; i++) { + npda.raidAddress = sosAddr + (i * secPerSU); + (raidPtr->Layout.map->MapSector) (raidPtr, npda.raidAddress, &(npda.row), &(npda.col), &(npda.startSector), 0); + /* skip over dead disks */ + if (RF_DEAD_DISK(raidPtr->Disks[npda.row][npda.col].status)) + if (i != fcol[0]) + break; + } + RF_ASSERT(i < numDataCol); + fcol[1] = i; + } else { + RF_ASSERT(nresults == 2); + pda0 = node->results[0]; + bzero(pda0->bufPtr, bytesPerSector * pda0->numSector); + pda1 = node->results[1]; + bzero(pda1->bufPtr, bytesPerSector * pda1->numSector); + /* determine the failed colume numbers of the two failed + * disks. */ + fcol[0] = rf_EUCol(layoutPtr, pda0->raidAddress); + fcol[1] = rf_EUCol(layoutPtr, pda1->raidAddress); + /* determine the offset and end offset of the access within + * each failed stripe unit. */ + fsuoff[0] = rf_StripeUnitOffset(layoutPtr, pda0->startSector); + fsuend[0] = fsuoff[0] + pda0->numSector; + fsuoff[1] = rf_StripeUnitOffset(layoutPtr, pda1->startSector); + fsuend[1] = fsuoff[1] + pda1->numSector; + /* determine the startSector to begin decoding */ + startSector = RF_MIN(pda0->startSector, pda1->startSector); + /* determine the endSector to end decoding */ + endSector = RF_MAX(fsuend[0], fsuend[1]); + } + /* + assign the beginning sector and the end sector for each parameter + find out the corresponding colume # for each parameter + */ + for (prm = 0; prm < ndataParam; prm++) { + pda = node->params[prm].p; + suoff[prm] = rf_StripeUnitOffset(layoutPtr, pda->startSector); + suend[prm] = suoff[prm] + pda->numSector; + prmToCol[prm] = rf_EUCol(layoutPtr, pda->raidAddress); + } + /* 'sector' is the sector for the current decoding algorithm. For each + * sector in the failed SU, find out the corresponding parameters that + * cover the current sector and that are needed for decoding of this + * sector in failed SU. 2. Find out if sector is in the shadow of any + * accessed failed SU. If not, malloc a temporary space of a sector in + * size. */ + for (sector = startSector; sector < endSector; sector++) { + if (nresults == 2) + if (!(fsuoff[0] <= sector && sector < fsuend[0]) && !(fsuoff[1] <= sector && sector < fsuend[1])) + continue; + for (prm = 0; prm < ndataParam; prm++) + if (suoff[prm] <= sector && sector < suend[prm]) + buf[(prmToCol[prm])] = ((RF_PhysDiskAddr_t *) node->params[prm].p)->bufPtr + + rf_RaidAddressToByte(raidPtr, sector - suoff[prm]); + /* find out if sector is in the shadow of any accessed failed + * SU. If yes, assign dest[0], dest[1] to point at suitable + * position of the buffer corresponding to failed SUs. if no, + * malloc a temporary space of a sector in size for + * destination of decoding. */ + RF_ASSERT(nresults == 1 || nresults == 2); + if (nresults == 1) { + dest[0] = ((RF_PhysDiskAddr_t *) node->results[0])->bufPtr + rf_RaidAddressToByte(raidPtr, sector - fsuoff[0]); + /* Always malloc temp buffer to dest[1] */ + RF_Malloc(dest[1], bytesPerSector, (char *)); + bzero(dest[1], bytesPerSector); + mallc_two = 1; + } else { + if (fsuoff[0] <= sector && sector < fsuend[0]) + dest[0] = ((RF_PhysDiskAddr_t *) node->results[0])->bufPtr + rf_RaidAddressToByte(raidPtr, sector - fsuoff[0]); + else { + RF_Malloc(dest[0], bytesPerSector, (char *)); + bzero(dest[0], bytesPerSector); + mallc_one = 1; + } + if (fsuoff[1] <= sector && sector < fsuend[1]) + dest[1] = ((RF_PhysDiskAddr_t *) node->results[1])->bufPtr + rf_RaidAddressToByte(raidPtr, sector - fsuoff[1]); + else { + RF_Malloc(dest[1], bytesPerSector, (char *)); + bzero(dest[1], bytesPerSector); + mallc_two = 1; + } + RF_ASSERT(mallc_one == 0 || mallc_two == 0); + } + pbuf = ppda->bufPtr + rf_RaidAddressToByte(raidPtr, sector - psuoff); + ebuf = epda->bufPtr + rf_RaidAddressToByte(raidPtr, sector - esuoff); + /* + * After finish finding all needed sectors, call doubleEOdecode function for decoding + * one sector to destination. + */ + rf_doubleEOdecode(raidPtr, buf, dest, fcol, pbuf, ebuf); + /* free all allocated memory, and mark flag to indicate no + * memory is being allocated */ + if (mallc_one == 1) + RF_Free(dest[0], bytesPerSector); + if (mallc_two == 1) + RF_Free(dest[1], bytesPerSector); + mallc_one = mallc_two = 0; + } + RF_Free(buf, numDataCol * sizeof(char *)); + if (ndataParam != 0) { + RF_Free(suoff, ndataParam * sizeof(long)); + RF_Free(suend, ndataParam * sizeof(long)); + RF_Free(prmToCol, ndataParam * sizeof(long)); + } + RF_ETIMER_STOP(timer); + RF_ETIMER_EVAL(timer); + if (tracerec) { + tracerec->q_us += RF_ETIMER_VAL_US(timer); + } + rf_GenericWakeupFunc(node, 0); +#if 1 + return (0); /* XXX is this even close!!?!?!!? GO */ +#endif +} + + +/* currently, only access of one of the two failed SU is allowed in this function. + * also, asmap->numStripeUnitsAccessed is limited to be one, the RaidFrame will break large access into + * many accesses of single stripe unit. + */ + +int +rf_EOWriteDoubleRecoveryFunc(node) + RF_DagNode_t *node; +{ + int np = node->numParams; + RF_AccessStripeMap_t *asmap = (RF_AccessStripeMap_t *) node->params[np - 1].p; + RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[np - 2].p; + RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & (raidPtr->Layout); + RF_SectorNum_t sector; + RF_RowCol_t col, scol; + int prm, i, j; + RF_SectorCount_t secPerSU = layoutPtr->sectorsPerStripeUnit; + unsigned sosAddr; + unsigned bytesPerSector = rf_RaidAddressToByte(raidPtr, 1); + RF_int64 numbytes; + RF_SectorNum_t startSector, endSector; + RF_PhysDiskAddr_t *ppda, *epda, *pda, *fpda, npda; + RF_RowCol_t fcol[2], numDataCol = layoutPtr->numDataCol; + char **buf; /* buf[0], buf[1], buf[2], ...etc. point to + * buffer storing data read from col0, col1, + * col2 */ + char *ebuf, *pbuf, *dest[2], *olddata[2]; + RF_Etimer_t timer; + RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec; + + RF_ASSERT(asmap->numDataFailed == 1); /* currently only support this + * case, the other failed SU + * is not being accessed */ + RF_ETIMER_START(timer); + RF_Malloc(buf, numDataCol * sizeof(char *), (char **)); + + ppda = node->results[0];/* Instead of being buffers, node->results[0] + * and [1] are Ppda and Epda */ + epda = node->results[1]; + fpda = asmap->failedPDAs[0]; + + /* First, recovery the failed old SU using EvenOdd double decoding */ + /* determine the startSector and endSector for decoding */ + startSector = rf_StripeUnitOffset(layoutPtr, fpda->startSector); + endSector = startSector + fpda->numSector; + /* Assign buf[col] pointers to point to each non-failed colume and + * initialize the pbuf and ebuf to point at the beginning of each + * source buffers and destination buffers */ + for (prm = 0; prm < numDataCol - 2; prm++) { + pda = (RF_PhysDiskAddr_t *) node->params[prm].p; + col = rf_EUCol(layoutPtr, pda->raidAddress); + buf[col] = pda->bufPtr; + } + /* pbuf and ebuf: they will change values as double recovery decoding + * goes on */ + pbuf = ppda->bufPtr; + ebuf = epda->bufPtr; + /* find out the logical colume numbers in the encoding matrix of the + * two failed columes */ + fcol[0] = rf_EUCol(layoutPtr, fpda->raidAddress); + + /* find out the other failed colume not accessed this time */ + sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress); + for (i = 0; i < numDataCol; i++) { + npda.raidAddress = sosAddr + (i * secPerSU); + (raidPtr->Layout.map->MapSector) (raidPtr, npda.raidAddress, &(npda.row), &(npda.col), &(npda.startSector), 0); + /* skip over dead disks */ + if (RF_DEAD_DISK(raidPtr->Disks[npda.row][npda.col].status)) + if (i != fcol[0]) + break; + } + RF_ASSERT(i < numDataCol); + fcol[1] = i; + /* assign temporary space to put recovered failed SU */ + numbytes = fpda->numSector * bytesPerSector; + RF_Malloc(olddata[0], numbytes, (char *)); + RF_Malloc(olddata[1], numbytes, (char *)); + dest[0] = olddata[0]; + dest[1] = olddata[1]; + bzero(olddata[0], numbytes); + bzero(olddata[1], numbytes); + /* Begin the recovery decoding, initially buf[j], ebuf, pbuf, dest[j] + * have already pointed at the beginning of each source buffers and + * destination buffers */ + for (sector = startSector, i = 0; sector < endSector; sector++, i++) { + rf_doubleEOdecode(raidPtr, buf, dest, fcol, pbuf, ebuf); + for (j = 0; j < numDataCol; j++) + if ((j != fcol[0]) && (j != fcol[1])) + buf[j] += bytesPerSector; + dest[0] += bytesPerSector; + dest[1] += bytesPerSector; + ebuf += bytesPerSector; + pbuf += bytesPerSector; + } + /* after recovery, the buffer pointed by olddata[0] is the old failed + * data. With new writing data and this old data, use small write to + * calculate the new redundant informations */ + /* node->params[ 0, ... PDAPerDisk * (numDataCol - 2)-1 ] are Pdas of + * Rrd; params[ PDAPerDisk*(numDataCol - 2), ... PDAPerDisk*numDataCol + * -1 ] are Pdas of Rp, ( Rp2 ), Re, ( Re2 ) ; params[ + * PDAPerDisk*numDataCol, ... PDAPerDisk*numDataCol + * +asmap->numStripeUnitsAccessed -asmap->numDataFailed-1] are Pdas of + * wudNodes; For current implementation, we assume the simplest case: + * asmap->numStripeUnitsAccessed == 1 and asmap->numDataFailed == 1 + * ie. PDAPerDisk = 1 then node->params[numDataCol] must be the new + * data to be writen to the failed disk. We first bxor the new data + * into the old recovered data, then do the same things as small + * write. */ + + rf_bxor(((RF_PhysDiskAddr_t *) node->params[numDataCol].p)->bufPtr, olddata[0], numbytes, node->dagHdr->bp); + /* do new 'E' calculation */ + /* find out the corresponding colume in encoding matrix for write + * colume to be encoded into redundant disk 'E' */ + scol = rf_EUCol(layoutPtr, fpda->raidAddress); + /* olddata[0] now is source buffer pointer; epda->bufPtr is the dest + * buffer pointer */ + rf_e_encToBuf(raidPtr, scol, olddata[0], RF_EO_MATRIX_DIM - 2, epda->bufPtr, fpda->numSector); + + /* do new 'P' calculation */ + rf_bxor(olddata[0], ppda->bufPtr, numbytes, node->dagHdr->bp); + /* Free the allocated buffer */ + RF_Free(olddata[0], numbytes); + RF_Free(olddata[1], numbytes); + RF_Free(buf, numDataCol * sizeof(char *)); + + RF_ETIMER_STOP(timer); + RF_ETIMER_EVAL(timer); + if (tracerec) { + tracerec->q_us += RF_ETIMER_VAL_US(timer); + } + rf_GenericWakeupFunc(node, 0); + return (0); +} +#endif /* RF_INCLUDE_EVENODD > 0 */ diff --git a/sys/dev/raidframe/rf_evenodd_dagfuncs.h b/sys/dev/raidframe/rf_evenodd_dagfuncs.h new file mode 100644 index 0000000..cf5028b --- /dev/null +++ b/sys/dev/raidframe/rf_evenodd_dagfuncs.h @@ -0,0 +1,79 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_evenodd_dagfuncs.h,v 1.2 1999/02/05 00:06:11 oster Exp $ */ +/* + * rf_evenodd_dagfuncs.h + */ +/* + * Copyright (c) 1996 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Chang-Ming Wu + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +#ifndef _RF__RF_EVENODD_DAGFUNCS_H_ +#define _RF__RF_EVENODD_DAGFUNCS_H_ + +extern RF_RedFuncs_t rf_EOSmallWriteEFuncs; +extern RF_RedFuncs_t rf_EOSmallWritePFuncs; +extern RF_RedFuncs_t rf_eoERecoveryFuncs; +extern RF_RedFuncs_t rf_eoPRecoveryFuncs; + +int rf_RegularPEFunc(RF_DagNode_t * node); +int rf_RegularONEFunc(RF_DagNode_t * node); +int rf_SimpleONEFunc(RF_DagNode_t * node); +void rf_RegularESubroutine(RF_DagNode_t * node, char *ebuf); +int rf_RegularEFunc(RF_DagNode_t * node); +void rf_DegrESubroutine(RF_DagNode_t * node, char *ebuf); +int rf_Degraded_100_EOFunc(RF_DagNode_t * node); +void +rf_e_EncOneSect(RF_RowCol_t srcLogicCol, char *srcSecbuf, + RF_RowCol_t destLogicCol, char *destSecbuf, int bytesPerSector); +void +rf_e_encToBuf(RF_Raid_t * raidPtr, RF_RowCol_t srcLogicCol, + char *srcbuf, RF_RowCol_t destLogicCol, char *destbuf, int numSector); +int rf_RecoveryEFunc(RF_DagNode_t * node); +int rf_EO_DegradedWriteEFunc(RF_DagNode_t * node); +void +rf_doubleEOdecode(RF_Raid_t * raidPtr, char **rrdbuf, char **dest, + RF_RowCol_t * fcol, char *pbuf, char *ebuf); +int rf_EvenOddDoubleRecoveryFunc(RF_DagNode_t * node); +int rf_EOWriteDoubleRecoveryFunc(RF_DagNode_t * node); + +#define rf_EUCol(_layoutPtr_, _addr_ ) \ +( (_addr_)%( (_layoutPtr_)->dataSectorsPerStripe ) )/((_layoutPtr_)->sectorsPerStripeUnit) + +#define rf_EO_Mod( _int1_, _int2_ ) \ +( ((_int1_) < 0)? (((_int1_)+(_int2_))%(_int2_)) : (_int1_)%(_int2_) ) + +#define rf_OffsetOfNextEUBoundary(_offset_, sec_per_eu) ((_offset_)/(sec_per_eu) + 1)*(sec_per_eu) + +#define RF_EO_MATRIX_DIM 17 + +/* + * RF_EO_MATRIX_DIM should be a prime number: and "bytesPerSector" should be + * dividable by ( RF_EO_MATRIX_DIM - 1) to fully encode and utilize the space + * in a sector, this number could also be 17. Tha later case doesn't apply + * for disk array larger than 17 columns totally. + */ + +#endif /* !_RF__RF_EVENODD_DAGFUNCS_H_ */ diff --git a/sys/dev/raidframe/rf_evenodd_dags.c b/sys/dev/raidframe/rf_evenodd_dags.c new file mode 100644 index 0000000..e644504 --- /dev/null +++ b/sys/dev/raidframe/rf_evenodd_dags.c @@ -0,0 +1,189 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_evenodd_dags.c,v 1.2 1999/02/05 00:06:11 oster Exp $ */ +/* + * rf_evenodd_dags.c + */ +/* + * Copyright (c) 1996 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Chang-Ming Wu + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +#include <dev/raidframe/rf_archs.h> + +#if RF_INCLUDE_EVENODD > 0 + +#include <dev/raidframe/rf_types.h> +#include <dev/raidframe/rf_raid.h> +#include <dev/raidframe/rf_dag.h> +#include <dev/raidframe/rf_dagfuncs.h> +#include <dev/raidframe/rf_dagutils.h> +#include <dev/raidframe/rf_etimer.h> +#include <dev/raidframe/rf_acctrace.h> +#include <dev/raidframe/rf_general.h> +#include <dev/raidframe/rf_evenodd_dags.h> +#include <dev/raidframe/rf_evenodd.h> +#include <dev/raidframe/rf_evenodd_dagfuncs.h> +#include <dev/raidframe/rf_pq.h> +#include <dev/raidframe/rf_dagdegrd.h> +#include <dev/raidframe/rf_dagdegwr.h> +#include <dev/raidframe/rf_dagffwr.h> + + +/* + * Lost one data. + * Use P to reconstruct missing data. + */ +RF_CREATE_DAG_FUNC_DECL(rf_EO_100_CreateReadDAG) +{ + rf_CreateDegradedReadDAG(raidPtr, asmap, dag_h, bp, flags, allocList, &rf_eoPRecoveryFuncs); +} +/* + * Lost data + E. + * Use P to reconstruct missing data. + */ +RF_CREATE_DAG_FUNC_DECL(rf_EO_101_CreateReadDAG) +{ + rf_CreateDegradedReadDAG(raidPtr, asmap, dag_h, bp, flags, allocList, &rf_eoPRecoveryFuncs); +} +/* + * Lost data + P. + * Make E look like P, and use Eor for Xor, and we can + * use degraded read DAG. + */ +RF_CREATE_DAG_FUNC_DECL(rf_EO_110_CreateReadDAG) +{ + RF_PhysDiskAddr_t *temp; + /* swap P and E pointers to fake out the DegradedReadDAG code */ + temp = asmap->parityInfo; + asmap->parityInfo = asmap->qInfo; + asmap->qInfo = temp; + rf_CreateDegradedReadDAG(raidPtr, asmap, dag_h, bp, flags, allocList, &rf_eoERecoveryFuncs); +} +/* + * Lost two data. + */ +RF_CREATE_DAG_FUNC_DECL(rf_EOCreateDoubleDegradedReadDAG) +{ + rf_EO_DoubleDegRead(raidPtr, asmap, dag_h, bp, flags, allocList); +} +/* + * Lost two data. + */ +RF_CREATE_DAG_FUNC_DECL(rf_EO_200_CreateReadDAG) +{ + rf_EOCreateDoubleDegradedReadDAG(raidPtr, asmap, dag_h, bp, flags, allocList); +} +RF_CREATE_DAG_FUNC_DECL(rf_EO_100_CreateWriteDAG) +{ + if (asmap->numStripeUnitsAccessed != 1 && + asmap->failedPDAs[0]->numSector != raidPtr->Layout.sectorsPerStripeUnit) + RF_PANIC(); + rf_CommonCreateSimpleDegradedWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList, 2, (int (*) (RF_DagNode_t *)) rf_Degraded_100_EOFunc, RF_TRUE); +} +/* + * E is dead. Small write. + */ +RF_CREATE_DAG_FUNC_DECL(rf_EO_001_CreateSmallWriteDAG) +{ + rf_CommonCreateSmallWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList, &rf_EOSmallWritePFuncs, NULL); +} +/* + * E is dead. Large write. + */ +RF_CREATE_DAG_FUNC_DECL(rf_EO_001_CreateLargeWriteDAG) +{ + rf_CommonCreateLargeWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList, 1, rf_RegularPFunc, RF_TRUE); +} +/* + * P is dead. Small write. + * Swap E + P, use single-degraded stuff. + */ +RF_CREATE_DAG_FUNC_DECL(rf_EO_010_CreateSmallWriteDAG) +{ + RF_PhysDiskAddr_t *temp; + /* swap P and E pointers to fake out the DegradedReadDAG code */ + temp = asmap->parityInfo; + asmap->parityInfo = asmap->qInfo; + asmap->qInfo = temp; + rf_CommonCreateSmallWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList, &rf_EOSmallWriteEFuncs, NULL); +} +/* + * P is dead. Large write. + * Swap E + P, use single-degraded stuff. + */ +RF_CREATE_DAG_FUNC_DECL(rf_EO_010_CreateLargeWriteDAG) +{ + RF_PhysDiskAddr_t *temp; + /* swap P and E pointers to fake out the code */ + temp = asmap->parityInfo; + asmap->parityInfo = asmap->qInfo; + asmap->qInfo = temp; + rf_CommonCreateLargeWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList, 1, rf_RegularEFunc, RF_FALSE); +} +RF_CREATE_DAG_FUNC_DECL(rf_EO_011_CreateWriteDAG) +{ + rf_CreateNonRedundantWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList, + RF_IO_TYPE_WRITE); +} +RF_CREATE_DAG_FUNC_DECL(rf_EO_110_CreateWriteDAG) +{ + RF_PhysDiskAddr_t *temp; + + if (asmap->numStripeUnitsAccessed != 1 && + asmap->failedPDAs[0]->numSector != raidPtr->Layout.sectorsPerStripeUnit) { + RF_PANIC(); + } + /* swap P and E to fake out parity code */ + temp = asmap->parityInfo; + asmap->parityInfo = asmap->qInfo; + asmap->qInfo = temp; + rf_CommonCreateSimpleDegradedWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList, 1, (int (*) (RF_DagNode_t *)) rf_EO_DegradedWriteEFunc, RF_FALSE); + /* is the regular E func the right one to call? */ +} +RF_CREATE_DAG_FUNC_DECL(rf_EO_101_CreateWriteDAG) +{ + if (asmap->numStripeUnitsAccessed != 1 && + asmap->failedPDAs[0]->numSector != raidPtr->Layout.sectorsPerStripeUnit) + RF_PANIC(); + rf_CommonCreateSimpleDegradedWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList, 1, rf_RecoveryXorFunc, RF_TRUE); +} +RF_CREATE_DAG_FUNC_DECL(rf_EO_DoubleDegRead) +{ + rf_DoubleDegRead(raidPtr, asmap, dag_h, bp, flags, allocList, + "Re", "EvenOddRecovery", rf_EvenOddDoubleRecoveryFunc); +} +RF_CREATE_DAG_FUNC_DECL(rf_EOCreateSmallWriteDAG) +{ + rf_CommonCreateSmallWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList, &rf_pFuncs, &rf_EOSmallWriteEFuncs); +} +RF_CREATE_DAG_FUNC_DECL(rf_EOCreateLargeWriteDAG) +{ + rf_CommonCreateLargeWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList, 2, rf_RegularPEFunc, RF_FALSE); +} +RF_CREATE_DAG_FUNC_DECL(rf_EO_200_CreateWriteDAG) +{ + rf_DoubleDegSmallWrite(raidPtr, asmap, dag_h, bp, flags, allocList, "Re", "We", "EOWrDDRecovery", rf_EOWriteDoubleRecoveryFunc); +} +#endif /* RF_INCLUDE_EVENODD > 0 */ diff --git a/sys/dev/raidframe/rf_evenodd_dags.h b/sys/dev/raidframe/rf_evenodd_dags.h new file mode 100644 index 0000000..c4218a4 --- /dev/null +++ b/sys/dev/raidframe/rf_evenodd_dags.h @@ -0,0 +1,64 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_evenodd_dags.h,v 1.2 1999/02/05 00:06:11 oster Exp $ */ +/* + * rf_evenodd_dags.h + */ +/* + * Copyright (c) 1996 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Chang-Ming Wu + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +#ifndef _RF__RF_EVENODD_DAGS_H_ +#define _RF__RF_EVENODD_DAGS_H_ + +#include <dev/raidframe/rf_types.h> + +#if RF_UTILITY == 0 +#include <dev/raidframe/rf_dag.h> + +/* extern decl's of the failure mode EO functions. + * swiped from rf_pqdeg.h + */ + +RF_CREATE_DAG_FUNC_DECL(rf_EO_100_CreateReadDAG); +RF_CREATE_DAG_FUNC_DECL(rf_EO_101_CreateReadDAG); +RF_CREATE_DAG_FUNC_DECL(rf_EO_110_CreateReadDAG); +RF_CREATE_DAG_FUNC_DECL(rf_EO_200_CreateReadDAG); +RF_CREATE_DAG_FUNC_DECL(rf_EOCreateDoubleDegradedReadDAG); +RF_CREATE_DAG_FUNC_DECL(rf_EO_100_CreateWriteDAG); +RF_CREATE_DAG_FUNC_DECL(rf_EO_010_CreateSmallWriteDAG); +RF_CREATE_DAG_FUNC_DECL(rf_EO_001_CreateSmallWriteDAG); +RF_CREATE_DAG_FUNC_DECL(rf_EO_010_CreateLargeWriteDAG); +RF_CREATE_DAG_FUNC_DECL(rf_EO_001_CreateLargeWriteDAG); +RF_CREATE_DAG_FUNC_DECL(rf_EO_011_CreateWriteDAG); +RF_CREATE_DAG_FUNC_DECL(rf_EO_110_CreateWriteDAG); +RF_CREATE_DAG_FUNC_DECL(rf_EO_101_CreateWriteDAG); +RF_CREATE_DAG_FUNC_DECL(rf_EO_DoubleDegRead); +RF_CREATE_DAG_FUNC_DECL(rf_EOCreateSmallWriteDAG); +RF_CREATE_DAG_FUNC_DECL(rf_EOCreateLargeWriteDAG); +RF_CREATE_DAG_FUNC_DECL(rf_EO_200_CreateWriteDAG); +#endif /* RF_UTILITY == 0 */ + +#endif /* !_RF__RF_EVENODD_DAGS_H_ */ diff --git a/sys/dev/raidframe/rf_fifo.c b/sys/dev/raidframe/rf_fifo.c new file mode 100644 index 0000000..51ed714 --- /dev/null +++ b/sys/dev/raidframe/rf_fifo.c @@ -0,0 +1,236 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_fifo.c,v 1.5 2000/03/04 03:27:13 oster Exp $ */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Mark Holland + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +/*************************************************** + * + * rf_fifo.c -- prioritized fifo queue code. + * There are only two priority levels: hi and lo. + * + * Aug 4, 1994, adapted from raidSim version (MCH) + * + ***************************************************/ + +#include <dev/raidframe/rf_types.h> +#include <dev/raidframe/rf_alloclist.h> +#include <dev/raidframe/rf_stripelocks.h> +#include <dev/raidframe/rf_layout.h> +#include <dev/raidframe/rf_diskqueue.h> +#include <dev/raidframe/rf_fifo.h> +#include <dev/raidframe/rf_debugMem.h> +#include <dev/raidframe/rf_general.h> +#include <dev/raidframe/rf_options.h> +#include <dev/raidframe/rf_raid.h> +#include <dev/raidframe/rf_types.h> + +/* just malloc a header, zero it (via calloc), and return it */ +/*ARGSUSED*/ +void * +rf_FifoCreate(sectPerDisk, clList, listp) + RF_SectorCount_t sectPerDisk; + RF_AllocListElem_t *clList; + RF_ShutdownList_t **listp; +{ + RF_FifoHeader_t *q; + + RF_CallocAndAdd(q, 1, sizeof(RF_FifoHeader_t), (RF_FifoHeader_t *), clList); + q->hq_count = q->lq_count = 0; + return ((void *) q); +} + +void +rf_FifoEnqueue(q_in, elem, priority) + void *q_in; + RF_DiskQueueData_t *elem; + int priority; +{ + RF_FifoHeader_t *q = (RF_FifoHeader_t *) q_in; + + RF_ASSERT(priority == RF_IO_NORMAL_PRIORITY || priority == RF_IO_LOW_PRIORITY); + + elem->next = NULL; + if (priority == RF_IO_NORMAL_PRIORITY) { + if (!q->hq_tail) { + RF_ASSERT(q->hq_count == 0 && q->hq_head == NULL); + q->hq_head = q->hq_tail = elem; + } else { + RF_ASSERT(q->hq_count != 0 && q->hq_head != NULL); + q->hq_tail->next = elem; + q->hq_tail = elem; + } + q->hq_count++; + } else { + RF_ASSERT(elem->next == NULL); + if (rf_fifoDebug) { + printf("raid%d: fifo: ENQ lopri\n", + elem->raidPtr->raidid); + } + if (!q->lq_tail) { + RF_ASSERT(q->lq_count == 0 && q->lq_head == NULL); + q->lq_head = q->lq_tail = elem; + } else { + RF_ASSERT(q->lq_count != 0 && q->lq_head != NULL); + q->lq_tail->next = elem; + q->lq_tail = elem; + } + q->lq_count++; + } + if ((q->hq_count + q->lq_count) != elem->queue->queueLength) { + printf("Queue lengths differ!: %d %d %d\n", + q->hq_count, q->lq_count, (int) elem->queue->queueLength); + printf("%d %d %d %d\n", + (int) elem->queue->numOutstanding, + (int) elem->queue->maxOutstanding, + (int) elem->queue->row, + (int) elem->queue->col); + } + RF_ASSERT((q->hq_count + q->lq_count) == elem->queue->queueLength); +} + +RF_DiskQueueData_t * +rf_FifoDequeue(q_in) + void *q_in; +{ + RF_FifoHeader_t *q = (RF_FifoHeader_t *) q_in; + RF_DiskQueueData_t *nd; + + RF_ASSERT(q); + if (q->hq_head) { + RF_ASSERT(q->hq_count != 0 && q->hq_tail != NULL); + nd = q->hq_head; + q->hq_head = q->hq_head->next; + if (!q->hq_head) + q->hq_tail = NULL; + nd->next = NULL; + q->hq_count--; + } else + if (q->lq_head) { + RF_ASSERT(q->lq_count != 0 && q->lq_tail != NULL); + nd = q->lq_head; + q->lq_head = q->lq_head->next; + if (!q->lq_head) + q->lq_tail = NULL; + nd->next = NULL; + q->lq_count--; + if (rf_fifoDebug) { + printf("raid%d: fifo: DEQ lopri %lx\n", + nd->raidPtr->raidid, (long) nd); + } + } else { + RF_ASSERT(q->hq_count == 0 && q->lq_count == 0 && q->hq_tail == NULL && q->lq_tail == NULL); + nd = NULL; + } + return (nd); +} + +/* Return ptr to item at head of queue. Used to examine request + * info without actually dequeueing the request. + */ +RF_DiskQueueData_t * +rf_FifoPeek(void *q_in) +{ + RF_DiskQueueData_t *headElement = NULL; + RF_FifoHeader_t *q = (RF_FifoHeader_t *) q_in; + + RF_ASSERT(q); + if (q->hq_head) + headElement = q->hq_head; + else + if (q->lq_head) + headElement = q->lq_head; + return (headElement); +} +/* We sometimes need to promote a low priority access to a regular priority access. + * Currently, this is only used when the user wants to write a stripe which is currently + * under reconstruction. + * This routine will promote all accesses tagged with the indicated parityStripeID from + * the low priority queue to the end of the normal priority queue. + * We assume the queue is locked upon entry. + */ +int +rf_FifoPromote(q_in, parityStripeID, which_ru) + void *q_in; + RF_StripeNum_t parityStripeID; + RF_ReconUnitNum_t which_ru; +{ + RF_FifoHeader_t *q = (RF_FifoHeader_t *) q_in; + RF_DiskQueueData_t *lp = q->lq_head, *pt = NULL; /* lp = lo-pri queue + * pointer, pt = trailer */ + int retval = 0; + + while (lp) { + + /* search for the indicated parity stripe in the low-pri queue */ + if (lp->parityStripeID == parityStripeID && lp->which_ru == which_ru) { + /* printf("FifoPromote: promoting access for psid + * %ld\n",parityStripeID); */ + if (pt) + pt->next = lp->next; /* delete an entry other + * than the first */ + else + q->lq_head = lp->next; /* delete the head entry */ + + if (!q->lq_head) + q->lq_tail = NULL; /* we deleted the only + * entry */ + else + if (lp == q->lq_tail) + q->lq_tail = pt; /* we deleted the tail + * entry */ + + lp->next = NULL; + q->lq_count--; + + if (q->hq_tail) { + q->hq_tail->next = lp; + q->hq_tail = lp; + } + /* append to hi-priority queue */ + else { + q->hq_head = q->hq_tail = lp; + } + q->hq_count++; + + /* UpdateShortestSeekFinishTimeForced(lp->requestPtr, + * lp->diskState); *//* deal with this later, if ever */ + + lp = (pt) ? pt->next : q->lq_head; /* reset low-pri pointer + * and continue */ + retval++; + + } else { + pt = lp; + lp = lp->next; + } + } + + /* sanity check. delete this if you ever put more than one entry in + * the low-pri queue */ + RF_ASSERT(retval == 0 || retval == 1); + return (retval); +} diff --git a/sys/dev/raidframe/rf_fifo.h b/sys/dev/raidframe/rf_fifo.h new file mode 100644 index 0000000..9392f08 --- /dev/null +++ b/sys/dev/raidframe/rf_fifo.h @@ -0,0 +1,62 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_fifo.h,v 1.3 1999/02/05 00:06:11 oster Exp $ */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Mark Holland + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +/* + * rf_fifo.h -- prioritized FIFO queue code. + * + * 4-9-93 Created (MCH) + */ + + +#ifndef _RF__RF_FIFO_H_ +#define _RF__RF_FIFO_H_ + +#include <dev/raidframe/rf_archs.h> +#include <dev/raidframe/rf_types.h> +#include <dev/raidframe/rf_diskqueue.h> + +typedef struct RF_FifoHeader_s { + RF_DiskQueueData_t *hq_head, *hq_tail; /* high priority requests */ + RF_DiskQueueData_t *lq_head, *lq_tail; /* low priority requests */ + int hq_count, lq_count; /* debug only */ +} RF_FifoHeader_t; + +extern void * +rf_FifoCreate(RF_SectorCount_t sectPerDisk, + RF_AllocListElem_t * clList, RF_ShutdownList_t ** listp); +extern void +rf_FifoEnqueue(void *q_in, RF_DiskQueueData_t * elem, + int priority); +extern RF_DiskQueueData_t *rf_FifoDequeue(void *q_in); +extern RF_DiskQueueData_t *rf_FifoPeek(void *q_in); +extern int +rf_FifoPromote(void *q_in, RF_StripeNum_t parityStripeID, + RF_ReconUnitNum_t which_ru); + +#endif /* !_RF__RF_FIFO_H_ */ diff --git a/sys/dev/raidframe/rf_freebsdkintf.c b/sys/dev/raidframe/rf_freebsdkintf.c new file mode 100644 index 0000000..b7003b5 --- /dev/null +++ b/sys/dev/raidframe/rf_freebsdkintf.c @@ -0,0 +1,3294 @@ +/*- + * Copyright (c) 2002 Scott Long <scottl@freebsd.org> + * All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND + * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS + * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) + * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF + * SUCH DAMAGE. + * + * $FreeBSD$ + */ + +/* $NetBSD: rf_netbsdkintf.c,v 1.105 2001/04/05 02:48:51 oster Exp $ */ +/*- + * Copyright (c) 1996, 1997, 1998 The NetBSD Foundation, Inc. + * All rights reserved. + * + * This code is derived from software contributed to The NetBSD Foundation + * by Greg Oster; Jason R. Thorpe. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * 3. All advertising materials mentioning features or use of this software + * must display the following acknowledgement: + * This product includes software developed by the NetBSD + * Foundation, Inc. and its contributors. + * 4. Neither the name of The NetBSD Foundation nor the names of its + * contributors may be used to endorse or promote products derived + * from this software without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS + * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED + * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR + * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS + * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + * POSSIBILITY OF SUCH DAMAGE. + */ + +/* + * Copyright (c) 1988 University of Utah. + * Copyright (c) 1990, 1993 + * The Regents of the University of California. All rights reserved. + * + * This code is derived from software contributed to Berkeley by + * the Systems Programming Group of the University of Utah Computer + * Science Department. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * 3. All advertising materials mentioning features or use of this software + * must display the following acknowledgement: + * This product includes software developed by the University of + * California, Berkeley and its contributors. + * 4. Neither the name of the University nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND + * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS + * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) + * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF + * SUCH DAMAGE. + * + * from: Utah $Hdr: cd.c 1.6 90/11/28$ + * + * @(#)cd.c 8.2 (Berkeley) 11/16/93 + */ + + + + +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Authors: Mark Holland, Jim Zelenka + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +/*********************************************************** + * + * rf_kintf.c -- the kernel interface routines for RAIDframe + * + ***********************************************************/ + +#include <sys/types.h> +#include <sys/param.h> +#include <sys/errno.h> +#include <sys/param.h> +#include <sys/queue.h> +#include <sys/stat.h> +#include <sys/ioccom.h> +#include <sys/filio.h> +#include <sys/fcntl.h> +#include <sys/systm.h> +#include <sys/namei.h> +#include <sys/vnode.h> +#include <sys/bio.h> +#include <sys/buf.h> +#include <sys/disk.h> +#include <sys/diskslice.h> +#include <sys/disklabel.h> +#include <sys/conf.h> +#include <sys/lock.h> +#include <sys/reboot.h> +#include <sys/module.h> +#include <sys/devicestat.h> +#include <vm/uma.h> + +#include "opt_raid.h" +#include <dev/raidframe/rf_raid.h> +#include <dev/raidframe/rf_raidframe.h> +#include <dev/raidframe/rf_copyback.h> +#include <dev/raidframe/rf_dag.h> +#include <dev/raidframe/rf_dagflags.h> +#include <dev/raidframe/rf_desc.h> +#include <dev/raidframe/rf_diskqueue.h> +#include <dev/raidframe/rf_acctrace.h> +#include <dev/raidframe/rf_etimer.h> +#include <dev/raidframe/rf_general.h> +#include <dev/raidframe/rf_debugMem.h> +#include <dev/raidframe/rf_kintf.h> +#include <dev/raidframe/rf_options.h> +#include <dev/raidframe/rf_driver.h> +#include <dev/raidframe/rf_parityscan.h> +#include <dev/raidframe/rf_debugprint.h> +#include <dev/raidframe/rf_threadstuff.h> +#include <dev/raidframe/rf_configure.h> + +RF_DECLARE_STATIC_MUTEX(rf_sparet_wait_mutex) + +static RF_SparetWait_t *rf_sparet_wait_queue; /* requests to install a + * spare table */ +static RF_SparetWait_t *rf_sparet_resp_queue; /* responses from + * installation process */ + +/* prototypes */ +static void KernelWakeupFunc(struct bio *); +static void InitBP(struct bio *, struct vnode *, unsigned rw_flag, + dev_t dev, RF_SectorNum_t startSect, + RF_SectorCount_t numSect, caddr_t buf, + void (*cbFunc) (struct bio *), void *cbArg, + int logBytesPerSector, struct proc * b_proc); +static dev_t raidinit(RF_Raid_t *); +static void rf_search_label(dev_t, struct disklabel *, + RF_AutoConfig_t **) __unused; + +static int raid_modevent(module_t, int, void*); +void raidattach(void); +d_psize_t raidsize; +d_open_t raidopen; +d_close_t raidclose; +d_ioctl_t raidioctl; +d_write_t raidwrite; +d_read_t raidread; +d_strategy_t raidstrategy; +#if 0 +d_dump_t raiddump; +#endif + +d_open_t raidctlopen; +d_close_t raidctlclose; +d_ioctl_t raidctlioctl; + +static struct cdevsw raid_cdevsw = { + raidopen, + raidclose, + raidread, + raidwrite, + raidioctl, + nopoll, + nommap, + raidstrategy, + "raid", + 200, + nodump, + nopsize, + D_DISK, +}; + +static struct cdevsw raidctl_cdevsw = { + raidctlopen, + raidctlclose, + noread, + nowrite, + raidctlioctl, + nopoll, + nommap, + nostrategy, + "raidctl", + 201, + nodump, + nopsize, + 0, +}; + +static struct cdevsw raiddisk_cdevsw; + +/* + * Pilfered from ccd.c + */ + +struct raidbuf { + struct bio rf_buf; /* new I/O buf. MUST BE FIRST!!! */ + struct bio *rf_obp; /* ptr. to original I/O buf */ + int rf_flags; /* misc. flags */ + RF_DiskQueueData_t *req;/* the request that this was part of.. */ +}; + + +#define RAIDGETBUF(sc) uma_zalloc((sc)->sc_cbufpool, M_NOWAIT) +#define RAIDPUTBUF(sc, cbp) uma_zfree((sc)->sc_cbufpool, cbp) + +#define RF_MAX_ARRAYS 32 + +/* Raid control device */ +struct raidctl_softc { + dev_t sc_dev; /* Device node */ + int sc_flags; /* flags */ + int sc_numraid; /* Number of configured raid devices */ + dev_t sc_raiddevs[RF_MAX_ARRAYS]; +}; + +struct raid_softc { + dev_t sc_dev; /* Our device */ + dev_t sc_parent_dev; + int sc_flags; /* flags */ + int sc_busycount; /* How many times are we opened? */ + size_t sc_size; /* size of the raid device */ + dev_t sc_parent; /* Parent device */ + struct disk sc_dkdev; /* generic disk device info */ + uma_zone_t sc_cbufpool; /* component buffer pool */ + RF_Raid_t *raidPtr; /* Raid information struct */ + struct bio_queue_head bio_queue; /* used for the device queue */ + struct devstat device_stats; /* devstat gathering */ +}; +/* sc_flags */ +#define RAIDF_OPEN 0x01 /* unit has been initialized */ +#define RAIDF_WLABEL 0x02 /* label area is writable */ +#define RAIDF_LABELLING 0x04 /* unit is currently being labelled */ +#define RAIDF_WANTED 0x40 /* someone is waiting to obtain a lock */ +#define RAIDF_LOCKED 0x80 /* unit is locked */ + +/* + * Allow RAIDOUTSTANDING number of simultaneous IO's to this RAID device. + * Be aware that large numbers can allow the driver to consume a lot of + * kernel memory, especially on writes, and in degraded mode reads. + * + * For example: with a stripe width of 64 blocks (32k) and 5 disks, + * a single 64K write will typically require 64K for the old data, + * 64K for the old parity, and 64K for the new parity, for a total + * of 192K (if the parity buffer is not re-used immediately). + * Even it if is used immedately, that's still 128K, which when multiplied + * by say 10 requests, is 1280K, *on top* of the 640K of incoming data. + * + * Now in degraded mode, for example, a 64K read on the above setup may + * require data reconstruction, which will require *all* of the 4 remaining + * disks to participate -- 4 * 32K/disk == 128K again. + */ + +#ifndef RAIDOUTSTANDING +#define RAIDOUTSTANDING 10 +#endif + +#define RAIDLABELDEV(dev) dkmodpart(dev, RAW_PART) +#define DISKPART(dev) dkpart(dev) + +static void raidgetdefaultlabel(RF_Raid_t *, struct raid_softc *, struct disk*); +static int raidlock(struct raid_softc *); +static void raidunlock(struct raid_softc *); + +static void rf_markalldirty(RF_Raid_t *); + +static dev_t raidctl_dev; + +void rf_ReconThread(struct rf_recon_req *); +/* XXX what I want is: */ +/*void rf_ReconThread(RF_Raid_t *raidPtr); */ +void rf_RewriteParityThread(RF_Raid_t *raidPtr); +void rf_CopybackThread(RF_Raid_t *raidPtr); +void rf_ReconstructInPlaceThread(struct rf_recon_req *); +void rf_buildroothack(void *, struct raidctl_softc *); + +RF_AutoConfig_t *rf_find_raid_components(void); +RF_ConfigSet_t *rf_create_auto_sets(RF_AutoConfig_t *); +static int rf_does_it_fit(RF_ConfigSet_t *,RF_AutoConfig_t *); +static int rf_reasonable_label(RF_ComponentLabel_t *); +void rf_create_configuration(RF_AutoConfig_t *,RF_Config_t *, RF_Raid_t *); +int rf_set_autoconfig(RF_Raid_t *, int); +int rf_set_rootpartition(RF_Raid_t *, int); +void rf_release_all_vps(RF_ConfigSet_t *); +void rf_cleanup_config_set(RF_ConfigSet_t *); +int rf_have_enough_components(RF_ConfigSet_t *); +int rf_auto_config_set(RF_ConfigSet_t *, int *, struct raidctl_softc *); +static int raidgetunit(struct raidctl_softc *, int); +static int raidshutdown(void); + +void +raidattach(void) +{ + struct raidctl_softc *parent_sc = NULL; + RF_AutoConfig_t *ac_list; /* autoconfig list */ + RF_ConfigSet_t *config_sets; + int autoconfig = 0; + + /* This is where all the initialization stuff gets done. */ + + if(rf_mutex_init(&rf_sparet_wait_mutex, __FUNCTION__)) { + rf_printf(0, "RAIDframe: failed to initialize mutexes\n"); + return; + } + + rf_sparet_wait_queue = rf_sparet_resp_queue = NULL; + + if (rf_BootRaidframe() != 0) { + rf_printf(0, "Serious error booting RAIDframe!!\n"); + return; + } + + rf_printf(0, "Kernelized RAIDframe activated\n"); + MALLOC(parent_sc, struct raidctl_softc *, sizeof(*parent_sc), + M_RAIDFRAME, M_NOWAIT|M_ZERO); + if (parent_sc == NULL) { + RF_PANIC(); + return; + } + + parent_sc->sc_dev= make_dev(&raidctl_cdevsw, 0, 0, 0, 0x644, "raidctl"); + parent_sc->sc_dev->si_drv1 = parent_sc; + raidctl_dev = parent_sc->sc_dev; + +#if RAID_AUTOCONFIG + autoconfig = 1; +#endif + + if (autoconfig) { + /* 1. locate all RAID components on the system */ + + rf_printf(0, "Searching for raid components...\n"); + ac_list = rf_find_raid_components(); + if (ac_list == NULL) + return; + + /* 2. sort them into their respective sets */ + + config_sets = rf_create_auto_sets(ac_list); + + /* 3. evaluate each set and configure the valid ones + This gets done in rf_buildroothack() */ + + /* schedule the creation of the thread to do the + "/ on RAID" stuff */ + + rf_buildroothack(config_sets, parent_sc); +#if 0 + kthread_create(rf_buildroothack,config_sets); + +#endif /* RAID_AUTOCONFIG */ + } +} + +void +rf_buildroothack(arg, parent_sc) + void *arg; + struct raidctl_softc *parent_sc; +{ + RF_ConfigSet_t *config_sets = arg; + RF_ConfigSet_t *cset; + RF_ConfigSet_t *next_cset; + int retcode; + int raidID; + int rootID; + int num_root; + + rootID = 0; + num_root = 0; + cset = config_sets; + while(cset != NULL ) { + next_cset = cset->next; + if (rf_have_enough_components(cset) && + cset->ac->clabel->autoconfigure==1) { + retcode = rf_auto_config_set(cset, &raidID, parent_sc); + if (!retcode) { + if (cset->rootable) { + rootID = raidID; + num_root++; + } + } else { + /* The autoconfig didn't work :( */ + rf_printf(1, "Autoconfig failed with code %d" + "for raid%d\n", retcode, raidID); + rf_release_all_vps(cset); + } + } else { + /* we're not autoconfiguring this set... + release the associated resources */ + rf_release_all_vps(cset); + } + /* cleanup */ + rf_cleanup_config_set(cset); + cset = next_cset; + } + if (boothowto & RB_ASKNAME) { + /* We don't auto-config... */ + } else { + /* They didn't ask, and we found something bootable... */ + +#if 0 + if (num_root == 1) { + booted_device = &raidrootdev[rootID]; + } else if (num_root > 1) { + /* we can't guess.. require the user to answer... */ + boothowto |= RB_ASKNAME; + } +#endif + } +} + +int +raidctlopen(dev_t dev, int flags, int fmt, struct thread *td) +{ + struct raidctl_softc *parent_sc; + + parent_sc = dev->si_drv1; + + if ((parent_sc->sc_flags & RAIDF_OPEN) != 0) + return (EBUSY); + + parent_sc->sc_flags |= RAIDF_OPEN; + return (0); +} + +int +raidctlclose(dev_t dev, int flags, int fmt, struct thread *td) +{ + struct raidctl_softc *parent_sc; + + parent_sc = dev->si_drv1; + + parent_sc->sc_flags &= ~RAIDF_OPEN; + return (0); +} + +int +raidctlioctl(dev_t dev, u_long cmd, caddr_t data, int flags, struct thread *td) +{ + struct raidctl_softc *parent_sc; + struct raid_softc *sc; + RF_Config_t *u_cfg, *k_cfg; + RF_Raid_t *raidPtr; + u_char *specific_buf; + u_int unit; + int retcode = 0; + + parent_sc = dev->si_drv1; + + switch (cmd) { + /* configure the system */ + case RAIDFRAME_CONFIGURE: + + /* copy-in the configuration information */ + /* data points to a pointer to the configuration structure */ + + u_cfg = *((RF_Config_t **) data); + RF_Malloc(k_cfg, sizeof(RF_Config_t), (RF_Config_t *)); + if (k_cfg == NULL) { + return (ENOMEM); + } + retcode = copyin((caddr_t) u_cfg, (caddr_t) k_cfg, + sizeof(RF_Config_t)); + if (retcode) { + RF_Free(k_cfg, sizeof(RF_Config_t)); + rf_printf(2, "raidctlioctl: retcode=%d copyin.1\n", + retcode); + return (retcode); + } + /* allocate a buffer for the layout-specific data, and copy it + * in */ + if (k_cfg->layoutSpecificSize) { + if (k_cfg->layoutSpecificSize > 10000) { + /* sanity check */ + RF_Free(k_cfg, sizeof(RF_Config_t)); + return (EINVAL); + } + RF_Malloc(specific_buf, k_cfg->layoutSpecificSize, + (u_char *)); + if (specific_buf == NULL) { + RF_Free(k_cfg, sizeof(RF_Config_t)); + return (ENOMEM); + } + retcode = copyin(k_cfg->layoutSpecific, + (caddr_t) specific_buf, + k_cfg->layoutSpecificSize); + if (retcode) { + RF_Free(k_cfg, sizeof(RF_Config_t)); + RF_Free(specific_buf, + k_cfg->layoutSpecificSize); + rf_printf(2, "raidctlioctl: retcode=%d " + "copyin.2\n", retcode); + return (retcode); + } + } else + specific_buf = NULL; + k_cfg->layoutSpecific = specific_buf; + + /* should do some kind of sanity check on the configuration. + * Store the sum of all the bytes in the last byte? */ + + /* configure the system */ + + RF_Malloc(raidPtr, sizeof(*raidPtr), (RF_Raid_t *)); + if (raidPtr == NULL) { + rf_printf(0, "No memory for raid device\n"); + RF_Free(k_cfg, sizeof(RF_Config_t)); + retcode = ENOMEM; + } + bzero((char *) raidPtr, sizeof(RF_Raid_t)); + + /* Request a unit number for this soon-to-be device. */ + unit = raidgetunit(parent_sc, 0); + if (unit == -1) { + rf_printf(0, "Cannot allocate raid unit\n"); + RF_Free(raidPtr, sizeof(*raidPtr)); + goto out; + } + raidPtr->raidid = unit; + + if ((retcode = rf_Configure(raidPtr, k_cfg, NULL)) == 0) { + + /* allow this many simultaneous IO's to + this RAID device */ + raidPtr->openings = RAIDOUTSTANDING; + + parent_sc->sc_raiddevs[unit] = raidinit(raidPtr); + if (parent_sc->sc_raiddevs[unit] == NULL) { + rf_printf(0, "Could not create raid device\n"); + RF_Free(raidPtr, sizeof(*raidPtr)); + goto out; + } + parent_sc->sc_numraid++; + ((struct raid_softc *)raidPtr->sc)->sc_parent_dev = dev; + rf_markalldirty(raidPtr); + } else { + parent_sc->sc_raiddevs[unit] = NULL; + RF_Free(raidPtr, sizeof(*raidPtr)); + } + +out: + /* free the buffers. No return code here. */ + if (k_cfg->layoutSpecificSize) { + RF_Free(specific_buf, k_cfg->layoutSpecificSize); + } + RF_Free(k_cfg, sizeof(RF_Config_t)); + break; + + case RAIDFRAME_SHUTDOWN: + + unit = *(u_int *)data; + if ((unit >= RF_MAX_ARRAYS) || + (parent_sc->sc_raiddevs[unit] == NULL)) + return (EINVAL); + + sc = parent_sc->sc_raiddevs[unit]->si_drv1; + if ((retcode = raidlock(sc)) != 0) + return (retcode); + + /* + * If somebody has a partition mounted, we shouldn't + * shutdown. + */ + + if ((sc->sc_flags & RAIDF_OPEN) != 0) { + raidunlock(sc); + return (EBUSY); + } + + rf_printf(0, "Shutting down RAIDframe engine\n"); + retcode = rf_Shutdown(sc->raidPtr); + RF_THREADGROUP_WAIT_STOP(&sc->raidPtr->engine_tg); + + devstat_remove_entry(&sc->device_stats); + + disk_destroy(parent_sc->sc_raiddevs[unit]); + raidunlock(sc); + + /* XXX Need to be able to destroy the zone */ + uma_zdestroy(sc->sc_cbufpool); + + parent_sc->sc_numraid--; + parent_sc->sc_raiddevs[unit] = NULL; + + RF_Free(sc->raidPtr, sizeof(*raidPtr)); + RF_Free(sc, sizeof(*sc)); + + break; + + default: + retcode = ENOIOCTL; + } + + return (retcode); +} + +#if 0 /* XXX DUMP!!!! */ +int +raiddump(dev) + dev_t dev; +{ + /* Not implemented. */ + return ENXIO; +} +#endif + +/* ARGSUSED */ +int +raidopen(dev, flags, fmt, td) + dev_t dev; + int flags, fmt; + struct thread *td; +{ + struct raid_softc *sc; + struct disk *dp; + int error = 0; + + sc = dev->si_drv1; + + if ((error = raidlock(sc)) != 0) + return (error); + dp = &sc->sc_dkdev; + + rf_printf(1, "Opening raid device %s\n", dev->si_name); + + /* Generate overall disklabel */ + raidgetdefaultlabel(sc->raidPtr, sc, dp); + + if (sc->sc_busycount == 0) { + /* First one... mark things as dirty... Note that we *MUST* + have done a configure before this. I DO NOT WANT TO BE + SCRIBBLING TO RANDOM COMPONENTS UNTIL IT'S BEEN DETERMINED + THAT THEY BELONG TOGETHER!!!!! */ + /* XXX should check to see if we're only open for reading + here... If so, we needn't do this, but then need some + other way of keeping track of what's happened.. */ + + rf_markalldirty( sc->raidPtr ); + sc->sc_flags |= RAIDF_OPEN; + } + + /* Prevent this unit from being unconfigured while open. */ + sc->sc_busycount++; + + raidunlock(sc); + + return (error); + + +} +/* ARGSUSED */ +int +raidclose(dev, flags, fmt, td) + dev_t dev; + int flags, fmt; + struct thread *td; +{ + struct raid_softc *sc; + int error = 0; + + sc = dev->si_drv1; + + if ((error = raidlock(sc)) != 0) + return (error); + + sc->sc_busycount--; + if (sc->sc_busycount == 0) { + sc->sc_flags &= ~RAIDF_OPEN; + rf_update_component_labels(sc->raidPtr, + RF_FINAL_COMPONENT_UPDATE); + } + + raidunlock(sc); + return (0); + +} + +void +raidstrategy(bp) + struct bio *bp; +{ + RF_Raid_t *raidPtr; + struct raid_softc *sc = bp->bio_dev->si_drv1; + int s; + + raidPtr = sc->raidPtr; + if (raidPtr == NULL) { + bp->bio_error = ENODEV; + bp->bio_flags |= BIO_ERROR; + bp->bio_resid = bp->bio_bcount; + biodone(bp); + return; + } + if (!raidPtr->valid) { + bp->bio_error = ENODEV; + bp->bio_flags |= BIO_ERROR; + bp->bio_resid = bp->bio_bcount; + biodone(bp); + return; + } + if (bp->bio_bcount == 0) { + rf_printf(2, "b_bcount is zero..\n"); + biodone(bp); + return; + } + + s = splbio(); + + bp->bio_resid = 0; + + /* stuff it onto our queue. XXX locking? */ + bioq_insert_tail(&sc->bio_queue, bp); + + raidstart(raidPtr); + + splx(s); +} + +int +raidread(dev, uio, flags) + dev_t dev; + struct uio *uio; + int flags; +{ + struct raid_softc *sc; + + sc = dev->si_drv1; + + return (physio(dev, uio, BIO_READ)); + +} + +int +raidwrite(dev, uio, flags) + dev_t dev; + struct uio *uio; + int flags; +{ + struct raid_softc *sc; + int ret; + + sc = dev->si_drv1; + + rf_printf(3, "raidwrite\n"); + ret = physio(dev, uio, BIO_WRITE); + + return (ret); + +} + +int +raidioctl(dev, cmd, data, flag, td) + dev_t dev; + u_long cmd; + caddr_t data; + int flag; + struct thread *td; +{ + struct raid_softc *sc; + RF_Raid_t *raidPtr; + RF_RaidDisk_t *diskPtr; + RF_AccTotals_t *totals; + RF_DeviceConfig_t *d_cfg, **ucfgp; + struct rf_recon_req *rrcopy, *rr; + RF_ComponentLabel_t *clabel; + RF_ComponentLabel_t *ci_label; + RF_SingleComponent_t *sparePtr,*componentPtr; + RF_SingleComponent_t *hot_spare, *component; + RF_ProgressInfo_t progressInfo; + int retcode = 0; + int row, column; + int unit; + int i, j, d; + + sc = dev->si_drv1; + raidPtr = sc->raidPtr; + + rf_printf(2, "raidioctl: %s %ld\n", dev->si_name, cmd); + + switch (cmd) { + + case RAIDFRAME_GET_COMPONENT_LABEL: + /* need to read the component label for the disk indicated + by row,column in clabel */ + + /* For practice, let's get it directly fromdisk, rather + than from the in-core copy */ + RF_Malloc( clabel, sizeof( RF_ComponentLabel_t ), + (RF_ComponentLabel_t *)); + if (clabel == NULL) + return (ENOMEM); + + bzero((char *) clabel, sizeof(RF_ComponentLabel_t)); + + bcopy(data, clabel, sizeof(RF_ComponentLabel_t)); + + row = clabel->row; + column = clabel->column; + + if ((row < 0) || (row >= raidPtr->numRow) || + (column < 0) || (column >= raidPtr->numCol + + raidPtr->numSpare)) { + RF_Free( clabel, sizeof(RF_ComponentLabel_t)); + return(EINVAL); + } + + raidread_component_label(raidPtr->Disks[row][column].dev, + raidPtr->raid_cinfo[row][column].ci_vp, + clabel ); + + bcopy(clabel, data, sizeof(RF_ComponentLabel_t)); + RF_Free( clabel, sizeof(RF_ComponentLabel_t)); + return (retcode); + + case RAIDFRAME_SET_COMPONENT_LABEL: + clabel = (RF_ComponentLabel_t *) data; + + /* XXX check the label for valid stuff... */ + /* Note that some things *should not* get modified -- + the user should be re-initing the labels instead of + trying to patch things. + */ + + rf_printf(1, "Got component label:\n"); + rf_printf(1, "Version: %d\n",clabel->version); + rf_printf(1, "Serial Number: %d\n",clabel->serial_number); + rf_printf(1, "Mod counter: %d\n",clabel->mod_counter); + rf_printf(1, "Row: %d\n", clabel->row); + rf_printf(1, "Column: %d\n", clabel->column); + rf_printf(1, "Num Rows: %d\n", clabel->num_rows); + rf_printf(1, "Num Columns: %d\n", clabel->num_columns); + rf_printf(1, "Clean: %d\n", clabel->clean); + rf_printf(1, "Status: %d\n", clabel->status); + + row = clabel->row; + column = clabel->column; + + if ((row < 0) || (row >= raidPtr->numRow) || + (column < 0) || (column >= raidPtr->numCol)) { + return(EINVAL); + } + + /* XXX this isn't allowed to do anything for now :-) */ + + /* XXX and before it is, we need to fill in the rest + of the fields!?!?!?! */ +#if 0 + raidwrite_component_label( + raidPtr->Disks[row][column].dev, + raidPtr->raid_cinfo[row][column].ci_vp, + clabel ); +#endif + return (0); + + case RAIDFRAME_INIT_LABELS: + MALLOC(ci_label, RF_ComponentLabel_t *, + sizeof(RF_ComponentLabel_t), M_RAIDFRAME, + M_WAITOK | M_ZERO); + clabel = (RF_ComponentLabel_t *) data; + /* + we only want the serial number from + the above. We get all the rest of the information + from the config that was used to create this RAID + set. + */ + + raidPtr->serial_number = clabel->serial_number; + + raid_init_component_label(raidPtr, ci_label); + ci_label->serial_number = clabel->serial_number; + + for(row=0;row<raidPtr->numRow;row++) { + ci_label->row = row; + for(column=0;column<raidPtr->numCol;column++) { + diskPtr = &raidPtr->Disks[row][column]; + if (!RF_DEAD_DISK(diskPtr->status)) { + ci_label->partitionSize = + diskPtr->partitionSize; + ci_label->column = column; + raidwrite_component_label( + raidPtr->Disks[row][column].dev, + raidPtr->raid_cinfo[row][column].ci_vp, + ci_label ); + } + } + } + + FREE(ci_label, M_RAIDFRAME); + return (retcode); + case RAIDFRAME_SET_AUTOCONFIG: + d = rf_set_autoconfig(raidPtr, *(int *) data); + rf_printf(1, "New autoconfig value is: %d\n", d); + *(int *) data = d; + return (retcode); + + case RAIDFRAME_SET_ROOT: + d = rf_set_rootpartition(raidPtr, *(int *) data); + rf_printf(1, "New rootpartition value is: %d\n", d); + *(int *) data = d; + return (retcode); + + /* initialize all parity */ + case RAIDFRAME_REWRITEPARITY: + + if (raidPtr->Layout.map->faultsTolerated == 0) { + /* Parity for RAID 0 is trivially correct */ + raidPtr->parity_good = RF_RAID_CLEAN; + return(0); + } + + if (raidPtr->parity_rewrite_in_progress == 1) { + /* Re-write is already in progress! */ + return(EINVAL); + } + + retcode = RF_CREATE_THREAD(raidPtr->parity_rewrite_thread, + rf_RewriteParityThread, + raidPtr,"raid_parity"); + return (retcode); + + + case RAIDFRAME_ADD_HOT_SPARE: + MALLOC(hot_spare, RF_SingleComponent_t *, + sizeof(RF_SingleComponent_t), M_RAIDFRAME, + M_WAITOK | M_ZERO); + sparePtr = (RF_SingleComponent_t *) data; + memcpy( hot_spare, sparePtr, sizeof(RF_SingleComponent_t)); + retcode = rf_add_hot_spare(raidPtr, hot_spare); + FREE(hot_spare, M_RAIDFRAME); + return(retcode); + + case RAIDFRAME_REMOVE_HOT_SPARE: + return(retcode); + + case RAIDFRAME_DELETE_COMPONENT: + MALLOC(component, RF_SingleComponent_t *, + sizeof(RF_SingleComponent_t), M_RAIDFRAME, + M_WAITOK | M_ZERO); + componentPtr = (RF_SingleComponent_t *)data; + memcpy( component, componentPtr, + sizeof(RF_SingleComponent_t)); + retcode = rf_delete_component(raidPtr, component); + FREE(component, M_RAIDFRAME); + return(retcode); + + case RAIDFRAME_INCORPORATE_HOT_SPARE: + MALLOC(component, RF_SingleComponent_t *, + sizeof(RF_SingleComponent_t), M_RAIDFRAME, + M_WAITOK | M_ZERO); + componentPtr = (RF_SingleComponent_t *)data; + memcpy( component, componentPtr, + sizeof(RF_SingleComponent_t)); + retcode = rf_incorporate_hot_spare(raidPtr, component); + FREE(component, M_RAIDFRAME); + return(retcode); + + case RAIDFRAME_REBUILD_IN_PLACE: + + MALLOC(component, RF_SingleComponent_t *, + sizeof(RF_SingleComponent_t), M_RAIDFRAME, + M_WAITOK | M_ZERO); + if (raidPtr->Layout.map->faultsTolerated == 0) { + /* Can't do this on a RAID 0!! */ + FREE(component, M_RAIDFRAME); + return(EINVAL); + } + + if (raidPtr->recon_in_progress == 1) { + /* a reconstruct is already in progress! */ + FREE(component, M_RAIDFRAME); + return(EINVAL); + } + + componentPtr = (RF_SingleComponent_t *) data; + memcpy( component, componentPtr, + sizeof(RF_SingleComponent_t)); + row = component->row; + column = component->column; + unit = raidPtr->raidid; + rf_printf(0, "raid%d Rebuild: %d %d\n", unit, row, column); + if ((row < 0) || (row >= raidPtr->numRow) || + (column < 0) || (column >= raidPtr->numCol)) { + FREE(component, M_RAIDFRAME); + return(EINVAL); + } + + RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *)); + if (rrcopy == NULL) { + FREE(component, M_RAIDFRAME); + return(ENOMEM); + } + + rrcopy->raidPtr = (void *) raidPtr; + rrcopy->row = row; + rrcopy->col = column; + + retcode = RF_CREATE_THREAD(raidPtr->recon_thread, + rf_ReconstructInPlaceThread, + rrcopy,"raid_reconip"); + FREE(component, M_RAIDFRAME); + return(retcode); + + case RAIDFRAME_GET_UNIT: + + *(int *)data = raidPtr->raidid; + return (0); + + case RAIDFRAME_GET_INFO: + if (!raidPtr->valid) + return (ENODEV); + ucfgp = (RF_DeviceConfig_t **) data; + RF_Malloc(d_cfg, sizeof(RF_DeviceConfig_t), + (RF_DeviceConfig_t *)); + if (d_cfg == NULL) + return (ENOMEM); + bzero((char *) d_cfg, sizeof(RF_DeviceConfig_t)); + d_cfg->rows = raidPtr->numRow; + d_cfg->cols = raidPtr->numCol; + d_cfg->ndevs = raidPtr->numRow * raidPtr->numCol; + if (d_cfg->ndevs >= RF_MAX_DISKS) { + RF_Free(d_cfg, sizeof(RF_DeviceConfig_t)); + return (ENOMEM); + } + d_cfg->nspares = raidPtr->numSpare; + if (d_cfg->nspares >= RF_MAX_DISKS) { + RF_Free(d_cfg, sizeof(RF_DeviceConfig_t)); + return (ENOMEM); + } + d_cfg->maxqdepth = raidPtr->maxQueueDepth; + d = 0; + for (i = 0; i < d_cfg->rows; i++) { + for (j = 0; j < d_cfg->cols; j++) { + d_cfg->devs[d] = raidPtr->Disks[i][j]; + d++; + } + } + for (j = d_cfg->cols, i = 0; i < d_cfg->nspares; i++, j++) { + d_cfg->spares[i] = raidPtr->Disks[0][j]; + } + + retcode = copyout(d_cfg, *ucfgp, sizeof(RF_DeviceConfig_t)); + + RF_Free(d_cfg, sizeof(RF_DeviceConfig_t)); + + return (retcode); + + case RAIDFRAME_CHECK_PARITY: + *(int *) data = raidPtr->parity_good; + return (0); + + case RAIDFRAME_RESET_ACCTOTALS: + bzero(&raidPtr->acc_totals, sizeof(raidPtr->acc_totals)); + return (0); + + case RAIDFRAME_GET_ACCTOTALS: + totals = (RF_AccTotals_t *) data; + *totals = raidPtr->acc_totals; + return (0); + + case RAIDFRAME_KEEP_ACCTOTALS: + raidPtr->keep_acc_totals = *(int *)data; + return (0); + + case RAIDFRAME_GET_SIZE: + *(int *) data = raidPtr->totalSectors; + return (0); + + /* fail a disk & optionally start reconstruction */ + case RAIDFRAME_FAIL_DISK: + + if (raidPtr->Layout.map->faultsTolerated == 0) { + /* Can't do this on a RAID 0!! */ + return(EINVAL); + } + + rr = (struct rf_recon_req *) data; + + if (rr->row < 0 || rr->row >= raidPtr->numRow + || rr->col < 0 || rr->col >= raidPtr->numCol) + return (EINVAL); + + rf_printf(0, "%s: Failing the disk: row: %d col: %d\n", + dev->si_name, rr->row, rr->col); + + /* make a copy of the recon request so that we don't rely on + * the user's buffer */ + RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *)); + if (rrcopy == NULL) + return(ENOMEM); + bcopy(rr, rrcopy, sizeof(*rr)); + rrcopy->raidPtr = (void *) raidPtr; + + retcode = RF_CREATE_THREAD(raidPtr->recon_thread, + rf_ReconThread, + rrcopy,"raid_recon"); + return (0); + + /* invoke a copyback operation after recon on whatever disk + * needs it, if any */ + case RAIDFRAME_COPYBACK: + + if (raidPtr->Layout.map->faultsTolerated == 0) { + /* This makes no sense on a RAID 0!! */ + return(EINVAL); + } + + if (raidPtr->copyback_in_progress == 1) { + /* Copyback is already in progress! */ + return(EINVAL); + } + + retcode = RF_CREATE_THREAD(raidPtr->copyback_thread, + rf_CopybackThread, + raidPtr,"raid_copyback"); + return (retcode); + + /* return the percentage completion of reconstruction */ + case RAIDFRAME_CHECK_RECON_STATUS: + if (raidPtr->Layout.map->faultsTolerated == 0) { + /* This makes no sense on a RAID 0, so tell the + user it's done. */ + *(int *) data = 100; + return(0); + } + row = 0; /* XXX we only consider a single row... */ + if (raidPtr->status[row] != rf_rs_reconstructing) + *(int *) data = 100; + else + *(int *) data = raidPtr->reconControl[row]->percentComplete; + return (0); + case RAIDFRAME_CHECK_RECON_STATUS_EXT: + row = 0; /* XXX we only consider a single row... */ + if (raidPtr->status[row] != rf_rs_reconstructing) { + progressInfo.remaining = 0; + progressInfo.completed = 100; + progressInfo.total = 100; + } else { + progressInfo.total = + raidPtr->reconControl[row]->numRUsTotal; + progressInfo.completed = + raidPtr->reconControl[row]->numRUsComplete; + progressInfo.remaining = progressInfo.total - + progressInfo.completed; + } + bcopy((caddr_t) &progressInfo, data, sizeof(RF_ProgressInfo_t)); + return (retcode); + + case RAIDFRAME_CHECK_PARITYREWRITE_STATUS: + if (raidPtr->Layout.map->faultsTolerated == 0) { + /* This makes no sense on a RAID 0, so tell the + user it's done. */ + *(int *) data = 100; + return(0); + } + if (raidPtr->parity_rewrite_in_progress == 1) { + *(int *) data = 100 * + raidPtr->parity_rewrite_stripes_done / + raidPtr->Layout.numStripe; + } else { + *(int *) data = 100; + } + return (0); + + case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT: + if (raidPtr->parity_rewrite_in_progress == 1) { + progressInfo.total = raidPtr->Layout.numStripe; + progressInfo.completed = + raidPtr->parity_rewrite_stripes_done; + progressInfo.remaining = progressInfo.total - + progressInfo.completed; + } else { + progressInfo.remaining = 0; + progressInfo.completed = 100; + progressInfo.total = 100; + } + bcopy((caddr_t) &progressInfo, data, sizeof(RF_ProgressInfo_t)); + return (retcode); + + case RAIDFRAME_CHECK_COPYBACK_STATUS: + if (raidPtr->Layout.map->faultsTolerated == 0) { + /* This makes no sense on a RAID 0 */ + *(int *) data = 100; + return(0); + } + if (raidPtr->copyback_in_progress == 1) { + *(int *) data = 100 * raidPtr->copyback_stripes_done / + raidPtr->Layout.numStripe; + } else { + *(int *) data = 100; + } + return (0); + + case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT: + if (raidPtr->copyback_in_progress == 1) { + progressInfo.total = raidPtr->Layout.numStripe; + progressInfo.completed = + raidPtr->copyback_stripes_done; + progressInfo.remaining = progressInfo.total - + progressInfo.completed; + } else { + progressInfo.remaining = 0; + progressInfo.completed = 100; + progressInfo.total = 100; + } + bcopy((caddr_t) &progressInfo, data, sizeof(RF_ProgressInfo_t)); + return (retcode); + + /* the sparetable daemon calls this to wait for the kernel to + * need a spare table. this ioctl does not return until a + * spare table is needed. XXX -- calling mpsleep here in the + * ioctl code is almost certainly wrong and evil. -- XXX XXX + * -- I should either compute the spare table in the kernel, + * or have a different -- XXX XXX -- interface (a different + * character device) for delivering the table -- XXX */ +#if 0 + case RAIDFRAME_SPARET_WAIT: + RF_LOCK_MUTEX(rf_sparet_wait_mutex); + while (!rf_sparet_wait_queue) + mpsleep(&rf_sparet_wait_queue, (PZERO + 1) | PCATCH, "sparet wait", 0, (void *) simple_lock_addr(rf_sparet_wait_mutex), MS_LOCK_SIMPLE); + waitreq = rf_sparet_wait_queue; + rf_sparet_wait_queue = rf_sparet_wait_queue->next; + RF_UNLOCK_MUTEX(rf_sparet_wait_mutex); + + /* structure assignment */ + *((RF_SparetWait_t *) data) = *waitreq; + + RF_Free(waitreq, sizeof(*waitreq)); + return (0); + + /* wakes up a process waiting on SPARET_WAIT and puts an error + * code in it that will cause the dameon to exit */ + case RAIDFRAME_ABORT_SPARET_WAIT: + RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *)); + waitreq->fcol = -1; + RF_LOCK_MUTEX(rf_sparet_wait_mutex); + waitreq->next = rf_sparet_wait_queue; + rf_sparet_wait_queue = waitreq; + RF_UNLOCK_MUTEX(rf_sparet_wait_mutex); + wakeup(&rf_sparet_wait_queue); + return (0); + + /* used by the spare table daemon to deliver a spare table + * into the kernel */ + case RAIDFRAME_SEND_SPARET: + + /* install the spare table */ + retcode = rf_SetSpareTable(raidPtr, *(void **) data); + + /* respond to the requestor. the return status of the spare + * table installation is passed in the "fcol" field */ + RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *)); + waitreq->fcol = retcode; + RF_LOCK_MUTEX(rf_sparet_wait_mutex); + waitreq->next = rf_sparet_resp_queue; + rf_sparet_resp_queue = waitreq; + wakeup(&rf_sparet_resp_queue); + RF_UNLOCK_MUTEX(rf_sparet_wait_mutex); + + return (retcode); +#endif + + default: + retcode = ENOIOCTL; + break; /* fall through to the os-specific code below */ + + } + + return (retcode); + +} + + +/* raidinit -- complete the rest of the initialization for the + RAIDframe device. */ + + +static dev_t +raidinit(raidPtr) + RF_Raid_t *raidPtr; +{ + struct raid_softc *sc; + dev_t diskdev; + + RF_Malloc(sc, sizeof(struct raid_softc), (struct raid_softc *)); + if (sc == NULL) { + rf_printf(1, "No memory for raid device\n"); + return(NULL); + } + + sc->raidPtr = raidPtr; + + /* XXX Should check return code here */ + bioq_init(&sc->bio_queue); + sc->sc_cbufpool = uma_zcreate("raidpl", sizeof(struct raidbuf), NULL, + NULL, NULL, NULL, 0, 0); + + /* XXX There may be a weird interaction here between this, and + * protectedSectors, as used in RAIDframe. */ + + sc->sc_size = raidPtr->totalSectors; + + /* Create the disk device */ + diskdev = disk_create(raidPtr->raidid, &sc->sc_dkdev, 0, &raid_cdevsw, + &raiddisk_cdevsw); + if (diskdev == NODEV) { + rf_printf(1, "disk_create failed\n"); + return (NULL); + } + sc->sc_dkdev.d_dev->si_drv1 = sc; + sc->sc_dev = diskdev; + raidPtr->sc = sc; + + /* Register with devstat */ + devstat_add_entry(&sc->device_stats, "raid", raidPtr->raidid, 0, + DEVSTAT_NO_BLOCKSIZE | DEVSTAT_NO_ORDERED_TAGS, + DEVSTAT_TYPE_IF_OTHER, DEVSTAT_PRIORITY_ARRAY); + + return (diskdev); +} + +/* wake up the daemon & tell it to get us a spare table + * XXX + * the entries in the queues should be tagged with the raidPtr + * so that in the extremely rare case that two recons happen at once, + * we know for which device were requesting a spare table + * XXX + * + * XXX This code is not currently used. GO + */ +int +rf_GetSpareTableFromDaemon(req) + RF_SparetWait_t *req; +{ + int retcode; + + RF_LOCK_MUTEX(rf_sparet_wait_mutex); + req->next = rf_sparet_wait_queue; + rf_sparet_wait_queue = req; + wakeup(&rf_sparet_wait_queue); + + /* mpsleep unlocks the mutex */ + while (!rf_sparet_resp_queue) { + tsleep(&rf_sparet_resp_queue, PRIBIO, + "raidframe getsparetable", 0); + } + req = rf_sparet_resp_queue; + rf_sparet_resp_queue = req->next; + RF_UNLOCK_MUTEX(rf_sparet_wait_mutex); + + retcode = req->fcol; + RF_Free(req, sizeof(*req)); /* this is not the same req as we + * alloc'd */ + return (retcode); +} + +/* a wrapper around rf_DoAccess that extracts appropriate info from the + * bp & passes it down. + * any calls originating in the kernel must use non-blocking I/O + * do some extra sanity checking to return "appropriate" error values for + * certain conditions (to make some standard utilities work) + * + * Formerly known as: rf_DoAccessKernel + */ +void +raidstart(raidPtr) + RF_Raid_t *raidPtr; +{ + RF_SectorCount_t num_blocks, pb, sum; + RF_RaidAddr_t raid_addr; + struct raid_softc *sc; + struct bio *bp; + daddr_t blocknum; + int unit, retcode, do_async; + + unit = raidPtr->raidid; + sc = raidPtr->sc; + + /* quick check to see if anything has died recently */ + RF_LOCK_MUTEX(raidPtr->mutex); + if (raidPtr->numNewFailures > 0) { + raidPtr->numNewFailures--; + RF_UNLOCK_MUTEX(raidPtr->mutex); + rf_update_component_labels(raidPtr, + RF_NORMAL_COMPONENT_UPDATE); + } else + RF_UNLOCK_MUTEX(raidPtr->mutex); + + /* Check to see if we're at the limit... */ + RF_LOCK_MUTEX(raidPtr->mutex); + while (raidPtr->openings > 0) { + RF_UNLOCK_MUTEX(raidPtr->mutex); + + /* get the next item, if any, from the queue */ + if ((bp = bioq_first(&sc->bio_queue)) == NULL) { + /* nothing more to do */ + return; + } + bioq_remove(&sc->bio_queue, bp); + + /* Ok, for the bp we have here, bp->b_blkno is relative to the + * partition.. Need to make it absolute to the underlying + * device.. */ + + blocknum = bp->bio_blkno; +#if 0 /* XXX Is this needed? */ + if (DISKPART(bp->bio_dev) != RAW_PART) { + struct partition *pp; + pp = &sc->sc_dkdev.d_label.d_partitions[DISKPART( + bp->bio_dev)]; + blocknum += pp->p_offset; + } +#endif + + rf_printf(3, "Blocks: %ld, %ld\n", (long)bp->bio_blkno, (long)blocknum); + + rf_printf(3, "bp->bio_bcount = %d\n", (int) bp->bio_bcount); + rf_printf(3, "bp->bio_resid = %d\n", (int) bp->bio_resid); + + /* *THIS* is where we adjust what block we're going to... + * but DO NOT TOUCH bp->bio_blkno!!! */ + raid_addr = blocknum; + + num_blocks = bp->bio_bcount >> raidPtr->logBytesPerSector; + pb = (bp->bio_bcount & raidPtr->sectorMask) ? 1 : 0; + sum = raid_addr + num_blocks + pb; + if (rf_debugKernelAccess) { + rf_printf(0, "raid_addr=0x%x sum=%d num_blocks=%d(+%d) " + "(%d)\n", (int)raid_addr, (int)sum, + (int)num_blocks, (int)pb, + (int)bp->bio_resid); + } + if ((sum > raidPtr->totalSectors) || (sum < raid_addr) + || (sum < num_blocks) || (sum < pb)) { + bp->bio_error = ENOSPC; + bp->bio_flags |= BIO_ERROR; + bp->bio_resid = bp->bio_bcount; + biodone(bp); + RF_LOCK_MUTEX(raidPtr->mutex); + continue; + } + /* + * XXX rf_DoAccess() should do this, not just DoAccessKernel() + */ + + if (bp->bio_bcount & raidPtr->sectorMask) { + bp->bio_error = EINVAL; + bp->bio_flags |= BIO_ERROR; + bp->bio_resid = bp->bio_bcount; + biodone(bp); + RF_LOCK_MUTEX(raidPtr->mutex); + continue; + + } + rf_printf(3, "Calling DoAccess..\n"); + + + RF_LOCK_MUTEX(raidPtr->mutex); + raidPtr->openings--; + RF_UNLOCK_MUTEX(raidPtr->mutex); + + /* + * Everything is async. + */ + do_async = 1; + + devstat_start_transaction(&sc->device_stats); + + /* XXX we're still at splbio() here... do we *really* + need to be? */ + + /* don't ever condition on bp->bio_cmd & BIO_WRITE. + * always condition on BIO_READ instead */ + + retcode = rf_DoAccess(raidPtr, (bp->bio_cmd & BIO_READ) ? + RF_IO_TYPE_READ : RF_IO_TYPE_WRITE, + do_async, raid_addr, num_blocks, + bp->bio_data, bp, NULL, NULL, + RF_DAG_NONBLOCKING_IO, NULL, NULL, NULL); + + + RF_LOCK_MUTEX(raidPtr->mutex); + } + RF_UNLOCK_MUTEX(raidPtr->mutex); +} + + + + +/* invoke an I/O from kernel mode. Disk queue should be locked upon entry */ + +int +rf_DispatchKernelIO(queue, req) + RF_DiskQueue_t *queue; + RF_DiskQueueData_t *req; +{ + int op = (req->type == RF_IO_TYPE_READ) ? BIO_READ : BIO_WRITE; + struct bio *bp; + struct raidbuf *raidbp = NULL; + struct raid_softc *sc; + + /* XXX along with the vnode, we also need the softc associated with + * this device.. */ + + req->queue = queue; + + sc = queue->raidPtr->sc; + + rf_printf(3, "DispatchKernelIO %s\n", sc->sc_dev->si_name); + + bp = req->bp; +#if 1 + /* XXX when there is a physical disk failure, someone is passing us a + * buffer that contains old stuff!! Attempt to deal with this problem + * without taking a performance hit... (not sure where the real bug + * is. It's buried in RAIDframe somewhere) :-( GO ) */ + + if (bp->bio_flags & BIO_ERROR) { + bp->bio_flags &= ~BIO_ERROR; + } + if (bp->bio_error != 0) { + bp->bio_error = 0; + } +#endif + raidbp = RAIDGETBUF(sc); + + raidbp->rf_flags = 0; /* XXX not really used anywhere... */ + + /* + * context for raidiodone + */ + raidbp->rf_obp = bp; + raidbp->req = req; + +#if 0 /* XXX */ + LIST_INIT(&raidbp->rf_buf.b_dep); +#endif + + switch (req->type) { + case RF_IO_TYPE_NOP: /* used primarily to unlock a locked queue */ + /* XXX need to do something extra here.. */ + /* I'm leaving this in, as I've never actually seen it used, + * and I'd like folks to report it... GO */ + rf_printf(2, "WAKEUP CALLED\n"); + queue->numOutstanding++; + + /* XXX need to glue the original buffer into this? */ + + KernelWakeupFunc(&raidbp->rf_buf); + break; + + case RF_IO_TYPE_READ: + case RF_IO_TYPE_WRITE: + + if (req->tracerec) { + RF_ETIMER_START(req->tracerec->timer); + } + InitBP(&raidbp->rf_buf, queue->rf_cinfo->ci_vp, + op | bp->bio_cmd, queue->rf_cinfo->ci_dev, + req->sectorOffset, req->numSector, + req->buf, KernelWakeupFunc, (void *) req, + queue->raidPtr->logBytesPerSector, req->b_proc); + + if (rf_debugKernelAccess) { + rf_printf(0, "dispatch: bp->bio_blkno = %ld\n", + (long) bp->bio_blkno); + } + queue->numOutstanding++; + queue->last_deq_sector = req->sectorOffset; + /* acc wouldn't have been let in if there were any pending + * reqs at any other priority */ + queue->curPriority = req->priority; + + rf_printf(3, "Going for %c to %s row %d col %d\n", + req->type, sc->sc_dev->si_name, queue->row, queue->col); + rf_printf(3, "sector %d count %d (%d bytes) %d\n", + (int) req->sectorOffset, (int) req->numSector, + (int) (req->numSector << + queue->raidPtr->logBytesPerSector), + (int) queue->raidPtr->logBytesPerSector); +#if 0 /* XXX */ + if ((raidbp->rf_buf.bio_cmd & BIO_READ) == 0) { + raidbp->rf_buf.b_vp->v_numoutput++; + } +#endif + BIO_STRATEGY(&raidbp->rf_buf, 0); + + break; + + default: + panic("bad req->type in rf_DispatchKernelIO"); + } + rf_printf(3, "Exiting from DispatchKernelIO\n"); + /* splx(s); */ /* want to test this */ + return (0); +} +/* this is the callback function associated with a I/O invoked from + kernel code. + */ +static void +KernelWakeupFunc(vbp) + struct bio *vbp; +{ + RF_DiskQueueData_t *req = NULL; + RF_DiskQueue_t *queue; + struct raidbuf *raidbp = (struct raidbuf *) vbp; + struct bio *bp; + struct raid_softc *sc; + int s; + + s = splbio(); + rf_printf(2, "recovering the request queue:\n"); + req = raidbp->req; + + bp = raidbp->rf_obp; + queue = (RF_DiskQueue_t *) req->queue; + sc = queue->raidPtr->sc; + + if (raidbp->rf_buf.bio_flags & BIO_ERROR) { + bp->bio_flags |= BIO_ERROR; + bp->bio_error = raidbp->rf_buf.bio_error ? + raidbp->rf_buf.bio_error : EIO; + } + + /* XXX methinks this could be wrong... */ +#if 1 + bp->bio_resid = raidbp->rf_buf.bio_resid; +#endif + + if (req->tracerec) { + RF_ETIMER_STOP(req->tracerec->timer); + RF_ETIMER_EVAL(req->tracerec->timer); + RF_LOCK_MUTEX(rf_tracing_mutex); + req->tracerec->diskwait_us += RF_ETIMER_VAL_US(req->tracerec->timer); + req->tracerec->phys_io_us += RF_ETIMER_VAL_US(req->tracerec->timer); + req->tracerec->num_phys_ios++; + RF_UNLOCK_MUTEX(rf_tracing_mutex); + } + bp->bio_bcount = raidbp->rf_buf.bio_bcount; /* XXXX ? */ + + /* XXX Ok, let's get aggressive... If BIO_ERROR is set, let's go + * ballistic, and mark the component as hosed... */ + + if (bp->bio_flags & BIO_ERROR) { + /* Mark the disk as dead */ + /* but only mark it once... */ + if (queue->raidPtr->Disks[queue->row][queue->col].status == + rf_ds_optimal) { + rf_printf(0, "%s: IO Error. Marking %s as " + "failed.\n", sc->sc_dev->si_name, queue->raidPtr-> + Disks[queue->row][queue->col].devname); + queue->raidPtr->Disks[queue->row][queue->col].status = + rf_ds_failed; + queue->raidPtr->status[queue->row] = rf_rs_degraded; + queue->raidPtr->numFailures++; + queue->raidPtr->numNewFailures++; + } else { /* Disk is already dead... */ + /* printf("Disk already marked as dead!\n"); */ + } + + } + + RAIDPUTBUF(sc, raidbp); + + rf_DiskIOComplete(queue, req, (bp->bio_flags & BIO_ERROR) ? 1 : 0); + (req->CompleteFunc)(req->argument, (bp->bio_flags & BIO_ERROR) ? 1 : 0); + + splx(s); +} + + + +/* + * initialize a buf structure for doing an I/O in the kernel. + */ +static void +InitBP(bp, b_vp, rw_flag, dev, startSect, numSect, buf, cbFunc, cbArg, + logBytesPerSector, b_proc) + struct bio *bp; + struct vnode *b_vp; + unsigned rw_flag; + dev_t dev; + RF_SectorNum_t startSect; + RF_SectorCount_t numSect; + caddr_t buf; + void (*cbFunc) (struct bio *); + void *cbArg; + int logBytesPerSector; + struct proc *b_proc; +{ + /* bp->b_flags = B_PHYS | rw_flag; */ + bp->bio_cmd = rw_flag; /* XXX need B_PHYS here too? */ + bp->bio_bcount = numSect << logBytesPerSector; +#if 0 /* XXX */ + bp->bio_bufsize = bp->bio_bcount; +#endif + bp->bio_error = 0; + bp->bio_dev = dev; + bp->bio_data = buf; + bp->bio_blkno = startSect; + bp->bio_resid = bp->bio_bcount; /* XXX is this right!?!?!! */ + if (bp->bio_bcount == 0) { + panic("bp->bio_bcount is zero in InitBP!!\n"); + } +/* + bp->b_proc = b_proc; + bp->b_vp = b_vp; +*/ + bp->bio_done = cbFunc; + +} + +static void +raidgetdefaultlabel(raidPtr, sc, dp) + RF_Raid_t *raidPtr; + struct raid_softc *sc; + struct disk *dp; +{ + rf_printf(1, "Building a default label...\n"); + if (dp == NULL) + panic("raidgetdefaultlabel(): dp is NULL\n"); + + /* fabricate a label... */ + dp->d_mediasize = raidPtr->totalSectors * raidPtr->bytesPerSector; + dp->d_sectorsize = raidPtr->bytesPerSector; + dp->d_fwsectors = raidPtr->Layout.dataSectorsPerStripe; + dp->d_fwheads = 4 * raidPtr->numCol; + +} +/* + * Lookup the provided name in the filesystem. If the file exists, + * is a valid block device, and isn't being used by anyone else, + * set *vpp to the file's vnode. + * You'll find the original of this in ccd.c + */ +int +raidlookup(path, td, vpp) + char *path; + struct thread *td; + struct vnode **vpp; /* result */ +{ + struct nameidata *nd; + struct vnode *vp; + struct vattr *va; + struct proc *p; + int error = 0, flags; + + MALLOC(nd, struct nameidata *, sizeof(struct nameidata), M_TEMP, M_NOWAIT | M_ZERO); + MALLOC(va, struct vattr *, sizeof(struct vattr), M_TEMP, M_NOWAIT | M_ZERO); + if ((nd == NULL) || (va == NULL)) { + printf("Out of memory?\n"); + return (ENOMEM); + } + + /* Sanity check the p_fd fields. This is really just a hack */ + p = td->td_proc; + if (!p->p_fd->fd_rdir || !p->p_fd->fd_cdir) + printf("Warning: p_fd fields not set\n"); + + if (!td->td_proc->p_fd->fd_rdir) + p->p_fd->fd_rdir = rootvnode; + + if (!p->p_fd->fd_cdir) + p->p_fd->fd_cdir = rootvnode; + + NDINIT(nd, LOOKUP, FOLLOW, UIO_SYSSPACE, path, curthread); + flags = FREAD | FWRITE; + if ((error = vn_open(nd, &flags, 0)) != 0) { + rf_printf(2, "RAIDframe: vn_open returned %d\n", error); + goto end1; + } + vp = nd->ni_vp; + if (vp->v_usecount > 1) { + rf_printf(1, "raidlookup() vp->v_usecount= %d\n", vp->v_usecount); + error = EBUSY; + goto end; + } + if ((error = VOP_GETATTR(vp, va, td->td_ucred, td)) != 0) { + rf_printf(1, "raidlookup() VOP_GETATTR returned %d", error); + goto end; + } + /* XXX: eventually we should handle VREG, too. */ + if (va->va_type != VCHR) { + rf_printf(1, "Returning ENOTBLK\n"); + error = ENOTBLK; + } + *vpp = vp; + +end: + VOP_UNLOCK(vp, 0, td); + NDFREE(nd, NDF_ONLY_PNBUF); +end1: + FREE(nd, M_TEMP); + FREE(va, M_TEMP); + return (error); +} +/* + * Wait interruptibly for an exclusive lock. + * + * XXX + * Several drivers do this; it should be abstracted and made MP-safe. + * (Hmm... where have we seen this warning before :-> GO ) + */ +static int +raidlock(sc) + struct raid_softc *sc; +{ + int error; + + while ((sc->sc_flags & RAIDF_LOCKED) != 0) { + sc->sc_flags |= RAIDF_WANTED; + if ((error = + tsleep(sc, PRIBIO | PCATCH, "raidlck", 0)) != 0) + return (error); + } + sc->sc_flags |= RAIDF_LOCKED; + return (0); +} +/* + * Unlock and wake up any waiters. + */ +static void +raidunlock(sc) + struct raid_softc *sc; +{ + + sc->sc_flags &= ~RAIDF_LOCKED; + if ((sc->sc_flags & RAIDF_WANTED) != 0) { + sc->sc_flags &= ~RAIDF_WANTED; + wakeup(sc); + } +} + + +#define RF_COMPONENT_INFO_OFFSET 16384 /* bytes */ +#define RF_COMPONENT_INFO_SIZE 1024 /* bytes */ + +int +raidmarkclean(dev_t dev, struct vnode *b_vp, int mod_counter) +{ + RF_ComponentLabel_t *clabel; + + MALLOC(clabel, RF_ComponentLabel_t *, sizeof(RF_ComponentLabel_t), + M_RAIDFRAME, M_NOWAIT | M_ZERO); + if (clabel == NULL) { + printf("raidmarkclean: Out of memory?\n"); + return (ENOMEM); + } + + raidread_component_label(dev, b_vp, clabel); + clabel->mod_counter = mod_counter; + clabel->clean = RF_RAID_CLEAN; + raidwrite_component_label(dev, b_vp, clabel); + FREE(clabel, M_RAIDFRAME); + return(0); +} + + +int +raidmarkdirty(dev_t dev, struct vnode *b_vp, int mod_counter) +{ + RF_ComponentLabel_t *clabel; + + MALLOC(clabel, RF_ComponentLabel_t *, sizeof(RF_ComponentLabel_t), + M_RAIDFRAME, M_NOWAIT | M_ZERO); + if (clabel == NULL) { + printf("raidmarkclean: Out of memory?\n"); + return (ENOMEM); + } + + raidread_component_label(dev, b_vp, clabel); + clabel->mod_counter = mod_counter; + clabel->clean = RF_RAID_DIRTY; + raidwrite_component_label(dev, b_vp, clabel); + FREE(clabel, M_RAIDFRAME); + return(0); +} + +/* ARGSUSED */ +int +raidread_component_label(dev, b_vp, clabel) + dev_t dev; + struct vnode *b_vp; + RF_ComponentLabel_t *clabel; +{ + struct buf *bp; + int error; + + /* XXX should probably ensure that we don't try to do this if + someone has changed rf_protected_sectors. */ + + if (b_vp == NULL) { + /* For whatever reason, this component is not valid. + Don't try to read a component label from it. */ + return(EINVAL); + } + + /* get a block of the appropriate size... */ + bp = geteblk((int)RF_COMPONENT_INFO_SIZE); + bp->b_dev = dev; + + /* get our ducks in a row for the read */ + bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE; + bp->b_bcount = RF_COMPONENT_INFO_SIZE; + bp->b_iocmd = BIO_READ; + bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE; + + DEV_STRATEGY(bp, 0); + error = bufwait(bp); + + if (!error) { + memcpy(clabel, bp->b_data, sizeof(RF_ComponentLabel_t)); +#if 0 + rf_print_component_label( clabel ); +#endif + } else { +#if 0 + rf_printf(0, "Failed to read RAID component label!\n"); +#endif + } + + bp->b_flags |= B_INVAL | B_AGE; + brelse(bp); + return(error); +} +/* ARGSUSED */ +int +raidwrite_component_label(dev, b_vp, clabel) + dev_t dev; + struct vnode *b_vp; + RF_ComponentLabel_t *clabel; +{ + struct buf *bp; + int error; + + /* get a block of the appropriate size... */ + bp = geteblk((int)RF_COMPONENT_INFO_SIZE); + bp->b_dev = dev; + + /* get our ducks in a row for the write */ + bp->b_flags = 0; + bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE; + bp->b_bcount = RF_COMPONENT_INFO_SIZE; + bp->b_iocmd = BIO_WRITE; + bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE; + + memset(bp->b_data, 0, RF_COMPONENT_INFO_SIZE ); + + memcpy(bp->b_data, clabel, sizeof(RF_ComponentLabel_t)); + + DEV_STRATEGY(bp, 0); + error = bufwait(bp); + + bp->b_flags |= B_INVAL | B_AGE; + brelse(bp); + if (error) { +#if 1 + rf_printf(0, "Failed to write RAID component info!\n"); + rf_printf(0, "b_error= %d\n", bp->b_error); +#endif + } + + return(error); +} + +void +rf_markalldirty(raidPtr) + RF_Raid_t *raidPtr; +{ + RF_ComponentLabel_t *clabel; + int r,c; + + MALLOC(clabel, RF_ComponentLabel_t *, sizeof(RF_ComponentLabel_t), + M_RAIDFRAME, M_NOWAIT | M_ZERO); + + if (clabel == NULL) { + printf("rf_markalldirty: Out of memory?\n"); + return; + } + + raidPtr->mod_counter++; + for (r = 0; r < raidPtr->numRow; r++) { + for (c = 0; c < raidPtr->numCol; c++) { + /* we don't want to touch (at all) a disk that has + failed */ + if (!RF_DEAD_DISK(raidPtr->Disks[r][c].status)) { + raidread_component_label( + raidPtr->Disks[r][c].dev, + raidPtr->raid_cinfo[r][c].ci_vp, + clabel); + if (clabel->status == rf_ds_spared) { + /* XXX do something special... + but whatever you do, don't + try to access it!! */ + } else { +#if 0 + clabel->status = + raidPtr->Disks[r][c].status; + raidwrite_component_label( + raidPtr->Disks[r][c].dev, + raidPtr->raid_cinfo[r][c].ci_vp, + clabel); +#endif + raidmarkdirty( + raidPtr->Disks[r][c].dev, + raidPtr->raid_cinfo[r][c].ci_vp, + raidPtr->mod_counter); + } + } + } + } + /* printf("Component labels marked dirty.\n"); */ +#if 0 + for( c = 0; c < raidPtr->numSpare ; c++) { + sparecol = raidPtr->numCol + c; + if (raidPtr->Disks[r][sparecol].status == rf_ds_used_spare) { + /* + + XXX this is where we get fancy and map this spare + into it's correct spot in the array. + + */ + /* + + we claim this disk is "optimal" if it's + rf_ds_used_spare, as that means it should be + directly substitutable for the disk it replaced. + We note that too... + + */ + + for(i=0;i<raidPtr->numRow;i++) { + for(j=0;j<raidPtr->numCol;j++) { + if ((raidPtr->Disks[i][j].spareRow == + r) && + (raidPtr->Disks[i][j].spareCol == + sparecol)) { + srow = r; + scol = sparecol; + break; + } + } + } + + raidread_component_label( + raidPtr->Disks[r][sparecol].dev, + raidPtr->raid_cinfo[r][sparecol].ci_vp, + &clabel); + /* make sure status is noted */ + clabel.version = RF_COMPONENT_LABEL_VERSION; + clabel.mod_counter = raidPtr->mod_counter; + clabel.serial_number = raidPtr->serial_number; + clabel.row = srow; + clabel.column = scol; + clabel.num_rows = raidPtr->numRow; + clabel.num_columns = raidPtr->numCol; + clabel.clean = RF_RAID_DIRTY; /* changed in a bit*/ + clabel.status = rf_ds_optimal; + raidwrite_component_label( + raidPtr->Disks[r][sparecol].dev, + raidPtr->raid_cinfo[r][sparecol].ci_vp, + &clabel); + raidmarkclean( raidPtr->Disks[r][sparecol].dev, + raidPtr->raid_cinfo[r][sparecol].ci_vp); + } + } + +#endif + FREE(clabel, M_RAIDFRAME); +} + + +void +rf_update_component_labels(raidPtr, final) + RF_Raid_t *raidPtr; + int final; +{ + RF_ComponentLabel_t *clabel; + int sparecol; + int r,c; + int i,j; + int srow, scol; + + srow = -1; + scol = -1; + + MALLOC(clabel, RF_ComponentLabel_t *, sizeof(RF_ComponentLabel_t), + M_RAIDFRAME, M_NOWAIT | M_ZERO); + if (clabel == NULL) { + printf("rf_update_component_labels: Out of memory?\n"); + return; + } + + /* XXX should do extra checks to make sure things really are clean, + rather than blindly setting the clean bit... */ + + raidPtr->mod_counter++; + + for (r = 0; r < raidPtr->numRow; r++) { + for (c = 0; c < raidPtr->numCol; c++) { + if (raidPtr->Disks[r][c].status == rf_ds_optimal) { + raidread_component_label( + raidPtr->Disks[r][c].dev, + raidPtr->raid_cinfo[r][c].ci_vp, + clabel); + /* make sure status is noted */ + clabel->status = rf_ds_optimal; + /* bump the counter */ + clabel->mod_counter = raidPtr->mod_counter; + + raidwrite_component_label( + raidPtr->Disks[r][c].dev, + raidPtr->raid_cinfo[r][c].ci_vp, + clabel); + if (final == RF_FINAL_COMPONENT_UPDATE) { + if (raidPtr->parity_good == RF_RAID_CLEAN) { + raidmarkclean( + raidPtr->Disks[r][c].dev, + raidPtr->raid_cinfo[r][c].ci_vp, + raidPtr->mod_counter); + } + } + } + /* else we don't touch it.. */ + } + } + + for( c = 0; c < raidPtr->numSpare ; c++) { + sparecol = raidPtr->numCol + c; + if (raidPtr->Disks[0][sparecol].status == rf_ds_used_spare) { + /* + + we claim this disk is "optimal" if it's + rf_ds_used_spare, as that means it should be + directly substitutable for the disk it replaced. + We note that too... + + */ + + for(i=0;i<raidPtr->numRow;i++) { + for(j=0;j<raidPtr->numCol;j++) { + if ((raidPtr->Disks[i][j].spareRow == + 0) && + (raidPtr->Disks[i][j].spareCol == + sparecol)) { + srow = i; + scol = j; + break; + } + } + } + + /* XXX shouldn't *really* need this... */ + raidread_component_label( + raidPtr->Disks[0][sparecol].dev, + raidPtr->raid_cinfo[0][sparecol].ci_vp, + clabel); + /* make sure status is noted */ + + raid_init_component_label(raidPtr, clabel); + + clabel->mod_counter = raidPtr->mod_counter; + clabel->row = srow; + clabel->column = scol; + clabel->status = rf_ds_optimal; + + raidwrite_component_label( + raidPtr->Disks[0][sparecol].dev, + raidPtr->raid_cinfo[0][sparecol].ci_vp, + clabel); + if (final == RF_FINAL_COMPONENT_UPDATE) { + if (raidPtr->parity_good == RF_RAID_CLEAN) { + raidmarkclean( raidPtr->Disks[0][sparecol].dev, + raidPtr->raid_cinfo[0][sparecol].ci_vp, + raidPtr->mod_counter); + } + } + } + } + FREE(clabel, M_RAIDFRAME); + rf_printf(1, "Component labels updated\n"); +} + +void +rf_close_component(raidPtr, vp, auto_configured) + RF_Raid_t *raidPtr; + struct vnode *vp; + int auto_configured; +{ + struct thread *td; + + td = raidPtr->engine_thread; + + if (vp != NULL) { + if (auto_configured == 1) { + VOP_CLOSE(vp, FREAD | FWRITE, td->td_ucred, td); + + vrele(vp); + } else { + vn_close(vp, FREAD | FWRITE, td->td_ucred, td); + } + } else { + rf_printf(1, "vnode was NULL\n"); + } +} + + +void +rf_UnconfigureVnodes(raidPtr) + RF_Raid_t *raidPtr; +{ + int r,c; + struct thread *td; + struct vnode *vp; + int acd; + + + /* We take this opportunity to close the vnodes like we should.. */ + + td = raidPtr->engine_thread; + + for (r = 0; r < raidPtr->numRow; r++) { + for (c = 0; c < raidPtr->numCol; c++) { + rf_printf(1, "Closing vnode for row: %d col: %d\n", r, c); + vp = raidPtr->raid_cinfo[r][c].ci_vp; + acd = raidPtr->Disks[r][c].auto_configured; + rf_close_component(raidPtr, vp, acd); + raidPtr->raid_cinfo[r][c].ci_vp = NULL; + raidPtr->Disks[r][c].auto_configured = 0; + } + } + for (r = 0; r < raidPtr->numSpare; r++) { + rf_printf(1, "Closing vnode for spare: %d\n", r); + vp = raidPtr->raid_cinfo[0][raidPtr->numCol + r].ci_vp; + acd = raidPtr->Disks[0][raidPtr->numCol + r].auto_configured; + rf_close_component(raidPtr, vp, acd); + raidPtr->raid_cinfo[0][raidPtr->numCol + r].ci_vp = NULL; + raidPtr->Disks[0][raidPtr->numCol + r].auto_configured = 0; + } +} + + +void +rf_ReconThread(req) + struct rf_recon_req *req; +{ + RF_Raid_t *raidPtr; + + mtx_lock(&Giant); + raidPtr = (RF_Raid_t *) req->raidPtr; + raidPtr->recon_in_progress = 1; + + rf_FailDisk((RF_Raid_t *) req->raidPtr, req->row, req->col, + ((req->flags & RF_FDFLAGS_RECON) ? 1 : 0)); + + /* XXX get rid of this! we don't need it at all.. */ + RF_Free(req, sizeof(*req)); + + raidPtr->recon_in_progress = 0; + + /* That's all... */ + RF_THREAD_EXIT(0); /* does not return */ +} + +void +rf_RewriteParityThread(raidPtr) + RF_Raid_t *raidPtr; +{ + int retcode; + + mtx_lock(&Giant); + raidPtr->parity_rewrite_in_progress = 1; + retcode = rf_RewriteParity(raidPtr); + if (retcode) { + rf_printf(0, "raid%d: Error re-writing parity!\n",raidPtr->raidid); + } else { + /* set the clean bit! If we shutdown correctly, + the clean bit on each component label will get + set */ + raidPtr->parity_good = RF_RAID_CLEAN; + } + raidPtr->parity_rewrite_in_progress = 0; + + /* Anyone waiting for us to stop? If so, inform them... */ + if (raidPtr->waitShutdown) { + wakeup(&raidPtr->parity_rewrite_in_progress); + } + + /* That's all... */ + RF_THREAD_EXIT(0); /* does not return */ +} + + +void +rf_CopybackThread(raidPtr) + RF_Raid_t *raidPtr; +{ + mtx_lock(&Giant); + raidPtr->copyback_in_progress = 1; + rf_CopybackReconstructedData(raidPtr); + raidPtr->copyback_in_progress = 0; + + /* That's all... */ + RF_THREAD_EXIT(0); /* does not return */ +} + + +void +rf_ReconstructInPlaceThread(req) + struct rf_recon_req *req; +{ + int retcode; + RF_Raid_t *raidPtr; + + mtx_lock(&Giant); + raidPtr = req->raidPtr; + raidPtr->recon_in_progress = 1; + retcode = rf_ReconstructInPlace(raidPtr, req->row, req->col); + RF_Free(req, sizeof(*req)); + raidPtr->recon_in_progress = 0; + + /* That's all... */ + RF_THREAD_EXIT(0); /* does not return */ +} + +RF_AutoConfig_t * +rf_find_raid_components() +{ + RF_AutoConfig_t *ac_list = NULL; +#if 0 /* XXX GEOM */ + struct vnode *vp; + struct disklabel *label; + struct diskslice *slice; + struct diskslices *slices; + struct disk *disk; + struct thread *td; + dev_t dev; + char *devname; + int error, j; + int nslices; + + td = curthread; + + MALLOC(label, struct disklabel *, sizeof(struct disklabel), + M_RAIDFRAME, M_NOWAIT|M_ZERO); + MALLOC(slices, struct diskslices *, sizeof(struct diskslices), + M_RAIDFRAME, M_NOWAIT|M_ZERO); + if ((label == NULL) || (slices == NULL)) { + printf("rf_find_raid_components: Out of Memory?