/* Kernel core dump functions below target vector, for GDB. Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995 Free Software Foundation, Inc. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* $FreeBSD$ */ /* * This works like "remote" but, you use it like this: * target kcore /dev/mem * or * target kcore /var/crash/host/core.0 * * This way makes it easy to short-circut the whole bfd monster, * and direct the inferior stuff to our libkvm implementation. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "defs.h" #include "gdb_string.h" #include "frame.h" /* required by inferior.h */ #include "inferior.h" #include "symtab.h" #include "symfile.h" #include "objfiles.h" #include "command.h" #include "bfd.h" #include "target.h" #include "gdbcore.h" #include "regcache.h" #if __FreeBSD_version >= 500032 static void kcore_files_info (struct target_ops *); static void kcore_close (int); static void get_kcore_registers (int); static int xfer_mem (CORE_ADDR, char *, int, int, struct mem_attrib *, struct target_ops *); static int xfer_umem (CORE_ADDR, char *, int, int); static char *core_file; static kvm_t *core_kd; static struct pcb cur_pcb; static struct kinfo_proc *cur_proc; static struct target_ops kcore_ops; int kernel_debugging; int kernel_writablecore; /* Read the "thing" at kernel address 'addr' into the space pointed to by point. The length of the "thing" is determined by the type of p. Result is non-zero if transfer fails. */ #define kvread(addr, p) \ (target_read_memory ((CORE_ADDR) (addr), (char *) (p), sizeof (*(p)))) static CORE_ADDR ksym_kernbase (void) { static CORE_ADDR kernbase; struct minimal_symbol *sym; if (kernbase == 0) { sym = lookup_minimal_symbol ("kernbase", NULL, NULL); if (sym == NULL) { kernbase = KERNBASE; } else { kernbase = SYMBOL_VALUE_ADDRESS (sym); } } return kernbase; } #define KERNOFF (ksym_kernbase ()) #define INKERNEL(x) ((x) >= KERNOFF) CORE_ADDR ksym_lookup(const char *name) { struct minimal_symbol *sym; sym = lookup_minimal_symbol (name, NULL, NULL); if (sym == NULL) error ("kernel symbol `%s' not found.", name); return SYMBOL_VALUE_ADDRESS (sym); } /* Provide the address of an initial PCB to use. If this is a crash dump, try for "dumppcb". If no "dumppcb" or it's /dev/mem, use proc0. Return the core address of the PCB we found. */ static CORE_ADDR initial_pcb (void) { struct minimal_symbol *sym; CORE_ADDR addr; void *val; /* Make sure things are open... */ if (!core_kd || !core_file) return (0); /* If this is NOT /dev/mem try for dumppcb. */ if (strncmp (core_file, _PATH_DEV, sizeof _PATH_DEV - 1)) { sym = lookup_minimal_symbol ("dumppcb", NULL, NULL); if (sym != NULL) { addr = SYMBOL_VALUE_ADDRESS (sym); return (addr); } } /* OK, just use thread0's pcb. Note that curproc might not exist, and if it does, it will point to gdb. Therefore, just use proc0 and let the user set some other context if they care about it. */ addr = ksym_lookup ("thread0"); if (kvread (addr, &val)) { error ("cannot read thread0 pointer at %x\n", addr); val = 0; } else { /* Read the PCB address in thread structure. */ addr += offsetof (struct thread, td_pcb); if (kvread (addr, &val)) { error ("cannot read thread0->td_pcb pointer at %x\n", addr); val = 0; } } /* thread0 is wholly in the kernel and cur_proc is only used for reading user mem, so no point in