summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorken <ken@FreeBSD.org>2015-12-16 19:01:14 +0000
committerken <ken@FreeBSD.org>2015-12-16 19:01:14 +0000
commit5baa144ddf2321a8a1f340325c1d996e23754fb8 (patch)
treeed1ec8030fcea97c7f129bd31807f3aba2eab769
parentc643471e264c174b193170b92d29b88ef75b875d (diff)
downloadFreeBSD-src-5baa144ddf2321a8a1f340325c1d996e23754fb8.zip
FreeBSD-src-5baa144ddf2321a8a1f340325c1d996e23754fb8.tar.gz
MFC r291716, r291724, r291741, r291742
In addition to those revisions, add this change to a file that is not in head: sys/ia64/include/bus.h: Guard kernel-only parts of the ia64 machine/bus.h header with #ifdef _KERNEL. This allows userland programs to include <machine/bus.h> to get the definition of bus_addr_t and bus_size_t. ------------------------------------------------------------------------ r291716 | ken | 2015-12-03 15:54:55 -0500 (Thu, 03 Dec 2015) | 257 lines Add asynchronous command support to the pass(4) driver, and the new camdd(8) utility. CCBs may be queued to the driver via the new CAMIOQUEUE ioctl, and completed CCBs may be retrieved via the CAMIOGET ioctl. User processes can use poll(2) or kevent(2) to get notification when I/O has completed. While the existing CAMIOCOMMAND blocking ioctl interface only supports user virtual data pointers in a CCB (generally only one per CCB), the new CAMIOQUEUE ioctl supports user virtual and physical address pointers, as well as user virtual and physical scatter/gather lists. This allows user applications to have more flexibility in their data handling operations. Kernel memory for data transferred via the queued interface is allocated from the zone allocator in MAXPHYS sized chunks, and user data is copied in and out. This is likely faster than the vmapbuf()/vunmapbuf() method used by the CAMIOCOMMAND ioctl in configurations with many processors (there are more TLB shootdowns caused by the mapping/unmapping operation) but may not be as fast as running with unmapped I/O. The new memory handling model for user requests also allows applications to send CCBs with request sizes that are larger than MAXPHYS. The pass(4) driver now limits queued requests to the I/O size listed by the SIM driver in the maxio field in the Path Inquiry (XPT_PATH_INQ) CCB. There are some things things would be good to add: 1. Come up with a way to do unmapped I/O on multiple buffers. Currently the unmapped I/O interface operates on a struct bio, which includes only one address and length. It would be nice to be able to send an unmapped scatter/gather list down to busdma. This would allow eliminating the copy we currently do for data. 2. Add an ioctl to list currently outstanding CCBs in the various queues. 3. Add an ioctl to cancel a request, or use the XPT_ABORT CCB to do that. 4. Test physical address support. Virtual pointers and scatter gather lists have been tested, but I have not yet tested physical addresses or scatter/gather lists. 5. Investigate multiple queue support. At the moment there is one queue of commands per pass(4) device. If multiple processes open the device, they will submit I/O into the same queue and get events for the same completions. This is probably the right model for most applications, but it is something that could be changed later on. Also, add a new utility, camdd(8) that uses the asynchronous pass(4) driver interface. This utility is intended to be a basic data transfer/copy utility, a simple benchmark utility, and an example of how to use the asynchronous pass(4) interface. It can copy data to and from pass(4) devices using any target queue depth, starting offset and blocksize for the input and ouptut devices. It currently only supports SCSI devices, but could be easily extended to support ATA devices. It can also copy data to and from regular files, block devices, tape devices, pipes, stdin, and stdout. It does not support queueing multiple commands to any of those targets, since it uses the standard read(2)/write(2)/writev(2)/readv(2) system calls. The I/O is done by two threads, one for the reader and one for the writer. The reader thread sends completed read requests to the writer thread in strictly sequential order, even if they complete out of order. That could be modified later on for random I/O patterns or slightly out of order I/O. camdd(8) uses kqueue(2)/kevent(2) to get I/O completion events from the pass(4) driver and also to send request notifications internally. For pass(4) devcies, camdd(8) uses a single buffer (CAM_DATA_VADDR) per CAM CCB on the reading side, and a scatter/gather list (CAM_DATA_SG) on the writing side. In addition to testing both interfaces, this makes any potential reblocking of I/O easier. No data is copied between the reader and the writer, but rather the reader's buffers are split into multiple I/O requests or combined into a single I/O request depending on the input and output blocksize. For the file I/O path, camdd(8) also uses a single buffer (read(2), write(2), pread(2) or pwrite(2)) on reads, and a scatter/gather list (readv(2), writev(2), preadv(2), pwritev(2)) on writes. Things that would be nice to do for camdd(8) eventually: 1. Add support for I/O pattern generation. Patterns like all zeros, all ones, LBA-based patterns, random patterns, etc. Right Now you can always use /dev/zero, /dev/random, etc. 2. Add support for a "sink" mode, so we do only reads with no writes. Right now, you can use /dev/null. 3. Add support for automatic queue depth probing, so that we can figure out the right queue depth on the input and output side for maximum throughput. At the moment it defaults to 6. 4. Add support for SATA device passthrough I/O. 5. Add support for random LBAs and/or lengths on the input and output sides. 6. Track average per-I/O latency and busy time. The busy time and latency could also feed in to the automatic queue depth determination. sys/cam/scsi/scsi_pass.h: Define two new ioctls, CAMIOQUEUE and CAMIOGET, that queue and fetch asynchronous CAM CCBs respectively. Although these ioctls do not have a declared argument, they both take a union ccb pointer. If we declare a size here, the ioctl code in sys/kern/sys_generic.c will malloc and free a buffer for either the CCB or the CCB pointer (depending on how it is declared). Since we have to keep a copy of the CCB (which is fairly large) anyway, having the ioctl malloc and free a CCB for each call is wasteful. sys/cam/scsi/scsi_pass.c: Add asynchronous CCB support. Add two new ioctls, CAMIOQUEUE and CAMIOGET. CAMIOQUEUE adds a CCB to the incoming queue. The CCB is executed immediately (and moved to the active queue) if it is an immediate CCB, but otherwise it will be executed in passstart() when a CCB is available from the transport layer. When CCBs are completed (because they are immediate or passdone() if they are queued), they are put on the done queue. If we get the final close on the device before all pending I/O is complete, all active I/O is moved to the abandoned queue and we increment the peripheral reference count so that the peripheral driver instance doesn't go away before all pending I/O is done. The new passcreatezone() function is called on the first call to the CAMIOQUEUE ioctl on a given device to allocate the UMA zones for I/O requests and S/G list buffers. This may be good to move off to a taskqueue at some point. The new passmemsetup() function allocates memory and scatter/gather lists to hold the user's data, and copies in any data that needs to be written. For virtual pointers (CAM_DATA_VADDR), the kernel buffer is malloced from the new pass(4) driver malloc bucket. For virtual scatter/gather lists (CAM_DATA_SG), buffers are allocated from a new per-pass(9) UMA zone in MAXPHYS-sized chunks. Physical pointers are passed in unchanged. We have support for up to 16 scatter/gather segments (for the user and kernel S/G lists) in the default struct pass_io_req, so requests with longer S/G lists require an extra kernel malloc. The new passcopysglist() function copies a user scatter/gather list to a kernel scatter/gather list. The number of elements in each list may be different, but (obviously) the amount of data stored has to be identical. The new passmemdone() function copies data out for the CAM_DATA_VADDR and CAM_DATA_SG cases. The new passiocleanup() function restores data pointers in user CCBs and frees memory. Add new functions to support kqueue(2)/kevent(2): passreadfilt() tells kevent whether or not the done queue is empty. passkqfilter() adds a knote to our list. passreadfiltdetach() removes a knote from our list. Add a new function, passpoll(), for poll(2)/select(2) to use. Add devstat(9) support for the queued CCB path. sys/cam/ata/ata_da.c: Add support for the BIO_VLIST bio type. sys/cam/cam_ccb.h: Add a new enumeration for the xflags field in the CCB header. (This doesn't change the CCB header, just adds an enumeration to use.) sys/cam/cam_xpt.c: Add a new function, xpt_setup_ccb_flags(), that allows specifying CCB flags. sys/cam/cam_xpt.h: Add a prototype for xpt_setup_ccb_flags(). sys/cam/scsi/scsi_da.c: Add support for BIO_VLIST. sys/dev/md/md.c: Add BIO_VLIST support to md(4). sys/geom/geom_disk.c: Add BIO_VLIST support to the GEOM disk class. Re-factor the I/O size limiting code in g_disk_start() a bit. sys/kern/subr_bus_dma.c: Change _bus_dmamap_load_vlist() to take a starting offset and length. Add a new function, _bus_dmamap_load_pages(), that will load a list of physical pages starting at an offset. Update _bus_dmamap_load_bio() to allow loading BIO_VLIST bios. Allow unmapped I/O to start at an offset. sys/kern/subr_uio.c: Add two new functions, physcopyin_vlist() and physcopyout_vlist(). sys/pc98/include/bus.h: Guard kernel-only parts of the pc98 machine/bus.h header with #ifdef _KERNEL. This allows userland programs to include <machine/bus.h> to get the definition of bus_addr_t and bus_size_t. sys/sys/bio.h: Add a new bio flag, BIO_VLIST. sys/sys/uio.h: Add prototypes for physcopyin_vlist() and physcopyout_vlist(). share/man/man4/pass.4: Document the CAMIOQUEUE and CAMIOGET ioctls. usr.sbin/Makefile: Add camdd. usr.sbin/camdd/Makefile: Add a makefile for camdd(8). usr.sbin/camdd/camdd.8: Man page for camdd(8). usr.sbin/camdd/camdd.c: The new camdd(8) utility. Sponsored by: Spectra Logic ------------------------------------------------------------------------ r291724 | ken | 2015-12-03 17:07:01 -0500 (Thu, 03 Dec 2015) | 6 lines Fix typos in the camdd(8) usage() function output caused by an error in my diff filter script. Sponsored by: Spectra Logic ------------------------------------------------------------------------ r291741 | ken | 2015-12-03 22:38:35 -0500 (Thu, 03 Dec 2015) | 10 lines Fix g_disk_vlist_limit() to work properly with deletes. Add a new bp argument to g_disk_maxsegs(), and add a new function, g_disk_maxsize() tha will properly determine the maximum I/O size for a delete or non-delete bio. Submitted by: will Sponsored by: Spectra Logic ------------------------------------------------------------------------ ------------------------------------------------------------------------ r291742 | ken | 2015-12-03 22:44:12 -0500 (Thu, 03 Dec 2015) | 5 lines Fix a style issue in g_disk_limit(). Noticed by: bdrewery ------------------------------------------------------------------------ Sponsored by: Spectra Logic
-rw-r--r--share/man/man4/pass.4132
-rw-r--r--sys/cam/ata/ata_da.c25
-rw-r--r--sys/cam/cam_ccb.h3
-rw-r--r--sys/cam/cam_xpt.c11
-rw-r--r--sys/cam/cam_xpt.h4
-rw-r--r--sys/cam/scsi/scsi_da.c29
-rw-r--r--sys/cam/scsi/scsi_pass.c1604
-rw-r--r--sys/cam/scsi/scsi_pass.h8
-rw-r--r--sys/dev/md/md.c307
-rw-r--r--sys/geom/geom_disk.c188
-rw-r--r--sys/geom/geom_io.c9
-rw-r--r--sys/ia64/include/bus.h3
-rw-r--r--sys/kern/subr_bus_dma.c69
-rw-r--r--sys/kern/subr_uio.c54
-rw-r--r--sys/pc98/include/bus.h6
-rw-r--r--sys/sys/bio.h1
-rw-r--r--sys/sys/uio.h5
-rw-r--r--usr.sbin/Makefile1
-rw-r--r--usr.sbin/camdd/Makefile11
-rw-r--r--usr.sbin/camdd/camdd.8283
-rw-r--r--usr.sbin/camdd/camdd.c3428
21 files changed, 5983 insertions, 198 deletions
diff --git a/share/man/man4/pass.4 b/share/man/man4/pass.4
index 7819ea3..00b9ccd 100644
--- a/share/man/man4/pass.4
+++ b/share/man/man4/pass.4
@@ -27,7 +27,7 @@
.\"
.\" $FreeBSD$
.\"
-.Dd October 10, 1998
+.Dd March 17, 2015
.Dt PASS 4
.Os
.Sh NAME
@@ -53,9 +53,13 @@ The
.Nm
driver attaches to every
.Tn SCSI
+and
+.Tn ATA
device found in the system.
Since it attaches to every device, it provides a generic means of accessing
.Tn SCSI
+and
+.Tn ATA
devices, and allows the user to access devices which have no
"standard" peripheral driver associated with them.
.Sh KERNEL CONFIGURATION
@@ -65,10 +69,12 @@ device in the kernel;
.Nm
devices are automatically allocated as
.Tn SCSI
+and
+.Tn ATA
devices are found.
.Sh IOCTLS
-.Bl -tag -width 012345678901234
-.It CAMIOCOMMAND
+.Bl -tag -width 5n
+.It CAMIOCOMMAND union ccb *
This ioctl takes most kinds of CAM CCBs and passes them through to the CAM
transport layer for action.
Note that some CCB types are not allowed
@@ -79,7 +85,7 @@ Some examples of xpt-only CCBs are XPT_SCAN_BUS,
XPT_DEV_MATCH, XPT_RESET_BUS, XPT_SCAN_LUN, XPT_ENG_INQ, and XPT_ENG_EXEC.
These CCB types have various attributes that make it illogical or
impossible to service them through the passthrough interface.
-.It CAMGETPASSTHRU
+.It CAMGETPASSTHRU union ccb *
This ioctl takes an XPT_GDEVLIST CCB, and returns the passthrough device
corresponding to the device in question.
Although this ioctl is available through the
@@ -90,6 +96,109 @@ ioctl.
It is probably more useful to issue this ioctl through the
.Xr xpt 4
device.
+.It CAMIOQUEUE union ccb *
+Queue a CCB to the
+.Xr pass 4
+driver to be executed asynchronously.
+The caller may use
+.Xr select 2 ,
+.Xr poll 2
+or
+.Xr kevent 2
+to receive notification when the CCB has completed.
+.Pp
+This ioctl takes most CAM CCBs, but some CCB types are not allowed through
+the pass device, and must be sent through the
+.Xr xpt 4
+device instead.
+Some examples of xpt-only CCBs are XPT_SCAN_BUS,
+XPT_DEV_MATCH, XPT_RESET_BUS, XPT_SCAN_LUN, XPT_ENG_INQ, and XPT_ENG_EXEC.
+These CCB types have various attributes that make it illogical or
+impossible to service them through the passthrough interface.
+.Pp
+Although the
+.Dv CAMIOQUEUE
+ioctl is not defined to take an argument, it does require a
+pointer to a union ccb.
+It is not defined to take an argument to avoid an extra malloc and copy
+inside the generic
+.Xr ioctl 2
+handler.
+.pp
+The completed CCB will be returned via the
+.Dv CAMIOGET
+ioctl.
+An error will only be returned from the
+.Dv CAMIOQUEUE
+ioctl if there is an error allocating memory for the request or copying
+memory from userland.
+All other errors will be reported as standard CAM CCB status errors.
+Since the CCB is not copied back to the user process from the pass driver
+in the
+.Dv CAMIOQUEUE
+ioctl, the user's passed-in CCB will not be modfied.
+This is the case even with immediate CCBs.
+Instead, the completed CCB must be retrieved via the
+.Dv CAMIOGET
+ioctl and the status examined.
+.Pp
+Multiple CCBs may be queued via the
+.Dv CAMIOQUEUE
+ioctl at any given time, and they may complete in a different order than
+the order that they were submitted.
+The caller must take steps to identify CCBs that are queued and completed.
+The
+.Dv periph_priv
+structure inside struct ccb_hdr is available for userland use with the
+.Dv CAMIOQUEUE
+and
+.Dv CAMIOGET
+ioctls, and will be preserved across calls.
+Also, the periph_links linked list pointers inside struct ccb_hdr are
+available for userland use with the
+.Dv CAMIOQUEUE
+and
+.Dv CAMIOGET
+ioctls and will be preserved across calls.
+.It CAMIOGET union ccb *
+Retrieve completed CAM CCBs queued via the
+.Dv CAMIOQUEUE
+ioctl.
+An error will only be returned from the
+.Dv CAMIOGET
+ioctl if the
+.Xr pass 4
+driver fails to copy data to the user process or if there are no completed
+CCBs available to retrieve.
+If no CCBs are available to retrieve,
+errno will be set to
+.Dv ENOENT .
+.Pp
+All other errors will be reported as standard CAM CCB status errors.
+.Pp
+Although the
+.Dv CAMIOGET
+ioctl is not defined to take an argument, it does require a
+pointer to a union ccb.
+It is not defined to take an argument to avoid an extra malloc and copy
+inside the generic
+.Xr ioctl 2
+handler.
+.Pp
+The pass driver will report via
+.Xr select 2 ,
+.Xr poll 2
+or
+.Xr kevent 2
+when a CCB has completed.
+One CCB may be retrieved per
+.Dv CAMIOGET
+call.
+CCBs may be returned in an order different than the order they were
+submitted.
+So the caller should use the
+.Dv periph_priv
+area inside the CCB header to store pointers to identifying information.
.El
.Sh FILES
.Bl -tag -width /dev/passn -compact
@@ -103,18 +212,21 @@ CAM subsystem.
.Sh DIAGNOSTICS
None.
.Sh SEE ALSO
+.Xr kqueue 2 ,
+.Xr poll 2 ,
+.Xr select 2 ,
.Xr cam 3 ,
.Xr cam 4 ,
.Xr cam_cdbparse 3 ,
+.Xr cd 4 ,
+.Xr ctl 4 ,
+.Xr da 4 ,
+.Xr sa 4 ,
.Xr xpt 4 ,
-.Xr camcontrol 8
+.Xr camcontrol 8 ,
+.Xr camdd 8
.Sh HISTORY
The CAM passthrough driver first appeared in
.Fx 3.0 .
.Sh AUTHORS
.An Kenneth Merry Aq ken@FreeBSD.org
-.Sh BUGS
-It might be nice to have a way to asynchronously send CCBs through the
-passthrough driver.
-This would probably require some sort of read/write
-interface or an asynchronous ioctl interface.
diff --git a/sys/cam/ata/ata_da.c b/sys/cam/ata/ata_da.c
index f88899e..005c684 100644
--- a/sys/cam/ata/ata_da.c
+++ b/sys/cam/ata/ata_da.c
@@ -1573,12 +1573,26 @@ adastart(struct cam_periph *periph, union ccb *start_ccb)
}
switch (bp->bio_cmd) {
case BIO_WRITE:
- softc->flags |= ADA_FLAG_DIRTY;
- /* FALLTHROUGH */
case BIO_READ:
{
uint64_t lba = bp->bio_pblkno;
uint16_t count = bp->bio_bcount / softc->params.secsize;
+ void *data_ptr;
+ int rw_op;
+
+ if (bp->bio_cmd == BIO_WRITE) {
+ softc->flags |= ADA_FLAG_DIRTY;
+ rw_op = CAM_DIR_OUT;
+ } else {
+ rw_op = CAM_DIR_IN;
+ }
+
+ data_ptr = bp->bio_data;
+ if ((bp->bio_flags & (BIO_UNMAPPED|BIO_VLIST)) != 0) {
+ rw_op |= CAM_DATA_BIO;
+ data_ptr = bp;
+ }
+
#ifdef ADA_TEST_FAILURE
int fail = 0;
@@ -1623,12 +1637,9 @@ adastart(struct cam_periph *periph, union ccb *start_ccb)
cam_fill_ataio(ataio,
ada_retry_count,
adadone,
- (bp->bio_cmd == BIO_READ ? CAM_DIR_IN :
- CAM_DIR_OUT) | ((bp->bio_flags & BIO_UNMAPPED)
- != 0 ? CAM_DATA_BIO : 0),
+ rw_op,
tag_code,
- ((bp->bio_flags & BIO_UNMAPPED) != 0) ? (void *)bp :
- bp->bio_data,
+ data_ptr,
bp->bio_bcount,
ada_default_timeout*1000);
diff --git a/sys/cam/cam_ccb.h b/sys/cam/cam_ccb.h
index 98bb9ea..12d3803 100644
--- a/sys/cam/cam_ccb.h
+++ b/sys/cam/cam_ccb.h
@@ -111,6 +111,9 @@ typedef enum {
typedef enum {
CAM_EXTLUN_VALID = 0x00000001,/* 64bit lun field is valid */
+ CAM_USER_DATA_ADDR = 0x00000002,/* Userspace data pointers */
+ CAM_SG_FORMAT_IOVEC = 0x00000004,/* iovec instead of busdma S/G*/
+ CAM_UNMAPPED_BUF = 0x00000008 /* use unmapped I/O */
} ccb_xflags;
/* XPT Opcodes for xpt_action */
diff --git a/sys/cam/cam_xpt.c b/sys/cam/cam_xpt.c
index ba0863a..6773829 100644
--- a/sys/cam/cam_xpt.c
+++ b/sys/cam/cam_xpt.c
@@ -3337,7 +3337,8 @@ xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb)
}
void
-xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority)
+xpt_setup_ccb_flags(struct ccb_hdr *ccb_h, struct cam_path *path,
+ u_int32_t priority, u_int32_t flags)
{
CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n"));
@@ -3355,10 +3356,16 @@ xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority)
ccb_h->target_lun = CAM_TARGET_WILDCARD;
}
ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
- ccb_h->flags = 0;
+ ccb_h->flags = flags;
ccb_h->xflags = 0;
}
+void
+xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority)
+{
+ xpt_setup_ccb_flags(ccb_h, path, priority, /*flags*/ 0);
+}
+
/* Path manipulation functions */
cam_status
xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph,
diff --git a/sys/cam/cam_xpt.h b/sys/cam/cam_xpt.h
index 1d983c9..ca7dccc 100644
--- a/sys/cam/cam_xpt.h
+++ b/sys/cam/cam_xpt.h
@@ -70,6 +70,10 @@ void xpt_action_default(union ccb *new_ccb);
union ccb *xpt_alloc_ccb(void);
union ccb *xpt_alloc_ccb_nowait(void);
void xpt_free_ccb(union ccb *free_ccb);
+void xpt_setup_ccb_flags(struct ccb_hdr *ccb_h,
+ struct cam_path *path,
+ u_int32_t priority,
+ u_int32_t flags);
void xpt_setup_ccb(struct ccb_hdr *ccb_h,
struct cam_path *path,
u_int32_t priority);
diff --git a/sys/cam/scsi/scsi_da.c b/sys/cam/scsi/scsi_da.c
index 4e3fe76..1cd687a 100644
--- a/sys/cam/scsi/scsi_da.c
+++ b/sys/cam/scsi/scsi_da.c
@@ -2332,29 +2332,40 @@ skipstate:
switch (bp->bio_cmd) {
case BIO_WRITE:
- softc->flags |= DA_FLAG_DIRTY;
- /* FALLTHROUGH */
case BIO_READ:
+ {
+ void *data_ptr;
+ int rw_op;
+
+ if (bp->bio_cmd == BIO_WRITE) {
+ softc->flags |= DA_FLAG_DIRTY;
+ rw_op = SCSI_RW_WRITE;
+ } else {
+ rw_op = SCSI_RW_READ;
+ }
+
+ data_ptr = bp->bio_data;
+ if ((bp->bio_flags & (BIO_UNMAPPED|BIO_VLIST)) != 0) {
+ rw_op |= SCSI_RW_BIO;
+ data_ptr = bp;
+ }
+
scsi_read_write(&start_ccb->csio,
/*retries*/da_retry_count,
/*cbfcnp*/dadone,
/*tag_action*/tag_code,
- /*read_op*/(bp->bio_cmd == BIO_READ ?
- SCSI_RW_READ : SCSI_RW_WRITE) |
- ((bp->bio_flags & BIO_UNMAPPED) != 0 ?
- SCSI_RW_BIO : 0),
+ rw_op,
/*byte2*/0,
softc->minimum_cmd_size,
/*lba*/bp->bio_pblkno,
/*block_count*/bp->bio_bcount /
softc->params.secsize,
- /*data_ptr*/ (bp->bio_flags &
- BIO_UNMAPPED) != 0 ? (void *)bp :
- bp->bio_data,
+ data_ptr,
/*dxfer_len*/ bp->bio_bcount,
/*sense_len*/SSD_FULL_SIZE,
da_default_timeout * 1000);
break;
+ }
case BIO_FLUSH:
/*
* BIO_FLUSH doesn't currently communicate
diff --git a/sys/cam/scsi/scsi_pass.c b/sys/cam/scsi/scsi_pass.c
index 174151e..09cda5b 100644
--- a/sys/cam/scsi/scsi_pass.c
+++ b/sys/cam/scsi/scsi_pass.c
@@ -28,27 +28,39 @@
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
+#include "opt_kdtrace.h"
+
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
+#include <sys/conf.h>
#include <sys/types.h>
#include <sys/bio.h>
-#include <sys/malloc.h>
-#include <sys/fcntl.h>
-#include <sys/conf.h>
-#include <sys/errno.h>
+#include <sys/bus.h>
#include <sys/devicestat.h>
+#include <sys/errno.h>
+#include <sys/fcntl.h>
+#include <sys/malloc.h>
#include <sys/proc.h>
+#include <sys/poll.h>
+#include <sys/selinfo.h>
+#include <sys/sdt.h>
#include <sys/taskqueue.h>
+#include <vm/uma.h>
+#include <vm/vm.h>
+#include <vm/vm_extern.h>
+
+#include <machine/bus.h>
#include <cam/cam.h>
#include <cam/cam_ccb.h>
#include <cam/cam_periph.h>
#include <cam/cam_queue.h>
+#include <cam/cam_xpt.h>
#include <cam/cam_xpt_periph.h>
#include <cam/cam_debug.h>
-#include <cam/cam_sim.h>
#include <cam/cam_compat.h>
+#include <cam/cam_xpt_periph.h>
#include <cam/scsi/scsi_all.h>
#include <cam/scsi/scsi_pass.h>
@@ -57,7 +69,11 @@ typedef enum {
PASS_FLAG_OPEN = 0x01,
PASS_FLAG_LOCKED = 0x02,
PASS_FLAG_INVALID = 0x04,
- PASS_FLAG_INITIAL_PHYSPATH = 0x08
+ PASS_FLAG_INITIAL_PHYSPATH = 0x08,
+ PASS_FLAG_ZONE_INPROG = 0x10,
+ PASS_FLAG_ZONE_VALID = 0x20,
+ PASS_FLAG_UNMAPPED_CAPABLE = 0x40,
+ PASS_FLAG_ABANDONED_REF_SET = 0x80
} pass_flags;
typedef enum {
@@ -65,38 +81,104 @@ typedef enum {
} pass_state;
typedef enum {
- PASS_CCB_BUFFER_IO
+ PASS_CCB_BUFFER_IO,
+ PASS_CCB_QUEUED_IO
} pass_ccb_types;
#define ccb_type ppriv_field0
-#define ccb_bp ppriv_ptr1
+#define ccb_ioreq ppriv_ptr1
-struct pass_softc {
- pass_state state;
- pass_flags flags;
- u_int8_t pd_type;
- union ccb saved_ccb;
- int open_count;
- u_int maxio;
- struct devstat *device_stats;
- struct cdev *dev;
- struct cdev *alias_dev;
- struct task add_physpath_task;
+/*
+ * The maximum number of memory segments we preallocate.
+ */
+#define PASS_MAX_SEGS 16
+
+typedef enum {
+ PASS_IO_NONE = 0x00,
+ PASS_IO_USER_SEG_MALLOC = 0x01,
+ PASS_IO_KERN_SEG_MALLOC = 0x02,
+ PASS_IO_ABANDONED = 0x04
+} pass_io_flags;
+
+struct pass_io_req {
+ union ccb ccb;
+ union ccb *alloced_ccb;
+ union ccb *user_ccb_ptr;
+ camq_entry user_periph_links;
+ ccb_ppriv_area user_periph_priv;
+ struct cam_periph_map_info mapinfo;
+ pass_io_flags flags;
+ ccb_flags data_flags;
+ int num_user_segs;
+ bus_dma_segment_t user_segs[PASS_MAX_SEGS];
+ int num_kern_segs;
+ bus_dma_segment_t kern_segs[PASS_MAX_SEGS];
+ bus_dma_segment_t *user_segptr;
+ bus_dma_segment_t *kern_segptr;
+ int num_bufs;
+ uint32_t dirs[CAM_PERIPH_MAXMAPS];
+ uint32_t lengths[CAM_PERIPH_MAXMAPS];
+ uint8_t *user_bufs[CAM_PERIPH_MAXMAPS];
+ uint8_t *kern_bufs[CAM_PERIPH_MAXMAPS];
+ struct bintime start_time;
+ TAILQ_ENTRY(pass_io_req) links;
};
+struct pass_softc {
+ pass_state state;
+ pass_flags flags;
+ u_int8_t pd_type;
+ union ccb saved_ccb;
+ int open_count;
+ u_int maxio;
+ struct devstat *device_stats;
+ struct cdev *dev;
+ struct cdev *alias_dev;
+ struct task add_physpath_task;
+ struct task shutdown_kqueue_task;
+ struct selinfo read_select;
+ TAILQ_HEAD(, pass_io_req) incoming_queue;
+ TAILQ_HEAD(, pass_io_req) active_queue;
+ TAILQ_HEAD(, pass_io_req) abandoned_queue;
+ TAILQ_HEAD(, pass_io_req) done_queue;
+ struct cam_periph *periph;
+ char zone_name[12];
+ char io_zone_name[12];
+ uma_zone_t pass_zone;
+ uma_zone_t pass_io_zone;
+ size_t io_zone_size;
+};
static d_open_t passopen;
static d_close_t passclose;
static d_ioctl_t passioctl;
static d_ioctl_t passdoioctl;
+static d_poll_t passpoll;
+static d_kqfilter_t passkqfilter;
+static void passreadfiltdetach(struct knote *kn);
+static int passreadfilt(struct knote *kn, long hint);
static periph_init_t passinit;
static periph_ctor_t passregister;
static periph_oninv_t passoninvalidate;
static periph_dtor_t passcleanup;
-static void pass_add_physpath(void *context, int pending);
+static periph_start_t passstart;
+static void pass_shutdown_kqueue(void *context, int pending);
+static void pass_add_physpath(void *context, int pending);
static void passasync(void *callback_arg, u_int32_t code,
struct cam_path *path, void *arg);
+static void passdone(struct cam_periph *periph,
+ union ccb *done_ccb);
+static int passcreatezone(struct cam_periph *periph);
+static void passiocleanup(struct pass_softc *softc,
+ struct pass_io_req *io_req);
+static int passcopysglist(struct cam_periph *periph,
+ struct pass_io_req *io_req,
+ ccb_flags direction);
+static int passmemsetup(struct cam_periph *periph,
+ struct pass_io_req *io_req);
+static int passmemdone(struct cam_periph *periph,
+ struct pass_io_req *io_req);
static int passerror(union ccb *ccb, u_int32_t cam_flags,
u_int32_t sense_flags);
static int passsendccb(struct cam_periph *periph, union ccb *ccb,
@@ -116,9 +198,19 @@ static struct cdevsw pass_cdevsw = {
.d_open = passopen,
.d_close = passclose,
.d_ioctl = passioctl,
+ .d_poll = passpoll,
+ .d_kqfilter = passkqfilter,
.d_name = "pass",
};
+static struct filterops passread_filtops = {
+ .f_isfd = 1,
+ .f_detach = passreadfiltdetach,
+ .f_event = passreadfilt
+};
+
+static MALLOC_DEFINE(M_SCSIPASS, "scsi_pass", "scsi passthrough buffers");
+
static void
passinit(void)
{
@@ -138,6 +230,60 @@ passinit(void)
}
static void
+passrejectios(struct cam_periph *periph)
+{
+ struct pass_io_req *io_req, *io_req2;
+ struct pass_softc *softc;
+
+ softc = (struct pass_softc *)periph->softc;
+
+ /*
+ * The user can no longer get status for I/O on the done queue, so
+ * clean up all outstanding I/O on the done queue.