\n"); + return (NULL); + } + + /* initialize the AutoConfig list */ + ac_list = NULL; + + /* we begin by trolling through *all* the disk devices on the system */ + + disk = NULL; + while ((disk = disk_enumerate(disk))) { + + /* we don't care about floppies... */ + devname = disk->d_dev->si_name; + if (!strncmp(devname, "fd", 2) || + !strncmp(devname, "cd", 2) || + !strncmp(devname, "acd", 3)) + continue; + + rf_printf(1, "Examining %s\n", disk->d_dev->si_name); + if (bdevvp(disk->d_dev, &vp)) + panic("RAIDframe can't alloc vnode"); + vref(vp); + + vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td); + error = VOP_OPEN(vp, FREAD, td->td_ucred, td); + VOP_UNLOCK(vp, 0, td); + if (error) { + vput(vp); + continue; + } + + error = VOP_IOCTL(vp, DIOCGSLICEINFO, (caddr_t)slices, + FREAD, td->td_ucred, td); + VOP_CLOSE(vp, FREAD | FWRITE, td->td_ucred, td); + vrele(vp); + if (error) { + /* No slice table. */ + continue; + } + + nslices = slices->dss_nslices; + if ((nslices == 0) || (nslices > MAX_SLICES)) + continue; + + /* Iterate through the slices */ + for (j = 1; j < nslices; j++) { + + rf_printf(1, "Examining slice %d\n", j); + slice = &slices->dss_slices[j - 1]; + dev = dkmodslice(disk->d_dev, j); + if (bdevvp(dev, &vp)) + panic("RAIDframe can't alloc vnode"); + + vref(vp); + vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td); + error = VOP_OPEN(vp, FREAD, td->td_ucred, td); + VOP_UNLOCK(vp, 0, td); + if (error) { + continue; + } + + error = VOP_IOCTL(vp, DIOCGDINFO, (caddr_t)label, + FREAD, td->td_ucred, td); + VOP_CLOSE(vp, FREAD | FWRITE, td->td_ucred, td); + vrele(vp); + if (error) + continue; + + rf_search_label(dev, label, &ac_list); + } + } + + FREE(label, M_RAIDFRAME); + FREE(slices, M_RAIDFRAME); +#endif + return (ac_list); +} + +static void +rf_search_label(dev_t dev, struct disklabel *label, RF_AutoConfig_t **ac_list) +{ + RF_AutoConfig_t *ac; + RF_ComponentLabel_t *clabel; + struct vnode *vp; + struct thread *td; + dev_t dev1; + int i, error, good_one; + + td = curthread; + + /* Iterate through the partitions */ + for (i=0; i < label->d_npartitions; i++) { + /* We only support partitions marked as RAID */ + if (label->d_partitions[i].p_fstype != FS_RAID) + continue; + + dev1 = dkmodpart(dev, i); + if (dev1 == NULL) { + rf_printf(1, "dev1 == null\n"); + continue; + } + if (bdevvp(dev1, &vp)) + panic("RAIDframe can't alloc vnode"); + + vref(vp); + vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td); + error = VOP_OPEN(vp, FREAD, td->td_ucred, td); + VOP_UNLOCK(vp, 0, td); + if (error) { + /* Whatever... */ + continue; + } + + good_one = 0; + + clabel = (RF_ComponentLabel_t *) + malloc(sizeof(RF_ComponentLabel_t), M_RAIDFRAME, + M_NOWAIT); + if (clabel == NULL) { + /* XXX CLEANUP HERE */ + panic("RAID autoconfig: no memory!\n"); + } + + if (!raidread_component_label(dev1, vp, clabel)) { + /* Got the label. Is it reasonable? */ + if (rf_reasonable_label(clabel) && + (clabel->partitionSize <= + label->d_partitions[i].p_size)) { + rf_printf(1, "Component on: %s: %d\n", + dev1->si_name, label->d_partitions[i].p_size); + rf_print_component_label(clabel); + /* if it's reasonable, add it, else ignore it */ + ac = (RF_AutoConfig_t *) + malloc(sizeof(RF_AutoConfig_t), + M_RAIDFRAME, M_NOWAIT); + if (ac == NULL) { + /* XXX should panic? */ + panic("RAID autoconfig: no memory!\n"); + } + + sprintf(ac->devname, "%s", dev->si_name); + ac->dev = dev1; + ac->vp = vp; + ac->clabel = clabel; + ac->next = *ac_list; + *ac_list = ac; + good_one = 1; + } + } + if (!good_one) { + /* cleanup */ + free(clabel, M_RAIDFRAME); + VOP_CLOSE(vp, FREAD | FWRITE, td->td_ucred, td); + vrele(vp); + } + } +} + +static int +rf_reasonable_label(clabel) + RF_ComponentLabel_t *clabel; +{ + + if (((clabel->version==RF_COMPONENT_LABEL_VERSION_1) || + (clabel->version==RF_COMPONENT_LABEL_VERSION)) && + ((clabel->clean == RF_RAID_CLEAN) || + (clabel->clean == RF_RAID_DIRTY)) && + clabel->row >=0 && + clabel->column >= 0 && + clabel->num_rows > 0 && + clabel->num_columns > 0 && + clabel->row < clabel->num_rows && + clabel->column < clabel->num_columns && + clabel->blockSize > 0 && + clabel->numBlocks > 0) { + /* label looks reasonable enough... */ + return(1); + } + return(0); +} + + +void +rf_print_component_label(clabel) + RF_ComponentLabel_t *clabel; +{ + rf_printf(1, " Row: %d Column: %d Num Rows: %d Num Columns: %d\n", + clabel->row, clabel->column, + clabel->num_rows, clabel->num_columns); + rf_printf(1, " Version: %d Serial Number: %d Mod Counter: %d\n", + clabel->version, clabel->serial_number, + clabel->mod_counter); + rf_printf(1, " Clean: %s Status: %d\n", + clabel->clean ? "Yes" : "No", clabel->status ); + rf_printf(1, " sectPerSU: %d SUsPerPU: %d SUsPerRU: %d\n", + clabel->sectPerSU, clabel->SUsPerPU, clabel->SUsPerRU); + rf_printf(1, " RAID Level: %c blocksize: %d numBlocks: %d\n", + (char) clabel->parityConfig, clabel->blockSize, + clabel->numBlocks); + rf_printf(1, " Autoconfig: %s\n", clabel->autoconfigure ? "Yes":"No"); + rf_printf(1, " Contains root partition: %s\n", + clabel->root_partition ? "Yes" : "No" ); + rf_printf(1, " Last configured as: raid%d\n", clabel->last_unit ); +#if 0 + rf_printf(1, " Config order: %d\n", clabel->config_order); +#endif + +} + +RF_ConfigSet_t * +rf_create_auto_sets(ac_list) + RF_AutoConfig_t *ac_list; +{ + RF_AutoConfig_t *ac; + RF_ConfigSet_t *config_sets; + RF_ConfigSet_t *cset; + RF_AutoConfig_t *ac_next; + + + config_sets = NULL; + + /* Go through the AutoConfig list, and figure out which components + belong to what sets. */ + ac = ac_list; + while(ac!=NULL) { + /* we're going to putz with ac->next, so save it here + for use at the end of the loop */ + ac_next = ac->next; + + if (config_sets == NULL) { + /* will need at least this one... */ + config_sets = (RF_ConfigSet_t *) + malloc(sizeof(RF_ConfigSet_t), + M_RAIDFRAME, M_NOWAIT); + if (config_sets == NULL) { + panic("rf_create_auto_sets: No memory!\n"); + } + /* this one is easy :) */ + config_sets->ac = ac; + config_sets->next = NULL; + config_sets->rootable = 0; + ac->next = NULL; + } else { + /* which set does this component fit into? */ + cset = config_sets; + while(cset!=NULL) { + if (rf_does_it_fit(cset, ac)) { + /* looks like it matches... */ + ac->next = cset->ac; + cset->ac = ac; + break; + } + cset = cset->next; + } + if (cset==NULL) { + /* didn't find a match above... new set..*/ + cset = (RF_ConfigSet_t *) + malloc(sizeof(RF_ConfigSet_t), + M_RAIDFRAME, M_NOWAIT); + if (cset == NULL) { + panic("rf_create_auto_sets: No memory!\n"); + } + cset->ac = ac; + ac->next = NULL; + cset->next = config_sets; + cset->rootable = 0; + config_sets = cset; + } + } + ac = ac_next; + } + + + return(config_sets); +} + +static int +rf_does_it_fit(cset, ac) + RF_ConfigSet_t *cset; + RF_AutoConfig_t *ac; +{ + RF_ComponentLabel_t *clabel1, *clabel2; + + /* If this one matches the *first* one in the set, that's good + enough, since the other members of the set would have been + through here too... */ + /* note that we are not checking partitionSize here.. + + Note that we are also not checking the mod_counters here. + If everything else matches execpt the mod_counter, that's + good enough for this test. We will deal with the mod_counters + a little later in the autoconfiguration process. + + (clabel1->mod_counter == clabel2->mod_counter) && + + The reason we don't check for this is that failed disks + will have lower modification counts. If those disks are + not added to the set they used to belong to, then they will + form their own set, which may result in 2 different sets, + for example, competing to be configured at raid0, and + perhaps competing to be the root filesystem set. If the + wrong ones get configured, or both attempt to become /, + weird behaviour and or serious lossage will occur. Thus we + need to bring them into the fold here, and kick them out at + a later point. + + */ + + clabel1 = cset->ac->clabel; + clabel2 = ac->clabel; + if ((clabel1->version == clabel2->version) && + (clabel1->serial_number == clabel2->serial_number) && + (clabel1->num_rows == clabel2->num_rows) && + (clabel1->num_columns == clabel2->num_columns) && + (clabel1->sectPerSU == clabel2->sectPerSU) && + (clabel1->SUsPerPU == clabel2->SUsPerPU) && + (clabel1->SUsPerRU == clabel2->SUsPerRU) && + (clabel1->parityConfig == clabel2->parityConfig) && + (clabel1->maxOutstanding == clabel2->maxOutstanding) && + (clabel1->blockSize == clabel2->blockSize) && + (clabel1->numBlocks == clabel2->numBlocks) && + (clabel1->autoconfigure == clabel2->autoconfigure) && + (clabel1->root_partition == clabel2->root_partition) && + (clabel1->last_unit == clabel2->last_unit) && + (clabel1->config_order == clabel2->config_order)) { + /* if it get's here, it almost *has* to be a match */ + } else { + /* it's not consistent with somebody in the set.. + punt */ + return(0); + } + /* all was fine.. it must fit... */ + return(1); +} + +int +rf_have_enough_components(cset) + RF_ConfigSet_t *cset; +{ + RF_AutoConfig_t *ac; + RF_AutoConfig_t *auto_config; + RF_ComponentLabel_t *clabel; + int r,c; + int num_rows; + int num_cols; + int num_missing; + int mod_counter; + int mod_counter_found; + int even_pair_failed; + char parity_type; + + + /* check to see that we have enough 'live' components + of this set. If so, we can configure it if necessary */ + + num_rows = cset->ac->clabel->num_rows; + num_cols = cset->ac->clabel->num_columns; + parity_type = cset->ac->clabel->parityConfig; + + /* XXX Check for duplicate components!?!?!? */ + + /* Determine what the mod_counter is supposed to be for this set. */ + + mod_counter_found = 0; + mod_counter = 0; + ac = cset->ac; + while(ac!=NULL) { + if (mod_counter_found==0) { + mod_counter = ac->clabel->mod_counter; + mod_counter_found = 1; + } else { + if (ac->clabel->mod_counter > mod_counter) { + mod_counter = ac->clabel->mod_counter; + } + } + ac = ac->next; + } + + num_missing = 0; + auto_config = cset->ac; + + for(r=0; r<num_rows; r++) { + even_pair_failed = 0; + for(c=0; c<num_cols; c++) { + ac = auto_config; + while(ac!=NULL) { + if ((ac->clabel->row == r) && + (ac->clabel->column == c) && + (ac->clabel->mod_counter == mod_counter)) { + /* it's this one... */ + rf_printf(1, "Found: %s at %d,%d\n", + ac->devname,r,c); + break; + } + ac=ac->next; + } + if (ac==NULL) { + /* Didn't find one here! */ + /* special case for RAID 1, especially + where there are more than 2 + components (where RAIDframe treats + things a little differently :( ) */ + if (parity_type == '1') { + if (c%2 == 0) { /* even component */ + even_pair_failed = 1; + } else { /* odd component. If + we're failed, and + so is the even + component, it's + "Good Night, Charlie" */ + if (even_pair_failed == 1) { + return(0); + } + } + } else { + /* normal accounting */ + num_missing++; + } + } + if ((parity_type == '1') && (c%2 == 1)) { + /* Just did an even component, and we didn't + bail.. reset the even_pair_failed flag, + and go on to the next component.... */ + even_pair_failed = 0; + } + } + } + + clabel = cset->ac->clabel; + + if (((clabel->parityConfig == '0') && (num_missing > 0)) || + ((clabel->parityConfig == '4') && (num_missing > 1)) || + ((clabel->parityConfig == '5') && (num_missing > 1))) { + /* XXX this needs to be made *much* more general */ + /* Too many failures */ + return(0); + } + /* otherwise, all is well, and we've got enough to take a kick + at autoconfiguring this set */ + return(1); +} + +void +rf_create_configuration(ac,config,raidPtr) + RF_AutoConfig_t *ac; + RF_Config_t *config; + RF_Raid_t *raidPtr; +{ + RF_ComponentLabel_t *clabel; + int i; + + clabel = ac->clabel; + + /* 1. Fill in the common stuff */ + config->numRow = clabel->num_rows; + config->numCol = clabel->num_columns; + config->numSpare = 0; /* XXX should this be set here? */ + config->sectPerSU = clabel->sectPerSU; + config->SUsPerPU = clabel->SUsPerPU; + config->SUsPerRU = clabel->SUsPerRU; + config->parityConfig = clabel->parityConfig; + /* XXX... */ + strcpy(config->diskQueueType,"fifo"); + config->maxOutstandingDiskReqs = clabel->maxOutstanding; + config->layoutSpecificSize = 0; /* XXX ? */ + + while(ac!=NULL) { + /* row/col values will be in range due to the checks + in reasonable_label() */ + strcpy(config->devnames[ac->clabel->row][ac->clabel->column], + ac->devname); + ac = ac->next; + } + + for(i=0;i<RF_MAXDBGV;i++) { + config->debugVars[i][0] = NULL; + } +} + +int +rf_set_autoconfig(raidPtr, new_value) + RF_Raid_t *raidPtr; + int new_value; +{ + RF_ComponentLabel_t *clabel; + struct vnode *vp; + dev_t dev; + int row, column; + + MALLOC(clabel, RF_ComponentLabel_t *, sizeof(RF_ComponentLabel_t), + M_RAIDFRAME, M_WAITOK | M_ZERO); + + raidPtr->autoconfigure = new_value; + for(row=0; row<raidPtr->numRow; row++) { + for(column=0; column<raidPtr->numCol; column++) { + if (raidPtr->Disks[row][column].status == + rf_ds_optimal) { + dev = raidPtr->Disks[row][column].dev; + vp = raidPtr->raid_cinfo[row][column].ci_vp; + raidread_component_label(dev, vp, clabel); + clabel->autoconfigure = new_value; + raidwrite_component_label(dev, vp, clabel); + } + } + } + FREE(clabel, M_RAIDFRAME); + return(new_value); +} + +int +rf_set_rootpartition(raidPtr, new_value) + RF_Raid_t *raidPtr; + int new_value; +{ + RF_ComponentLabel_t *clabel; + struct vnode *vp; + dev_t dev; + int row, column; + + MALLOC(clabel, RF_ComponentLabel_t *, sizeof(RF_ComponentLabel_t), + M_RAIDFRAME, M_WAITOK | M_ZERO); + + raidPtr->root_partition = new_value; + for(row=0; row<raidPtr->numRow; row++) { + for(column=0; column<raidPtr->numCol; column++) { + if (raidPtr->Disks[row][column].status == + rf_ds_optimal) { + dev = raidPtr->Disks[row][column].dev; + vp = raidPtr->raid_cinfo[row][column].ci_vp; + raidread_component_label(dev, vp, clabel); + clabel->root_partition = new_value; + raidwrite_component_label(dev, vp, clabel); + } + } + } + FREE(clabel, M_RAIDFRAME); + return(new_value); +} + +void +rf_release_all_vps(cset) + RF_ConfigSet_t *cset; +{ + RF_AutoConfig_t *ac; + struct thread *td; + + td = curthread; + ac = cset->ac; + while(ac!=NULL) { + /* Close the vp, and give it back */ + if (ac->vp) { + VOP_CLOSE(ac->vp, FREAD, td->td_ucred, td); + vrele(ac->vp); + ac->vp = NULL; + } + ac = ac->next; + } +} + + +void +rf_cleanup_config_set(cset) + RF_ConfigSet_t *cset; +{ + RF_AutoConfig_t *ac; + RF_AutoConfig_t *next_ac; + + ac = cset->ac; + while(ac!=NULL) { + next_ac = ac->next; + /* nuke the label */ + free(ac->clabel, M_RAIDFRAME); + /* cleanup the config structure */ + free(ac, M_RAIDFRAME); + /* "next.." */ + ac = next_ac; + } + /* and, finally, nuke the config set */ + free(cset, M_RAIDFRAME); +} + + +void +raid_init_component_label(raidPtr, clabel) + RF_Raid_t *raidPtr; + RF_ComponentLabel_t *clabel; +{ + /* current version number */ + clabel->version = RF_COMPONENT_LABEL_VERSION; + clabel->serial_number = raidPtr->serial_number; + clabel->mod_counter = raidPtr->mod_counter; + clabel->num_rows = raidPtr->numRow; + clabel->num_columns = raidPtr->numCol; + clabel->clean = RF_RAID_DIRTY; /* not clean */ + clabel->status = rf_ds_optimal; /* "It's good!" */ + + clabel->sectPerSU = raidPtr->Layout.sectorsPerStripeUnit; + clabel->SUsPerPU = raidPtr->Layout.SUsPerPU; + clabel->SUsPerRU = raidPtr->Layout.SUsPerRU; + + clabel->blockSize = raidPtr->bytesPerSector; + clabel->numBlocks = raidPtr->sectorsPerDisk; + + /* XXX not portable */ + clabel->parityConfig = raidPtr->Layout.map->parityConfig; + clabel->maxOutstanding = raidPtr->maxOutstanding; + clabel->autoconfigure = raidPtr->autoconfigure; + clabel->root_partition = raidPtr->root_partition; + clabel->last_unit = raidPtr->raidid; + clabel->config_order = raidPtr->config_order; +} + +int +rf_auto_config_set(cset, unit, parent_sc) + RF_ConfigSet_t *cset; + int *unit; + struct raidctl_softc *parent_sc; +{ + int retcode = 0; + RF_Raid_t *raidPtr; + RF_Config_t *config; + int raidID; + + rf_printf(0, "RAIDframe autoconfigure\n"); + + *unit = -1; + + /* 1. Create a config structure */ + + config = (RF_Config_t *)malloc(sizeof(RF_Config_t), M_RAIDFRAME, + M_NOWAIT|M_ZERO); + if (config==NULL) { + rf_printf(0, "Out of mem at rf_auto_config_set\n"); + /* XXX do something more intelligent here. */ + return(1); + } + + /* XXX raidID needs to be set correctly.. */ + + /* + 2. Figure out what RAID ID this one is supposed to live at + See if we can get the same RAID dev that it was configured + on last time.. + */ + + raidID = cset->ac->clabel->last_unit; + if (raidID < 0) { + /* let's not wander off into lala land. */ + raidID = raidgetunit(parent_sc, 0); + } else { + raidID = raidgetunit(parent_sc, raidID); + } + + if (raidID < 0) { + /* punt... */ + rf_printf(0, "Unable to auto configure this set!\n"); + rf_printf(1, "Out of RAID devs!\n"); + return(1); + } + rf_printf(0, "Configuring raid%d:\n",raidID); + RF_Malloc(raidPtr, sizeof(*raidPtr), (RF_Raid_t *)); + if (raidPtr == NULL) { + rf_printf(0, "Out of mem at rf_auto_config_set\n"); + return (1); + } + bzero((char *)raidPtr, sizeof(RF_Raid_t)); + + /* XXX all this stuff should be done SOMEWHERE ELSE! */ + raidPtr->raidid = raidID; + raidPtr->openings = RAIDOUTSTANDING; + + /* 3. Build the configuration structure */ + rf_create_configuration(cset->ac, config, raidPtr); + + /* 4. Do the configuration */ + retcode = rf_Configure(raidPtr, config, cset->ac); + + if (retcode == 0) { + + parent_sc->sc_raiddevs[raidID] = raidinit(raidPtr); + if (parent_sc->sc_raiddevs[raidID] == NULL) { + rf_printf(0, "Could not create RAID device\n"); + RF_Free(raidPtr, sizeof(RF_Raid_t)); + free(config, M_RAIDFRAME); + return (1); + } + + parent_sc->sc_numraid++; + ((struct raid_softc *)raidPtr->sc)->sc_parent_dev = + parent_sc->sc_dev; + rf_markalldirty(raidPtr); + raidPtr->autoconfigure = 1; /* XXX do this here? */ + if (cset->ac->clabel->root_partition==1) { + /* everything configured just fine. Make a note + that this set is eligible to be root. */ + cset->rootable = 1; + /* XXX do this here? */ + raidPtr->root_partition = 1; + } + } + + /* 5. Cleanup */ + free(config, M_RAIDFRAME); + + *unit = raidID; + return(retcode); +} + +void +rf_disk_unbusy(desc) + RF_RaidAccessDesc_t *desc; +{ + struct raid_softc *sc; + struct bio *bp; + + sc = desc->raidPtr->sc; + bp = (struct bio *)desc->bp; + + devstat_end_transaction_bio(&sc->device_stats, bp); +} + +/* + * Get the next available unit number from the bitmap. You can also request + * a particular unit number by passing it in the second arg. If it's not + * available, then grab the next free one. Return -1 if none are available. + */ +static int +raidgetunit(struct raidctl_softc *parent_sc, int id) +{ + int i; + + if (id >= RF_MAX_ARRAYS) + return (-1); + + for (i = id; i < RF_MAX_ARRAYS; i++) { + if (parent_sc->sc_raiddevs[i] == NULL) + return (i); + } + + if (id != 0) { + for (i = 0; i < id; i++) { + if (parent_sc->sc_raiddevs[i] == NULL) + return (i); + } + } + + return (-1); +} + +static int +raidshutdown(void) +{ + struct raidctl_softc *parent_sc; + int i, error = 0; + + parent_sc = raidctl_dev->si_drv1; + + if (parent_sc->sc_numraid != 0) { +#if XXX_KTHREAD_EXIT_RACE + return (EBUSY); +#else + for (i = 0; i < RF_MAX_ARRAYS; i++) { + if (parent_sc->sc_raiddevs[i] != NULL) { + rf_printf(0, "Shutting down raid%d\n", i); + error = raidctlioctl(raidctl_dev, + RAIDFRAME_SHUTDOWN, (caddr_t)&i, 0, NULL); + if (error) + return (error); + if (parent_sc->sc_numraid == 0) + break; + } + } +#endif + } + + destroy_dev(raidctl_dev); + + return (error); +} + +int +raid_getcomponentsize(RF_Raid_t *raidPtr, RF_RowCol_t row, RF_RowCol_t col) +{ + struct disklabel *dlabel; + struct vnode *vp; + struct vattr va; + RF_Thread_t td; + int retcode; + + td = raidPtr->engine_thread; + + MALLOC(dlabel, struct disklabel *, sizeof(struct disklabel), + M_RAIDFRAME, M_NOWAIT | M_ZERO); + if (dlabel == NULL) { + printf("rf_getcomponentsize: Out of memory?\n"); + return (ENOMEM); + } + + retcode = raidlookup(raidPtr->Disks[row][col].devname, td, &vp); + + if (retcode) { + printf("raid%d: rebuilding: raidlookup on device: %s failed: %d!\n",raidPtr->raidid, + raidPtr->Disks[row][col].devname, retcode); + + /* XXX the component isn't responding properly... + must be still dead :-( */ + raidPtr->reconInProgress--; + FREE(dlabel, M_RAIDFRAME); + return(retcode); + + } else { + + /* Ok, so we can at least do a lookup... + How about actually getting a vp for it? */ + + if ((retcode = VOP_GETATTR(vp, &va, rf_getucred(td), + td)) != 0) { + raidPtr->reconInProgress--; + FREE(dlabel, M_RAIDFRAME); + return(retcode); + } + + retcode = VOP_IOCTL(vp, DIOCGDINFO, (caddr_t)dlabel, + FREAD, rf_getucred(td), td); + if (retcode) { + FREE(dlabel, M_RAIDFRAME); + return(retcode); + } + raidPtr->Disks[row][col].blockSize = dlabel->d_secsize; + raidPtr->Disks[row][col].numBlocks = + dlabel->d_partitions[dkpart(vn_todev(vp))].p_size - + rf_protectedSectors; + + raidPtr->raid_cinfo[row][col].ci_vp = vp; + raidPtr->raid_cinfo[row][col].ci_dev = udev2dev(va.va_rdev, 0); + raidPtr->Disks[row][col].dev = udev2dev(va.va_rdev, 0); + + /* we allow the user to specify that only a + fraction of the disks should be used this is + just for debug: it speeds up + * the parity scan */ + raidPtr->Disks[row][col].numBlocks = + raidPtr->Disks[row][col].numBlocks * + rf_sizePercentage / 100; + } + + FREE(dlabel, M_RAIDFRAME); + return(retcode); +} + +static int +raid_modevent(mod, type, data) + module_t mod; + int type; + void *data; +{ + int error = 0; + + switch (type) { + case MOD_LOAD: + raidattach(); + break; + + case MOD_UNLOAD: + case MOD_SHUTDOWN: + error = raidshutdown(); + break; + + default: + break; + } + + return (error); +} + +moduledata_t raid_mod = { + "raidframe", + (modeventhand_t) raid_modevent, + 0}; + +DECLARE_MODULE(raidframe, raid_mod, SI_SUB_RAID, SI_ORDER_MIDDLE); diff --git a/sys/dev/raidframe/rf_freelist.h b/sys/dev/raidframe/rf_freelist.h new file mode 100644 index 0000000..13a5e83 --- /dev/null +++ b/sys/dev/raidframe/rf_freelist.h @@ -0,0 +1,702 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_freelist.h,v 1.6 2002/08/08 02:53:01 oster Exp $ */ +/* + * rf_freelist.h + */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Jim Zelenka + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +/* + * rf_freelist.h -- code to manage counted freelists + * + * Keep an arena of fixed-size objects. When a new object is needed, + * allocate it as necessary. When an object is freed, either put it + * in the arena, or really free it, depending on the maximum arena + * size. + */ + +#ifndef _RF__RF_FREELIST_H_ +#define _RF__RF_FREELIST_H_ + +#include <dev/raidframe/rf_types.h> +#include <dev/raidframe/rf_debugMem.h> +#include <dev/raidframe/rf_general.h> +#include <dev/raidframe/rf_threadstuff.h> + +#define RF_FREELIST_STATS 0 + +#if RF_FREELIST_STATS > 0 +typedef struct RF_FreeListStats_s { + char *file; + int line; + int allocations; + int frees; + int max_free; + int grows; + int outstanding; + int max_outstanding; +} RF_FreeListStats_t; +#define RF_FREELIST_STAT_INIT(_fl_) { \ + bzero((char *)&((_fl_)->stats), sizeof(RF_FreeListStats_t)); \ + (_fl_)->stats.file = __FILE__; \ + (_fl_)->stats.line = __LINE__; \ +} + +#define RF_FREELIST_STAT_ALLOC(_fl_) { \ + (_fl_)->stats.allocations++; \ + (_fl_)->stats.outstanding++; \ + if ((_fl_)->stats.outstanding > (_fl_)->stats.max_outstanding) \ + (_fl_)->stats.max_outstanding = (_fl_)->stats.outstanding; \ +} + +#define RF_FREELIST_STAT_FREE_UPDATE(_fl_) { \ + if ((_fl_)->free_cnt > (_fl_)->stats.max_free) \ + (_fl_)->stats.max_free = (_fl_)->free_cnt; \ +} + +#define RF_FREELIST_STAT_FREE(_fl_) { \ + (_fl_)->stats.frees++; \ + (_fl_)->stats.outstanding--; \ + RF_FREELIST_STAT_FREE_UPDATE(_fl_); \ +} + +#define RF_FREELIST_STAT_GROW(_fl_) { \ + (_fl_)->stats.grows++; \ + RF_FREELIST_STAT_FREE_UPDATE(_fl_); \ +} + +#define RF_FREELIST_STAT_REPORT(_fl_) { \ + printf("Freelist at %s %d (%s)\n", (_fl_)->stats.file, (_fl_)->stats.line, RF_STRING(_fl_)); \ + printf(" %d allocations, %d frees\n", (_fl_)->stats.allocations, (_fl_)->stats.frees); \ + printf(" %d grows\n", (_fl_)->stats.grows); \ + printf(" %d outstanding\n", (_fl_)->stats.outstanding); \ + printf(" %d free (max)\n", (_fl_)->stats.max_free); \ + printf(" %d outstanding (max)\n", (_fl_)->stats.max_outstanding); \ +} + +#else /* RF_FREELIST_STATS > 0 */ + +#define RF_FREELIST_STAT_INIT(_fl_) +#define RF_FREELIST_STAT_ALLOC(_fl_) +#define RF_FREELIST_STAT_FREE_UPDATE(_fl_) +#define RF_FREELIST_STAT_FREE(_fl_) +#define RF_FREELIST_STAT_GROW(_fl_) +#define RF_FREELIST_STAT_REPORT(_fl_) + +#endif /* RF_FREELIST_STATS > 0 */ + +struct RF_FreeList_s { + void *objlist; /* list of free obj */ + int free_cnt; /* how many free obj */ + int max_free_cnt; /* max free arena size */ + int obj_inc; /* how many to allocate at a time */ + int obj_size; /* size of objects */ + RF_DECLARE_MUTEX(lock) +#if RF_FREELIST_STATS > 0 + RF_FreeListStats_t stats; /* statistics */ +#endif /* RF_FREELIST_STATS > 0 */ +}; +/* + * fl = freelist + * maxcnt = max number of items in arena + * inc = how many to allocate at a time + * size = size of object + */ +#define RF_FREELIST_CREATE(_fl_,_maxcnt_,_inc_,_size_) { \ + int rc; \ + RF_ASSERT((_inc_) > 0); \ + RF_Malloc(_fl_, sizeof(RF_FreeList_t), (RF_FreeList_t *)); \ + (_fl_)->objlist = NULL; \ + (_fl_)->free_cnt = 0; \ + (_fl_)->max_free_cnt = _maxcnt_; \ + (_fl_)->obj_inc = _inc_; \ + (_fl_)->obj_size = _size_; \ + rc = rf_mutex_init(&(_fl_)->lock, "RF_FREELIST"); \ + if (rc) { \ + RF_Free(_fl_, sizeof(RF_FreeList_t)); \ + _fl_ = NULL; \ + } \ + RF_FREELIST_STAT_INIT(_fl_); \ +} + +/* + * fl = freelist + * cnt = number to prime with + * nextp = name of "next" pointer in obj + * cast = object cast + */ +#define RF_FREELIST_PRIME(_fl_,_cnt_,_nextp_,_cast_) { \ + void *_p; \ + int _i; \ + for(_i=0;_i<(_cnt_);_i++) { \ + RF_Calloc(_p,1,(_fl_)->obj_size,(void *)); \ + if (_p) { \ + RF_LOCK_MUTEX((_fl_)->lock); \ + (_cast_(_p))->_nextp_ = (_fl_)->objlist; \ + (_fl_)->objlist = _p; \ + (_fl_)->free_cnt++; \ + RF_UNLOCK_MUTEX((_fl_)->lock); \ + } \ + else { \ + break; \ + } \ + } \ + RF_LOCK_MUTEX((_fl_)->lock); \ + RF_FREELIST_STAT_FREE_UPDATE(_fl_); \ + RF_UNLOCK_MUTEX((_fl_)->lock); \ +} + +#define RF_FREELIST_MUTEX_OF(_fl_) ((_fl_)->lock) + +#define RF_FREELIST_DO_UNLOCK(_fl_) { \ + RF_UNLOCK_MUTEX((_fl_)->lock); \ +} + +#define RF_FREELIST_DO_LOCK(_fl_) { \ + RF_LOCK_MUTEX((_fl_)->lock); \ +} + +/* + * fl = freelist + * cnt = number to prime with + * nextp = name of "next" pointer in obj + * cast = object cast + * init = func to call to init obj + */ +#define RF_FREELIST_PRIME_INIT(_fl_,_cnt_,_nextp_,_cast_,_init_) { \ + void *_p; \ + int _i; \ + for(_i=0;_i<(_cnt_);_i++) { \ + RF_Calloc(_p,1,(_fl_)->obj_size,(void *)); \ + if (_init_ (_cast_ _p)) { \ + RF_Free(_p,(_fl_)->obj_size); \ + _p = NULL; \ + } \ + if (_p) { \ + RF_LOCK_MUTEX((_fl_)->lock); \ + (_cast_(_p))->_nextp_ = (_fl_)->objlist; \ + (_fl_)->objlist = _p; \ + (_fl_)->free_cnt++; \ + RF_UNLOCK_MUTEX((_fl_)->lock); \ + } \ + else { \ + break; \ + } \ + } \ + RF_LOCK_MUTEX((_fl_)->lock); \ + RF_FREELIST_STAT_FREE_UPDATE(_fl_); \ + RF_UNLOCK_MUTEX((_fl_)->lock); \ +} + +/* + * fl = freelist + * cnt = number to prime with + * nextp = name of "next" pointer in obj + * cast = object cast + * init = func to call to init obj + * arg = arg to init obj func + */ +#define RF_FREELIST_PRIME_INIT_ARG(_fl_,_cnt_,_nextp_,_cast_,_init_,_arg_) { \ + void *_p; \ + int _i; \ + for(_i=0;_i<(_cnt_);_i++) { \ + RF_Calloc(_p,1,(_fl_)->obj_size,(void *)); \ + if (_init_ (_cast_ _p,_arg_)) { \ + RF_Free(_p,(_fl_)->obj_size); \ + _p = NULL; \ + } \ + if (_p) { \ + RF_LOCK_MUTEX((_fl_)->lock); \ + (_cast_(_p))->_nextp_ = (_fl_)->objlist; \ + (_fl_)->objlist = _p; \ + (_fl_)->free_cnt++; \ + RF_UNLOCK_MUTEX((_fl_)->lock); \ + } \ + else { \ + break; \ + } \ + } \ + RF_LOCK_MUTEX((_fl_)->lock); \ + RF_FREELIST_STAT_FREE_UPDATE(_fl_); \ + RF_UNLOCK_MUTEX((_fl_)->lock); \ +} + +/* + * fl = freelist + * obj = object to allocate + * nextp = name of "next" pointer in obj + * cast = cast of obj assignment + * init = init obj func + */ +#define RF_FREELIST_GET_INIT(_fl_,_obj_,_nextp_,_cast_,_init_) { \ + void *_p; \ + int _i; \ + RF_LOCK_MUTEX((_fl_)->lock); \ + RF_ASSERT(sizeof(*(_obj_))==((_fl_)->obj_size)); \ + if (_fl_->objlist) { \ + _obj_ = _cast_((_fl_)->objlist); \ + (_fl_)->objlist = (void *)((_obj_)->_nextp_); \ + (_fl_)->free_cnt--; \ + RF_UNLOCK_MUTEX((_fl_)->lock); \ + } \ + else { \ + RF_UNLOCK_MUTEX((_fl_)->lock); \ + /* \ + * Allocate one at a time so we can free \ + * one at a time without cleverness when arena \ + * is full. \ + */ \ + RF_Calloc(_obj_,1,(_fl_)->obj_size,_cast_); \ + if (_obj_) { \ + if (_init_ (_obj_)) { \ + RF_Free(_obj_,(_fl_)->obj_size); \ + _obj_ = NULL; \ + } \ + else { \ + for(_i=1;_i<(_fl_)->obj_inc;_i++) { \ + RF_Calloc(_p,1,(_fl_)->obj_size,(void *)); \ + if (_p) { \ + if (_init_ (_p)) { \ + RF_Free(_p,(_fl_)->obj_size); \ + _p = NULL; \ + break; \ + } \ + RF_LOCK_MUTEX((_fl_)->lock); \ + (_cast_(_p))->_nextp_ = (_fl_)->objlist; \ + (_fl_)->objlist = _p; \ + RF_UNLOCK_MUTEX((_fl_)->lock); \ + } \ + else { \ + break; \ + } \ + } \ + } \ + } \ + RF_LOCK_MUTEX((_fl_)->lock); \ + RF_FREELIST_STAT_GROW(_fl_); \ + RF_UNLOCK_MUTEX((_fl_)->lock); \ + } \ + RF_LOCK_MUTEX((_fl_)->lock); \ + RF_FREELIST_STAT_ALLOC(_fl_); \ + RF_UNLOCK_MUTEX((_fl_)->lock); \ +} + +/* + * fl = freelist + * obj = object to allocate + * nextp = name of "next" pointer in obj + * cast = cast of obj assignment + * init = init obj func + * arg = arg to init obj func + */ +#define RF_FREELIST_GET_INIT_ARG(_fl_,_obj_,_nextp_,_cast_,_init_,_arg_) { \ + void *_p; \ + int _i; \ + RF_LOCK_MUTEX((_fl_)->lock); \ + RF_ASSERT(sizeof(*(_obj_))==((_fl_)->obj_size)); \ + if (_fl_->objlist) { \ + _obj_ = _cast_((_fl_)->objlist); \ + (_fl_)->objlist = (void *)((_obj_)->_nextp_); \ + (_fl_)->free_cnt--; \ + RF_UNLOCK_MUTEX((_fl_)->lock); \ + } \ + else { \ + RF_UNLOCK_MUTEX((_fl_)->lock); \ + /* \ + * Allocate one at a time so we can free \ + * one at a time without cleverness when arena \ + * is full. \ + */ \ + RF_Calloc(_obj_,1,(_fl_)->obj_size,_cast_); \ + if (_obj_) { \ + if (_init_ (_obj_,_arg_)) { \ + RF_Free(_obj_,(_fl_)->obj_size); \ + _obj_ = NULL; \ + } \ + else { \ + for(_i=1;_i<(_fl_)->obj_inc;_i++) { \ + RF_Calloc(_p,1,(_fl_)->obj_size,(void *)); \ + if (_p) { \ + if (_init_ (_p,_arg_)) { \ + RF_Free(_p,(_fl_)->obj_size); \ + _p = NULL; \ + break; \ + } \ + RF_LOCK_MUTEX((_fl_)->lock); \ + (_cast_(_p))->_nextp_ = (_fl_)->objlist; \ + (_fl_)->objlist = _p; \ + RF_UNLOCK_MUTEX((_fl_)->lock); \ + } \ + else { \ + break; \ + } \ + } \ + } \ + } \ + RF_LOCK_MUTEX((_fl_)->lock); \ + RF_FREELIST_STAT_GROW(_fl_); \ + RF_UNLOCK_MUTEX((_fl_)->lock); \ + } \ + RF_LOCK_MUTEX((_fl_)->lock); \ + RF_FREELIST_STAT_ALLOC(_fl_); \ + RF_UNLOCK_MUTEX((_fl_)->lock); \ +} + +/* + * fl = freelist + * obj = object to allocate + * nextp = name of "next" pointer in obj + * cast = cast of obj assignment + * init = init obj func + */ +#define RF_FREELIST_GET_INIT_NOUNLOCK(_fl_,_obj_,_nextp_,_cast_,_init_) { \ + void *_p; \ + int _i; \ + RF_LOCK_MUTEX((_fl_)->lock); \ + RF_ASSERT(sizeof(*(_obj_))==((_fl_)->obj_size)); \ + if (_fl_->objlist) { \ + _obj_ = _cast_((_fl_)->objlist); \ + (_fl_)->objlist = (void *)((_obj_)->_nextp_); \ + (_fl_)->free_cnt--; \ + } \ + else { \ + /* \ + * Allocate one at a time so we can free \ + * one at a time without cleverness when arena \ + * is full. \ + */ \ + RF_Calloc(_obj_,1,(_fl_)->obj_size,_cast_); \ + if (_obj_) { \ + if (_init_ (_obj_)) { \ + RF_Free(_obj_,(_fl_)->obj_size); \ + _obj_ = NULL; \ + } \ + else { \ + for(_i=1;_i<(_fl_)->obj_inc;_i++) { \ + RF_Calloc(_p,1,(_fl_)->obj_size,(void *)); \ + if (_p) { \ + if (_init_ (_p)) { \ + RF_Free(_p,(_fl_)->obj_size); \ + _p = NULL; \ + break; \ + } \ + (_cast_(_p))->_nextp_ = (_fl_)->objlist; \ + (_fl_)->objlist = _p; \ + } \ + else { \ + break; \ + } \ + } \ + } \ + } \ + RF_FREELIST_STAT_GROW(_fl_); \ + } \ + RF_FREELIST_STAT_ALLOC(_fl_); \ +} + +/* + * fl = freelist + * obj = object to allocate + * nextp = name of "next" pointer in obj + * cast = cast of obj assignment + */ +#define RF_FREELIST_GET(_fl_,_obj_,_nextp_,_cast_) { \ + void *_p; \ + int _i; \ + RF_LOCK_MUTEX((_fl_)->lock); \ + RF_ASSERT(sizeof(*(_obj_))==((_fl_)->obj_size)); \ + if (_fl_->objlist) { \ + _obj_ = _cast_((_fl_)->objlist); \ + (_fl_)->objlist = (void *)((_obj_)->_nextp_); \ + (_fl_)->free_cnt--; \ + RF_UNLOCK_MUTEX((_fl_)->lock); \ + } \ + else { \ + RF_UNLOCK_MUTEX((_fl_)->lock); \ + /* \ + * Allocate one at a time so we can free \ + * one at a time without cleverness when arena \ + * is full. \ + */ \ + RF_Calloc(_obj_,1,(_fl_)->obj_size,_cast_); \ + if (_obj_) { \ + for(_i=1;_i<(_fl_)->obj_inc;_i++) { \ + RF_Calloc(_p,1,(_fl_)->obj_size,(void *)); \ + if (_p) { \ + RF_LOCK_MUTEX((_fl_)->lock); \ + (_cast_(_p))->_nextp_ = (_fl_)->objlist; \ + (_fl_)->objlist = _p; \ + RF_UNLOCK_MUTEX((_fl_)->lock); \ + } \ + else { \ + break; \ + } \ + } \ + } \ + RF_LOCK_MUTEX((_fl_)->lock); \ + RF_FREELIST_STAT_GROW(_fl_); \ + RF_UNLOCK_MUTEX((_fl_)->lock); \ + } \ + RF_LOCK_MUTEX((_fl_)->lock); \ + RF_FREELIST_STAT_ALLOC(_fl_); \ + RF_UNLOCK_MUTEX((_fl_)->lock); \ +} + +/* + * fl = freelist + * obj = object to allocate + * nextp = name of "next" pointer in obj + * cast = cast of obj assignment + * num = num objs to return + */ +#define RF_FREELIST_GET_N(_fl_,_obj_,_nextp_,_cast_,_num_) { \ + void *_p, *_l, *_f; \ + int _i, _n; \ + _l = _f = NULL; \ + _n = 0; \ + RF_ASSERT(sizeof(*(_obj_))==((_fl_)->obj_size)); \ + for(_n=0;_n<_num_;_n++) { \ + RF_LOCK_MUTEX((_fl_)->lock); \ + if (_fl_->objlist) { \ + _obj_ = _cast_((_fl_)->objlist); \ + (_fl_)->objlist = (void *)((_obj_)->_nextp_); \ + (_fl_)->free_cnt--; \ + RF_UNLOCK_MUTEX((_fl_)->lock); \ + } \ + else { \ + RF_UNLOCK_MUTEX((_fl_)->lock); \ + /* \ + * Allocate one at a time so we can free \ + * one at a time without cleverness when arena \ + * is full. \ + */ \ + RF_Calloc(_obj_,1,(_fl_)->obj_size,_cast_); \ + if (_obj_) { \ + for(_i=1;_i<(_fl_)->obj_inc;_i++) { \ + RF_Calloc(_p,1,(_fl_)->obj_size,(void *)); \ + if (_p) { \ + RF_LOCK_MUTEX((_fl_)->lock); \ + (_cast_(_p))->_nextp_ = (_fl_)->objlist; \ + (_fl_)->objlist = _p; \ + RF_UNLOCK_MUTEX((_fl_)->lock); \ + } \ + else { \ + break; \ + } \ + } \ + } \ + RF_LOCK_MUTEX((_fl_)->lock); \ + RF_FREELIST_STAT_GROW(_fl_); \ + RF_UNLOCK_MUTEX((_fl_)->lock); \ + } \ + RF_LOCK_MUTEX((_fl_)->lock); \ + if (_f == NULL) \ + _f = _obj_; \ + if (_obj_) { \ + (_cast_(_obj_))->_nextp_ = _l; \ + _l = _obj_; \ + RF_FREELIST_STAT_ALLOC(_fl_); \ + } \ + else { \ + (_cast_(_f))->_nextp_ = (_fl_)->objlist; \ + (_fl_)->objlist = _l; \ + _n = _num_; \ + } \ + RF_UNLOCK_MUTEX((_fl_)->lock); \ + } \ +} + +/* + * fl = freelist + * obj = object to free + * nextp = name of "next" pointer in obj + */ +#define RF_FREELIST_FREE(_fl_,_obj_,_nextp_) { \ + RF_LOCK_MUTEX((_fl_)->lock); \ + if ((_fl_)->free_cnt == (_fl_)->max_free_cnt) { \ + RF_Free(_obj_,(_fl_)->obj_size); \ + } \ + else { \ + RF_ASSERT((_fl_)->free_cnt < (_fl_)->max_free_cnt); \ + (_obj_)->_nextp_ = (_fl_)->objlist; \ + (_fl_)->objlist = (void *)(_obj_); \ + (_fl_)->free_cnt++; \ + } \ + RF_FREELIST_STAT_FREE(_fl_); \ + RF_UNLOCK_MUTEX((_fl_)->lock); \ +} + +/* + * fl = freelist + * obj = object to free + * nextp = name of "next" pointer in obj + * num = num to free (debugging) + */ +#define RF_FREELIST_FREE_N(_fl_,_obj_,_nextp_,_cast_,_num_) { \ + void *_no; \ + int _n; \ + _n = 0; \ + RF_LOCK_MUTEX((_fl_)->lock); \ + while(_obj_) { \ + _no = (_cast_(_obj_))->_nextp_; \ + if ((_fl_)->free_cnt == (_fl_)->max_free_cnt) { \ + RF_Free(_obj_,(_fl_)->obj_size); \ + } \ + else { \ + RF_ASSERT((_fl_)->free_cnt < (_fl_)->max_free_cnt); \ + (_obj_)->_nextp_ = (_fl_)->objlist; \ + (_fl_)->objlist = (void *)(_obj_); \ + (_fl_)->free_cnt++; \ + } \ + _n++; \ + _obj_ = _no; \ + RF_FREELIST_STAT_FREE(_fl_); \ + } \ + RF_ASSERT(_n==(_num_)); \ + RF_UNLOCK_MUTEX((_fl_)->lock); \ +} + +/* + * fl = freelist + * obj = object to free + * nextp = name of "next" pointer in obj + * clean = undo for init + */ +#define RF_FREELIST_FREE_CLEAN(_fl_,_obj_,_nextp_,_clean_) { \ + RF_LOCK_MUTEX((_fl_)->lock); \ + if ((_fl_)->free_cnt == (_fl_)->max_free_cnt) { \ + _clean_ (_obj_); \ + RF_Free(_obj_,(_fl_)->obj_size); \ + } \ + else { \ + RF_ASSERT((_fl_)->free_cnt < (_fl_)->max_free_cnt); \ + (_obj_)->_nextp_ = (_fl_)->objlist; \ + (_fl_)->objlist = (void *)(_obj_); \ + (_fl_)->free_cnt++; \ + } \ + RF_FREELIST_STAT_FREE(_fl_); \ + RF_UNLOCK_MUTEX((_fl_)->lock); \ +} + +/* + * fl = freelist + * obj = object to free + * nextp = name of "next" pointer in obj + * clean = undo for init + * arg = arg for undo func + */ +#define RF_FREELIST_FREE_CLEAN_ARG(_fl_,_obj_,_nextp_,_clean_,_arg_) { \ + RF_LOCK_MUTEX((_fl_)->lock); \ + if ((_fl_)->free_cnt == (_fl_)->max_free_cnt) { \ + _clean_ (_obj_,_arg_); \ + RF_Free(_obj_,(_fl_)->obj_size); \ + } \ + else { \ + RF_ASSERT((_fl_)->free_cnt < (_fl_)->max_free_cnt); \ + (_obj_)->_nextp_ = (_fl_)->objlist; \ + (_fl_)->objlist = (void *)(_obj_); \ + (_fl_)->free_cnt++; \ + } \ + RF_FREELIST_STAT_FREE(_fl_); \ + RF_UNLOCK_MUTEX((_fl_)->lock); \ +} + +/* + * fl = freelist + * obj = object to free + * nextp = name of "next" pointer in obj + * clean = undo for init + */ +#define RF_FREELIST_FREE_CLEAN_NOUNLOCK(_fl_,_obj_,_nextp_,_clean_) { \ + RF_LOCK_MUTEX((_fl_)->lock); \ + if ((_fl_)->free_cnt == (_fl_)->max_free_cnt) { \ + _clean_ (_obj_); \ + RF_Free(_obj_,(_fl_)->obj_size); \ + } \ + else { \ + RF_ASSERT((_fl_)->free_cnt < (_fl_)->max_free_cnt); \ + (_obj_)->_nextp_ = (_fl_)->objlist; \ + (_fl_)->objlist = (void *)(_obj_); \ + (_fl_)->free_cnt++; \ + } \ + RF_FREELIST_STAT_FREE(_fl_); \ +} + +/* + * fl = freelist + * nextp = name of "next" pointer in obj + * cast = cast to object type + */ +#define RF_FREELIST_DESTROY(_fl_,_nextp_,_cast_) { \ + void *_cur, *_next; \ + RF_FREELIST_STAT_REPORT(_fl_); \ + rf_mutex_destroy(&((_fl_)->lock)); \ + for(_cur=(_fl_)->objlist;_cur;_cur=_next) { \ + _next = (_cast_ _cur)->_nextp_; \ + RF_Free(_cur,(_fl_)->obj_size); \ + } \ + RF_Free(_fl_,sizeof(RF_FreeList_t)); \ +} + +/* + * fl = freelist + * nextp = name of "next" pointer in obj + * cast = cast to object type + * clean = func to undo obj init + */ +#define RF_FREELIST_DESTROY_CLEAN(_fl_,_nextp_,_cast_,_clean_) { \ + void *_cur, *_next; \ + RF_FREELIST_STAT_REPORT(_fl_); \ + rf_mutex_destroy(&((_fl_)->lock)); \ + for(_cur=(_fl_)->objlist;_cur;_cur=_next) { \ + _next = (_cast_ _cur)->_nextp_; \ + _clean_ (_cur); \ + RF_Free(_cur,(_fl_)->obj_size); \ + } \ + RF_Free(_fl_,sizeof(RF_FreeList_t)); \ +} + +/* + * fl = freelist + * nextp = name of "next" pointer in obj + * cast = cast to object type + * clean = func to undo obj init + * arg = arg for undo func + */ +#define RF_FREELIST_DESTROY_CLEAN_ARG(_fl_,_nextp_,_cast_,_clean_,_arg_) { \ + void *_cur, *_next; \ + RF_FREELIST_STAT_REPORT(_fl_); \ + rf_mutex_destroy(&((_fl_)->lock)); \ + for(_cur=(_fl_)->objlist;_cur;_cur=_next) { \ + _next = (_cast_ _cur)->_nextp_; \ + _clean_ (_cur,_arg_); \ + RF_Free(_cur,(_fl_)->obj_size); \ + } \ + RF_Free(_fl_,sizeof(RF_FreeList_t)); \ +} + +#endif /* !_RF__RF_FREELIST_H_ */ diff --git a/sys/dev/raidframe/rf_general.h b/sys/dev/raidframe/rf_general.h new file mode 100644 index 0000000..e709899 --- /dev/null +++ b/sys/dev/raidframe/rf_general.h @@ -0,0 +1,107 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_general.h,v 1.6 2000/12/15 02:12:58 oster Exp $ */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Mark Holland + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +/* + * rf_general.h -- some general-use definitions + */ + +/*#define NOASSERT*/ + +#ifndef _RF__RF_GENERAL_H_ +#define _RF__RF_GENERAL_H_ + +/* error reporting and handling */ + +#ifdef _KERNEL +#include<sys/systm.h> /* printf, sprintf, and friends */ +#endif + +#define RF_ERRORMSG(s) printf((s)) +#define RF_ERRORMSG1(s,a) printf((s),(a)) +#define RF_ERRORMSG2(s,a,b) printf((s),(a),(b)) +#define RF_ERRORMSG3(s,a,b,c) printf((s),(a),(b),(c)) + +void rf_print_panic_message(int, char *); +void rf_print_assert_panic_message(int, char *, char *); + +extern char rf_panicbuf[]; +#define RF_PANIC() {rf_print_panic_message(__LINE__,__FILE__); panic(rf_panicbuf);} + +#ifdef _KERNEL +#ifdef RF_ASSERT +#undef RF_ASSERT +#endif /* RF_ASSERT */ +#ifndef NOASSERT +#define RF_ASSERT(_x_) { \ + if (!(_x_)) { \ + rf_print_assert_panic_message(__LINE__, __FILE__, #_x_); \ + panic(rf_panicbuf); \ + } \ +} +#else /* !NOASSERT */ +#define RF_ASSERT(x) {/*noop*/} +#endif /* !NOASSERT */ +#else /* _KERNEL */ +#define RF_ASSERT(x) {/*noop*/} +#endif /* _KERNEL */ + +/* random stuff */ +#define RF_MAX(a,b) (((a) > (b)) ? (a) : (b)) +#define RF_MIN(a,b) (((a) < (b)) ? (a) : (b)) + +/* divide-by-zero check */ +#define RF_DB0_CHECK(a,b) ( ((b)==0) ? 0 : (a)/(b) ) + +/* get time of day */ +#define RF_GETTIME(_t) microtime(&(_t)) + +/* + * zero memory- not all bzero calls go through here, only + * those which in the kernel may have a user address + */ + +#define RF_BZERO(_bp,_b,_l) bzero(_b,_l) /* XXX This is likely + * incorrect. GO */ + +#if defined(__FreeBSD__) +#define NBPG PAGE_SIZE +#endif + +#define RF_UL(x) ((unsigned long) (x)) +#define RF_PGMASK RF_UL(NBPG-1) +#define RF_BLIP(x) (NBPG - (RF_UL(x) & RF_PGMASK)) /* bytes left in page */ +#define RF_PAGE_ALIGNED(x) ((RF_UL(x) & RF_PGMASK) == 0) + +#ifdef __STDC__ +#define RF_STRING(_str_) #_str_ +#else /* __STDC__ */ +#define RF_STRING(_str_) "_str_" +#endif /* __STDC__ */ + +#endif /* !_RF__RF_GENERAL_H_ */ diff --git a/sys/dev/raidframe/rf_geniq.c b/sys/dev/raidframe/rf_geniq.c new file mode 100644 index 0000000..c839059 --- /dev/null +++ b/sys/dev/raidframe/rf_geniq.c @@ -0,0 +1,163 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_geniq.c,v 1.3 1999/02/05 00:06:12 oster Exp $ */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Daniel Stodolsky + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +/* rf_geniq.c + * code which implements Reed-Solomon encoding for RAID level 6 + */ + + +#define RF_UTILITY 1 +#include <dev/raidframe/rf_pqdeg.h> + +/* + five bit lfsr + poly - feedback connections + + val = value; +*/ +int +lsfr_shift(val, poly) + unsigned val, poly; +{ + unsigned new; + unsigned int i; + unsigned high = (val >> 4) & 1; + unsigned bit; + + new = (poly & 1) ? high : 0; + + for (i = 1; i <= 4; i++) { + bit = (val >> (i - 1)) & 1; + if (poly & (1 << i)) /* there is a feedback connection */ + new = new | ((bit ^ high) << i); + else + new = new | (bit << i); + } + return new; +} +/* generate Q matricies for the data */ + +RF_ua32_t rf_qfor[32]; + +void +main() +{ + unsigned int i, j, l, a, b; + unsigned int val; + unsigned int r; + unsigned int m, p, q; + + RF_ua32_t k; + + printf("/*\n"); + printf(" * rf_invertq.h\n"); + printf(" */\n"); + printf("/*\n"); + printf(" * GENERATED FILE -- DO NOT EDIT\n"); + printf(" */\n"); + printf("\n"); + printf("#ifndef _RF__RF_INVERTQ_H_\n"); + printf("#define _RF__RF_INVERTQ_H_\n"); + printf("\n"); + printf("/*\n"); + printf(" * rf_geniq.c must include rf_archs.h before including\n"); + printf(" * this file (to get VPATH magic right with the way we\n"); + printf(" * generate this file in kernel trees)\n"); + printf(" */\n"); + printf("/* #include \"rf_archs.h\" */\n"); + printf("\n"); + printf("#if (RF_INCLUDE_PQ > 0) || (RF_INCLUDE_RAID6 > 0)\n"); + printf("\n"); + printf("#define RF_Q_COLS 32\n"); + printf("RF_ua32_t rf_rn = {\n"); + k[0] = 1; + for (j = 0; j < 31; j++) + k[j + 1] = lsfr_shift(k[j], 5); + for (j = 0; j < 32; j++) + printf("%d, ", k[j]); + printf("};\n"); + + printf("RF_ua32_t rf_qfor[32] = {\n"); + for (i = 0; i < 32; i++) { + printf("/* i = %d */ { 0, ", i); + rf_qfor[i][0] = 0; + for (j = 1; j < 32; j++) { + val = j; + for (l = 0; l < i; l++) + val = lsfr_shift(val, 5); + rf_qfor[i][j] = val; + printf("%d, ", val); + } + printf("},\n"); + } + printf("};\n"); + printf("#define RF_Q_DATA_COL(col_num) rf_rn[col_num],rf_qfor[28-(col_num)]\n"); + + /* generate the inverse tables. (i,j,p,q) */ + /* The table just stores a. Get b back from the parity */ + printf("#ifdef KERNEL\n"); + printf("RF_ua1024_t rf_qinv[1]; /* don't compile monster table into kernel */\n"); + printf("#elif defined(NO_PQ)\n"); + printf("RF_ua1024_t rf_qinv[29*29];\n"); + printf("#else /* !KERNEL && NO_PQ */\n"); + printf("RF_ua1024_t rf_qinv[29*29] = {\n"); + for (i = 0; i < 29; i++) { + for (j = 0; j < 29; j++) { + printf("/* i %d, j %d */{ ", i, j); + if (i == j) + for (l = 0; l < 1023; l++) + printf("0, "); + else { + for (p = 0; p < 32; p++) + for (q = 0; q < 32; q++) { + /* What are a, b such that a ^ + * b = p; and qfor[(28-i)][a + * ^ rf_rn[i+1]] ^ + * qfor[(28-j)][b ^ + * rf_rn[j+1]] = q. Solve by + * guessing a. Then testing. */ + for (a = 0; a < 32; a++) { + b = a ^ p; + if ((rf_qfor[28 - i][a ^ k[i + 1]] ^ rf_qfor[28 - j][b ^ k[j + 1]]) == q) + break; + } + if (a == 32) + printf("unable to solve %d %d %d %d\n", i, j, p, q); + printf("%d,", a); + } + } + printf("},\n"); + } + } + printf("};\n"); + printf("\n#endif /* (RF_INCLUDE_PQ > 0) || (RF_INCLUDE_RAID6 > 0) */\n\n"); + printf("#endif /* !KERNEL && NO_PQ */\n"); + printf("#endif /* !_RF__RF_INVERTQ_H_ */\n"); + exit(0); +} diff --git a/sys/dev/raidframe/rf_hist.h b/sys/dev/raidframe/rf_hist.h new file mode 100644 index 0000000..b8b12c3 --- /dev/null +++ b/sys/dev/raidframe/rf_hist.h @@ -0,0 +1,57 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_hist.h,v 1.3 1999/02/05 00:06:12 oster Exp $ */ +/* + * rf_hist.h + * + * Histgram operations for RAIDframe stats + */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Jim Zelenka + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +#ifndef _RF__RF_HIST_H_ +#define _RF__RF_HIST_H_ + +#include <dev/raidframe/rf_types.h> + +#define RF_HIST_RESOLUTION 5 +#define RF_HIST_MIN_VAL 0 +#define RF_HIST_MAX_VAL 1000 +#define RF_HIST_RANGE (RF_HIST_MAX_VAL - RF_HIST_MIN_VAL) +#define RF_HIST_NUM_BUCKETS (RF_HIST_RANGE / RF_HIST_RESOLUTION + 1) + +typedef RF_uint32 RF_Hist_t; + +#define RF_HIST_ADD(_hist_,_val_) { \ + RF_Hist_t val; \ + val = ((RF_Hist_t)(_val_)) / 1000; \ + if (val >= RF_HIST_MAX_VAL) \ + _hist_[RF_HIST_NUM_BUCKETS-1]++; \ + else \ + _hist_[(val - RF_HIST_MIN_VAL) / RF_HIST_RESOLUTION]++; \ +} + +#endif /* !_RF__RF_HIST_H_ */ diff --git a/sys/dev/raidframe/rf_interdecluster.c b/sys/dev/raidframe/rf_interdecluster.c new file mode 100644 index 0000000..c8bbff5 --- /dev/null +++ b/sys/dev/raidframe/rf_interdecluster.c @@ -0,0 +1,283 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_interdecluster.c,v 1.5 2001/01/26 05:09:13 oster Exp $ */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Khalil Amiri + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +/************************************************************ + * + * rf_interdecluster.c -- implements interleaved declustering + * + ************************************************************/ + +#include <dev/raidframe/rf_archs.h> + +#if RF_INCLUDE_INTERDECLUSTER > 0 + +#include <dev/raidframe/rf_types.h> +#include <dev/raidframe/rf_raid.h> +#include <dev/raidframe/rf_interdecluster.h> +#include <dev/raidframe/rf_dag.h> +#include <dev/raidframe/rf_dagutils.h> +#include <dev/raidframe/rf_dagfuncs.h> +#include <dev/raidframe/rf_general.h> +#include <dev/raidframe/rf_utils.h> +#include <dev/raidframe/rf_dagffrd.h> +#include <dev/raidframe/rf_dagdegrd.h> +#include <dev/raidframe/rf_dagffwr.h> +#include <dev/raidframe/rf_dagdegwr.h> + +typedef struct RF_InterdeclusterConfigInfo_s { + RF_RowCol_t **stripeIdentifier; /* filled in at config time and used + * by IdentifyStripe */ + RF_StripeCount_t numSparingRegions; + RF_StripeCount_t stripeUnitsPerSparingRegion; + RF_SectorNum_t mirrorStripeOffset; +} RF_InterdeclusterConfigInfo_t; + +int +rf_ConfigureInterDecluster( + RF_ShutdownList_t ** listp, + RF_Raid_t * raidPtr, + RF_Config_t * cfgPtr) +{ + RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; + RF_StripeCount_t num_used_stripeUnitsPerDisk; + RF_InterdeclusterConfigInfo_t *info; + RF_RowCol_t i, tmp, SUs_per_region; + + /* create an Interleaved Declustering configuration structure */ + RF_MallocAndAdd(info, sizeof(RF_InterdeclusterConfigInfo_t), (RF_InterdeclusterConfigInfo_t *), + raidPtr->cleanupList); + if (info == NULL) + return (ENOMEM); + layoutPtr->layoutSpecificInfo = (void *) info; + + /* fill in the config structure. */ + SUs_per_region = raidPtr->numCol * (raidPtr->numCol - 1); + info->stripeIdentifier = rf_make_2d_array(SUs_per_region, 2, raidPtr->cleanupList); + if (info->stripeIdentifier == NULL) + return (ENOMEM); + for (i = 0; i < SUs_per_region; i++) { + info->stripeIdentifier[i][0] = i / (raidPtr->numCol - 1); + tmp = i / raidPtr->numCol; + info->stripeIdentifier[i][1] = (i + 1 + tmp) % raidPtr->numCol; + } + + /* no spare tables */ + RF_ASSERT(raidPtr->numRow == 1); + + /* fill in the remaining layout parameters */ + + /* total number of stripes should a multiple of 2*numCol: Each sparing + * region consists of 2*numCol stripes: n-1 primary copy, n-1 + * secondary copy and 2 for spare .. */ + num_used_stripeUnitsPerDisk = layoutPtr->stripeUnitsPerDisk - (layoutPtr->stripeUnitsPerDisk % + (2 * raidPtr->numCol)); + info->numSparingRegions = num_used_stripeUnitsPerDisk / (2 * raidPtr->numCol); + /* this is in fact the number of stripe units (that are primary data + * copies) in the sparing region */ + info->stripeUnitsPerSparingRegion = raidPtr->numCol * (raidPtr->numCol - 1); + info->mirrorStripeOffset = info->numSparingRegions * (raidPtr->numCol + 1); + layoutPtr->numStripe = info->numSparingRegions * info->stripeUnitsPerSparingRegion; + layoutPtr->bytesPerStripeUnit = layoutPtr->sectorsPerStripeUnit << raidPtr->logBytesPerSector; + layoutPtr->numDataCol = 1; + layoutPtr->dataSectorsPerStripe = layoutPtr->numDataCol * layoutPtr->sectorsPerStripeUnit; + layoutPtr->numParityCol = 1; + + layoutPtr->dataStripeUnitsPerDisk = num_used_stripeUnitsPerDisk; + + raidPtr->sectorsPerDisk = + num_used_stripeUnitsPerDisk * layoutPtr->sectorsPerStripeUnit; + + raidPtr->totalSectors = + (layoutPtr->numStripe) * layoutPtr->sectorsPerStripeUnit; + + layoutPtr->stripeUnitsPerDisk = raidPtr->sectorsPerDisk / layoutPtr->sectorsPerStripeUnit; + + return (0); +} + +int +rf_GetDefaultNumFloatingReconBuffersInterDecluster(RF_Raid_t * raidPtr) +{ + return (30); +} + +RF_HeadSepLimit_t +rf_GetDefaultHeadSepLimitInterDecluster(RF_Raid_t * raidPtr) +{ + return (raidPtr->sectorsPerDisk); +} + +RF_ReconUnitCount_t +rf_GetNumSpareRUsInterDecluster( + RF_Raid_t * raidPtr) +{ + RF_InterdeclusterConfigInfo_t *info = (RF_InterdeclusterConfigInfo_t *) raidPtr->Layout.layoutSpecificInfo; + + return (2 * ((RF_ReconUnitCount_t) info->numSparingRegions)); + /* the layout uses two stripe units per disk as spare within each + * sparing region */ +} +/* Maps to the primary copy of the data, i.e. the first mirror pair */ +void +rf_MapSectorInterDecluster( + RF_Raid_t * raidPtr, + RF_RaidAddr_t raidSector, + RF_RowCol_t * row, + RF_RowCol_t * col, + RF_SectorNum_t * diskSector, + int remap) +{ + RF_InterdeclusterConfigInfo_t *info = (RF_InterdeclusterConfigInfo_t *) raidPtr->Layout.layoutSpecificInfo; + RF_StripeNum_t SUID = raidSector / raidPtr->Layout.sectorsPerStripeUnit; + RF_StripeNum_t su_offset_into_disk, mirror_su_offset_into_disk; + RF_StripeNum_t sparing_region_id, index_within_region; + int col_before_remap; + + *row = 0; + sparing_region_id = SUID / info->stripeUnitsPerSparingRegion; + index_within_region = SUID % info->stripeUnitsPerSparingRegion; + su_offset_into_disk = index_within_region % (raidPtr->numCol - 1); + mirror_su_offset_into_disk = index_within_region / raidPtr->numCol; + col_before_remap = index_within_region / (raidPtr->numCol - 1); + + if (!remap) { + *col = col_before_remap;; + *diskSector = (su_offset_into_disk + ((raidPtr->numCol - 1) * sparing_region_id)) * + raidPtr->Layout.sectorsPerStripeUnit; + *diskSector += (raidSector % raidPtr->Layout.sectorsPerStripeUnit); + } else { + /* remap sector to spare space... */ + *diskSector = sparing_region_id * (raidPtr->numCol + 1) * raidPtr->Layout.sectorsPerStripeUnit; + *diskSector += (raidPtr->numCol - 1) * raidPtr->Layout.sectorsPerStripeUnit; + *diskSector += (raidSector % raidPtr->Layout.sectorsPerStripeUnit); + *col = (index_within_region + 1 + mirror_su_offset_into_disk) % raidPtr->numCol; + *col = (*col + 1) % raidPtr->numCol; + if (*col == col_before_remap) + *col = (*col + 1) % raidPtr->numCol; + } +} +/* Maps to the second copy of the mirror pair. */ +void +rf_MapParityInterDecluster( + RF_Raid_t * raidPtr, + RF_RaidAddr_t raidSector, + RF_RowCol_t * row, + RF_RowCol_t * col, + RF_SectorNum_t * diskSector, + int remap) +{ + RF_InterdeclusterConfigInfo_t *info = (RF_InterdeclusterConfigInfo_t *) raidPtr->Layout.layoutSpecificInfo; + RF_StripeNum_t sparing_region_id, index_within_region, mirror_su_offset_into_disk; + RF_StripeNum_t SUID = raidSector / raidPtr->Layout.sectorsPerStripeUnit; + int col_before_remap; + + sparing_region_id = SUID / info->stripeUnitsPerSparingRegion; + index_within_region = SUID % info->stripeUnitsPerSparingRegion; + mirror_su_offset_into_disk = index_within_region / raidPtr->numCol; + col_before_remap = (index_within_region + 1 + mirror_su_offset_into_disk) % raidPtr->numCol; + + *row = 0; + if (!remap) { + *col = col_before_remap; + *diskSector = info->mirrorStripeOffset * raidPtr->Layout.sectorsPerStripeUnit; + *diskSector += sparing_region_id * (raidPtr->numCol - 1) * raidPtr->Layout.sectorsPerStripeUnit; + *diskSector += mirror_su_offset_into_disk * raidPtr->Layout.sectorsPerStripeUnit; + *diskSector += (raidSector % raidPtr->Layout.sectorsPerStripeUnit); + } else { + /* remap parity to spare space ... */ + *diskSector = sparing_region_id * (raidPtr->numCol + 1) * raidPtr->Layout.sectorsPerStripeUnit; + *diskSector += (raidPtr->numCol) * raidPtr->Layout.sectorsPerStripeUnit; + *diskSector += (raidSector % raidPtr->Layout.sectorsPerStripeUnit); + *col = index_within_region / (raidPtr->numCol - 1); + *col = (*col + 1) % raidPtr->numCol; + if (*col == col_before_remap) + *col = (*col + 1) % raidPtr->numCol; + } +} + +void +rf_IdentifyStripeInterDecluster( + RF_Raid_t * raidPtr, + RF_RaidAddr_t addr, + RF_RowCol_t ** diskids, + RF_RowCol_t * outRow) +{ + RF_InterdeclusterConfigInfo_t *info = (RF_InterdeclusterConfigInfo_t *) raidPtr->Layout.layoutSpecificInfo; + RF_StripeNum_t SUID; + + SUID = addr / raidPtr->Layout.sectorsPerStripeUnit; + SUID = SUID % info->stripeUnitsPerSparingRegion; + + *outRow = 0; + *diskids = info->stripeIdentifier[SUID]; +} + +void +rf_MapSIDToPSIDInterDecluster( + RF_RaidLayout_t * layoutPtr, + RF_StripeNum_t stripeID, + RF_StripeNum_t * psID, + RF_ReconUnitNum_t * which_ru) +{ + *which_ru = 0; + *psID = stripeID; +} +/****************************************************************************** + * select a graph to perform a single-stripe access + * + * Parameters: raidPtr - description of the physical array + * type - type of operation (read or write) requested + * asmap - logical & physical addresses for this access + * createFunc - name of function to use to create the graph + *****************************************************************************/ + +void +rf_RAIDIDagSelect( + RF_Raid_t * raidPtr, + RF_IoType_t type, + RF_AccessStripeMap_t * asmap, + RF_VoidFuncPtr * createFunc) +{ + RF_ASSERT(RF_IO_IS_R_OR_W(type)); + + if (asmap->numDataFailed + asmap->numParityFailed > 1) { + RF_ERRORMSG("Multiple disks failed in a single group! Aborting I/O operation.\n"); + *createFunc = NULL; + return; + } + *createFunc = (type == RF_IO_TYPE_READ) ? (RF_VoidFuncPtr) rf_CreateFaultFreeReadDAG : (RF_VoidFuncPtr) rf_CreateRaidOneWriteDAG; + if (type == RF_IO_TYPE_READ) { + if (asmap->numDataFailed == 0) + *createFunc = (RF_VoidFuncPtr) rf_CreateMirrorPartitionReadDAG; + else + *createFunc = (RF_VoidFuncPtr) rf_CreateRaidOneDegradedReadDAG; + } else + *createFunc = (RF_VoidFuncPtr) rf_CreateRaidOneWriteDAG; +} +#endif /* RF_INCLUDE_INTERDECLUSTER > 0 */ diff --git a/sys/dev/raidframe/rf_interdecluster.h b/sys/dev/raidframe/rf_interdecluster.h new file mode 100644 index 0000000..9bf3825 --- /dev/null +++ b/sys/dev/raidframe/rf_interdecluster.h @@ -0,0 +1,60 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_interdecluster.h,v 1.3 1999/02/05 00:06:12 oster Exp $ */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Khalil Amiri + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +/* rf_interdecluster.h + * header file for Interleaved Declustering + */ + +#ifndef _RF__RF_INTERDECLUSTER_H_ +#define _RF__RF_INTERDECLUSTER_H_ + +int +rf_ConfigureInterDecluster(RF_ShutdownList_t ** listp, RF_Raid_t * raidPtr, + RF_Config_t * cfgPtr); +int rf_GetDefaultNumFloatingReconBuffersInterDecluster(RF_Raid_t * raidPtr); +RF_HeadSepLimit_t rf_GetDefaultHeadSepLimitInterDecluster(RF_Raid_t * raidPtr); +RF_ReconUnitCount_t rf_GetNumSpareRUsInterDecluster(RF_Raid_t * raidPtr); +void +rf_MapSectorInterDecluster(RF_Raid_t * raidPtr, RF_RaidAddr_t raidSector, + RF_RowCol_t * row, RF_RowCol_t * col, RF_SectorNum_t * diskSector, int remap); +void +rf_MapParityInterDecluster(RF_Raid_t * raidPtr, RF_RaidAddr_t raidSector, + RF_RowCol_t * row, RF_RowCol_t * col, RF_SectorNum_t * diskSector, int remap); +void +rf_IdentifyStripeInterDecluster(RF_Raid_t * raidPtr, RF_RaidAddr_t addr, + RF_RowCol_t ** diskids, RF_RowCol_t * outRow); +void +rf_MapSIDToPSIDInterDecluster(RF_RaidLayout_t * layoutPtr, + RF_StripeNum_t stripeID, RF_StripeNum_t * psID, + RF_ReconUnitNum_t * which_ru); +void +rf_RAIDIDagSelect(RF_Raid_t * raidPtr, RF_IoType_t type, + RF_AccessStripeMap_t * asmap, RF_VoidFuncPtr * createFunc); + +#endif /* !_RF__RF_INTERDECLUSTER_H_ */ diff --git a/sys/dev/raidframe/rf_invertq.c b/sys/dev/raidframe/rf_invertq.c new file mode 100644 index 0000000..fa4f8d7 --- /dev/null +++ b/sys/dev/raidframe/rf_invertq.c @@ -0,0 +1,32 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_invertq.c,v 1.3 1999/02/05 00:06:12 oster Exp $ */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Daniel Stodolsky + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +#include <dev/raidframe/rf_archs.h> +#include <dev/raidframe/rf_pqdeg.h> +#include <dev/raidframe/rf_invertq.h> diff --git a/sys/dev/raidframe/rf_invertq.h b/sys/dev/raidframe/rf_invertq.h new file mode 100644 index 0000000..fde2cae --- /dev/null +++ b/sys/dev/raidframe/rf_invertq.h @@ -0,0 +1,64 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_invertq.h,v 1.3 1999/02/05 00:06:12 oster Exp $ */ +/* + * rf_invertq.h + */ +/* + * This is normally a generated file. Not so for NetBSD. + */ + +#ifndef _RF__RF_INVERTQ_H_ +#define _RF__RF_INVERTQ_H_ + +/* + * rf_geniq.c must include rf_archs.h before including + * this file (to get VPATH magic right with the way we + * generate this file in kernel trees) + */ +/* #include <dev/raidframe/rf_archs.h> */ + +#if (RF_INCLUDE_PQ > 0) || (RF_INCLUDE_RAID6 > 0) + +#define RF_Q_COLS 32 +RF_ua32_t rf_rn = { +1, 2, 4, 8, 16, 5, 10, 20, 13, 26, 17, 7, 14, 28, 29, 31, 27, 19, 3, 6, 12, 24, 21, 15, 30, 25, 23, 11, 22, 9, 18, 1,}; +RF_ua32_t rf_qfor[32] = { + /* i = 0 */ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,}, + /* i = 1 */ {0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 5, 7, 1, 3, 13, 15, 9, 11, 21, 23, 17, 19, 29, 31, 25, 27,}, + /* i = 2 */ {0, 4, 8, 12, 16, 20, 24, 28, 5, 1, 13, 9, 21, 17, 29, 25, 10, 14, 2, 6, 26, 30, 18, 22, 15, 11, 7, 3, 31, 27, 23, 19,}, + /* i = 3 */ {0, 8, 16, 24, 5, 13, 21, 29, 10, 2, 26, 18, 15, 7, 31, 23, 20, 28, 4, 12, 17, 25, 1, 9, 30, 22, 14, 6, 27, 19, 11, 3,}, + /* i = 4 */ {0, 16, 5, 21, 10, 26, 15, 31, 20, 4, 17, 1, 30, 14, 27, 11, 13, 29, 8, 24, 7, 23, 2, 18, 25, 9, 28, 12, 19, 3, 22, 6,}, + /* i = 5 */ {0, 5, 10, 15, 20, 17, 30, 27, 13, 8, 7, 2, 25, 28, 19, 22, 26, 31, 16, 21, 14, 11, 4, 1, 23, 18, 29, 24, 3, 6, 9, 12,}, + /* i = 6 */ {0, 10, 20, 30, 13, 7, 25, 19, 26, 16, 14, 4, 23, 29, 3, 9, 17, 27, 5, 15, 28, 22, 8, 2, 11, 1, 31, 21, 6, 12, 18, 24,}, + /* i = 7 */ {0, 20, 13, 25, 26, 14, 23, 3, 17, 5, 28, 8, 11, 31, 6, 18, 7, 19, 10, 30, 29, 9, 16, 4, 22, 2, 27, 15, 12, 24, 1, 21,}, + /* i = 8 */ {0, 13, 26, 23, 17, 28, 11, 6, 7, 10, 29, 16, 22, 27, 12, 1, 14, 3, 20, 25, 31, 18, 5, 8, 9, 4, 19, 30, 24, 21, 2, 15,}, + /* i = 9 */ {0, 26, 17, 11, 7, 29, 22, 12, 14, 20, 31, 5, 9, 19, 24, 2, 28, 6, 13, 23, 27, 1, 10, 16, 18, 8, 3, 25, 21, 15, 4, 30,}, + /* i = 10 */ {0, 17, 7, 22, 14, 31, 9, 24, 28, 13, 27, 10, 18, 3, 21, 4, 29, 12, 26, 11, 19, 2, 20, 5, 1, 16, 6, 23, 15, 30, 8, 25,}, + /* i = 11 */ {0, 7, 14, 9, 28, 27, 18, 21, 29, 26, 19, 20, 1, 6, 15, 8, 31, 24, 17, 22, 3, 4, 13, 10, 2, 5, 12, 11, 30, 25, 16, 23,}, + /* i = 12 */ {0, 14, 28, 18, 29, 19, 1, 15, 31, 17, 3, 13, 2, 12, 30, 16, 27, 21, 7, 9, 6, 8, 26, 20, 4, 10, 24, 22, 25, 23, 5, 11,}, + /* i = 13 */ {0, 28, 29, 1, 31, 3, 2, 30, 27, 7, 6, 26, 4, 24, 25, 5, 19, 15, 14, 18, 12, 16, 17, 13, 8, 20, 21, 9, 23, 11, 10, 22,}, + /* i = 14 */ {0, 29, 31, 2, 27, 6, 4, 25, 19, 14, 12, 17, 8, 21, 23, 10, 3, 30, 28, 1, 24, 5, 7, 26, 16, 13, 15, 18, 11, 22, 20, 9,}, + /* i = 15 */ {0, 31, 27, 4, 19, 12, 8, 23, 3, 28, 24, 7, 16, 15, 11, 20, 6, 25, 29, 2, 21, 10, 14, 17, 5, 26, 30, 1, 22, 9, 13, 18,}, + /* i = 16 */ {0, 27, 19, 8, 3, 24, 16, 11, 6, 29, 21, 14, 5, 30, 22, 13, 12, 23, 31, 4, 15, 20, 28, 7, 10, 17, 25, 2, 9, 18, 26, 1,}, + /* i = 17 */ {0, 19, 3, 16, 6, 21, 5, 22, 12, 31, 15, 28, 10, 25, 9, 26, 24, 11, 27, 8, 30, 13, 29, 14, 20, 7, 23, 4, 18, 1, 17, 2,}, + /* i = 18 */ {0, 3, 6, 5, 12, 15, 10, 9, 24, 27, 30, 29, 20, 23, 18, 17, 21, 22, 19, 16, 25, 26, 31, 28, 13, 14, 11, 8, 1, 2, 7, 4,}, + /* i = 19 */ {0, 6, 12, 10, 24, 30, 20, 18, 21, 19, 25, 31, 13, 11, 1, 7, 15, 9, 3, 5, 23, 17, 27, 29, 26, 28, 22, 16, 2, 4, 14, 8,}, + /* i = 20 */ {0, 12, 24, 20, 21, 25, 13, 1, 15, 3, 23, 27, 26, 22, 2, 14, 30, 18, 6, 10, 11, 7, 19, 31, 17, 29, 9, 5, 4, 8, 28, 16,}, + /* i = 21 */ {0, 24, 21, 13, 15, 23, 26, 2, 30, 6, 11, 19, 17, 9, 4, 28, 25, 1, 12, 20, 22, 14, 3, 27, 7, 31, 18, 10, 8, 16, 29, 5,}, + /* i = 22 */ {0, 21, 15, 26, 30, 11, 17, 4, 25, 12, 22, 3, 7, 18, 8, 29, 23, 2, 24, 13, 9, 28, 6, 19, 14, 27, 1, 20, 16, 5, 31, 10,}, + /* i = 23 */ {0, 15, 30, 17, 25, 22, 7, 8, 23, 24, 9, 6, 14, 1, 16, 31, 11, 4, 21, 26, 18, 29, 12, 3, 28, 19, 2, 13, 5, 10, 27, 20,}, + /* i = 24 */ {0, 30, 25, 7, 23, 9, 14, 16, 11, 21, 18, 12, 28, 2, 5, 27, 22, 8, 15, 17, 1, 31, 24, 6, 29, 3, 4, 26, 10, 20, 19, 13,}, + /* i = 25 */ {0, 25, 23, 14, 11, 18, 28, 5, 22, 15, 1, 24, 29, 4, 10, 19, 9, 16, 30, 7, 2, 27, 21, 12, 31, 6, 8, 17, 20, 13, 3, 26,}, + /* i = 26 */ {0, 23, 11, 28, 22, 1, 29, 10, 9, 30, 2, 21, 31, 8, 20, 3, 18, 5, 25, 14, 4, 19, 15, 24, 27, 12, 16, 7, 13, 26, 6, 17,}, + /* i = 27 */ {0, 11, 22, 29, 9, 2, 31, 20, 18, 25, 4, 15, 27, 16, 13, 6, 1, 10, 23, 28, 8, 3, 30, 21, 19, 24, 5, 14, 26, 17, 12, 7,}, + /* i = 28 */ {0, 22, 9, 31, 18, 4, 27, 13, 1, 23, 8, 30, 19, 5, 26, 12, 2, 20, 11, 29, 16, 6, 25, 15, 3, 21, 10, 28, 17, 7, 24, 14,}, + /* i = 29 */ {0, 9, 18, 27, 1, 8, 19, 26, 2, 11, 16, 25, 3, 10, 17, 24, 4, 13, 22, 31, 5, 12, 23, 30, 6, 15, 20, 29, 7, 14, 21, 28,}, + /* i = 30 */ {0, 18, 1, 19, 2, 16, 3, 17, 4, 22, 5, 23, 6, 20, 7, 21, 8, 26, 9, 27, 10, 24, 11, 25, 12, 30, 13, 31, 14, 28, 15, 29,}, + /* i = 31 */ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,}, +}; +#define RF_Q_DATA_COL(col_num) rf_rn[col_num],rf_qfor[28-(col_num)] +RF_ua1024_t rf_qinv[1]; /* don't compile monster table into kernel */ + +#endif /* (RF_INCLUDE_PQ > 0) || (RF_INCLUDE_RAID6 > + * 0) */ +#endif /* !_RF__RF_INVERTQ_H_ */ diff --git a/sys/dev/raidframe/rf_kintf.h b/sys/dev/raidframe/rf_kintf.h new file mode 100644 index 0000000..ae2697b --- /dev/null +++ b/sys/dev/raidframe/rf_kintf.h @@ -0,0 +1,82 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_kintf.h,v 1.15 2000/10/20 02:24:45 oster Exp $ */ +/* + * rf_kintf.h + * + * RAIDframe exported kernel interface + */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Jim Zelenka + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +#ifndef _RF__RF_KINTF_H_ +#define _RF__RF_KINTF_H_ + +#include <dev/raidframe/rf_types.h> + +#if defined(__NetBSD__) +#define RF_LTSLEEP(cond, pri, text, time, mutex) \ + ltsleep(cond, pri, text, time, mutex) +#elif defined(__FreeBSD__) +#if __FreeBSD_version > 500005 +#define RF_LTSLEEP(cond, pri, text, time, mutex) \ + msleep(cond, mutex, pri, text, time); +#else +static __inline int +RF_LTSLEEP(void *cond, int pri, const char *text, int time, struct simplelock *mutex) +{ + int ret; + if (mutex != NULL) + simple_unlock(mutex); + ret = tsleep(cond, pri, text, time); + if (mutex != NULL) + simple_lock(mutex); + return (ret); +} +#endif +#endif + +int rf_GetSpareTableFromDaemon(RF_SparetWait_t * req); + +void raidstart(RF_Raid_t * raidPtr); +int rf_DispatchKernelIO(RF_DiskQueue_t * queue, RF_DiskQueueData_t * req); + +int raidwrite_component_label(dev_t, struct vnode *, RF_ComponentLabel_t *); +int raidread_component_label(dev_t, struct vnode *, RF_ComponentLabel_t *); + +#define RF_NORMAL_COMPONENT_UPDATE 0 +#define RF_FINAL_COMPONENT_UPDATE 1 +void rf_update_component_labels(RF_Raid_t *, int); +int raidlookup(char *, RF_Thread_t, struct vnode **); +int raidmarkclean(dev_t dev, struct vnode *b_vp, int); +int raidmarkdirty(dev_t dev, struct vnode *b_vp, int); +void raid_init_component_label(RF_Raid_t *, RF_ComponentLabel_t *); +void rf_print_component_label(RF_ComponentLabel_t *); +void rf_UnconfigureVnodes( RF_Raid_t * ); +void rf_close_component( RF_Raid_t *, struct vnode *, int); +void rf_disk_unbusy(RF_RaidAccessDesc_t *); +int raid_getcomponentsize(RF_Raid_t *, RF_RowCol_t, RF_RowCol_t); +#endif /* _RF__RF_KINTF_H_ */ diff --git a/sys/dev/raidframe/rf_layout.c b/sys/dev/raidframe/rf_layout.c new file mode 100644 index 0000000..539db67 --- /dev/null +++ b/sys/dev/raidframe/rf_layout.c @@ -0,0 +1,490 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_layout.c,v 1.9 2001/01/27 19:34:43 oster Exp $ */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Mark Holland + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +/* rf_layout.c -- driver code dealing with layout and mapping issues + */ + +#include <dev/raidframe/rf_types.h> +#include <dev/raidframe/rf_archs.h> +#include <dev/raidframe/rf_raid.h> +#include <dev/raidframe/rf_configure.h> +#include <dev/raidframe/rf_dag.h> +#include <dev/raidframe/rf_desc.h> +#include <dev/raidframe/rf_decluster.h> +#include <dev/raidframe/rf_pq.h> +#include <dev/raidframe/rf_declusterPQ.h> +#include <dev/raidframe/rf_raid0.h> +#include <dev/raidframe/rf_raid1.h> +#include <dev/raidframe/rf_raid4.h> +#include <dev/raidframe/rf_raid5.h> +#include <dev/raidframe/rf_states.h> +#if RF_INCLUDE_RAID5_RS > 0 +#include <dev/raidframe/rf_raid5_rotatedspare.h> +#endif /* RF_INCLUDE_RAID5_RS > 0 */ +#if RF_INCLUDE_CHAINDECLUSTER > 0 +#include <dev/raidframe/rf_chaindecluster.h> +#endif /* RF_INCLUDE_CHAINDECLUSTER > 0 */ +#if RF_INCLUDE_INTERDECLUSTER > 0 +#include <dev/raidframe/rf_interdecluster.h> +#endif /* RF_INCLUDE_INTERDECLUSTER > 0 */ +#if RF_INCLUDE_PARITYLOGGING > 0 +#include <dev/raidframe/rf_paritylogging.h> +#endif /* RF_INCLUDE_PARITYLOGGING > 0 */ +#if RF_INCLUDE_EVENODD > 0 +#include <dev/raidframe/rf_evenodd.h> +#endif /* RF_INCLUDE_EVENODD > 0 */ +#include <dev/raidframe/rf_general.h> +#include <dev/raidframe/rf_driver.h> +#include <dev/raidframe/rf_parityscan.h> +#include <dev/raidframe/rf_reconbuffer.h> +#include <dev/raidframe/rf_reconutil.h> + +/*********************************************************************** + * + * the layout switch defines all the layouts that are supported. + * fields are: layout ID, init routine, shutdown routine, map + * sector, map parity, identify stripe, dag selection, map stripeid + * to parity stripe id (optional), num faults tolerated, special + * flags. + * + ***********************************************************************/ + +static RF_AccessState_t DefaultStates[] = {rf_QuiesceState, + rf_IncrAccessesCountState, + rf_MapState, + rf_LockState, + rf_CreateDAGState, + rf_ExecuteDAGState, + rf_ProcessDAGState, + rf_DecrAccessesCountState, + rf_CleanupState, + rf_LastState}; + +#define RF_NU(a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p) a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p + +/* Note that if you add any new RAID types to this list, that you must + also update the mapsw[] table in the raidctl sources */ + +static RF_LayoutSW_t mapsw[] = { +#if RF_INCLUDE_PARITY_DECLUSTERING > 0 + /* parity declustering */ + {'T', "Parity declustering", + RF_NU( + rf_ConfigureDeclustered, + rf_MapSectorDeclustered, rf_MapParityDeclustered, NULL, + rf_IdentifyStripeDeclustered, + rf_RaidFiveDagSelect, + rf_MapSIDToPSIDDeclustered, + rf_GetDefaultHeadSepLimitDeclustered, + rf_GetDefaultNumFloatingReconBuffersDeclustered, + NULL, NULL, + rf_SubmitReconBufferBasic, + rf_VerifyParityBasic, + 1, + DefaultStates, + 0) + }, +#endif + +#if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0 + /* parity declustering with distributed sparing */ + {'D', "Distributed sparing parity declustering", + RF_NU( + rf_ConfigureDeclusteredDS, + rf_MapSectorDeclustered, rf_MapParityDeclustered, NULL, + rf_IdentifyStripeDeclustered, + rf_RaidFiveDagSelect, + rf_MapSIDToPSIDDeclustered, + rf_GetDefaultHeadSepLimitDeclustered, + rf_GetDefaultNumFloatingReconBuffersDeclustered, + rf_GetNumSpareRUsDeclustered, rf_InstallSpareTable, + rf_SubmitReconBufferBasic, + rf_VerifyParityBasic, + 1, + DefaultStates, + RF_DISTRIBUTE_SPARE | RF_BD_DECLUSTERED) + }, +#endif + +#if RF_INCLUDE_DECL_PQ > 0 + /* declustered P+Q */ + {'Q', "Declustered P+Q", + RF_NU( + rf_ConfigureDeclusteredPQ, + rf_MapSectorDeclusteredPQ, rf_MapParityDeclusteredPQ, rf_MapQDeclusteredPQ, + rf_IdentifyStripeDeclusteredPQ, + rf_PQDagSelect, + rf_MapSIDToPSIDDeclustered, + rf_GetDefaultHeadSepLimitDeclustered, + rf_GetDefaultNumFloatingReconBuffersPQ, + NULL, NULL, + NULL, + rf_VerifyParityBasic, + 2, + DefaultStates, + 0) + }, +#endif /* RF_INCLUDE_DECL_PQ > 0 */ + +#if RF_INCLUDE_RAID5_RS > 0 + /* RAID 5 with rotated sparing */ + {'R', "RAID Level 5 rotated sparing", + RF_NU( + rf_ConfigureRAID5_RS, + rf_MapSectorRAID5_RS, rf_MapParityRAID5_RS, NULL, + rf_IdentifyStripeRAID5_RS, + rf_RaidFiveDagSelect, + rf_MapSIDToPSIDRAID5_RS, + rf_GetDefaultHeadSepLimitRAID5, + rf_GetDefaultNumFloatingReconBuffersRAID5, + rf_GetNumSpareRUsRAID5_RS, NULL, + rf_SubmitReconBufferBasic, + rf_VerifyParityBasic, + 1, + DefaultStates, + RF_DISTRIBUTE_SPARE) + }, +#endif /* RF_INCLUDE_RAID5_RS > 0 */ + +#if RF_INCLUDE_CHAINDECLUSTER > 0 + /* Chained Declustering */ + {'C', "Chained Declustering", + RF_NU( + rf_ConfigureChainDecluster, + rf_MapSectorChainDecluster, rf_MapParityChainDecluster, NULL, + rf_IdentifyStripeChainDecluster, + rf_RAIDCDagSelect, + rf_MapSIDToPSIDChainDecluster, + NULL, + NULL, + rf_GetNumSpareRUsChainDecluster, NULL, + rf_SubmitReconBufferBasic, + rf_VerifyParityBasic, + 1, + DefaultStates, + 0) + }, +#endif /* RF_INCLUDE_CHAINDECLUSTER > 0 */ + +#if RF_INCLUDE_INTERDECLUSTER > 0 + /* Interleaved Declustering */ + {'I', "Interleaved Declustering", + RF_NU( + rf_ConfigureInterDecluster, + rf_MapSectorInterDecluster, rf_MapParityInterDecluster, NULL, + rf_IdentifyStripeInterDecluster, + rf_RAIDIDagSelect, + rf_MapSIDToPSIDInterDecluster, + rf_GetDefaultHeadSepLimitInterDecluster, + rf_GetDefaultNumFloatingReconBuffersInterDecluster, + rf_GetNumSpareRUsInterDecluster, NULL, + rf_SubmitReconBufferBasic, + rf_VerifyParityBasic, + 1, + DefaultStates, + RF_DISTRIBUTE_SPARE) + }, +#endif /* RF_INCLUDE_INTERDECLUSTER > 0 */ + +#if RF_INCLUDE_RAID0 > 0 + /* RAID level 0 */ + {'0', "RAID Level 0", + RF_NU( + rf_ConfigureRAID0, + rf_MapSectorRAID0, rf_MapParityRAID0, NULL, + rf_IdentifyStripeRAID0, + rf_RAID0DagSelect, + rf_MapSIDToPSIDRAID0, + NULL, + NULL, + NULL, NULL, + NULL, + rf_VerifyParityRAID0, + 0, + DefaultStates, + 0) + }, +#endif /* RF_INCLUDE_RAID0 > 0 */ + +#if RF_INCLUDE_RAID1 > 0 + /* RAID level 1 */ + {'1', "RAID Level 1", + RF_NU( + rf_ConfigureRAID1, + rf_MapSectorRAID1, rf_MapParityRAID1, NULL, + rf_IdentifyStripeRAID1, + rf_RAID1DagSelect, + rf_MapSIDToPSIDRAID1, + NULL, + NULL, + NULL, NULL, + rf_SubmitReconBufferRAID1, + rf_VerifyParityRAID1, + 1, + DefaultStates, + 0) + }, +#endif /* RF_INCLUDE_RAID1 > 0 */ + +#if RF_INCLUDE_RAID4 > 0 + /* RAID level 4 */ + {'4', "RAID Level 4", + RF_NU( + rf_ConfigureRAID4, + rf_MapSectorRAID4, rf_MapParityRAID4, NULL, + rf_IdentifyStripeRAID4, + rf_RaidFiveDagSelect, + rf_MapSIDToPSIDRAID4, + rf_GetDefaultHeadSepLimitRAID4, + rf_GetDefaultNumFloatingReconBuffersRAID4, + NULL, NULL, + rf_SubmitReconBufferBasic, + rf_VerifyParityBasic, + 1, + DefaultStates, + 0) + }, +#endif /* RF_INCLUDE_RAID4 > 0 */ + +#if RF_INCLUDE_RAID5 > 0 + /* RAID level 5 */ + {'5', "RAID Level 5", + RF_NU( + rf_ConfigureRAID5, + rf_MapSectorRAID5, rf_MapParityRAID5, NULL, + rf_IdentifyStripeRAID5, + rf_RaidFiveDagSelect, + rf_MapSIDToPSIDRAID5, + rf_GetDefaultHeadSepLimitRAID5, + rf_GetDefaultNumFloatingReconBuffersRAID5, + NULL, NULL, + rf_SubmitReconBufferBasic, + rf_VerifyParityBasic, + 1, + DefaultStates, + 0) + }, +#endif /* RF_INCLUDE_RAID5 > 0 */ + +#if RF_INCLUDE_EVENODD > 0 + /* Evenodd */ + {'E', "EvenOdd", + RF_NU( + rf_ConfigureEvenOdd, + rf_MapSectorRAID5, rf_MapParityEvenOdd, rf_MapEEvenOdd, + rf_IdentifyStripeEvenOdd, + rf_EODagSelect, + rf_MapSIDToPSIDRAID5, + NULL, + NULL, + NULL, NULL, + NULL, /* no reconstruction, yet */ + rf_VerifyParityEvenOdd, + 2, + DefaultStates, + 0) + }, +#endif /* RF_INCLUDE_EVENODD > 0 */ + +#if RF_INCLUDE_EVENODD > 0 + /* Declustered Evenodd */ + {'e', "Declustered EvenOdd", + RF_NU( + rf_ConfigureDeclusteredPQ, + rf_MapSectorDeclusteredPQ, rf_MapParityDeclusteredPQ, rf_MapQDeclusteredPQ, + rf_IdentifyStripeDeclusteredPQ, + rf_EODagSelect, + rf_MapSIDToPSIDRAID5, + rf_GetDefaultHeadSepLimitDeclustered, + rf_GetDefaultNumFloatingReconBuffersPQ, + NULL, NULL, + NULL, /* no reconstruction, yet */ + rf_VerifyParityEvenOdd, + 2, + DefaultStates, + 0) + }, +#endif /* RF_INCLUDE_EVENODD > 0 */ + +#if RF_INCLUDE_PARITYLOGGING > 0 + /* parity logging */ + {'L', "Parity logging", + RF_NU( + rf_ConfigureParityLogging, + rf_MapSectorParityLogging, rf_MapParityParityLogging, NULL, + rf_IdentifyStripeParityLogging, + rf_ParityLoggingDagSelect, + rf_MapSIDToPSIDParityLogging, + rf_GetDefaultHeadSepLimitParityLogging, + rf_GetDefaultNumFloatingReconBuffersParityLogging, + NULL, NULL, + rf_SubmitReconBufferBasic, + NULL, + 1, + DefaultStates, + 0) + }, +#endif /* RF_INCLUDE_PARITYLOGGING > 0 */ + + /* end-of-list marker */ + {'\0', NULL, + RF_NU( + NULL, + NULL, NULL, NULL, + NULL, + NULL, + NULL, + NULL, + NULL, + NULL, NULL, + NULL, + NULL, + 0, + NULL, + 0) + } +}; + +RF_LayoutSW_t * +rf_GetLayout(RF_ParityConfig_t parityConfig) +{ + RF_LayoutSW_t *p; + + /* look up the specific layout */ + for (p = &mapsw[0]; p->parityConfig; p++) + if (p->parityConfig == parityConfig) + break; + if (!p->parityConfig) + return (NULL); + RF_ASSERT(p->parityConfig == parityConfig); + return (p); +} + +/***************************************************************************** + * + * ConfigureLayout -- + * + * read the configuration file and set up the RAID layout parameters. + * After reading common params, invokes the layout-specific + * configuration routine to finish the configuration. + * + ****************************************************************************/ +int +rf_ConfigureLayout( + RF_ShutdownList_t ** listp, + RF_Raid_t * raidPtr, + RF_Config_t * cfgPtr) +{ + RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout); + RF_ParityConfig_t parityConfig; + RF_LayoutSW_t *p; + int retval; + + layoutPtr->sectorsPerStripeUnit = cfgPtr->sectPerSU; + layoutPtr->SUsPerPU = cfgPtr->SUsPerPU; + layoutPtr->SUsPerRU = cfgPtr->SUsPerRU; + parityConfig = cfgPtr->parityConfig; + + if (layoutPtr->sectorsPerStripeUnit <= 0) { + RF_ERRORMSG2("raid%d: Invalid sectorsPerStripeUnit: %d\n", + raidPtr->raidid, + (int)layoutPtr->sectorsPerStripeUnit ); + return (EINVAL); + } + + layoutPtr->stripeUnitsPerDisk = raidPtr->sectorsPerDisk / layoutPtr->sectorsPerStripeUnit; + + p = rf_GetLayout(parityConfig); + if (p == NULL) { + RF_ERRORMSG1("Unknown parity configuration '%c'", parityConfig); + return (EINVAL); + } + RF_ASSERT(p->parityConfig == parityConfig); + layoutPtr->map = p; + + /* initialize the specific layout */ + + retval = (p->Configure) (listp, raidPtr, cfgPtr); + + if (retval) + return (retval); + + layoutPtr->dataBytesPerStripe = layoutPtr->dataSectorsPerStripe << raidPtr->logBytesPerSector; + raidPtr->sectorsPerDisk = layoutPtr->stripeUnitsPerDisk * layoutPtr->sectorsPerStripeUnit; + + if (rf_forceNumFloatingReconBufs >= 0) { + raidPtr->numFloatingReconBufs = rf_forceNumFloatingReconBufs; + } else { + raidPtr->numFloatingReconBufs = rf_GetDefaultNumFloatingReconBuffers(raidPtr); + } + + if (rf_forceHeadSepLimit >= 0) { + raidPtr->headSepLimit = rf_forceHeadSepLimit; + } else { + raidPtr->headSepLimit = rf_GetDefaultHeadSepLimit(raidPtr); + } + + printf("RAIDFRAME: Configure (%s): total number of sectors is %lu (%lu MB)\n", + layoutPtr->map->configName, + (unsigned long) raidPtr->totalSectors, + (unsigned long) (raidPtr->totalSectors / 1024 * (1 << raidPtr->logBytesPerSector) / 1024)); + if (raidPtr->headSepLimit >= 0) { + printf("RAIDFRAME(%s): Using %ld floating recon bufs with head sep limit %ld\n", + layoutPtr->map->configName, (long) raidPtr->numFloatingReconBufs, (long) raidPtr->headSepLimit); + } else { + printf("RAIDFRAME(%s): Using %ld floating recon bufs with no head sep limit\n", + layoutPtr->map->configName, (long) raidPtr->numFloatingReconBufs); + } + + return (0); +} +/* typically there is a 1-1 mapping between stripes and parity stripes. + * however, the declustering code supports packing multiple stripes into + * a single parity stripe, so as to increase the size of the reconstruction + * unit without affecting the size of the stripe unit. This routine finds + * the parity stripe identifier associated with a stripe ID. There is also + * a RaidAddressToParityStripeID macro in layout.h + */ +RF_StripeNum_t +rf_MapStripeIDToParityStripeID(layoutPtr, stripeID, which_ru) + RF_RaidLayout_t *layoutPtr; + RF_StripeNum_t stripeID; + RF_ReconUnitNum_t *which_ru; +{ + RF_StripeNum_t parityStripeID; + + /* quick exit in the common case of SUsPerPU==1 */ + if ((layoutPtr->SUsPerPU == 1) || !layoutPtr->map->MapSIDToPSID) { + *which_ru = 0; + return (stripeID); + } else { + (layoutPtr->map->MapSIDToPSID) (layoutPtr, stripeID, &parityStripeID, which_ru); + } + return (parityStripeID); +} diff --git a/sys/dev/raidframe/rf_layout.h b/sys/dev/raidframe/rf_layout.h new file mode 100644 index 0000000..2482556 --- /dev/null +++ b/sys/dev/raidframe/rf_layout.h @@ -0,0 +1,349 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_layout.h,v 1.5 2001/01/26 04:14:14 oster Exp $ */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Mark Holland + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +/* rf_layout.h -- header file defining layout data structures + */ + +#ifndef _RF__RF_LAYOUT_H_ +#define _RF__RF_LAYOUT_H_ + +#include <dev/raidframe/rf_types.h> +#include <dev/raidframe/rf_archs.h> +#include <dev/raidframe/rf_alloclist.h> + +#ifndef _KERNEL +#include <stdio.h> +#endif + +/***************************************************************************************** + * + * This structure identifies all layout-specific operations and parameters. + * + ****************************************************************************************/ + +typedef struct RF_LayoutSW_s { + RF_ParityConfig_t parityConfig; + const char *configName; + +#ifndef _KERNEL + /* layout-specific parsing */ + int (*MakeLayoutSpecific) (FILE * fp, RF_Config_t * cfgPtr, void *arg); + void *makeLayoutSpecificArg; +#endif /* !KERNEL */ + +#if RF_UTILITY == 0 + /* initialization routine */ + int (*Configure) (RF_ShutdownList_t ** shutdownListp, RF_Raid_t * raidPtr, RF_Config_t * cfgPtr); + + /* routine to map RAID sector address -> physical (row, col, offset) */ + void (*MapSector) (RF_Raid_t * raidPtr, RF_RaidAddr_t raidSector, + RF_RowCol_t * row, RF_RowCol_t * col, RF_SectorNum_t * diskSector, int remap); + + /* routine to map RAID sector address -> physical (r,c,o) of parity + * unit */ + void (*MapParity) (RF_Raid_t * raidPtr, RF_RaidAddr_t raidSector, + RF_RowCol_t * row, RF_RowCol_t * col, RF_SectorNum_t * diskSector, int remap); + + /* routine to map RAID sector address -> physical (r,c,o) of Q unit */ + void (*MapQ) (RF_Raid_t * raidPtr, RF_RaidAddr_t raidSector, RF_RowCol_t * row, + RF_RowCol_t * col, RF_SectorNum_t * diskSector, int remap); + + /* routine to identify the disks comprising a stripe */ + void (*IdentifyStripe) (RF_Raid_t * raidPtr, RF_RaidAddr_t addr, + RF_RowCol_t ** diskids, RF_RowCol_t * outRow); + + /* routine to select a dag */ + void (*SelectionFunc) (RF_Raid_t * raidPtr, RF_IoType_t type, + RF_AccessStripeMap_t * asmap, + RF_VoidFuncPtr *); +#if 0 + void (**createFunc) (RF_Raid_t *, + RF_AccessStripeMap_t *, + RF_DagHeader_t *, void *, + RF_RaidAccessFlags_t, + RF_AllocListElem_t *); + +#endif + + /* map a stripe ID to a parity stripe ID. This is typically the + * identity mapping */ + void (*MapSIDToPSID) (RF_RaidLayout_t * layoutPtr, RF_StripeNum_t stripeID, + RF_StripeNum_t * psID, RF_ReconUnitNum_t * which_ru); + + /* get default head separation limit (may be NULL) */ + RF_HeadSepLimit_t(*GetDefaultHeadSepLimit) (RF_Raid_t * raidPtr); + + /* get default num recon buffers (may be NULL) */ + int (*GetDefaultNumFloatingReconBuffers) (RF_Raid_t * raidPtr); + + /* get number of spare recon units (may be NULL) */ + RF_ReconUnitCount_t(*GetNumSpareRUs) (RF_Raid_t * raidPtr); + + /* spare table installation (may be NULL) */ + int (*InstallSpareTable) (RF_Raid_t * raidPtr, RF_RowCol_t frow, RF_RowCol_t fcol); + + /* recon buffer submission function */ + int (*SubmitReconBuffer) (RF_ReconBuffer_t * rbuf, int keep_it, + int use_committed); + + /* + * verify that parity information for a stripe is correct + * see rf_parityscan.h for return vals + */ + int (*VerifyParity) (RF_Raid_t * raidPtr, RF_RaidAddr_t raidAddr, + RF_PhysDiskAddr_t * parityPDA, int correct_it, RF_RaidAccessFlags_t flags); + + /* number of faults tolerated by this mapping */ + int faultsTolerated; + + /* states to step through in an access. Must end with "LastState". The + * default is DefaultStates in rf_layout.c */ + RF_AccessState_t *states; + + RF_AccessStripeMapFlags_t flags; +#endif /* RF_UTILITY == 0 */ +} RF_LayoutSW_t; +/* enables remapping to spare location under dist sparing */ +#define RF_REMAP 1 +#define RF_DONT_REMAP 0 + +/* + * Flags values for RF_AccessStripeMapFlags_t + */ +#define RF_NO_STRIPE_LOCKS 0x0001 /* suppress stripe locks */ +#define RF_DISTRIBUTE_SPARE 0x0002 /* distribute spare space in archs + * that support it */ +#define RF_BD_DECLUSTERED 0x0004 /* declustering uses block designs */ + +/************************************************************************* + * + * this structure forms the layout component of the main Raid + * structure. It describes everything needed to define and perform + * the mapping of logical RAID addresses <-> physical disk addresses. + * + *************************************************************************/ +struct RF_RaidLayout_s { + /* configuration parameters */ + RF_SectorCount_t sectorsPerStripeUnit; /* number of sectors in one + * stripe unit */ + RF_StripeCount_t SUsPerPU; /* stripe units per parity unit */ + RF_StripeCount_t SUsPerRU; /* stripe units per reconstruction + * unit */ + + /* redundant-but-useful info computed from the above, used in all + * layouts */ + RF_StripeCount_t numStripe; /* total number of stripes in the + * array */ + RF_SectorCount_t dataSectorsPerStripe; + RF_StripeCount_t dataStripeUnitsPerDisk; + u_int bytesPerStripeUnit; + u_int dataBytesPerStripe; + RF_StripeCount_t numDataCol; /* number of SUs of data per stripe + * (name here is a la RAID4) */ + RF_StripeCount_t numParityCol; /* number of SUs of parity per stripe. + * Always 1 for now */ + RF_StripeCount_t numParityLogCol; /* number of SUs of parity log + * per stripe. Always 1 for + * now */ + RF_StripeCount_t stripeUnitsPerDisk; + + RF_LayoutSW_t *map; /* ptr to struct holding mapping fns and + * information */ + void *layoutSpecificInfo; /* ptr to a structure holding + * layout-specific params */ +}; +/***************************************************************************************** + * + * The mapping code returns a pointer to a list of AccessStripeMap structures, which + * describes all the mapping information about an access. The list contains one + * AccessStripeMap structure per stripe touched by the access. Each element in the list + * contains a stripe identifier and a pointer to a list of PhysDiskAddr structuress. Each + * element in this latter list describes the physical location of a stripe unit accessed + * within the corresponding stripe. + * + ****************************************************************************************/ + +#define RF_PDA_TYPE_DATA 0 +#define RF_PDA_TYPE_PARITY 1 +#define RF_PDA_TYPE_Q 2 + +struct RF_PhysDiskAddr_s { + RF_RowCol_t row, col; /* disk identifier */ + RF_SectorNum_t startSector; /* sector offset into the disk */ + RF_SectorCount_t numSector; /* number of sectors accessed */ + int type; /* used by higher levels: currently, data, + * parity, or q */ + caddr_t bufPtr; /* pointer to buffer supplying/receiving data */ + RF_RaidAddr_t raidAddress; /* raid address corresponding to this + * physical disk address */ + RF_PhysDiskAddr_t *next; +}; +#define RF_MAX_FAILED_PDA RF_MAXCOL + +struct RF_AccessStripeMap_s { + RF_StripeNum_t stripeID;/* the stripe index */ + RF_RaidAddr_t raidAddress; /* the starting raid address within + * this stripe */ + RF_RaidAddr_t endRaidAddress; /* raid address one sector past the + * end of the access */ + RF_SectorCount_t totalSectorsAccessed; /* total num sectors + * identified in physInfo list */ + RF_StripeCount_t numStripeUnitsAccessed; /* total num elements in + * physInfo list */ + int numDataFailed; /* number of failed data disks accessed */ + int numParityFailed;/* number of failed parity disks accessed (0 + * or 1) */ + int numQFailed; /* number of failed Q units accessed (0 or 1) */ + RF_AccessStripeMapFlags_t flags; /* various flags */ +#if 0 + RF_PhysDiskAddr_t *failedPDA; /* points to the PDA that has failed */ + RF_PhysDiskAddr_t *failedPDAtwo; /* points to the second PDA + * that has failed, if any */ +#else + int numFailedPDAs; /* number of failed phys addrs */ + RF_PhysDiskAddr_t *failedPDAs[RF_MAX_FAILED_PDA]; /* array of failed phys + * addrs */ +#endif + RF_PhysDiskAddr_t *physInfo; /* a list of PhysDiskAddr structs */ + RF_PhysDiskAddr_t *parityInfo; /* list of physical addrs for the + * parity (P of P + Q ) */ + RF_PhysDiskAddr_t *qInfo; /* list of physical addrs for the Q of + * P + Q */ + RF_LockReqDesc_t lockReqDesc; /* used for stripe locking */ + RF_RowCol_t origRow; /* the original row: we may redirect the acc + * to a different row */ + RF_AccessStripeMap_t *next; +}; +/* flag values */ +#define RF_ASM_REDIR_LARGE_WRITE 0x00000001 /* allows large-write creation + * code to redirect failed + * accs */ +#define RF_ASM_BAILOUT_DAG_USED 0x00000002 /* allows us to detect + * recursive calls to the + * bailout write dag */ +#define RF_ASM_FLAGS_LOCK_TRIED 0x00000004 /* we've acquired the lock on + * the first parity range in + * this parity stripe */ +#define RF_ASM_FLAGS_LOCK_TRIED2 0x00000008 /* we've acquired the lock on + * the 2nd parity range in + * this parity stripe */ +#define RF_ASM_FLAGS_FORCE_TRIED 0x00000010 /* we've done the force-recon + * call on this parity stripe */ +#define RF_ASM_FLAGS_RECON_BLOCKED 0x00000020 /* we blocked recon => we must + * unblock it later */ + +struct RF_AccessStripeMapHeader_s { + RF_StripeCount_t numStripes; /* total number of stripes touched by + * this acc */ + RF_AccessStripeMap_t *stripeMap; /* pointer to the actual map. + * Also used for making lists */ + RF_AccessStripeMapHeader_t *next; +}; +/***************************************************************************************** + * + * various routines mapping addresses in the RAID address space. These work across + * all layouts. DON'T PUT ANY LAYOUT-SPECIFIC CODE HERE. + * + ****************************************************************************************/ + +/* return the identifier of the stripe containing the given address */ +#define rf_RaidAddressToStripeID(_layoutPtr_, _addr_) \ + ( ((_addr_) / (_layoutPtr_)->sectorsPerStripeUnit) / (_layoutPtr_)->numDataCol ) + +/* return the raid address of the start of the indicates stripe ID */ +#define rf_StripeIDToRaidAddress(_layoutPtr_, _sid_) \ + ( ((_sid_) * (_layoutPtr_)->sectorsPerStripeUnit) * (_layoutPtr_)->numDataCol ) + +/* return the identifier of the stripe containing the given stripe unit id */ +#define rf_StripeUnitIDToStripeID(_layoutPtr_, _addr_) \ + ( (_addr_) / (_layoutPtr_)->numDataCol ) + +/* return the identifier of the stripe unit containing the given address */ +#define rf_RaidAddressToStripeUnitID(_layoutPtr_, _addr_) \ + ( ((_addr_) / (_layoutPtr_)->sectorsPerStripeUnit) ) + +/* return the RAID address of next stripe boundary beyond the given address */ +#define rf_RaidAddressOfNextStripeBoundary(_layoutPtr_, _addr_) \ + ( (((_addr_)/(_layoutPtr_)->dataSectorsPerStripe)+1) * (_layoutPtr_)->dataSectorsPerStripe ) + +/* return the RAID address of the start of the stripe containing the given address */ +#define rf_RaidAddressOfPrevStripeBoundary(_layoutPtr_, _addr_) \ + ( (((_addr_)/(_layoutPtr_)->dataSectorsPerStripe)+0) * (_layoutPtr_)->dataSectorsPerStripe ) + +/* return the RAID address of next stripe unit boundary beyond the given address */ +#define rf_RaidAddressOfNextStripeUnitBoundary(_layoutPtr_, _addr_) \ + ( (((_addr_)/(_layoutPtr_)->sectorsPerStripeUnit)+1L)*(_layoutPtr_)->sectorsPerStripeUnit ) + +/* return the RAID address of the start of the stripe unit containing RAID address _addr_ */ +#define rf_RaidAddressOfPrevStripeUnitBoundary(_layoutPtr_, _addr_) \ + ( (((_addr_)/(_layoutPtr_)->sectorsPerStripeUnit)+0)*(_layoutPtr_)->sectorsPerStripeUnit ) + +/* returns the offset into the stripe. used by RaidAddressStripeAligned */ +#define rf_RaidAddressStripeOffset(_layoutPtr_, _addr_) \ + ( (_addr_) % ((_layoutPtr_)->dataSectorsPerStripe) ) + +/* returns the offset into the stripe unit. */ +#define rf_StripeUnitOffset(_layoutPtr_, _addr_) \ + ( (_addr_) % ((_layoutPtr_)->sectorsPerStripeUnit) ) + +/* returns nonzero if the given RAID address is stripe-aligned */ +#define rf_RaidAddressStripeAligned( __layoutPtr__, __addr__ ) \ + ( rf_RaidAddressStripeOffset(__layoutPtr__, __addr__) == 0 ) + +/* returns nonzero if the given address is stripe-unit aligned */ +#define rf_StripeUnitAligned( __layoutPtr__, __addr__ ) \ + ( rf_StripeUnitOffset(__layoutPtr__, __addr__) == 0 ) + +/* convert an address expressed in RAID blocks to/from an addr expressed in bytes */ +#define rf_RaidAddressToByte(_raidPtr_, _addr_) \ + ( (_addr_) << ( (_raidPtr_)->logBytesPerSector ) ) + +#define rf_ByteToRaidAddress(_raidPtr_, _addr_) \ + ( (_addr_) >> ( (_raidPtr_)->logBytesPerSector ) ) + +/* convert a raid address to/from a parity stripe ID. Conversion to raid address is easy, + * since we're asking for the address of the first sector in the parity stripe. Conversion to a + * parity stripe ID is more complex, since stripes are not contiguously allocated in + * parity stripes. + */ +#define rf_RaidAddressToParityStripeID(_layoutPtr_, _addr_, _ru_num_) \ + rf_MapStripeIDToParityStripeID( (_layoutPtr_), rf_RaidAddressToStripeID( (_layoutPtr_), (_addr_) ), (_ru_num_) ) + +#define rf_ParityStripeIDToRaidAddress(_layoutPtr_, _psid_) \ + ( (_psid_) * (_layoutPtr_)->SUsPerPU * (_layoutPtr_)->numDataCol * (_layoutPtr_)->sectorsPerStripeUnit ) + +RF_LayoutSW_t *rf_GetLayout(RF_ParityConfig_t parityConfig); +int +rf_ConfigureLayout(RF_ShutdownList_t ** listp, RF_Raid_t * raidPtr, + RF_Config_t * cfgPtr); +RF_StripeNum_t +rf_MapStripeIDToParityStripeID(RF_RaidLayout_t * layoutPtr, + RF_StripeNum_t stripeID, RF_ReconUnitNum_t * which_ru); + +#endif /* !