summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authoralc <alc@FreeBSD.org>2015-12-19 18:42:50 +0000
committeralc <alc@FreeBSD.org>2015-12-19 18:42:50 +0000
commit8343c406db08ecfbfbde5f7677b17a74b24a3645 (patch)
tree34a147bea7788aca2b0a5376368e87fce8afbfa1
parentc7cbfde2c233f93325b265b5a732bcebc5be731e (diff)
downloadFreeBSD-src-8343c406db08ecfbfbde5f7677b17a74b24a3645.zip
FreeBSD-src-8343c406db08ecfbfbde5f7677b17a74b24a3645.tar.gz
Introduce a new mechanism for relocating virtual pages to a new physical
address and use this mechanism when: 1. kmem_alloc_{attr,contig}() can't find suitable free pages in the physical memory allocator's free page lists. This replaces the long-standing approach of scanning the inactive and inactive queues, converting clean pages into PG_CACHED pages and laundering dirty pages. In contrast, the new mechanism does not use PG_CACHED pages nor does it trigger a large number of I/O operations. 2. on 32-bit MIPS processors, uma_small_alloc() and the pmap can't find free pages in the physical memory allocator's free page lists that are covered by the direct map. Tested by: adrian 3. ttm_bo_global_init() and ttm_vm_page_alloc_dma32() can't find suitable free pages in the physical memory allocator's free page lists. In the coming months, I expect that this new mechanism will be applied in other places. For example, balloon drivers should use relocation to minimize fragmentation of the guest physical address space. Make vm_phys_alloc_contig() a little smarter (and more efficient in some cases). Specifically, use vm_phys_segs[] earlier to avoid scanning free page lists that can't possibly contain suitable pages. Reviewed by: kib, markj Glanced at: jhb Discussed with: jeff Sponsored by: EMC / Isilon Storage Division Differential Revision: https://reviews.freebsd.org/D4444
-rw-r--r--sys/dev/drm2/ttm/ttm_bo.c10
-rw-r--r--sys/dev/drm2/ttm/ttm_page_alloc.c10
-rw-r--r--sys/mips/include/pmap.h1
-rw-r--r--sys/mips/mips/pmap.c37
-rw-r--r--sys/mips/mips/uma_machdep.c7
-rw-r--r--sys/vm/vm_kern.c15
-rw-r--r--sys/vm/vm_page.c589
-rw-r--r--sys/vm/vm_page.h4
-rw-r--r--sys/vm/vm_pageout.c166
-rw-r--r--sys/vm/vm_pageout.h1
-rw-r--r--sys/vm/vm_phys.c221
-rw-r--r--sys/vm/vm_phys.h2
-rw-r--r--sys/vm/vm_reserv.c46
-rw-r--r--sys/vm/vm_reserv.h3
14 files changed, 846 insertions, 266 deletions
diff --git a/sys/dev/drm2/ttm/ttm_bo.c b/sys/dev/drm2/ttm/ttm_bo.c
index 70e17c4..010afe6 100644
--- a/sys/dev/drm2/ttm/ttm_bo.c
+++ b/sys/dev/drm2/ttm/ttm_bo.c
@@ -1488,21 +1488,21 @@ int ttm_bo_global_init(struct drm_global_reference *ref)
struct ttm_bo_global_ref *bo_ref =
container_of(ref, struct ttm_bo_global_ref, ref);
struct ttm_bo_global *glob = ref->object;
- int ret;
+ int req, ret;
int tries;
sx_init(&glob->device_list_mutex, "ttmdlm");
mtx_init(&glob->lru_lock, "ttmlru", NULL, MTX_DEF);
glob->mem_glob = bo_ref->mem_glob;
+ req = VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ;
tries = 0;
retry:
- glob->dummy_read_page = vm_page_alloc_contig(NULL, 0,
- VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ,
+ glob->dummy_read_page = vm_page_alloc_contig(NULL, 0, req,
1, 0, VM_MAX_ADDRESS, PAGE_SIZE, 0, VM_MEMATTR_UNCACHEABLE);
if (unlikely(glob->dummy_read_page == NULL)) {
- if (tries < 1) {
- vm_pageout_grow_cache(tries, 0, VM_MAX_ADDRESS);
+ if (tries < 1 && vm_page_reclaim_contig(req, 1,
+ 0, VM_MAX_ADDRESS, PAGE_SIZE, 0)) {
tries++;
goto retry;
}
diff --git a/sys/dev/drm2/ttm/ttm_page_alloc.c b/sys/dev/drm2/ttm/ttm_page_alloc.c
index 75abd10..2a2e916 100644
--- a/sys/dev/drm2/ttm/ttm_page_alloc.c
+++ b/sys/dev/drm2/ttm/ttm_page_alloc.c
@@ -166,13 +166,9 @@ ttm_vm_page_alloc_dma32(int req, vm_memattr_t memattr)
PAGE_SIZE, 0, memattr);
if (p != NULL || tries > 2)
return (p);
-
- /*
- * Before growing the cache see if this is just a normal
- * memory shortage.
- */
- VM_WAIT;
- vm_pageout_grow_cache(tries, 0, 0xffffffff);
+ if (!vm_page_reclaim_contig(req, 1, 0, 0xffffffff,
+ PAGE_SIZE, 0))
+ VM_WAIT;
}
}
diff --git a/sys/mips/include/pmap.h b/sys/mips/include/pmap.h
index 8392d8a..0354119 100644
--- a/sys/mips/include/pmap.h
+++ b/sys/mips/include/pmap.h
@@ -178,7 +178,6 @@ void *pmap_kenter_temporary(vm_paddr_t pa, int i);
void pmap_kenter_temporary_free(vm_paddr_t pa);
void pmap_flush_pvcache(vm_page_t m);
int pmap_emulate_modified(pmap_t pmap, vm_offset_t va);
-void pmap_grow_direct_page_cache(void);
void pmap_page_set_memattr(vm_page_t, vm_memattr_t);
#endif /* _KERNEL */
diff --git a/sys/mips/mips/pmap.c b/sys/mips/mips/pmap.c
index 7bf3ee0..0827ad1 100644
--- a/sys/mips/mips/pmap.c
+++ b/sys/mips/mips/pmap.c
@@ -166,6 +166,7 @@ static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
static vm_page_t pmap_alloc_direct_page(unsigned int index, int req);
static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
vm_page_t m, vm_prot_t prot, vm_page_t mpte);
+static void pmap_grow_direct_page(int req);
static int pmap_remove_pte(struct pmap *pmap, pt_entry_t *ptq, vm_offset_t va,
pd_entry_t pde);
static void pmap_remove_page(struct pmap *pmap, vm_offset_t va);
@@ -1040,14 +1041,16 @@ pmap_pinit0(pmap_t pmap)
bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
}
-void
-pmap_grow_direct_page_cache()
+static void
+pmap_grow_direct_page(int req)
{
#ifdef __mips_n64
VM_WAIT;
#else
- vm_pageout_grow_cache(3, 0, MIPS_KSEG0_LARGEST_PHYS);
+ if (!vm_page_reclaim_contig(req, 1, 0, MIPS_KSEG0_LARGEST_PHYS,
+ PAGE_SIZE, 0))
+ VM_WAIT;
#endif
}
@@ -1077,13 +1080,15 @@ pmap_pinit(pmap_t pmap)
{
vm_offset_t ptdva;
vm_page_t ptdpg;
- int i;
+ int i, req_class;
/*
* allocate the page directory page
*/
- while ((ptdpg = pmap_alloc_direct_page(NUSERPGTBLS, VM_ALLOC_NORMAL)) == NULL)
- pmap_grow_direct_page_cache();
+ req_class = VM_ALLOC_NORMAL;