+ */
+ TAILQ_FOREACH_SAFE(io_req, &softc->done_queue, links, io_req2) {
+ TAILQ_REMOVE(&softc->done_queue, io_req, links);
+ passiocleanup(softc, io_req);
+ uma_zfree(softc->pass_zone, io_req);
+ }
+
+ /*
+ * The underlying device is gone, so we can't issue these I/Os.
+ * The devfs node has been shut down, so we can't return status to
+ * the user. Free any I/O left on the incoming queue.
+ */
+ TAILQ_FOREACH_SAFE(io_req, &softc->incoming_queue, links, io_req2) {
+ TAILQ_REMOVE(&softc->incoming_queue, io_req, links);
+ passiocleanup(softc, io_req);
+ uma_zfree(softc->pass_zone, io_req);
+ }
+
+ /*
+ * Normally we would put I/Os on the abandoned queue and acquire a
+ * reference when we saw the final close. But, the device went
+ * away and devfs may have moved everything off to deadfs by the
+ * time the I/O done callback is called; as a result, we won't see
+ * any more closes. So, if we have any active I/Os, we need to put
+ * them on the abandoned queue. When the abandoned queue is empty,
+ * we'll release the remaining reference (see below) to the peripheral.
+ */
+ TAILQ_FOREACH_SAFE(io_req, &softc->active_queue, links, io_req2) {
+ TAILQ_REMOVE(&softc->active_queue, io_req, links);
+ io_req->flags |= PASS_IO_ABANDONED;
+ TAILQ_INSERT_TAIL(&softc->abandoned_queue, io_req, links);
+ }
+
+ /*
+ * If we put any I/O on the abandoned queue, acquire a reference.
+ */
+ if ((!TAILQ_EMPTY(&softc->abandoned_queue))
+ && ((softc->flags & PASS_FLAG_ABANDONED_REF_SET) == 0)) {
+ cam_periph_doacquire(periph);
+ softc->flags |= PASS_FLAG_ABANDONED_REF_SET;
+ }
+}
+
+static void
passdevgonecb(void *arg)
{
struct cam_periph *periph;
@@ -165,17 +311,26 @@ passdevgonecb(void *arg)
/*
* Release the reference held for the device node, it is gone now.
+ * Accordingly, inform all queued I/Os of their fate.
*/
cam_periph_release_locked(periph);
+ passrejectios(periph);
/*
- * We reference the lock directly here, instead of using
+ * We reference the SIM lock directly here, instead of using
* cam_periph_unlock(). The reason is that the final call to
* cam_periph_release_locked() above could result in the periph
* getting freed. If that is the case, dereferencing the periph
* with a cam_periph_unlock() call would cause a page fault.
*/
mtx_unlock(mtx);
+
+ /*
+ * We have to remove our kqueue context from a thread because it
+ * may sleep. It would be nice if we could get a callback from
+ * kqueue when it is done cleaning up resources.
+ */
+ taskqueue_enqueue(taskqueue_thread, &softc->shutdown_kqueue_task);
}
static void
@@ -197,12 +352,6 @@ passoninvalidate(struct cam_periph *periph)
* when it has cleaned up its state.
*/
destroy_dev_sched_cb(softc->dev, passdevgonecb, periph);
-
- /*
- * XXX Return all queued I/O with ENXIO.
- * XXX Handle any transactions queued to the card
- * with XPT_ABORT_CCB.
- */
}
static void
@@ -212,9 +361,40 @@ passcleanup(struct cam_periph *periph)
softc = (struct pass_softc *)periph->softc;
+ cam_periph_assert(periph, MA_OWNED);
+ KASSERT(TAILQ_EMPTY(&softc->active_queue),
+ ("%s called when there are commands on the active queue!\n",
+ __func__));
+ KASSERT(TAILQ_EMPTY(&softc->abandoned_queue),
+ ("%s called when there are commands on the abandoned queue!\n",
+ __func__));
+ KASSERT(TAILQ_EMPTY(&softc->incoming_queue),
+ ("%s called when there are commands on the incoming queue!\n",
+ __func__));
+ KASSERT(TAILQ_EMPTY(&softc->done_queue),
+ ("%s called when there are commands on the done queue!\n",
+ __func__));
+
devstat_remove_entry(softc->device_stats);
cam_periph_unlock(periph);
+
+ /*
+ * We call taskqueue_drain() for the physpath task to make sure it
+ * is complete. We drop the lock because this can potentially
+ * sleep. XXX KDM that is bad. Need a way to get a callback when
+ * a taskqueue is drained.
+ *
+ * Note that we don't drain the kqueue shutdown task queue. This
+ * is because we hold a reference on the periph for kqueue, and
+ * release that reference from the kqueue shutdown task queue. So
+ * we cannot come into this routine unless we've released that
+ * reference. Also, because that could be the last reference, we
+ * could be called from the cam_periph_release() call in
+ * pass_shutdown_kqueue(). In that case, the taskqueue_drain()
+ * would deadlock. It would be preferable if we had a way to
+ * get a callback when a taskqueue is done.
+ */
taskqueue_drain(taskqueue_thread, &softc->add_physpath_task);
cam_periph_lock(periph);
@@ -223,10 +403,29 @@ passcleanup(struct cam_periph *periph)
}
static void
+pass_shutdown_kqueue(void *context, int pending)
+{
+ struct cam_periph *periph;
+ struct pass_softc *softc;
+
+ periph = context;
+ softc = periph->softc;
+
+ knlist_clear(&softc->read_select.si_note, /*is_locked*/ 0);
+ knlist_destroy(&softc->read_select.si_note);
+
+ /*
+ * Release the reference we held for kqueue.
+ */
+ cam_periph_release(periph);
+}
+
+static void
pass_add_physpath(void *context, int pending)
{
struct cam_periph *periph;
struct pass_softc *softc;
+ struct mtx *mtx;
char *physpath;
/*
@@ -236,34 +435,38 @@ pass_add_physpath(void *context, int pending)
periph = context;
softc = periph->softc;
physpath = malloc(MAXPATHLEN, M_DEVBUF, M_WAITOK);
- cam_periph_lock(periph);
- if (periph->flags & CAM_PERIPH_INVALID) {
- cam_periph_unlock(periph);
+ mtx = cam_periph_mtx(periph);
+ mtx_lock(mtx);
+
+ if (periph->flags & CAM_PERIPH_INVALID)
goto out;
- }
+
if (xpt_getattr(physpath, MAXPATHLEN,
"GEOM::physpath", periph->path) == 0
&& strlen(physpath) != 0) {
- cam_periph_unlock(periph);
+ mtx_unlock(mtx);
make_dev_physpath_alias(MAKEDEV_WAITOK, &softc->alias_dev,
softc->dev, softc->alias_dev, physpath);
- cam_periph_lock(periph);
+ mtx_lock(mtx);
}
+out:
/*
* Now that we've made our alias, we no longer have to have a
* reference to the device.
*/
- if ((softc->flags & PASS_FLAG_INITIAL_PHYSPATH) == 0) {
+ if ((softc->flags & PASS_FLAG_INITIAL_PHYSPATH) == 0)
softc->flags |= PASS_FLAG_INITIAL_PHYSPATH;
- cam_periph_unlock(periph);
- dev_rel(softc->dev);
- }
- else
- cam_periph_unlock(periph);
-out:
+ /*
+ * We always acquire a reference to the periph before queueing this
+ * task queue function, so it won't go away before we run.
+ */
+ while (pending-- > 0)
+ cam_periph_release_locked(periph);
+ mtx_unlock(mtx);
+
free(physpath, M_DEVBUF);
}
@@ -291,7 +494,7 @@ passasync(void *callback_arg, u_int32_t code,
* process.
*/
status = cam_periph_alloc(passregister, passoninvalidate,
- passcleanup, NULL, "pass",
+ passcleanup, passstart, "pass",
CAM_PERIPH_BIO, path,
passasync, AC_FOUND_DEVICE, cgd);
@@ -315,8 +518,19 @@ passasync(void *callback_arg, u_int32_t code,
buftype = (uintptr_t)arg;
if (buftype == CDAI_TYPE_PHYS_PATH) {
struct pass_softc *softc;
+ cam_status status;
softc = (struct pass_softc *)periph->softc;
+ /*
+ * Acquire a reference to the periph before we
+ * start the taskqueue, so that we don't run into
+ * a situation where the periph goes away before
+ * the task queue has a chance to run.
+ */
+ status = cam_periph_acquire(periph);
+ if (status != CAM_REQ_CMP)
+ break;
+
taskqueue_enqueue(taskqueue_thread,
&softc->add_physpath_task);
}
@@ -361,6 +575,17 @@ passregister(struct cam_periph *periph, void *arg)
softc->pd_type = T_DIRECT;
periph->softc = softc;
+ softc->periph = periph;
+ TAILQ_INIT(&softc->incoming_queue);
+ TAILQ_INIT(&softc->active_queue);
+ TAILQ_INIT(&softc->abandoned_queue);
+ TAILQ_INIT(&softc->done_queue);
+ snprintf(softc->zone_name, sizeof(softc->zone_name), "%s%d",
+ periph->periph_name, periph->unit_number);
+ snprintf(softc->io_zone_name, sizeof(softc->io_zone_name), "%s%dIO",
+ periph->periph_name, periph->unit_number);
+ softc->io_zone_size = MAXPHYS;
+ knlist_init_mtx(&softc->read_select.si_note, cam_periph_mtx(periph));
bzero(&cpi, sizeof(cpi));
xpt_setup_ccb(&cpi.ccb_h, periph->path, CAM_PRIORITY_NORMAL);
@@ -374,6 +599,9 @@ passregister(struct cam_periph *periph, void *arg)
else
softc->maxio = cpi.maxio; /* real value */
+ if (cpi.hba_misc & PIM_UNMAPPED)
+ softc->flags |= PASS_FLAG_UNMAPPED_CAPABLE;
+
/*
* We pass in 0 for a blocksize, since we don't
* know what the blocksize of this device is, if
@@ -391,6 +619,23 @@ passregister(struct cam_periph *periph, void *arg)
DEVSTAT_PRIORITY_PASS);
/*
+ * Initialize the taskqueue handler for shutting down kqueue.
+ */
+ TASK_INIT(&softc->shutdown_kqueue_task, /*priority*/ 0,
+ pass_shutdown_kqueue, periph);
+
+ /*
+ * Acquire a reference to the periph that we can release once we've
+ * cleaned up the kqueue.
+ */
+ if (cam_periph_acquire(periph) != CAM_REQ_CMP) {
+ xpt_print(periph->path, "%s: lost periph during "
+ "registration!\n", __func__);
+ cam_periph_lock(periph);
+ return (CAM_REQ_CMP_ERR);
+ }
+
+ /*
* Acquire a reference to the periph before we create the devfs
* instance for it. We'll release this reference once the devfs
* instance has been freed.
@@ -408,12 +653,15 @@ passregister(struct cam_periph *periph, void *arg)
periph->periph_name, periph->unit_number);
/*
- * Now that we have made the devfs instance, hold a reference to it
- * until the task queue has run to setup the physical path alias.
- * That way devfs won't get rid of the device before we add our
- * alias.
+ * Hold a reference to the periph before we create the physical
+ * path alias so it can't go away.
*/
- dev_ref(softc->dev);
+ if (cam_periph_acquire(periph) != CAM_REQ_CMP) {
+ xpt_print(periph->path, "%s: lost periph during "
+ "registration!\n", __func__);
+ cam_periph_lock(periph);
+ return (CAM_REQ_CMP_ERR);
+ }
cam_periph_lock(periph);
softc->dev->si_drv1 = periph;
@@ -514,6 +762,55 @@ passclose(struct cdev *dev, int flag, int fmt, struct thread *td)
softc = periph->softc;
softc->open_count--;
+ if (softc->open_count == 0) {
+ struct pass_io_req *io_req, *io_req2;
+ int need_unlock;
+
+ need_unlock = 0;
+
+ TAILQ_FOREACH_SAFE(io_req, &softc->done_queue, links, io_req2) {
+ TAILQ_REMOVE(&softc->done_queue, io_req, links);
+ passiocleanup(softc, io_req);
+ uma_zfree(softc->pass_zone, io_req);
+ }
+
+ TAILQ_FOREACH_SAFE(io_req, &softc->incoming_queue, links,
+ io_req2) {
+ TAILQ_REMOVE(&softc->incoming_queue, io_req, links);
+ passiocleanup(softc, io_req);
+ uma_zfree(softc->pass_zone, io_req);
+ }
+
+ /*
+ * If there are any active I/Os, we need to forcibly acquire a
+ * reference to the peripheral so that we don't go away
+ * before they complete. We'll release the reference when
+ * the abandoned queue is empty.
+ */
+ io_req = TAILQ_FIRST(&softc->active_queue);
+ if ((io_req != NULL)
+ && (softc->flags & PASS_FLAG_ABANDONED_REF_SET) == 0) {
+ cam_periph_doacquire(periph);
+ softc->flags |= PASS_FLAG_ABANDONED_REF_SET;
+ }
+
+ /*
+ * Since the I/O in the active queue is not under our
+ * control, just set a flag so that we can clean it up when
+ * it completes and put it on the abandoned queue. This
+ * will prevent our sending spurious completions in the
+ * event that the device is opened again before these I/Os
+ * complete.
+ */
+ TAILQ_FOREACH_SAFE(io_req, &softc->active_queue, links,
+ io_req2) {
+ TAILQ_REMOVE(&softc->active_queue, io_req, links);
+ io_req->flags |= PASS_IO_ABANDONED;
+ TAILQ_INSERT_TAIL(&softc->abandoned_queue, io_req,
+ links);
+ }
+ }
+
cam_periph_release_locked(periph);
/*
@@ -533,6 +830,915 @@ passclose(struct cdev *dev, int flag, int fmt, struct thread *td)
return (0);
}
+
+static void
+passstart(struct cam_periph *periph, union ccb *start_ccb)
+{
+ struct pass_softc *softc;
+
+ softc = (struct pass_softc *)periph->softc;
+
+ switch (softc->state) {
+ case PASS_STATE_NORMAL: {
+ struct pass_io_req *io_req;
+
+ /*
+ * Check for any queued I/O requests that require an
+ * allocated slot.
+ */
+ io_req = TAILQ_FIRST(&softc->incoming_queue);
+ if (io_req == NULL) {
+ xpt_release_ccb(start_ccb);
+ break;
+ }
+ TAILQ_REMOVE(&softc->incoming_queue, io_req, links);
+ TAILQ_INSERT_TAIL(&softc->active_queue, io_req, links);
+ /*
+ * Merge the user's CCB into the allocated CCB.
+ */
+ xpt_merge_ccb(start_ccb, &io_req->ccb);
+ start_ccb->ccb_h.ccb_type = PASS_CCB_QUEUED_IO;
+ start_ccb->ccb_h.ccb_ioreq = io_req;
+ start_ccb->ccb_h.cbfcnp = passdone;
+ io_req->alloced_ccb = start_ccb;
+ binuptime(&io_req->start_time);
+ devstat_start_transaction(softc->device_stats,
+ &io_req->start_time);
+
+ xpt_action(start_ccb);
+
+ /*
+ * If we have any more I/O waiting, schedule ourselves again.
+ */
+ if (!TAILQ_EMPTY(&softc->incoming_queue))
+ xpt_schedule(periph, CAM_PRIORITY_NORMAL);
+ break;
+ }
+ default:
+ break;
+ }
+}
+
+static void
+passdone(struct cam_periph *periph, union ccb *done_ccb)
+{
+ struct pass_softc *softc;
+ struct ccb_scsiio *csio;
+
+ softc = (struct pass_softc *)periph->softc;
+
+ cam_periph_assert(periph, MA_OWNED);
+
+ csio = &done_ccb->csio;
+ switch (csio->ccb_h.ccb_type) {
+ case PASS_CCB_QUEUED_IO: {
+ struct pass_io_req *io_req;
+
+ io_req = done_ccb->ccb_h.ccb_ioreq;
+#if 0
+ xpt_print(periph->path, "%s: called for user CCB %p\n",
+ __func__, io_req->user_ccb_ptr);
+#endif
+ if (((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP)
+ && (done_ccb->ccb_h.flags & CAM_PASS_ERR_RECOVER)
+ && ((io_req->flags & PASS_IO_ABANDONED) == 0)) {
+ int error;
+
+ error = passerror(done_ccb, CAM_RETRY_SELTO,
+ SF_RETRY_UA | SF_NO_PRINT);
+
+ if (error == ERESTART) {
+ /*
+ * A retry was scheduled, so
+ * just return.
+ */
+ return;
+ }
+ }
+
+ /*
+ * Copy the allocated CCB contents back to the malloced CCB
+ * so we can give status back to the user when he requests it.
+ */
+ bcopy(done_ccb, &io_req->ccb, sizeof(*done_ccb));
+
+ /*
+ * Log data/transaction completion with devstat(9).
+ */
+ switch (done_ccb->ccb_h.func_code) {
+ case XPT_SCSI_IO:
+ devstat_end_transaction(softc->device_stats,
+ done_ccb->csio.dxfer_len - done_ccb->csio.resid,
+ done_ccb->csio.tag_action & 0x3,
+ ((done_ccb->ccb_h.flags & CAM_DIR_MASK) ==
+ CAM_DIR_NONE) ? DEVSTAT_NO_DATA :
+ (done_ccb->ccb_h.flags & CAM_DIR_OUT) ?
+ DEVSTAT_WRITE : DEVSTAT_READ, NULL,
+ &io_req->start_time);
+ break;
+ case XPT_ATA_IO:
+ devstat_end_transaction(softc->device_stats,
+ done_ccb->ataio.dxfer_len - done_ccb->ataio.resid,
+ done_ccb->ataio.tag_action & 0x3,
+ ((done_ccb->ccb_h.flags & CAM_DIR_MASK) ==
+ CAM_DIR_NONE) ? DEVSTAT_NO_DATA :
+ (done_ccb->ccb_h.flags & CAM_DIR_OUT) ?
+ DEVSTAT_WRITE : DEVSTAT_READ, NULL,
+ &io_req->start_time);
+ break;
+ case XPT_SMP_IO:
+ /*
+ * XXX KDM this isn't quite right, but there isn't
+ * currently an easy way to represent a bidirectional
+ * transfer in devstat. The only way to do it
+ * and have the byte counts come out right would
+ * mean that we would have to record two
+ * transactions, one for the request and one for the
+ * response. For now, so that we report something,
+ * just treat the entire thing as a read.
+ */
+ devstat_end_transaction(softc->device_stats,
+ done_ccb->smpio.smp_request_len +
+ done_ccb->smpio.smp_response_len,
+ DEVSTAT_TAG_SIMPLE, DEVSTAT_READ, NULL,
+ &io_req->start_time);
+ break;
+ default:
+ devstat_end_transaction(softc->device_stats, 0,
+ DEVSTAT_TAG_NONE, DEVSTAT_NO_DATA, NULL,
+ &io_req->start_time);
+ break;
+ }
+
+ /*
+ * In the normal case, take the completed I/O off of the
+ * active queue and put it on the done queue. Notitfy the
+ * user that we have a completed I/O.
+ */
+ if ((io_req->flags & PASS_IO_ABANDONED) == 0) {
+ TAILQ_REMOVE(&softc->active_queue, io_req, links);
+ TAILQ_INSERT_TAIL(&softc->done_queue, io_req, links);
+ selwakeuppri(&softc->read_select, PRIBIO);
+ KNOTE_LOCKED(&softc->read_select.si_note, 0);
+ } else {
+ /*
+ * In the case of an abandoned I/O (final close
+ * without fetching the I/O), take it off of the
+ * abandoned queue and free it.
+ */
+ TAILQ_REMOVE(&softc->abandoned_queue, io_req, links);
+ passiocleanup(softc, io_req);
+ uma_zfree(softc->pass_zone, io_req);
+
+ /*
+ * Release the done_ccb here, since we may wind up
+ * freeing the peripheral when we decrement the
+ * reference count below.
+ */
+ xpt_release_ccb(done_ccb);
+
+ /*
+ * If the abandoned queue is empty, we can release
+ * our reference to the periph since we won't have
+ * any more completions coming.
+ */
+ if ((TAILQ_EMPTY(&softc->abandoned_queue))
+ && (softc->flags & PASS_FLAG_ABANDONED_REF_SET)) {
+ softc->flags &= ~PASS_FLAG_ABANDONED_REF_SET;
+ cam_periph_release_locked(periph);
+ }
+
+ /*
+ * We have already released the CCB, so we can
+ * return.
+ */
+ return;
+ }
+ break;
+ }
+ }
+ xpt_release_ccb(done_ccb);
+}
+
+static int
+passcreatezone(struct cam_periph *periph)
+{
+ struct pass_softc *softc;
+ int error;
+
+ error = 0;
+ softc = (struct pass_softc *)periph->softc;
+
+ cam_periph_assert(periph, MA_OWNED);
+ KASSERT(((softc->flags & PASS_FLAG_ZONE_VALID) == 0),
+ ("%s called when the pass(4) zone is valid!\n", __func__));
+ KASSERT((softc->pass_zone == NULL),
+ ("%s called when the pass(4) zone is allocated!\n", __func__));
+
+ if ((softc->flags & PASS_FLAG_ZONE_INPROG) == 0) {
+
+ /*
+ * We're the first context through, so we need to create
+ * the pass(4) UMA zone for I/O requests.
+ */
+ softc->flags |= PASS_FLAG_ZONE_INPROG;
+
+ /*
+ * uma_zcreate() does a blocking (M_WAITOK) allocation,
+ * so we cannot hold a mutex while we call it.
+ */
+ cam_periph_unlock(periph);
+
+ softc->pass_zone = uma_zcreate(softc->zone_name,
+ sizeof(struct pass_io_req), NULL, NULL, NULL, NULL,
+ /*align*/ 0, /*flags*/ 0);
+
+ softc->pass_io_zone = uma_zcreate(softc->io_zone_name,
+ softc->io_zone_size, NULL, NULL, NULL, NULL,
+ /*align*/ 0, /*flags*/ 0);
+
+ cam_periph_lock(periph);
+
+ if ((softc->pass_zone == NULL)
+ || (softc->pass_io_zone == NULL)) {
+ if (softc->pass_zone == NULL)
+ xpt_print(periph->path, "unable to allocate "
+ "IO Req UMA zone\n");
+ else
+ xpt_print(periph->path, "unable to allocate "
+ "IO UMA zone\n");
+ softc->flags &= ~PASS_FLAG_ZONE_INPROG;
+ goto bailout;
+ }
+
+ /*
+ * Set the flags appropriately and notify any other waiters.
+ */
+ softc->flags &= PASS_FLAG_ZONE_INPROG;
+ softc->flags |= PASS_FLAG_ZONE_VALID;
+ wakeup(&softc->pass_zone);
+ } else {
+ /*
+ * In this case, the UMA zone has not yet been created, but
+ * another context is in the process of creating it. We
+ * need to sleep until the creation is either done or has
+ * failed.
+ */
+ while ((softc->flags & PASS_FLAG_ZONE_INPROG)
+ && ((softc->flags & PASS_FLAG_ZONE_VALID) == 0)) {
+ error = msleep(&softc->pass_zone,
+ cam_periph_mtx(periph), PRIBIO,
+ "paszon", 0);
+ if (error != 0)
+ goto bailout;
+ }
+ /*
+ * If the zone creation failed, no luck for the user.
+ */
+ if ((softc->flags & PASS_FLAG_ZONE_VALID) == 0){
+ error = ENOMEM;
+ goto bailout;
+ }
+ }
+bailout:
+ return (error);
+}
+
+static void
+passiocleanup(struct pass_softc *softc, struct pass_io_req *io_req)
+{
+ union ccb *ccb;
+ u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS];
+ int i, numbufs;
+
+ ccb = &io_req->ccb;
+
+ switch (ccb->ccb_h.func_code) {
+ case XPT_DEV_MATCH:
+ numbufs = min(io_req->num_bufs, 2);
+
+ if (numbufs == 1) {
+ data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches;
+ } else {
+ data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns;
+ data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches;
+ }
+ break;
+ case XPT_SCSI_IO:
+ case XPT_CONT_TARGET_IO:
+ data_ptrs[0] = &ccb->csio.data_ptr;
+ numbufs = min(io_req->num_bufs, 1);
+ break;
+ case XPT_ATA_IO:
+ data_ptrs[0] = &ccb->ataio.data_ptr;
+ numbufs = min(io_req->num_bufs, 1);
+ break;
+ case XPT_SMP_IO:
+ numbufs = min(io_req->num_bufs, 2);
+ data_ptrs[0] = &ccb->smpio.smp_request;
+ data_ptrs[1] = &ccb->smpio.smp_response;
+ break;
+ case XPT_DEV_ADVINFO:
+ numbufs = min(io_req->num_bufs, 1);
+ data_ptrs[0] = (uint8_t **)&ccb->cdai.buf;
+ break;
+ default:
+ /* allow ourselves to be swapped once again */
+ return;
+ break; /* NOTREACHED */
+ }
+
+ if (io_req->flags & PASS_IO_USER_SEG_MALLOC) {
+ free(io_req->user_segptr, M_SCSIPASS);
+ io_req->user_segptr = NULL;
+ }
+
+ /*
+ * We only want to free memory we malloced.
+ */
+ if (io_req->data_flags == CAM_DATA_VADDR) {
+ for (i = 0; i < io_req->num_bufs; i++) {
+ if (io_req->kern_bufs[i] == NULL)
+ continue;
+
+ free(io_req->kern_bufs[i], M_SCSIPASS);
+ io_req->kern_bufs[i] = NULL;
+ }
+ } else if (io_req->data_flags == CAM_DATA_SG) {
+ for (i = 0; i < io_req->num_kern_segs; i++) {
+ if ((uint8_t *)(uintptr_t)
+ io_req->kern_segptr[i].ds_addr == NULL)
+ continue;
+
+ uma_zfree(softc->pass_io_zone, (uint8_t *)(uintptr_t)
+ io_req->kern_segptr[i].ds_addr);
+ io_req->kern_segptr[i].ds_addr = 0;
+ }
+ }
+
+ if (io_req->flags & PASS_IO_KERN_SEG_MALLOC) {
+ free(io_req->kern_segptr, M_SCSIPASS);
+ io_req->kern_segptr = NULL;
+ }
+
+ if (io_req->data_flags != CAM_DATA_PADDR) {
+ for (i = 0; i < numbufs; i++) {
+ /*
+ * Restore the user's buffer pointers to their
+ * previous values.
+ */
+ if (io_req->user_bufs[i] != NULL)
+ *data_ptrs[i] = io_req->user_bufs[i];
+ }
+ }
+
+}
+
+static int
+passcopysglist(struct cam_periph *periph, struct pass_io_req *io_req,
+ ccb_flags direction)
+{
+ bus_size_t kern_watermark, user_watermark, len_copied, len_to_copy;
+ bus_dma_segment_t *user_sglist, *kern_sglist;
+ int i, j, error;
+
+ error = 0;
+ kern_watermark = 0;
+ user_watermark = 0;
+ len_to_copy = 0;
+ len_copied = 0;
+ user_sglist = io_req->user_segptr;
+ kern_sglist = io_req->kern_segptr;
+
+ for (i = 0, j = 0; i < io_req->num_user_segs &&
+ j < io_req->num_kern_segs;) {
+ uint8_t *user_ptr, *kern_ptr;
+
+ len_to_copy = min(user_sglist[i].ds_len -user_watermark,
+ kern_sglist[j].ds_len - kern_watermark);
+
+ user_ptr = (uint8_t *)(uintptr_t)user_sglist[i].ds_addr;
+ user_ptr = user_ptr + user_watermark;
+ kern_ptr = (uint8_t *)(uintptr_t)kern_sglist[j].ds_addr;
+ kern_ptr = kern_ptr + kern_watermark;
+
+ user_watermark += len_to_copy;
+ kern_watermark += len_to_copy;
+
+ if (!useracc(user_ptr, len_to_copy,
+ (direction == CAM_DIR_IN) ? VM_PROT_WRITE : VM_PROT_READ)) {
+ xpt_print(periph->path, "%s: unable to access user "
+ "S/G list element %p len %zu\n", __func__,
+ user_ptr, len_to_copy);
+ error = EFAULT;
+ goto bailout;
+ }
+
+ if (direction == CAM_DIR_IN) {
+ error = copyout(kern_ptr, user_ptr, len_to_copy);
+ if (error != 0) {
+ xpt_print(periph->path, "%s: copyout of %u "
+ "bytes from %p to %p failed with "
+ "error %d\n", __func__, len_to_copy,
+ kern_ptr, user_ptr, error);
+ goto bailout;
+ }
+ } else {
+ error = copyin(user_ptr, kern_ptr, len_to_copy);
+ if (error != 0) {
+ xpt_print(periph->path, "%s: copyin of %u "
+ "bytes from %p to %p failed with "
+ "error %d\n", __func__, len_to_copy,
+ user_ptr, kern_ptr, error);
+ goto bailout;
+ }
+ }
+
+ len_copied += len_to_copy;
+
+ if (user_sglist[i].ds_len == user_watermark) {
+ i++;
+ user_watermark = 0;
+ }
+
+ if (kern_sglist[j].ds_len == kern_watermark) {
+ j++;
+ kern_watermark = 0;
+ }
+ }
+
+bailout:
+
+ return (error);
+}
+
+static int
+passmemsetup(struct cam_periph *periph, struct pass_io_req *io_req)
+{
+ union ccb *ccb;
+ struct pass_softc *softc;
+ int numbufs, i;
+ uint8_t **data_ptrs[CAM_PERIPH_MAXMAPS];
+ uint32_t lengths[CAM_PERIPH_MAXMAPS];
+ uint32_t dirs[CAM_PERIPH_MAXMAPS];
+ uint32_t num_segs;
+ uint16_t *seg_cnt_ptr;
+ size_t maxmap;
+ int error;
+
+ cam_periph_assert(periph, MA_NOTOWNED);
+
+ softc = periph->softc;
+
+ error = 0;
+ ccb = &io_req->ccb;
+ maxmap = 0;
+ num_segs = 0;
+ seg_cnt_ptr = NULL;
+
+ switch(ccb->ccb_h.func_code) {
+ case XPT_DEV_MATCH:
+ if (ccb->cdm.match_buf_len == 0) {
+ printf("%s: invalid match buffer length 0\n", __func__);
+ return(EINVAL);
+ }
+ if (ccb->cdm.pattern_buf_len > 0) {
+ data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns;
+ lengths[0] = ccb->cdm.pattern_buf_len;
+ dirs[0] = CAM_DIR_OUT;
+ data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches;
+ lengths[1] = ccb->cdm.match_buf_len;
+ dirs[1] = CAM_DIR_IN;
+ numbufs = 2;
+ } else {
+ data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches;
+ lengths[0] = ccb->cdm.match_buf_len;
+ dirs[0] = CAM_DIR_IN;
+ numbufs = 1;
+ }
+ io_req->data_flags = CAM_DATA_VADDR;
+ break;
+ case XPT_SCSI_IO:
+ case XPT_CONT_TARGET_IO:
+ if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE)
+ return(0);
+
+ /*
+ * The user shouldn't be able to supply a bio.