_RF__RF_LAYOUT_H_ */ diff --git a/sys/dev/raidframe/rf_map.c b/sys/dev/raidframe/rf_map.c new file mode 100644 index 0000000..98f455f --- /dev/null +++ b/sys/dev/raidframe/rf_map.c @@ -0,0 +1,907 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_map.c,v 1.5 2000/06/29 00:22:27 oster Exp $ */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Mark Holland + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +/************************************************************************** + * + * map.c -- main code for mapping RAID addresses to physical disk addresses + * + **************************************************************************/ + +#include <dev/raidframe/rf_types.h> +#include <dev/raidframe/rf_threadstuff.h> +#include <dev/raidframe/rf_raid.h> +#include <dev/raidframe/rf_general.h> +#include <dev/raidframe/rf_map.h> +#include <dev/raidframe/rf_freelist.h> +#include <dev/raidframe/rf_shutdown.h> + +static void rf_FreePDAList(RF_PhysDiskAddr_t * start, RF_PhysDiskAddr_t * end, int count); +static void +rf_FreeASMList(RF_AccessStripeMap_t * start, RF_AccessStripeMap_t * end, + int count); + +/***************************************************************************************** + * + * MapAccess -- main 1st order mapping routine. + * + * Maps an access in the RAID address space to the corresponding set of physical disk + * addresses. The result is returned as a list of AccessStripeMap structures, one per + * stripe accessed. Each ASM structure contains a pointer to a list of PhysDiskAddr + * structures, which describe the physical locations touched by the user access. Note + * that this routine returns only static mapping information, i.e. the list of physical + * addresses returned does not necessarily identify the set of physical locations that + * will actually be read or written. + * + * The routine also maps the parity. The physical disk location returned always + * indicates the entire parity unit, even when only a subset of it is being accessed. + * This is because an access that is not stripe unit aligned but that spans a stripe + * unit boundary may require access two distinct portions of the parity unit, and we + * can't yet tell which portion(s) we'll actually need. We leave it up to the algorithm + * selection code to decide what subset of the parity unit to access. + * + * Note that addresses in the RAID address space must always be maintained as + * longs, instead of ints. + * + * This routine returns NULL if numBlocks is 0 + * + ****************************************************************************************/ + +RF_AccessStripeMapHeader_t * +rf_MapAccess(raidPtr, raidAddress, numBlocks, buffer, remap) + RF_Raid_t *raidPtr; + RF_RaidAddr_t raidAddress; /* starting address in RAID address + * space */ + RF_SectorCount_t numBlocks; /* number of blocks in RAID address + * space to access */ + caddr_t buffer; /* buffer to supply/receive data */ + int remap; /* 1 => remap addresses to spare space */ +{ + RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout); + RF_AccessStripeMapHeader_t *asm_hdr = NULL; + RF_AccessStripeMap_t *asm_list = NULL, *asm_p = NULL; + int faultsTolerated = layoutPtr->map->faultsTolerated; + RF_RaidAddr_t startAddress = raidAddress; /* we'll change + * raidAddress along the + * way */ + RF_RaidAddr_t endAddress = raidAddress + numBlocks; + RF_RaidDisk_t **disks = raidPtr->Disks; + + RF_PhysDiskAddr_t *pda_p, *pda_q; + RF_StripeCount_t numStripes = 0; + RF_RaidAddr_t stripeRealEndAddress, stripeEndAddress, nextStripeUnitAddress; + RF_RaidAddr_t startAddrWithinStripe, lastRaidAddr; + RF_StripeCount_t totStripes; + RF_StripeNum_t stripeID, lastSID, SUID, lastSUID; + RF_AccessStripeMap_t *asmList, *t_asm; + RF_PhysDiskAddr_t *pdaList, *t_pda; + + /* allocate all the ASMs and PDAs up front */ + lastRaidAddr = raidAddress + numBlocks - 1; + stripeID = rf_RaidAddressToStripeID(layoutPtr, raidAddress); + lastSID = rf_RaidAddressToStripeID(layoutPtr, lastRaidAddr); + totStripes = lastSID - stripeID + 1; + SUID = rf_RaidAddressToStripeUnitID(layoutPtr, raidAddress); + lastSUID = rf_RaidAddressToStripeUnitID(layoutPtr, lastRaidAddr); + + asmList = rf_AllocASMList(totStripes); + pdaList = rf_AllocPDAList(lastSUID - SUID + 1 + faultsTolerated * totStripes); /* may also need pda(s) + * per stripe for parity */ + + if (raidAddress + numBlocks > raidPtr->totalSectors) { + RF_ERRORMSG1("Unable to map access because offset (%d) was invalid\n", + (int) raidAddress); + return (NULL); + } + if (rf_mapDebug) + rf_PrintRaidAddressInfo(raidPtr, raidAddress, numBlocks); + for (; raidAddress < endAddress;) { + /* make the next stripe structure */ + RF_ASSERT(asmList); + t_asm = asmList; + asmList = asmList->next; + bzero((char *) t_asm, sizeof(RF_AccessStripeMap_t)); + if (!asm_p) + asm_list = asm_p = t_asm; + else { + asm_p->next = t_asm; + asm_p = asm_p->next; + } + numStripes++; + + /* map SUs from current location to the end of the stripe */ + asm_p->stripeID = /* rf_RaidAddressToStripeID(layoutPtr, + raidAddress) */ stripeID++; + stripeRealEndAddress = rf_RaidAddressOfNextStripeBoundary(layoutPtr, raidAddress); + stripeEndAddress = RF_MIN(endAddress, stripeRealEndAddress); + asm_p->raidAddress = raidAddress; + asm_p->endRaidAddress = stripeEndAddress; + + /* map each stripe unit in the stripe */ + pda_p = NULL; + startAddrWithinStripe = raidAddress; /* Raid addr of start of + * portion of access + * that is within this + * stripe */ + for (; raidAddress < stripeEndAddress;) { + RF_ASSERT(pdaList); + t_pda = pdaList; + pdaList = pdaList->next; + bzero((char *) t_pda, sizeof(RF_PhysDiskAddr_t)); + if (!pda_p) + asm_p->physInfo = pda_p = t_pda; + else { + pda_p->next = t_pda; + pda_p = pda_p->next; + } + + pda_p->type = RF_PDA_TYPE_DATA; + (layoutPtr->map->MapSector) (raidPtr, raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), remap); + + /* mark any failures we find. failedPDA is don't-care + * if there is more than one failure */ + pda_p->raidAddress = raidAddress; /* the RAID address + * corresponding to this + * physical disk address */ + nextStripeUnitAddress = rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, raidAddress); + pda_p->numSector = RF_MIN(endAddress, nextStripeUnitAddress) - raidAddress; + RF_ASSERT(pda_p->numSector != 0); + rf_ASMCheckStatus(raidPtr, pda_p, asm_p, disks, 0); + pda_p->bufPtr = buffer + rf_RaidAddressToByte(raidPtr, (raidAddress - startAddress)); + asm_p->totalSectorsAccessed += pda_p->numSector; + asm_p->numStripeUnitsAccessed++; + asm_p->origRow = pda_p->row; /* redundant but + * harmless to do this + * in every loop + * iteration */ + + raidAddress = RF_MIN(endAddress, nextStripeUnitAddress); + } + + /* Map the parity. At this stage, the startSector and + * numSector fields for the parity unit are always set to + * indicate the entire parity unit. We may modify this after + * mapping the data portion. */ + switch (faultsTolerated) { + case 0: + break; + case 1: /* single fault tolerant */ + RF_ASSERT(pdaList); + t_pda = pdaList; + pdaList = pdaList->next; + bzero((char *) t_pda, sizeof(RF_PhysDiskAddr_t)); + pda_p = asm_p->parityInfo = t_pda; + pda_p->type = RF_PDA_TYPE_PARITY; + (layoutPtr->map->MapParity) (raidPtr, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe), + &(pda_p->row), &(pda_p->col), &(pda_p->startSector), remap); + pda_p->numSector = layoutPtr->sectorsPerStripeUnit; + /* raidAddr may be needed to find unit to redirect to */ + pda_p->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe); + rf_ASMCheckStatus(raidPtr, pda_p, asm_p, disks, 1); + rf_ASMParityAdjust(asm_p->parityInfo, startAddrWithinStripe, endAddress, layoutPtr, asm_p); + + break; + case 2: /* two fault tolerant */ + RF_ASSERT(pdaList && pdaList->next); + t_pda = pdaList; + pdaList = pdaList->next; + bzero((char *) t_pda, sizeof(RF_PhysDiskAddr_t)); + pda_p = asm_p->parityInfo = t_pda; + pda_p->type = RF_PDA_TYPE_PARITY; + t_pda = pdaList; + pdaList = pdaList->next; + bzero((char *) t_pda, sizeof(RF_PhysDiskAddr_t)); + pda_q = asm_p->qInfo = t_pda; + pda_q->type = RF_PDA_TYPE_Q; + (layoutPtr->map->MapParity) (raidPtr, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe), + &(pda_p->row), &(pda_p->col), &(pda_p->startSector), remap); + (layoutPtr->map->MapQ) (raidPtr, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe), + &(pda_q->row), &(pda_q->col), &(pda_q->startSector), remap); + pda_q->numSector = pda_p->numSector = layoutPtr->sectorsPerStripeUnit; + /* raidAddr may be needed to find unit to redirect to */ + pda_p->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe); + pda_q->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe); + /* failure mode stuff */ + rf_ASMCheckStatus(raidPtr, pda_p, asm_p, disks, 1); + rf_ASMCheckStatus(raidPtr, pda_q, asm_p, disks, 1); + rf_ASMParityAdjust(asm_p->parityInfo, startAddrWithinStripe, endAddress, layoutPtr, asm_p); + rf_ASMParityAdjust(asm_p->qInfo, startAddrWithinStripe, endAddress, layoutPtr, asm_p); + break; + } + } + RF_ASSERT(asmList == NULL && pdaList == NULL); + /* make the header structure */ + asm_hdr = rf_AllocAccessStripeMapHeader(); + RF_ASSERT(numStripes == totStripes); + asm_hdr->numStripes = numStripes; + asm_hdr->stripeMap = asm_list; + + if (rf_mapDebug) + rf_PrintAccessStripeMap(asm_hdr); + return (asm_hdr); +} +/***************************************************************************************** + * This routine walks through an ASM list and marks the PDAs that have failed. + * It's called only when a disk failure causes an in-flight DAG to fail. + * The parity may consist of two components, but we want to use only one failedPDA + * pointer. Thus we set failedPDA to point to the first parity component, and rely + * on the rest of the code to do the right thing with this. + ****************************************************************************************/ + +void +rf_MarkFailuresInASMList(raidPtr, asm_h) + RF_Raid_t *raidPtr; + RF_AccessStripeMapHeader_t *asm_h; +{ + RF_RaidDisk_t **disks = raidPtr->Disks; + RF_AccessStripeMap_t *asmap; + RF_PhysDiskAddr_t *pda; + + for (asmap = asm_h->stripeMap; asmap; asmap = asmap->next) { + asmap->numDataFailed = asmap->numParityFailed = asmap->numQFailed = 0; + asmap->numFailedPDAs = 0; + bzero((char *) asmap->failedPDAs, + RF_MAX_FAILED_PDA * sizeof(RF_PhysDiskAddr_t *)); + for (pda = asmap->physInfo; pda; pda = pda->next) { + if (RF_DEAD_DISK(disks[pda->row][pda->col].status)) { + asmap->numDataFailed++; + asmap->failedPDAs[asmap->numFailedPDAs] = pda; + asmap->numFailedPDAs++; + } + } + pda = asmap->parityInfo; + if (pda && RF_DEAD_DISK(disks[pda->row][pda->col].status)) { + asmap->numParityFailed++; + asmap->failedPDAs[asmap->numFailedPDAs] = pda; + asmap->numFailedPDAs++; + } + pda = asmap->qInfo; + if (pda && RF_DEAD_DISK(disks[pda->row][pda->col].status)) { + asmap->numQFailed++; + asmap->failedPDAs[asmap->numFailedPDAs] = pda; + asmap->numFailedPDAs++; + } + } +} +/***************************************************************************************** + * + * DuplicateASM -- duplicates an ASM and returns the new one + * + ****************************************************************************************/ +RF_AccessStripeMap_t * +rf_DuplicateASM(asmap) + RF_AccessStripeMap_t *asmap; +{ + RF_AccessStripeMap_t *new_asm; + RF_PhysDiskAddr_t *pda, *new_pda, *t_pda; + + new_pda = NULL; + new_asm = rf_AllocAccessStripeMapComponent(); + bcopy((char *) asmap, (char *) new_asm, sizeof(RF_AccessStripeMap_t)); + new_asm->numFailedPDAs = 0; /* ??? */ + new_asm->failedPDAs[0] = NULL; + new_asm->physInfo = NULL; + new_asm->parityInfo = NULL; + new_asm->next = NULL; + + for (pda = asmap->physInfo; pda; pda = pda->next) { /* copy the physInfo + * list */ + t_pda = rf_AllocPhysDiskAddr(); + bcopy((char *) pda, (char *) t_pda, sizeof(RF_PhysDiskAddr_t)); + t_pda->next = NULL; + if (!new_asm->physInfo) { + new_asm->physInfo = t_pda; + new_pda = t_pda; + } else { + new_pda->next = t_pda; + new_pda = new_pda->next; + } + if (pda == asmap->failedPDAs[0]) + new_asm->failedPDAs[0] = t_pda; + } + for (pda = asmap->parityInfo; pda; pda = pda->next) { /* copy the parityInfo + * list */ + t_pda = rf_AllocPhysDiskAddr(); + bcopy((char *) pda, (char *) t_pda, sizeof(RF_PhysDiskAddr_t)); + t_pda->next = NULL; + if (!new_asm->parityInfo) { + new_asm->parityInfo = t_pda; + new_pda = t_pda; + } else { + new_pda->next = t_pda; + new_pda = new_pda->next; + } + if (pda == asmap->failedPDAs[0]) + new_asm->failedPDAs[0] = t_pda; + } + return (new_asm); +} +/***************************************************************************************** + * + * DuplicatePDA -- duplicates a PDA and returns the new one + * + ****************************************************************************************/ +RF_PhysDiskAddr_t * +rf_DuplicatePDA(pda) + RF_PhysDiskAddr_t *pda; +{ + RF_PhysDiskAddr_t *new; + + new = rf_AllocPhysDiskAddr(); + bcopy((char *) pda, (char *) new, sizeof(RF_PhysDiskAddr_t)); + return (new); +} +/***************************************************************************************** + * + * routines to allocate and free list elements. All allocation routines zero the + * structure before returning it. + * + * FreePhysDiskAddr is static. It should never be called directly, because + * FreeAccessStripeMap takes care of freeing the PhysDiskAddr list. + * + ****************************************************************************************/ + +static RF_FreeList_t *rf_asmhdr_freelist; +#define RF_MAX_FREE_ASMHDR 128 +#define RF_ASMHDR_INC 16 +#define RF_ASMHDR_INITIAL 32 + +static RF_FreeList_t *rf_asm_freelist; +#define RF_MAX_FREE_ASM 192 +#define RF_ASM_INC 24 +#define RF_ASM_INITIAL 64 + +static RF_FreeList_t *rf_pda_freelist; +#define RF_MAX_FREE_PDA 192 +#define RF_PDA_INC 24 +#define RF_PDA_INITIAL 64 + +/* called at shutdown time. So far, all that is necessary is to release all the free lists */ +static void rf_ShutdownMapModule(void *); +static void +rf_ShutdownMapModule(ignored) + void *ignored; +{ + RF_FREELIST_DESTROY(rf_asmhdr_freelist, next, (RF_AccessStripeMapHeader_t *)); + RF_FREELIST_DESTROY(rf_pda_freelist, next, (RF_PhysDiskAddr_t *)); + RF_FREELIST_DESTROY(rf_asm_freelist, next, (RF_AccessStripeMap_t *)); +} + +int +rf_ConfigureMapModule(listp) + RF_ShutdownList_t **listp; +{ + int rc; + + RF_FREELIST_CREATE(rf_asmhdr_freelist, RF_MAX_FREE_ASMHDR, + RF_ASMHDR_INC, sizeof(RF_AccessStripeMapHeader_t)); + if (rf_asmhdr_freelist == NULL) { + return (ENOMEM); + } + RF_FREELIST_CREATE(rf_asm_freelist, RF_MAX_FREE_ASM, + RF_ASM_INC, sizeof(RF_AccessStripeMap_t)); + if (rf_asm_freelist == NULL) { + RF_FREELIST_DESTROY(rf_asmhdr_freelist, next, (RF_AccessStripeMapHeader_t *)); + return (ENOMEM); + } + RF_FREELIST_CREATE(rf_pda_freelist, RF_MAX_FREE_PDA, + RF_PDA_INC, sizeof(RF_PhysDiskAddr_t)); + if (rf_pda_freelist == NULL) { + RF_FREELIST_DESTROY(rf_asmhdr_freelist, next, (RF_AccessStripeMapHeader_t *)); + RF_FREELIST_DESTROY(rf_pda_freelist, next, (RF_PhysDiskAddr_t *)); + return (ENOMEM); + } + rc = rf_ShutdownCreate(listp, rf_ShutdownMapModule, NULL); + if (rc) { + RF_ERRORMSG3("Unable to add to shutdown list file %s line %d rc=%d\n", __FILE__, + __LINE__, rc); + rf_ShutdownMapModule(NULL); + return (rc); + } + RF_FREELIST_PRIME(rf_asmhdr_freelist, RF_ASMHDR_INITIAL, next, + (RF_AccessStripeMapHeader_t *)); + RF_FREELIST_PRIME(rf_asm_freelist, RF_ASM_INITIAL, next, + (RF_AccessStripeMap_t *)); + RF_FREELIST_PRIME(rf_pda_freelist, RF_PDA_INITIAL, next, + (RF_PhysDiskAddr_t *)); + + return (0); +} + +RF_AccessStripeMapHeader_t * +rf_AllocAccessStripeMapHeader() +{ + RF_AccessStripeMapHeader_t *p; + + RF_FREELIST_GET(rf_asmhdr_freelist, p, next, (RF_AccessStripeMapHeader_t *)); + bzero((char *) p, sizeof(RF_AccessStripeMapHeader_t)); + + return (p); +} + + +void +rf_FreeAccessStripeMapHeader(p) + RF_AccessStripeMapHeader_t *p; +{ + RF_FREELIST_FREE(rf_asmhdr_freelist, p, next); +} + +RF_PhysDiskAddr_t * +rf_AllocPhysDiskAddr() +{ + RF_PhysDiskAddr_t *p; + + RF_FREELIST_GET(rf_pda_freelist, p, next, (RF_PhysDiskAddr_t *)); + bzero((char *) p, sizeof(RF_PhysDiskAddr_t)); + + return (p); +} +/* allocates a list of PDAs, locking the free list only once + * when we have to call calloc, we do it one component at a time to simplify + * the process of freeing the list at program shutdown. This should not be + * much of a performance hit, because it should be very infrequently executed. + */ +RF_PhysDiskAddr_t * +rf_AllocPDAList(count) + int count; +{ + RF_PhysDiskAddr_t *p = NULL; + + RF_FREELIST_GET_N(rf_pda_freelist, p, next, (RF_PhysDiskAddr_t *), count); + return (p); +} + +void +rf_FreePhysDiskAddr(p) + RF_PhysDiskAddr_t *p; +{ + RF_FREELIST_FREE(rf_pda_freelist, p, next); +} + +static void +rf_FreePDAList(l_start, l_end, count) + RF_PhysDiskAddr_t *l_start, *l_end; /* pointers to start and end + * of list */ + int count; /* number of elements in list */ +{ + RF_FREELIST_FREE_N(rf_pda_freelist, l_start, next, (RF_PhysDiskAddr_t *), count); +} + +RF_AccessStripeMap_t * +rf_AllocAccessStripeMapComponent() +{ + RF_AccessStripeMap_t *p; + + RF_FREELIST_GET(rf_asm_freelist, p, next, (RF_AccessStripeMap_t *)); + bzero((char *) p, sizeof(RF_AccessStripeMap_t)); + + return (p); +} +/* this is essentially identical to AllocPDAList. I should combine the two. + * when we have to call calloc, we do it one component at a time to simplify + * the process of freeing the list at program shutdown. This should not be + * much of a performance hit, because it should be very infrequently executed. + */ +RF_AccessStripeMap_t * +rf_AllocASMList(count) + int count; +{ + RF_AccessStripeMap_t *p = NULL; + + RF_FREELIST_GET_N(rf_asm_freelist, p, next, (RF_AccessStripeMap_t *), count); + return (p); +} + +void +rf_FreeAccessStripeMapComponent(p) + RF_AccessStripeMap_t *p; +{ + RF_FREELIST_FREE(rf_asm_freelist, p, next); +} + +static void +rf_FreeASMList(l_start, l_end, count) + RF_AccessStripeMap_t *l_start, *l_end; + int count; +{ + RF_FREELIST_FREE_N(rf_asm_freelist, l_start, next, (RF_AccessStripeMap_t *), count); +} + +void +rf_FreeAccessStripeMap(hdr) + RF_AccessStripeMapHeader_t *hdr; +{ + RF_AccessStripeMap_t *p, *pt = NULL; + RF_PhysDiskAddr_t *pdp, *trailer, *pdaList = NULL, *pdaEnd = NULL; + int count = 0, t, asm_count = 0; + + for (p = hdr->stripeMap; p; p = p->next) { + + /* link the 3 pda lists into the accumulating pda list */ + + if (!pdaList) + pdaList = p->qInfo; + else + pdaEnd->next = p->qInfo; + for (trailer = NULL, pdp = p->qInfo; pdp;) { + trailer = pdp; + pdp = pdp->next; + count++; + } + if (trailer) + pdaEnd = trailer; + + if (!pdaList) + pdaList = p->parityInfo; + else + pdaEnd->next = p->parityInfo; + for (trailer = NULL, pdp = p->parityInfo; pdp;) { + trailer = pdp; + pdp = pdp->next; + count++; + } + if (trailer) + pdaEnd = trailer; + + if (!pdaList) + pdaList = p->physInfo; + else + pdaEnd->next = p->physInfo; + for (trailer = NULL, pdp = p->physInfo; pdp;) { + trailer = pdp; + pdp = pdp->next; + count++; + } + if (trailer) + pdaEnd = trailer; + + pt = p; + asm_count++; + } + + /* debug only */ + for (t = 0, pdp = pdaList; pdp; pdp = pdp->next) + t++; + RF_ASSERT(t == count); + + if (pdaList) + rf_FreePDAList(pdaList, pdaEnd, count); + rf_FreeASMList(hdr->stripeMap, pt, asm_count); + rf_FreeAccessStripeMapHeader(hdr); +} +/* We can't use the large write optimization if there are any failures in the stripe. + * In the declustered layout, there is no way to immediately determine what disks + * constitute a stripe, so we actually have to hunt through the stripe looking for failures. + * The reason we map the parity instead of just using asm->parityInfo->col is because + * the latter may have been already redirected to a spare drive, which would + * mess up the computation of the stripe offset. + * + * ASSUMES AT MOST ONE FAILURE IN THE STRIPE. + */ +int +rf_CheckStripeForFailures(raidPtr, asmap) + RF_Raid_t *raidPtr; + RF_AccessStripeMap_t *asmap; +{ + RF_RowCol_t trow, tcol, prow, pcol, *diskids, row, i; + RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; + RF_StripeCount_t stripeOffset; + int numFailures; + RF_RaidAddr_t sosAddr; + RF_SectorNum_t diskOffset, poffset; + RF_RowCol_t testrow; + + /* quick out in the fault-free case. */ + RF_LOCK_MUTEX(raidPtr->mutex); + numFailures = raidPtr->numFailures; + RF_UNLOCK_MUTEX(raidPtr->mutex); + if (numFailures == 0) + return (0); + + sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress); + row = asmap->physInfo->row; + (layoutPtr->map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids, &testrow); + (layoutPtr->map->MapParity) (raidPtr, asmap->raidAddress, &prow, &pcol, &poffset, 0); /* get pcol */ + + /* this need not be true if we've redirected the access to a spare in + * another row RF_ASSERT(row == testrow); */ + stripeOffset = 0; + for (i = 0; i < layoutPtr->numDataCol + layoutPtr->numParityCol; i++) { + if (diskids[i] != pcol) { + if (RF_DEAD_DISK(raidPtr->Disks[testrow][diskids[i]].status)) { + if (raidPtr->status[testrow] != rf_rs_reconstructing) + return (1); + RF_ASSERT(raidPtr->reconControl[testrow]->fcol == diskids[i]); + layoutPtr->map->MapSector(raidPtr, + sosAddr + stripeOffset * layoutPtr->sectorsPerStripeUnit, + &trow, &tcol, &diskOffset, 0); + RF_ASSERT((trow == testrow) && (tcol == diskids[i])); + if (!rf_CheckRUReconstructed(raidPtr->reconControl[testrow]->reconMap, diskOffset)) + return (1); + asmap->flags |= RF_ASM_REDIR_LARGE_WRITE; + return (0); + } + stripeOffset++; + } + } + return (0); +} +/* + return the number of failed data units in the stripe. +*/ + +int +rf_NumFailedDataUnitsInStripe(raidPtr, asmap) + RF_Raid_t *raidPtr; + RF_AccessStripeMap_t *asmap; +{ + RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; + RF_RowCol_t trow, tcol, row, i; + RF_SectorNum_t diskOffset; + RF_RaidAddr_t sosAddr; + int numFailures; + + /* quick out in the fault-free case. */ + RF_LOCK_MUTEX(raidPtr->mutex); + numFailures = raidPtr->numFailures; + RF_UNLOCK_MUTEX(raidPtr->mutex); + if (numFailures == 0) + return (0); + numFailures = 0; + + sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress); + row = asmap->physInfo->row; + for (i = 0; i < layoutPtr->numDataCol; i++) { + (layoutPtr->map->MapSector) (raidPtr, sosAddr + i * layoutPtr->sectorsPerStripeUnit, + &trow, &tcol, &diskOffset, 0); + if (RF_DEAD_DISK(raidPtr->Disks[trow][tcol].status)) + numFailures++; + } + + return numFailures; +} + + +/***************************************************************************************** + * + * debug routines + * + ****************************************************************************************/ + +void +rf_PrintAccessStripeMap(asm_h) + RF_AccessStripeMapHeader_t *asm_h; +{ + rf_PrintFullAccessStripeMap(asm_h, 0); +} + +void +rf_PrintFullAccessStripeMap(asm_h, prbuf) + RF_AccessStripeMapHeader_t *asm_h; + int prbuf; /* flag to print buffer pointers */ +{ + int i; + RF_AccessStripeMap_t *asmap = asm_h->stripeMap; + RF_PhysDiskAddr_t *p; + printf("%d stripes total\n", (int) asm_h->numStripes); + for (; asmap; asmap = asmap->next) { + /* printf("Num failures: %d\n",asmap->numDataFailed); */ + /* printf("Num sectors: + * %d\n",(int)asmap->totalSectorsAccessed); */ + printf("Stripe %d (%d sectors), failures: %d data, %d parity: ", + (int) asmap->stripeID, + (int) asmap->totalSectorsAccessed, + (int) asmap->numDataFailed, + (int) asmap->numParityFailed); + if (asmap->parityInfo) { + printf("Parity [r%d c%d s%d-%d", asmap->parityInfo->row, asmap->parityInfo->col, + (int) asmap->parityInfo->startSector, + (int) (asmap->parityInfo->startSector + + asmap->parityInfo->numSector - 1)); + if (prbuf) + printf(" b0x%lx", (unsigned long) asmap->parityInfo->bufPtr); + if (asmap->parityInfo->next) { + printf(", r%d c%d s%d-%d", asmap->parityInfo->next->row, + asmap->parityInfo->next->col, + (int) asmap->parityInfo->next->startSector, + (int) (asmap->parityInfo->next->startSector + + asmap->parityInfo->next->numSector - 1)); + if (prbuf) + printf(" b0x%lx", (unsigned long) asmap->parityInfo->next->bufPtr); + RF_ASSERT(asmap->parityInfo->next->next == NULL); + } + printf("]\n\t"); + } + for (i = 0, p = asmap->physInfo; p; p = p->next, i++) { + printf("SU r%d c%d s%d-%d ", p->row, p->col, (int) p->startSector, + (int) (p->startSector + p->numSector - 1)); + if (prbuf) + printf("b0x%lx ", (unsigned long) p->bufPtr); + if (i && !(i & 1)) + printf("\n\t"); + } + printf("\n"); + p = asm_h->stripeMap->failedPDAs[0]; + if (asm_h->stripeMap->numDataFailed + asm_h->stripeMap->numParityFailed > 1) + printf("[multiple failures]\n"); + else + if (asm_h->stripeMap->numDataFailed + asm_h->stripeMap->numParityFailed > 0) + printf("\t[Failed PDA: r%d c%d s%d-%d]\n", p->row, p->col, + (int) p->startSector, (int) (p->startSector + p->numSector - 1)); + } +} + +void +rf_PrintRaidAddressInfo(raidPtr, raidAddr, numBlocks) + RF_Raid_t *raidPtr; + RF_RaidAddr_t raidAddr; + RF_SectorCount_t numBlocks; +{ + RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; + RF_RaidAddr_t ra, sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, raidAddr); + + printf("Raid addrs of SU boundaries from start of stripe to end of access:\n\t"); + for (ra = sosAddr; ra <= raidAddr + numBlocks; ra += layoutPtr->sectorsPerStripeUnit) { + printf("%d (0x%x), ", (int) ra, (int) ra); + } + printf("\n"); + printf("Offset into stripe unit: %d (0x%x)\n", + (int) (raidAddr % layoutPtr->sectorsPerStripeUnit), + (int) (raidAddr % layoutPtr->sectorsPerStripeUnit)); +} +/* + given a parity descriptor and the starting address within a stripe, + range restrict the parity descriptor to touch only the correct stuff. +*/ +void +rf_ASMParityAdjust( + RF_PhysDiskAddr_t * toAdjust, + RF_StripeNum_t startAddrWithinStripe, + RF_SectorNum_t endAddress, + RF_RaidLayout_t * layoutPtr, + RF_AccessStripeMap_t * asm_p) +{ + RF_PhysDiskAddr_t *new_pda; + + /* when we're accessing only a portion of one stripe unit, we want the + * parity descriptor to identify only the chunk of parity associated + * with the data. When the access spans exactly one stripe unit + * boundary and is less than a stripe unit in size, it uses two + * disjoint regions of the parity unit. When an access spans more + * than one stripe unit boundary, it uses all of the parity unit. + * + * To better handle the case where stripe units are small, we may + * eventually want to change the 2nd case so that if the SU size is + * below some threshold, we just read/write the whole thing instead of + * breaking it up into two accesses. */ + if (asm_p->numStripeUnitsAccessed == 1) { + int x = (startAddrWithinStripe % layoutPtr->sectorsPerStripeUnit); + toAdjust->startSector += x; + toAdjust->raidAddress += x; + toAdjust->numSector = asm_p->physInfo->numSector; + RF_ASSERT(toAdjust->numSector != 0); + } else + if (asm_p->numStripeUnitsAccessed == 2 && asm_p->totalSectorsAccessed < layoutPtr->sectorsPerStripeUnit) { + int x = (startAddrWithinStripe % layoutPtr->sectorsPerStripeUnit); + + /* create a second pda and copy the parity map info + * into it */ + RF_ASSERT(toAdjust->next == NULL); + new_pda = toAdjust->next = rf_AllocPhysDiskAddr(); + *new_pda = *toAdjust; /* structure assignment */ + new_pda->next = NULL; + + /* adjust the start sector & number of blocks for the + * first parity pda */ + toAdjust->startSector += x; + toAdjust->raidAddress += x; + toAdjust->numSector = rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, startAddrWithinStripe) - startAddrWithinStripe; + RF_ASSERT(toAdjust->numSector != 0); + + /* adjust the second pda */ + new_pda->numSector = endAddress - rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, endAddress); + /* new_pda->raidAddress = + * rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, + * toAdjust->raidAddress); */ + RF_ASSERT(new_pda->numSector != 0); + } +} +/* + Check if a disk has been spared or failed. If spared, + redirect the I/O. + If it has been failed, record it in the asm pointer. + Fourth arg is whether data or parity. +*/ +void +rf_ASMCheckStatus( + RF_Raid_t * raidPtr, + RF_PhysDiskAddr_t * pda_p, + RF_AccessStripeMap_t * asm_p, + RF_RaidDisk_t ** disks, + int parity) +{ + RF_DiskStatus_t dstatus; + RF_RowCol_t frow, fcol; + + dstatus = disks[pda_p->row][pda_p->col].status; + + if (dstatus == rf_ds_spared) { + /* if the disk has been spared, redirect access to the spare */ + frow = pda_p->row; + fcol = pda_p->col; + pda_p->row = disks[frow][fcol].spareRow; + pda_p->col = disks[frow][fcol].spareCol; + } else + if (dstatus == rf_ds_dist_spared) { + /* ditto if disk has been spared to dist spare space */ + RF_RowCol_t or = pda_p->row, oc = pda_p->col; + RF_SectorNum_t oo = pda_p->startSector; + + if (pda_p->type == RF_PDA_TYPE_DATA) + raidPtr->Layout.map->MapSector(raidPtr, pda_p->raidAddress, &pda_p->row, &pda_p->col, &pda_p->startSector, RF_REMAP); + else + raidPtr->Layout.map->MapParity(raidPtr, pda_p->raidAddress, &pda_p->row, &pda_p->col, &pda_p->startSector, RF_REMAP); + + if (rf_mapDebug) { + printf("Redirected r %d c %d o %d -> r%d c %d o %d\n", or, oc, (int) oo, + pda_p->row, pda_p->col, (int) pda_p->startSector); + } + } else + if (RF_DEAD_DISK(dstatus)) { + /* if the disk is inaccessible, mark the + * failure */ + if (parity) + asm_p->numParityFailed++; + else { + asm_p->numDataFailed++; +#if 0 + /* XXX Do we really want this spewing + * out on the console? GO */ + printf("DATA_FAILED!\n"); +#endif + } + asm_p->failedPDAs[asm_p->numFailedPDAs] = pda_p; + asm_p->numFailedPDAs++; +#if 0 + switch (asm_p->numParityFailed + asm_p->numDataFailed) { + case 1: + asm_p->failedPDAs[0] = pda_p; + break; + case 2: + asm_p->failedPDAs[1] = pda_p; + default: + break; + } +#endif + } + /* the redirected access should never span a stripe unit boundary */ + RF_ASSERT(rf_RaidAddressToStripeUnitID(&raidPtr->Layout, pda_p->raidAddress) == + rf_RaidAddressToStripeUnitID(&raidPtr->Layout, pda_p->raidAddress + pda_p->numSector - 1)); + RF_ASSERT(pda_p->col != -1); +} diff --git a/sys/dev/raidframe/rf_map.h b/sys/dev/raidframe/rf_map.h new file mode 100644 index 0000000..d7c6d19 --- /dev/null +++ b/sys/dev/raidframe/rf_map.h @@ -0,0 +1,94 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_map.h,v 1.3 1999/02/05 00:06:12 oster Exp $ */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Mark Holland + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +/* rf_map.h */ + +#ifndef _RF__RF_MAP_H_ +#define _RF__RF_MAP_H_ + +#include <dev/raidframe/rf_types.h> +#include <dev/raidframe/rf_alloclist.h> +#include <dev/raidframe/rf_raid.h> + +/* mapping structure allocation and free routines */ +RF_AccessStripeMapHeader_t * +rf_MapAccess(RF_Raid_t * raidPtr, + RF_RaidAddr_t raidAddress, RF_SectorCount_t numBlocks, + caddr_t buffer, int remap); + +void +rf_MarkFailuresInASMList(RF_Raid_t * raidPtr, + RF_AccessStripeMapHeader_t * asm_h); + +RF_AccessStripeMap_t *rf_DuplicateASM(RF_AccessStripeMap_t * asmap); + +RF_PhysDiskAddr_t *rf_DuplicatePDA(RF_PhysDiskAddr_t * pda); + +int rf_ConfigureMapModule(RF_ShutdownList_t ** listp); + +RF_AccessStripeMapHeader_t *rf_AllocAccessStripeMapHeader(void); + +void rf_FreeAccessStripeMapHeader(RF_AccessStripeMapHeader_t * p); + +RF_PhysDiskAddr_t *rf_AllocPhysDiskAddr(void); + +RF_PhysDiskAddr_t *rf_AllocPDAList(int count); + +void rf_FreePhysDiskAddr(RF_PhysDiskAddr_t * p); + +RF_AccessStripeMap_t *rf_AllocAccessStripeMapComponent(void); + +RF_AccessStripeMap_t *rf_AllocASMList(int count); + +void rf_FreeAccessStripeMapComponent(RF_AccessStripeMap_t * p); + +void rf_FreeAccessStripeMap(RF_AccessStripeMapHeader_t * hdr); + +int rf_CheckStripeForFailures(RF_Raid_t * raidPtr, RF_AccessStripeMap_t * asmap); + +int rf_NumFailedDataUnitsInStripe(RF_Raid_t * raidPtr, RF_AccessStripeMap_t * asmap); + +void rf_PrintAccessStripeMap(RF_AccessStripeMapHeader_t * asm_h); + +void rf_PrintFullAccessStripeMap(RF_AccessStripeMapHeader_t * asm_h, int prbuf); + +void +rf_PrintRaidAddressInfo(RF_Raid_t * raidPtr, RF_RaidAddr_t raidAddr, + RF_SectorCount_t numBlocks); + +void +rf_ASMParityAdjust(RF_PhysDiskAddr_t * toAdjust, + RF_StripeNum_t startAddrWithinStripe, RF_SectorNum_t endAddress, + RF_RaidLayout_t * layoutPtr, RF_AccessStripeMap_t * asm_p); + +void +rf_ASMCheckStatus(RF_Raid_t * raidPtr, RF_PhysDiskAddr_t * pda_p, + RF_AccessStripeMap_t * asm_p, RF_RaidDisk_t ** disks, int parity); + +#endif /* !_RF__RF_MAP_H_ */ diff --git a/sys/dev/raidframe/rf_mcpair.c b/sys/dev/raidframe/rf_mcpair.c new file mode 100644 index 0000000..ff233fe --- /dev/null +++ b/sys/dev/raidframe/rf_mcpair.c @@ -0,0 +1,141 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_mcpair.c,v 1.4 2000/09/11 02:23:14 oster Exp $ */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Jim Zelenka + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +/* rf_mcpair.c + * an mcpair is a structure containing a mutex and a condition variable. + * it's used to block the current thread until some event occurs. + */ + +#include <dev/raidframe/rf_types.h> +#include <dev/raidframe/rf_threadstuff.h> +#include <dev/raidframe/rf_mcpair.h> +#include <dev/raidframe/rf_debugMem.h> +#include <dev/raidframe/rf_freelist.h> +#include <dev/raidframe/rf_shutdown.h> + +#include <sys/proc.h> + +static RF_FreeList_t *rf_mcpair_freelist; + +#define RF_MAX_FREE_MCPAIR 128 +#define RF_MCPAIR_INC 16 +#define RF_MCPAIR_INITIAL 24 + +static int init_mcpair(RF_MCPair_t *); +static void clean_mcpair(RF_MCPair_t *); +static void rf_ShutdownMCPair(void *); + + + +static int +init_mcpair(t) + RF_MCPair_t *t; +{ + int rc; + + rc = rf_mutex_init(&t->mutex, __FUNCTION__); + if (rc) { + RF_ERRORMSG3("Unable to init mutex file %s line %d rc=%d\n", __FILE__, + __LINE__, rc); + return (rc); + } + rc = rf_cond_init(&t->cond); + if (rc) { + RF_ERRORMSG3("Unable to init cond file %s line %d rc=%d\n", __FILE__, + __LINE__, rc); + rf_mutex_destroy(&t->mutex); + return (rc); + } + return (0); +} + +static void +clean_mcpair(t) + RF_MCPair_t *t; +{ + rf_mutex_destroy(&t->mutex); + rf_cond_destroy(&t->cond); +} + +static void +rf_ShutdownMCPair(ignored) + void *ignored; +{ + RF_FREELIST_DESTROY_CLEAN(rf_mcpair_freelist, next, (RF_MCPair_t *), clean_mcpair); +} + +int +rf_ConfigureMCPair(listp) + RF_ShutdownList_t **listp; +{ + int rc; + + RF_FREELIST_CREATE(rf_mcpair_freelist, RF_MAX_FREE_MCPAIR, + RF_MCPAIR_INC, sizeof(RF_MCPair_t)); + rc = rf_ShutdownCreate(listp, rf_ShutdownMCPair, NULL); + if (rc) { + RF_ERRORMSG3("Unable to add to shutdown list file %s line %d rc=%d\n", + __FILE__, __LINE__, rc); + rf_ShutdownMCPair(NULL); + return (rc); + } + RF_FREELIST_PRIME_INIT(rf_mcpair_freelist, RF_MCPAIR_INITIAL, next, + (RF_MCPair_t *), init_mcpair); + return (0); +} + +RF_MCPair_t * +rf_AllocMCPair() +{ + RF_MCPair_t *t; + + RF_FREELIST_GET_INIT(rf_mcpair_freelist, t, next, (RF_MCPair_t *), init_mcpair); + if (t) { + t->flag = 0; + t->next = NULL; + } + return (t); +} + +void +rf_FreeMCPair(t) + RF_MCPair_t *t; +{ + RF_FREELIST_FREE_CLEAN(rf_mcpair_freelist, t, next, clean_mcpair); +} +/* the callback function used to wake you up when you use an mcpair to wait for something */ +void +rf_MCPairWakeupFunc(mcpair) + RF_MCPair_t *mcpair; +{ + RF_LOCK_MUTEX(mcpair->mutex); + mcpair->flag = 1; + wakeup(&(mcpair->cond)); + RF_UNLOCK_MUTEX(mcpair->mutex); +} diff --git a/sys/dev/raidframe/rf_mcpair.h b/sys/dev/raidframe/rf_mcpair.h new file mode 100644 index 0000000..d43c728 --- /dev/null +++ b/sys/dev/raidframe/rf_mcpair.h @@ -0,0 +1,54 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_mcpair.h,v 1.6 2000/09/21 01:45:46 oster Exp $ */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Mark Holland + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +/* rf_mcpair.h + * see comments in rf_mcpair.c + */ + +#ifndef _RF__RF_MCPAIR_H_ +#define _RF__RF_MCPAIR_H_ + +#include <dev/raidframe/rf_types.h> +#include <dev/raidframe/rf_threadstuff.h> + +struct RF_MCPair_s { + RF_DECLARE_MUTEX(mutex) + RF_DECLARE_COND(cond) + int flag; + RF_MCPair_t *next; +}; +#define RF_WAIT_MCPAIR(_mcp) \ + RF_LTSLEEP(&((_mcp)->cond), PRIBIO, "mcpair", 0, &((_mcp)->mutex)) + +int rf_ConfigureMCPair(RF_ShutdownList_t ** listp); +RF_MCPair_t *rf_AllocMCPair(void); +void rf_FreeMCPair(RF_MCPair_t * t); +void rf_MCPairWakeupFunc(RF_MCPair_t * t); + +#endif /* !_RF__RF_MCPAIR_H_ */ diff --git a/sys/dev/raidframe/rf_memchunk.c b/sys/dev/raidframe/rf_memchunk.c new file mode 100644 index 0000000..b4aae57 --- /dev/null +++ b/sys/dev/raidframe/rf_memchunk.c @@ -0,0 +1,211 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_memchunk.c,v 1.4 1999/08/13 03:41:56 oster Exp $ */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Mark Holland + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +/********************************************************************************* + * rf_memchunk.c + * + * experimental code. I've found that the malloc and free calls in the DAG + * creation code are very expensive. Since for any given workload the DAGs + * created for different accesses are likely to be similar to each other, the + * amount of memory used for any given DAG data structure is likely to be one + * of a small number of values. For example, in UNIX, all reads and writes will + * be less than 8k and will not span stripe unit boundaries. Thus in the absence + * of failure, the only DAGs that will ever get created are single-node reads + * and single-stripe-unit atomic read-modify-writes. So, I'm very likely to + * be continually asking for chunks of memory equal to the sizes of these two + * DAGs. + * + * This leads to the idea of holding on to these chunks of memory when the DAG is + * freed and then, when a new DAG is created, trying to find such a chunk before + * calling malloc. + * + * the "chunk list" is a list of lists. Each header node contains a size value + * and a pointer to a list of chunk descriptors, each of which holds a pointer + * to a chunk of memory of the indicated size. + * + * There is currently no way to purge memory out of the chunk list. My + * initial thought on this is to have a low-priority thread that wakes up every + * 1 or 2 seconds, purges all the chunks with low reuse counts, and sets all + * the reuse counts to zero. + * + * This whole idea may be bad, since malloc may be able to do this more efficiently. + * It's worth a try, though, and it can be turned off by setting useMemChunks to 0. + * + ********************************************************************************/ + +#include <dev/raidframe/rf_types.h> +#include <dev/raidframe/rf_threadstuff.h> +#include <dev/raidframe/rf_debugMem.h> +#include <dev/raidframe/rf_memchunk.h> +#include <dev/raidframe/rf_general.h> +#include <dev/raidframe/rf_options.h> +#include <dev/raidframe/rf_shutdown.h> + +typedef struct RF_ChunkHdr_s RF_ChunkHdr_t; +struct RF_ChunkHdr_s { + int size; + RF_ChunkDesc_t *list; + RF_ChunkHdr_t *next; +}; + +static RF_ChunkHdr_t *chunklist, *chunk_hdr_free_list; +static RF_ChunkDesc_t *chunk_desc_free_list; +RF_DECLARE_STATIC_MUTEX(chunkmutex) + static void rf_ShutdownMemChunk(void *); + static RF_ChunkDesc_t *NewMemChunk(int, char *); + + + static void rf_ShutdownMemChunk(ignored) + void *ignored; +{ + RF_ChunkDesc_t *pt, *p; + RF_ChunkHdr_t *hdr, *ht; + + if (rf_memChunkDebug) + printf("Chunklist:\n"); + for (hdr = chunklist; hdr;) { + for (p = hdr->list; p;) { + if (rf_memChunkDebug) + printf("Size %d reuse count %d\n", p->size, p->reuse_count); + pt = p; + p = p->next; + RF_Free(pt->buf, pt->size); + RF_Free(pt, sizeof(*pt)); + } + ht = hdr; + hdr = hdr->next; + RF_Free(ht, sizeof(*ht)); + } + + rf_mutex_destroy(&chunkmutex); +} + +int +rf_ConfigureMemChunk(listp) + RF_ShutdownList_t **listp; +{ + int rc; + + chunklist = NULL; + chunk_hdr_free_list = NULL; + chunk_desc_free_list = NULL; + rc = rf_mutex_init(&chunkmutex, __FUNCTION__); + if (rc) { + RF_ERRORMSG3("Unable to init mutex file %s line %d rc=%d\n", __FILE__, + __LINE__, rc); + } + rc = rf_ShutdownCreate(listp, rf_ShutdownMemChunk, NULL); + if (rc) { + RF_ERRORMSG3("Unable to add to shutdown list file %s line %d rc=%d\n", __FILE__, + __LINE__, rc); + rf_mutex_destroy(&chunkmutex); + } + return (rc); +} +/* called to get a chunk descriptor for a newly-allocated chunk of memory + * MUTEX MUST BE LOCKED + * + * free list is not currently used + */ +static RF_ChunkDesc_t * +NewMemChunk(size, buf) + int size; + char *buf; +{ + RF_ChunkDesc_t *p; + + if (chunk_desc_free_list) { + p = chunk_desc_free_list; + chunk_desc_free_list = p->next; + } else + RF_Malloc(p, sizeof(RF_ChunkDesc_t), (RF_ChunkDesc_t *)); + p->size = size; + p->buf = buf; + p->next = NULL; + p->reuse_count = 0; + return (p); +} +/* looks for a chunk of memory of acceptable size. If none, allocates one and returns + * a chunk descriptor for it, but does not install anything in the list. This is done + * when the chunk is released. + */ +RF_ChunkDesc_t * +rf_GetMemChunk(size) + int size; +{ + RF_ChunkHdr_t *hdr = chunklist; + RF_ChunkDesc_t *p = NULL; + char *buf; + + RF_LOCK_MUTEX(chunkmutex); + for (hdr = chunklist; hdr; hdr = hdr->next) + if (hdr->size >= size) { + p = hdr->list; + if (p) { + hdr->list = p->next; + p->next = NULL; + p->reuse_count++; + } + break; + } + if (!p) { + RF_Malloc(buf, size, (char *)); + p = NewMemChunk(size, buf); + } + RF_UNLOCK_MUTEX(chunkmutex); + (void) bzero(p->buf, size); + return (p); +} + +void +rf_ReleaseMemChunk(chunk) + RF_ChunkDesc_t *chunk; +{ + RF_ChunkHdr_t *hdr, *ht = NULL, *new; + + RF_LOCK_MUTEX(chunkmutex); + for (hdr = chunklist; hdr && hdr->size < chunk->size; ht = hdr, hdr = hdr->next); + if (hdr && hdr->size == chunk->size) { + chunk->next = hdr->list; + hdr->list = chunk; + } else { + RF_Malloc(new, sizeof(RF_ChunkHdr_t), (RF_ChunkHdr_t *)); + new->size = chunk->size; + new->list = chunk; + chunk->next = NULL; + if (ht) { + new->next = ht->next; + ht->next = new; + } else { + new->next = hdr; + chunklist = new; + } + } + RF_UNLOCK_MUTEX(chunkmutex); +} diff --git a/sys/dev/raidframe/rf_memchunk.h b/sys/dev/raidframe/rf_memchunk.h new file mode 100644 index 0000000..5806d20 --- /dev/null +++ b/sys/dev/raidframe/rf_memchunk.h @@ -0,0 +1,48 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_memchunk.h,v 1.3 1999/02/05 00:06:13 oster Exp $ */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Mark Holland + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +/* header file for rf_memchunk.c. See comments there */ + +#ifndef _RF__RF_MEMCHUNK_H_ +#define _RF__RF_MEMCHUNK_H_ + +#include <dev/raidframe/rf_types.h> + +struct RF_ChunkDesc_s { + int size; + int reuse_count; + char *buf; + RF_ChunkDesc_t *next; +}; + +int rf_ConfigureMemChunk(RF_ShutdownList_t ** listp); +RF_ChunkDesc_t *rf_GetMemChunk(int size); +void rf_ReleaseMemChunk(RF_ChunkDesc_t * chunk); + +#endif /* !_RF__RF_MEMCHUNK_H_ */ diff --git a/sys/dev/raidframe/rf_nwayxor.c b/sys/dev/raidframe/rf_nwayxor.c new file mode 100644 index 0000000..c5d142b --- /dev/null +++ b/sys/dev/raidframe/rf_nwayxor.c @@ -0,0 +1,449 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_nwayxor.c,v 1.4 2000/03/30 12:45:41 augustss Exp $ */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Mark Holland, Daniel Stodolsky + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +/************************************************************ + * + * nwayxor.c -- code to do N-way xors for reconstruction + * + * nWayXorN xors N input buffers into the destination buffer. + * adapted from danner's longword_bxor code. + * + ************************************************************/ + +#include <dev/raidframe/rf_nwayxor.h> +#include <dev/raidframe/rf_shutdown.h> + +static int callcount[10]; +static void rf_ShutdownNWayXor(void *); + +static void +rf_ShutdownNWayXor(ignored) + void *ignored; +{ + int i; + + if (rf_showXorCallCounts == 0) + return; + printf("Call counts for n-way xor routines: "); + for (i = 0; i < 10; i++) + printf("%d ", callcount[i]); + printf("\n"); +} + +int +rf_ConfigureNWayXor(listp) + RF_ShutdownList_t **listp; +{ + int i, rc; + + for (i = 0; i < 10; i++) + callcount[i] = 0; + rc = rf_ShutdownCreate(listp, rf_ShutdownNWayXor, NULL); + return (rc); +} + +void +rf_nWayXor1(src_rbs, dest_rb, len) + RF_ReconBuffer_t **src_rbs; + RF_ReconBuffer_t *dest_rb; + int len; +{ + unsigned long *src = (unsigned long *) src_rbs[0]->buffer; + unsigned long *dest = (unsigned long *) dest_rb->buffer; + unsigned long *end = src + len; + unsigned long d0, d1, d2, d3, s0, s1, s2, s3; + + callcount[1]++; + while (len >= 4) { + d0 = dest[0]; + d1 = dest[1]; + d2 = dest[2]; + d3 = dest[3]; + s0 = src[0]; + s1 = src[1]; + s2 = src[2]; + s3 = src[3]; + dest[0] = d0 ^ s0; + dest[1] = d1 ^ s1; + dest[2] = d2 ^ s2; + dest[3] = d3 ^ s3; + src += 4; + dest += 4; + len -= 4; + } + while (src < end) { + *dest++ ^= *src++; + } +} + +void +rf_nWayXor2(src_rbs, dest_rb, len) + RF_ReconBuffer_t **src_rbs; + RF_ReconBuffer_t *dest_rb; + int len; +{ + unsigned long *dst = (unsigned long *) dest_rb->buffer; + unsigned long *a = dst; + unsigned long *b = (unsigned long *) src_rbs[0]->buffer; + unsigned long *c = (unsigned long *) src_rbs[1]->buffer; + unsigned long a0, a1, a2, a3, b0, b1, b2, b3; + + callcount[2]++; + /* align dest to cache line */ + while ((((unsigned long) dst) & 0x1f)) { + *dst++ = *a++ ^ *b++ ^ *c++; + len--; + } + while (len > 4) { + a0 = a[0]; + len -= 4; + + a1 = a[1]; + a2 = a[2]; + + a3 = a[3]; + a += 4; + + b0 = b[0]; + b1 = b[1]; + + b2 = b[2]; + b3 = b[3]; + /* start dual issue */ + a0 ^= b0; + b0 = c[0]; + + b += 4; + a1 ^= b1; + + a2 ^= b2; + a3 ^= b3; + + b1 = c[1]; + a0 ^= b0; + + b2 = c[2]; + a1 ^= b1; + + b3 = c[3]; + a2 ^= b2; + + dst[0] = a0; + a3 ^= b3; + dst[1] = a1; + c += 4; + dst[2] = a2; + dst[3] = a3; + dst += 4; + } + while (len) { + *dst++ = *a++ ^ *b++ ^ *c++; + len--; + } +} +/* note that first arg is not incremented but 2nd arg is */ +#define LOAD_FIRST(_dst,_b) \ + a0 = _dst[0]; len -= 4; \ + a1 = _dst[1]; \ + a2 = _dst[2]; \ + a3 = _dst[3]; \ + b0 = _b[0]; \ + b1 = _b[1]; \ + b2 = _b[2]; \ + b3 = _b[3]; _b += 4; + +/* note: arg is incremented */ +#define XOR_AND_LOAD_NEXT(_n) \ + a0 ^= b0; b0 = _n[0]; \ + a1 ^= b1; b1 = _n[1]; \ + a2 ^= b2; b2 = _n[2]; \ + a3 ^= b3; b3 = _n[3]; \ + _n += 4; + +/* arg is incremented */ +#define XOR_AND_STORE(_dst) \ + a0 ^= b0; _dst[0] = a0; \ + a1 ^= b1; _dst[1] = a1; \ + a2 ^= b2; _dst[2] = a2; \ + a3 ^= b3; _dst[3] = a3; \ + _dst += 4; + + +void +rf_nWayXor3(src_rbs, dest_rb, len) + RF_ReconBuffer_t **src_rbs; + RF_ReconBuffer_t *dest_rb; + int len; +{ + unsigned long *dst = (unsigned long *) dest_rb->buffer; + unsigned long *b = (unsigned long *) src_rbs[0]->buffer; + unsigned long *c = (unsigned long *) src_rbs[1]->buffer; + unsigned long *d = (unsigned long *) src_rbs[2]->buffer; + unsigned long a0, a1, a2, a3, b0, b1, b2, b3; + + callcount[3]++; + /* align dest to cache line */ + while ((((unsigned long) dst) & 0x1f)) { + *dst++ ^= *b++ ^ *c++ ^ *d++; + len--; + } + while (len > 4) { + LOAD_FIRST(dst, b); + XOR_AND_LOAD_NEXT(c); + XOR_AND_LOAD_NEXT(d); + XOR_AND_STORE(dst); + } + while (len) { + *dst++ ^= *b++ ^ *c++ ^ *d++; + len--; + } +} + +void +rf_nWayXor4(src_rbs, dest_rb, len) + RF_ReconBuffer_t **src_rbs; + RF_ReconBuffer_t *dest_rb; + int len; +{ + unsigned long *dst = (unsigned long *) dest_rb->buffer; + unsigned long *b = (unsigned long *) src_rbs[0]->buffer; + unsigned long *c = (unsigned long *) src_rbs[1]->buffer; + unsigned long *d = (unsigned long *) src_rbs[2]->buffer; + unsigned long *e = (unsigned long *) src_rbs[3]->buffer; + unsigned long a0, a1, a2, a3, b0, b1, b2, b3; + + callcount[4]++; + /* align dest to cache line */ + while ((((unsigned long) dst) & 0x1f)) { + *dst++ ^= *b++ ^ *c++ ^ *d++ ^ *e++; + len--; + } + while (len > 4) { + LOAD_FIRST(dst, b); + XOR_AND_LOAD_NEXT(c); + XOR_AND_LOAD_NEXT(d); + XOR_AND_LOAD_NEXT(e); + XOR_AND_STORE(dst); + } + while (len) { + *dst++ ^= *b++ ^ *c++ ^ *d++ ^ *e++; + len--; + } +} + +void +rf_nWayXor5(src_rbs, dest_rb, len) + RF_ReconBuffer_t **src_rbs; + RF_ReconBuffer_t *dest_rb; + int len; +{ + unsigned long *dst = (unsigned long *) dest_rb->buffer; + unsigned long *b = (unsigned long *) src_rbs[0]->buffer; + unsigned long *c = (unsigned long *) src_rbs[1]->buffer; + unsigned long *d = (unsigned long *) src_rbs[2]->buffer; + unsigned long *e = (unsigned long *) src_rbs[3]->buffer; + unsigned long *f = (unsigned long *) src_rbs[4]->buffer; + unsigned long a0, a1, a2, a3, b0, b1, b2, b3; + + callcount[5]++; + /* align dest to cache line */ + while ((((unsigned long) dst) & 0x1f)) { + *dst++ ^= *b++ ^ *c++ ^ *d++ ^ *e++ ^ *f++; + len--; + } + while (len > 4) { + LOAD_FIRST(dst, b); + XOR_AND_LOAD_NEXT(c); + XOR_AND_LOAD_NEXT(d); + XOR_AND_LOAD_NEXT(e); + XOR_AND_LOAD_NEXT(f); + XOR_AND_STORE(dst); + } + while (len) { + *dst++ ^= *b++ ^ *c++ ^ *d++ ^ *e++ ^ *f++; + len--; + } +} + +void +rf_nWayXor6(src_rbs, dest_rb, len) + RF_ReconBuffer_t **src_rbs; + RF_ReconBuffer_t *dest_rb; + int len; +{ + unsigned long *dst = (unsigned long *) dest_rb->buffer; + unsigned long *b = (unsigned long *) src_rbs[0]->buffer; + unsigned long *c = (unsigned long *) src_rbs[1]->buffer; + unsigned long *d = (unsigned long *) src_rbs[2]->buffer; + unsigned long *e = (unsigned long *) src_rbs[3]->buffer; + unsigned long *f = (unsigned long *) src_rbs[4]->buffer; + unsigned long *g = (unsigned long *) src_rbs[5]->buffer; + unsigned long a0, a1, a2, a3, b0, b1, b2, b3; + + callcount[6]++; + /* align dest to cache line */ + while ((((unsigned long) dst) & 0x1f)) { + *dst++ ^= *b++ ^ *c++ ^ *d++ ^ *e++ ^ *f++ ^ *g++; + len--; + } + while (len > 4) { + LOAD_FIRST(dst, b); + XOR_AND_LOAD_NEXT(c); + XOR_AND_LOAD_NEXT(d); + XOR_AND_LOAD_NEXT(e); + XOR_AND_LOAD_NEXT(f); + XOR_AND_LOAD_NEXT(g); + XOR_AND_STORE(dst); + } + while (len) { + *dst++ ^= *b++ ^ *c++ ^ *d++ ^ *e++ ^ *f++ ^ *g++; + len--; + } +} + +void +rf_nWayXor7(src_rbs, dest_rb, len) + RF_ReconBuffer_t **src_rbs; + RF_ReconBuffer_t *dest_rb; + int len; +{ + unsigned long *dst = (unsigned long *) dest_rb->buffer; + unsigned long *b = (unsigned long *) src_rbs[0]->buffer; + unsigned long *c = (unsigned long *) src_rbs[1]->buffer; + unsigned long *d = (unsigned long *) src_rbs[2]->buffer; + unsigned long *e = (unsigned long *) src_rbs[3]->buffer; + unsigned long *f = (unsigned long *) src_rbs[4]->buffer; + unsigned long *g = (unsigned long *) src_rbs[5]->buffer; + unsigned long *h = (unsigned long *) src_rbs[6]->buffer; + unsigned long a0, a1, a2, a3, b0, b1, b2, b3; + + callcount[7]++; + /* align dest to cache line */ + while ((((unsigned long) dst) & 0x1f)) { + *dst++ ^= *b++ ^ *c++ ^ *d++ ^ *e++ ^ *f++ ^ *g++ ^ *h++; + len--; + } + while (len > 4) { + LOAD_FIRST(dst, b); + XOR_AND_LOAD_NEXT(c); + XOR_AND_LOAD_NEXT(d); + XOR_AND_LOAD_NEXT(e); + XOR_AND_LOAD_NEXT(f); + XOR_AND_LOAD_NEXT(g); + XOR_AND_LOAD_NEXT(h); + XOR_AND_STORE(dst); + } + while (len) { + *dst++ ^= *b++ ^ *c++ ^ *d++ ^ *e++ ^ *f++ ^ *g++ ^ *h++; + len--; + } +} + +void +rf_nWayXor8(src_rbs, dest_rb, len) + RF_ReconBuffer_t **src_rbs; + RF_ReconBuffer_t *dest_rb; + int len; +{ + unsigned long *dst = (unsigned long *) dest_rb->buffer; + unsigned long *b = (unsigned long *) src_rbs[0]->buffer; + unsigned long *c = (unsigned long *) src_rbs[1]->buffer; + unsigned long *d = (unsigned long *) src_rbs[2]->buffer; + unsigned long *e = (unsigned long *) src_rbs[3]->buffer; + unsigned long *f = (unsigned long *) src_rbs[4]->buffer; + unsigned long *g = (unsigned long *) src_rbs[5]->buffer; + unsigned long *h = (unsigned long *) src_rbs[6]->buffer; + unsigned long *i = (unsigned long *) src_rbs[7]->buffer; + unsigned long a0, a1, a2, a3, b0, b1, b2, b3; + + callcount[8]++; + /* align dest to cache line */ + while ((((unsigned long) dst) & 0x1f)) { + *dst++ ^= *b++ ^ *c++ ^ *d++ ^ *e++ ^ *f++ ^ *g++ ^ *h++ ^ *i++; + len--; + } + while (len > 4) { + LOAD_FIRST(dst, b); + XOR_AND_LOAD_NEXT(c); + XOR_AND_LOAD_NEXT(d); + XOR_AND_LOAD_NEXT(e); + XOR_AND_LOAD_NEXT(f); + XOR_AND_LOAD_NEXT(g); + XOR_AND_LOAD_NEXT(h); + XOR_AND_LOAD_NEXT(i); + XOR_AND_STORE(dst); + } + while (len) { + *dst++ ^= *b++ ^ *c++ ^ *d++ ^ *e++ ^ *f++ ^ *g++ ^ *h++ ^ *i++; + len--; + } +} + + +void +rf_nWayXor9(src_rbs, dest_rb, len) + RF_ReconBuffer_t **src_rbs; + RF_ReconBuffer_t *dest_rb; + int len; +{ + unsigned long *dst = (unsigned long *) dest_rb->buffer; + unsigned long *b = (unsigned long *) src_rbs[0]->buffer; + unsigned long *c = (unsigned long *) src_rbs[1]->buffer; + unsigned long *d = (unsigned long *) src_rbs[2]->buffer; + unsigned long *e = (unsigned long *) src_rbs[3]->buffer; + unsigned long *f = (unsigned long *) src_rbs[4]->buffer; + unsigned long *g = (unsigned long *) src_rbs[5]->buffer; + unsigned long *h = (unsigned long *) src_rbs[6]->buffer; + unsigned long *i = (unsigned long *) src_rbs[7]->buffer; + unsigned long *j = (unsigned long *) src_rbs[8]->buffer; + unsigned long a0, a1, a2, a3, b0, b1, b2, b3; + + callcount[9]++; + /* align dest to cache line */ + while ((((unsigned long) dst) & 0x1f)) { + *dst++ ^= *b++ ^ *c++ ^ *d++ ^ *e++ ^ *f++ ^ *g++ ^ *h++ ^ *i++ ^ *j++; + len--; + } + while (len > 4) { + LOAD_FIRST(dst, b); + XOR_AND_LOAD_NEXT(c); + XOR_AND_LOAD_NEXT(d); + XOR_AND_LOAD_NEXT(e); + XOR_AND_LOAD_NEXT(f); + XOR_AND_LOAD_NEXT(g); + XOR_AND_LOAD_NEXT(h); + XOR_AND_LOAD_NEXT(i); + XOR_AND_LOAD_NEXT(j); + XOR_AND_STORE(dst); + } + while (len) { + *dst++ ^= *b++ ^ *c++ ^ *d++ ^ *e++ ^ *f++ ^ *g++ ^ *h++ ^ *i++ ^ *j++; + len--; + } +} diff --git a/sys/dev/raidframe/rf_nwayxor.h b/sys/dev/raidframe/rf_nwayxor.h new file mode 100644 index 0000000..1460d9b --- /dev/null +++ b/sys/dev/raidframe/rf_nwayxor.h @@ -0,0 +1,54 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_nwayxor.h,v 1.3 1999/02/05 00:06:13 oster Exp $ */ +/* + * rf_nwayxor.h + */ +/* + * Copyright (c) 1996 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Jim Zelenka + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ +/* + * rf_nwayxor.h -- types and prototypes for nwayxor module + */ + +#ifndef _RF__RF_NWAYXOR_H_ +#define _RF__RF_NWAYXOR_H_ + +#include <dev/raidframe/rf_types.h> +#include <dev/raidframe/rf_raid.h> +#include <dev/raidframe/rf_reconstruct.h> + +int rf_ConfigureNWayXor(RF_ShutdownList_t ** listp); +void rf_nWayXor1(RF_ReconBuffer_t ** src_rbs, RF_ReconBuffer_t * dest_rb, int len); +void rf_nWayXor2(RF_ReconBuffer_t ** src_rbs, RF_ReconBuffer_t * dest_rb, int len); +void rf_nWayXor3(RF_ReconBuffer_t ** src_rbs, RF_ReconBuffer_t * dest_rb, int len); +void rf_nWayXor4(RF_ReconBuffer_t ** src_rbs, RF_ReconBuffer_t * dest_rb, int len); +void rf_nWayXor5(RF_ReconBuffer_t ** src_rbs, RF_ReconBuffer_t * dest_rb, int len); +void rf_nWayXor6(RF_ReconBuffer_t ** src_rbs, RF_ReconBuffer_t * dest_rb, int len); +void rf_nWayXor7(RF_ReconBuffer_t ** src_rbs, RF_ReconBuffer_t * dest_rb, int len); +void rf_nWayXor8(RF_ReconBuffer_t ** src_rbs, RF_ReconBuffer_t * dest_rb, int len); +void rf_nWayXor9(RF_ReconBuffer_t ** src_rbs, RF_ReconBuffer_t * dest_rb, int len); + +#endif /* !_RF__RF_NWAYXOR_H_ */ diff --git a/sys/dev/raidframe/rf_options.c b/sys/dev/raidframe/rf_options.c new file mode 100644 index 0000000..9ead8b2 --- /dev/null +++ b/sys/dev/raidframe/rf_options.c @@ -0,0 +1,76 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_options.c,v 1.3 1999/02/05 00:06:13 oster Exp $ */ +/* + * rf_options.c + */ +/* + * Copyright (c) 1996 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Jim Zelenka + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + + +#include <dev/raidframe/rf_threadstuff.h> +#include <dev/raidframe/rf_types.h> +#include <dev/raidframe/rf_archs.h> +#include <dev/raidframe/rf_general.h> +#include <dev/raidframe/rf_options.h> + +#ifdef RF_DBG_OPTION +#undef RF_DBG_OPTION +#endif /* RF_DBG_OPTION */ + +#ifdef __STDC__ +#define RF_DBG_OPTION(_option_,_defval_) long rf_##_option_ = _defval_; +#else /* __STDC__ */ +#define RF_DBG_OPTION(_option_,_defval_) long rf_/**/_option_ = _defval_; +#endif /* __STDC__ */ + +#include <dev/raidframe/rf_optnames.h> + +#undef RF_DBG_OPTION + +#ifdef __STDC__ +#define RF_DBG_OPTION(_option_,_defval_) { RF_STRING(_option_), &rf_##_option_ }, +#else /* __STDC__ */ +#define RF_DBG_OPTION(_option_,_defval_) { RF_STRING(_option_), &rf_/**/_option_ }, +#endif /* __STDC__ */ + +RF_DebugName_t rf_debugNames[] = { +#include <dev/raidframe/rf_optnames.h> + {NULL, NULL} +}; +#undef RF_DBG_OPTION + +#ifdef __STDC__ +#define RF_DBG_OPTION(_option_,_defval_) rf_##_option_ = _defval_ ; +#else /* __STDC__ */ +#define RF_DBG_OPTION(_option_,_defval_) rf_/**/_option_ = _defval_ ; +#endif /* __STDC__ */ + +void +rf_ResetDebugOptions() +{ +#include <dev/raidframe/rf_optnames.h> +} diff --git a/sys/dev/raidframe/rf_options.h b/sys/dev/raidframe/rf_options.h new file mode 100644 index 0000000..22b6341 --- /dev/null +++ b/sys/dev/raidframe/rf_options.h @@ -0,0 +1,58 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_options.h,v 1.3 1999/02/05 00:06:13 oster Exp $ */ +/* + * rf_options.h + */ +/* + * Copyright (c) 1996 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Jim Zelenka + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +#ifndef _RF__RF_OPTIONS_H_ +#define _RF__RF_OPTIONS_H_ + +#define RF_DEFAULT_LOCK_TABLE_SIZE 256 + +typedef struct RF_DebugNames_s { + char *name; + long *ptr; +} RF_DebugName_t; + +extern RF_DebugName_t rf_debugNames[]; + +#ifdef RF_DBG_OPTION +#undef RF_DBG_OPTION +#endif /* RF_DBG_OPTION */ + +#ifdef __STDC__ +#define RF_DBG_OPTION(_option_,_defval_) extern long rf_##_option_; +#else /* __STDC__ */ +#define RF_DBG_OPTION(_option_,_defval_) extern long rf_/**/_option_; +#endif /* __STDC__ */ +#include <dev/raidframe/rf_optnames.h> + +void rf_ResetDebugOptions(void); + +#endif /* !_RF__RF_OPTIONS_H_ */ diff --git a/sys/dev/raidframe/rf_optnames.h b/sys/dev/raidframe/rf_optnames.h new file mode 100644 index 0000000..f04fbc1 --- /dev/null +++ b/sys/dev/raidframe/rf_optnames.h @@ -0,0 +1,105 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_optnames.h,v 1.6 1999/12/07 02:54:08 oster Exp $ */ +/* + * rf_optnames.h + */ +/* + * Copyright (c) 1996 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Jim Zelenka + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +/* + * Don't protect against multiple inclusion here- we actually want this. + */ + +RF_DBG_OPTION(accessDebug, 0) +RF_DBG_OPTION(accessTraceBufSize, 0) +RF_DBG_OPTION(cscanDebug, 0) /* debug CSCAN sorting */ +RF_DBG_OPTION(dagDebug, 0) +RF_DBG_OPTION(debugPrintUseBuffer, 0) +RF_DBG_OPTION(degDagDebug, 0) +RF_DBG_OPTION(disableAsyncAccs, 0) +RF_DBG_OPTION(diskDebug, 0) +RF_DBG_OPTION(enableAtomicRMW, 0) /* this debug var enables locking of + * the disk arm during small-write + * operations. Setting this variable + * to anything other than 0 will + * result in deadlock. (wvcii) */ +RF_DBG_OPTION(engineDebug, 0) +RF_DBG_OPTION(fifoDebug, 0) /* debug fifo queueing */ +RF_DBG_OPTION(floatingRbufDebug, 0) +RF_DBG_OPTION(forceHeadSepLimit, -1) +RF_DBG_OPTION(forceNumFloatingReconBufs, -1) /* wire down number of + * extra recon buffers + * to use */ +RF_DBG_OPTION(keepAccTotals, 0) /* turn on keep_acc_totals */ +RF_DBG_OPTION(lockTableSize, RF_DEFAULT_LOCK_TABLE_SIZE) +RF_DBG_OPTION(mapDebug, 0) +RF_DBG_OPTION(maxNumTraces, -1) + +RF_DBG_OPTION(memChunkDebug, 0) +RF_DBG_OPTION(memDebug, 0) +RF_DBG_OPTION(memDebugAddress, 0) +RF_DBG_OPTION(numBufsToAccumulate, 1) /* number of buffers to + * accumulate before doing XOR */ +RF_DBG_OPTION(prReconSched, 0) +RF_DBG_OPTION(printDAGsDebug, 0) +RF_DBG_OPTION(printStatesDebug, 0) +RF_DBG_OPTION(protectedSectors, 64L) /* # of sectors at start of + * disk to exclude from RAID + * address space */ +RF_DBG_OPTION(pssDebug, 0) +RF_DBG_OPTION(queueDebug, 0) +RF_DBG_OPTION(quiesceDebug, 0) +RF_DBG_OPTION(raidSectorOffset, 0) /* added to all incoming sectors to + * debug alignment problems */ +RF_DBG_OPTION(reconDebug, 0) +RF_DBG_OPTION(reconbufferDebug, 0) +RF_DBG_OPTION(scanDebug, 0) /* debug SCAN sorting */ +RF_DBG_OPTION(showXorCallCounts, 0) /* show n-way Xor call counts */ +RF_DBG_OPTION(shutdownDebug, 0) /* show shutdown calls */ +RF_DBG_OPTION(sizePercentage, 100) +RF_DBG_OPTION(sstfDebug, 0) /* turn on debugging info for sstf queueing */ +RF_DBG_OPTION(stripeLockDebug, 0) +RF_DBG_OPTION(suppressLocksAndLargeWrites, 0) +RF_DBG_OPTION(suppressTraceDelays, 0) +RF_DBG_OPTION(useMemChunks, 1) +RF_DBG_OPTION(validateDAGDebug, 0) +RF_DBG_OPTION(validateVisitedDebug, 1) /* XXX turn to zero by + * default? */ +RF_DBG_OPTION(verifyParityDebug, 0) +RF_DBG_OPTION(debugKernelAccess, 0) /* DoAccessKernel debugging */ + +#if RF_INCLUDE_PARITYLOGGING > 0 +RF_DBG_OPTION(forceParityLogReint, 0) +RF_DBG_OPTION(numParityRegions, 0) /* number of regions in the array */ +RF_DBG_OPTION(numReintegrationThreads, 1) +RF_DBG_OPTION(parityLogDebug, 0) /* if nonzero, enables debugging of + * parity logging */ +RF_DBG_OPTION(totalInCoreLogCapacity, 1024 * 1024) /* target bytes + * available for in-core + * logs */ +#endif /* RF_INCLUDE_PARITYLOGGING > 0 */ + diff --git a/sys/dev/raidframe/rf_paritylog.c b/sys/dev/raidframe/rf_paritylog.c new file mode 100644 index 0000000..6c56c95 --- /dev/null +++ b/sys/dev/raidframe/rf_paritylog.c @@ -0,0 +1,869 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_paritylog.c,v 1.5 2000/01/07 03:41:01 oster Exp $ */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: William V. Courtright II + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +/* Code for manipulating in-core parity logs + * + */ + +#include <dev/raidframe/rf_archs.h> + +#if RF_INCLUDE_PARITYLOGGING > 0 + +/* + * Append-only log for recording parity "update" and "overwrite" records + */ + +#include <dev/raidframe/rf_types.h> +#include <dev/raidframe/rf_threadstuff.h> +#include <dev/raidframe/rf_mcpair.h> +#include <dev/raidframe/rf_raid.h> +#include <dev/raidframe/rf_dag.h> +#include <dev/raidframe/rf_dagfuncs.h> +#include <dev/raidframe/rf_desc.h> +#include <dev/raidframe/rf_layout.h> +#include <dev/raidframe/rf_diskqueue.h> +#include <dev/raidframe/rf_etimer.h> +#include <dev/raidframe/rf_paritylog.h> +#include <dev/raidframe/rf_general.h> +#include <dev/raidframe/rf_map.h> +#include <dev/raidframe/rf_paritylogging.h> +#include <dev/raidframe/rf_paritylogDiskMgr.h> + +static RF_CommonLogData_t * +AllocParityLogCommonData(RF_Raid_t * raidPtr) +{ + RF_CommonLogData_t *common = NULL; + int rc; + + /* Return a struct for holding common parity log information from the + * free list (rf_parityLogDiskQueue.freeCommonList). If the free list + * is empty, call RF_Malloc to create a new structure. NON-BLOCKING */ + + RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex); + if (raidPtr->parityLogDiskQueue.freeCommonList) { + common = raidPtr->parityLogDiskQueue.freeCommonList; + raidPtr->parityLogDiskQueue.freeCommonList = raidPtr->parityLogDiskQueue.freeCommonList->next; + RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex); + } else { + RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex); + RF_Malloc(common, sizeof(RF_CommonLogData_t), (RF_CommonLogData_t *)); + rc = rf_mutex_init(&common->mutex, __FUNCTION__); + if (rc) { + RF_ERRORMSG3("Unable to init mutex file %s line %d rc=%d\n", __FILE__, + __LINE__, rc); + RF_Free(common, sizeof(RF_CommonLogData_t)); + common = NULL; + } + } + common->next = NULL; + return (common); +} + +static void +FreeParityLogCommonData(RF_CommonLogData_t * common) +{ + RF_Raid_t *raidPtr; + + /* Insert a single struct for holding parity log information (data) + * into the free list (rf_parityLogDiskQueue.freeCommonList). + * NON-BLOCKING */ + + raidPtr = common->raidPtr; + RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex); + common->next = raidPtr->parityLogDiskQueue.freeCommonList; + raidPtr->parityLogDiskQueue.freeCommonList = common; + RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex); +} + +static RF_ParityLogData_t * +AllocParityLogData(RF_Raid_t * raidPtr) +{ + RF_ParityLogData_t *data = NULL; + + /* Return a struct for holding parity log information from the free + * list (rf_parityLogDiskQueue.freeList). If the free list is empty, + * call RF_Malloc to create a new structure. NON-BLOCKING */ + + RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex); + if (raidPtr->parityLogDiskQueue.freeDataList) { + data = raidPtr->parityLogDiskQueue.freeDataList; + raidPtr->parityLogDiskQueue.freeDataList = raidPtr->parityLogDiskQueue.freeDataList->next; + RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex); + } else { + RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex); + RF_Malloc(data, sizeof(RF_ParityLogData_t), (RF_ParityLogData_t *)); + } + data->next = NULL; + data->prev = NULL; + return (data); +} + + +static void +FreeParityLogData(RF_ParityLogData_t * data) +{ + RF_ParityLogData_t *nextItem; + RF_Raid_t *raidPtr; + + /* Insert a linked list of structs for holding parity log information + * (data) into the free list (parityLogDiskQueue.freeList). + * NON-BLOCKING */ + + raidPtr = data->common->raidPtr; + RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex); + while (data) { + nextItem = data->next; + data->next = raidPtr->parityLogDiskQueue.freeDataList; + raidPtr->parityLogDiskQueue.freeDataList = data; + data = nextItem; + } + RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex); +} + + +static void +EnqueueParityLogData( + RF_ParityLogData_t * data, + RF_ParityLogData_t ** head, + RF_ParityLogData_t ** tail) +{ + RF_Raid_t *raidPtr; + + /* Insert an in-core parity log (*data) into the head of a disk queue + * (*head, *tail). NON-BLOCKING */ + + raidPtr = data->common->raidPtr; + if (rf_parityLogDebug) + printf("[enqueueing parity log data, region %d, raidAddress %d, numSector %d]\n", data->regionID, (int) data->diskAddress.raidAddress, (int) data->diskAddress.numSector); + RF_ASSERT(data->prev == NULL); + RF_ASSERT(data->next == NULL); + RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex); + if (*head) { + /* insert into head of queue */ + RF_ASSERT((*head)->prev == NULL); + RF_ASSERT((*tail)->next == NULL); + data->next = *head; + (*head)->prev = data; + *head = data; + } else { + /* insert into empty list */ + RF_ASSERT(*head == NULL); + RF_ASSERT(*tail == NULL); + *head = data; + *tail = data; + } + RF_ASSERT((*head)->prev == NULL); + RF_ASSERT((*tail)->next == NULL); + RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex); +} + +static RF_ParityLogData_t * +DequeueParityLogData( + RF_Raid_t * raidPtr, + RF_ParityLogData_t ** head, + RF_ParityLogData_t ** tail, + int ignoreLocks) +{ + RF_ParityLogData_t *data; + + /* Remove and return an in-core parity log from the tail of a disk + * queue (*head, *tail). NON-BLOCKING */ + + /* remove from tail, preserving FIFO order */ + if (!ignoreLocks) + RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex); + data = *tail; + if (data) { + if (*head == *tail) { + /* removing last item from queue */ + *head = NULL; + *tail = NULL; + } else { + *tail = (*tail)->prev; + (*tail)->next = NULL; + RF_ASSERT((*head)->prev == NULL); + RF_ASSERT((*tail)->next == NULL); + } + data->next = NULL; + data->prev = NULL; + if (rf_parityLogDebug) + printf("[dequeueing parity log data, region %d, raidAddress %d, numSector %d]\n", data->regionID, (int) data->diskAddress.raidAddress, (int) data->diskAddress.numSector); + } + if (*head) { + RF_ASSERT((*head)->prev == NULL); + RF_ASSERT((*tail)->next == NULL); + } + if (!ignoreLocks) + RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex); + return (data); +} + + +static void +RequeueParityLogData( + RF_ParityLogData_t * data, + RF_ParityLogData_t ** head, + RF_ParityLogData_t ** tail) +{ + RF_Raid_t *raidPtr; + + /* Insert an in-core parity log (*data) into the tail of a disk queue + * (*head, *tail). NON-BLOCKING */ + + raidPtr = data->common->raidPtr; + RF_ASSERT(data); + if (rf_parityLogDebug) + printf("[requeueing parity log data, region %d, raidAddress %d, numSector %d]\n", data->regionID, (int) data->diskAddress.raidAddress, (int) data->diskAddress.numSector); + RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex); + if (*tail) { + /* append to tail of list */ + data->prev = *tail; + data->next = NULL; + (*tail)->next = data; + *tail = data; + } else { + /* inserting into an empty list */ + *head = data; + *tail = data; + (*head)->prev = NULL; + (*tail)->next = NULL; + } + RF_ASSERT((*head)->prev == NULL); + RF_ASSERT((*tail)->next == NULL); + RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex); +} + +RF_ParityLogData_t * +rf_CreateParityLogData( + RF_ParityRecordType_t operation, + RF_PhysDiskAddr_t * pda, + caddr_t bufPtr, + RF_Raid_t * raidPtr, + int (*wakeFunc) (RF_DagNode_t * node, int status), + void *wakeArg, + RF_AccTraceEntry_t * tracerec, + RF_Etimer_t startTime) +{ + RF_ParityLogData_t *data, *resultHead = NULL, *resultTail = NULL; + RF_CommonLogData_t *common; + RF_PhysDiskAddr_t *diskAddress; + int boundary, offset = 0; + + /* Return an initialized struct of info to be logged. Build one item + * per physical disk address, one item per region. + * + * NON-BLOCKING */ + + diskAddress = pda; + common = AllocParityLogCommonData(raidPtr); + RF_ASSERT(common); + + common->operation = operation; + common->bufPtr = bufPtr; + common->raidPtr = raidPtr; + common->wakeFunc = wakeFunc; + common->wakeArg = wakeArg; + common->tracerec = tracerec; + common->startTime = startTime; + common->cnt = 0; + + if (rf_parityLogDebug) + printf("[entering CreateParityLogData]\n"); + while (diskAddress) { + common->cnt++; + data = AllocParityLogData(raidPtr); + RF_ASSERT(data); + data->common = common; + data->next = NULL; + data->prev = NULL; + data->regionID = rf_MapRegionIDParityLogging(raidPtr, diskAddress->startSector); + if (data->regionID == rf_MapRegionIDParityLogging(raidPtr, diskAddress->startSector + diskAddress->numSector - 1)) { + /* disk address does not cross a region boundary */ + data->diskAddress = *diskAddress; + data->bufOffset = offset; + offset = offset + diskAddress->numSector; + EnqueueParityLogData(data, &resultHead, &resultTail); + /* adjust disk address */ + diskAddress = diskAddress->next; + } else { + /* disk address crosses a region boundary */ + /* find address where region is crossed */ + boundary = 0; + while (data->regionID == rf_MapRegionIDParityLogging(raidPtr, diskAddress->startSector + boundary)) + boundary++; + + /* enter data before the boundary */ + data->diskAddress = *diskAddress; + data->diskAddress.numSector = boundary; + data->bufOffset = offset; + offset += boundary; + EnqueueParityLogData(data, &resultHead, &resultTail); + /* adjust disk address */ + diskAddress->startSector += boundary; + diskAddress->numSector -= boundary; + } + } + if (rf_parityLogDebug) + printf("[leaving CreateParityLogData]\n"); + return (resultHead); +} + + +RF_ParityLogData_t * +rf_SearchAndDequeueParityLogData( + RF_Raid_t * raidPtr, + int regionID, + RF_ParityLogData_t ** head, + RF_ParityLogData_t ** tail, + int ignoreLocks) +{ + RF_ParityLogData_t *w; + + /* Remove and return an in-core parity log from a specified region + * (regionID). If a matching log is not found, return NULL. + * + * NON-BLOCKING. */ + + /* walk backward through a list, looking for an entry with a matching + * region ID */ + if (!ignoreLocks) + RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex); + w = (*tail); + while (w) { + if (w->regionID == regionID) { + /* remove an element from the list */ + if (w == *tail) { + if (*head == *tail) { + /* removing only element in the list */ + *head = NULL; + *tail = NULL; + } else { + /* removing last item in the list */ + *tail = (*tail)->prev; + (*tail)->next = NULL; + RF_ASSERT((*head)->prev == NULL); + RF_ASSERT((*tail)->next == NULL); + } + } else { + if (w == *head) { + /* removing first item in the list */ + *head = (*head)->next; + (*head)->prev = NULL; + RF_ASSERT((*head)->prev == NULL); + RF_ASSERT((*tail)->next == NULL); + } else { + /* removing an item from the middle of + * the list */ + w->prev->next = w->next; + w->next->prev = w->prev; + RF_ASSERT((*head)->prev == NULL); + RF_ASSERT((*tail)->next == NULL); + } + } + w->prev = NULL; + w->next = NULL; + if (rf_parityLogDebug) + printf("[dequeueing parity log data, region %d, raidAddress %d, numSector %d]\n", w->regionID, (int) w->diskAddress.raidAddress, (int) w->diskAddress.numSector); + return (w); + } else + w = w->prev; + } + if (!ignoreLocks) + RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex); + return (NULL); +} + +static RF_ParityLogData_t * +DequeueMatchingLogData( + RF_Raid_t * raidPtr, + RF_ParityLogData_t ** head, + RF_ParityLogData_t ** tail) +{ + RF_ParityLogData_t *logDataList, *logData; + int regionID; + + /* Remove and return an in-core parity log from the tail of a disk + * queue (*head, *tail). Then remove all matching (identical + * regionIDs) logData and return as a linked list. + * + * NON-BLOCKING */ + + logDataList = DequeueParityLogData(raidPtr, head, tail, RF_TRUE); + if (logDataList) { + regionID = logDataList->regionID; + logData = logDataList; + logData->next = rf_SearchAndDequeueParityLogData(raidPtr, regionID, head, tail, RF_TRUE); + while (logData->next) { + logData = logData->next; + logData->next = rf_SearchAndDequeueParityLogData(raidPtr, regionID, head, tail, RF_TRUE); + } + } + return (logDataList); +} + + +static RF_ParityLog_t * +AcquireParityLog( + RF_ParityLogData_t * logData, + int finish) +{ + RF_ParityLog_t *log = NULL; + RF_Raid_t *raidPtr; + + /* Grab a log buffer from the pool and return it. If no buffers are + * available, return NULL. NON-BLOCKING */ + raidPtr = logData->common->raidPtr; + RF_LOCK_MUTEX(raidPtr->parityLogPool.mutex); + if (raidPtr->parityLogPool.parityLogs) { + log = raidPtr->parityLogPool.parityLogs; + raidPtr->parityLogPool.parityLogs = raidPtr->parityLogPool.parityLogs->next; + log->regionID = logData->regionID; + log->numRecords = 0; + log->next = NULL; + raidPtr->logsInUse++; + RF_ASSERT(raidPtr->logsInUse >= 0 && raidPtr->logsInUse <= raidPtr->numParityLogs); + } else { + /* no logs available, so place ourselves on the queue of work + * waiting on log buffers this is done while + * parityLogPool.mutex is held, to ensure synchronization with + * ReleaseParityLogs. */ + if (rf_parityLogDebug) + printf("[blocked on log, region %d, finish %d]\n", logData->regionID, finish); + if (finish) + RequeueParityLogData(logData, &raidPtr->parityLogDiskQueue.logBlockHead, &raidPtr->parityLogDiskQueue.logBlockTail); + else + EnqueueParityLogData(logData, &raidPtr->parityLogDiskQueue.logBlockHead, &raidPtr->parityLogDiskQueue.logBlockTail); + } + RF_UNLOCK_MUTEX(raidPtr->parityLogPool.mutex); + return (log); +} + +void +rf_ReleaseParityLogs( + RF_Raid_t * raidPtr, + RF_ParityLog_t * firstLog) +{ + RF_ParityLogData_t *logDataList; + RF_ParityLog_t *log, *lastLog; + int cnt; + + /* Insert a linked list of parity logs (firstLog) to the free list + * (parityLogPool.parityLogPool) + * + * NON-BLOCKING. */ + + RF_ASSERT(firstLog); + + /* Before returning logs to global free list, service all requests + * which are blocked on logs. Holding mutexes for parityLogPool and + * parityLogDiskQueue forces synchronization with AcquireParityLog(). */ + RF_LOCK_MUTEX(raidPtr->parityLogPool.mutex); + RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex); + logDataList = DequeueMatchingLogData(raidPtr, &raidPtr->parityLogDiskQueue.logBlockHead, &raidPtr->parityLogDiskQueue.logBlockTail); + log = firstLog; + if (firstLog) + firstLog = firstLog->next; + log->numRecords = 0; + log->next = NULL; + while (logDataList && log) { + RF_UNLOCK_MUTEX(raidPtr->parityLogPool.mutex); + RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex); + rf_ParityLogAppend(logDataList, RF_TRUE, &log, RF_FALSE); + if (rf_parityLogDebug) + printf("[finishing up buf-blocked log data, region %d]\n", logDataList->regionID); + if (log == NULL) { + log = firstLog; + if (firstLog) { + firstLog = firstLog->next; + log->numRecords = 0; + log->next = NULL; + } + } + RF_LOCK_MUTEX(raidPtr->parityLogPool.mutex); + RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex); + if (log) + logDataList = DequeueMatchingLogData(raidPtr, &raidPtr->parityLogDiskQueue.logBlockHead, &raidPtr->parityLogDiskQueue.logBlockTail); + } + /* return remaining logs to pool */ + if (log) { + log->next = firstLog; + firstLog = log; + } + if (firstLog) { + lastLog = firstLog; + raidPtr->logsInUse--; + RF_ASSERT(raidPtr->logsInUse >= 0 && raidPtr->logsInUse <= raidPtr->numParityLogs); + while (lastLog->next) { + lastLog = lastLog->next; + raidPtr->logsInUse--; + RF_ASSERT(raidPtr->logsInUse >= 0 && raidPtr->logsInUse <= raidPtr->numParityLogs); + } + lastLog->next = raidPtr->parityLogPool.parityLogs; + raidPtr->parityLogPool.parityLogs = firstLog; + cnt = 0; + log = raidPtr->parityLogPool.parityLogs; + while (log) { + cnt++; + log = log->next; + } + RF_ASSERT(cnt + raidPtr->logsInUse == raidPtr->numParityLogs); + } + RF_UNLOCK_MUTEX(raidPtr->parityLogPool.mutex); + RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex); +} + +static void +ReintLog( + RF_Raid_t * raidPtr, + int regionID, + RF_ParityLog_t * log) +{ + RF_ASSERT(log); + + /* Insert an in-core parity log (log) into the disk queue of + * reintegration work. Set the flag (reintInProgress) for the + * specified region (regionID) to indicate that reintegration is in + * progress for this region. NON-BLOCKING */ + + RF_LOCK_MUTEX(raidPtr->regionInfo[regionID].reintMutex); + raidPtr->regionInfo[regionID].reintInProgress = RF_TRUE; /* cleared when reint + * complete */ + + if (rf_parityLogDebug) + printf("[requesting reintegration of region %d]\n", log->regionID); + /* move record to reintegration queue */ + RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex); + log->next = raidPtr->parityLogDiskQueue.reintQueue; + raidPtr->parityLogDiskQueue.reintQueue = log; + RF_UNLOCK_MUTEX(raidPtr->regionInfo[regionID].reintMutex); + RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex); + RF_SIGNAL_COND(raidPtr->parityLogDiskQueue.cond); +} + +static void +FlushLog( + RF_Raid_t * raidPtr, + RF_ParityLog_t * log) +{ + /* insert a core log (log) into a list of logs + * (parityLogDiskQueue.flushQueue) waiting to be written to disk. + * NON-BLOCKING */ + + RF_ASSERT(log); + RF_ASSERT(log->numRecords == raidPtr->numSectorsPerLog); + RF_ASSERT(log->next == NULL); + /* move log to flush queue */ + RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex); + log->next = raidPtr->parityLogDiskQueue.flushQueue; + raidPtr->parityLogDiskQueue.flushQueue = log; + RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex); + RF_SIGNAL_COND(raidPtr->parityLogDiskQueue.cond); +} + +static int +DumpParityLogToDisk( + int finish, + RF_ParityLogData_t * logData) +{ + int i, diskCount, regionID = logData->regionID; + RF_ParityLog_t *log; + RF_Raid_t *raidPtr; + + raidPtr = logData->common->raidPtr; + + /* Move a core log to disk. If the log disk is full, initiate + * reintegration. + * + * Return (0) if we can enqueue the dump immediately, otherwise return + * (1) to indicate we are blocked on reintegration and control of the + * thread should be relinquished. + * + * Caller must hold regionInfo[regionID].mutex + * + * NON-BLOCKING */ + + if (rf_parityLogDebug) + printf("[dumping parity log to disk, region %d]\n", regionID); + log = raidPtr->regionInfo[regionID].coreLog; + RF_ASSERT(log->numRecords == raidPtr->numSectorsPerLog); + RF_ASSERT(log->next == NULL); + + /* if reintegration is in progress, must queue work */ + RF_LOCK_MUTEX(raidPtr->regionInfo[regionID].reintMutex); + if (raidPtr->regionInfo[regionID].reintInProgress) { + /* Can not proceed since this region is currently being + * reintegrated. We can not block, so queue remaining work and + * return */ + if (rf_parityLogDebug) + printf("[region %d waiting on reintegration]\n", regionID); + /* XXX not sure about the use of finish - shouldn't this + * always be "Enqueue"? */ + if (finish) + RequeueParityLogData(logData, &raidPtr->parityLogDiskQueue.reintBlockHead, &raidPtr->parityLogDiskQueue.reintBlockTail); + else + EnqueueParityLogData(logData, &raidPtr->parityLogDiskQueue.reintBlockHead, &raidPtr->parityLogDiskQueue.reintBlockTail); + RF_UNLOCK_MUTEX(raidPtr->regionInfo[regionID].reintMutex); + return (1); /* relenquish control of this thread */ + } + RF_UNLOCK_MUTEX(raidPtr->regionInfo[regionID].reintMutex); + raidPtr->regionInfo[regionID].coreLog = NULL; + if ((raidPtr->regionInfo[regionID].diskCount) < raidPtr->regionInfo[regionID].capacity) + /* IMPORTANT!! this loop bound assumes region disk holds an + * integral number of core logs */ + { + /* update disk map for this region */ + diskCount = raidPtr->regionInfo[regionID].diskCount; + for (i = 0; i < raidPtr->numSectorsPerLog; i++) { + raidPtr->regionInfo[regionID].diskMap[i + diskCount].operation = log->records[i].operation; + raidPtr->regionInfo[regionID].diskMap[i + diskCount].parityAddr = log->records[i].parityAddr; + } + log->diskOffset = diskCount; + raidPtr->regionInfo[regionID].diskCount += raidPtr->numSectorsPerLog; + FlushLog(raidPtr, log); + } else { + /* no room for log on disk, send it to disk manager and + * request reintegration */ + RF_ASSERT(raidPtr->regionInfo[regionID].diskCount == raidPtr->regionInfo[regionID].capacity); + ReintLog(raidPtr, regionID, log); + } + if (rf_parityLogDebug) + printf("[finished dumping parity log to disk, region %d]\n", regionID); + return (0); +} + +int +rf_ParityLogAppend( + RF_ParityLogData_t * logData, + int finish, + RF_ParityLog_t ** incomingLog, + int clearReintFlag) +{ + int regionID, logItem, itemDone; + RF_ParityLogData_t *item; + int punt, done = RF_FALSE; + RF_ParityLog_t *log; + RF_Raid_t *raidPtr; + RF_Etimer_t timer; + int (*wakeFunc) (RF_DagNode_t * node, int status); + void *wakeArg; + + /* Add parity to the appropriate log, one sector at a time. This + * routine is called is called by dag functions ParityLogUpdateFunc + * and ParityLogOverwriteFunc and therefore MUST BE NONBLOCKING. + * + * Parity to be logged is contained in a linked-list (logData). When + * this routine returns, every sector in the list will be in one of + * three places: 1) entered into the parity log 2) queued, waiting on + * reintegration 3) queued, waiting on a core log + * + * Blocked work is passed to the ParityLoggingDiskManager for completion. + * Later, as conditions which required the block are removed, the work + * reenters this routine with the "finish" parameter set to "RF_TRUE." + * + * NON-BLOCKING */ + + raidPtr = logData->common->raidPtr; + /* lock the region for the first item in logData */ + RF_ASSERT(logData != NULL); + regionID = logData->regionID; + RF_LOCK_MUTEX(raidPtr->regionInfo[regionID].mutex); + RF_ASSERT(raidPtr->regionInfo[regionID].loggingEnabled); + + if (clearReintFlag) { + /* Enable flushing for this region. Holding both locks + * provides a synchronization barrier with DumpParityLogToDisk */ + RF_LOCK_MUTEX(raidPtr->regionInfo[regionID].reintMutex); + RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex); + RF_ASSERT(raidPtr->regionInfo[regionID].reintInProgress == RF_TRUE); + raidPtr->regionInfo[regionID].diskCount = 0; + raidPtr->regionInfo[regionID].reintInProgress = RF_FALSE; + RF_UNLOCK_MUTEX(raidPtr->regionInfo[regionID].reintMutex); /* flushing is now + * enabled */ + RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex); + } + /* process each item in logData */ + while (logData) { + /* remove an item from logData */ + item = logData; + logData = logData->next; + item->next = NULL; + item->prev = NULL; + + if (rf_parityLogDebug) + printf("[appending parity log data, region %d, raidAddress %d, numSector %d]\n", item->regionID, (int) item->diskAddress.raidAddress, (int) item->diskAddress.numSector); + + /* see if we moved to a new region */ + if (regionID != item->regionID) { + RF_UNLOCK_MUTEX(raidPtr->regionInfo[regionID].mutex); + regionID = item->regionID; + RF_LOCK_MUTEX(raidPtr->regionInfo[regionID].mutex); + RF_ASSERT(raidPtr->regionInfo[regionID].loggingEnabled); + } + punt = RF_FALSE;/* Set to RF_TRUE if work is blocked. This + * can happen in one of two ways: 1) no core + * log (AcquireParityLog) 2) waiting on + * reintegration (DumpParityLogToDisk) If punt + * is RF_TRUE, the dataItem was queued, so + * skip to next item. */ + + /* process item, one sector at a time, until all sectors + * processed or we punt */ + if (item->diskAddress.numSector > 0) + done = RF_FALSE; + else + RF_ASSERT(0); + while (!punt && !done) { + /* verify that a core log exists for this region */ + if (!raidPtr->regionInfo[regionID].coreLog) { + /* Attempt to acquire a parity log. If + * acquisition fails, queue remaining work in + * data item and move to nextItem. */ + if (incomingLog) + if (*incomingLog) { + RF_ASSERT((*incomingLog)->next == NULL); + raidPtr->regionInfo[regionID].coreLog = *incomingLog; + raidPtr->regionInfo[regionID].coreLog->regionID = regionID; + *incomingLog = NULL; + } else + raidPtr->regionInfo[regionID].coreLog = AcquireParityLog(item, finish); + else + raidPtr->regionInfo[regionID].coreLog = AcquireParityLog(item, finish); + /* Note: AcquireParityLog either returns a log + * or enqueues currentItem */ + } + if (!raidPtr->regionInfo[regionID].coreLog) + punt = RF_TRUE; /* failed to find a core log */ + else { + RF_ASSERT(raidPtr->regionInfo[regionID].coreLog->next == NULL); + /* verify that the log has room for new + * entries */ + /* if log is full, dump it to disk and grab a + * new log */ + if (raidPtr->regionInfo[regionID].coreLog->numRecords == raidPtr->numSectorsPerLog) { + /* log is full, dump it to disk */ + if (DumpParityLogToDisk(finish, item)) + punt = RF_TRUE; /* dump unsuccessful, + * blocked on + * reintegration */ + else { + /* dump was successful */ + if (incomingLog) + if (*incomingLog) { + RF_ASSERT((*incomingLog)->next == NULL); + raidPtr->regionInfo[regionID].coreLog = *incomingLog; + raidPtr->regionInfo[regionID].coreLog->regionID = regionID; + *incomingLog = NULL; + } else + raidPtr->regionInfo[regionID].coreLog = AcquireParityLog(item, finish); + else + raidPtr->regionInfo[regionID].coreLog = AcquireParityLog(item, finish); + /* if a core log is not + * available, must queue work + * and return */ + if (!raidPtr->regionInfo[regionID].coreLog) + punt = RF_TRUE; /* blocked on log + * availability */ + } + } + } + /* if we didn't punt on this item, attempt to add a + * sector to the core log */ + if (!punt) { + RF_ASSERT(raidPtr->regionInfo[regionID].coreLog->next == NULL); + /* at this point, we have a core log with + * enough room for a sector */ + /* copy a sector into the log */ + log = raidPtr->regionInfo[regionID].coreLog; + RF_ASSERT(log->numRecords < raidPtr->numSectorsPerLog); + logItem = log->numRecords++; + log->records[logItem].parityAddr = item->diskAddress; + RF_ASSERT(log->records[logItem].parityAddr.startSector >= raidPtr->regionInfo[regionID].parityStartAddr); + RF_ASSERT(log->records[logItem].parityAddr.startSector < raidPtr->regionInfo[regionID].parityStartAddr + raidPtr->regionInfo[regionID].numSectorsParity); + log->records[logItem].parityAddr.numSector = 1; + log->records[logItem].operation = item->common->operation; + bcopy((item->common->bufPtr + (item->bufOffset++ * (1 << item->common->raidPtr->logBytesPerSector))), log->bufPtr + (logItem * (1 << item->common->raidPtr->logBytesPerSector)), (1 << item->common->raidPtr->logBytesPerSector)); + item->diskAddress.numSector--; + item->diskAddress.startSector++; + if (item->diskAddress.numSector == 0) + done = RF_TRUE; + } + } + + if (!punt) { + /* Processed this item completely, decrement count of + * items to be processed. */ + RF_ASSERT(item->diskAddress.numSector == 0); + RF_LOCK_MUTEX(item->common->mutex); + item->common->cnt--; + if (item->common->cnt == 0) + itemDone = RF_TRUE; + else + itemDone = RF_FALSE; + RF_UNLOCK_MUTEX(item->common->mutex); + if (itemDone) { + /* Finished processing all log data for this + * IO Return structs to free list and invoke + * wakeup function. */ + timer = item->common->startTime; /* grab initial value of + * timer */ + RF_ETIMER_STOP(timer); + RF_ETIMER_EVAL(timer); + item->common->tracerec->plog_us += RF_ETIMER_VAL_US(timer); + if (rf_parityLogDebug) + printf("[waking process for region %d]\n", item->regionID); + wakeFunc = item->common->wakeFunc; + wakeArg = item->common->wakeArg; + FreeParityLogCommonData(item->common); + FreeParityLogData(item); + (wakeFunc) (wakeArg, 0); + } else + FreeParityLogData(item); + } + } + RF_UNLOCK_MUTEX(raidPtr->regionInfo[regionID].mutex); + if (rf_parityLogDebug) + printf("[exiting ParityLogAppend]\n"); + return (0); +} + + +void +rf_EnableParityLogging(RF_Raid_t * raidPtr) +{ + int regionID; + + for (regionID = 0; regionID < rf_numParityRegions; regionID++) { + RF_LOCK_MUTEX(raidPtr->regionInfo[regionID].mutex); + raidPtr->regionInfo[regionID].loggingEnabled = RF_TRUE; + RF_UNLOCK_MUTEX(raidPtr->regionInfo[regionID].mutex); + } + if (rf_parityLogDebug) + printf("[parity logging enabled]\n"); +} +#endif /* RF_INCLUDE_PARITYLOGGING > 0 */ diff --git a/sys/dev/raidframe/rf_paritylog.h b/sys/dev/raidframe/rf_paritylog.h new file mode 100644 index 0000000..1f2b80d --- /dev/null +++ b/sys/dev/raidframe/rf_paritylog.h @@ -0,0 +1,181 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_paritylog.h,v 1.3 1999/02/05 00:06:14 oster Exp $ */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: William V. Courtright II + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +/* header file for parity log + * + */ + +#ifndef _RF__RF_PARITYLOG_H_ +#define _RF__RF_PARITYLOG_H_ + +#include <dev/raidframe/rf_types.h> + +#define RF_DEFAULT_NUM_SECTORS_PER_LOG 64 + +typedef int RF_RegionId_t; + +typedef enum RF_ParityRecordType_e { + RF_STOP, + RF_UPDATE, + RF_OVERWRITE +} RF_ParityRecordType_t; + +struct RF_CommonLogData_s { + RF_DECLARE_MUTEX(mutex) /* protects cnt */ + int cnt; /* when 0, time to call wakeFunc */ + RF_Raid_t *raidPtr; +/* int (*wakeFunc)(RF_Buf_t); */ + int (*wakeFunc) (RF_DagNode_t * node, int status); + void *wakeArg; + RF_AccTraceEntry_t *tracerec; + RF_Etimer_t startTime; + caddr_t bufPtr; + RF_ParityRecordType_t operation; + RF_CommonLogData_t *next; +}; + +struct RF_ParityLogData_s { + RF_RegionId_t regionID; /* this struct guaranteed to span a single + * region */ + int bufOffset; /* offset from common->bufPtr */ + RF_PhysDiskAddr_t diskAddress; + RF_CommonLogData_t *common; /* info shared by one or more + * parityLogData structs */ + RF_ParityLogData_t *next; + RF_ParityLogData_t *prev; +}; + +struct RF_ParityLogAppendQueue_s { + RF_DECLARE_MUTEX(mutex) +}; + +struct RF_ParityLogRecord_s { + RF_PhysDiskAddr_t parityAddr; + RF_ParityRecordType_t operation; +}; + +struct RF_ParityLog_s { + RF_RegionId_t regionID; + int numRecords; + int diskOffset; + RF_ParityLogRecord_t *records; + caddr_t bufPtr; + RF_ParityLog_t *next; +}; + +struct RF_ParityLogQueue_s { + RF_DECLARE_MUTEX(mutex) + RF_ParityLog_t *parityLogs; +}; + +struct RF_RegionBufferQueue_s { + RF_DECLARE_MUTEX(mutex) + RF_DECLARE_COND(cond) + int bufferSize; + int totalBuffers; /* size of array 'buffers' */ + int availableBuffers; /* num available 'buffers' */ + int emptyBuffersIndex; /* stick next freed buffer here */ + int availBuffersIndex; /* grab next buffer from here */ + caddr_t *buffers; /* array buffers used to hold parity */ +}; +#define RF_PLOG_CREATED (1<<0)/* thread is created */ +#define RF_PLOG_RUNNING (1<<1)/* thread is running */ +#define RF_PLOG_TERMINATE (1<<2)/* thread is terminated (should exit) */ +#define RF_PLOG_SHUTDOWN (1<<3)/* thread is aware and exiting/exited */ + +struct RF_ParityLogDiskQueue_s { + RF_DECLARE_MUTEX(mutex) /* protects all vars in this struct */ + RF_DECLARE_COND(cond) + int threadState; /* is thread running, should it shutdown (see + * above) */ + RF_ParityLog_t *flushQueue; /* list of parity logs to be flushed + * to log disk */ + RF_ParityLog_t *reintQueue; /* list of parity logs waiting to be + * reintegrated */ + RF_ParityLogData_t *bufHead; /* head of FIFO list of log data, + * waiting on a buffer */ + RF_ParityLogData_t *bufTail; /* tail of FIFO list of log data, + * waiting on a buffer */ + RF_ParityLogData_t *reintHead; /* head of FIFO list of log data, + * waiting on reintegration */ + RF_ParityLogData_t *reintTail; /* tail of FIFO list of log data, + * waiting on reintegration */ + RF_ParityLogData_t *logBlockHead; /* queue of work, blocked + * until a log is available */ + RF_ParityLogData_t *logBlockTail; + RF_ParityLogData_t *reintBlockHead; /* queue of work, blocked + * until reintegration is + * complete */ + RF_ParityLogData_t *reintBlockTail; + RF_CommonLogData_t *freeCommonList; /* list of unused common data + * structs */ + RF_ParityLogData_t *freeDataList; /* list of unused log data + * structs */ +}; + +struct RF_DiskMap_s { + RF_PhysDiskAddr_t parityAddr; + RF_ParityRecordType_t operation; +}; + +struct RF_RegionInfo_s { + RF_DECLARE_MUTEX(mutex) /* protects: diskCount, diskMap, + * loggingEnabled, coreLog */ + RF_DECLARE_MUTEX(reintMutex) /* protects: reintInProgress */ + int reintInProgress;/* flag used to suspend flushing operations */ + RF_SectorCount_t capacity; /* capacity of this region in sectors */ + RF_SectorNum_t regionStartAddr; /* starting disk address for this + * region */ + RF_SectorNum_t parityStartAddr; /* starting disk address for this + * region */ + RF_SectorCount_t numSectorsParity; /* number of parity sectors + * protected by this region */ + RF_SectorCount_t diskCount; /* num of sectors written to this + * region's disk log */ + RF_DiskMap_t *diskMap; /* in-core map of what's in this region's disk + * log */ + int loggingEnabled; /* logging enable for this region */ + RF_ParityLog_t *coreLog;/* in-core log for this region */ +}; + +RF_ParityLogData_t * +rf_CreateParityLogData(RF_ParityRecordType_t operation, + RF_PhysDiskAddr_t * pda, caddr_t bufPtr, RF_Raid_t * raidPtr, + int (*wakeFunc) (RF_DagNode_t * node, int status), + void *wakeArg, RF_AccTraceEntry_t * tracerec, + RF_Etimer_t startTime); + RF_ParityLogData_t *rf_SearchAndDequeueParityLogData(RF_Raid_t * raidPtr, + RF_RegionId_t regionID, RF_ParityLogData_t ** head, + RF_ParityLogData_t ** tail, int ignoreLocks); + void rf_ReleaseParityLogs(RF_Raid_t * raidPtr, RF_ParityLog_t * firstLog); + int rf_ParityLogAppend(RF_ParityLogData_t * logData, int finish, + RF_ParityLog_t ** incomingLog, int clearReintFlag); + void rf_EnableParityLogging(RF_Raid_t * raidPtr); + +#endif /* !