+ while ((ptdpg = pmap_alloc_direct_page(NUSERPGTBLS, req_class)) ==
+ NULL)
+ pmap_grow_direct_page(req_class);
ptdva = MIPS_PHYS_TO_DIRECT(VM_PAGE_TO_PHYS(ptdpg));
pmap->pm_segtab = (pd_entry_t *)ptdva;
@@ -1107,15 +1112,17 @@ _pmap_allocpte(pmap_t pmap, unsigned ptepindex, u_int flags)
{
vm_offset_t pageva;
vm_page_t m;
+ int req_class;
/*
* Find or fabricate a new pagetable page
*/
- if ((m = pmap_alloc_direct_page(ptepindex, VM_ALLOC_NORMAL)) == NULL) {
+ req_class = VM_ALLOC_NORMAL;
+ if ((m = pmap_alloc_direct_page(ptepindex, req_class)) == NULL) {
if ((flags & PMAP_ENTER_NOSLEEP) == 0) {
PMAP_UNLOCK(pmap);
rw_wunlock(&pvh_global_lock);
- pmap_grow_direct_page_cache();
+ pmap_grow_direct_page(req_class);
rw_wlock(&pvh_global_lock);
PMAP_LOCK(pmap);
}
@@ -1241,9 +1248,10 @@ pmap_growkernel(vm_offset_t addr)
vm_page_t nkpg;
pd_entry_t *pde, *pdpe;
pt_entry_t *pte;
- int i;
+ int i, req_class;
mtx_assert(&kernel_map->system_mtx, MA_OWNED);
+ req_class = VM_ALLOC_INTERRUPT;
addr = roundup2(addr, NBSEG);
if (addr - 1 >= kernel_map->max_offset)
addr = kernel_map->max_offset;
@@ -1252,7 +1260,7 @@ pmap_growkernel(vm_offset_t addr)
#ifdef __mips_n64
if (*pdpe == 0) {
/* new intermediate page table entry */
- nkpg = pmap_alloc_direct_page(nkpt, VM_ALLOC_INTERRUPT);
+ nkpg = pmap_alloc_direct_page(nkpt, req_class);
if (nkpg == NULL)
panic("pmap_growkernel: no memory to grow kernel");
*pdpe = (pd_entry_t)MIPS_PHYS_TO_DIRECT(VM_PAGE_TO_PHYS(nkpg));
@@ -1272,8 +1280,13 @@ pmap_growkernel(vm_offset_t addr)
/*
* This index is bogus, but out of the way
*/
- nkpg = pmap_alloc_direct_page(nkpt, VM_ALLOC_INTERRUPT);
- if (!nkpg)
+ nkpg = pmap_alloc_direct_page(nkpt, req_class);
+#ifndef __mips_n64
+ if (nkpg == NULL && vm_page_reclaim_contig(req_class, 1,
+ 0, MIPS_KSEG0_LARGEST_PHYS, PAGE_SIZE, 0))
+ nkpg = pmap_alloc_direct_page(nkpt, req_class);
+#endif
+ if (nkpg == NULL)
panic("pmap_growkernel: no memory to grow kernel");
nkpt++;
*pde = (pd_entry_t)MIPS_PHYS_TO_DIRECT(VM_PAGE_TO_PHYS(nkpg));
diff --git a/sys/mips/mips/uma_machdep.c b/sys/mips/mips/uma_machdep.c
index e47c502..b4006e1 100644
--- a/sys/mips/mips/uma_machdep.c
+++ b/sys/mips/mips/uma_machdep.c
@@ -53,11 +53,16 @@ uma_small_alloc(uma_zone_t zone, vm_size_t bytes, u_int8_t *flags, int wait)
for (;;) {
m = vm_page_alloc_freelist(VM_FREELIST_DIRECT, pflags);
+#ifndef __mips_n64
+ if (m == NULL && vm_page_reclaim_contig(pflags, 1,
+ 0, MIPS_KSEG0_LARGEST_PHYS, PAGE_SIZE, 0))
+ continue;
+#endif
if (m == NULL) {
if (wait & M_NOWAIT)
return (NULL);
else
- pmap_grow_direct_page_cache();
+ VM_WAIT;
} else
break;
}
diff --git a/sys/vm/vm_kern.c b/sys/vm/vm_kern.c
index a05c263..f56dbca 100644
--- a/sys/vm/vm_kern.c
+++ b/sys/vm/vm_kern.c
@@ -181,7 +181,10 @@ retry:
if (m == NULL) {
VM_OBJECT_WUNLOCK(object);
if (tries < ((flags & M_NOWAIT) != 0 ? 1 : 3)) {
- vm_pageout_grow_cache(tries, low, high);
+ if (!vm_page_reclaim_contig(pflags, 1,
+ low, high, PAGE_SIZE, 0) &&
+ (flags & M_WAITOK) != 0)
+ VM_WAIT;
VM_OBJECT_WLOCK(object);
tries++;
goto retry;
@@ -217,6 +220,7 @@ kmem_alloc_contig(struct vmem *vmem, vm_size_t size, int flags, vm_paddr_t low,
vm_offset_t addr, tmp;
vm_ooffset_t offset;
vm_page_t end_m, m;
+ u_long npages;
int pflags, tries;
size = round_page(size);
@@ -224,15 +228,18 @@ kmem_alloc_contig(struct vmem *vmem, vm_size_t size, int flags, vm_paddr_t low,
return (0);
offset = addr - VM_MIN_KERNEL_ADDRESS;
pflags = malloc2vm_flags(flags) | VM_ALLOC_NOBUSY | VM_ALLOC_WIRED;
+ npages = atop(size);
VM_OBJECT_WLOCK(object);
tries = 0;
retry:
m = vm_page_alloc_contig(object, OFF_TO_IDX(offset), pflags,
- atop(size), low, high, alignment, boundary, memattr);
+ npages, low, high, alignment, boundary, memattr);
if (m == NULL) {
VM_OBJECT_WUNLOCK(object);
if (tries < ((flags & M_NOWAIT) != 0 ? 1 : 3)) {
- vm_pageout_grow_cache(tries, low, high);
+ if (!vm_page_reclaim_contig(pflags, npages, low, high,
+ alignment, boundary) && (flags & M_WAITOK) != 0)
+ VM_WAIT;
VM_OBJECT_WLOCK(object);
tries++;
goto retry;
@@ -240,7 +247,7 @@ retry:
vmem_free(vmem, addr, size);
return (0);
}
- end_m = m + atop(size);
+ end_m = m + npages;
tmp = addr;
for (; m < end_m; m++) {
if ((flags & M_ZERO) && (m->flags & PG_ZERO) == 0)
diff --git a/sys/vm/vm_page.c b/sys/vm/vm_page.c
index 2e6b56a..d27eb2d 100644
--- a/sys/vm/vm_page.c
+++ b/sys/vm/vm_page.c
@@ -158,11 +158,14 @@ static struct vnode *vm_page_alloc_init(vm_page_t m);
static void vm_page_cache_turn_free(vm_page_t m);
static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits);
static void vm_page_enqueue(uint8_t queue, vm_page_t m);
+static void vm_page_free_wakeup(void);
static void vm_page_init_fakepg(void *dummy);
static int vm_page_insert_after(vm_page_t m, vm_object_t object,
vm_pindex_t pindex, vm_page_t mpred);
static void vm_page_insert_radixdone(vm_page_t m, vm_object_t object,
vm_page_t mpred);
+static int vm_page_reclaim_run(int req_class, u_long npages, vm_page_t m_run,
+ vm_paddr_t high);
SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init_fakepg, NULL);
@@ -2093,6 +2096,592 @@ vm_page_alloc_freelist(int flind, int req)
return (m);
}
+#define VPSC_ANY 0 /* No restrictions. */
+#define VPSC_NORESERV 1 /* Skip reservations; implies VPSC_NOSUPER. */
+#define VPSC_NOSUPER 2 /* Skip superpages. */
+
+/*
+ * vm_page_scan_contig:
+ *
+ * Scan vm_page_array[] between the specified entries "m_start" and
+ * "m_end" for a run of contiguous physical pages that satisfy the
+ * specified conditions, and return the lowest page in the run. The
+ * specified "alignment" determines the alignment of the lowest physical
+ * page in the run. If the specified "boundary" is non-zero, then the
+ * run of physical pages cannot span a physical address that is a
+ * multiple of "boundary".