+ */
+ if ((ccb->ccb_h.flags & CAM_DATA_MASK) == CAM_DATA_BIO)
+ return (EINVAL);
+
+ io_req->data_flags = ccb->ccb_h.flags & CAM_DATA_MASK;
+
+ data_ptrs[0] = &ccb->csio.data_ptr;
+ lengths[0] = ccb->csio.dxfer_len;
+ dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
+ num_segs = ccb->csio.sglist_cnt;
+ seg_cnt_ptr = &ccb->csio.sglist_cnt;
+ numbufs = 1;
+ maxmap = softc->maxio;
+ break;
+ case XPT_ATA_IO:
+ if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE)
+ return(0);
+
+ /*
+ * We only support a single virtual address for ATA I/O.
+ */
+ if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR)
+ return (EINVAL);
+
+ io_req->data_flags = CAM_DATA_VADDR;
+
+ data_ptrs[0] = &ccb->ataio.data_ptr;
+ lengths[0] = ccb->ataio.dxfer_len;
+ dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
+ numbufs = 1;
+ maxmap = softc->maxio;
+ break;
+ case XPT_SMP_IO:
+ io_req->data_flags = CAM_DATA_VADDR;
+
+ data_ptrs[0] = &ccb->smpio.smp_request;
+ lengths[0] = ccb->smpio.smp_request_len;
+ dirs[0] = CAM_DIR_OUT;
+ data_ptrs[1] = &ccb->smpio.smp_response;
+ lengths[1] = ccb->smpio.smp_response_len;
+ dirs[1] = CAM_DIR_IN;
+ numbufs = 2;
+ maxmap = softc->maxio;
+ break;
+ case XPT_DEV_ADVINFO:
+ if (ccb->cdai.bufsiz == 0)
+ return (0);
+
+ io_req->data_flags = CAM_DATA_VADDR;
+
+ data_ptrs[0] = (uint8_t **)&ccb->cdai.buf;
+ lengths[0] = ccb->cdai.bufsiz;
+ dirs[0] = CAM_DIR_IN;
+ numbufs = 1;
+ break;
+ default:
+ return(EINVAL);
+ break; /* NOTREACHED */
+ }
+
+ io_req->num_bufs = numbufs;
+
+ /*
+ * If there is a maximum, check to make sure that the user's
+ * request fits within the limit. In general, we should only have
+ * a maximum length for requests that go to hardware. Otherwise it
+ * is whatever we're able to malloc.
+ */
+ for (i = 0; i < numbufs; i++) {
+ io_req->user_bufs[i] = *data_ptrs[i];
+ io_req->dirs[i] = dirs[i];
+ io_req->lengths[i] = lengths[i];
+
+ if (maxmap == 0)
+ continue;
+
+ if (lengths[i] <= maxmap)
+ continue;
+
+ xpt_print(periph->path, "%s: data length %u > max allowed %u "
+ "bytes\n", __func__, lengths[i], maxmap);
+ error = EINVAL;
+ goto bailout;
+ }
+
+ switch (io_req->data_flags) {
+ case CAM_DATA_VADDR:
+ /* Map or copy the buffer into kernel address space */
+ for (i = 0; i < numbufs; i++) {
+ uint8_t *tmp_buf;
+
+ /*
+ * If for some reason no length is specified, we
+ * don't need to allocate anything.
+ */
+ if (io_req->lengths[i] == 0)
+ continue;
+
+ /*
+ * Make sure that the user's buffer is accessible
+ * to that process.
+ */
+ if (!useracc(io_req->user_bufs[i], io_req->lengths[i],
+ (io_req->dirs[i] == CAM_DIR_IN) ? VM_PROT_WRITE :
+ VM_PROT_READ)) {
+ xpt_print(periph->path, "%s: user address %p "
+ "length %u is not accessible\n", __func__,
+ io_req->user_bufs[i], io_req->lengths[i]);
+ error = EFAULT;
+ goto bailout;
+ }
+
+ tmp_buf = malloc(lengths[i], M_SCSIPASS,
+ M_WAITOK | M_ZERO);
+ io_req->kern_bufs[i] = tmp_buf;
+ *data_ptrs[i] = tmp_buf;
+
+#if 0
+ xpt_print(periph->path, "%s: malloced %p len %u, user "
+ "buffer %p, operation: %s\n", __func__,
+ tmp_buf, lengths[i], io_req->user_bufs[i],
+ (dirs[i] == CAM_DIR_IN) ? "read" : "write");
+#endif
+ /*
+ * We only need to copy in if the user is writing.
+ */
+ if (dirs[i] != CAM_DIR_OUT)
+ continue;
+
+ error = copyin(io_req->user_bufs[i],
+ io_req->kern_bufs[i], lengths[i]);
+ if (error != 0) {
+ xpt_print(periph->path, "%s: copy of user "
+ "buffer from %p to %p failed with "
+ "error %d\n", __func__,
+ io_req->user_bufs[i],
+ io_req->kern_bufs[i], error);
+ goto bailout;
+ }
+ }
+ break;
+ case CAM_DATA_PADDR:
+ /* Pass down the pointer as-is */
+ break;
+ case CAM_DATA_SG: {
+ size_t sg_length, size_to_go, alloc_size;
+ uint32_t num_segs_needed;
+
+ /*
+ * Copy the user S/G list in, and then copy in the
+ * individual segments.
+ */
+ /*
+ * We shouldn't see this, but check just in case.
+ */
+ if (numbufs != 1) {
+ xpt_print(periph->path, "%s: cannot currently handle "
+ "more than one S/G list per CCB\n", __func__);
+ error = EINVAL;
+ goto bailout;
+ }
+
+ /*
+ * We have to have at least one segment.
+ */
+ if (num_segs == 0) {
+ xpt_print(periph->path, "%s: CAM_DATA_SG flag set, "
+ "but sglist_cnt=0!\n", __func__);
+ error = EINVAL;
+ goto bailout;
+ }
+
+ /*
+ * Make sure the user specified the total length and didn't
+ * just leave it to us to decode the S/G list.
+ */
+ if (lengths[0] == 0) {
+ xpt_print(periph->path, "%s: no dxfer_len specified, "
+ "but CAM_DATA_SG flag is set!\n", __func__);
+ error = EINVAL;
+ goto bailout;
+ }
+
+ /*
+ * We allocate buffers in io_zone_size increments for an
+ * S/G list. This will generally be MAXPHYS.
+ */
+ if (lengths[0] <= softc->io_zone_size)
+ num_segs_needed = 1;
+ else {
+ num_segs_needed = lengths[0] / softc->io_zone_size;
+ if ((lengths[0] % softc->io_zone_size) != 0)
+ num_segs_needed++;
+ }
+
+ /* Figure out the size of the S/G list */
+ sg_length = num_segs * sizeof(bus_dma_segment_t);
+ io_req->num_user_segs = num_segs;
+ io_req->num_kern_segs = num_segs_needed;
+
+ /* Save the user's S/G list pointer for later restoration */
+ io_req->user_bufs[0] = *data_ptrs[0];
+
+ /*
+ * If we have enough segments allocated by default to handle
+ * the length of the user's S/G list,
+ */
+ if (num_segs > PASS_MAX_SEGS) {
+ io_req->user_segptr = malloc(sizeof(bus_dma_segment_t) *
+ num_segs, M_SCSIPASS, M_WAITOK | M_ZERO);
+ io_req->flags |= PASS_IO_USER_SEG_MALLOC;
+ } else
+ io_req->user_segptr = io_req->user_segs;
+
+ if (!useracc(*data_ptrs[0], sg_length, VM_PROT_READ)) {
+ xpt_print(periph->path, "%s: unable to access user "
+ "S/G list at %p\n", __func__, *data_ptrs[0]);
+ error = EFAULT;
+ goto bailout;
+ }
+
+ error = copyin(*data_ptrs[0], io_req->user_segptr, sg_length);
+ if (error != 0) {
+ xpt_print(periph->path, "%s: copy of user S/G list "
+ "from %p to %p failed with error %d\n",
+ __func__, *data_ptrs[0], io_req->user_segptr,
+ error);
+ goto bailout;
+ }
+
+ if (num_segs_needed > PASS_MAX_SEGS) {
+ io_req->kern_segptr = malloc(sizeof(bus_dma_segment_t) *
+ num_segs_needed, M_SCSIPASS, M_WAITOK | M_ZERO);
+ io_req->flags |= PASS_IO_KERN_SEG_MALLOC;
+ } else {
+ io_req->kern_segptr = io_req->kern_segs;
+ }
+
+ /*
+ * Allocate the kernel S/G list.
+ */
+ for (size_to_go = lengths[0], i = 0;
+ size_to_go > 0 && i < num_segs_needed;
+ i++, size_to_go -= alloc_size) {
+ uint8_t *kern_ptr;
+
+ alloc_size = min(size_to_go, softc->io_zone_size);
+ kern_ptr = uma_zalloc(softc->pass_io_zone, M_WAITOK);
+ io_req->kern_segptr[i].ds_addr =
+ (bus_addr_t)(uintptr_t)kern_ptr;
+ io_req->kern_segptr[i].ds_len = alloc_size;
+ }
+ if (size_to_go > 0) {
+ printf("%s: size_to_go = %zu, software error!\n",
+ __func__, size_to_go);
+ error = EINVAL;
+ goto bailout;
+ }
+
+ *data_ptrs[0] = (uint8_t *)io_req->kern_segptr;
+ *seg_cnt_ptr = io_req->num_kern_segs;
+
+ /*
+ * We only need to copy data here if the user is writing.
+ */
+ if (dirs[0] == CAM_DIR_OUT)
+ error = passcopysglist(periph, io_req, dirs[0]);
+ break;
+ }
+ case CAM_DATA_SG_PADDR: {
+ size_t sg_length;
+
+ /*
+ * We shouldn't see this, but check just in case.
+ */
+ if (numbufs != 1) {
+ printf("%s: cannot currently handle more than one "
+ "S/G list per CCB\n", __func__);
+ error = EINVAL;
+ goto bailout;
+ }
+
+ /*
+ * We have to have at least one segment.
+ */
+ if (num_segs == 0) {
+ xpt_print(periph->path, "%s: CAM_DATA_SG_PADDR flag "
+ "set, but sglist_cnt=0!\n", __func__);
+ error = EINVAL;
+ goto bailout;
+ }
+
+ /*
+ * Make sure the user specified the total length and didn't
+ * just leave it to us to decode the S/G list.
+ */
+ if (lengths[0] == 0) {
+ xpt_print(periph->path, "%s: no dxfer_len specified, "
+ "but CAM_DATA_SG flag is set!\n", __func__);
+ error = EINVAL;
+ goto bailout;
+ }
+
+ /* Figure out the size of the S/G list */
+ sg_length = num_segs * sizeof(bus_dma_segment_t);
+ io_req->num_user_segs = num_segs;
+ io_req->num_kern_segs = io_req->num_user_segs;
+
+ /* Save the user's S/G list pointer for later restoration */
+ io_req->user_bufs[0] = *data_ptrs[0];
+
+ if (num_segs > PASS_MAX_SEGS) {
+ io_req->user_segptr = malloc(sizeof(bus_dma_segment_t) *
+ num_segs, M_SCSIPASS, M_WAITOK | M_ZERO);
+ io_req->flags |= PASS_IO_USER_SEG_MALLOC;
+ } else
+ io_req->user_segptr = io_req->user_segs;
+
+ io_req->kern_segptr = io_req->user_segptr;
+
+ error = copyin(*data_ptrs[0], io_req->user_segptr, sg_length);
+ if (error != 0) {
+ xpt_print(periph->path, "%s: copy of user S/G list "
+ "from %p to %p failed with error %d\n",
+ __func__, *data_ptrs[0], io_req->user_segptr,
+ error);
+ goto bailout;
+ }
+ break;
+ }
+ default:
+ case CAM_DATA_BIO:
+ /*
+ * A user shouldn't be attaching a bio to the CCB. It
+ * isn't a user-accessible structure.
+ */
+ error = EINVAL;
+ break;
+ }
+
+bailout:
+ if (error != 0)
+ passiocleanup(softc, io_req);
+
+ return (error);
+}
+
+static int
+passmemdone(struct cam_periph *periph, struct pass_io_req *io_req)
+{
+ struct pass_softc *softc;
+ union ccb *ccb;
+ int error;
+ int i;
+
+ error = 0;
+ softc = (struct pass_softc *)periph->softc;
+ ccb = &io_req->ccb;
+
+ switch (io_req->data_flags) {
+ case CAM_DATA_VADDR:
+ /*
+ * Copy back to the user buffer if this was a read.
+ */
+ for (i = 0; i < io_req->num_bufs; i++) {
+ if (io_req->dirs[i] != CAM_DIR_IN)
+ continue;
+
+ error = copyout(io_req->kern_bufs[i],
+ io_req->user_bufs[i], io_req->lengths[i]);
+ if (error != 0) {
+ xpt_print(periph->path, "Unable to copy %u "
+ "bytes from %p to user address %p\n",
+ io_req->lengths[i],
+ io_req->kern_bufs[i],
+ io_req->user_bufs[i]);
+ goto bailout;
+ }
+
+ }
+ break;
+ case CAM_DATA_PADDR:
+ /* Do nothing. The pointer is a physical address already */
+ break;
+ case CAM_DATA_SG:
+ /*
+ * Copy back to the user buffer if this was a read.
+ * Restore the user's S/G list buffer pointer.
+ */
+ if (io_req->dirs[0] == CAM_DIR_IN)
+ error = passcopysglist(periph, io_req, io_req->dirs[0]);
+ break;
+ case CAM_DATA_SG_PADDR:
+ /*
+ * Restore the user's S/G list buffer pointer. No need to
+ * copy.
+ */
+ break;
+ default:
+ case CAM_DATA_BIO:
+ error = EINVAL;
+ break;
+ }
+
+bailout:
+ /*
+ * Reset the user's pointers to their original values and free
+ * allocated memory.
+ */
+ passiocleanup(softc, io_req);
+
+ return (error);
+}
+
static int
passioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
{
@@ -622,15 +1828,317 @@ passdoioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread
break;
}
+ case CAMIOQUEUE:
+ {
+ struct pass_io_req *io_req;
+ union ccb **user_ccb, *ccb;
+ xpt_opcode fc;
+
+ if ((softc->flags & PASS_FLAG_ZONE_VALID) == 0) {
+ error = passcreatezone(periph);
+ if (error != 0)
+ goto bailout;
+ }
+
+ /*
+ * We're going to do a blocking allocation for this I/O
+ * request, so we have to drop the lock.
+ */
+ cam_periph_unlock(periph);
+
+ io_req = uma_zalloc(softc->pass_zone, M_WAITOK | M_ZERO);
+ ccb = &io_req->ccb;
+ user_ccb = (union ccb **)addr;
+
+ /*
+ * Unlike the CAMIOCOMMAND ioctl above, we only have a
+ * pointer to the user's CCB, so we have to copy the whole
+ * thing in to a buffer we have allocated (above) instead
+ * of allowing the ioctl code to malloc a buffer and copy
+ * it in.
+ *
+ * This is an advantage for this asynchronous interface,
+ * since we don't want the memory to get freed while the
+ * CCB is outstanding.
+ */
+#if 0
+ xpt_print(periph->path, "Copying user CCB %p to "
+ "kernel address %p\n", *user_ccb, ccb);
+#endif
+ error = copyin(*user_ccb, ccb, sizeof(*ccb));
+ if (error != 0) {
+ xpt_print(periph->path, "Copy of user CCB %p to "
+ "kernel address %p failed with error %d\n",
+ *user_ccb, ccb, error);
+ uma_zfree(softc->pass_zone, io_req);
+ cam_periph_lock(periph);
+ break;
+ }
+
+ /*
+ * Some CCB types, like scan bus and scan lun can only go
+ * through the transport layer device.
+ */
+ if (ccb->ccb_h.func_code & XPT_FC_XPT_ONLY) {
+ xpt_print(periph->path, "CCB function code %#x is "
+ "restricted to the XPT device\n",
+ ccb->ccb_h.func_code);
+ uma_zfree(softc->pass_zone, io_req);
+ cam_periph_lock(periph);
+ error = ENODEV;
+ break;
+ }
+
+ /*
+ * Save the user's CCB pointer as well as his linked list
+ * pointers and peripheral private area so that we can
+ * restore these later.
+ */
+ io_req->user_ccb_ptr = *user_ccb;
+ io_req->user_periph_links = ccb->ccb_h.periph_links;
+ io_req->user_periph_priv = ccb->ccb_h.periph_priv;
+
+ /*
+ * Now that we've saved the user's values, we can set our
+ * own peripheral private entry.
+ */
+ ccb->ccb_h.ccb_ioreq = io_req;
+
+ /* Compatibility for RL/priority-unaware code. */
+ priority = ccb->ccb_h.pinfo.priority;
+ if (priority <= CAM_PRIORITY_OOB)
+ priority += CAM_PRIORITY_OOB + 1;
+
+ /*
+ * Setup fields in the CCB like the path and the priority.
+ * The path in particular cannot be done in userland, since
+ * it is a pointer to a kernel data structure.
+ */
+ xpt_setup_ccb_flags(&ccb->ccb_h, periph->path, priority,
+ ccb->ccb_h.flags);
+
+ /*
+ * Setup our done routine. There is no way for the user to
+ * have a valid pointer here.
+ */
+ ccb->ccb_h.cbfcnp = passdone;
+
+ fc = ccb->ccb_h.func_code;
+ /*
+ * If this function code has memory that can be mapped in
+ * or out, we need to call passmemsetup().
+ */
+ if ((fc == XPT_SCSI_IO) || (fc == XPT_ATA_IO)
+ || (fc == XPT_SMP_IO) || (fc == XPT_DEV_MATCH)
+ || (fc == XPT_DEV_ADVINFO)) {
+ error = passmemsetup(periph, io_req);
+ if (error != 0) {
+ uma_zfree(softc->pass_zone, io_req);
+ cam_periph_lock(periph);
+ break;
+ }
+ } else
+ io_req->mapinfo.num_bufs_used = 0;
+
+ cam_periph_lock(periph);
+
+ /*
+ * Everything goes on the incoming queue initially.
+ */
+ TAILQ_INSERT_TAIL(&softc->incoming_queue, io_req, links);
+
+ /*
+ * If the CCB is queued, and is not a user CCB, then
+ * we need to allocate a slot for it. Call xpt_schedule()
+ * so that our start routine will get called when a CCB is
+ * available.
+ */
+ if ((fc & XPT_FC_QUEUED)
+ && ((fc & XPT_FC_USER_CCB) == 0)) {
+ xpt_schedule(periph, priority);
+ break;
+ }
+
+ /*
+ * At this point, the CCB in question is either an
+ * immediate CCB (like XPT_DEV_ADVINFO) or it is a user CCB
+ * and therefore should be malloced, not allocated via a slot.
+ * Remove the CCB from the incoming queue and add it to the
+ * active queue.
+ */
+ TAILQ_REMOVE(&softc->incoming_queue, io_req, links);
+ TAILQ_INSERT_TAIL(&softc->active_queue, io_req, links);
+
+ xpt_action(ccb);
+
+ /*
+ * If this is not a queued CCB (i.e. it is an immediate CCB),
+ * then it is already done. We need to put it on the done
+ * queue for the user to fetch.
+ */
+ if ((fc & XPT_FC_QUEUED) == 0) {
+ TAILQ_REMOVE(&softc->active_queue, io_req, links);
+ TAILQ_INSERT_TAIL(&softc->done_queue, io_req, links);
+ }
+ break;
+ }
+ case CAMIOGET:
+ {
+ union ccb **user_ccb;
+ struct pass_io_req *io_req;
+ int old_error;
+
+ user_ccb = (union ccb **)addr;
+ old_error = 0;
+
+ io_req = TAILQ_FIRST(&softc->done_queue);
+ if (io_req == NULL) {
+ error = ENOENT;
+ break;
+ }
+
+ /*
+ * Remove the I/O from the done queue.
+ */
+ TAILQ_REMOVE(&softc->done_queue, io_req, links);
+
+ /*
+ * We have to drop the lock during the copyout because the
+ * copyout can result in VM faults that require sleeping.
+ */
+ cam_periph_unlock(periph);
+
+ /*
+ * Do any needed copies (e.g. for reads) and revert the
+ * pointers in the CCB back to the user's pointers.
+ */
+ error = passmemdone(periph, io_req);
+
+ old_error = error;
+
+ io_req->ccb.ccb_h.periph_links = io_req->user_periph_links;
+ io_req->ccb.ccb_h.periph_priv = io_req->user_periph_priv;
+
+#if 0
+ xpt_print(periph->path, "Copying to user CCB %p from "
+ "kernel address %p\n", *user_ccb, &io_req->ccb);
+#endif
+
+ error = copyout(&io_req->ccb, *user_ccb, sizeof(union ccb));
+ if (error != 0) {
+ xpt_print(periph->path, "Copy to user CCB %p from "
+ "kernel address %p failed with error %d\n",
+ *user_ccb, &io_req->ccb, error);
+ }
+
+ /*
+ * Prefer the first error we got back, and make sure we
+ * don't overwrite bad status with good.
+ */
+ if (old_error != 0)
+ error = old_error;
+
+ cam_periph_lock(periph);
+
+ /*
+ * At this point, if there was an error, we could potentially
+ * re-queue the I/O and try again. But why? The error
+ * would almost certainly happen again. We might as well
+ * not leak memory.
+ */
+ uma_zfree(softc->pass_zone, io_req);
+ break;
+ }
default:
error = cam_periph_ioctl(periph, cmd, addr, passerror);
break;
}
+bailout:
cam_periph_unlock(periph);
+
return(error);
}
+static int
+passpoll(struct cdev *dev, int poll_events, struct thread *td)
+{
+ struct cam_periph *periph;
+ struct pass_softc *softc;
+ int revents;
+
+ periph = (struct cam_periph *)dev->si_drv1;
+ if (periph == NULL)
+ return (ENXIO);
+
+ softc = (struct pass_softc *)periph->softc;
+
+ revents = poll_events & (POLLOUT | POLLWRNORM);
+ if ((poll_events & (POLLIN | POLLRDNORM)) != 0) {
+ cam_periph_lock(periph);
+
+ if (!TAILQ_EMPTY(&softc->done_queue)) {
+ revents |= poll_events & (POLLIN | POLLRDNORM);
+ }
+ cam_periph_unlock(periph);
+ if (revents == 0)
+ selrecord(td, &softc->read_select);
+ }
+
+ return (revents);
+}
+
+static int
+passkqfilter(struct cdev *dev, struct knote *kn)
+{
+ struct cam_periph *periph;
+ struct pass_softc *softc;
+
+ periph = (struct cam_periph *)dev->si_drv1;
+ if (periph == NULL)
+ return (ENXIO);
+
+ softc = (struct pass_softc *)periph->softc;
+
+ kn->kn_hook = (caddr_t)periph;
+ kn->kn_fop = &passread_filtops;
+ knlist_add(&softc->read_select.si_note, kn, 0);
+
+ return (0);
+}
+
+static void
+passreadfiltdetach(struct knote *kn)
+{
+ struct cam_periph *periph;
+ struct pass_softc *softc;
+
+ periph = (struct cam_periph *)kn->kn_hook;
+ softc = (struct pass_softc *)periph->softc;
+
+ knlist_remove(&softc->read_select.si_note, kn, 0);
+}
+
+static int
+passreadfilt(struct knote *kn, long hint)
+{
+ struct cam_periph *periph;
+ struct pass_softc *softc;
+ int retval;
+
+ periph = (struct cam_periph *)kn->kn_hook;
+ softc = (struct pass_softc *)periph->softc;
+
+ cam_periph_assert(periph, MA_OWNED);
+
+ if (TAILQ_EMPTY(&softc->done_queue))
+ retval = 0;
+ else
+ retval = 1;
+
+ return (retval);
+}
+
/*
* Generally, "ccb" should be the CCB supplied by the kernel. "inccb"
* should be the CCB that is copied in from the user.
@@ -652,6 +2160,10 @@ passsendccb(struct cam_periph *periph, union ccb *ccb, union ccb *inccb)
xpt_merge_ccb(ccb, inccb);
/*
+ */
+ ccb->ccb_h.cbfcnp = passdone;
+
+ /*
* Let cam_periph_mapmem do a sanity check on the data pointer format.
* Even if no data transfer is needed, it's a cheap check and it
* simplifies the code.
diff --git a/sys/cam/scsi/scsi_pass.h b/sys/cam/scsi/scsi_pass.h
index ae0e058..797ef08 100644
--- a/sys/cam/scsi/scsi_pass.h
+++ b/sys/cam/scsi/scsi_pass.h
@@ -39,4 +39,12 @@
#define CAMIOCOMMAND _IOWR(CAM_VERSION, 2, union ccb)
#define CAMGETPASSTHRU _IOWR(CAM_VERSION, 3, union ccb)
+/*
+ * These two ioctls take a union ccb *, but that is not explicitly declared
+ * to avoid having the ioctl handling code malloc and free their own copy
+ * of the CCB or the CCB pointer.
+ */
+#define CAMIOQUEUE _IO(CAM_VERSION, 4)
+#define CAMIOGET _IO(CAM_VERSION, 5)
+
#endif
diff --git a/sys/dev/md/md.c b/sys/dev/md/md.c
index dccd5b3..27ef8b3 100644
--- a/sys/dev/md/md.c
+++ b/sys/dev/md/md.c
@@ -99,6 +99,8 @@
#include <vm/swap_pager.h>
#include <vm/uma.h>
+#include <machine/bus.h>
+
#define MD_MODVER 1
#define MD_SHUTDOWN 0x10000 /* Tell worker thread to terminate. */
@@ -435,7 +437,7 @@ g_md_start(struct bio *bp)
#define MD_MALLOC_MOVE_CMP 5
static int
-md_malloc_move(vm_page_t **mp, int *ma_offs, unsigned sectorsize,
+md_malloc_move_ma(vm_page_t **mp, int *ma_offs, unsigned sectorsize,
void *ptr, u_char fill, int op)
{
struct sf_buf *sf;
@@ -497,7 +499,7 @@ md_malloc_move(vm_page_t **mp, int *ma_offs, unsigned sectorsize,
}
break;
default:
- KASSERT(0, ("md_malloc_move unknown op %d\n", op));
+ KASSERT(0, ("md_malloc_move_ma unknown op %d\n", op));
break;
}
if (error != 0)
@@ -520,10 +522,68 @@ md_malloc_move(vm_page_t **mp, int *ma_offs, unsigned sectorsize,
}
static int
+md_malloc_move_vlist(bus_dma_segment_t **pvlist, int *pma_offs,
+ unsigned len, void *ptr, u_char fill, int op)
+{
+ bus_dma_segment_t *vlist;
+ uint8_t *p, *end, first;
+ off_t *uc;
+ int ma_offs, seg_len;
+
+ vlist = *pvlist;
+ ma_offs = *pma_offs;
+ uc = ptr;
+
+ for (; len != 0; len -= seg_len) {
+ seg_len = imin(vlist->ds_len - ma_offs, len);
+ p = (uint8_t *)(uintptr_t)vlist->ds_addr + ma_offs;
+ switch (op) {
+ case MD_MALLOC_MOVE_ZERO:
+ bzero(p, seg_len);
+ break;
+ case MD_MALLOC_MOVE_FILL:
+ memset(p, fill, seg_len);
+ break;
+ case MD_MALLOC_MOVE_READ:
+ bcopy(ptr, p, seg_len);
+ cpu_flush_dcache(p, seg_len);
+ break;
+ case MD_MALLOC_MOVE_WRITE:
+ bcopy(p, ptr, seg_len);
+ break;
+ case MD_MALLOC_MOVE_CMP:
+ end = p + seg_len;
+ first = *uc = *p;
+ /* Confirm all following bytes match the first */
+ while (++p < end) {
+ if (*p != first)
+ return (EDOOFUS);
+ }
+ break;
+ default:
+ KASSERT(0, ("md_malloc_move_vlist unknown op %d\n", op));
+ break;
+ }
+
+ ma_offs += seg_len;
+ if (ma_offs == vlist->ds_len) {
+ ma_offs = 0;
+ vlist++;
+ }
+ ptr = (uint8_t *)ptr + seg_len;
+ }
+ *pvlist = vlist;
+ *pma_offs = ma_offs;
+
+ return (0);
+}
+
+static int
mdstart_malloc(struct md_s *sc, struct bio *bp)
{
u_char *dst;
vm_page_t *m;
+ bus_dma_segment_t *vlist;
int i, error, error1, ma_offs, notmapped;
off_t secno, nsec, uc;
uintptr_t sp, osp;
@@ -538,10 +598,16 @@ mdstart_malloc(struct md_s *sc, struct bio *bp)
}
notmapped = (bp->bio_flags & BIO_UNMAPPED) != 0;
+ vlist = (bp->bio_flags & BIO_VLIST) != 0 ?