_RF__RF_PARITYLOG_H_ */ diff --git a/sys/dev/raidframe/rf_paritylogDiskMgr.c b/sys/dev/raidframe/rf_paritylogDiskMgr.c new file mode 100644 index 0000000..5eadad8 --- /dev/null +++ b/sys/dev/raidframe/rf_paritylogDiskMgr.c @@ -0,0 +1,701 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_paritylogDiskMgr.c,v 1.10 2000/01/15 01:57:57 oster Exp $ */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: William V. Courtright II + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ +/* Code for flushing and reintegration operations related to parity logging. + * + */ + +#include <dev/raidframe/rf_archs.h> + +#if RF_INCLUDE_PARITYLOGGING > 0 + +#include <dev/raidframe/rf_types.h> +#include <dev/raidframe/rf_threadstuff.h> +#include <dev/raidframe/rf_mcpair.h> +#include <dev/raidframe/rf_raid.h> +#include <dev/raidframe/rf_dag.h> +#include <dev/raidframe/rf_dagfuncs.h> +#include <dev/raidframe/rf_desc.h> +#include <dev/raidframe/rf_layout.h> +#include <dev/raidframe/rf_diskqueue.h> +#include <dev/raidframe/rf_paritylog.h> +#include <dev/raidframe/rf_general.h> +#include <dev/raidframe/rf_etimer.h> +#include <dev/raidframe/rf_paritylogging.h> +#include <dev/raidframe/rf_engine.h> +#include <dev/raidframe/rf_dagutils.h> +#include <dev/raidframe/rf_map.h> +#include <dev/raidframe/rf_parityscan.h> +#include <dev/raidframe/rf_kintf.h> + +#include <dev/raidframe/rf_paritylogDiskMgr.h> + +static caddr_t AcquireReintBuffer(RF_RegionBufferQueue_t *); + +static caddr_t +AcquireReintBuffer(pool) + RF_RegionBufferQueue_t *pool; +{ + caddr_t bufPtr = NULL; + + /* Return a region buffer from the free list (pool). If the free list + * is empty, WAIT. BLOCKING */ + + RF_LOCK_MUTEX(pool->mutex); + if (pool->availableBuffers > 0) { + bufPtr = pool->buffers[pool->availBuffersIndex]; + pool->availableBuffers--; + pool->availBuffersIndex++; + if (pool->availBuffersIndex == pool->totalBuffers) + pool->availBuffersIndex = 0; + RF_UNLOCK_MUTEX(pool->mutex); + } else { + RF_PANIC(); /* should never happen in correct config, + * single reint */ + RF_WAIT_COND(pool->cond, pool->mutex); + } + return (bufPtr); +} + +static void +ReleaseReintBuffer( + RF_RegionBufferQueue_t * pool, + caddr_t bufPtr) +{ + /* Insert a region buffer (bufPtr) into the free list (pool). + * NON-BLOCKING */ + + RF_LOCK_MUTEX(pool->mutex); + pool->availableBuffers++; + pool->buffers[pool->emptyBuffersIndex] = bufPtr; + pool->emptyBuffersIndex++; + if (pool->emptyBuffersIndex == pool->totalBuffers) + pool->emptyBuffersIndex = 0; + RF_ASSERT(pool->availableBuffers <= pool->totalBuffers); + RF_UNLOCK_MUTEX(pool->mutex); + RF_SIGNAL_COND(pool->cond); +} + + + +static void +ReadRegionLog( + RF_RegionId_t regionID, + RF_MCPair_t * rrd_mcpair, + caddr_t regionBuffer, + RF_Raid_t * raidPtr, + RF_DagHeader_t ** rrd_dag_h, + RF_AllocListElem_t ** rrd_alloclist, + RF_PhysDiskAddr_t ** rrd_pda) +{ + /* Initiate the read a region log from disk. Once initiated, return + * to the calling routine. + * + * NON-BLOCKING */ + + RF_AccTraceEntry_t *tracerec; + RF_DagNode_t *rrd_rdNode; + + /* create DAG to read region log from disk */ + rf_MakeAllocList(*rrd_alloclist); + *rrd_dag_h = rf_MakeSimpleDAG(raidPtr, 1, 0, regionBuffer, + rf_DiskReadFunc, rf_DiskReadUndoFunc, + "Rrl", *rrd_alloclist, + RF_DAG_FLAGS_NONE, + RF_IO_NORMAL_PRIORITY); + + /* create and initialize PDA for the core log */ + /* RF_Malloc(*rrd_pda, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t + * *)); */ + *rrd_pda = rf_AllocPDAList(1); + rf_MapLogParityLogging(raidPtr, regionID, 0, &((*rrd_pda)->row), + &((*rrd_pda)->col), &((*rrd_pda)->startSector)); + (*rrd_pda)->numSector = raidPtr->regionInfo[regionID].capacity; + + if ((*rrd_pda)->next) { + (*rrd_pda)->next = NULL; + printf("set rrd_pda->next to NULL\n"); + } + /* initialize DAG parameters */ + RF_Malloc(tracerec,sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *)); + bzero((char *) tracerec, sizeof(RF_AccTraceEntry_t)); + (*rrd_dag_h)->tracerec = tracerec; + rrd_rdNode = (*rrd_dag_h)->succedents[0]->succedents[0]; + rrd_rdNode->params[0].p = *rrd_pda; +/* rrd_rdNode->params[1] = regionBuffer; */ + rrd_rdNode->params[2].v = 0; + rrd_rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, + 0, 0, 0); + + /* launch region log read dag */ + rf_DispatchDAG(*rrd_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc, + (void *) rrd_mcpair); +} + + + +static void +WriteCoreLog( + RF_ParityLog_t * log, + RF_MCPair_t * fwr_mcpair, + RF_Raid_t * raidPtr, + RF_DagHeader_t ** fwr_dag_h, + RF_AllocListElem_t ** fwr_alloclist, + RF_PhysDiskAddr_t ** fwr_pda) +{ + RF_RegionId_t regionID = log->regionID; + RF_AccTraceEntry_t *tracerec; + RF_SectorNum_t regionOffset; + RF_DagNode_t *fwr_wrNode; + + /* Initiate the write of a core log to a region log disk. Once + * initiated, return to the calling routine. + * + * NON-BLOCKING */ + + /* create DAG to write a core log to a region log disk */ + rf_MakeAllocList(*fwr_alloclist); + *fwr_dag_h = rf_MakeSimpleDAG(raidPtr, 1, 0, log->bufPtr, + rf_DiskWriteFunc, rf_DiskWriteUndoFunc, + "Wcl", *fwr_alloclist, RF_DAG_FLAGS_NONE, RF_IO_NORMAL_PRIORITY); + + /* create and initialize PDA for the region log */ + /* RF_Malloc(*fwr_pda, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t + * *)); */ + *fwr_pda = rf_AllocPDAList(1); + regionOffset = log->diskOffset; + rf_MapLogParityLogging(raidPtr, regionID, regionOffset, + &((*fwr_pda)->row), &((*fwr_pda)->col), + &((*fwr_pda)->startSector)); + (*fwr_pda)->numSector = raidPtr->numSectorsPerLog; + + /* initialize DAG parameters */ + RF_Malloc(tracerec,sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *)); + bzero((char *) tracerec, sizeof(RF_AccTraceEntry_t)); + (*fwr_dag_h)->tracerec = tracerec; + fwr_wrNode = (*fwr_dag_h)->succedents[0]->succedents[0]; + fwr_wrNode->params[0].p = *fwr_pda; +/* fwr_wrNode->params[1] = log->bufPtr; */ + fwr_wrNode->params[2].v = 0; + fwr_wrNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, + 0, 0, 0); + + /* launch the dag to write the core log to disk */ + rf_DispatchDAG(*fwr_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc, + (void *) fwr_mcpair); +} + + +static void +ReadRegionParity( + RF_RegionId_t regionID, + RF_MCPair_t * prd_mcpair, + caddr_t parityBuffer, + RF_Raid_t * raidPtr, + RF_DagHeader_t ** prd_dag_h, + RF_AllocListElem_t ** prd_alloclist, + RF_PhysDiskAddr_t ** prd_pda) +{ + /* Initiate the read region parity from disk. Once initiated, return + * to the calling routine. + * + * NON-BLOCKING */ + + RF_AccTraceEntry_t *tracerec; + RF_DagNode_t *prd_rdNode; + + /* create DAG to read region parity from disk */ + rf_MakeAllocList(*prd_alloclist); + *prd_dag_h = rf_MakeSimpleDAG(raidPtr, 1, 0, NULL, rf_DiskReadFunc, + rf_DiskReadUndoFunc, "Rrp", + *prd_alloclist, RF_DAG_FLAGS_NONE, + RF_IO_NORMAL_PRIORITY); + + /* create and initialize PDA for region parity */ + /* RF_Malloc(*prd_pda, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t + * *)); */ + *prd_pda = rf_AllocPDAList(1); + rf_MapRegionParity(raidPtr, regionID, &((*prd_pda)->row), + &((*prd_pda)->col), &((*prd_pda)->startSector), + &((*prd_pda)->numSector)); + if (rf_parityLogDebug) + printf("[reading %d sectors of parity from region %d]\n", + (int) (*prd_pda)->numSector, regionID); + if ((*prd_pda)->next) { + (*prd_pda)->next = NULL; + printf("set prd_pda->next to NULL\n"); + } + /* initialize DAG parameters */ + RF_Malloc(tracerec,sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *)); + bzero((char *) tracerec, sizeof(RF_AccTraceEntry_t)); + (*prd_dag_h)->tracerec = tracerec; + prd_rdNode = (*prd_dag_h)->succedents[0]->succedents[0]; + prd_rdNode->params[0].p = *prd_pda; + prd_rdNode->params[1].p = parityBuffer; + prd_rdNode->params[2].v = 0; + prd_rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, + 0, 0, 0); + if (rf_validateDAGDebug) + rf_ValidateDAG(*prd_dag_h); + /* launch region parity read dag */ + rf_DispatchDAG(*prd_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc, + (void *) prd_mcpair); +} + +static void +WriteRegionParity( + RF_RegionId_t regionID, + RF_MCPair_t * pwr_mcpair, + caddr_t parityBuffer, + RF_Raid_t * raidPtr, + RF_DagHeader_t ** pwr_dag_h, + RF_AllocListElem_t ** pwr_alloclist, + RF_PhysDiskAddr_t ** pwr_pda) +{ + /* Initiate the write of region parity to disk. Once initiated, return + * to the calling routine. + * + * NON-BLOCKING */ + + RF_AccTraceEntry_t *tracerec; + RF_DagNode_t *pwr_wrNode; + + /* create DAG to write region log from disk */ + rf_MakeAllocList(*pwr_alloclist); + *pwr_dag_h = rf_MakeSimpleDAG(raidPtr, 1, 0, parityBuffer, + rf_DiskWriteFunc, rf_DiskWriteUndoFunc, + "Wrp", *pwr_alloclist, + RF_DAG_FLAGS_NONE, + RF_IO_NORMAL_PRIORITY); + + /* create and initialize PDA for region parity */ + /* RF_Malloc(*pwr_pda, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t + * *)); */ + *pwr_pda = rf_AllocPDAList(1); + rf_MapRegionParity(raidPtr, regionID, &((*pwr_pda)->row), + &((*pwr_pda)->col), &((*pwr_pda)->startSector), + &((*pwr_pda)->numSector)); + + /* initialize DAG parameters */ + RF_Malloc(tracerec,sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *)); + bzero((char *) tracerec, sizeof(RF_AccTraceEntry_t)); + (*pwr_dag_h)->tracerec = tracerec; + pwr_wrNode = (*pwr_dag_h)->succedents[0]->succedents[0]; + pwr_wrNode->params[0].p = *pwr_pda; +/* pwr_wrNode->params[1] = parityBuffer; */ + pwr_wrNode->params[2].v = 0; + pwr_wrNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, + 0, 0, 0); + + /* launch the dag to write region parity to disk */ + rf_DispatchDAG(*pwr_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc, + (void *) pwr_mcpair); +} + +static void +FlushLogsToDisk( + RF_Raid_t * raidPtr, + RF_ParityLog_t * logList) +{ + /* Flush a linked list of core logs to the log disk. Logs contain the + * disk location where they should be written. Logs were written in + * FIFO order and that order must be preserved. + * + * Recommended optimizations: 1) allow multiple flushes to occur + * simultaneously 2) coalesce contiguous flush operations + * + * BLOCKING */ + + RF_ParityLog_t *log; + RF_RegionId_t regionID; + RF_MCPair_t *fwr_mcpair; + RF_DagHeader_t *fwr_dag_h; + RF_AllocListElem_t *fwr_alloclist; + RF_PhysDiskAddr_t *fwr_pda; + + fwr_mcpair = rf_AllocMCPair(); + RF_LOCK_MUTEX(fwr_mcpair->mutex); + + RF_ASSERT(logList); + log = logList; + while (log) { + regionID = log->regionID; + + /* create and launch a DAG to write the core log */ + if (rf_parityLogDebug) + printf("[initiating write of core log for region %d]\n", regionID); + fwr_mcpair->flag = RF_FALSE; + WriteCoreLog(log, fwr_mcpair, raidPtr, &fwr_dag_h, + &fwr_alloclist, &fwr_pda); + + /* wait for the DAG to complete */ + while (!fwr_mcpair->flag) + RF_WAIT_COND(fwr_mcpair->cond, fwr_mcpair->mutex); + if (fwr_dag_h->status != rf_enable) { + RF_ERRORMSG1("Unable to write core log to disk (region %d)\n", regionID); + RF_ASSERT(0); + } + /* RF_Free(fwr_pda, sizeof(RF_PhysDiskAddr_t)); */ + rf_FreePhysDiskAddr(fwr_pda); + rf_FreeDAG(fwr_dag_h); + rf_FreeAllocList(fwr_alloclist); + + log = log->next; + } + RF_UNLOCK_MUTEX(fwr_mcpair->mutex); + rf_FreeMCPair(fwr_mcpair); + rf_ReleaseParityLogs(raidPtr, logList); +} + +static void +ReintegrateRegion( + RF_Raid_t * raidPtr, + RF_RegionId_t regionID, + RF_ParityLog_t * coreLog) +{ + RF_MCPair_t *rrd_mcpair = NULL, *prd_mcpair, *pwr_mcpair; + RF_DagHeader_t *rrd_dag_h, *prd_dag_h, *pwr_dag_h; + RF_AllocListElem_t *rrd_alloclist, *prd_alloclist, *pwr_alloclist; + RF_PhysDiskAddr_t *rrd_pda, *prd_pda, *pwr_pda; + caddr_t parityBuffer, regionBuffer = NULL; + + /* Reintegrate a region (regionID). + * + * 1. acquire region and parity buffers + * 2. read log from disk + * 3. read parity from disk + * 4. apply log to parity + * 5. apply core log to parity + * 6. write new parity to disk + * + * BLOCKING */ + + if (rf_parityLogDebug) + printf("[reintegrating region %d]\n", regionID); + + /* initiate read of region parity */ + if (rf_parityLogDebug) + printf("[initiating read of parity for region %d]\n",regionID); + parityBuffer = AcquireReintBuffer(&raidPtr->parityBufferPool); + prd_mcpair = rf_AllocMCPair(); + RF_LOCK_MUTEX(prd_mcpair->mutex); + prd_mcpair->flag = RF_FALSE; + ReadRegionParity(regionID, prd_mcpair, parityBuffer, raidPtr, + &prd_dag_h, &prd_alloclist, &prd_pda); + + /* if region log nonempty, initiate read */ + if (raidPtr->regionInfo[regionID].diskCount > 0) { + if (rf_parityLogDebug) + printf("[initiating read of disk log for region %d]\n", + regionID); + regionBuffer = AcquireReintBuffer(&raidPtr->regionBufferPool); + rrd_mcpair = rf_AllocMCPair(); + RF_LOCK_MUTEX(rrd_mcpair->mutex); + rrd_mcpair->flag = RF_FALSE; + ReadRegionLog(regionID, rrd_mcpair, regionBuffer, raidPtr, + &rrd_dag_h, &rrd_alloclist, &rrd_pda); + } + /* wait on read of region parity to complete */ + while (!prd_mcpair->flag) { + RF_WAIT_COND(prd_mcpair->cond, prd_mcpair->mutex); + } + RF_UNLOCK_MUTEX(prd_mcpair->mutex); + if (prd_dag_h->status != rf_enable) { + RF_ERRORMSG("Unable to read parity from disk\n"); + /* add code to fail the parity disk */ + RF_ASSERT(0); + } + /* apply core log to parity */ + /* if (coreLog) ApplyLogsToParity(coreLog, parityBuffer); */ + + if (raidPtr->regionInfo[regionID].diskCount > 0) { + /* wait on read of region log to complete */ + while (!rrd_mcpair->flag) + RF_WAIT_COND(rrd_mcpair->cond, rrd_mcpair->mutex); + RF_UNLOCK_MUTEX(rrd_mcpair->mutex); + if (rrd_dag_h->status != rf_enable) { + RF_ERRORMSG("Unable to read region log from disk\n"); + /* add code to fail the log disk */ + RF_ASSERT(0); + } + /* apply region log to parity */ + /* ApplyRegionToParity(regionID, regionBuffer, parityBuffer); */ + /* release resources associated with region log */ + /* RF_Free(rrd_pda, sizeof(RF_PhysDiskAddr_t)); */ + rf_FreePhysDiskAddr(rrd_pda); + rf_FreeDAG(rrd_dag_h); + rf_FreeAllocList(rrd_alloclist); + rf_FreeMCPair(rrd_mcpair); + ReleaseReintBuffer(&raidPtr->regionBufferPool, regionBuffer); + } + /* write reintegrated parity to disk */ + if (rf_parityLogDebug) + printf("[initiating write of parity for region %d]\n", + regionID); + pwr_mcpair = rf_AllocMCPair(); + RF_LOCK_MUTEX(pwr_mcpair->mutex); + pwr_mcpair->flag = RF_FALSE; + WriteRegionParity(regionID, pwr_mcpair, parityBuffer, raidPtr, + &pwr_dag_h, &pwr_alloclist, &pwr_pda); + while (!pwr_mcpair->flag) + RF_WAIT_COND(pwr_mcpair->cond, pwr_mcpair->mutex); + RF_UNLOCK_MUTEX(pwr_mcpair->mutex); + if (pwr_dag_h->status != rf_enable) { + RF_ERRORMSG("Unable to write parity to disk\n"); + /* add code to fail the parity disk */ + RF_ASSERT(0); + } + /* release resources associated with read of old parity */ + /* RF_Free(prd_pda, sizeof(RF_PhysDiskAddr_t)); */ + rf_FreePhysDiskAddr(prd_pda); + rf_FreeDAG(prd_dag_h); + rf_FreeAllocList(prd_alloclist); + rf_FreeMCPair(prd_mcpair); + + /* release resources associated with write of new parity */ + ReleaseReintBuffer(&raidPtr->parityBufferPool, parityBuffer); + /* RF_Free(pwr_pda, sizeof(RF_PhysDiskAddr_t)); */ + rf_FreePhysDiskAddr(pwr_pda); + rf_FreeDAG(pwr_dag_h); + rf_FreeAllocList(pwr_alloclist); + rf_FreeMCPair(pwr_mcpair); + + if (rf_parityLogDebug) + printf("[finished reintegrating region %d]\n", regionID); +} + + + +static void +ReintegrateLogs( + RF_Raid_t * raidPtr, + RF_ParityLog_t * logList) +{ + RF_ParityLog_t *log, *freeLogList = NULL; + RF_ParityLogData_t *logData, *logDataList; + RF_RegionId_t regionID; + + RF_ASSERT(logList); + while (logList) { + log = logList; + logList = logList->next; + log->next = NULL; + regionID = log->regionID; + ReintegrateRegion(raidPtr, regionID, log); + log->numRecords = 0; + + /* remove all items which are blocked on reintegration of this + * region */ + RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex); + logData = rf_SearchAndDequeueParityLogData(raidPtr, regionID, + &raidPtr->parityLogDiskQueue.reintBlockHead, + &raidPtr->parityLogDiskQueue.reintBlockTail, + RF_TRUE); + logDataList = logData; + while (logData) { + logData->next = rf_SearchAndDequeueParityLogData( + raidPtr, regionID, + &raidPtr->parityLogDiskQueue.reintBlockHead, + &raidPtr->parityLogDiskQueue.reintBlockTail, + RF_TRUE); + logData = logData->next; + } + RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex); + + /* process blocked log data and clear reintInProgress flag for + * this region */ + if (logDataList) + rf_ParityLogAppend(logDataList, RF_TRUE, &log, RF_TRUE); + else { + /* Enable flushing for this region. Holding both + * locks provides a synchronization barrier with + * DumpParityLogToDisk */ + RF_LOCK_MUTEX(raidPtr->regionInfo[regionID].mutex); + RF_LOCK_MUTEX(raidPtr->regionInfo[regionID].reintMutex); + RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex); + raidPtr->regionInfo[regionID].diskCount = 0; + raidPtr->regionInfo[regionID].reintInProgress = RF_FALSE; + RF_UNLOCK_MUTEX(raidPtr->regionInfo[regionID].mutex); + RF_UNLOCK_MUTEX(raidPtr->regionInfo[regionID].reintMutex); /* flushing is now + * enabled */ + RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex); + } + /* if log wasn't used, attach it to the list of logs to be + * returned */ + if (log) { + log->next = freeLogList; + freeLogList = log; + } + } + if (freeLogList) + rf_ReleaseParityLogs(raidPtr, freeLogList); +} + +int +rf_ShutdownLogging(RF_Raid_t * raidPtr) +{ + /* shutdown parity logging 1) disable parity logging in all regions 2) + * reintegrate all regions */ + + RF_SectorCount_t diskCount; + RF_RegionId_t regionID; + RF_ParityLog_t *log; + + if (rf_parityLogDebug) + printf("[shutting down parity logging]\n"); + /* Since parity log maps are volatile, we must reintegrate all + * regions. */ + if (rf_forceParityLogReint) { + for (regionID = 0; regionID < rf_numParityRegions; regionID++) { + RF_LOCK_MUTEX(raidPtr->regionInfo[regionID].mutex); + raidPtr->regionInfo[regionID].loggingEnabled = + RF_FALSE; + log = raidPtr->regionInfo[regionID].coreLog; + raidPtr->regionInfo[regionID].coreLog = NULL; + diskCount = raidPtr->regionInfo[regionID].diskCount; + RF_UNLOCK_MUTEX(raidPtr->regionInfo[regionID].mutex); + if (diskCount > 0 || log != NULL) + ReintegrateRegion(raidPtr, regionID, log); + if (log != NULL) + rf_ReleaseParityLogs(raidPtr, log); + } + } + if (rf_parityLogDebug) { + printf("[parity logging disabled]\n"); + printf("[should be done!]\n"); + } + return (0); +} + +int +rf_ParityLoggingDiskManager(RF_Raid_t * raidPtr) +{ + RF_ParityLog_t *reintQueue, *flushQueue; + int workNeeded, done = RF_FALSE; + int s; + + /* Main program for parity logging disk thread. This routine waits + * for work to appear in either the flush or reintegration queues and + * is responsible for flushing core logs to the log disk as well as + * reintegrating parity regions. + * + * BLOCKING */ + + s = splbio(); + + RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex); + + /* + * Inform our creator that we're running. Don't bother doing the + * mutex lock/unlock dance- we locked above, and we'll unlock + * below with nothing to do, yet. + */ + raidPtr->parityLogDiskQueue.threadState |= RF_PLOG_RUNNING; + RF_SIGNAL_COND(raidPtr->parityLogDiskQueue.cond); + + /* empty the work queues */ + flushQueue = raidPtr->parityLogDiskQueue.flushQueue; + raidPtr->parityLogDiskQueue.flushQueue = NULL; + reintQueue = raidPtr->parityLogDiskQueue.reintQueue; + raidPtr->parityLogDiskQueue.reintQueue = NULL; + workNeeded = (flushQueue || reintQueue); + + while (!done) { + while (workNeeded) { + /* First, flush all logs in the flush queue, freeing + * buffers Second, reintegrate all regions which are + * reported as full. Third, append queued log data + * until blocked. + * + * Note: Incoming appends (ParityLogAppend) can block on + * either 1. empty buffer pool 2. region under + * reintegration To preserve a global FIFO ordering of + * appends, buffers are not released to the world + * until those appends blocked on buffers are removed + * from the append queue. Similarly, regions which + * are reintegrated are not opened for general use + * until the append queue has been emptied. */ + + RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex); + + /* empty flushQueue, using free'd log buffers to + * process bufTail */ + if (flushQueue) + FlushLogsToDisk(raidPtr, flushQueue); + + /* empty reintQueue, flushing from reintTail as we go */ + if (reintQueue) + ReintegrateLogs(raidPtr, reintQueue); + + RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex); + flushQueue = raidPtr->parityLogDiskQueue.flushQueue; + raidPtr->parityLogDiskQueue.flushQueue = NULL; + reintQueue = raidPtr->parityLogDiskQueue.reintQueue; + raidPtr->parityLogDiskQueue.reintQueue = NULL; + workNeeded = (flushQueue || reintQueue); + } + /* no work is needed at this point */ + if (raidPtr->parityLogDiskQueue.threadState & RF_PLOG_TERMINATE) { + /* shutdown parity logging 1. disable parity logging + * in all regions 2. reintegrate all regions */ + done = RF_TRUE; /* thread disabled, no work needed */ + RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex); + rf_ShutdownLogging(raidPtr); + } + if (!done) { + /* thread enabled, no work needed, so sleep */ + if (rf_parityLogDebug) + printf("[parity logging disk manager sleeping]\n"); + RF_WAIT_COND(raidPtr->parityLogDiskQueue.cond, + raidPtr->parityLogDiskQueue.mutex); + if (rf_parityLogDebug) + printf("[parity logging disk manager just woke up]\n"); + flushQueue = raidPtr->parityLogDiskQueue.flushQueue; + raidPtr->parityLogDiskQueue.flushQueue = NULL; + reintQueue = raidPtr->parityLogDiskQueue.reintQueue; + raidPtr->parityLogDiskQueue.reintQueue = NULL; + workNeeded = (flushQueue || reintQueue); + } + } + /* + * Announce that we're done. + */ + RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex); + raidPtr->parityLogDiskQueue.threadState |= RF_PLOG_SHUTDOWN; + RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex); + RF_SIGNAL_COND(raidPtr->parityLogDiskQueue.cond); + + splx(s); + + /* + * In the NetBSD kernel, the thread must exit; returning would + * cause the proc trampoline to attempt to return to userspace. + */ + kthread_exit(0); /* does not return */ +} +#endif /* RF_INCLUDE_PARITYLOGGING > 0 */ diff --git a/sys/dev/raidframe/rf_paritylogDiskMgr.h b/sys/dev/raidframe/rf_paritylogDiskMgr.h new file mode 100644 index 0000000..bdcc2a5 --- /dev/null +++ b/sys/dev/raidframe/rf_paritylogDiskMgr.h @@ -0,0 +1,42 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_paritylogDiskMgr.h,v 1.3 1999/02/05 00:06:14 oster Exp $ */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: William V. Courtright II + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +/* header file for parity log disk mgr code + * + */ + +#ifndef _RF__RF_PARITYLOGDISKMGR_H_ +#define _RF__RF_PARITYLOGDISKMGR_H_ + +#include <dev/raidframe/rf_types.h> + +int rf_ShutdownLogging(RF_Raid_t * raidPtr); +int rf_ParityLoggingDiskManager(RF_Raid_t * raidPtr); + +#endif /* !_RF__RF_PARITYLOGDISKMGR_H_ */ diff --git a/sys/dev/raidframe/rf_paritylogging.c b/sys/dev/raidframe/rf_paritylogging.c new file mode 100644 index 0000000..f318655 --- /dev/null +++ b/sys/dev/raidframe/rf_paritylogging.c @@ -0,0 +1,1074 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_paritylogging.c,v 1.10 2000/02/12 16:06:27 oster Exp $ */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: William V. Courtright II + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + + +/* + parity logging configuration, dag selection, and mapping is implemented here + */ + +#include <dev/raidframe/rf_archs.h> + +#if RF_INCLUDE_PARITYLOGGING > 0 + +#include <dev/raidframe/rf_types.h> +#include <dev/raidframe/rf_raid.h> +#include <dev/raidframe/rf_dag.h> +#include <dev/raidframe/rf_dagutils.h> +#include <dev/raidframe/rf_dagfuncs.h> +#include <dev/raidframe/rf_dagffrd.h> +#include <dev/raidframe/rf_dagffwr.h> +#include <dev/raidframe/rf_dagdegrd.h> +#include <dev/raidframe/rf_dagdegwr.h> +#include <dev/raidframe/rf_paritylog.h> +#include <dev/raidframe/rf_paritylogDiskMgr.h> +#include <dev/raidframe/rf_paritylogging.h> +#include <dev/raidframe/rf_parityloggingdags.h> +#include <dev/raidframe/rf_general.h> +#include <dev/raidframe/rf_map.h> +#include <dev/raidframe/rf_utils.h> +#include <dev/raidframe/rf_shutdown.h> +#include <dev/raidframe/rf_kintf.h> + +typedef struct RF_ParityLoggingConfigInfo_s { + RF_RowCol_t **stripeIdentifier; /* filled in at config time & used by + * IdentifyStripe */ +} RF_ParityLoggingConfigInfo_t; + +static void FreeRegionInfo(RF_Raid_t * raidPtr, RF_RegionId_t regionID); +static void rf_ShutdownParityLogging(RF_ThreadArg_t arg); +static void rf_ShutdownParityLoggingRegionInfo(RF_ThreadArg_t arg); +static void rf_ShutdownParityLoggingPool(RF_ThreadArg_t arg); +static void rf_ShutdownParityLoggingRegionBufferPool(RF_ThreadArg_t arg); +static void rf_ShutdownParityLoggingParityBufferPool(RF_ThreadArg_t arg); +static void rf_ShutdownParityLoggingDiskQueue(RF_ThreadArg_t arg); + +int +rf_ConfigureParityLogging( + RF_ShutdownList_t ** listp, + RF_Raid_t * raidPtr, + RF_Config_t * cfgPtr) +{ + int i, j, startdisk, rc; + RF_SectorCount_t totalLogCapacity, fragmentation, lastRegionCapacity; + RF_SectorCount_t parityBufferCapacity, maxRegionParityRange; + RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; + RF_ParityLoggingConfigInfo_t *info; + RF_ParityLog_t *l = NULL, *next; + caddr_t lHeapPtr; + + if (rf_numParityRegions <= 0) + return(EINVAL); + + /* + * We create multiple entries on the shutdown list here, since + * this configuration routine is fairly complicated in and of + * itself, and this makes backing out of a failed configuration + * much simpler. + */ + + raidPtr->numSectorsPerLog = RF_DEFAULT_NUM_SECTORS_PER_LOG; + + /* create a parity logging configuration structure */ + RF_MallocAndAdd(info, sizeof(RF_ParityLoggingConfigInfo_t), + (RF_ParityLoggingConfigInfo_t *), + raidPtr->cleanupList); + if (info == NULL) + return (ENOMEM); + layoutPtr->layoutSpecificInfo = (void *) info; + + RF_ASSERT(raidPtr->numRow == 1); + + /* the stripe identifier must identify the disks in each stripe, IN + * THE ORDER THAT THEY APPEAR IN THE STRIPE. */ + info->stripeIdentifier = rf_make_2d_array((raidPtr->numCol), + (raidPtr->numCol), + raidPtr->cleanupList); + if (info->stripeIdentifier == NULL) + return (ENOMEM); + + startdisk = 0; + for (i = 0; i < (raidPtr->numCol); i++) { + for (j = 0; j < (raidPtr->numCol); j++) { + info->stripeIdentifier[i][j] = (startdisk + j) % + (raidPtr->numCol - 1); + } + if ((--startdisk) < 0) + startdisk = raidPtr->numCol - 1 - 1; + } + + /* fill in the remaining layout parameters */ + layoutPtr->numStripe = layoutPtr->stripeUnitsPerDisk; + layoutPtr->bytesPerStripeUnit = layoutPtr->sectorsPerStripeUnit << + raidPtr->logBytesPerSector; + layoutPtr->numParityCol = 1; + layoutPtr->numParityLogCol = 1; + layoutPtr->numDataCol = raidPtr->numCol - layoutPtr->numParityCol - + layoutPtr->numParityLogCol; + layoutPtr->dataSectorsPerStripe = layoutPtr->numDataCol * + layoutPtr->sectorsPerStripeUnit; + layoutPtr->dataStripeUnitsPerDisk = layoutPtr->stripeUnitsPerDisk; + raidPtr->sectorsPerDisk = layoutPtr->stripeUnitsPerDisk * + layoutPtr->sectorsPerStripeUnit; + + raidPtr->totalSectors = layoutPtr->stripeUnitsPerDisk * + layoutPtr->numDataCol * layoutPtr->sectorsPerStripeUnit; + + /* configure parity log parameters + * + * parameter comment/constraints + * ------------------------------------------- + * numParityRegions* all regions (except possibly last) + * of equal size + * totalInCoreLogCapacity* amount of memory in bytes available + * for in-core logs (default 1 MB) + * numSectorsPerLog# capacity of an in-core log in sectors + * (1 * disk track) + * numParityLogs total number of in-core logs, + * should be at least numParityRegions + * regionLogCapacity size of a region log (except possibly + * last one) in sectors + * totalLogCapacity total amount of log space in sectors + * + * where '*' denotes a user settable parameter. + * Note that logs are fixed to be the size of a disk track, + * value #defined in rf_paritylog.h + * + */ + + totalLogCapacity = layoutPtr->stripeUnitsPerDisk * layoutPtr->sectorsPerStripeUnit * layoutPtr->numParityLogCol; + raidPtr->regionLogCapacity = totalLogCapacity / rf_numParityRegions; + if (rf_parityLogDebug) + printf("bytes per sector %d\n", raidPtr->bytesPerSector); + + /* reduce fragmentation within a disk region by adjusting the number + * of regions in an attempt to allow an integral number of logs to fit + * into a disk region */ + fragmentation = raidPtr->regionLogCapacity % raidPtr->numSectorsPerLog; + if (fragmentation > 0) + for (i = 1; i < (raidPtr->numSectorsPerLog / 2); i++) { + if (((totalLogCapacity / (rf_numParityRegions + i)) % + raidPtr->numSectorsPerLog) < fragmentation) { + rf_numParityRegions++; + raidPtr->regionLogCapacity = totalLogCapacity / + rf_numParityRegions; + fragmentation = raidPtr->regionLogCapacity % + raidPtr->numSectorsPerLog; + } + if (((totalLogCapacity / (rf_numParityRegions - i)) % + raidPtr->numSectorsPerLog) < fragmentation) { + rf_numParityRegions--; + raidPtr->regionLogCapacity = totalLogCapacity / + rf_numParityRegions; + fragmentation = raidPtr->regionLogCapacity % + raidPtr->numSectorsPerLog; + } + } + /* ensure integral number of regions per log */ + raidPtr->regionLogCapacity = (raidPtr->regionLogCapacity / + raidPtr->numSectorsPerLog) * + raidPtr->numSectorsPerLog; + + raidPtr->numParityLogs = rf_totalInCoreLogCapacity / + (raidPtr->bytesPerSector * raidPtr->numSectorsPerLog); + /* to avoid deadlock, must ensure that enough logs exist for each + * region to have one simultaneously */ + if (raidPtr->numParityLogs < rf_numParityRegions) + raidPtr->numParityLogs = rf_numParityRegions; + + /* create region information structs */ + printf("Allocating %d bytes for in-core parity region info\n", + (int) (rf_numParityRegions * sizeof(RF_RegionInfo_t))); + RF_Malloc(raidPtr->regionInfo, + (rf_numParityRegions * sizeof(RF_RegionInfo_t)), + (RF_RegionInfo_t *)); + if (raidPtr->regionInfo == NULL) + return (ENOMEM); + + /* last region may not be full capacity */ + lastRegionCapacity = raidPtr->regionLogCapacity; + while ((rf_numParityRegions - 1) * raidPtr->regionLogCapacity + + lastRegionCapacity > totalLogCapacity) + lastRegionCapacity = lastRegionCapacity - + raidPtr->numSectorsPerLog; + + raidPtr->regionParityRange = raidPtr->sectorsPerDisk / + rf_numParityRegions; + maxRegionParityRange = raidPtr->regionParityRange; + +/* i can't remember why this line is in the code -wvcii 6/30/95 */ +/* if (raidPtr->sectorsPerDisk % rf_numParityRegions > 0) + regionParityRange++; */ + + /* build pool of unused parity logs */ + printf("Allocating %d bytes for %d parity logs\n", + raidPtr->numParityLogs * raidPtr->numSectorsPerLog * + raidPtr->bytesPerSector, + raidPtr->numParityLogs); + RF_Malloc(raidPtr->parityLogBufferHeap, raidPtr->numParityLogs * + raidPtr->numSectorsPerLog * raidPtr->bytesPerSector, + (caddr_t)); + if (raidPtr->parityLogBufferHeap == NULL) + return (ENOMEM); + lHeapPtr = raidPtr->parityLogBufferHeap; + rc = rf_mutex_init(&raidPtr->parityLogPool.mutex, "RF_PARITYLOGGING1"); + if (rc) { + RF_ERRORMSG3("Unable to init mutex file %s line %d rc=%d\n", + __FILE__, __LINE__, rc); + RF_Free(raidPtr->parityLogBufferHeap, raidPtr->numParityLogs * + raidPtr->numSectorsPerLog * raidPtr->bytesPerSector); + return (ENOMEM); + } + for (i = 0; i < raidPtr->numParityLogs; i++) { + if (i == 0) { + RF_Calloc(raidPtr->parityLogPool.parityLogs, 1, + sizeof(RF_ParityLog_t), (RF_ParityLog_t *)); + if (raidPtr->parityLogPool.parityLogs == NULL) { + RF_Free(raidPtr->parityLogBufferHeap, + raidPtr->numParityLogs * + raidPtr->numSectorsPerLog * + raidPtr->bytesPerSector); + return (ENOMEM); + } + l = raidPtr->parityLogPool.parityLogs; + } else { + RF_Calloc(l->next, 1, sizeof(RF_ParityLog_t), + (RF_ParityLog_t *)); + if (l->next == NULL) { + RF_Free(raidPtr->parityLogBufferHeap, + raidPtr->numParityLogs * + raidPtr->numSectorsPerLog * + raidPtr->bytesPerSector); + for (l = raidPtr->parityLogPool.parityLogs; + l; + l = next) { + next = l->next; + if (l->records) + RF_Free(l->records, (raidPtr->numSectorsPerLog * sizeof(RF_ParityLogRecord_t))); + RF_Free(l, sizeof(RF_ParityLog_t)); + } + return (ENOMEM); + } + l = l->next; + } + l->bufPtr = lHeapPtr; + lHeapPtr += raidPtr->numSectorsPerLog * + raidPtr->bytesPerSector; + RF_Malloc(l->records, (raidPtr->numSectorsPerLog * + sizeof(RF_ParityLogRecord_t)), + (RF_ParityLogRecord_t *)); + if (l->records == NULL) { + RF_Free(raidPtr->parityLogBufferHeap, + raidPtr->numParityLogs * + raidPtr->numSectorsPerLog * + raidPtr->bytesPerSector); + for (l = raidPtr->parityLogPool.parityLogs; + l; + l = next) { + next = l->next; + if (l->records) + RF_Free(l->records, + (raidPtr->numSectorsPerLog * + sizeof(RF_ParityLogRecord_t))); + RF_Free(l, sizeof(RF_ParityLog_t)); + } + return (ENOMEM); + } + } + rc = rf_ShutdownCreate(listp, rf_ShutdownParityLoggingPool, raidPtr); + if (rc) { + RF_ERRORMSG3("Unable to create shutdown entry file %s line %d rc=%d\n", __FILE__, + __LINE__, rc); + rf_ShutdownParityLoggingPool(raidPtr); + return (rc); + } + /* build pool of region buffers */ + rc = rf_mutex_init(&raidPtr->regionBufferPool.mutex, "RF_PARITYLOGGING3"); + if (rc) { + RF_ERRORMSG3("Unable to init mutex file %s line %d rc=%d\n", + __FILE__, __LINE__, rc); + return (ENOMEM); + } + rc = rf_cond_init(&raidPtr->regionBufferPool.cond); + if (rc) { + RF_ERRORMSG3("Unable to init cond file %s line %d rc=%d\n", + __FILE__, __LINE__, rc); + rf_mutex_destroy(&raidPtr->regionBufferPool.mutex); + return (ENOMEM); + } + raidPtr->regionBufferPool.bufferSize = raidPtr->regionLogCapacity * + raidPtr->bytesPerSector; + printf("regionBufferPool.bufferSize %d\n", + raidPtr->regionBufferPool.bufferSize); + + /* for now, only one region at a time may be reintegrated */ + raidPtr->regionBufferPool.totalBuffers = 1; + + raidPtr->regionBufferPool.availableBuffers = + raidPtr->regionBufferPool.totalBuffers; + raidPtr->regionBufferPool.availBuffersIndex = 0; + raidPtr->regionBufferPool.emptyBuffersIndex = 0; + printf("Allocating %d bytes for regionBufferPool\n", + (int) (raidPtr->regionBufferPool.totalBuffers * + sizeof(caddr_t))); + RF_Malloc(raidPtr->regionBufferPool.buffers, + raidPtr->regionBufferPool.totalBuffers * sizeof(caddr_t), + (caddr_t *)); + if (raidPtr->regionBufferPool.buffers == NULL) { + rf_mutex_destroy(&raidPtr->regionBufferPool.mutex); + rf_cond_destroy(&raidPtr->regionBufferPool.cond); + return (ENOMEM); + } + for (i = 0; i < raidPtr->regionBufferPool.totalBuffers; i++) { + printf("Allocating %d bytes for regionBufferPool#%d\n", + (int) (raidPtr->regionBufferPool.bufferSize * + sizeof(char)), i); + RF_Malloc(raidPtr->regionBufferPool.buffers[i], + raidPtr->regionBufferPool.bufferSize * sizeof(char), + (caddr_t)); + if (raidPtr->regionBufferPool.buffers[i] == NULL) { + rf_mutex_destroy(&raidPtr->regionBufferPool.mutex); + rf_cond_destroy(&raidPtr->regionBufferPool.cond); + for (j = 0; j < i; j++) { + RF_Free(raidPtr->regionBufferPool.buffers[i], + raidPtr->regionBufferPool.bufferSize * + sizeof(char)); + } + RF_Free(raidPtr->regionBufferPool.buffers, + raidPtr->regionBufferPool.totalBuffers * + sizeof(caddr_t)); + return (ENOMEM); + } + printf("raidPtr->regionBufferPool.buffers[%d] = %lx\n", i, + (long) raidPtr->regionBufferPool.buffers[i]); + } + rc = rf_ShutdownCreate(listp, + rf_ShutdownParityLoggingRegionBufferPool, + raidPtr); + if (rc) { + RF_ERRORMSG3("Unable to create shutdown entry file %s line %d rc=%d\n", __FILE__, + __LINE__, rc); + rf_ShutdownParityLoggingRegionBufferPool(raidPtr); + return (rc); + } + /* build pool of parity buffers */ + parityBufferCapacity = maxRegionParityRange; + rc = rf_mutex_init(&raidPtr->parityBufferPool.mutex, "RF_PARITYLOGGING3"); + if (rc) { + RF_ERRORMSG3("Unable to init mutex file %s line %d rc=%d\n", + __FILE__, __LINE__, rc); + return (rc); + } + rc = rf_cond_init(&raidPtr->parityBufferPool.cond); + if (rc) { + RF_ERRORMSG3("Unable to init cond file %s line %d rc=%d\n", + __FILE__, __LINE__, rc); + rf_mutex_destroy(&raidPtr->parityBufferPool.mutex); + return (ENOMEM); + } + raidPtr->parityBufferPool.bufferSize = parityBufferCapacity * + raidPtr->bytesPerSector; + printf("parityBufferPool.bufferSize %d\n", + raidPtr->parityBufferPool.bufferSize); + + /* for now, only one region at a time may be reintegrated */ + raidPtr->parityBufferPool.totalBuffers = 1; + + raidPtr->parityBufferPool.availableBuffers = + raidPtr->parityBufferPool.totalBuffers; + raidPtr->parityBufferPool.availBuffersIndex = 0; + raidPtr->parityBufferPool.emptyBuffersIndex = 0; + printf("Allocating %d bytes for parityBufferPool of %d units\n", + (int) (raidPtr->parityBufferPool.totalBuffers * + sizeof(caddr_t)), + raidPtr->parityBufferPool.totalBuffers ); + RF_Malloc(raidPtr->parityBufferPool.buffers, + raidPtr->parityBufferPool.totalBuffers * sizeof(caddr_t), + (caddr_t *)); + if (raidPtr->parityBufferPool.buffers == NULL) { + rf_mutex_destroy(&raidPtr->parityBufferPool.mutex); + rf_cond_destroy(&raidPtr->parityBufferPool.cond); + return (ENOMEM); + } + for (i = 0; i < raidPtr->parityBufferPool.totalBuffers; i++) { + printf("Allocating %d bytes for parityBufferPool#%d\n", + (int) (raidPtr->parityBufferPool.bufferSize * + sizeof(char)),i); + RF_Malloc(raidPtr->parityBufferPool.buffers[i], + raidPtr->parityBufferPool.bufferSize * sizeof(char), + (caddr_t)); + if (raidPtr->parityBufferPool.buffers == NULL) { + rf_mutex_destroy(&raidPtr->parityBufferPool.mutex); + rf_cond_destroy(&raidPtr->parityBufferPool.cond); + for (j = 0; j < i; j++) { + RF_Free(raidPtr->parityBufferPool.buffers[i], + raidPtr->regionBufferPool.bufferSize * + sizeof(char)); + } + RF_Free(raidPtr->parityBufferPool.buffers, + raidPtr->regionBufferPool.totalBuffers * + sizeof(caddr_t)); + return (ENOMEM); + } + printf("parityBufferPool.buffers[%d] = %lx\n", i, + (long) raidPtr->parityBufferPool.buffers[i]); + } + rc = rf_ShutdownCreate(listp, + rf_ShutdownParityLoggingParityBufferPool, + raidPtr); + if (rc) { + RF_ERRORMSG3("Unable to create shutdown entry file %s line %d rc=%d\n", __FILE__, + __LINE__, rc); + rf_ShutdownParityLoggingParityBufferPool(raidPtr); + return (rc); + } + /* initialize parityLogDiskQueue */ + rc = rf_create_managed_mutex(listp, + &raidPtr->parityLogDiskQueue.mutex); + if (rc) { + RF_ERRORMSG3("Unable to init mutex file %s line %d rc=%d\n", + __FILE__, __LINE__, rc); + return (rc); + } + rc = rf_create_managed_cond(listp, &raidPtr->parityLogDiskQueue.cond); + if (rc) { + RF_ERRORMSG3("Unable to init cond file %s line %d rc=%d\n", + __FILE__, __LINE__, rc); + return (rc); + } + raidPtr->parityLogDiskQueue.flushQueue = NULL; + raidPtr->parityLogDiskQueue.reintQueue = NULL; + raidPtr->parityLogDiskQueue.bufHead = NULL; + raidPtr->parityLogDiskQueue.bufTail = NULL; + raidPtr->parityLogDiskQueue.reintHead = NULL; + raidPtr->parityLogDiskQueue.reintTail = NULL; + raidPtr->parityLogDiskQueue.logBlockHead = NULL; + raidPtr->parityLogDiskQueue.logBlockTail = NULL; + raidPtr->parityLogDiskQueue.reintBlockHead = NULL; + raidPtr->parityLogDiskQueue.reintBlockTail = NULL; + raidPtr->parityLogDiskQueue.freeDataList = NULL; + raidPtr->parityLogDiskQueue.freeCommonList = NULL; + + rc = rf_ShutdownCreate(listp, + rf_ShutdownParityLoggingDiskQueue, + raidPtr); + if (rc) { + RF_ERRORMSG3("Unable to create shutdown entry file %s line %d rc=%d\n", __FILE__, + __LINE__, rc); + return (rc); + } + for (i = 0; i < rf_numParityRegions; i++) { + rc = rf_mutex_init(&raidPtr->regionInfo[i].mutex, "RF_PARITYLOGGING3"); + if (rc) { + RF_ERRORMSG3("Unable to init mutex file %s line %d rc=%d\n", __FILE__, + __LINE__, rc); + for (j = 0; j < i; j++) + FreeRegionInfo(raidPtr, j); + RF_Free(raidPtr->regionInfo, + (rf_numParityRegions * + sizeof(RF_RegionInfo_t))); + return (ENOMEM); + } + rc = rf_mutex_init(&raidPtr->regionInfo[i].reintMutex, "RF_PARITYLOGGING4"); + if (rc) { + RF_ERRORMSG3("Unable to init mutex file %s line %d rc=%d\n", __FILE__, + __LINE__, rc); + rf_mutex_destroy(&raidPtr->regionInfo[i].mutex); + for (j = 0; j < i; j++) + FreeRegionInfo(raidPtr, j); + RF_Free(raidPtr->regionInfo, + (rf_numParityRegions * + sizeof(RF_RegionInfo_t))); + return (ENOMEM); + } + raidPtr->regionInfo[i].reintInProgress = RF_FALSE; + raidPtr->regionInfo[i].regionStartAddr = + raidPtr->regionLogCapacity * i; + raidPtr->regionInfo[i].parityStartAddr = + raidPtr->regionParityRange * i; + if (i < rf_numParityRegions - 1) { + raidPtr->regionInfo[i].capacity = + raidPtr->regionLogCapacity; + raidPtr->regionInfo[i].numSectorsParity = + raidPtr->regionParityRange; + } else { + raidPtr->regionInfo[i].capacity = + lastRegionCapacity; + raidPtr->regionInfo[i].numSectorsParity = + raidPtr->sectorsPerDisk - + raidPtr->regionParityRange * i; + if (raidPtr->regionInfo[i].numSectorsParity > + maxRegionParityRange) + maxRegionParityRange = + raidPtr->regionInfo[i].numSectorsParity; + } + raidPtr->regionInfo[i].diskCount = 0; + RF_ASSERT(raidPtr->regionInfo[i].capacity + + raidPtr->regionInfo[i].regionStartAddr <= + totalLogCapacity); + RF_ASSERT(raidPtr->regionInfo[i].parityStartAddr + + raidPtr->regionInfo[i].numSectorsParity <= + raidPtr->sectorsPerDisk); + printf("Allocating %d bytes for region %d\n", + (int) (raidPtr->regionInfo[i].capacity * + sizeof(RF_DiskMap_t)), i); + RF_Malloc(raidPtr->regionInfo[i].diskMap, + (raidPtr->regionInfo[i].capacity * + sizeof(RF_DiskMap_t)), + (RF_DiskMap_t *)); + if (raidPtr->regionInfo[i].diskMap == NULL) { + rf_mutex_destroy(&raidPtr->regionInfo[i].mutex); + rf_mutex_destroy(&raidPtr->regionInfo[i].reintMutex); + for (j = 0; j < i; j++) + FreeRegionInfo(raidPtr, j); + RF_Free(raidPtr->regionInfo, + (rf_numParityRegions * + sizeof(RF_RegionInfo_t))); + return (ENOMEM); + } + raidPtr->regionInfo[i].loggingEnabled = RF_FALSE; + raidPtr->regionInfo[i].coreLog = NULL; + } + rc = rf_ShutdownCreate(listp, + rf_ShutdownParityLoggingRegionInfo, + raidPtr); + if (rc) { + RF_ERRORMSG3("Unable to create shutdown entry file %s line %d rc=%d\n", __FILE__, + __LINE__, rc); + rf_ShutdownParityLoggingRegionInfo(raidPtr); + return (rc); + } + RF_ASSERT(raidPtr->parityLogDiskQueue.threadState == 0); + raidPtr->parityLogDiskQueue.threadState = RF_PLOG_CREATED; + rc = RF_CREATE_THREAD(raidPtr->pLogDiskThreadHandle, + rf_ParityLoggingDiskManager, raidPtr,"rf_log"); + if (rc) { + raidPtr->parityLogDiskQueue.threadState = 0; + RF_ERRORMSG3("Unable to create parity logging disk thread file %s line %d rc=%d\n", + __FILE__, __LINE__, rc); + return (ENOMEM); + } + /* wait for thread to start */ + RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex); + while (!(raidPtr->parityLogDiskQueue.threadState & RF_PLOG_RUNNING)) { + RF_WAIT_COND(raidPtr->parityLogDiskQueue.cond, + raidPtr->parityLogDiskQueue.mutex); + } + RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex); + + rc = rf_ShutdownCreate(listp, rf_ShutdownParityLogging, raidPtr); + if (rc) { + RF_ERRORMSG1("Got rc=%d adding parity logging shutdown event\n", rc); + rf_ShutdownParityLogging(raidPtr); + return (rc); + } + if (rf_parityLogDebug) { + printf(" size of disk log in sectors: %d\n", + (int) totalLogCapacity); + printf(" total number of parity regions is %d\n", (int) rf_numParityRegions); + printf(" nominal sectors of log per parity region is %d\n", (int) raidPtr->regionLogCapacity); + printf(" nominal region fragmentation is %d sectors\n", (int) fragmentation); + printf(" total number of parity logs is %d\n", raidPtr->numParityLogs); + printf(" parity log size is %d sectors\n", raidPtr->numSectorsPerLog); + printf(" total in-core log space is %d bytes\n", (int) rf_totalInCoreLogCapacity); + } + rf_EnableParityLogging(raidPtr); + + return (0); +} + +static void +FreeRegionInfo( + RF_Raid_t * raidPtr, + RF_RegionId_t regionID) +{ + RF_LOCK_MUTEX(raidPtr->regionInfo[regionID].mutex); + RF_Free(raidPtr->regionInfo[regionID].diskMap, + (raidPtr->regionInfo[regionID].capacity * + sizeof(RF_DiskMap_t))); + if (!rf_forceParityLogReint && raidPtr->regionInfo[regionID].coreLog) { + rf_ReleaseParityLogs(raidPtr, + raidPtr->regionInfo[regionID].coreLog); + raidPtr->regionInfo[regionID].coreLog = NULL; + } else { + RF_ASSERT(raidPtr->regionInfo[regionID].coreLog == NULL); + RF_ASSERT(raidPtr->regionInfo[regionID].diskCount == 0); + } + RF_UNLOCK_MUTEX(raidPtr->regionInfo[regionID].mutex); + rf_mutex_destroy(&raidPtr->regionInfo[regionID].mutex); + rf_mutex_destroy(&raidPtr->regionInfo[regionID].reintMutex); +} + + +static void +FreeParityLogQueue( + RF_Raid_t * raidPtr, + RF_ParityLogQueue_t * queue) +{ + RF_ParityLog_t *l1, *l2; + + RF_LOCK_MUTEX(queue->mutex); + l1 = queue->parityLogs; + while (l1) { + l2 = l1; + l1 = l2->next; + RF_Free(l2->records, (raidPtr->numSectorsPerLog * + sizeof(RF_ParityLogRecord_t))); + RF_Free(l2, sizeof(RF_ParityLog_t)); + } + RF_UNLOCK_MUTEX(queue->mutex); + rf_mutex_destroy(&queue->mutex); +} + + +static void +FreeRegionBufferQueue(RF_RegionBufferQueue_t * queue) +{ + int i; + + RF_LOCK_MUTEX(queue->mutex); + if (queue->availableBuffers != queue->totalBuffers) { + printf("Attempt to free region queue which is still in use!\n"); + RF_ASSERT(0); + } + for (i = 0; i < queue->totalBuffers; i++) + RF_Free(queue->buffers[i], queue->bufferSize); + RF_Free(queue->buffers, queue->totalBuffers * sizeof(caddr_t)); + RF_UNLOCK_MUTEX(queue->mutex); + rf_mutex_destroy(&queue->mutex); +} + +static void +rf_ShutdownParityLoggingRegionInfo(RF_ThreadArg_t arg) +{ + RF_Raid_t *raidPtr; + RF_RegionId_t i; + + raidPtr = (RF_Raid_t *) arg; + if (rf_parityLogDebug) { + printf("raid%d: ShutdownParityLoggingRegionInfo\n", + raidPtr->raidid); + } + /* free region information structs */ + for (i = 0; i < rf_numParityRegions; i++) + FreeRegionInfo(raidPtr, i); + RF_Free(raidPtr->regionInfo, (rf_numParityRegions * + sizeof(raidPtr->regionInfo))); + raidPtr->regionInfo = NULL; +} + +static void +rf_ShutdownParityLoggingPool(RF_ThreadArg_t arg) +{ + RF_Raid_t *raidPtr; + + raidPtr = (RF_Raid_t *) arg; + if (rf_parityLogDebug) { + printf("raid%d: ShutdownParityLoggingPool\n", raidPtr->raidid); + } + /* free contents of parityLogPool */ + FreeParityLogQueue(raidPtr, &raidPtr->parityLogPool); + RF_Free(raidPtr->parityLogBufferHeap, raidPtr->numParityLogs * + raidPtr->numSectorsPerLog * raidPtr->bytesPerSector); +} + +static void +rf_ShutdownParityLoggingRegionBufferPool(RF_ThreadArg_t arg) +{ + RF_Raid_t *raidPtr; + + raidPtr = (RF_Raid_t *) arg; + if (rf_parityLogDebug) { + printf("raid%d: ShutdownParityLoggingRegionBufferPool\n", + raidPtr->raidid); + } + FreeRegionBufferQueue(&raidPtr->regionBufferPool); +} + +static void +rf_ShutdownParityLoggingParityBufferPool(RF_ThreadArg_t arg) +{ + RF_Raid_t *raidPtr; + + raidPtr = (RF_Raid_t *) arg; + if (rf_parityLogDebug) { + printf("raid%d: ShutdownParityLoggingParityBufferPool\n", + raidPtr->raidid); + } + FreeRegionBufferQueue(&raidPtr->parityBufferPool); +} + +static void +rf_ShutdownParityLoggingDiskQueue(RF_ThreadArg_t arg) +{ + RF_ParityLogData_t *d; + RF_CommonLogData_t *c; + RF_Raid_t *raidPtr; + + raidPtr = (RF_Raid_t *) arg; + if (rf_parityLogDebug) { + printf("raid%d: ShutdownParityLoggingDiskQueue\n", + raidPtr->raidid); + } + /* free disk manager stuff */ + RF_ASSERT(raidPtr->parityLogDiskQueue.bufHead == NULL); + RF_ASSERT(raidPtr->parityLogDiskQueue.bufTail == NULL); + RF_ASSERT(raidPtr->parityLogDiskQueue.reintHead == NULL); + RF_ASSERT(raidPtr->parityLogDiskQueue.reintTail == NULL); + while (raidPtr->parityLogDiskQueue.freeDataList) { + d = raidPtr->parityLogDiskQueue.freeDataList; + raidPtr->parityLogDiskQueue.freeDataList = + raidPtr->parityLogDiskQueue.freeDataList->next; + RF_Free(d, sizeof(RF_ParityLogData_t)); + } + while (raidPtr->parityLogDiskQueue.freeCommonList) { + c = raidPtr->parityLogDiskQueue.freeCommonList; + rf_mutex_destroy(&c->mutex); + raidPtr->parityLogDiskQueue.freeCommonList = + raidPtr->parityLogDiskQueue.freeCommonList->next; + RF_Free(c, sizeof(RF_CommonLogData_t)); + } +} + +static void +rf_ShutdownParityLogging(RF_ThreadArg_t arg) +{ + RF_Raid_t *raidPtr; + + raidPtr = (RF_Raid_t *) arg; + if (rf_parityLogDebug) { + printf("raid%d: ShutdownParityLogging\n", raidPtr->raidid); + } + /* shutdown disk thread */ + /* This has the desirable side-effect of forcing all regions to be + * reintegrated. This is necessary since all parity log maps are + * currently held in volatile memory. */ + + RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex); + raidPtr->parityLogDiskQueue.threadState |= RF_PLOG_TERMINATE; + RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex); + RF_SIGNAL_COND(raidPtr->parityLogDiskQueue.cond); + /* + * pLogDiskThread will now terminate when queues are cleared + * now wait for it to be done + */ + RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex); + while (!(raidPtr->parityLogDiskQueue.threadState & RF_PLOG_SHUTDOWN)) { + RF_WAIT_COND(raidPtr->parityLogDiskQueue.cond, + raidPtr->parityLogDiskQueue.mutex); + } + RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex); + if (rf_parityLogDebug) { + printf("raid%d: ShutdownParityLogging done (thread completed)\n", raidPtr->raidid); + } +} + +int +rf_GetDefaultNumFloatingReconBuffersParityLogging(RF_Raid_t * raidPtr) +{ + return (20); +} + +RF_HeadSepLimit_t +rf_GetDefaultHeadSepLimitParityLogging(RF_Raid_t * raidPtr) +{ + return (10); +} +/* return the region ID for a given RAID address */ +RF_RegionId_t +rf_MapRegionIDParityLogging( + RF_Raid_t * raidPtr, + RF_SectorNum_t address) +{ + RF_RegionId_t regionID; + +/* regionID = address / (raidPtr->regionParityRange * raidPtr->Layout.numDataCol); */ + regionID = address / raidPtr->regionParityRange; + if (regionID == rf_numParityRegions) { + /* last region may be larger than other regions */ + regionID--; + } + RF_ASSERT(address >= raidPtr->regionInfo[regionID].parityStartAddr); + RF_ASSERT(address < raidPtr->regionInfo[regionID].parityStartAddr + + raidPtr->regionInfo[regionID].numSectorsParity); + RF_ASSERT(regionID < rf_numParityRegions); + return (regionID); +} + + +/* given a logical RAID sector, determine physical disk address of data */ +void +rf_MapSectorParityLogging( + RF_Raid_t * raidPtr, + RF_RaidAddr_t raidSector, + RF_RowCol_t * row, + RF_RowCol_t * col, + RF_SectorNum_t * diskSector, + int remap) +{ + RF_StripeNum_t SUID = raidSector / + raidPtr->Layout.sectorsPerStripeUnit; + *row = 0; + /* *col = (SUID % (raidPtr->numCol - + * raidPtr->Layout.numParityLogCol)); */ + *col = SUID % raidPtr->Layout.numDataCol; + *diskSector = (SUID / (raidPtr->Layout.numDataCol)) * + raidPtr->Layout.sectorsPerStripeUnit + + (raidSector % raidPtr->Layout.sectorsPerStripeUnit); +} + + +/* given a logical RAID sector, determine physical disk address of parity */ +void +rf_MapParityParityLogging( + RF_Raid_t * raidPtr, + RF_RaidAddr_t raidSector, + RF_RowCol_t * row, + RF_RowCol_t * col, + RF_SectorNum_t * diskSector, + int remap) +{ + RF_StripeNum_t SUID = raidSector / + raidPtr->Layout.sectorsPerStripeUnit; + + *row = 0; + /* *col = + * raidPtr->Layout.numDataCol-(SUID/raidPtr->Layout.numDataCol)%(raidPt + * r->numCol - raidPtr->Layout.numParityLogCol); */ + *col = raidPtr->Layout.numDataCol; + *diskSector = (SUID / (raidPtr->Layout.numDataCol)) * + raidPtr->Layout.sectorsPerStripeUnit + + (raidSector % raidPtr->Layout.sectorsPerStripeUnit); +} + + +/* given a regionID and sector offset, determine the physical disk address of the parity log */ +void +rf_MapLogParityLogging( + RF_Raid_t * raidPtr, + RF_RegionId_t regionID, + RF_SectorNum_t regionOffset, + RF_RowCol_t * row, + RF_RowCol_t * col, + RF_SectorNum_t * startSector) +{ + *row = 0; + *col = raidPtr->numCol - 1; + *startSector = raidPtr->regionInfo[regionID].regionStartAddr + regionOffset; +} + + +/* given a regionID, determine the physical disk address of the logged + parity for that region */ +void +rf_MapRegionParity( + RF_Raid_t * raidPtr, + RF_RegionId_t regionID, + RF_RowCol_t * row, + RF_RowCol_t * col, + RF_SectorNum_t * startSector, + RF_SectorCount_t * numSector) +{ + *row = 0; + *col = raidPtr->numCol - 2; + *startSector = raidPtr->regionInfo[regionID].parityStartAddr; + *numSector = raidPtr->regionInfo[regionID].numSectorsParity; +} + + +/* given a logical RAID address, determine the participating disks in + the stripe */ +void +rf_IdentifyStripeParityLogging( + RF_Raid_t * raidPtr, + RF_RaidAddr_t addr, + RF_RowCol_t ** diskids, + RF_RowCol_t * outRow) +{ + RF_StripeNum_t stripeID = rf_RaidAddressToStripeID(&raidPtr->Layout, + addr); + RF_ParityLoggingConfigInfo_t *info = (RF_ParityLoggingConfigInfo_t *) + raidPtr->Layout.layoutSpecificInfo; + *outRow = 0; + *diskids = info->stripeIdentifier[stripeID % raidPtr->numCol]; +} + + +void +rf_MapSIDToPSIDParityLogging( + RF_RaidLayout_t * layoutPtr, + RF_StripeNum_t stripeID, + RF_StripeNum_t * psID, + RF_ReconUnitNum_t * which_ru) +{ + *which_ru = 0; + *psID = stripeID; +} + + +/* select an algorithm for performing an access. Returns two pointers, + * one to a function that will return information about the DAG, and + * another to a function that will create the dag. + */ +void +rf_ParityLoggingDagSelect( + RF_Raid_t * raidPtr, + RF_IoType_t type, + RF_AccessStripeMap_t * asmp, + RF_VoidFuncPtr * createFunc) +{ + RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout); + RF_PhysDiskAddr_t *failedPDA = NULL; + RF_RowCol_t frow, fcol; + RF_RowStatus_t rstat; + int prior_recon; + + RF_ASSERT(RF_IO_IS_R_OR_W(type)); + + if (asmp->numDataFailed + asmp->numParityFailed > 1) { + RF_ERRORMSG("Multiple disks failed in a single group! Aborting I/O operation.\n"); + /* *infoFunc = */ *createFunc = NULL; + return; + } else + if (asmp->numDataFailed + asmp->numParityFailed == 1) { + + /* if under recon & already reconstructed, redirect + * the access to the spare drive and eliminate the + * failure indication */ + failedPDA = asmp->failedPDAs[0]; + frow = failedPDA->row; + fcol = failedPDA->col; + rstat = raidPtr->status[failedPDA->row]; + prior_recon = (rstat == rf_rs_reconfigured) || ( + (rstat == rf_rs_reconstructing) ? + rf_CheckRUReconstructed(raidPtr->reconControl[frow]->reconMap, failedPDA->startSector) : 0 + ); + if (prior_recon) { + RF_RowCol_t or = failedPDA->row, oc = failedPDA->col; + RF_SectorNum_t oo = failedPDA->startSector; + if (layoutPtr->map->flags & + RF_DISTRIBUTE_SPARE) { + /* redirect to dist spare space */ + + if (failedPDA == asmp->parityInfo) { + + /* parity has failed */ + (layoutPtr->map->MapParity) (raidPtr, failedPDA->raidAddress, &failedPDA->row, + &failedPDA->col, &failedPDA->startSector, RF_REMAP); + + if (asmp->parityInfo->next) { /* redir 2nd component, + * if any */ + RF_PhysDiskAddr_t *p = asmp->parityInfo->next; + RF_SectorNum_t SUoffs = p->startSector % layoutPtr->sectorsPerStripeUnit; + p->row = failedPDA->row; + p->col = failedPDA->col; + p->startSector = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, failedPDA->startSector) + + SUoffs; /* cheating: + * startSector is not + * really a RAID address */ + } + } else + if (asmp->parityInfo->next && failedPDA == asmp->parityInfo->next) { + RF_ASSERT(0); /* should not ever + * happen */ + } else { + + /* data has failed */ + (layoutPtr->map->MapSector) (raidPtr, failedPDA->raidAddress, &failedPDA->row, + &failedPDA->col, &failedPDA->startSector, RF_REMAP); + + } + + } else { + /* redirect to dedicated spare space */ + + failedPDA->row = raidPtr->Disks[frow][fcol].spareRow; + failedPDA->col = raidPtr->Disks[frow][fcol].spareCol; + + /* the parity may have two distinct + * components, both of which may need + * to be redirected */ + if (asmp->parityInfo->next) { + if (failedPDA == asmp->parityInfo) { + failedPDA->next->row = failedPDA->row; + failedPDA->next->col = failedPDA->col; + } else + if (failedPDA == asmp->parityInfo->next) { /* paranoid: should never occur */ + asmp->parityInfo->row = failedPDA->row; + asmp->parityInfo->col = failedPDA->col; + } + } + } + + RF_ASSERT(failedPDA->col != -1); + + if (rf_dagDebug || rf_mapDebug) { + printf("raid%d: Redirected type '%c' r %d c %d o %ld -> r %d c %d o %ld\n", + raidPtr->raidid, type, or, oc, (long) oo, failedPDA->row, failedPDA->col, (long) failedPDA->startSector); + } + asmp->numDataFailed = asmp->numParityFailed = 0; + } + } + if (type == RF_IO_TYPE_READ) { + + if (asmp->numDataFailed == 0) + *createFunc = (RF_VoidFuncPtr) rf_CreateFaultFreeReadDAG; + else + *createFunc = (RF_VoidFuncPtr) rf_CreateRaidFiveDegradedReadDAG; + + } else { + + + /* if mirroring, always use large writes. If the access + * requires two distinct parity updates, always do a small + * write. If the stripe contains a failure but the access + * does not, do a small write. The first conditional + * (numStripeUnitsAccessed <= numDataCol/2) uses a + * less-than-or-equal rather than just a less-than because + * when G is 3 or 4, numDataCol/2 is 1, and I want + * single-stripe-unit updates to use just one disk. */ + if ((asmp->numDataFailed + asmp->numParityFailed) == 0) { + if (((asmp->numStripeUnitsAccessed <= + (layoutPtr->numDataCol / 2)) && + (layoutPtr->numDataCol != 1)) || + (asmp->parityInfo->next != NULL) || + rf_CheckStripeForFailures(raidPtr, asmp)) { + *createFunc = (RF_VoidFuncPtr) rf_CreateParityLoggingSmallWriteDAG; + } else + *createFunc = (RF_VoidFuncPtr) rf_CreateParityLoggingLargeWriteDAG; + } else + if (asmp->numParityFailed == 1) + *createFunc = (RF_VoidFuncPtr) rf_CreateNonRedundantWriteDAG; + else + if (asmp->numStripeUnitsAccessed != 1 && failedPDA->numSector != layoutPtr->sectorsPerStripeUnit) + *createFunc = NULL; + else + *createFunc = (RF_VoidFuncPtr) rf_CreateDegradedWriteDAG; + } +} +#endif /* RF_INCLUDE_PARITYLOGGING > 0 */ diff --git a/sys/dev/raidframe/rf_paritylogging.h b/sys/dev/raidframe/rf_paritylogging.h new file mode 100644 index 0000000..5b7dd25 --- /dev/null +++ b/sys/dev/raidframe/rf_paritylogging.h @@ -0,0 +1,70 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_paritylogging.h,v 1.3 1999/02/05 00:06:14 oster Exp $ */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: William V. Courtright II + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +/* header file for Parity Logging */ + +#ifndef _RF__RF_PARITYLOGGING_H_ +#define _RF__RF_PARITYLOGGING_H_ + +int +rf_ConfigureParityLogging(RF_ShutdownList_t ** listp, RF_Raid_t * raidPtr, + RF_Config_t * cfgPtr); +int rf_GetDefaultNumFloatingReconBuffersParityLogging(RF_Raid_t * raidPtr); +RF_HeadSepLimit_t rf_GetDefaultHeadSepLimitParityLogging(RF_Raid_t * raidPtr); +RF_RegionId_t +rf_MapRegionIDParityLogging(RF_Raid_t * raidPtr, + RF_SectorNum_t address); +void +rf_MapSectorParityLogging(RF_Raid_t * raidPtr, RF_RaidAddr_t raidSector, + RF_RowCol_t * row, RF_RowCol_t * col, RF_SectorNum_t * diskSector, + int remap); +void +rf_MapParityParityLogging(RF_Raid_t * raidPtr, RF_RaidAddr_t raidSector, + RF_RowCol_t * row, RF_RowCol_t * col, RF_SectorNum_t * diskSector, + int remap); +void +rf_MapLogParityLogging(RF_Raid_t * raidPtr, RF_RegionId_t regionID, + RF_SectorNum_t regionOffset, RF_RowCol_t * row, RF_RowCol_t * col, + RF_SectorNum_t * startSector); +void +rf_MapRegionParity(RF_Raid_t * raidPtr, RF_RegionId_t regionID, + RF_RowCol_t * row, RF_RowCol_t * col, RF_SectorNum_t * startSector, + RF_SectorCount_t * numSector); +void +rf_IdentifyStripeParityLogging(RF_Raid_t * raidPtr, RF_RaidAddr_t addr, + RF_RowCol_t ** diskids, RF_RowCol_t * outRow); +void +rf_MapSIDToPSIDParityLogging(RF_RaidLayout_t * layoutPtr, + RF_StripeNum_t stripeID, RF_StripeNum_t * psID, + RF_ReconUnitNum_t * which_ru); +void +rf_ParityLoggingDagSelect(RF_Raid_t * raidPtr, RF_IoType_t type, + RF_AccessStripeMap_t * asmap, RF_VoidFuncPtr * createFunc); + +#endif /* !_RF__RF_PARITYLOGGING_H_ */ diff --git a/sys/dev/raidframe/rf_parityloggingdags.c b/sys/dev/raidframe/rf_parityloggingdags.c new file mode 100644 index 0000000..7ccef55 --- /dev/null +++ b/sys/dev/raidframe/rf_parityloggingdags.c @@ -0,0 +1,673 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_parityloggingdags.c,v 1.4 2000/01/07 03:41:04 oster Exp $ */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: William V. Courtright II + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +#include <dev/raidframe/rf_archs.h> + +#if RF_INCLUDE_PARITYLOGGING > 0 + +/* + DAGs specific to parity logging are created here + */ + +#include <dev/raidframe/rf_types.h> +#include <dev/raidframe/rf_raid.h> +#include <dev/raidframe/rf_dag.h> +#include <dev/raidframe/rf_dagutils.h> +#include <dev/raidframe/rf_dagfuncs.h> +#include <dev/raidframe/rf_debugMem.h> +#include <dev/raidframe/rf_paritylog.h> +#include <dev/raidframe/rf_memchunk.h> +#include <dev/raidframe/rf_general.h> + +#include <dev/raidframe/rf_parityloggingdags.h> + +/****************************************************************************** + * + * creates a DAG to perform a large-write operation: + * + * / Rod \ / Wnd \ + * H -- NIL- Rod - NIL - Wnd ------ NIL - T + * \ Rod / \ Xor - Lpo / + * + * The writes are not done until the reads complete because if they were done in + * parallel, a failure on one of the reads could leave the parity in an inconsistent + * state, so that the retry with a new DAG would produce erroneous parity. + * + * Note: this DAG has the nasty property that none of the buffers allocated for reading + * old data can be freed until the XOR node fires. Need to fix this. + * + * The last two arguments are the number of faults tolerated, and function for the + * redundancy calculation. The undo for the redundancy calc is assumed to be null + * + *****************************************************************************/ + +void +rf_CommonCreateParityLoggingLargeWriteDAG( + RF_Raid_t * raidPtr, + RF_AccessStripeMap_t * asmap, + RF_DagHeader_t * dag_h, + void *bp, + RF_RaidAccessFlags_t flags, + RF_AllocListElem_t * allocList, + int nfaults, + int (*redFunc) (RF_DagNode_t *)) +{ + RF_DagNode_t *nodes, *wndNodes, *rodNodes = NULL, *syncNode, *xorNode, + *lpoNode, *blockNode, *unblockNode, *termNode; + int nWndNodes, nRodNodes, i; + RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout); + RF_AccessStripeMapHeader_t *new_asm_h[2]; + int nodeNum, asmNum; + RF_ReconUnitNum_t which_ru; + char *sosBuffer, *eosBuffer; + RF_PhysDiskAddr_t *pda; + RF_StripeNum_t parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout), asmap->raidAddress, &which_ru); + + if (rf_dagDebug) + printf("[Creating parity-logging large-write DAG]\n"); + RF_ASSERT(nfaults == 1);/* this arch only single fault tolerant */ + dag_h->creator = "ParityLoggingLargeWriteDAG"; + + /* alloc the Wnd nodes, the xor node, and the Lpo node */ + nWndNodes = asmap->numStripeUnitsAccessed; + RF_CallocAndAdd(nodes, nWndNodes + 6, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList); + i = 0; + wndNodes = &nodes[i]; + i += nWndNodes; + xorNode = &nodes[i]; + i += 1; + lpoNode = &nodes[i]; + i += 1; + blockNode = &nodes[i]; + i += 1; + syncNode = &nodes[i]; + i += 1; + unblockNode = &nodes[i]; + i += 1; + termNode = &nodes[i]; + i += 1; + + dag_h->numCommitNodes = nWndNodes + 1; + dag_h->numCommits = 0; + dag_h->numSuccedents = 1; + + rf_MapUnaccessedPortionOfStripe(raidPtr, layoutPtr, asmap, dag_h, new_asm_h, &nRodNodes, &sosBuffer, &eosBuffer, allocList); + if (nRodNodes > 0) + RF_CallocAndAdd(rodNodes, nRodNodes, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList); + + /* begin node initialization */ + rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nRodNodes + 1, 0, 0, 0, dag_h, "Nil", allocList); + rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nWndNodes + 1, 0, 0, dag_h, "Nil", allocList); + rf_InitNode(syncNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nWndNodes + 1, nRodNodes + 1, 0, 0, dag_h, "Nil", allocList); + rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", allocList); + + /* initialize the Rod nodes */ + for (nodeNum = asmNum = 0; asmNum < 2; asmNum++) { + if (new_asm_h[asmNum]) { + pda = new_asm_h[asmNum]->stripeMap->physInfo; + while (pda) { + rf_InitNode(&rodNodes[nodeNum], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rod", allocList); + rodNodes[nodeNum].params[0].p = pda; + rodNodes[nodeNum].params[1].p = pda->bufPtr; + rodNodes[nodeNum].params[2].v = parityStripeID; + rodNodes[nodeNum].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); + nodeNum++; + pda = pda->next; + } + } + } + RF_ASSERT(nodeNum == nRodNodes); + + /* initialize the wnd nodes */ + pda = asmap->physInfo; + for (i = 0; i < nWndNodes; i++) { + rf_InitNode(&wndNodes[i], rf_wait, RF_TRUE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnd", allocList); + RF_ASSERT(pda != NULL); + wndNodes[i].params[0].p = pda; + wndNodes[i].params[1].p = pda->bufPtr; + wndNodes[i].params[2].v = parityStripeID; + wndNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); + pda = pda->next; + } + + /* initialize the redundancy node */ + rf_InitNode(xorNode, rf_wait, RF_TRUE, redFunc, rf_NullNodeUndoFunc, NULL, 1, 1, 2 * (nWndNodes + nRodNodes) + 1, 1, dag_h, "Xr ", allocList); + xorNode->flags |= RF_DAGNODE_FLAG_YIELD; + for (i = 0; i < nWndNodes; i++) { + xorNode->params[2 * i + 0] = wndNodes[i].params[0]; /* pda */ + xorNode->params[2 * i + 1] = wndNodes[i].params[1]; /* buf ptr */ + } + for (i = 0; i < nRodNodes; i++) { + xorNode->params[2 * (nWndNodes + i) + 0] = rodNodes[i].params[0]; /* pda */ + xorNode->params[2 * (nWndNodes + i) + 1] = rodNodes[i].params[1]; /* buf ptr */ + } + xorNode->params[2 * (nWndNodes + nRodNodes)].p = raidPtr; /* xor node needs to get + * at RAID information */ + + /* look for an Rod node that reads a complete SU. If none, alloc a + * buffer to receive the parity info. Note that we can't use a new + * data buffer because it will not have gotten written when the xor + * occurs. */ + for (i = 0; i < nRodNodes; i++) + if (((RF_PhysDiskAddr_t *) rodNodes[i].params[0].p)->numSector == raidPtr->Layout.sectorsPerStripeUnit) + break; + if (i == nRodNodes) { + RF_CallocAndAdd(xorNode->results[0], 1, rf_RaidAddressToByte(raidPtr, raidPtr->Layout.sectorsPerStripeUnit), (void *), allocList); + } else { + xorNode->results[0] = rodNodes[i].params[1].p; + } + + /* initialize the Lpo node */ + rf_InitNode(lpoNode, rf_wait, RF_FALSE, rf_ParityLogOverwriteFunc, rf_ParityLogOverwriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h, "Lpo", allocList); + + lpoNode->params[0].p = asmap->parityInfo; + lpoNode->params[1].p = xorNode->results[0]; + RF_ASSERT(asmap->parityInfo->next == NULL); /* parityInfo must + * describe entire + * parity unit */ + + /* connect nodes to form graph */ + + /* connect dag header to block node */ + RF_ASSERT(dag_h->numSuccedents == 1); + RF_ASSERT(blockNode->numAntecedents == 0); + dag_h->succedents[0] = blockNode; + + /* connect the block node to the Rod nodes */ + RF_ASSERT(blockNode->numSuccedents == nRodNodes + 1); + for (i = 0; i < nRodNodes; i++) { + RF_ASSERT(rodNodes[i].numAntecedents == 1); + blockNode->succedents[i] = &rodNodes[i]; + rodNodes[i].antecedents[0] = blockNode; + rodNodes[i].antType[0] = rf_control; + } + + /* connect the block node to the sync node */ + /* necessary if nRodNodes == 0 */ + RF_ASSERT(syncNode->numAntecedents == nRodNodes + 1); + blockNode->succedents[nRodNodes] = syncNode; + syncNode->antecedents[0] = blockNode; + syncNode->antType[0] = rf_control; + + /* connect the Rod nodes to the syncNode */ + for (i = 0; i < nRodNodes; i++) { + rodNodes[i].succedents[0] = syncNode; + syncNode->antecedents[1 + i] = &rodNodes[i]; + syncNode->antType[1 + i] = rf_control; + } + + /* connect the sync node to the xor node */ + RF_ASSERT(syncNode->numSuccedents == nWndNodes + 1); + RF_ASSERT(xorNode->numAntecedents == 1); + syncNode->succedents[0] = xorNode; + xorNode->antecedents[0] = syncNode; + xorNode->antType[0] = rf_trueData; /* carry forward from sync */ + + /* connect the sync node to the Wnd nodes */ + for (i = 0; i < nWndNodes; i++) { + RF_ASSERT(wndNodes->numAntecedents == 1); + syncNode->succedents[1 + i] = &wndNodes[i]; + wndNodes[i].antecedents[0] = syncNode; + wndNodes[i].antType[0] = rf_control; + } + + /* connect the xor node to the Lpo node */ + RF_ASSERT(xorNode->numSuccedents == 1); + RF_ASSERT(lpoNode->numAntecedents == 1); + xorNode->succedents[0] = lpoNode; + lpoNode->antecedents[0] = xorNode; + lpoNode->antType[0] = rf_trueData; + + /* connect the Wnd nodes to the unblock node */ + RF_ASSERT(unblockNode->numAntecedents == nWndNodes + 1); + for (i = 0; i < nWndNodes; i++) { + RF_ASSERT(wndNodes->numSuccedents == 1); + wndNodes[i].succedents[0] = unblockNode; + unblockNode->antecedents[i] = &wndNodes[i]; + unblockNode->antType[i] = rf_control; + } + + /* connect the Lpo node to the unblock node */ + RF_ASSERT(lpoNode->numSuccedents == 1); + lpoNode->succedents[0] = unblockNode; + unblockNode->antecedents[nWndNodes] = lpoNode; + unblockNode->antType[nWndNodes] = rf_control; + + /* connect unblock node to terminator */ + RF_ASSERT(unblockNode->numSuccedents == 1); + RF_ASSERT(termNode->numAntecedents == 1); + RF_ASSERT(termNode->numSuccedents == 0); + unblockNode->succedents[0] = termNode; + termNode->antecedents[0] = unblockNode; + termNode->antType[0] = rf_control; +} + + + + +/****************************************************************************** + * + * creates a DAG to perform a small-write operation (either raid 5 or pq), which is as follows: + * + * Header + * | + * Block + * / | ... \ \ + * / | \ \ + * Rod Rod Rod Rop + * | \ /| \ / | \/ | + * | | | /\ | + * Wnd Wnd Wnd X + * | \ / | + * | \ / | + * \ \ / Lpo + * \ \ / / + * +-> Unblock <-+ + * | + * T + * + * + * R = Read, W = Write, X = Xor, o = old, n = new, d = data, p = parity. + * When the access spans a stripe unit boundary and is less than one SU in size, there will + * be two Rop -- X -- Wnp branches. I call this the "double-XOR" case. + * The second output from each Rod node goes to the X node. In the double-XOR + * case, there are exactly 2 Rod nodes, and each sends one output to one X node. + * There is one Rod -- Wnd -- T branch for each stripe unit being updated. + * + * The block and unblock nodes are unused. See comment above CreateFaultFreeReadDAG. + * + * Note: this DAG ignores all the optimizations related to making the RMWs atomic. + * it also has the nasty property that none of the buffers allocated for reading + * old data & parity can be freed until the XOR node fires. Need to fix this. + * + * A null qfuncs indicates single fault tolerant + *****************************************************************************/ + +void +rf_CommonCreateParityLoggingSmallWriteDAG( + RF_Raid_t * raidPtr, + RF_AccessStripeMap_t * asmap, + RF_DagHeader_t * dag_h, + void *bp, + RF_RaidAccessFlags_t flags, + RF_AllocListElem_t * allocList, + RF_RedFuncs_t * pfuncs, + RF_RedFuncs_t * qfuncs) +{ + RF_DagNode_t *xorNodes, *blockNode, *unblockNode, *nodes; + RF_DagNode_t *readDataNodes, *readParityNodes; + RF_DagNode_t *writeDataNodes, *lpuNodes; + RF_DagNode_t *unlockDataNodes = NULL, *termNode; + RF_PhysDiskAddr_t *pda = asmap->physInfo; + int numDataNodes = asmap->numStripeUnitsAccessed; + int numParityNodes = (asmap->parityInfo->next) ? 2 : 1; + int i, j, nNodes, totalNumNodes; + RF_ReconUnitNum_t which_ru; + int (*func) (RF_DagNode_t * node), (*undoFunc) (RF_DagNode_t * node); + int (*qfunc) (RF_DagNode_t * node); + char *name, *qname; + RF_StripeNum_t parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout), asmap->raidAddress, &which_ru); + long nfaults = qfuncs ? 2 : 1; + int lu_flag = (rf_enableAtomicRMW) ? 1 : 0; /* lock/unlock flag */ + + if (rf_dagDebug) + printf("[Creating parity-logging small-write DAG]\n"); + RF_ASSERT(numDataNodes > 0); + RF_ASSERT(nfaults == 1); + dag_h->creator = "ParityLoggingSmallWriteDAG"; + + /* DAG creation occurs in three steps: 1. count the number of nodes in + * the DAG 2. create the nodes 3. initialize the nodes 4. connect the + * nodes */ + + /* Step 1. compute number of nodes in the graph */ + + /* number of nodes: a read and write for each data unit a redundancy + * computation node for each parity node a read and Lpu for each + * parity unit a block and unblock node (2) a terminator node if + * atomic RMW an unlock node for each data unit, redundancy unit */ + totalNumNodes = (2 * numDataNodes) + numParityNodes + (2 * numParityNodes) + 3; + if (lu_flag) + totalNumNodes += numDataNodes; + + nNodes = numDataNodes + numParityNodes; + + dag_h->numCommitNodes = numDataNodes + numParityNodes; + dag_h->numCommits = 0; + dag_h->numSuccedents = 1; + + /* Step 2. create the nodes */ + RF_CallocAndAdd(nodes, totalNumNodes, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList); + i = 0; + blockNode = &nodes[i]; + i += 1; + unblockNode = &nodes[i]; + i += 1; + readDataNodes = &nodes[i]; + i += numDataNodes; + readParityNodes = &nodes[i]; + i += numParityNodes; + writeDataNodes = &nodes[i]; + i += numDataNodes; + lpuNodes = &nodes[i]; + i += numParityNodes; + xorNodes = &nodes[i]; + i += numParityNodes; + termNode = &nodes[i]; + i += 1; + if (lu_flag) { + unlockDataNodes = &nodes[i]; + i += numDataNodes; + } + RF_ASSERT(i == totalNumNodes); + + /* Step 3. initialize the nodes */ + /* initialize block node (Nil) */ + rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nNodes, 0, 0, 0, dag_h, "Nil", allocList); + + /* initialize unblock node (Nil) */ + rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nNodes, 0, 0, dag_h, "Nil", allocList); + + /* initialize terminatory node (Trm) */ + rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", allocList); + + /* initialize nodes which read old data (Rod) */ + for (i = 0; i < numDataNodes; i++) { + rf_InitNode(&readDataNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, nNodes, 1, 4, 0, dag_h, "Rod", allocList); + RF_ASSERT(pda != NULL); + readDataNodes[i].params[0].p = pda; /* physical disk addr + * desc */ + readDataNodes[i].params[1].p = rf_AllocBuffer(raidPtr, dag_h, pda, allocList); /* buffer to hold old + * data */ + readDataNodes[i].params[2].v = parityStripeID; + readDataNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, lu_flag, 0, which_ru); + pda = pda->next; + readDataNodes[i].propList[0] = NULL; + readDataNodes[i].propList[1] = NULL; + } + + /* initialize nodes which read old parity (Rop) */ + pda = asmap->parityInfo; + i = 0; + for (i = 0; i < numParityNodes; i++) { + RF_ASSERT(pda != NULL); + rf_InitNode(&readParityNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, nNodes, 1, 4, 0, dag_h, "Rop", allocList); + readParityNodes[i].params[0].p = pda; + readParityNodes[i].params[1].p = rf_AllocBuffer(raidPtr, dag_h, pda, allocList); /* buffer to hold old + * parity */ + readParityNodes[i].params[2].v = parityStripeID; + readParityNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); + readParityNodes[i].propList[0] = NULL; + pda = pda->next; + } + + /* initialize nodes which write new data (Wnd) */ + pda = asmap->physInfo; + for (i = 0; i < numDataNodes; i++) { + RF_ASSERT(pda != NULL); + rf_InitNode(&writeDataNodes[i], rf_wait, RF_TRUE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, nNodes, 4, 0, dag_h, "Wnd", allocList); + writeDataNodes[i].params[0].p = pda; /* physical disk addr + * desc */ + writeDataNodes[i].params[1].p = pda->bufPtr; /* buffer holding new + * data to be written */ + writeDataNodes[i].params[2].v = parityStripeID; + writeDataNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); + + if (lu_flag) { + /* initialize node to unlock the disk queue */ + rf_InitNode(&unlockDataNodes[i], rf_wait, RF_FALSE, rf_DiskUnlockFunc, rf_DiskUnlockUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h, "Und", allocList); + unlockDataNodes[i].params[0].p = pda; /* physical disk addr + * desc */ + unlockDataNodes[i].params[1].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, lu_flag, which_ru); + } + pda = pda->next; + } + + + /* initialize nodes which compute new parity */ + /* we use the simple XOR func in the double-XOR case, and when we're + * accessing only a portion of one stripe unit. the distinction + * between the two is that the regular XOR func assumes that the + * targbuf is a full SU in size, and examines the pda associated with + * the buffer to decide where within the buffer to XOR the data, + * whereas the simple XOR func just XORs the data into the start of + * the buffer. */ + if ((numParityNodes == 2) || ((numDataNodes == 1) && (asmap->totalSectorsAccessed < raidPtr->Layout.sectorsPerStripeUnit))) { + func = pfuncs->simple; + undoFunc = rf_NullNodeUndoFunc; + name = pfuncs->SimpleName; + if (qfuncs) { + qfunc = qfuncs->simple; + qname = qfuncs->SimpleName; + } + } else { + func = pfuncs->regular; + undoFunc = rf_NullNodeUndoFunc; + name = pfuncs->RegularName; + if (qfuncs) { + qfunc = qfuncs->regular; + qname = qfuncs->RegularName; + } + } + /* initialize the xor nodes: params are {pda,buf} from {Rod,Wnd,Rop} + * nodes, and raidPtr */ + if (numParityNodes == 2) { /* double-xor case */ + for (i = 0; i < numParityNodes; i++) { + rf_InitNode(&xorNodes[i], rf_wait, RF_TRUE, func, undoFunc, NULL, 1, nNodes, 7, 1, dag_h, name, allocList); /* no wakeup func for + * xor */ + xorNodes[i].flags |= RF_DAGNODE_FLAG_YIELD; + xorNodes[i].params[0] = readDataNodes[i].params[0]; + xorNodes[i].params[1] = readDataNodes[i].params[1]; + xorNodes[i].params[2] = readParityNodes[i].params[0]; + xorNodes[i].params[3] = readParityNodes[i].params[1]; + xorNodes[i].params[4] = writeDataNodes[i].params[0]; + xorNodes[i].params[5] = writeDataNodes[i].params[1]; + xorNodes[i].params[6].p = raidPtr; + xorNodes[i].results[0] = readParityNodes[i].params[1].p; /* use old parity buf as + * target buf */ + } + } else { + /* there is only one xor node in this case */ + rf_InitNode(&xorNodes[0], rf_wait, RF_TRUE, func, undoFunc, NULL, 1, nNodes, (2 * (numDataNodes + numDataNodes + 1) + 1), 1, dag_h, name, allocList); + xorNodes[0].flags |= RF_DAGNODE_FLAG_YIELD; + for (i = 0; i < numDataNodes + 1; i++) { + /* set up params related to Rod and Rop nodes */ + xorNodes[0].params[2 * i + 0] = readDataNodes[i].params[0]; /* pda */ + xorNodes[0].params[2 * i + 1] = readDataNodes[i].params[1]; /* buffer pointer */ + } + for (i = 0; i < numDataNodes; i++) { + /* set up params related to Wnd and Wnp nodes */ + xorNodes[0].params[2 * (numDataNodes + 1 + i) + 0] = writeDataNodes[i].params[0]; /* pda */ + xorNodes[0].params[2 * (numDataNodes + 1 + i) + 1] = writeDataNodes[i].params[1]; /* buffer pointer */ + } + xorNodes[0].params[2 * (numDataNodes + numDataNodes + 1)].p = raidPtr; /* xor node needs to get + * at RAID information */ + xorNodes[0].results[0] = readParityNodes[0].params[1].p; + } + + /* initialize the log node(s) */ + pda = asmap->parityInfo; + for (i = 0; i < numParityNodes; i++) { + RF_ASSERT(pda); + rf_InitNode(&lpuNodes[i], rf_wait, RF_FALSE, rf_ParityLogUpdateFunc, rf_ParityLogUpdateUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h, "Lpu", allocList); + lpuNodes[i].params[0].p = pda; /* PhysDiskAddr of parity */ + lpuNodes[i].params[1].p = xorNodes[i].results[0]; /* buffer pointer to + * parity */ + pda = pda->next; + } + + + /* Step 4. connect the nodes */ + + /* connect header to block node */ + RF_ASSERT(dag_h->numSuccedents == 1); + RF_ASSERT(blockNode->numAntecedents == 0); + dag_h->succedents[0] = blockNode; + + /* connect block node to read old data nodes */ + RF_ASSERT(blockNode->numSuccedents == (numDataNodes + numParityNodes)); + for (i = 0; i < numDataNodes; i++) { + blockNode->succedents[i] = &readDataNodes[i]; + RF_ASSERT(readDataNodes[i].numAntecedents == 1); + readDataNodes[i].antecedents[0] = blockNode; + readDataNodes[i].antType[0] = rf_control; + } + + /* connect block node to read old parity nodes */ + for (i = 0; i < numParityNodes; i++) { + blockNode->succedents[numDataNodes + i] = &readParityNodes[i]; + RF_ASSERT(readParityNodes[i].numAntecedents == 1); + readParityNodes[i].antecedents[0] = blockNode; + readParityNodes[i].antType[0] = rf_control; + } + + /* connect read old data nodes to write new data nodes */ + for (i = 0; i < numDataNodes; i++) { + RF_ASSERT(readDataNodes[i].numSuccedents == numDataNodes + numParityNodes); + for (j = 0; j < numDataNodes; j++) { + RF_ASSERT(writeDataNodes[j].numAntecedents == numDataNodes + numParityNodes); + readDataNodes[i].succedents[j] = &writeDataNodes[j]; + writeDataNodes[j].antecedents[i] = &readDataNodes[i]; + if (i == j) + writeDataNodes[j].antType[i] = rf_antiData; + else + writeDataNodes[j].antType[i] = rf_control; + } + } + + /* connect read old data nodes to xor nodes */ + for (i = 0; i < numDataNodes; i++) + for (j = 0; j < numParityNodes; j++) { + RF_ASSERT(xorNodes[j].numAntecedents == numDataNodes + numParityNodes); + readDataNodes[i].succedents[numDataNodes + j] = &xorNodes[j]; + xorNodes[j].antecedents[i] = &readDataNodes[i]; + xorNodes[j].antType[i] = rf_trueData; + } + + /* connect read old parity nodes to write new data nodes */ + for (i = 0; i < numParityNodes; i++) { + RF_ASSERT(readParityNodes[i].numSuccedents == numDataNodes + numParityNodes); + for (j = 0; j < numDataNodes; j++) { + readParityNodes[i].succedents[j] = &writeDataNodes[j]; + writeDataNodes[j].antecedents[numDataNodes + i] = &readParityNodes[i]; + writeDataNodes[j].antType[numDataNodes + i] = rf_control; + } + } + + /* connect read old parity nodes to xor nodes */ + for (i = 0; i < numParityNodes; i++) + for (j = 0; j < numParityNodes; j++) { + readParityNodes[i].succedents[numDataNodes + j] = &xorNodes[j]; + xorNodes[j].antecedents[numDataNodes + i] = &readParityNodes[i]; + xorNodes[j].antType[numDataNodes + i] = rf_trueData; + } + + /* connect xor nodes to write new parity nodes */ + for (i = 0; i < numParityNodes; i++) { + RF_ASSERT(xorNodes[i].numSuccedents == 1); + RF_ASSERT(lpuNodes[i].numAntecedents == 1); + xorNodes[i].succedents[0] = &lpuNodes[i]; + lpuNodes[i].antecedents[0] = &xorNodes[i]; + lpuNodes[i].antType[0] = rf_trueData; + } + + for (i = 0; i < numDataNodes; i++) { + if (lu_flag) { + /* connect write new data nodes to unlock nodes */ + RF_ASSERT(writeDataNodes[i].numSuccedents == 1); + RF_ASSERT(unlockDataNodes[i].numAntecedents == 1); + writeDataNodes[i].succedents[0] = &unlockDataNodes[i]; + unlockDataNodes[i].antecedents[0] = &writeDataNodes[i]; + unlockDataNodes[i].antType[0] = rf_control; + + /* connect unlock nodes to unblock node */ + RF_ASSERT(unlockDataNodes[i].numSuccedents == 1); + RF_ASSERT(unblockNode->numAntecedents == (numDataNodes + (nfaults * numParityNodes))); + unlockDataNodes[i].succedents[0] = unblockNode; + unblockNode->antecedents[i] = &unlockDataNodes[i]; + unblockNode->antType[i] = rf_control; + } else { + /* connect write new data nodes to unblock node */ + RF_ASSERT(writeDataNodes[i].numSuccedents == 1); + RF_ASSERT(unblockNode->numAntecedents == (numDataNodes + (nfaults * numParityNodes))); + writeDataNodes[i].succedents[0] = unblockNode; + unblockNode->antecedents[i] = &writeDataNodes[i]; + unblockNode->antType[i] = rf_control; + } + } + + /* connect write new parity nodes to unblock node */ + for (i = 0; i < numParityNodes; i++) { + RF_ASSERT(lpuNodes[i].numSuccedents == 1); + lpuNodes[i].succedents[0] = unblockNode; + unblockNode->antecedents[numDataNodes + i] = &lpuNodes[i]; + unblockNode->antType[numDataNodes + i] = rf_control; + } + + /* connect unblock node to terminator */ + RF_ASSERT(unblockNode->numSuccedents == 1); + RF_ASSERT(termNode->numAntecedents == 1); + RF_ASSERT(termNode->numSuccedents == 0); + unblockNode->succedents[0] = termNode; + termNode->antecedents[0] = unblockNode; + termNode->antType[0] = rf_control; +} + + +void +rf_CreateParityLoggingSmallWriteDAG( + RF_Raid_t * raidPtr, + RF_AccessStripeMap_t * asmap, + RF_DagHeader_t * dag_h, + void *bp, + RF_RaidAccessFlags_t flags, + RF_AllocListElem_t * allocList, + RF_RedFuncs_t * pfuncs, + RF_RedFuncs_t * qfuncs) +{ + dag_h->creator = "ParityLoggingSmallWriteDAG"; + rf_CommonCreateParityLoggingSmallWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList, &rf_xorFuncs, NULL); +} + + +void +rf_CreateParityLoggingLargeWriteDAG( + RF_Raid_t * raidPtr, + RF_AccessStripeMap_t * asmap, + RF_DagHeader_t * dag_h, + void *bp, + RF_RaidAccessFlags_t flags, + RF_AllocListElem_t * allocList, + int nfaults, + int (*redFunc) (RF_DagNode_t *)) +{ + dag_h->creator = "ParityLoggingSmallWriteDAG"; + rf_CommonCreateParityLoggingLargeWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList, 1, rf_RegularXorFunc); +} +#endif /* RF_INCLUDE_PARITYLOGGING > 0 */ diff --git a/sys/dev/raidframe/rf_parityloggingdags.h b/sys/dev/raidframe/rf_parityloggingdags.h new file mode 100644 index 0000000..dc0fc9b --- /dev/null +++ b/sys/dev/raidframe/rf_parityloggingdags.h @@ -0,0 +1,59 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_parityloggingdags.h,v 1.3 1999/02/05 00:06:14 oster Exp $ */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: William V. Courtright II + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +/**************************************************************************** + * * + * rf_parityloggingdags.h -- header file for parity logging dags * + * * + ****************************************************************************/ + +#ifndef _RF__RF_PARITYLOGGINGDAGS_H_ +#define _RF__RF_PARITYLOGGINGDAGS_H_ + +/* routines that create DAGs */ +void +rf_CommonCreateParityLoggingLargeWriteDAG(RF_Raid_t * raidPtr, + RF_AccessStripeMap_t * asmap, RF_DagHeader_t * dag_h, + void *bp, RF_RaidAccessFlags_t flags, RF_AllocListElem_t * allocList, + int nfaults, int (*redFunc) (RF_DagNode_t *)); + void rf_CommonCreateParityLoggingSmallWriteDAG(RF_Raid_t * raidPtr, + RF_AccessStripeMap_t * asmap, RF_DagHeader_t * dag_h, + void *bp, RF_RaidAccessFlags_t flags, RF_AllocListElem_t * allocList, + RF_RedFuncs_t * pfuncs, RF_RedFuncs_t * qfuncs); + + void rf_CreateParityLoggingLargeWriteDAG(RF_Raid_t * raidPtr, + RF_AccessStripeMap_t * asmap, RF_DagHeader_t * dag_h, + void *bp, RF_RaidAccessFlags_t flags, RF_AllocListElem_t * allocList, + int nfaults, int (*redFunc) (RF_DagNode_t *)); + void rf_CreateParityLoggingSmallWriteDAG(RF_Raid_t * raidPtr, + RF_AccessStripeMap_t * asmap, RF_DagHeader_t * dag_h, + void *bp, RF_RaidAccessFlags_t flags, RF_AllocListElem_t * allocList, + RF_RedFuncs_t * pfuncs, RF_RedFuncs_t * qfuncs); + +#endif /* !