+ *
+ * "m_end" is never dereferenced, so it need not point to a vm_page
+ * structure within vm_page_array[].
+ *
+ * "npages" must be greater than zero. "m_start" and "m_end" must not
+ * span a hole (or discontiguity) in the physical address space. Both
+ * "alignment" and "boundary" must be a power of two.
+ */
+vm_page_t
+vm_page_scan_contig(u_long npages, vm_page_t m_start, vm_page_t m_end,
+ u_long alignment, vm_paddr_t boundary, int options)
+{
+ struct mtx *m_mtx, *new_mtx;
+ vm_object_t object;
+ vm_paddr_t pa;
+ vm_page_t m, m_run;
+#if VM_NRESERVLEVEL > 0
+ int level;
+#endif
+ int m_inc, order, run_ext, run_len;
+
+ KASSERT(npages > 0, ("npages is 0"));
+ KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
+ KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
+ m_run = NULL;
+ run_len = 0;
+ m_mtx = NULL;
+ for (m = m_start; m < m_end && run_len < npages; m += m_inc) {
+ KASSERT((m->flags & (PG_FICTITIOUS | PG_MARKER)) == 0,
+ ("page %p is PG_FICTITIOUS or PG_MARKER", m));
+
+ /*
+ * If the current page would be the start of a run, check its
+ * physical address against the end, alignment, and boundary
+ * conditions. If it doesn't satisfy these conditions, either
+ * terminate the scan or advance to the next page that
+ * satisfies the failed condition.
+ */
+ if (run_len == 0) {
+ KASSERT(m_run == NULL, ("m_run != NULL"));
+ if (m + npages > m_end)
+ break;
+ pa = VM_PAGE_TO_PHYS(m);
+ if ((pa & (alignment - 1)) != 0) {
+ m_inc = atop(roundup2(pa, alignment) - pa);
+ continue;
+ }
+ if (((pa ^ (pa + ptoa(npages) - 1)) & ~(boundary -
+ 1)) != 0) {
+ m_inc = atop(roundup2(pa, boundary) - pa);
+ continue;
+ }
+ } else
+ KASSERT(m_run != NULL, ("m_run == NULL"));
+
+ /*
+ * Avoid releasing and reacquiring the same page lock.
+ */
+ new_mtx = vm_page_lockptr(m);
+ if (m_mtx != new_mtx) {
+ if (m_mtx != NULL)
+ mtx_unlock(m_mtx);
+ m_mtx = new_mtx;
+ mtx_lock(m_mtx);
+ }
+ m_inc = 1;
+retry:
+ if (m->wire_count != 0 || m->hold_count != 0)
+ run_ext = 0;
+#if VM_NRESERVLEVEL > 0
+ else if ((level = vm_reserv_level(m)) >= 0 &&
+ (options & VPSC_NORESERV) != 0) {
+ run_ext = 0;
+ /* Advance to the end of the reservation. */
+ pa = VM_PAGE_TO_PHYS(m);
+ m_inc = atop(roundup2(pa + 1, vm_reserv_size(level)) -
+ pa);
+ }
+#endif
+ else if ((object = m->object) != NULL) {
+ /*
+ * The page is considered eligible for relocation if
+ * and only if it could be laundered or reclaimed by
+ * the page daemon.
+ */
+ if (!VM_OBJECT_TRYRLOCK(object)) {
+ mtx_unlock(m_mtx);
+ VM_OBJECT_RLOCK(object);
+ mtx_lock(m_mtx);
+ if (m->object != object) {
+ /*
+ * The page may have been freed.
+ */
+ VM_OBJECT_RUNLOCK(object);
+ goto retry;
+ } else if (m->wire_count != 0 ||
+ m->hold_count != 0) {
+ run_ext = 0;
+ goto unlock;
+ }
+ }
+ KASSERT((m->flags & PG_UNHOLDFREE) == 0,
+ ("page %p is PG_UNHOLDFREE", m));
+ /* Don't care: PG_NODUMP, PG_WINATCFLS, PG_ZERO. */
+ if (object->type != OBJT_DEFAULT &&
+ object->type != OBJT_SWAP &&
+ object->type != OBJT_VNODE)
+ run_ext = 0;
+ else if ((m->flags & PG_CACHED) != 0 ||
+ m != vm_page_lookup(object, m->pindex)) {
+ /*
+ * The page is cached or recently converted
+ * from cached to free.
+ */
+#if VM_NRESERVLEVEL > 0
+ if (level >= 0) {
+ /*
+ * The page is reserved. Extend the
+ * current run by one page.
+ */
+ run_ext = 1;
+ } else
+#endif
+ if ((order = m->order) < VM_NFREEORDER) {
+ /*
+ * The page is enqueued in the
+ * physical memory allocator's cache/
+ * free page queues. Moreover, it is
+ * the first page in a power-of-two-
+ * sized run of contiguous cache/free
+ * pages. Add these pages to the end
+ * of the current run, and jump
+ * ahead.
+ */
+ run_ext = 1 << order;
+ m_inc = 1 << order;
+ } else
+ run_ext = 0;
+#if VM_NRESERVLEVEL > 0
+ } else if ((options & VPSC_NOSUPER) != 0 &&
+ (level = vm_reserv_level_iffullpop(m)) >= 0) {
+ run_ext = 0;
+ /* Advance to the end of the superpage. */
+ pa = VM_PAGE_TO_PHYS(m);
+ m_inc = atop(roundup2(pa + 1,
+ vm_reserv_size(level)) - pa);
+#endif
+ } else if (object->memattr == VM_MEMATTR_DEFAULT &&
+ m->queue != PQ_NONE && !vm_page_busied(m)) {
+ /*
+ * The page is allocated but eligible for
+ * relocation. Extend the current run by one
+ * page.
+ */
+ KASSERT(pmap_page_get_memattr(m) ==
+ VM_MEMATTR_DEFAULT,
+ ("page %p has an unexpected memattr", m));
+ KASSERT((m->oflags & (VPO_SWAPINPROG |
+ VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0,
+ ("page %p has unexpected oflags", m));
+ /* Don't care: VPO_NOSYNC. */
+ run_ext = 1;
+ } else
+ run_ext = 0;
+unlock:
+ VM_OBJECT_RUNLOCK(object);
+#if VM_NRESERVLEVEL > 0
+ } else if (level >= 0) {
+ /*
+ * The page is reserved but not yet allocated. In
+ * other words, it is still cached or free. Extend
+ * the current run by one page.