setting this up. */ cur_proc = 0; return ((CORE_ADDR)val); } /* Set the current context to that of the PCB struct at the system address passed. */ static int set_context (CORE_ADDR addr) { CORE_ADDR procaddr = 0; if (kvread (addr, &cur_pcb)) error ("cannot read pcb at %#x", addr); /* Fetch all registers from core file. */ target_fetch_registers (-1); /* Now, set up the frame cache, and print the top of stack. */ flush_cached_frames (); set_current_frame (create_new_frame (read_fp (), read_pc ())); select_frame (get_current_frame ()); return (0); } /* Discard all vestiges of any previous core file and mark data and stack spaces as empty. */ /* ARGSUSED */ static void kcore_close (int quitting) { inferior_ptid = null_ptid; /* Avoid confusion from thread stuff. */ if (core_kd) { kvm_close (core_kd); free (core_file); core_file = NULL; core_kd = NULL; } } /* This routine opens and sets up the core file bfd. */ static void kcore_open (char *filename /* the core file */, int from_tty) { kvm_t *kd; const char *p; struct cleanup *old_chain; char buf[256], *cp; int ontop; CORE_ADDR addr; target_preopen (from_tty); /* The exec file is required for symbols. */ if (exec_bfd == NULL) error ("No kernel exec file specified"); if (core_kd) { error ("No core file specified." " (Use `detach' to stop debugging a core file.)"); return; } if (!filename) { error ("No core file specified."); return; } filename = tilde_expand (filename); if (filename[0] != '/') { cp = concat (current_directory, "/", filename, NULL); free (filename); filename = cp; } old_chain = make_cleanup (free, filename); kd = kvm_open (bfd_get_filename(exec_bfd), filename, NULL, kernel_writablecore ? O_RDWR: O_RDONLY, 0); if (kd == NULL) { perror_with_name (filename); return; } /* Looks semi-reasonable. Toss the old core file and work on the new. */ discard_cleanups (old_chain); /* Don't free filename any more. */ core_file = filename; unpush_target (&kcore_ops); ontop = !push_target (&kcore_ops); /* Note unpush_target (above) calls kcore_close. */ core_kd = kd; /* Print out the panic string if there is one. */ if (kvread (ksym_lookup ("panicstr"), &addr) == 0 && addr != 0 && target_read_memory (addr, buf, sizeof(buf)) == 0) { for (cp = buf; cp < &buf[sizeof(buf)] && *cp; cp++) if (!isascii (*cp) || (!isprint (*cp) && !isspace (*cp))) *cp = '?'; *cp = '\0'; if (buf[0] != '\0') printf_filtered ("panic: %s\n", buf); } /* Print all the panic messages if possible. */ if (symfile_objfile != NULL) { printf ("panic messages:\n---\n"); snprintf (buf, sizeof buf, "/sbin/dmesg -N %s -M %s | \ /usr/bin/awk '/^(panic:|Fatal trap) / { printing = 1 } \ { if (printing) print $0 }'", symfile_objfile->name, filename); fflush (stdout); system (buf); printf ("---\n"); } if (!ontop) { warning ("you won't be able to access this core file until you terminate\n" "your %s; do ``info files''", target_longname); return; } /* Now, set up process context, and print the top of stack. */ (void)set_context (initial_pcb()); print_stack_frame (selected_frame, frame_relative_level(selected_frame), 1); } static void kcore_detach (char *args, int from_tty) { if (args) error ("Too many arguments"); unpush_target (&kcore_ops); reinit_frame_cache (); if (from_tty) printf_filtered ("No kernel core file now.