+ (bus_dma_segment_t *)bp->bio_data : NULL;
if (notmapped) {
m = bp->bio_ma;
ma_offs = bp->bio_ma_offset;
dst = NULL;
+ KASSERT(vlist == NULL, ("vlists cannot be unmapped"));
+ } else if (vlist != NULL) {
+ ma_offs = bp->bio_ma_offset;
+ dst = NULL;
} else {
dst = bp->bio_data;
}
@@ -557,23 +623,36 @@ mdstart_malloc(struct md_s *sc, struct bio *bp)
} else if (bp->bio_cmd == BIO_READ) {
if (osp == 0) {
if (notmapped) {
- error = md_malloc_move(&m, &ma_offs,
+ error = md_malloc_move_ma(&m, &ma_offs,
sc->sectorsize, NULL, 0,
MD_MALLOC_MOVE_ZERO);
+ } else if (vlist != NULL) {
+ error = md_malloc_move_vlist(&vlist,
+ &ma_offs, sc->sectorsize, NULL, 0,
+ MD_MALLOC_MOVE_ZERO);
} else
bzero(dst, sc->sectorsize);
} else if (osp <= 255) {
if (notmapped) {
- error = md_malloc_move(&m, &ma_offs,
+ error = md_malloc_move_ma(&m, &ma_offs,
sc->sectorsize, NULL, osp,
MD_MALLOC_MOVE_FILL);
+ } else if (vlist != NULL) {
+ error = md_malloc_move_vlist(&vlist,
+ &ma_offs, sc->sectorsize, NULL, osp,
+ MD_MALLOC_MOVE_FILL);
} else
memset(dst, osp, sc->sectorsize);
} else {
if (notmapped) {
- error = md_malloc_move(&m, &ma_offs,
+ error = md_malloc_move_ma(&m, &ma_offs,
sc->sectorsize, (void *)osp, 0,
MD_MALLOC_MOVE_READ);
+ } else if (vlist != NULL) {
+ error = md_malloc_move_vlist(&vlist,
+ &ma_offs, sc->sectorsize,
+ (void *)osp, 0,
+ MD_MALLOC_MOVE_READ);
} else {
bcopy((void *)osp, dst, sc->sectorsize);
cpu_flush_dcache(dst, sc->sectorsize);
@@ -583,10 +662,15 @@ mdstart_malloc(struct md_s *sc, struct bio *bp)
} else if (bp->bio_cmd == BIO_WRITE) {
if (sc->flags & MD_COMPRESS) {
if (notmapped) {
- error1 = md_malloc_move(&m, &ma_offs,
+ error1 = md_malloc_move_ma(&m, &ma_offs,
sc->sectorsize, &uc, 0,
MD_MALLOC_MOVE_CMP);
i = error1 == 0 ? sc->sectorsize : 0;
+ } else if (vlist != NULL) {
+ error1 = md_malloc_move_vlist(&vlist,
+ &ma_offs, sc->sectorsize, &uc, 0,
+ MD_MALLOC_MOVE_CMP);
+ i = error1 == 0 ? sc->sectorsize : 0;
} else {
uc = dst[0];
for (i = 1; i < sc->sectorsize; i++) {
@@ -611,10 +695,15 @@ mdstart_malloc(struct md_s *sc, struct bio *bp)
break;
}
if (notmapped) {
- error = md_malloc_move(&m,
+ error = md_malloc_move_ma(&m,
&ma_offs, sc->sectorsize,
(void *)sp, 0,
MD_MALLOC_MOVE_WRITE);
+ } else if (vlist != NULL) {
+ error = md_malloc_move_vlist(
+ &vlist, &ma_offs,
+ sc->sectorsize, (void *)sp,
+ 0, MD_MALLOC_MOVE_WRITE);
} else {
bcopy(dst, (void *)sp,
sc->sectorsize);
@@ -622,10 +711,15 @@ mdstart_malloc(struct md_s *sc, struct bio *bp)
error = s_write(sc->indir, secno, sp);
} else {
if (notmapped) {
- error = md_malloc_move(&m,
+ error = md_malloc_move_ma(&m,
&ma_offs, sc->sectorsize,
(void *)osp, 0,
MD_MALLOC_MOVE_WRITE);
+ } else if (vlist != NULL) {
+ error = md_malloc_move_vlist(
+ &vlist, &ma_offs,
+ sc->sectorsize, (void *)osp,
+ 0, MD_MALLOC_MOVE_WRITE);
} else {
bcopy(dst, (void *)osp,
sc->sectorsize);
@@ -641,26 +735,78 @@ mdstart_malloc(struct md_s *sc, struct bio *bp)
if (error != 0)
break;
secno++;
- if (!notmapped)
+ if (!notmapped && vlist == NULL)
dst += sc->sectorsize;
}
bp->bio_resid = 0;
return (error);
}
+static void
+mdcopyto_vlist(void *src, bus_dma_segment_t *vlist, off_t offset, off_t len)
+{
+ off_t seg_len;
+
+ while (offset >= vlist->ds_len) {
+ offset -= vlist->ds_len;
+ vlist++;
+ }
+
+ while (len != 0) {
+ seg_len = omin(len, vlist->ds_len - offset);
+ bcopy(src, (void *)(uintptr_t)(vlist->ds_addr + offset),
+ seg_len);
+ offset = 0;
+ src = (uint8_t *)src + seg_len;
+ len -= seg_len;
+ vlist++;
+ }
+}
+
+static void
+mdcopyfrom_vlist(bus_dma_segment_t *vlist, off_t offset, void *dst, off_t len)
+{
+ off_t seg_len;
+
+ while (offset >= vlist->ds_len) {
+ offset -= vlist->ds_len;
+ vlist++;
+ }
+
+ while (len != 0) {
+ seg_len = omin(len, vlist->ds_len - offset);
+ bcopy((void *)(uintptr_t)(vlist->ds_addr + offset), dst,
+ seg_len);
+ offset = 0;
+ dst = (uint8_t *)dst + seg_len;
+ len -= seg_len;
+ vlist++;
+ }
+}
+
static int
mdstart_preload(struct md_s *sc, struct bio *bp)
{
+ uint8_t *p;
+ p = sc->pl_ptr + bp->bio_offset;
switch (bp->bio_cmd) {
case BIO_READ:
- bcopy(sc->pl_ptr + bp->bio_offset, bp->bio_data,
- bp->bio_length);
+ if ((bp->bio_flags & BIO_VLIST) != 0) {
+ mdcopyto_vlist(p, (bus_dma_segment_t *)bp->bio_data,
+ bp->bio_ma_offset, bp->bio_length);
+ } else {
+ bcopy(p, bp->bio_data, bp->bio_length);
+ }
cpu_flush_dcache(bp->bio_data, bp->bio_length);
break;
case BIO_WRITE:
- bcopy(bp->bio_data, sc->pl_ptr + bp->bio_offset,
- bp->bio_length);
+ if ((bp->bio_flags & BIO_VLIST) != 0) {
+ mdcopyfrom_vlist((bus_dma_segment_t *)bp->bio_data,
+ bp->bio_ma_offset, p, bp->bio_length);
+ } else {
+ bcopy(bp->bio_data, p, bp->bio_length);
+ }
break;
}
bp->bio_resid = 0;
@@ -673,16 +819,23 @@ mdstart_vnode(struct md_s *sc, struct bio *bp)
int error;
struct uio auio;
struct iovec aiov;
+ struct iovec *piov;
struct mount *mp;
struct vnode *vp;
struct buf *pb;
+ bus_dma_segment_t *vlist;
struct thread *td;
- off_t end, zerosize;
+ off_t len, zerosize;
+ int ma_offs;
switch (bp->bio_cmd) {
case BIO_READ:
+ auio.uio_rw = UIO_READ;
+ break;
case BIO_WRITE:
case BIO_DELETE:
+ auio.uio_rw = UIO_WRITE;
+ break;
case BIO_FLUSH:
break;
default:
@@ -691,6 +844,9 @@ mdstart_vnode(struct md_s *sc, struct bio *bp)
td = curthread;
vp = sc->vnode;
+ pb = NULL;
+ piov = NULL;
+ ma_offs = bp->bio_ma_offset;
/*
* VNODE I/O
@@ -709,73 +865,66 @@ mdstart_vnode(struct md_s *sc, struct bio *bp)
return (error);
}
- bzero(&auio, sizeof(auio));
+ auio.uio_offset = (vm_ooffset_t)bp->bio_offset;
+ auio.uio_resid = bp->bio_length;
+ auio.uio_segflg = UIO_SYSSPACE;
+ auio.uio_td = td;
- /*
- * Special case for BIO_DELETE. On the surface, this is very
- * similar to BIO_WRITE, except that we write from our own
- * fixed-length buffer, so we have to loop. The net result is
- * that the two cases end up having very little in common.
- */
if (bp->bio_cmd == BIO_DELETE) {
+ /*
+ * Emulate BIO_DELETE by writing zeros.
+ */
zerosize = ZERO_REGION_SIZE -
(ZERO_REGION_SIZE % sc->sectorsize);
- auio.uio_iov = &aiov;
- auio.uio_iovcnt = 1;
- auio.uio_offset = (vm_ooffset_t)bp->bio_offset;
- auio.uio_segflg = UIO_SYSSPACE;
- auio.uio_rw = UIO_WRITE;
- auio.uio_td = td;
- end = bp->bio_offset + bp->bio_length;
- (void) vn_start_write(vp, &mp, V_WAIT);
- vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
- error = 0;
- while (auio.uio_offset < end) {
- aiov.iov_base = __DECONST(void *, zero_region);
- aiov.iov_len = end - auio.uio_offset;
- if (aiov.iov_len > zerosize)
- aiov.iov_len = zerosize;
- auio.uio_resid = aiov.iov_len;
- error = VOP_WRITE(vp, &auio,
- sc->flags & MD_ASYNC ? 0 : IO_SYNC, sc->cred);
- if (error != 0)
- break;
+ auio.uio_iovcnt = howmany(bp->bio_length, zerosize);
+ piov = malloc(sizeof(*piov) * auio.uio_iovcnt, M_MD, M_WAITOK);
+ auio.uio_iov = piov;
+ len = bp->bio_length;
+ while (len > 0) {
+ piov->iov_base = __DECONST(void *, zero_region);
+ piov->iov_len = len;
+ if (len > zerosize)
+ piov->iov_len = zerosize;
+ len -= piov->iov_len;
+ piov++;
}
- VOP_UNLOCK(vp, 0);
- vn_finished_write(mp);
- bp->bio_resid = end - auio.uio_offset;
- return (error);
- }
-
- KASSERT(bp->bio_length <= MAXPHYS, ("bio_length %jd",
- (uintmax_t)bp->bio_length));
- if ((bp->bio_flags & BIO_UNMAPPED) == 0) {
- pb = NULL;
- aiov.iov_base = bp->bio_data;
- } else {
+ piov = auio.uio_iov;
+ } else if ((bp->bio_flags & BIO_VLIST) != 0) {
+ piov = malloc(sizeof(*piov) * bp->bio_ma_n, M_MD, M_WAITOK);
+ auio.uio_iov = piov;
+ vlist = (bus_dma_segment_t *)bp->bio_data;
+ len = bp->bio_length;
+ while (len > 0) {
+ piov->iov_base = (void *)(uintptr_t)(vlist->ds_addr +
+ ma_offs);
+ piov->iov_len = vlist->ds_len - ma_offs;
+ if (piov->iov_len > len)
+ piov->iov_len = len;
+ len -= piov->iov_len;
+ ma_offs = 0;
+ vlist++;
+ piov++;
+ }
+ auio.uio_iovcnt = piov - auio.uio_iov;
+ piov = auio.uio_iov;
+ } else if ((bp->bio_flags & BIO_UNMAPPED) != 0) {
pb = getpbuf(&md_vnode_pbuf_freecnt);
pmap_qenter((vm_offset_t)pb->b_data, bp->bio_ma, bp->bio_ma_n);
- aiov.iov_base = (void *)((vm_offset_t)pb->b_data +
- bp->bio_ma_offset);
+ aiov.iov_base = (void *)((vm_offset_t)pb->b_data + ma_offs);
+ aiov.iov_len = bp->bio_length;
+ auio.uio_iov = &aiov;
+ auio.uio_iovcnt = 1;
+ } else {
+ aiov.iov_base = bp->bio_data;
+ aiov.iov_len = bp->bio_length;
+ auio.uio_iov = &aiov;
+ auio.uio_iovcnt = 1;
}
- aiov.iov_len = bp->bio_length;
- auio.uio_iov = &aiov;
- auio.uio_iovcnt = 1;
- auio.uio_offset = (vm_ooffset_t)bp->bio_offset;
- auio.uio_segflg = UIO_SYSSPACE;
- if (bp->bio_cmd == BIO_READ)
- auio.uio_rw = UIO_READ;
- else if (bp->bio_cmd == BIO_WRITE)
- auio.uio_rw = UIO_WRITE;
- else
- panic("wrong BIO_OP in mdstart_vnode");
- auio.uio_resid = bp->bio_length;
- auio.uio_td = td;
/*
* When reading set IO_DIRECT to try to avoid double-caching
* the data. When writing IO_DIRECT is not optimal.
*/
- if (bp->bio_cmd == BIO_READ) {
+ if (auio.uio_rw == UIO_READ) {
vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
error = VOP_READ(vp, &auio, IO_DIRECT, sc->cred);
VOP_UNLOCK(vp, 0);
@@ -787,10 +936,15 @@ mdstart_vnode(struct md_s *sc, struct bio *bp)
VOP_UNLOCK(vp, 0);
vn_finished_write(mp);
}
- if ((bp->bio_flags & BIO_UNMAPPED) != 0) {
+
+ if (pb) {
pmap_qremove((vm_offset_t)pb->b_data, bp->bio_ma_n);
relpbuf(pb, &md_vnode_pbuf_freecnt);
}
+
+ if (piov != NULL)
+ free(piov, M_MD);
+
bp->bio_resid = auio.uio_resid;
return (error);
}
@@ -801,6 +955,7 @@ mdstart_swap(struct md_s *sc, struct bio *bp)
vm_page_t m;
u_char *p;
vm_pindex_t i, lastp;
+ bus_dma_segment_t *vlist;
int rv, ma_offs, offs, len, lastend;
switch (bp->bio_cmd) {
@@ -813,7 +968,10 @@ mdstart_swap(struct md_s *sc, struct bio *bp)
}
p = bp->bio_data;
- ma_offs = (bp->bio_flags & BIO_UNMAPPED) == 0 ? 0 : bp->bio_ma_offset;
+ ma_offs = (bp->bio_flags & (BIO_UNMAPPED|BIO_VLIST)) != 0 ?
+ bp->bio_ma_offset : 0;
+ vlist = (bp->bio_flags & BIO_VLIST) != 0 ?
+ (bus_dma_segment_t *)bp->bio_data : NULL;
/*
* offs is the offset at which to start operating on the
@@ -853,6 +1011,10 @@ mdstart_swap(struct md_s *sc, struct bio *bp)
if ((bp->bio_flags & BIO_UNMAPPED) != 0) {
pmap_copy_pages(&m, offs, bp->bio_ma,
ma_offs, len);
+ } else if ((bp->bio_flags & BIO_VLIST) != 0) {
+ physcopyout_vlist(VM_PAGE_TO_PHYS(m) + offs,
+ vlist, ma_offs, len);
+ cpu_flush_dcache(p, len);
} else {
physcopyout(VM_PAGE_TO_PHYS(m) + offs, p, len);
cpu_flush_dcache(p, len);
@@ -869,6 +1031,9 @@ mdstart_swap(struct md_s *sc, struct bio *bp)
if ((bp->bio_flags & BIO_UNMAPPED) != 0) {
pmap_copy_pages(bp->bio_ma, ma_offs, &m,
offs, len);
+ } else if ((bp->bio_flags & BIO_VLIST) != 0) {
+ physcopyin_vlist(vlist, ma_offs,
+ VM_PAGE_TO_PHYS(m) + offs, len);
} else {
physcopyin(p, VM_PAGE_TO_PHYS(m) + offs, len);
}
diff --git a/sys/geom/geom_disk.c b/sys/geom/geom_disk.c
index 9319b97..1a879f7 100644
--- a/sys/geom/geom_disk.c
+++ b/sys/geom/geom_disk.c
@@ -58,6 +58,8 @@ __FBSDID("$FreeBSD$");
#include <dev/led/led.h>
+#include <machine/bus.h>
+
struct g_disk_softc {
struct mtx done_mtx;
struct disk *dp;
@@ -273,6 +275,145 @@ g_disk_ioctl(struct g_provider *pp, u_long cmd, void * data, int fflag, struct t
return (error);
}
+static off_t
+g_disk_maxsize(struct disk *dp, struct bio *bp)
+{
+ if (bp->bio_cmd == BIO_DELETE)
+ return (dp->d_delmaxsize);
+ return (dp->d_maxsize);
+}
+
+static int
+g_disk_maxsegs(struct disk *dp, struct bio *bp)
+{
+ return ((g_disk_maxsize(dp, bp) / PAGE_SIZE) + 1);
+}
+
+static void
+g_disk_advance(struct disk *dp, struct bio *bp, off_t off)
+{
+
+ bp->bio_offset += off;
+ bp->bio_length -= off;
+
+ if ((bp->bio_flags & BIO_VLIST) != 0) {
+ bus_dma_segment_t *seg, *end;
+
+ seg = (bus_dma_segment_t *)bp->bio_data;
+ end = (bus_dma_segment_t *)bp->bio_data + bp->bio_ma_n;
+ off += bp->bio_ma_offset;
+ while (off >= seg->ds_len) {
+ KASSERT((seg != end),
+ ("vlist request runs off the end"));
+ off -= seg->ds_len;
+ seg++;
+ }
+ bp->bio_ma_offset = off;
+ bp->bio_ma_n = end - seg;
+ bp->bio_data = (void *)seg;
+ } else if ((bp->bio_flags & BIO_UNMAPPED) != 0) {
+ bp->bio_ma += off / PAGE_SIZE;
+ bp->bio_ma_offset += off;
+ bp->bio_ma_offset %= PAGE_SIZE;
+ bp->bio_ma_n -= off / PAGE_SIZE;
+ } else {
+ bp->bio_data += off;
+ }
+}
+
+static void
+g_disk_seg_limit(bus_dma_segment_t *seg, off_t *poffset,
+ off_t *plength, int *ppages)
+{
+ uintptr_t seg_page_base;
+ uintptr_t seg_page_end;
+ off_t offset;
+ off_t length;
+ int seg_pages;
+
+ offset = *poffset;
+ length = *plength;
+
+ if (length > seg->ds_len - offset)
+ length = seg->ds_len - offset;
+
+ seg_page_base = trunc_page(seg->ds_addr + offset);
+ seg_page_end = round_page(seg->ds_addr + offset + length);
+ seg_pages = (seg_page_end - seg_page_base) >> PAGE_SHIFT;
+
+ if (seg_pages > *ppages) {
+ seg_pages = *ppages;
+ length = (seg_page_base + (seg_pages << PAGE_SHIFT)) -
+ (seg->ds_addr + offset);
+ }
+
+ *poffset = 0;
+ *plength -= length;
+ *ppages -= seg_pages;
+}
+
+static off_t
+g_disk_vlist_limit(struct disk *dp, struct bio *bp, bus_dma_segment_t **pendseg)
+{
+ bus_dma_segment_t *seg, *end;
+ off_t residual;
+ off_t offset;
+ int pages;
+
+ seg = (bus_dma_segment_t *)bp->bio_data;
+ end = (bus_dma_segment_t *)bp->bio_data + bp->bio_ma_n;
+ residual = bp->bio_length;
+ offset = bp->bio_ma_offset;
+ pages = g_disk_maxsegs(dp, bp);
+ while (residual != 0 && pages != 0) {
+ KASSERT((seg != end),
+ ("vlist limit runs off the end"));
+ g_disk_seg_limit(seg, &offset, &residual, &pages);
+ seg++;
+ }
+ if (pendseg != NULL)
+ *pendseg = seg;
+ return (residual);
+}
+
+static bool
+g_disk_limit(struct disk *dp, struct bio *bp)
+{
+ bool limited = false;
+ off_t maxsz;
+
+ maxsz = g_disk_maxsize(dp, bp);
+
+ /*
+ * XXX: If we have a stripesize we should really use it here.
+ * Care should be taken in the delete case if this is done
+ * as deletes can be very sensitive to size given how they
+ * are processed.
+ */
+ if (bp->bio_length > maxsz) {
+ bp->bio_length = maxsz;
+ limited = true;
+ }
+
+ if ((bp->bio_flags & BIO_VLIST) != 0) {
+ bus_dma_segment_t *firstseg, *endseg;
+ off_t residual;
+
+ firstseg = (bus_dma_segment_t*)bp->bio_data;
+ residual = g_disk_vlist_limit(dp, bp, &endseg);
+ if (residual != 0) {
+ bp->bio_ma_n = endseg - firstseg;
+ bp->bio_length -= residual;
+ limited = true;
+ }
+ } else if ((bp->bio_flags & BIO_UNMAPPED) != 0) {
+ bp->bio_ma_n =
+ howmany(bp->bio_ma_offset + bp->bio_length, PAGE_SIZE);
+ }
+
+ return (limited);
+}
+
static void
g_disk_start(struct bio *bp)
{
@@ -297,6 +438,9 @@ g_disk_start(struct bio *bp)
/* fall-through */
case BIO_READ:
case BIO_WRITE:
+ KASSERT((dp->d_flags & DISKFLAG_UNMAPPED_BIO) != 0 ||
+ (bp->bio_flags & BIO_UNMAPPED) == 0,
+ ("unmapped bio not supported by disk %s", dp->d_name));
off = 0;
bp3 = NULL;
bp2 = g_clone_bio(bp);
@@ -304,39 +448,10 @@ g_disk_start(struct bio *bp)
error = ENOMEM;
break;
}
- do {
- off_t d_maxsize;
-
- d_maxsize = (bp->bio_cmd == BIO_DELETE) ?
- dp->d_delmaxsize : dp->d_maxsize;
- bp2->bio_offset += off;
- bp2->bio_length -= off;
- if ((bp->bio_flags & BIO_UNMAPPED) == 0) {
- bp2->bio_data += off;
- } else {
- KASSERT((dp->d_flags & DISKFLAG_UNMAPPED_BIO)
- != 0,
- ("unmapped bio not supported by disk %s",
- dp->d_name));
- bp2->bio_ma += off / PAGE_SIZE;
- bp2->bio_ma_offset += off;
- bp2->bio_ma_offset %= PAGE_SIZE;
- bp2->bio_ma_n -= off / PAGE_SIZE;
- }
- if (bp2->bio_length > d_maxsize) {
- /*
- * XXX: If we have a stripesize we should really
- * use it here. Care should be taken in the delete
- * case if this is done as deletes can be very
- * sensitive to size given how they are processed.
- */
- bp2->bio_length = d_maxsize;
- if ((bp->bio_flags & BIO_UNMAPPED) != 0) {
- bp2->bio_ma_n = howmany(
- bp2->bio_ma_offset +
- bp2->bio_length, PAGE_SIZE);
- }
- off += d_maxsize;
+ for (;;) {
+ if (g_disk_limit(dp, bp2)) {
+ off += bp2->bio_length;
+
/*
* To avoid a race, we need to grab the next bio
* before we schedule this one. See "notes".
@@ -355,9 +470,14 @@ g_disk_start(struct bio *bp)
g_disk_lock_giant(dp);
dp->d_strategy(bp2);
g_disk_unlock_giant(dp);
+
+ if (bp3 == NULL)
+ break;
+
bp2 = bp3;
bp3 = NULL;
- } while (bp2 != NULL);
+ g_disk_advance(dp, bp2, off);
+ }
break;
case BIO_GETATTR:
/* Give the driver a chance to override */
diff --git a/sys/geom/geom_io.c b/sys/geom/geom_io.c
index f1edc70..9dff151 100644
--- a/sys/geom/geom_io.c
+++ b/sys/geom/geom_io.c
@@ -205,11 +205,12 @@ g_clone_bio(struct bio *bp)
/*
* BIO_ORDERED flag may be used by disk drivers to enforce
* ordering restrictions, so this flag needs to be cloned.
- * BIO_UNMAPPED should be inherited, to properly indicate
- * which way the buffer is passed.
+ * BIO_UNMAPPED and BIO_VLIST should be inherited, to properly
+ * indicate which way the buffer is passed.
* Other bio flags are not suitable for cloning.
*/
- bp2->bio_flags = bp->bio_flags & (BIO_ORDERED | BIO_UNMAPPED);
+ bp2->bio_flags = bp->bio_flags &
+ (BIO_ORDERED | BIO_UNMAPPED | BIO_VLIST);
bp2->bio_length = bp->bio_length;
bp2->bio_offset = bp->bio_offset;
bp2->bio_data = bp->bio_data;
@@ -240,7 +241,7 @@ g_duplicate_bio(struct bio *bp)
struct bio *bp2;
bp2 = uma_zalloc(biozone, M_WAITOK | M_ZERO);
- bp2->bio_flags = bp->bio_flags & BIO_UNMAPPED;
+ bp2->bio_flags = bp->bio_flags & (BIO_UNMAPPED | BIO_VLIST);
bp2->bio_parent = bp;
bp2->bio_cmd = bp->bio_cmd;
bp2->bio_length = bp->bio_length;
diff --git a/sys/ia64/include/bus.h b/sys/ia64/include/bus.h
index 966a75d3..a9b09c6 100644
--- a/sys/ia64/include/bus.h
+++ b/sys/ia64/include/bus.h
@@ -123,6 +123,7 @@
#define BUS_SPACE_UNRESTRICTED (~0)
+#ifdef _KERNEL
/*
* Map and unmap a region of device bus space into CPU virtual address space.
@@ -815,6 +816,8 @@ bus_space_copy_region_8(bus_space_tag_t bst, bus_space_handle_t sbsh,
#define bus_space_copy_region_stream_4 bus_space_copy_region_4
#define bus_space_copy_region_stream_8 bus_space_copy_region_8
+#endif /* _KERNEL */
+
#include <machine/bus_dma.h>
#endif /* _MACHINE_BUS_H_ */
diff --git a/sys/kern/subr_bus_dma.c b/sys/kern/subr_bus_dma.c
index a16d8c8..ae30276 100644
--- a/sys/kern/subr_bus_dma.c
+++ b/sys/kern/subr_bus_dma.c
@@ -54,19 +54,32 @@ __FBSDID("$FreeBSD$");
#include <machine/bus.h>
/*
- * Load a list of virtual addresses.
+ * Load up data starting at offset within a region specified by a
+ * list of virtual address ranges until either length or the region
+ * are exhausted.
*/
static int
_bus_dmamap_load_vlist(bus_dma_tag_t dmat, bus_dmamap_t map,
bus_dma_segment_t *list, int sglist_cnt, struct pmap *pmap, int *nsegs,
- int flags)
+ int flags, size_t offset, size_t length)
{
int error;
error = 0;
- for (; sglist_cnt > 0; sglist_cnt--, list++) {
- error = _bus_dmamap_load_buffer(dmat, map,
- (void *)(uintptr_t)list->ds_addr, list->ds_len, pmap,
+ for (; sglist_cnt > 0 && length != 0; sglist_cnt--, list++) {
+ char *addr;
+ size_t ds_len;
+
+ KASSERT((offset < list->ds_len),
+ ("Invalid mid-segment offset"));
+ addr = (char *)(uintptr_t)list->ds_addr + offset;
+ ds_len = list->ds_len - offset;
+ offset = 0;
+ if (ds_len > length)
+ ds_len = length;
+ length -= ds_len;
+ KASSERT((ds_len != 0), ("Segment length is zero"));
+ error = _bus_dmamap_load_buffer(dmat, map, addr, ds_len, pmap,
flags, NULL, nsegs);
if (error)
break;
@@ -118,22 +131,48 @@ _bus_dmamap_load_mbuf_sg(bus_dma_tag_t dmat, bus_dmamap_t map,
}
/*
+ * Load tlen data starting at offset within a region specified by a list of
+ * physical pages.
+ */
+static int
+_bus_dmamap_load_pages(bus_dma_tag_t dmat, bus_dmamap_t map,
+ vm_page_t *pages, bus_size_t tlen, int offset, int *nsegs, int flags)
+{
+ vm_paddr_t paddr;
+ bus_size_t len;
+ int error, i;
+
+ for (i = 0, error = 0; error == 0 && tlen > 0; i++, tlen -= len) {
+ len = min(PAGE_SIZE - offset, tlen);
+ paddr = VM_PAGE_TO_PHYS(pages[i]) + offset;
+ error = _bus_dmamap_load_phys(dmat, map, paddr, len,
+ flags, NULL, nsegs);
+ offset = 0;
+ }
+ return (error);
+}
+
+/*
* Load from block io.
*/
static int
_bus_dmamap_load_bio(bus_dma_tag_t dmat, bus_dmamap_t map, struct bio *bio,
int *nsegs, int flags)
{
- int error;
- if ((bio->bio_flags & BIO_UNMAPPED) == 0) {
- error = _bus_dmamap_load_buffer(dmat, map, bio->bio_data,
- bio->bio_bcount, kernel_pmap, flags, NULL, nsegs);
- } else {
- error = _bus_dmamap_load_ma(dmat, map, bio->bio_ma,
- bio->bio_bcount, bio->bio_ma_offset, flags, NULL, nsegs);
+ if ((bio->bio_flags & BIO_VLIST) != 0) {
+ bus_dma_segment_t *segs = (bus_dma_segment_t *)bio->bio_data;
+ return (_bus_dmamap_load_vlist(dmat, map, segs, bio->bio_ma_n,
+ kernel_pmap, nsegs, flags, bio->bio_ma_offset,
+ bio->bio_bcount));
}
- return (error);
+
+ if ((bio->bio_flags & BIO_UNMAPPED) != 0)
+ return (_bus_dmamap_load_pages(dmat, map, bio->bio_ma,
+ bio->bio_bcount, bio->bio_ma_offset, nsegs, flags));
+
+ return (_bus_dmamap_load_buffer(dmat, map, bio->bio_data,
+ bio->bio_bcount, kernel_pmap, flags, NULL, nsegs));
}
int
@@ -219,7 +258,7 @@ _bus_dmamap_load_ccb(bus_dma_tag_t dmat, bus_dmamap_t map, union ccb *ccb,
case CAM_DATA_SG:
error = _bus_dmamap_load_vlist(dmat, map,
(bus_dma_segment_t *)data_ptr, sglist_cnt, kernel_pmap,
- nsegs, flags);
+ nsegs, flags, 0, dxfer_len);
break;
case CAM_DATA_SG_PADDR:
error = _bus_dmamap_load_plist(dmat, map,
@@ -494,7 +533,7 @@ bus_dmamap_load_mem(bus_dma_tag_t dmat, bus_dmamap_t map,
break;
case MEMDESC_VLIST:
error = _bus_dmamap_load_vlist(dmat, map, mem->u.md_list,
- mem->md_opaque, kernel_pmap, &nsegs, flags);
+ mem->md_opaque, kernel_pmap, &nsegs, flags, 0, SIZE_T_MAX);
break;
case MEMDESC_PLIST:
error = _bus_dmamap_load_plist(dmat, map, mem->u.md_list,
diff --git a/sys/kern/subr_uio.c b/sys/kern/subr_uio.c
index 87892fd..3712f92 100644
--- a/sys/kern/subr_uio.c
+++ b/sys/kern/subr_uio.c
@@ -62,6 +62,8 @@ __FBSDID("$FreeBSD$");
#include <vm/vm_pageout.h>
#include <vm/vm_map.h>
+#include <machine/bus.h>
+
SYSCTL_INT(_kern, KERN_IOV_MAX, iov_max, CTLFLAG_RD, SYSCTL_NULL_INT_PTR, UIO_MAXIOV,
"Maximum number of elements in an I/O vector; sysconf(_SC_IOV_MAX)");
@@ -136,6 +138,58 @@ physcopyout(vm_paddr_t src, void *dst, size_t len)
#undef PHYS_PAGE_COUNT
int
+physcopyin_vlist(bus_dma_segment_t *src, off_t offset, vm_paddr_t dst,
+ size_t len)
+{
+ size_t seg_len;
+ int error;
+
+ error = 0;
+ while (offset >= src->ds_len) {
+ offset -= src->ds_len;
+ src++;
+ }
+
+ while (len > 0 && error == 0) {
+ seg_len = MIN(src->ds_len - offset, len);
+ error = physcopyin((void *)(uintptr_t)(src->ds_addr + offset),
+ dst, seg_len);
+ offset = 0;
+ src++;
+ len -= seg_len;
+ dst += seg_len;
+ }
+
+ return (error);
+}
+
+int
+physcopyout_vlist(vm_paddr_t src, bus_dma_segment_t *dst, off_t offset,
+ size_t len)
+{
+ size_t seg_len;
+ int error;
+
+ error = 0;
+ while (offset >= dst->ds_len) {
+ offset -= dst->ds_len;
+ dst++;
+ }
+
+ while (len > 0 && error == 0) {
+ seg_len = MIN(dst->ds_len - offset, len);
+ error = physcopyout(src, (void *)(uintptr_t)(dst->ds_addr +
+ offset), seg_len);
+ offset = 0;
+ dst++;
+ len -= seg_len;
+ src += seg_len;
+ }
+
+ return (error);
+}
+
+int
uiomove(void *cp, int n, struct uio *uio)
{
diff --git a/sys/pc98/include/bus.h b/sys/pc98/include/bus.h
index 3292474..2060414 100644
--- a/sys/pc98/include/bus.h
+++ b/sys/pc98/include/bus.h
@@ -78,7 +78,9 @@
#ifndef _PC98_BUS_H_
#define _PC98_BUS_H_
+#ifdef _KERNEL
#include <sys/systm.h>
+#endif /* _KERNEL */
#include <machine/_bus.h>
#include <machine/cpufunc.h>
@@ -92,6 +94,8 @@
#define BUS_SPACE_UNRESTRICTED (~0)
+#ifdef _KERNEL
+
/*
* address relocation table
*/
@@ -639,4 +643,6 @@ bus_space_barrier(bus_space_tag_t tag, bus_space_handle_t bsh,
#define bus_space_copy_region_stream_4(t, h1, o1, h2, o2, c) \
bus_space_copy_region_4((t), (h1), (o1), (h2), (o2), (c))
+#endif /* _KERNEL */
+
#endif /* _PC98_BUS_H_ */
diff --git a/sys/sys/bio.h b/sys/sys/bio.h
index 535ce61..8b3a5fc 100644
--- a/sys/sys/bio.h
+++ b/sys/sys/bio.h
@@ -61,6 +61,7 @@
#define BIO_ORDERED 0x08
#define BIO_UNMAPPED 0x10
#define BIO_TRANSIENT_MAPPING 0x20
+#define BIO_VLIST 0x40
#ifdef _KERNEL
struct disk;
diff --git a/sys/sys/uio.h b/sys/sys/uio.h
index 271a2f7..ff21b09 100644
--- a/sys/sys/uio.h
+++ b/sys/sys/uio.h
@@ -85,6 +85,7 @@ struct uio {
struct vm_object;
struct vm_page;
+struct bus_dma_segment;
struct uio *cloneuio(struct uio *uiop);
int copyinfrom(const void * __restrict src, void * __restrict dst,
@@ -98,6 +99,10 @@ int copyout_map(struct thread *td, vm_offset_t *addr, size_t sz);
int copyout_unmap(struct thread *td, vm_offset_t addr, size_t sz);
int physcopyin(void *src, vm_paddr_t dst, size_t len);
int physcopyout(vm_paddr_t src, void *dst, size_t len);
+int physcopyin_vlist(struct bus_dma_segment *src, off_t offset,
+ vm_paddr_t dst, size_t len);
+int physcopyout_vlist(vm_paddr_t src, struct bus_dma_segment *dst,
+ off_t offset, size_t len);
int uiomove(void *cp, int n, struct uio *uio);
int uiomove_frombuf(void *buf, int buflen, struct uio *uio);
int uiomove_fromphys(struct vm_page *ma[], vm_offset_t offset, int n,
diff --git a/usr.sbin/Makefile b/usr.sbin/Makefile
index 57effb8..8e97961 100644
--- a/usr.sbin/Makefile
+++ b/usr.sbin/Makefile
@@ -7,6 +7,7 @@ SUBDIR= adduser \
arp \
binmiscctl \
bsdconfig \
+ camdd \
cdcontrol \
chkgrp \
chown \
diff --git a/usr.sbin/camdd/Makefile b/usr.sbin/camdd/Makefile
new file mode 100644
index 0000000..0028668
--- /dev/null
+++ b/usr.sbin/camdd/Makefile
@@ -0,0 +1,11 @@
+# $FreeBSD$
+
+PROG= camdd
+SRCS= camdd.c
+SDIR= ${.CURDIR}/../../sys
+DPADD= ${LIBCAM} ${LIBMT} ${LIBSBUF} ${LIBBSDXML} ${LIBUTIL} ${LIBTHR}
+LDADD= -lcam -lmt -lsbuf -lbsdxml -lutil -lthr
+NO_WTHREAD_SAFETY= 1
+MAN= camdd.8
+
+.include <bsd.prog.mk>
diff --git a/usr.sbin/camdd/camdd.8 b/usr.sbin/camdd/camdd.8
new file mode 100644
index 0000000..af556bb
--- /dev/null
+++ b/usr.sbin/camdd/camdd.8
@@ -0,0 +1,283 @@
+.\"
+.\" Copyright (c) 2015 Spectra Logic Corporation
+.\" All rights reserved.