+ */
+ run_ext = 1;
+#endif
+ } else if ((order = m->order) < VM_NFREEORDER) {
+ /*
+ * The page is enqueued in the physical memory
+ * allocator's cache/free page queues. Moreover, it
+ * is the first page in a power-of-two-sized run of
+ * contiguous cache/free pages. Add these pages to
+ * the end of the current run, and jump ahead.
+ */
+ run_ext = 1 << order;
+ m_inc = 1 << order;
+ } else {
+ /*
+ * Skip the page for one of the following reasons: (1)
+ * It is enqueued in the physical memory allocator's
+ * cache/free page queues. However, it is not the
+ * first page in a run of contiguous cache/free pages.
+ * (This case rarely occurs because the scan is
+ * performed in ascending order.) (2) It is not
+ * reserved, and it is transitioning from free to
+ * allocated. (Conversely, the transition from
+ * allocated to free for managed pages is blocked by
+ * the page lock.) (3) It is allocated but not
+ * contained by an object and not wired, e.g.,
+ * allocated by Xen's balloon driver.
+ */
+ run_ext = 0;
+ }
+
+ /*
+ * Extend or reset the current run of pages.
+ */
+ if (run_ext > 0) {
+ if (run_len == 0)
+ m_run = m;
+ run_len += run_ext;
+ } else {
+ if (run_len > 0) {
+ m_run = NULL;
+ run_len = 0;
+ }
+ }
+ }
+ if (m_mtx != NULL)
+ mtx_unlock(m_mtx);
+ if (run_len >= npages)
+ return (m_run);
+ return (NULL);
+}
+
+/*
+ * vm_page_reclaim_run:
+ *
+ * Try to relocate each of the allocated virtual pages within the
+ * specified run of physical pages to a new physical address. Free the
+ * physical pages underlying the relocated virtual pages. A virtual page
+ * is relocatable if and only if it could be laundered or reclaimed by
+ * the page daemon. Whenever possible, a virtual page is relocated to a
+ * physical address above "high".
+ *
+ * Returns 0 if every physical page within the run was already free or
+ * just freed by a successful relocation. Otherwise, returns a non-zero
+ * value indicating why the last attempt to relocate a virtual page was
+ * unsuccessful.
+ *
+ * "req_class" must be an allocation class.
+ */
+static int
+vm_page_reclaim_run(int req_class, u_long npages, vm_page_t m_run,
+ vm_paddr_t high)
+{
+ struct mtx *m_mtx, *new_mtx;
+ struct spglist free;
+ vm_object_t object;
+ vm_paddr_t pa;
+ vm_page_t m, m_end, m_new;
+ int error, order, req;
+
+ KASSERT((req_class & VM_ALLOC_CLASS_MASK) == req_class,
+ ("req_class is not an allocation class"));
+ SLIST_INIT(&free);
+ error = 0;
+ m = m_run;
+ m_end = m_run + npages;
+ m_mtx = NULL;
+ for (; error == 0 && m < m_end; m++) {
+ KASSERT((m->flags & (PG_FICTITIOUS | PG_MARKER)) == 0,
+ ("page %p is PG_FICTITIOUS or PG_MARKER", m));
+
+ /*
+ * Avoid releasing and reacquiring the same page lock.
+ */
+ new_mtx = vm_page_lockptr(m);
+ if (m_mtx != new_mtx) {
+ if (m_mtx != NULL)
+ mtx_unlock(m_mtx);
+ m_mtx = new_mtx;
+ mtx_lock(m_mtx);
+ }
+retry:
+ if (m->wire_count != 0 || m->hold_count != 0)
+ error = EBUSY;
+ else if ((object = m->object) != NULL) {
+ /*
+ * The page is relocated if and only if it could be
+ * laundered or reclaimed by the page daemon.
+ */
+ if (!VM_OBJECT_TRYWLOCK(object)) {
+ mtx_unlock(m_mtx);
+ VM_OBJECT_WLOCK(object);
+ mtx_lock(m_mtx);
+ if (m->object != object) {
+ /*
+ * The page may have been freed.
+ */
+ VM_OBJECT_WUNLOCK(object);
+ goto retry;
+ } else if (m->wire_count != 0 ||
+ m->hold_count != 0) {
+ error = EBUSY;
+ goto unlock;
+ }
+ }
+ KASSERT((m->flags & PG_UNHOLDFREE) == 0,
+ ("page %p is PG_UNHOLDFREE", m));
+ /* Don't care: PG_NODUMP, PG_WINATCFLS, PG_ZERO. */
+ if (object->type != OBJT_DEFAULT &&
+ object->type != OBJT_SWAP &&
+ object->type != OBJT_VNODE)
+ error = EINVAL;
+ else if ((m->flags & PG_CACHED) != 0 ||
+ m != vm_page_lookup(object, m->pindex)) {
+ /*
+ * The page is cached or recently converted
+ * from cached to free.
+ */
+ VM_OBJECT_WUNLOCK(object);
+ goto cached;
+ } else if (object->memattr != VM_MEMATTR_DEFAULT)
+ error = EINVAL;
+ else if (m->queue != PQ_NONE && !vm_page_busied(m)) {
+ KASSERT(pmap_page_get_memattr(m) ==
+ VM_MEMATTR_DEFAULT,
+ ("page %p has an unexpected memattr", m));
+ KASSERT((m->oflags & (VPO_SWAPINPROG |
+ VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0,
+ ("page %p has unexpected oflags", m));
+ /* Don't care: VPO_NOSYNC. */
+ if (m->valid != 0) {
+ /*
+ * First, try to allocate a new page
+ * that is above "high". Failing
+ * that, try to allocate a new page
+ * that is below "m_run". Allocate
+ * the new page between the end of
+ * "m_run" and "high" only as a last
+ * resort.
+ */
+ req = req_class | VM_ALLOC_NOOBJ;
+ if ((m->flags & PG_NODUMP) != 0)
+ req |= VM_ALLOC_NODUMP;
+ if (trunc_page(high) !=
+ ~(vm_paddr_t)PAGE_MASK) {
+ m_new = vm_page_alloc_contig(
+ NULL, 0, req, 1,
+ round_page(high),
+ ~(vm_paddr_t)0,
+ PAGE_SIZE, 0,
+ VM_MEMATTR_DEFAULT);
+ } else
+ m_new = NULL;
+ if (m_new == NULL) {
+ pa = VM_PAGE_TO_PHYS(m_run);
+ m_new = vm_page_alloc_contig(
+ NULL, 0, req, 1,
+ 0, pa - 1, PAGE_SIZE, 0,
+ VM_MEMATTR_DEFAULT);
+ }
+ if (m_new == NULL) {
+ pa += ptoa(npages);
+ m_new = vm_page_alloc_contig(
+ NULL, 0, req, 1,
+ pa, high, PAGE_SIZE, 0,
+ VM_MEMATTR_DEFAULT);
+ }
+ if (m_new == NULL) {
+ error = ENOMEM;
+ goto unlock;
+ }
+ KASSERT(m_new->wire_count == 0,
+ ("page %p is wired", m));
+
+ /*
+ * Replace "m" with the new page. For
+ * vm_page_replace(), "m" must be busy
+ * and dequeued. Finally, change "m"
+ * as if vm_page_free() was called.