_RF__RF_PARITYLOGGINGDAGS_H_ */ diff --git a/sys/dev/raidframe/rf_parityscan.c b/sys/dev/raidframe/rf_parityscan.c new file mode 100644 index 0000000..bcdf506 --- /dev/null +++ b/sys/dev/raidframe/rf_parityscan.c @@ -0,0 +1,443 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_parityscan.c,v 1.9 2000/05/28 03:00:31 oster Exp $ */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Mark Holland + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +/***************************************************************************** + * + * rf_parityscan.c -- misc utilities related to parity verification + * + *****************************************************************************/ + +#include <dev/raidframe/rf_types.h> +#include <dev/raidframe/rf_raid.h> +#include <dev/raidframe/rf_dag.h> +#include <dev/raidframe/rf_dagfuncs.h> +#include <dev/raidframe/rf_dagutils.h> +#include <dev/raidframe/rf_mcpair.h> +#include <dev/raidframe/rf_general.h> +#include <dev/raidframe/rf_engine.h> +#include <dev/raidframe/rf_parityscan.h> +#include <dev/raidframe/rf_map.h> +#include <dev/raidframe/rf_kintf.h> + +/***************************************************************************************** + * + * walk through the entire arry and write new parity. + * This works by creating two DAGs, one to read a stripe of data and one to + * write new parity. The first is executed, the data is xored together, and + * then the second is executed. To avoid constantly building and tearing down + * the DAGs, we create them a priori and fill them in with the mapping + * information as we go along. + * + * there should never be more than one thread running this. + * + ****************************************************************************************/ + +int +rf_RewriteParity(raidPtr) + RF_Raid_t *raidPtr; +{ + RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; + RF_AccessStripeMapHeader_t *asm_h; + int ret_val; + int rc; + RF_PhysDiskAddr_t pda; + RF_SectorNum_t i; + + if (raidPtr->Layout.map->faultsTolerated == 0) { + /* There isn't any parity. Call it "okay." */ + return (RF_PARITY_OKAY); + } + if (raidPtr->status[0] != rf_rs_optimal) { + /* + * We're in degraded mode. Don't try to verify parity now! + * XXX: this should be a "we don't want to", not a + * "we can't" error. + */ + return (RF_PARITY_COULD_NOT_VERIFY); + } + + ret_val = 0; + + pda.startSector = 0; + pda.numSector = raidPtr->Layout.sectorsPerStripeUnit; + rc = RF_PARITY_OKAY; + + for (i = 0; i < raidPtr->totalSectors && + rc <= RF_PARITY_CORRECTED; + i += layoutPtr->dataSectorsPerStripe) { + if (raidPtr->waitShutdown) { + /* Someone is pulling the plug on this set... + abort the re-write */ + return (1); + } + asm_h = rf_MapAccess(raidPtr, i, + layoutPtr->dataSectorsPerStripe, + NULL, RF_DONT_REMAP); + raidPtr->parity_rewrite_stripes_done = + i / layoutPtr->dataSectorsPerStripe ; + rc = rf_VerifyParity(raidPtr, asm_h->stripeMap, 1, 0); + + switch (rc) { + case RF_PARITY_OKAY: + case RF_PARITY_CORRECTED: + break; + case RF_PARITY_BAD: + printf("Parity bad during correction\n"); + ret_val = 1; + break; + case RF_PARITY_COULD_NOT_CORRECT: + printf("Could not correct bad parity\n"); + ret_val = 1; + break; + case RF_PARITY_COULD_NOT_VERIFY: + printf("Could not verify parity\n"); + ret_val = 1; + break; + default: + printf("Bad rc=%d from VerifyParity in RewriteParity\n", rc); + ret_val = 1; + } + rf_FreeAccessStripeMap(asm_h); + } + return (ret_val); +} +/***************************************************************************************** + * + * verify that the parity in a particular stripe is correct. + * we validate only the range of parity defined by parityPDA, since + * this is all we have locked. The way we do this is to create an asm + * that maps the whole stripe and then range-restrict it to the parity + * region defined by the parityPDA. + * + ****************************************************************************************/ +int +rf_VerifyParity(raidPtr, aasm, correct_it, flags) + RF_Raid_t *raidPtr; + RF_AccessStripeMap_t *aasm; + int correct_it; + RF_RaidAccessFlags_t flags; +{ + RF_PhysDiskAddr_t *parityPDA; + RF_AccessStripeMap_t *doasm; + RF_LayoutSW_t *lp; + int lrc, rc; + + lp = raidPtr->Layout.map; + if (lp->faultsTolerated == 0) { + /* + * There isn't any parity. Call it "okay." + */ + return (RF_PARITY_OKAY); + } + rc = RF_PARITY_OKAY; + if (lp->VerifyParity) { + for (doasm = aasm; doasm; doasm = doasm->next) { + for (parityPDA = doasm->parityInfo; parityPDA; + parityPDA = parityPDA->next) { + lrc = lp->VerifyParity(raidPtr, + doasm->raidAddress, + parityPDA, + correct_it, flags); + if (lrc > rc) { + /* see rf_parityscan.h for why this + * works */ + rc = lrc; + } + } + } + } else { + rc = RF_PARITY_COULD_NOT_VERIFY; + } + return (rc); +} + +int +rf_VerifyParityBasic(raidPtr, raidAddr, parityPDA, correct_it, flags) + RF_Raid_t *raidPtr; + RF_RaidAddr_t raidAddr; + RF_PhysDiskAddr_t *parityPDA; + int correct_it; + RF_RaidAccessFlags_t flags; +{ + RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout); + RF_RaidAddr_t startAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, + raidAddr); + RF_SectorCount_t numsector = parityPDA->numSector; + int numbytes = rf_RaidAddressToByte(raidPtr, numsector); + int bytesPerStripe = numbytes * layoutPtr->numDataCol; + RF_DagHeader_t *rd_dag_h, *wr_dag_h; /* read, write dag */ + RF_DagNode_t *blockNode, *unblockNode, *wrBlock, *wrUnblock; + RF_AccessStripeMapHeader_t *asm_h; + RF_AccessStripeMap_t *asmap; + RF_AllocListElem_t *alloclist; + RF_PhysDiskAddr_t *pda; + char *pbuf, *buf, *end_p, *p; + int i, retcode; + RF_ReconUnitNum_t which_ru; + RF_StripeNum_t psID = rf_RaidAddressToParityStripeID(layoutPtr, + raidAddr, + &which_ru); + int stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol; + RF_AccTraceEntry_t tracerec; + RF_MCPair_t *mcpair; + + retcode = RF_PARITY_OKAY; + + mcpair = rf_AllocMCPair(); + rf_MakeAllocList(alloclist); + RF_MallocAndAdd(buf, numbytes * (layoutPtr->numDataCol + layoutPtr->numParityCol), (char *), alloclist); + RF_CallocAndAdd(pbuf, 1, numbytes, (char *), alloclist); /* use calloc to make + * sure buffer is zeroed */ + end_p = buf + bytesPerStripe; + + rd_dag_h = rf_MakeSimpleDAG(raidPtr, stripeWidth, numbytes, buf, rf_DiskReadFunc, rf_DiskReadUndoFunc, + "Rod", alloclist, flags, RF_IO_NORMAL_PRIORITY); + blockNode = rd_dag_h->succedents[0]; + unblockNode = blockNode->succedents[0]->succedents[0]; + + /* map the stripe and fill in the PDAs in the dag */ + asm_h = rf_MapAccess(raidPtr, startAddr, layoutPtr->dataSectorsPerStripe, buf, RF_DONT_REMAP); + asmap = asm_h->stripeMap; + + for (pda = asmap->physInfo, i = 0; i < layoutPtr->numDataCol; i++, pda = pda->next) { + RF_ASSERT(pda); + rf_RangeRestrictPDA(raidPtr, parityPDA, pda, 0, 1); + RF_ASSERT(pda->numSector != 0); + if (rf_TryToRedirectPDA(raidPtr, pda, 0)) + goto out; /* no way to verify parity if disk is + * dead. return w/ good status */ + blockNode->succedents[i]->params[0].p = pda; + blockNode->succedents[i]->params[2].v = psID; + blockNode->succedents[i]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); + } + + RF_ASSERT(!asmap->parityInfo->next); + rf_RangeRestrictPDA(raidPtr, parityPDA, asmap->parityInfo, 0, 1); + RF_ASSERT(asmap->parityInfo->numSector != 0); + if (rf_TryToRedirectPDA(raidPtr, asmap->parityInfo, 1)) + goto out; + blockNode->succedents[layoutPtr->numDataCol]->params[0].p = asmap->parityInfo; + + /* fire off the DAG */ + bzero((char *) &tracerec, sizeof(tracerec)); + rd_dag_h->tracerec = &tracerec; + + if (rf_verifyParityDebug) { + printf("Parity verify read dag:\n"); + rf_PrintDAGList(rd_dag_h); + } + RF_LOCK_MUTEX(mcpair->mutex); + mcpair->flag = 0; + rf_DispatchDAG(rd_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc, + (void *) mcpair); + while (!mcpair->flag) + RF_WAIT_COND(mcpair->cond, mcpair->mutex); + RF_UNLOCK_MUTEX(mcpair->mutex); + if (rd_dag_h->status != rf_enable) { + RF_ERRORMSG("Unable to verify parity: can't read the stripe\n"); + retcode = RF_PARITY_COULD_NOT_VERIFY; + goto out; + } + for (p = buf; p < end_p; p += numbytes) { + rf_bxor(p, pbuf, numbytes, NULL); + } + for (i = 0; i < numbytes; i++) { +#if 0 + if (pbuf[i] != 0 || buf[bytesPerStripe + i] != 0) { + printf("Bytes: %d %d %d\n", i, pbuf[i], buf[bytesPerStripe + i]); + } +#endif + if (pbuf[i] != buf[bytesPerStripe + i]) { + if (!correct_it) + RF_ERRORMSG3("Parity verify error: byte %d of parity is 0x%x should be 0x%x\n", + i, (u_char) buf[bytesPerStripe + i], (u_char) pbuf[i]); + retcode = RF_PARITY_BAD; + break; + } + } + + if (retcode && correct_it) { + wr_dag_h = rf_MakeSimpleDAG(raidPtr, 1, numbytes, pbuf, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, + "Wnp", alloclist, flags, RF_IO_NORMAL_PRIORITY); + wrBlock = wr_dag_h->succedents[0]; + wrUnblock = wrBlock->succedents[0]->succedents[0]; + wrBlock->succedents[0]->params[0].p = asmap->parityInfo; + wrBlock->succedents[0]->params[2].v = psID; + wrBlock->succedents[0]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); + bzero((char *) &tracerec, sizeof(tracerec)); + wr_dag_h->tracerec = &tracerec; + if (rf_verifyParityDebug) { + printf("Parity verify write dag:\n"); + rf_PrintDAGList(wr_dag_h); + } + RF_LOCK_MUTEX(mcpair->mutex); + mcpair->flag = 0; + rf_DispatchDAG(wr_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc, + (void *) mcpair); + while (!mcpair->flag) + RF_WAIT_COND(mcpair->cond, mcpair->mutex); + RF_UNLOCK_MUTEX(mcpair->mutex); + if (wr_dag_h->status != rf_enable) { + RF_ERRORMSG("Unable to correct parity in VerifyParity: can't write the stripe\n"); + retcode = RF_PARITY_COULD_NOT_CORRECT; + } + rf_FreeDAG(wr_dag_h); + if (retcode == RF_PARITY_BAD) + retcode = RF_PARITY_CORRECTED; + } +out: + rf_FreeAccessStripeMap(asm_h); + rf_FreeAllocList(alloclist); + rf_FreeDAG(rd_dag_h); + rf_FreeMCPair(mcpair); + return (retcode); +} + +int +rf_TryToRedirectPDA(raidPtr, pda, parity) + RF_Raid_t *raidPtr; + RF_PhysDiskAddr_t *pda; + int parity; +{ + if (raidPtr->Disks[pda->row][pda->col].status == rf_ds_reconstructing) { + if (rf_CheckRUReconstructed(raidPtr->reconControl[pda->row]->reconMap, pda->startSector)) { + if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) { + RF_RowCol_t or = pda->row, oc = pda->col; + RF_SectorNum_t os = pda->startSector; + if (parity) { + (raidPtr->Layout.map->MapParity) (raidPtr, pda->raidAddress, &pda->row, &pda->col, &pda->startSector, RF_REMAP); + if (rf_verifyParityDebug) + printf("VerifyParity: Redir P r %d c %d sect %ld -> r %d c %d sect %ld\n", + or, oc, (long) os, pda->row, pda->col, (long) pda->startSector); + } else { + (raidPtr->Layout.map->MapSector) (raidPtr, pda->raidAddress, &pda->row, &pda->col, &pda->startSector, RF_REMAP); + if (rf_verifyParityDebug) + printf("VerifyParity: Redir D r %d c %d sect %ld -> r %d c %d sect %ld\n", + or, oc, (long) os, pda->row, pda->col, (long) pda->startSector); + } + } else { + RF_RowCol_t spRow = raidPtr->Disks[pda->row][pda->col].spareRow; + RF_RowCol_t spCol = raidPtr->Disks[pda->row][pda->col].spareCol; + pda->row = spRow; + pda->col = spCol; + } + } + } + if (RF_DEAD_DISK(raidPtr->Disks[pda->row][pda->col].status)) + return (1); + return (0); +} +/***************************************************************************************** + * + * currently a stub. + * + * takes as input an ASM describing a write operation and containing one failure, and + * verifies that the parity was correctly updated to reflect the write. + * + * if it's a data unit that's failed, we read the other data units in the stripe and + * the parity unit, XOR them together, and verify that we get the data intended for + * the failed disk. Since it's easy, we also validate that the right data got written + * to the surviving data disks. + * + * If it's the parity that failed, there's really no validation we can do except the + * above verification that the right data got written to all disks. This is because + * the new data intended for the failed disk is supplied in the ASM, but this is of + * course not the case for the new parity. + * + ****************************************************************************************/ +int +rf_VerifyDegrModeWrite(raidPtr, asmh) + RF_Raid_t *raidPtr; + RF_AccessStripeMapHeader_t *asmh; +{ + return (0); +} +/* creates a simple DAG with a header, a block-recon node at level 1, + * nNodes nodes at level 2, an unblock-recon node at level 3, and + * a terminator node at level 4. The stripe address field in + * the block and unblock nodes are not touched, nor are the pda + * fields in the second-level nodes, so they must be filled in later. + * + * commit point is established at unblock node - this means that any + * failure during dag execution causes the dag to fail + */ +RF_DagHeader_t * +rf_MakeSimpleDAG(raidPtr, nNodes, bytesPerSU, databuf, doFunc, undoFunc, name, alloclist, flags, priority) + RF_Raid_t *raidPtr; + int nNodes; + int bytesPerSU; + char *databuf; + int (*doFunc) (RF_DagNode_t * node); + int (*undoFunc) (RF_DagNode_t * node); + char *name; /* node names at the second level */ + RF_AllocListElem_t *alloclist; + RF_RaidAccessFlags_t flags; + int priority; +{ + RF_DagHeader_t *dag_h; + RF_DagNode_t *nodes, *termNode, *blockNode, *unblockNode; + int i; + + /* create the nodes, the block & unblock nodes, and the terminator + * node */ + RF_CallocAndAdd(nodes, nNodes + 3, sizeof(RF_DagNode_t), (RF_DagNode_t *), alloclist); + blockNode = &nodes[nNodes]; + unblockNode = blockNode + 1; + termNode = unblockNode + 1; + + dag_h = rf_AllocDAGHeader(); + dag_h->raidPtr = (void *) raidPtr; + dag_h->allocList = NULL;/* we won't use this alloc list */ + dag_h->status = rf_enable; + dag_h->numSuccedents = 1; + dag_h->creator = "SimpleDAG"; + + /* this dag can not commit until the unblock node is reached errors + * prior to the commit point imply the dag has failed */ + dag_h->numCommitNodes = 1; + dag_h->numCommits = 0; + + dag_h->succedents[0] = blockNode; + rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nNodes, 0, 0, 0, dag_h, "Nil", alloclist); + rf_InitNode(unblockNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nNodes, 0, 0, dag_h, "Nil", alloclist); + unblockNode->succedents[0] = termNode; + for (i = 0; i < nNodes; i++) { + blockNode->succedents[i] = unblockNode->antecedents[i] = &nodes[i]; + unblockNode->antType[i] = rf_control; + rf_InitNode(&nodes[i], rf_wait, RF_FALSE, doFunc, undoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, name, alloclist); + nodes[i].succedents[0] = unblockNode; + nodes[i].antecedents[0] = blockNode; + nodes[i].antType[0] = rf_control; + nodes[i].params[1].p = (databuf + (i * bytesPerSU)); + } + rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", alloclist); + termNode->antecedents[0] = unblockNode; + termNode->antType[0] = rf_control; + return (dag_h); +} diff --git a/sys/dev/raidframe/rf_parityscan.h b/sys/dev/raidframe/rf_parityscan.h new file mode 100644 index 0000000..babca41 --- /dev/null +++ b/sys/dev/raidframe/rf_parityscan.h @@ -0,0 +1,67 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_parityscan.h,v 1.3 1999/02/05 00:06:14 oster Exp $ */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Mark Holland + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +#ifndef _RF__RF_PARITYSCAN_H_ +#define _RF__RF_PARITYSCAN_H_ + +#include <dev/raidframe/rf_types.h> +#include <dev/raidframe/rf_alloclist.h> + +int rf_RewriteParity(RF_Raid_t * raidPtr); +int +rf_VerifyParityBasic(RF_Raid_t * raidPtr, RF_RaidAddr_t raidAddr, + RF_PhysDiskAddr_t * parityPDA, int correct_it, RF_RaidAccessFlags_t flags); +int +rf_VerifyParity(RF_Raid_t * raidPtr, RF_AccessStripeMap_t * stripeMap, + int correct_it, RF_RaidAccessFlags_t flags); +int rf_TryToRedirectPDA(RF_Raid_t * raidPtr, RF_PhysDiskAddr_t * pda, int parity); +int rf_VerifyDegrModeWrite(RF_Raid_t * raidPtr, RF_AccessStripeMapHeader_t * asmh); +RF_DagHeader_t * +rf_MakeSimpleDAG(RF_Raid_t * raidPtr, int nNodes, + int bytesPerSU, char *databuf, + int (*doFunc) (RF_DagNode_t *), + int (*undoFunc) (RF_DagNode_t *), + char *name, RF_AllocListElem_t * alloclist, + RF_RaidAccessFlags_t flags, int priority); + +#define RF_DO_CORRECT_PARITY 1 +#define RF_DONT_CORRECT_PARITY 0 + +/* + * Return vals for VerifyParity operation + * + * Ordering is important here. + */ +#define RF_PARITY_OKAY 0 /* or no parity information */ +#define RF_PARITY_CORRECTED 1 +#define RF_PARITY_BAD 2 +#define RF_PARITY_COULD_NOT_CORRECT 3 +#define RF_PARITY_COULD_NOT_VERIFY 4 + +#endif /* !_RF__RF_PARITYSCAN_H_ */ diff --git a/sys/dev/raidframe/rf_pq.c b/sys/dev/raidframe/rf_pq.c new file mode 100644 index 0000000..b96729e --- /dev/null +++ b/sys/dev/raidframe/rf_pq.c @@ -0,0 +1,926 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_pq.c,v 1.7 2000/01/07 03:41:02 oster Exp $ */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Daniel Stodolsky + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +/* + * Code for RAID level 6 (P + Q) disk array architecture. + */ + +#include <dev/raidframe/rf_archs.h> +#include <dev/raidframe/rf_types.h> +#include <dev/raidframe/rf_raid.h> +#include <dev/raidframe/rf_dag.h> +#include <dev/raidframe/rf_dagffrd.h> +#include <dev/raidframe/rf_dagffwr.h> +#include <dev/raidframe/rf_dagdegrd.h> +#include <dev/raidframe/rf_dagdegwr.h> +#include <dev/raidframe/rf_dagutils.h> +#include <dev/raidframe/rf_dagfuncs.h> +#include <dev/raidframe/rf_etimer.h> +#include <dev/raidframe/rf_pqdeg.h> +#include <dev/raidframe/rf_general.h> +#include <dev/raidframe/rf_map.h> +#include <dev/raidframe/rf_pq.h> + +RF_RedFuncs_t rf_pFuncs = {rf_RegularONPFunc, "Regular Old-New P", rf_SimpleONPFunc, "Simple Old-New P"}; +RF_RedFuncs_t rf_pRecoveryFuncs = {rf_RecoveryPFunc, "Recovery P Func", rf_RecoveryPFunc, "Recovery P Func"}; + +int +rf_RegularONPFunc(node) + RF_DagNode_t *node; +{ + return (rf_RegularXorFunc(node)); +} +/* + same as simpleONQ func, but the coefficient is always 1 +*/ + +int +rf_SimpleONPFunc(node) + RF_DagNode_t *node; +{ + return (rf_SimpleXorFunc(node)); +} + +int +rf_RecoveryPFunc(node) + RF_DagNode_t *node; +{ + return (rf_RecoveryXorFunc(node)); +} + +int +rf_RegularPFunc(node) + RF_DagNode_t *node; +{ + return (rf_RegularXorFunc(node)); +} +#if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0) + +static void +QDelta(char *dest, char *obuf, char *nbuf, unsigned length, + unsigned char coeff); +static void +rf_InvertQ(unsigned long *qbuf, unsigned long *abuf, + unsigned length, unsigned coeff); + +RF_RedFuncs_t rf_qFuncs = {rf_RegularONQFunc, "Regular Old-New Q", rf_SimpleONQFunc, "Simple Old-New Q"}; +RF_RedFuncs_t rf_qRecoveryFuncs = {rf_RecoveryQFunc, "Recovery Q Func", rf_RecoveryQFunc, "Recovery Q Func"}; +RF_RedFuncs_t rf_pqRecoveryFuncs = {rf_RecoveryPQFunc, "Recovery PQ Func", rf_RecoveryPQFunc, "Recovery PQ Func"}; + +void +rf_PQDagSelect( + RF_Raid_t * raidPtr, + RF_IoType_t type, + RF_AccessStripeMap_t * asmap, + RF_VoidFuncPtr * createFunc) +{ + RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout); + unsigned ndfail = asmap->numDataFailed; + unsigned npfail = asmap->numParityFailed; + unsigned ntfail = npfail + ndfail; + + RF_ASSERT(RF_IO_IS_R_OR_W(type)); + if (ntfail > 2) { + RF_ERRORMSG("more than two disks failed in a single group! Aborting I/O operation.\n"); + /* *infoFunc = */ *createFunc = NULL; + return; + } + /* ok, we can do this I/O */ + if (type == RF_IO_TYPE_READ) { + switch (ndfail) { + case 0: + /* fault free read */ + *createFunc = (RF_VoidFuncPtr) rf_CreateFaultFreeReadDAG; /* same as raid 5 */ + break; + case 1: + /* lost a single data unit */ + /* two cases: (1) parity is not lost. do a normal raid + * 5 reconstruct read. (2) parity is lost. do a + * reconstruct read using "q". */ + if (ntfail == 2) { /* also lost redundancy */ + if (asmap->failedPDAs[1]->type == RF_PDA_TYPE_PARITY) + *createFunc = (RF_VoidFuncPtr) rf_PQ_110_CreateReadDAG; + else + *createFunc = (RF_VoidFuncPtr) rf_PQ_101_CreateReadDAG; + } else { + /* P and Q are ok. But is there a failure in + * some unaccessed data unit? */ + if (rf_NumFailedDataUnitsInStripe(raidPtr, asmap) == 2) + *createFunc = (RF_VoidFuncPtr) rf_PQ_200_CreateReadDAG; + else + *createFunc = (RF_VoidFuncPtr) rf_PQ_100_CreateReadDAG; + } + break; + case 2: + /* lost two data units */ + /* *infoFunc = PQOneTwo; */ + *createFunc = (RF_VoidFuncPtr) rf_PQ_200_CreateReadDAG; + break; + } + return; + } + /* a write */ + switch (ntfail) { + case 0: /* fault free */ + if (rf_suppressLocksAndLargeWrites || + (((asmap->numStripeUnitsAccessed <= (layoutPtr->numDataCol / 2)) && (layoutPtr->numDataCol != 1)) || + (asmap->parityInfo->next != NULL) || (asmap->qInfo->next != NULL) || rf_CheckStripeForFailures(raidPtr, asmap))) { + + *createFunc = (RF_VoidFuncPtr) rf_PQCreateSmallWriteDAG; + } else { + *createFunc = (RF_VoidFuncPtr) rf_PQCreateLargeWriteDAG; + } + break; + + case 1: /* single disk fault */ + if (npfail == 1) { + RF_ASSERT((asmap->failedPDAs[0]->type == RF_PDA_TYPE_PARITY) || (asmap->failedPDAs[0]->type == RF_PDA_TYPE_Q)); + if (asmap->failedPDAs[0]->type == RF_PDA_TYPE_Q) { /* q died, treat like + * normal mode raid5 + * write. */ + if (((asmap->numStripeUnitsAccessed <= (layoutPtr->numDataCol / 2)) || (asmap->numStripeUnitsAccessed == 1)) + || rf_NumFailedDataUnitsInStripe(raidPtr, asmap)) + *createFunc = (RF_VoidFuncPtr) rf_PQ_001_CreateSmallWriteDAG; + else + *createFunc = (RF_VoidFuncPtr) rf_PQ_001_CreateLargeWriteDAG; + } else {/* parity died, small write only updating Q */ + if (((asmap->numStripeUnitsAccessed <= (layoutPtr->numDataCol / 2)) || (asmap->numStripeUnitsAccessed == 1)) + || rf_NumFailedDataUnitsInStripe(raidPtr, asmap)) + *createFunc = (RF_VoidFuncPtr) rf_PQ_010_CreateSmallWriteDAG; + else + *createFunc = (RF_VoidFuncPtr) rf_PQ_010_CreateLargeWriteDAG; + } + } else { /* data missing. Do a P reconstruct write if + * only a single data unit is lost in the + * stripe, otherwise a PQ reconstruct write. */ + if (rf_NumFailedDataUnitsInStripe(raidPtr, asmap) == 2) + *createFunc = (RF_VoidFuncPtr) rf_PQ_200_CreateWriteDAG; + else + *createFunc = (RF_VoidFuncPtr) rf_PQ_100_CreateWriteDAG; + } + break; + + case 2: /* two disk faults */ + switch (npfail) { + case 2: /* both p and q dead */ + *createFunc = (RF_VoidFuncPtr) rf_PQ_011_CreateWriteDAG; + break; + case 1: /* either p or q and dead data */ + RF_ASSERT(asmap->failedPDAs[0]->type == RF_PDA_TYPE_DATA); + RF_ASSERT((asmap->failedPDAs[1]->type == RF_PDA_TYPE_PARITY) || (asmap->failedPDAs[1]->type == RF_PDA_TYPE_Q)); + if (asmap->failedPDAs[1]->type == RF_PDA_TYPE_Q) + *createFunc = (RF_VoidFuncPtr) rf_PQ_101_CreateWriteDAG; + else + *createFunc = (RF_VoidFuncPtr) rf_PQ_110_CreateWriteDAG; + break; + case 0: /* double data loss */ + *createFunc = (RF_VoidFuncPtr) rf_PQ_200_CreateWriteDAG; + break; + } + break; + + default: /* more than 2 disk faults */ + *createFunc = NULL; + RF_PANIC(); + } + return; +} +/* + Used as a stop gap info function +*/ +#if 0 +static void +PQOne(raidPtr, nSucc, nAnte, asmap) + RF_Raid_t *raidPtr; + int *nSucc; + int *nAnte; + RF_AccessStripeMap_t *asmap; +{ + *nSucc = *nAnte = 1; +} + +static void +PQOneTwo(raidPtr, nSucc, nAnte, asmap) + RF_Raid_t *raidPtr; + int *nSucc; + int *nAnte; + RF_AccessStripeMap_t *asmap; +{ + *nSucc = 1; + *nAnte = 2; +} +#endif + +RF_CREATE_DAG_FUNC_DECL(rf_PQCreateLargeWriteDAG) +{ + rf_CommonCreateLargeWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList, 2, + rf_RegularPQFunc, RF_FALSE); +} + +int +rf_RegularONQFunc(node) + RF_DagNode_t *node; +{ + int np = node->numParams; + int d; + RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[np - 1].p; + int i; + RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec; + RF_Etimer_t timer; + char *qbuf, *qpbuf; + char *obuf, *nbuf; + RF_PhysDiskAddr_t *old, *new; + unsigned long coeff; + unsigned secPerSU = raidPtr->Layout.sectorsPerStripeUnit; + + RF_ETIMER_START(timer); + + d = (np - 3) / 4; + RF_ASSERT(4 * d + 3 == np); + qbuf = (char *) node->params[2 * d + 1].p; /* q buffer */ + for (i = 0; i < d; i++) { + old = (RF_PhysDiskAddr_t *) node->params[2 * i].p; + obuf = (char *) node->params[2 * i + 1].p; + new = (RF_PhysDiskAddr_t *) node->params[2 * (d + 1 + i)].p; + nbuf = (char *) node->params[2 * (d + 1 + i) + 1].p; + RF_ASSERT(new->numSector == old->numSector); + RF_ASSERT(new->raidAddress == old->raidAddress); + /* the stripe unit within the stripe tells us the coefficient + * to use for the multiply. */ + coeff = rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), new->raidAddress); + /* compute the data unit offset within the column, then add + * one */ + coeff = (coeff % raidPtr->Layout.numDataCol); + qpbuf = qbuf + rf_RaidAddressToByte(raidPtr, old->startSector % secPerSU); + QDelta(qpbuf, obuf, nbuf, rf_RaidAddressToByte(raidPtr, old->numSector), coeff); + } + + RF_ETIMER_STOP(timer); + RF_ETIMER_EVAL(timer); + tracerec->q_us += RF_ETIMER_VAL_US(timer); + rf_GenericWakeupFunc(node, 0); /* call wake func explicitly since no + * I/O in this node */ + return (0); +} +/* + See the SimpleXORFunc for the difference between a simple and regular func. + These Q functions should be used for + + new q = Q(data,old data,old q) + + style updates and not for + + q = ( new data, new data, .... ) + + computations. + + The simple q takes 2(2d+1)+1 params, where d is the number + of stripes written. The order of params is + old data pda_0, old data buffer_0, old data pda_1, old data buffer_1, ... old data pda_d, old data buffer_d + [2d] old q pda_0, old q buffer + [2d_2] new data pda_0, new data buffer_0, ... new data pda_d, new data buffer_d + raidPtr +*/ + +int +rf_SimpleONQFunc(node) + RF_DagNode_t *node; +{ + int np = node->numParams; + int d; + RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[np - 1].p; + int i; + RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec; + RF_Etimer_t timer; + char *qbuf; + char *obuf, *nbuf; + RF_PhysDiskAddr_t *old, *new; + unsigned long coeff; + + RF_ETIMER_START(timer); + + d = (np - 3) / 4; + RF_ASSERT(4 * d + 3 == np); + qbuf = (char *) node->params[2 * d + 1].p; /* q buffer */ + for (i = 0; i < d; i++) { + old = (RF_PhysDiskAddr_t *) node->params[2 * i].p; + obuf = (char *) node->params[2 * i + 1].p; + new = (RF_PhysDiskAddr_t *) node->params[2 * (d + 1 + i)].p; + nbuf = (char *) node->params[2 * (d + 1 + i) + 1].p; + RF_ASSERT(new->numSector == old->numSector); + RF_ASSERT(new->raidAddress == old->raidAddress); + /* the stripe unit within the stripe tells us the coefficient + * to use for the multiply. */ + coeff = rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), new->raidAddress); + /* compute the data unit offset within the column, then add + * one */ + coeff = (coeff % raidPtr->Layout.numDataCol); + QDelta(qbuf, obuf, nbuf, rf_RaidAddressToByte(raidPtr, old->numSector), coeff); + } + + RF_ETIMER_STOP(timer); + RF_ETIMER_EVAL(timer); + tracerec->q_us += RF_ETIMER_VAL_US(timer); + rf_GenericWakeupFunc(node, 0); /* call wake func explicitly since no + * I/O in this node */ + return (0); +} +RF_CREATE_DAG_FUNC_DECL(rf_PQCreateSmallWriteDAG) +{ + rf_CommonCreateSmallWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList, &rf_pFuncs, &rf_qFuncs); +} + +static void RegularQSubr(RF_DagNode_t *node, char *qbuf); + +static void +RegularQSubr(node, qbuf) + RF_DagNode_t *node; + char *qbuf; +{ + int np = node->numParams; + int d; + RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[np - 1].p; + unsigned secPerSU = raidPtr->Layout.sectorsPerStripeUnit; + int i; + RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec; + RF_Etimer_t timer; + char *obuf, *qpbuf; + RF_PhysDiskAddr_t *old; + unsigned long coeff; + + RF_ETIMER_START(timer); + + d = (np - 1) / 2; + RF_ASSERT(2 * d + 1 == np); + for (i = 0; i < d; i++) { + old = (RF_PhysDiskAddr_t *) node->params[2 * i].p; + obuf = (char *) node->params[2 * i + 1].p; + coeff = rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), old->raidAddress); + /* compute the data unit offset within the column, then add + * one */ + coeff = (coeff % raidPtr->Layout.numDataCol); + /* the input buffers may not all be aligned with the start of + * the stripe. so shift by their sector offset within the + * stripe unit */ + qpbuf = qbuf + rf_RaidAddressToByte(raidPtr, old->startSector % secPerSU); + rf_IncQ((unsigned long *) qpbuf, (unsigned long *) obuf, rf_RaidAddressToByte(raidPtr, old->numSector), coeff); + } + + RF_ETIMER_STOP(timer); + RF_ETIMER_EVAL(timer); + tracerec->q_us += RF_ETIMER_VAL_US(timer); +} +/* + used in degraded writes. +*/ + +static void DegrQSubr(RF_DagNode_t *node); + +static void +DegrQSubr(node) + RF_DagNode_t *node; +{ + int np = node->numParams; + int d; + RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[np - 1].p; + unsigned secPerSU = raidPtr->Layout.sectorsPerStripeUnit; + int i; + RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec; + RF_Etimer_t timer; + char *qbuf = node->results[1]; + char *obuf, *qpbuf; + RF_PhysDiskAddr_t *old; + unsigned long coeff; + unsigned fail_start; + int j; + + old = (RF_PhysDiskAddr_t *) node->params[np - 2].p; + fail_start = old->startSector % secPerSU; + + RF_ETIMER_START(timer); + + d = (np - 2) / 2; + RF_ASSERT(2 * d + 2 == np); + for (i = 0; i < d; i++) { + old = (RF_PhysDiskAddr_t *) node->params[2 * i].p; + obuf = (char *) node->params[2 * i + 1].p; + coeff = rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), old->raidAddress); + /* compute the data unit offset within the column, then add + * one */ + coeff = (coeff % raidPtr->Layout.numDataCol); + /* the input buffers may not all be aligned with the start of + * the stripe. so shift by their sector offset within the + * stripe unit */ + j = old->startSector % secPerSU; + RF_ASSERT(j >= fail_start); + qpbuf = qbuf + rf_RaidAddressToByte(raidPtr, j - fail_start); + rf_IncQ((unsigned long *) qpbuf, (unsigned long *) obuf, rf_RaidAddressToByte(raidPtr, old->numSector), coeff); + } + + RF_ETIMER_STOP(timer); + RF_ETIMER_EVAL(timer); + tracerec->q_us += RF_ETIMER_VAL_US(timer); +} +/* + Called by large write code to compute the new parity and the new q. + + structure of the params: + + pda_0, buffer_0, pda_1 , buffer_1, ... , pda_d, buffer_d ( d = numDataCol + raidPtr + + for a total of 2d+1 arguments. + The result buffers results[0], results[1] are the buffers for the p and q, + respectively. + + We compute Q first, then compute P. The P calculation may try to reuse + one of the input buffers for its output, so if we computed P first, we would + corrupt the input for the q calculation. +*/ + +int +rf_RegularPQFunc(node) + RF_DagNode_t *node; +{ + RegularQSubr(node, node->results[1]); + return (rf_RegularXorFunc(node)); /* does the wakeup */ +} + +int +rf_RegularQFunc(node) + RF_DagNode_t *node; +{ + /* Almost ... adjust Qsubr args */ + RegularQSubr(node, node->results[0]); + rf_GenericWakeupFunc(node, 0); /* call wake func explicitly since no + * I/O in this node */ + return (0); +} +/* + Called by singly degraded write code to compute the new parity and the new q. + + structure of the params: + + pda_0, buffer_0, pda_1 , buffer_1, ... , pda_d, buffer_d + failedPDA raidPtr + + for a total of 2d+2 arguments. + The result buffers results[0], results[1] are the buffers for the parity and q, + respectively. + + We compute Q first, then compute parity. The parity calculation may try to reuse + one of the input buffers for its output, so if we computed parity first, we would + corrupt the input for the q calculation. + + We treat this identically to the regularPQ case, ignoring the failedPDA extra argument. +*/ + +void +rf_Degraded_100_PQFunc(node) + RF_DagNode_t *node; +{ + int np = node->numParams; + + RF_ASSERT(np >= 2); + DegrQSubr(node); + rf_RecoveryXorFunc(node); +} + + +/* + The two below are used when reading a stripe with a single lost data unit. + The parameters are + + pda_0, buffer_0, .... pda_n, buffer_n, P pda, P buffer, failedPDA, raidPtr + + and results[0] contains the data buffer. Which is originally zero-filled. + +*/ + +/* this Q func is used by the degraded-mode dag functions to recover lost data. + * the second-to-last parameter is the PDA for the failed portion of the access. + * the code here looks at this PDA and assumes that the xor target buffer is + * equal in size to the number of sectors in the failed PDA. It then uses + * the other PDAs in the parameter list to determine where within the target + * buffer the corresponding data should be xored. + * + * Recall the basic equation is + * + * Q = ( data_1 + 2 * data_2 ... + k * data_k ) mod 256 + * + * so to recover data_j we need + * + * J data_j = (Q - data_1 - 2 data_2 ....- k* data_k) mod 256 + * + * So the coefficient for each buffer is (255 - data_col), and j should be initialized by + * copying Q into it. Then we need to do a table lookup to convert to solve + * data_j /= J + * + * + */ +int +rf_RecoveryQFunc(node) + RF_DagNode_t *node; +{ + RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p; + RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & raidPtr->Layout; + RF_PhysDiskAddr_t *failedPDA = (RF_PhysDiskAddr_t *) node->params[node->numParams - 2].p; + int i; + RF_PhysDiskAddr_t *pda; + RF_RaidAddr_t suoffset, failedSUOffset = rf_StripeUnitOffset(layoutPtr, failedPDA->startSector); + char *srcbuf, *destbuf; + RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec; + RF_Etimer_t timer; + unsigned long coeff; + + RF_ETIMER_START(timer); + /* start by copying Q into the buffer */ + bcopy(node->params[node->numParams - 3].p, node->results[0], + rf_RaidAddressToByte(raidPtr, failedPDA->numSector)); + for (i = 0; i < node->numParams - 4; i += 2) { + RF_ASSERT(node->params[i + 1].p != node->results[0]); + pda = (RF_PhysDiskAddr_t *) node->params[i].p; + srcbuf = (char *) node->params[i + 1].p; + suoffset = rf_StripeUnitOffset(layoutPtr, pda->startSector); + destbuf = ((char *) node->results[0]) + rf_RaidAddressToByte(raidPtr, suoffset - failedSUOffset); + coeff = rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), pda->raidAddress); + /* compute the data unit offset within the column */ + coeff = (coeff % raidPtr->Layout.numDataCol); + rf_IncQ((unsigned long *) destbuf, (unsigned long *) srcbuf, rf_RaidAddressToByte(raidPtr, pda->numSector), coeff); + } + /* Do the nasty inversion now */ + coeff = (rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), failedPDA->startSector) % raidPtr->Layout.numDataCol); + rf_InvertQ(node->results[0], node->results[0], rf_RaidAddressToByte(raidPtr, pda->numSector), coeff); + RF_ETIMER_STOP(timer); + RF_ETIMER_EVAL(timer); + tracerec->q_us += RF_ETIMER_VAL_US(timer); + rf_GenericWakeupFunc(node, 0); + return (0); +} + +int +rf_RecoveryPQFunc(node) + RF_DagNode_t *node; +{ + RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p; + printf("raid%d: Recovery from PQ not implemented.\n",raidPtr->raidid); + return (1); +} +/* + Degraded write Q subroutine. + Used when P is dead. + Large-write style Q computation. + Parameters + + (pda,buf),(pda,buf),.....,(failedPDA,bufPtr),failedPDA,raidPtr. + + We ignore failedPDA. + + This is a "simple style" recovery func. +*/ + +void +rf_PQ_DegradedWriteQFunc(node) + RF_DagNode_t *node; +{ + int np = node->numParams; + int d; + RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[np - 1].p; + unsigned secPerSU = raidPtr->Layout.sectorsPerStripeUnit; + int i; + RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec; + RF_Etimer_t timer; + char *qbuf = node->results[0]; + char *obuf, *qpbuf; + RF_PhysDiskAddr_t *old; + unsigned long coeff; + int fail_start, j; + + old = (RF_PhysDiskAddr_t *) node->params[np - 2].p; + fail_start = old->startSector % secPerSU; + + RF_ETIMER_START(timer); + + d = (np - 2) / 2; + RF_ASSERT(2 * d + 2 == np); + + for (i = 0; i < d; i++) { + old = (RF_PhysDiskAddr_t *) node->params[2 * i].p; + obuf = (char *) node->params[2 * i + 1].p; + coeff = rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), old->raidAddress); + /* compute the data unit offset within the column, then add + * one */ + coeff = (coeff % raidPtr->Layout.numDataCol); + j = old->startSector % secPerSU; + RF_ASSERT(j >= fail_start); + qpbuf = qbuf + rf_RaidAddressToByte(raidPtr, j - fail_start); + rf_IncQ((unsigned long *) qpbuf, (unsigned long *) obuf, rf_RaidAddressToByte(raidPtr, old->numSector), coeff); + } + + RF_ETIMER_STOP(timer); + RF_ETIMER_EVAL(timer); + tracerec->q_us += RF_ETIMER_VAL_US(timer); + rf_GenericWakeupFunc(node, 0); +} + + + + +/* Q computations */ + +/* + coeff - colummn; + + compute dest ^= qfor[28-coeff][rn[coeff+1] a] + + on 5-bit basis; + length in bytes; +*/ + +void +rf_IncQ(dest, buf, length, coeff) + unsigned long *dest; + unsigned long *buf; + unsigned length; + unsigned coeff; +{ + unsigned long a, d, new; + unsigned long a1, a2; + unsigned int *q = &(rf_qfor[28 - coeff][0]); + unsigned r = rf_rn[coeff + 1]; + +#define EXTRACT(a,i) ((a >> (5L*i)) & 0x1f) +#define INSERT(a,i) (a << (5L*i)) + + length /= 8; + /* 13 5 bit quants in a 64 bit word */ + while (length) { + a = *buf++; + d = *dest; + a1 = EXTRACT(a, 0) ^ r; + a2 = EXTRACT(a, 1) ^ r; + new = INSERT(a2, 1) | a1; + a1 = EXTRACT(a, 2) ^ r; + a2 = EXTRACT(a, 3) ^ r; + a1 = q[a1]; + a2 = q[a2]; + new = new | INSERT(a1, 2) | INSERT(a2, 3); + a1 = EXTRACT(a, 4) ^ r; + a2 = EXTRACT(a, 5) ^ r; + a1 = q[a1]; + a2 = q[a2]; + new = new | INSERT(a1, 4) | INSERT(a2, 5); + a1 = EXTRACT(a, 5) ^ r; + a2 = EXTRACT(a, 6) ^ r; + a1 = q[a1]; + a2 = q[a2]; + new = new | INSERT(a1, 5) | INSERT(a2, 6); +#if RF_LONGSHIFT > 2 + a1 = EXTRACT(a, 7) ^ r; + a2 = EXTRACT(a, 8) ^ r; + a1 = q[a1]; + a2 = q[a2]; + new = new | INSERT(a1, 7) | INSERT(a2, 8); + a1 = EXTRACT(a, 9) ^ r; + a2 = EXTRACT(a, 10) ^ r; + a1 = q[a1]; + a2 = q[a2]; + new = new | INSERT(a1, 9) | INSERT(a2, 10); + a1 = EXTRACT(a, 11) ^ r; + a2 = EXTRACT(a, 12) ^ r; + a1 = q[a1]; + a2 = q[a2]; + new = new | INSERT(a1, 11) | INSERT(a2, 12); +#endif /* RF_LONGSHIFT > 2 */ + d ^= new; + *dest++ = d; + length--; + } +} +/* + compute + + dest ^= rf_qfor[28-coeff][rf_rn[coeff+1] (old^new) ] + + on a five bit basis. + optimization: compute old ^ new on 64 bit basis. + + length in bytes. +*/ + +static void +QDelta( + char *dest, + char *obuf, + char *nbuf, + unsigned length, + unsigned char coeff) +{ + unsigned long a, d, new; + unsigned long a1, a2; + unsigned int *q = &(rf_qfor[28 - coeff][0]); + unsigned int r = rf_rn[coeff + 1]; + + r = a1 = a2 = new = d = a = 0; /* XXX for now... */ + q = NULL; /* XXX for now */ + +#ifdef _KERNEL + /* PQ in kernel currently not supported because the encoding/decoding + * table is not present */ + bzero(dest, length); +#else /* KERNEL */ + /* this code probably doesn't work and should be rewritten -wvcii */ + /* 13 5 bit quants in a 64 bit word */ + length /= 8; + while (length) { + a = *obuf++; /* XXX need to reorg to avoid cache conflicts */ + a ^= *nbuf++; + d = *dest; + a1 = EXTRACT(a, 0) ^ r; + a2 = EXTRACT(a, 1) ^ r; + a1 = q[a1]; + a2 = q[a2]; + new = INSERT(a2, 1) | a1; + a1 = EXTRACT(a, 2) ^ r; + a2 = EXTRACT(a, 3) ^ r; + a1 = q[a1]; + a2 = q[a2]; + new = new | INSERT(a1, 2) | INSERT(a2, 3); + a1 = EXTRACT(a, 4) ^ r; + a2 = EXTRACT(a, 5) ^ r; + a1 = q[a1]; + a2 = q[a2]; + new = new | INSERT(a1, 4) | INSERT(a2, 5); + a1 = EXTRACT(a, 5) ^ r; + a2 = EXTRACT(a, 6) ^ r; + a1 = q[a1]; + a2 = q[a2]; + new = new | INSERT(a1, 5) | INSERT(a2, 6); +#if RF_LONGSHIFT > 2 + a1 = EXTRACT(a, 7) ^ r; + a2 = EXTRACT(a, 8) ^ r; + a1 = q[a1]; + a2 = q[a2]; + new = new | INSERT(a1, 7) | INSERT(a2, 8); + a1 = EXTRACT(a, 9) ^ r; + a2 = EXTRACT(a, 10) ^ r; + a1 = q[a1]; + a2 = q[a2]; + new = new | INSERT(a1, 9) | INSERT(a2, 10); + a1 = EXTRACT(a, 11) ^ r; + a2 = EXTRACT(a, 12) ^ r; + a1 = q[a1]; + a2 = q[a2]; + new = new | INSERT(a1, 11) | INSERT(a2, 12); +#endif /* RF_LONGSHIFT > 2 */ + d ^= new; + *dest++ = d; + length--; + } +#endif /* _KERNEL */ +} +/* + recover columns a and b from the given p and q into + bufs abuf and bbuf. All bufs are word aligned. + Length is in bytes. +*/ + + +/* + * XXX + * + * Everything about this seems wrong. + */ +void +rf_PQ_recover(pbuf, qbuf, abuf, bbuf, length, coeff_a, coeff_b) + unsigned long *pbuf; + unsigned long *qbuf; + unsigned long *abuf; + unsigned long *bbuf; + unsigned length; + unsigned coeff_a; + unsigned coeff_b; +{ + unsigned long p, q, a, a0, a1; + int col = (29 * coeff_a) + coeff_b; + unsigned char *q0 = &(rf_qinv[col][0]); + + length /= 8; + while (length) { + p = *pbuf++; + q = *qbuf++; + a0 = EXTRACT(p, 0); + a1 = EXTRACT(q, 0); + a = q0[a0 << 5 | a1]; +#define MF(i) \ + a0 = EXTRACT(p,i); \ + a1 = EXTRACT(q,i); \ + a = a | INSERT(q0[a0<<5 | a1],i) + + MF(1); + MF(2); + MF(3); + MF(4); + MF(5); + MF(6); +#if 0 + MF(7); + MF(8); + MF(9); + MF(10); + MF(11); + MF(12); +#endif /* 0 */ + *abuf++ = a; + *bbuf++ = a ^ p; + length--; + } +} +/* + Lost parity and a data column. Recover that data column. + Assume col coeff is lost. Let q the contents of Q after + all surviving data columns have been q-xored out of it. + Then we have the equation + + q[28-coeff][a_i ^ r_i+1] = q + + but q is cyclic with period 31. + So q[3+coeff][q[28-coeff][a_i ^ r_{i+1}]] = + q[31][a_i ^ r_{i+1}] = a_i ^ r_{i+1} . + + so a_i = r_{coeff+1} ^ q[3+coeff][q] + + The routine is passed q buffer and the buffer + the data is to be recoverd into. They can be the same. +*/ + + + +static void +rf_InvertQ( + unsigned long *qbuf, + unsigned long *abuf, + unsigned length, + unsigned coeff) +{ + unsigned long a, new; + unsigned long a1, a2; + unsigned int *q = &(rf_qfor[3 + coeff][0]); + unsigned r = rf_rn[coeff + 1]; + + /* 13 5 bit quants in a 64 bit word */ + length /= 8; + while (length) { + a = *qbuf++; + a1 = EXTRACT(a, 0); + a2 = EXTRACT(a, 1); + a1 = r ^ q[a1]; + a2 = r ^ q[a2]; + new = INSERT(a2, 1) | a1; +#define M(i,j) \ + a1 = EXTRACT(a,i); \ + a2 = EXTRACT(a,j); \ + a1 = r ^ q[a1]; \ + a2 = r ^ q[a2]; \ + new = new | INSERT(a1,i) | INSERT(a2,j) + + M(2, 3); + M(4, 5); + M(5, 6); +#if RF_LONGSHIFT > 2 + M(7, 8); + M(9, 10); + M(11, 12); +#endif /* RF_LONGSHIFT > 2 */ + *abuf++ = new; + length--; + } +} +#endif /* (RF_INCLUDE_DECL_PQ > 0) || + * (RF_INCLUDE_RAID6 > 0) */ diff --git a/sys/dev/raidframe/rf_pq.h b/sys/dev/raidframe/rf_pq.h new file mode 100644 index 0000000..9a2ce23 --- /dev/null +++ b/sys/dev/raidframe/rf_pq.h @@ -0,0 +1,75 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_pq.h,v 1.3 1999/02/05 00:06:15 oster Exp $ */ +/* + * rf_pq.h + */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Daniel Stodolsky + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +#ifndef _RF__RF_PQ_H_ +#define _RF__RF_PQ_H_ + +#include <dev/raidframe/rf_archs.h> + +extern RF_RedFuncs_t rf_pFuncs; +extern RF_RedFuncs_t rf_pRecoveryFuncs; + +int rf_RegularONPFunc(RF_DagNode_t * node); +int rf_SimpleONPFunc(RF_DagNode_t * node); +int rf_RecoveryPFunc(RF_DagNode_t * node); +int rf_RegularPFunc(RF_DagNode_t * node); + +#if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0) + +extern RF_RedFuncs_t rf_qFuncs; +extern RF_RedFuncs_t rf_qRecoveryFuncs; +extern RF_RedFuncs_t rf_pqRecoveryFuncs; + +void +rf_PQDagSelect(RF_Raid_t * raidPtr, RF_IoType_t type, + RF_AccessStripeMap_t * asmap, RF_VoidFuncPtr * createFunc); +RF_CREATE_DAG_FUNC_DECL(rf_PQCreateLargeWriteDAG); +int rf_RegularONQFunc(RF_DagNode_t * node); +int rf_SimpleONQFunc(RF_DagNode_t * node); +RF_CREATE_DAG_FUNC_DECL(rf_PQCreateSmallWriteDAG); +int rf_RegularPQFunc(RF_DagNode_t * node); +int rf_RegularQFunc(RF_DagNode_t * node); +void rf_Degraded_100_PQFunc(RF_DagNode_t * node); +int rf_RecoveryQFunc(RF_DagNode_t * node); +int rf_RecoveryPQFunc(RF_DagNode_t * node); +void rf_PQ_DegradedWriteQFunc(RF_DagNode_t * node); +void +rf_IncQ(unsigned long *dest, unsigned long *buf, unsigned length, + unsigned coeff); +void +rf_PQ_recover(unsigned long *pbuf, unsigned long *qbuf, unsigned long *abuf, + unsigned long *bbuf, unsigned length, unsigned coeff_a, unsigned coeff_b); + +#endif /* (RF_INCLUDE_DECL_PQ > 0) || + * (RF_INCLUDE_RAID6 > 0) */ + +#endif /* !_RF__RF_PQ_H_ */ diff --git a/sys/dev/raidframe/rf_pqdeg.c b/sys/dev/raidframe/rf_pqdeg.c new file mode 100644 index 0000000..e76ccdf --- /dev/null +++ b/sys/dev/raidframe/rf_pqdeg.c @@ -0,0 +1,217 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_pqdeg.c,v 1.5 2000/01/07 03:41:04 oster Exp $ */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Daniel Stodolsky + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +#include <dev/raidframe/rf_archs.h> + +#if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0) + +#include <dev/raidframe/rf_types.h> +#include <dev/raidframe/rf_raid.h> +#include <dev/raidframe/rf_dag.h> +#include <dev/raidframe/rf_dagutils.h> +#include <dev/raidframe/rf_dagfuncs.h> +#include <dev/raidframe/rf_dagffrd.h> +#include <dev/raidframe/rf_dagffwr.h> +#include <dev/raidframe/rf_dagdegrd.h> +#include <dev/raidframe/rf_dagdegwr.h> +#include <dev/raidframe/rf_etimer.h> +#include <dev/raidframe/rf_pqdeg.h> +#include <dev/raidframe/rf_general.h> +#include <dev/raidframe/rf_pqdegdags.h> +#include <dev/raidframe/rf_pq.h> + +/* + Degraded mode dag functions for P+Q calculations. + + The following nomenclature is used. + + PQ_<D><P><Q>_Create{Large,Small}<Write|Read>DAG + + where <D><P><Q> are single digits representing the number of failed + data units <D> (0,1,2), parity units <P> (0,1), and Q units <Q>, effecting + the I/O. The reads have only PQ_<D><P><Q>_CreateReadDAG variants, while + the single fault writes have both large and small write versions. (Single fault + PQ is equivalent to normal mode raid 5 in many aspects. + + Some versions degenerate into the same case, and are grouped together below. +*/ + +/* Reads, single failure + + we have parity, so we can do a raid 5 + reconstruct read. +*/ + +RF_CREATE_DAG_FUNC_DECL(rf_PQ_100_CreateReadDAG) +{ + rf_CreateDegradedReadDAG(raidPtr, asmap, dag_h, bp, flags, allocList, &rf_pRecoveryFuncs); +} +/* Reads double failure */ + +/* + Q is lost, but not parity + so we can a raid 5 reconstruct read. +*/ + +RF_CREATE_DAG_FUNC_DECL(rf_PQ_101_CreateReadDAG) +{ + rf_CreateDegradedReadDAG(raidPtr, asmap, dag_h, bp, flags, allocList, &rf_pRecoveryFuncs); +} +/* + parity is lost, so we need to + do a reconstruct read and recompute + the data with Q. +*/ + +RF_CREATE_DAG_FUNC_DECL(rf_PQ_110_CreateReadDAG) +{ + RF_PhysDiskAddr_t *temp; + /* swap P and Q pointers to fake out the DegradedReadDAG code */ + temp = asmap->parityInfo; + asmap->parityInfo = asmap->qInfo; + asmap->qInfo = temp; + rf_CreateDegradedReadDAG(raidPtr, asmap, dag_h, bp, flags, allocList, &rf_qRecoveryFuncs); +} +/* + Two data units are dead in this stripe, so we will need read + both P and Q to reconstruct the data. Note that only + one data unit we are reading may actually be missing. +*/ +RF_CREATE_DAG_FUNC_DECL(rf_CreateDoubleDegradedReadDAG); +RF_CREATE_DAG_FUNC_DECL(rf_CreateDoubleDegradedReadDAG) +{ + rf_PQ_DoubleDegRead(raidPtr, asmap, dag_h, bp, flags, allocList); +} +RF_CREATE_DAG_FUNC_DECL(rf_PQ_200_CreateReadDAG); +RF_CREATE_DAG_FUNC_DECL(rf_PQ_200_CreateReadDAG) +{ + rf_CreateDoubleDegradedReadDAG(raidPtr, asmap, dag_h, bp, flags, allocList); +} +/* Writes, single failure */ + +RF_CREATE_DAG_FUNC_DECL(rf_PQ_100_CreateWriteDAG); +RF_CREATE_DAG_FUNC_DECL(rf_PQ_100_CreateWriteDAG) +{ + if (asmap->numStripeUnitsAccessed != 1 && + asmap->failedPDAs[0]->numSector != + raidPtr->Layout.sectorsPerStripeUnit) + RF_PANIC(); + rf_CommonCreateSimpleDegradedWriteDAG(raidPtr, asmap, dag_h, bp, + flags, allocList, 2, + (int (*) (RF_DagNode_t *)) rf_Degraded_100_PQFunc, + RF_FALSE); +} +/* Dead P - act like a RAID 5 small write with parity = Q */ +RF_CREATE_DAG_FUNC_DECL(rf_PQ_010_CreateSmallWriteDAG) +{ + RF_PhysDiskAddr_t *temp; + /* swap P and Q pointers to fake out the DegradedReadDAG code */ + temp = asmap->parityInfo; + asmap->parityInfo = asmap->qInfo; + asmap->qInfo = temp; + rf_CommonCreateSmallWriteDAG(raidPtr, asmap, dag_h, bp, flags, + allocList, &rf_qFuncs, NULL); +} +/* Dead Q - act like a RAID 5 small write */ +RF_CREATE_DAG_FUNC_DECL(rf_PQ_001_CreateSmallWriteDAG) +{ + rf_CommonCreateSmallWriteDAG(raidPtr, asmap, dag_h, bp, flags, + allocList, &rf_pFuncs, NULL); +} +/* Dead P - act like a RAID 5 large write but for Q */ +RF_CREATE_DAG_FUNC_DECL(rf_PQ_010_CreateLargeWriteDAG) +{ + RF_PhysDiskAddr_t *temp; + /* swap P and Q pointers to fake out the code */ + temp = asmap->parityInfo; + asmap->parityInfo = asmap->qInfo; + asmap->qInfo = temp; + rf_CommonCreateLargeWriteDAG(raidPtr, asmap, dag_h, bp, flags, + allocList, 1, rf_RegularQFunc, RF_FALSE); +} +/* Dead Q - act like a RAID 5 large write */ +RF_CREATE_DAG_FUNC_DECL(rf_PQ_001_CreateLargeWriteDAG) +{ + rf_CommonCreateLargeWriteDAG(raidPtr, asmap, dag_h, bp, flags, + allocList, 1, rf_RegularPFunc, RF_FALSE); +} + + +/* + * writes, double failure + */ + +/* + * Lost P & Q - do a nonredundant write + */ +RF_CREATE_DAG_FUNC_DECL(rf_PQ_011_CreateWriteDAG) +{ + rf_CreateNonRedundantWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList, + RF_IO_TYPE_WRITE); +} +/* + In the two cases below, + A nasty case arises when the write a (strict) portion of a failed stripe unit + and parts of another su. For now, we do not support this. +*/ + +/* + Lost Data and P - do a Q write. +*/ +RF_CREATE_DAG_FUNC_DECL(rf_PQ_110_CreateWriteDAG) +{ + RF_PhysDiskAddr_t *temp; + + if (asmap->numStripeUnitsAccessed != 1 && + asmap->failedPDAs[0]->numSector != raidPtr->Layout.sectorsPerStripeUnit) { + RF_PANIC(); + } + /* swap P and Q to fake out parity code */ + temp = asmap->parityInfo; + asmap->parityInfo = asmap->qInfo; + asmap->qInfo = temp; + rf_CommonCreateSimpleDegradedWriteDAG(raidPtr, asmap, dag_h, bp, flags, + allocList, 1, + (int (*) (RF_DagNode_t *)) rf_PQ_DegradedWriteQFunc, + RF_FALSE); + /* is the regular Q func the right one to call? */ +} +/* + Lost Data and Q - do degraded mode P write +*/ +RF_CREATE_DAG_FUNC_DECL(rf_PQ_101_CreateWriteDAG) +{ + if (asmap->numStripeUnitsAccessed != 1 && + asmap->failedPDAs[0]->numSector != raidPtr->Layout.sectorsPerStripeUnit) + RF_PANIC(); + rf_CommonCreateSimpleDegradedWriteDAG(raidPtr, asmap, dag_h, bp, flags, + allocList, 1, rf_RecoveryXorFunc, RF_FALSE); +} +#endif /* (RF_INCLUDE_DECL_PQ > 0) || + * (RF_INCLUDE_RAID6 > 0) */ diff --git a/sys/dev/raidframe/rf_pqdeg.h b/sys/dev/raidframe/rf_pqdeg.h new file mode 100644 index 0000000..83371e6 --- /dev/null +++ b/sys/dev/raidframe/rf_pqdeg.h @@ -0,0 +1,75 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_pqdeg.h,v 1.3 1999/02/05 00:06:15 oster Exp $ */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Daniel Stodolsky + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +#ifndef _RF__RF_PQDEG_H_ +#define _RF__RF_PQDEG_H_ + +#include <dev/raidframe/rf_types.h> + +#if RF_UTILITY == 0 +#include <dev/raidframe/rf_dag.h> + +/* extern decl's of the failure mode PQ functions. + * See pddeg.c for nomenclature discussion. + */ + +/* reads, single failure */ +RF_CREATE_DAG_FUNC_DECL(rf_PQ_100_CreateReadDAG); +/* reads, two failure */ +RF_CREATE_DAG_FUNC_DECL(rf_PQ_110_CreateReadDAG); +RF_CREATE_DAG_FUNC_DECL(rf_PQ_101_CreateReadDAG); +RF_CREATE_DAG_FUNC_DECL(rf_PQ_200_CreateReadDAG); + +/* writes, single failure */ +RF_CREATE_DAG_FUNC_DECL(rf_PQ_100_CreateWriteDAG); +RF_CREATE_DAG_FUNC_DECL(rf_PQ_010_CreateSmallWriteDAG); +RF_CREATE_DAG_FUNC_DECL(rf_PQ_010_CreateLargeWriteDAG); +RF_CREATE_DAG_FUNC_DECL(rf_PQ_001_CreateSmallWriteDAG); +RF_CREATE_DAG_FUNC_DECL(rf_PQ_001_CreateLargeWriteDAG); + +/* writes, double failure */ +RF_CREATE_DAG_FUNC_DECL(rf_PQ_011_CreateWriteDAG); +RF_CREATE_DAG_FUNC_DECL(rf_PQ_110_CreateWriteDAG); +RF_CREATE_DAG_FUNC_DECL(rf_PQ_101_CreateWriteDAG); +RF_CREATE_DAG_FUNC_DECL(rf_PQ_200_CreateWriteDAG); +#endif /* RF_UTILITY == 0 */ + +typedef RF_uint32 RF_ua32_t[32]; +typedef RF_uint8 RF_ua1024_t[1024]; + +extern RF_ua32_t rf_rn; +extern RF_ua32_t rf_qfor[32]; +#ifndef _KERNEL /* we don't support PQ in the kernel yet, so + * don't link in this monster table */ +extern RF_ua1024_t rf_qinv[29 * 29]; +#else /* !_KERNEL */ +extern RF_ua1024_t rf_qinv[1]; +#endif /* !_KERNEL */ + +#endif /* !_RF__RF_PQDEG_H_ */ diff --git a/sys/dev/raidframe/rf_pqdegdags.c b/sys/dev/raidframe/rf_pqdegdags.c new file mode 100644 index 0000000..e0d97ed --- /dev/null +++ b/sys/dev/raidframe/rf_pqdegdags.c @@ -0,0 +1,430 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_pqdegdags.c,v 1.5 1999/08/15 02:36:40 oster Exp $ */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Daniel Stodolsky + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +/* + * rf_pqdegdags.c + * Degraded mode dags for double fault cases. +*/ + + +#include <dev/raidframe/rf_archs.h> + +#if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0) + +#include <dev/raidframe/rf_types.h> +#include <dev/raidframe/rf_raid.h> +#include <dev/raidframe/rf_dag.h> +#include <dev/raidframe/rf_dagdegrd.h> +#include <dev/raidframe/rf_dagdegwr.h> +#include <dev/raidframe/rf_dagfuncs.h> +#include <dev/raidframe/rf_dagutils.h> +#include <dev/raidframe/rf_etimer.h> +#include <dev/raidframe/rf_acctrace.h> +#include <dev/raidframe/rf_general.h> +#include <dev/raidframe/rf_pqdegdags.h> +#include <dev/raidframe/rf_pq.h> + +static void +applyPDA(RF_Raid_t * raidPtr, RF_PhysDiskAddr_t * pda, RF_PhysDiskAddr_t * ppda, + RF_PhysDiskAddr_t * qpda, void *bp); + +/* + Two data drives have failed, and we are doing a read that covers one of them. + We may also be reading some of the surviving drives. + + + ***************************************************************************************** + * + * creates a DAG to perform a degraded-mode read of data within one stripe. + * This DAG is as follows: + * + * Hdr + * | + * Block + * / / \ \ \ \ + * Rud ... Rud Rrd ... Rrd Rp Rq + * | \ | \ | \ | \ | \ | \ + * + * | | + * Unblock X + * \ / + * ------ T ------ + * + * Each R node is a successor of the L node + * One successor arc from each R node goes to U, and the other to X + * There is one Rud for each chunk of surviving user data requested by the user, + * and one Rrd for each chunk of surviving user data _not_ being read by the user + * R = read, ud = user data, rd = recovery (surviving) data, p = P data, q = Qdata + * X = pq recovery node, T = terminate + * + * The block & unblock nodes are leftovers from a previous version. They + * do nothing, but I haven't deleted them because it would be a tremendous + * effort to put them back in. + * + * Note: The target buffer for the XOR node is set to the actual user buffer where the + * failed data is supposed to end up. This buffer is zero'd by the code here. Thus, + * if you create a degraded read dag, use it, and then re-use, you have to be sure to + * zero the target buffer prior to the re-use. + * + * Every buffer read is passed to the pq recovery node, whose job it is to sort out whats + * needs and what's not. + ****************************************************************************************/ +/* init a disk node with 2 successors and one predecessor */ +#define INIT_DISK_NODE(node,name) \ +rf_InitNode(node, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 2,1,4,0, dag_h, name, allocList); \ +(node)->succedents[0] = unblockNode; \ +(node)->succedents[1] = recoveryNode; \ +(node)->antecedents[0] = blockNode; \ +(node)->antType[0] = rf_control + +#define DISK_NODE_PARAMS(_node_,_p_) \ + (_node_).params[0].p = _p_ ; \ + (_node_).params[1].p = (_p_)->bufPtr; \ + (_node_).params[2].v = parityStripeID; \ + (_node_).params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru) + +#define DISK_NODE_PDA(node) ((node)->params[0].p) + +RF_CREATE_DAG_FUNC_DECL(rf_PQ_DoubleDegRead) +{ + rf_DoubleDegRead(raidPtr, asmap, dag_h, bp, flags, allocList, + "Rq", "PQ Recovery", rf_PQDoubleRecoveryFunc); +} + +static void +applyPDA(raidPtr, pda, ppda, qpda, bp) + RF_Raid_t *raidPtr; + RF_PhysDiskAddr_t *pda; + RF_PhysDiskAddr_t *ppda; + RF_PhysDiskAddr_t *qpda; + void *bp; +{ + RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout); + RF_RaidAddr_t s0off = rf_StripeUnitOffset(layoutPtr, ppda->startSector); + RF_SectorCount_t s0len = ppda->numSector, len; + RF_SectorNum_t suoffset; + unsigned coeff; + char *pbuf = ppda->bufPtr; + char *qbuf = qpda->bufPtr; + char *buf; + int delta; + + suoffset = rf_StripeUnitOffset(layoutPtr, pda->startSector); + len = pda->numSector; + /* see if pda intersects a recovery pda */ + if ((suoffset < s0off + s0len) && (suoffset + len > s0off)) { + buf = pda->bufPtr; + coeff = rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), pda->raidAddress); + coeff = (coeff % raidPtr->Layout.numDataCol); + + if (suoffset < s0off) { + delta = s0off - suoffset; + buf += rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), delta); + suoffset = s0off; + len -= delta; + } + if (suoffset > s0off) { + delta = suoffset - s0off; + pbuf += rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), delta); + qbuf += rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), delta); + } + if ((suoffset + len) > (s0len + s0off)) + len = s0len + s0off - suoffset; + + /* src, dest, len */ + rf_bxor(buf, pbuf, rf_RaidAddressToByte(raidPtr, len), bp); + + /* dest, src, len, coeff */ + rf_IncQ((unsigned long *) qbuf, (unsigned long *) buf, rf_RaidAddressToByte(raidPtr, len), coeff); + } +} +/* + Recover data in the case of a double failure. There can be two + result buffers, one for each chunk of data trying to be recovered. + The params are pda's that have not been range restricted or otherwise + politely massaged - this should be done here. The last params are the + pdas of P and Q, followed by the raidPtr. The list can look like + + pda, pda, ... , p pda, q pda, raidptr, asm + + or + + pda, pda, ... , p_1 pda, p_2 pda, q_1 pda, q_2 pda, raidptr, asm + + depending on wether two chunks of recovery data were required. + + The second condition only arises if there are two failed buffers + whose lengths do not add up a stripe unit. +*/ + + +int +rf_PQDoubleRecoveryFunc(node) + RF_DagNode_t *node; +{ + int np = node->numParams; + RF_AccessStripeMap_t *asmap = (RF_AccessStripeMap_t *) node->params[np - 1].p; + RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[np - 2].p; + RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & (raidPtr->Layout); + int d, i; + unsigned coeff; + RF_RaidAddr_t sosAddr, suoffset; + RF_SectorCount_t len, secPerSU = layoutPtr->sectorsPerStripeUnit; + int two = 0; + RF_PhysDiskAddr_t *ppda, *ppda2, *qpda, *qpda2, *pda, npda; + char *buf; + int numDataCol = layoutPtr->numDataCol; + RF_Etimer_t timer; + RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec; + + RF_ETIMER_START(timer); + + if (asmap->failedPDAs[1] && + (asmap->failedPDAs[1]->numSector + asmap->failedPDAs[0]->numSector < secPerSU)) { + RF_ASSERT(0); + ppda = node->params[np - 6].p; + ppda2 = node->params[np - 5].p; + qpda = node->params[np - 4].p; + qpda2 = node->params[np - 3].p; + d = (np - 6); + two = 1; + } else { + ppda = node->params[np - 4].p; + qpda = node->params[np - 3].p; + d = (np - 4); + } + + for (i = 0; i < d; i++) { + pda = node->params[i].p; + buf = pda->bufPtr; + suoffset = rf_StripeUnitOffset(layoutPtr, pda->startSector); + len = pda->numSector; + coeff = rf_RaidAddressToStripeUnitID(layoutPtr, pda->raidAddress); + /* compute the data unit offset within the column */ + coeff = (coeff % raidPtr->Layout.numDataCol); + /* see if pda intersects a recovery pda */ + applyPDA(raidPtr, pda, ppda, qpda, node->dagHdr->bp); + if (two) + applyPDA(raidPtr, pda, ppda, qpda, node->dagHdr->bp); + } + + /* ok, we got the parity back to the point where we can recover. We + * now need to determine the coeff of the columns that need to be + * recovered. We can also only need to recover a single stripe unit. */ + + if (asmap->failedPDAs[1] == NULL) { /* only a single stripe unit + * to recover. */ + pda = asmap->failedPDAs[0]; + sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress); + /* need to determine the column of the other failed disk */ + coeff = rf_RaidAddressToStripeUnitID(layoutPtr, pda->raidAddress); + /* compute the data unit offset within the column */ + coeff = (coeff % raidPtr->Layout.numDataCol); + for (i = 0; i < numDataCol; i++) { + npda.raidAddress = sosAddr + (i * secPerSU); + (raidPtr->Layout.map->MapSector) (raidPtr, npda.raidAddress, &(npda.row), &(npda.col), &(npda.startSector), 0); + /* skip over dead disks */ + if (RF_DEAD_DISK(raidPtr->Disks[npda.row][npda.col].status)) + if (i != coeff) + break; + } + RF_ASSERT(i < numDataCol); + RF_ASSERT(two == 0); + /* recover the data. Since we need only want to recover one + * column, we overwrite the parity with the other one. */ + if (coeff < i) /* recovering 'a' */ + rf_PQ_recover((unsigned long *) ppda->bufPtr, (unsigned long *) qpda->bufPtr, (unsigned long *) pda->bufPtr, (unsigned long *) ppda->bufPtr, rf_RaidAddressToByte(raidPtr, pda->numSector), coeff, i); + else /* recovering 'b' */ + rf_PQ_recover((unsigned long *) ppda->bufPtr, (unsigned long *) qpda->bufPtr, (unsigned long *) ppda->bufPtr, (unsigned long *) pda->bufPtr, rf_RaidAddressToByte(raidPtr, pda->numSector), i, coeff); + } else + RF_PANIC(); + + RF_ETIMER_STOP(timer); + RF_ETIMER_EVAL(timer); + if (tracerec) + tracerec->q_us += RF_ETIMER_VAL_US(timer); + rf_GenericWakeupFunc(node, 0); + return (0); +} + +int +rf_PQWriteDoubleRecoveryFunc(node) + RF_DagNode_t *node; +{ + /* The situation: + * + * We are doing a write that hits only one failed data unit. The other + * failed data unit is not being overwritten, so we need to generate + * it. + * + * For the moment, we assume all the nonfailed data being written is in + * the shadow of the failed data unit. (i.e,, either a single data + * unit write or the entire failed stripe unit is being overwritten. ) + * + * Recovery strategy: apply the recovery data to the parity and q. Use P + * & Q to recover the second failed data unit in P. Zero fill Q, then + * apply the recovered data to p. Then apply the data being written to + * the failed drive. Then walk through the surviving drives, applying + * new data when it exists, othewise the recovery data. Quite a mess. + * + * + * The params + * + * read pda0, read pda1, ... read pda (numDataCol-3), write pda0, ... , + * write pda (numStripeUnitAccess - numDataFailed), failed pda, + * raidPtr, asmap */ + + int np = node->numParams; + RF_AccessStripeMap_t *asmap = (RF_AccessStripeMap_t *) node->params[np - 1].p; + RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[np - 2].p; + RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & (raidPtr->Layout); + int i; + RF_RaidAddr_t sosAddr; + unsigned coeff; + RF_StripeCount_t secPerSU = layoutPtr->sectorsPerStripeUnit; + RF_PhysDiskAddr_t *ppda, *qpda, *pda, npda; + int numDataCol = layoutPtr->numDataCol; + RF_Etimer_t timer; + RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec; + + RF_ASSERT(node->numResults == 2); + RF_ASSERT(asmap->failedPDAs[1] == NULL); + RF_ETIMER_START(timer); + ppda = node->results[0]; + qpda = node->results[1]; + /* apply the recovery data */ + for (i = 0; i < numDataCol - 2; i++) + applyPDA(raidPtr, node->params[i].p, ppda, qpda, node->dagHdr->bp); + + /* determine the other failed data unit */ + pda = asmap->failedPDAs[0]; + sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress); + /* need to determine the column of the other failed disk */ + coeff = rf_RaidAddressToStripeUnitID(layoutPtr, pda->raidAddress); + /* compute the data unit offset within the column */ + coeff = (coeff % raidPtr->Layout.numDataCol); + for (i = 0; i < numDataCol; i++) { + npda.raidAddress = sosAddr + (i * secPerSU); + (raidPtr->Layout.map->MapSector) (raidPtr, npda.raidAddress, &(npda.row), &(npda.col), &(npda.startSector), 0); + /* skip over dead disks */ + if (RF_DEAD_DISK(raidPtr->Disks[npda.row][npda.col].status)) + if (i != coeff) + break; + } + RF_ASSERT(i < numDataCol); + /* recover the data. The column we want to recover we write over the + * parity. The column we don't care about we dump in q. */ + if (coeff < i) /* recovering 'a' */ + rf_PQ_recover((unsigned long *) ppda->bufPtr, (unsigned long *) qpda->bufPtr, (unsigned long *) ppda->bufPtr, (unsigned long *) qpda->bufPtr, rf_RaidAddressToByte(raidPtr, pda->numSector), coeff, i); + else /* recovering 'b' */ + rf_PQ_recover((unsigned long *) ppda->bufPtr, (unsigned long *) qpda->bufPtr, (unsigned long *) qpda->bufPtr, (unsigned long *) ppda->bufPtr, rf_RaidAddressToByte(raidPtr, pda->numSector), i, coeff); + + /* OK. The valid data is in P. Zero fill Q, then inc it into it. */ + bzero(qpda->bufPtr, rf_RaidAddressToByte(raidPtr, qpda->numSector)); + rf_IncQ((unsigned long *) qpda->bufPtr, (unsigned long *) ppda->bufPtr, rf_RaidAddressToByte(raidPtr, qpda->numSector), i); + + /* now apply all the write data to the buffer */ + /* single stripe unit write case: the failed data is only thing we are + * writing. */ + RF_ASSERT(asmap->numStripeUnitsAccessed == 1); + /* dest, src, len, coeff */ + rf_IncQ((unsigned long *) qpda->bufPtr, (unsigned long *) asmap->failedPDAs[0]->bufPtr, rf_RaidAddressToByte(raidPtr, qpda->numSector), coeff); + rf_bxor(asmap->failedPDAs[0]->bufPtr, ppda->bufPtr, rf_RaidAddressToByte(raidPtr, ppda->numSector), node->dagHdr->bp); + + /* now apply all the recovery data */ + for (i = 0; i < numDataCol - 2; i++) + applyPDA(raidPtr, node->params[i].p, ppda, qpda, node->dagHdr->bp); + + RF_ETIMER_STOP(timer); + RF_ETIMER_EVAL(timer); + if (tracerec) + tracerec->q_us += RF_ETIMER_VAL_US(timer); + + rf_GenericWakeupFunc(node, 0); + return (0); +} +RF_CREATE_DAG_FUNC_DECL(rf_PQ_DDLargeWrite) +{ + RF_PANIC(); +} +/* + Two lost data unit write case. + + There are really two cases here: + + (1) The write completely covers the two lost data units. + In that case, a reconstruct write that doesn't write the + failed data units will do the correct thing. So in this case, + the dag looks like + + full stripe read of surviving data units (not being overwriten) + write new data (ignoring failed units) compute P&Q + write P&Q + + + (2) The write does not completely cover both failed data units + (but touches at least one of them). Then we need to do the + equivalent of a reconstruct read to recover the missing data + unit from the other stripe. + + For any data we are writing that is not in the "shadow" + of the failed units, we need to do a four cycle update. + PANIC on this case. for now + +*/ + +RF_CREATE_DAG_FUNC_DECL(rf_PQ_200_CreateWriteDAG) +{ + RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout); + RF_SectorCount_t sectorsPerSU = layoutPtr->sectorsPerStripeUnit; + int sum; + int nf = asmap->numDataFailed; + + sum = asmap->failedPDAs[0]->numSector; + if (nf == 2) + sum += asmap->failedPDAs[1]->numSector; + + if ((nf == 2) && (sum == (2 * sectorsPerSU))) { + /* large write case */ + rf_PQ_DDLargeWrite(raidPtr, asmap, dag_h, bp, flags, allocList); + return; + } + if ((nf == asmap->numStripeUnitsAccessed) || (sum >= sectorsPerSU)) { + /* small write case, no user data not in shadow */ + rf_PQ_DDSimpleSmallWrite(raidPtr, asmap, dag_h, bp, flags, allocList); + return; + } + RF_PANIC(); +} +RF_CREATE_DAG_FUNC_DECL(rf_PQ_DDSimpleSmallWrite) +{ + rf_DoubleDegSmallWrite(raidPtr, asmap, dag_h, bp, flags, allocList, "Rq", "Wq", "PQ Recovery", rf_PQWriteDoubleRecoveryFunc); +} +#endif /* (RF_INCLUDE_DECL_PQ > 0) || + * (RF_INCLUDE_RAID6 > 0) */ diff --git a/sys/dev/raidframe/rf_pqdegdags.h b/sys/dev/raidframe/rf_pqdegdags.h new file mode 100644 index 0000000..11ce820 --- /dev/null +++ b/sys/dev/raidframe/rf_pqdegdags.h @@ -0,0 +1,49 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_pqdegdags.h,v 1.3 1999/02/05 00:06:15 oster Exp $ */ +/* + * rf_pqdegdags.h + */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Daniel Stodolsky + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ +/* + * rf_pqdegdags.c + * Degraded mode dags for double fault cases. + */ + +#ifndef _RF__RF_PQDEGDAGS_H_ +#define _RF__RF_PQDEGDAGS_H_ + +#include <dev/raidframe/rf_dag.h> + +RF_CREATE_DAG_FUNC_DECL(rf_PQ_DoubleDegRead); +int rf_PQDoubleRecoveryFunc(RF_DagNode_t * node); +int rf_PQWriteDoubleRecoveryFunc(RF_DagNode_t * node); +RF_CREATE_DAG_FUNC_DECL(rf_PQ_DDLargeWrite); +RF_CREATE_DAG_FUNC_DECL(rf_PQ_DDSimpleSmallWrite); +RF_CREATE_DAG_FUNC_DECL(rf_PQ_200_CreateWriteDAG); + +#endif /* !_RF__RF_PQDEGDAGS_H_ */ diff --git a/sys/dev/raidframe/rf_psstatus.c b/sys/dev/raidframe/rf_psstatus.c new file mode 100644 index 0000000..31c2be7 --- /dev/null +++ b/sys/dev/raidframe/rf_psstatus.c @@ -0,0 +1,376 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_psstatus.c,v 1.5 2000/01/08 22:57:31 oster Exp $ */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Mark Holland + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +/***************************************************************************** + * + * psstatus.c + * + * The reconstruction code maintains a bunch of status related to the parity + * stripes that are currently under reconstruction. This header file defines + * the status structures. + * + *****************************************************************************/ + +#include <dev/raidframe/rf_types.h> +#include <dev/raidframe/rf_raid.h> +#include <dev/raidframe/rf_general.h> +#include <dev/raidframe/rf_debugprint.h> +#include <dev/raidframe/rf_freelist.h> +#include <dev/raidframe/rf_psstatus.h> +#include <dev/raidframe/rf_shutdown.h> + +#define Dprintf1(s,a) if (rf_pssDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL) +#define Dprintf2(s,a,b) if (rf_pssDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL) +#define Dprintf3(s,a,b,c) if (rf_pssDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL) + +static void +RealPrintPSStatusTable(RF_Raid_t * raidPtr, + RF_PSStatusHeader_t * pssTable); + +#define RF_MAX_FREE_PSS 32 +#define RF_PSS_INC 8 +#define RF_PSS_INITIAL 4 + +static int init_pss(RF_ReconParityStripeStatus_t *, RF_Raid_t *); +static void clean_pss(RF_ReconParityStripeStatus_t *, RF_Raid_t *); +static void rf_ShutdownPSStatus(void *); + +static int +init_pss(p, raidPtr) + RF_ReconParityStripeStatus_t *p; + RF_Raid_t *raidPtr; +{ + RF_Calloc(p->issued, raidPtr->numCol, sizeof(char), (char *)); + if (p->issued == NULL) + return (ENOMEM); + return (0); +} + +static void +clean_pss(p, raidPtr) + RF_ReconParityStripeStatus_t *p; + RF_Raid_t *raidPtr; +{ + RF_Free(p->issued, raidPtr->numCol * sizeof(char)); +} + +static void +rf_ShutdownPSStatus(arg) + void *arg; +{ + RF_Raid_t *raidPtr = (RF_Raid_t *) arg; + + RF_FREELIST_DESTROY_CLEAN_ARG(raidPtr->pss_freelist, next, (RF_ReconParityStripeStatus_t *), clean_pss, raidPtr); +} + +int +rf_ConfigurePSStatus( + RF_ShutdownList_t ** listp, + RF_Raid_t * raidPtr, + RF_Config_t * cfgPtr) +{ + int rc; + + raidPtr->pssTableSize = RF_PSS_DEFAULT_TABLESIZE; + RF_FREELIST_CREATE(raidPtr->pss_freelist, RF_MAX_FREE_PSS, + RF_PSS_INC, sizeof(RF_ReconParityStripeStatus_t)); + if (raidPtr->pss_freelist == NULL) + return (ENOMEM); + rc = rf_ShutdownCreate(listp, rf_ShutdownPSStatus, raidPtr); + if (rc) { + RF_ERRORMSG3("Unable to add to shutdown list file %s line %d rc=%d\n", + __FILE__, __LINE__, rc); + rf_ShutdownPSStatus(raidPtr); + return (rc); + } + RF_FREELIST_PRIME_INIT_ARG(raidPtr->pss_freelist, RF_PSS_INITIAL, next, + (RF_ReconParityStripeStatus_t *), init_pss, raidPtr); + return (0); +} +/***************************************************************************************** + * sets up the pss table + * We pre-allocate a bunch of entries to avoid as much as possible having to + * malloc up hash chain entries. + ****************************************************************************************/ +RF_PSStatusHeader_t * +rf_MakeParityStripeStatusTable(raidPtr) + RF_Raid_t *raidPtr; +{ + RF_PSStatusHeader_t *pssTable; + int i, j, rc; + + RF_Calloc(pssTable, raidPtr->pssTableSize, sizeof(RF_PSStatusHeader_t), (RF_PSStatusHeader_t *)); + for (i = 0; i < raidPtr->pssTableSize; i++) { + rc = rf_mutex_init(&pssTable[i].mutex, __FUNCTION__); + if (rc) { + RF_ERRORMSG3("Unable to init mutex file %s line %d rc=%d\n", __FILE__, + __LINE__, rc); + /* fail and deallocate */ + for (j = 0; j < i; j++) { + rf_mutex_destroy(&pssTable[i].mutex); + } + RF_Free(pssTable, raidPtr->pssTableSize * sizeof(RF_PSStatusHeader_t)); + return (NULL); + } + } + return (pssTable); +} + +void +rf_FreeParityStripeStatusTable(raidPtr, pssTable) + RF_Raid_t *raidPtr; + RF_PSStatusHeader_t *pssTable; +{ + int i; + + if (rf_pssDebug) + RealPrintPSStatusTable(raidPtr, pssTable); + for (i = 0; i < raidPtr->pssTableSize; i++) { + if (pssTable[i].chain) { + printf("ERROR: pss hash chain not null at recon shutdown\n"); + } + rf_mutex_destroy(&pssTable[i].mutex); + } + RF_Free(pssTable, raidPtr->pssTableSize * sizeof(RF_PSStatusHeader_t)); +} + + +/* looks up the status structure for a parity stripe. + * if the create_flag is on, creates and returns the status structure it it doesn't exist + * otherwise returns NULL if the status structure does not exist + * + * ASSUMES THE PSS DESCRIPTOR IS LOCKED UPON ENTRY + */ +RF_ReconParityStripeStatus_t * +rf_LookupRUStatus( + RF_Raid_t * raidPtr, + RF_PSStatusHeader_t * pssTable, + RF_StripeNum_t psID, + RF_ReconUnitNum_t which_ru, + RF_PSSFlags_t flags, /* whether or not to create it if it doesn't + * exist + what flags to set initially */ + int *created) +{ + RF_PSStatusHeader_t *hdr = &pssTable[RF_HASH_PSID(raidPtr, psID)]; + RF_ReconParityStripeStatus_t *p, *pssPtr = hdr->chain; + + *created = 0; + for (p = pssPtr; p; p = p->next) { + if (p->parityStripeID == psID && p->which_ru == which_ru) + break; + } + + if (!p && (flags & RF_PSS_CREATE)) { + Dprintf2("PSS: creating pss for psid %ld ru %d\n", psID, which_ru); + p = rf_AllocPSStatus(raidPtr); + p->next = hdr->chain; + hdr->chain = p; + + p->parityStripeID = psID; + p->which_ru = which_ru; + p->flags = flags; + p->rbuf = NULL; + p->writeRbuf = NULL; + p->blockCount = 0; + p->procWaitList = NULL; + p->blockWaitList = NULL; + p->bufWaitList = NULL; + *created = 1; + } else + if (p) { /* we didn't create, but we want to specify + * some new status */ + p->flags |= flags; /* add in whatever flags we're + * specifying */ + } + if (p && (flags & RF_PSS_RECON_BLOCKED)) { + p->blockCount++;/* if we're asking to block recon, bump the + * count */ + Dprintf3("raid%d: Blocked recon on psid %ld. count now %d\n", + raidPtr->raidid, psID, p->blockCount); + } + return (p); +} +/* deletes an entry from the parity stripe status table. typically used + * when an entry has been allocated solely to block reconstruction, and + * no recon was requested while recon was blocked. Assumes the hash + * chain is ALREADY LOCKED. + */ +void +rf_PSStatusDelete(raidPtr, pssTable, pssPtr) + RF_Raid_t *raidPtr; + RF_PSStatusHeader_t *pssTable; + RF_ReconParityStripeStatus_t *pssPtr; +{ + RF_PSStatusHeader_t *hdr = &(pssTable[RF_HASH_PSID(raidPtr, pssPtr->parityStripeID)]); + RF_ReconParityStripeStatus_t *p = hdr->chain, *pt = NULL; + + while (p) { + if (p == pssPtr) { + if (pt) + pt->next = p->next; + else + hdr->chain = p->next; + p->next = NULL; + rf_FreePSStatus(raidPtr, p); + return; + } + pt = p; + p = p->next; + } + RF_ASSERT(0); /* we must find it here */ +} +/* deletes an entry from the ps status table after reconstruction has completed */ +void +rf_RemoveFromActiveReconTable(raidPtr, row, psid, which_ru) + RF_Raid_t *raidPtr; + RF_RowCol_t row; + RF_ReconUnitNum_t which_ru; + RF_StripeNum_t psid; +{ + RF_PSStatusHeader_t *hdr = &(raidPtr->reconControl[row]->pssTable[RF_HASH_PSID(raidPtr, psid)]); + RF_ReconParityStripeStatus_t *p, *pt; + RF_CallbackDesc_t *cb, *cb1; + + RF_LOCK_MUTEX(hdr->mutex); + for (pt = NULL, p = hdr->chain; p; pt = p, p = p->next) { + if ((p->parityStripeID == psid) && (p->which_ru == which_ru)) + break; + } + if (p == NULL) { + rf_PrintPSStatusTable(raidPtr, row); + } + RF_ASSERT(p); /* it must be there */ + + Dprintf2("PSS: deleting pss for psid %ld ru %d\n", psid, which_ru); + + /* delete this entry from the hash chain */ + if (pt) + pt->next = p->next; + else + hdr->chain = p->next; + p->next = NULL; + + RF_UNLOCK_MUTEX(hdr->mutex); + + /* wakup anyone waiting on the parity stripe ID */ + cb = p->procWaitList; + p->procWaitList = NULL; + while (cb) { + Dprintf1("Waking up access waiting on parity stripe ID %ld\n", p->parityStripeID); + cb1 = cb->next; + (cb->callbackFunc) (cb->callbackArg); + + /* THIS IS WHAT THE ORIGINAL CODE HAD... the extra 0 is bogus, + * IMHO */ + /* (cb->callbackFunc)(cb->callbackArg, 0); */ + rf_FreeCallbackDesc(cb); + cb = cb1; + } + + rf_FreePSStatus(raidPtr, p); +} + +RF_ReconParityStripeStatus_t * +rf_AllocPSStatus(raidPtr) + RF_Raid_t *raidPtr; +{ + RF_ReconParityStripeStatus_t *p; + + RF_FREELIST_GET_INIT_ARG(raidPtr->pss_freelist, p, next, (RF_ReconParityStripeStatus_t *), init_pss, raidPtr); + if (p) { + bzero(p->issued, raidPtr->numCol); + } + p->next = NULL; + /* no need to initialize here b/c the only place we're called from is + * the above Lookup */ + return (p); +} + +void +rf_FreePSStatus(raidPtr, p) + RF_Raid_t *raidPtr; + RF_ReconParityStripeStatus_t *p; +{ + RF_ASSERT(p->procWaitList == NULL); + RF_ASSERT(p->blockWaitList == NULL); + RF_ASSERT(p->bufWaitList == NULL); + + RF_FREELIST_FREE_CLEAN_ARG(raidPtr->pss_freelist, p, next, clean_pss, raidPtr); +} + +static void +RealPrintPSStatusTable(raidPtr, pssTable) + RF_Raid_t *raidPtr; + RF_PSStatusHeader_t *pssTable; +{ + int i, j, procsWaiting, blocksWaiting, bufsWaiting; + RF_ReconParityStripeStatus_t *p; + RF_CallbackDesc_t *cb; + + printf("\nParity Stripe Status Table\n"); + for (i = 0; i < raidPtr->pssTableSize; i++) { + for (p = pssTable[i].chain; p; p = p->next) { + procsWaiting = blocksWaiting = bufsWaiting = 0; + for (cb = p->procWaitList; cb; cb = cb->next) + procsWaiting++; + for (cb = p->blockWaitList; cb; cb = cb->next) + blocksWaiting++; + for (cb = p->bufWaitList; cb; cb = cb->next) + bufsWaiting++; + printf("PSID %ld RU %d : blockCount %d %d/%d/%d proc/block/buf waiting, issued ", + (long) p->parityStripeID, p->which_ru, p->blockCount, procsWaiting, blocksWaiting, bufsWaiting); + for (j = 0; j < raidPtr->numCol; j++) + printf("%c", (p->issued[j]) ? '1' : '0'); + if (!p->flags) + printf(" flags: (none)"); + else { + if (p->flags & RF_PSS_UNDER_RECON) + printf(" under-recon"); + if (p->flags & RF_PSS_FORCED_ON_WRITE) + printf(" forced-w"); + if (p->flags & RF_PSS_FORCED_ON_READ) + printf(" forced-r"); + if (p->flags & RF_PSS_RECON_BLOCKED) + printf(" blocked"); + if (p->flags & RF_PSS_BUFFERWAIT) + printf(" bufwait"); + } + printf("\n"); + } + } +} + +void +rf_PrintPSStatusTable(raidPtr, row) + RF_Raid_t *raidPtr; + RF_RowCol_t row; +{ + RF_PSStatusHeader_t *pssTable = raidPtr->reconControl[row]->pssTable; + RealPrintPSStatusTable(raidPtr, pssTable); +} diff --git a/sys/dev/raidframe/rf_psstatus.h b/sys/dev/raidframe/rf_psstatus.h new file mode 100644 index 0000000..c836d49 --- /dev/null +++ b/sys/dev/raidframe/rf_psstatus.h @@ -0,0 +1,132 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_psstatus.h,v 1.3 1999/02/05 00:06:15 oster Exp $ */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Mark Holland + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +/***************************************************************************** + * + * psstatus.h + * + * The reconstruction code maintains a bunch of status related to the parity + * stripes that are currently under reconstruction. This header file defines + * the status structures. + * + *****************************************************************************/ + +#ifndef _RF__RF_PSSTATUS_H_ +#define _RF__RF_PSSTATUS_H_ + +#include <dev/raidframe/rf_types.h> +#include <dev/raidframe/rf_threadstuff.h> +#include <dev/raidframe/rf_callback.h> + +#define RF_PS_MAX_BUFS 10 /* max number of bufs we'll accumulate before + * we do an XOR */ + +#define RF_PSS_DEFAULT_TABLESIZE 200 + +/* + * Macros to acquire/release the mutex lock on a parity stripe status + * descriptor. Note that we use just one lock for the whole hash chain. + */ +#define RF_HASH_PSID(_raid_,_psid_) ( (_psid_) % ((_raid_)->pssTableSize) ) /* simple hash function */ +#define RF_LOCK_PSS_MUTEX(_raidPtr, _row, _psid) \ + RF_LOCK_MUTEX((_raidPtr)->reconControl[_row]->pssTable[ RF_HASH_PSID(_raidPtr,_psid) ].mutex) +#define RF_UNLOCK_PSS_MUTEX(_raidPtr, _row, _psid) \ + RF_UNLOCK_MUTEX((_raidPtr)->reconControl[_row]->pssTable[ RF_HASH_PSID(_raidPtr,_psid) ].mutex) + +struct RF_ReconParityStripeStatus_s { + RF_StripeNum_t parityStripeID; /* the parity stripe ID */ + RF_ReconUnitNum_t which_ru; /* which reconstruction unit with the + * indicated parity stripe */ + RF_PSSFlags_t flags; /* flags indicating various conditions */ + void *rbuf; /* this is the accumulating xor sum */ + void *writeRbuf; /* DEBUG ONLY: a pointer to the rbuf after it + * has filled & been sent to disk */ + void *rbufsForXor[RF_PS_MAX_BUFS]; /* these are buffers still to + * be xored into the + * accumulating sum */ + int xorBufCount; /* num buffers waiting to be xored */ + int blockCount; /* count of # proc that have blocked recon on + * this parity stripe */ + char *issued; /* issued[i]==1 <=> column i has already + * issued a read request for the indicated RU */ + RF_CallbackDesc_t *procWaitList; /* list of user procs waiting + * for recon to be done */ + RF_CallbackDesc_t *blockWaitList; /* list of disks blocked + * waiting for user write to + * complete */ + RF_CallbackDesc_t *bufWaitList; /* list of disks blocked waiting to + * acquire a buffer for this RU */ + RF_ReconParityStripeStatus_t *next; +}; + +struct RF_PSStatusHeader_s { + RF_DECLARE_MUTEX(mutex) /* mutex for this hash chain */ + RF_ReconParityStripeStatus_t *chain; /* the hash chain */ +}; +/* masks for the "flags" field above */ +#define RF_PSS_NONE 0x00000000 /* no flags */ +#define RF_PSS_UNDER_RECON 0x00000001 /* this parity stripe is + * currently under + * reconstruction */ +#define RF_PSS_FORCED_ON_WRITE 0x00000002 /* indicates a recon was + * forced due to a user-write + * operation */ +#define RF_PSS_FORCED_ON_READ 0x00000004 /* ditto for read, but not + * currently implemented */ +#define RF_PSS_RECON_BLOCKED 0x00000008 /* reconstruction is currently + * blocked due to a pending + * user I/O */ +#define RF_PSS_CREATE 0x00000010 /* tells LookupRUStatus to + * create the entry */ +#define RF_PSS_BUFFERWAIT 0x00000020 /* someone is waiting for a + * buffer for this RU */ + +int +rf_ConfigurePSStatus(RF_ShutdownList_t ** listp, RF_Raid_t * raidPtr, + RF_Config_t * cfgPtr); + +RF_PSStatusHeader_t *rf_MakeParityStripeStatusTable(RF_Raid_t * raidPtr); +void +rf_FreeParityStripeStatusTable(RF_Raid_t * raidPtr, + RF_PSStatusHeader_t * pssTable); +RF_ReconParityStripeStatus_t * +rf_LookupRUStatus(RF_Raid_t * raidPtr, + RF_PSStatusHeader_t * pssTable, RF_StripeNum_t psID, + RF_ReconUnitNum_t which_ru, RF_PSSFlags_t flags, int *created); +void +rf_PSStatusDelete(RF_Raid_t * raidPtr, RF_PSStatusHeader_t * pssTable, + RF_ReconParityStripeStatus_t * pssPtr); +void +rf_RemoveFromActiveReconTable(RF_Raid_t * raidPtr, RF_RowCol_t row, + RF_StripeNum_t psid, RF_ReconUnitNum_t which_ru); +RF_ReconParityStripeStatus_t *rf_AllocPSStatus(RF_Raid_t * raidPtr); +void rf_FreePSStatus(RF_Raid_t * raidPtr, RF_ReconParityStripeStatus_t * p); +void rf_PrintPSStatusTable(RF_Raid_t * raidPtr, RF_RowCol_t row); + +#endif /* !