\n"); } #ifdef __alpha__ #include "alpha/tm-alpha.h" #include "alpha-tdep.h" #ifndef S0_REGNUM #define S0_REGNUM (ALPHA_T7_REGNUM+1) #endif fetch_kcore_registers (struct pcb *pcbp) { /* First clear out any garbage. */ memset (registers, '\0', REGISTER_BYTES); /* SP */ *(long *) ®isters[REGISTER_BYTE (SP_REGNUM)] = pcbp->pcb_hw.apcb_ksp; /* S0 through S6 */ memcpy (®isters[REGISTER_BYTE (S0_REGNUM)], &pcbp->pcb_context[0], 7 * sizeof (long)); /* PC */ *(long *) ®isters[REGISTER_BYTE (PC_REGNUM)] = pcbp->pcb_context[7]; registers_fetched (); } CORE_ADDR fbsd_kern_frame_saved_pc (struct frame_info *fi) { struct minimal_symbol *sym; CORE_ADDR this_saved_pc; this_saved_pc = FRAME_SAVED_PC(fi); sym = lookup_minimal_symbol_by_pc (this_saved_pc); if (sym != NULL && (strcmp (SYMBOL_NAME (sym), "XentArith") == 0 || strcmp (SYMBOL_NAME (sym), "XentIF") == 0 || strcmp (SYMBOL_NAME (sym), "XentInt") == 0 || strcmp (SYMBOL_NAME (sym), "XentMM") == 0 || strcmp (SYMBOL_NAME (sym), "XentSys") == 0 || strcmp (SYMBOL_NAME (sym), "XentUna") == 0 || strcmp (SYMBOL_NAME (sym), "XentRestart") == 0)) { return (read_memory_integer (fi->frame + 32 * 8, 8)); } else { return (this_saved_pc); } } #endif /* __alpha__ */ #ifdef __i386__ static CORE_ADDR ksym_maxuseraddr (void) { static CORE_ADDR maxuseraddr; struct minimal_symbol *sym; if (maxuseraddr == 0) { sym = lookup_minimal_symbol ("PTmap", NULL, NULL); if (sym == NULL) { maxuseraddr = VM_MAXUSER_ADDRESS; } else { maxuseraddr = SYMBOL_VALUE_ADDRESS (sym); } } return maxuseraddr; } /* Symbol names of kernel entry points. Use special frames. */ #define KSYM_TRAP "calltrap" #define KSYM_INTR "Xintr" #define KSYM_FASTINTR "Xfastintr" #define KSYM_OLDSYSCALL "Xlcall_syscall" #define KSYM_SYSCALL "Xint0x80_syscall" /* The following is FreeBSD-specific hackery to decode special frames and elide the assembly-language stub. This could be made faster by defining a frame_type field in the machine-dependent frame information, but we don't think that's too important right now. */ enum frametype { tf_normal, tf_trap, tf_interrupt, tf_syscall }; CORE_ADDR fbsd_kern_frame_saved_pc (struct frame_info *fr) { struct minimal_symbol *sym; CORE_ADDR this_saved_pc; enum frametype frametype; this_saved_pc = read_memory_integer (fr->frame + 4, 4); sym = lookup_minimal_symbol_by_pc (this_saved_pc); frametype = tf_normal; if (sym != NULL) { if (strcmp (SYMBOL_NAME (sym), KSYM_TRAP) == 0) frametype = tf_trap; else if (strncmp (SYMBOL_NAME (sym), KSYM_INTR, strlen (KSYM_INTR)) == 0 || strncmp (SYMBOL_NAME(sym), KSYM_FASTINTR, strlen (KSYM_FASTINTR)) == 0) frametype = tf_interrupt; else if (strcmp (SYMBOL_NAME (sym), KSYM_SYSCALL) == 0 || strcmp (SYMBOL_NAME (sym), KSYM_OLDSYSCALL) == 0) frametype = tf_syscall; } switch (frametype) { default: case tf_normal: return (this_saved_pc); #define oEIP offsetof (struct trapframe, tf_eip) case tf_trap: return (read_memory_integer (fr->frame + 8 + oEIP, 4)); case tf_interrupt: return (read_memory_integer (fr->frame + 12 + oEIP, 4)); case tf_syscall: return (read_memory_integer (fr->frame + 8 + oEIP, 4)); #undef oEIP } } static void fetch_kcore_registers (struct pcb *pcb) { int i; int noreg; /* Get the register values out of the sys pcb and store them where `read_register' will find them. */ /* * XXX many registers aren't available. * XXX for the non-core case, the registers are stale - they