+ */
+ if (object->ref_count != 0)
+ pmap_remove_all(m);
+ m_new->aflags = m->aflags;
+ KASSERT(m_new->oflags == VPO_UNMANAGED,
+ ("page %p is managed", m));
+ m_new->oflags = m->oflags & VPO_NOSYNC;
+ pmap_copy_page(m, m_new);
+ m_new->valid = m->valid;
+ m_new->dirty = m->dirty;
+ m->flags &= ~PG_ZERO;
+ vm_page_xbusy(m);
+ vm_page_remque(m);
+ vm_page_replace_checked(m_new, object,
+ m->pindex, m);
+ m->valid = 0;
+ vm_page_undirty(m);
+
+ /*
+ * The new page must be deactivated
+ * before the object is unlocked.
+ */
+ new_mtx = vm_page_lockptr(m_new);
+ if (m_mtx != new_mtx) {
+ mtx_unlock(m_mtx);
+ m_mtx = new_mtx;
+ mtx_lock(m_mtx);
+ }
+ vm_page_deactivate(m_new);
+ } else {
+ m->flags &= ~PG_ZERO;
+ vm_page_remque(m);
+ vm_page_remove(m);
+ KASSERT(m->dirty == 0,
+ ("page %p is dirty", m));
+ }
+ SLIST_INSERT_HEAD(&free, m, plinks.s.ss);
+ } else
+ error = EBUSY;
+unlock:
+ VM_OBJECT_WUNLOCK(object);
+ } else {
+cached:
+ mtx_lock(&vm_page_queue_free_mtx);
+ order = m->order;
+ if (order < VM_NFREEORDER) {
+ /*
+ * The page is enqueued in the physical memory
+ * allocator's cache/free page queues.
+ * Moreover, it is the first page in a power-
+ * of-two-sized run of contiguous cache/free
+ * pages. Jump ahead to the last page within
+ * that run, and continue from there.
+ */
+ m += (1 << order) - 1;
+ }
+#if VM_NRESERVLEVEL > 0
+ else if (vm_reserv_is_page_free(m))
+ order = 0;
+#endif
+ mtx_unlock(&vm_page_queue_free_mtx);
+ if (order == VM_NFREEORDER)
+ error = EINVAL;
+ }
+ }
+ if (m_mtx != NULL)
+ mtx_unlock(m_mtx);
+ if ((m = SLIST_FIRST(&free)) != NULL) {
+ mtx_lock(&vm_page_queue_free_mtx);
+ do {
+ SLIST_REMOVE_HEAD(&free, plinks.s.ss);
+ vm_phys_freecnt_adj(m, 1);
+#if VM_NRESERVLEVEL > 0
+ if (!vm_reserv_free_page(m))
+#else
+ if (true)
+#endif
+ vm_phys_free_pages(m, 0);
+ } while ((m = SLIST_FIRST(&free)) != NULL);
+ vm_page_zero_idle_wakeup();
+ vm_page_free_wakeup();
+ mtx_unlock(&vm_page_queue_free_mtx);
+ }
+ return (error);
+}
+
+#define NRUNS 16
+
+CTASSERT(powerof2(NRUNS));
+
+#define RUN_INDEX(count) ((count) & (NRUNS - 1))
+
+#define MIN_RECLAIM 8
+
+/*
+ * vm_page_reclaim_contig:
+ *
+ * Reclaim allocated, contiguous physical memory satisfying the specified
+ * conditions by relocating the virtual pages using that physical memory.
+ * Returns true if reclamation is successful and false otherwise. Since
+ * relocation requires the allocation of physical pages, reclamation may
+ * fail due to a shortage of cache/free pages. When reclamation fails,
+ * callers are expected to perform VM_WAIT before retrying a failed
+ * allocation operation, e.g., vm_page_alloc_contig().
+ *
+ * The caller must always specify an allocation class through "req".
+ *
+ * allocation classes:
+ * VM_ALLOC_NORMAL normal process request
+ * VM_ALLOC_SYSTEM system *really* needs a page
+ * VM_ALLOC_INTERRUPT interrupt time request
+ *
+ * The optional allocation flags are ignored.
+ *
+ * "npages" must be greater than zero. Both "alignment" and "boundary"
+ * must be a power of two.
+ */
+bool
+vm_page_reclaim_contig(int req, u_long npages, vm_paddr_t low, vm_paddr_t high,
+ u_long alignment, vm_paddr_t boundary)
+{
+ vm_paddr_t curr_low;
+ vm_page_t m_run, m_runs[NRUNS];
+ u_long count, reclaimed;
+ int error, i, options, req_class;
+
+ KASSERT(npages > 0, ("npages is 0"));
+ KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
+ KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
+ req_class = req & VM_ALLOC_CLASS_MASK;
+
+ /*
+ * The page daemon is allowed to dig deeper into the free page list.
+ */
+ if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
+ req_class = VM_ALLOC_SYSTEM;
+
+ /*
+ * Return if the number of cached and free pages cannot satisfy the
+ * requested allocation.
+ */
+ count = vm_cnt.v_free_count + vm_cnt.v_cache_count;
+ if (count < npages + vm_cnt.v_free_reserved || (count < npages +
+ vm_cnt.v_interrupt_free_min && req_class == VM_ALLOC_SYSTEM) ||
+ (count < npages && req_class == VM_ALLOC_INTERRUPT))
+ return (false);
+
+ /*
+ * Scan up to three times, relaxing the restrictions ("options") on
+ * the reclamation of reservations and superpages each time.
+ */
+ for (options = VPSC_NORESERV;;) {
+ /*
+ * Find the highest runs that satisfy the given constraints
+ * and restrictions, and record them in "m_runs".
+ */
+ curr_low = low;
+ count = 0;
+ for (;;) {
+ m_run = vm_phys_scan_contig(npages, curr_low, high,
+ alignment, boundary, options);
+ if (m_run == NULL)
+ break;
+ curr_low = VM_PAGE_TO_PHYS(m_run) + ptoa(npages);
+ m_runs[RUN_INDEX(count)] = m_run;
+ count++;
+ }
+
+ /*
+ * Reclaim the highest runs in LIFO (descending) order until
+ * the number of reclaimed pages, "reclaimed", is at least
+ * MIN_RECLAIM. Reset "reclaimed" each time because each
+ * reclamation is idempotent, and runs will (likely) recur
+ * from one scan to the next as restrictions are relaxed.
+ */
+ reclaimed = 0;
+ for (i = 0; count > 0 && i < NRUNS; i++) {
+ count--;
+ m_run = m_runs[RUN_INDEX(count)];
+ error = vm_page_reclaim_run(req_class, npages, m_run,
+ high);
+ if (error == 0) {
+ reclaimed += npages;
+ if (reclaimed >= MIN_RECLAIM)
+ return (true);
+ }
+ }
+
+ /*
+ * Either relax the restrictions on the next scan or return if
+ * the last scan had no restrictions.