_RF__RF_PSSTATUS_H_ */ diff --git a/sys/dev/raidframe/rf_raid.h b/sys/dev/raidframe/rf_raid.h new file mode 100644 index 0000000..e91a2ae --- /dev/null +++ b/sys/dev/raidframe/rf_raid.h @@ -0,0 +1,299 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_raid.h,v 1.12 2000/02/24 17:12:10 oster Exp $ */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Mark Holland + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +/********************************************** + * rf_raid.h -- main header file for RAID driver + **********************************************/ + + +#ifndef _RF__RF_RAID_H_ +#define _RF__RF_RAID_H_ + +#include <dev/raidframe/rf_archs.h> +#include <dev/raidframe/rf_types.h> +#include <dev/raidframe/rf_threadstuff.h> + +#include <dev/raidframe/rf_bsd.h> + +#include <sys/disklabel.h> +#include <sys/types.h> + +#include <dev/raidframe/rf_alloclist.h> +#include <dev/raidframe/rf_stripelocks.h> +#include <dev/raidframe/rf_layout.h> +#include <dev/raidframe/rf_disks.h> +#include <dev/raidframe/rf_debugMem.h> +#include <dev/raidframe/rf_diskqueue.h> +#include <dev/raidframe/rf_reconstruct.h> +#include <dev/raidframe/rf_acctrace.h> + +#if RF_INCLUDE_PARITYLOGGING > 0 +#include <dev/raidframe/rf_paritylog.h> +#endif /* RF_INCLUDE_PARITYLOGGING > 0 */ + +#define RF_MAX_DISKS 128 /* max disks per array */ +#if defined(__NetBSD__) +#define RF_DEV2RAIDID(_dev) (DISKUNIT(_dev)) +#endif + +#define RF_COMPONENT_LABEL_VERSION_1 1 +#define RF_COMPONENT_LABEL_VERSION 2 +#define RF_RAID_DIRTY 0 +#define RF_RAID_CLEAN 1 + + +/* + * Each row in the array is a distinct parity group, so + * each has it's own status, which is one of the following. + */ +typedef enum RF_RowStatus_e { + rf_rs_optimal, + rf_rs_degraded, + rf_rs_reconstructing, + rf_rs_reconfigured +} RF_RowStatus_t; + +struct RF_CumulativeStats_s { + struct timeval start; /* the time when the stats were last started */ + struct timeval stop; /* the time when the stats were last stopped */ + long sum_io_us; /* sum of all user response times (us) */ + long num_ios; /* total number of I/Os serviced */ + long num_sect_moved; /* total number of sectors read or written */ +}; + +struct RF_ThroughputStats_s { + RF_DECLARE_MUTEX(mutex) /* a mutex used to lock the configuration + * stuff */ + struct timeval start; /* timer started when numOutstandingRequests + * moves from 0 to 1 */ + struct timeval stop; /* timer stopped when numOutstandingRequests + * moves from 1 to 0 */ + RF_uint64 sum_io_us; /* total time timer is enabled */ + RF_uint64 num_ios; /* total number of ios processed by RAIDframe */ + long num_out_ios; /* number of outstanding ios */ +}; + +struct RF_Raid_s { + /* This portion never changes, and can be accessed without locking */ + /* an exception is Disks[][].status, which requires locking when it is + * changed. XXX this is no longer true. numSpare and friends can + * change now. + */ + u_int numRow; /* number of rows of disks, typically == # of + * ranks */ + u_int numCol; /* number of columns of disks, typically == # + * of disks/rank */ + u_int numSpare; /* number of spare disks */ + int maxQueueDepth; /* max disk queue depth */ + RF_SectorCount_t totalSectors; /* total number of sectors in the + * array */ + RF_SectorCount_t sectorsPerDisk; /* number of sectors on each + * disk */ + u_int logBytesPerSector; /* base-2 log of the number of bytes + * in a sector */ + u_int bytesPerSector; /* bytes in a sector */ + RF_int32 sectorMask; /* mask of bytes-per-sector */ + + RF_RaidLayout_t Layout; /* all information related to layout */ + RF_RaidDisk_t **Disks; /* all information related to physical disks */ + RF_DiskQueue_t **Queues;/* all information related to disk queues */ + RF_DiskQueueSW_t *qType;/* pointer to the DiskQueueSW used for the + component queues. */ + /* NOTE: This is an anchor point via which the queues can be + * accessed, but the enqueue/dequeue routines in diskqueue.c use a + * local copy of this pointer for the actual accesses. */ + /* The remainder of the structure can change, and therefore requires + * locking on reads and updates */ + RF_DECLARE_MUTEX(mutex) /* mutex used to serialize access to + * the fields below */ + RF_RowStatus_t *status; /* the status of each row in the array */ + int valid; /* indicates successful configuration */ + RF_LockTableEntry_t *lockTable; /* stripe-lock table */ + RF_LockTableEntry_t *quiesceLock; /* quiesnce table */ + int numFailures; /* total number of failures in the array */ + int numNewFailures; /* number of *new* failures (that havn't + caused a mod_counter update */ + + int parity_good; /* !0 if parity is known to be correct */ + int serial_number; /* a "serial number" for this set */ + int mod_counter; /* modification counter for component labels */ + int clean; /* the clean bit for this array. */ + + int openings; /* Number of IO's which can be scheduled + simultaneously (high-level - not a + per-component limit)*/ + + int maxOutstanding; /* maxOutstanding requests (per-component) */ + int autoconfigure; /* automatically configure this RAID set. + 0 == no, 1 == yes */ + int root_partition; /* Use this set as / + 0 == no, 1 == yes*/ + int last_unit; /* last unit number (e.g. 0 for /dev/raid0) + of this component. Used for autoconfigure + only. */ + int config_order; /* 0 .. n. The order in which the component + should be auto-configured. E.g. 0 is will + done first, (and would become raid0). + This may be in conflict with last_unit!!?! */ + /* Not currently used. */ + + /* + * Cleanup stuff + */ + RF_ShutdownList_t *shutdownList; /* shutdown activities */ + RF_AllocListElem_t *cleanupList; /* memory to be freed at + * shutdown time */ + + /* + * Recon stuff + */ + RF_HeadSepLimit_t headSepLimit; + int numFloatingReconBufs; + int reconInProgress; + RF_DECLARE_COND(waitForReconCond) + RF_RaidReconDesc_t *reconDesc; /* reconstruction descriptor */ + RF_ReconCtrl_t **reconControl; /* reconstruction control structure + * pointers for each row in the array */ + + /* + * Array-quiescence stuff + */ + RF_DECLARE_MUTEX(access_suspend_mutex) + RF_DECLARE_COND(quiescent_cond) + RF_IoCount_t accesses_suspended; + RF_IoCount_t accs_in_flight; + int access_suspend_release; + int waiting_for_quiescence; + RF_CallbackDesc_t *quiesce_wait_list; + + /* + * Statistics + */ +#if !defined(_KERNEL) && !defined(SIMULATE) + RF_ThroughputStats_t throughputstats; +#endif /* !KERNEL && !SIMULATE */ + RF_CumulativeStats_t userstats; + int parity_rewrite_stripes_done; + int recon_stripes_done; + int copyback_stripes_done; + + int recon_in_progress; + int parity_rewrite_in_progress; + int copyback_in_progress; + + /* + * Engine thread control + */ + RF_DECLARE_MUTEX(node_queue_mutex) + RF_DECLARE_COND(node_queue_cond) + RF_DagNode_t *node_queue; + RF_Thread_t parity_rewrite_thread; + RF_Thread_t copyback_thread; + RF_Thread_t engine_thread; + RF_Thread_t recon_thread; + RF_ThreadGroup_t engine_tg; + int shutdown_engine; + int dags_in_flight; /* debug */ + + /* + * PSS (Parity Stripe Status) stuff + */ + RF_FreeList_t *pss_freelist; + long pssTableSize; + + /* + * Reconstruction stuff + */ + int procsInBufWait; + int numFullReconBuffers; + RF_AccTraceEntry_t *recon_tracerecs; + unsigned long accumXorTimeUs; + RF_ReconDoneProc_t *recon_done_procs; + RF_DECLARE_MUTEX(recon_done_proc_mutex) + /* + * nAccOutstanding, waitShutdown protected by desc freelist lock + * (This may seem strange, since that's a central serialization point + * for a per-array piece of data, but otherwise, it'd be an extra + * per-array lock, and that'd only be less efficient...) + */ + RF_DECLARE_COND(outstandingCond) + int waitShutdown; + int nAccOutstanding; + + RF_DiskId_t **diskids; + RF_DiskId_t *sparediskids; + + int raidid; + RF_AccTotals_t acc_totals; + int keep_acc_totals; + + struct raidcinfo **raid_cinfo; /* array of component info */ + + int terminate_disk_queues; + + /* + * XXX + * + * config-specific information should be moved + * somewhere else, or at least hung off this + * in some generic way + */ + + /* used by rf_compute_workload_shift */ + RF_RowCol_t hist_diskreq[RF_MAXROW][RF_MAXCOL]; + + /* used by declustering */ + int noRotate; + +#if RF_INCLUDE_PARITYLOGGING > 0 + /* used by parity logging */ + RF_SectorCount_t regionLogCapacity; + RF_ParityLogQueue_t parityLogPool; /* pool of unused parity logs */ + RF_RegionInfo_t *regionInfo; /* array of region state */ + int numParityLogs; + int numSectorsPerLog; + int regionParityRange; + int logsInUse; /* debugging */ + RF_ParityLogDiskQueue_t parityLogDiskQueue; /* state of parity + * logging disk work */ + RF_RegionBufferQueue_t regionBufferPool; /* buffers for holding + * region log */ + RF_RegionBufferQueue_t parityBufferPool; /* buffers for holding + * parity */ + caddr_t parityLogBufferHeap; /* pool of unused parity logs */ + RF_Thread_t pLogDiskThreadHandle; + +#endif /* RF_INCLUDE_PARITYLOGGING > 0 */ + /* Point back to the softc for this device. This is needed to rid + * ourselves of the ugly static device arrays. + * XXX Will this affect compatibility with NetBSD? + */ + void *sc; +}; +#endif /* !_RF__RF_RAID_H_ */ diff --git a/sys/dev/raidframe/rf_raid0.c b/sys/dev/raidframe/rf_raid0.c new file mode 100644 index 0000000..a9418d3 --- /dev/null +++ b/sys/dev/raidframe/rf_raid0.c @@ -0,0 +1,161 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_raid0.c,v 1.4 2000/01/07 03:41:02 oster Exp $ */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Mark Holland + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +/*************************************** + * + * rf_raid0.c -- implements RAID Level 0 + * + ***************************************/ + +#include <dev/raidframe/rf_types.h> +#include <dev/raidframe/rf_raid.h> +#include <dev/raidframe/rf_raid0.h> +#include <dev/raidframe/rf_dag.h> +#include <dev/raidframe/rf_dagffrd.h> +#include <dev/raidframe/rf_dagffwr.h> +#include <dev/raidframe/rf_dagutils.h> +#include <dev/raidframe/rf_dagfuncs.h> +#include <dev/raidframe/rf_general.h> +#include <dev/raidframe/rf_configure.h> +#include <dev/raidframe/rf_parityscan.h> + +typedef struct RF_Raid0ConfigInfo_s { + RF_RowCol_t *stripeIdentifier; +} RF_Raid0ConfigInfo_t; + +int +rf_ConfigureRAID0( + RF_ShutdownList_t ** listp, + RF_Raid_t * raidPtr, + RF_Config_t * cfgPtr) +{ + RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; + RF_Raid0ConfigInfo_t *info; + RF_RowCol_t i; + + /* create a RAID level 0 configuration structure */ + RF_MallocAndAdd(info, sizeof(RF_Raid0ConfigInfo_t), (RF_Raid0ConfigInfo_t *), raidPtr->cleanupList); + if (info == NULL) + return (ENOMEM); + layoutPtr->layoutSpecificInfo = (void *) info; + + RF_MallocAndAdd(info->stripeIdentifier, raidPtr->numCol * sizeof(RF_RowCol_t), (RF_RowCol_t *), raidPtr->cleanupList); + if (info->stripeIdentifier == NULL) + return (ENOMEM); + for (i = 0; i < raidPtr->numCol; i++) + info->stripeIdentifier[i] = i; + + RF_ASSERT(raidPtr->numRow == 1); + raidPtr->totalSectors = layoutPtr->stripeUnitsPerDisk * raidPtr->numCol * layoutPtr->sectorsPerStripeUnit; + layoutPtr->numStripe = layoutPtr->stripeUnitsPerDisk; + layoutPtr->dataSectorsPerStripe = raidPtr->numCol * layoutPtr->sectorsPerStripeUnit; + layoutPtr->bytesPerStripeUnit = layoutPtr->sectorsPerStripeUnit << raidPtr->logBytesPerSector; + layoutPtr->numDataCol = raidPtr->numCol; + layoutPtr->numParityCol = 0; + return (0); +} + +void +rf_MapSectorRAID0( + RF_Raid_t * raidPtr, + RF_RaidAddr_t raidSector, + RF_RowCol_t * row, + RF_RowCol_t * col, + RF_SectorNum_t * diskSector, + int remap) +{ + RF_StripeNum_t SUID = raidSector / raidPtr->Layout.sectorsPerStripeUnit; + *row = 0; + *col = SUID % raidPtr->numCol; + *diskSector = (SUID / raidPtr->numCol) * raidPtr->Layout.sectorsPerStripeUnit + + (raidSector % raidPtr->Layout.sectorsPerStripeUnit); +} + +void +rf_MapParityRAID0( + RF_Raid_t * raidPtr, + RF_RaidAddr_t raidSector, + RF_RowCol_t * row, + RF_RowCol_t * col, + RF_SectorNum_t * diskSector, + int remap) +{ + *row = *col = 0; + *diskSector = 0; +} + +void +rf_IdentifyStripeRAID0( + RF_Raid_t * raidPtr, + RF_RaidAddr_t addr, + RF_RowCol_t ** diskids, + RF_RowCol_t * outRow) +{ + RF_Raid0ConfigInfo_t *info; + + info = raidPtr->Layout.layoutSpecificInfo; + *diskids = info->stripeIdentifier; + *outRow = 0; +} + +void +rf_MapSIDToPSIDRAID0( + RF_RaidLayout_t * layoutPtr, + RF_StripeNum_t stripeID, + RF_StripeNum_t * psID, + RF_ReconUnitNum_t * which_ru) +{ + *which_ru = 0; + *psID = stripeID; +} + +void +rf_RAID0DagSelect( + RF_Raid_t * raidPtr, + RF_IoType_t type, + RF_AccessStripeMap_t * asmap, + RF_VoidFuncPtr * createFunc) +{ + *createFunc = ((type == RF_IO_TYPE_READ) ? + (RF_VoidFuncPtr) rf_CreateFaultFreeReadDAG : (RF_VoidFuncPtr) rf_CreateRAID0WriteDAG); +} + +int +rf_VerifyParityRAID0( + RF_Raid_t * raidPtr, + RF_RaidAddr_t raidAddr, + RF_PhysDiskAddr_t * parityPDA, + int correct_it, + RF_RaidAccessFlags_t flags) +{ + /* + * No parity is always okay. + */ + return (RF_PARITY_OKAY); +} diff --git a/sys/dev/raidframe/rf_raid0.h b/sys/dev/raidframe/rf_raid0.h new file mode 100644 index 0000000..36aae81 --- /dev/null +++ b/sys/dev/raidframe/rf_raid0.h @@ -0,0 +1,58 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_raid0.h,v 1.3 1999/02/05 00:06:15 oster Exp $ */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Mark Holland + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +/* rf_raid0.h - header file for RAID Level 0 */ + +#ifndef _RF__RF_RAID0_H_ +#define _RF__RF_RAID0_H_ + +int +rf_ConfigureRAID0(RF_ShutdownList_t ** listp, RF_Raid_t * raidPtr, + RF_Config_t * cfgPtr); +void +rf_MapSectorRAID0(RF_Raid_t * raidPtr, RF_RaidAddr_t raidSector, + RF_RowCol_t * row, RF_RowCol_t * col, RF_SectorNum_t * diskSector, int remap); +void +rf_MapParityRAID0(RF_Raid_t * raidPtr, RF_RaidAddr_t raidSector, + RF_RowCol_t * row, RF_RowCol_t * col, RF_SectorNum_t * diskSector, int remap); +void +rf_IdentifyStripeRAID0(RF_Raid_t * raidPtr, RF_RaidAddr_t addr, + RF_RowCol_t ** diskids, RF_RowCol_t * outRow); +void +rf_MapSIDToPSIDRAID0(RF_RaidLayout_t * layoutPtr, + RF_StripeNum_t stripeID, RF_StripeNum_t * psID, + RF_ReconUnitNum_t * which_ru); +void +rf_RAID0DagSelect(RF_Raid_t * raidPtr, RF_IoType_t type, + RF_AccessStripeMap_t * asmap, RF_VoidFuncPtr * createFunc); +int +rf_VerifyParityRAID0(RF_Raid_t * raidPtr, RF_RaidAddr_t raidAddr, + RF_PhysDiskAddr_t * parityPDA, int correct_it, RF_RaidAccessFlags_t flags); + +#endif /* !_RF__RF_RAID0_H_ */ diff --git a/sys/dev/raidframe/rf_raid1.c b/sys/dev/raidframe/rf_raid1.c new file mode 100644 index 0000000..5831dfe --- /dev/null +++ b/sys/dev/raidframe/rf_raid1.c @@ -0,0 +1,689 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_raid1.c,v 1.5 2000/01/08 22:57:30 oster Exp $ */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: William V. Courtright II + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +/***************************************************************************** + * + * rf_raid1.c -- implements RAID Level 1 + * + *****************************************************************************/ + +#include <dev/raidframe/rf_raid.h> +#include <dev/raidframe/rf_raid1.h> +#include <dev/raidframe/rf_dag.h> +#include <dev/raidframe/rf_dagffrd.h> +#include <dev/raidframe/rf_dagffwr.h> +#include <dev/raidframe/rf_dagdegrd.h> +#include <dev/raidframe/rf_dagutils.h> +#include <dev/raidframe/rf_dagfuncs.h> +#include <dev/raidframe/rf_diskqueue.h> +#include <dev/raidframe/rf_general.h> +#include <dev/raidframe/rf_utils.h> +#include <dev/raidframe/rf_parityscan.h> +#include <dev/raidframe/rf_mcpair.h> +#include <dev/raidframe/rf_layout.h> +#include <dev/raidframe/rf_map.h> +#include <dev/raidframe/rf_engine.h> +#include <dev/raidframe/rf_reconbuffer.h> +#include <dev/raidframe/rf_kintf.h> + +typedef struct RF_Raid1ConfigInfo_s { + RF_RowCol_t **stripeIdentifier; +} RF_Raid1ConfigInfo_t; +/* start of day code specific to RAID level 1 */ +int +rf_ConfigureRAID1( + RF_ShutdownList_t ** listp, + RF_Raid_t * raidPtr, + RF_Config_t * cfgPtr) +{ + RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; + RF_Raid1ConfigInfo_t *info; + RF_RowCol_t i; + + /* create a RAID level 1 configuration structure */ + RF_MallocAndAdd(info, sizeof(RF_Raid1ConfigInfo_t), (RF_Raid1ConfigInfo_t *), raidPtr->cleanupList); + if (info == NULL) + return (ENOMEM); + layoutPtr->layoutSpecificInfo = (void *) info; + + /* ... and fill it in. */ + info->stripeIdentifier = rf_make_2d_array(raidPtr->numCol / 2, 2, raidPtr->cleanupList); + if (info->stripeIdentifier == NULL) + return (ENOMEM); + for (i = 0; i < (raidPtr->numCol / 2); i++) { + info->stripeIdentifier[i][0] = (2 * i); + info->stripeIdentifier[i][1] = (2 * i) + 1; + } + + RF_ASSERT(raidPtr->numRow == 1); + + /* this implementation of RAID level 1 uses one row of numCol disks + * and allows multiple (numCol / 2) stripes per row. A stripe + * consists of a single data unit and a single parity (mirror) unit. + * stripe id = raidAddr / stripeUnitSize */ + raidPtr->totalSectors = layoutPtr->stripeUnitsPerDisk * (raidPtr->numCol / 2) * layoutPtr->sectorsPerStripeUnit; + layoutPtr->numStripe = layoutPtr->stripeUnitsPerDisk * (raidPtr->numCol / 2); + layoutPtr->dataSectorsPerStripe = layoutPtr->sectorsPerStripeUnit; + layoutPtr->bytesPerStripeUnit = layoutPtr->sectorsPerStripeUnit << raidPtr->logBytesPerSector; + layoutPtr->numDataCol = 1; + layoutPtr->numParityCol = 1; + return (0); +} + + +/* returns the physical disk location of the primary copy in the mirror pair */ +void +rf_MapSectorRAID1( + RF_Raid_t * raidPtr, + RF_RaidAddr_t raidSector, + RF_RowCol_t * row, + RF_RowCol_t * col, + RF_SectorNum_t * diskSector, + int remap) +{ + RF_StripeNum_t SUID = raidSector / raidPtr->Layout.sectorsPerStripeUnit; + RF_RowCol_t mirrorPair = SUID % (raidPtr->numCol / 2); + + *row = 0; + *col = 2 * mirrorPair; + *diskSector = ((SUID / (raidPtr->numCol / 2)) * raidPtr->Layout.sectorsPerStripeUnit) + (raidSector % raidPtr->Layout.sectorsPerStripeUnit); +} + + +/* Map Parity + * + * returns the physical disk location of the secondary copy in the mirror + * pair + */ +void +rf_MapParityRAID1( + RF_Raid_t * raidPtr, + RF_RaidAddr_t raidSector, + RF_RowCol_t * row, + RF_RowCol_t * col, + RF_SectorNum_t * diskSector, + int remap) +{ + RF_StripeNum_t SUID = raidSector / raidPtr->Layout.sectorsPerStripeUnit; + RF_RowCol_t mirrorPair = SUID % (raidPtr->numCol / 2); + + *row = 0; + *col = (2 * mirrorPair) + 1; + + *diskSector = ((SUID / (raidPtr->numCol / 2)) * raidPtr->Layout.sectorsPerStripeUnit) + (raidSector % raidPtr->Layout.sectorsPerStripeUnit); +} + + +/* IdentifyStripeRAID1 + * + * returns a list of disks for a given redundancy group + */ +void +rf_IdentifyStripeRAID1( + RF_Raid_t * raidPtr, + RF_RaidAddr_t addr, + RF_RowCol_t ** diskids, + RF_RowCol_t * outRow) +{ + RF_StripeNum_t stripeID = rf_RaidAddressToStripeID(&raidPtr->Layout, addr); + RF_Raid1ConfigInfo_t *info = raidPtr->Layout.layoutSpecificInfo; + RF_ASSERT(stripeID >= 0); + RF_ASSERT(addr >= 0); + *outRow = 0; + *diskids = info->stripeIdentifier[stripeID % (raidPtr->numCol / 2)]; + RF_ASSERT(*diskids); +} + + +/* MapSIDToPSIDRAID1 + * + * maps a logical stripe to a stripe in the redundant array + */ +void +rf_MapSIDToPSIDRAID1( + RF_RaidLayout_t * layoutPtr, + RF_StripeNum_t stripeID, + RF_StripeNum_t * psID, + RF_ReconUnitNum_t * which_ru) +{ + *which_ru = 0; + *psID = stripeID; +} + + + +/****************************************************************************** + * select a graph to perform a single-stripe access + * + * Parameters: raidPtr - description of the physical array + * type - type of operation (read or write) requested + * asmap - logical & physical addresses for this access + * createFunc - name of function to use to create the graph + *****************************************************************************/ + +void +rf_RAID1DagSelect( + RF_Raid_t * raidPtr, + RF_IoType_t type, + RF_AccessStripeMap_t * asmap, + RF_VoidFuncPtr * createFunc) +{ + RF_RowCol_t frow, fcol, or, oc; + RF_PhysDiskAddr_t *failedPDA; + int prior_recon; + RF_RowStatus_t rstat; + RF_SectorNum_t oo; + + + RF_ASSERT(RF_IO_IS_R_OR_W(type)); + + if (asmap->numDataFailed + asmap->numParityFailed > 1) { + RF_ERRORMSG("Multiple disks failed in a single group! Aborting I/O operation.\n"); + *createFunc = NULL; + return; + } + if (asmap->numDataFailed + asmap->numParityFailed) { + /* + * We've got a fault. Re-map to spare space, iff applicable. + * Shouldn't the arch-independent code do this for us? + * Anyway, it turns out if we don't do this here, then when + * we're reconstructing, writes go only to the surviving + * original disk, and aren't reflected on the reconstructed + * spare. Oops. --jimz + */ + failedPDA = asmap->failedPDAs[0]; + frow = failedPDA->row; + fcol = failedPDA->col; + rstat = raidPtr->status[frow]; + prior_recon = (rstat == rf_rs_reconfigured) || ( + (rstat == rf_rs_reconstructing) ? + rf_CheckRUReconstructed(raidPtr->reconControl[frow]->reconMap, failedPDA->startSector) : 0 + ); + if (prior_recon) { + or = frow; + oc = fcol; + oo = failedPDA->startSector; + /* + * If we did distributed sparing, we'd monkey with that here. + * But we don't, so we'll + */ + failedPDA->row = raidPtr->Disks[frow][fcol].spareRow; + failedPDA->col = raidPtr->Disks[frow][fcol].spareCol; + /* + * Redirect other components, iff necessary. This looks + * pretty suspicious to me, but it's what the raid5 + * DAG select does. + */ + if (asmap->parityInfo->next) { + if (failedPDA == asmap->parityInfo) { + failedPDA->next->row = failedPDA->row; + failedPDA->next->col = failedPDA->col; + } else { + if (failedPDA == asmap->parityInfo->next) { + asmap->parityInfo->row = failedPDA->row; + asmap->parityInfo->col = failedPDA->col; + } + } + } + if (rf_dagDebug || rf_mapDebug) { + printf("raid%d: Redirected type '%c' r %d c %d o %ld -> r %d c %d o %ld\n", + raidPtr->raidid, type, or, oc, + (long) oo, failedPDA->row, + failedPDA->col, + (long) failedPDA->startSector); + } + asmap->numDataFailed = asmap->numParityFailed = 0; + } + } + if (type == RF_IO_TYPE_READ) { + if (asmap->numDataFailed == 0) + *createFunc = (RF_VoidFuncPtr) rf_CreateMirrorIdleReadDAG; + else + *createFunc = (RF_VoidFuncPtr) rf_CreateRaidOneDegradedReadDAG; + } else { + *createFunc = (RF_VoidFuncPtr) rf_CreateRaidOneWriteDAG; + } +} + +int +rf_VerifyParityRAID1( + RF_Raid_t * raidPtr, + RF_RaidAddr_t raidAddr, + RF_PhysDiskAddr_t * parityPDA, + int correct_it, + RF_RaidAccessFlags_t flags) +{ + int nbytes, bcount, stripeWidth, ret, i, j, nbad, *bbufs; + RF_DagNode_t *blockNode, *unblockNode, *wrBlock; + RF_DagHeader_t *rd_dag_h, *wr_dag_h; + RF_AccessStripeMapHeader_t *asm_h; + RF_AllocListElem_t *allocList; + RF_AccTraceEntry_t tracerec; + RF_ReconUnitNum_t which_ru; + RF_RaidLayout_t *layoutPtr; + RF_AccessStripeMap_t *aasm; + RF_SectorCount_t nsector; + RF_RaidAddr_t startAddr; + char *buf, *buf1, *buf2; + RF_PhysDiskAddr_t *pda; + RF_StripeNum_t psID; + RF_MCPair_t *mcpair; + + layoutPtr = &raidPtr->Layout; + startAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, raidAddr); + nsector = parityPDA->numSector; + nbytes = rf_RaidAddressToByte(raidPtr, nsector); + psID = rf_RaidAddressToParityStripeID(layoutPtr, raidAddr, &which_ru); + + asm_h = NULL; + rd_dag_h = wr_dag_h = NULL; + mcpair = NULL; + + ret = RF_PARITY_COULD_NOT_VERIFY; + + rf_MakeAllocList(allocList); + if (allocList == NULL) + return (RF_PARITY_COULD_NOT_VERIFY); + mcpair = rf_AllocMCPair(); + if (mcpair == NULL) + goto done; + RF_ASSERT(layoutPtr->numDataCol == layoutPtr->numParityCol); + stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol; + bcount = nbytes * (layoutPtr->numDataCol + layoutPtr->numParityCol); + RF_MallocAndAdd(buf, bcount, (char *), allocList); + if (buf == NULL) + goto done; + if (rf_verifyParityDebug) { + printf("raid%d: RAID1 parity verify: buf=%lx bcount=%d (%lx - %lx)\n", + raidPtr->raidid, (long) buf, bcount, (long) buf, + (long) buf + bcount); + } + /* + * Generate a DAG which will read the entire stripe- then we can + * just compare data chunks versus "parity" chunks. + */ + + rd_dag_h = rf_MakeSimpleDAG(raidPtr, stripeWidth, nbytes, buf, + rf_DiskReadFunc, rf_DiskReadUndoFunc, "Rod", allocList, flags, + RF_IO_NORMAL_PRIORITY); + if (rd_dag_h == NULL) + goto done; + blockNode = rd_dag_h->succedents[0]; + unblockNode = blockNode->succedents[0]->succedents[0]; + + /* + * Map the access to physical disk addresses (PDAs)- this will + * get us both a list of data addresses, and "parity" addresses + * (which are really mirror copies). + */ + asm_h = rf_MapAccess(raidPtr, startAddr, layoutPtr->dataSectorsPerStripe, + buf, RF_DONT_REMAP); + aasm = asm_h->stripeMap; + + buf1 = buf; + /* + * Loop through the data blocks, setting up read nodes for each. + */ + for (pda = aasm->physInfo, i = 0; i < layoutPtr->numDataCol; i++, pda = pda->next) { + RF_ASSERT(pda); + + rf_RangeRestrictPDA(raidPtr, parityPDA, pda, 0, 1); + + RF_ASSERT(pda->numSector != 0); + if (rf_TryToRedirectPDA(raidPtr, pda, 0)) { + /* cannot verify parity with dead disk */ + goto done; + } + pda->bufPtr = buf1; + blockNode->succedents[i]->params[0].p = pda; + blockNode->succedents[i]->params[1].p = buf1; + blockNode->succedents[i]->params[2].v = psID; + blockNode->succedents[i]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); + buf1 += nbytes; + } + RF_ASSERT(pda == NULL); + /* + * keep i, buf1 running + * + * Loop through parity blocks, setting up read nodes for each. + */ + for (pda = aasm->parityInfo; i < layoutPtr->numDataCol + layoutPtr->numParityCol; i++, pda = pda->next) { + RF_ASSERT(pda); + rf_RangeRestrictPDA(raidPtr, parityPDA, pda, 0, 1); + RF_ASSERT(pda->numSector != 0); + if (rf_TryToRedirectPDA(raidPtr, pda, 0)) { + /* cannot verify parity with dead disk */ + goto done; + } + pda->bufPtr = buf1; + blockNode->succedents[i]->params[0].p = pda; + blockNode->succedents[i]->params[1].p = buf1; + blockNode->succedents[i]->params[2].v = psID; + blockNode->succedents[i]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); + buf1 += nbytes; + } + RF_ASSERT(pda == NULL); + + bzero((char *) &tracerec, sizeof(tracerec)); + rd_dag_h->tracerec = &tracerec; + + if (rf_verifyParityDebug > 1) { + printf("raid%d: RAID1 parity verify read dag:\n", + raidPtr->raidid); + rf_PrintDAGList(rd_dag_h); + } + RF_LOCK_MUTEX(mcpair->mutex); + mcpair->flag = 0; + rf_DispatchDAG(rd_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc, + (void *) mcpair); + while (mcpair->flag == 0) { + RF_WAIT_MCPAIR(mcpair); + } + RF_UNLOCK_MUTEX(mcpair->mutex); + + if (rd_dag_h->status != rf_enable) { + RF_ERRORMSG("Unable to verify raid1 parity: can't read stripe\n"); + ret = RF_PARITY_COULD_NOT_VERIFY; + goto done; + } + /* + * buf1 is the beginning of the data blocks chunk + * buf2 is the beginning of the parity blocks chunk + */ + buf1 = buf; + buf2 = buf + (nbytes * layoutPtr->numDataCol); + ret = RF_PARITY_OKAY; + /* + * bbufs is "bad bufs"- an array whose entries are the data + * column numbers where we had miscompares. (That is, column 0 + * and column 1 of the array are mirror copies, and are considered + * "data column 0" for this purpose). + */ + RF_MallocAndAdd(bbufs, layoutPtr->numParityCol * sizeof(int), (int *), + allocList); + nbad = 0; + /* + * Check data vs "parity" (mirror copy). + */ + for (i = 0; i < layoutPtr->numDataCol; i++) { + if (rf_verifyParityDebug) { + printf("raid%d: RAID1 parity verify %d bytes: i=%d buf1=%lx buf2=%lx buf=%lx\n", + raidPtr->raidid, nbytes, i, (long) buf1, + (long) buf2, (long) buf); + } + ret = bcmp(buf1, buf2, nbytes); + if (ret) { + if (rf_verifyParityDebug > 1) { + for (j = 0; j < nbytes; j++) { + if (buf1[j] != buf2[j]) + break; + } + printf("psid=%ld j=%d\n", (long) psID, j); + printf("buf1 %02x %02x %02x %02x %02x\n", buf1[0] & 0xff, + buf1[1] & 0xff, buf1[2] & 0xff, buf1[3] & 0xff, buf1[4] & 0xff); + printf("buf2 %02x %02x %02x %02x %02x\n", buf2[0] & 0xff, + buf2[1] & 0xff, buf2[2] & 0xff, buf2[3] & 0xff, buf2[4] & 0xff); + } + if (rf_verifyParityDebug) { + printf("raid%d: RAID1: found bad parity, i=%d\n", raidPtr->raidid, i); + } + /* + * Parity is bad. Keep track of which columns were bad. + */ + if (bbufs) + bbufs[nbad] = i; + nbad++; + ret = RF_PARITY_BAD; + } + buf1 += nbytes; + buf2 += nbytes; + } + + if ((ret != RF_PARITY_OKAY) && correct_it) { + ret = RF_PARITY_COULD_NOT_CORRECT; + if (rf_verifyParityDebug) { + printf("raid%d: RAID1 parity verify: parity not correct\n", raidPtr->raidid); + } + if (bbufs == NULL) + goto done; + /* + * Make a DAG with one write node for each bad unit. We'll simply + * write the contents of the data unit onto the parity unit for + * correction. (It's possible that the mirror copy was the correct + * copy, and that we're spooging good data by writing bad over it, + * but there's no way we can know that. + */ + wr_dag_h = rf_MakeSimpleDAG(raidPtr, nbad, nbytes, buf, + rf_DiskWriteFunc, rf_DiskWriteUndoFunc, "Wnp", allocList, flags, + RF_IO_NORMAL_PRIORITY); + if (wr_dag_h == NULL) + goto done; + wrBlock = wr_dag_h->succedents[0]; + /* + * Fill in a write node for each bad compare. + */ + for (i = 0; i < nbad; i++) { + j = i + layoutPtr->numDataCol; + pda = blockNode->succedents[j]->params[0].p; + pda->bufPtr = blockNode->succedents[i]->params[1].p; + wrBlock->succedents[i]->params[0].p = pda; + wrBlock->succedents[i]->params[1].p = pda->bufPtr; + wrBlock->succedents[i]->params[2].v = psID; + wrBlock->succedents[0]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); + } + bzero((char *) &tracerec, sizeof(tracerec)); + wr_dag_h->tracerec = &tracerec; + if (rf_verifyParityDebug > 1) { + printf("Parity verify write dag:\n"); + rf_PrintDAGList(wr_dag_h); + } + RF_LOCK_MUTEX(mcpair->mutex); + mcpair->flag = 0; + /* fire off the write DAG */ + rf_DispatchDAG(wr_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc, + (void *) mcpair); + while (!mcpair->flag) { + RF_WAIT_COND(mcpair->cond, mcpair->mutex); + } + RF_UNLOCK_MUTEX(mcpair->mutex); + if (wr_dag_h->status != rf_enable) { + RF_ERRORMSG("Unable to correct RAID1 parity in VerifyParity\n"); + goto done; + } + ret = RF_PARITY_CORRECTED; + } +done: + /* + * All done. We might've gotten here without doing part of the function, + * so cleanup what we have to and return our running status. + */ + if (asm_h) + rf_FreeAccessStripeMap(asm_h); + if (rd_dag_h) + rf_FreeDAG(rd_dag_h); + if (wr_dag_h) + rf_FreeDAG(wr_dag_h); + if (mcpair) + rf_FreeMCPair(mcpair); + rf_FreeAllocList(allocList); + if (rf_verifyParityDebug) { + printf("raid%d: RAID1 parity verify, returning %d\n", + raidPtr->raidid, ret); + } + return (ret); +} + +int +rf_SubmitReconBufferRAID1(rbuf, keep_it, use_committed) + RF_ReconBuffer_t *rbuf; /* the recon buffer to submit */ + int keep_it; /* whether we can keep this buffer or we have + * to return it */ + int use_committed; /* whether to use a committed or an available + * recon buffer */ +{ + RF_ReconParityStripeStatus_t *pssPtr; + RF_ReconCtrl_t *reconCtrlPtr; + RF_RaidLayout_t *layoutPtr; + int retcode, created; + RF_CallbackDesc_t *cb, *p; + RF_ReconBuffer_t *t; + RF_Raid_t *raidPtr; + caddr_t ta; + + retcode = 0; + created = 0; + + raidPtr = rbuf->raidPtr; + layoutPtr = &raidPtr->Layout; + reconCtrlPtr = raidPtr->reconControl[rbuf->row]; + + RF_ASSERT(rbuf); + RF_ASSERT(rbuf->col != reconCtrlPtr->fcol); + + if (rf_reconbufferDebug) { + printf("raid%d: RAID1 reconbuffer submission r%d c%d psid %ld ru%d (failed offset %ld)\n", + raidPtr->raidid, rbuf->row, rbuf->col, + (long) rbuf->parityStripeID, rbuf->which_ru, + (long) rbuf->failedDiskSectorOffset); + } + if (rf_reconDebug) { + printf("RAID1 reconbuffer submit psid %ld buf %lx\n", + (long) rbuf->parityStripeID, (long) rbuf->buffer); + printf("RAID1 psid %ld %02x %02x %02x %02x %02x\n", + (long) rbuf->parityStripeID, + rbuf->buffer[0], rbuf->buffer[1], rbuf->buffer[2], rbuf->buffer[3], + rbuf->buffer[4]); + } + RF_LOCK_PSS_MUTEX(raidPtr, rbuf->row, rbuf->parityStripeID); + + RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex); + + pssPtr = rf_LookupRUStatus(raidPtr, reconCtrlPtr->pssTable, + rbuf->parityStripeID, rbuf->which_ru, RF_PSS_NONE, &created); + RF_ASSERT(pssPtr); /* if it didn't exist, we wouldn't have gotten + * an rbuf for it */ + + /* + * Since this is simple mirroring, the first submission for a stripe is also + * treated as the last. + */ + + t = NULL; + if (keep_it) { + if (rf_reconbufferDebug) { + printf("raid%d: RAID1 rbuf submission: keeping rbuf\n", + raidPtr->raidid); + } + t = rbuf; + } else { + if (use_committed) { + if (rf_reconbufferDebug) { + printf("raid%d: RAID1 rbuf submission: using committed rbuf\n", raidPtr->raidid); + } + t = reconCtrlPtr->committedRbufs; + RF_ASSERT(t); + reconCtrlPtr->committedRbufs = t->next; + t->next = NULL; + } else + if (reconCtrlPtr->floatingRbufs) { + if (rf_reconbufferDebug) { + printf("raid%d: RAID1 rbuf submission: using floating rbuf\n", raidPtr->raidid); + } + t = reconCtrlPtr->floatingRbufs; + reconCtrlPtr->floatingRbufs = t->next; + t->next = NULL; + } + } + if (t == NULL) { + if (rf_reconbufferDebug) { + printf("raid%d: RAID1 rbuf submission: waiting for rbuf\n", raidPtr->raidid); + } + RF_ASSERT((keep_it == 0) && (use_committed == 0)); + raidPtr->procsInBufWait++; + if ((raidPtr->procsInBufWait == (raidPtr->numCol - 1)) + && (raidPtr->numFullReconBuffers == 0)) { + /* ruh-ro */ + RF_ERRORMSG("Buffer wait deadlock\n"); + rf_PrintPSStatusTable(raidPtr, rbuf->row); + RF_PANIC(); + } + pssPtr->flags |= RF_PSS_BUFFERWAIT; + cb = rf_AllocCallbackDesc(); + cb->row = rbuf->row; + cb->col = rbuf->col; + cb->callbackArg.v = rbuf->parityStripeID; + cb->callbackArg2.v = rbuf->which_ru; + cb->next = NULL; + if (reconCtrlPtr->bufferWaitList == NULL) { + /* we are the wait list- lucky us */ + reconCtrlPtr->bufferWaitList = cb; + } else { + /* append to wait list */ + for (p = reconCtrlPtr->bufferWaitList; p->next; p = p->next); + p->next = cb; + } + retcode = 1; + goto out; + } + if (t != rbuf) { + t->row = rbuf->row; + t->col = reconCtrlPtr->fcol; + t->parityStripeID = rbuf->parityStripeID; + t->which_ru = rbuf->which_ru; + t->failedDiskSectorOffset = rbuf->failedDiskSectorOffset; + t->spRow = rbuf->spRow; + t->spCol = rbuf->spCol; + t->spOffset = rbuf->spOffset; + /* Swap buffers. DANCE! */ + ta = t->buffer; + t->buffer = rbuf->buffer; + rbuf->buffer = ta; + } + /* + * Use the rbuf we've been given as the target. + */ + RF_ASSERT(pssPtr->rbuf == NULL); + pssPtr->rbuf = t; + + t->count = 1; + /* + * Below, we use 1 for numDataCol (which is equal to the count in the + * previous line), so we'll always be done. + */ + rf_CheckForFullRbuf(raidPtr, reconCtrlPtr, pssPtr, 1); + +out: + RF_UNLOCK_PSS_MUTEX(raidPtr, rbuf->row, rbuf->parityStripeID); + RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex); + if (rf_reconbufferDebug) { + printf("raid%d: RAID1 rbuf submission: returning %d\n", + raidPtr->raidid, retcode); + } + return (retcode); +} diff --git a/sys/dev/raidframe/rf_raid1.h b/sys/dev/raidframe/rf_raid1.h new file mode 100644 index 0000000..484cbcf --- /dev/null +++ b/sys/dev/raidframe/rf_raid1.h @@ -0,0 +1,63 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_raid1.h,v 1.3 1999/02/05 00:06:16 oster Exp $ */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: William V. Courtright II + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +/* header file for RAID Level 1 */ + +#ifndef _RF__RF_RAID1_H_ +#define _RF__RF_RAID1_H_ + +#include <dev/raidframe/rf_types.h> + +int +rf_ConfigureRAID1(RF_ShutdownList_t ** listp, RF_Raid_t * raidPtr, + RF_Config_t * cfgPtr); +void +rf_MapSectorRAID1(RF_Raid_t * raidPtr, RF_RaidAddr_t raidSector, + RF_RowCol_t * row, RF_RowCol_t * col, RF_SectorNum_t * diskSector, int remap); +void +rf_MapParityRAID1(RF_Raid_t * raidPtr, RF_RaidAddr_t raidSector, + RF_RowCol_t * row, RF_RowCol_t * col, RF_SectorNum_t * diskSector, int remap); +void +rf_IdentifyStripeRAID1(RF_Raid_t * raidPtr, RF_RaidAddr_t addr, + RF_RowCol_t ** diskids, RF_RowCol_t * outRow); +void +rf_MapSIDToPSIDRAID1(RF_RaidLayout_t * layoutPtr, + RF_StripeNum_t stripeID, RF_StripeNum_t * psID, + RF_ReconUnitNum_t * which_ru); +void +rf_RAID1DagSelect(RF_Raid_t * raidPtr, RF_IoType_t type, + RF_AccessStripeMap_t * asmap, RF_VoidFuncPtr * createFunc); +int +rf_VerifyParityRAID1(RF_Raid_t * raidPtr, RF_RaidAddr_t raidAddr, + RF_PhysDiskAddr_t * parityPDA, int correct_it, RF_RaidAccessFlags_t flags); +int +rf_SubmitReconBufferRAID1(RF_ReconBuffer_t * rbuf, int keep_int, + int use_committed); + +#endif /* !_RF__RF_RAID1_H_ */ diff --git a/sys/dev/raidframe/rf_raid4.c b/sys/dev/raidframe/rf_raid4.c new file mode 100644 index 0000000..3f6c398 --- /dev/null +++ b/sys/dev/raidframe/rf_raid4.c @@ -0,0 +1,157 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_raid4.c,v 1.4 2000/01/07 03:41:02 oster Exp $ */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Rachad Youssef + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +/*************************************** + * + * rf_raid4.c -- implements RAID Level 4 + * + ***************************************/ + +#include <dev/raidframe/rf_raid.h> +#include <dev/raidframe/rf_dag.h> +#include <dev/raidframe/rf_dagutils.h> +#include <dev/raidframe/rf_dagfuncs.h> +#include <dev/raidframe/rf_dagffrd.h> +#include <dev/raidframe/rf_dagffwr.h> +#include <dev/raidframe/rf_dagdegrd.h> +#include <dev/raidframe/rf_dagdegwr.h> +#include <dev/raidframe/rf_raid4.h> +#include <dev/raidframe/rf_general.h> + +typedef struct RF_Raid4ConfigInfo_s { + RF_RowCol_t *stripeIdentifier; /* filled in at config time & used by + * IdentifyStripe */ +} RF_Raid4ConfigInfo_t; + + + +int +rf_ConfigureRAID4( + RF_ShutdownList_t ** listp, + RF_Raid_t * raidPtr, + RF_Config_t * cfgPtr) +{ + RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; + RF_Raid4ConfigInfo_t *info; + int i; + + /* create a RAID level 4 configuration structure ... */ + RF_MallocAndAdd(info, sizeof(RF_Raid4ConfigInfo_t), (RF_Raid4ConfigInfo_t *), raidPtr->cleanupList); + if (info == NULL) + return (ENOMEM); + layoutPtr->layoutSpecificInfo = (void *) info; + + /* ... and fill it in. */ + RF_MallocAndAdd(info->stripeIdentifier, raidPtr->numCol * sizeof(RF_RowCol_t), (RF_RowCol_t *), raidPtr->cleanupList); + if (info->stripeIdentifier == NULL) + return (ENOMEM); + for (i = 0; i < raidPtr->numCol; i++) + info->stripeIdentifier[i] = i; + + RF_ASSERT(raidPtr->numRow == 1); + + /* fill in the remaining layout parameters */ + layoutPtr->numStripe = layoutPtr->stripeUnitsPerDisk; + layoutPtr->bytesPerStripeUnit = layoutPtr->sectorsPerStripeUnit << raidPtr->logBytesPerSector; + layoutPtr->numDataCol = raidPtr->numCol - 1; + layoutPtr->dataSectorsPerStripe = layoutPtr->numDataCol * layoutPtr->sectorsPerStripeUnit; + layoutPtr->numParityCol = 1; + raidPtr->totalSectors = layoutPtr->stripeUnitsPerDisk * layoutPtr->numDataCol * layoutPtr->sectorsPerStripeUnit; + + return (0); +} + +int +rf_GetDefaultNumFloatingReconBuffersRAID4(RF_Raid_t * raidPtr) +{ + return (20); +} + +RF_HeadSepLimit_t +rf_GetDefaultHeadSepLimitRAID4(RF_Raid_t * raidPtr) +{ + return (20); +} + +void +rf_MapSectorRAID4( + RF_Raid_t * raidPtr, + RF_RaidAddr_t raidSector, + RF_RowCol_t * row, + RF_RowCol_t * col, + RF_SectorNum_t * diskSector, + int remap) +{ + RF_StripeNum_t SUID = raidSector / raidPtr->Layout.sectorsPerStripeUnit; + *row = 0; + *col = SUID % raidPtr->Layout.numDataCol; + *diskSector = (SUID / (raidPtr->Layout.numDataCol)) * raidPtr->Layout.sectorsPerStripeUnit + + (raidSector % raidPtr->Layout.sectorsPerStripeUnit); +} + +void +rf_MapParityRAID4( + RF_Raid_t * raidPtr, + RF_RaidAddr_t raidSector, + RF_RowCol_t * row, + RF_RowCol_t * col, + RF_SectorNum_t * diskSector, + int remap) +{ + RF_StripeNum_t SUID = raidSector / raidPtr->Layout.sectorsPerStripeUnit; + + *row = 0; + *col = raidPtr->Layout.numDataCol; + *diskSector = (SUID / (raidPtr->Layout.numDataCol)) * raidPtr->Layout.sectorsPerStripeUnit + + (raidSector % raidPtr->Layout.sectorsPerStripeUnit); +} + +void +rf_IdentifyStripeRAID4( + RF_Raid_t * raidPtr, + RF_RaidAddr_t addr, + RF_RowCol_t ** diskids, + RF_RowCol_t * outRow) +{ + RF_Raid4ConfigInfo_t *info = raidPtr->Layout.layoutSpecificInfo; + + *outRow = 0; + *diskids = info->stripeIdentifier; +} + +void +rf_MapSIDToPSIDRAID4( + RF_RaidLayout_t * layoutPtr, + RF_StripeNum_t stripeID, + RF_StripeNum_t * psID, + RF_ReconUnitNum_t * which_ru) +{ + *which_ru = 0; + *psID = stripeID; +} diff --git a/sys/dev/raidframe/rf_raid4.h b/sys/dev/raidframe/rf_raid4.h new file mode 100644 index 0000000..56df05a --- /dev/null +++ b/sys/dev/raidframe/rf_raid4.h @@ -0,0 +1,57 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_raid4.h,v 1.3 1999/02/05 00:06:16 oster Exp $ */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Rachad Youssef + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +/* rf_raid4.h header file for RAID Level 4 */ + +#ifndef _RF__RF_RAID4_H_ +#define _RF__RF_RAID4_H_ + +int +rf_ConfigureRAID4(RF_ShutdownList_t ** listp, RF_Raid_t * raidPtr, + RF_Config_t * cfgPtr); +int rf_GetDefaultNumFloatingReconBuffersRAID4(RF_Raid_t * raidPtr); +RF_HeadSepLimit_t rf_GetDefaultHeadSepLimitRAID4(RF_Raid_t * raidPtr); +void +rf_MapSectorRAID4(RF_Raid_t * raidPtr, RF_RaidAddr_t raidSector, + RF_RowCol_t * row, RF_RowCol_t * col, RF_SectorNum_t * diskSector, int remap); +void +rf_MapParityRAID4(RF_Raid_t * raidPtr, RF_RaidAddr_t raidSector, + RF_RowCol_t * row, RF_RowCol_t * col, RF_SectorNum_t * diskSector, int remap); +void +rf_IdentifyStripeRAID4(RF_Raid_t * raidPtr, RF_RaidAddr_t addr, + RF_RowCol_t ** diskids, RF_RowCol_t * outRow); +void +rf_MapSIDToPSIDRAID4(RF_RaidLayout_t * layoutPtr, + RF_StripeNum_t stripeID, RF_StripeNum_t * psID, + RF_ReconUnitNum_t * which_ru); +void +rf_RAID4DagSelect(RF_Raid_t * raidPtr, RF_IoType_t type, + RF_AccessStripeMap_t * asmap, RF_VoidFuncPtr * createFunc); + +#endif /* !_RF__RF_RAID4_H_ */ diff --git a/sys/dev/raidframe/rf_raid5.c b/sys/dev/raidframe/rf_raid5.c new file mode 100644 index 0000000..c1261ad --- /dev/null +++ b/sys/dev/raidframe/rf_raid5.c @@ -0,0 +1,320 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_raid5.c,v 1.4 2000/01/08 22:57:30 oster Exp $ */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Mark Holland + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +/****************************************************************************** + * + * rf_raid5.c -- implements RAID Level 5 + * + *****************************************************************************/ + +#include <dev/raidframe/rf_types.h> +#include <dev/raidframe/rf_raid.h> +#include <dev/raidframe/rf_raid5.h> +#include <dev/raidframe/rf_dag.h> +#include <dev/raidframe/rf_dagffrd.h> +#include <dev/raidframe/rf_dagffwr.h> +#include <dev/raidframe/rf_dagdegrd.h> +#include <dev/raidframe/rf_dagdegwr.h> +#include <dev/raidframe/rf_dagutils.h> +#include <dev/raidframe/rf_general.h> +#include <dev/raidframe/rf_map.h> +#include <dev/raidframe/rf_utils.h> + +typedef struct RF_Raid5ConfigInfo_s { + RF_RowCol_t **stripeIdentifier; /* filled in at config time and used + * by IdentifyStripe */ +} RF_Raid5ConfigInfo_t; + +int +rf_ConfigureRAID5( + RF_ShutdownList_t ** listp, + RF_Raid_t * raidPtr, + RF_Config_t * cfgPtr) +{ + RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; + RF_Raid5ConfigInfo_t *info; + RF_RowCol_t i, j, startdisk; + + /* create a RAID level 5 configuration structure */ + RF_MallocAndAdd(info, sizeof(RF_Raid5ConfigInfo_t), (RF_Raid5ConfigInfo_t *), raidPtr->cleanupList); + if (info == NULL) + return (ENOMEM); + layoutPtr->layoutSpecificInfo = (void *) info; + + RF_ASSERT(raidPtr->numRow == 1); + + /* the stripe identifier must identify the disks in each stripe, IN + * THE ORDER THAT THEY APPEAR IN THE STRIPE. */ + info->stripeIdentifier = rf_make_2d_array(raidPtr->numCol, raidPtr->numCol, raidPtr->cleanupList); + if (info->stripeIdentifier == NULL) + return (ENOMEM); + startdisk = 0; + for (i = 0; i < raidPtr->numCol; i++) { + for (j = 0; j < raidPtr->numCol; j++) { + info->stripeIdentifier[i][j] = (startdisk + j) % raidPtr->numCol; + } + if ((--startdisk) < 0) + startdisk = raidPtr->numCol - 1; + } + + /* fill in the remaining layout parameters */ + layoutPtr->numStripe = layoutPtr->stripeUnitsPerDisk; + layoutPtr->bytesPerStripeUnit = layoutPtr->sectorsPerStripeUnit << raidPtr->logBytesPerSector; + layoutPtr->numDataCol = raidPtr->numCol - 1; + layoutPtr->dataSectorsPerStripe = layoutPtr->numDataCol * layoutPtr->sectorsPerStripeUnit; + layoutPtr->numParityCol = 1; + layoutPtr->dataStripeUnitsPerDisk = layoutPtr->stripeUnitsPerDisk; + + raidPtr->totalSectors = layoutPtr->stripeUnitsPerDisk * layoutPtr->numDataCol * layoutPtr->sectorsPerStripeUnit; + + return (0); +} + +int +rf_GetDefaultNumFloatingReconBuffersRAID5(RF_Raid_t * raidPtr) +{ + return (20); +} + +RF_HeadSepLimit_t +rf_GetDefaultHeadSepLimitRAID5(RF_Raid_t * raidPtr) +{ + return (10); +} +#if !defined(__NetBSD__) && !defined(__FreeBSD__) && !defined(_KERNEL) +/* not currently used */ +int +rf_ShutdownRAID5(RF_Raid_t * raidPtr) +{ + return (0); +} +#endif + +void +rf_MapSectorRAID5( + RF_Raid_t * raidPtr, + RF_RaidAddr_t raidSector, + RF_RowCol_t * row, + RF_RowCol_t * col, + RF_SectorNum_t * diskSector, + int remap) +{ + RF_StripeNum_t SUID = raidSector / raidPtr->Layout.sectorsPerStripeUnit; + *row = 0; + *col = (SUID % raidPtr->numCol); + *diskSector = (SUID / (raidPtr->Layout.numDataCol)) * raidPtr->Layout.sectorsPerStripeUnit + + (raidSector % raidPtr->Layout.sectorsPerStripeUnit); +} + +void +rf_MapParityRAID5( + RF_Raid_t * raidPtr, + RF_RaidAddr_t raidSector, + RF_RowCol_t * row, + RF_RowCol_t * col, + RF_SectorNum_t * diskSector, + int remap) +{ + RF_StripeNum_t SUID = raidSector / raidPtr->Layout.sectorsPerStripeUnit; + + *row = 0; + *col = raidPtr->Layout.numDataCol - (SUID / raidPtr->Layout.numDataCol) % raidPtr->numCol; + *diskSector = (SUID / (raidPtr->Layout.numDataCol)) * raidPtr->Layout.sectorsPerStripeUnit + + (raidSector % raidPtr->Layout.sectorsPerStripeUnit); +} + +void +rf_IdentifyStripeRAID5( + RF_Raid_t * raidPtr, + RF_RaidAddr_t addr, + RF_RowCol_t ** diskids, + RF_RowCol_t * outRow) +{ + RF_StripeNum_t stripeID = rf_RaidAddressToStripeID(&raidPtr->Layout, addr); + RF_Raid5ConfigInfo_t *info = (RF_Raid5ConfigInfo_t *) raidPtr->Layout.layoutSpecificInfo; + + *outRow = 0; + *diskids = info->stripeIdentifier[stripeID % raidPtr->numCol]; +} + +void +rf_MapSIDToPSIDRAID5( + RF_RaidLayout_t * layoutPtr, + RF_StripeNum_t stripeID, + RF_StripeNum_t * psID, + RF_ReconUnitNum_t * which_ru) +{ + *which_ru = 0; + *psID = stripeID; +} +/* select an algorithm for performing an access. Returns two pointers, + * one to a function that will return information about the DAG, and + * another to a function that will create the dag. + */ +void +rf_RaidFiveDagSelect( + RF_Raid_t * raidPtr, + RF_IoType_t type, + RF_AccessStripeMap_t * asmap, + RF_VoidFuncPtr * createFunc) +{ + RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout); + RF_PhysDiskAddr_t *failedPDA = NULL; + RF_RowCol_t frow, fcol; + RF_RowStatus_t rstat; + int prior_recon; + + RF_ASSERT(RF_IO_IS_R_OR_W(type)); + + if (asmap->numDataFailed + asmap->numParityFailed > 1) { + RF_ERRORMSG("Multiple disks failed in a single group! Aborting I/O operation.\n"); + /* *infoFunc = */ *createFunc = NULL; + return; + } else + if (asmap->numDataFailed + asmap->numParityFailed == 1) { + + /* if under recon & already reconstructed, redirect + * the access to the spare drive and eliminate the + * failure indication */ + failedPDA = asmap->failedPDAs[0]; + frow = failedPDA->row; + fcol = failedPDA->col; + rstat = raidPtr->status[failedPDA->row]; + prior_recon = (rstat == rf_rs_reconfigured) || ( + (rstat == rf_rs_reconstructing) ? + rf_CheckRUReconstructed(raidPtr->reconControl[frow]->reconMap, failedPDA->startSector) : 0 + ); + if (prior_recon) { + RF_RowCol_t or = failedPDA->row, oc = failedPDA->col; + RF_SectorNum_t oo = failedPDA->startSector; + + if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) { /* redirect to dist + * spare space */ + + if (failedPDA == asmap->parityInfo) { + + /* parity has failed */ + (layoutPtr->map->MapParity) (raidPtr, failedPDA->raidAddress, &failedPDA->row, + &failedPDA->col, &failedPDA->startSector, RF_REMAP); + + if (asmap->parityInfo->next) { /* redir 2nd component, + * if any */ + RF_PhysDiskAddr_t *p = asmap->parityInfo->next; + RF_SectorNum_t SUoffs = p->startSector % layoutPtr->sectorsPerStripeUnit; + p->row = failedPDA->row; + p->col = failedPDA->col; + p->startSector = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, failedPDA->startSector) + + SUoffs; /* cheating: + * startSector is not + * really a RAID address */ + } + } else + if (asmap->parityInfo->next && failedPDA == asmap->parityInfo->next) { + RF_ASSERT(0); /* should not ever + * happen */ + } else { + + /* data has failed */ + (layoutPtr->map->MapSector) (raidPtr, failedPDA->raidAddress, &failedPDA->row, + &failedPDA->col, &failedPDA->startSector, RF_REMAP); + + } + + } else { /* redirect to dedicated spare + * space */ + + failedPDA->row = raidPtr->Disks[frow][fcol].spareRow; + failedPDA->col = raidPtr->Disks[frow][fcol].spareCol; + + /* the parity may have two distinct + * components, both of which may need + * to be redirected */ + if (asmap->parityInfo->next) { + if (failedPDA == asmap->parityInfo) { + failedPDA->next->row = failedPDA->row; + failedPDA->next->col = failedPDA->col; + } else + if (failedPDA == asmap->parityInfo->next) { /* paranoid: should + * never occur */ + asmap->parityInfo->row = failedPDA->row; + asmap->parityInfo->col = failedPDA->col; + } + } + } + + RF_ASSERT(failedPDA->col != -1); + + if (rf_dagDebug || rf_mapDebug) { + printf("raid%d: Redirected type '%c' r %d c %d o %ld -> r %d c %d o %ld\n", + raidPtr->raidid, type, or, oc, + (long) oo, failedPDA->row, + failedPDA->col, + (long) failedPDA->startSector); + } + asmap->numDataFailed = asmap->numParityFailed = 0; + } + } + /* all dags begin/end with block/unblock node therefore, hdrSucc & + * termAnt counts should always be 1 also, these counts should not be + * visible outside dag creation routines - manipulating the counts + * here should be removed */ + if (type == RF_IO_TYPE_READ) { + if (asmap->numDataFailed == 0) + *createFunc = (RF_VoidFuncPtr) rf_CreateFaultFreeReadDAG; + else + *createFunc = (RF_VoidFuncPtr) rf_CreateRaidFiveDegradedReadDAG; + } else { + + + /* if mirroring, always use large writes. If the access + * requires two distinct parity updates, always do a small + * write. If the stripe contains a failure but the access + * does not, do a small write. The first conditional + * (numStripeUnitsAccessed <= numDataCol/2) uses a + * less-than-or-equal rather than just a less-than because + * when G is 3 or 4, numDataCol/2 is 1, and I want + * single-stripe-unit updates to use just one disk. */ + if ((asmap->numDataFailed + asmap->numParityFailed) == 0) { + if (rf_suppressLocksAndLargeWrites || + (((asmap->numStripeUnitsAccessed <= (layoutPtr->numDataCol / 2)) && (layoutPtr->numDataCol != 1)) || + (asmap->parityInfo->next != NULL) || rf_CheckStripeForFailures(raidPtr, asmap))) { + *createFunc = (RF_VoidFuncPtr) rf_CreateSmallWriteDAG; + } else + *createFunc = (RF_VoidFuncPtr) rf_CreateLargeWriteDAG; + } else { + if (asmap->numParityFailed == 1) + *createFunc = (RF_VoidFuncPtr) rf_CreateNonRedundantWriteDAG; + else + if (asmap->numStripeUnitsAccessed != 1 && failedPDA->numSector != layoutPtr->sectorsPerStripeUnit) + *createFunc = NULL; + else + *createFunc = (RF_VoidFuncPtr) rf_CreateDegradedWriteDAG; + } + } +} diff --git a/sys/dev/raidframe/rf_raid5.h b/sys/dev/raidframe/rf_raid5.h new file mode 100644 index 0000000..17549fe --- /dev/null +++ b/sys/dev/raidframe/rf_raid5.h @@ -0,0 +1,57 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_raid5.h,v 1.3 1999/02/05 00:06:16 oster Exp $ */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Mark Holland + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +/* rf_raid5.h - header file for RAID Level 5 */ + +#ifndef _RF__RF_RAID5_H_ +#define _RF__RF_RAID5_H_ + +int +rf_ConfigureRAID5(RF_ShutdownList_t ** listp, RF_Raid_t * raidPtr, + RF_Config_t * cfgPtr); +int rf_GetDefaultNumFloatingReconBuffersRAID5(RF_Raid_t * raidPtr); +RF_HeadSepLimit_t rf_GetDefaultHeadSepLimitRAID5(RF_Raid_t * raidPtr); +void +rf_MapSectorRAID5(RF_Raid_t * raidPtr, RF_RaidAddr_t raidSector, + RF_RowCol_t * row, RF_RowCol_t * col, RF_SectorNum_t * diskSector, int remap); +void +rf_MapParityRAID5(RF_Raid_t * raidPtr, RF_RaidAddr_t raidSector, + RF_RowCol_t * row, RF_RowCol_t * col, RF_SectorNum_t * diskSector, int remap); +void +rf_IdentifyStripeRAID5(RF_Raid_t * raidPtr, RF_RaidAddr_t addr, + RF_RowCol_t ** diskids, RF_RowCol_t * outRow); +void +rf_MapSIDToPSIDRAID5(RF_RaidLayout_t * layoutPtr, + RF_StripeNum_t stripeID, RF_StripeNum_t * psID, + RF_ReconUnitNum_t * which_ru); +void +rf_RaidFiveDagSelect(RF_Raid_t * raidPtr, RF_IoType_t type, + RF_AccessStripeMap_t * asmap, RF_VoidFuncPtr * createFunc); + +#endif /* !_RF__RF_RAID5_H_ */ diff --git a/sys/dev/raidframe/rf_raid5_rotatedspare.c b/sys/dev/raidframe/rf_raid5_rotatedspare.c new file mode 100644 index 0000000..5c17b43 --- /dev/null +++ b/sys/dev/raidframe/rf_raid5_rotatedspare.c @@ -0,0 +1,175 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_raid5_rotatedspare.c,v 1.5 2001/01/26 05:16:58 oster Exp $ */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Khalil Amiri + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +/************************************************************************** + * + * rf_raid5_rotated_spare.c -- implements RAID Level 5 with rotated sparing + * + **************************************************************************/ + +#include <dev/raidframe/rf_archs.h> + +#if RF_INCLUDE_RAID5_RS > 0 + +#include <dev/raidframe/rf_raid.h> +#include <dev/raidframe/rf_raid5.h> +#include <dev/raidframe/rf_dag.h> +#include <dev/raidframe/rf_dagutils.h> +#include <dev/raidframe/rf_dagfuncs.h> +#include <dev/raidframe/rf_general.h> +#include <dev/raidframe/rf_utils.h> +#include <dev/raidframe/rf_raid5_rotatedspare.h> + +typedef struct RF_Raid5RSConfigInfo_s { + RF_RowCol_t **stripeIdentifier; /* filled in at config time & used by + * IdentifyStripe */ +} RF_Raid5RSConfigInfo_t; + +int +rf_ConfigureRAID5_RS( + RF_ShutdownList_t ** listp, + RF_Raid_t * raidPtr, + RF_Config_t * cfgPtr) +{ + RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; + RF_Raid5RSConfigInfo_t *info; + RF_RowCol_t i, j, startdisk; + + /* create a RAID level 5 configuration structure */ + RF_MallocAndAdd(info, sizeof(RF_Raid5RSConfigInfo_t), (RF_Raid5RSConfigInfo_t *), raidPtr->cleanupList); + if (info == NULL) + return (ENOMEM); + layoutPtr->layoutSpecificInfo = (void *) info; + + RF_ASSERT(raidPtr->numRow == 1); + RF_ASSERT(raidPtr->numCol >= 3); + + /* the stripe identifier must identify the disks in each stripe, IN + * THE ORDER THAT THEY APPEAR IN THE STRIPE. */ + info->stripeIdentifier = rf_make_2d_array(raidPtr->numCol, raidPtr->numCol, raidPtr->cleanupList); + if (info->stripeIdentifier == NULL) + return (ENOMEM); + startdisk = 0; + for (i = 0; i < raidPtr->numCol; i++) { + for (j = 0; j < raidPtr->numCol; j++) { + info->stripeIdentifier[i][j] = (startdisk + j) % raidPtr->numCol; + } + if ((--startdisk) < 0) + startdisk = raidPtr->numCol - 1; + } + + /* fill in the remaining layout parameters */ + layoutPtr->numStripe = layoutPtr->stripeUnitsPerDisk; + layoutPtr->bytesPerStripeUnit = layoutPtr->sectorsPerStripeUnit << raidPtr->logBytesPerSector; + layoutPtr->numDataCol = raidPtr->numCol - 2; + layoutPtr->dataSectorsPerStripe = layoutPtr->numDataCol * layoutPtr->sectorsPerStripeUnit; + layoutPtr->numParityCol = 1; + layoutPtr->dataStripeUnitsPerDisk = layoutPtr->stripeUnitsPerDisk; + raidPtr->sectorsPerDisk = layoutPtr->stripeUnitsPerDisk * layoutPtr->sectorsPerStripeUnit; + + raidPtr->totalSectors = layoutPtr->stripeUnitsPerDisk * layoutPtr->numDataCol * layoutPtr->sectorsPerStripeUnit; + + return (0); +} + +RF_ReconUnitCount_t +rf_GetNumSpareRUsRAID5_RS(raidPtr) + RF_Raid_t *raidPtr; +{ + return (raidPtr->Layout.stripeUnitsPerDisk / raidPtr->numCol); +} + +void +rf_MapSectorRAID5_RS( + RF_Raid_t * raidPtr, + RF_RaidAddr_t raidSector, + RF_RowCol_t * row, + RF_RowCol_t * col, + RF_SectorNum_t * diskSector, + int remap) +{ + RF_StripeNum_t SUID = raidSector / raidPtr->Layout.sectorsPerStripeUnit; + + *row = 0; + if (remap) { + *col = raidPtr->numCol - 1 - (1 + SUID / raidPtr->Layout.numDataCol) % raidPtr->numCol; + *col = (*col + 1) % raidPtr->numCol; /* spare unit is rotated + * with parity; line + * above maps to parity */ + } else { + *col = (SUID + (SUID / raidPtr->Layout.numDataCol)) % raidPtr->numCol; + } + *diskSector = (SUID / (raidPtr->Layout.numDataCol)) * raidPtr->Layout.sectorsPerStripeUnit + + (raidSector % raidPtr->Layout.sectorsPerStripeUnit); +} + +void +rf_MapParityRAID5_RS( + RF_Raid_t * raidPtr, + RF_RaidAddr_t raidSector, + RF_RowCol_t * row, + RF_RowCol_t * col, + RF_SectorNum_t * diskSector, + int remap) +{ + RF_StripeNum_t SUID = raidSector / raidPtr->Layout.sectorsPerStripeUnit; + + *row = 0; + *col = raidPtr->numCol - 1 - (1 + SUID / raidPtr->Layout.numDataCol) % raidPtr->numCol; + *diskSector = (SUID / (raidPtr->Layout.numDataCol)) * raidPtr->Layout.sectorsPerStripeUnit + + (raidSector % raidPtr->Layout.sectorsPerStripeUnit); + if (remap) + *col = (*col + 1) % raidPtr->numCol; +} + +void +rf_IdentifyStripeRAID5_RS( + RF_Raid_t * raidPtr, + RF_RaidAddr_t addr, + RF_RowCol_t ** diskids, + RF_RowCol_t * outRow) +{ + RF_StripeNum_t stripeID = rf_RaidAddressToStripeID(&raidPtr->Layout, addr); + RF_Raid5RSConfigInfo_t *info = (RF_Raid5RSConfigInfo_t *) raidPtr->Layout.layoutSpecificInfo; + *outRow = 0; + *diskids = info->stripeIdentifier[stripeID % raidPtr->numCol]; + +} + +void +rf_MapSIDToPSIDRAID5_RS( + RF_RaidLayout_t * layoutPtr, + RF_StripeNum_t stripeID, + RF_StripeNum_t * psID, + RF_ReconUnitNum_t * which_ru) +{ + *which_ru = 0; + *psID = stripeID; +} +#endif /* RF_INCLUDE_RAID5_RS > 0 */ diff --git a/sys/dev/raidframe/rf_raid5_rotatedspare.h b/sys/dev/raidframe/rf_raid5_rotatedspare.h new file mode 100644 index 0000000..779150f --- /dev/null +++ b/sys/dev/raidframe/rf_raid5_rotatedspare.h @@ -0,0 +1,53 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_raid5_rotatedspare.h,v 1.3 1999/02/05 00:06:16 oster Exp $ */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Khalil Amiri + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +/* rf_raid5_rotatedspare.h - header file for RAID Level 5 with rotated sparing */ + +#ifndef _RF__RF_RAID5_ROTATEDSPARE_H_ +#define _RF__RF_RAID5_ROTATEDSPARE_H_ + +int +rf_ConfigureRAID5_RS(RF_ShutdownList_t ** listp, RF_Raid_t * raidPtr, + RF_Config_t * cfgPtr); +RF_ReconUnitCount_t rf_GetNumSpareRUsRAID5_RS(RF_Raid_t * raidPtr); +void +rf_MapSectorRAID5_RS(RF_Raid_t * raidPtr, RF_RaidAddr_t raidSector, + RF_RowCol_t * row, RF_RowCol_t * col, RF_SectorNum_t * diskSector, int remap); +void +rf_MapParityRAID5_RS(RF_Raid_t * raidPtr, RF_RaidAddr_t raidSector, + RF_RowCol_t * row, RF_RowCol_t * col, RF_SectorNum_t * diskSector, int remap); +void +rf_IdentifyStripeRAID5_RS(RF_Raid_t * raidPtr, RF_RaidAddr_t addr, + RF_RowCol_t ** diskids, RF_RowCol_t * outRow); +void +rf_MapSIDToPSIDRAID5_RS(RF_RaidLayout_t * layoutPtr, + RF_StripeNum_t stripeID, RF_StripeNum_t * psID, + RF_ReconUnitNum_t * which_ru); + +#endif /* !_RF__RF_RAID5_ROTATEDSPARE_H_ */ diff --git a/sys/dev/raidframe/rf_raidframe.h b/sys/dev/raidframe/rf_raidframe.h new file mode 100644 index 0000000..fd711bd --- /dev/null +++ b/sys/dev/raidframe/rf_raidframe.h @@ -0,0 +1,162 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_raidframe.h,v 1.11 2000/05/28 00:48:31 oster Exp $ */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Mark Holland + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +/***************************************************** + * + * rf_raidframe.h + * + * main header file for using raidframe in the kernel. + * + *****************************************************/ + + +#ifndef _RF__RF_RAIDFRAME_H_ +#define _RF__RF_RAIDFRAME_H_ + +#include <dev/raidframe/rf_types.h> +#include <dev/raidframe/rf_configure.h> +#include <dev/raidframe/rf_disks.h> +#include <dev/raidframe/rf_raid.h> + +typedef RF_uint32 RF_ReconReqFlags_t; + +struct rf_recon_req { /* used to tell the kernel to fail a disk */ + RF_RowCol_t row, col; + RF_ReconReqFlags_t flags; + void *raidPtr; /* used internally; need not be set at ioctl + * time */ + struct rf_recon_req *next; /* used internally; need not be set at + * ioctl time */ +}; + +struct RF_SparetWait_s { + int C, G, fcol; /* C = # disks in row, G = # units in stripe, + * fcol = which disk has failed */ + + RF_StripeCount_t SUsPerPU; /* this stuff is the info required to + * create a spare table */ + int TablesPerSpareRegion; + int BlocksPerTable; + RF_StripeCount_t TableDepthInPUs; + RF_StripeCount_t SpareSpaceDepthPerRegionInSUs; + + RF_SparetWait_t *next; /* used internally; need not be set at ioctl + * time */ +}; + +typedef struct RF_DeviceConfig_s { + u_int rows; + u_int cols; + u_int maxqdepth; + int ndevs; + RF_RaidDisk_t devs[RF_MAX_DISKS]; + int nspares; + RF_RaidDisk_t spares[RF_MAX_DISKS]; +} RF_DeviceConfig_t; + +typedef struct RF_ProgressInfo_s { + RF_uint64 remaining; + RF_uint64 completed; + RF_uint64 total; +} RF_ProgressInfo_t; + +/* flags that can be put in the rf_recon_req structure */ +#define RF_FDFLAGS_NONE 0x0 /* just fail the disk */ +#define RF_FDFLAGS_RECON 0x1 /* fail and initiate recon */ + +#define RAIDFRAME_CONFIGURE _IOW ('r', 1, void *) /* config an array */ +#if defined(__NetBSD__) +#define RAIDFRAME_SHUTDOWN _IO ('r', 2) /* shutdown the array */ +#elif defined(__FreeBSD__) +#define RAIDFRAME_SHUTDOWN _IOW ('r', 2, int) /* shutdown the array */ +#endif +#define RAIDFRAME_TUR _IOW ('r', 3, dev_t) /* debug only: test + * ready */ +#define RAIDFRAME_TEST_ACC _IOWR('r', 4, struct rf_test_acc) + /* run a test access */ +#define RAIDFRAME_FAIL_DISK _IOW ('r', 5, struct rf_recon_req) + /* fail a disk & + * optionally start + * recon */ +#define RAIDFRAME_CHECK_RECON_STATUS _IOR('r', 6, int) /* get reconstruction % + * complete on indicated + * row */ +#define RAIDFRAME_REWRITEPARITY _IO ('r', 7) /* rewrite (initialize) + * all parity */ +#define RAIDFRAME_COPYBACK _IO ('r', 8) /* copy reconstructed + * data back to replaced + * disk */ +#define RAIDFRAME_SPARET_WAIT _IOR ('r', 9, RF_SparetWait_t) + /* does not return until + * kernel needs a spare + * table */ +#define RAIDFRAME_SEND_SPARET _IOW ('r', 10, void *) /* used to send a spare + * table down into the + * kernel */ +#define RAIDFRAME_ABORT_SPARET_WAIT _IO ('r', 11) /* used to wake up the + * sparemap daemon & + * tell it to exit */ +#define RAIDFRAME_START_ATRACE _IO ('r', 12) /* start tracing + * accesses */ +#define RAIDFRAME_STOP_ATRACE _IO ('r', 13) /* stop tracing + * accesses */ +#define RAIDFRAME_GET_SIZE _IOR ('r', 14, int) /* get size (# sectors) + * in raid device */ +#define RAIDFRAME_GET_INFO _IOWR ('r', 15, RF_DeviceConfig_t *) + /* get configuration */ +#define RAIDFRAME_RESET_ACCTOTALS _IO ('r', 16) /* reset AccTotals for + * device */ +#define RAIDFRAME_GET_ACCTOTALS _IOR ('r', 17, RF_AccTotals_t) + /* retrieve AccTotals + * for device */ +#define RAIDFRAME_KEEP_ACCTOTALS _IOW ('r', 18, int) /* turn AccTotals on or + * off for device */ +#define RAIDFRAME_GET_COMPONENT_LABEL _IOWR ('r', 19, RF_ComponentLabel_t) +#define RAIDFRAME_SET_COMPONENT_LABEL _IOW ('r', 20, RF_ComponentLabel_t) + +#define RAIDFRAME_INIT_LABELS _IOW ('r', 21, RF_ComponentLabel_t) +#define RAIDFRAME_ADD_HOT_SPARE _IOW ('r', 22, RF_SingleComponent_t) +#define RAIDFRAME_REMOVE_HOT_SPARE _IOW ('r', 23, RF_SingleComponent_t) +#define RAIDFRAME_REBUILD_IN_PLACE _IOW ('r', 24, RF_SingleComponent_t) +#define RAIDFRAME_CHECK_PARITY _IOWR ('r', 25, int) +#define RAIDFRAME_CHECK_PARITYREWRITE_STATUS _IOR ('r', 26, int) +#define RAIDFRAME_CHECK_COPYBACK_STATUS _IOR ('r', 27, int) +#define RAIDFRAME_SET_AUTOCONFIG _IOWR ('r', 28, int) +#define RAIDFRAME_SET_ROOT _IOWR ('r', 29, int) +#define RAIDFRAME_DELETE_COMPONENT _IOW ('r', 30, RF_SingleComponent_t) +#define RAIDFRAME_INCORPORATE_HOT_SPARE _IOW ('r', 31, RF_SingleComponent_t) + +/* 'Extended' status versions */ +#define RAIDFRAME_CHECK_RECON_STATUS_EXT _IOR('r', 32, RF_ProgressInfo_t) +#define RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT _IOR ('r', 33, \ + RF_ProgressInfo_t) +#define RAIDFRAME_CHECK_COPYBACK_STATUS_EXT _IOR ('r', 34, RF_ProgressInfo_t) +#define RAIDFRAME_GET_UNIT _IOWR ('r', 35, int) + +#endif /* !_RF__RF_RAIDFRAME_H_ */ diff --git a/sys/dev/raidframe/rf_reconbuffer.c b/sys/dev/raidframe/rf_reconbuffer.c new file mode 100644 index 0000000..1f38a82 --- /dev/null +++ b/sys/dev/raidframe/rf_reconbuffer.c @@ -0,0 +1,466 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_reconbuffer.c,v 1.5 2001/01/27 20:10:49 oster Exp $ */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Mark Holland + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +/*************************************************** + * + * rf_reconbuffer.c -- reconstruction buffer manager + * + ***************************************************/ + +#include <dev/raidframe/rf_raid.h> +#include <dev/raidframe/rf_reconbuffer.h> +#include <dev/raidframe/rf_acctrace.h> +#include <dev/raidframe/rf_etimer.h> +#include <dev/raidframe/rf_general.h> +#include <dev/raidframe/rf_debugprint.h> +#include <dev/raidframe/rf_revent.h> +#include <dev/raidframe/rf_reconutil.h> +#include <dev/raidframe/rf_nwayxor.h> + +#define Dprintf1(s,a) if (rf_reconbufferDebug) printf(s,a) +#define Dprintf2(s,a,b) if (rf_reconbufferDebug) printf(s,a,b) +#define Dprintf3(s,a,b,c) if (rf_reconbufferDebug) printf(s,a,b,c) +#define Dprintf4(s,a,b,c,d) if (rf_reconbufferDebug) printf(s,a,b,c,d) +#define Dprintf5(s,a,b,c,d,e) if (rf_reconbufferDebug) printf(s,a,b,c,d,e) + +/***************************************************************************** + * + * Submit a reconstruction buffer to the manager for XOR. We can only + * submit a buffer if (1) we can xor into an existing buffer, which + * means we don't have to acquire a new one, (2) we can acquire a + * floating recon buffer, or (3) the caller has indicated that we are + * allowed to keep the submitted buffer. + * + * Returns non-zero if and only if we were not able to submit. + * In this case, we append the current disk ID to the wait list on the + * indicated RU, so that it will be re-enabled when we acquire a buffer + * for this RU. + * + ****************************************************************************/ + +/* + * nWayXorFuncs[i] is a pointer to a function that will xor "i" + * bufs into the accumulating sum. + */ +static RF_VoidFuncPtr nWayXorFuncs[] = { + NULL, + (RF_VoidFuncPtr) rf_nWayXor1, + (RF_VoidFuncPtr) rf_nWayXor2, + (RF_VoidFuncPtr) rf_nWayXor3, + (RF_VoidFuncPtr) rf_nWayXor4, + (RF_VoidFuncPtr) rf_nWayXor5, + (RF_VoidFuncPtr) rf_nWayXor6, + (RF_VoidFuncPtr) rf_nWayXor7, + (RF_VoidFuncPtr) rf_nWayXor8, + (RF_VoidFuncPtr) rf_nWayXor9 +}; + +int +rf_SubmitReconBuffer(rbuf, keep_it, use_committed) + RF_ReconBuffer_t *rbuf; /* the recon buffer to submit */ + int keep_it; /* whether we can keep this buffer or we have + * to return it */ + int use_committed; /* whether to use a committed or an available + * recon buffer */ +{ + RF_LayoutSW_t *lp; + int rc; + + lp = rbuf->raidPtr->Layout.map; + rc = lp->SubmitReconBuffer(rbuf, keep_it, use_committed); + return (rc); +} + +int +rf_SubmitReconBufferBasic(rbuf, keep_it, use_committed) + RF_ReconBuffer_t *rbuf; /* the recon buffer to submit */ + int keep_it; /* whether we can keep this buffer or we have + * to return it */ + int use_committed; /* whether to use a committed or an available + * recon buffer */ +{ + RF_Raid_t *raidPtr = rbuf->raidPtr; + RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; + RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[rbuf->row]; + RF_ReconParityStripeStatus_t *pssPtr; + RF_ReconBuffer_t *targetRbuf, *t = NULL; /* temporary rbuf + * pointers */ + caddr_t ta; /* temporary data buffer pointer */ + RF_CallbackDesc_t *cb, *p; + int retcode = 0, created = 0; + + RF_Etimer_t timer; + + /* makes no sense to have a submission from the failed disk */ + RF_ASSERT(rbuf); + RF_ASSERT(rbuf->col != reconCtrlPtr->fcol); + + Dprintf5("RECON: submission by row %d col %d for psid %ld ru %d (failed offset %ld)\n", + rbuf->row, rbuf->col, (long) rbuf->parityStripeID, rbuf->which_ru, (long) rbuf->failedDiskSectorOffset); + + RF_LOCK_PSS_MUTEX(raidPtr, rbuf->row, rbuf->parityStripeID); + + RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex); + + pssPtr = rf_LookupRUStatus(raidPtr, reconCtrlPtr->pssTable, rbuf->parityStripeID, rbuf->which_ru, RF_PSS_NONE, &created); + RF_ASSERT(pssPtr); /* if it didn't exist, we wouldn't have gotten + * an rbuf for it */ + + /* check to see if enough buffers have accumulated to do an XOR. If + * so, there's no need to acquire a floating rbuf. Before we can do + * any XORing, we must have acquired a destination buffer. If we + * have, then we can go ahead and do the XOR if (1) including this + * buffer, enough bufs have accumulated, or (2) this is the last + * submission for this stripe. Otherwise, we have to go acquire a + * floating rbuf. */ + + targetRbuf = (RF_ReconBuffer_t *) pssPtr->rbuf; + if ((targetRbuf != NULL) && + ((pssPtr->xorBufCount == rf_numBufsToAccumulate - 1) || (targetRbuf->count + pssPtr->xorBufCount + 1 == layoutPtr->numDataCol))) { + pssPtr->rbufsForXor[pssPtr->xorBufCount++] = rbuf; /* install this buffer */ + Dprintf3("RECON: row %d col %d invoking a %d-way XOR\n", rbuf->row, rbuf->col, pssPtr->xorBufCount); + RF_ETIMER_START(timer); + rf_MultiWayReconXor(raidPtr, pssPtr); + RF_ETIMER_STOP(timer); + RF_ETIMER_EVAL(timer); + raidPtr->accumXorTimeUs += RF_ETIMER_VAL_US(timer); + if (!keep_it) { + raidPtr->recon_tracerecs[rbuf->col].xor_us = RF_ETIMER_VAL_US(timer); + RF_ETIMER_STOP(raidPtr->recon_tracerecs[rbuf->col].recon_timer); + RF_ETIMER_EVAL(raidPtr->recon_tracerecs[rbuf->col].recon_timer); + raidPtr->recon_tracerecs[rbuf->col].specific.recon.recon_return_to_submit_us += + RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[rbuf->col].recon_timer); + RF_ETIMER_START(raidPtr->recon_tracerecs[rbuf->col].recon_timer); + + rf_LogTraceRec(raidPtr, &raidPtr->recon_tracerecs[rbuf->col]); + } + rf_CheckForFullRbuf(raidPtr, reconCtrlPtr, pssPtr, layoutPtr->numDataCol); + + /* if use_committed is on, we _must_ consume a buffer off the + * committed list. */ + if (use_committed) { + t = reconCtrlPtr->committedRbufs; + RF_ASSERT(t); + reconCtrlPtr->committedRbufs = t->next; + rf_ReleaseFloatingReconBuffer(raidPtr, rbuf->row, t); + } + if (keep_it) { + RF_UNLOCK_PSS_MUTEX(raidPtr, rbuf->row, rbuf->parityStripeID); + RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex); + rf_FreeReconBuffer(rbuf); + return (retcode); + } + goto out; + } + /* set the value of "t", which we'll use as the rbuf from here on */ + if (keep_it) { + t = rbuf; + } else { + if (use_committed) { /* if a buffer has been committed to + * us, use it */ + t = reconCtrlPtr->committedRbufs; + RF_ASSERT(t); + reconCtrlPtr->committedRbufs = t->next; + t->next = NULL; + } else + if (reconCtrlPtr->floatingRbufs) { + t = reconCtrlPtr->floatingRbufs; + reconCtrlPtr->floatingRbufs = t->next; + t->next = NULL; + } + } + + /* If we weren't able to acquire a buffer, append to the end of the + * buf list in the recon ctrl struct. */ + if (!t) { + RF_ASSERT(!keep_it && !use_committed); + Dprintf2("RECON: row %d col %d failed to acquire floating rbuf\n", rbuf->row, rbuf->col); + + raidPtr->procsInBufWait++; + if ((raidPtr->procsInBufWait == raidPtr->numCol - 1) && (raidPtr->numFullReconBuffers == 0)) { + printf("Buffer wait deadlock detected. Exiting.\n"); + rf_PrintPSStatusTable(raidPtr, rbuf->row); + RF_PANIC(); + } + pssPtr->flags |= RF_PSS_BUFFERWAIT; + cb = rf_AllocCallbackDesc(); /* append to buf wait list in + * recon ctrl structure */ + cb->row = rbuf->row; + cb->col = rbuf->col; + cb->callbackArg.v = rbuf->parityStripeID; + cb->callbackArg2.v = rbuf->which_ru; + cb->next = NULL; + if (!reconCtrlPtr->bufferWaitList) + reconCtrlPtr->bufferWaitList = cb; + else { /* might want to maintain head/tail pointers + * here rather than search for end of list */ + for (p = reconCtrlPtr->bufferWaitList; p->next; p = p->next); + p->next = cb; + } + retcode = 1; + goto out; + } + Dprintf2("RECON: row %d col %d acquired rbuf\n", rbuf->row, rbuf->col); + RF_ETIMER_STOP(raidPtr->recon_tracerecs[rbuf->col].recon_timer); + RF_ETIMER_EVAL(raidPtr->recon_tracerecs[rbuf->col].recon_timer); + raidPtr->recon_tracerecs[rbuf->col].specific.recon.recon_return_to_submit_us += + RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[rbuf->col].recon_timer); + RF_ETIMER_START(raidPtr->recon_tracerecs[rbuf->col].recon_timer); + + rf_LogTraceRec(raidPtr, &raidPtr->recon_tracerecs[rbuf->col]); + + /* initialize the buffer */ + if (t != rbuf) { + t->row = rbuf->row; + t->col = reconCtrlPtr->fcol; + t->parityStripeID = rbuf->parityStripeID; + t->which_ru = rbuf->which_ru; + t->failedDiskSectorOffset = rbuf->failedDiskSectorOffset; + t->spRow = rbuf->spRow; + t->spCol = rbuf->spCol; + t->spOffset = rbuf->spOffset; + + ta = t->buffer; + t->buffer = rbuf->buffer; + rbuf->buffer = ta; /* swap buffers */ + } + /* the first installation always gets installed as the destination + * buffer. subsequent installations get stacked up to allow for + * multi-way XOR */ + if (!pssPtr->rbuf) { + pssPtr->rbuf = t; + t->count = 1; + } else + pssPtr->rbufsForXor[pssPtr->xorBufCount++] = t; /* install this buffer */ + + rf_CheckForFullRbuf(raidPtr, reconCtrlPtr, pssPtr, layoutPtr->numDataCol); /* the buffer is full if + * G=2 */ + +out: + RF_UNLOCK_PSS_MUTEX(raidPtr, rbuf->row, rbuf->parityStripeID); + RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex); + return (retcode); +} + +int +rf_MultiWayReconXor(raidPtr, pssPtr) + RF_Raid_t *raidPtr; + RF_ReconParityStripeStatus_t *pssPtr; /* the pss descriptor for this + * parity stripe */ +{ + int i, numBufs = pssPtr->xorBufCount; + int numBytes = rf_RaidAddressToByte(raidPtr, raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU); + RF_ReconBuffer_t **rbufs = (RF_ReconBuffer_t **) pssPtr->rbufsForXor; + RF_ReconBuffer_t *targetRbuf = (RF_ReconBuffer_t *) pssPtr->rbuf; + + RF_ASSERT(pssPtr->rbuf != NULL); + RF_ASSERT(numBufs > 0 && numBufs < RF_PS_MAX_BUFS); +#ifdef _KERNEL +#ifndef __NetBSD__ +#ifndef __FreeBSD__ + thread_block(); /* yield the processor before doing a big XOR */ +#endif +#endif +#endif /* _KERNEL */ + /* + * XXX + * + * What if more than 9 bufs? + */ + nWayXorFuncs[numBufs] (pssPtr->rbufsForXor, targetRbuf, numBytes / sizeof(long)); + + /* release all the reconstruction buffers except the last one, which + * belongs to the disk whose submission caused this XOR to take place */ + for (i = 0; i < numBufs - 1; i++) { + if (rbufs[i]->type == RF_RBUF_TYPE_FLOATING) + rf_ReleaseFloatingReconBuffer(raidPtr, rbufs[i]->row, rbufs[i]); + else + if (rbufs[i]->type == RF_RBUF_TYPE_FORCED) + rf_FreeReconBuffer(rbufs[i]); + else + RF_ASSERT(0); + } + targetRbuf->count += pssPtr->xorBufCount; + pssPtr->xorBufCount = 0; + return (0); +} +/* removes one full buffer from one of the full-buffer lists and returns it. + * + * ASSUMES THE RB_MUTEX IS UNLOCKED AT ENTRY. + */ +RF_ReconBuffer_t * +rf_GetFullReconBuffer(reconCtrlPtr) + RF_ReconCtrl_t *reconCtrlPtr; +{ + RF_ReconBuffer_t *p; + + RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex); + + if ((p = reconCtrlPtr->priorityList) != NULL) { + reconCtrlPtr->priorityList = p->next; + p->next = NULL; + goto out; + } + if ((p = reconCtrlPtr->fullBufferList) != NULL) { + reconCtrlPtr->fullBufferList = p->next; + p->next = NULL; + goto out; + } +out: + RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex); + return (p); +} + + +/* if the reconstruction buffer is full, move it to the full list, + * which is maintained sorted by failed disk sector offset + * + * ASSUMES THE RB_MUTEX IS LOCKED AT ENTRY. */ +int +rf_CheckForFullRbuf(raidPtr, reconCtrl, pssPtr, numDataCol) + RF_Raid_t *raidPtr; + RF_ReconCtrl_t *reconCtrl; + RF_ReconParityStripeStatus_t *pssPtr; + int numDataCol; +{ + RF_ReconBuffer_t *p, *pt, *rbuf = (RF_ReconBuffer_t *) pssPtr->rbuf; + + if (rbuf->count == numDataCol) { + raidPtr->numFullReconBuffers++; + Dprintf2("RECON: rbuf for psid %ld ru %d has filled\n", + (long) rbuf->parityStripeID, rbuf->which_ru); + if (!reconCtrl->fullBufferList || (rbuf->failedDiskSectorOffset < reconCtrl->fullBufferList->failedDiskSectorOffset)) { + Dprintf2("RECON: rbuf for psid %ld ru %d is head of list\n", + (long) rbuf->parityStripeID, rbuf->which_ru); + rbuf->next = reconCtrl->fullBufferList; + reconCtrl->fullBufferList = rbuf; + } else { + for (pt = reconCtrl->fullBufferList, p = pt->next; p && p->failedDiskSectorOffset < rbuf->failedDiskSectorOffset; pt = p, p = p->next); + rbuf->next = p; + pt->next = rbuf; + Dprintf2("RECON: rbuf for psid %ld ru %d is in list\n", + (long) rbuf->parityStripeID, rbuf->which_ru); + } +#if 0 + pssPtr->writeRbuf = pssPtr->rbuf; /* DEBUG ONLY: we like + * to be able to find + * this rbuf while it's + * awaiting write */ +#else + rbuf->pssPtr = pssPtr; +#endif + pssPtr->rbuf = NULL; + rf_CauseReconEvent(raidPtr, rbuf->row, rbuf->col, NULL, RF_REVENT_BUFREADY); + } + return (0); +} + + +/* release a floating recon buffer for someone else to use. + * assumes the rb_mutex is LOCKED at entry + */ +void +rf_ReleaseFloatingReconBuffer(raidPtr, row, rbuf) + RF_Raid_t *raidPtr; + RF_RowCol_t row; + RF_ReconBuffer_t *rbuf; +{ + RF_ReconCtrl_t *rcPtr = raidPtr->reconControl[row]; + RF_CallbackDesc_t *cb; + + Dprintf2("RECON: releasing rbuf for psid %ld ru %d\n", + (long) rbuf->parityStripeID, rbuf->which_ru); + + /* if anyone is waiting on buffers, wake one of them up. They will + * subsequently wake up anyone else waiting on their RU */ + if (rcPtr->bufferWaitList) { + rbuf->next = rcPtr->committedRbufs; + rcPtr->committedRbufs = rbuf; + cb = rcPtr->bufferWaitList; + rcPtr->bufferWaitList = cb->next; + rf_CauseReconEvent(raidPtr, cb->row, cb->col, (void *) 1, RF_REVENT_BUFCLEAR); /* arg==1 => we've + * committed a buffer */ + rf_FreeCallbackDesc(cb); + raidPtr->procsInBufWait--; + } else { + rbuf->next = rcPtr->floatingRbufs; + rcPtr->floatingRbufs = rbuf; + } +} +/* release any disk that is waiting on a buffer for the indicated RU. + * assumes the rb_mutex is LOCKED at entry + */ +void +rf_ReleaseBufferWaiters(raidPtr, pssPtr) + RF_Raid_t *raidPtr; + RF_ReconParityStripeStatus_t *pssPtr; +{ + RF_CallbackDesc_t *cb1, *cb = pssPtr->bufWaitList; + + Dprintf2("RECON: releasing buf waiters for psid %ld ru %d\n", + (long) pssPtr->parityStripeID, pssPtr->which_ru); + pssPtr->flags &= ~RF_PSS_BUFFERWAIT; + while (cb) { + cb1 = cb->next; + cb->next = NULL; + rf_CauseReconEvent(raidPtr, cb->row, cb->col, (void *) 0, RF_REVENT_BUFCLEAR); /* arg==0 => we haven't + * committed a buffer */ + rf_FreeCallbackDesc(cb); + cb = cb1; + } + pssPtr->bufWaitList = NULL; +} +/* when reconstruction is forced on an RU, there may be some disks waiting to + * acquire a buffer for that RU. Since we allocate a new buffer as part of + * the forced-reconstruction process, we no longer have to wait for any + * buffers, so we wakeup any waiter that we find in the bufferWaitList + * + * assumes the rb_mutex is LOCKED at entry + */ +void +rf_ReleaseBufferWaiter(rcPtr, rbuf) + RF_ReconCtrl_t *rcPtr; + RF_ReconBuffer_t *rbuf; +{ + RF_CallbackDesc_t *cb, *cbt; + + for (cbt = NULL, cb = rcPtr->bufferWaitList; cb; cbt = cb, cb = cb->next) { + if ((cb->callbackArg.v == rbuf->parityStripeID) && (cb->callbackArg2.v == rbuf->which_ru)) { + Dprintf2("RECON: Dropping row %d col %d from buffer wait list\n", cb->row, cb->col); + if (cbt) + cbt->next = cb->next; + else + rcPtr->bufferWaitList = cb->next; + rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, cb->row, cb->col, (void *) 0, RF_REVENT_BUFREADY); /* arg==0 => no + * committed buffer */ + rf_FreeCallbackDesc(cb); + return; + } + } +} diff --git a/sys/dev/raidframe/rf_reconbuffer.h b/sys/dev/raidframe/rf_reconbuffer.h new file mode 100644 index 0000000..1a5407e --- /dev/null +++ b/sys/dev/raidframe/rf_reconbuffer.h @@ -0,0 +1,63 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_reconbuffer.h,v 1.3 1999/02/05 00:06:16 oster Exp $ */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Mark Holland + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +/******************************************************************* + * + * rf_reconbuffer.h -- header file for reconstruction buffer manager + * + *******************************************************************/ + +#ifndef _RF__RF_RECONBUFFER_H_ +#define _RF__RF_RECONBUFFER_H_ + +#include <dev/raidframe/rf_types.h> +#include <dev/raidframe/rf_reconstruct.h> + +int +rf_SubmitReconBuffer(RF_ReconBuffer_t * rbuf, int keep_int, + int use_committed); +int +rf_SubmitReconBufferBasic(RF_ReconBuffer_t * rbuf, int keep_int, + int use_committed); +int +rf_MultiWayReconXor(RF_Raid_t * raidPtr, + RF_ReconParityStripeStatus_t * pssPtr); +RF_ReconBuffer_t *rf_GetFullReconBuffer(RF_ReconCtrl_t * reconCtrlPtr); +int +rf_CheckForFullRbuf(RF_Raid_t * raidPtr, RF_ReconCtrl_t * reconCtrl, + RF_ReconParityStripeStatus_t * pssPtr, int numDataCol); +void +rf_ReleaseFloatingReconBuffer(RF_Raid_t * raidPtr, RF_RowCol_t row, + RF_ReconBuffer_t * rbuf); +void +rf_ReleaseBufferWaiters(RF_Raid_t * raidPtr, + RF_ReconParityStripeStatus_t * pssPtr); +void rf_ReleaseBufferWaiter(RF_ReconCtrl_t * rcPtr, RF_ReconBuffer_t * rbuf); + +#endif /* !_RF__RF_RECONBUFFER_H_ */ diff --git a/sys/dev/raidframe/rf_reconmap.c b/sys/dev/raidframe/rf_reconmap.c new file mode 100644 index 0000000..a73c138 --- /dev/null +++ b/sys/dev/raidframe/rf_reconmap.c @@ -0,0 +1,394 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_reconmap.c,v 1.6 1999/08/14 21:44:24 oster Exp $ */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Mark Holland + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +/************************************************************************* + * rf_reconmap.c + * + * code to maintain a map of what sectors have/have not been reconstructed + * + *************************************************************************/ + +#include <dev/raidframe/rf_raid.h> +#include <sys/time.h> +#include <dev/raidframe/rf_general.h> +#include <dev/raidframe/rf_utils.h> + +/* special pointer values indicating that a reconstruction unit + * has been either totally reconstructed or not at all. Both + * are illegal pointer values, so you have to be careful not to + * dereference through them. RU_NOTHING must be zero, since + * MakeReconMap uses bzero to initialize the structure. These are used + * only at the head of the list. + */ +#define RU_ALL ((RF_ReconMapListElem_t *) -1) +#define RU_NOTHING ((RF_ReconMapListElem_t *) 0) + +/* used to mark the end of the list */ +#define RU_NIL ((RF_ReconMapListElem_t *) 0) + + +static void +compact_stat_entry(RF_Raid_t * raidPtr, RF_ReconMap_t * mapPtr, + int i); +static void crunch_list(RF_ReconMap_t * mapPtr, RF_ReconMapListElem_t * listPtr); +static RF_ReconMapListElem_t * +MakeReconMapListElem(RF_SectorNum_t startSector, + RF_SectorNum_t stopSector, RF_ReconMapListElem_t * next); +static void +FreeReconMapListElem(RF_ReconMap_t * mapPtr, + RF_ReconMapListElem_t * p); +static void update_size(RF_ReconMap_t * mapPtr, int size); +static void PrintList(RF_ReconMapListElem_t * listPtr); + +/*----------------------------------------------------------------------------- + * + * Creates and initializes new Reconstruction map + * + *-----------------------------------------------------------------------------*/ + +RF_ReconMap_t * +rf_MakeReconMap(raidPtr, ru_sectors, disk_sectors, spareUnitsPerDisk) + RF_Raid_t *raidPtr; + RF_SectorCount_t ru_sectors; /* size of reconstruction unit in + * sectors */ + RF_SectorCount_t disk_sectors; /* size of disk in sectors */ + RF_ReconUnitCount_t spareUnitsPerDisk; /* zero unless distributed + * sparing */ +{ + RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; + RF_ReconUnitCount_t num_rus = layoutPtr->stripeUnitsPerDisk / layoutPtr->SUsPerRU; + RF_ReconMap_t *p; + int rc; + + RF_Malloc(p, sizeof(RF_ReconMap_t), (RF_ReconMap_t *)); + p->sectorsPerReconUnit = ru_sectors; + p->sectorsInDisk = disk_sectors; + + p->totalRUs = num_rus; + p->spareRUs = spareUnitsPerDisk; + p->unitsLeft = num_rus - spareUnitsPerDisk; + + RF_Malloc(p->status, num_rus * sizeof(RF_ReconMapListElem_t *), (RF_ReconMapListElem_t **)); + RF_ASSERT(p->status != (RF_ReconMapListElem_t **) NULL); + + (void) bzero((char *) p->status, num_rus * sizeof(RF_ReconMapListElem_t *)); + + p->size = sizeof(RF_ReconMap_t) + num_rus * sizeof(RF_ReconMapListElem_t *); + p->maxSize = p->size; + + rc = rf_mutex_init(&p->mutex, __FUNCTION__); + if (rc) { + RF_ERRORMSG3("Unable to init mutex file %s line %d rc=%d\n", __FILE__, + __LINE__, rc); + RF_Free(p->status, num_rus * sizeof(RF_ReconMapListElem_t *)); + RF_Free(p, sizeof(RF_ReconMap_t)); + return (NULL); + } + return (p); +} + + +/*----------------------------------------------------------------------------- + * + * marks a new set of sectors as reconstructed. All the possible mergings get + * complicated. To simplify matters, the approach I take is to just dump + * something into the list, and then clean it up (i.e. merge elements and + * eliminate redundant ones) in a second pass over the list (compact_stat_entry()). + * Not 100% efficient, since a structure can be allocated and then immediately + * freed, but it keeps this code from becoming (more of) a nightmare of + * special cases. The only thing that compact_stat_entry() assumes is that the + * list is sorted by startSector, and so this is the only condition I maintain + * here. (MCH) + * + *-----------------------------------------------------------------------------*/ + +void +rf_ReconMapUpdate(raidPtr, mapPtr, startSector, stopSector) + RF_Raid_t *raidPtr; + RF_ReconMap_t *mapPtr; + RF_SectorNum_t startSector; + RF_SectorNum_t stopSector; +{ + RF_SectorCount_t sectorsPerReconUnit = mapPtr->sectorsPerReconUnit; + RF_SectorNum_t i, first_in_RU, last_in_RU; + RF_ReconMapListElem_t *p, *pt; + + RF_LOCK_MUTEX(mapPtr->mutex); + RF_ASSERT(startSector >= 0 && stopSector < mapPtr->sectorsInDisk && stopSector >= startSector); + + while (startSector <= stopSector) { + i = startSector / mapPtr->sectorsPerReconUnit; + first_in_RU = i * sectorsPerReconUnit; + last_in_RU = first_in_RU + sectorsPerReconUnit - 1; + p = mapPtr->status[i]; + if (p != RU_ALL) { + if (p == RU_NOTHING || p->startSector > startSector) { /* insert at front of + * list */ + + mapPtr->status[i] = MakeReconMapListElem(startSector, RF_MIN(stopSector, last_in_RU), (p == RU_NOTHING) ? NULL : p); + update_size(mapPtr, sizeof(RF_ReconMapListElem_t)); + + } else {/* general case */ + do { /* search for place to insert */ + pt = p; + p = p->next; + } while (p && (p->startSector < startSector)); + pt->next = MakeReconMapListElem(startSector, RF_MIN(stopSector, last_in_RU), p); + update_size(mapPtr, sizeof(RF_ReconMapListElem_t)); + } + compact_stat_entry(raidPtr, mapPtr, i); + } + startSector = RF_MIN(stopSector, last_in_RU) + 1; + } + RF_UNLOCK_MUTEX(mapPtr->mutex); +} + + + +/*----------------------------------------------------------------------------- + * + * performs whatever list compactions can be done, and frees any space + * that is no longer necessary. Assumes only that the list is sorted + * by startSector. crunch_list() compacts a single list as much as possible, + * and the second block of code deletes the entire list if possible. + * crunch_list() is also called from MakeReconMapAccessList(). + * + * When a recon unit is detected to be fully reconstructed, we set the + * corresponding bit in the parity stripe map so that the head follow + * code will not select this parity stripe again. This is redundant (but + * harmless) when compact_stat_entry is called from the reconstruction code, + * but necessary when called from the user-write code. + * + *-----------------------------------------------------------------------------*/ + +static void +compact_stat_entry(raidPtr, mapPtr, i) + RF_Raid_t *raidPtr; + RF_ReconMap_t *mapPtr; + int i; +{ + RF_SectorCount_t sectorsPerReconUnit = mapPtr->sectorsPerReconUnit; + RF_ReconMapListElem_t *p = mapPtr->status[i]; + + crunch_list(mapPtr, p); + + if ((p->startSector == i * sectorsPerReconUnit) && + (p->stopSector == i * sectorsPerReconUnit + sectorsPerReconUnit - 1)) { + mapPtr->status[i] = RU_ALL; + mapPtr->unitsLeft--; + FreeReconMapListElem(mapPtr, p); + } +} + +static void +crunch_list(mapPtr, listPtr) + RF_ReconMap_t *mapPtr; + RF_ReconMapListElem_t *listPtr; +{ + RF_ReconMapListElem_t *pt, *p = listPtr; + + if (!p) + return; + pt = p; + p = p->next; + while (p) { + if (pt->stopSector >= p->startSector - 1) { + pt->stopSector = RF_MAX(pt->stopSector, p->stopSector); + pt->next = p->next; + FreeReconMapListElem(mapPtr, p); + p = pt->next; + } else { + pt = p; + p = p->next; + } + } +} +/*----------------------------------------------------------------------------- + * + * Allocate and fill a new list element + * + *-----------------------------------------------------------------------------*/ + +static RF_ReconMapListElem_t * +MakeReconMapListElem( + RF_SectorNum_t startSector, + RF_SectorNum_t stopSector, + RF_ReconMapListElem_t * next) +{ + RF_ReconMapListElem_t *p; + + RF_Malloc(p, sizeof(RF_ReconMapListElem_t), (RF_ReconMapListElem_t *)); + if (p == NULL) + return (NULL); + p->startSector = startSector; + p->stopSector = stopSector; + p->next = next; + return (p); +} +/*----------------------------------------------------------------------------- + * + * Free a list element + * + *-----------------------------------------------------------------------------*/ + +static void +FreeReconMapListElem(mapPtr, p) + RF_ReconMap_t *mapPtr; + RF_ReconMapListElem_t *p; +{ + int delta; + + if (mapPtr) { + delta = 0 - (int) sizeof(RF_ReconMapListElem_t); + update_size(mapPtr, delta); + } + RF_Free(p, sizeof(*p)); +} +/*----------------------------------------------------------------------------- + * + * Free an entire status structure. Inefficient, but can be called at any time. + * + *-----------------------------------------------------------------------------*/ +void +rf_FreeReconMap(mapPtr) + RF_ReconMap_t *mapPtr; +{ + RF_ReconMapListElem_t *p, *q; + RF_ReconUnitCount_t numRUs; + RF_ReconUnitNum_t i; + + numRUs = mapPtr->sectorsInDisk / mapPtr->sectorsPerReconUnit; + if (mapPtr->sectorsInDisk % mapPtr->sectorsPerReconUnit) + numRUs++; + + for (i = 0; i < numRUs; i++) { + p = mapPtr->status[i]; + while (p != RU_NOTHING && p != RU_ALL) { + q = p; + p = p->next; + RF_Free(q, sizeof(*q)); + } + } + rf_mutex_destroy(&mapPtr->mutex); + RF_Free(mapPtr->status, mapPtr->totalRUs * sizeof(RF_ReconMapListElem_t *)); + RF_Free(mapPtr, sizeof(RF_ReconMap_t)); +} +/*----------------------------------------------------------------------------- + * + * returns nonzero if the indicated RU has been reconstructed already + * + *---------------------------------------------------------------------------*/ + +int +rf_CheckRUReconstructed(mapPtr, startSector) + RF_ReconMap_t *mapPtr; + RF_SectorNum_t startSector; +{ + RF_ReconMapListElem_t *l; /* used for searching */ + RF_ReconUnitNum_t i; + + i = startSector / mapPtr->sectorsPerReconUnit; + l = mapPtr->status[i]; + return ((l == RU_ALL) ? 