are for * the last context switch to the debugger. * XXX gcc's register numbers aren't all #defined in tm-i386.h. */ noreg = 0; for (i = 0; i < 3; ++i) /* eax,ecx,edx */ supply_register (i, (char *)&noreg); supply_register (3, (char *) &pcb->pcb_ebx); supply_register (SP_REGNUM, (char *) &pcb->pcb_esp); supply_register (FP_REGNUM, (char *) &pcb->pcb_ebp); supply_register (6, (char *) &pcb->pcb_esi); supply_register (7, (char *) &pcb->pcb_edi); supply_register (PC_REGNUM, (char *) &pcb->pcb_eip); for (i = 9; i < 14; ++i) /* eflags, cs, ss, ds, es, fs */ supply_register (i, (char *) &noreg); supply_register (15, (char *) &pcb->pcb_gs); /* XXX 80387 registers? */ } #endif /* __i386__ */ #ifdef __sparc64__ #define SPARC_INTREG_SIZE 8 static void fetch_kcore_registers (struct pcb *pcbp) { static struct frame top; CORE_ADDR f_addr; int i; /* Get the register values out of the sys pcb and store them where `read_register' will find them. */ /* * XXX many registers aren't available. * XXX for the non-core case, the registers are stale - they are for * the last context switch to the debugger. * XXX do something with the floating-point registers? */ supply_register (SP_REGNUM, &pcbp->pcb_sp); supply_register (PC_REGNUM, &pcbp->pcb_pc); f_addr = extract_address (&pcbp->pcb_sp, SPARC_INTREG_SIZE); /* Load the previous frame by hand (XXX) and supply it. */ read_memory (f_addr + SPOFF, (char *)&top, sizeof (top)); for (i = 0; i < 8; i++) supply_register (i + L0_REGNUM, &top.fr_local[i]); for (i = 0; i < 8; i++) supply_register (i + I0_REGNUM, &top.fr_in[i]); } CORE_ADDR fbsd_kern_frame_saved_pc (struct frame_info *fi) { struct minimal_symbol *sym; CORE_ADDR frame, pc_addr, pc; char *buf; buf = alloca (MAX_REGISTER_RAW_SIZE); /* XXX: duplicates fi->extra_info->bottom. */ frame = (fi->next != NULL) ? fi->next->frame : read_sp (); pc_addr = frame + offsetof (struct frame, fr_in[7]); #define READ_PC(pc, a, b) do { \ read_memory (a, b, SPARC_INTREG_SIZE); \ pc = extract_address (b, SPARC_INTREG_SIZE); \ } while (0) READ_PC (pc, pc_addr, buf); sym = lookup_minimal_symbol_by_pc (pc); if (sym != NULL) { if (strncmp (SYMBOL_NAME (sym), "tl0_", 4) == 0 || strcmp (SYMBOL_NAME (sym), "btext") == 0 || strcmp (SYMBOL_NAME (sym), "mp_startup") == 0 || strcmp (SYMBOL_NAME (sym), "fork_trampoline") == 0) { /* * Ugly kluge: user space addresses aren't separated from kernel * ones by range; if encountering a trap from user space, just * return a 0 to stop the trace. * Do the same for entry points of kernel processes to avoid * printing garbage. */ pc = 0; } if (strncmp (SYMBOL_NAME (sym), "tl1_", 4) == 0) { pc_addr = fi->frame + sizeof (struct frame) + offsetof (struct trapframe, tf_tpc); READ_PC (pc, pc_addr, buf); } } return (pc); } #endif /* __sparc64__ */ /* Get the registers out of a core file. This is the machine- independent part. Fetch_core_registers is the machine-dependent part, typically implemented in the xm-file for each architecture. */ /* We just get all the registers, so we don't use regno. */ /* ARGSUSED */ static void get_kcore_registers (int regno) { /* XXX - Only read the pcb when set_context() is called. When looking at a live kernel this may be a problem, but the user can do another "proc" or "pcb" command to grab a new copy of the pcb... */ /* Zero out register set then fill in the