+ */
+ if (options == VPSC_NORESERV)
+ options = VPSC_NOSUPER;
+ else if (options == VPSC_NOSUPER)
+ options = VPSC_ANY;
+ else if (options == VPSC_ANY)
+ return (reclaimed != 0);
+ }
+}
+
/*
* vm_wait: (also see VM_WAIT macro)
*
diff --git a/sys/vm/vm_page.h b/sys/vm/vm_page.h
index a1f6fc4..972603a 100644
--- a/sys/vm/vm_page.h
+++ b/sys/vm/vm_page.h
@@ -474,6 +474,8 @@ vm_page_t vm_page_prev(vm_page_t m);
boolean_t vm_page_ps_is_valid(vm_page_t m);
void vm_page_putfake(vm_page_t m);
void vm_page_readahead_finish(vm_page_t m);
+bool vm_page_reclaim_contig(int req, u_long npages, vm_paddr_t low,
+ vm_paddr_t high, u_long alignment, vm_paddr_t boundary);
void vm_page_reference(vm_page_t m);
void vm_page_remove (vm_page_t);
int vm_page_rename (vm_page_t, vm_object_t, vm_pindex_t);
@@ -482,6 +484,8 @@ vm_page_t vm_page_replace(vm_page_t mnew, vm_object_t object,
void vm_page_requeue(vm_page_t m);
void vm_page_requeue_locked(vm_page_t m);
int vm_page_sbusied(vm_page_t m);
+vm_page_t vm_page_scan_contig(u_long npages, vm_page_t m_start,
+ vm_page_t m_end, u_long alignment, vm_paddr_t boundary, int options);
void vm_page_set_valid_range(vm_page_t m, int base, int size);
int vm_page_sleep_if_busy(vm_page_t m, const char *msg);
vm_offset_t vm_page_startup(vm_offset_t vaddr);
diff --git a/sys/vm/vm_pageout.c b/sys/vm/vm_pageout.c
index 4997c82..b7f6887 100644
--- a/sys/vm/vm_pageout.c
+++ b/sys/vm/vm_pageout.c
@@ -237,8 +237,6 @@ SYSCTL_INT(_vm, OID_AUTO, max_wired,
CTLFLAG_RW, &vm_page_max_wired, 0, "System-wide limit to wired page count");
static boolean_t vm_pageout_fallback_object_lock(vm_page_t, vm_page_t *);
-static boolean_t vm_pageout_launder(struct vm_pagequeue *pq, int, vm_paddr_t,
- vm_paddr_t);
#if !defined(NO_SWAPPING)
static void vm_pageout_map_deactivate_pages(vm_map_t, long);
static void vm_pageout_object_deactivate_pages(pmap_t, vm_object_t, long);
@@ -595,170 +593,6 @@ vm_pageout_flush(vm_page_t *mc, int count, int flags, int mreq, int *prunlen,
return (numpagedout);
}
-static boolean_t
-vm_pageout_launder(struct vm_pagequeue *pq, int tries, vm_paddr_t low,
- vm_paddr_t high)
-{
- struct mount *mp;
- struct vnode *vp;
- vm_object_t object;
- vm_paddr_t pa;
- vm_page_t m, m_tmp, next;
- int lockmode;
-
- vm_pagequeue_lock(pq);
- TAILQ_FOREACH_SAFE(m, &pq->pq_pl, plinks.q, next) {
- if ((m->flags & PG_MARKER) != 0)
- continue;
- pa = VM_PAGE_TO_PHYS(m);
- if (pa < low || pa + PAGE_SIZE > high)
- continue;
- if (!vm_pageout_page_lock(m, &next) || m->hold_count != 0) {
- vm_page_unlock(m);
- continue;
- }
- object = m->object;
- if ((!VM_OBJECT_TRYWLOCK(object) &&
- (!vm_pageout_fallback_object_lock(m, &next) ||
- m->hold_count != 0)) || vm_page_busied(m)) {
- vm_page_unlock(m);
- VM_OBJECT_WUNLOCK(object);
- continue;
- }
- vm_page_test_dirty(m);
- if (m->dirty == 0 && object->ref_count != 0)
- pmap_remove_all(m);
- if (m->dirty != 0) {
- vm_page_unlock(m);
- if (tries == 0 || (object->flags & OBJ_DEAD) != 0) {
- VM_OBJECT_WUNLOCK(object);
- continue;
- }
- if (object->type == OBJT_VNODE) {
- vm_pagequeue_unlock(pq);
- vp = object->handle;
- vm_object_reference_locked(object);
- VM_OBJECT_WUNLOCK(object);
- (void)vn_start_write(vp, &mp, V_WAIT);
- lockmode = MNT_SHARED_WRITES(vp->v_mount) ?
- LK_SHARED : LK_EXCLUSIVE;
- vn_lock(vp, lockmode | LK_RETRY);
- VM_OBJECT_WLOCK(object);
- vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
- VM_OBJECT_WUNLOCK(object);
- VOP_UNLOCK(vp, 0);
- vm_object_deallocate(object);
- vn_finished_write(mp);
- return (TRUE);
- } else if (object->type == OBJT_SWAP ||
- object->type == OBJT_DEFAULT) {
- vm_pagequeue_unlock(pq);
- m_tmp = m;
- vm_pageout_flush(&m_tmp, 1, VM_PAGER_PUT_SYNC,
- 0, NULL, NULL);
- VM_OBJECT_WUNLOCK(object);
- return (TRUE);
- }
- } else {
- /*
- * Dequeue here to prevent lock recursion in
- * vm_page_cache().
- */
- vm_page_dequeue_locked(m);
- vm_page_cache(m);
- vm_page_unlock(m);
- }
- VM_OBJECT_WUNLOCK(object);
- }
- vm_pagequeue_unlock(pq);
- return (FALSE);
-}
-
-/*
- * Increase the number of cached pages. The specified value, "tries",
- * determines which categories of pages are cached:
- *
- * 0: All clean, inactive pages within the specified physical address range
- * are cached. Will not sleep.
- * 1: The vm_lowmem handlers are called. All inactive pages within
- * the specified physical address range are cached. May sleep.
- * 2: The vm_lowmem handlers are called. All inactive and active pages
- * within the specified physical address range are cached. May sleep.
- */
-void
-vm_pageout_grow_cache(int tries, vm_paddr_t low, vm_paddr_t high)
-{
- int actl, actmax, inactl, inactmax, dom, initial_dom;
- static int start_dom = 0;
-
- if (tries > 0) {
- /*
- * Decrease registered cache sizes. The vm_lowmem handlers
- * may acquire locks and/or sleep, so they can only be invoked
- * when "tries" is greater than zero.
- */
- SDT_PROBE0(vm, , , vm__lowmem_cache);
- EVENTHANDLER_INVOKE(vm_lowmem, 0);
-
- /*
- * We do this explicitly after the caches have been drained
- * above.
- */
- uma_reclaim();
- }
-
- /*
- * Make the next scan start on the next domain.
- */
- initial_dom = atomic_fetchadd_int(&start_dom, 1) % vm_ndomains;
-
- inactl = 0;
- inactmax = vm_cnt.v_inactive_count;
- actl = 0;
- actmax = tries < 2 ? 0 : vm_cnt.v_active_count;
- dom = initial_dom;
-
- /*
- * Scan domains in round-robin order, first inactive queues,
- * then active. Since domain usually owns large physically
- * contiguous chunk of memory, it makes sense to completely
- * exhaust one domain before switching to next, while growing
- * the pool of contiguous physical pages.
- *
- * Do not even start launder a domain which cannot contain
- * the specified address range, as indicated by segments
- * constituting the domain.