+.\"
+.\" Redistribution and use in source and binary forms, with or without
+.\" modification, are permitted provided that the following conditions
+.\" are met:
+.\" 1. Redistributions of source code must retain the above copyright
+.\" notice, this list of conditions, and the following disclaimer,
+.\" without modification.
+.\" 2. Redistributions in binary form must reproduce at minimum a disclaimer
+.\" substantially similar to the "NO WARRANTY" disclaimer below
+.\" ("Disclaimer") and any redistribution must be conditioned upon
+.\" including a substantially similar Disclaimer requirement for further
+.\" binary redistribution.
+.\"
+.\" NO WARRANTY
+.\" THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+.\" "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+.\" LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
+.\" A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+.\" HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+.\" DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+.\" OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+.\" HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
+.\" STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
+.\" IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+.\" POSSIBILITY OF SUCH DAMAGES.
+.\"
+.\" Authors: Ken Merry (Spectra Logic Corporation)
+.\"
+.\" $FreeBSD$
+.\"
+.Dd November 11, 2015
+.Dt CAMDD 8
+.Os
+.Sh NAME
+.Nm camdd
+.Nd CAM data transfer utility
+.Sh SYNOPSIS
+.Nm
+.Aq Fl i|o Ar pass=pass_dev|file=filename,bs=blocksize,[...]
+.Op Fl C Ar retry_count
+.Op Fl E
+.Op Fl m Ar max_io
+.Op Fl t Ar timeout
+.Op Fl v
+.Op Fl h
+.Sh DESCRIPTION
+The
+.Nm
+utility is a sequential data transfer utility that offers standard
+.Xr read 2
+and
+.Xr write 2
+operation in addition to a mode that uses the asynchronous
+.Xr pass 4
+API.
+The asynchronous
+.Xr pass 4
+API allows multiple requests to be queued to a device simultaneously.
+.Pp
+.Nm
+collects performance information and will display it when the transfer
+completes, when
+.Nm
+is terminated or when it receives a SIGINFO signal.
+.Pp
+The following options are available:
+.Bl -tag -width 12n
+.It Fl i | o Ar args
+Specify the input and output device or file.
+Both
+.Fl i
+and
+.Fl o
+must be specified.
+There are a number of parameters that can be specified.
+One of the first two (file or pass) MUST be specified to indicate which I/O
+method to use on the device in question.
+.Bl -tag -width 9n
+.It pass=dev
+Specify a
+.Xr pass 4
+device to operate on.
+This requests that
+.Nm
+access the device in question be accessed via the asynchronous
+.Xr pass 4
+interface.
+.Pp
+The device name can be a
+.Xr pass 4
+name and unit number, for instance
+.Dq pass0 ,
+or a regular peripheral driver name and unit number, for instance
+.Dq da5 .
+It can also be the path of a
+.Xr pass 4
+or other disk device, like
+.Dq /dev/da5 .
+It may also be a bus:target:lun, for example:
+.Dq 0:5:0 .
+.Pp
+Only
+.Xr pass 4
+devices for
+.Tn SCSI
+disk-like devices are supported.
+.Tn ATA
+devices are not currently supported, but support could be added later.
+Specifically,
+.Tn SCSI
+Direct Access (type 0), WORM (type 4), CDROM (type 5), and RBC (Reduced
+Block Command, type 14) devices are supported.
+Tape drives, medium changers, enclosures etc. are not supported.
+.It file=path
+Specify a file or device to operate on.
+This requests that the file or device in question be accessed using the
+standard
+.Xr read 2
+and
+.Xr write 2
+system calls.
+The file interface does not support queueing multiple commands at a time.
+It does support probing disk sector size and capacity information, and tape
+blocksize and maximum transfer size information.
+The file interface supports standard files, disks, tape drives, special
+devices, pipes and standard input and output.
+If the file is specified as a
+.Dq - ,
+standard input or standard output are used.
+For tape devices, the specified blocksize will be the size that
+.Nm
+attempts to use to write to or read from the tape.
+When writing to a tape device, the blocksize is treated like a disk sector
+size.
+So, that means
+.Nm
+will not write anything smaller than the sector size.
+At the end of a transfer, if there isn't sufficient data from the reader
+to yield a full block,
+.Nm
+will add zeros on the end of the data from the reader to make up a full
+block.
+.It bs=N
+Specify the blocksize to use for transfers.
+.Nm
+will attempt to read or write using the requested blocksize.
+.Pp
+Note that the blocksize given only applies to either the input or the
+output path.
+To use the same blocksize for the input and output transfers, you must
+specify that blocksize with both the
+.Fl i
+and
+.Fl o
+arguments.
+.Pp
+The blocksize may be specified in bytes, or using any suffix (e.g. k, M, G)
+supported by
+.Xr expand_number 3 .
+.It offset=N
+Specify the starting offset for the input or output device or file.
+The offset may be specified in bytes, or by using any suffix (e.g. k, M, G)
+supported by
+.Xr expand_number 3 .
+.It depth=N
+Specify a desired queue depth for the input or output path.
+.Nm
+will attempt to keep the requested number of requests of the specified
+blocksize queued to the input or output device.
+Queue depths greater than 1 are only supported for the asynchronous
+.Xr pass 4
+output method.
+The queue depth is maintained on a best effort basis, and may not be
+possible to maintain for especially fast devices.
+For writes, maintaining the queue depth also depends on a sufficiently
+fast reading device.
+.It mcs=N
+Specify the minimum command size to use for
+.Xr pass 4
+devices.
+Some devices do not support 6 byte
+.Tn SCSI
+commands.
+The
+.Xr da 4
+device handles this restriction automatically, but the
+.Xr pass 4
+device allows the user to specify the
+.Tn SCSI
+command used.
+If a device does not accept 6 byte
+.Tn SCSI
+READ/WRITE commands (which is the default at lower LBAs), it will generally
+accept 10 byte
+.Tn SCSI
+commands instead.
+.It debug=N
+Specify the debug level for this device.
+There is currently only one debug level setting, so setting this to any
+non-zero value will turn on debugging.
+The debug facility may be expanded in the future.
+.El
+.It Fl C Ar count
+Specify the retry count for commands sent via the asynchronous
+.Xr pass 4
+interface.
+This does not apply to commands sent via the file interface.
+.It Fl E
+Enable kernel error recovery for the
+.Xr pass 4
+driver.
+If error recovery is not enabled, unit attention conditions and other
+transient failures may cause the transfer to fail.
+.It Fl m Ar size
+Specify the maximum amount of data to be transferred.
+This may be specified in bytes, or by using any suffix (e.g. K, M, G)
+supported by
+.Xr expand_number 3 .
+.It Fl t Ar timeout
+Specify the command timeout in seconds to use for commands sent via the
+.Xr pass 4
+driver.
+.It Fl v
+Enable verbose reporting of errors.
+This is recommended to aid in debugging any
+.Tn SCSI
+issues that come up.
+.It Fl h
+Display the
+.Nm
+usage message.
+.El
+.Pp
+If
+.Nm
+receives a SIGINFO signal, it will print the current input and output byte
+counts, elapsed runtime and average throughput.
+If
+.Nm
+receives a SIGINT signal, it will print the current input and output byte
+counts, elapsed runtime and average throughput and then exit.
+.Sh EXAMPLES
+.Dl camdd -i pass=da8,bs=512k,depth=4 -o pass=da3,bs=512k,depth=4
+.Pp
+Copy all data from da8 to da3 using a blocksize of 512k for both drives,
+and attempt to maintain a queue depth of 4 on both the input and output
+devices.
+The transfer will stop when the end of either device is reached.
+.Pp
+.Dl camdd -i file=/dev/zero,bs=1M -o pass=da5,bs=1M,depth=4 -m 100M
+.Pp
+Read 1MB blocks of zeros from /dev/zero, and write them to da5 with a
+desired queue depth of 4.
+Stop the transfer after 100MB has been written.
+.Pp
+.Dl camdd -i pass=da8,bs=1M,depth=3 -o file=disk.img
+.Pp
+Copy disk da8 using a 1MB blocksize and desired queue depth of 3 to the
+file disk.img.
+.Pp
+.Dl camdd -i file=/etc/rc -o file=-
+.Pp
+Read the file /etc/rc and write it to standard output.
+.Pp
+.Dl camdd -i pass=da10,bs=64k,depth=16 -o file=/dev/nsa0,bs=128k
+.Pp
+Copy 64K blocks from the disk da10 with a queue depth of 16, and write
+to the tape drive sa0 with a 128k blocksize.
+The copy will stop when either the end of the disk or tape is reached.
+.Sh SEE ALSO
+.Xr cam 3 ,
+.Xr cam 4 ,
+.Xr pass 4 ,
+.Xr camcontrol 8
+.Sh HISTORY
+.Nm
+first appeared in
+.Fx 10.2
+.Sh AUTHORS
+.An Kenneth Merry Aq Mt ken@FreeBSD.org
diff --git a/usr.sbin/camdd/camdd.c b/usr.sbin/camdd/camdd.c
new file mode 100644
index 0000000..573214e
--- /dev/null
+++ b/usr.sbin/camdd/camdd.c
@@ -0,0 +1,3428 @@
+/*-
+ * Copyright (c) 1997-2007 Kenneth D. Merry
+ * Copyright (c) 2013, 2014, 2015 Spectra Logic Corporation
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions, and the following disclaimer,
+ * without modification.
+ * 2. Redistributions in binary form must reproduce at minimum a disclaimer
+ * substantially similar to the "NO WARRANTY" disclaimer below
+ * ("Disclaimer") and any redistribution must be conditioned upon
+ * including a substantially similar Disclaimer requirement for further
+ * binary redistribution.
+ *
+ * NO WARRANTY
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
+ * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
+ * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ * POSSIBILITY OF SUCH DAMAGES.
+ *
+ * Authors: Ken Merry (Spectra Logic Corporation)
+ */
+
+/*
+ * This is eventually intended to be:
+ * - A basic data transfer/copy utility
+ * - A simple benchmark utility
+ * - An example of how to use the asynchronous pass(4) driver interface.
+ */
+#include <sys/cdefs.h>
+__FBSDID("$FreeBSD$");
+
+#include <sys/ioctl.h>
+#include <sys/stdint.h>
+#include <sys/types.h>
+#include <sys/endian.h>
+#include <sys/param.h>
+#include <sys/sbuf.h>
+#include <sys/stat.h>
+#include <sys/event.h>
+#include <sys/time.h>
+#include <sys/uio.h>
+#include <vm/vm.h>
+#include <machine/bus.h>
+#include <sys/bus.h>
+#include <sys/bus_dma.h>
+#include <sys/mtio.h>
+#include <sys/conf.h>
+#include <sys/disk.h>
+
+#include <stdio.h>
+#include <stdlib.h>
+#include <semaphore.h>
+#include <string.h>
+#include <unistd.h>
+#include <inttypes.h>
+#include <limits.h>
+#include <fcntl.h>
+#include <ctype.h>
+#include <err.h>
+#include <libutil.h>
+#include <pthread.h>
+#include <assert.h>
+#include <bsdxml.h>
+
+#include <cam/cam.h>
+#include <cam/cam_debug.h>
+#include <cam/cam_ccb.h>
+#include <cam/scsi/scsi_all.h>
+#include <cam/scsi/scsi_da.h>
+#include <cam/scsi/scsi_pass.h>
+#include <cam/scsi/scsi_message.h>
+#include <cam/scsi/smp_all.h>
+#include <camlib.h>
+#include <mtlib.h>
+#include <zlib.h>
+
+typedef enum {
+ CAMDD_CMD_NONE = 0x00000000,
+ CAMDD_CMD_HELP = 0x00000001,
+ CAMDD_CMD_WRITE = 0x00000002,
+ CAMDD_CMD_READ = 0x00000003
+} camdd_cmdmask;
+
+typedef enum {
+ CAMDD_ARG_NONE = 0x00000000,
+ CAMDD_ARG_VERBOSE = 0x00000001,
+ CAMDD_ARG_DEVICE = 0x00000002,
+ CAMDD_ARG_BUS = 0x00000004,
+ CAMDD_ARG_TARGET = 0x00000008,
+ CAMDD_ARG_LUN = 0x00000010,
+ CAMDD_ARG_UNIT = 0x00000020,
+ CAMDD_ARG_TIMEOUT = 0x00000040,
+ CAMDD_ARG_ERR_RECOVER = 0x00000080,
+ CAMDD_ARG_RETRIES = 0x00000100
+} camdd_argmask;
+
+typedef enum {
+ CAMDD_DEV_NONE = 0x00,
+ CAMDD_DEV_PASS = 0x01,
+ CAMDD_DEV_FILE = 0x02
+} camdd_dev_type;
+
+struct camdd_io_opts {
+ camdd_dev_type dev_type;
+ char *dev_name;
+ uint64_t blocksize;
+ uint64_t queue_depth;
+ uint64_t offset;
+ int min_cmd_size;
+ int write_dev;
+ uint64_t debug;
+};
+
+typedef enum {
+ CAMDD_BUF_NONE,
+ CAMDD_BUF_DATA,
+ CAMDD_BUF_INDIRECT
+} camdd_buf_type;
+
+struct camdd_buf_indirect {
+ /*
+ * Pointer to the source buffer.
+ */
+ struct camdd_buf *src_buf;
+
+ /*
+ * Offset into the source buffer, in bytes.
+ */
+ uint64_t offset;
+ /*
+ * Pointer to the starting point in the source buffer.
+ */
+ uint8_t *start_ptr;
+
+ /*
+ * Length of this chunk in bytes.
+ */
+ size_t len;
+};
+
+struct camdd_buf_data {
+ /*
+ * Buffer allocated when we allocate this camdd_buf. This should
+ * be the size of the blocksize for this device.
+ */
+ uint8_t *buf;
+
+ /*
+ * The amount of backing store allocated in buf. Generally this
+ * will be the blocksize of the device.
+ */
+ uint32_t alloc_len;
+
+ /*
+ * The amount of data that was put into the buffer (on reads) or
+ * the amount of data we have put onto the src_list so far (on
+ * writes).
+ */
+ uint32_t fill_len;
+
+ /*
+ * The amount of data that was not transferred.
+ */
+ uint32_t resid;
+
+ /*
+ * Starting byte offset on the reader.
+ */
+ uint64_t src_start_offset;
+
+ /*
+ * CCB used for pass(4) device targets.
+ */
+ union ccb ccb;
+
+ /*
+ * Number of scatter/gather segments.
+ */
+ int sg_count;
+
+ /*
+ * Set if we had to tack on an extra buffer to round the transfer
+ * up to a sector size.
+ */
+ int extra_buf;
+
+ /*
+ * Scatter/gather list used generally when we're the writer for a
+ * pass(4) device.
+ */
+ bus_dma_segment_t *segs;
+
+ /*
+ * Scatter/gather list used generally when we're the writer for a
+ * file or block device;
+ */
+ struct iovec *iovec;
+};
+
+union camdd_buf_types {
+ struct camdd_buf_indirect indirect;
+ struct camdd_buf_data data;
+};
+
+typedef enum {
+ CAMDD_STATUS_NONE,
+ CAMDD_STATUS_OK,
+ CAMDD_STATUS_SHORT_IO,
+ CAMDD_STATUS_EOF,
+ CAMDD_STATUS_ERROR
+} camdd_buf_status;
+
+struct camdd_buf {
+ camdd_buf_type buf_type;
+ union camdd_buf_types buf_type_spec;
+
+ camdd_buf_status status;
+
+ uint64_t lba;
+ size_t len;
+
+ /*
+ * A reference count of how many indirect buffers point to this
+ * buffer.
+ */
+ int refcount;
+
+ /*
+ * A link back to our parent device.
+ */
+ struct camdd_dev *dev;
+ STAILQ_ENTRY(camdd_buf) links;
+ STAILQ_ENTRY(camdd_buf) work_links;
+
+ /*
+ * A count of the buffers on the src_list.
+ */
+ int src_count;
+
+ /*
+ * List of buffers from our partner thread that are the components
+ * of this buffer for the I/O. Uses src_links.
+ */
+ STAILQ_HEAD(,camdd_buf) src_list;
+ STAILQ_ENTRY(camdd_buf) src_links;
+};
+
+#define NUM_DEV_TYPES 2
+
+struct camdd_dev_pass {
+ int scsi_dev_type;
+ struct cam_device *dev;
+ uint64_t max_sector;
+ uint32_t block_len;
+ uint32_t cpi_maxio;
+};
+
+typedef enum {
+ CAMDD_FILE_NONE,
+ CAMDD_FILE_REG,
+ CAMDD_FILE_STD,
+ CAMDD_FILE_PIPE,
+ CAMDD_FILE_DISK,
+ CAMDD_FILE_TAPE,
+ CAMDD_FILE_TTY,
+ CAMDD_FILE_MEM
+} camdd_file_type;
+
+typedef enum {
+ CAMDD_FF_NONE = 0x00,
+ CAMDD_FF_CAN_SEEK = 0x01
+} camdd_file_flags;
+
+struct camdd_dev_file {
+ int fd;
+ struct stat sb;
+ char filename[MAXPATHLEN + 1];
+ camdd_file_type file_type;
+ camdd_file_flags file_flags;
+ uint8_t *tmp_buf;
+};
+
+struct camdd_dev_block {
+ int fd;
+ uint64_t size_bytes;
+ uint32_t block_len;
+};
+
+union camdd_dev_spec {
+ struct camdd_dev_pass pass;
+ struct camdd_dev_file file;
+ struct camdd_dev_block block;
+};
+
+typedef enum {
+ CAMDD_DEV_FLAG_NONE = 0x00,
+ CAMDD_DEV_FLAG_EOF = 0x01,
+ CAMDD_DEV_FLAG_PEER_EOF = 0x02,
+ CAMDD_DEV_FLAG_ACTIVE = 0x04,
+ CAMDD_DEV_FLAG_EOF_SENT = 0x08,
+ CAMDD_DEV_FLAG_EOF_QUEUED = 0x10
+} camdd_dev_flags;
+
+struct camdd_dev {
+ camdd_dev_type dev_type;
+ union camdd_dev_spec dev_spec;
+ camdd_dev_flags flags;
+ char device_name[MAXPATHLEN+1];
+ uint32_t blocksize;
+ uint32_t sector_size;
+ uint64_t max_sector;
+ uint64_t sector_io_limit;
+ int min_cmd_size;
+ int write_dev;
+ int retry_count;
+ int io_timeout;
+ int debug;
+ uint64_t start_offset_bytes;
+ uint64_t next_io_pos_bytes;
+ uint64_t next_peer_pos_bytes;
+ uint64_t next_completion_pos_bytes;
+ uint64_t peer_bytes_queued;
+ uint64_t bytes_transferred;
+ uint32_t target_queue_depth;
+ uint32_t cur_active_io;
+ uint8_t *extra_buf;
+ uint32_t extra_buf_len;
+ struct camdd_dev *peer_dev;
+ pthread_mutex_t mutex;
+ pthread_cond_t cond;
+ int kq;
+
+ int (*run)(struct camdd_dev *dev);
+ int (*fetch)(struct camdd_dev *dev);
+
+ /*
+ * Buffers that are available for I/O. Uses links.
+ */
+ STAILQ_HEAD(,camdd_buf) free_queue;
+
+ /*
+ * Free indirect buffers. These are used for breaking a large
+ * buffer into multiple pieces.
+ */
+ STAILQ_HEAD(,camdd_buf) free_indirect_queue;
+
+ /*
+ * Buffers that have been queued to the kernel. Uses links.
+ */
+ STAILQ_HEAD(,camdd_buf) active_queue;
+
+ /*
+ * Will generally contain one of our buffers that is waiting for enough
+ * I/O from our partner thread to be able to execute. This will
+ * generally happen when our per-I/O-size is larger than the
+ * partner thread's per-I/O-size. Uses links.
+ */
+ STAILQ_HEAD(,camdd_buf) pending_queue;
+
+ /*
+ * Number of buffers on the pending queue
+ */
+ int num_pending_queue;
+
+ /*
+ * Buffers that are filled and ready to execute. This is used when
+ * our partner (reader) thread sends us blocks that are larger than
+ * our blocksize, and so we have to split them into multiple pieces.
+ */
+ STAILQ_HEAD(,camdd_buf) run_queue;
+
+ /*
+ * Number of buffers on the run queue.
+ */
+ int num_run_queue;
+
+ STAILQ_HEAD(,camdd_buf) reorder_queue;
+
+ int num_reorder_queue;
+
+ /*
+ * Buffers that have been queued to us by our partner thread
+ * (generally the reader thread) to be written out. Uses
+ * work_links.
+ */
+ STAILQ_HEAD(,camdd_buf) work_queue;
+
+ /*
+ * Buffers that have been completed by our partner thread. Uses
+ * work_links.
+ */
+ STAILQ_HEAD(,camdd_buf) peer_done_queue;
+
+ /*
+ * Number of buffers on the peer done queue.
+ */
+ uint32_t num_peer_done_queue;
+
+ /*
+ * A list of buffers that we have queued to our peer thread. Uses
+ * links.
+ */
+ STAILQ_HEAD(,camdd_buf) peer_work_queue;
+
+ /*
+ * Number of buffers on the peer work queue.
+ */
+ uint32_t num_peer_work_queue;
+};
+
+static sem_t camdd_sem;
+static int need_exit = 0;
+static int error_exit = 0;
+static int need_status = 0;
+
+#ifndef min
+#define min(a, b) (a < b) ? a : b
+#endif
+
+/*
+ * XXX KDM private copy of timespecsub(). This is normally defined in
+ * sys/time.h, but is only enabled in the kernel. If that definition is
+ * enabled in userland, it breaks the build of libnetbsd.
+ */
+#ifndef timespecsub
+#define timespecsub(vvp, uvp) \
+ do { \
+ (vvp)->tv_sec -= (uvp)->tv_sec; \
+ (vvp)->tv_nsec -= (uvp)->tv_nsec; \
+ if ((vvp)->tv_nsec < 0) { \
+ (vvp)->tv_sec--; \
+ (vvp)->tv_nsec += 1000000000; \
+ } \
+ } while (0)
+#endif
+
+
+/* Generically usefull offsets into the peripheral private area */
+#define ppriv_ptr0 periph_priv.entries[0].ptr
+#define ppriv_ptr1 periph_priv.entries[1].ptr
+#define ppriv_field0 periph_priv.entries[0].field
+#define ppriv_field1 periph_priv.entries[1].field
+
+#define ccb_buf ppriv_ptr0
+
+#define CAMDD_FILE_DEFAULT_BLOCK 524288
+#define CAMDD_FILE_DEFAULT_DEPTH 1
+#define CAMDD_PASS_MAX_BLOCK 1048576
+#define CAMDD_PASS_DEFAULT_DEPTH 6
+#define CAMDD_PASS_RW_TIMEOUT 60 * 1000
+
+static int parse_btl(char *tstr, int *bus, int *target, int *lun,
+ camdd_argmask *arglst);
+void camdd_free_dev(struct camdd_dev *dev);
+struct camdd_dev *camdd_alloc_dev(camdd_dev_type dev_type,
+ struct kevent *new_ke, int num_ke,
+ int retry_count, int timeout);
+static struct camdd_buf *camdd_alloc_buf(struct camdd_dev *dev,
+ camdd_buf_type buf_type);
+void camdd_release_buf(struct camdd_buf *buf);
+struct camdd_buf *camdd_get_buf(struct camdd_dev *dev, camdd_buf_type buf_type);
+int camdd_buf_sg_create(struct camdd_buf *buf, int iovec,
+ uint32_t sector_size, uint32_t *num_sectors_used,
+ int *double_buf_needed);
+uint32_t camdd_buf_get_len(struct camdd_buf *buf);
+void camdd_buf_add_child(struct camdd_buf *buf, struct camdd_buf *child_buf);
+int camdd_probe_tape(int fd, char *filename, uint64_t *max_iosize,
+ uint64_t *max_blk, uint64_t *min_blk, uint64_t *blk_gran);
+struct camdd_dev *camdd_probe_file(int fd, struct camdd_io_opts *io_opts,
+ int retry_count, int timeout);
+struct camdd_dev *camdd_probe_pass(struct cam_device *cam_dev,
+ struct camdd_io_opts *io_opts,
+ camdd_argmask arglist, int probe_retry_count,
+ int probe_timeout, int io_retry_count,
+ int io_timeout);
+void *camdd_file_worker(void *arg);
+camdd_buf_status camdd_ccb_status(union ccb *ccb);
+int camdd_queue_peer_buf(struct camdd_dev *dev, struct camdd_buf *buf);
+int camdd_complete_peer_buf(struct camdd_dev *dev, struct camdd_buf *peer_buf);
+void camdd_peer_done(struct camdd_buf *buf);
+void camdd_complete_buf(struct camdd_dev *dev, struct camdd_buf *buf,
+ int *error_count);
+int camdd_pass_fetch(struct camdd_dev *dev);
+int camdd_file_run(struct camdd_dev *dev);
+int camdd_pass_run(struct camdd_dev *dev);
+int camdd_get_next_lba_len(struct camdd_dev *dev, uint64_t *lba, ssize_t *len);
+int camdd_queue(struct camdd_dev *dev, struct camdd_buf *read_buf);
+void camdd_get_depth(struct camdd_dev *dev, uint32_t *our_depth,
+ uint32_t *peer_depth, uint32_t *our_bytes,
+ uint32_t *peer_bytes);
+void *camdd_worker(void *arg);
+void camdd_sig_handler(int sig);
+void camdd_print_status(struct camdd_dev *camdd_dev,
+ struct camdd_dev *other_dev,
+ struct timespec *start_time);
+int camdd_rw(struct camdd_io_opts *io_opts, int num_io_opts,
+ uint64_t max_io, int retry_count, int timeout);
+int camdd_parse_io_opts(char *args, int is_write,
+ struct camdd_io_opts *io_opts);
+void usage(void);
+
+/*
+ * Parse out a bus, or a bus, target and lun in the following
+ * format:
+ * bus
+ * bus:target
+ * bus:target:lun
+ *
+ * Returns the number of parsed components, or 0.
+ */
+static int
+parse_btl(char *tstr, int *bus, int *target, int *lun, camdd_argmask *arglst)
+{
+ char *tmpstr;
+ int convs = 0;
+
+ while (isspace(*tstr) && (*tstr != '\0'))
+ tstr++;
+
+ tmpstr = (char *)strtok(tstr, ":");
+ if ((tmpstr != NULL) && (*tmpstr != '\0')) {
+ *bus = strtol(tmpstr, NULL, 0);
+ *arglst |= CAMDD_ARG_BUS;
+ convs++;
+ tmpstr = (char *)strtok(NULL, ":");
+ if ((tmpstr != NULL) && (*tmpstr != '\0')) {
+ *target = strtol(tmpstr, NULL, 0);
+ *arglst |= CAMDD_ARG_TARGET;
+ convs++;
+ tmpstr = (char *)strtok(NULL, ":");
+ if ((tmpstr != NULL) && (*tmpstr != '\0')) {
+ *lun = strtol(tmpstr, NULL, 0);
+ *arglst |= CAMDD_ARG_LUN;
+ convs++;
+ }
+ }
+ }
+
+ return convs;
+}
+
+/*
+ * XXX KDM clean up and free all of the buffers on the queue!