1 : 0); +} + +RF_ReconUnitCount_t +rf_UnitsLeftToReconstruct(mapPtr) + RF_ReconMap_t *mapPtr; +{ + RF_ASSERT(mapPtr != NULL); + return (mapPtr->unitsLeft); +} +/* updates the size fields of a status descriptor */ +static void +update_size(mapPtr, size) + RF_ReconMap_t *mapPtr; + int size; +{ + mapPtr->size += size; + mapPtr->maxSize = RF_MAX(mapPtr->size, mapPtr->maxSize); +} + +static void +PrintList(listPtr) + RF_ReconMapListElem_t *listPtr; +{ + while (listPtr) { + printf("%d,%d -> ", (int) listPtr->startSector, (int) listPtr->stopSector); + listPtr = listPtr->next; + } + printf("\n"); +} + +void +rf_PrintReconMap(raidPtr, mapPtr, frow, fcol) + RF_Raid_t *raidPtr; + RF_ReconMap_t *mapPtr; + RF_RowCol_t frow; + RF_RowCol_t fcol; +{ + RF_ReconUnitCount_t numRUs; + RF_ReconMapListElem_t *p; + RF_ReconUnitNum_t i; + + numRUs = mapPtr->totalRUs; + if (mapPtr->sectorsInDisk % mapPtr->sectorsPerReconUnit) + numRUs++; + + for (i = 0; i < numRUs; i++) { + p = mapPtr->status[i]; + if (p == RU_ALL)/* printf("[%d] ALL\n",i) */ + ; + else + if (p == RU_NOTHING) { + printf("%d: Unreconstructed\n", i); + } else { + printf("%d: ", i); + PrintList(p); + } + } +} + +void +rf_PrintReconSchedule(mapPtr, starttime) + RF_ReconMap_t *mapPtr; + struct timeval *starttime; +{ + static int old_pctg = -1; + struct timeval tv, diff; + int new_pctg; + + new_pctg = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs); + if (new_pctg != old_pctg) { + RF_GETTIME(tv); + RF_TIMEVAL_DIFF(starttime, &tv, &diff); + printf("%d %d.%06d\n", (int) new_pctg, (int) diff.tv_sec, (int) diff.tv_usec); + old_pctg = new_pctg; + } +} diff --git a/sys/dev/raidframe/rf_reconmap.h b/sys/dev/raidframe/rf_reconmap.h new file mode 100644 index 0000000..2fee059 --- /dev/null +++ b/sys/dev/raidframe/rf_reconmap.h @@ -0,0 +1,86 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_reconmap.h,v 1.3 1999/02/05 00:06:16 oster Exp $ */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Mark Holland + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +/****************************************************************************** + * rf_reconMap.h -- Header file describing reconstruction status data structure + ******************************************************************************/ + +#ifndef _RF__RF_RECONMAP_H_ +#define _RF__RF_RECONMAP_H_ + +#include <dev/raidframe/rf_types.h> +#include <dev/raidframe/rf_threadstuff.h> + +/* + * Main reconstruction status descriptor. size and maxsize are used for + * monitoring only: they have no function for reconstruction. + */ +struct RF_ReconMap_s { + RF_SectorCount_t sectorsPerReconUnit; /* sectors per reconstruct + * unit */ + RF_SectorCount_t sectorsInDisk; /* total sectors in disk */ + RF_SectorCount_t unitsLeft; /* recon units left to recon */ + RF_ReconUnitCount_t totalRUs; /* total recon units on disk */ + RF_ReconUnitCount_t spareRUs; /* total number of spare RUs on failed + * disk */ + RF_StripeCount_t totalParityStripes; /* total number of parity + * stripes in array */ + u_int size; /* overall size of this structure */ + u_int maxSize; /* maximum size so far */ + RF_ReconMapListElem_t **status; /* array of ptrs to list elements */ + RF_DECLARE_MUTEX(mutex) +}; +/* a list element */ +struct RF_ReconMapListElem_s { + RF_SectorNum_t startSector; /* bounding sect nums on this block */ + RF_SectorNum_t stopSector; + RF_ReconMapListElem_t *next; /* next element in list */ +}; + +RF_ReconMap_t * +rf_MakeReconMap(RF_Raid_t * raidPtr, RF_SectorCount_t ru_sectors, + RF_SectorCount_t disk_sectors, RF_ReconUnitCount_t spareUnitsPerDisk); + +void +rf_ReconMapUpdate(RF_Raid_t * raidPtr, RF_ReconMap_t * mapPtr, + RF_SectorNum_t startSector, RF_SectorNum_t stopSector); + +void rf_FreeReconMap(RF_ReconMap_t * mapPtr); + +int rf_CheckRUReconstructed(RF_ReconMap_t * mapPtr, RF_SectorNum_t startSector); + +RF_ReconUnitCount_t rf_UnitsLeftToReconstruct(RF_ReconMap_t * mapPtr); + +void +rf_PrintReconMap(RF_Raid_t * raidPtr, RF_ReconMap_t * mapPtr, + RF_RowCol_t frow, RF_RowCol_t fcol); + +void rf_PrintReconSchedule(RF_ReconMap_t * mapPtr, struct timeval * starttime); + +#endif /* !_RF__RF_RECONMAP_H_ */ diff --git a/sys/dev/raidframe/rf_reconstruct.c b/sys/dev/raidframe/rf_reconstruct.c new file mode 100644 index 0000000..9f13b67 --- /dev/null +++ b/sys/dev/raidframe/rf_reconstruct.c @@ -0,0 +1,1680 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_reconstruct.c,v 1.27 2001/01/26 02:16:24 oster Exp $ */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Mark Holland + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +/************************************************************ + * + * rf_reconstruct.c -- code to perform on-line reconstruction + * + ************************************************************/ + +#include <dev/raidframe/rf_types.h> +#include <sys/time.h> +#if defined(__FreeBSD__) +#include <sys/systm.h> +#if __FreeBSD_version > 500005 +#include <sys/bio.h> +#endif +#endif +#include <sys/buf.h> +#include <sys/errno.h> + +#include <sys/types.h> +#include <sys/param.h> +#include <sys/systm.h> +#include <sys/proc.h> +#if defined(__NetBSD__) +#include <sys/ioctl.h> +#elif defined(__FreeBSD__) +#include <sys/ioccom.h> +#endif +#include <sys/fcntl.h> +#include <sys/vnode.h> + + +#include <dev/raidframe/rf_raid.h> +#include <dev/raidframe/rf_reconutil.h> +#include <dev/raidframe/rf_revent.h> +#include <dev/raidframe/rf_reconbuffer.h> +#include <dev/raidframe/rf_acctrace.h> +#include <dev/raidframe/rf_etimer.h> +#include <dev/raidframe/rf_dag.h> +#include <dev/raidframe/rf_desc.h> +#include <dev/raidframe/rf_general.h> +#include <dev/raidframe/rf_freelist.h> +#include <dev/raidframe/rf_debugprint.h> +#include <dev/raidframe/rf_driver.h> +#include <dev/raidframe/rf_utils.h> +#include <dev/raidframe/rf_shutdown.h> + +#include <dev/raidframe/rf_kintf.h> + +/* setting these to -1 causes them to be set to their default values if not set by debug options */ + +#define Dprintf(s) if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL) +#define Dprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL) +#define Dprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL) +#define Dprintf3(s,a,b,c) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL) +#define Dprintf4(s,a,b,c,d) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL) +#define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL) +#define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL) +#define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL) + +#define DDprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL) +#define DDprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL) + +static RF_FreeList_t *rf_recond_freelist; +#define RF_MAX_FREE_RECOND 4 +#define RF_RECOND_INC 1 + +static RF_RaidReconDesc_t * +AllocRaidReconDesc(RF_Raid_t * raidPtr, + RF_RowCol_t row, RF_RowCol_t col, RF_RaidDisk_t * spareDiskPtr, + int numDisksDone, RF_RowCol_t srow, RF_RowCol_t scol); +static void FreeReconDesc(RF_RaidReconDesc_t * reconDesc); +static int +ProcessReconEvent(RF_Raid_t * raidPtr, RF_RowCol_t frow, + RF_ReconEvent_t * event); +static int +IssueNextReadRequest(RF_Raid_t * raidPtr, RF_RowCol_t row, + RF_RowCol_t col); +static int TryToRead(RF_Raid_t * raidPtr, RF_RowCol_t row, RF_RowCol_t col); +static int +ComputePSDiskOffsets(RF_Raid_t * raidPtr, RF_StripeNum_t psid, + RF_RowCol_t row, RF_RowCol_t col, RF_SectorNum_t * outDiskOffset, + RF_SectorNum_t * outFailedDiskSectorOffset, RF_RowCol_t * spRow, + RF_RowCol_t * spCol, RF_SectorNum_t * spOffset); +static int IssueNextWriteRequest(RF_Raid_t * raidPtr, RF_RowCol_t row); +static int ReconReadDoneProc(void *arg, int status); +static int ReconWriteDoneProc(void *arg, int status); +static void +CheckForNewMinHeadSep(RF_Raid_t * raidPtr, RF_RowCol_t row, + RF_HeadSepLimit_t hsCtr); +static int +CheckHeadSeparation(RF_Raid_t * raidPtr, RF_PerDiskReconCtrl_t * ctrl, + RF_RowCol_t row, RF_RowCol_t col, RF_HeadSepLimit_t hsCtr, + RF_ReconUnitNum_t which_ru); +static int +CheckForcedOrBlockedReconstruction(RF_Raid_t * raidPtr, + RF_ReconParityStripeStatus_t * pssPtr, RF_PerDiskReconCtrl_t * ctrl, + RF_RowCol_t row, RF_RowCol_t col, RF_StripeNum_t psid, + RF_ReconUnitNum_t which_ru); +static void ForceReconReadDoneProc(void *arg, int status); + +static void rf_ShutdownReconstruction(void *); + +struct RF_ReconDoneProc_s { + void (*proc) (RF_Raid_t *, void *); + void *arg; + RF_ReconDoneProc_t *next; +}; + +static RF_FreeList_t *rf_rdp_freelist; +#define RF_MAX_FREE_RDP 4 +#define RF_RDP_INC 1 + +static void +SignalReconDone(RF_Raid_t * raidPtr) +{ + RF_ReconDoneProc_t *p; + + RF_LOCK_MUTEX(raidPtr->recon_done_proc_mutex); + for (p = raidPtr->recon_done_procs; p; p = p->next) { + p->proc(raidPtr, p->arg); + } + RF_UNLOCK_MUTEX(raidPtr->recon_done_proc_mutex); +} + +int +rf_RegisterReconDoneProc( + RF_Raid_t * raidPtr, + void (*proc) (RF_Raid_t *, void *), + void *arg, + RF_ReconDoneProc_t ** handlep) +{ + RF_ReconDoneProc_t *p; + + RF_FREELIST_GET(rf_rdp_freelist, p, next, (RF_ReconDoneProc_t *)); + if (p == NULL) + return (ENOMEM); + p->proc = proc; + p->arg = arg; + RF_LOCK_MUTEX(raidPtr->recon_done_proc_mutex); + p->next = raidPtr->recon_done_procs; + raidPtr->recon_done_procs = p; + RF_UNLOCK_MUTEX(raidPtr->recon_done_proc_mutex); + if (handlep) + *handlep = p; + return (0); +} +/************************************************************************** + * + * sets up the parameters that will be used by the reconstruction process + * currently there are none, except for those that the layout-specific + * configuration (e.g. rf_ConfigureDeclustered) routine sets up. + * + * in the kernel, we fire off the recon thread. + * + **************************************************************************/ +static void +rf_ShutdownReconstruction(ignored) + void *ignored; +{ + RF_FREELIST_DESTROY(rf_recond_freelist, next, (RF_RaidReconDesc_t *)); + RF_FREELIST_DESTROY(rf_rdp_freelist, next, (RF_ReconDoneProc_t *)); +} + +int +rf_ConfigureReconstruction(listp) + RF_ShutdownList_t **listp; +{ + int rc; + + RF_FREELIST_CREATE(rf_recond_freelist, RF_MAX_FREE_RECOND, + RF_RECOND_INC, sizeof(RF_RaidReconDesc_t)); + if (rf_recond_freelist == NULL) + return (ENOMEM); + RF_FREELIST_CREATE(rf_rdp_freelist, RF_MAX_FREE_RDP, + RF_RDP_INC, sizeof(RF_ReconDoneProc_t)); + if (rf_rdp_freelist == NULL) { + RF_FREELIST_DESTROY(rf_recond_freelist, next, (RF_RaidReconDesc_t *)); + return (ENOMEM); + } + rc = rf_ShutdownCreate(listp, rf_ShutdownReconstruction, NULL); + if (rc) { + RF_ERRORMSG3("Unable to add to shutdown list file %s line %d rc=%d\n", + __FILE__, __LINE__, rc); + rf_ShutdownReconstruction(NULL); + return (rc); + } + return (0); +} + +static RF_RaidReconDesc_t * +AllocRaidReconDesc(raidPtr, row, col, spareDiskPtr, numDisksDone, srow, scol) + RF_Raid_t *raidPtr; + RF_RowCol_t row; + RF_RowCol_t col; + RF_RaidDisk_t *spareDiskPtr; + int numDisksDone; + RF_RowCol_t srow; + RF_RowCol_t scol; +{ + + RF_RaidReconDesc_t *reconDesc; + + RF_FREELIST_GET(rf_recond_freelist, reconDesc, next, (RF_RaidReconDesc_t *)); + + reconDesc->raidPtr = raidPtr; + reconDesc->row = row; + reconDesc->col = col; + reconDesc->spareDiskPtr = spareDiskPtr; + reconDesc->numDisksDone = numDisksDone; + reconDesc->srow = srow; + reconDesc->scol = scol; + reconDesc->state = 0; + reconDesc->next = NULL; + + return (reconDesc); +} + +static void +FreeReconDesc(reconDesc) + RF_RaidReconDesc_t *reconDesc; +{ +#if RF_RECON_STATS > 0 + printf("RAIDframe: %lu recon event waits, %lu recon delays\n", + (long) reconDesc->numReconEventWaits, (long) reconDesc->numReconExecDelays); +#endif /* RF_RECON_STATS > 0 */ + printf("RAIDframe: %lu max exec ticks\n", + (long) reconDesc->maxReconExecTicks); +#if (RF_RECON_STATS > 0) || defined(KERNEL) + printf("\n"); +#endif /* (RF_RECON_STATS > 0) || KERNEL */ + RF_FREELIST_FREE(rf_recond_freelist, reconDesc, next); +} + + +/***************************************************************************** + * + * primary routine to reconstruct a failed disk. This should be called from + * within its own thread. It won't return until reconstruction completes, + * fails, or is aborted. + *****************************************************************************/ +int +rf_ReconstructFailedDisk(raidPtr, row, col) + RF_Raid_t *raidPtr; + RF_RowCol_t row; + RF_RowCol_t col; +{ + RF_LayoutSW_t *lp; + int rc; + + lp = raidPtr->Layout.map; + if (lp->SubmitReconBuffer) { + /* + * The current infrastructure only supports reconstructing one + * disk at a time for each array. + */ + RF_LOCK_MUTEX(raidPtr->mutex); + while (raidPtr->reconInProgress) { + RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex); + } + raidPtr->reconInProgress++; + RF_UNLOCK_MUTEX(raidPtr->mutex); + rc = rf_ReconstructFailedDiskBasic(raidPtr, row, col); + RF_LOCK_MUTEX(raidPtr->mutex); + raidPtr->reconInProgress--; + RF_UNLOCK_MUTEX(raidPtr->mutex); + } else { + RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n", + lp->parityConfig); + rc = EIO; + } + RF_SIGNAL_COND(raidPtr->waitForReconCond); + wakeup(&raidPtr->waitForReconCond); /* XXX Methinks this will be + * needed at some point... GO */ + return (rc); +} + +int +rf_ReconstructFailedDiskBasic(raidPtr, row, col) + RF_Raid_t *raidPtr; + RF_RowCol_t row; + RF_RowCol_t col; +{ + RF_ComponentLabel_t *c_label; + RF_RaidDisk_t *spareDiskPtr = NULL; + RF_RaidReconDesc_t *reconDesc; + RF_RowCol_t srow, scol; + int numDisksDone = 0, rc; + + RF_Malloc(c_label, sizeof(RF_ComponentLabel_t), (RF_ComponentLabel_t *)); + if (c_label == NULL) { + printf("rf_ReconstructInPlace: Out of memory?\n"); + return (ENOMEM); + } + + /* first look for a spare drive onto which to reconstruct the data */ + /* spare disk descriptors are stored in row 0. This may have to + * change eventually */ + + RF_LOCK_MUTEX(raidPtr->mutex); + RF_ASSERT(raidPtr->Disks[row][col].status == rf_ds_failed); + + if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) { + if (raidPtr->status[row] != rf_rs_degraded) { + RF_ERRORMSG2("Unable to reconstruct disk at row %d col %d because status not degraded\n", row, col); + RF_UNLOCK_MUTEX(raidPtr->mutex); + RF_Free(c_label, sizeof(RF_ComponentLabel_t)); + return (EINVAL); + } + srow = row; + scol = (-1); + } else { + srow = 0; + for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) { + if (raidPtr->Disks[srow][scol].status == rf_ds_spare) { + spareDiskPtr = &raidPtr->Disks[srow][scol]; + spareDiskPtr->status = rf_ds_used_spare; + break; + } + } + if (!spareDiskPtr) { + RF_ERRORMSG2("Unable to reconstruct disk at row %d col %d because no spares are available\n", row, col); + RF_UNLOCK_MUTEX(raidPtr->mutex); + RF_Free(c_label, sizeof(RF_ComponentLabel_t)); + return (ENOSPC); + } + printf("RECON: initiating reconstruction on row %d col %d -> spare at row %d col %d\n", row, col, srow, scol); + } + RF_UNLOCK_MUTEX(raidPtr->mutex); + + reconDesc = AllocRaidReconDesc((void *) raidPtr, row, col, spareDiskPtr, numDisksDone, srow, scol); + raidPtr->reconDesc = (void *) reconDesc; +#if RF_RECON_STATS > 0 + reconDesc->hsStallCount = 0; + reconDesc->numReconExecDelays = 0; + reconDesc->numReconEventWaits = 0; +#endif /* RF_RECON_STATS > 0 */ + reconDesc->reconExecTimerRunning = 0; + reconDesc->reconExecTicks = 0; + reconDesc->maxReconExecTicks = 0; + rc = rf_ContinueReconstructFailedDisk(reconDesc); + + if (!rc) { + /* fix up the component label */ + /* Don't actually need the read here.. */ + raidread_component_label( + raidPtr->raid_cinfo[srow][scol].ci_dev, + raidPtr->raid_cinfo[srow][scol].ci_vp, + c_label); + + raid_init_component_label( raidPtr, c_label); + c_label->row = row; + c_label->column = col; + c_label->clean = RF_RAID_DIRTY; + c_label->status = rf_ds_optimal; + c_label->partitionSize = raidPtr->Disks[srow][scol].partitionSize; + + /* We've just done a rebuild based on all the other + disks, so at this point the parity is known to be + clean, even if it wasn't before. */ + + /* XXX doesn't hold for RAID 6!! */ + + raidPtr->parity_good = RF_RAID_CLEAN; + + /* XXXX MORE NEEDED HERE */ + + raidwrite_component_label( + raidPtr->raid_cinfo[srow][scol].ci_dev, + raidPtr->raid_cinfo[srow][scol].ci_vp, + c_label); + + } + RF_Free(c_label, sizeof(RF_ComponentLabel_t)); + return (rc); +} + +/* + + Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL, + and you don't get a spare until the next Monday. With this function + (and hot-swappable drives) you can now put your new disk containing + /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to + rebuild the data "on the spot". + +*/ + +int +rf_ReconstructInPlace(raidPtr, row, col) + RF_Raid_t *raidPtr; + RF_RowCol_t row; + RF_RowCol_t col; +{ + RF_RaidDisk_t *spareDiskPtr = NULL; + RF_RaidReconDesc_t *reconDesc; + RF_LayoutSW_t *lp; + RF_RaidDisk_t *badDisk; + RF_ComponentLabel_t *c_label; + int numDisksDone = 0, rc; + struct vnode *vp; + int retcode; + int ac; + + RF_Malloc(c_label, sizeof(RF_ComponentLabel_t), (RF_ComponentLabel_t *)); + if (c_label == NULL) { + printf("rf_ReconstructInPlace: Out of memory?\n"); + return (ENOMEM); + } + + lp = raidPtr->Layout.map; + if (lp->SubmitReconBuffer) { + /* + * The current infrastructure only supports reconstructing one + * disk at a time for each array. + */ + RF_LOCK_MUTEX(raidPtr->mutex); + if ((raidPtr->Disks[row][col].status == rf_ds_optimal) && + (raidPtr->numFailures > 0)) { + /* XXX 0 above shouldn't be constant!!! */ + /* some component other than this has failed. + Let's not make things worse than they already + are... */ + printf("RAIDFRAME: Unable to reconstruct to disk at:\n"); + printf(" Row: %d Col: %d Too many failures.\n", + row, col); + RF_UNLOCK_MUTEX(raidPtr->mutex); + RF_Free(c_label, sizeof(RF_ComponentLabel_t)); + return (EINVAL); + } + if (raidPtr->Disks[row][col].status == rf_ds_reconstructing) { + printf("RAIDFRAME: Unable to reconstruct to disk at:\n"); + printf(" Row: %d Col: %d Reconstruction already occuring!\n", row, col); + + RF_UNLOCK_MUTEX(raidPtr->mutex); + RF_Free(c_label, sizeof(RF_ComponentLabel_t)); + return (EINVAL); + } + + + if (raidPtr->Disks[row][col].status != rf_ds_failed) { + /* "It's gone..." */ + raidPtr->numFailures++; + raidPtr->Disks[row][col].status = rf_ds_failed; + raidPtr->status[row] = rf_rs_degraded; + rf_update_component_labels(raidPtr, + RF_NORMAL_COMPONENT_UPDATE); + } + + while (raidPtr->reconInProgress) { + RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex); + } + + raidPtr->reconInProgress++; + + + /* first look for a spare drive onto which to reconstruct + the data. spare disk descriptors are stored in row 0. + This may have to change eventually */ + + /* Actually, we don't care if it's failed or not... + On a RAID set with correct parity, this function + should be callable on any component without ill affects. */ + /* RF_ASSERT(raidPtr->Disks[row][col].status == rf_ds_failed); + */ + + if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) { + RF_ERRORMSG2("Unable to reconstruct to disk at row %d col %d: operation not supported for RF_DISTRIBUTE_SPARE\n", row, col); + + raidPtr->reconInProgress--; + RF_UNLOCK_MUTEX(raidPtr->mutex); + RF_Free(c_label, sizeof(RF_ComponentLabel_t)); + return (EINVAL); + } + + /* XXX need goop here to see if the disk is alive, + and, if not, make it so... */ + + + + badDisk = &raidPtr->Disks[row][col]; + + /* This device may have been opened successfully the + first time. Close it before trying to open it again.. */ + + if (raidPtr->raid_cinfo[row][col].ci_vp != NULL) { + printf("Closed the open device: %s\n", + raidPtr->Disks[row][col].devname); + vp = raidPtr->raid_cinfo[row][col].ci_vp; + ac = raidPtr->Disks[row][col].auto_configured; + rf_close_component(raidPtr, vp, ac); + raidPtr->raid_cinfo[row][col].ci_vp = NULL; + } + /* note that this disk was *not* auto_configured (any longer)*/ + raidPtr->Disks[row][col].auto_configured = 0; + + printf("About to (re-)open the device for rebuilding: %s\n", + raidPtr->Disks[row][col].devname); + + retcode = raid_getcomponentsize(raidPtr, row, col); + + if (retcode) { + printf("raid%d: rebuilding: raidlookup on device: %s failed: %d!\n", + raidPtr->raidid, raidPtr->Disks[row][col].devname, + retcode); + + /* XXX the component isn't responding properly... + must be still dead :-( */ + raidPtr->reconInProgress--; + RF_UNLOCK_MUTEX(raidPtr->mutex); + RF_Free(c_label, sizeof(RF_ComponentLabel_t)); + return(retcode); + + } + + spareDiskPtr = &raidPtr->Disks[row][col]; + spareDiskPtr->status = rf_ds_used_spare; + + printf("RECON: initiating in-place reconstruction on\n"); + printf(" row %d col %d -> spare at row %d col %d\n", + row, col, row, col); + + RF_UNLOCK_MUTEX(raidPtr->mutex); + + reconDesc = AllocRaidReconDesc((void *) raidPtr, row, col, + spareDiskPtr, numDisksDone, + row, col); + raidPtr->reconDesc = (void *) reconDesc; +#if RF_RECON_STATS > 0 + reconDesc->hsStallCount = 0; + reconDesc->numReconExecDelays = 0; + reconDesc->numReconEventWaits = 0; +#endif /* RF_RECON_STATS > 0 */ + reconDesc->reconExecTimerRunning = 0; + reconDesc->reconExecTicks = 0; + reconDesc->maxReconExecTicks = 0; + rc = rf_ContinueReconstructFailedDisk(reconDesc); + + RF_LOCK_MUTEX(raidPtr->mutex); + raidPtr->reconInProgress--; + RF_UNLOCK_MUTEX(raidPtr->mutex); + + } else { + RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n", + lp->parityConfig); + rc = EIO; + } + RF_LOCK_MUTEX(raidPtr->mutex); + + if (!rc) { + /* Need to set these here, as at this point it'll be claiming + that the disk is in rf_ds_spared! But we know better :-) */ + + raidPtr->Disks[row][col].status = rf_ds_optimal; + raidPtr->status[row] = rf_rs_optimal; + + /* fix up the component label */ + /* Don't actually need the read here.. */ + raidread_component_label(raidPtr->raid_cinfo[row][col].ci_dev, + raidPtr->raid_cinfo[row][col].ci_vp, + c_label); + + raid_init_component_label(raidPtr, c_label); + + c_label->row = row; + c_label->column = col; + + /* We've just done a rebuild based on all the other + disks, so at this point the parity is known to be + clean, even if it wasn't before. */ + + /* XXX doesn't hold for RAID 6!! */ + + raidPtr->parity_good = RF_RAID_CLEAN; + + raidwrite_component_label(raidPtr->raid_cinfo[row][col].ci_dev, + raidPtr->raid_cinfo[row][col].ci_vp, + c_label); + + } + RF_UNLOCK_MUTEX(raidPtr->mutex); + RF_SIGNAL_COND(raidPtr->waitForReconCond); + wakeup(&raidPtr->waitForReconCond); + RF_Free(c_label, sizeof(RF_ComponentLabel_t)); + return (rc); +} + + +int +rf_ContinueReconstructFailedDisk(reconDesc) + RF_RaidReconDesc_t *reconDesc; +{ + RF_Raid_t *raidPtr = reconDesc->raidPtr; + RF_RowCol_t row = reconDesc->row; + RF_RowCol_t col = reconDesc->col; + RF_RowCol_t srow = reconDesc->srow; + RF_RowCol_t scol = reconDesc->scol; + RF_ReconMap_t *mapPtr; + + RF_ReconEvent_t *event; + struct timeval etime, elpsd; + unsigned long xor_s, xor_resid_us; + int retcode, i, ds; + + switch (reconDesc->state) { + + + case 0: + + raidPtr->accumXorTimeUs = 0; + + /* create one trace record per physical disk */ + RF_Malloc(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *)); + + /* quiesce the array prior to starting recon. this is needed + * to assure no nasty interactions with pending user writes. + * We need to do this before we change the disk or row status. */ + reconDesc->state = 1; + + Dprintf("RECON: begin request suspend\n"); + retcode = rf_SuspendNewRequestsAndWait(raidPtr); + Dprintf("RECON: end request suspend\n"); + rf_StartUserStats(raidPtr); /* zero out the stats kept on + * user accs */ + + /* fall through to state 1 */ + + case 1: + + RF_LOCK_MUTEX(raidPtr->mutex); + + /* create the reconstruction control pointer and install it in + * the right slot */ + raidPtr->reconControl[row] = rf_MakeReconControl(reconDesc, row, col, srow, scol); + mapPtr = raidPtr->reconControl[row]->reconMap; + raidPtr->status[row] = rf_rs_reconstructing; + raidPtr->Disks[row][col].status = rf_ds_reconstructing; + raidPtr->Disks[row][col].spareRow = srow; + raidPtr->Disks[row][col].spareCol = scol; + + RF_UNLOCK_MUTEX(raidPtr->mutex); + + RF_GETTIME(raidPtr->reconControl[row]->starttime); + + /* now start up the actual reconstruction: issue a read for + * each surviving disk */ + + reconDesc->numDisksDone = 0; + for (i = 0; i < raidPtr->numCol; i++) { + if (i != col) { + /* find and issue the next I/O on the + * indicated disk */ + if (IssueNextReadRequest(raidPtr, row, i)) { + Dprintf2("RECON: done issuing for r%d c%d\n", row, i); + reconDesc->numDisksDone++; + } + } + } + + case 2: + Dprintf("RECON: resume requests\n"); + rf_ResumeNewRequests(raidPtr); + + + reconDesc->state = 3; + + case 3: + + /* process reconstruction events until all disks report that + * they've completed all work */ + mapPtr = raidPtr->reconControl[row]->reconMap; + + + + while (reconDesc->numDisksDone < raidPtr->numCol - 1) { + + event = rf_GetNextReconEvent(reconDesc, row, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc); + RF_ASSERT(event); + + if (ProcessReconEvent(raidPtr, row, event)) + reconDesc->numDisksDone++; + raidPtr->reconControl[row]->numRUsTotal = + mapPtr->totalRUs; + raidPtr->reconControl[row]->numRUsComplete = + mapPtr->totalRUs - + rf_UnitsLeftToReconstruct(mapPtr); + + raidPtr->reconControl[row]->percentComplete = + (raidPtr->reconControl[row]->numRUsComplete * 100 / raidPtr->reconControl[row]->numRUsTotal); + if (rf_prReconSched) { + rf_PrintReconSchedule(raidPtr->reconControl[row]->reconMap, &(raidPtr->reconControl[row]->starttime)); + } + } + + + + reconDesc->state = 4; + + + case 4: + mapPtr = raidPtr->reconControl[row]->reconMap; + if (rf_reconDebug) { + printf("RECON: all reads completed\n"); + } + /* at this point all the reads have completed. We now wait + * for any pending writes to complete, and then we're done */ + + while (rf_UnitsLeftToReconstruct(raidPtr->reconControl[row]->reconMap) > 0) { + + event = rf_GetNextReconEvent(reconDesc, row, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc); + RF_ASSERT(event); + + (void) ProcessReconEvent(raidPtr, row, event); /* ignore return code */ + raidPtr->reconControl[row]->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs); + if (rf_prReconSched) { + rf_PrintReconSchedule(raidPtr->reconControl[row]->reconMap, &(raidPtr->reconControl[row]->starttime)); + } + } + reconDesc->state = 5; + + case 5: + /* Success: mark the dead disk as reconstructed. We quiesce + * the array here to assure no nasty interactions with pending + * user accesses when we free up the psstatus structure as + * part of FreeReconControl() */ + + reconDesc->state = 6; + + retcode = rf_SuspendNewRequestsAndWait(raidPtr); + rf_StopUserStats(raidPtr); + rf_PrintUserStats(raidPtr); /* print out the stats on user + * accs accumulated during + * recon */ + + /* fall through to state 6 */ + case 6: + + + + RF_LOCK_MUTEX(raidPtr->mutex); + raidPtr->numFailures--; + ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE); + raidPtr->Disks[row][col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared; + raidPtr->status[row] = (ds) ? rf_rs_reconfigured : rf_rs_optimal; + RF_UNLOCK_MUTEX(raidPtr->mutex); + RF_GETTIME(etime); + RF_TIMEVAL_DIFF(&(raidPtr->reconControl[row]->starttime), &etime, &elpsd); + + /* XXX -- why is state 7 different from state 6 if there is no + * return() here? -- XXX Note that I set elpsd above & use it + * below, so if you put a return here you'll have to fix this. + * (also, FreeReconControl is called below) */ + + case 7: + + rf_ResumeNewRequests(raidPtr); + + printf("Reconstruction of disk at row %d col %d completed\n", + row, col); + xor_s = raidPtr->accumXorTimeUs / 1000000; + xor_resid_us = raidPtr->accumXorTimeUs % 1000000; + printf("Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n", + (int) elpsd.tv_sec, (int) elpsd.tv_usec, raidPtr->accumXorTimeUs, xor_s, xor_resid_us); + printf(" (start time %d sec %d usec, end time %d sec %d usec)\n", + (int) raidPtr->reconControl[row]->starttime.tv_sec, + (int) raidPtr->reconControl[row]->starttime.tv_usec, + (int) etime.tv_sec, (int) etime.tv_usec); + +#if RF_RECON_STATS > 0 + printf("Total head-sep stall count was %d\n", + (int) reconDesc->hsStallCount); +#endif /* RF_RECON_STATS > 0 */ + rf_FreeReconControl(raidPtr, row); + RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t)); + FreeReconDesc(reconDesc); + + } + + SignalReconDone(raidPtr); + return (0); +} +/***************************************************************************** + * do the right thing upon each reconstruction event. + * returns nonzero if and only if there is nothing left unread on the + * indicated disk + *****************************************************************************/ +static int +ProcessReconEvent(raidPtr, frow, event) + RF_Raid_t *raidPtr; + RF_RowCol_t frow; + RF_ReconEvent_t *event; +{ + int retcode = 0, submitblocked; + RF_ReconBuffer_t *rbuf; + RF_SectorCount_t sectorsPerRU; + + Dprintf1("RECON: ProcessReconEvent type %d\n", event->type); + switch (event->type) { + + /* a read I/O has completed */ + case RF_REVENT_READDONE: + rbuf = raidPtr->reconControl[frow]->perDiskInfo[event->col].rbuf; + Dprintf3("RECON: READDONE EVENT: row %d col %d psid %ld\n", + frow, event->col, rbuf->parityStripeID); + Dprintf7("RECON: done read psid %ld buf %lx %02x %02x %02x %02x %02x\n", + rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff, + rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff); + rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); + submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0); + Dprintf1("RECON: submitblocked=%d\n", submitblocked); + if (!submitblocked) + retcode = IssueNextReadRequest(raidPtr, frow, event->col); + break; + + /* a write I/O has completed */ + case RF_REVENT_WRITEDONE: + if (rf_floatingRbufDebug) { + rf_CheckFloatingRbufCount(raidPtr, 1); + } + sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; + rbuf = (RF_ReconBuffer_t *) event->arg; + rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); + Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n", + rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl[frow]->percentComplete); + rf_ReconMapUpdate(raidPtr, raidPtr->reconControl[frow]->reconMap, + rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1); + rf_RemoveFromActiveReconTable(raidPtr, frow, rbuf->parityStripeID, rbuf->which_ru); + + if (rbuf->type == RF_RBUF_TYPE_FLOATING) { + RF_LOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex); + raidPtr->numFullReconBuffers--; + rf_ReleaseFloatingReconBuffer(raidPtr, frow, rbuf); + RF_UNLOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex); + } else + if (rbuf->type == RF_RBUF_TYPE_FORCED) + rf_FreeReconBuffer(rbuf); + else + RF_ASSERT(0); + break; + + case RF_REVENT_BUFCLEAR: /* A buffer-stall condition has been + * cleared */ + Dprintf2("RECON: BUFCLEAR EVENT: row %d col %d\n", frow, event->col); + submitblocked = rf_SubmitReconBuffer(raidPtr->reconControl[frow]->perDiskInfo[event->col].rbuf, 0, (int) (long) event->arg); + RF_ASSERT(!submitblocked); /* we wouldn't have gotten the + * BUFCLEAR event if we + * couldn't submit */ + retcode = IssueNextReadRequest(raidPtr, frow, event->col); + break; + + case RF_REVENT_BLOCKCLEAR: /* A user-write reconstruction + * blockage has been cleared */ + DDprintf2("RECON: BLOCKCLEAR EVENT: row %d col %d\n", frow, event->col); + retcode = TryToRead(raidPtr, frow, event->col); + break; + + case RF_REVENT_HEADSEPCLEAR: /* A max-head-separation + * reconstruction blockage has been + * cleared */ + Dprintf2("RECON: HEADSEPCLEAR EVENT: row %d col %d\n", frow, event->col); + retcode = TryToRead(raidPtr, frow, event->col); + break; + + /* a buffer has become ready to write */ + case RF_REVENT_BUFREADY: + Dprintf2("RECON: BUFREADY EVENT: row %d col %d\n", frow, event->col); + retcode = IssueNextWriteRequest(raidPtr, frow); + if (rf_floatingRbufDebug) { + rf_CheckFloatingRbufCount(raidPtr, 1); + } + break; + + /* we need to skip the current RU entirely because it got + * recon'd while we were waiting for something else to happen */ + case RF_REVENT_SKIP: + DDprintf2("RECON: SKIP EVENT: row %d col %d\n", frow, event->col); + retcode = IssueNextReadRequest(raidPtr, frow, event->col); + break; + + /* a forced-reconstruction read access has completed. Just + * submit the buffer */ + case RF_REVENT_FORCEDREADDONE: + rbuf = (RF_ReconBuffer_t *) event->arg; + rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); + DDprintf2("RECON: FORCEDREADDONE EVENT: row %d col %d\n", frow, event->col); + submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0); + RF_ASSERT(!submitblocked); + break; + + default: + RF_PANIC(); + } + rf_FreeReconEventDesc(event); + return (retcode); +} +/***************************************************************************** + * + * find the next thing that's needed on the indicated disk, and issue + * a read request for it. We assume that the reconstruction buffer + * associated with this process is free to receive the data. If + * reconstruction is blocked on the indicated RU, we issue a + * blockage-release request instead of a physical disk read request. + * If the current disk gets too far ahead of the others, we issue a + * head-separation wait request and return. + * + * ctrl->{ru_count, curPSID, diskOffset} and + * rbuf->failedDiskSectorOffset are maintained to point to the unit + * we're currently accessing. Note that this deviates from the + * standard C idiom of having counters point to the next thing to be + * accessed. This allows us to easily retry when we're blocked by + * head separation or reconstruction-blockage events. + * + * returns nonzero if and only if there is nothing left unread on the + * indicated disk + * + *****************************************************************************/ +static int +IssueNextReadRequest(raidPtr, row, col) + RF_Raid_t *raidPtr; + RF_RowCol_t row; + RF_RowCol_t col; +{ + RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl[row]->perDiskInfo[col]; + RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; + RF_ReconBuffer_t *rbuf = ctrl->rbuf; + RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU; + RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU; + int do_new_check = 0, retcode = 0, status; + + /* if we are currently the slowest disk, mark that we have to do a new + * check */ + if (ctrl->headSepCounter <= raidPtr->reconControl[row]->minHeadSepCounter) + do_new_check = 1; + + while (1) { + + ctrl->ru_count++; + if (ctrl->ru_count < RUsPerPU) { + ctrl->diskOffset += sectorsPerRU; + rbuf->failedDiskSectorOffset += sectorsPerRU; + } else { + ctrl->curPSID++; + ctrl->ru_count = 0; + /* code left over from when head-sep was based on + * parity stripe id */ + if (ctrl->curPSID >= raidPtr->reconControl[row]->lastPSID) { + CheckForNewMinHeadSep(raidPtr, row, ++(ctrl->headSepCounter)); + return (1); /* finito! */ + } + /* find the disk offsets of the start of the parity + * stripe on both the current disk and the failed + * disk. skip this entire parity stripe if either disk + * does not appear in the indicated PS */ + status = ComputePSDiskOffsets(raidPtr, ctrl->curPSID, row, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset, + &rbuf->spRow, &rbuf->spCol, &rbuf->spOffset); + if (status) { + ctrl->ru_count = RUsPerPU - 1; + continue; + } + } + rbuf->which_ru = ctrl->ru_count; + + /* skip this RU if it's already been reconstructed */ + if (rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, rbuf->failedDiskSectorOffset)) { + Dprintf2("Skipping psid %ld ru %d: already reconstructed\n", ctrl->curPSID, ctrl->ru_count); + continue; + } + break; + } + ctrl->headSepCounter++; + if (do_new_check) + CheckForNewMinHeadSep(raidPtr, row, ctrl->headSepCounter); /* update min if needed */ + + + /* at this point, we have definitely decided what to do, and we have + * only to see if we can actually do it now */ + rbuf->parityStripeID = ctrl->curPSID; + rbuf->which_ru = ctrl->ru_count; + bzero((char *) &raidPtr->recon_tracerecs[col], sizeof(raidPtr->recon_tracerecs[col])); + raidPtr->recon_tracerecs[col].reconacc = 1; + RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer); + retcode = TryToRead(raidPtr, row, col); + return (retcode); +} + +/* + * tries to issue the next read on the indicated disk. We may be + * blocked by (a) the heads being too far apart, or (b) recon on the + * indicated RU being blocked due to a write by a user thread. In + * this case, we issue a head-sep or blockage wait request, which will + * cause this same routine to be invoked again later when the blockage + * has cleared. + */ + +static int +TryToRead(raidPtr, row, col) + RF_Raid_t *raidPtr; + RF_RowCol_t row; + RF_RowCol_t col; +{ + RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl[row]->perDiskInfo[col]; + RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; + RF_StripeNum_t psid = ctrl->curPSID; + RF_ReconUnitNum_t which_ru = ctrl->ru_count; + RF_DiskQueueData_t *req; + int status, created = 0; + RF_ReconParityStripeStatus_t *pssPtr; + + /* if the current disk is too far ahead of the others, issue a + * head-separation wait and return */ + if (CheckHeadSeparation(raidPtr, ctrl, row, col, ctrl->headSepCounter, which_ru)) + return (0); + RF_LOCK_PSS_MUTEX(raidPtr, row, psid); + pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_CREATE, &created); + + /* if recon is blocked on the indicated parity stripe, issue a + * block-wait request and return. this also must mark the indicated RU + * in the stripe as under reconstruction if not blocked. */ + status = CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, row, col, psid, which_ru); + if (status == RF_PSS_RECON_BLOCKED) { + Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n", psid, which_ru); + goto out; + } else + if (status == RF_PSS_FORCED_ON_WRITE) { + rf_CauseReconEvent(raidPtr, row, col, NULL, RF_REVENT_SKIP); + goto out; + } + /* make one last check to be sure that the indicated RU didn't get + * reconstructed while we were waiting for something else to happen. + * This is unfortunate in that it causes us to make this check twice + * in the normal case. Might want to make some attempt to re-work + * this so that we only do this check if we've definitely blocked on + * one of the above checks. When this condition is detected, we may + * have just created a bogus status entry, which we need to delete. */ + if (rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, ctrl->rbuf->failedDiskSectorOffset)) { + Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n", psid, which_ru); + if (created) + rf_PSStatusDelete(raidPtr, raidPtr->reconControl[row]->pssTable, pssPtr); + rf_CauseReconEvent(raidPtr, row, col, NULL, RF_REVENT_SKIP); + goto out; + } + /* found something to read. issue the I/O */ + Dprintf5("RECON: Read for psid %ld on row %d col %d offset %ld buf %lx\n", + psid, row, col, ctrl->diskOffset, ctrl->rbuf->buffer); + RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer); + RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer); + raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us = + RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer); + RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer); + + /* should be ok to use a NULL proc pointer here, all the bufs we use + * should be in kernel space */ + req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru, + ReconReadDoneProc, (void *) ctrl, NULL, &raidPtr->recon_tracerecs[col], (void *) raidPtr, 0, NULL); + + RF_ASSERT(req); /* XXX -- fix this -- XXX */ + + ctrl->rbuf->arg = (void *) req; + rf_DiskIOEnqueue(&raidPtr->Queues[row][col], req, RF_IO_RECON_PRIORITY); + pssPtr->issued[col] = 1; + +out: + RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid); + return (0); +} + + +/* + * given a parity stripe ID, we want to find out whether both the + * current disk and the failed disk exist in that parity stripe. If + * not, we want to skip this whole PS. If so, we want to find the + * disk offset of the start of the PS on both the current disk and the + * failed disk. + * + * this works by getting a list of disks comprising the indicated + * parity stripe, and searching the list for the current and failed + * disks. Once we've decided they both exist in the parity stripe, we + * need to decide whether each is data or parity, so that we'll know + * which mapping function to call to get the corresponding disk + * offsets. + * + * this is kind of unpleasant, but doing it this way allows the + * reconstruction code to use parity stripe IDs rather than physical + * disks address to march through the failed disk, which greatly + * simplifies a lot of code, as well as eliminating the need for a + * reverse-mapping function. I also think it will execute faster, + * since the calls to the mapping module are kept to a minimum. + * + * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING + * THE STRIPE IN THE CORRECT ORDER */ + + +static int +ComputePSDiskOffsets( + RF_Raid_t * raidPtr, /* raid descriptor */ + RF_StripeNum_t psid, /* parity stripe identifier */ + RF_RowCol_t row, /* row and column of disk to find the offsets + * for */ + RF_RowCol_t col, + RF_SectorNum_t * outDiskOffset, + RF_SectorNum_t * outFailedDiskSectorOffset, + RF_RowCol_t * spRow, /* OUT: row,col of spare unit for failed unit */ + RF_RowCol_t * spCol, + RF_SectorNum_t * spOffset) +{ /* OUT: offset into disk containing spare unit */ + RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; + RF_RowCol_t fcol = raidPtr->reconControl[row]->fcol; + RF_RaidAddr_t sosRaidAddress; /* start-of-stripe */ + RF_RowCol_t *diskids; + u_int i, j, k, i_offset, j_offset; + RF_RowCol_t prow, pcol; + int testcol, testrow; + RF_RowCol_t stripe; + RF_SectorNum_t poffset; + char i_is_parity = 0, j_is_parity = 0; + RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol; + + /* get a listing of the disks comprising that stripe */ + sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid); + (layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids, &stripe); + RF_ASSERT(diskids); + + /* reject this entire parity stripe if it does not contain the + * indicated disk or it does not contain the failed disk */ + if (row != stripe) + goto skipit; + for (i = 0; i < stripeWidth; i++) { + if (col == diskids[i]) + break; + } + if (i == stripeWidth) + goto skipit; + for (j = 0; j < stripeWidth; j++) { + if (fcol == diskids[j]) + break; + } + if (j == stripeWidth) { + goto skipit; + } + /* find out which disk the parity is on */ + (layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &prow, &pcol, &poffset, RF_DONT_REMAP); + + /* find out if either the current RU or the failed RU is parity */ + /* also, if the parity occurs in this stripe prior to the data and/or + * failed col, we need to decrement i and/or j */ + for (k = 0; k < stripeWidth; k++) + if (diskids[k] == pcol) + break; + RF_ASSERT(k < stripeWidth); + i_offset = i; + j_offset = j; + if (k < i) + i_offset--; + else + if (k == i) { + i_is_parity = 1; + i_offset = 0; + } /* set offsets to zero to disable multiply + * below */ + if (k < j) + j_offset--; + else + if (k == j) { + j_is_parity = 1; + j_offset = 0; + } + /* at this point, [ij]_is_parity tells us whether the [current,failed] + * disk is parity at the start of this RU, and, if data, "[ij]_offset" + * tells us how far into the stripe the [current,failed] disk is. */ + + /* call the mapping routine to get the offset into the current disk, + * repeat for failed disk. */ + if (i_is_parity) + layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outDiskOffset, RF_DONT_REMAP); + else + layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outDiskOffset, RF_DONT_REMAP); + + RF_ASSERT(row == testrow && col == testcol); + + if (j_is_parity) + layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP); + else + layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP); + RF_ASSERT(row == testrow && fcol == testcol); + + /* now locate the spare unit for the failed unit */ + if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) { + if (j_is_parity) + layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spRow, spCol, spOffset, RF_REMAP); + else + layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spRow, spCol, spOffset, RF_REMAP); + } else { + *spRow = raidPtr->reconControl[row]->spareRow; + *spCol = raidPtr->reconControl[row]->spareCol; + *spOffset = *outFailedDiskSectorOffset; + } + + return (0); + +skipit: + Dprintf3("RECON: Skipping psid %ld: nothing needed from r%d c%d\n", + psid, row, col); + return (1); +} +/* this is called when a buffer has become ready to write to the replacement disk */ +static int +IssueNextWriteRequest(raidPtr, row) + RF_Raid_t *raidPtr; + RF_RowCol_t row; +{ + RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; + RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU; + RF_RowCol_t fcol = raidPtr->reconControl[row]->fcol; + RF_ReconBuffer_t *rbuf; + RF_DiskQueueData_t *req; + + rbuf = rf_GetFullReconBuffer(raidPtr->reconControl[row]); + RF_ASSERT(rbuf); /* there must be one available, or we wouldn't + * have gotten the event that sent us here */ + RF_ASSERT(rbuf->pssPtr); + + rbuf->pssPtr->writeRbuf = rbuf; + rbuf->pssPtr = NULL; + + Dprintf7("RECON: New write (r %d c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n", + rbuf->spRow, rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID, + rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer); + Dprintf6("RECON: new write psid %ld %02x %02x %02x %02x %02x\n", + rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff, + rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff); + + /* should be ok to use a NULL b_proc here b/c all addrs should be in + * kernel space */ + req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset, + sectorsPerRU, rbuf->buffer, + rbuf->parityStripeID, rbuf->which_ru, + ReconWriteDoneProc, (void *) rbuf, NULL, + &raidPtr->recon_tracerecs[fcol], + (void *) raidPtr, 0, NULL); + + RF_ASSERT(req); /* XXX -- fix this -- XXX */ + + rbuf->arg = (void *) req; + rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spRow][rbuf->spCol], req, RF_IO_RECON_PRIORITY); + + return (0); +} + +/* + * this gets called upon the completion of a reconstruction read + * operation the arg is a pointer to the per-disk reconstruction + * control structure for the process that just finished a read. + * + * called at interrupt context in the kernel, so don't do anything + * illegal here. + */ +static int +ReconReadDoneProc(arg, status) + void *arg; + int status; +{ + RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg; + RF_Raid_t *raidPtr = ctrl->reconCtrl->reconDesc->raidPtr; + + if (status) { + /* + * XXX + */ + printf("Recon read failed!\n"); + RF_PANIC(); + } + RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer); + RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer); + raidPtr->recon_tracerecs[ctrl->col].specific.recon.recon_fetch_to_return_us = + RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer); + RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer); + + rf_CauseReconEvent(raidPtr, ctrl->row, ctrl->col, NULL, RF_REVENT_READDONE); + return (0); +} +/* this gets called upon the completion of a reconstruction write operation. + * the arg is a pointer to the rbuf that was just written + * + * called at interrupt context in the kernel, so don't do anything illegal here. + */ +static int +ReconWriteDoneProc(arg, status) + void *arg; + int status; +{ + RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg; + + Dprintf2("Reconstruction completed on psid %ld ru %d\n", rbuf->parityStripeID, rbuf->which_ru); + if (status) { + printf("Recon write failed!\n"); /* fprintf(stderr,"Recon + * write failed!\n"); */ + RF_PANIC(); + } + rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->row, rbuf->col, arg, RF_REVENT_WRITEDONE); + return (0); +} + + +/* + * computes a new minimum head sep, and wakes up anyone who needs to + * be woken as a result + */ +static void +CheckForNewMinHeadSep(raidPtr, row, hsCtr) + RF_Raid_t *raidPtr; + RF_RowCol_t row; + RF_HeadSepLimit_t hsCtr; +{ + RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[row]; + RF_HeadSepLimit_t new_min; + RF_RowCol_t i; + RF_CallbackDesc_t *p; + RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter); /* from the definition + * of a minimum */ + + + RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex); + + new_min = ~(1L << (8 * sizeof(long) - 1)); /* 0x7FFF....FFF */ + for (i = 0; i < raidPtr->numCol; i++) + if (i != reconCtrlPtr->fcol) { + if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min) + new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter; + } + /* set the new minimum and wake up anyone who can now run again */ + if (new_min != reconCtrlPtr->minHeadSepCounter) { + reconCtrlPtr->minHeadSepCounter = new_min; + Dprintf1("RECON: new min head pos counter val is %ld\n", new_min); + while (reconCtrlPtr->headSepCBList) { + if (reconCtrlPtr->headSepCBList->callbackArg.v > new_min) + break; + p = reconCtrlPtr->headSepCBList; + reconCtrlPtr->headSepCBList = p->next; + p->next = NULL; + rf_CauseReconEvent(raidPtr, p->row, p->col, NULL, RF_REVENT_HEADSEPCLEAR); + rf_FreeCallbackDesc(p); + } + + } + RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex); +} + +/* + * checks to see that the maximum head separation will not be violated + * if we initiate a reconstruction I/O on the indicated disk. + * Limiting the maximum head separation between two disks eliminates + * the nasty buffer-stall conditions that occur when one disk races + * ahead of the others and consumes all of the floating recon buffers. + * This code is complex and unpleasant but it's necessary to avoid + * some very nasty, albeit fairly rare, reconstruction behavior. + * + * returns non-zero if and only if we have to stop working on the + * indicated disk due to a head-separation delay. + */ +static int +CheckHeadSeparation( + RF_Raid_t * raidPtr, + RF_PerDiskReconCtrl_t * ctrl, + RF_RowCol_t row, + RF_RowCol_t col, + RF_HeadSepLimit_t hsCtr, + RF_ReconUnitNum_t which_ru) +{ + RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[row]; + RF_CallbackDesc_t *cb, *p, *pt; + int retval = 0; + + /* if we're too far ahead of the slowest disk, stop working on this + * disk until the slower ones catch up. We do this by scheduling a + * wakeup callback for the time when the slowest disk has caught up. + * We define "caught up" with 20% hysteresis, i.e. the head separation + * must have fallen to at most 80% of the max allowable head + * separation before we'll wake up. + * + */ + RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex); + if ((raidPtr->headSepLimit >= 0) && + ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) { + Dprintf6("raid%d: RECON: head sep stall: row %d col %d hsCtr %ld minHSCtr %ld limit %ld\n", + raidPtr->raidid, row, col, ctrl->headSepCounter, + reconCtrlPtr->minHeadSepCounter, + raidPtr->headSepLimit); + cb = rf_AllocCallbackDesc(); + /* the minHeadSepCounter value we have to get to before we'll + * wake up. build in 20% hysteresis. */ + cb->callbackArg.v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5); + cb->row = row; + cb->col = col; + cb->next = NULL; + + /* insert this callback descriptor into the sorted list of + * pending head-sep callbacks */ + p = reconCtrlPtr->headSepCBList; + if (!p) + reconCtrlPtr->headSepCBList = cb; + else + if (cb->callbackArg.v < p->callbackArg.v) { + cb->next = reconCtrlPtr->headSepCBList; + reconCtrlPtr->headSepCBList = cb; + } else { + for (pt = p, p = p->next; p && (p->callbackArg.v < cb->callbackArg.v); pt = p, p = p->next); + cb->next = p; + pt->next = cb; + } + retval = 1; +#if RF_RECON_STATS > 0 + ctrl->reconCtrl->reconDesc->hsStallCount++; +#endif /* RF_RECON_STATS > 0 */ + } + RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex); + + return (retval); +} +/* + * checks to see if reconstruction has been either forced or blocked + * by a user operation. if forced, we skip this RU entirely. else if + * blocked, put ourselves on the wait list. else return 0. + * + * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY + */ +static int +CheckForcedOrBlockedReconstruction( + RF_Raid_t * raidPtr, + RF_ReconParityStripeStatus_t * pssPtr, + RF_PerDiskReconCtrl_t * ctrl, + RF_RowCol_t row, + RF_RowCol_t col, + RF_StripeNum_t psid, + RF_ReconUnitNum_t which_ru) +{ + RF_CallbackDesc_t *cb; + int retcode = 0; + + if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE)) + retcode = RF_PSS_FORCED_ON_WRITE; + else + if (pssPtr->flags & RF_PSS_RECON_BLOCKED) { + Dprintf4("RECON: row %d col %d blocked at psid %ld ru %d\n", row, col, psid, which_ru); + cb = rf_AllocCallbackDesc(); /* append ourselves to + * the blockage-wait + * list */ + cb->row = row; + cb->col = col; + cb->next = pssPtr->blockWaitList; + pssPtr->blockWaitList = cb; + retcode = RF_PSS_RECON_BLOCKED; + } + if (!retcode) + pssPtr->flags |= RF_PSS_UNDER_RECON; /* mark this RU as under + * reconstruction */ + + return (retcode); +} +/* + * if reconstruction is currently ongoing for the indicated stripeID, + * reconstruction is forced to completion and we return non-zero to + * indicate that the caller must wait. If not, then reconstruction is + * blocked on the indicated stripe and the routine returns zero. If + * and only if we return non-zero, we'll cause the cbFunc to get + * invoked with the cbArg when the reconstruction has completed. + */ +int +rf_ForceOrBlockRecon(raidPtr, asmap, cbFunc, cbArg) + RF_Raid_t *raidPtr; + RF_AccessStripeMap_t *asmap; + void (*cbFunc) (RF_Raid_t *, void *); + void *cbArg; +{ + RF_RowCol_t row = asmap->physInfo->row; /* which row of the array + * we're working on */ + RF_StripeNum_t stripeID = asmap->stripeID; /* the stripe ID we're + * forcing recon on */ + RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; /* num sects in one RU */ + RF_ReconParityStripeStatus_t *pssPtr; /* a pointer to the parity + * stripe status structure */ + RF_StripeNum_t psid; /* parity stripe id */ + RF_SectorNum_t offset, fd_offset; /* disk offset, failed-disk + * offset */ + RF_RowCol_t *diskids; + RF_RowCol_t stripe; + RF_ReconUnitNum_t which_ru; /* RU within parity stripe */ + RF_RowCol_t fcol, diskno, i; + RF_ReconBuffer_t *new_rbuf; /* ptr to newly allocated rbufs */ + RF_DiskQueueData_t *req;/* disk I/O req to be enqueued */ + RF_CallbackDesc_t *cb; + int created = 0, nPromoted; + + psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru); + + RF_LOCK_PSS_MUTEX(raidPtr, row, psid); + + pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, &created); + + /* if recon is not ongoing on this PS, just return */ + if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) { + RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid); + return (0); + } + /* otherwise, we have to wait for reconstruction to complete on this + * RU. */ + /* In order to avoid waiting for a potentially large number of + * low-priority accesses to complete, we force a normal-priority (i.e. + * not low-priority) reconstruction on this RU. */ + if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) { + DDprintf1("Forcing recon on psid %ld\n", psid); + pssPtr->flags |= RF_PSS_FORCED_ON_WRITE; /* mark this RU as under + * forced recon */ + pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; /* clear the blockage + * that we just set */ + fcol = raidPtr->reconControl[row]->fcol; + + /* get a listing of the disks comprising the indicated stripe */ + (raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids, &stripe); + RF_ASSERT(row == stripe); + + /* For previously issued reads, elevate them to normal + * priority. If the I/O has already completed, it won't be + * found in the queue, and hence this will be a no-op. For + * unissued reads, allocate buffers and issue new reads. The + * fact that we've set the FORCED bit means that the regular + * recon procs will not re-issue these reqs */ + for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++) + if ((diskno = diskids[i]) != fcol) { + if (pssPtr->issued[diskno]) { + nPromoted = rf_DiskIOPromote(&raidPtr->Queues[row][diskno], psid, which_ru); + if (rf_reconDebug && nPromoted) + printf("raid%d: promoted read from row %d col %d\n", raidPtr->raidid, row, diskno); + } else { + new_rbuf = rf_MakeReconBuffer(raidPtr, row, diskno, RF_RBUF_TYPE_FORCED); /* create new buf */ + ComputePSDiskOffsets(raidPtr, psid, row, diskno, &offset, &fd_offset, + &new_rbuf->spRow, &new_rbuf->spCol, &new_rbuf->spOffset); /* find offsets & spare + * location */ + new_rbuf->parityStripeID = psid; /* fill in the buffer */ + new_rbuf->which_ru = which_ru; + new_rbuf->failedDiskSectorOffset = fd_offset; + new_rbuf->priority = RF_IO_NORMAL_PRIORITY; + + /* use NULL b_proc b/c all addrs + * should be in kernel space */ + req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer, + psid, which_ru, (int (*) (void *, int)) ForceReconReadDoneProc, (void *) new_rbuf, NULL, + NULL, (void *) raidPtr, 0, NULL); + + RF_ASSERT(req); /* XXX -- fix this -- + * XXX */ + + new_rbuf->arg = req; + rf_DiskIOEnqueue(&raidPtr->Queues[row][diskno], req, RF_IO_NORMAL_PRIORITY); /* enqueue the I/O */ + Dprintf3("raid%d: Issued new read req on row %d col %d\n", raidPtr->raidid, row, diskno); + } + } + /* if the write is sitting in the disk queue, elevate its + * priority */ + if (rf_DiskIOPromote(&raidPtr->Queues[row][fcol], psid, which_ru)) + printf("raid%d: promoted write to row %d col %d\n", + raidPtr->raidid, row, fcol); + } + /* install a callback descriptor to be invoked when recon completes on + * this parity stripe. */ + cb = rf_AllocCallbackDesc(); + /* XXX the following is bogus.. These functions don't really match!! + * GO */ + cb->callbackFunc = (void (*) (RF_CBParam_t)) cbFunc; + cb->callbackArg.p = (void *) cbArg; + cb->next = pssPtr->procWaitList; + pssPtr->procWaitList = cb; + DDprintf2("raid%d: Waiting for forced recon on psid %ld\n", + raidPtr->raidid, psid); + + RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid); + return (1); +} +/* called upon the completion of a forced reconstruction read. + * all we do is schedule the FORCEDREADONE event. + * called at interrupt context in the kernel, so don't do anything illegal here. + */ +static void +ForceReconReadDoneProc(arg, status) + void *arg; + int status; +{ + RF_ReconBuffer_t *rbuf = arg; + + if (status) { + printf("Forced recon read failed!\n"); /* fprintf(stderr,"Forced + * recon read + * failed!\n"); */ + RF_PANIC(); + } + rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->row, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE); +} +/* releases a block on the reconstruction of the indicated stripe */ +int +rf_UnblockRecon(raidPtr, asmap) + RF_Raid_t *raidPtr; + RF_AccessStripeMap_t *asmap; +{ + RF_RowCol_t row = asmap->origRow; + RF_StripeNum_t stripeID = asmap->stripeID; + RF_ReconParityStripeStatus_t *pssPtr; + RF_ReconUnitNum_t which_ru; + RF_StripeNum_t psid; + int created = 0; + RF_CallbackDesc_t *cb; + + psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru); + RF_LOCK_PSS_MUTEX(raidPtr, row, psid); + pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_NONE, &created); + + /* When recon is forced, the pss desc can get deleted before we get + * back to unblock recon. But, this can _only_ happen when recon is + * forced. It would be good to put some kind of sanity check here, but + * how to decide if recon was just forced or not? */ + if (!pssPtr) { + /* printf("Warning: no pss descriptor upon unblock on psid %ld + * RU %d\n",psid,which_ru); */ + if (rf_reconDebug || rf_pssDebug) + printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n", (long) psid, which_ru); + goto out; + } + pssPtr->blockCount--; + Dprintf3("raid%d: unblocking recon on psid %ld: blockcount is %d\n", + raidPtr->raidid, psid, pssPtr->blockCount); + if (pssPtr->blockCount == 0) { /* if recon blockage has been released */ + + /* unblock recon before calling CauseReconEvent in case + * CauseReconEvent causes us to try to issue a new read before + * returning here. */ + pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; + + + while (pssPtr->blockWaitList) { + /* spin through the block-wait list and + release all the waiters */ + cb = pssPtr->blockWaitList; + pssPtr->blockWaitList = cb->next; + cb->next = NULL; + rf_CauseReconEvent(raidPtr, cb->row, cb->col, NULL, RF_REVENT_BLOCKCLEAR); + rf_FreeCallbackDesc(cb); + } + if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) { + /* if no recon was requested while recon was blocked */ + rf_PSStatusDelete(raidPtr, raidPtr->reconControl[row]->pssTable, pssPtr); + } + } +out: + RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid); + return (0); +} diff --git a/sys/dev/raidframe/rf_reconstruct.h b/sys/dev/raidframe/rf_reconstruct.h new file mode 100644 index 0000000..318d546 --- /dev/null +++ b/sys/dev/raidframe/rf_reconstruct.h @@ -0,0 +1,202 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_reconstruct.h,v 1.5 2000/05/28 00:48:30 oster Exp $ */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Mark Holland + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +/********************************************************* + * rf_reconstruct.h -- header file for reconstruction code + *********************************************************/ + +#ifndef _RF__RF_RECONSTRUCT_H_ +#define _RF__RF_RECONSTRUCT_H_ + +#include <dev/raidframe/rf_types.h> +#include <sys/time.h> +#include <dev/raidframe/rf_reconmap.h> +#include <dev/raidframe/rf_psstatus.h> + +/* reconstruction configuration information */ +struct RF_ReconConfig_s { + unsigned numFloatingReconBufs; /* number of floating recon bufs to + * use */ + RF_HeadSepLimit_t headSepLimit; /* how far apart the heads are allow + * to become, in parity stripes */ +}; +/* a reconstruction buffer */ +struct RF_ReconBuffer_s { + RF_Raid_t *raidPtr; /* void * to avoid recursive includes */ + caddr_t buffer; /* points to the data */ + RF_StripeNum_t parityStripeID; /* the parity stripe that this data + * relates to */ + int which_ru; /* which reconstruction unit within the PSS */ + RF_SectorNum_t failedDiskSectorOffset; /* the offset into the failed + * disk */ + RF_RowCol_t row, col; /* which disk this buffer belongs to or is + * targeted at */ + RF_StripeCount_t count; /* counts the # of SUs installed so far */ + int priority; /* used to force hi priority recon */ + RF_RbufType_t type; /* FORCED or FLOATING */ + char *arrived; /* [x] = 1/0 if SU from disk x has/hasn't + * arrived */ + RF_ReconBuffer_t *next; /* used for buffer management */ + void *arg; /* generic field for general use */ + RF_RowCol_t spRow, spCol; /* spare disk to which this buf should + * be written */ + /* if dist sparing off, always identifies the replacement disk */ + RF_SectorNum_t spOffset;/* offset into the spare disk */ + /* if dist sparing off, identical to failedDiskSectorOffset */ + RF_ReconParityStripeStatus_t *pssPtr; /* debug- pss associated with + * issue-pending write */ +}; +/* a reconstruction event descriptor. The event types currently are: + * RF_REVENT_READDONE -- a read operation has completed + * RF_REVENT_WRITEDONE -- a write operation has completed + * RF_REVENT_BUFREADY -- the buffer manager has produced a full buffer + * RF_REVENT_BLOCKCLEAR -- a reconstruction blockage has been cleared + * RF_REVENT_BUFCLEAR -- the buffer manager has released a process blocked on submission + * RF_REVENT_SKIP -- we need to skip the current RU and go on to the next one, typ. b/c we found recon forced + * RF_REVENT_FORCEDREADONE- a forced-reconstructoin read operation has completed + */ +typedef enum RF_Revent_e { + RF_REVENT_READDONE, + RF_REVENT_WRITEDONE, + RF_REVENT_BUFREADY, + RF_REVENT_BLOCKCLEAR, + RF_REVENT_BUFCLEAR, + RF_REVENT_HEADSEPCLEAR, + RF_REVENT_SKIP, + RF_REVENT_FORCEDREADDONE +} RF_Revent_t; + +struct RF_ReconEvent_s { + RF_Revent_t type; /* what kind of event has occurred */ + RF_RowCol_t col; /* row ID is implicit in the queue in which + * the event is placed */ + void *arg; /* a generic argument */ + RF_ReconEvent_t *next; +}; +/* + * Reconstruction control information maintained per-disk + * (for surviving disks) + */ +struct RF_PerDiskReconCtrl_s { + RF_ReconCtrl_t *reconCtrl; + RF_RowCol_t row, col; /* to make this structure self-identifying */ + RF_StripeNum_t curPSID; /* the next parity stripe ID to check on this + * disk */ + RF_HeadSepLimit_t headSepCounter; /* counter used to control + * maximum head separation */ + RF_SectorNum_t diskOffset; /* the offset into the indicated disk + * of the current PU */ + RF_ReconUnitNum_t ru_count; /* this counts off the recon units + * within each parity unit */ + RF_ReconBuffer_t *rbuf; /* the recon buffer assigned to this disk */ +}; +/* main reconstruction control structure */ +struct RF_ReconCtrl_s { + RF_RaidReconDesc_t *reconDesc; + RF_RowCol_t fcol; /* which column has failed */ + RF_PerDiskReconCtrl_t *perDiskInfo; /* information maintained + * per-disk */ + RF_ReconMap_t *reconMap;/* map of what has/has not been reconstructed */ + RF_RowCol_t spareRow; /* which of the spare disks we're using */ + RF_RowCol_t spareCol; + RF_StripeNum_t lastPSID;/* the ID of the last parity stripe we want + * reconstructed */ + int percentComplete;/* percentage completion of reconstruction */ + int numRUsComplete; /* number of Reconstruction Units done */ + int numRUsTotal; /* total number of Reconstruction Units */ + + /* reconstruction event queue */ + RF_ReconEvent_t *eventQueue; /* queue of pending reconstruction + * events */ + RF_DECLARE_MUTEX(eq_mutex) /* mutex for locking event + * queue */ + RF_DECLARE_COND(eq_cond) /* condition variable for + * signalling recon events */ + int eq_count; /* debug only */ + + /* reconstruction buffer management */ + RF_DECLARE_MUTEX(rb_mutex) /* mutex for messing around + * with recon buffers */ + RF_ReconBuffer_t *floatingRbufs; /* available floating + * reconstruction buffers */ + RF_ReconBuffer_t *committedRbufs; /* recon buffers that have + * been committed to some + * waiting disk */ + RF_ReconBuffer_t *fullBufferList; /* full buffers waiting to be + * written out */ + RF_ReconBuffer_t *priorityList; /* full buffers that have been + * elevated to higher priority */ + RF_CallbackDesc_t *bufferWaitList; /* disks that are currently + * blocked waiting for buffers */ + + /* parity stripe status table */ + RF_PSStatusHeader_t *pssTable; /* stores the reconstruction status of + * active parity stripes */ + + /* maximum-head separation control */ + RF_HeadSepLimit_t minHeadSepCounter; /* the minimum hs counter over + * all disks */ + RF_CallbackDesc_t *headSepCBList; /* list of callbacks to be + * done as minPSID advances */ + + /* performance monitoring */ + struct timeval starttime; /* recon start time */ + + void (*continueFunc) (void *); /* function to call when io + * returns */ + void *continueArg; /* argument for Func */ +}; +/* the default priority for reconstruction accesses */ +#define RF_IO_RECON_PRIORITY RF_IO_LOW_PRIORITY + +int rf_ConfigureReconstruction(RF_ShutdownList_t ** listp); + +int +rf_ReconstructFailedDisk(RF_Raid_t * raidPtr, RF_RowCol_t row, + RF_RowCol_t col); + +int +rf_ReconstructFailedDiskBasic(RF_Raid_t * raidPtr, RF_RowCol_t row, + RF_RowCol_t col); + +int +rf_ReconstructInPlace(RF_Raid_t * raidPtr, RF_RowCol_t row, RF_RowCol_t col); + +int rf_ContinueReconstructFailedDisk(RF_RaidReconDesc_t * reconDesc); + +int +rf_ForceOrBlockRecon(RF_Raid_t * raidPtr, RF_AccessStripeMap_t * asmap, + void (*cbFunc) (RF_Raid_t *, void *), void *cbArg); + + int rf_UnblockRecon(RF_Raid_t * raidPtr, RF_AccessStripeMap_t * asmap); + + int rf_RegisterReconDoneProc(RF_Raid_t * raidPtr, void (*proc) (RF_Raid_t *, void *), void *arg, + RF_ReconDoneProc_t ** handlep); + +#endif /* !_RF__RF_RECONSTRUCT_H_ */ diff --git a/sys/dev/raidframe/rf_reconutil.c b/sys/dev/raidframe/rf_reconutil.c new file mode 100644 index 0000000..51e9c07 --- /dev/null +++ b/sys/dev/raidframe/rf_reconutil.c @@ -0,0 +1,336 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_reconutil.c,v 1.3 1999/02/05 00:06:17 oster Exp $ */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Mark Holland + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +/******************************************** + * rf_reconutil.c -- reconstruction utilities + ********************************************/ + +#include <dev/raidframe/rf_types.h> +#include <dev/raidframe/rf_raid.h> +#include <dev/raidframe/rf_desc.h> +#include <dev/raidframe/rf_reconutil.h> +#include <dev/raidframe/rf_reconbuffer.h> +#include <dev/raidframe/rf_general.h> +#include <dev/raidframe/rf_decluster.h> +#include <dev/raidframe/rf_raid5_rotatedspare.h> +#include <dev/raidframe/rf_interdecluster.h> +#include <dev/raidframe/rf_chaindecluster.h> + +/******************************************************************* + * allocates/frees the reconstruction control information structures + *******************************************************************/ +RF_ReconCtrl_t * +rf_MakeReconControl(reconDesc, frow, fcol, srow, scol) + RF_RaidReconDesc_t *reconDesc; + RF_RowCol_t frow; /* failed row and column */ + RF_RowCol_t fcol; + RF_RowCol_t srow; /* identifies which spare we're using */ + RF_RowCol_t scol; +{ + RF_Raid_t *raidPtr = reconDesc->raidPtr; + RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; + RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU; + RF_ReconUnitCount_t numSpareRUs; + RF_ReconCtrl_t *reconCtrlPtr; + RF_ReconBuffer_t *rbuf; + RF_LayoutSW_t *lp; + int retcode, rc; + RF_RowCol_t i; + + lp = raidPtr->Layout.map; + + /* make and zero the global reconstruction structure and the per-disk + * structure */ + RF_Calloc(reconCtrlPtr, 1, sizeof(RF_ReconCtrl_t), (RF_ReconCtrl_t *)); + RF_Calloc(reconCtrlPtr->perDiskInfo, raidPtr->numCol, sizeof(RF_PerDiskReconCtrl_t), (RF_PerDiskReconCtrl_t *)); /* this zeros it */ + reconCtrlPtr->reconDesc = reconDesc; + reconCtrlPtr->fcol = fcol; + reconCtrlPtr->spareRow = srow; + reconCtrlPtr->spareCol = scol; + reconCtrlPtr->lastPSID = layoutPtr->numStripe / layoutPtr->SUsPerPU; + reconCtrlPtr->percentComplete = 0; + + /* initialize each per-disk recon information structure */ + for (i = 0; i < raidPtr->numCol; i++) { + reconCtrlPtr->perDiskInfo[i].reconCtrl = reconCtrlPtr; + reconCtrlPtr->perDiskInfo[i].row = frow; + reconCtrlPtr->perDiskInfo[i].col = i; + reconCtrlPtr->perDiskInfo[i].curPSID = -1; /* make it appear as if + * we just finished an + * RU */ + reconCtrlPtr->perDiskInfo[i].ru_count = RUsPerPU - 1; + } + + /* Get the number of spare units per disk and the sparemap in case + * spare is distributed */ + + if (lp->GetNumSpareRUs) { + numSpareRUs = lp->GetNumSpareRUs(raidPtr); + } else { + numSpareRUs = 0; + } + + /* + * Not all distributed sparing archs need dynamic mappings + */ + if (lp->InstallSpareTable) { + retcode = rf_InstallSpareTable(raidPtr, frow, fcol); + if (retcode) { + RF_PANIC(); /* XXX fix this */ + } + } + /* make the reconstruction map */ + reconCtrlPtr->reconMap = rf_MakeReconMap(raidPtr, (int) (layoutPtr->SUsPerRU * layoutPtr->sectorsPerStripeUnit), + raidPtr->sectorsPerDisk, numSpareRUs); + + /* make the per-disk reconstruction buffers */ + for (i = 0; i < raidPtr->numCol; i++) { + reconCtrlPtr->perDiskInfo[i].rbuf = (i == fcol) ? NULL : rf_MakeReconBuffer(raidPtr, frow, i, RF_RBUF_TYPE_EXCLUSIVE); + } + + /* initialize the event queue */ + rc = rf_mutex_init(&reconCtrlPtr->eq_mutex, __FUNCTION__); + if (rc) { + /* XXX deallocate, cleanup */ + RF_ERRORMSG3("Unable to init mutex file %s line %d rc=%d\n", __FILE__, + __LINE__, rc); + return (NULL); + } + rc = rf_cond_init(&reconCtrlPtr->eq_cond); + if (rc) { + /* XXX deallocate, cleanup */ + RF_ERRORMSG3("Unable to init cond file %s line %d rc=%d\n", __FILE__, + __LINE__, rc); + return (NULL); + } + reconCtrlPtr->eventQueue = NULL; + reconCtrlPtr->eq_count = 0; + + /* make the floating recon buffers and append them to the free list */ + rc = rf_mutex_init(&reconCtrlPtr->rb_mutex, __FUNCTION__); + if (rc) { + /* XXX deallocate, cleanup */ + RF_ERRORMSG3("Unable to init mutex file %s line %d rc=%d\n", __FILE__, + __LINE__, rc); + return (NULL); + } + reconCtrlPtr->fullBufferList = NULL; + reconCtrlPtr->priorityList = NULL; + reconCtrlPtr->floatingRbufs = NULL; + reconCtrlPtr->committedRbufs = NULL; + for (i = 0; i < raidPtr->numFloatingReconBufs; i++) { + rbuf = rf_MakeReconBuffer(raidPtr, frow, fcol, RF_RBUF_TYPE_FLOATING); + rbuf->next = reconCtrlPtr->floatingRbufs; + reconCtrlPtr->floatingRbufs = rbuf; + } + + /* create the parity stripe status table */ + reconCtrlPtr->pssTable = rf_MakeParityStripeStatusTable(raidPtr); + + /* set the initial min head sep counter val */ + reconCtrlPtr->minHeadSepCounter = 0; + + return (reconCtrlPtr); +} + +void +rf_FreeReconControl(raidPtr, row) + RF_Raid_t *raidPtr; + RF_RowCol_t row; +{ + RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[row]; + RF_ReconBuffer_t *t; + RF_ReconUnitNum_t i; + + RF_ASSERT(reconCtrlPtr); + for (i = 0; i < raidPtr->numCol; i++) + if (reconCtrlPtr->perDiskInfo[i].rbuf) + rf_FreeReconBuffer(reconCtrlPtr->perDiskInfo[i].rbuf); + for (i = 0; i < raidPtr->numFloatingReconBufs; i++) { + t = reconCtrlPtr->floatingRbufs; + RF_ASSERT(t); + reconCtrlPtr->floatingRbufs = t->next; + rf_FreeReconBuffer(t); + } + rf_mutex_destroy(&reconCtrlPtr->rb_mutex); + rf_mutex_destroy(&reconCtrlPtr->eq_mutex); + rf_cond_destroy(&reconCtrlPtr->eq_cond); + rf_FreeReconMap(reconCtrlPtr->reconMap); + rf_FreeParityStripeStatusTable(raidPtr, reconCtrlPtr->pssTable); + RF_Free(reconCtrlPtr->perDiskInfo, raidPtr->numCol * sizeof(RF_PerDiskReconCtrl_t)); + RF_Free(reconCtrlPtr, sizeof(*reconCtrlPtr)); +} + + +/****************************************************************************** + * computes the default head separation limit + *****************************************************************************/ +RF_HeadSepLimit_t +rf_GetDefaultHeadSepLimit(raidPtr) + RF_Raid_t *raidPtr; +{ + RF_HeadSepLimit_t hsl; + RF_LayoutSW_t *lp; + + lp = raidPtr->Layout.map; + if (lp->GetDefaultHeadSepLimit == NULL) + return (-1); + hsl = lp->GetDefaultHeadSepLimit(raidPtr); + return (hsl); +} + + +/****************************************************************************** + * computes the default number of floating recon buffers + *****************************************************************************/ +int +rf_GetDefaultNumFloatingReconBuffers(raidPtr) + RF_Raid_t *raidPtr; +{ + RF_LayoutSW_t *lp; + int nrb; + + lp = raidPtr->Layout.map; + if (lp->GetDefaultNumFloatingReconBuffers == NULL) + return (3 * raidPtr->numCol); + nrb = lp->GetDefaultNumFloatingReconBuffers(raidPtr); + return (nrb); +} + + +/****************************************************************************** + * creates and initializes a reconstruction buffer + *****************************************************************************/ +RF_ReconBuffer_t * +rf_MakeReconBuffer( + RF_Raid_t * raidPtr, + RF_RowCol_t row, + RF_RowCol_t col, + RF_RbufType_t type) +{ + RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; + RF_ReconBuffer_t *t; + u_int recon_buffer_size = rf_RaidAddressToByte(raidPtr, layoutPtr->SUsPerRU * layoutPtr->sectorsPerStripeUnit); + + RF_Malloc(t, sizeof(RF_ReconBuffer_t), (RF_ReconBuffer_t *)); + RF_Malloc(t->buffer, recon_buffer_size, (caddr_t)); + RF_Malloc(t->arrived, raidPtr->numCol * sizeof(char), (char *)); + t->raidPtr = raidPtr; + t->row = row; + t->col = col; + t->priority = RF_IO_RECON_PRIORITY; + t->type = type; + t->pssPtr = NULL; + t->next = NULL; + return (t); +} +/****************************************************************************** + * frees a reconstruction buffer + *****************************************************************************/ +void +rf_FreeReconBuffer(rbuf) + RF_ReconBuffer_t *rbuf; +{ + RF_Raid_t *raidPtr = rbuf->raidPtr; + u_int recon_buffer_size = rf_RaidAddressToByte(raidPtr, raidPtr->Layout.SUsPerRU * raidPtr->Layout.sectorsPerStripeUnit); + + RF_Free(rbuf->arrived, raidPtr->numCol * sizeof(char)); + RF_Free(rbuf->buffer, recon_buffer_size); + RF_Free(rbuf, sizeof(*rbuf)); +} + + +/****************************************************************************** + * debug only: sanity check the number of floating recon bufs in use + *****************************************************************************/ +void +rf_CheckFloatingRbufCount(raidPtr, dolock) + RF_Raid_t *raidPtr; + int dolock; +{ + RF_ReconParityStripeStatus_t *p; + RF_PSStatusHeader_t *pssTable; + RF_ReconBuffer_t *rbuf; + int i, j, sum = 0; + RF_RowCol_t frow = 0; + + for (i = 0; i < raidPtr->numRow; i++) + if (raidPtr->reconControl[i]) { + frow = i; + break; + } + RF_ASSERT(frow >= 0); + + if (dolock) + RF_LOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex); + pssTable = raidPtr->reconControl[frow]->pssTable; + + for (i = 0; i < raidPtr->pssTableSize; i++) { + RF_LOCK_MUTEX(pssTable[i].mutex); + for (p = pssTable[i].chain; p; p = p->next) { + rbuf = (RF_ReconBuffer_t *) p->rbuf; + if (rbuf && rbuf->type == RF_RBUF_TYPE_FLOATING) + sum++; + + rbuf = (RF_ReconBuffer_t *) p->writeRbuf; + if (rbuf && rbuf->type == RF_RBUF_TYPE_FLOATING) + sum++; + + for (j = 0; j < p->xorBufCount; j++) { + rbuf = (RF_ReconBuffer_t *) p->rbufsForXor[j]; + RF_ASSERT(rbuf); + if (rbuf->type == RF_RBUF_TYPE_FLOATING) + sum++; + } + } + RF_UNLOCK_MUTEX(pssTable[i].mutex); + } + + for (rbuf = raidPtr->reconControl[frow]->floatingRbufs; rbuf; rbuf = rbuf->next) { + if (rbuf->type == RF_RBUF_TYPE_FLOATING) + sum++; + } + for (rbuf = raidPtr->reconControl[frow]->committedRbufs; rbuf; rbuf = rbuf->next) { + if (rbuf->type == RF_RBUF_TYPE_FLOATING) + sum++; + } + for (rbuf = raidPtr->reconControl[frow]->fullBufferList; rbuf; rbuf = rbuf->next) { + if (rbuf->type == RF_RBUF_TYPE_FLOATING) + sum++; + } + for (rbuf = raidPtr->reconControl[frow]->priorityList; rbuf; rbuf = rbuf->next) { + if (rbuf->type == RF_RBUF_TYPE_FLOATING) + sum++; + } + + RF_ASSERT(sum == raidPtr->numFloatingReconBufs); + + if (dolock) + RF_UNLOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex); +} diff --git a/sys/dev/raidframe/rf_reconutil.h b/sys/dev/raidframe/rf_reconutil.h new file mode 100644 index 0000000..744d7b9 --- /dev/null +++ b/sys/dev/raidframe/rf_reconutil.h @@ -0,0 +1,52 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_reconutil.h,v 1.3 1999/02/05 00:06:17 oster Exp $ */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Mark Holland + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +/************************************************************ + * rf_reconutil.h -- header file for reconstruction utilities + ************************************************************/ + +#ifndef _RF__RF_RECONUTIL_H_ +#define _RF__RF_RECONUTIL_H_ + +#include <dev/raidframe/rf_types.h> +#include <dev/raidframe/rf_reconstruct.h> + +RF_ReconCtrl_t * +rf_MakeReconControl(RF_RaidReconDesc_t * reconDesc, + RF_RowCol_t frow, RF_RowCol_t fcol, RF_RowCol_t srow, RF_RowCol_t scol); +void rf_FreeReconControl(RF_Raid_t * raidPtr, RF_RowCol_t row); +RF_HeadSepLimit_t rf_GetDefaultHeadSepLimit(RF_Raid_t * raidPtr); +int rf_GetDefaultNumFloatingReconBuffers(RF_Raid_t * raidPtr); +RF_ReconBuffer_t * +rf_MakeReconBuffer(RF_Raid_t * raidPtr, RF_RowCol_t row, + RF_RowCol_t col, RF_RbufType_t type); +void rf_FreeReconBuffer(RF_ReconBuffer_t * rbuf); +void rf_CheckFloatingRbufCount(RF_Raid_t * raidPtr, int dolock); + +#endif /* !_RF__RF_RECONUTIL_H_ */ diff --git a/sys/dev/raidframe/rf_revent.c b/sys/dev/raidframe/rf_revent.c new file mode 100644 index 0000000..06df033 --- /dev/null +++ b/sys/dev/raidframe/rf_revent.c @@ -0,0 +1,228 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_revent.c,v 1.9 2000/09/21 01:45:46 oster Exp $ */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ +/* + * revent.c -- reconstruction event handling code + */ + +#include <sys/errno.h> + +#include <dev/raidframe/rf_raid.h> +#include <dev/raidframe/rf_revent.h> +#include <dev/raidframe/rf_etimer.h> +#include <dev/raidframe/rf_general.h> +#include <dev/raidframe/rf_freelist.h> +#include <dev/raidframe/rf_desc.h> +#include <dev/raidframe/rf_shutdown.h> +#include <dev/raidframe/rf_kintf.h> + +static RF_FreeList_t *rf_revent_freelist; +#define RF_MAX_FREE_REVENT 128 +#define RF_REVENT_INC 8 +#define RF_REVENT_INITIAL 8 + + + +#include <sys/proc.h> +#include <sys/kernel.h> + +#define DO_WAIT(_rc) \ + RF_LTSLEEP(&(_rc)->eventQueue, PRIBIO, "raidframe eventq", \ + 0, &((_rc)->eq_mutex)) + +#define DO_SIGNAL(_rc) wakeup(&(_rc)->eventQueue) + + +static void rf_ShutdownReconEvent(void *); + +static RF_ReconEvent_t * +GetReconEventDesc(RF_RowCol_t row, RF_RowCol_t col, + void *arg, RF_Revent_t type); + +static void rf_ShutdownReconEvent(ignored) + void *ignored; +{ + RF_FREELIST_DESTROY(rf_revent_freelist, next, (RF_ReconEvent_t *)); +} + +int +rf_ConfigureReconEvent(listp) + RF_ShutdownList_t **listp; +{ + int rc; + + RF_FREELIST_CREATE(rf_revent_freelist, RF_MAX_FREE_REVENT, + RF_REVENT_INC, sizeof(RF_ReconEvent_t)); + if (rf_revent_freelist == NULL) + return (ENOMEM); + rc = rf_ShutdownCreate(listp, rf_ShutdownReconEvent, NULL); + if (rc) { + RF_ERRORMSG3("Unable to add to shutdown list file %s line %d rc=%d\n", __FILE__, + __LINE__, rc); + rf_ShutdownReconEvent(NULL); + return (rc); + } + RF_FREELIST_PRIME(rf_revent_freelist, RF_REVENT_INITIAL, next, + (RF_ReconEvent_t *)); + return (0); +} + +/* returns the next reconstruction event, blocking the calling thread + * until one becomes available. will now return null if it is blocked + * or will return an event if it is not */ + +RF_ReconEvent_t * +rf_GetNextReconEvent(reconDesc, row, continueFunc, continueArg) + RF_RaidReconDesc_t *reconDesc; + RF_RowCol_t row; + void (*continueFunc) (void *); + void *continueArg; +{ + RF_Raid_t *raidPtr = reconDesc->raidPtr; + RF_ReconCtrl_t *rctrl = raidPtr->reconControl[row]; + RF_ReconEvent_t *event; + + RF_ASSERT(row >= 0 && row <= raidPtr->numRow); + RF_LOCK_MUTEX(rctrl->eq_mutex); + /* q null and count==0 must be equivalent conditions */ + RF_ASSERT((rctrl->eventQueue == NULL) == (rctrl->eq_count == 0)); + + rctrl->continueFunc = continueFunc; + rctrl->continueArg = continueArg; + + + /* mpsleep timeout value: secs = timo_val/hz. 'ticks' here is + defined as cycle-counter ticks, not softclock ticks */ + +#define MAX_RECON_EXEC_USECS (100 * 1000) /* 100 ms */ +#define RECON_DELAY_MS 25 +#define RECON_TIMO ((RECON_DELAY_MS * hz) / 1000) + + /* we are not pre-emptible in the kernel, but we don't want to run + * forever. If we run w/o blocking for more than MAX_RECON_EXEC_TICKS + * ticks of the cycle counter, delay for RECON_DELAY before + * continuing. this may murder us with context switches, so we may + * need to increase both the MAX...TICKS and the RECON_DELAY_MS. */ + if (reconDesc->reconExecTimerRunning) { + int status; + + RF_ETIMER_STOP(reconDesc->recon_exec_timer); + RF_ETIMER_EVAL(reconDesc->recon_exec_timer); + reconDesc->reconExecTicks += + RF_ETIMER_VAL_US(reconDesc->recon_exec_timer); + if (reconDesc->reconExecTicks > reconDesc->maxReconExecTicks) + reconDesc->maxReconExecTicks = + reconDesc->reconExecTicks; + if (reconDesc->reconExecTicks >= MAX_RECON_EXEC_USECS) { + /* we've been running too long. delay for + * RECON_DELAY_MS */ +#if RF_RECON_STATS > 0 + reconDesc->numReconExecDelays++; +#endif /* RF_RECON_STATS > 0 */ + + status = RF_LTSLEEP(&reconDesc->reconExecTicks, PRIBIO, + "recon delay", RECON_TIMO, + &rctrl->eq_mutex); + RF_ASSERT(status == EWOULDBLOCK); + reconDesc->reconExecTicks = 0; + } + } + while (!rctrl->eventQueue) { +#if RF_RECON_STATS > 0 + reconDesc->numReconEventWaits++; +#endif /* RF_RECON_STATS > 0 */ + DO_WAIT(rctrl); + reconDesc->reconExecTicks = 0; /* we've just waited */ + } + + reconDesc->reconExecTimerRunning = 1; + if (RF_ETIMER_VAL_US(reconDesc->recon_exec_timer)!=0) { + /* it moved!! reset the timer. */ + RF_ETIMER_START(reconDesc->recon_exec_timer); + } + event = rctrl->eventQueue; + rctrl->eventQueue = event->next; + event->next = NULL; + rctrl->eq_count--; + + /* q null and count==0 must be equivalent conditions */ + RF_ASSERT((rctrl->eventQueue == NULL) == (rctrl->eq_count == 0)); + RF_UNLOCK_MUTEX(rctrl->eq_mutex); + return (event); +} +/* enqueues a reconstruction event on the indicated queue */ +void +rf_CauseReconEvent(raidPtr, row, col, arg, type) + RF_Raid_t *raidPtr; + RF_RowCol_t row; + RF_RowCol_t col; + void *arg; + RF_Revent_t type; +{ + RF_ReconCtrl_t *rctrl = raidPtr->reconControl[row]; + RF_ReconEvent_t *event = GetReconEventDesc(row, col, arg, type); + + if (type == RF_REVENT_BUFCLEAR) { + RF_ASSERT(col != rctrl->fcol); + } + RF_ASSERT(row >= 0 && row <= raidPtr->numRow && col >= 0 && col <= raidPtr->numCol); + RF_LOCK_MUTEX(rctrl->eq_mutex); + /* q null and count==0 must be equivalent conditions */ + RF_ASSERT((rctrl->eventQueue == NULL) == (rctrl->eq_count == 0)); + event->next = rctrl->eventQueue; + rctrl->eventQueue = event; + rctrl->eq_count++; + RF_UNLOCK_MUTEX(rctrl->eq_mutex); + + DO_SIGNAL(rctrl); +} +/* allocates and initializes a recon event descriptor */ +static RF_ReconEvent_t * +GetReconEventDesc(row, col, arg, type) + RF_RowCol_t row; + RF_RowCol_t col; + void *arg; + RF_Revent_t type; +{ + RF_ReconEvent_t *t; + + RF_FREELIST_GET(rf_revent_freelist, t, next, (RF_ReconEvent_t *)); + if (t == NULL) + return (NULL); + t->col = col; + t->arg = arg; + t->type = type; + return (t); +} + +void +rf_FreeReconEventDesc(event) + RF_ReconEvent_t *event; +{ + RF_FREELIST_FREE(rf_revent_freelist, event, next); +} diff --git a/sys/dev/raidframe/rf_revent.h b/sys/dev/raidframe/rf_revent.h new file mode 100644 index 0000000..51c3202 --- /dev/null +++ b/sys/dev/raidframe/rf_revent.h @@ -0,0 +1,52 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_revent.h,v 1.3 1999/02/05 00:06:17 oster Exp $ */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +/******************************************************************* + * + * rf_revent.h -- header file for reconstruction event handling code + * + *******************************************************************/ + +#ifndef _RF__RF_REVENT_H_ +#define _RF__RF_REVENT_H_ + +#include <dev/raidframe/rf_types.h> + +int rf_ConfigureReconEvent(RF_ShutdownList_t ** listp); + +RF_ReconEvent_t * +rf_GetNextReconEvent(RF_RaidReconDesc_t * reconDesc, + RF_RowCol_t row, void (*continueFunc) (void *), void *continueArg); + + void rf_CauseReconEvent(RF_Raid_t * raidPtr, RF_RowCol_t row, RF_RowCol_t col, + void *arg, RF_Revent_t type); + + void rf_FreeReconEventDesc(RF_ReconEvent_t * event); + +#endif /* !_RF__RF_REVENT_H_ */ diff --git a/sys/dev/raidframe/rf_shutdown.c b/sys/dev/raidframe/rf_shutdown.c new file mode 100644 index 0000000..7db93e9 --- /dev/null +++ b/sys/dev/raidframe/rf_shutdown.c @@ -0,0 +1,102 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_shutdown.c,v 1.6 2000/01/13 23:41:18 oster Exp $ */ +/* + * rf_shutdown.c + */ +/* + * Copyright (c) 1996 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Jim Zelenka + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ +/* + * Maintain lists of cleanup functions. Also, mechanisms for coordinating + * thread startup and shutdown. + */ + +#include <dev/raidframe/rf_types.h> +#include <dev/raidframe/rf_threadstuff.h> +#include <dev/raidframe/rf_shutdown.h> +#include <dev/raidframe/rf_debugMem.h> +#include <dev/raidframe/rf_freelist.h> + +static void +rf_FreeShutdownEnt(RF_ShutdownList_t * ent) +{ + FREE(ent, M_RAIDFRAME); +} + +int +_rf_ShutdownCreate( + RF_ShutdownList_t ** listp, + void (*cleanup) (void *arg), + void *arg, + char *file, + int line) +{ + RF_ShutdownList_t *ent; + + /* + * Have to directly allocate memory here, since we start up before + * and shutdown after RAIDframe internal allocation system. + */ + /* ent = (RF_ShutdownList_t *) malloc(sizeof(RF_ShutdownList_t), + M_RAIDFRAME, M_WAITOK); */ + ent = (RF_ShutdownList_t *) malloc(sizeof(RF_ShutdownList_t), + M_RAIDFRAME, M_NOWAIT); + if (ent == NULL) + return (ENOMEM); + ent->cleanup = cleanup; + ent->arg = arg; + ent->file = file; + ent->line = line; + ent->next = *listp; + *listp = ent; + return (0); +} + +int +rf_ShutdownList(RF_ShutdownList_t ** list) +{ + RF_ShutdownList_t *r, *next; + char *file; + int line; + + for (r = *list; r; r = next) { + next = r->next; + file = r->file; + line = r->line; + + if (rf_shutdownDebug) { + printf("call shutdown, created %s:%d\n", file, line); + } + r->cleanup(r->arg); + + if (rf_shutdownDebug) { + printf("completed shutdown, created %s:%d\n", file, line); + } + rf_FreeShutdownEnt(r); + } + *list = NULL; + return (0); +} diff --git a/sys/dev/raidframe/rf_shutdown.h b/sys/dev/raidframe/rf_shutdown.h new file mode 100644 index 0000000..5abc5ba --- /dev/null +++ b/sys/dev/raidframe/rf_shutdown.h @@ -0,0 +1,67 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_shutdown.h,v 1.2 1999/02/05 00:06:17 oster Exp $ */ +/* + * rf_shutdown.h + */ +/* + * Copyright (c) 1996 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Jim Zelenka + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ +/* + * Maintain lists of cleanup functions. Also, mechanisms for coordinating + * thread startup and shutdown. + */ + +#ifndef _RF__RF_SHUTDOWN_H_ +#define _RF__RF_SHUTDOWN_H_ + +#include <dev/raidframe/rf_types.h> +#include <dev/raidframe/rf_threadstuff.h> + +/* + * Important note: the shutdown list is run like a stack, new + * entries pushed on top. Therefore, the most recently added + * entry (last started) is the first removed (stopped). This + * should handle system-dependencies pretty nicely- if a system + * is there when you start another, it'll be there when you + * shut down another. Hopefully, this subsystem will remove + * more complexity than it introduces. + */ + +struct RF_ShutdownList_s { + void (*cleanup) (void *arg); + void *arg; + char *file; + int line; + RF_ShutdownList_t *next; +}; +#define rf_ShutdownCreate(_listp_,_func_,_arg_) \ + _rf_ShutdownCreate(_listp_,_func_,_arg_,__FILE__,__LINE__) + +int _rf_ShutdownCreate(RF_ShutdownList_t ** listp, void (*cleanup) (void *arg), + void *arg, char *file, int line); +int rf_ShutdownList(RF_ShutdownList_t ** listp); + +#endif /* !