- */
-again_inact:
- if (inactl < inactmax) {
- if (vm_phys_domain_intersects(vm_dom[dom].vmd_segs,
- low, high) &&
- vm_pageout_launder(&vm_dom[dom].vmd_pagequeues[PQ_INACTIVE],
- tries, low, high)) {
- inactl++;
- goto again_inact;
- }
- if (++dom == vm_ndomains)
- dom = 0;
- if (dom != initial_dom)
- goto again_inact;
- }
-again_act:
- if (actl < actmax) {
- if (vm_phys_domain_intersects(vm_dom[dom].vmd_segs,
- low, high) &&
- vm_pageout_launder(&vm_dom[dom].vmd_pagequeues[PQ_ACTIVE],
- tries, low, high)) {
- actl++;
- goto again_act;
- }
- if (++dom == vm_ndomains)
- dom = 0;
- if (dom != initial_dom)
- goto again_act;
- }
-}
-
#if !defined(NO_SWAPPING)
/*
* vm_pageout_object_deactivate_pages
diff --git a/sys/vm/vm_pageout.h b/sys/vm/vm_pageout.h
index 9c8da8b..2d0b961 100644
--- a/sys/vm/vm_pageout.h
+++ b/sys/vm/vm_pageout.h
@@ -101,7 +101,6 @@ extern void vm_waitpfault(void);
#ifdef _KERNEL
int vm_pageout_flush(vm_page_t *, int, int, int, int *, boolean_t *);
-void vm_pageout_grow_cache(int, vm_paddr_t, vm_paddr_t);
void vm_pageout_oom(int shortage);
#endif
#endif /* _VM_VM_PAGEOUT_H_ */
diff --git a/sys/vm/vm_phys.c b/sys/vm/vm_phys.c
index d26b8b5..38799f2 100644
--- a/sys/vm/vm_phys.c
+++ b/sys/vm/vm_phys.c
@@ -170,6 +170,9 @@ static struct vm_domain_policy vm_default_policy =
static vm_page_t vm_phys_alloc_domain_pages(int domain, int flind, int pool,
int order);
+static vm_page_t vm_phys_alloc_seg_contig(struct vm_phys_seg *seg,
+ u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
+ vm_paddr_t boundary);
static void _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int domain);
static void vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end);
static int vm_phys_paddr_to_segind(vm_paddr_t pa);
@@ -1163,6 +1166,56 @@ vm_phys_free_contig(vm_page_t m, u_long npages)
}
/*
+ * Scan physical memory between the specified addresses "low" and "high" for a
+ * run of contiguous physical pages that satisfy the specified conditions, and
+ * return the lowest page in the run. The specified "alignment" determines
+ * the alignment of the lowest physical page in the run. If the specified
+ * "boundary" is non-zero, then the run of physical pages cannot span a
+ * physical address that is a multiple of "boundary".
+ *
+ * "npages" must be greater than zero. Both "alignment" and "boundary" must
+ * be a power of two.
+ */
+vm_page_t
+vm_phys_scan_contig(u_long npages, vm_paddr_t low, vm_paddr_t high,
+ u_long alignment, vm_paddr_t boundary, int options)
+{
+ vm_paddr_t pa_end;
+ vm_page_t m_end, m_run, m_start;
+ struct vm_phys_seg *seg;
+ int segind;
+
+ KASSERT(npages > 0, ("npages is 0"));
+ KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
+ KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
+ if (low >= high)
+ return (NULL);
+ for (segind = 0; segind < vm_phys_nsegs; segind++) {
+ seg = &vm_phys_segs[segind];
+ if (seg->start >= high)
+ break;
+ if (low >= seg->end)
+ continue;
+ if (low <= seg->start)
+ m_start = seg->first_page;
+ else
+ m_start = &seg->first_page[atop(low - seg->start)];
+ if (high < seg->end)
+ pa_end = high;
+ else
+ pa_end = seg->end;
+ if (pa_end - VM_PAGE_TO_PHYS(m_start) < ptoa(npages))
+ continue;
+ m_end = &seg->first_page[atop(pa_end - seg->start)];
+ m_run = vm_page_scan_contig(npages, m_start, m_end,
+ alignment, boundary, options);
+ if (m_run != NULL)
+ return (m_run);
+ }
+ return (NULL);
+}
+
+/*
* Set the pool for a contiguous, power of two-sized set of physical pages.
*/
void
@@ -1300,93 +1353,123 @@ vm_page_t
vm_phys_alloc_contig(u_long npages, vm_paddr_t low, vm_paddr_t high,
u_long alignment, vm_paddr_t boundary)
{
- struct vm_freelist *fl;
- struct vm_phys_seg *seg;
- vm_paddr_t pa, pa_last, size;
- vm_page_t m, m_ret;
- u_long npages_end;
- int domain, flind, oind, order, pind;
+ vm_paddr_t pa_end, pa_start;
+ vm_page_t m_run;
struct vm_domain_iterator vi;
+ struct vm_phys_seg *seg;
+ int domain, segind;
+ KASSERT(npages > 0, ("npages is 0"));
+ KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
+ KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
- size = npages << PAGE_SHIFT;
- KASSERT(size != 0,
- ("vm_phys_alloc_contig: size must not be 0"));
- KASSERT((alignment & (alignment - 1)) == 0,
- ("vm_phys_alloc_contig: alignment must be a power of 2"));
- KASSERT((boundary & (boundary - 1)) == 0,
- ("vm_phys_alloc_contig: boundary must be a power of 2"));
- /* Compute the queue that is the best fit for npages. */
- for (order = 0; (1 << order) < npages; order++);
-
+ if (low >= high)
+ return (NULL);
vm_policy_iterator_init(&vi);
-
restartdom:
if (vm_domain_iterator_run(&vi, &domain) != 0) {
vm_policy_iterator_finish(&vi);
return (NULL);
}
+ m_run = NULL;
+ for (segind = 0; segind < vm_phys_nsegs; segind++) {
+ seg = &vm_phys_segs[segind];
+ if (seg->start >= high)
+ break;
+ if (low >= seg->end || seg->domain != domain)
+ continue;
+ if (low <= seg->start)
+ pa_start = seg->start;
+ else
+ pa_start = low;
+ if (high < seg->end)
+ pa_end = high;
+ else
+ pa_end = seg->end;
+ if (pa_end - pa_start < ptoa(npages))
+ continue;
+ m_run = vm_phys_alloc_seg_contig(seg, npages, low, high,
+ alignment, boundary);
+ if (m_run != NULL)
+ break;
+ }
+ if (m_run == NULL && !vm_domain_iterator_isdone(&vi))
+ goto restartdom;
+ vm_policy_iterator_finish(&vi);
+ return (m_run);
+}
- for (flind = 0; flind < vm_nfreelists; flind++) {
- for (oind = min(order, VM_NFREEORDER - 1); oind < VM_NFREEORDER; oind++) {
- for (pind = 0; pind < VM_NFREEPOOL; pind++) {
- fl = &vm_phys_free_queues[domain][flind][pind][0];
- TAILQ_FOREACH(m_ret, &fl[oind].pl, plinks.q) {
- /*
- * A free list may contain physical pages
- * from one or more segments.
- */
- seg = &vm_phys_segs[m_ret->segind];
- if (seg->start > high ||
- low >= seg->end)
- continue;
-
- /*
- * Is the size of this allocation request
- * larger than the largest block size?
- */
- if (order >= VM_NFREEORDER) {
- /*
- * Determine if a sufficient number
- * of subsequent blocks to satisfy
- * the allocation request are free.