ones we know about. */ fetch_kcore_registers (&cur_pcb); } static void kcore_files_info (t) struct target_ops *t; { printf_filtered ("\t`%s'\n", core_file); } /* If mourn is being called in all the right places, this could be say `gdb internal error' (since generic_mourn calls breakpoint_init_inferior). */ static int ignore (CORE_ADDR addr, char *contents) { return 0; } static int xfer_kmem (CORE_ADDR memaddr, char *myaddr, int len, int write, struct mem_attrib *attrib, struct target_ops *target) { int n; if (!INKERNEL (memaddr)) return xfer_umem (memaddr, myaddr, len, write); if (core_kd == NULL) return 0; if (write) n = kvm_write (core_kd, memaddr, myaddr, len); else n = kvm_read (core_kd, memaddr, myaddr, len) ; if (n < 0) { fprintf_unfiltered (gdb_stderr, "can not access 0x%x, %s\n", memaddr, kvm_geterr (core_kd)); n = 0; } return n; } static int xfer_umem (CORE_ADDR memaddr, char *myaddr, int len, int write /* ignored */) { int n = 0; if (cur_proc == 0) { error ("---Can't read userspace from dump, or kernel process---\n"); return 0; } if (write) error ("kvm_uwrite unimplemented\n"); else n = kvm_uread (core_kd, cur_proc, memaddr, myaddr, len) ; if (n < 0) return 0; return n; } static void set_proc_cmd (char *arg, int from_tty) { CORE_ADDR addr, pid_addr, first_td; void *val; struct kinfo_proc *kp; int cnt; pid_t pid; if (!arg) error_no_arg ("proc address for the new context"); if (core_kd == NULL) error ("no kernel core file"); addr = (CORE_ADDR) parse_and_eval_address (arg); if (!INKERNEL (addr)) { kp = kvm_getprocs (core_kd, KERN_PROC_PID, addr, &cnt); if (!cnt) error ("invalid pid"); addr = (CORE_ADDR)kp->ki_paddr; cur_proc = kp; } else { /* Update cur_proc. */ pid_addr = addr + offsetof (struct proc, p_pid); if (kvread (pid_addr, &pid)) error ("cannot read pid ptr"); cur_proc = kvm_getprocs (core_kd, KERN_PROC_PID, pid, &cnt); if (!cnt) error("invalid pid"); } /* Find the first thread in the process. XXXKSE */ addr += offsetof (struct proc, p_threads.tqh_first); if (kvread (addr, &first_td)) error ("cannot read thread ptr"); /* Read the PCB address in thread structure. */ addr = first_td + offsetof (struct thread, td_pcb); if (kvread (addr, &val)) error("cannot read pcb ptr"); /* Read the PCB address in proc structure. */ if (set_context ((CORE_ADDR) val)) error ("invalid proc address"); } #else int kernel_debugging = 0; int kernel_writablecore = 0; CORE_ADDR fbsd_kern_frame_saved_pc (struct frame_info *fi) { return 0; } #endif void _initialize_kcorelow (void) { #if __FreeBSD_version >= 500032 kcore_ops.to_shortname = "kcore"; kcore_ops.to_longname = "Kernel core dump file"; kcore_ops.to_doc = "Use a core file as a target. Specify the filename of the core file."; kcore_ops.to_open = kcore_open; kcore_ops.to_close = kcore_close; kcore_ops.to_attach = find_default_attach; kcore_ops.to_detach = kcore_detach; kcore_ops.to_fetch_registers = get_kcore_registers; kcore_ops.to_xfer_memory = xfer_kmem; kcore_ops.to_files_info = kcore_files_info; kcore_ops.to_create_inferior = find_default_create_inferior; kcore_ops.to_stratum = kcore_stratum; kcore_ops.to_has_memory = 1; kcore_ops.to_has_stack = 1; kcore_ops.to_has_registers = 1; kcore_ops.to_magic = OPS_MAGIC; add_target (&kcore_ops); add_com ("proc", class_obscure, set_proc_cmd, "Set current process context"); #endif }