_RF__RF_SHUTDOWN_H_ */ diff --git a/sys/dev/raidframe/rf_sstf.c b/sys/dev/raidframe/rf_sstf.c new file mode 100644 index 0000000..3d20275 --- /dev/null +++ b/sys/dev/raidframe/rf_sstf.c @@ -0,0 +1,656 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_sstf.c,v 1.6 2001/01/27 20:18:55 oster Exp $ */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Jim Zelenka + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +/******************************************************************************* + * + * sstf.c -- prioritized shortest seek time first disk queueing code + * + ******************************************************************************/ + +#include <dev/raidframe/rf_alloclist.h> +#include <dev/raidframe/rf_stripelocks.h> +#include <dev/raidframe/rf_layout.h> +#include <dev/raidframe/rf_diskqueue.h> +#include <dev/raidframe/rf_sstf.h> +#include <dev/raidframe/rf_debugMem.h> +#include <dev/raidframe/rf_general.h> +#include <dev/raidframe/rf_options.h> +#include <dev/raidframe/rf_raid.h> +#include <dev/raidframe/rf_types.h> + +#define DIR_LEFT 1 +#define DIR_RIGHT 2 +#define DIR_EITHER 3 + +#define SNUM_DIFF(_a_,_b_) (((_a_)>(_b_))?((_a_)-(_b_)):((_b_)-(_a_))) + +#define QSUM(_sstfq_) (((_sstfq_)->lopri.qlen)+((_sstfq_)->left.qlen)+((_sstfq_)->right.qlen)) + + +static void +do_sstf_ord_q(RF_DiskQueueData_t **, + RF_DiskQueueData_t **, + RF_DiskQueueData_t *); + +static RF_DiskQueueData_t * +closest_to_arm(RF_SstfQ_t *, + RF_SectorNum_t, + int *, + int); +static void do_dequeue(RF_SstfQ_t *, RF_DiskQueueData_t *); + + +static void +do_sstf_ord_q(queuep, tailp, req) + RF_DiskQueueData_t **queuep; + RF_DiskQueueData_t **tailp; + RF_DiskQueueData_t *req; +{ + RF_DiskQueueData_t *r, *s; + + if (*queuep == NULL) { + *queuep = req; + *tailp = req; + req->next = NULL; + req->prev = NULL; + return; + } + if (req->sectorOffset <= (*queuep)->sectorOffset) { + req->next = *queuep; + req->prev = NULL; + (*queuep)->prev = req; + *queuep = req; + return; + } + if (req->sectorOffset > (*tailp)->sectorOffset) { + /* optimization */ + r = NULL; + s = *tailp; + goto q_at_end; + } + for (s = NULL, r = *queuep; r; s = r, r = r->next) { + if (r->sectorOffset >= req->sectorOffset) { + /* insert after s, before r */ + RF_ASSERT(s); + req->next = r; + r->prev = req; + s->next = req; + req->prev = s; + return; + } + } +q_at_end: + /* insert after s, at end of queue */ + RF_ASSERT(r == NULL); + RF_ASSERT(s); + RF_ASSERT(s == (*tailp)); + req->next = NULL; + req->prev = s; + s->next = req; + *tailp = req; +} +/* for removing from head-of-queue */ +#define DO_HEAD_DEQ(_r_,_q_) { \ + _r_ = (_q_)->queue; \ + RF_ASSERT((_r_) != NULL); \ + (_q_)->queue = (_r_)->next; \ + (_q_)->qlen--; \ + if ((_q_)->qlen == 0) { \ + RF_ASSERT((_r_) == (_q_)->qtail); \ + RF_ASSERT((_q_)->queue == NULL); \ + (_q_)->qtail = NULL; \ + } \ + else { \ + RF_ASSERT((_q_)->queue->prev == (_r_)); \ + (_q_)->queue->prev = NULL; \ + } \ +} + +/* for removing from end-of-queue */ +#define DO_TAIL_DEQ(_r_,_q_) { \ + _r_ = (_q_)->qtail; \ + RF_ASSERT((_r_) != NULL); \ + (_q_)->qtail = (_r_)->prev; \ + (_q_)->qlen--; \ + if ((_q_)->qlen == 0) { \ + RF_ASSERT((_r_) == (_q_)->queue); \ + RF_ASSERT((_q_)->qtail == NULL); \ + (_q_)->queue = NULL; \ + } \ + else { \ + RF_ASSERT((_q_)->qtail->next == (_r_)); \ + (_q_)->qtail->next = NULL; \ + } \ +} + +#define DO_BEST_DEQ(_l_,_r_,_q_) { \ + if (SNUM_DIFF((_q_)->queue->sectorOffset,_l_) \ + < SNUM_DIFF((_q_)->qtail->sectorOffset,_l_)) \ + { \ + DO_HEAD_DEQ(_r_,_q_); \ + } \ + else { \ + DO_TAIL_DEQ(_r_,_q_); \ + } \ +} + +static RF_DiskQueueData_t * +closest_to_arm(queue, arm_pos, dir, allow_reverse) + RF_SstfQ_t *queue; + RF_SectorNum_t arm_pos; + int *dir; + int allow_reverse; +{ + RF_SectorNum_t best_pos_l = 0, this_pos_l = 0, last_pos = 0; + RF_SectorNum_t best_pos_r = 0, this_pos_r = 0; + RF_DiskQueueData_t *r, *best_l, *best_r; + + best_r = best_l = NULL; + for (r = queue->queue; r; r = r->next) { + if (r->sectorOffset < arm_pos) { + if (best_l == NULL) { + best_l = r; + last_pos = best_pos_l = this_pos_l; + } else { + this_pos_l = arm_pos - r->sectorOffset; + if (this_pos_l < best_pos_l) { + best_l = r; + last_pos = best_pos_l = this_pos_l; + } else { + last_pos = this_pos_l; + } + } + } else { + if (best_r == NULL) { + best_r = r; + last_pos = best_pos_r = this_pos_r; + } else { + this_pos_r = r->sectorOffset - arm_pos; + if (this_pos_r < best_pos_r) { + best_r = r; + last_pos = best_pos_r = this_pos_r; + } else { + last_pos = this_pos_r; + } + if (this_pos_r > last_pos) { + /* getting farther away */ + break; + } + } + } + } + if ((best_r == NULL) && (best_l == NULL)) + return (NULL); + if ((*dir == DIR_RIGHT) && best_r) + return (best_r); + if ((*dir == DIR_LEFT) && best_l) + return (best_l); + if (*dir == DIR_EITHER) { + if (best_l == NULL) + return (best_r); + if (best_r == NULL) + return (best_l); + if (best_pos_r < best_pos_l) + return (best_r); + else + return (best_l); + } + /* + * Nothing in the direction we want to go. Reverse or + * reset the arm. We know we have an I/O in the other + * direction. + */ + if (allow_reverse) { + if (*dir == DIR_RIGHT) { + *dir = DIR_LEFT; + return (best_l); + } else { + *dir = DIR_RIGHT; + return (best_r); + } + } + /* + * Reset (beginning of queue). + */ + RF_ASSERT(*dir == DIR_RIGHT); + return (queue->queue); +} + +void * +rf_SstfCreate(sect_per_disk, cl_list, listp) + RF_SectorCount_t sect_per_disk; + RF_AllocListElem_t *cl_list; + RF_ShutdownList_t **listp; +{ + RF_Sstf_t *sstfq; + + RF_CallocAndAdd(sstfq, 1, sizeof(RF_Sstf_t), (RF_Sstf_t *), cl_list); + sstfq->dir = DIR_EITHER; + sstfq->allow_reverse = 1; + return ((void *) sstfq); +} + +void * +rf_ScanCreate(sect_per_disk, cl_list, listp) + RF_SectorCount_t sect_per_disk; + RF_AllocListElem_t *cl_list; + RF_ShutdownList_t **listp; +{ + RF_Sstf_t *scanq; + + RF_CallocAndAdd(scanq, 1, sizeof(RF_Sstf_t), (RF_Sstf_t *), cl_list); + scanq->dir = DIR_RIGHT; + scanq->allow_reverse = 1; + return ((void *) scanq); +} + +void * +rf_CscanCreate(sect_per_disk, cl_list, listp) + RF_SectorCount_t sect_per_disk; + RF_AllocListElem_t *cl_list; + RF_ShutdownList_t **listp; +{ + RF_Sstf_t *cscanq; + + RF_CallocAndAdd(cscanq, 1, sizeof(RF_Sstf_t), (RF_Sstf_t *), cl_list); + cscanq->dir = DIR_RIGHT; + return ((void *) cscanq); +} + +void +rf_SstfEnqueue(qptr, req, priority) + void *qptr; + RF_DiskQueueData_t *req; + int priority; +{ + RF_Sstf_t *sstfq; + + sstfq = (RF_Sstf_t *) qptr; + + if (priority == RF_IO_LOW_PRIORITY) { + if (rf_sstfDebug || rf_scanDebug || rf_cscanDebug) { + RF_DiskQueue_t *dq; + dq = (RF_DiskQueue_t *) req->queue; + printf("raid%d: ENQ lopri %d,%d queues are %d,%d,%d\n", + req->raidPtr->raidid, + dq->row, dq->col, + sstfq->left.qlen, sstfq->right.qlen, + sstfq->lopri.qlen); + } + do_sstf_ord_q(&sstfq->lopri.queue, &sstfq->lopri.qtail, req); + sstfq->lopri.qlen++; + } else { + if (req->sectorOffset < sstfq->last_sector) { + do_sstf_ord_q(&sstfq->left.queue, &sstfq->left.qtail, req); + sstfq->left.qlen++; + } else { + do_sstf_ord_q(&sstfq->right.queue, &sstfq->right.qtail, req); + sstfq->right.qlen++; + } + } +} + +static void +do_dequeue(queue, req) + RF_SstfQ_t *queue; + RF_DiskQueueData_t *req; +{ + RF_DiskQueueData_t *req2; + + if (rf_sstfDebug || rf_scanDebug || rf_cscanDebug) { + printf("raid%d: do_dequeue\n", req->raidPtr->raidid); + } + if (req == queue->queue) { + DO_HEAD_DEQ(req2, queue); + RF_ASSERT(req2 == req); + } else + if (req == queue->qtail) { + DO_TAIL_DEQ(req2, queue); + RF_ASSERT(req2 == req); + } else { + /* dequeue from middle of list */ + RF_ASSERT(req->next); + RF_ASSERT(req->prev); + queue->qlen--; + req->next->prev = req->prev; + req->prev->next = req->next; + req->next = req->prev = NULL; + } +} + +RF_DiskQueueData_t * +rf_SstfDequeue(qptr) + void *qptr; +{ + RF_DiskQueueData_t *req = NULL; + RF_Sstf_t *sstfq; + + sstfq = (RF_Sstf_t *) qptr; + + if (rf_sstfDebug) { + RF_DiskQueue_t *dq; + dq = (RF_DiskQueue_t *) req->queue; + RF_ASSERT(QSUM(sstfq) == dq->queueLength); + printf("raid%d: sstf: Dequeue %d,%d queues are %d,%d,%d\n", + req->raidPtr->raidid, dq->row, dq->col, + sstfq->left.qlen, sstfq->right.qlen, sstfq->lopri.qlen); + } + if (sstfq->left.queue == NULL) { + RF_ASSERT(sstfq->left.qlen == 0); + if (sstfq->right.queue == NULL) { + RF_ASSERT(sstfq->right.qlen == 0); + if (sstfq->lopri.queue == NULL) { + RF_ASSERT(sstfq->lopri.qlen == 0); + return (NULL); + } + if (rf_sstfDebug) { + printf("raid%d: sstf: check for close lopri", + req->raidPtr->raidid); + } + req = closest_to_arm(&sstfq->lopri, sstfq->last_sector, + &sstfq->dir, sstfq->allow_reverse); + if (rf_sstfDebug) { + printf("raid%d: sstf: closest_to_arm said %lx", + req->raidPtr->raidid, (long) req); + } + if (req == NULL) + return (NULL); + do_dequeue(&sstfq->lopri, req); + } else { + DO_BEST_DEQ(sstfq->last_sector, req, &sstfq->right); + } + } else { + if (sstfq->right.queue == NULL) { + RF_ASSERT(sstfq->right.qlen == 0); + DO_BEST_DEQ(sstfq->last_sector, req, &sstfq->left); + } else { + if (SNUM_DIFF(sstfq->last_sector, sstfq->right.queue->sectorOffset) + < SNUM_DIFF(sstfq->last_sector, sstfq->left.qtail->sectorOffset)) { + DO_HEAD_DEQ(req, &sstfq->right); + } else { + DO_TAIL_DEQ(req, &sstfq->left); + } + } + } + RF_ASSERT(req); + sstfq->last_sector = req->sectorOffset; + return (req); +} + +RF_DiskQueueData_t * +rf_ScanDequeue(qptr) + void *qptr; +{ + RF_DiskQueueData_t *req = NULL; + RF_Sstf_t *scanq; + + scanq = (RF_Sstf_t *) qptr; + + if (rf_scanDebug) { + RF_DiskQueue_t *dq; + dq = (RF_DiskQueue_t *) req->queue; + RF_ASSERT(QSUM(scanq) == dq->queueLength); + printf("raid%d: scan: Dequeue %d,%d queues are %d,%d,%d\n", + req->raidPtr->raidid, dq->row, dq->col, + scanq->left.qlen, scanq->right.qlen, scanq->lopri.qlen); + } + if (scanq->left.queue == NULL) { + RF_ASSERT(scanq->left.qlen == 0); + if (scanq->right.queue == NULL) { + RF_ASSERT(scanq->right.qlen == 0); + if (scanq->lopri.queue == NULL) { + RF_ASSERT(scanq->lopri.qlen == 0); + return (NULL); + } + req = closest_to_arm(&scanq->lopri, scanq->last_sector, + &scanq->dir, scanq->allow_reverse); + if (req == NULL) + return (NULL); + do_dequeue(&scanq->lopri, req); + } else { + scanq->dir = DIR_RIGHT; + DO_HEAD_DEQ(req, &scanq->right); + } + } else + if (scanq->right.queue == NULL) { + RF_ASSERT(scanq->right.qlen == 0); + RF_ASSERT(scanq->left.queue); + scanq->dir = DIR_LEFT; + DO_TAIL_DEQ(req, &scanq->left); + } else { + RF_ASSERT(scanq->right.queue); + RF_ASSERT(scanq->left.queue); + if (scanq->dir == DIR_RIGHT) { + DO_HEAD_DEQ(req, &scanq->right); + } else { + DO_TAIL_DEQ(req, &scanq->left); + } + } + RF_ASSERT(req); + scanq->last_sector = req->sectorOffset; + return (req); +} + +RF_DiskQueueData_t * +rf_CscanDequeue(qptr) + void *qptr; +{ + RF_DiskQueueData_t *req = NULL; + RF_Sstf_t *cscanq; + + cscanq = (RF_Sstf_t *) qptr; + + RF_ASSERT(cscanq->dir == DIR_RIGHT); + if (rf_cscanDebug) { + RF_DiskQueue_t *dq; + dq = (RF_DiskQueue_t *) req->queue; + RF_ASSERT(QSUM(cscanq) == dq->queueLength); + printf("raid%d: scan: Dequeue %d,%d queues are %d,%d,%d\n", + req->raidPtr->raidid, dq->row, dq->col, + cscanq->left.qlen, cscanq->right.qlen, + cscanq->lopri.qlen); + } + if (cscanq->right.queue) { + DO_HEAD_DEQ(req, &cscanq->right); + } else { + RF_ASSERT(cscanq->right.qlen == 0); + if (cscanq->left.queue == NULL) { + RF_ASSERT(cscanq->left.qlen == 0); + if (cscanq->lopri.queue == NULL) { + RF_ASSERT(cscanq->lopri.qlen == 0); + return (NULL); + } + req = closest_to_arm(&cscanq->lopri, cscanq->last_sector, + &cscanq->dir, cscanq->allow_reverse); + if (req == NULL) + return (NULL); + do_dequeue(&cscanq->lopri, req); + } else { + /* + * There's I/Os to the left of the arm. Swing + * on back (swap queues). + */ + cscanq->right = cscanq->left; + cscanq->left.qlen = 0; + cscanq->left.queue = cscanq->left.qtail = NULL; + DO_HEAD_DEQ(req, &cscanq->right); + } + } + RF_ASSERT(req); + cscanq->last_sector = req->sectorOffset; + return (req); +} + +RF_DiskQueueData_t * +rf_SstfPeek(qptr) + void *qptr; +{ + RF_DiskQueueData_t *req; + RF_Sstf_t *sstfq; + + sstfq = (RF_Sstf_t *) qptr; + + if ((sstfq->left.queue == NULL) && (sstfq->right.queue == NULL)) { + req = closest_to_arm(&sstfq->lopri, sstfq->last_sector, &sstfq->dir, + sstfq->allow_reverse); + } else { + if (sstfq->left.queue == NULL) + req = sstfq->right.queue; + else { + if (sstfq->right.queue == NULL) + req = sstfq->left.queue; + else { + if (SNUM_DIFF(sstfq->last_sector, sstfq->right.queue->sectorOffset) + < SNUM_DIFF(sstfq->last_sector, sstfq->left.qtail->sectorOffset)) { + req = sstfq->right.queue; + } else { + req = sstfq->left.qtail; + } + } + } + } + if (req == NULL) { + RF_ASSERT(QSUM(sstfq) == 0); + } + return (req); +} + +RF_DiskQueueData_t * +rf_ScanPeek(qptr) + void *qptr; +{ + RF_DiskQueueData_t *req; + RF_Sstf_t *scanq; + int dir; + + scanq = (RF_Sstf_t *) qptr; + dir = scanq->dir; + + if (scanq->left.queue == NULL) { + RF_ASSERT(scanq->left.qlen == 0); + if (scanq->right.queue == NULL) { + RF_ASSERT(scanq->right.qlen == 0); + if (scanq->lopri.queue == NULL) { + RF_ASSERT(scanq->lopri.qlen == 0); + return (NULL); + } + req = closest_to_arm(&scanq->lopri, scanq->last_sector, + &dir, scanq->allow_reverse); + } else { + req = scanq->right.queue; + } + } else + if (scanq->right.queue == NULL) { + RF_ASSERT(scanq->right.qlen == 0); + RF_ASSERT(scanq->left.queue); + req = scanq->left.qtail; + } else { + RF_ASSERT(scanq->right.queue); + RF_ASSERT(scanq->left.queue); + if (scanq->dir == DIR_RIGHT) { + req = scanq->right.queue; + } else { + req = scanq->left.qtail; + } + } + if (req == NULL) { + RF_ASSERT(QSUM(scanq) == 0); + } + return (req); +} + +RF_DiskQueueData_t * +rf_CscanPeek(qptr) + void *qptr; +{ + RF_DiskQueueData_t *req; + RF_Sstf_t *cscanq; + + cscanq = (RF_Sstf_t *) qptr; + + RF_ASSERT(cscanq->dir == DIR_RIGHT); + if (cscanq->right.queue) { + req = cscanq->right.queue; + } else { + RF_ASSERT(cscanq->right.qlen == 0); + if (cscanq->left.queue == NULL) { + RF_ASSERT(cscanq->left.qlen == 0); + if (cscanq->lopri.queue == NULL) { + RF_ASSERT(cscanq->lopri.qlen == 0); + return (NULL); + } + req = closest_to_arm(&cscanq->lopri, cscanq->last_sector, + &cscanq->dir, cscanq->allow_reverse); + } else { + /* + * There's I/Os to the left of the arm. We'll end + * up swinging on back. + */ + req = cscanq->left.queue; + } + } + if (req == NULL) { + RF_ASSERT(QSUM(cscanq) == 0); + } + return (req); +} + +int +rf_SstfPromote(qptr, parityStripeID, which_ru) + void *qptr; + RF_StripeNum_t parityStripeID; + RF_ReconUnitNum_t which_ru; +{ + RF_DiskQueueData_t *r, *next; + RF_Sstf_t *sstfq; + int n; + + sstfq = (RF_Sstf_t *) qptr; + + n = 0; + for (r = sstfq->lopri.queue; r; r = next) { + next = r->next; + if (rf_sstfDebug || rf_scanDebug || rf_cscanDebug) { + printf("raid%d: check promote %lx\n", + r->raidPtr->raidid, (long) r); + } + if ((r->parityStripeID == parityStripeID) + && (r->which_ru == which_ru)) { + do_dequeue(&sstfq->lopri, r); + rf_SstfEnqueue(qptr, r, RF_IO_NORMAL_PRIORITY); + n++; + } + } + if (rf_sstfDebug || rf_scanDebug || rf_cscanDebug) { + printf("raid%d: promoted %d matching I/Os queues are %d,%d,%d\n", + r->raidPtr->raidid, n, sstfq->left.qlen, + sstfq->right.qlen, sstfq->lopri.qlen); + } + return (n); +} diff --git a/sys/dev/raidframe/rf_sstf.h b/sys/dev/raidframe/rf_sstf.h new file mode 100644 index 0000000..2fc1c0d --- /dev/null +++ b/sys/dev/raidframe/rf_sstf.h @@ -0,0 +1,70 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_sstf.h,v 1.3 1999/02/05 00:06:17 oster Exp $ */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Jim Zelenka + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +#ifndef _RF__RF_SSTF_H_ +#define _RF__RF_SSTF_H_ + +#include <dev/raidframe/rf_diskqueue.h> + +typedef struct RF_SstfQ_s { + RF_DiskQueueData_t *queue; + RF_DiskQueueData_t *qtail; + int qlen; +} RF_SstfQ_t; + +typedef struct RF_Sstf_s { + RF_SstfQ_t left; + RF_SstfQ_t right; + RF_SstfQ_t lopri; + RF_SectorNum_t last_sector; + int dir; + int allow_reverse; +} RF_Sstf_t; + +void * +rf_SstfCreate(RF_SectorCount_t sect_per_disk, + RF_AllocListElem_t * cl_list, RF_ShutdownList_t ** listp); +void * +rf_ScanCreate(RF_SectorCount_t sect_per_disk, + RF_AllocListElem_t * cl_list, RF_ShutdownList_t ** listp); +void * +rf_CscanCreate(RF_SectorCount_t sect_per_disk, + RF_AllocListElem_t * cl_list, RF_ShutdownList_t ** listp); +void rf_SstfEnqueue(void *qptr, RF_DiskQueueData_t * req, int priority); +RF_DiskQueueData_t *rf_SstfDequeue(void *qptr); +RF_DiskQueueData_t *rf_SstfPeek(void *qptr); +int +rf_SstfPromote(void *qptr, RF_StripeNum_t parityStripeID, + RF_ReconUnitNum_t which_ru); +RF_DiskQueueData_t *rf_ScanDequeue(void *qptr); +RF_DiskQueueData_t *rf_ScanPeek(void *qptr); +RF_DiskQueueData_t *rf_CscanDequeue(void *qptr); +RF_DiskQueueData_t *rf_CscanPeek(void *qptr); + +#endif /* !_RF__RF_SSTF_H_ */ diff --git a/sys/dev/raidframe/rf_states.c b/sys/dev/raidframe/rf_states.c new file mode 100644 index 0000000..c96ee87 --- /dev/null +++ b/sys/dev/raidframe/rf_states.c @@ -0,0 +1,667 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_states.c,v 1.15 2000/10/20 02:24:45 oster Exp $ */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Mark Holland, William V. Courtright II, Robby Findler + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +#include <sys/errno.h> + +#include <dev/raidframe/rf_archs.h> +#include <dev/raidframe/rf_threadstuff.h> +#include <dev/raidframe/rf_raid.h> +#include <dev/raidframe/rf_dag.h> +#include <dev/raidframe/rf_desc.h> +#include <dev/raidframe/rf_aselect.h> +#include <dev/raidframe/rf_general.h> +#include <dev/raidframe/rf_states.h> +#include <dev/raidframe/rf_dagutils.h> +#include <dev/raidframe/rf_driver.h> +#include <dev/raidframe/rf_engine.h> +#include <dev/raidframe/rf_map.h> +#include <dev/raidframe/rf_etimer.h> +#include <dev/raidframe/rf_kintf.h> + +/* prototypes for some of the available states. + + States must: + + - not block. + + - either schedule rf_ContinueRaidAccess as a callback and return + RF_TRUE, or complete all of their work and return RF_FALSE. + + - increment desc->state when they have finished their work. +*/ + +static char * +StateName(RF_AccessState_t state) +{ + switch (state) { + case rf_QuiesceState:return "QuiesceState"; + case rf_MapState: + return "MapState"; + case rf_LockState: + return "LockState"; + case rf_CreateDAGState: + return "CreateDAGState"; + case rf_ExecuteDAGState: + return "ExecuteDAGState"; + case rf_ProcessDAGState: + return "ProcessDAGState"; + case rf_CleanupState: + return "CleanupState"; + case rf_LastState: + return "LastState"; + case rf_IncrAccessesCountState: + return "IncrAccessesCountState"; + case rf_DecrAccessesCountState: + return "DecrAccessesCountState"; + default: + return "!!! UnnamedState !!!"; + } +} + +void +rf_ContinueRaidAccess(RF_RaidAccessDesc_t * desc) +{ + int suspended = RF_FALSE; + int current_state_index = desc->state; + RF_AccessState_t current_state = desc->states[current_state_index]; + int unit = desc->raidPtr->raidid; + + do { + + current_state_index = desc->state; + current_state = desc->states[current_state_index]; + + switch (current_state) { + + case rf_QuiesceState: + suspended = rf_State_Quiesce(desc); + break; + case rf_IncrAccessesCountState: + suspended = rf_State_IncrAccessCount(desc); + break; + case rf_MapState: + suspended = rf_State_Map(desc); + break; + case rf_LockState: + suspended = rf_State_Lock(desc); + break; + case rf_CreateDAGState: + suspended = rf_State_CreateDAG(desc); + break; + case rf_ExecuteDAGState: + suspended = rf_State_ExecuteDAG(desc); + break; + case rf_ProcessDAGState: + suspended = rf_State_ProcessDAG(desc); + break; + case rf_CleanupState: + suspended = rf_State_Cleanup(desc); + break; + case rf_DecrAccessesCountState: + suspended = rf_State_DecrAccessCount(desc); + break; + case rf_LastState: + suspended = rf_State_LastState(desc); + break; + } + + /* after this point, we cannot dereference desc since desc may + * have been freed. desc is only freed in LastState, so if we + * renter this function or loop back up, desc should be valid. */ + + if (rf_printStatesDebug) { + printf("raid%d: State: %-24s StateIndex: %3i desc: 0x%ld %s\n", + unit, StateName(current_state), + current_state_index, (long) desc, + suspended ? "callback scheduled" : "looping"); + } + } while (!suspended && current_state != rf_LastState); + + return; +} + + +void +rf_ContinueDagAccess(RF_DagList_t * dagList) +{ + RF_AccTraceEntry_t *tracerec = &(dagList->desc->tracerec); + RF_RaidAccessDesc_t *desc; + RF_DagHeader_t *dag_h; + RF_Etimer_t timer; + int i; + + desc = dagList->desc; + + timer = tracerec->timer; + RF_ETIMER_STOP(timer); + RF_ETIMER_EVAL(timer); + tracerec->specific.user.exec_us = RF_ETIMER_VAL_US(timer); + RF_ETIMER_START(tracerec->timer); + + /* skip to dag which just finished */ + dag_h = dagList->dags; + for (i = 0; i < dagList->numDagsDone; i++) { + dag_h = dag_h->next; + } + + /* check to see if retry is required */ + if (dag_h->status == rf_rollBackward) { + /* when a dag fails, mark desc status as bad and allow all + * other dags in the desc to execute to completion. then, + * free all dags and start over */ + desc->status = 1; /* bad status */ + { + printf("raid%d: DAG failure: %c addr 0x%lx (%ld) nblk 0x%x (%d) buf 0x%lx\n", + desc->raidPtr->raidid, desc->type, + (long) desc->raidAddress, + (long) desc->raidAddress, (int) desc->numBlocks, + (int) desc->numBlocks, + (unsigned long) (desc->bufPtr)); + } + } + dagList->numDagsDone++; + rf_ContinueRaidAccess(desc); +} + +int +rf_State_LastState(RF_RaidAccessDesc_t * desc) +{ + void (*callbackFunc) (RF_CBParam_t) = desc->callbackFunc; + RF_CBParam_t callbackArg; + + callbackArg.p = desc->callbackArg; + + /* + * If this is not an async request, wake up the caller + */ + if (desc->async_flag == 0) + wakeup(desc->bp); + + /* + * That's all the IO for this one... unbusy the 'disk'. + */ + + rf_disk_unbusy(desc); + + /* + * Wakeup any requests waiting to go. + */ + + RF_LOCK_MUTEX(((RF_Raid_t *) desc->raidPtr)->mutex); + ((RF_Raid_t *) desc->raidPtr)->openings++; + RF_UNLOCK_MUTEX(((RF_Raid_t *) desc->raidPtr)->mutex); + + /* wake up any pending IO */ + raidstart(((RF_Raid_t *) desc->raidPtr)); + + /* printf("Calling biodone on 0x%x\n",desc->bp); */ + biodone(desc->bp); /* access came through ioctl */ + + if (callbackFunc) + callbackFunc(callbackArg); + rf_FreeRaidAccDesc(desc); + + return RF_FALSE; +} + +int +rf_State_IncrAccessCount(RF_RaidAccessDesc_t * desc) +{ + RF_Raid_t *raidPtr; + + raidPtr = desc->raidPtr; + /* Bummer. We have to do this to be 100% safe w.r.t. the increment + * below */ + RF_LOCK_MUTEX(raidPtr->access_suspend_mutex); + raidPtr->accs_in_flight++; /* used to detect quiescence */ + RF_UNLOCK_MUTEX(raidPtr->access_suspend_mutex); + + desc->state++; + return RF_FALSE; +} + +int +rf_State_DecrAccessCount(RF_RaidAccessDesc_t * desc) +{ + RF_Raid_t *raidPtr; + + raidPtr = desc->raidPtr; + + RF_LOCK_MUTEX(raidPtr->access_suspend_mutex); + raidPtr->accs_in_flight--; + if (raidPtr->accesses_suspended && raidPtr->accs_in_flight == 0) { + rf_SignalQuiescenceLock(raidPtr, raidPtr->reconDesc); + } + rf_UpdateUserStats(raidPtr, RF_ETIMER_VAL_US(desc->timer), desc->numBlocks); + RF_UNLOCK_MUTEX(raidPtr->access_suspend_mutex); + + desc->state++; + return RF_FALSE; +} + +int +rf_State_Quiesce(RF_RaidAccessDesc_t * desc) +{ + RF_AccTraceEntry_t *tracerec = &desc->tracerec; + RF_Etimer_t timer; + int suspended = RF_FALSE; + RF_Raid_t *raidPtr; + + raidPtr = desc->raidPtr; + + RF_ETIMER_START(timer); + RF_ETIMER_START(desc->timer); + + RF_LOCK_MUTEX(raidPtr->access_suspend_mutex); + if (raidPtr->accesses_suspended) { + RF_CallbackDesc_t *cb; + cb = rf_AllocCallbackDesc(); + /* XXX the following cast is quite bogus... + * rf_ContinueRaidAccess takes a (RF_RaidAccessDesc_t *) as an + * argument.. GO */ + cb->callbackFunc = (void (*) (RF_CBParam_t)) rf_ContinueRaidAccess; + cb->callbackArg.p = (void *) desc; + cb->next = raidPtr->quiesce_wait_list; + raidPtr->quiesce_wait_list = cb; + suspended = RF_TRUE; + } + RF_UNLOCK_MUTEX(raidPtr->access_suspend_mutex); + + RF_ETIMER_STOP(timer); + RF_ETIMER_EVAL(timer); + tracerec->specific.user.suspend_ovhd_us += RF_ETIMER_VAL_US(timer); + + if (suspended && rf_quiesceDebug) + printf("Stalling access due to quiescence lock\n"); + + desc->state++; + return suspended; +} + +int +rf_State_Map(RF_RaidAccessDesc_t * desc) +{ + RF_Raid_t *raidPtr = desc->raidPtr; + RF_AccTraceEntry_t *tracerec = &desc->tracerec; + RF_Etimer_t timer; + + RF_ETIMER_START(timer); + + if (!(desc->asmap = rf_MapAccess(raidPtr, desc->raidAddress, desc->numBlocks, + desc->bufPtr, RF_DONT_REMAP))) + RF_PANIC(); + + RF_ETIMER_STOP(timer); + RF_ETIMER_EVAL(timer); + tracerec->specific.user.map_us = RF_ETIMER_VAL_US(timer); + + desc->state++; + return RF_FALSE; +} + +int +rf_State_Lock(RF_RaidAccessDesc_t * desc) +{ + RF_AccTraceEntry_t *tracerec = &desc->tracerec; + RF_Raid_t *raidPtr = desc->raidPtr; + RF_AccessStripeMapHeader_t *asmh = desc->asmap; + RF_AccessStripeMap_t *asm_p; + RF_Etimer_t timer; + int suspended = RF_FALSE; + + RF_ETIMER_START(timer); + if (!(raidPtr->Layout.map->flags & RF_NO_STRIPE_LOCKS)) { + RF_StripeNum_t lastStripeID = -1; + + /* acquire each lock that we don't already hold */ + for (asm_p = asmh->stripeMap; asm_p; asm_p = asm_p->next) { + RF_ASSERT(RF_IO_IS_R_OR_W(desc->type)); + if (!rf_suppressLocksAndLargeWrites && + asm_p->parityInfo && + !(desc->flags & RF_DAG_SUPPRESS_LOCKS) && + !(asm_p->flags & RF_ASM_FLAGS_LOCK_TRIED)) { + asm_p->flags |= RF_ASM_FLAGS_LOCK_TRIED; + RF_ASSERT(asm_p->stripeID > lastStripeID); + + /* locks must be acquired hierarchically */ + + lastStripeID = asm_p->stripeID; + /* XXX the cast to (void (*)(RF_CBParam_t)) + * below is bogus! GO */ + RF_INIT_LOCK_REQ_DESC(asm_p->lockReqDesc, + desc->type, + (void (*) (RF_Buf_t)) rf_ContinueRaidAccess, + desc, asm_p, + raidPtr->Layout.dataSectorsPerStripe); + if (rf_AcquireStripeLock(raidPtr->lockTable, + asm_p->stripeID, &asm_p->lockReqDesc)) { + suspended = RF_TRUE; + break; + } + } + if (desc->type == RF_IO_TYPE_WRITE && + raidPtr->status[asm_p->physInfo->row] == rf_rs_reconstructing) { + if (!(asm_p->flags & RF_ASM_FLAGS_FORCE_TRIED)) { + int val; + + asm_p->flags |= RF_ASM_FLAGS_FORCE_TRIED; + /* XXX the cast below is quite + * bogus!!! XXX GO */ + val = rf_ForceOrBlockRecon(raidPtr, asm_p, + (void (*) (RF_Raid_t *, void *)) rf_ContinueRaidAccess, desc); + if (val == 0) { + asm_p->flags |= RF_ASM_FLAGS_RECON_BLOCKED; + } else { + suspended = RF_TRUE; + break; + } + } else { + if (rf_pssDebug) { + printf("raid%d: skipping force/block because already done, psid %ld\n", + desc->raidPtr->raidid, + (long) asm_p->stripeID); + } + } + } else { + if (rf_pssDebug) { + printf("raid%d: skipping force/block because not write or not under recon, psid %ld\n", + desc->raidPtr->raidid, + (long) asm_p->stripeID); + } + } + } + + RF_ETIMER_STOP(timer); + RF_ETIMER_EVAL(timer); + tracerec->specific.user.lock_us += RF_ETIMER_VAL_US(timer); + + if (suspended) + return (RF_TRUE); + } + desc->state++; + return (RF_FALSE); +} +/* + * the following three states create, execute, and post-process dags + * the error recovery unit is a single dag. + * by default, SelectAlgorithm creates an array of dags, one per parity stripe + * in some tricky cases, multiple dags per stripe are created + * - dags within a parity stripe are executed sequentially (arbitrary order) + * - dags for distinct parity stripes are executed concurrently + * + * repeat until all dags complete successfully -or- dag selection fails + * + * while !done + * create dag(s) (SelectAlgorithm) + * if dag + * execute dag (DispatchDAG) + * if dag successful + * done (SUCCESS) + * else + * !done (RETRY - start over with new dags) + * else + * done (FAIL) + */ +int +rf_State_CreateDAG(RF_RaidAccessDesc_t * desc) +{ + RF_AccTraceEntry_t *tracerec = &desc->tracerec; + RF_Etimer_t timer; + RF_DagHeader_t *dag_h; + int i, selectStatus; + + /* generate a dag for the access, and fire it off. When the dag + * completes, we'll get re-invoked in the next state. */ + RF_ETIMER_START(timer); + /* SelectAlgorithm returns one or more dags */ + selectStatus = rf_SelectAlgorithm(desc, desc->flags | RF_DAG_SUPPRESS_LOCKS); + if (rf_printDAGsDebug) + for (i = 0; i < desc->numStripes; i++) + rf_PrintDAGList(desc->dagArray[i].dags); + RF_ETIMER_STOP(timer); + RF_ETIMER_EVAL(timer); + /* update time to create all dags */ + tracerec->specific.user.dag_create_us = RF_ETIMER_VAL_US(timer); + + desc->status = 0; /* good status */ + + if (selectStatus) { + /* failed to create a dag */ + /* this happens when there are too many faults or incomplete + * dag libraries */ + printf("[Failed to create a DAG]\n"); + RF_PANIC(); + } else { + /* bind dags to desc */ + for (i = 0; i < desc->numStripes; i++) { + dag_h = desc->dagArray[i].dags; + while (dag_h) { + dag_h->bp = (RF_Buf_t) desc->bp; + dag_h->tracerec = tracerec; + dag_h = dag_h->next; + } + } + desc->flags |= RF_DAG_DISPATCH_RETURNED; + desc->state++; /* next state should be rf_State_ExecuteDAG */ + } + return RF_FALSE; +} + + + +/* the access has an array of dagLists, one dagList per parity stripe. + * fire the first dag in each parity stripe (dagList). + * dags within a stripe (dagList) must be executed sequentially + * - this preserves atomic parity update + * dags for independents parity groups (stripes) are fired concurrently */ + +int +rf_State_ExecuteDAG(RF_RaidAccessDesc_t * desc) +{ + int i; + RF_DagHeader_t *dag_h; + RF_DagList_t *dagArray = desc->dagArray; + + /* next state is always rf_State_ProcessDAG important to do this + * before firing the first dag (it may finish before we leave this + * routine) */ + desc->state++; + + /* sweep dag array, a stripe at a time, firing the first dag in each + * stripe */ + for (i = 0; i < desc->numStripes; i++) { + RF_ASSERT(dagArray[i].numDags > 0); + RF_ASSERT(dagArray[i].numDagsDone == 0); + RF_ASSERT(dagArray[i].numDagsFired == 0); + RF_ETIMER_START(dagArray[i].tracerec.timer); + /* fire first dag in this stripe */ + dag_h = dagArray[i].dags; + RF_ASSERT(dag_h); + dagArray[i].numDagsFired++; + /* XXX Yet another case where we pass in a conflicting + * function pointer :-( XXX GO */ + rf_DispatchDAG(dag_h, (void (*) (void *)) rf_ContinueDagAccess, &dagArray[i]); + } + + /* the DAG will always call the callback, even if there was no + * blocking, so we are always suspended in this state */ + return RF_TRUE; +} + + + +/* rf_State_ProcessDAG is entered when a dag completes. + * first, check to all dags in the access have completed + * if not, fire as many dags as possible */ + +int +rf_State_ProcessDAG(RF_RaidAccessDesc_t * desc) +{ + RF_AccessStripeMapHeader_t *asmh = desc->asmap; + RF_Raid_t *raidPtr = desc->raidPtr; + RF_DagHeader_t *dag_h; + int i, j, done = RF_TRUE; + RF_DagList_t *dagArray = desc->dagArray; + RF_Etimer_t timer; + + /* check to see if this is the last dag */ + for (i = 0; i < desc->numStripes; i++) + if (dagArray[i].numDags != dagArray[i].numDagsDone) + done = RF_FALSE; + + if (done) { + if (desc->status) { + /* a dag failed, retry */ + RF_ETIMER_START(timer); + /* free all dags */ + for (i = 0; i < desc->numStripes; i++) { + rf_FreeDAG(desc->dagArray[i].dags); + } + rf_MarkFailuresInASMList(raidPtr, asmh); + /* back up to rf_State_CreateDAG */ + desc->state = desc->state - 2; + return RF_FALSE; + } else { + /* move on to rf_State_Cleanup */ + desc->state++; + } + return RF_FALSE; + } else { + /* more dags to execute */ + /* see if any are ready to be fired. if so, fire them */ + /* don't fire the initial dag in a list, it's fired in + * rf_State_ExecuteDAG */ + for (i = 0; i < desc->numStripes; i++) { + if ((dagArray[i].numDagsDone < dagArray[i].numDags) + && (dagArray[i].numDagsDone == dagArray[i].numDagsFired) + && (dagArray[i].numDagsFired > 0)) { + RF_ETIMER_START(dagArray[i].tracerec.timer); + /* fire next dag in this stripe */ + /* first, skip to next dag awaiting execution */ + dag_h = dagArray[i].dags; + for (j = 0; j < dagArray[i].numDagsDone; j++) + dag_h = dag_h->next; + dagArray[i].numDagsFired++; + /* XXX and again we pass a different function + * pointer.. GO */ + rf_DispatchDAG(dag_h, (void (*) (void *)) rf_ContinueDagAccess, + &dagArray[i]); + } + } + return RF_TRUE; + } +} +/* only make it this far if all dags complete successfully */ +int +rf_State_Cleanup(RF_RaidAccessDesc_t * desc) +{ + RF_AccTraceEntry_t *tracerec = &desc->tracerec; + RF_AccessStripeMapHeader_t *asmh = desc->asmap; + RF_Raid_t *raidPtr = desc->raidPtr; + RF_AccessStripeMap_t *asm_p; + RF_DagHeader_t *dag_h; + RF_Etimer_t timer; + int i; + + desc->state++; + + timer = tracerec->timer; + RF_ETIMER_STOP(timer); + RF_ETIMER_EVAL(timer); + tracerec->specific.user.dag_retry_us = RF_ETIMER_VAL_US(timer); + + /* the RAID I/O is complete. Clean up. */ + tracerec->specific.user.dag_retry_us = 0; + + RF_ETIMER_START(timer); + if (desc->flags & RF_DAG_RETURN_DAG) { + /* copy dags into paramDAG */ + *(desc->paramDAG) = desc->dagArray[0].dags; + dag_h = *(desc->paramDAG); + for (i = 1; i < desc->numStripes; i++) { + /* concatenate dags from remaining stripes */ + RF_ASSERT(dag_h); + while (dag_h->next) + dag_h = dag_h->next; + dag_h->next = desc->dagArray[i].dags; + } + } else { + /* free all dags */ + for (i = 0; i < desc->numStripes; i++) { + rf_FreeDAG(desc->dagArray[i].dags); + } + } + + RF_ETIMER_STOP(timer); + RF_ETIMER_EVAL(timer); + tracerec->specific.user.cleanup_us = RF_ETIMER_VAL_US(timer); + + RF_ETIMER_START(timer); + if (!(raidPtr->Layout.map->flags & RF_NO_STRIPE_LOCKS)) { + for (asm_p = asmh->stripeMap; asm_p; asm_p = asm_p->next) { + if (!rf_suppressLocksAndLargeWrites && + asm_p->parityInfo && + !(desc->flags & RF_DAG_SUPPRESS_LOCKS)) { + RF_ASSERT_VALID_LOCKREQ(&asm_p->lockReqDesc); + rf_ReleaseStripeLock(raidPtr->lockTable, + asm_p->stripeID, + &asm_p->lockReqDesc); + } + if (asm_p->flags & RF_ASM_FLAGS_RECON_BLOCKED) { + rf_UnblockRecon(raidPtr, asm_p); + } + } + } + RF_ETIMER_STOP(timer); + RF_ETIMER_EVAL(timer); + tracerec->specific.user.lock_us += RF_ETIMER_VAL_US(timer); + + RF_ETIMER_START(timer); + if (desc->flags & RF_DAG_RETURN_ASM) + *(desc->paramASM) = asmh; + else + rf_FreeAccessStripeMap(asmh); + RF_ETIMER_STOP(timer); + RF_ETIMER_EVAL(timer); + tracerec->specific.user.cleanup_us += RF_ETIMER_VAL_US(timer); + + RF_ETIMER_STOP(desc->timer); + RF_ETIMER_EVAL(desc->timer); + + timer = desc->tracerec.tot_timer; + RF_ETIMER_STOP(timer); + RF_ETIMER_EVAL(timer); + desc->tracerec.total_us = RF_ETIMER_VAL_US(timer); + + rf_LogTraceRec(raidPtr, tracerec); + + desc->flags |= RF_DAG_ACCESS_COMPLETE; + + return RF_FALSE; +} diff --git a/sys/dev/raidframe/rf_states.h b/sys/dev/raidframe/rf_states.h new file mode 100644 index 0000000..6c0aee4 --- /dev/null +++ b/sys/dev/raidframe/rf_states.h @@ -0,0 +1,48 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_states.h,v 1.3 1999/02/05 00:06:17 oster Exp $ */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Mark Holland, William V. Courtright II, Robby Findler + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +#ifndef _RF__RF_STATES_H_ +#define _RF__RF_STATES_H_ + +#include <dev/raidframe/rf_types.h> + +void rf_ContinueRaidAccess(RF_RaidAccessDesc_t * desc); +void rf_ContinueDagAccess(RF_DagList_t * dagList); +int rf_State_LastState(RF_RaidAccessDesc_t * desc); +int rf_State_IncrAccessCount(RF_RaidAccessDesc_t * desc); +int rf_State_DecrAccessCount(RF_RaidAccessDesc_t * desc); +int rf_State_Quiesce(RF_RaidAccessDesc_t * desc); +int rf_State_Map(RF_RaidAccessDesc_t * desc); +int rf_State_Lock(RF_RaidAccessDesc_t * desc); +int rf_State_CreateDAG(RF_RaidAccessDesc_t * desc); +int rf_State_ExecuteDAG(RF_RaidAccessDesc_t * desc); +int rf_State_ProcessDAG(RF_RaidAccessDesc_t * desc); +int rf_State_Cleanup(RF_RaidAccessDesc_t * desc); + +#endif /* !_RF__RF_STATES_H_ */ diff --git a/sys/dev/raidframe/rf_stripelocks.c b/sys/dev/raidframe/rf_stripelocks.c new file mode 100644 index 0000000..bcee719 --- /dev/null +++ b/sys/dev/raidframe/rf_stripelocks.c @@ -0,0 +1,667 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_stripelocks.c,v 1.6 2000/12/04 11:35:46 fvdl Exp $ */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Authors: Mark Holland, Jim Zelenka + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +/* + * stripelocks.c -- code to lock stripes for read and write access + * + * The code distinguishes between read locks and write locks. There can be + * as many readers to given stripe as desired. When a write request comes + * in, no further readers are allowed to enter, and all subsequent requests + * are queued in FIFO order. When a the number of readers goes to zero, the + * writer is given the lock. When a writer releases the lock, the list of + * queued requests is scanned, and all readersq up to the next writer are + * given the lock. + * + * The lock table size must be one less than a power of two, but HASH_STRIPEID + * is the only function that requires this. + * + * The code now supports "range locks". When you ask to lock a stripe, you + * specify a range of addresses in that stripe that you want to lock. When + * you acquire the lock, you've locked only this range of addresses, and + * other threads can concurrently read/write any non-overlapping portions + * of the stripe. The "addresses" that you lock are abstract in that you + * can pass in anything you like. The expectation is that you'll pass in + * the range of physical disk offsets of the parity bits you're planning + * to update. The idea behind this, of course, is to allow sub-stripe + * locking. The implementation is perhaps not the best imaginable; in the + * worst case a lock release is O(n^2) in the total number of outstanding + * requests to a given stripe. Note that if you're striping with a + * stripe unit size equal to an entire disk (i.e. not striping), there will + * be only one stripe and you may spend some significant number of cycles + * searching through stripe lock descriptors. + */ + +#include <dev/raidframe/rf_types.h> +#include <dev/raidframe/rf_raid.h> +#include <dev/raidframe/rf_stripelocks.h> +#include <dev/raidframe/rf_alloclist.h> +#include <dev/raidframe/rf_general.h> +#include <dev/raidframe/rf_freelist.h> +#include <dev/raidframe/rf_debugprint.h> +#include <dev/raidframe/rf_driver.h> +#include <dev/raidframe/rf_shutdown.h> + +#define Dprintf1(s,a) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL) +#define Dprintf2(s,a,b) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL) +#define Dprintf3(s,a,b,c) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL) +#define Dprintf4(s,a,b,c,d) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL) +#define Dprintf5(s,a,b,c,d,e) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL) +#define Dprintf6(s,a,b,c,d,e,f) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL) +#define Dprintf7(s,a,b,c,d,e,f,g) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL) +#define Dprintf8(s,a,b,c,d,e,f,g,h) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),(void *)((unsigned long)h)) + +#define FLUSH + +#define HASH_STRIPEID(_sid_) ( (_sid_) & (rf_lockTableSize-1) ) + +static void AddToWaitersQueue(RF_LockTableEntry_t * lockTable, RF_StripeLockDesc_t * lockDesc, RF_LockReqDesc_t * lockReqDesc); +static RF_StripeLockDesc_t *AllocStripeLockDesc(RF_StripeNum_t stripeID); +static void FreeStripeLockDesc(RF_StripeLockDesc_t * p); +static void PrintLockedStripes(RF_LockTableEntry_t * lockTable); + +/* determines if two ranges overlap. always yields false if either start value is negative */ +#define SINGLE_RANGE_OVERLAP(_strt1, _stop1, _strt2, _stop2) \ + ( (_strt1 >= 0) && (_strt2 >= 0) && (RF_MAX(_strt1, _strt2) <= RF_MIN(_stop1, _stop2)) ) + +/* determines if any of the ranges specified in the two lock descriptors overlap each other */ +#define RANGE_OVERLAP(_cand, _pred) \ + ( SINGLE_RANGE_OVERLAP((_cand)->start, (_cand)->stop, (_pred)->start, (_pred)->stop ) || \ + SINGLE_RANGE_OVERLAP((_cand)->start2, (_cand)->stop2, (_pred)->start, (_pred)->stop ) || \ + SINGLE_RANGE_OVERLAP((_cand)->start, (_cand)->stop, (_pred)->start2, (_pred)->stop2) || \ + SINGLE_RANGE_OVERLAP((_cand)->start2, (_cand)->stop2, (_pred)->start2, (_pred)->stop2) ) + +/* Determines if a candidate lock request conflicts with a predecessor lock req. + * Note that the arguments are not interchangeable. + * The rules are: + * a candidate read conflicts with a predecessor write if any ranges overlap + * a candidate write conflicts with a predecessor read if any ranges overlap + * a candidate write conflicts with a predecessor write if any ranges overlap + */ +#define STRIPELOCK_CONFLICT(_cand, _pred) \ + RANGE_OVERLAP((_cand), (_pred)) && \ + ( ( (((_cand)->type == RF_IO_TYPE_READ) && ((_pred)->type == RF_IO_TYPE_WRITE)) || \ + (((_cand)->type == RF_IO_TYPE_WRITE) && ((_pred)->type == RF_IO_TYPE_READ)) || \ + (((_cand)->type == RF_IO_TYPE_WRITE) && ((_pred)->type == RF_IO_TYPE_WRITE)) \ + ) \ + ) + +static RF_FreeList_t *rf_stripelock_freelist; +#define RF_MAX_FREE_STRIPELOCK 128 +#define RF_STRIPELOCK_INC 8 +#define RF_STRIPELOCK_INITIAL 32 + +static void rf_ShutdownStripeLockFreeList(void *); +static void rf_RaidShutdownStripeLocks(void *); + +static void +rf_ShutdownStripeLockFreeList(ignored) + void *ignored; +{ + RF_FREELIST_DESTROY(rf_stripelock_freelist, next, (RF_StripeLockDesc_t *)); +} + +int +rf_ConfigureStripeLockFreeList(listp) + RF_ShutdownList_t **listp; +{ + unsigned mask; + int rc; + + RF_FREELIST_CREATE(rf_stripelock_freelist, RF_MAX_FREE_STRIPELOCK, + RF_STRIPELOCK_INITIAL, sizeof(RF_StripeLockDesc_t)); + rc = rf_ShutdownCreate(listp, rf_ShutdownStripeLockFreeList, NULL); + if (rc) { + RF_ERRORMSG3("Unable to add to shutdown list file %s line %d rc=%d\n", + __FILE__, __LINE__, rc); + rf_ShutdownStripeLockFreeList(NULL); + return (rc); + } + RF_FREELIST_PRIME(rf_stripelock_freelist, RF_STRIPELOCK_INITIAL, next, + (RF_StripeLockDesc_t *)); + for (mask = 0x1; mask; mask <<= 1) + if (rf_lockTableSize == mask) + break; + if (!mask) { + printf("[WARNING: lock table size must be a power of two. Setting to %d.]\n", RF_DEFAULT_LOCK_TABLE_SIZE); + rf_lockTableSize = RF_DEFAULT_LOCK_TABLE_SIZE; + } + return (0); +} + +RF_LockTableEntry_t * +rf_MakeLockTable() +{ + RF_LockTableEntry_t *lockTable; + int i, rc; + + RF_Calloc(lockTable, ((int) rf_lockTableSize), sizeof(RF_LockTableEntry_t), (RF_LockTableEntry_t *)); + if (lockTable == NULL) + return (NULL); + for (i = 0; i < rf_lockTableSize; i++) { + rc = rf_mutex_init(&lockTable[i].mutex, __FUNCTION__); + if (rc) { + RF_ERRORMSG3("Unable to init mutex file %s line %d rc=%d\n", __FILE__, + __LINE__, rc); + /* XXX clean up other mutexes */ + return (NULL); + } + } + return (lockTable); +} + +void +rf_ShutdownStripeLocks(RF_LockTableEntry_t * lockTable) +{ + int i; + + if (rf_stripeLockDebug) { + PrintLockedStripes(lockTable); + } + for (i = 0; i < rf_lockTableSize; i++) { + rf_mutex_destroy(&lockTable[i].mutex); + } + RF_Free(lockTable, rf_lockTableSize * sizeof(RF_LockTableEntry_t)); +} + +static void +rf_RaidShutdownStripeLocks(arg) + void *arg; +{ + RF_Raid_t *raidPtr = (RF_Raid_t *) arg; + rf_ShutdownStripeLocks(raidPtr->lockTable); +} + +int +rf_ConfigureStripeLocks( + RF_ShutdownList_t ** listp, + RF_Raid_t * raidPtr, + RF_Config_t * cfgPtr) +{ + int rc; + + raidPtr->lockTable = rf_MakeLockTable(); + if (raidPtr->lockTable == NULL) + return (ENOMEM); + rc = rf_ShutdownCreate(listp, rf_RaidShutdownStripeLocks, raidPtr); + if (rc) { + RF_ERRORMSG3("Unable to add to shutdown list file %s line %d rc=%d\n", + __FILE__, __LINE__, rc); + rf_ShutdownStripeLocks(raidPtr->lockTable); + return (rc); + } + return (0); +} +/* returns 0 if you've got the lock, and non-zero if you have to wait. + * if and only if you have to wait, we'll cause cbFunc to get invoked + * with cbArg when you are granted the lock. We store a tag in *releaseTag + * that you need to give back to us when you release the lock. + */ +int +rf_AcquireStripeLock( + RF_LockTableEntry_t * lockTable, + RF_StripeNum_t stripeID, + RF_LockReqDesc_t * lockReqDesc) +{ + RF_StripeLockDesc_t *lockDesc; + RF_LockReqDesc_t *p; + int tid = 0, hashval = HASH_STRIPEID(stripeID); + int retcode = 0; + + RF_ASSERT(RF_IO_IS_R_OR_W(lockReqDesc->type)); + + if (rf_stripeLockDebug) { + if (stripeID == -1) + Dprintf1("[%d] Lock acquisition supressed (stripeID == -1)\n", tid); + else { + Dprintf8("[%d] Trying to acquire stripe lock table 0x%lx SID %ld type %c range %ld-%ld, range2 %ld-%ld hashval %d\n", + tid, (unsigned long) lockTable, stripeID, lockReqDesc->type, lockReqDesc->start, + lockReqDesc->stop, lockReqDesc->start2, lockReqDesc->stop2); + Dprintf3("[%d] lock %ld hashval %d\n", tid, stripeID, hashval); + FLUSH; + } + } + if (stripeID == -1) + return (0); + lockReqDesc->next = NULL; /* just to be sure */ + + RF_LOCK_MUTEX(lockTable[hashval].mutex); + for (lockDesc = lockTable[hashval].descList; lockDesc; lockDesc = lockDesc->next) { + if (lockDesc->stripeID == stripeID) + break; + } + + if (!lockDesc) { /* no entry in table => no one reading or + * writing */ + lockDesc = AllocStripeLockDesc(stripeID); + lockDesc->next = lockTable[hashval].descList; + lockTable[hashval].descList = lockDesc; + if (lockReqDesc->type == RF_IO_TYPE_WRITE) + lockDesc->nWriters++; + lockDesc->granted = lockReqDesc; + if (rf_stripeLockDebug) { + Dprintf7("[%d] no one waiting: lock %ld %c %ld-%ld %ld-%ld granted\n", + tid, stripeID, lockReqDesc->type, lockReqDesc->start, lockReqDesc->stop, lockReqDesc->start2, lockReqDesc->stop2); + FLUSH; + } + } else { + + if (lockReqDesc->type == RF_IO_TYPE_WRITE) + lockDesc->nWriters++; + + if (lockDesc->nWriters == 0) { /* no need to search any lists + * if there are no writers + * anywhere */ + lockReqDesc->next = lockDesc->granted; + lockDesc->granted = lockReqDesc; + if (rf_stripeLockDebug) { + Dprintf7("[%d] no writers: lock %ld %c %ld-%ld %ld-%ld granted\n", + tid, stripeID, lockReqDesc->type, lockReqDesc->start, lockReqDesc->stop, lockReqDesc->start2, lockReqDesc->stop2); + FLUSH; + } + } else { + + /* search the granted & waiting lists for a conflict. + * stop searching as soon as we find one */ + retcode = 0; + for (p = lockDesc->granted; p; p = p->next) + if (STRIPELOCK_CONFLICT(lockReqDesc, p)) { + retcode = 1; + break; + } + if (!retcode) + for (p = lockDesc->waitersH; p; p = p->next) + if (STRIPELOCK_CONFLICT(lockReqDesc, p)) { + retcode = 2; + break; + } + if (!retcode) { + lockReqDesc->next = lockDesc->granted; /* no conflicts found => + * grant lock */ + lockDesc->granted = lockReqDesc; + if (rf_stripeLockDebug) { + Dprintf7("[%d] no conflicts: lock %ld %c %ld-%ld %ld-%ld granted\n", + tid, stripeID, lockReqDesc->type, lockReqDesc->start, lockReqDesc->stop, + lockReqDesc->start2, lockReqDesc->stop2); + FLUSH; + } + } else { + if (rf_stripeLockDebug) { + Dprintf6("[%d] conflict: lock %ld %c %ld-%ld hashval=%d not granted\n", + tid, stripeID, lockReqDesc->type, lockReqDesc->start, lockReqDesc->stop, + hashval); + Dprintf3("[%d] lock %ld retcode=%d\n", tid, stripeID, retcode); + FLUSH; + } + AddToWaitersQueue(lockTable, lockDesc, lockReqDesc); /* conflict => the + * current access must + * wait */ + } + } + } + + RF_UNLOCK_MUTEX(lockTable[hashval].mutex); + return (retcode); +} + +void +rf_ReleaseStripeLock( + RF_LockTableEntry_t * lockTable, + RF_StripeNum_t stripeID, + RF_LockReqDesc_t * lockReqDesc) +{ + RF_StripeLockDesc_t *lockDesc, *ld_t; + RF_LockReqDesc_t *lr, *lr_t, *callbacklist, *t; + RF_IoType_t type = lockReqDesc->type; + int tid = 0, hashval = HASH_STRIPEID(stripeID); + int release_it, consider_it; + RF_LockReqDesc_t *candidate, *candidate_t, *predecessor; + + RF_ASSERT(RF_IO_IS_R_OR_W(type)); + + if (rf_stripeLockDebug) { + if (stripeID == -1) + Dprintf1("[%d] Lock release supressed (stripeID == -1)\n", tid); + else { + Dprintf8("[%d] Releasing stripe lock on stripe ID %ld, type %c range %ld-%ld %ld-%ld table 0x%lx\n", + tid, stripeID, lockReqDesc->type, lockReqDesc->start, lockReqDesc->stop, lockReqDesc->start2, lockReqDesc->stop2, lockTable); + FLUSH; + } + } + if (stripeID == -1) + return; + + RF_LOCK_MUTEX(lockTable[hashval].mutex); + + /* find the stripe lock descriptor */ + for (ld_t = NULL, lockDesc = lockTable[hashval].descList; lockDesc; ld_t = lockDesc, lockDesc = lockDesc->next) { + if (lockDesc->stripeID == stripeID) + break; + } + RF_ASSERT(lockDesc); /* major error to release a lock that doesn't + * exist */ + + /* find the stripe lock request descriptor & delete it from the list */ + for (lr_t = NULL, lr = lockDesc->granted; lr; lr_t = lr, lr = lr->next) + if (lr == lockReqDesc) + break; + + RF_ASSERT(lr && (lr == lockReqDesc)); /* major error to release a + * lock that hasn't been + * granted */ + if (lr_t) + lr_t->next = lr->next; + else { + RF_ASSERT(lr == lockDesc->granted); + lockDesc->granted = lr->next; + } + lr->next = NULL; + + if (lockReqDesc->type == RF_IO_TYPE_WRITE) + lockDesc->nWriters--; + + /* search through the waiters list to see if anyone needs to be woken + * up. for each such descriptor in the wait list, we check it against + * everything granted and against everything _in front_ of it in the + * waiters queue. If it conflicts with none of these, we release it. + * + * DON'T TOUCH THE TEMPLINK POINTER OF ANYTHING IN THE GRANTED LIST HERE. + * This will roach the case where the callback tries to acquire a new + * lock in the same stripe. There are some asserts to try and detect + * this. + * + * We apply 2 performance optimizations: (1) if releasing this lock + * results in no more writers to this stripe, we just release + * everybody waiting, since we place no restrictions on the number of + * concurrent reads. (2) we consider as candidates for wakeup only + * those waiters that have a range overlap with either the descriptor + * being woken up or with something in the callbacklist (i.e. + * something we've just now woken up). This allows us to avoid the + * long evaluation for some descriptors. */ + + callbacklist = NULL; + if (lockDesc->nWriters == 0) { /* performance tweak (1) */ + while (lockDesc->waitersH) { + + lr = lockDesc->waitersH; /* delete from waiters + * list */ + lockDesc->waitersH = lr->next; + + RF_ASSERT(lr->type == RF_IO_TYPE_READ); + + lr->next = lockDesc->granted; /* add to granted list */ + lockDesc->granted = lr; + + RF_ASSERT(!lr->templink); + lr->templink = callbacklist; /* put on callback list + * so that we'll invoke + * callback below */ + callbacklist = lr; + if (rf_stripeLockDebug) { + Dprintf8("[%d] No writers: granting lock stripe ID %ld, type %c range %ld-%ld %ld-%ld table 0x%lx\n", + tid, stripeID, lr->type, lr->start, lr->stop, lr->start2, lr->stop2, (unsigned long) lockTable); + FLUSH; + } + } + lockDesc->waitersT = NULL; /* we've purged the whole + * waiters list */ + + } else + for (candidate_t = NULL, candidate = lockDesc->waitersH; candidate;) { + + /* performance tweak (2) */ + consider_it = 0; + if (RANGE_OVERLAP(lockReqDesc, candidate)) + consider_it = 1; + else + for (t = callbacklist; t; t = t->templink) + if (RANGE_OVERLAP(t, candidate)) { + consider_it = 1; + break; + } + if (!consider_it) { + if (rf_stripeLockDebug) { + Dprintf8("[%d] No overlap: rejecting candidate stripeID %ld, type %c range %ld-%ld %ld-%ld table 0x%lx\n", + tid, stripeID, candidate->type, candidate->start, candidate->stop, candidate->start2, candidate->stop2, + (unsigned long) lockTable); + FLUSH; + } + candidate_t = candidate; + candidate = candidate->next; + continue; + } + /* we have a candidate for release. check to make + * sure it is not blocked by any granted locks */ + release_it = 1; + for (predecessor = lockDesc->granted; predecessor; predecessor = predecessor->next) { + if (STRIPELOCK_CONFLICT(candidate, predecessor)) { + if (rf_stripeLockDebug) { + Dprintf8("[%d] Conflicts with granted lock: rejecting candidate stripeID %ld, type %c range %ld-%ld %ld-%ld table 0x%lx\n", + tid, stripeID, candidate->type, candidate->start, candidate->stop, candidate->start2, candidate->stop2, + (unsigned long) lockTable); + FLUSH; + } + release_it = 0; + break; + } + } + + /* now check to see if the candidate is blocked by any + * waiters that occur before it it the wait queue */ + if (release_it) + for (predecessor = lockDesc->waitersH; predecessor != candidate; predecessor = predecessor->next) { + if (STRIPELOCK_CONFLICT(candidate, predecessor)) { + if (rf_stripeLockDebug) { + Dprintf8("[%d] Conflicts with waiting lock: rejecting candidate stripeID %ld, type %c range %ld-%ld %ld-%ld table 0x%lx\n", + tid, stripeID, candidate->type, candidate->start, candidate->stop, candidate->start2, candidate->stop2, + (unsigned long) lockTable); + FLUSH; + } + release_it = 0; + break; + } + } + + /* release it if indicated */ + if (release_it) { + if (rf_stripeLockDebug) { + Dprintf8("[%d] Granting lock to candidate stripeID %ld, type %c range %ld-%ld %ld-%ld table 0x%lx\n", + tid, stripeID, candidate->type, candidate->start, candidate->stop, candidate->start2, candidate->stop2, + (unsigned long) lockTable); + FLUSH; + } + if (candidate_t) { + candidate_t->next = candidate->next; + if (lockDesc->waitersT == candidate) + lockDesc->waitersT = candidate_t; /* cannot be waitersH + * since candidate_t is + * not NULL */ + } else { + RF_ASSERT(candidate == lockDesc->waitersH); + lockDesc->waitersH = lockDesc->waitersH->next; + if (!lockDesc->waitersH) + lockDesc->waitersT = NULL; + } + candidate->next = lockDesc->granted; /* move it to the + * granted list */ + lockDesc->granted = candidate; + + RF_ASSERT(!candidate->templink); + candidate->templink = callbacklist; /* put it on the list of + * things to be called + * after we release the + * mutex */ + callbacklist = candidate; + + if (!candidate_t) + candidate = lockDesc->waitersH; + else + candidate = candidate_t->next; /* continue with the + * rest of the list */ + } else { + candidate_t = candidate; + candidate = candidate->next; /* continue with the + * rest of the list */ + } + } + + /* delete the descriptor if no one is waiting or active */ + if (!lockDesc->granted && !lockDesc->waitersH) { + RF_ASSERT(lockDesc->nWriters == 0); + if (rf_stripeLockDebug) { + Dprintf3("[%d] Last lock released (table 0x%lx): deleting desc for stripeID %ld\n", tid, (unsigned long) lockTable, stripeID); + FLUSH; + } + if (ld_t) + ld_t->next = lockDesc->next; + else { + RF_ASSERT(lockDesc == lockTable[hashval].descList); + lockTable[hashval].descList = lockDesc->next; + } + FreeStripeLockDesc(lockDesc); + lockDesc = NULL;/* only for the ASSERT below */ + } + RF_UNLOCK_MUTEX(lockTable[hashval].mutex); + + /* now that we've unlocked the mutex, invoke the callback on all the + * descriptors in the list */ + RF_ASSERT(!((callbacklist) && (!lockDesc))); /* if we deleted the + * descriptor, we should + * have no callbacks to + * do */ + for (candidate = callbacklist; candidate;) { + t = candidate; + candidate = candidate->templink; + t->templink = NULL; + (t->cbFunc) (t->cbArg); + } +} +/* must have the indicated lock table mutex upon entry */ +static void +AddToWaitersQueue( + RF_LockTableEntry_t * lockTable, + RF_StripeLockDesc_t * lockDesc, + RF_LockReqDesc_t * lockReqDesc) +{ +#if 0 /* XXX fvdl -- unitialized use of 'tid' */ + int tid; + + if (rf_stripeLockDebug) { + Dprintf3("[%d] Waiting on lock for stripe %ld table 0x%lx\n", tid, lockDesc->stripeID, (unsigned long) lockTable); + FLUSH; + } +#endif + if (!lockDesc->waitersH) { + lockDesc->waitersH = lockDesc->waitersT = lockReqDesc; + } else { + lockDesc->waitersT->next = lockReqDesc; + lockDesc->waitersT = lockReqDesc; + } +} + +static RF_StripeLockDesc_t * +AllocStripeLockDesc(RF_StripeNum_t stripeID) +{ + RF_StripeLockDesc_t *p; + + RF_FREELIST_GET(rf_stripelock_freelist, p, next, (RF_StripeLockDesc_t *)); + if (p) { + p->stripeID = stripeID; + } + return (p); +} + +static void +FreeStripeLockDesc(RF_StripeLockDesc_t * p) +{ + RF_FREELIST_FREE(rf_stripelock_freelist, p, next); +} + +static void +PrintLockedStripes(lockTable) + RF_LockTableEntry_t *lockTable; +{ + int i, j, foundone = 0, did; + RF_StripeLockDesc_t *p; + RF_LockReqDesc_t *q; + + RF_LOCK_MUTEX(rf_printf_mutex); + printf("Locked stripes:\n"); + for (i = 0; i < rf_lockTableSize; i++) + if (lockTable[i].descList) { + foundone = 1; + for (p = lockTable[i].descList; p; p = p->next) { + printf("Stripe ID 0x%lx (%d) nWriters %d\n", + (long) p->stripeID, (int) p->stripeID, p->nWriters); + + if (!(p->granted)) + printf("Granted: (none)\n"); + else + printf("Granted:\n"); + for (did = 1, j = 0, q = p->granted; q; j++, q = q->next) { + printf(" %c(%ld-%ld", q->type, (long) q->start, (long) q->stop); + if (q->start2 != -1) + printf(",%ld-%ld) ", (long) q->start2, + (long) q->stop2); + else + printf(") "); + if (j && !(j % 4)) { + printf("\n"); + did = 1; + } else + did = 0; + } + if (!did) + printf("\n"); + + if (!(p->waitersH)) + printf("Waiting: (none)\n"); + else + printf("Waiting:\n"); + for (did = 1, j = 0, q = p->waitersH; q; j++, q = q->next) { + printf("%c(%ld-%ld", q->type, (long) q->start, (long) q->stop); + if (q->start2 != -1) + printf(",%ld-%ld) ", (long) q->start2, (long) q->stop2); + else + printf(") "); + if (j && !(j % 4)) { + printf("\n "); + did = 1; + } else + did = 0; + } + if (!did) + printf("\n"); + } + } + if (!foundone) + printf("(none)\n"); + else + printf("\n"); + RF_UNLOCK_MUTEX(rf_printf_mutex); +} diff --git a/sys/dev/raidframe/rf_stripelocks.h b/sys/dev/raidframe/rf_stripelocks.h new file mode 100644 index 0000000..ab960c1 --- /dev/null +++ b/sys/dev/raidframe/rf_stripelocks.h @@ -0,0 +1,130 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_stripelocks.h,v 1.3 1999/02/05 00:06:18 oster Exp $ */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Mark Holland + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +/***************************************************************************** + * + * stripelocks.h -- header file for locking stripes + * + * Note that these functions are called from the execution routines of certain + * DAG Nodes, and so they must be NON-BLOCKING to assure maximum parallelism + * in the DAG. Accordingly, when a node wants to acquire a lock, it calls + * AcquireStripeLock, supplying a pointer to a callback function. If the lock + * is free at the time of the call, 0 is returned, indicating that the lock + * has been acquired. If the lock is not free, 1 is returned, and a copy of + * the function pointer and argument are held in the lock table. When the + * lock becomes free, the callback function is invoked. + * + *****************************************************************************/ + +#ifndef _RF__RF_STRIPELOCKS_H_ +#define _RF__RF_STRIPELOCKS_H_ + +#if defined(__FreeBSD__) +#include <sys/types.h> +#if __FreeBSD_version > 500005 +#include <sys/bio.h> +#endif +#if _KERNEL +#include <sys/systm.h> +#endif +#endif +#include <sys/buf.h> + +#include <dev/raidframe/rf_types.h> +#include <dev/raidframe/rf_threadstuff.h> +#include <dev/raidframe/rf_general.h> + +struct RF_LockReqDesc_s { + RF_IoType_t type; /* read or write */ + RF_int64 start, stop; /* start and end of range to be locked */ + RF_int64 start2, stop2; /* start and end of 2nd range to be locked */ + void (*cbFunc) (RF_Buf_t); /* callback function */ + void *cbArg; /* argument to callback function */ + RF_LockReqDesc_t *next; /* next element in chain */ + RF_LockReqDesc_t *templink; /* for making short-lived lists of + * request descriptors */ +}; +#define RF_ASSERT_VALID_LOCKREQ(_lr_) { \ + RF_ASSERT(RF_IO_IS_R_OR_W((_lr_)->type)); \ +} + +struct RF_StripeLockDesc_s { + RF_StripeNum_t stripeID;/* the stripe ID */ + RF_LockReqDesc_t *granted; /* unordered list of granted requests */ + RF_LockReqDesc_t *waitersH; /* FIFO queue of all waiting reqs, + * both read and write (Head and Tail) */ + RF_LockReqDesc_t *waitersT; + int nWriters; /* number of writers either granted or waiting */ + RF_StripeLockDesc_t *next; /* for hash table collision resolution */ +}; + +struct RF_LockTableEntry_s { + RF_DECLARE_MUTEX(mutex) /* mutex on this hash chain */ + RF_StripeLockDesc_t *descList; /* hash chain of lock descriptors */ +}; +/* + * Initializes a stripe lock descriptor. _defSize is the number of sectors + * that we lock when there is no parity information in the ASM (e.g. RAID0). + */ + +#define RF_INIT_LOCK_REQ_DESC(_lrd, _typ, _cbf, _cba, _asm, _defSize) \ + { \ + (_lrd).type = _typ; \ + (_lrd).start2 = -1; \ + (_lrd).stop2 = -1; \ + if ((_asm)->parityInfo) { \ + (_lrd).start = (_asm)->parityInfo->startSector; \ + (_lrd).stop = (_asm)->parityInfo->startSector + (_asm)->parityInfo->numSector-1; \ + if ((_asm)->parityInfo->next) { \ + (_lrd).start2 = (_asm)->parityInfo->next->startSector; \ + (_lrd).stop2 = (_asm)->parityInfo->next->startSector + (_asm)->parityInfo->next->numSector-1; \ + } \ + } else { \ + (_lrd).start = 0; \ + (_lrd).stop = (_defSize); \ + } \ + (_lrd).templink= NULL; \ + (_lrd).cbFunc = (_cbf); \ + (_lrd).cbArg = (void *) (_cba); \ + } + +int rf_ConfigureStripeLockFreeList(RF_ShutdownList_t ** listp); +RF_LockTableEntry_t *rf_MakeLockTable(void); +void rf_ShutdownStripeLocks(RF_LockTableEntry_t * lockTable); +int +rf_ConfigureStripeLocks(RF_ShutdownList_t ** listp, RF_Raid_t * raidPtr, + RF_Config_t * cfgPtr); +int +rf_AcquireStripeLock(RF_LockTableEntry_t * lockTable, + RF_StripeNum_t stripeID, RF_LockReqDesc_t * lockReqDesc); +void +rf_ReleaseStripeLock(RF_LockTableEntry_t * lockTable, + RF_StripeNum_t stripeID, RF_LockReqDesc_t * lockReqDesc); + +#endif /* !_RF__RF_STRIPELOCKS_H_ */ diff --git a/sys/dev/raidframe/rf_strutils.c b/sys/dev/raidframe/rf_strutils.c new file mode 100644 index 0000000..bb8a776 --- /dev/null +++ b/sys/dev/raidframe/rf_strutils.c @@ -0,0 +1,56 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_strutils.c,v 1.3 1999/02/05 00:06:18 oster Exp $ */ +/* + * rf_strutils.c + * + * String-parsing funcs + */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Mark Holland + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ +/* + * rf_strutils.c -- some simple utilities for munging on strings. + * I put them in a file by themselves because they're needed in + * setconfig, in the user-level driver, and in the kernel. + * + */ + +#include <dev/raidframe/rf_utils.h> + +/* finds a non-white character in the line */ +char * +rf_find_non_white(char *p) +{ + for (; *p != '\0' && (*p == ' ' || *p == '\t'); p++); + return (p); +} +/* finds a white character in the line */ +char * +rf_find_white(char *p) +{ + for (; *p != '\0' && (*p != ' ' && *p != '\t'); p++); + return (p); +} diff --git a/sys/dev/raidframe/rf_threadstuff.c b/sys/dev/raidframe/rf_threadstuff.c new file mode 100644 index 0000000..d1ecf16 --- /dev/null +++ b/sys/dev/raidframe/rf_threadstuff.c @@ -0,0 +1,221 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_threadstuff.c,v 1.5 1999/12/07 02:13:28 oster Exp $ */ +/* + * rf_threadstuff.c + */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Jim Zelenka + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +#include <dev/raidframe/rf_types.h> +#include <dev/raidframe/rf_threadstuff.h> +#include <dev/raidframe/rf_general.h> +#include <dev/raidframe/rf_shutdown.h> + +static void mutex_destroyer(void *); +static void cond_destroyer(void *); + +/* + * Shared stuff + */ + +static void +mutex_destroyer(arg) + void *arg; +{ + int rc; + + rc = rf_mutex_destroy(arg); + if (rc) { + RF_ERRORMSG1("RAIDFRAME: Error %d auto-destroying mutex\n", rc); + } +} + +static void +cond_destroyer(arg) + void *arg; +{ + int rc; + + rc = rf_cond_destroy(arg); + if (rc) { + RF_ERRORMSG1("RAIDFRAME: Error %d auto-destroying condition\n", rc); + } +} + +int +_rf_create_managed_mutex(listp, m, file, line) + RF_ShutdownList_t **listp; +RF_DECLARE_MUTEX(*m) + char *file; + int line; +{ + int rc, rc1; + + rc = rf_mutex_init(m, __FUNCTION__); + if (rc) + return (rc); + rc = _rf_ShutdownCreate(listp, mutex_destroyer, (void *) m, file, line); + if (rc) { + RF_ERRORMSG1("RAIDFRAME: Error %d adding shutdown entry\n", rc); + rc1 = rf_mutex_destroy(m); + if (rc1) { + RF_ERRORMSG1("RAIDFRAME: Error %d destroying mutex\n", rc1); + } + } + return (rc); +} + +int +_rf_create_managed_cond(listp, c, file, line) + RF_ShutdownList_t **listp; +RF_DECLARE_COND(*c) + char *file; + int line; +{ + int rc, rc1; + + rc = rf_cond_init(c); + if (rc) + return (rc); + rc = _rf_ShutdownCreate(listp, cond_destroyer, (void *) c, file, line); + if (rc) { + RF_ERRORMSG1("RAIDFRAME: Error %d adding shutdown entry\n", rc); + rc1 = rf_cond_destroy(c); + if (rc1) { + RF_ERRORMSG1("RAIDFRAME: Error %d destroying cond\n", rc1); + } + } + return (rc); +} + +int +_rf_init_managed_threadgroup(listp, g, file, line) + RF_ShutdownList_t **listp; + RF_ThreadGroup_t *g; + char *file; + int line; +{ + int rc; + + rc = _rf_create_managed_mutex(listp, &g->mutex, file, line); + if (rc) + return (rc); + rc = _rf_create_managed_cond(listp, &g->cond, file, line); + if (rc) + return (rc); + g->created = g->running = g->shutdown = 0; + return (0); +} + +int +_rf_destroy_threadgroup(g, file, line) + RF_ThreadGroup_t *g; + char *file; + int line; +{ + int rc1, rc2; + + rc1 = rf_mutex_destroy(&g->mutex); + rc2 = rf_cond_destroy(&g->cond); + if (rc1) + return (rc1); + return (rc2); +} + +int +_rf_init_threadgroup(g, file, line) + RF_ThreadGroup_t *g; + char *file; + int line; +{ + int rc; + + rc = rf_mutex_init(&g->mutex, __FUNCTION__); + if (rc) + return (rc); + rc = rf_cond_init(&g->cond); + if (rc) { + rf_mutex_destroy(&g->mutex); + return (rc); + } + g->created = g->running = g->shutdown = 0; + return (0); +} + + +/* + * Kernel + */ +#if defined(__FreeBSD__) && __FreeBSD_version > 500005 +int +rf_mutex_init(m, s) +decl_simple_lock_data(, *m) +const char *s; +{ + mtx_init(m, s, NULL, MTX_DEF); + return (0); +} + +int +rf_mutex_destroy(m) +decl_simple_lock_data(, *m) +{ + mtx_destroy(m); + return (0); +} +#else +int +rf_mutex_init(m, s) +decl_simple_lock_data(, *m) +const char *s; +{ + simple_lock_init(m); + return (0); +} + +int +rf_mutex_destroy(m) +decl_simple_lock_data(, *m) +{ + return (0); +} +#endif + +int +rf_cond_init(c) +RF_DECLARE_COND(*c) +{ + *c = 0; /* no reason */ + return (0); +} + +int +rf_cond_destroy(c) +RF_DECLARE_COND(*c) +{ + return (0); +} diff --git a/sys/dev/raidframe/rf_threadstuff.h b/sys/dev/raidframe/rf_threadstuff.h new file mode 100644 index 0000000..f7e81ff --- /dev/null +++ b/sys/dev/raidframe/rf_threadstuff.h @@ -0,0 +1,229 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_threadstuff.h,v 1.10 2001/01/27 20:42:21 oster Exp $ */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Mark Holland, Daniel Stodolsky, Jim Zelenka + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +/* + * threadstuff.h -- definitions for threads, locks, and synchronization + * + * The purpose of this file is provide some illusion of portability. + * If the functions below can be implemented with the same semantics on + * some new system, then at least the synchronization and thread control + * part of the code should not require modification to port to a new machine. + * the only other place where the pthread package is explicitly used is + * threadid.h + * + * this file should be included above stdio.h to get some necessary defines. + * + */ + +#ifndef _RF__RF_THREADSTUFF_H_ +#define _RF__RF_THREADSTUFF_H_ + +#include <dev/raidframe/rf_types.h> +#include <sys/types.h> +#include <sys/param.h> +#ifdef _KERNEL +#include <sys/systm.h> +#include <sys/proc.h> +#include <sys/kthread.h> +#endif + +#define rf_create_managed_mutex(a,b) _rf_create_managed_mutex(a,b,__FILE__,__LINE__) +#define rf_create_managed_cond(a,b) _rf_create_managed_cond(a,b,__FILE__,__LINE__) +#define rf_init_managed_threadgroup(a,b) _rf_init_managed_threadgroup(a,b,__FILE__,__LINE__) +#define rf_init_threadgroup(a) _rf_init_threadgroup(a,__FILE__,__LINE__) +#define rf_destroy_threadgroup(a) _rf_destroy_threadgroup(a,__FILE__,__LINE__) + +int _rf_init_threadgroup(RF_ThreadGroup_t * g, char *file, int line); +int _rf_destroy_threadgroup(RF_ThreadGroup_t * g, char *file, int line); +int +_rf_init_managed_threadgroup(RF_ShutdownList_t ** listp, + RF_ThreadGroup_t * g, char *file, int line); + +#include <sys/lock.h> +#if defined(__FreeBSD__ ) && __FreeBSD_version > 500005 +#include <sys/mutex.h> +#define decl_simple_lock_data(a,b) a struct mtx b; +#define simple_lock_addr(a) ((struct mtx *)&(a)) + +typedef struct thread *RF_Thread_t; +typedef void *RF_ThreadArg_t; + +#ifdef _KERNEL +static __inline struct ucred * +rf_getucred(RF_Thread_t td) +{ + return (((struct thread *)td)->td_proc->p_ucred); +} +#endif + +#define RF_LOCK_MUTEX(_m_) mtx_lock(&(_m_)) +#define RF_UNLOCK_MUTEX(_m_) mtx_unlock(&(_m_)) +#else +#define decl_simple_lock_data(a,b) a struct simplelock b; +#define simple_lock_addr(a) ((struct simplelock *)&(a)) + +typedef struct proc *RF_Thread_t; +typedef void *RF_ThreadArg_t; + +static __inline struct ucred * +rf_getucred(RF_Thread_t td) +{ + return (((struct proc *)td)->p_ucred); +} + +#define RF_LOCK_MUTEX(_m_) simple_lock(&(_m_)) +#define RF_UNLOCK_MUTEX(_m_) simple_unlock(&(_m_)) +#endif + +#define RF_DECLARE_MUTEX(_m_) decl_simple_lock_data(,(_m_)) +#define RF_DECLARE_STATIC_MUTEX(_m_) decl_simple_lock_data(static,(_m_)) +#define RF_DECLARE_EXTERN_MUTEX(_m_) decl_simple_lock_data(extern,(_m_)) + +#define RF_DECLARE_COND(_c_) int _c_; +#define RF_DECLARE_STATIC_COND(_c_) static int _c_; +#define RF_DECLARE_EXTERN_COND(_c_) extern int _c_; + +/* + * In NetBSD, kernel threads are simply processes which share several + * substructures and never run in userspace. + */ +#define RF_WAIT_COND(_c_,_m_) \ + RF_LTSLEEP(&(_c_), PRIBIO, "rfwcond", 0, &(_m_)) +#define RF_SIGNAL_COND(_c_) wakeup_one(&(_c_)) +#define RF_BROADCAST_COND(_c_) wakeup(&(_c_)) +#if defined(__NetBSD__) +#define RF_CREATE_THREAD(_handle_, _func_, _arg_, _name_) \ + kthread_create1((void (*)(void *))(_func_), (void *)(_arg_), \ + (struct proc **)&(_handle_), _name_) +#define RF_THREAD_EXIT(ret) \ + kthread_exit(ret) +#elif defined(__FreeBSD__) +#if __FreeBSD_version > 500005 +#define RF_CREATE_THREAD(_handle_, _func_, _arg_, _name_) \ + kthread_create((void (*)(void *))(_func_), (void *)(_arg_), \ + (struct proc **)&(_handle_), 0, 4, _name_) +#define RF_THREAD_EXIT(ret) \ + kthread_exit(ret) +#else +#define RF_CREATE_THREAD(_handle_, _func_, _arg_, _name_) \ + kthread_create((void (*)(void *))(_func_), (void *)(_arg_), \ + (struct proc **)&(_handle_), _name_) +#define RF_THREAD_EXIT(ret) \ + kthread_exit(ret); +#endif +#endif + +struct RF_ThreadGroup_s { + int created; + int running; + int shutdown; + RF_DECLARE_MUTEX(mutex) + RF_DECLARE_COND(cond) +}; +/* + * Someone has started a thread in the group + */ +#define RF_THREADGROUP_STARTED(_g_) { \ + RF_LOCK_MUTEX((_g_)->mutex); \ + (_g_)->created++; \ + RF_UNLOCK_MUTEX((_g_)->mutex); \ +} + +/* + * Thread announcing that it is now running + */ +#define RF_THREADGROUP_RUNNING(_g_) { \ + RF_LOCK_MUTEX((_g_)->mutex); \ + (_g_)->running++; \ + RF_UNLOCK_MUTEX((_g_)->mutex); \ + RF_SIGNAL_COND((_g_)->cond); \ +} + +/* + * Thread announcing that it is now done + */ +#define RF_THREADGROUP_DONE(_g_) { \ + RF_LOCK_MUTEX((_g_)->mutex); \ + (_g_)->shutdown++; \ + RF_UNLOCK_MUTEX((_g_)->mutex); \ + RF_SIGNAL_COND((_g_)->cond); \ +} + +/* + * Wait for all threads to start running + */ +#define RF_THREADGROUP_WAIT_START(_g_) { \ + RF_LOCK_MUTEX((_g_)->mutex); \ + while((_g_)->running < (_g_)->created) { \ + RF_WAIT_COND((_g_)->cond, (_g_)->mutex); \ + } \ + RF_UNLOCK_MUTEX((_g_)->mutex); \ +} + +/* + * Wait for all threads to stop running + */ +#ifndef __NetBSD__ +#define RF_THREADGROUP_WAIT_STOP(_g_) { \ + RF_LOCK_MUTEX((_g_)->mutex); \ + RF_ASSERT((_g_)->running == (_g_)->created); \ + while((_g_)->shutdown < (_g_)->running) { \ + RF_WAIT_COND((_g_)->cond, (_g_)->mutex); \ + } \ + RF_UNLOCK_MUTEX((_g_)->mutex); \ +} +#else + /* XXX Note that we've removed the assert. That should get put back in once + * we actually get something like a kernel thread running */ +#define RF_THREADGROUP_WAIT_STOP(_g_) { \ + RF_LOCK_MUTEX((_g_)->mutex); \ + while((_g_)->shutdown < (_g_)->running) { \ + RF_WAIT_COND((_g_)->cond, (_g_)->mutex); \ + } \ + RF_UNLOCK_MUTEX((_g_)->mutex); \ +} +#endif + +#if defined(__FreeBSD__) && __FreeBSD_version > 500005 +int rf_mutex_init(struct mtx *, const char *); +int rf_mutex_destroy(struct mtx *); +int _rf_create_managed_mutex(RF_ShutdownList_t **, struct mtx *, + char *, int); +#else +int rf_mutex_init(struct simplelock *, const char *); +int rf_mutex_destroy(struct simplelock *); +int _rf_create_managed_mutex(RF_ShutdownList_t **, struct simplelock *, + char *, int); +#endif +int _rf_create_managed_cond(RF_ShutdownList_t ** listp, int *, + char *file, int line); + +int rf_cond_init(int *c); +int rf_cond_destroy(int *c); +#endif /* !_RF__RF_THREADSTUFF_H_ */ diff --git a/sys/dev/raidframe/rf_types.h b/sys/dev/raidframe/rf_types.h new file mode 100644 index 0000000..37a5519 --- /dev/null +++ b/sys/dev/raidframe/rf_types.h @@ -0,0 +1,245 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_types.h,v 1.6 1999/09/05 03:05:55 oster Exp $ */ +/* + * rf_types.h + */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Jim Zelenka + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ +/*********************************************************** + * + * rf_types.h -- standard types for RAIDframe + * + ***********************************************************/ + +#ifndef _RF__RF_TYPES_H_ +#define _RF__RF_TYPES_H_ + + +#include <dev/raidframe/rf_archs.h> + +#include <sys/errno.h> +#include <sys/types.h> + +#include <sys/uio.h> +#include <sys/param.h> +#include <sys/lock.h> + +/* + * First, define system-dependent types and constants. + * + * If the machine is big-endian, RF_BIG_ENDIAN should be 1. + * Otherwise, it should be 0. + * + * The various integer types should be self-explanatory; we + * use these elsewhere to avoid size confusion. + * + * LONGSHIFT is lg(sizeof(long)) (that is, log base two of sizeof(long) + * + */ + +#include <sys/types.h> +#include <machine/endian.h> +#include <machine/limits.h> + +#if BYTE_ORDER == BIG_ENDIAN +#define RF_IS_BIG_ENDIAN 1 +#elif BYTE_ORDER == LITTLE_ENDIAN +#define RF_IS_BIG_ENDIAN 0 +#else +#error byte order not defined +#endif +typedef int8_t RF_int8; +typedef u_int8_t RF_uint8; +typedef int16_t RF_int16; +typedef u_int16_t RF_uint16; +typedef int32_t RF_int32; +typedef u_int32_t RF_uint32; +typedef int64_t RF_int64; +typedef u_int64_t RF_uint64; +#if LONG_BIT == 32 +#define RF_LONGSHIFT 2 +#elif LONG_BIT == 64 +#define RF_LONGSHIFT 3 +#elif defined(__i386__) +#define RF_LONGSHIFT 2 +#elif defined(__alpha__) +#define RF_LONGSHIFT 3 +#else +#error word size not defined +#endif + +/* + * These are just zero and non-zero. We don't use "TRUE" + * and "FALSE" because there's too much nonsense trying + * to get them defined exactly once on every platform, given + * the different places they may be defined in system header + * files. + */ +#define RF_TRUE 1 +#define RF_FALSE 0 + +/* + * Now, some generic types + */ +typedef RF_uint64 RF_IoCount_t; +typedef RF_uint64 RF_Offset_t; +typedef RF_uint32 RF_PSSFlags_t; +typedef RF_uint64 RF_SectorCount_t; +typedef RF_uint64 RF_StripeCount_t; +typedef RF_int64 RF_SectorNum_t;/* these are unsigned so we can set them to + * (-1) for "uninitialized" */ +typedef RF_int64 RF_StripeNum_t; +typedef RF_int64 RF_RaidAddr_t; +typedef int RF_RowCol_t; /* unsigned so it can be (-1) */ +typedef RF_int64 RF_HeadSepLimit_t; +typedef RF_int64 RF_ReconUnitCount_t; +typedef int RF_ReconUnitNum_t; + +typedef char RF_ParityConfig_t; + +typedef char RF_DiskQueueType_t[1024]; +#define RF_DISK_QUEUE_TYPE_NONE "" + +/* values for the 'type' field in a reconstruction buffer */ +typedef int RF_RbufType_t; +#define RF_RBUF_TYPE_EXCLUSIVE 0 /* this buf assigned exclusively to + * one disk */ +#define RF_RBUF_TYPE_FLOATING 1 /* this is a floating recon buf */ +#define RF_RBUF_TYPE_FORCED 2 /* this rbuf was allocated to complete + * a forced recon */ + +typedef char RF_IoType_t; +#define RF_IO_TYPE_READ 'r' +#define RF_IO_TYPE_WRITE 'w' +#define RF_IO_TYPE_NOP 'n' +#define RF_IO_IS_R_OR_W(_type_) (((_type_) == RF_IO_TYPE_READ) \ + || ((_type_) == RF_IO_TYPE_WRITE)) + +typedef void (*RF_VoidFuncPtr) (void *,...); + +typedef RF_uint32 RF_AccessStripeMapFlags_t; +typedef RF_uint32 RF_DiskQueueDataFlags_t; +typedef RF_uint32 RF_DiskQueueFlags_t; +typedef RF_uint32 RF_RaidAccessFlags_t; + +#define RF_DISKQUEUE_DATA_FLAGS_NONE ((RF_DiskQueueDataFlags_t)0) + +typedef struct RF_AccessStripeMap_s RF_AccessStripeMap_t; +typedef struct RF_AccessStripeMapHeader_s RF_AccessStripeMapHeader_t; +typedef struct RF_AllocListElem_s RF_AllocListElem_t; +typedef struct RF_CallbackDesc_s RF_CallbackDesc_t; +typedef struct RF_ChunkDesc_s RF_ChunkDesc_t; +typedef struct RF_CommonLogData_s RF_CommonLogData_t; +typedef struct RF_Config_s RF_Config_t; +typedef struct RF_CumulativeStats_s RF_CumulativeStats_t; +typedef struct RF_DagHeader_s RF_DagHeader_t; +typedef struct RF_DagList_s RF_DagList_t; +typedef struct RF_DagNode_s RF_DagNode_t; +typedef struct RF_DeclusteredConfigInfo_s RF_DeclusteredConfigInfo_t; +typedef struct RF_DiskId_s RF_DiskId_t; +typedef struct RF_DiskMap_s RF_DiskMap_t; +typedef struct RF_DiskQueue_s RF_DiskQueue_t; +typedef struct RF_DiskQueueData_s RF_DiskQueueData_t; +typedef struct RF_DiskQueueSW_s RF_DiskQueueSW_t; +typedef struct RF_Etimer_s RF_Etimer_t; +typedef struct RF_EventCreate_s RF_EventCreate_t; +typedef struct RF_FreeList_s RF_FreeList_t; +typedef struct RF_LockReqDesc_s RF_LockReqDesc_t; +typedef struct RF_LockTableEntry_s RF_LockTableEntry_t; +typedef struct RF_MCPair_s RF_MCPair_t; +typedef struct RF_OwnerInfo_s RF_OwnerInfo_t; +typedef struct RF_ParityLog_s RF_ParityLog_t; +typedef struct RF_ParityLogAppendQueue_s RF_ParityLogAppendQueue_t; +typedef struct RF_ParityLogData_s RF_ParityLogData_t; +typedef struct RF_ParityLogDiskQueue_s RF_ParityLogDiskQueue_t; +typedef struct RF_ParityLogQueue_s RF_ParityLogQueue_t; +typedef struct RF_ParityLogRecord_s RF_ParityLogRecord_t; +typedef struct RF_PerDiskReconCtrl_s RF_PerDiskReconCtrl_t; +typedef struct RF_PSStatusHeader_s RF_PSStatusHeader_t; +typedef struct RF_PhysDiskAddr_s RF_PhysDiskAddr_t; +typedef struct RF_PropHeader_s RF_PropHeader_t; +typedef struct RF_Raid_s RF_Raid_t; +typedef struct RF_RaidAccessDesc_s RF_RaidAccessDesc_t; +typedef struct RF_RaidDisk_s RF_RaidDisk_t; +typedef struct RF_RaidLayout_s RF_RaidLayout_t; +typedef struct RF_RaidReconDesc_s RF_RaidReconDesc_t; +typedef struct RF_ReconBuffer_s RF_ReconBuffer_t; +typedef struct RF_ReconConfig_s RF_ReconConfig_t; +typedef struct RF_ReconCtrl_s RF_ReconCtrl_t; +typedef struct RF_ReconDoneProc_s RF_ReconDoneProc_t; +typedef struct RF_ReconEvent_s RF_ReconEvent_t; +typedef struct RF_ReconMap_s RF_ReconMap_t; +typedef struct RF_ReconMapListElem_s RF_ReconMapListElem_t; +typedef struct RF_ReconParityStripeStatus_s RF_ReconParityStripeStatus_t; +typedef struct RF_RedFuncs_s RF_RedFuncs_t; +typedef struct RF_RegionBufferQueue_s RF_RegionBufferQueue_t; +typedef struct RF_RegionInfo_s RF_RegionInfo_t; +typedef struct RF_ShutdownList_s RF_ShutdownList_t; +typedef struct RF_SpareTableEntry_s RF_SpareTableEntry_t; +typedef struct RF_SparetWait_s RF_SparetWait_t; +typedef struct RF_StripeLockDesc_s RF_StripeLockDesc_t; +typedef struct RF_ThreadGroup_s RF_ThreadGroup_t; +typedef struct RF_ThroughputStats_s RF_ThroughputStats_t; + +/* + * Important assumptions regarding ordering of the states in this list + * have been made!!! + * Before disturbing this ordering, look at code in rf_states.c + */ +typedef enum RF_AccessState_e { + /* original states */ + rf_QuiesceState, /* handles queisence for reconstruction */ + rf_IncrAccessesCountState, /* count accesses in flight */ + rf_DecrAccessesCountState, + rf_MapState, /* map access to disk addresses */ + rf_LockState, /* take stripe locks */ + rf_CreateDAGState, /* create DAGs */ + rf_ExecuteDAGState, /* execute DAGs */ + rf_ProcessDAGState, /* DAGs are completing- check if correct, or + * if we need to retry */ + rf_CleanupState, /* release stripe locks, clean up */ + rf_LastState /* must be the last state */ +} RF_AccessState_t; +#define RF_MAXROW 10 /* these are arbitrary and can be modified at + * will */ +#define RF_MAXCOL 40 +#define RF_MAXSPARE 10 +#define RF_MAXDBGV 75 /* max number of debug variables */ + +union RF_GenericParam_u { + void *p; + RF_uint64 v; +}; +typedef union RF_GenericParam_u RF_DagParam_t; +typedef union RF_GenericParam_u RF_CBParam_t; + +#if defined(__FreeBSD__) && __FreeBSD_version > 500005 +typedef struct bio *RF_Buf_t; +#else +typedef struct buf *RF_Buf_t; +#endif +#endif /* _RF__RF_TYPES_H_ */ diff --git a/sys/dev/raidframe/rf_utils.c b/sys/dev/raidframe/rf_utils.c new file mode 100644 index 0000000..ee226d9 --- /dev/null +++ b/sys/dev/raidframe/rf_utils.c @@ -0,0 +1,147 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_utils.c,v 1.5 2000/01/07 03:41:03 oster Exp $ */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Mark Holland + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +/**************************************** + * + * rf_utils.c -- various support routines + * + ****************************************/ + + +#include <dev/raidframe/rf_threadstuff.h> + +#include <sys/time.h> + +#include <dev/raidframe/rf_utils.h> +#include <dev/raidframe/rf_debugMem.h> +#include <dev/raidframe/rf_alloclist.h> +#include <dev/raidframe/rf_general.h> + +/* creates & zeros 2-d array with b rows and k columns (MCH) */ +RF_RowCol_t ** +rf_make_2d_array(b, k, allocList) + int b; + int k; + RF_AllocListElem_t *allocList; +{ + RF_RowCol_t **retval, i; + + RF_MallocAndAdd(retval, b * sizeof(RF_RowCol_t *), (RF_RowCol_t **), allocList); + for (i = 0; i < b; i++) { + RF_MallocAndAdd(retval[i], k * sizeof(RF_RowCol_t), (RF_RowCol_t *), allocList); + (void) bzero((char *) retval[i], k * sizeof(RF_RowCol_t)); + } + return (retval); +} + +void +rf_free_2d_array(a, b, k) + RF_RowCol_t **a; + int b; + int k; +{ + RF_RowCol_t i; + + for (i = 0; i < b; i++) + RF_Free(a[i], k * sizeof(RF_RowCol_t)); + RF_Free(a, b * sizeof(RF_RowCol_t)); +} + + +/* creates & zeros a 1-d array with c columns */ +RF_RowCol_t * +rf_make_1d_array(c, allocList) + int c; + RF_AllocListElem_t *allocList; +{ + RF_RowCol_t *retval; + + RF_MallocAndAdd(retval, c * sizeof(RF_RowCol_t), (RF_RowCol_t *), allocList); + (void) bzero((char *) retval, c * sizeof(RF_RowCol_t)); + return (retval); +} + +void +rf_free_1d_array(a, n) + RF_RowCol_t *a; + int n; +{ + RF_Free(a, n * sizeof(RF_RowCol_t)); +} +/* Euclid's algorithm: finds and returns the greatest common divisor + * between a and b. (MCH) + */ +int +rf_gcd(m, n) + int m; + int n; +{ + int t; + + while (m > 0) { + t = n % m; + n = m; + m = t; + } + return (n); +} +/* these convert between text and integer. Apparently the regular C macros + * for doing this are not available in the kernel + */ + +#define ISDIGIT(x) ( (x) >= '0' && (x) <= '9' ) +#define ISHEXCHAR(x) ( ((x) >= 'a' && (x) <= 'f') || ((x) >= 'A' && (x) <= 'F') ) +#define ISHEX(x) ( ISDIGIT(x) || ISHEXCHAR(x) ) +#define HC2INT(x) ( ((x) >= 'a' && (x) <= 'f') ? (x) - 'a' + 10 : \ + ( ((x) >= 'A' && (x) <= 'F') ? (x) - 'A' + 10 : (x - '0') ) ) + +int +rf_atoi(p) + char *p; +{ + int val = 0, negate = 0; + + if (*p == '-') { + negate = 1; + p++; + } + for (; ISDIGIT(*p); p++) + val = 10 * val + (*p - '0'); + return ((negate) ? -val : val); +} + +int +rf_htoi(p) + char *p; +{ + int val = 0; + for (; ISHEXCHAR(*p); p++) + val = 16 * val + HC2INT(*p); + return (val); +} diff --git a/sys/dev/raidframe/rf_utils.h b/sys/dev/raidframe/rf_utils.h new file mode 100644 index 0000000..18eac84 --- /dev/null +++ b/sys/dev/raidframe/rf_utils.h @@ -0,0 +1,70 @@ +/* $FreeBSD$ */ +/* $NetBSD: rf_utils.h,v 1.4 1999/08/13 03:26:55 oster Exp $ */ +/* + * Copyright (c) 1995 Carnegie-Mellon University. + * All rights reserved. + * + * Author: Mark Holland + * + * Permission to use, copy, modify and distribute this software and + * its documentation is hereby granted, provided that both the copyright + * notice and this permission notice appear in all copies of the + * software, derivative works or modified versions, and any portions + * thereof, and that both notices appear in supporting documentation. + * + * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" + * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND + * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. + * + * Carnegie Mellon requests users of this software to return to + * + * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU + * School of Computer Science + * Carnegie Mellon University + * Pittsburgh PA 15213-3890 + * + * any improvements or extensions that they make and grant Carnegie the + * rights to redistribute these changes. + */ + +/*************************************** + * + * rf_utils.c -- header file for utils.c + * + ***************************************/ + + +#ifndef _RF__RF_UTILS_H_ +#define _RF__RF_UTILS_H_ + +#include <dev/raidframe/rf_types.h> +#include <dev/raidframe/rf_alloclist.h> +#include <dev/raidframe/rf_threadstuff.h> + +char *rf_find_non_white(char *p); +char *rf_find_white(char *p); +RF_RowCol_t **rf_make_2d_array(int b, int k, RF_AllocListElem_t * allocList); +RF_RowCol_t *rf_make_1d_array(int c, RF_AllocListElem_t * allocList); +void rf_free_2d_array(RF_RowCol_t ** a, int b, int k); +void rf_free_1d_array(RF_RowCol_t * a, int n); +int rf_gcd(int m, int n); +int rf_atoi(char *p); +int rf_htoi(char *p); + +#define RF_USEC_PER_SEC 1000000 +#define RF_TIMEVAL_TO_US(_t_) (((_t_).tv_sec) \ + * RF_USEC_PER_SEC + (_t_).tv_usec) + +#define RF_TIMEVAL_DIFF(_start_,_end_,_diff_) { \ + if ((_end_)->tv_usec < (_start_)->tv_usec) { \ + (_diff_)->tv_usec = ((_end_)->tv_usec + RF_USEC_PER_SEC) \ + - (_start_)->tv_usec; \ + (_diff_)->tv_sec = ((_end_)->tv_sec-1) - (_start_)->tv_sec; \ + } \ + else { \ + (_diff_)->tv_usec = (_end_)->tv_usec - (_start_)->tv_usec; \ + (_diff_)->tv_sec = (_end_)->tv_sec - (_start_)->tv_sec; \ + } \ +} + +#endif /* !_RF__RF_UTILS_H_ */ diff --git a/sys/modules/raidframe/Makefile b/sys/modules/raidframe/Makefile new file mode 100644 index 0000000..d4ff5dc --- /dev/null +++ b/sys/modules/raidframe/Makefile @@ -0,0 +1,32 @@ +# $FreeBSD$ +KMOD= raidframe +NOMAN= + +.PATH: ${.CURDIR}/../../dev/raidframe + +SRCS= rf_acctrace.c rf_alloclist.c rf_aselect.c rf_callback.c \ + rf_chaindecluster.c rf_copyback.c rf_cvscan.c rf_dagdegrd.c \ + rf_dagdegwr.c rf_dagffrd.c rf_dagffwr.c rf_dagfuncs.c rf_dagutils.c \ + rf_debugMem.c rf_debugprint.c rf_decluster.c rf_declusterPQ.c \ + rf_diskqueue.c rf_disks.c rf_driver.c rf_engine.c rf_evenodd.c \ + rf_evenodd_dagfuncs.c rf_evenodd_dags.c rf_fifo.c rf_interdecluster.c \ + rf_invertq.c rf_layout.c rf_map.c rf_mcpair.c rf_memchunk.c \ + rf_nwayxor.c rf_options.c rf_paritylog.c rf_paritylogDiskMgr.c \ + rf_paritylogging.c rf_parityloggingdags.c rf_parityscan.c rf_pq.c \ + rf_pqdeg.c rf_pqdegdags.c rf_psstatus.c rf_raid0.c rf_raid1.c \ + rf_raid4.c rf_raid5.c rf_raid5_rotatedspare.c rf_reconbuffer.c \ + rf_reconmap.c rf_reconstruct.c rf_reconutil.c rf_revent.c \ + rf_shutdown.c rf_sstf.c rf_states.c rf_stripelocks.c rf_strutils.c \ + rf_threadstuff.c rf_utils.c rf_freebsdkintf.c + +SRCS+= opt_raid.h vnode_if.h +RF_DEBUG?= 0 +RF_AUTOCONFIG?= 1 + +#CFLAGS+= -g + +opt_raid.h: + @echo "#define RAID_AUTOCONFIG ${RF_AUTOCONFIG}" > opt_raid.h + @echo "#define RAID_DEBUG ${RF_DEBUG}" >> opt_raid.h + +.include <bsd.kmod.mk> diff --git a/sys/sys/disklabel.h b/sys/sys/disklabel.h index 039b5a6..fde605f 100644 --- a/sys/sys/disklabel.h +++ b/sys/sys/disklabel.h @@ -202,6 +202,7 @@ dkcksum(struct disklabel *lp) #define DTYPE_CCD 11 /* concatenated disk */ #define DTYPE_VINUM 12 /* vinum volume */ #define DTYPE_DOC2K 13 /* Msys DiskOnChip */ +#define DTYPE_RAID 14 /* CMU RAIDFrame */ #define DTYPE_JFS2 16 /* IBM JFS 2 */ #ifdef DKTYPENAMES @@ -220,7 +221,7 @@ static const char *dktypenames[] = { "CCD", "Vinum", "DOC2K", - "?", + "Raid", "?", "jfs", NULL @@ -248,6 +249,7 @@ static const char *dktypenames[] = { #define FS_ISO9660 12 /* ISO 9660, normally CD-ROM */ #define FS_BOOT 13 /* partition contains bootstrap */ #define FS_VINUM 14 /* Vinum drive */ +#define FS_RAID 15 /* RAIDFrame drive */ #define FS_JFS2 21 /* IBM JFS2 */ #ifdef FSTYPENAMES @@ -267,8 +269,7 @@ static const char *fstypenames[] = { "ISO9660", "boot", "vinum", - "?", - "?", + "raid", "?", "?", "?", diff --git a/sys/sys/kernel.h b/sys/sys/kernel.h index 333ff64..4089d59 100644 --- a/sys/sys/kernel.h +++ b/sys/sys/kernel.h @@ -154,6 +154,7 @@ enum sysinit_sub_id { SI_SUB_ROOT_CONF = 0xb000000, /* Find root devices */ SI_SUB_DUMP_CONF = 0xb200000, /* Find dump devices */ SI_SUB_VINUM = 0xb300000, /* Configure vinum */ + SI_SUB_RAID = 0xb380000, /* Configure RAIDframe */ SI_SUB_MOUNT_ROOT = 0xb400000, /* root mount*/ SI_SUB_SWAP = 0xc000000, /* swap*/ SI_SUB_INTRINSIC_POST = 0xd000000, /* proc 0 cleanup*/ |