- */
- pa = VM_PAGE_TO_PHYS(m_ret);
- pa_last = pa + size;
- for (;;) {
- pa += 1 << (PAGE_SHIFT + VM_NFREEORDER - 1);
- if (pa >= pa_last)
- break;
- if (pa < seg->start ||
- pa >= seg->end)
- break;
- m = &seg->first_page[atop(pa - seg->start)];
- if (m->order != VM_NFREEORDER - 1)
- break;
- }
- /* If not, continue to the next block. */
- if (pa < pa_last)
- continue;
- }
+/*
+ * Allocate a run of contiguous physical pages from the free list for the
+ * specified segment.
+ */
+static vm_page_t
+vm_phys_alloc_seg_contig(struct vm_phys_seg *seg, u_long npages,
+ vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
+{
+ struct vm_freelist *fl;
+ vm_paddr_t pa, pa_end, size;
+ vm_page_t m, m_ret;
+ u_long npages_end;
+ int oind, order, pind;
+ KASSERT(npages > 0, ("npages is 0"));
+ KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
+ KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
+ mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
+ /* Compute the queue that is the best fit for npages. */
+ for (order = 0; (1 << order) < npages; order++);
+ /* Search for a run satisfying the specified conditions. */
+ size = npages << PAGE_SHIFT;
+ for (oind = min(order, VM_NFREEORDER - 1); oind < VM_NFREEORDER;
+ oind++) {
+ for (pind = 0; pind < VM_NFREEPOOL; pind++) {
+ fl = (*seg->free_queues)[pind];
+ TAILQ_FOREACH(m_ret, &fl[oind].pl, plinks.q) {
+ /*
+ * Is the size of this allocation request
+ * larger than the largest block size?
+ */
+ if (order >= VM_NFREEORDER) {
/*
- * Determine if the blocks are within the given range,
- * satisfy the given alignment, and do not cross the
- * given boundary.
+ * Determine if a sufficient number of
+ * subsequent blocks to satisfy the
+ * allocation request are free.
*/
pa = VM_PAGE_TO_PHYS(m_ret);
- if (pa >= low &&
- pa + size <= high &&
- (pa & (alignment - 1)) == 0 &&
- ((pa ^ (pa + size - 1)) & ~(boundary - 1)) == 0)
- goto done;
+ pa_end = pa + size;
+ for (;;) {
+ pa += 1 << (PAGE_SHIFT +
+ VM_NFREEORDER - 1);
+ if (pa >= pa_end ||
+ pa < seg->start ||
+ pa >= seg->end)
+ break;
+ m = &seg->first_page[atop(pa -
+ seg->start)];
+ if (m->order != VM_NFREEORDER -
+ 1)
+ break;
+ }
+ /* If not, go to the next block. */
+ if (pa < pa_end)
+ continue;
}
+
+ /*
+ * Determine if the blocks are within the
+ * given range, satisfy the given alignment,
+ * and do not cross the given boundary.
+ */
+ pa = VM_PAGE_TO_PHYS(m_ret);
+ pa_end = pa + size;
+ if (pa >= low && pa_end <= high && (pa &
+ (alignment - 1)) == 0 && ((pa ^ (pa_end -
+ 1)) & ~(boundary - 1)) == 0)
+ goto done;
}
}
}
- if (!vm_domain_iterator_isdone(&vi))
- goto restartdom;
- vm_policy_iterator_finish(&vi);
return (NULL);
done:
for (m = m_ret; m < &m_ret[npages]; m = &m[1 << oind]) {
diff --git a/sys/vm/vm_phys.h b/sys/vm/vm_phys.h
index 37864db..f9c776d 100644
--- a/sys/vm/vm_phys.h
+++ b/sys/vm/vm_phys.h
@@ -84,6 +84,8 @@ void vm_phys_free_contig(vm_page_t m, u_long npages);
void vm_phys_free_pages(vm_page_t m, int order);
void vm_phys_init(void);
vm_page_t vm_phys_paddr_to_vm_page(vm_paddr_t pa);
+vm_page_t vm_phys_scan_contig(u_long npages, vm_paddr_t low, vm_paddr_t high,
+ u_long alignment, vm_paddr_t boundary, int options);
void vm_phys_set_pool(int pool, vm_page_t m, int order);
boolean_t vm_phys_unfree_page(vm_page_t m);
boolean_t vm_phys_zero_pages_idle(void);
diff --git a/sys/vm/vm_reserv.c b/sys/vm/vm_reserv.c
index 8f34b31..8bb1788 100644
--- a/sys/vm/vm_reserv.c
+++ b/sys/vm/vm_reserv.c
@@ -866,6 +866,35 @@ vm_reserv_init(void)
}
/*
+ * Returns true if the given page belongs to a reservation and that page is
+ * free. Otherwise, returns false.
+ */
+bool
+vm_reserv_is_page_free(vm_page_t m)
+{
+ vm_reserv_t rv;
+
+ mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
+ rv = vm_reserv_from_page(m);
+ if (rv->object == NULL)
+ return (false);
+ return (popmap_is_clear(rv->popmap, m - rv->pages));
+}
+
+/*
+ * If the given page belongs to a reservation, returns the level of that
+ * reservation. Otherwise, returns -1.
+ */
+int
+vm_reserv_level(vm_page_t m)
+{
+ vm_reserv_t rv;
+
+ rv = vm_reserv_from_page(m);
+ return (rv->object != NULL ? 0 : -1);
+}
+
+/*
* Returns a reservation level if the given page belongs to a fully-populated
* reservation and -1 otherwise.
*/
@@ -1076,6 +1105,23 @@ vm_reserv_rename(vm_page_t m, vm_object_t new_object, vm_object_t old_object,
}
/*
+ * Returns the size (in bytes) of a reservation of the specified level.
+ */
+int
+vm_reserv_size(int level)
+{
+
+ switch (level) {
+ case 0:
+ return (VM_LEVEL_0_SIZE);
+ case -1:
+ return (PAGE_SIZE);
+ default:
+ return (0);
+ }
+}
+
+/*
* Allocates the virtual and physical memory required by the reservation
* management system's data structures, in particular, the reservation array.
*/
diff --git a/sys/vm/vm_reserv.h b/sys/vm/vm_reserv.h
index 4c142c7..52f6ab2 100644
--- a/sys/vm/vm_reserv.h
+++ b/sys/vm/vm_reserv.h
@@ -53,6 +53,8 @@ vm_page_t vm_reserv_alloc_page(vm_object_t object, vm_pindex_t pindex,
void vm_reserv_break_all(vm_object_t object);
boolean_t vm_reserv_free_page(vm_page_t m);
void vm_reserv_init(void);
+bool vm_reserv_is_page_free(vm_page_t m);
+int vm_reserv_level(vm_page_t m);
int vm_reserv_level_iffullpop(vm_page_t m);
boolean_t vm_reserv_reactivate_page(vm_page_t m);
boolean_t vm_reserv_reclaim_contig(u_long npages, vm_paddr_t low,
@@ -60,6 +62,7 @@ boolean_t vm_reserv_reclaim_contig(u_long npages, vm_paddr_t low,
boolean_t vm_reserv_reclaim_inactive(void);
void vm_reserv_rename(vm_page_t m, vm_object_t new_object,
vm_object_t old_object, vm_pindex_t old_object_offset);
+int vm_reserv_size(int level);
vm_paddr_t vm_reserv_startup(vm_offset_t *vaddr, vm_paddr_t end,
vm_paddr_t high_water);
OpenPOWER on IntegriCloud