+ */
+void
+camdd_free_dev(struct camdd_dev *dev)
+{
+ if (dev == NULL)
+ return;
+
+ switch (dev->dev_type) {
+ case CAMDD_DEV_FILE: {
+ struct camdd_dev_file *file_dev = &dev->dev_spec.file;
+
+ if (file_dev->fd != -1)
+ close(file_dev->fd);
+ free(file_dev->tmp_buf);
+ break;
+ }
+ case CAMDD_DEV_PASS: {
+ struct camdd_dev_pass *pass_dev = &dev->dev_spec.pass;
+
+ if (pass_dev->dev != NULL)
+ cam_close_device(pass_dev->dev);
+ break;
+ }
+ default:
+ break;
+ }
+
+ free(dev);
+}
+
+struct camdd_dev *
+camdd_alloc_dev(camdd_dev_type dev_type, struct kevent *new_ke, int num_ke,
+ int retry_count, int timeout)
+{
+ struct camdd_dev *dev = NULL;
+ struct kevent *ke;
+ size_t ke_size;
+ int retval = 0;
+
+ dev = malloc(sizeof(*dev));
+ if (dev == NULL) {
+ warn("%s: unable to malloc %zu bytes", __func__, sizeof(*dev));
+ goto bailout;
+ }
+
+ bzero(dev, sizeof(*dev));
+
+ dev->dev_type = dev_type;
+ dev->io_timeout = timeout;
+ dev->retry_count = retry_count;
+ STAILQ_INIT(&dev->free_queue);
+ STAILQ_INIT(&dev->free_indirect_queue);
+ STAILQ_INIT(&dev->active_queue);
+ STAILQ_INIT(&dev->pending_queue);
+ STAILQ_INIT(&dev->run_queue);
+ STAILQ_INIT(&dev->reorder_queue);
+ STAILQ_INIT(&dev->work_queue);
+ STAILQ_INIT(&dev->peer_done_queue);
+ STAILQ_INIT(&dev->peer_work_queue);
+ retval = pthread_mutex_init(&dev->mutex, NULL);
+ if (retval != 0) {
+ warnc(retval, "%s: failed to initialize mutex", __func__);
+ goto bailout;
+ }
+
+ retval = pthread_cond_init(&dev->cond, NULL);
+ if (retval != 0) {
+ warnc(retval, "%s: failed to initialize condition variable",
+ __func__);
+ goto bailout;
+ }
+
+ dev->kq = kqueue();
+ if (dev->kq == -1) {
+ warn("%s: Unable to create kqueue", __func__);
+ goto bailout;
+ }
+
+ ke_size = sizeof(struct kevent) * (num_ke + 4);
+ ke = malloc(ke_size);
+ if (ke == NULL) {
+ warn("%s: unable to malloc %zu bytes", __func__, ke_size);
+ goto bailout;
+ }
+ bzero(ke, ke_size);
+ if (num_ke > 0)
+ bcopy(new_ke, ke, num_ke * sizeof(struct kevent));
+
+ EV_SET(&ke[num_ke++], (uintptr_t)&dev->work_queue, EVFILT_USER,
+ EV_ADD|EV_ENABLE|EV_CLEAR, 0,0, 0);
+ EV_SET(&ke[num_ke++], (uintptr_t)&dev->peer_done_queue, EVFILT_USER,
+ EV_ADD|EV_ENABLE|EV_CLEAR, 0,0, 0);
+ EV_SET(&ke[num_ke++], SIGINFO, EVFILT_SIGNAL, EV_ADD|EV_ENABLE, 0,0,0);
+ EV_SET(&ke[num_ke++], SIGINT, EVFILT_SIGNAL, EV_ADD|EV_ENABLE, 0,0,0);
+
+ retval = kevent(dev->kq, ke, num_ke, NULL, 0, NULL);
+ if (retval == -1) {
+ warn("%s: Unable to register kevents", __func__);
+ goto bailout;
+ }
+
+
+ return (dev);
+
+bailout:
+ free(dev);
+
+ return (NULL);
+}
+
+static struct camdd_buf *
+camdd_alloc_buf(struct camdd_dev *dev, camdd_buf_type buf_type)
+{
+ struct camdd_buf *buf = NULL;
+ uint8_t *data_ptr = NULL;
+
+ /*
+ * We only need to allocate data space for data buffers.
+ */
+ switch (buf_type) {
+ case CAMDD_BUF_DATA:
+ data_ptr = malloc(dev->blocksize);
+ if (data_ptr == NULL) {
+ warn("unable to allocate %u bytes", dev->blocksize);
+ goto bailout_error;
+ }
+ break;
+ default:
+ break;
+ }
+
+ buf = malloc(sizeof(*buf));
+ if (buf == NULL) {
+ warn("unable to allocate %zu bytes", sizeof(*buf));
+ goto bailout_error;
+ }
+
+ bzero(buf, sizeof(*buf));
+ buf->buf_type = buf_type;
+ buf->dev = dev;
+ switch (buf_type) {
+ case CAMDD_BUF_DATA: {
+ struct camdd_buf_data *data;
+
+ data = &buf->buf_type_spec.data;
+
+ data->alloc_len = dev->blocksize;
+ data->buf = data_ptr;
+ break;
+ }
+ case CAMDD_BUF_INDIRECT:
+ break;
+ default:
+ break;
+ }
+ STAILQ_INIT(&buf->src_list);
+
+ return (buf);
+
+bailout_error:
+ if (data_ptr != NULL)
+ free(data_ptr);
+
+ if (buf != NULL)
+ free(buf);
+
+ return (NULL);
+}
+
+void
+camdd_release_buf(struct camdd_buf *buf)
+{
+ struct camdd_dev *dev;
+
+ dev = buf->dev;
+
+ switch (buf->buf_type) {
+ case CAMDD_BUF_DATA: {
+ struct camdd_buf_data *data;
+
+ data = &buf->buf_type_spec.data;
+
+ if (data->segs != NULL) {
+ if (data->extra_buf != 0) {
+ void *extra_buf;
+
+ extra_buf = (void *)
+ data->segs[data->sg_count - 1].ds_addr;
+ free(extra_buf);
+ data->extra_buf = 0;
+ }
+ free(data->segs);
+ data->segs = NULL;
+ data->sg_count = 0;
+ } else if (data->iovec != NULL) {
+ if (data->extra_buf != 0) {
+ free(data->iovec[data->sg_count - 1].iov_base);
+ data->extra_buf = 0;
+ }
+ free(data->iovec);
+ data->iovec = NULL;
+ data->sg_count = 0;
+ }
+ STAILQ_INSERT_TAIL(&dev->free_queue, buf, links);
+ break;
+ }
+ case CAMDD_BUF_INDIRECT:
+ STAILQ_INSERT_TAIL(&dev->free_indirect_queue, buf, links);
+ break;
+ default:
+ err(1, "%s: Invalid buffer type %d for released buffer",
+ __func__, buf->buf_type);
+ break;
+ }
+}
+
+struct camdd_buf *
+camdd_get_buf(struct camdd_dev *dev, camdd_buf_type buf_type)
+{
+ struct camdd_buf *buf = NULL;
+
+ switch (buf_type) {
+ case CAMDD_BUF_DATA:
+ buf = STAILQ_FIRST(&dev->free_queue);
+ if (buf != NULL) {
+ struct camdd_buf_data *data;
+ uint8_t *data_ptr;
+ uint32_t alloc_len;
+
+ STAILQ_REMOVE_HEAD(&dev->free_queue, links);
+ data = &buf->buf_type_spec.data;
+ data_ptr = data->buf;
+ alloc_len = data->alloc_len;
+ bzero(buf, sizeof(*buf));
+ data->buf = data_ptr;
+ data->alloc_len = alloc_len;
+ }
+ break;
+ case CAMDD_BUF_INDIRECT:
+ buf = STAILQ_FIRST(&dev->free_indirect_queue);
+ if (buf != NULL) {
+ STAILQ_REMOVE_HEAD(&dev->free_indirect_queue, links);
+
+ bzero(buf, sizeof(*buf));
+ }
+ break;
+ default:
+ warnx("Unknown buffer type %d requested", buf_type);
+ break;
+ }
+
+
+ if (buf == NULL)
+ return (camdd_alloc_buf(dev, buf_type));
+ else {
+ STAILQ_INIT(&buf->src_list);
+ buf->dev = dev;
+ buf->buf_type = buf_type;
+
+ return (buf);
+ }
+}
+
+int
+camdd_buf_sg_create(struct camdd_buf *buf, int iovec, uint32_t sector_size,
+ uint32_t *num_sectors_used, int *double_buf_needed)
+{
+ struct camdd_buf *tmp_buf;
+ struct camdd_buf_data *data;
+ uint8_t *extra_buf = NULL;
+ size_t extra_buf_len = 0;
+ int i, retval = 0;
+
+ data = &buf->buf_type_spec.data;
+
+ data->sg_count = buf->src_count;
+ /*
+ * Compose a scatter/gather list from all of the buffers in the list.
+ * If the length of the buffer isn't a multiple of the sector size,
+ * we'll have to add an extra buffer. This should only happen
+ * at the end of a transfer.
+ */
+ if ((data->fill_len % sector_size) != 0) {
+ extra_buf_len = sector_size - (data->fill_len % sector_size);
+ extra_buf = calloc(extra_buf_len, 1);
+ if (extra_buf == NULL) {
+ warn("%s: unable to allocate %zu bytes for extra "
+ "buffer space", __func__, extra_buf_len);
+ retval = 1;
+ goto bailout;
+ }
+ data->extra_buf = 1;
+ data->sg_count++;
+ }
+ if (iovec == 0) {
+ data->segs = calloc(data->sg_count, sizeof(bus_dma_segment_t));
+ if (data->segs == NULL) {
+ warn("%s: unable to allocate %zu bytes for S/G list",
+ __func__, sizeof(bus_dma_segment_t) *
+ data->sg_count);
+ retval = 1;
+ goto bailout;
+ }
+
+ } else {
+ data->iovec = calloc(data->sg_count, sizeof(struct iovec));
+ if (data->iovec == NULL) {
+ warn("%s: unable to allocate %zu bytes for S/G list",
+ __func__, sizeof(struct iovec) * data->sg_count);
+ retval = 1;
+ goto bailout;
+ }
+ }
+
+ for (i = 0, tmp_buf = STAILQ_FIRST(&buf->src_list);
+ i < buf->src_count && tmp_buf != NULL; i++,
+ tmp_buf = STAILQ_NEXT(tmp_buf, src_links)) {
+
+ if (tmp_buf->buf_type == CAMDD_BUF_DATA) {
+ struct camdd_buf_data *tmp_data;
+
+ tmp_data = &tmp_buf->buf_type_spec.data;
+ if (iovec == 0) {
+ data->segs[i].ds_addr =
+ (bus_addr_t) tmp_data->buf;
+ data->segs[i].ds_len = tmp_data->fill_len -
+ tmp_data->resid;
+ } else {
+ data->iovec[i].iov_base = tmp_data->buf;
+ data->iovec[i].iov_len = tmp_data->fill_len -
+ tmp_data->resid;
+ }
+ if (((tmp_data->fill_len - tmp_data->resid) %
+ sector_size) != 0)
+ *double_buf_needed = 1;
+ } else {
+ struct camdd_buf_indirect *tmp_ind;
+
+ tmp_ind = &tmp_buf->buf_type_spec.indirect;
+ if (iovec == 0) {
+ data->segs[i].ds_addr =
+ (bus_addr_t)tmp_ind->start_ptr;
+ data->segs[i].ds_len = tmp_ind->len;
+ } else {
+ data->iovec[i].iov_base = tmp_ind->start_ptr;
+ data->iovec[i].iov_len = tmp_ind->len;
+ }
+ if ((tmp_ind->len % sector_size) != 0)
+ *double_buf_needed = 1;
+ }
+ }
+
+ if (extra_buf != NULL) {
+ if (iovec == 0) {
+ data->segs[i].ds_addr = (bus_addr_t)extra_buf;
+ data->segs[i].ds_len = extra_buf_len;
+ } else {
+ data->iovec[i].iov_base = extra_buf;
+ data->iovec[i].iov_len = extra_buf_len;
+ }
+ i++;
+ }
+ if ((tmp_buf != NULL) || (i != data->sg_count)) {
+ warnx("buffer source count does not match "
+ "number of buffers in list!");
+ retval = 1;
+ goto bailout;
+ }
+
+bailout:
+ if (retval == 0) {
+ *num_sectors_used = (data->fill_len + extra_buf_len) /
+ sector_size;
+ }
+ return (retval);
+}
+
+uint32_t
+camdd_buf_get_len(struct camdd_buf *buf)
+{
+ uint32_t len = 0;
+
+ if (buf->buf_type != CAMDD_BUF_DATA) {
+ struct camdd_buf_indirect *indirect;
+
+ indirect = &buf->buf_type_spec.indirect;
+ len = indirect->len;
+ } else {
+ struct camdd_buf_data *data;
+
+ data = &buf->buf_type_spec.data;
+ len = data->fill_len;
+ }
+
+ return (len);
+}
+
+void
+camdd_buf_add_child(struct camdd_buf *buf, struct camdd_buf *child_buf)
+{
+ struct camdd_buf_data *data;
+
+ assert(buf->buf_type == CAMDD_BUF_DATA);
+
+ data = &buf->buf_type_spec.data;
+
+ STAILQ_INSERT_TAIL(&buf->src_list, child_buf, src_links);
+ buf->src_count++;
+
+ data->fill_len += camdd_buf_get_len(child_buf);
+}
+
+typedef enum {
+ CAMDD_TS_MAX_BLK,
+ CAMDD_TS_MIN_BLK,
+ CAMDD_TS_BLK_GRAN,
+ CAMDD_TS_EFF_IOSIZE
+} camdd_status_item_index;
+
+static struct camdd_status_items {
+ const char *name;
+ struct mt_status_entry *entry;
+} req_status_items[] = {
+ { "max_blk", NULL },
+ { "min_blk", NULL },
+ { "blk_gran", NULL },
+ { "max_effective_iosize", NULL }
+};
+
+int
+camdd_probe_tape(int fd, char *filename, uint64_t *max_iosize,
+ uint64_t *max_blk, uint64_t *min_blk, uint64_t *blk_gran)
+{
+ struct mt_status_data status_data;
+ char *xml_str = NULL;
+ unsigned int i;
+ int retval = 0;
+
+ retval = mt_get_xml_str(fd, MTIOCEXTGET, &xml_str);
+ if (retval != 0)
+ err(1, "Couldn't get XML string from %s", filename);
+
+ retval = mt_get_status(xml_str, &status_data);
+ if (retval != XML_STATUS_OK) {
+ warn("couldn't get status for %s", filename);
+ retval = 1;
+ goto bailout;
+ } else
+ retval = 0;
+
+ if (status_data.error != 0) {
+ warnx("%s", status_data.error_str);
+ retval = 1;
+ goto bailout;
+ }
+
+ for (i = 0; i < sizeof(req_status_items) /
+ sizeof(req_status_items[0]); i++) {
+ char *name;
+
+ name = __DECONST(char *, req_status_items[i].name);
+ req_status_items[i].entry = mt_status_entry_find(&status_data,
+ name);
+ if (req_status_items[i].entry == NULL) {
+ errx(1, "Cannot find status entry %s",
+ req_status_items[i].name);
+ }
+ }
+
+ *max_iosize = req_status_items[CAMDD_TS_EFF_IOSIZE].entry->value_unsigned;
+ *max_blk= req_status_items[CAMDD_TS_MAX_BLK].entry->value_unsigned;
+ *min_blk= req_status_items[CAMDD_TS_MIN_BLK].entry->value_unsigned;
+ *blk_gran = req_status_items[CAMDD_TS_BLK_GRAN].entry->value_unsigned;
+bailout:
+
+ free(xml_str);
+ mt_status_free(&status_data);
+
+ return (retval);
+}
+
+struct camdd_dev *
+camdd_probe_file(int fd, struct camdd_io_opts *io_opts, int retry_count,
+ int timeout)
+{
+ struct camdd_dev *dev = NULL;
+ struct camdd_dev_file *file_dev;
+ uint64_t blocksize = io_opts->blocksize;
+
+ dev = camdd_alloc_dev(CAMDD_DEV_FILE, NULL, 0, retry_count, timeout);
+ if (dev == NULL)
+ goto bailout;
+
+ file_dev = &dev->dev_spec.file;
+ file_dev->fd = fd;
+ strlcpy(file_dev->filename, io_opts->dev_name,
+ sizeof(file_dev->filename));
+ strlcpy(dev->device_name, io_opts->dev_name, sizeof(dev->device_name));
+ if (blocksize == 0)
+ dev->blocksize = CAMDD_FILE_DEFAULT_BLOCK;
+ else
+ dev->blocksize = blocksize;
+
+ if ((io_opts->queue_depth != 0)
+ && (io_opts->queue_depth != 1)) {
+ warnx("Queue depth %ju for %s ignored, only 1 outstanding "
+ "command supported", (uintmax_t)io_opts->queue_depth,
+ io_opts->dev_name);
+ }
+ dev->target_queue_depth = CAMDD_FILE_DEFAULT_DEPTH;
+ dev->run = camdd_file_run;
+ dev->fetch = NULL;
+
+ /*
+ * We can effectively access files on byte boundaries. We'll reset
+ * this for devices like disks that can be accessed on sector
+ * boundaries.
+ */
+ dev->sector_size = 1;
+
+ if ((fd != STDIN_FILENO)
+ && (fd != STDOUT_FILENO)) {
+ int retval;
+
+ retval = fstat(fd, &file_dev->sb);
+ if (retval != 0) {
+ warn("Cannot stat %s", dev->device_name);
+ goto bailout;
+ camdd_free_dev(dev);
+ dev = NULL;
+ }
+ if (S_ISREG(file_dev->sb.st_mode)) {
+ file_dev->file_type = CAMDD_FILE_REG;
+ } else if (S_ISCHR(file_dev->sb.st_mode)) {
+ int type;
+
+ if (ioctl(fd, FIODTYPE, &type) == -1)
+ err(1, "FIODTYPE ioctl failed on %s",
+ dev->device_name);
+ else {
+ if (type & D_TAPE)
+ file_dev->file_type = CAMDD_FILE_TAPE;
+ else if (type & D_DISK)
+ file_dev->file_type = CAMDD_FILE_DISK;
+ else if (type & D_MEM)
+ file_dev->file_type = CAMDD_FILE_MEM;
+ else if (type & D_TTY)
+ file_dev->file_type = CAMDD_FILE_TTY;
+ }
+ } else if (S_ISDIR(file_dev->sb.st_mode)) {
+ errx(1, "cannot operate on directory %s",
+ dev->device_name);
+ } else if (S_ISFIFO(file_dev->sb.st_mode)) {
+ file_dev->file_type = CAMDD_FILE_PIPE;
+ } else
+ errx(1, "Cannot determine file type for %s",
+ dev->device_name);
+
+ switch (file_dev->file_type) {
+ case CAMDD_FILE_REG:
+ if (file_dev->sb.st_size != 0)
+ dev->max_sector = file_dev->sb.st_size - 1;
+ else
+ dev->max_sector = 0;
+ file_dev->file_flags |= CAMDD_FF_CAN_SEEK;
+ break;
+ case CAMDD_FILE_TAPE: {
+ uint64_t max_iosize, max_blk, min_blk, blk_gran;
+ /*
+ * Check block limits and maximum effective iosize.
+ * Make sure the blocksize is within the block
+ * limits (and a multiple of the minimum blocksize)
+ * and that the blocksize is <= maximum effective
+ * iosize.
+ */
+ retval = camdd_probe_tape(fd, dev->device_name,
+ &max_iosize, &max_blk, &min_blk, &blk_gran);
+ if (retval != 0)
+ errx(1, "Unable to probe tape %s",
+ dev->device_name);
+
+ /*
+ * The blocksize needs to be <= the maximum
+ * effective I/O size of the tape device. Note
+ * that this also takes into account the maximum
+ * blocksize reported by READ BLOCK LIMITS.
+ */
+ if (dev->blocksize > max_iosize) {
+ warnx("Blocksize %u too big for %s, limiting "
+ "to %ju", dev->blocksize, dev->device_name,
+ max_iosize);
+ dev->blocksize = max_iosize;
+ }
+
+ /*
+ * The blocksize needs to be at least min_blk;
+ */
+ if (dev->blocksize < min_blk) {
+ warnx("Blocksize %u too small for %s, "
+ "increasing to %ju", dev->blocksize,
+ dev->device_name, min_blk);
+ dev->blocksize = min_blk;
+ }
+
+ /*
+ * And the blocksize needs to be a multiple of
+ * the block granularity.
+ */
+ if ((blk_gran != 0)
+ && (dev->blocksize % (1 << blk_gran))) {
+ warnx("Blocksize %u for %s not a multiple of "
+ "%d, adjusting to %d", dev->blocksize,
+ dev->device_name, (1 << blk_gran),
+ dev->blocksize & ~((1 << blk_gran) - 1));
+ dev->blocksize &= ~((1 << blk_gran) - 1);
+ }
+
+ if (dev->blocksize == 0) {
+ errx(1, "Unable to derive valid blocksize for "
+ "%s", dev->device_name);
+ }
+
+ /*
+ * For tape drives, set the sector size to the
+ * blocksize so that we make sure not to write
+ * less than the blocksize out to the drive.
+ */
+ dev->sector_size = dev->blocksize;
+ break;
+ }
+ case CAMDD_FILE_DISK: {
+ off_t media_size;
+ unsigned int sector_size;
+
+ file_dev->file_flags |= CAMDD_FF_CAN_SEEK;
+
+ if (ioctl(fd, DIOCGSECTORSIZE, &sector_size) == -1) {
+ err(1, "DIOCGSECTORSIZE ioctl failed on %s",
+ dev->device_name);
+ }
+
+ if (sector_size == 0) {
+ errx(1, "DIOCGSECTORSIZE ioctl returned "
+ "invalid sector size %u for %s",
+ sector_size, dev->device_name);
+ }
+
+ if (ioctl(fd, DIOCGMEDIASIZE, &media_size) == -1) {
+ err(1, "DIOCGMEDIASIZE ioctl failed on %s",
+ dev->device_name);
+ }
+
+ if (media_size == 0) {
+ errx(1, "DIOCGMEDIASIZE ioctl returned "
+ "invalid media size %ju for %s",
+ (uintmax_t)media_size, dev->device_name);
+ }
+
+ if (dev->blocksize % sector_size) {
+ errx(1, "%s blocksize %u not a multiple of "
+ "sector size %u", dev->device_name,
+ dev->blocksize, sector_size);
+ }
+
+ dev->sector_size = sector_size;
+ dev->max_sector = (media_size / sector_size) - 1;
+ break;
+ }
+ case CAMDD_FILE_MEM:
+ file_dev->file_flags |= CAMDD_FF_CAN_SEEK;
+ break;
+ default:
+ break;
+ }
+ }
+
+ if ((io_opts->offset != 0)
+ && ((file_dev->file_flags & CAMDD_FF_CAN_SEEK) == 0)) {
+ warnx("Offset %ju specified for %s, but we cannot seek on %s",
+ io_opts->offset, io_opts->dev_name, io_opts->dev_name);
+ goto bailout_error;
+ }
+#if 0
+ else if ((io_opts->offset != 0)
+ && ((io_opts->offset % dev->sector_size) != 0)) {
+ warnx("Offset %ju for %s is not a multiple of the "
+ "sector size %u", io_opts->offset,
+ io_opts->dev_name, dev->sector_size);
+ goto bailout_error;
+ } else {
+ dev->start_offset_bytes = io_opts->offset;
+ }
+#endif
+
+bailout:
+ return (dev);
+
+bailout_error:
+ camdd_free_dev(dev);
+ return (NULL);
+}
+
+/*
+ * Need to implement this. Do a basic probe:
+ * - Check the inquiry data, make sure we're talking to a device that we
+ * can reasonably expect to talk to -- direct, RBC, CD, WORM.
+ * - Send a test unit ready, make sure the device is available.
+ * - Get the capacity and block size.
+ */
+struct camdd_dev *
+camdd_probe_pass(struct cam_device *cam_dev, struct camdd_io_opts *io_opts,
+ camdd_argmask arglist, int probe_retry_count,
+ int probe_timeout, int io_retry_count, int io_timeout)
+{
+ union ccb *ccb;
+ uint64_t maxsector;
+ uint32_t cpi_maxio, max_iosize, pass_numblocks;
+ uint32_t block_len;
+ struct scsi_read_capacity_data rcap;
+ struct scsi_read_capacity_data_long rcaplong;
+ struct camdd_dev *dev;
+ struct camdd_dev_pass *pass_dev;
+ struct kevent ke;
+ int scsi_dev_type;
+ int retval;
+
+ dev = NULL;
+
+ scsi_dev_type = SID_TYPE(&cam_dev->inq_data);
+ maxsector = 0;
+ block_len = 0;
+
+ /*
+ * For devices that support READ CAPACITY, we'll attempt to get the
+ * capacity. Otherwise, we really don't support tape or other
+ * devices via SCSI passthrough, so just return an error in that case.
+ */
+ switch (scsi_dev_type) {
+ case T_DIRECT:
+ case T_WORM:
+ case T_CDROM:
+ case T_OPTICAL:
+ case T_RBC:
+ break;
+ default:
+ errx(1, "Unsupported SCSI device type %d", scsi_dev_type);
+ break; /*NOTREACHED*/
+ }
+
+ ccb = cam_getccb(cam_dev);
+
+ if (ccb == NULL) {
+ warnx("%s: error allocating ccb", __func__);
+ goto bailout;
+ }
+
+ bzero(&(&ccb->ccb_h)[1],
+ sizeof(struct ccb_scsiio) - sizeof(struct ccb_hdr));
+
+ scsi_read_capacity(&ccb->csio,
+ /*retries*/ probe_retry_count,
+ /*cbfcnp*/ NULL,
+ /*tag_action*/ MSG_SIMPLE_Q_TAG,
+ &rcap,
+ SSD_FULL_SIZE,
+ /*timeout*/ probe_timeout ? probe_timeout : 5000);
+
+ /* Disable freezing the device queue */
+ ccb->ccb_h.flags |= CAM_DEV_QFRZDIS;
+
+ if (arglist & CAMDD_ARG_ERR_RECOVER)
+ ccb->ccb_h.flags |= CAM_PASS_ERR_RECOVER;
+
+ if (cam_send_ccb(cam_dev, ccb) < 0) {
+ warn("error sending READ CAPACITY command");
+
+ cam_error_print(cam_dev, ccb, CAM_ESF_ALL,
+ CAM_EPF_ALL, stderr);
+
+ goto bailout;
+ }
+
+ if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
+ cam_error_print(cam_dev, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr);
+ retval = 1;
+ goto bailout;
+ }
+
+ maxsector = scsi_4btoul(rcap.addr);
+ block_len = scsi_4btoul(rcap.length);
+
+ /*
+ * A last block of 2^32-1 means that the true capacity is over 2TB,
+ * and we need to issue the long READ CAPACITY to get the real
+ * capacity. Otherwise, we're all set.
+ */
+ if (maxsector != 0xffffffff)
+ goto rcap_done;
+
+ scsi_read_capacity_16(&ccb->csio,
+ /*retries*/ probe_retry_count,
+ /*cbfcnp*/ NULL,
+ /*tag_action*/ MSG_SIMPLE_Q_TAG,
+ /*lba*/ 0,
+ /*reladdr*/ 0,
+ /*pmi*/ 0,
+ (uint8_t *)&rcaplong,
+ sizeof(rcaplong),
+ /*sense_len*/ SSD_FULL_SIZE,
+ /*timeout*/ probe_timeout ? probe_timeout : 5000);
+
+ /* Disable freezing the device queue */
+ ccb->ccb_h.flags |= CAM_DEV_QFRZDIS;
+
+ if (arglist & CAMDD_ARG_ERR_RECOVER)
+ ccb->ccb_h.flags |= CAM_PASS_ERR_RECOVER;
+
+ if (cam_send_ccb(cam_dev, ccb) < 0) {
+ warn("error sending READ CAPACITY (16) command");
+
+ cam_error_print(cam_dev, ccb, CAM_ESF_ALL,
+ CAM_EPF_ALL, stderr);
+
+ retval = 1;
+ goto bailout;
+ }
+
+ if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
+ cam_error_print(cam_dev, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr);
+ goto bailout;
+ }
+
+ maxsector = scsi_8btou64(rcaplong.addr);
+ block_len = scsi_4btoul(rcaplong.length);
+
+rcap_done:
+
+ bzero(&(&ccb->ccb_h)[1],
+ sizeof(struct ccb_scsiio) - sizeof(struct ccb_hdr));
+
+ ccb->ccb_h.func_code = XPT_PATH_INQ;
+ ccb->ccb_h.flags = CAM_DIR_NONE;
+ ccb->ccb_h.retry_count = 1;
+
+ if (cam_send_ccb(cam_dev, ccb) < 0) {
+ warn("error sending XPT_PATH_INQ CCB");
+
+ cam_error_print(cam_dev, ccb, CAM_ESF_ALL,
+ CAM_EPF_ALL, stderr);
+ goto bailout;
+ }
+
+ EV_SET(&ke, cam_dev->fd, EVFILT_READ, EV_ADD|EV_ENABLE, 0, 0, 0);
+
+ dev = camdd_alloc_dev(CAMDD_DEV_PASS, &ke, 1, io_retry_count,
+ io_timeout);
+ if (dev == NULL)
+ goto bailout;
+
+ pass_dev = &dev->dev_spec.pass;
+ pass_dev->scsi_dev_type = scsi_dev_type;
+ pass_dev->dev = cam_dev;
+ pass_dev->max_sector = maxsector;
+ pass_dev->block_len = block_len;
+ pass_dev->cpi_maxio = ccb->cpi.maxio;
+ snprintf(dev->device_name, sizeof(dev->device_name), "%s%u",
+ pass_dev->dev->device_name, pass_dev->dev->dev_unit_num);
+ dev->sector_size = block_len;
+ dev->max_sector = maxsector;
+
+
+ /*
+ * Determine the optimal blocksize to use for this device.
+ */
+
+ /*
+ * If the controller has not specified a maximum I/O size,
+ * just go with 128K as a somewhat conservative value.
+ */
+ if (pass_dev->cpi_maxio == 0)
+ cpi_maxio = 131072;
+ else
+ cpi_maxio = pass_dev->cpi_maxio;
+
+ /*
+ * If the controller has a large maximum I/O size, limit it
+ * to something smaller so that the kernel doesn't have trouble
+ * allocating buffers to copy data in and out for us.
+ * XXX KDM this is until we have unmapped I/O support in the kernel.
+ */
+ max_iosize = min(cpi_maxio, CAMDD_PASS_MAX_BLOCK);
+
+ /*
+ * If we weren't able to get a block size for some reason,
+ * default to 512 bytes.
+ */
+ block_len = pass_dev->block_len;
+ if (block_len == 0)
+ block_len = 512;
+
+ /*
+ * Figure out how many blocksize chunks will fit in the
+ * maximum I/O size.
+ */
+ pass_numblocks = max_iosize / block_len;
+
+ /*
+ * And finally, multiple the number of blocks by the LBA
+ * length to get our maximum block size;
+ */
+ dev->blocksize = pass_numblocks * block_len;
+
+ if (io_opts->blocksize != 0) {
+ if ((io_opts->blocksize % dev->sector_size) != 0) {
+ warnx("Blocksize %ju for %s is not a multiple of "
+ "sector size %u", (uintmax_t)io_opts->blocksize,
+ dev->device_name, dev->sector_size);
+ goto bailout_error;
+ }
+ dev->blocksize = io_opts->blocksize;
+ }
+ dev->target_queue_depth = CAMDD_PASS_DEFAULT_DEPTH;
+ if (io_opts->queue_depth != 0)
+ dev->target_queue_depth = io_opts->queue_depth;
+
+ if (io_opts->offset != 0) {
+ if (io_opts->offset > (dev->max_sector * dev->sector_size)) {
+ warnx("Offset %ju is past the end of device %s",
+ io_opts->offset, dev->device_name);
+ goto bailout_error;
+ }
+#if 0
+ else if ((io_opts->offset % dev->sector_size) != 0) {
+ warnx("Offset %ju for %s is not a multiple of the "
+ "sector size %u", io_opts->offset,
+ dev->device_name, dev->sector_size);
+ goto bailout_error;
+ }
+ dev->start_offset_bytes = io_opts->offset;
+#endif
+ }
+
+ dev->min_cmd_size = io_opts->min_cmd_size;
+
+ dev->run = camdd_pass_run;
+ dev->fetch = camdd_pass_fetch;
+
+bailout:
+ cam_freeccb(ccb);
+
+ return (dev);
+
+bailout_error:
+ cam_freeccb(ccb);
+
+ camdd_free_dev(dev);
+
+ return (NULL);
+}
+
+void *
+camdd_worker(void *arg)
+{
+ struct camdd_dev *dev = arg;
+ struct camdd_buf *buf;
+ struct timespec ts, *kq_ts;
+
+ ts.tv_sec = 0;
+ ts.tv_nsec = 0;
+
+ pthread_mutex_lock(&dev->mutex);
+
+ dev->flags |= CAMDD_DEV_FLAG_ACTIVE;
+
+ for (;;) {
+ struct kevent ke;
+ int retval = 0;
+
+ /*
+ * XXX KDM check the reorder queue depth?
+ */
+ if (dev->write_dev == 0) {
+ uint32_t our_depth, peer_depth, peer_bytes, our_bytes;
+ uint32_t target_depth = dev->target_queue_depth;
+ uint32_t peer_target_depth =
+ dev->peer_dev->target_queue_depth;
+ uint32_t peer_blocksize = dev->peer_dev->blocksize;
+
+ camdd_get_depth(dev, &our_depth, &peer_depth,
+ &our_bytes, &peer_bytes);
+
+#if 0
+ while (((our_depth < target_depth)
+ && (peer_depth < peer_target_depth))
+ || ((peer_bytes + our_bytes) <
+ (peer_blocksize * 2))) {
+#endif
+ while (((our_depth + peer_depth) <
+ (target_depth + peer_target_depth))
+ || ((peer_bytes + our_bytes) <
+ (peer_blocksize * 3))) {
+
+ retval = camdd_queue(dev, NULL);
+ if (retval == 1)
+ break;
+ else if (retval != 0) {
+ error_exit = 1;
+ goto bailout;
+ }
+
+ camdd_get_depth(dev, &our_depth, &peer_depth,
+ &our_bytes, &peer_bytes);
+ }
+ }
+ /*
+ * See if we have any I/O that is ready to execute.
+ */
+ buf = STAILQ_FIRST(&dev->run_queue);
+ if (buf != NULL) {
+ while (dev->target_queue_depth > dev->cur_active_io) {
+ retval = dev->run(dev);
+ if (retval == -1) {
+ dev->flags |= CAMDD_DEV_FLAG_EOF;
+ error_exit = 1;
+ break;
+ } else if (retval != 0) {
+ break;
+ }
+ }
+ }
+
+ /*
+ * We've reached EOF, or our partner has reached EOF.
+ */
+ if ((dev->flags & CAMDD_DEV_FLAG_EOF)
+ || (dev->flags & CAMDD_DEV_FLAG_PEER_EOF)) {
+ if (dev->write_dev != 0) {
+ if ((STAILQ_EMPTY(&dev->work_queue))
+ && (dev->num_run_queue == 0)
+ && (dev->cur_active_io == 0)) {
+ goto bailout;
+ }
+ } else {
+ /*
+ * If we're the reader, and the writer
+ * got EOF, he is already done. If we got
+ * the EOF, then we need to wait until
+ * everything is flushed out for the writer.
+ */
+ if (dev->flags & CAMDD_DEV_FLAG_PEER_EOF) {
+ goto bailout;
+ } else if ((dev->num_peer_work_queue == 0)
+ && (dev->num_peer_done_queue == 0)
+ && (dev->cur_active_io == 0)
+ && (dev->num_run_queue == 0)) {
+ goto bailout;
+ }
+ }
+ /*
+ * XXX KDM need to do something about the pending
+ * queue and cleanup resources.
+ */
+ }
+
+ if ((dev->write_dev == 0)
+ && (dev->cur_active_io == 0)
+ && (dev->peer_bytes_queued < dev->peer_dev->blocksize))
+ kq_ts = &ts;
+ else
+ kq_ts = NULL;
+
+ /*
+ * Run kevent to see if there are events to process.
+ */
+ pthread_mutex_unlock(&dev->mutex);
+ retval = kevent(dev->kq, NULL, 0, &ke, 1, kq_ts);
+ pthread_mutex_lock(&dev->mutex);
+ if (retval == -1) {
+ warn("%s: error returned from kevent",__func__);
+ goto bailout;
+ } else if (retval != 0) {
+ switch (ke.filter) {
+ case EVFILT_READ:
+ if (dev->fetch != NULL) {
+ retval = dev->fetch(dev);
+ if (retval == -1) {
+ error_exit = 1;
+ goto bailout;
+ }
+ }
+ break;
+ case EVFILT_SIGNAL:
+ /*
+ * We register for this so we don't get
+ * an error as a result of a SIGINFO or a
+ * SIGINT. It will actually get handled
+ * by the signal handler. If we get a
+ * SIGINT, bail out without printing an
+ * error message. Any other signals
+ * will result in the error message above.
+ */
+ if (ke.ident == SIGINT)
+ goto bailout;
+ break;
+ case EVFILT_USER:
+ retval = 0;
+ /*
+ * Check to see if the other thread has
+ * queued any I/O for us to do. (In this
+ * case we're the writer.)
+ */
+ for (buf = STAILQ_FIRST(&dev->work_queue);
+ buf != NULL;
+ buf = STAILQ_FIRST(&dev->work_queue)) {
+ STAILQ_REMOVE_HEAD(&dev->work_queue,
+ work_links);
+ retval = camdd_queue(dev, buf);
+ /*
+ * We keep going unless we get an
+ * actual error. If we get EOF, we
+ * still want to remove the buffers
+ * from the queue and send the back
+ * to the reader thread.
+ */
+ if (retval == -1) {
+ error_exit = 1;
+ goto bailout;
+ } else
+ retval = 0;
+ }
+
+ /*
+ * Next check to see if the other thread has
+ * queued any completed buffers back to us.
+ * (In this case we're the reader.)
+ */
+ for (buf = STAILQ_FIRST(&dev->peer_done_queue);
+ buf != NULL;
+ buf = STAILQ_FIRST(&dev->peer_done_queue)){
+ STAILQ_REMOVE_HEAD(
+ &dev->peer_done_queue, work_links);
+ dev->num_peer_done_queue--;
+ camdd_peer_done(buf);
+ }
+ break;
+ default:
+ warnx("%s: unknown kevent filter %d",
+ __func__, ke.filter);
+ break;
+ }
+ }
+ }
+
+bailout:
+
+ dev->flags &= ~CAMDD_DEV_FLAG_ACTIVE;
+
+ /* XXX KDM cleanup resources here? */
+
+ pthread_mutex_unlock(&dev->mutex);
+
+ need_exit = 1;
+ sem_post(&camdd_sem);
+
+ return (NULL);
+}
+
+/*
+ * Simplistic translation of CCB status to our local status.
+ */
+camdd_buf_status
+camdd_ccb_status(union ccb *ccb)
+{
+ camdd_buf_status status = CAMDD_STATUS_NONE;
+ cam_status ccb_status;
+
+ ccb_status = ccb->ccb_h.status & CAM_STATUS_MASK;
+
+ switch (ccb_status) {
+ case CAM_REQ_CMP: {
+ if (ccb->csio.resid == 0) {
+ status = CAMDD_STATUS_OK;
+ } else if (ccb->csio.dxfer_len > ccb->csio.resid) {
+ status = CAMDD_STATUS_SHORT_IO;
+ } else {
+ status = CAMDD_STATUS_EOF;
+ }
+ break;
+ }
+ case CAM_SCSI_STATUS_ERROR: {
+ switch (ccb->csio.scsi_status) {
+ case SCSI_STATUS_OK:
+ case SCSI_STATUS_COND_MET:
+ case SCSI_STATUS_INTERMED:
+ case SCSI_STATUS_INTERMED_COND_MET:
+ status = CAMDD_STATUS_OK;
+ break;
+ case SCSI_STATUS_CMD_TERMINATED:
+ case SCSI_STATUS_CHECK_COND:
+ case SCSI_STATUS_QUEUE_FULL:
+ case SCSI_STATUS_BUSY:
+ case SCSI_STATUS_RESERV_CONFLICT:
+ default:
+ status = CAMDD_STATUS_ERROR;
+ break;
+ }
+ break;
+ }
+ default:
+ status = CAMDD_STATUS_ERROR;
+ break;
+ }
+
+ return (status);
+}
+
+/*
+ * Queue a buffer to our peer's work thread for writing.
+ *
+ * Returns 0 for success, -1 for failure, 1 if the other thread exited.
+ */
+int
+camdd_queue_peer_buf(struct camdd_dev *dev, struct camdd_buf *buf)
+{
+ struct kevent ke;
+ STAILQ_HEAD(, camdd_buf) local_queue;
+ struct camdd_buf *buf1, *buf2;
+ struct camdd_buf_data *data = NULL;
+ uint64_t peer_bytes_queued = 0;
+ int active = 1;
+ int retval = 0;
+
+ STAILQ_INIT(&local_queue);
+
+ /*
+ * Since we're the reader, we need to queue our I/O to the writer
+ * in sequential order in order to make sure it gets written out
+ * in sequential order.
+ *
+ * Check the next expected I/O starting offset. If this doesn't
+ * match, put it on the reorder queue.
+ */
+ if ((buf->lba * dev->sector_size) != dev->next_completion_pos_bytes) {
+
+ /*
+ * If there is nothing on the queue, there is no sorting
+ * needed.
+ */
+ if (STAILQ_EMPTY(&dev->reorder_queue)) {
+ STAILQ_INSERT_TAIL(&dev->reorder_queue, buf, links);
+ dev->num_reorder_queue++;
+ goto bailout;
+ }
+
+ /*
+ * Sort in ascending order by starting LBA. There should
+ * be no identical LBAs.
+ */
+ for (buf1 = STAILQ_FIRST(&dev->reorder_queue); buf1 != NULL;
+ buf1 = buf2) {
+ buf2 = STAILQ_NEXT(buf1, links);
+ if (buf->lba < buf1->lba) {
+ /*
+ * If we're less than the first one, then
+ * we insert at the head of the list
+ * because this has to be the first element
+ * on the list.
+ */
+ STAILQ_INSERT_HEAD(&dev->reorder_queue,
+ buf, links);
+ dev->num_reorder_queue++;
+ break;
+ } else if (buf->lba > buf1->lba) {
+ if (buf2 == NULL) {
+ STAILQ_INSERT_TAIL(&dev->reorder_queue,
+ buf, links);
+ dev->num_reorder_queue++;
+ break;
+ } else if (buf->lba < buf2->lba) {
+ STAILQ_INSERT_AFTER(&dev->reorder_queue,
+ buf1, buf, links);
+ dev->num_reorder_queue++;
+ break;
+ }
+ } else {
+ errx(1, "Found buffers with duplicate LBA %ju!",
+ buf->lba);
+ }
+ }
+ goto bailout;
+ } else {
+
+ /*
+ * We're the next expected I/O completion, so put ourselves
+ * on the local queue to be sent to the writer. We use
+ * work_links here so that we can queue this to the
+ * peer_work_queue before taking the buffer off of the
+ * local_queue.
+ */
+ dev->next_completion_pos_bytes += buf->len;
+ STAILQ_INSERT_TAIL(&local_queue, buf, work_links);
+
+ /*
+ * Go through the reorder queue looking for more sequential
+ * I/O and add it to the local queue.
+ */
+ for (buf1 = STAILQ_FIRST(&dev->reorder_queue); buf1 != NULL;
+ buf1 = STAILQ_FIRST(&dev->reorder_queue)) {
+ /*
+ * As soon as we see an I/O that is out of sequence,
+ * we're done.
+ */
+ if ((buf1->lba * dev->sector_size) !=
+ dev->next_completion_pos_bytes)
+ break;
+
+ STAILQ_REMOVE_HEAD(&dev->reorder_queue, links);
+ dev->num_reorder_queue--;
+ STAILQ_INSERT_TAIL(&local_queue, buf1, work_links);
+ dev->next_completion_pos_bytes += buf1->len;
+ }
+ }
+
+ /*
+ * Setup the event to let the other thread know that it has work
+ * pending.
+ */
+ EV_SET(&ke, (uintptr_t)&dev->peer_dev->work_queue, EVFILT_USER, 0,
+ NOTE_TRIGGER, 0, NULL);
+
+ /*
+ * Put this on our shadow queue so that we know what we've queued
+ * to the other thread.
+ */
+ STAILQ_FOREACH_SAFE(buf1, &local_queue, work_links, buf2) {
+ if (buf1->buf_type != CAMDD_BUF_DATA) {
+ errx(1, "%s: should have a data buffer, not an "
+ "indirect buffer", __func__);
+ }
+ data = &buf1->buf_type_spec.data;
+
+ /*
+ * We only need to send one EOF to the writer, and don't
+ * need to continue sending EOFs after that.
+ */
+ if (buf1->status == CAMDD_STATUS_EOF) {
+ if (dev->flags & CAMDD_DEV_FLAG_EOF_SENT) {
+ STAILQ_REMOVE(&local_queue, buf1, camdd_buf,
+ work_links);
+ camdd_release_buf(buf1);
+ retval = 1;
+ continue;
+ }
+ dev->flags |= CAMDD_DEV_FLAG_EOF_SENT;
+ }
+
+
+ STAILQ_INSERT_TAIL(&dev->peer_work_queue, buf1, links);
+ peer_bytes_queued += (data->fill_len - data->resid);
+ dev->peer_bytes_queued += (data->fill_len - data->resid);
+ dev->num_peer_work_queue++;
+ }
+
+ if (STAILQ_FIRST(&local_queue) == NULL)
+ goto bailout;
+
+ /*
+ * Drop our mutex and pick up the other thread's mutex. We need to
+ * do this to avoid deadlocks.
+ */
+ pthread_mutex_unlock(&dev->mutex);
+ pthread_mutex_lock(&dev->peer_dev->mutex);
+
+ if (dev->peer_dev->flags & CAMDD_DEV_FLAG_ACTIVE) {
+ /*
+ * Put the buffers on the other thread's incoming work queue.
+ */
+ for (buf1 = STAILQ_FIRST(&local_queue); buf1 != NULL;
+ buf1 = STAILQ_FIRST(&local_queue)) {
+ STAILQ_REMOVE_HEAD(&local_queue, work_links);
+ STAILQ_INSERT_TAIL(&dev->peer_dev->work_queue, buf1,
+ work_links);
+ }
+ /*
+ * Send an event to the other thread's kqueue to let it know
+ * that there is something on the work queue.
+ */
+ retval = kevent(dev->peer_dev->kq, &ke, 1, NULL, 0, NULL);
+ if (retval == -1)
+ warn("%s: unable to add peer work_queue kevent",
+ __func__);
+ else
+ retval = 0;
+ } else
+ active = 0;
+
+ pthread_mutex_unlock(&dev->peer_dev->mutex);
+ pthread_mutex_lock(&dev->mutex);
+
+ /*
+ * If the other side isn't active, run through the queue and
+ * release all of the buffers.
+ */
+ if (active == 0) {
+ for (buf1 = STAILQ_FIRST(&local_queue); buf1 != NULL;
+ buf1 = STAILQ_FIRST(&local_queue)) {
+ STAILQ_REMOVE_HEAD(&local_queue, work_links);
+ STAILQ_REMOVE(&dev->peer_work_queue, buf1, camdd_buf,
+ links);
+ dev->num_peer_work_queue--;
+ camdd_release_buf(buf1);
+ }
+ dev->peer_bytes_queued -= peer_bytes_queued;
+ retval = 1;
+ }
+
+bailout:
+ return (retval);
+}
+
+/*
+ * Return a buffer to the reader thread when we have completed writing it.
+ */
+int
+camdd_complete_peer_buf(struct camdd_dev *dev, struct camdd_buf *peer_buf)
+{
+ struct kevent ke;
+ int retval = 0;
+
+ /*
+ * Setup the event to let the other thread know that we have
+ * completed a buffer.
+ */
+ EV_SET(&ke, (uintptr_t)&dev->peer_dev->peer_done_queue, EVFILT_USER, 0,
+ NOTE_TRIGGER, 0, NULL);
+
+ /*
+ * Drop our lock and acquire the other thread's lock before
+ * manipulating
+ */
+ pthread_mutex_unlock(&dev->mutex);
+ pthread_mutex_lock(&dev->peer_dev->mutex);
+
+ /*
+ * Put the buffer on the reader thread's peer done queue now that
+ * we have completed it.
+ */
+ STAILQ_INSERT_TAIL(&dev->peer_dev->peer_done_queue, peer_buf,
+ work_links);
+ dev->peer_dev->num_peer_done_queue++;
+
+ /*
+ * Send an event to the peer thread to let it know that we've added
+ * something to its peer done queue.
+ */
+ retval = kevent(dev->peer_dev->kq, &ke, 1, NULL, 0, NULL);
+ if (retval == -1)
+ warn("%s: unable to add peer_done_queue kevent", __func__);
+ else
+ retval = 0;
+
+ /*
+ * Drop the other thread's lock and reacquire ours.
+ */
+ pthread_mutex_unlock(&dev->peer_dev->mutex);
+ pthread_mutex_lock(&dev->mutex);
+
+ return (retval);
+}
+
+/*
+ * Free a buffer that was written out by the writer thread and returned to
+ * the reader thread.
+ */
+void
+camdd_peer_done(struct camdd_buf *buf)
+{
+ struct camdd_dev *dev;
+ struct camdd_buf_data *data;
+
+ dev = buf->dev;
+ if (buf->buf_type != CAMDD_BUF_DATA) {
+ errx(1, "%s: should have a data buffer, not an "
+ "indirect buffer", __func__);
+ }
+
+ data = &buf->buf_type_spec.data;
+
+ STAILQ_REMOVE(&dev->peer_work_queue, buf, camdd_buf, links);
+ dev->num_peer_work_queue--;
+ dev->peer_bytes_queued -= (data->fill_len - data->resid);
+
+ if (buf->status == CAMDD_STATUS_EOF)
+ dev->flags |= CAMDD_DEV_FLAG_PEER_EOF;
+
+ STAILQ_INSERT_TAIL(&dev->free_queue, buf, links);
+}
+
+/*
+ * Assumes caller holds the lock for this device.
+ */
+void
+camdd_complete_buf(struct camdd_dev *dev, struct camdd_buf *buf,
+ int *error_count)
+{
+ int retval = 0;
+
+ /*
+ * If we're the reader, we need to send the completed I/O
+ * to the writer. If we're the writer, we need to just
+ * free up resources, or let the reader know if we've
+ * encountered an error.
+ */
+ if (dev->write_dev == 0) {
+ retval = camdd_queue_peer_buf(dev, buf);
+ if (retval != 0)
+ (*error_count)++;
+ } else {
+ struct camdd_buf *tmp_buf, *next_buf;
+
+ STAILQ_FOREACH_SAFE(tmp_buf, &buf->src_list, src_links,
+ next_buf) {
+ struct camdd_buf *src_buf;
+ struct camdd_buf_indirect *indirect;
+
+ STAILQ_REMOVE(&buf->src_list, tmp_buf,
+ camdd_buf, src_links);
+
+ tmp_buf->status = buf->status;
+
+ if (tmp_buf->buf_type == CAMDD_BUF_DATA) {
+ camdd_complete_peer_buf(dev, tmp_buf);
+ continue;
+ }
+
+ indirect = &tmp_buf->buf_type_spec.indirect;
+ src_buf = indirect->src_buf;
+ src_buf->refcount--;
+ /*
+ * XXX KDM we probably need to account for
+ * exactly how many bytes we were able to
+ * write. Allocate the residual to the
+ * first N buffers? Or just track the
+ * number of bytes written? Right now the reader
+ * doesn't do anything with a residual.
+ */
+ src_buf->status = buf->status;
+ if (src_buf->refcount <= 0)
+ camdd_complete_peer_buf(dev, src_buf);
+ STAILQ_INSERT_TAIL(&dev->free_indirect_queue,
+ tmp_buf, links);
+ }
+
+ STAILQ_INSERT_TAIL(&dev->free_queue, buf, links);
+ }
+}
+
+/*
+ * Fetch all completed commands from the pass(4) device.
+ *
+ * Returns the number of commands received, or -1 if any of the commands
+ * completed with an error. Returns 0 if no commands are available.
+ */
+int
+camdd_pass_fetch(struct camdd_dev *dev)
+{
+ struct camdd_dev_pass *pass_dev = &dev->dev_spec.pass;
+ union ccb ccb;
+ int retval = 0, num_fetched = 0, error_count = 0;
+
+ pthread_mutex_unlock(&dev->mutex);
+ /*
+ * XXX KDM we don't distinguish between EFAULT and ENOENT.
+ */
+ while ((retval = ioctl(pass_dev->dev->fd, CAMIOGET, &ccb)) != -1) {
+ struct camdd_buf *buf;
+ struct camdd_buf_data *data;
+ cam_status ccb_status;
+ union ccb *buf_ccb;
+
+ buf = ccb.ccb_h.ccb_buf;
+ data = &buf->buf_type_spec.data;
+ buf_ccb = &data->ccb;
+
+ num_fetched++;
+
+ /*
+ * Copy the CCB back out so we get status, sense data, etc.
+ */
+ bcopy(&ccb, buf_ccb, sizeof(ccb));
+
+ pthread_mutex_lock(&dev->mutex);
+
+ /*
+ * We're now done, so take this off the active queue.
+ */
+ STAILQ_REMOVE(&dev->active_queue, buf, camdd_buf, links);
+ dev->cur_active_io--;
+
+ ccb_status = ccb.ccb_h.status & CAM_STATUS_MASK;
+ if (ccb_status != CAM_REQ_CMP) {
+ cam_error_print(pass_dev->dev, &ccb, CAM_ESF_ALL,
+ CAM_EPF_ALL, stderr);
+ }
+
+ data->resid = ccb.csio.resid;
+ dev->bytes_transferred += (ccb.csio.dxfer_len - ccb.csio.resid);
+
+ if (buf->status == CAMDD_STATUS_NONE)
+ buf->status = camdd_ccb_status(&ccb);
+ if (buf->status == CAMDD_STATUS_ERROR)
+ error_count++;
+ else if (buf->status == CAMDD_STATUS_EOF) {
+ /*
+ * Once we queue this buffer to our partner thread,
+ * he will know that we've hit EOF.
+ */
+ dev->flags |= CAMDD_DEV_FLAG_EOF;
+ }
+
+ camdd_complete_buf(dev, buf, &error_count);
+
+ /*
+ * Unlock in preparation for the ioctl call.
+ */
+ pthread_mutex_unlock(&dev->mutex);
+ }
+
+ pthread_mutex_lock(&dev->mutex);
+
+ if (error_count > 0)
+ return (-1);
+ else
+ return (num_fetched);
+}
+
+/*
+ * Returns -1 for error, 0 for success/continue, and 1 for resource
+ * shortage/stop processing.
+ */
+int
+camdd_file_run(struct camdd_dev *dev)
+{
+ struct camdd_dev_file *file_dev = &dev->dev_spec.file;
+ struct camdd_buf_data *data;
+ struct camdd_buf *buf;
+ off_t io_offset;
+ int retval = 0, write_dev = dev->write_dev;
+ int error_count = 0, no_resources = 0, double_buf_needed = 0;
+ uint32_t num_sectors = 0, db_len = 0;
+
+ buf = STAILQ_FIRST(&dev->run_queue);
+ if (buf == NULL) {
+ no_resources = 1;
+ goto bailout;
+ } else if ((dev->write_dev == 0)
+ && (dev->flags & (CAMDD_DEV_FLAG_EOF |
+ CAMDD_DEV_FLAG_EOF_SENT))) {
+ STAILQ_REMOVE(&dev->run_queue, buf, camdd_buf, links);
+ dev->num_run_queue--;
+ buf->status = CAMDD_STATUS_EOF;
+ error_count++;
+ goto bailout;
+ }
+
+ /*
+ * If we're writing, we need to go through the source buffer list
+ * and create an S/G list.
+ */
+ if (write_dev != 0) {
+ retval = camdd_buf_sg_create(buf, /*iovec*/ 1,
+ dev->sector_size, &num_sectors, &double_buf_needed);
+ if (retval != 0) {
+ no_resources = 1;
+ goto bailout;
+ }
+ }
+
+ STAILQ_REMOVE(&dev->run_queue, buf, camdd_buf, links);
+ dev->num_run_queue--;
+
+ data = &buf->buf_type_spec.data;
+
+ /*
+ * pread(2) and pwrite(2) offsets are byte offsets.
+ */
+ io_offset = buf->lba * dev->sector_size;
+
+ /*
+ * Unlock the mutex while we read or write.
+ */
+ pthread_mutex_unlock(&dev->mutex);
+
+ /*
+ * Note that we don't need to double buffer if we're the reader
+ * because in that case, we have allocated a single buffer of
+ * sufficient size to do the read. This copy is necessary on
+ * writes because if one of the components of the S/G list is not
+ * a sector size multiple, the kernel will reject the write. This
+ * is unfortunate but not surprising. So this will make sure that
+ * we're using a single buffer that is a multiple of the sector size.
+ */
+ if ((double_buf_needed != 0)
+ && (data->sg_count > 1)
+ && (write_dev != 0)) {
+ uint32_t cur_offset;
+ int i;
+
+ if (file_dev->tmp_buf == NULL)
+ file_dev->tmp_buf = calloc(dev->blocksize, 1);
+ if (file_dev->tmp_buf == NULL) {
+ buf->status = CAMDD_STATUS_ERROR;
+ error_count++;
+ goto bailout;
+ }
+ for (i = 0, cur_offset = 0; i < data->sg_count; i++) {
+ bcopy(data->iovec[i].iov_base,
+ &file_dev->tmp_buf[cur_offset],
+ data->iovec[i].iov_len);
+ cur_offset += data->iovec[i].iov_len;
+ }
+ db_len = cur_offset;
+ }
+
+ if (file_dev->file_flags & CAMDD_FF_CAN_SEEK) {
+ if (write_dev == 0) {
+ /*
+ * XXX KDM is there any way we would need a S/G
+ * list here?
+ */
+ retval = pread(file_dev->fd, data->buf,
+ buf->len, io_offset);
+ } else {
+ if (double_buf_needed != 0) {
+ retval = pwrite(file_dev->fd, file_dev->tmp_buf,
+ db_len, io_offset);
+ } else if (data->sg_count == 0) {
+ retval = pwrite(file_dev->fd, data->buf,
+ data->fill_len, io_offset);
+ } else {
+ retval = pwritev(file_dev->fd, data->iovec,
+ data->sg_count, io_offset);
+ }
+ }
+ } else {
+ if (write_dev == 0) {
+ /*
+ * XXX KDM is there any way we would need a S/G
+ * list here?
+ */
+ retval = read(file_dev->fd, data->buf, buf->len);
+ } else {
+ if (double_buf_needed != 0) {
+ retval = write(file_dev->fd, file_dev->tmp_buf,
+ db_len);
+ } else if (data->sg_count == 0) {
+ retval = write(file_dev->fd, data->buf,
+ data->fill_len);
+ } else {
+ retval = writev(file_dev->fd, data->iovec,
+ data->sg_count);
+ }
+ }
+ }
+
+ /* We're done, re-acquire the lock */
+ pthread_mutex_lock(&dev->mutex);
+
+ if (retval >= (ssize_t)data->fill_len) {
+ /*
+ * If the bytes transferred is more than the request size,
+ * that indicates an overrun, which should only happen at
+ * the end of a transfer if we have to round up to a sector
+ * boundary.
+ */
+ if (buf->status == CAMDD_STATUS_NONE)
+ buf->status = CAMDD_STATUS_OK;
+ data->resid = 0;
+ dev->bytes_transferred += retval;
+ } else if (retval == -1) {
+ warn("Error %s %s", (write_dev) ? "writing to" :
+ "reading from", file_dev->filename);
+
+ buf->status = CAMDD_STATUS_ERROR;
+ data->resid = data->fill_len;
+ error_count++;
+
+ if (dev->debug == 0)
+ goto bailout;
+
+ if ((double_buf_needed != 0)
+ && (write_dev != 0)) {
+ fprintf(stderr, "%s: fd %d, DB buf %p, len %u lba %ju "
+ "offset %ju\n", __func__, file_dev->fd,
+ file_dev->tmp_buf, db_len, (uintmax_t)buf->lba,
+ (uintmax_t)io_offset);
+ } else if (data->sg_count == 0) {
+ fprintf(stderr, "%s: fd %d, buf %p, len %u, lba %ju "
+ "offset %ju\n", __func__, file_dev->fd, data->buf,
+ data->fill_len, (uintmax_t)buf->lba,
+ (uintmax_t)io_offset);
+ } else {
+ int i;
+
+ fprintf(stderr, "%s: fd %d, len %u, lba %ju "
+ "offset %ju\n", __func__, file_dev->fd,
+ data->fill_len, (uintmax_t)buf->lba,
+ (uintmax_t)io_offset);
+
+ for (i = 0; i < data->sg_count; i++) {
+ fprintf(stderr, "index %d ptr %p len %zu\n",
+ i, data->iovec[i].iov_base,
+ data->iovec[i].iov_len);
+ }
+ }
+ } else if (retval == 0) {
+ buf->status = CAMDD_STATUS_EOF;
+ if (dev->debug != 0)
+ printf("%s: got EOF from %s!\n", __func__,
+ file_dev->filename);
+ data->resid = data->fill_len;
+ error_count++;
+ } else if (retval < (ssize_t)data->fill_len) {
+ if (buf->status == CAMDD_STATUS_NONE)
+ buf->status = CAMDD_STATUS_SHORT_IO;
+ data->resid = data->fill_len - retval;
+ dev->bytes_transferred += retval;
+ }
+
+bailout:
+ if (buf != NULL) {
+ if (buf->status == CAMDD_STATUS_EOF) {
+ struct camdd_buf *buf2;
+ dev->flags |= CAMDD_DEV_FLAG_EOF;
+ STAILQ_FOREACH(buf2, &dev->run_queue, links)
+ buf2->status = CAMDD_STATUS_EOF;
+ }
+
+ camdd_complete_buf(dev, buf, &error_count);
+ }
+
+ if (error_count != 0)
+ return (-1);
+ else if (no_resources != 0)
+ return (1);
+ else
+ return (0);
+}
+
+/*
+ * Execute one command from the run queue. Returns 0 for success, 1 for
+ * stop processing, and -1 for error.
+ */
+int
+camdd_pass_run(struct camdd_dev *dev)
+{
+ struct camdd_buf *buf = NULL;
+ struct camdd_dev_pass *pass_dev = &dev->dev_spec.pass;
+ struct camdd_buf_data *data;
+ uint32_t num_blocks, sectors_used = 0;
+ union ccb *ccb;
+ int retval = 0, is_write = dev->write_dev;
+ int double_buf_needed = 0;
+
+ buf = STAILQ_FIRST(&dev->run_queue);
+ if (buf == NULL) {
+ retval = 1;
+ goto bailout;
+ }
+
+ /*
+ * If we're writing, we need to go through the source buffer list
+ * and create an S/G list.
+ */
+ if (is_write != 0) {
+ retval = camdd_buf_sg_create(buf, /*iovec*/ 0,dev->sector_size,
+ &sectors_used, &double_buf_needed);
+ if (retval != 0) {
+ retval = -1;
+ goto bailout;
+ }
+ }
+
+ STAILQ_REMOVE(&dev->run_queue, buf, camdd_buf, links);
+ dev->num_run_queue--;
+
+ data = &buf->buf_type_spec.data;
+
+ ccb = &data->ccb;
+ bzero(&(&ccb->ccb_h)[1],
+ sizeof(struct ccb_scsiio) - sizeof(struct ccb_hdr));
+
+ /*
+ * In almost every case the number of blocks should be the device
+ * block size. The exception may be at the end of an I/O stream
+ * for a partial block or at the end of a device.
+ */
+ if (is_write != 0)
+ num_blocks = sectors_used;
+ else
+ num_blocks = data->fill_len / pass_dev->block_len;
+
+ scsi_read_write(&ccb->csio,
+ /*retries*/ dev->retry_count,
+ /*cbfcnp*/ NULL,
+ /*tag_action*/ MSG_SIMPLE_Q_TAG,
+ /*readop*/ (dev->write_dev == 0) ? SCSI_RW_READ :
+ SCSI_RW_WRITE,
+ /*byte2*/ 0,
+ /*minimum_cmd_size*/ dev->min_cmd_size,
+ /*lba*/ buf->lba,
+ /*block_count*/ num_blocks,
+ /*data_ptr*/ (data->sg_count != 0) ?
+ (uint8_t *)data->segs : data->buf,
+ /*dxfer_len*/ (num_blocks * pass_dev->block_len),
+ /*sense_len*/ SSD_FULL_SIZE,
+ /*timeout*/ dev->io_timeout);
+
+ /* Disable freezing the device queue */
+ ccb->ccb_h.flags |= CAM_DEV_QFRZDIS;
+
+ if (dev->retry_count != 0)
+ ccb->ccb_h.flags |= CAM_PASS_ERR_RECOVER;
+
+ if (data->sg_count != 0) {
+ ccb->csio.sglist_cnt = data->sg_count;
+ ccb->ccb_h.flags |= CAM_DATA_SG;
+ }
+
+ /*
+ * Store a pointer to the buffer in the CCB. The kernel will
+ * restore this when we get it back, and we'll use it to identify
+ * the buffer this CCB came from.
+ */
+ ccb->ccb_h.ccb_buf = buf;
+
+ /*
+ * Unlock our mutex in preparation for issuing the ioctl.
+ */
+ pthread_mutex_unlock(&dev->mutex);
+ /*
+ * Queue the CCB to the pass(4) driver.
+ */
+ if (ioctl(pass_dev->dev->fd, CAMIOQUEUE, ccb) == -1) {
+ pthread_mutex_lock(&dev->mutex);
+
+ warn("%s: error sending CAMIOQUEUE ioctl to %s%u", __func__,
+ pass_dev->dev->device_name, pass_dev->dev->dev_unit_num);
+ warn("%s: CCB address is %p", __func__, ccb);
+ retval = -1;
+
+ STAILQ_INSERT_TAIL(&dev->free_queue, buf, links);
+ } else {
+ pthread_mutex_lock(&dev->mutex);
+
+ dev->cur_active_io++;
+ STAILQ_INSERT_TAIL(&dev->active_queue, buf, links);
+ }
+
+bailout:
+ return (retval);
+}
+
+int
+camdd_get_next_lba_len(struct camdd_dev *dev, uint64_t *lba, ssize_t *len)
+{
+ struct camdd_dev_pass *pass_dev;
+ uint32_t num_blocks;
+ int retval = 0;
+
+ pass_dev = &dev->dev_spec.pass;
+
+ *lba = dev->next_io_pos_bytes / dev->sector_size;
+ *len = dev->blocksize;
+ num_blocks = *len / dev->sector_size;
+
+ /*
+ * If max_sector is 0, then we have no set limit. This can happen
+ * if we're writing to a file in a filesystem, or reading from
+ * something like /dev/zero.
+ */
+ if ((dev->max_sector != 0)
+ || (dev->sector_io_limit != 0)) {
+ uint64_t max_sector;
+
+ if ((dev->max_sector != 0)
+ && (dev->sector_io_limit != 0))
+ max_sector = min(dev->sector_io_limit, dev->max_sector);
+ else if (dev->max_sector != 0)
+ max_sector = dev->max_sector;
+ else
+ max_sector = dev->sector_io_limit;
+
+
+ /*
+ * Check to see whether we're starting off past the end of
+ * the device. If so, we need to just send an EOF
+ * notification to the writer.
+ */
+ if (*lba > max_sector) {
+ *len = 0;
+ retval = 1;
+ } else if (((*lba + num_blocks) > max_sector + 1)
+ || ((*lba + num_blocks) < *lba)) {
+ /*
+ * If we get here (but pass the first check), we
+ * can trim the request length down to go to the
+ * end of the device.
+ */
+ num_blocks = (max_sector + 1) - *lba;
+ *len = num_blocks * dev->sector_size;
+ retval = 1;
+ }
+ }
+
+ dev->next_io_pos_bytes += *len;
+
+ return (retval);
+}
+
+/*
+ * Returns 0 for success, 1 for EOF detected, and -1 for failure.
+ */
+int
+camdd_queue(struct camdd_dev *dev, struct camdd_buf *read_buf)
+{
+ struct camdd_buf *buf = NULL;
+ struct camdd_buf_data *data;
+ struct camdd_dev_pass *pass_dev;
+ size_t new_len;
+ struct camdd_buf_data *rb_data;
+ int is_write = dev->write_dev;
+ int eof_flush_needed = 0;
+ int retval = 0;
+ int error;
+
+ pass_dev = &dev->dev_spec.pass;
+
+ /*
+ * If we've gotten EOF or our partner has, we should not continue
+ * queueing I/O. If we're a writer, though, we should continue
+ * to write any buffers that don't have EOF status.
+ */
+ if ((dev->flags & CAMDD_DEV_FLAG_EOF)
+ || ((dev->flags & CAMDD_DEV_FLAG_PEER_EOF)
+ && (is_write == 0))) {
+ /*
+ * Tell the worker thread that we have seen EOF.
+ */
+ retval = 1;
+
+ /*
+ * If we're the writer, send the buffer back with EOF status.
+ */
+ if (is_write) {
+ read_buf->status = CAMDD_STATUS_EOF;
+
+ error = camdd_complete_peer_buf(dev, read_buf);
+ }
+ goto bailout;
+ }
+
+ if (is_write == 0) {
+ buf = camdd_get_buf(dev, CAMDD_BUF_DATA);
+ if (buf == NULL) {
+ retval = -1;
+ goto bailout;
+ }
+ data = &buf->buf_type_spec.data;
+
+ retval = camdd_get_next_lba_len(dev, &buf->lba, &buf->len);
+ if (retval != 0) {
+ buf->status = CAMDD_STATUS_EOF;
+
+ if ((buf->len == 0)
+ && ((dev->flags & (CAMDD_DEV_FLAG_EOF_SENT |
+ CAMDD_DEV_FLAG_EOF_QUEUED)) != 0)) {
+ camdd_release_buf(buf);
+ goto bailout;
+ }
+ dev->flags |= CAMDD_DEV_FLAG_EOF_QUEUED;
+ }
+
+ data->fill_len = buf->len;
+ data->src_start_offset = buf->lba * dev->sector_size;
+
+ /*
+ * Put this on the run queue.
+ */
+ STAILQ_INSERT_TAIL(&dev->run_queue, buf, links);
+ dev->num_run_queue++;
+
+ /* We're done. */
+ goto bailout;
+ }
+
+ /*
+ * Check for new EOF status from the reader.
+ */
+ if ((read_buf->status == CAMDD_STATUS_EOF)
+ || (read_buf->status == CAMDD_STATUS_ERROR)) {
+ dev->flags |= CAMDD_DEV_FLAG_PEER_EOF;
+ if ((STAILQ_FIRST(&dev->pending_queue) == NULL)
+ && (read_buf->len == 0)) {
+ camdd_complete_peer_buf(dev, read_buf);
+ retval = 1;
+ goto bailout;
+ } else
+ eof_flush_needed = 1;
+ }
+
+ /*
+ * See if we have a buffer we're composing with pieces from our
+ * partner thread.
+ */
+ buf = STAILQ_FIRST(&dev->pending_queue);
+ if (buf == NULL) {
+ uint64_t lba;
+ ssize_t len;
+
+ retval = camdd_get_next_lba_len(dev, &lba, &len);
+ if (retval != 0) {
+ read_buf->status = CAMDD_STATUS_EOF;
+
+ if (len == 0) {
+ dev->flags |= CAMDD_DEV_FLAG_EOF;
+ error = camdd_complete_peer_buf(dev, read_buf);
+ goto bailout;
+ }
+ }
+
+ /*
+ * If we don't have a pending buffer, we need to grab a new
+ * one from the free list or allocate another one.
+ */
+ buf = camdd_get_buf(dev, CAMDD_BUF_DATA);
+ if (buf == NULL) {
+ retval = 1;
+ goto bailout;
+ }
+
+ buf->lba = lba;
+ buf->len = len;
+
+ STAILQ_INSERT_TAIL(&dev->pending_queue, buf, links);
+ dev->num_pending_queue++;
+ }
+
+ data = &buf->buf_type_spec.data;
+
+ rb_data = &read_buf->buf_type_spec.data;
+
+ if ((rb_data->src_start_offset != dev->next_peer_pos_bytes)
+ && (dev->debug != 0)) {
+ printf("%s: WARNING: reader offset %#jx != expected offset "
+ "%#jx\n", __func__, (uintmax_t)rb_data->src_start_offset,
+ (uintmax_t)dev->next_peer_pos_bytes);
+ }
+ dev->next_peer_pos_bytes = rb_data->src_start_offset +
+ (rb_data->fill_len - rb_data->resid);
+
+ new_len = (rb_data->fill_len - rb_data->resid) + data->fill_len;
+ if (new_len < buf->len) {
+ /*
+ * There are three cases here:
+ * 1. We need more data to fill up a block, so we put
+ * this I/O on the queue and wait for more I/O.
+ * 2. We have a pending buffer in the queue that is
+ * smaller than our blocksize, but we got an EOF. So we
+ * need to go ahead and flush the write out.
+ * 3. We got an error.
+ */
+
+ /*
+ * Increment our fill length.
+ */
+ data->fill_len += (rb_data->fill_len - rb_data->resid);
+
+ /*
+ * Add the new read buffer to the list for writing.
+ */
+ STAILQ_INSERT_TAIL(&buf->src_list, read_buf, src_links);
+
+ /* Increment the count */
+ buf->src_count++;
+
+ if (eof_flush_needed == 0) {
+ /*
+ * We need to exit, because we don't have enough
+ * data yet.
+ */
+ goto bailout;
+ } else {
+ /*
+ * Take the buffer off of the pending queue.
+ */
+ STAILQ_REMOVE(&dev->pending_queue, buf, camdd_buf,
+ links);
+ dev->num_pending_queue--;
+
+ /*
+ * If we need an EOF flush, but there is no data
+ * to flush, go ahead and return this buffer.
+ */
+ if (data->fill_len == 0) {
+ camdd_complete_buf(dev, buf, /*error_count*/0);
+ retval = 1;
+ goto bailout;
+ }
+
+ /*
+ * Put this on the next queue for execution.
+ */
+ STAILQ_INSERT_TAIL(&dev->run_queue, buf, links);
+ dev->num_run_queue++;
+ }
+ } else if (new_len == buf->len) {
+ /*
+ * We have enough data to completey fill one block,
+ * so we're ready to issue the I/O.
+ */
+
+ /*
+ * Take the buffer off of the pending queue.
+ */
+ STAILQ_REMOVE(&dev->pending_queue, buf, camdd_buf, links);
+ dev->num_pending_queue--;
+
+ /*
+ * Add the new read buffer to the list for writing.
+ */
+ STAILQ_INSERT_TAIL(&buf->src_list, read_buf, src_links);
+
+ /* Increment the count */
+ buf->src_count++;
+
+ /*
+ * Increment our fill length.
+ */
+ data->fill_len += (rb_data->fill_len - rb_data->resid);
+
+ /*
+ * Put this on the next queue for execution.
+ */
+ STAILQ_INSERT_TAIL(&dev->run_queue, buf, links);
+ dev->num_run_queue++;
+ } else {
+ struct camdd_buf *idb;
+ struct camdd_buf_indirect *indirect;
+ uint32_t len_to_go, cur_offset;
+
+
+ idb = camdd_get_buf(dev, CAMDD_BUF_INDIRECT);
+ if (idb == NULL) {
+ retval = 1;
+ goto bailout;
+ }
+ indirect = &idb->buf_type_spec.indirect;
+ indirect->src_buf = read_buf;
+ read_buf->refcount++;
+ indirect->offset = 0;
+ indirect->start_ptr = rb_data->buf;
+ /*
+ * We've already established that there is more
+ * data in read_buf than we have room for in our
+ * current write request. So this particular chunk
+ * of the request should just be the remainder
+ * needed to fill up a block.
+ */
+ indirect->len = buf->len - (data->fill_len - data->resid);
+
+ camdd_buf_add_child(buf, idb);
+
+ /*
+ * This buffer is ready to execute, so we can take
+ * it off the pending queue and put it on the run
+ * queue.
+ */
+ STAILQ_REMOVE(&dev->pending_queue, buf, camdd_buf,
+ links);
+ dev->num_pending_queue--;
+ STAILQ_INSERT_TAIL(&dev->run_queue, buf, links);
+ dev->num_run_queue++;
+
+ cur_offset = indirect->offset + indirect->len;
+
+ /*
+ * The resulting I/O would be too large to fit in
+ * one block. We need to split this I/O into
+ * multiple pieces. Allocate as many buffers as needed.
+ */
+ for (len_to_go = rb_data->fill_len - rb_data->resid -
+ indirect->len; len_to_go > 0;) {
+ struct camdd_buf *new_buf;
+ struct camdd_buf_data *new_data;
+ uint64_t lba;
+ ssize_t len;
+
+ retval = camdd_get_next_lba_len(dev, &lba, &len);
+ if ((retval != 0)
+ && (len == 0)) {
+ /*
+ * The device has already been marked
+ * as EOF, and there is no space left.
+ */
+ goto bailout;
+ }
+
+ new_buf = camdd_get_buf(dev, CAMDD_BUF_DATA);
+ if (new_buf == NULL) {
+ retval = 1;
+ goto bailout;
+ }
+
+ new_buf->lba = lba;
+ new_buf->len = len;
+
+ idb = camdd_get_buf(dev, CAMDD_BUF_INDIRECT);
+ if (idb == NULL) {
+ retval = 1;
+ goto bailout;
+ }
+
+ indirect = &idb->buf_type_spec.indirect;
+
+ indirect->src_buf = read_buf;
+ read_buf->refcount++;
+ indirect->offset = cur_offset;
+ indirect->start_ptr = rb_data->buf + cur_offset;
+ indirect->len = min(len_to_go, new_buf->len);
+#if 0
+ if (((indirect->len % dev->sector_size) != 0)
+ || ((indirect->offset % dev->sector_size) != 0)) {
+ warnx("offset %ju len %ju not aligned with "
+ "sector size %u", indirect->offset,
+ (uintmax_t)indirect->len, dev->sector_size);
+ }
+#endif
+ cur_offset += indirect->len;
+ len_to_go -= indirect->len;
+
+ camdd_buf_add_child(new_buf, idb);
+
+ new_data = &new_buf->buf_type_spec.data;
+
+ if ((new_data->fill_len == new_buf->len)
+ || (eof_flush_needed != 0)) {
+ STAILQ_INSERT_TAIL(&dev->run_queue,
+ new_buf, links);
+ dev->num_run_queue++;
+ } else if (new_data->fill_len < buf->len) {
+ STAILQ_INSERT_TAIL(&dev->pending_queue,
+ new_buf, links);
+ dev->num_pending_queue++;
+ } else {
+ warnx("%s: too much data in new "
+ "buffer!", __func__);
+ retval = 1;
+ goto bailout;
+ }
+ }
+ }
+
+bailout:
+ return (retval);
+}
+
+void
+camdd_get_depth(struct camdd_dev *dev, uint32_t *our_depth,
+ uint32_t *peer_depth, uint32_t *our_bytes, uint32_t *peer_bytes)
+{
+ *our_depth = dev->cur_active_io + dev->num_run_queue;
+ if (dev->num_peer_work_queue >
+ dev->num_peer_done_queue)
+ *peer_depth = dev->num_peer_work_queue -
+ dev->num_peer_done_queue;
+ else
+ *peer_depth = 0;
+ *our_bytes = *our_depth * dev->blocksize;
+ *peer_bytes = dev->peer_bytes_queued;
+}
+
+void
+camdd_sig_handler(int sig)
+{
+ if (sig == SIGINFO)
+ need_status = 1;
+ else {
+ need_exit = 1;
+ error_exit = 1;
+ }
+
+ sem_post(&camdd_sem);
+}
+
+void
+camdd_print_status(struct camdd_dev *camdd_dev, struct camdd_dev *other_dev,
+ struct timespec *start_time)
+{
+ struct timespec done_time;
+ uint64_t total_ns;
+ long double mb_sec, total_sec;
+ int error = 0;
+
+ error = clock_gettime(CLOCK_MONOTONIC_PRECISE, &done_time);
+ if (error != 0) {
+ warn("Unable to get done time");
+ return;
+ }
+
+ timespecsub(&done_time, start_time);
+
+ total_ns = done_time.tv_nsec + (done_time.tv_sec * 1000000000);
+ total_sec = total_ns;
+ total_sec /= 1000000000;
+
+ fprintf(stderr, "%ju bytes %s %s\n%ju bytes %s %s\n"
+ "%.4Lf seconds elapsed\n",
+ (uintmax_t)camdd_dev->bytes_transferred,
+ (camdd_dev->write_dev == 0) ? "read from" : "written to",
+ camdd_dev->device_name,
+ (uintmax_t)other_dev->bytes_transferred,
+ (other_dev->write_dev == 0) ? "read from" : "written to",
+ other_dev->device_name, total_sec);
+
+ mb_sec = min(other_dev->bytes_transferred,camdd_dev->bytes_transferred);
+ mb_sec /= 1024 * 1024;
+ mb_sec *= 1000000000;
+ mb_sec /= total_ns;
+ fprintf(stderr, "%.2Lf MB/sec\n", mb_sec);
+}
+
+int
+camdd_rw(struct camdd_io_opts *io_opts, int num_io_opts, uint64_t max_io,
+ int retry_count, int timeout)
+{
+ char *device = NULL;
+ struct cam_device *new_cam_dev = NULL;
+ struct camdd_dev *devs[2];
+ struct timespec start_time;
+ pthread_t threads[2];
+ int unit = 0;
+ int error = 0;
+ int i;
+
+ if (num_io_opts != 2) {
+ warnx("Must have one input and one output path");
+ error = 1;
+ goto bailout;
+ }
+
+ bzero(devs, sizeof(devs));
+
+ for (i = 0; i < num_io_opts; i++) {
+ switch (io_opts[i].dev_type) {
+ case CAMDD_DEV_PASS: {
+ camdd_argmask new_arglist = CAMDD_ARG_NONE;
+ int bus = 0, target = 0, lun = 0;
+ char name[30];
+ int rv;
+
+ if (isdigit(io_opts[i].dev_name[0])) {
+ /* device specified as bus:target[:lun] */
+ rv = parse_btl(io_opts[i].dev_name, &bus,
+ &target, &lun, &new_arglist);
+ if (rv < 2) {
+ warnx("numeric device specification "
+ "must be either bus:target, or "
+ "bus:target:lun");
+ error = 1;
+ goto bailout;
+ }
+ /* default to 0 if lun was not specified */
+ if ((new_arglist & CAMDD_ARG_LUN) == 0) {
+ lun = 0;
+ new_arglist |= CAMDD_ARG_LUN;
+ }
+ } else {
+ if (cam_get_device(io_opts[i].dev_name, name,
+ sizeof name, &unit) == -1) {
+ warnx("%s", cam_errbuf);
+ error = 1;
+ goto bailout;
+ }
+ device = strdup(name);
+ new_arglist |= CAMDD_ARG_DEVICE |CAMDD_ARG_UNIT;
+ }
+
+ if (new_arglist & (CAMDD_ARG_BUS | CAMDD_ARG_TARGET))
+ new_cam_dev = cam_open_btl(bus, target, lun,
+ O_RDWR, NULL);
+ else
+ new_cam_dev = cam_open_spec_device(device, unit,
+ O_RDWR, NULL);
+ if (new_cam_dev == NULL) {
+ warnx("%s", cam_errbuf);
+ error = 1;
+ goto bailout;
+ }
+
+ devs[i] = camdd_probe_pass(new_cam_dev,
+ /*io_opts*/ &io_opts[i],
+ CAMDD_ARG_ERR_RECOVER,
+ /*probe_retry_count*/ 3,
+ /*probe_timeout*/ 5000,
+ /*io_retry_count*/ retry_count,
+ /*io_timeout*/ timeout);
+ if (devs[i] == NULL) {
+ warn("Unable to probe device %s%u",
+ new_cam_dev->device_name,
+ new_cam_dev->dev_unit_num);
+ error = 1;
+ goto bailout;
+ }
+ break;
+ }
+ case CAMDD_DEV_FILE: {
+ int fd = -1;
+
+ if (io_opts[i].dev_name[0] == '-') {
+ if (io_opts[i].write_dev != 0)
+ fd = STDOUT_FILENO;
+ else
+ fd = STDIN_FILENO;
+ } else {
+ if (io_opts[i].write_dev != 0) {
+ fd = open(io_opts[i].dev_name,
+ O_RDWR | O_CREAT, S_IWUSR |S_IRUSR);
+ } else {
+ fd = open(io_opts[i].dev_name,
+ O_RDONLY);
+ }
+ }
+ if (fd == -1) {
+ warn("error opening file %s",
+ io_opts[i].dev_name);
+ error = 1;
+ goto bailout;
+ }
+
+ devs[i] = camdd_probe_file(fd, &io_opts[i],
+ retry_count, timeout);
+ if (devs[i] == NULL) {
+ error = 1;
+ goto bailout;
+ }
+
+ break;
+ }
+ default:
+ warnx("Unknown device type %d (%s)",
+ io_opts[i].dev_type, io_opts[i].dev_name);
+ error = 1;
+ goto bailout;
+ break; /*NOTREACHED */
+ }
+
+ devs[i]->write_dev = io_opts[i].write_dev;
+
+ devs[i]->start_offset_bytes = io_opts[i].offset;
+
+ if (max_io != 0) {
+ devs[i]->sector_io_limit =
+ (devs[i]->start_offset_bytes /
+ devs[i]->sector_size) +
+ (max_io / devs[i]->sector_size) - 1;
+ devs[i]->sector_io_limit =
+ (devs[i]->start_offset_bytes /
+ devs[i]->sector_size) +
+ (max_io / devs[i]->sector_size) - 1;
+ }
+
+ devs[i]->next_io_pos_bytes = devs[i]->start_offset_bytes;
+ devs[i]->next_completion_pos_bytes =devs[i]->start_offset_bytes;
+ }
+
+ devs[0]->peer_dev = devs[1];
+ devs[1]->peer_dev = devs[0];
+ devs[0]->next_peer_pos_bytes = devs[0]->peer_dev->next_io_pos_bytes;
+ devs[1]->next_peer_pos_bytes = devs[1]->peer_dev->next_io_pos_bytes;
+
+ sem_init(&camdd_sem, /*pshared*/ 0, 0);
+
+ signal(SIGINFO, camdd_sig_handler);
+ signal(SIGINT, camdd_sig_handler);
+
+ error = clock_gettime(CLOCK_MONOTONIC_PRECISE, &start_time);
+ if (error != 0) {
+ warn("Unable to get start time");
+ goto bailout;
+ }
+
+ for (i = 0; i < num_io_opts; i++) {
+ error = pthread_create(&threads[i], NULL, camdd_worker,
+ (void *)devs[i]);
+ if (error != 0) {
+ warnc(error, "pthread_create() failed");
+ goto bailout;
+ }
+ }
+
+ for (;;) {
+ if ((sem_wait(&camdd_sem) == -1)
+ || (need_exit != 0)) {
+ struct kevent ke;
+
+ for (i = 0; i < num_io_opts; i++) {
+ EV_SET(&ke, (uintptr_t)&devs[i]->work_queue,
+ EVFILT_USER, 0, NOTE_TRIGGER, 0, NULL);
+
+ devs[i]->flags |= CAMDD_DEV_FLAG_EOF;
+
+ error = kevent(devs[i]->kq, &ke, 1, NULL, 0,
+ NULL);
+ if (error == -1)
+ warn("%s: unable to wake up thread",
+ __func__);
+ error = 0;
+ }
+ break;
+ } else if (need_status != 0) {
+ camdd_print_status(devs[0], devs[1], &start_time);
+ need_status = 0;
+ }
+ }
+ for (i = 0; i < num_io_opts; i++) {
+ pthread_join(threads[i], NULL);
+ }
+
+ camdd_print_status(devs[0], devs[1], &start_time);
+
+bailout:
+
+ for (i = 0; i < num_io_opts; i++)
+ camdd_free_dev(devs[i]);
+
+ return (error + error_exit);
+}
+
+void
+usage(void)
+{
+ fprintf(stderr,
+"usage: camdd <-i|-o pass=pass0,bs=1M,offset=1M,depth=4>\n"
+" <-i|-o file=/tmp/file,bs=512K,offset=1M>\n"
+" <-i|-o file=/dev/da0,bs=512K,offset=1M>\n"
+" <-i|-o file=/dev/nsa0,bs=512K>\n"
+" [-C retry_count][-E][-m max_io_amt][-t timeout_secs][-v][-h]\n"
+"Option description\n"
+"-i <arg=val> Specify input device/file and parameters\n"
+"-o <arg=val> Specify output device/file and parameters\n"
+"Input and Output parameters\n"
+"pass=name Specify a pass(4) device like pass0 or /dev/pass0\n"
+"file=name Specify a file or device, /tmp/foo, /dev/da0, /dev/null\n"
+" or - for stdin/stdout\n"
+"bs=blocksize Specify blocksize in bytes, or using K, M, G, etc. suffix\n"
+"offset=len Specify starting offset in bytes or using K, M, G suffix\n"
+" NOTE: offset cannot be specified on tapes, pipes, stdin/out\n"
+"depth=N Specify a numeric queue depth. This only applies to pass(4)\n"
+"mcs=N Specify a minimum cmd size for pass(4) read/write commands\n"
+"Optional arguments\n"
+"-C retry_cnt Specify a retry count for pass(4) devices\n"
+"-E Enable CAM error recovery for pass(4) devices\n"
+"-m max_io Specify the maximum amount to be transferred in bytes or\n"
+" using K, G, M, etc. suffixes\n"
+"-t timeout Specify the I/O timeout to use with pass(4) devices\n"
+"-v Enable verbose error recovery\n"
+"-h Print this message\n");
+}
+
+
+int
+camdd_parse_io_opts(char *args, int is_write, struct camdd_io_opts *io_opts)
+{
+ char *tmpstr, *tmpstr2;
+ char *orig_tmpstr = NULL;
+ int retval = 0;
+
+ io_opts->write_dev = is_write;
+
+ tmpstr = strdup(args);
+ if (tmpstr == NULL) {
+ warn("strdup failed");
+ retval = 1;
+ goto bailout;
+ }
+ orig_tmpstr = tmpstr;
+ while ((tmpstr2 = strsep(&tmpstr, ",")) != NULL) {
+ char *name, *value;
+
+ /*
+ * If the user creates an empty parameter by putting in two
+ * commas, skip over it and look for the next field.
+ */
+ if (*tmpstr2 == '\0')
+ continue;
+
+ name = strsep(&tmpstr2, "=");
+ if (*name == '\0') {
+ warnx("Got empty I/O parameter name");
+ retval = 1;
+ goto bailout;
+ }
+ value = strsep(&tmpstr2, "=");
+ if ((value == NULL)
+ || (*value == '\0')) {
+ warnx("Empty I/O parameter value for %s", name);
+ retval = 1;
+ goto bailout;
+ }
+ if (strncasecmp(name, "file", 4) == 0) {
+ io_opts->dev_type = CAMDD_DEV_FILE;
+ io_opts->dev_name = strdup(value);
+ if (io_opts->dev_name == NULL) {
+ warn("Error allocating memory");
+ retval = 1;
+ goto bailout;
+ }
+ } else if (strncasecmp(name, "pass", 4) == 0) {
+ io_opts->dev_type = CAMDD_DEV_PASS;
+ io_opts->dev_name = strdup(value);
+ if (io_opts->dev_name == NULL) {
+ warn("Error allocating memory");
+ retval = 1;
+ goto bailout;
+ }
+ } else if ((strncasecmp(name, "bs", 2) == 0)
+ || (strncasecmp(name, "blocksize", 9) == 0)) {
+ retval = expand_number(value, &io_opts->blocksize);
+ if (retval == -1) {
+ warn("expand_number(3) failed on %s=%s", name,
+ value);
+ retval = 1;
+ goto bailout;
+ }
+ } else if (strncasecmp(name, "depth", 5) == 0) {
+ char *endptr;
+
+ io_opts->queue_depth = strtoull(value, &endptr, 0);
+ if (*endptr != '\0') {
+ warnx("invalid queue depth %s", value);
+ retval = 1;
+ goto bailout;
+ }
+ } else if (strncasecmp(name, "mcs", 3) == 0) {
+ char *endptr;
+
+ io_opts->min_cmd_size = strtol(value, &endptr, 0);
+ if ((*endptr != '\0')
+ || ((io_opts->min_cmd_size > 16)
+ || (io_opts->min_cmd_size < 0))) {
+ warnx("invalid minimum cmd size %s", value);
+ retval = 1;
+ goto bailout;
+ }
+ } else if (strncasecmp(name, "offset", 6) == 0) {
+ retval = expand_number(value, &io_opts->offset);
+ if (retval == -1) {
+ warn("expand_number(3) failed on %s=%s", name,
+ value);
+ retval = 1;
+ goto bailout;
+ }
+ } else if (strncasecmp(name, "debug", 5) == 0) {
+ char *endptr;
+
+ io_opts->debug = strtoull(value, &endptr, 0);
+ if (*endptr != '\0') {
+ warnx("invalid debug level %s", value);
+ retval = 1;
+ goto bailout;
+ }
+ } else {
+ warnx("Unrecognized parameter %s=%s", name, value);
+ }
+ }
+bailout:
+ free(orig_tmpstr);
+
+ return (retval);
+}
+
+int
+main(int argc, char **argv)
+{
+ int c;
+ camdd_argmask arglist = CAMDD_ARG_NONE;
+ int timeout = 0, retry_count = 1;
+ int error = 0;
+ uint64_t max_io = 0;
+ struct camdd_io_opts *opt_list = NULL;
+
+ if (argc == 1) {
+ usage();
+ exit(1);
+ }
+
+ opt_list = calloc(2, sizeof(struct camdd_io_opts));
+ if (opt_list == NULL) {
+ warn("Unable to allocate option list");
+ error = 1;
+ goto bailout;
+ }
+
+ while ((c = getopt(argc, argv, "C:Ehi:m:o:t:v")) != -1){
+ switch (c) {
+ case 'C':
+ retry_count = strtol(optarg, NULL, 0);
+ if (retry_count < 0)
+ errx(1, "retry count %d is < 0",
+ retry_count);
+ arglist |= CAMDD_ARG_RETRIES;
+ break;
+ case 'E':
+ arglist |= CAMDD_ARG_ERR_RECOVER;
+ break;
+ case 'i':
+ case 'o':
+ if (((c == 'i')
+ && (opt_list[0].dev_type != CAMDD_DEV_NONE))
+ || ((c == 'o')
+ && (opt_list[1].dev_type != CAMDD_DEV_NONE))) {
+ errx(1, "Only one input and output path "
+ "allowed");
+ }
+ error = camdd_parse_io_opts(optarg, (c == 'o') ? 1 : 0,
+ (c == 'o') ? &opt_list[1] : &opt_list[0]);
+ if (error != 0)
+ goto bailout;
+ break;
+ case 'm':
+ error = expand_number(optarg, &max_io);
+ if (error == -1) {
+ warn("invalid maximum I/O amount %s", optarg);
+ error = 1;
+ goto bailout;
+ }
+ break;
+ case 't':
+ timeout = strtol(optarg, NULL, 0);
+ if (timeout < 0)
+ errx(1, "invalid timeout %d", timeout);
+ /* Convert the timeout from seconds to ms */
+ timeout *= 1000;
+ arglist |= CAMDD_ARG_TIMEOUT;
+ break;
+ case 'v':
+ arglist |= CAMDD_ARG_VERBOSE;
+ break;
+ case 'h':
+ default:
+ usage();
+ exit(1);
+ break; /*NOTREACHED*/
+ }
+ }
+
+ if ((opt_list[0].dev_type == CAMDD_DEV_NONE)
+ || (opt_list[1].dev_type == CAMDD_DEV_NONE))
+ errx(1, "Must specify both -i and -o");
+
+ /*
+ * Set the timeout if the user hasn't specified one.
+ */
+ if (timeout == 0)
+ timeout = CAMDD_PASS_RW_TIMEOUT;
+
+ error = camdd_rw(opt_list, 2, max_io, retry_count, timeout);
+
+bailout:
+ free(opt_list);
+
+ exit(error);
+}
OpenPOWER on IntegriCloud